
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

University of Trento

Goal-Oriented Development

of Self-Adaptive Systems

Mirko Morandini

Advisor:

Dr. Loris Penserini

Fondazione Bruno Kessler, Trento

Co-Advisor:

Dr. Anna Perini

Fondazione Bruno Kessler, Trento

March 31, 2011

Doctoral Committee:

Prof. John Mylopoulos (Chair), Università degli Studi di Trento

Assoc. Prof. Emanuela Merelli, Università degli Studi di Camerino

Prof. Manuel Kolp, Université Catholique de Louvain

Abstract

Today’s software is expected to be able to work autonomously in an unpredictable en-

vironment, avoiding failure and achieving satisfactory performance. Self-adaptive sys-

tems try to cope with these challenging issues, autonomously adapting their behaviour

to a dynamic environment to fulfil the objectives of their stakeholders. This implies that

the software needs multiple ways to accomplish its purpose, enough knowledge of its con-

struction, decision criteria for the selection of specific behaviours and the capability to

make effective changes at runtime. The engineering of such systems is still challenging

research in software engineering methods and techniques, as recently pointed out by the

research community.

The objective of this thesis is twofold: First, to capture and detail at design time

the specific knowledge and decision criteria needed for a system to guide adaptation at

run-time. Second, to create systems which are aware of their high-level requirements,

by explicitly representing them as run-time objects, thus enabling it to act according to

them and to monitor their satisfaction.

To deliver on this aim, we provide conceptual models and process guidelines to model

at design time the knowledge necessary to enable self-adaptation in a dynamic environ-

ment, extending the agent-oriented software engineering methodology Tropos. The re-

sulting framework, called Tropos4AS, offers a detailed specification of goal achievement,

of the relationships with the environment, of possible failures and recovery activities.

A claim underlying the approach is that the concepts of agent, goal, and goal model,

used to capture the system’s requirements, should be preserved explicitly along the whole

development process, from requirements analysis to the design and run-time, thus re-

ducing the conceptual gaps between the software development phases, and providing

a representation of the high-level requirements at run-time. A direct, tool-supported

mapping from goal models to an implementation in a Belief-Desire-Intention agent ar-

chitecture, and an operational semantics for goal model satisfaction at run-time, com-

plement this work. The framework is evaluated through application to research case

studies and through an empirical study with subjects, assessing the usability and the

comprehensibility of the modelling concepts.

Keywords: Agent-oriented software engineering, development of self-adaptive sys-

tems, BDI agents, agent oriented programming.

Acknowledgements

This thesis could not have been completed without the precious support of many people.

Above all, I wish to thank Loris Penserini, my advisor. Despite he left Trento shortly

after the begin of my journey through the world of research, we were able to stay in

contact and to have a fruitful collaboration. Loris, this big target was only possible

due to your persistent support and your encouraging words. Thank you!

I would like to say sincere thanks to my co-advisor, Anna Perini. She was my local

contact person, was always available for discussing my thoughts, and her comments

and contributions have always been of great value for me. Profound thanks also go

to Paolo Tonella, head of the SE unit at FBK, who gave me the opportunity to work

part-time on his projects, supporting me in the last two years of my PhD studies.

I also thank Prof. John Mylopoulos, Prof. Emanuela Merelli and Prof. Manuel Kolp,

for having accepted to be in my thesis committee and to spend their precious time for

evaluating my work.

My visit at IRIT, Toulouse was a unique experience, both personally and scientifi-

cally. Thanks to everyone who made this possible, in the first place Prof. Marie-Pierre

Gleizes. Especially, I would also like to thank Angelo Susi, who is able to give precious

advice in any situation.

Last but for sure not least, very special thanks go to my colleagues and first of all

friends at FBK: Chaira, Cu, Nauman, Alessandro, Andrea and Surafel in the Software

Engineering unit, my colleagues in the IBT project, Mariano, Fitsum and Roberto, as

well as all my other friends there: Komminist, Leonardo, Martin, Peter, Sepideh, Shiva

and many others. You have always been able to cheer me up and to make our offices

a pleasant place to stay!

Schlussendlich möchte ich jenen ganz besonders danken, die mir am meisten am

Herzen liegen: meinen Eltern, die mich über all die Jahre hinweg immer unterstützt

haben, und denen ich jetzt endlich sagen kann: “Jo, I hon fertig studiert!”, und meiner

Freundin Simone, die mir die vielen Jahre hindurch immer wieder Kraft und Mut

gegeben hat, mich in traurigen Situationen unterstützt und in fröhlichen Momenten

begleitet hat. Wir beide schließen in diesem März unser Studium ab. Ich freue mich,

mit dir in einen neuen Abschnitt unseres Lebens eintreten zu können!

Mirko

Contents

1 Introduction 1

1.1 Challenges in Developing Self-Adaptive Systems 2

1.2 Objectives and Approach . 3

1.3 Contributions . 5

1.4 Outline of the Thesis . 6

2 State of the Art & Background 9

2.1 Analysis and Design for Self-Adaptive Systems 9

2.2 Software Agents . 19

2.2.1 Multi-Agent Systems . 19

2.2.2 Agent-Oriented Programming 20

2.3 Agent-Oriented Software Engineering 22

2.4 Work Context . 25

2.4.1 Tropos . 25

2.4.2 Jadex . 28

2.4.3 ADELFE . 30

3 Extending Goal Modelling for Adaptivity 33

3.1 Introduction . 33

3.2 Conceptual Models . 35

3.2.1 The environment model . 36

3.2.2 The Extended Goal Model . 38

3.2.3 The failure model . 46

3.2.4 Graphical modelling language 50

3.3 Modelling Process . 53

3.3.1 Extended goal modelling . 56

3.3.2 Failure modelling . 59

3.3.3 A pattern for modelling variability 64

i

3.4 Final Considerations and Related Work 66

4 From the Model to Run-Time 69

4.1 The Process: Overview . 69

4.2 A Mapping from Goal Models to BDI Agents 71

4.2.1 The considered subset of Tropos4AS concepts and structures . . 72

4.2.2 BDI concepts and mapping guidelines 73

4.2.3 Mapping of Tropos concepts and structures 75

4.2.4 Tropos4AS concepts mapping 79

4.3 Tool Support . 81

4.3.1 Tool support: Tropos4AS modelling 82

4.3.2 Tool support: code generation 83

4.3.3 Tool architecture . 87

4.3.4 Illustration of the tool-supported process 88

4.3.5 Discussion . 90

4.4 Final Considerations and Related Work 91

5 Operational Semantics for Goal Models 93

5.1 Introduction . 93

5.2 Goal Types and Goal Decomposition 94

5.2.1 An example: the Cleaner Agent 95

5.3 Goal Model: Abstract Architecture . 97

5.3.1 Basic Concepts of the Formalisation 97

5.3.2 Transition rules . 99

5.4 Instantiation of the Abstract Architecture 105

5.4.1 Perform-goals . 105

5.4.2 Achieve-goals . 106

5.4.3 Maintain-goals . 107

5.5 Application of the Semantics . 107

5.6 Discussion: Goal Types in Goal Models 109

5.7 Related Work . 110

5.8 Final Considerations . 111

6 Modelling Adaptation by Self-Organisation 113

6.1 Introduction . 113

6.1.1 Comparing the two methodologies 115

6.2 Modelling of Self-Organising MAS . 116

6.2.1 Integration of Tropos4AS and ADELFE concepts 116

6.2.2 Metamodel extension . 116

6.2.3 Modelling Steps . 118

6.3 Application to an Example . 119

6.3.1 Architecture . 121

6.3.2 Detailed design . 123

6.4 Related Work . 125

6.5 Final Considerations . 127

7 Evaluation Through Examples 129

7.1 Process application to an Example . 130

7.1.1 Description of the system . 130

7.1.2 Tropos modelling . 131

7.1.3 Extended goal modelling . 133

7.1.4 Failure modelling . 135

7.1.5 Implementation and behaviour of the prototype 137

7.1.6 Final Considerations . 138

7.2 Development and Evolution of a Prototype 139

7.2.1 The case study: iCleaner . 139

7.2.2 Applying Tropos4AS . 140

7.2.3 Evolution of the iCleaner . 145

7.2.4 Testing results and improvements 148

7.2.5 Final Considerations . 149

7.3 Evaluation: Feedback from Run-Time to the Design 151

7.3.1 Outline of the applied feedback process 151

7.3.2 Example 1: the Travel Agency 152

7.3.3 Example 2: a computer recommender system 157

7.3.4 Contributions . 160

8 Empirical Evaluation of Tropos4AS Modelling 163

8.1 Introduction . 163

8.2 Experiment planning . 165

8.2.1 Goal of the study . 165

8.2.2 Context selection . 165

8.2.3 Objects of Study . 165

8.2.4 Subjects . 166

8.2.5 Experiment design . 166

8.3 Experiment 1: Modelling . 167

8.3.1 Research questions and hypotheses 167

8.3.2 Variables and measures . 169

8.3.3 Experiment procedure and material 170

8.4 Data Analysis . 173

8.4.1 Statistical evaluation . 174

8.4.2 Evaluation of model correctness 175

8.5 Results and Interpretation . 176

8.5.1 Adequateness of the experimental settings 176

8.5.2 Main factor: results and interpretation 177

8.5.3 Additional results . 180

8.5.4 Co-factors . 182

8.5.5 Threats to validity . 183

8.6 Experiment 2: Comprehension . 185

8.6.1 Research questions and hypotheses 185

8.6.2 Experiment design and discussion 186

8.6.3 Experiment procedure and material 187

8.6.4 Variables and measures . 188

8.6.5 Statistical evaluation . 190

8.7 Results and Interpretation . 191

8.7.1 Adequateness of the experimental settings 191

8.7.2 Main factor: results and interpretation 192

8.7.3 Co-factors . 196

8.7.4 Threats to validity . 198

8.8 Related Work . 199

8.9 Final Considerations . 201

9 Conclusion 203

9.1 Summary and Contributions . 203

9.2 Conclusion and Future Work . 205

Bibliography 209

A Empirical Study: Experiment Material 223

B Own Publications 241

List of Figures

2.1 Concepts and relationships in the Tropos modelling language and their

graphical representation. 26

2.2 Tropos models: A) actor diagram, B) goal diagram for the “System” actor. 27

2.3 View on the Tropos metamodel with concepts related to the goal model

(from [Bresciani et al., 2004a]). 28

2.4 General Jadex goal life-cycle (from [Pokahr et al., 2005]). 29

2.5 Portion of the ADELFE metamodel concerning a cooperative agent

(from [Rougemaille, 2008]). 31

3.1 Knowledge and capability level in a Tropos goal model. 36

3.2 Detail of the Tropos4AS meta-model, focussing on the relationships of

the agent’s knowledge with the surrounding environment. 38

3.3 View on the Tropos4AS meta-model: goal model, goal types and condi-

tions. 41

3.4 Possible states of a goal at run-time (after [van Riemsdijk et al., 2008]). 42

3.5 Goal satisfaction process for the three main goal types. 43

3.6 The Tropos4AS meta-model with details on conditions and failure mod-

elling (extended goal model simplified). 47

3.7 Graphical representation of the modelling concepts introduced in Tro-

pos4AS . 51

3.8 The goal modelling procedure in the Tropos design process, as defined

by Penserini et al. [Penserini et al., 2007b]. 54

3.9 Steps of the extended goal modelling and failure modelling processes of

Tropos4AS , including models in input and output of each step. 56

3.10 Structured modelling of high-level alternatives. 65

4.1 Overview: Tropos4AS design artefacts, going towards a BDI agent im-

plementation. 70

v

4.2 Goal activation and plan execution mechanisms in the target BDI model. 74

4.3 The Jadex meta-reasoning mechanism 74

4.4 Tropos concepts which have a direct mapping to the adopted BDI ar-

chitecture. 75

4.5 Mapping of the Tropos goal AND-decomposition into an equivalent Jadex

BDI structure. 77

4.6 Mapping of the Tropos means-end relationship into an equivalent Jadex

BDI structure. 78

4.7 Mapping of Tropos goal OR-decomposition into the corresponding BDI

structure. 79

4.8 Mapping of the Tropos dependency relationship into the corresponding

BDI structure. 80

4.9 Interface of the Taom4E Eclipse plug-in. 82

4.10 Excerpt of an ADF showing plan and belief definitions. 84

4.11 Example of a goal definition in the Jadex ADF. 86

4.12 Taom4E: Interface for defining conditions on modelled entities. 87

4.13 Taom4E and t2x tool architecture . 88

4.14 The Tropos4AS process, illustrated through the application of the mod-

elling tools. 89

4.15 Goal model and relationships to the agent’s execution. 90

5.1 Fragment of a goal model for the Cleaner Agent example. 96

5.2 Possible states and transitions in the abstract architecture for non-leaf

goals in goal models. 99

5.3 Possible life-cycle for goal RoomClean in the Cleaner Agent example. . . 108

6.1 Tropos4AS metamodel extended with ADELFE concepts, for coopera-

tive agents. 117

6.2 Overview on the newly introduced modelling steps. 120

6.3 Tropos Late Requirements analysis . 121

6.4 Adelfe system-environment diagram . 122

6.5 Tropos diagram of the multi-agent architecture. 122

6.6 Details form the goal models of the sub-actors Paper and Reviewer. . . 123

7.1 Architectural Design goal model for the CleanerSystem, obtained follow-

ing the Tropos methodology. 132

7.2 Environment model for the CleanerSystem. 133

7.3 Table defining part of the goal conditions for the CleanerSystem. 134

7.4 CleanerSystem Tropos4AS model. 136

7.5 Actor diagram showing a stakeholder (User) delegating goals and soft-

goals to the newly introduced iCleaner system. 140

7.6 Goal model for the iCleaner agent, first version (V1). 141

7.7 Environment model for the iCleaner. 142

7.8 Entities in the environment, goal types, and conditions. 142

7.9 Excerpt of Jadex XML code and Java files (left side), generated with t2x .144

7.10 Part of a goal model and the corresponding generated Jadex ADF. . . . 145

7.11 iCleaner: graphical environment. 146

7.12 Goal model for the iCleaner, corresponding to the software imple-

mented in version 5. 147

7.13 Crashes . 149

7.14 Waste . 149

7.15 Battery . 149

7.16 Goal model of the TravelAgent example with a detailed modelling of

softgoal contributions. 153

7.17 Resulting contributions between customer categories and maximize profit. 157

7.18 Part of the Computer Seller System goal model. 158

7.19 Preference values in input and feedback values for the recommended

computer systems, for different users. 159

7.20 Illustration of the user-driven feedback process. 159

8.1 Comparison of the averages of times (in minutes) spent in the different

activities. 180

8.2 Boxplots for selected questions. 181

8.3 Boxplots for the distribution of the averages per subject, for precision,

recall and f-measure of the single answers to the comprehension questions.193

8.4 Boxplots comparing the main factor for questions cp3 and cp4. 195

8.5 Interaction plots for the treatment with respect to the subject’s experi-

ence: Precision, Recall and F-Measure. 198

List of Tables

6.1 Non-coopeartive situatons for Paper- and Reviewer-agents 124

7.1 Softgoal importances defined to profile user preferences in the three cat-

egories. These values are supposed to be given by domain experts. . . . 154

7.2 System inputs (Events and constraints) and outputs (behaviours and

sets of capabilities) for the simulation 155

7.3 Queries that characterize each customer category. 155

7.4 Capability groups associated to every query at run-time. 156

8.1 Assignment of subject groups to laboratories, objects, and treatments. . 167

8.2 A selection of the questions in the questionnaires, with answers on a

1 . . . 5 Likert scale (on top of the table). 172

8.3 Questions on the time spent on the activities in the experiment. 173

8.4 The four scenarios used to validate model correctness (in brackets, the

number of concepts that are present in the scenario). 175

8.5 Statistical analysis (Wilcoxon) for the adequateness of the experimental

settings. 176

8.6 statistical analysis (Wilcoxon): comparison Tropos vs. Tropos4AS. . . . 177

8.7 Results of the statistical analysis (values for Tropos4AS only) with Wilcoxon

and rejection of the null-hypothesis . 178

8.8 Co-factor analysis (ANOVA) for the interaction between the treatment

and the subject’s experience. 183

8.9 Comprehension experiment: questionnaire. 188

8.10 Results of the statistical analysis (Wilcoxon) for the adequateness of the

experimental settings. 192

8.11 Comprehension test: results of the statistical analysis for the main fac-

tor, with a paired Wilcoxon test. 193

ix

8.12 Analysis (Wilcoxon) of the main factor, for the amount of information

extracted from the model (cq3) and from the specifications (cq4). . . . 194

8.13 Count of subject answers, grouped around the threshold 3. 196

8.14 Co-factor analysis (ANOVA) for the interaction between the main factor

(the treatment) and the co-factors. 197

Chapter 1

Introduction

Today’s software is expected to be able to work autonomously in an open, dynamic

and distributed environment, being available anywhere and at any time.

Self-adaptive software systems were proposed by different research communities as

a solution to cope with uncertainty and partial knowledge about the environment, au-

tonomously adapting their behaviour to a changing environment, to fulfil the objectives

of their stakeholders. Following [Ganek and Corbi, 2003], we define self-adaptive sys-

tems as systems that can automatically take the correct actions based on their knowledge

of what is happening in the systems, guided by the objectives, the stakeholders assigned

to them. In other words, self-adaptive software can modify its behaviour in response

to changes in its operating environment to better do what the software is intended

for. This implies that the software has multiple ways of accomplishing its purpose, has

enough knowledge of its construction and the capability to make effective changes at

runtime [Laddaga, 2006].

Concerning the development of such systems, it may become infeasible to accom-

modate dynamic and unforeseen changes to system requirements and design using

traditional software engineering processes, since the engineer may have partial and

uncertain knowledge about run-time scenarios. Ideally, the software would have to au-

tonomously adapt to different circumstances,to satisfy the stakeholders’ requirements in

an optimal way, shifting various decisions which traditionally have been made at design-

time, to run-time [Zhu et al., 2008]. Thus, the development of self-adaptive software

calls for new design and programming concepts, which have recently been pointed out

and discussed in the research community [Cheng et al., 2009a, Di Nitto et al., 2008,

Salehie and Tahvildari, 2009, Sawyer et al., 2010].

Several requirements analysis and software programming approaches introduce

1

CHAPTER 1. INTRODUCTION

human-oriented abstractions such as agents and goals and seem thus valid candidates

in order to manage the development of such systems: goal-oriented requirements engi-

neering aims at capturing stakeholder goals, abstracting from structural details, while

available agent-oriented programming frameworks provide a basis to build autonomous

agents, which are supposed to be able to pursue their goals under unpredictable environ-

mental circumstances. However, in existing agent-oriented engineering methodologies,

despite the use of similar concepts in requirements engineering and in implementation

– agents with their goals and capabilities – still conceptual gaps exist between the

goal-oriented requirements models, the design and the implementation.

1.1 Challenges in Developing Self-Adaptive Sys-

tems

In a joined effort, participants coming from various research communities elaborated a

preliminary research roadmap, which highlights the differences of self-adaptive software

in comparison to traditional software and identifies new challenges to be addressed for

engineering self-adaptive systems [Cheng et al., 2009a].

From a modelling perspective, self-adaptive systems would need a decentralised,

scalable design, possibly incorporated with AI techniques. From an architectural

viewpoint, a self-adaptive system needs to implement some form of built-in feedback

loop such as Kephart’s MAPE loop [Kephart and Chess, 2003], collecting information,

analysing it, deciding on further actions and performing them. This loop should be

explicit in the system, separating concerns of the system functionality from concerns

of self-adaptation.

Requirements engineering for self-adaptive system would have to cope with in-

complete and changing requirements, involving various degrees of variability and un-

certainty [Cheng et al., 2009b]. In traditional software engineering, decisions on re-

quirements alternatives are taken in the early phases of development. In an open,

changing world, applications cannot be specified completely, and many decisions

that traditionally have been made at design-time, have to be shifted to run-time

[Di Nitto et al., 2008, Zhu et al., 2008]. A development process tailored towards adap-

tivity should be able to leave these decisions to the software at run-time, giving it the

possibility to adapt to various, possibly unexpected situations.

Thus, a self-adaptive system needs knowledge about the goals to reach, about its

capabilities, about how to combine and use them to reach its goals in a specific context,

2

1.2. OBJECTIVES AND APPROACH

and about how to (re)act if something goes not as expected. This domain knowledge

is hard to be grasped or generated by any reasoning or learning method at run-time.

Hence, the design model should provide the system with the contextual and social

information needed for suggesting the behaviour the system can assume in order to

cope with different situations at hands. Namely, the designer needs to give “hints” and

to“guide” the system in properly interpreting contextual information in order to decide

about when to change its behaviour and which alternative behaviour to select.

Moreover, to cope with changing circumstances, recent research on self-adaptive

systems points out the importance of the traceability of requirements in the imple-

mentation, and the need for an explicit representation of requirements as run-time

objects. Being aware of its requirements at run-time, a system would be able to

monitor them, to reflect upon them and to guide its behaviour according to them

[Cheng et al., 2009a, Sawyer et al., 2010]. In this way, the system would be able to

manage the variability in the requirements and the alternatives resulting thereof at

run-time, like the designer would have done at design time. This also sets up a basis

for requirements changes at run-time, where the system itself, implementing learning

and user profiling techniques, recognizes the need for a change in its requirements.

1.2 Objectives and Approach

The objective of this thesis is twofold:

First, we want to capture and detail at design time the specific knowledge and de-

cision criteria that guide adaptation at run-time, for a system that has to work

autonomously in a dynamic environment.

Second, we aim at bringing the high-level requirements to run-time, to make a systems

aware of its requirements, thus enabling it to act according to them and to monitor

their satisfaction.

To deliver on our first objective, we adopt an agent-oriented engineering approach

to provide a process and modelling language that captures at design time the knowl-

edge necessary for a system to deliberate on its goals in a dynamic environment, and

thus enabling a basic feature of self-adaptation. We propose a software model that

integrates the goals of the system with the environment, and an iterative development

process for the engineering of such systems, that takes into account the modelling of

the environment and an explicit modelling of failures.

3

CHAPTER 1. INTRODUCTION

Taking ideas from organisational modelling [Yu, 1995] and goal-oriented require-

ments engineering [van Lamsweerde, 2001], we use goal models as the main building

block throughout the whole development process, from requirements engineering to de-

sign, implementation and run-time. Goal models represent the rationale of the system

and define possible goal decompositions and the relation of the system’s functionalities

with its high-level goals.

For our second aim, a basic claim in our work is that the concepts of agent, goal, and

goal model, used to capture the system’s requirements, should be preserved explicitly

along the whole development process, from requirements analysis to the design and

run-time, to lower the conceptual gaps between the software development phases, and

to provide an explicit representation of the high-level requirements at run-time. Be-

ing able to represent functional and non-functional requirements, alternative choices,

conflicts and responsibilities, Goal Models are claimed to be a valid candidate also for

representing requirements at run-time [Sawyer et al., 2010].

By an explicit representation of goals in all development phases, a complete trans-

lation of requirements concepts to traditional software level notions, such as classes

and methods of object-oriented programming, is avoided. This choice contributes to

a smoother transition between the development phases, reducing loss and conceptual

mismatch and simplifying the tracing of decisions made in requirements analysis and

design to the implementation.

For the implementation we rely on agent systems with a BDI (Belief-Desire-

Intention) architecture, which have a native support for the concepts of agent, goal,

plan and belief and include basic monitoring and adaptation abilities. Defining a

direct mapping from requirements artefacts (the goal models) to implementation con-

cepts, and a supporting middleware, we create an explicit, navigable and monitorable

representation of the requirements at run-time. This explicit representation of the re-

quirements at run-time can however be realised effectively only by tools supporting

the mapping and code generation, it needs a platform for goal models at run-time and

moreover calls for the definition of run-time semantics for their satisfaction.

In pursuing our objectives, we focus on (and limit to) the design of the information

needed for a system’s decision-making process, the so-called knowledge level, leaving out

the detailed modelling and implementation of the single functionalities (capabilities) of

the system. Moreover, we aim at providing a run-time framework which gives to the

software awareness about its requirements. The optimisation of a system’s behaviour,

by the use of run-time goal model reasoning, learning and knowledge acquisition strate-

gies, is not part of, but would be complementary to our work.

4

1.3. CONTRIBUTIONS

1.3 Contributions

In this thesis we define Tropos4AS , a framework which provides a modelling language

and a process tailored to the development of self-adaptive systems.

We adopt the agent-oriented software engineering methodology Tropos

[Bresciani et al., 2004a] for requirements modelling and extend Tropos goal models

with a model of the system environment and with an explicit description of an

agent’s goal achievement in correlation to the environment (conditions modelling).

Additionally it is possible to model details in the goal achievement process, for goal

sequence and conflict. Moreover, we define a set of models and a process to analyse

possible failures in a system, errors causing them and associated prevention or recovery

activities. The aim of this is to elicit missing requirements and capabilities needed in a

changing environment, for the purpose of increasing the robustness and fault tolerance

needed in a changing environment.

We aim at lowering the conceptual gaps between requirements, design and imple-

mentation, avoiding a translation of requirements concepts to traditional software level

notions such as classes and methods of object-oriented programming. Our approach

uses the same ’mental’ concepts of agent and goal in all phases from requirements anal-

ysis to the design and run-time, and defines a design process and a direct (automated)

mapping from the design to implementation concepts.

Specifically, we adopt the BDI agent language and run-time platform Jadex

[Pokahr et al., 2005], which provides an explicit representation of goals at run-time.

A tool for modelling our extended goal models and for mapping them directly to agent

code endowing the same structure, together with a supporting middleware, are pro-

vided. We also define operational semantics for the satisfaction of goals in goal models,

which explain the intended behaviour of goal achievement at run-time, and are cus-

tomisable for a formal definition of the behaviour of platforms supporting goal models

at run-time.

Self-adaptation can in certain domains also be achieved by an emergent behaviour

obtained by self-organisation of the components in a system. We sketch an approach

for modelling self-adaptation by self-organisation, which combines models and pro-

cess of the goal-oriented “top-down” methodology Tropos4AS with the “bottom-up”

methodology for cooperative agent communities ADELFE [Bernon et al., 2005].

An evaluations of the effectiveness of the Tropos4AS framework is provided along

different lines: through the application to examples of the process and the mapping; by

a simulation of generated agent prototypes, for performing a preliminary investigation

5

CHAPTER 1. INTRODUCTION

about an improvement of goal models through run-time feedback; and through an

empirical study with subjects, which consists of two controlled experiments evaluating

the effectiveness and the comprehension of the modelling language in comparison to

Tropos , while performing modelling and model understanding tasks.

Parts of the contents of this thesis were published in international conferences

and workshops. Goal-oriented modelling of self-adaptive systems, with a first ver-

sion of the Tropos4AS framework, is presented in [Morandini et al., 2008d] and

[Morandini et al., 2008c] and detailed in a technical report ([Morandini et al., 2010]),

while the tool-supported mapping to an implementation, based on a prototype pre-

sented in [Morandini, 2006], is treated in [Penserini et al., 2007a], shown for Tro-

pos on an example in [Morandini et al., 2008a], and extended for Tropos4AS in

[Morandini et al., 2008b]. The operational semantics for goal model satisfaction at run-

time are presented in [Morandini et al., 2009b], while [Morandini et al., 2009a] treats

adaptivity by self-organisation and [Morandini et al., 2008e] gives an application of the

mapping and shows how feedback from run-time can contribute to an improvement of

the design.

1.4 Outline of the Thesis

Chapter 2 presents the state of the art in the research areas addressed by this thesis,

namely adaptive systems, goal- and agent-oriented software engineering, and concepts

in programming of agent systems. Moreover, necessary background for the comprehen-

sion of this thesis is recalled.

Chapter 3 introduces a new modelling framework, extending Tropos goal models

by concepts useful for capturing the interplay of the system with its environment and

for detailing goal achievement and alternatives selection dynamics, basic information

necessary to capture the main characteristics of systems that call for a self-adaptive

solution. Modelling steps are then defined, to elicit necessary information, to analyse

and to detail the newly introduced abstractions.

In Chapter 4, these modelling steps are integrated into a tool-supported process,

which spans the development phases until the implementation, focussing on knowledge

level artefacts. A mapping from design artefacts to a BDI-based implementation is

detailed, which preserves the goal models at run-time, and tool support for modelling

and automated code generation for the Jadex agent platform, are presented.

In Chapter 5, an operational semantics for a subset of the introduced goal model

6

1.4. OUTLINE OF THE THESIS

extensions is defined, to formalize the interpretation of extended goal models and to

give the basis for a formal definition of the behaviour of agent platforms supporting

goal models at run-time.

Chapter 6 opens a further research direction, presenting a first attempt to adapt the

framework for the development of self-organising multi-agent systems. It proposes the

combination of the introduced, Tropos-based“top-down”engineering approach with the

“bottom-up”approach ADELFE, resulting in multi-agent systems which act adaptively

by self-organisation.

The chapters 7 and 8 report experiments for assessing the presented framework. In

Chapter 7, the feasibility of the development process is shown on examples, and the

possibility of bringing feedback collected during the usage of a system created following

the presented process, is evaluated. Chapter 8 shows the results of an empirical study

with subjects, which evaluates the usability of the newly introduced modelling concepts

through two experiments.

Chapter 9 summarises the contributions of the thesis, draws a conclusion, identifies

open points and highlights future work directions.

7

Chapter 2

State of the Art & Background

This chapter reviews relevant literature from the main areas our research builds on and

introduces background work necessary for understanding this thesis.

Research in self-adaptive systems is carried out in various domains, from AI and

control theory, to adaptation algorithms and architectures. Moreover, it is widely

recognised that the development of self-adaptive systems brings challenges to virtually

every phase of software engineering, asking for a paradigm shift in requirements elici-

tation and analysis, in the system’s architecture and design, in implementation and at

run-time.

In the context of our work we limit our review along the following three lines (Sec-

tions 2.1-2.3): main approaches for the analysis and design of self-adaptive systems,

with emphasis on goal-oriented requirements engineering, variability design, anticipa-

tion of failures, and self-adaptivity at run-time; software agents as a promising imple-

mentation platform for self-adaptive systems; and agent-oriented software engineering

methodologies as a starting point for the development of self-adaptive systems. Section

2.4 gives an introduction and explains the important aspects of three works which are

used as a baseline for this thesis: the agent-oriented development methodologies Tropos

and ADELFE and the agent-oriented implementation framework Jadex.

2.1 Analysis and Design for Self-Adaptive Systems

Adaptivity has to be seen as characteristic of a solution to the problem of satisfying

stakeholders’ needs, taking into account uncertainty and incomplete knowledge of the

environment, non-determinism in the environment, incomplete control of components

(also due to humans in the operating loop), or requirements best satisfiable by solutions

9

CHAPTER 2. STATE OF THE ART & BACKGROUND

emerging from the interplay in decentralised systems [Müller et al., 2008].

To cope with this problem, first the stakeholders’ objectives, but also variability

and uncertainty in the problem space (domain and requirements) have to be captured.

However, applications cannot be specified completely, and many decisions can only

be taken during run-time [Di Nitto et al., 2008]. Thus, a self-adaptive system has to

shift decisions on variability that traditionally have been made at design-time, to run-

time, to meet the needs of the stakeholders, adapting its behaviour to the context (cf.

[Zhu et al., 2008]).

This points out the need for a runtime representation of requirements, which is

suitable for inspection and possibly also for modification. Thus, it is crucial to make

requirements available as runtime objects, causally connecting the requirements models

to the executing system, for creating a system aware of its requirements and able to

reflect upon itself [Cheng et al., 2009a, Sawyer et al., 2010].

It is widely recognised that the development of self-adaptive systems brings chal-

lenges to virtually every phase of software engineering, asking for a paradigm shift

in requirements elicitation and analysis, in the system’s architecture and design, in

implementation and at run-time [Cheng et al., 2009a].

From a modelling perspective, self-adaptive systems would need a decentralised,

scalable design, possibly incorporated with AI techniques. From an engineering view-

point, to enact the adaptation, a self-adaptive system needs to implement some form of

built-in feedback loop such as Kephart’s MAPE1 loop, collecting information, analysing

it, deciding on further actions and performing an adaptation if necessary. This loop

should be explicit in the system, separating concerns of the system functionality from

concerns of self-adaptation (cf. [Sawyer et al., 2010]). Several engineering questions

arise for each stage of this loop, in particular for decision making, on how to decide

among various alternatives, to adapt to reach a desirable state.

[Kephart and Chess, 2003] identify various challenges in engineering self-adaptive

systems, in the life cycle of individual autonomic elements, the relationship among el-

ements, and the whole context of the system, up to the interface between humans and

the systems. They also emphasize that representing needs and preferences will be just

as important as representing the system’s capabilities. Furthermore, ensuring reason-

1In their seminal work on autonomic computing, Kephart and Chess [Kephart and Chess, 2003]
envision systems composed by autonomic elements characterized by a MAPE loop, continuously
Monitoring the managed element and its external environment, Analysing this information, basing
on its own actual knowledge of the environment and of past, Planning the following activities and
Executing them.

10

2.1. ANALYSIS AND DESIGN FOR SELF-ADAPTIVE SYSTEMS

able system behaviour in the face of erroneous input will be a challenge. Moreover,

programmers will need to be supported by tools that help to acquire and represent

high-level specifications of goals and map them onto lower-level actions, and tools to

build elements that can establish, monitor, and enforce contracts or agreements.

Berry [Berry et al., 2005] categorised the different perspectives of RE which has

to be carried out in developing and running a self-adaptive systems. He identifies

four levels of requirements engineering for adaptation, where each level corresponds to

the objectives of a different stakeholder: Level 1 comprises traditional requirements

engineering, fulfilled by the system developer in order to elicit customers’ and users’

objectives; Level 2 considers RE done by the system itself at run-time, to determine if

and how to adapt; Level 3 includes RE that has to be done to determine the system’s

adaptation architecture, that is, to determine how the system will carry out Level 2

RE. Level 4 spans research on adaptation in general, e.g. for optimising adaptation

mechanisms. Regarding to this classification, to meet the objectives of our work we span

the four levels, doing research on software engineering for adaptation, and providing

a framework that captures, at Level 1, the specific requirements that characterize the

problems which call for adaptivity. Furthermore, at Level 3, a specific architecture

will be chosen to enable basic Level 2 adaptation mechanisms at run-time, over the

variability captured in Level 1.

To capture the objectives of the various stakeholders and the variability in the prob-

lem space, promising requirements engineering approaches for self-adaptive systems

base on goal-oriented requirements engineering (GORE) notions and organisational

modelling, using the human-oriented notion of actor, with its goals and dependencies,

for the description of software systems that have to work in a distributed, uncertain

environment.

Goal-Oriented Requirements Engineering

In GORE [Dardenne et al., 1993], requirements are elicited, specified and elaborated

using the concept of goal as main abstraction. Goals are objectives the system under

consideration should achieve, representing high-level (strategic) concerns.

To go towards a detailed definition of the system-to-be, the requirements engineer

refines these high-level goals, to address more and more concrete concerns, decomposing

goals, finding alternatives tailored to a specific context, and finally discovering means

for their achievement. This kind of analysis is supported by Goal Models, built by

hierarchical AND/OR decomposition of high-level goals, to show the rationale of a

11

CHAPTER 2. STATE OF THE ART & BACKGROUND

system.

Various software engineering approaches adopt goal models for requirements mod-

elling, mostly basing their graphical and formal languages for goal models on Lam-

sweerde’s KAOS [Dardenne et al., 1993, Darimont et al., 1997] or Yu’s i* modelling

framework [Yu, 1995].

KAOS The KAOS language was developed specifically for software requirements

modelling and gives details on responsibilities and operationalisation of requirements.

A goal model is composed of goals arranged in AND/OR graphs where a goal node can

have several parent nodes as it can occur in several decompositions, called reductions.

In the KAOS metamodel, the reduction meta-relationship allows for goal refinement

and for modelling alternative ways of achieving goals. Goals are defined informally

(abstract) and refined into more formal (concrete) ones until reaching subgoals (leaf-

goals) that can be operationalised through constraints, formulated in terms of objects

and actions. The semantics of the goal model are described by a first order temporal

logic that allows for a formal verification of requirements.

i* modelling framework The i* modelling framework [Yu, 1995] uses GORE con-

cepts to model the organisational environment, dependencies and responsibilities in a

system. Using the concepts of actor, goal and dependency, the rationale (the why)

behind the requirements of a system-to-be are captured, including not only functional,

but also non-functional and quality-of-service related requirements, modelled by soft-

goals. Tasks are defined as a means to achieve goals, while task decomposition links

provide details on the tasks and the (hierarchically decomposed) sub-tasks to be per-

formed by each actor. Alternative tasks can be modelled as means for achieving a goal.

i* focuses on the early development phases of eliciting the stakeholders, understand-

ing their needs and responsibilities in the organisation and deriving the goals of the

system-to-be, although it was still developed without agent-oriented programming in

mind [Bresciani et al., 2004a]. Various successive approaches use i* for a goal-oriented

analysis of functional and non-functional requirements, to complement object-oriented

analysis, and also specifically for capturing the requirements of self-adaptive systems.

Reasoning on such goal models to find the tasks that maximize goal (and soft-

goal) satisfaction, or to test satisfyability of (a group of) goals, performed off-line, is

addressed in various works, e.g. [Giorgini et al., 2004] or [Fuxman et al., 2001], and re-

cently, specific to variability in early requirements analysis, in [Jureta et al., 2010]. The

work in this thesis does not go into this direction – the implemented simple reasoning

12

2.1. ANALYSIS AND DESIGN FOR SELF-ADAPTIVE SYSTEMS

algorithms serve for illustration and prototype execution.

Dealing with variability and uncertainty in the requirements

The general objective of goal modelling is to refine goals so that the set of sub-

goals that satisfy their parent goal is necessary and sufficient. When uncertainty,

both in the requirements and in the domain, exists, subgoals will never be sufficient

[Cheng et al., 2009b]. Uncertainty must be handled, therefore, by capturing alter-

natives and defining the opportunity for selecting between them, and by assigning

responsibility to a human agent or by introducing some adaptive behaviour into the

software.

In the context of requirements analysis and design for self-adaptive systems, al-

ternatives in the problem space (domain and requirements) and in the solution space

(system behaviours) have to be made explicit. Methods for modelling alternatives are

provided by GORE and in particular by the following research.

The work by Lapouchnian et al. [Lapouchnian et al., 2006] can be categorised at

Berry’s level 1. It enriches i* models to obtain a design-level view, aiming at a speci-

fication of autonomic systems. Annotations such as sequence, priority, and conditions

are introduced for decompositions and expressions can define variable contribution to

softgoals. The models obtained are a first step towards using goal models for a more

detailed design of the system. Nevertheless, the environment and its influence on the

system behaviour can be only modelled at high-level through i* delegation, goals lack

of important run-time concepts such as a life cycle with creation and achievement, and

no development process is defined.

Yijun Yu et al. [Yu et al., 2008] capture high variability in the requirements using

Lapouchnian’s annotated goal models. At design time, they are mapped to feature

models, distinguishing run-time variability (dependent on some input) from design-

time variability, where selection can be made at design time, based on quality criteria

(softgoals).

Liaskos et al. [Liaskos et al., 2006] propose a formal language to specify stakeholder

preferences and to reason about them with the purpose of supporting the analysis of

behaviour variability at the requirements level. Goal models have been found to be

effective to study stakeholders’ goals and have been annotated to capture background

variability, i.e. changes in the environmental context which would affect goal selection

and achievement, in the problem space. Variability which can not be resolved at design

time is modelled in the solution space with feature-models, following product-line engi-

13

CHAPTER 2. STATE OF THE ART & BACKGROUND

neering approaches. It has been left as future work to show how goal model variability

at requirements level influences the run-time behaviour of a software system. With

the aim of modelling the requirements of mobile systems in a changing environment,

variability in the context is also captured by Ali et al. [Ali et al., 2010], completing

goal models with location-based annotations.

Other approaches augment goal models with details of the goal-satisfaction be-

haviour of an agent situated in a dynamic environment. Representatively, we report

the Goal Decomposition Tree (GDT) model [Simon et al., 2005], recently extended to

multi-agent systems [Mermet and Simon, 2009], in which each goal is specified by a

type (state and progress goals), a satisfaction condition and a guaranteed property in

case of goal failure. Moreover, GTD models include relationships to express subgoal

iteration and sequence; besides, decomposed goals can be defined as ”lazy” or needing

”necessary satisfaction”. A complete formal specifications of a single software system is

obtained (with similarities to Formal Tropos [Fuxman et al., 2004], presented in more

detail later in this chapter), which can be translated into an automata which imple-

ments the behaviour specified by the GDT. However, the effort of fully specifying goals

and actions, with their pre- and post-conditions, is not feasible for bigger systems in

an undefined environment.

Besides capturing variability and selection criteria, also dealing with uncertainty

in requirements models becomes important [Sawyer et al., 2010], because it cannot be

assumed that requirements for all possible environments can be anticipated, and thus

all adaptations will be known in advance. As a result, requirements for self-adaptive

systems may involve degrees of uncertainty and incompleteness. This could be achieved

by “relaxing” the typical prescriptive notion of “shall” in requirements definition. RE-

LAX [Whittle et al., 2009] analyses which requirements can be ’relaxed’ (i.e. they have

not to be satisfied under any condition) to gain some degree of freedom to be used for

adaptivity. This “relaxation” is textually modelled by using a requirements vocabulary

able to express uncertainty. With the modal verb MAY, possible alternatives can be

specified, while temporal uncertainty can be expressed by operators such as AS EARLY

AS POSSIBLE, EVENTUALLY, UNTIL, and ordinal uncertainty e.g. by AS MANY,

and AS FEW AS POSSIBLE. However, with the high expressiveness and freedom given

by RELAX, it becomes difficult to define concrete goals and precise contracts out of

requirements defined in such way.

14

2.1. ANALYSIS AND DESIGN FOR SELF-ADAPTIVE SYSTEMS

Modelling of self-adaptive systems

More recent works attempt to address specifically the nature of requirements for self-

adaptive systems, which requires to understand what are the specific knowledge and

the decision criteria that guide adaptation at run-time – namely the issues that define

the first research objective in this thesis work – and how they can be made explicit. In

part, these works propose entire development processes, which include adaptation at

run-time.

Requirements monitoring [Feather et al., 1998] aims at verification of the run-time

behaviour of a system, tracking its behaviour for deviations from its goal-oriented

KAOS requirements specification. The system alerts the user or tries pre-defined run-

time reconfiguration tactics, if it recognizes that it has to work in an environment for

which it is not designed. To do this, KAOS models have to be formalized and the

combinations of events to monitor have to be defined using temporal logic.

For [Goldsby et al., 2008], a self-adaptive system is assumed to be a collection of

steady-state systems, one of which is executing at a given point in time. The sys-

tem uses i* for modelling every possible system configuration in a distinct goal model,

together with characterising the conditions for transition between two system config-

urations, by a goal model for every potential transition. The main difference with

respect to our objective is that we try to avoid to specify every system and every

possible adaptation between systems, which may shortly lead to a bottleneck and to

numerous, mostly redundant models. Instead, we model a single system that includes

all variability, at high and low levels. Similarly, also Berry [Berry et al., 2005] proposes

goal-oriented modelling of every possible system configuration in a distinct goal model

(using KAOS), whereas our approach captures the variability needed for adaptation,

in a single model.

Cheng and Bencomo [Cheng et al., 2009b] recently presented a goal-based mod-

elling approach to develop the requirements for a self-adaptive system, giving the focus

on explicitly factoring environmental uncertainty into the process and resulting require-

ments. In an iterative process, first, top-level goals are decomposed and a conceptual

domain model identifying the key physical elements of the system and their relation-

ships (e.g., sensors, user interfaces) is built. Basing on KAOS goal models and obstacle

analysis [van Lamsweerde and Letier, 2000], environmental conditions that pose un-

certainty at development time are identified, to uncover requirements that need to be

updated. Possible failures are mitigated by adding low-level subgoals, using their RE-

LAX language [Whittle et al., 2009] to make existing requirements more flexible, and

15

CHAPTER 2. STATE OF THE ART & BACKGROUND

by adding new high-level goals which define a new target system to which to adapt.

In their recent work, Baresi and Pasquale [Baresi and Pasquale, 2010] follow an

approach similar to ours [Morandini et al., 2008d], adopting the KAOS methodology.

Taking inspiration from KAOS obstacle analysis, the approach models adaptive goals,

which identify conditions for goal violation and define various recovery strategies, acting

on the goal model at run time. Ongoing work aims at instantiating the framework for

a service platform.

Qureshi et al. [Qureshi and Perini, 2009], in their “adaptive requirements” frame-

work, capture requirements in goal models and link them to an ontological repre-

sentation of the environmental context, to capture alternatives, together with their

monitoring specifications and evaluation criteria, aiming at service-based applications.

Conceived for an early requirements analysis, Techne [Jureta et al., 2010] combines

goals, quality constraints and preferences in a single model. Candidate solutions to

the requirements problem (containing tasks and quality constraints) are derived, and

sorted by number of preferences satisfied and number of options included. Qureshi

et al. [Qureshi et al., 2010a] adopt Techne in their continuous adaptive RE frame-

work, to reflect user-requested run-time requirements changes directly to an explicitly

represented requirements model and to adapt to new candidate solutions.

Mylopoulos proposes awareness requirements2, meta-specifications of other require-

ments in a goal model, which capture the uncertainty about the success and failure of

other goals, e.g. by defining the required success rate.

Anticipation of failure

In order for a self-adaptive system to behave as required, it needs to avoid failure, often

caused by the unpredictable nature of the environment. Several approaches propose

formal analysis techniques with a complete coverage of the scenarios derived from a

model of the system, to verify the completeness of the system’s requirements. To an-

ticipate failure, [van Lamsweerde and Letier, 2000] deals with the analysis of obstacles,

sets of undesirable behaviours, which prevent goal achievement. Obstacles are identi-

fied and resolved at design-time, exploiting a formalization of goal models in temporal

logic, an approach which may become infeasible for large, complex systems. In this

work, also a risk analysis is performed, based on the likelihood of obstacle occurrence

and on the severity of its consequences. Such an analysis goes beyond the aim of our

2John Mylopoulos, “Awareness Requirements”. Invited talk at SEAMS’10. See [Souza et al., 2010]
for further details.

16

2.1. ANALYSIS AND DESIGN FOR SELF-ADAPTIVE SYSTEMS

work, which focuses on design aspects. Risk analysis might however be complementary

to our approach of failure modelling, as a means to decide if likelihood and severity of a

failure demand a design and implementation as part of the agent’s nominal behaviour,

or as part of exceptional failure recovery, or that it has not to be implemented at all,

because of its low risk.

Formal Tropos [Fuxman et al., 2001] defines a first order temporal logic specifica-

tion of a Tropos requirements model, which allows to perform verification by analysing

huge number of scenarios with the purpose to find those which may lead to system fail-

ure (i.e. counterexamples). Instead, our main concern is on how to model requirements

for adaptive systems which may foresee and manage potential failures at run-time.

The concept of antigoal [van Lamsweerde, 2004] is an obstacle obtained by negating

security-related goals and is thus related to some attacker agents, which might benefit

from it. This approach differs from and complements our work at the same time. In

fact, despite we do not consider goals belonging to malicious agents, we deal with agent

failures from the developer viewpoint.

A tool-supported approach to automated monitoring and diagnosis of requirements

is presented in [Wang et al., 2007]. Goal models, goal pre- and postconditions (ef-

fects) and logging outputs (obtaining by instrumenting the program) are mapped to

propositional SAT formulae. The satisfaction of software requirements is monitored at

run-time. For errors, a valid diagnosis can be found by verifying satisfiability of the

monitoring output in union with possible diagnoses.

Kiessel et al. [Kiessel et al., 2002] address failure modelling, arguing that it is not

feasible to anticipate and prevent all possible errors in such systems. The approach

attempts to give a software system the capability to recognize incorrect behaviour

and to initiate recovery actions, to avoid failure. The system monitors itself to detect

symptoms related to errors, and can execute recovery actions. In alternative, to avoid to

get stuck, the system tries different available actions in the domain of possible failures,

and learns from their success. However, the modelling of systems which endow such

features is not addressed.

Architectures for adaptivity at run-time

Various recent approaches deal with challenges resulting from the implementation of a

self-adaptive system. They try to resemble the structure of goal models or to represent

important parts of the requirements at run-time, to guide execution and to monitor

goal satisfaction – namely, issues that define the second research objective in this thesis.

17

CHAPTER 2. STATE OF THE ART & BACKGROUND

For example, Nakagawa et al. [Nakagawa et al., 2008, Nakagawa et al., 2010]

present a goal-oriented development process which makes use of a requirements model

(based on the KAOS methodology) to construct an architectural model for self-adaptive

systems. This work presents a mapping of each goal component to a behaviour of

a JADE agent [Bellifemine et al., 2007], which is implemented to resemble the goal

achievement behaviour and the goal hierarchy. However, in this way an explicit repre-

sentation of the goal model is lost and a goal-directed behaviour, as demanded in this

thesis, becomes impracticable.

The goal-driven approach for self-adaptive systems proposed by Salehie

[Salehie, 2009] does not origin in requirements engineering, but represents a run-time

goal model specific to reason upon for decision-making, i.e. action selection. The

work points out that goal models can, as an important difference to rule-based deci-

sion making, be navigated at run-time, and policies and priorities can be defined and

tuned for achieving the desired behaviour. Furthermore, goal models allow for vari-

ous, possibly multi-objective, decision-making mechanisms to work with. Zhu et al.

[Zhu et al., 2008] analyse goal models for the implementation of autonomic elements

in Kephart and Chess’ vision of autonomic computing, and propose to realize subtrees

of a goal models by autonomic elements.

A middleware-based approach, RAINBOW [Cheng et al., 2004] presents a frame-

work that supports self-adaptation by monitoring of a legacy system with probes and

gauges. At run-time, if system constraint violations are detected, adaptation strate-

gies, coded into the middleware, are applied. A a new configuration can then be

enforced, which better suites run-time needs. A work with a similar approach has

been recently proposed in [Dalpiaz et al., 2009]. Dalpiaz et al. present an architecture

for self-reconfiguration of agents which can adapt to different variants. They are au-

tonomous in their decisions, but have social commitments to a central entity. Such

commitments emphasize the social aspect in agent organisations.

[Qureshi and Perini, 2010] aims at defining a framework for self-adaptive systems,

in which the system plays the role of the analyst, and requirements can be requested

by users at run-time, through service requests, called“run-time requirements artifacts”.

The envisioned system is able to look up for available services to operationalise the new

requirements, instantiating a MAPE loop for service acquisition and selection.

18

2.2. SOFTWARE AGENTS

2.2 Software Agents

Software that realizes goal-oriented requirements is expected to work in an

autonomous, goal-directed way. It would have “choice of behaviour”, thus it

can be seen as an agent [van Lamsweerde, 2001].

The Agent Oriented paradigm (AO), introduced by Shoham [Shoham, 1993], aims

at dealing with the increasing complexity of applications, which have to operate within

unpredictable, evolving and heterogeneous environments, being capable of flexible, au-

tonomous and proactive action in order to meet its design objectives. It offers thus

an appropriate paradigm for the description of engineering and implementation of the

self-adaptive systems we consider in our work.

As defined in [Wooldridge, 1997], an agent is defined as an encapsulated computer

system that is situated in some environment, and that is capable of flexible, autonomous

action in that environment in order to meet its design objectives. More precisely,

autonomous agents are systems that inhabit a dynamic, unpredictable environment in

which they try to satisfy a set of time-dependent goals or motivations [Maes, 1994]. If

unexpected events occur, Agents are supposed to have the autonomy and proactiveness

to try alternatives [Jennings, 2000].

2.2.1 Multi-Agent Systems

Multi-agent systems (MAS) are systems composed of several autonomous agents that

can work collectively to reach individual or common goals that are difficult to achieve

by an individual agent or a monolithic system, following the idea of a human organi-

sation. Complex or distributed systems can be modelled as MAS to achieve a better

decomposition of a problem, or as a natural way to model societies of interacting enti-

ties. A MAS could also include human actors, services and legacy systems, which are

not necessarily conceived as agent-oriented applications.

Each single agent in a multi-agent system is autonomous and without centralized

control and can interact with others through message passing or through activity in

their environment, which are both supported, in different flavours, by most available

agent languages. Multiple agents could depend one from another for a specific activ-

ity, they could delegate goals and activities to others, and share their environmental

knowledge. MAS can exhibit an emergent behaviour as a result of the cooperation of

the single agents.

19

CHAPTER 2. STATE OF THE ART & BACKGROUND

2.2.2 Agent-Oriented Programming

In Agent-Oriented Programming (AOP) we talk of mental states and beliefs

instead of machine states, of plans and actions instead of procedures and

methods, of communication and social ability instead of I/O functionalities

[Bresciani et al., 2004a].

Agent frameworks and run-time platforms try to abstract from the object-oriented

paradigm, introducing agent-oriented concepts and extensions, for creating software

which is supposed to have social abilities, be autonomous and proactive. As a main

distinction to object-orientation, as lowest common denominator they provide an inde-

pendent thread of control, built-in messaging functionalities and rely on a middleware

that delivers basic services for the realization of multi-agent systems, such as commu-

nication protocols and -services. Such basic properties are provided for example by

the JADE agent platform [Bellifemine et al., 2007], a mature project widely used as a

basis for agent systems and platforms.

BDI Agents The predominant approach to the implementation of ’rational’ agents,

acting goal-oriented, proactive and autonomously, is the BDI (Belief, Desire, Intention)

model. It roots in the theory of practical reasoning by Bratman [Bratman, 1987] and

provides an architectural basis for agent systems. For an executable model, Rao and

Georgeff introduce the more concrete notions of goal, plan and belief for the definition

of an agent’s behaviour [Rao and Georgeff, 1995].

Goals are defined as desires an agent tries to fulfil (in several definitions they need to

be consistent with each other), while plans contain the means of achieving certain future

world states (i.e. the possible actions to execute in order to reach a goal). These notions

are adopted by several agent-oriented implementation languages and frameworks, such

as PRS, AgentSpeak, 3APL, Jack, Jadex, and Jason [Bordini et al., 2005]. Some of

these frameworks have an explicit notion of goal for agents at run-time, others rely on

the concept of event as the driving force of agent activity.

BDI agents endow a reasoning cycle, monitoring the environment to update their

belief, deliberating about the goals to achieve, selecting suitable plans and executing

them to achieve the goals.

Formal agent definition languages, such as AgentSpeak, 3APL, and GOAL pro-

vide formal operational semantics for a BDI agent architecture. As an example, in

AgentSpeak, agents are defined by a set of first-order logic formulae, implementing

the initial state of the agent’s belief base, its goals, and a library of plans that can

20

2.2. SOFTWARE AGENTS

be executed in reaction to an event. The execution platform Jason provides an in-

terpreter for AgentSpeak and enables practical development of such agent systems

[Bordini and Hübner, 2005]. However, in Jason, goals do only trigger events and are

not persistent in time.

The 3APL language [Hindriks et al., 1999] is an agent specification language which

defines beliefs, goal base, reasoning rules, and a set of basic actions, where beliefs are a

set of Prolog rules and facts and actions can be implemented in Java. It offers precise

operational semantics, which allow for logical specification and verification. The similar

GOAL language [Hindriks et al., 2000] includes persistent, declarative goals instead of

goal events.

The frameworks Jack and Jadex provide imperative, Java-based languages for im-

plementing and running BDI agent systems. Jack agents [Howden et al., 2001] are

software agents with plans and events, which trigger plans, in an extended and an-

notated Java-based language. The Jadex BDI agent framework [Pokahr et al., 2005]

allows agent developers to implement agents, which exhibit a rational, goal-oriented

behaviour. Jadex addresses the limitations of other BDI systems by introducing new

concepts such as an explicit representation of goals and a goal deliberation mechanisms.

Moreover, agents are implemented with well established technologies such as XML and

Java. Details can be found in Section 2.4.2.

Semantics of agent languages The semantics of available agent programming lan-

guages are either defined formally or determined by their implementation in a conven-

tional language. A core part in agent languages, especially in languages such as GOAL,

Jack and Jadex, which include declarative goals, is the the definition of various types

of goals. These types define the behaviour that an agent exhibits for trying to achieve

these goals Dastani [Dastani et al., 2006] made an effort for categorizing the goal types

available in the various languages, while Riemsdijk [van Riemsdijk et al., 2008] and

Thangarajah [Thangarajah et al., 2010] give an unifying operational semantics in order

to give a solid definition for these goal types. The operational semantics for goals which

are collocated in goal models, presented in Chapter 5, are built on top of Riemsdijk’s

work, which considers only “leaf goals”, that is, goals that were directly operationalised

by plans.

21

CHAPTER 2. STATE OF THE ART & BACKGROUND

2.3 Agent-Oriented Software Engineering

The new abstractions introduced with agent-oriented systems cannot be properly cap-

tured using a traditional object-oriented design approach, which model the system

from an architectural point of view. In particular, an agent’s flexible, autonomous

goal-oriented behaviour and the complexity of the dependencies and interactions can-

not be adequately captured by such approaches. Agent systems should be conceived

from a much more natural and social point of view, modelling the actors and objectives

of a system explicitly in the requirements elicitation phase.

To capture these new abstractions, several agent-oriented software engineering

(AOSE) methodologies were proposed in the last years, trying to assist the designer

in building software with autonomous, goal-oriented behaviour, starting from require-

ments analysis and gradually refining and complementing the high-level concepts ini-

tially modelled, until reaching software detailed design and implementation.

AOSE Methodologies such as MaSE, Prometheus, and Tropos

[Henderson-Sellers and Giorgini, 2005] start from a GORE approach in order to

figure out stakeholders’ intentions (requirements). These are then specified and

detailed, evolving to architectural and detailed design and eventually to an implemen-

tation of agent systems. The different methodologies adopt different high level design

concepts in order to abstract from complex system requirements, and support different

design phases.

In the following we briefly mention some AOSE methodologies, which are interesting

as background and for comparison to our work, using goal models in some development

phase, including a representation of the environment or an elaborated implementation

phase. The methodologies Tropos and ADELFE are important as baseline for our

approach and thus defined in more detail, in Sections 2.4.1 and 2.4.3, respectively.

Later in this section we also specifically focus on an approach for the representation of

the environment in agent methodologies.

The Multi-agent Systems Engineering methodology (MaSE) [DeLoach et al., 2001],

extended to O-MaSE for organisational modelling [Garćıa-Ojeda et al., 2007], was

designed to develop general purpose, closed, heterogeneous multi-agent systems.

Requirements analysis leads to a Goal Model for Dynamic Systems (GMoDS)

[DeLoach and Miller, 2009], with AND/OR refinements, precedence relationships and

triggering events. The identified goals are then translated to scenarios described tex-

tually and by UML-like diagrams. However, with this translation, the concept of goal

and the structure captured in the goal model are lost, also eventually going to an

22

2.3. AGENT-ORIENTED SOFTWARE ENGINEERING

implementation. Hence, it becomes difficult to motivate implementation choices and

run-time choices by earlier phases, and to trace modelling decisions from the analysis

phase to design and implementation.

O-MaSE goal models are implemented by assigning the leaf goals to agent roles in

the MAS [Oyenan and DeLoach, 2010]. By this process, high level information of goal

decomposition is no more present at run-time and furthermore the goal model cannot

be used as means to detail the steps necessary for the achievement of a single role’s (or

agent’s) goal. The provided MAS simulation environment moreover does not make use

of goal-oriented technology.

Prometheus [Padgham and Winikoff, 2002] is a methodology developed following

software engineering experiences on the commercial agent platform JACK, and makes

use of goal models to describe system requirements. After building a goal model in

the requirements analysis phase, the designer identifies those goals that are related to

system functionalities and delegates them to specific system actors. The architecture

of the system is specified grouping needed functionalities (actions) for goal achievement

to agents and defining the interactions between them. In the detailed design phase, the

agent internals with its actions, events, plans and data structures necessary to achieve

its goals, are defined, mostly through a textual description of scenarios. Already at

this stage, goals remain merely a high level motivation for the design decisions made,

and events become the guiding force for plan execution. From the scenarios, UML2

interaction diagrams, protocols and process diagrams are derived, altering the design

focus from goals to messages and data. In this way, the context of how and when

goals are achieved, is lost, and it becomes difficult to attribute agent activities to goals.

Thus, at run-time, agents’ awareness about their goal model is limited and the designed

agent behaviour becomes mainly reactive rather than proactive and deliberative: the

agent cannot reason on its goals in order to deal with failures and to choose alternative

behaviours.

A refinement of Prometheus [Khallouf and Winikoff, 2009] aims at overcoming these

weak points, maintaining the presence of goals throughout the design phase artefacts,

e.g. extending interaction diagrams to include them. The agent developer will thus be

aware of the goals that directly demand an agent’s functionality. However, the approach

does not bring to the design the high-level goal model with its variability and thus an

agent will not be able to adapt its behaviour by taking decisions on requirements-level

alternatives.

Some of the limitations of previously explained methodologies were considered, but

never further investigated, in a preliminary work by Kinny et al. [Kinny et al., 1996],

23

CHAPTER 2. STATE OF THE ART & BACKGROUND

which proposed a methodology for the development of BDI agents. Kinny et al. define

to different viewpoints for an agent: while the ideas for the so-called external viewpoint

(decomposition of the system into agents with responsibilities, available services, and

interactions) have been adopted in several prominent AOSE methodologies, first of all,

GAIA [Zambonelli et al., 2003], the internal viewpoint of an agent, seems not to have

been further investigated. The authors proposed several models to define the internals

of an agent: a belief model to describe the environment and the internal state, a goal

model to capture the goals that an agent may possibly adopt and the events to which

it can respond, and a plan model which describes the properties and control structure

of the plans the agent may employ.

A further methodology, INGENIAS [Pavón et al., 2008], provides a graphical agent-

oriented language for the specification of social simulation models, and for transforming

these models to code for an agent-based simulation toolkit. It also defines a specific

environment viewpoint model for capturing the entities the MAS is interacting with,

contains the resources required by tasks, assigned to agents or groups in the system,

external agents whit whom it is possible to communicate, and applications. An API

provides access to perceptions and actions of the agents, by producing events and by

acting on the environment at invocation of their methods, and thus helps to develop

MAS that will coexist with other, non-agent based applications.

The agent’s environment

In most systems, a global representation of the surroundings of the whole MAS is

needed, which would not only be the medium where agents act, but also a medium for

sharing information and mediating coordination among agents. An important function-

ality of the environment should be to embed resources and services, which are typically

situated in a physical structure [Weyns et al., 2007]. Several AOSE methodologies al-

low to model environmental concepts. However, environment modelling is often not

explicit, in the sense that it consists only of high-level organization of agents or of a

set of general resources.

The Agents and Artifacts metamodel [Omicini et al., 2006] proposes artifacts,

which are defined as non-intentional and non-autonomous computational entities, to

represent resources or tools that agents can dynamically use, share and manipulate.

Artifacts operate in a transparent way, to serve agents, which can call the operations

artifacts provide, to sense and to effect on the environment. Artifacts encapsulate

and provide access to resources in the environment, like objects following the object-

24

2.4. WORK CONTEXT

oriented paradigm. Although, they differ, because they persist in the system and

exhibit an interface to available operations, invokable through messaging.

Artifacts are independent computational entities which represent any kind of re-

source or tool that agents can dynamically use, share and manipulate. Using artifacts,

it is possible to model the environment and the mediated access to it. Agents can call

the operations an artifact exhibits on its usage interface, to change their state, to get

information (to sense), or to produce a desired effect on the environment. Moreover,

artifacts can rely on other artifacts and exhibit a reactive behaviour on environment

changes. The environment is the composition of the artifacts in a system, each with

its own state.

2.4 Work Context

The aim of our work is to define a framework for the modelling and implementation

of self-adaptive systems. In this section, some works will be presented, which consti-

tute the basis upon which we will build our approach. We present the agent-oriented

software engineering methodology Tropos , which was selected as the baseline for the

framework presented in this thesis, the BDI agent platform Jadex, and the methodology

ADELFE, which is used in an approach presented in Chapter 6.

2.4.1 Tropos

The agent-oriented methodology Tropos [Castro et al., 2002, Bresciani et al., 2004a,

Penserini et al., 2007b] is a general development methodology which covers the whole

development process, giving a crucial role to early requirements analysis, for capturing

the organisational settings where a system will be embedded in. Tropos borrows the

modelling language and analysis techniques from i* [Yu, 1995] and integrates them

with an agent-oriented paradigm.

The concept of Agent and related mental notions such as goals, plans and dependen-

cies are used through the development phases, from to architectural design, starting

from requirements analysis, modelling the stakeholders and their needs, and leading to

an architectural design of a multi-agent system.

The Tropos development process is organized into five phases: Early Requirements,

whose objective is to produce a model of the environment (i.e. the organizational

settings) “as-is”, with the stakeholders and the dependencies among themselves; Late

Requirements, in which the system-to-be is introduced in the domain, and its require-

25

CHAPTER 2. STATE OF THE ART & BACKGROUND

ments are defined by the stakeholders, delegating their needs to the system; Architec-

tural Design, whose objective is to obtain a representation of the internal architecture

of the system in terms of subcomponents of the system and relationships among them;

Detailed Design, which is concerned with the detailed specification of the capabilities

and interactions in the system; Implementation, whose objective is the production of

code from the detailed design specification. In particular, our work takes as baseline

the Tropos modelling process defined in [Penserini et al., 2007b].

A core activity along the Tropos process is conceptual modelling. The system is

depicted in terms of actor models (i.e. i* strategic dependency models) representing

the dependencies between actors, including software systems, in an organisation and

goal models (i.e. i* strategic rationale models), representing the rationale of an actor’s

behaviour. The central concepts of the graphical modelling language are depicted

in Figure 2.1. Goals (i.e. Hardgoals in this thesis, unless specified differently) are

objectives the system under consideration should achieve, while Plans are tasks to be

performed to achieve a goal. Following [Penserini et al., 2007b], Softgoals represent

mainly quality of service requirements and preferences.

Figure 2.1: Concepts and relationships in the Tropos modelling language and their

graphical representation.

A goal model in Tropos (an example is depicted in Figure 2.2 B) is represented in

terms of a forest of AND/OR-decomposed goals Additionally a goal model contains

means-ends relationships among plans (the means) and goals (the end), to define the

means to satisfy a goal. Multiple means-ends relationships have to be seen as alterna-

tives for goal satisfaction. Positive (+,++) and negative (−,−−) contributions from

goals and plans to softgoals can also be specified. As crucial difference to i*, the Tropos

26

2.4. WORK CONTEXT

Figure 2.2: Tropos models: A) actor diagram, B) goal diagram for the “System” actor.

metamodel (see Figure 2.3) explicitly defines goal decomposition into subgoals.

In late requirements analysis, the goals are delegated from the stakeholders to the

system, decomposed and analysed. The notions of actor, goal, plan and dependency are

then also used to define the system architecture, where the high-level goals of the system

are delegated to specialized sub-actors. Various architectural styles to guide this decom-

position were proposed in literature, e.g. [Kolp et al., 2001, Bresciani et al., 2004b].

In the single sub-actors, the delegated goals are refined by goal decomposition and

eventually delegated to other actors or operationalised defining the activities (i.e. the

plans) to carry out. In the detailed design phase, these activities are detailed, e.g. fol-

lowing capability modelling [Penserini et al., 2006c], using UML diagrams and defining

interaction protocols. For the implementation, Tropos claims to be general. If an agent-

oriented implementation is chosen, the identified sub-actors will be the building blocks

of a multi-agent system in the implementation phase, e.g., in [Bresciani et al., 2004a]

a sketch for an implementation by JACK agents is given.

Various model analysis techniques, e.g. [Giorgini et al., 2005b], and supporting

tools, e.g. Taom4E 3 [Perini and Susi, 2004] are provided. Taom4E is a conceptual

modelling tool developed at FBK Irst, which is extended for the purposes of this thesis,

as shown in Section 4.3.1.

3Tool for Agent Oriented visual Modelling for the Eclipse platform (http://selab.fbk.eu/taom).

27

http://selab.fbk.eu/taom

CHAPTER 2. STATE OF THE ART & BACKGROUND

Figure 2.3: View on the Tropos metamodel with concepts related to the goal model

(from [Bresciani et al., 2004a]).

Formal Tropos

The formal language Formal Tropos [Fuxman et al., 2001] gives a formal description

to Tropos goal models. It provides a textual notation for these models and allows

describing dynamic constraints among different elements in a first order, linear-time

temporal logic (LTL), to define the allowed states for a system. Goals can have different

types (achieve, maintain, achieve and maintain, avoid), which are defined by temporal

formulas, and pre- and post-conditions can be defined. Formal Tropos defines precise

semantics for goal models, with a different purpose with respect to our work, aiming

to a formal verification of requirements models (by model checking), i.e. at finding

counterexamples in a specification, for which a goal cannot be achieved.

2.4.2 Jadex

In this thesis we adopt the Jadex BDI agent platform [Pokahr et al., 2003,

Braubach et al., 2004]. Jadex consists of an agent platform, a Java API and devel-

28

2.4. WORK CONTEXT

opment tools. It addresses the limitations of other BDI agent programming platforms

by introducing an explicit representation of goals and a goal deliberation mechanism.

Jadex agents are declared in an agent definition file (ADF) in XML format, where the

agent is specified by declaring goals with their type and conditions, a belief base, rep-

resenting Java objects database-like, and available plans linked to classes implemented

in Java.

At run-time, Jadex goal satisfaction is linked to a life cycle with different states.

Transitions between these states are guided and guarded by several types of boolean

conditions on values in the agent’s belief base. The general life-cycle, represented in

Figure 2.4, is instantiated for various types of goals: goals to achieve some state in the

belief base (achieve-goals), to maintain a certain state in time (maintain-goals) or to

execute at least one of the plans available for the satisfaction of the goal, with success

(perform-goals). In the ADF, various options for the goal satisfaction dynamics can be

defined.

Figure 2.4: General Jadex goal life-cycle (from [Pokahr et al., 2005]).

For the plans, the ADF contains the interfaces with input and output parameters,

the goals that can be achieved by a plan and a reference to the Java file containing the

corresponding code. In short, if a goal is activated, one of the plans (i.e. the corre-

sponding Java class) defined as a means to achieve it, will be triggered for execution.

The belief base can be defined and populated in the ADF. It can be composed by

beliefs which are stored locally, and belief sets referencing to Java classes. Moreover,

the ADF contains the initial state of the agent, a definition of the possible messages

the agent can send and receive, and SQL-like queries, which can used as a shorthand

to retrieve facts from the belief base.

29

CHAPTER 2. STATE OF THE ART & BACKGROUND

In the Jadex plans, implemented in Java, the whole agent definition can be accessed

through an API, e.g. for reading and modifying facts in the belief base, for adopting

goals, and also for run-time modification of the goals defined.

Recently, a completely new version of Jadex was made available, which is realized

on top of a standard rule engine. Since the new release is not backwards-compatible

and still in beta stadium (January 2011), our work relies on the latest stable version

of Jadex (version 0.96).

2.4.3 ADELFE

ADELFE 4 [Bernon et al., 2005] is an agent-oriented methodology for designing Adap-

tive Multi-Agent Systems (AMAS). Systems developed according to ADELFE consist

of cooperative agents which provide an emergent global behaviour not explicitly coded

inside the single agents. Such systems follow the AMAS theory [Capera et al., 2003],

giving to the single agents the ability to autonomously and locally modify their interac-

tions with their peers, in order to adapt to changes in their environment. Adaptation

is thus realised by self-organisation of the single agents. These agents pursue their

individual objective, acting cooperatively, and trying to avoid any Non-Cooperative

Situation like conflict, unproductiveness, or concurrence, properly acting to come back

to a cooperative state (e.g. by changing cooperation partners, changing protocols, or

adapting bid offers). Thus, the modelling process follows a bottom-up approach, defin-

ing the cooperation rules and activities of the single agents, leading to an emergent

behaviour of the system.

The ADELFE methodology covers the software design phases from the requirements

to the implementation, with the addition of specific activities to support the design of

adaptive multi-agent systems. It is based on the Rational Unified Process (RUP) and

extends it along various lines. After definig the user requirements in terms of goals in

Preliminary Requirements Modelling, in Final Requirements Modelling the environment

is characterised by determining the domain entities and their environmental context.

In the Analysis phase, ADELFE extends RUP by steps for verifying the adequacy of

the problem to a solution with an AMAS, identifying the cooperative agents among

the entities in the domain, and determining the relationships between these agents.

In the Design phase, the single agents are detailed, characterising all the concepts

involved, including their perceptions, actions, skills, aptitudes, knowledge representa-

4ADELFE is a French acronym for “Atelier de Developpement de Logiciels a Fonctionnalité Emer-
gente”, see http://www.irit.fr/ADELFE

30

http://www.irit.fr/ADELFE

2.4. WORK CONTEXT

Figure 2.5: Portion of the ADELFE metamodel concerning a cooperative agent (from

[Rougemaille, 2008]).

tion and interaction languages (refer to the metamodel in Figure 2.5 for details on the

available concepts). Note, that there are no direct relationships between the high-level

goals and the agent’s detailed design, in this phase. Starting from the possible inter-

actions, Non-Cooperative Situations (NCS) are identified. Rules to detect NCS and

methods to recover to re-establish a cooperative behaviour, have to be defined.

While the original ADELFE uses UML for a graphical visualisation, we adopt the

domain-specific AMAS Modelling Language (AMAS-ML) [Rougemaille, 2008]. AMAS-

ML provides a system-environment diagram showing the participating entities and the

cooperative agents in the domain (Figure 6.4), an agent diagram defining the agent’s

internals in the form of skills, aptitudes ad represented beliefs, and a behavioural rules

diagram defining rules to recover from NCS.

Adelfe provides a model-driven trasformation of the design models to a specific

agent definition language, which is finally mapped to a Java project implemeting a

prototype of the system.

31

Chapter 3

Extending Goal Modelling for

Adaptivity

3.1 Introduction

Software needs to have alternative ways to satisfy its requirements, to properly adapt

its behaviour in a dynamic, changing environment.

Despite goal models allow designers to capture these alternative ways to approach a

problem, the only use of this design approach is not sufficient to support and improve

the decision making mechanisms within intelligent systems such as the autonomous

selection of alternatives. In fact, self-adaptive systems should not only know multiple

alternative ways to approach a problem, but also to be able to decide autonomously at

run-time which alternatives to pursue and when to change their behaviour. Thus, to

carry out decisions, the system needs to have access to additional knowledge.

Our objective is to provide to a software system at design-time the acquaintance

needed in order to increase its ability in interpreting contextual information and taking

congruent decisions at run-time (i.e., self-* properties), to meet its requirements in a

dynamic environment.

Starting from the agent-oriented software engineering methodology Tropos (see Sec-

tion 2.4.1), we define a development framework called Tropos4AS (Tropos for

self-Adaptive Systems), extending Tropos along different lines to better support

the modelling, design and implementation of self-adaptive systems.

Tropos4AS includes conceptual models, a graphical language, guidelines, and sup-

porting tools, in order to model systems with adaptive properties using the concepts

of goal, system environment and failure recovery. The adaptive properties a system is

33

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

expected to exhibit will be concretised step by step, leading to an implementation of a

self-adaptive system by adaptive agents based on a BDI architecture. To catch crucial

requirements of a self-adaptive system, the framework bases on three modelling pillars:

• a goal model based design indicating goals and relationships the system must

adhere to,

• an environment model representing the key elements in the context of the

system, which affect the achievement of goals, and

• a failure model that supports designers in capturing unwanted states of affair

and possible recovery procedures either to anticipate foreseeable failures or to

recover from unpredictable ones.

A mapping to an implementation which contains a run-time representation of these

models is presented in the subsequent chapter.

We aim at capturing at design time all the available information about possibly

changing goals and about the dynamics of goal achievement. Giving also the possibility

to reason on its goals at run-time, the system is able to take decisions on the behaviour

to exhibit, to respect the requirements. The definition of architectures and run-time

techniques to increase the domain knowledge, to forecast situations or to fine-tune

its behaviour (e.g. learning techniques, heuristics, or statistical analysis) is not an

objective of this work, but would indeed be complementary to our approach.

Outline This chapter gives a comprehensive and detailed description of the Tro-

pos4AS framework, introducing various extensions to the Tropos modelling language

and to the modelling process, with the aim of giving to the software a more precise

specification of the variability and the decision making process.

In this chapter, in Section 3.2, we present and motivate the single extensions to the

modelling language in detail, for the specification of details for goal deliberation and

achievement, along with their relationships with the environment, and with possible

failures, errors causing them, and corresponding recovery activities. The meta-models

of the modelling language, the intuitive semantics of the new constructs and their

graphical notation are defined.

The modelling process described in Section 3.3 adds various modelling steps for

the newly introduced extensions to the architectural design (AD) phase of Tropos as

defined in [Penserini et al., 2007b] (see Section 2.4.1 for details).

34

3.2. CONCEPTUAL MODELS

3.2 Conceptual Models

The Tropos4AS framework is built taking as baseline the conceptual models and mod-

elling process of the Tropos methodology, as defined in [Penserini et al., 2007b]. This

work uses Tropos explicitly for capturing variability in the requirements and divides

goal modelling into two design abstraction levels that characterize the whole develop-

ment of a software system: the knowledge level and the capability level, as depicted on

an example in Figure 3.1.

The knowledge level includes the components in charge of taking decisions about

which behaviour to exhibit in a specific situation and to plan appropriate activities to

carry out, that is, the goals and their relationships with other entities in a goal model.

The capability level brings about the functional, executable parts of a system,

which are the means to bring about the system’s leaf goals.

Our work focusses on the knowledge level of a software system. The capability level

definition regarding the detailed design and code generation of the system’s function-

alities, as realised e.g. in [Penserini et al., 2006c] by Tropos along with UML activity

and sequence diagrams, is not in the scope of the present work.

Tropos4AS extends Tropos goal models along three lines: environment modelling

(Section 3.2.1), goal modelling (Section 3.2.2) and failure modelling for goal failure

prevention (Section 3.2.3). Starting from the Tropos goal metamodels defined in

[Susi et al., 2005], we present extended metamodels and give intuitive semantics for

the newly introduced modelling concepts.

Aiming at a detailed definition of the single components or agents1 in the system,

our extensions refer specifically to Tropos goal models at the Architectural Design

(AD) phase. In this phase of Tropos the abstract system-to-be in output from the Late

Requirements phase is divided into software agents that, together, realise the software

system. The Tropos4AS process extensions are incorporated in this phase, when the

delegated goals are decomposed, detailed and operationalised.

The Tropos4AS metamodel, depicted with different highlights in the Figures 3.2,

3.3, and 3.6, defines the concepts introduced to characterise a self-adaptive system.

The metamodel builds upon the central concept of system actor of a goal model in

the Tropos AD phase, which represents the system-to-be, along with the sub-system

agents identified (specifically, step 7 in [Penserini et al., 2007b]), which will be in

charge of realising the system’s objectives.

1in the context of Tropos4AS modelling, from now on we will refer to the single components (actors)
in a system, which are goal-directed and autonomous, as agents.

35

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

Figure 3.1: Knowledge and capability level in a Tropos goal model.

In the following, we describe the new modelling extensions, whereas in Section 3.3,

the design process for creating the models is given.

3.2.1 The environment model

Self-adaptivity is concerned with how a software system behaves when substantial

changes in its environment occur. Thus it is essential that the system can percept its en-

vironment, to relate changed circumstances to appropriate system behaviours. As often

literature reports about adaptivity in AI (e.g., see Ch. 3 in [Sutton and Barto, 1998]),

learning abilities and decision-making strategies of an agent strictly depend on the

observation of environment changes. While in [Sutton and Barto, 1998] and related

36

3.2. CONCEPTUAL MODELS

approaches researchers consider the agents and their environment as black-boxes, fo-

cussing on a formal definition of the interaction between them, we propose a way to

make explicit the inside of an agent’s decision-making and its dependencies with the

environment.

Tropos4AS allows to model the key relationships between agents’ goals and the

entities situated in their environment. Following the Tropos requirements analysis

phase, possibly involved intentional entities2, i.e. the actors, both in the system to

develop and in the surrounding social context, are captured in actor diagrams (i*

Strategic Dependency models [Yu, 1995]).

The environment model captures the non-intentional entities necessary

for interfacing the system with the surrounding world. This model will be

kept simple deliberately, limiting only to the relationships between envi-

ronmental entities and the agent. It is not our aim to define a conceptual

model of the whole domain, to capture the various relationships between

the entities, or to detail their internals. Available modelling languages, from

UML class diagrams to domain ontologies, can be used for this purpose, depending on

the needs and the extent of a project.

We define the non-intentional entities following the idea of Artifact, proposed by

Omicini et al. [Omicini et al., 2006] in the Agents and Artifacts meta-model. As op-

posed to agents, artifacts are entities without an autonomous, proactive behaviour

(or, however, they are perceived as such from the agents’ perspective). Rather, they

are passive entities used by the agents to sense or act in the environment or to hold

data for interchange or for persistent storage. They provide functionalities through

usage interfaces, to access the environment (for sensing or acting), and properties

describing their internal state. Thus, artifacts are inspectable [Molesini et al., 2005],

while agents have a mental state not accessible to other agents in the environment

[Rao and Georgeff, 1995].

Working on the knowledge level, not on the agent’s single capabilities (the capability

level), we are mainly interested in the functionalities used to sense in the environment,

in order to improve the decision making process of the agent, e.g. making the agent

more aware about which behaviour to adopt to deal with a contingency.

An artifact (Figure 3.2) can be a physical entity or also some software service, and

2We distinguish between intentional and non-intentional entities. Intentional entities are the actors
in the system (stakeholders and other human and software actors), acting goal-oriented, pro-active and
with some degree of autonomy, while non-intentional entities are all the remaining passive, function-
oriented entities, designed to encapsulate some kind of function [Omicini et al., 2006].

37

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

can be internal or external to the system-to-be, and is thus either under the control

of the system developer, or situated outside of the system boundary, in the external

world, from the viewpoint of the system.

Figure 3.2: Detail of the Tropos4AS meta-model, focussing on the relationships of the

agent’s knowledge with the surrounding environment, represented by artifacts.

The boundary between an agent system and its external world is not strictly related

to the physical boundary of a robot or a machine. Rather, this boundary depends on

the purposes of modelling. For the purpose of modelling the knowledge of an agent,

anything under the control of the developer (including artifacts that offer an interface

allowing agents to sense and act in this environment), can be considered as internal to

the system, whereas anything that is not under control of the developer is considered

to be part of the external world. In a cleaner robot example, the various sensors, the

broom, the floor and the dustbins are non-intentional artifacts in the environment: the

former two (sensors, broom) being inside the system, the latter two (floor, dustbins)

being part of the external world.

The concept of Agent (depicted in a fragment of the meta-model, in Figure 3.2)

contains a goal model, the agent’s knowledge represented by beliefs related to data

sensed by artifacts, and the agent’s own state at run-time, representing the actual goal

satisfaction life-cycle and its achievement state.

3.2.2 The Extended Goal Model

Using Tropos as the baseline along all the approach, we try to capture at design time

the requirements essential for decision making at run-time.

38

3.2. CONCEPTUAL MODELS

To capture details of interest for decision-making in a self-adaptive system, we ex-

tend the goal model adding information regarding dynamic aspects of goal creation and

achievement. This is achieved by the use of conditions related to the agent’s knowledge

(i.e. its awareness about the environment), that guide or guard goal achievement at

run-time. Figure 3.3 displays an excerpt of the meta-model describing the possible goal

types, along with their available conditions, which are detailed in the reminder of this

section.

Softgoals

A first criteria for alternatives selection at design time is provided by Tropos soft-

goal contributions modelling. We use positive and negative contributions to soft-

goals (representing non-functional requirements, e.g. users’ preferences and needs,

and quality of service (QoS)), such as qualitative measures, e.g., ‘+’, ‘++’, ‘–’, ‘– –’

as well as quantitative measures (expressed by numerical values or functions, as e.g.

in [Lapouchnian et al., 2006]) for guiding the selection between possible alternatives at

run-time.

We extend softgoals by adding an additional information: the importance that

is attributed to a softgoal at a given moment at run-time. For our purposes, we

selected to capture importance by a value in an interval from 0 “unimportant” to 1

“very important”.

Giving more or less importance to the various softgoals modelled, the selection

of alternatives can be influenced by the stakeholder or directly by the user, at run-

time. The algorithm for softgoal contribution maximisation at run-time has thus also

to consider softgoal importance. Contributions to softgoals that have no importance,

should be ininfluential to alternatives selection, while e.g. a positive contribution to a

softgoal with an importance of 1 should give a higher opportunity for selection than

one to a softgoal with an importance of 0.5. Our prototype tool for a mapping to

the implementation, t2x (Section 4.3.2), provides a simple contribution maximisation

algorithm that considers also softgoal importance.

Goal types

In Tropos , goals denote a state of affairs to be achieved [Bresciani et al., 2004a]. To

effectively deal with the modelling of the pro-active behaviour of a system, we need to

understand what it means for the system itself at run-time to bring about its goals.

The necessity to achieve a goal can depend on other goals’ achievement or on envi-

39

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

ronmental circumstances, which may change also during goal achievement. It can be

necessary to achieve goals once, or to maintain some state in time. Moreover, it can

be needed to suspend goal achievement, e.g. to reach another, conflicting goal which

is necessary in some circumstance; and to drop goals, if their achievement is no more

needed or considered to be impossible in some state. All this information is critical if

we want to model and finally implement systems aware of their environment and of the

possibilities they have for adaptation to their context to achieve their high-level goals.

Tropos4AS focusses on the semantics of an agent’s goal model (i.e., in the later

design phases of Tropos) mainly driven by adaptivity features and target programming

languages that allow for a concrete implementation. This design choice is, in a different

fashion, also supported at run-time by most BDI agent programming languages, e.g.

Jadex [Pokahr et al., 2005], 2APL [Dastani, 2008], and Jack [Howden et al., 2001].

Tropos4AS introduces three goal types to define the the attitude of an agent towards

goal satisfaction at run-time: achieve-goals, maintain-goals, and perform-goals, also

proposed in the work of Dastani et. al [Dastani et al., 2006].

Different goal types were already presented and formalised in the Formal Tropos

language3, which was however developed with the aim of consistency verification via

model-checking techniques and has thus several strong limitations for the activation, the

re-activation and the dropping of goals, to limit the explosion of the state space for the

formal analysis. Similarly, also the KAOS [Dardenne et al., 1993] formal specification

language defines goal types by temporal logics. On the contrary, Tropos4AS focusses

on the semantics of an agent’s goal model (i.e., in the later design phases of Tropos)

mainly driven by adaptivity features and target programming languages that allow for a

concrete implementation. This design choice is, in a different fashion, also supported at

run-time by most BDI agent programming languages, e.g. Jadex [Pokahr et al., 2005],

2APL [Dastani, 2008], and Jack [Howden et al., 2001].

To characterise these goal types, we need to understand the process of goal achieve-

ment at run-time, with the aim of being able to define goals that are achieved e.g.

once in a certain situation, during a period of time, or simply by processing specific

activities with success. For this purpose, we introduce a simple model for the states in

a goal’s achievement process. These states are defined in various ways in existing agent

implementation platforms. Riemsdijk et al. [van Riemsdijk et al., 2008] identified a

simplified set of states, as a common denominator for capturing most goal types avail-

able in the prominent BDI agent programming languages. We adapted this minimal

definition, represented in Figure 3.4, to explain the concepts introduced in this chapter,

3Formal Tropos is based on linear time temporal logic (LTL), see [Fuxman et al., 2001].

40

3.2. CONCEPTUAL MODELS

for single goals. Later, in Chapter 5, we introduce a formal, more detailed definition

of the introduced goal types, in the context of an AND/OR goal decomposition tree.

Figure 3.3: View on the Tropos4AS meta-model showing the central parts of the Tropos

goal model as defined in [Susi et al., 2005], and the extended goal concept, with goal

types and related conditions.

Referring to Figure 3.4, goals can be in the following states: they can be either

not adopted or adopted, whereas adopted goals can be either active or suspended.

The above-mentioned goal types can be modelled by defining the transitions between

these states. In the following, they are explained by giving an intuitive description

of these state transitions, as in Figure 3.5. Each goal type is associated to a set

of conditions (see Figure 3.3), which define, together with other events, its run-time

behaviour in response to environment changes, by guiding or guarding state transitions

in the goal satisfaction process. The conditions are detailed in the subsequent section.

Achieve-goals are characterized by an achievement condition that specifies when

a certain state of affairs is reached. The satisfaction of the goal can be attempted

41

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

Figure 3.4: Possible states of a goal at run-time (after [van Riemsdijk et al., 2008]).

several times till this condition holds. Moreover, a failure condition can terminate goal

achievement, defining it as failed.

Perform-goals are satisfied by successfully executing one of the associated activities

(i.e. plans or goals). Success or failure are reported, without evaluating a particular

achievement condition.

Maintain-goals try to maintain a certain state of affairs. In literature, different

types of semantics have been attributed to maintain-goals. An agent can be reactive

or proactive in maintaining a state. In the first case (reactive maintain-goals), it

starts taking action when a particular state is no longer maintained, while in the

second case (proactive maintain-goals) it has to act in anticipation to prevent the

failure of the maintenance condition (see also [Duff et al., 2006]). In this work we

focus on reactive maintain-goals, which are available on most agent platforms. Such

goals are activated each time their maintenance condition is not satisfied and suspended

if a target condition holds.

In comparison, the Formal Tropos language adopts the conceptually different

proactive maintain-goals, which are suitable for formal verification (supposing that the

state of the system can be defined completely, without unexpected changes). Requiring

predictive reasoning mechanisms, such goals are not easily representable in procedural

agent languages in general [van Riemsdijk et al., 2008], and approaches such as a

“look-ahead with rollback” [Hindriks and van Riemsdijk, 2007] are deployable only in

specific domains. However, supposing, like e.g. in [Thangarajah et al., 2010], to have

reliable prediction mechanisms, the semantics for proactive maintain-goals will again

correspond to reactive ones.

The expected behaviour exhibited by the agent for the satisfaction of these three types

of goal inside a goal model, along with the different conditions that determine their

42

3.2. CONCEPTUAL MODELS

adopted

(S)
suspended

ContextCondit ion
AchieveCondition

execute plans

CreationCondition

¬ContextCondit ion

(A)
act ive

adopted

(S)
suspended

execute plans

(A)
act ive

adopted

execute plans

(A)
act ive

Achieve-Goal

 PreCondition

FailureCondition

Mainta in-Goal

CreationCondition

 PreCondition

TargetCondition

¬MaintainCondit ion

DropCondit ion

CreationCondition

 PreCondition

FailureCondition

plans executed

Perform-Goal

^

^

^

Figure 3.5: State diagrams for the goal satisfaction process, adapted for the three basic

goal types achieve-goal, maintain-goal and perform goal, with associated conditions.

life-cycle, founds on a formal model described in Chapter 5.

Goal conditions on environmental states

A self-adaptive system is by definition strongly related to the environment in which

it is situated. Tropos goal models are able to capture relationships between different

actors in a system at an organisational level, by modelling dependencies. Having the

system’s goal model and a model of its environment, also the relationships between

environmental artifacts and goals in the goal model can be captured.

To concretise the relationships between goals and the system’s environment, we

introduce the concept of condition, a choice well supported at run-time by various

agent programming languages.

A goal condition (see Figure 3.6) relates the satisfaction process of a goal to the

agent’s knowledge, which comprises the agent’s own state (e.g. the goal model achieve-

ment state) and the access to environmental artifacts, their state and their perception

functionalities. This is achieved by defining a boolean expression evaluated on the

agent’s knowledge. For example, the state of an environmental artifact (e.g. a value

reported by the ‘dirt sensor’ S2 of the cleaner robot CleanerSystem in Figure 7.4) can be

43

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

related to the achievement of a goal OfficeClean by a condition dirtlevel ≤ threshold.

The types of conditions introduced in Tropos4AS are associated to the goal types

previously introduced, as defined in Figure 3.3. They guard transitions between goal

states or guide the goal achievement process, triggering the transitions between the

states.

The expressions can be defined, depending on the aim of the modeller, the purpose

and the granularity of the model, by natural language, or as a boolean expression on

the properties and functionalities delivered by the artifacts or on the methods and fields

provided (e.g. in JAVA) to access them. In the following, the condition types and their

effect on the goal achievement process, shown graphically in Figure 3.5, are described.

Creation conditions (CC) determine the criteria for adopting a goal and thus starting

the goal satisfaction process, transiting, depending on the goal type, from the

non-adopted to the suspended or active state.

Pre-conditions are guarding conditions that have to be fulfilled to adopt a goal. More-

over, pre-conditions can also be used as a guarding condition for the applicability

of a plan, i.e. to define the environmental state in which a plan is available to be

executed to reach a goal. Since preconditions are evaluated in conjunction with

creation conditions, they could in practice be integrated into them. However,

often pre-conditions are needed in addition to the implicit creation of a goal (e.g.

decomposition relations, dependencies,...).

Context conditions (CoC) have to be valid during goal achievement. A goal in sus-

pended state transits to the active state if the condition is satisfied. As long as

the condition is not satisfied, the goal is suspended.

Achievement conditions (AC) define when an adopted achieve-goal was successfully

achieved and is thus dropped. Note that the name of a goal is typically a (often

vague or ambiguous) description of its achievement condition.

Maintain conditions (MC) and target conditions (TC) characterise start and end of

the maintain-goal achievement process. The maintain condition denotes the de-

sired state of a maintain-goal – a violated maintain condition brings a suspended

goal to the active state, as the agent needs to act proactively (executing proper

plans) to re-obtain this state. A target condition (which has to subsume the

maintain condition) can be defined for the suspension of an active goal, to avoid

a frequent reactivation. If it is not defined, the fulfilment of the maintain condi-

tion determines the transition to the suspended state.

44

3.2. CONCEPTUAL MODELS

Failure conditions (FC) for achieve- and perform-goals and drop conditions (DC)

for maintain-goals are used to define states in which the designer considers that

it is impossible to achieve a goal or no more desired to achieve it, and thus

it is dropped from the adopted state. These conditions can define temporal

limits for goal achievement (e.g. room not clean at 8PM), the need to withdraw

a subgoals because of changing circumstances (e.g. if achieving an alternative

goal is considered to improve the satisfaction of the requirements in a certain

environment, to avoid deadlocks, etc.

In a goal model, creation conditions can also be implicit, i.e. not explicitly defined.

This is the case with goals in an AND/OR decomposition tree and with goals that are

the dependum part of a dependency. The adoption of such goals is typically triggered by

the parent goals, or, in a dependency, by the dependent actor. Thus, defining a creation

condition for children goals of a decomposition, they are therefore independent from

the parents in the goal hierarchy at run-time. This can be desirable in some cases, but

could have undesired effects as it does not comply to the intentional meaning of goal

decomposition.

Conditions cannot only be stated for leaf level goals, but also for higher level goals

in a goal hierarchy, directly affecting the decision making process of an agent on the

selection of (sub)goals to achieve. While formal semantics for goal types and conditions

in leaf goals, available in various agent programming languages, can be found e.g.

in [van Riemsdijk et al., 2008] and [Dastani et al., 2006], Chapter 5 defines formal

semantics for goal types and conditions in non-leaf goals of a goal decomposition tree.

Goal relationships

Starting with an example, if an emergency occurs, a robot has to be able to interrupt

the current execution (i.e., the goal achievement process) in favour of an alternative

strategy, and to resume the previous (core) activity later. To express such detailed

requirements in a goal model, we endow Tropos4AS with additional relationships be-

tween goals, inhibition and sequence. Inhibition expresses run-time precedence between

goals. The definition of a specific sequence of goals is often essential, e.g. for defining

a sequential workflow among subgoals that together contribute to the achievement of

their parent goal. The two relationships have the following informal semantics.

Inhibition expresses a simple form of priority between active goals. If a goal A inhibits

goal a B, any time A changes to the active state (Figure 3.4), the achievement pro-

45

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

cess of B has to be suspended until A is dropped (and, if A is a maintain-goal, until

the desired state is reached and the goal is suspended). The relation is supported

in goal-oriented programming languages such as Jadex [Pokahr et al., 2005]. We

opted for the use of one-to-one relationships, to have a clear visual representation.

Sequence denotes a sequential order for the achievement of goals which are active at

a given instant. It can be represented by an one-to-one relationship between two

goals, or alternatively, in an AND-decomposition, by annotating the subgoals

with an ascending numbering.

Inhibition can alternatively be represented by setting a context condition in the

inhibited goal which is false (and thus suspends the goal) as long as the inhibitor

goal is in process, while sequence (also called prior-to [Fuxman et al., 2001] or precedes

[DeLoach and Miller, 2009]) can be realised by a goal precondition in the successor that

the predecessor goal succeeded.

By combining Tropos4AS modelling concepts, additional temporal relationships

can be made explicit: for example, by modelling a Tropos resource dependency be-

tween goals, the depender goal can only be achieved after the dependee goal reached

the state denoted by the resource (the dependum). Goal preconditions and creation

conditions give further possibilities for modelling relationships between goals. Re-

cently, Liaskos et al [Liaskos and Mylopoulos, 2010] introduced relationships for tem-

poral annotation into Tropos , namely precedence and effect, which are however al-

ready covered by our extensions. Similar causal relationships are defined by triggers

[DeLoach and Miller, 2009] that create or drop goal when an event occurs.

3.2.3 The failure model

The extended goal model presented in the previous section gives a detailed description

of the requirements of the system-to-be. Modelled alternatives give a source for adap-

tivity to the environment, but nevertheless the goal models typically describe “happy

path” scenarios defining the default software behaviour when all works as intended.

A main feature expected from a self-adaptive system is to prevent goal failure by

adapting correctly to new circumstances. However, especially in a changing, open

environment, unexpected exceptional situations (e.g. due to an internal failure or due

to an unexpected environmental change) could lead to degraded system performance or

to failure. Often, the cause for failure is an improper use of available capabilities, a lack

of capabilities, or a lack of knowledge for the composition and usage of own capabilities,

46

3.2. CONCEPTUAL MODELS

to handle a specific situation. The model presented hereafter aims to give to the system

engineer a means to capture, besides the goal model, also such exceptional situations

and the proper way to react to them, to anticipate such failure.

A failure of the software system is in any way caused by an incompleteness of

the requirements, namely, by circumstances (i.e. inputs) that were not considered at

requirements analysis and design time. Notice that, for example, the physical failure

of an indispensable part of a robot does not imply the failure of the control software,

as long as this failure was anticipated and correctly handled.

Figure 3.6: The Tropos4AS meta-model with details on conditions and failure modelling

(extended goal model simplified).

It could be argued that a truly self-adaptive (or autonomic) system has to properly

adapt to avoid any failure, also if the failure was not recognized at design time. The

following citation by Dan Berry argues why it is not possible to build a system that

is so autonomous that it is able to avoid failures or to fix errors, which have not been

considered at the system’s design:

For an autonomous system to fix any fault, the humans implementing the

system have to have anticipated the fault, and if a fault is anticipated, it is

not a design fault [Berry et al., 2005].

47

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

This implies that systems have to be failure-proof by design, especially when con-

sidering also the run-time platform, which could have the ability to restrict the inputs

or to absorb anomalies in the output of a software, to be part of the overall system’s

requirements and design choices.

Tropos4AS extends Tropos by a failure model , representing failures, their caus-

ing errors, and suitable recovery activities, to complement goal models with failure

prevention techniques.

The failure model explains how to act to remedy an imminent failure, to achieve

a goal also when originally the agent was unable to do so by its own knowledge and

capabilities. Tropos4AS aids the designer in anticipating failures at design time, by

eliciting possible errors causing them and by analysing the possibilities to fix them.

Concepts of failure modelling In, the Tropos goal model, which is concerned with

modelling of goals as the desired states of affair, a goal fails if it is no more possible to

be achieved or no more wanted to be achieved (if this was defined by the designers, e.g.

by modelling conditions). Depending on the purpose of the goal (e.g. it can be indis-

pensable or just one of various alternatives to satisfy the stakeholders’ requirements),

Tropos4AS gives the possibility to explicitly define critical goal Failures, which de-

note the inability to reach a goal. Failures are related to the corresponding goals in the

model and analysed by identifying perceivable Errors that may cause them. These

errors, undesirable states, which are known to the designer for (possibly) leading to a

failure, are defined in the form of conditions on the agent’s knowledge (which includes

the own state and the belief about its environment). To anticipate failure, for each

error, various Recovery Activities can be defined, which provide new capabilities

or a new arrangement of known capabilities, to cope with the particular situation, to

prevent or to recover from the error state.

The recovery activities are (parts of) goal models, and as such modelled using the

Tropos language. Thus, they can be considered as a homogeneous extension to the

system goal model. The designer can choose to detail these goal model fragments by

applying the Tropos4AS goal modelling activities (an example is shown in Figure 7.4).

The Tropos4AS meta-model part in Figure 3.6 highlights these concepts. The modelling

process is detailed in Section 3.3.2.

Various levels of “failure”, or “reliability”, can be distinguished in natural language,

e.g. in English. We adhere to the terminology given by Parhami [Parhami, 1997].

Parhami defines seven levels of reliability: Ideal, Defective, Faulty, Erroneous, Mal-

functioning, Degraded and Failed. For our purpose of modelling, we reduce this list to

48

3.2. CONCEPTUAL MODELS

three essential concepts, defined in the following way:

Failure: the system does no more behave as required, i.e. it becomes impossible to

satisfy the system’s requirements.

Error: a perceivable system state that may lead to the failure (and precedes it), for

example, the sensors can signal “low tire pressure”. Recovery from this state may

prevent more drastic consequences, e.g. a failure “impossibility to drive a car”

because the tire is completely damaged.

Fault: the cause of the error, which will be discovered by some diagnosis (for example,

“a hole in the tire”).

A paramount example for a failure is, for a robot, the fact “battery empty” (i.e. “no

power”, and thus the inability to autonomously recharge itself). A possible, perceivable

error that precedes this failure could be: “battery has a very high discharge rate” or

“battery voltage under the threshold x”. Corresponding faults would be e.g. “battery

wear level too high”, “a battery cell damaged”, or “battery too old”. However, the

results achieved applying these definitions are not absolute, but highly relative to the

designer’s viewpoint and the perception abilities of a system. Supposing to have a

(sub)requirement that states that a tire have to be flawless, the fault identified in the

example above (“a hole in a tire”), would be the failure, while the error could be “a nail

in the tire”, which could be detected by inspection, before any loss of air pressure.

Faults are discovered by making a diagnosis, asking “Why did that error happen?”

or, in other words, “What are the identified, known or hypothesised faults that cause

the errors?”. For the sake of simplicity, we decided to not capture faults explicitly in

the model, since they are usually directly related to a recovery activity. Going on with

the example, “a hole in a tire” will be recovered by an activity “repair tire”, while a

diagnosis resulting to a fault “tire valve open”would lead to the recovery activity “close

tire valve”. Another, more general, but less cost-effective repair activity would be to

replace the tire with a new one.

The approach relates possible recovery activities directly to errors, skipping an

explicit diagnosis phase for discovering the faults that cause an error. This is done

following our aim to create intuitive and comprehensible models. Relating recovery

activities directly to errors, we capture the simplest form of diagnosis. However, analo-

gous to Tropos variability modelling, various recovery activities can be modelled for an

error. By defining pre- and context-conditions and contribution links for these recovery

activities, the developer has the possibility to model “hints” for a diagnosis, which will

49

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

consist in the selection of the best alternative recovery activity in a specific environ-

mental context at run-time.

More complex diagnosis mechanisms can be either added in the implementation

phase or modelled as a first step of a recovery activity (e.g. introducing a diagnosis

capability which selects alternative recovery activities depending on the result of the

diagnosis. This diagnosis could possibly also rely on an expert system or learning

mechanisms to find suitable recovery activities).

This approach does not give the same amount of flexibility at run-time as an ex-

haustive formalization of the system’s goals, activities and possible states, together

with planning algorithms. However, for complex systems situated in an unpredictable,

non-discrete environment, a formal approach does not seem to be feasible.

Failure modelling is complementary to the modelling of goal failure conditions,

which denote the impossibility to satisfy a goal and thus define its failure. In principle,

an undesired state would also be modellable by a goal to avoid that state, but the

idea is that following the “human way” of reasoning, it is often easier to enumerate

undesirable situations than to precisely define desirable objectives. It is worth noticing

that Tropos4AS failure modelling would, in a second step, also naturally fit to the idea

of sending, at run-time, help requests to peers or dedicated (expert) systems which are

able to provide new knowledge on possible errors and/or recovery activities.

3.2.4 Graphical modelling language

In this Section we briefly describe the graphical notation proposed to depict Tropos4AS

models, which is founded on the Tropos modelling language, whereby the graphical

representation for the new extensions was chosen to integrate with the existing one.

The new concepts, depicted in Figure 3.7, are briefly described in the following.

Goal types (Figure 3.3) are graphically represented by a small circle put as annota-

tion to the upper left corner of a goal, and containing the initial letter of the goal type.

The inter-goal relationships inhibition and sequence can be represented graphically by

arrows between goals, labelled «inhibits» or «seq», respectively.

The adopted graphical notation for the environment model is a simplified UML class

diagram. Artifacts are represented as UML classes characterised by the functionalities

they provide (as methods) and their state variables (as attributes), as in Figure 3.7 (b).

They can be grouped into packages (e.g. to group artifacts external and internal to the

system), and can be detailed, if necessary, by using UML class diagram relationships.

Conditions can be modelled graphically by flag-shaped boxes linked to a goal and one

50

3.2. CONCEPTUAL MODELS

or more artifacts in the environment. As illustrated in Figure 4.12, in the supporting

tool, conditions and related artifacts are displayed in a table associated to each goal,

defining the condition type, related environmental artifacts and a Java-like boolean

expression evaluating the monitored values.

Figure 3.7: Graphical representation of the modelling concepts introduced in Tro-

pos4AS . (a) extended goal model with goal types and new goal relationships; (b)

environment model with conditions and artifacts; (c) failure model with failures, er-

rors and recovery activities (which can also include parts of the original goal model)

.

Failures are represented by ’jagged’ circles in the graphical notation (an example

can be seen also in Figure 7.4) and are associated to the respective goal by a dashed

line, while errors are represented by an ellipse. Recovery activities to mitigate errors are

modelled by goals and plans by using the Tropos4AS goal model notation. Therefore,

also parts of the original goal model can be reused.

These graphical representations are widely in line with an effort for unifying the

graphical representation of popular goal modelling languages including O-MaSE and

Prometheus [Padgham et al., 2008]. The chosen Tropos-like representation for goal

models differs only slightly from ours, mainly by the symbols for actors and agents.

The Tropos4AS concept of condition differs from the concepts of trigger, message, and

percept, which are available in the proposed unified notation, and thus deserves an

alternative symbol. Also the concepts of failure and error are not available, while for

environment artifacts we propose to use the UML class-diagram notation, in line with

51

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

the guidelines for the unification.

In the Taom4E modelling tool (described in Section 4.3), the modelling extensions

such as conditions, goal types and new relationships are, represented as textual annota-

tions and in tables. Graphical failure modelling is not yet implemented. However, errors

and recovery activities can be captured with available goal, condition and means-end

concepts, using a different colour key. A completely re-engineered version of Taom4E

is currently under development, which bases on state-of-the-art GMF technology and

will allow these extensions to the graphical modelling language.

52

3.3. MODELLING PROCESS

3.3 Modelling Process

The extensions made to the Tropos modelling language in order to enhance modelling

within the knowledge-level are able to capture an important part of the knowledge

necessary for a self-adaptive system, directly in the system’s goal model, i.e. the model

of its requirements: dependencies to its environment, details on how high-level goals

have to be achieved and on when they will be achieved.

Tropos4AS adopts the Tropos development process, as it is defined

in [Penserini et al., 2007b], and extends its Architectural Design (AD) phase by

adding the specific modelling activities Extended goal modelling and failure

modelling , for reacting to environmental changes and for preventing goal failure.

It is complementary with respect to the previous Tropos AD, and collocated on the

top of capability modelling. This aspect reflects the idea that Tropos4AS aims at

supporting the design and implementation of the agent’s knowledge level, namely

the decision-making process behind the selection of capabilities (i.e. of a specific

behaviour), as a paramount feature to cope with the development of self-adaptive

systems.

Outline After a brief recapitulation of the Tropos modelling process, which helps to

collocate the new modelling activities correctly, extended goal modelling and failure

modelling are described. Afterwards, we present a simple pattern for the efficient

modelling of variability in the requirements, which adopts the extended goal modelling.

Brief overview of the Tropos modelling process The original Tropos mod-

elling process [Bresciani et al., 2004a] has four modelling phases. Our reference pro-

cess [Penserini et al., 2007b] details this process into thirteen activities and enhances it,

giving details on the modelling of capabilities. We focus on goal modelling, supported

by the Taom4E tool, which respects the metamodels defined in [Susi et al., 2005].

In the Early Requirements (ER) phase, the stakeholders, their desires, needs and

preferences, are captured and modelled in Tropos in terms of actors with their goals,

softgoals, and dependencies.

The Late Requirements (LR) phase introduces the system-to-be as a new actor, to

which stakeholders’ goals are delegated. In the system goal model, these goals are anal-

ysed, applying a central activity of Tropos , the goal modelling procedure (reported in

Figure 3.8), decomposing them to get more concrete sub-goals and design alternatives,

and providing plans that will be means for their achievement.

53

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

procedure goal modelling(g)

decision = decision on goal(g);

case decision:

- delegate g to existing actors or new actors {ai},
model.add({ai}),
model.add(dependency(adepender, g, adependee));

- expand g in subgoals {gi},
model.add({gi}),
model.add(decompositionand/or(g, {gi}));

- contribute g/sg to goals/softgoals {gi, sgi},
model.add(contribution(g/sg, {gi/sgi}, metric));

- solve associating a plan p to g, model.add(means ends(g, p)),

capability identification for g, capability modelling(g);

- unsolvable explore alternative goals;

Figure 3.8: The goal modelling procedure in the Tropos design process, as defined by

Penserini et al. [Penserini et al., 2007b].

In the Architectural Design (AD) phase, a multi-agent system architecture is defined

for the system-to-be, delegating goals and activities which characterise different roles, to

different sub-actors. This step realises the fundamental software engineering principle

of modularizing a software system into a set of subsystems that have high cohesion

and low coupling. Architectural styles, such as the ones defined in [Castro et al., 2002]

and [Penserini et al., 2006a] can be applied. The goals delegated to the sub-actors

will again have to be analysed applying the goal modelling procedure, decomposing,

delegating, and/or operationalising them. The obtained sub-systems are autonomous

entities, that typically have various dependencies to other actors, with whose they are

in charge of realising the objectives of the system-to-be.

In Detailed Design (DD), the plans defined earlier (representing the actor’s capa-

bilities, i.e. the concrete functionalities to be implemented) are detailed in the goal

model and further by UML 2.0 activity and sequence diagrams.

Collocation of the Tropos4AS modelling extensions A goal model af-

fords a first architectural decomposition of a self-adaptive system into components

[Zhu et al., 2008]. We collocate our extended goal modelling and failure modelling for

self-adaptive system in the Tropos AD phase, after the decomposition to sub-actors

54

3.3. MODELLING PROCESS

and the delegation of goals to them (specifically, step 7 in [Penserini et al., 2007b]).

Applying the goal-modelling procedure including algorithms to delegate, expand,

contribute and solve goals (as in the algorithm in Figure 3.8), each sub-actor has its

own goal model subtree detailing the goals it has to achieve. Each sub-actor represents

a software agent that will be obtained applying the automated mapping which is part

of the Tropos4AS framework. This detail is of particular importance if the engineer

intends to implement the agents which reflect the goal model, using the proposed

framework and tools.

A system could be implemented by a single agent for the entire goal model, or by one

agent for each leaf node in the goal model. According to Zhu et al. [Zhu et al., 2008],

a combination of these two extreme mappings, i.e. realizing a subtree of a goal

model by an agent, seems more appropriate for many applications. [Zhu et al., 2008]

also discusses problems arising in managing the sub-actors to satisfy the complete

goal model. This problem is yet also appearing here, and can where it can be ad-

dressed by a centralised approach where a single actor delegates goal model sub-

trees to others, by applying architectural patterns as e.g. in [Castro et al., 2002] and

[Penserini et al., 2006a], or by realising a collaborative, decentralised organisation as

presented in Chapter 6.

However, if the focus of the software engineer is to capture the requirements of a

system in its details, without going towards an agent implementation, the goal models

in output of the Tropos Late Requirements Analysis (LR) phase (specifically, step 5

in [Penserini et al., 2007b]) could directly be used. A prototype representing the goal

model of the whole system can also be generated from this starting point.

From here on, we will focus on the development of a single actor or

“agent”, and thus refer to this actor, which is itself defined by a goal model,

as the system to develop. In the case reported above, or if the system is very small

and is thus not decomposed, this system coincides with the system-to-be obtained from

the Tropos LR phase.

The newly introduced modelling steps, together with the models in input and output

of each step, are shown in the diagram in Figure 3.9. These steps will be performed

iteratively and possibly also in parallel, though for clarity reasons only general feedback

loops are depicted in the diagram. The modelling steps are explained referring to the

CleanerSystem example, presented in Section 7.1.

55

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

Figure 3.9: Steps of the extended goal modelling and failure modelling processes of

Tropos4AS , including models in input and output of each step.

3.3.1 Extended goal modelling

The extended goal modelling of Tropos4AS includes modelling of the concepts intro-

duced in Section 3.2.2: the surrounding environment, various goal properties like goal

types and inter-goal relationships, and conditions concerning the goal satisfaction pro-

cess. The process steps, depicted in the left part of Figure 3.9, are detailed in the

following.

E1: Environment modelling

With the goal models resulting from the Tropos Requirements Analysis (GMLR) and

Architectural Design (GMAD) steps (as defined in [Penserini et al., 2007b]) in input,

the environment is modelled, eliciting the artifacts involved in the system and analysing

the relationships between an agent’s goals and these artifacts.

Artifacts are objects or tools allocated in the environment, either in- or outside

56

3.3. MODELLING PROCESS

the boundary of the system to develop (cf. Section 3.2.1). Agents can use and share

them, to achieve their objectives. Please note that artifacts do not enclose intentional

(or autonomous) entities in the system and in its organisational context. These were

already identified and modelled as actors of the system-to-be in the earlier phases of

the Tropos process [Bresciani et al., 2004a].

To identify the artifacts in- and outside the system-to-be, to whom the agent has a

dependency to achieve a goal or to evaluate its achievement, the software engineer can

ask modelling questions such as “which entities affect the achievement of a goal and

can be perceived by the agent?” or “which (internal) artifacts does the system need

to perform the requested plans?”. Primary candidates to be represented as artifacts

are the Tropos resources modelled in LR and AD goal diagrams, if they define objects

used by the system to sense and/or act in the world (e.g. broom and dirtSensor in

Figure 7.2). Artifacts can also be identified by eliciting the objects, services or tools

inside or outside the system boundary, which an agent has to be acquainted with.

Additional artifacts involved in the system may be identified when modelling goal

conditions in step E2. They can be continuously added to the environment model,

iteratively performing the present step.

If available, domain models and ontologies can be used, either to identify artifacts or

(on an instance level) to represent the model itself. For this purpose, the representation

should be limited to a view of the relevant objects.

E2: Conditions modelling

This step captures the dynamic nature of the state of affairs associated to each agent’s

goals, by linking them to the domain entities relevant to the definition of this state.

Operatively, we model the conditions that have to be fulfilled if a goal is considered to

be achieved, as well as the conditions to be fulfilled for the creation (activation) of a

goal.

Conditions are captured by relating goals to the corresponding artifacts and oper-

ationalised by boolean expressions, to evaluate monitored values, accessing data and

invoking sensing functionalities offered by these artifacts. Furthermore, conditions can

also depend on the state of another goal or on an interaction with other actors in or

outside the system-to-be. An example can be seen in Figure 3.7, where an artifact

representing the device’s battery is related to the corresponding goal for being able

to monitor the battery charge level. We recommend to write the boolean expressions

57

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

using a JAVA-like syntax, in the form

artifact.functionality(parameters) [=, <, >, . . .] expression

to have a common denominator and to reduce the effort of a mapping to the imple-

mentation. For high-level models, which will not necessarily mapped to agent code,

also natural language can be used.

The reason for an agent to decide to bring about that goal at a given instant

(i.e. the adoption of a goal) is made explicit by a creation condition. To restrict the

adoption of a goal to a particular context, preconditions can be modelled. To define

the achievement of a goal, an one-time achievement-condition or a maintain-condition

(for the goal to maintain some state in the long term) can be defined.

Failure conditions denote states from whose it would be impossible to achieve a

(sub-)goal, e.g. cleaning tool worn out for the goal OfficesClean or battery broken for the

goal MaintainBatteryLoaded. The satisfaction of such conditions denotes the failure of

the goal. While failure of a root goal is critical and will lead to system failure or at best

to a system working in a degraded mode [Avizienis et al., 2004], failure of sub-goals can

be caught at a parent goal level, e.g. by satisfying alternative subgoals.

A state in which it is no more necessary to try goal satisfaction (especially for

maintain goals) can be expressed by a drop condition, whereas a state in which goal

achievement should be temporarily suspended can be modelled by a context-condition.

Making these conditions explicit, new monitoring requirements may be identified,

leading to new artifacts or new sensing functionalities in the environmental artifacts.

The environment model should revised in parallel (step E1), adding missing artifacts

and new functionalities.

E3: Detailed goal modelling

In E2, by modelling conditions, the goal model was enriched with important de-

tails on the achievement of system requirements. In this step, further details are

given to the goal model, in order to obtain details on the goal satisfaction process

at run-time. By analysing the conditions specified in E2, the type of each goal is

inferred: maintain, achieve, or perform. For example, maintain and achievement

conditions directly characterise the respective goal type. Figure 3.3 shows the pos-

sible conditions that characterise each type of goal. Goal types technically detail

the underlying goal satisfaction process and the role of conditions in this process

(cf. [van Riemsdijk et al., 2008, Morandini et al., 2009b]).

58

3.3. MODELLING PROCESS

Note that introducing goal types in a goal model, without any criteria, can lead to

a hardly predictable system behaviour, a characteristic vividly undesired for a design

framework. A main design guideline to reduce the possibility to have unpredictable

system behaviours is that in each path from the root to the leaf goals there has to exist

at most one maintain-goal.

To define further constraints on the possible goal satisfaction workflow, inter-goal

relationships can be made explicit:

Goal sequence is often desired when composing a goal into subgoals, which have to

be achieved one after another, rather than in parallel.

Inhibition between goals can be necessary if two goals are in conflict. Rather than

letting the agent decide (i.e. by its goal deliberation mechanism), the modeller can

set such a precedence relationship to define goals that are more critical than others.

This will be useful with maintain-goals, which are active for a long time period. For

example, a goal MaintainBatteryLoaded should inhibit MaintainPlaceClean.

.

After defining goal types and goal relationships, by iterating on the whole process

(feedback loop in Figure 3.9), the goal conditions in step E2 can be reworked and com-

pleted to comply with the chosen goal types, respecting the metamodel (Figure 3.3),

and having modelled and detailed all relevant environmental artifacts used in condi-

tions. For example, an achieve-goal may have a creation and an achievement condition,

whereas maintain-goals can have maintain- and target-conditions, to start and to stop

goal achievement, respectively.

However, we want to note that the purpose of the steps E2 and E3 is not to define

goal models formally and completely, but to capture and specify the requirements

and the known information about what an agent has to observe and consider for goal

achievement.

3.3.2 Failure modelling

With extended goal modelling, the Tropos4AS process allows to model details of the

nominal behaviour of a system. The objective of failure modelling is now to provide a

process for completing the elicitation of the requirements of a system, by capturing also

its exceptional behaviour. The process is summarised in the right part of Figure 3.9

and provides support for designers to model potential failures in goal achievement,

capture unwanted states of affair (errors) that could cause these failures, and identify

recovery activities to be performed either to anticipate foreseeable errors or to recover

59

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

from unpredictable ones, to avoid goal failure

The reaction to exceptional situations (i.e. the recovery activities) may finally be

modelled either within the core part of a goal model, e.g. as an alternative plan or

goal tree, or kept aside, according to the principle of separation of concerns. This

choice is however highly dependent on the current application domain and on the

designer’s preferences. For example, it may be the case of seldom events that bring

about a deviation from an agent’s nominal behaviour that would be, hence, preferably

modelled externally to the core part of the goal model which, on the contrary, describes

its nominal behaviour. While, it may be the case that recurrent events recognised to

be potential causes for failure would lead to a modelling within the agent’s goal model,

in the form of goals to achieve or maintain.

F1: Failure identification

The designer analyses each goal of an actor in the system to develop, for the possibility

of failures in the goal achievement process. Failure denotes a situation characterised

by a set of states (of the world and of its own), in which an agent (with its actual

knowledge and with the given capabilities) is unable to reach a goal.

Failures can be identified analysing the scope of a goal, the modelled conditions, and

the (often unexpected) variability in the environment of the system. Identified failures

(e.g. a failure unable to clean for a goal MaintainPlaceClean) are explicitly captured

graphically and connected to the corresponding goal, that is, to the requirement that

could possibly not be satisfied.

First candidates for associating a possible failure are goals with failure-conditions

or drop-conditions, made explicit in step E2, in the case that the resulting goal failure

is not handled at a higher level (e.g. by modelled alternatives to achieve a parent

goal). Vice-versa, failure identification may also lead to a revision of goal failure and

achievement conditions (in step F4).

In general, an analysis of failures may be of particular importance for goals that

have yet no alternative, e.g. goals in an AND-decomposition and, in particular, root

goals, that are, goals directly delegated by the stakeholders, without any parent goal

that could mitigate the failure. Failures can be of various kinds:

(a) predictable by monitoring for particular situations, which we define as errors (e.g.

the value for dirtiness after cleaning exceeds some threshold). These failures can

be anticipated by various recovery activities, depending on the domain and the

designer’s choices:

60

3.3. MODELLING PROCESS

(1) at design time by implementing missing capabilities (e.g. for a cleaner robot,

the inability to clean from a specific type of dirt).

(2) at design time by modifying the decision criteria for selecting some behaviour,

changing conditions, contributions and goal relationships.

(3) at run-time by using alternative capabilities.

(4) at run-time by using a novel combination of existing capabilities (e.g. a broken

tool could be substituted by a proper use of other available tools).

(b) not predictable by monitoring for errors, i.e. the only perceivable errors cannot be

mitigated avoiding to lead to failure, and are thus already states of failure (e.g.

sudden battery failure or a crash of the robot). Such failures can be mitigated at

design time by:

(1) making the system more robust to the problems (e.g. by implementing a

redundant power supply), or by

(2) giving the ability to detect (some of the) problematic situations (errors) that

lead to the failure (e.g. by employing special sensors for distance measurement,

to notify an imminent failure before it is too late to react). In this case, the

failure becomes perceivable.

A brief description of the failure in natural language can help to conduct the next

steps.

F2: Error elicitation

Now, to anticipate these failures, the designer tries to discover the errors leading to

them – perceivable states, in which the system will become unable to achieve its goals.

Following the modelling question “What could be the cause for such a failure?”,

errors are forecast at design time, according to a top-down process. Similarly, errors

and correlated failures can also be found in a bottom-up process, analysing software

and hardware problems that can happen outside the agent boundary and affect the

agent’s work. In this case, the design questions are “Are there requirements that could

no more be satisfied (completely) if that problem occurs?”, or, in other words, “What

goal failure could be caused by that problem?”, and, to identify the error for which the

system has to be monitored, “How can the problem be perceived?”.

Errors are first defined in natural language (e.g. dirt not removable or cleaning

tool broken) and, related to the environmental artifacts concerned for monitoring the

61

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

particular system state (e.g. dirt sensor) or representing the physical entities (e.g.

cleaning tool).

Leading, by definition, directly to goal failure, goal failure conditions modelled in

E2 describe an error. It however depends on the intention of the designer, to decide if

he modelled conditions on purpose to let the goal fail (e.g. because this failure would

be handled on a higher level) or if he should proceed with error modelling to try to

prevent failure.

Errors can be categorised into errors from which recovery is possible before they

lead to a failure, and errors from which timely recovery is impossible.

For each error identified, it can be decided to not mitigate it because it involves only

a reduced risk, or because mitigation would be more expensive or more time intensive

than human action necessary in the case of system failure. To evaluate risks in detail,

a separate risk analysis (e.g. as proposed in [Asnar et al., 2006]) can be performed.

F3: Recovery activity modelling

This step consists in modelling possible recovery activities that can be executed to

recover from an error, or in alternative, and depending on the domain, to prevent

it. Recovery activities are modelled by Tropos concepts, and can contain single plans

or pieces of a goal model. Thanks to the Tropos conceptual notation, in this phase

the designer can abstract from the complexity of techniques related to error diagnosis,

creating intuitive and simple models that relate recovery activities to errors.

Modelling of recovery activities depends on the kind of failure along with its severity,

and on the possibility to recover from errors to anticipate failure. Possible approaches

are illustrated in the following:

• anticipation of goal failure (on failure of its subgoals): the recovery activity can

consist in a new capability or a new subgoal executed in alternative, when the

specific error conditions are present.

• anticipation of failure of available capabilities (or of entire subgoals) caused by an

undesired environmental state: the recovery activity should be executed at the

time the error is detected, to recover from it before executing the capabilities,

which otherwise would possibly fail.

• failures of type b: in this case, the best we can do is to try to reduce the prob-

ability of system failure, e.g. by making the system hardware more reliable (for

62

3.3. MODELLING PROCESS

example, by mounting a backup battery to prevent power failure), by employing

new sensors, or by restricting the operation environment.

To analyse and detail each of the goal model fractions modelled as recovery activi-

ties, in this step, the plan modelling process (Step 10 in [Penserini et al., 2007b]) can

be applied, possibly also reusing parts of the existing goal model. For each of the new

goal model parts it can also be necessary, depending on the size of the part and the

desired level of detail, to perform the whole extended goal modelling process from steps

E1 to F3. For example, recovery activities will often have to be bound to a specific

context, by defining pre-conditions (thus applying a simple form of diagnosis). More-

over, modelling positive contribution to non-functional requirements can be a further

means for selecting between alternative recovery activities.

F4: Goal model completion

Finally, the designer has to decide if the recovery activities defined in the previous step

should be part of the normal workflow of the system (and thus becomes part of the

goal model) or if they should remain a representation of an exceptional situation, which

would not be part of the agent’s nominal behaviour.

If the execution of the recovery activity depends on a specific environmental context

or situation that will happen in a normal workflow not considered exceptional, the piece

of goal model representing the recovery activity can be integrated to the original goal

model of the agent, as an alternative capability that can be used for achieving the

related goal. In this way, variability is added to the goal model, extending the agent’s

adaptivity also to situations that would previously have been leading to goal failure.

Modelled errors can be integrated to the pre-conditions, if the execution of the recovery

activity should be limited to this case. Goal modelling (Figure 3.8) and the extended

goal modelling introduced within this chapter should be reiterated after this step, if

non-trivial changes to the goal model occurred.

In the case that the error is considered to be a rare event and recovery from this

error should not be part of the agent’s main activities (e.g. a hardware or software

failure or a problem in inter-agent communication), the recovery activity will not be

integrated into the goal model, but, following the principle of separation of concerns, it

will be kept within the failure model and remain separately, until run-time. In this case,

we recommend to put some effort into defining the error, using a JAVA-like syntax, by

a boolean expression related to the interested artifact, analogous to conditions (see step

E2). From a technically viewpoint, with the mapping to run-time that is presented in

63

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

Chapter 4, eventually, at run-time, also the failure model will be part of the ordinary

goal model. However, the agent will have no opportunity for achieving goals that are

part of the failure model, despite in the case that one of the identified errors occurs.

In this case, a creation condition relative to the error will become true, and thus one

of the associated recovery activities, whose preconditions are actually satisfied, will be

executed.

Being external to the goal model, at run-time the failure model can also be indepen-

dently updated with new failures, errors and recovery activities. Despite it is outside

the scope of this journal, employing a learning mechanism that keeps track of success-

ful application of capabilities would also be feasible with this approach. This would

contribute to the realisation of a feedback mechanism, where designers are informed of

changes in the failure model and can consider them for design time integration in the

subsequent development cycle.

3.3.3 A pattern for modelling variability

Taking advantage of alternatives modelling together with an optimal use of the exten-

sions introduced for modelling self-adaptivity, we provide a guide to model alternative

configurations (high-level alternatives) in a goal model, together with the decision cri-

teria to select between these alternatives, enabling a simple form of self-adaptation of

the system to different contexts. The modelling pattern, illustrated through a simple

cleaner robot example, considers the goal model of a single system and conducted with

the aim of supporting a dynamic, optimized alternatives selection at run-time.

The following is the desired behaviour that the system should exhibit: initially,

the optimal configuration for the actual environmental context is selected. If the top

goal of the actual configuration fails or the context dramatically changes in a way that

the system in this configuration is no more appropriate to reach its goal (i.e. some

context conditions are negative), the system has to select an alternative configuration.

If the top goal of the current configuration is actually achieved, but at this point a

configuration is available which would give more appropriate results in the current

context, the system should select this new configuration and try to achieve it, too.

Proposed approach The structure of the pattern is sketched in Figure 3.10. Within

goal modelling, special effort has to be made to identify high-level alternatives to

satisfy the system’s root goals. These high-level alternatives define the main behaviours

(also target systems, e.g. in [Sawyer et al., 2007]) that will be implemented. They are

64

3.3. MODELLING PROCESS

Figure 3.10: Structured modelling of high-level alternatives.

represented by OR-decomposing root goals, which are typically maintain-goals (e.g.,

CleanAll in Figure 3.10), to achieve-goals (e.g. CleanRoom and CleanOutside).

Subsequently, the obtained alternatives can be constrained by modelling context

conditions (flag-shaped boxes in Figure 3.10). These conditions have to be true dur-

ing the whole goal achievement process. Generally, unconstrained alternatives to the

achievement of a goal give typically more general, but less optimized solutions than

alternatives tailored to a specific context.

Moreover, alternatives can be characterised by modelling positive or negative con-

tribution links to softgoals (represented as clouds), which represent the system’s non-

functional qualities. Softgoal contributions capture the preference of one alternative

above others, regarding various quality aspects. Considering also a maximisation of

contributions to softgoals as a decision criteria, the selection of alternatives can be opti-

mized. Additionally, giving more or less importance to the various softgoals modelled,

this selection can be influenced by the stakeholder or the user at run-time.

Application: behaviour To illustrate the application of the modelling pattern, we

sketch the system behaviour that would be achieved implementing a cleaning robot

called CleanerSystem, which contains the model fragment displayed in Figure 3.10,

following the mapping to a BDI-based implementation defined in Chapter 4.

Suppose that hovering and mopping are the plans implemented for the achievement

of the goal CleanRoom. Both of them achieve an accurate cleaning, but will fail when

gravel is sensed. On the other hand, the plans implemented for the achievement of

CleanOutside provide cleaning of coarse dirt, but are not able to clean properly from

fine dust. We evaluate the behaviour of the system by looking at the expected execution

of a scenario, where gravel is sensed in a room with tiles on the floor, while the agent is

in configuration CleanRoom (which has a higher contribution to the softgoal Cleaning

65

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

accuracy).

The agent configuration CleanRoom is not suitable for this type of dirt. The plans

will fail and thus also the goal CleanRoom. The system tracks back to the parent

goal CleanAll, adapts to the second possible configuration, with goal CleanOutside, and

can now clean the floor from gravel. Once the floor is clean from gravel, the goal

CleanOutside is achieved. Notice that, in the traditional Tropos OR-decomposition,

achievement of CleanOutside would cause the achievement of the top level goal CleanAll.

Thanks to the features of Tropos4AS , the maintain-condition of CleanAll is not yet

satisfied, and now the sub-goal CleanRoom is again achievable, having no more gravel

in the office room. CleanRoom will thus be reactivated to clean the remaining fine

dust in the office. In another scenario, where the CleanerSystem has to clean the access

road, because of the context condition modelled, the goal CleanRoom would never be

selected, so the robot would only clean for gravel.

3.4 Final Considerations and Related Work

In this chapter we introduced central parts of Tropos4AS , a conceptual model to capture

essential properties of self-adaptive software systems, and a development process to

construct these models, collocated within the Tropos methodology. Tropos4AS focusses

on knowledge level issues important for the decision making process at run-time. It

inherits the ability of Tropos to capture variability in goal models at requirements

analysis time and to deal with alternatives also during the system design phases. To

give to a self-adaptive system the awareness about the environment it is embedded in,

Tropos4AS allows to model the artifacts in the environment perceived by an actor in

the system, and to capture the effects of changes in it to the goal achievement process.

One of the key features of an effective implementation of a self-adaptive system

is an explicit representation of its requirements at run-time. Envisioning a run-time

representation of goal models, such as the one proposed in the next chapter of this

thesis, we enrich the models with detailed information on the goal satisfaction process,

to detail goal achievement and alternatives selection dynamics. Various conditions on

the context in which a goal would be achievable and on goal failure can be captured,

and conflicts between goals can be expressed by basic relationships.

To be able to act properly in uncertain domains, Tropos4AS assists the designer

in the analysis of possible requirements failures. Some degree of failure tolerance is

achieved by identifying, at design time, possible failures, the errors causing them,

and proper recovery activities. This failure modelling process helps to elicit missing

66

3.4. FINAL CONSIDERATIONS AND RELATED WORK

functionalities, which can be integrated to the system goal model, or be kept separate,

to differentiate the exceptional from the nominal behaviour of the system. Moreover,

the failure model gives an interface for the application of domain-specific diagnosis

techniques.

Together, these extensions contribute to a detailed representation of a system’s

requirements specification in a goal model, together with the decision criteria that

define the adaptive behaviour to bring about these requirements in a variety of

environmental contexts.

Various approaches extend goal models to capture variability in goals and the environ-

ment and details for goal satisfaction, aiming to the development of autonomous and

self-adaptive systems [Lapouchnian et al., 2006, Liaskos et al., 2006, Ali et al., 2010].

However, in these works, goals lack of important run-time concepts such as a life cy-

cle for goal activation and achievement, and no development process is defined. In

[Ali et al., 2010], goal models are completed with annotations to bind the environmen-

tal context of an application to requirements alternatives, aiming at mobile applica-

tions. Our framework covers not only such pre-conditions, but also conditions that de-

fine goals in a declarative way (defining achievement, failure, etc.) leaving the final deci-

sion on how to achieve goals, to the software at run-time. On the other side, declarative

specifications of goals with temporal logic, as in Formal Tropos [Fuxman et al., 2001],

KAOS [Dardenne et al., 1993] and GTD [Simon et al., 2005], are amenable for formal

verification, but are too restrictive for our purposes, since we aim to an execution by

BDI languages, with a goal satisfaction behaviour as defined in Chapter 5.

The goal models proposed in [DeLoach and Miller, 2009] define positive and neg-

ative triggers for goals. These relations are comparable to Tropos4AS creation and

drop conditions, but work on an instance level. Detailed restrictions for the use of

these additional relations are formalised. This can be considered as future work for

Tropos4AS .

[Goldsby et al., 2008] and [Berry et al., 2005] define self-adaptive system with goal

models, using i* and KAOS, respectively. They propose goal-oriented modelling of

every possible system configuration in a distinct goal model, and also of the possible

transitions between configurations. The main difference with respect to our approach is

that we avoid to specify every system and every possible adaptation between systems,

which may shortly lead to a bottleneck and to numerous, mostly redundant models.

Instead, we model a single system that includes all high level variability. Moreover, our

approach does not specify transitions between alternatives, but defines the opportunity

67

CHAPTER 3. EXTENDING GOAL MODELLING FOR ADAPTIVITY

for the system to select an alternative behaviour, in a specific environmental context.

The arising problem of managing complex models can be tackled e.g. by displaying

different views of a model.

In the goal-based modelling approach recently presented by Cheng et al.

[Cheng et al., 2009b], similar to Tropos4AS failure modelling, environmental condi-

tions that pose uncertainty at development time are identified, to uncover places in

the model where the requirements need to be updated. Failure is mitigated by adding

low-level subgoals, by making existing requirements more flexible using the RELAX

language [Whittle et al., 2009], or by adding new high-level goals to define a new

target system to which to adapt. Also [Baresi and Pasquale, 2010] follow an approach

similar to ours, taking inspiration from KAOS obstacle analysis. The approach models

adaptive goals, which identify conditions for goal violation, similar to our error condi-

tions, and define countermeasures for recovery. The work aims at an instantiation on a

service platform. Also aiming at service-based applications, [Qureshi and Perini, 2009]

links goals to an ontological representation of the surrounding environment, to capture

alternatives together with their monitoring criteria. Since Tropos4AS noes not stick

to any particular language for giving a detailed model of the environment, it can be

integrated with such approaches.

The Tropos4AS models capture the knowledge level of a system, i.e. a high level

description of the system’s goals and behaviours, but they do not detail the implemen-

tation of the single capabilities (i.e. Tropos plans). Moreover, the approach makes no

assumption on specific reasoning methods and implementation architectures beyond

the availability of basic BDI concepts. The scalability of the modelling approach re-

mains an issue, which is addressed by focussing on the single sub-actors of the system,

while stability of adaptations can be achieved by modelling proper goal conditions.

The effectiveness and comprehensibility Tropos4AS models, in comparison with

Tropos models, was evaluated in an empirical study with subjects (see Chapter 8),

which gave encouraging, positive results.

68

Chapter 4

From the Model to Run-Time

After having introduced, in Chapter 3, various extensions to the Tropos modelling

language for capturing the inherent properties of self-adaptive systems, together with

the modelling steps for their use, now we collocate these extensions in the big picture

of the Tropos development process and carry this process on to an implementation and

run-time phase.

A mapping of concepts and relationships from Tropos4AS goal models to a BDI-

agent architecture is then presented, which preserves the representation of the require-

ments in form of a goal model at run-time. This model can be navigated for monitoring

and decision making, and eases traceability of run-time artefacts and decisions back

to the design and requirements phases. As target language and execution platform,

we adopt the goal-directed BDI agent framework Jadex [Pokahr et al., 2005], taking

advantage of its explicit, persistent representation of goals at run-time.

In the third part of this chapter we present the t2x (Tropos4AS to Jadex) map-

ping plug-in, and extensions to the Taom4E modelling tool, developed to support

the modelling and mapping process for the development of software agents with Tro-

pos4AS . Automated code generation results to an executable implementation of an

agent prototype, which exhibits a basic goal-directed behaviour with failure handling

and adaptation to the environment, exploiting modelled variability and softgoal con-

tributions. The complete tool-supported modelling process is finally illustrated.

4.1 The Process: Overview

We collocated Tropos4AS extended goal modelling and failure modelling in the Tropos

Architectural design phase, giving the focus on the knowledge level of the system’s sub-

69

CHAPTER 4. FROM THE MODEL TO RUN-TIME

actor goal models (refer to Section 3.3 for details). The process artefacts are displayed,

starting from Tropos goal models obtained in the Late Requirements Analysis phase,

in Figure 4.1.

The (automated) mapping, introduced in the present chapter, is applied to these

extended models, to create a representation of the goal model at run-time, which

is interpretable by the Jadex agent platform. This mapping reduces the conceptual

gap between agent design and run-time and provides an immediate implementation

of prototypes which reflect the high-level behaviour represented in the goal model. A

middleware layer implemented in Java ensures an implementation according to the

intended goal model semantics, where it is needed to go beyond the possibilities given

by the declarative BDI language provided by Jadex.

For the environment, we further propose a mapping to UML class diagrams, and

the use of available UML tools for editing and implementing them. This step can be

appropriate for the creation of prototypes and simulations, while in various other cases

an API for access to the environment would be already available. We also made some

experience with the modelling of the environment by an ontology (using an editor such

as Protégé) and a generation of access interfaces from this ontology, with the Jadex

Beanizer tool. To run an agent instance which implements the goal model, its definition

can be loaded and executed on the Jadex platform.

Figure 4.1: Overview: collocation of the various tool-supported Tropos4AS devel-

opment activities and design artefacts, going towards a BDI agent implementa-

tion. Dotted lines: Complementary capability implementation approach, presented

in [Penserini et al., 2006b].

70

4.2. A MAPPING FROM GOAL MODELS TO BDI AGENTS

The detailed design and implementation of the capability level (cf. page 35) is not

part of this thesis. For completeness, in Figure 4.1, the capability modelling and imple-

mentation approach by Penserini et al. [Penserini et al., 2006b] is depicted by dotted

lines. It includes the detailed modelling of capabilities (i.e. Tropos plans in means-end

relationship to goals, together with their eventual plan decomposition) by UML activ-

ity and sequence diagrams, whose skeleton is created by model transformation. The

approach also includes a tool for code generation to JADE 1 behaviours. We envision

an implementation where capabilities are stored in a pool and dynamically loaded at

run-time when needed by an agent instance.

4.2 A Mapping from Goal Models to BDI Agents

Although in the requirements analysis and design phases we did not commit to a

specific implementation framework, language and architecture, for the implementation

we refer to a BDI-based architecture, which provides an explicit notion of goals and

plans – notions extensively used in the Tropos4AS models.

In Tropos4AS we aim at supporting the knowledge and reasoning aspects of adap-

tive and autonomous agents. The BDI model fits very well with our scope of having

a clear separation between knowledge abstractions (i.e. goals and beliefs) and con-

crete actuators (i.e. plans) to sense and affect the environment. Moreover, BDI-based

architectures provide belief monitoring and a deliberation mechanism for goal selection.

In the following, we provide a mapping process from a subset of Tropos4AS concepts

and structures to a programming language for BDI agents, with a dual aim: first, to

have an explicit representation of the goal model, navigable at run-time, and second,

to obtain an interpretation of this goal model at run-time that follows the intended

semantics2 of the model and respects modelled decision criteria.

Concretely, we adopt the Jadex Agent Definition language. Jadex (an overview

is given in Section 2.4.2) was selected for its explicit representation of goals, which

allows to have a homogeneous mapping between concepts available at design time

1JADE (Java Agent Development Framework) [Bellifemine et al., 2007] is an agent platform which
provides FIPA-standard messaging functionalities and the execution of agent behaviours in indepen-
dent threads.

2The intended semantics of Tropos modelling constructs were defined informally in
[Bresciani et al., 2004a] and detailed for various purposes in several works (e.g. [Fuxman et al., 2004,
Penserini et al., 2007b]. Details of our interpretation were further elicited by analysis of existing
models and discussion with researchers that use the methodology.

71

CHAPTER 4. FROM THE MODEL TO RUN-TIME

and at run-time, and for the use of the industry-standard languages JAVA and XML.

Nevertheless, the Tropos4AS approach remains mostly technology-independent and the

mapping would be applicable similarly to other BDI-based agent platforms.

Targets of this mapping are the development of agent-based systems with adaptivity

properties as well as a rapid construction of prototypes of an executable behavioural

model of the modelled system.

4.2.1 The considered subset of Tropos4AS concepts and

structures

The Tropos metamodel (a relevant part is shown in Figure 2.3), and thus also Tro-

pos4AS , allow a multitude of different relationships between the modelling concepts of

actor, goal, plan and resource.

An attempt to limit the relationships usable in Tropos models was proposed by

Estrada et al. [Estrada et al., 2006]. This approach goes top-down, removing from

the metamodel the relations that are redundant or that have no meaningful semantics.

For our purpose, we use a pragmatic bottom-up approach, to limit to a small, but

not necessarily minimal set of possible relationships, which is usable and intuitive

and has clearly defined semantics. Most of these limitations are also present in the

modelling tool Taom4E, thus limiting already the creation of goal models. Since we

focus prevalently on the knowledge level, for conciseness, we do not consider Tropos

resources. The considered subset contains the following:

• The basic constructs of actor (here, an actor in the system to implement, i.e. an

agent), goal, softgoal, and plan.

• A limited set of relationships between these constructs:

AND/OR-decomposition A homogeneous3, acyclic relationship to decompose

goals, softgoals, and plans hierarchically into sub-entities.

Means-end-relation A relationship between a plan (the means) and a goal (the

end). Relations between softgoals and goals, with the same semantics, can be

modelled more accurate with contributions, while homogeneous relationship

should be modelled by OR-decompositions.

3homogeneous: a relation restricted to entities of the same type, e.g. goal – goal.

72

4.2. A MAPPING FROM GOAL MODELS TO BDI AGENTS

Dependency A relationship between two actors, with a goal, resource or plan

as dependum and a goal or plan as the cause of the dependency (the ’why’ -

argument).

Contribution We limit to contribution relationships from a plan or goal to a

softgoal.

Like in our whole work, if we speak about goals, we always refer to hardgoals (as

opposed to softgoals), unless specified differently. Goals include Tropos4AS extensions

for types, intra-goal relationships and conditions. Softgoals include importance as a

property which should be changeable at run-time. Moreover, we include Tropos4AS

concepts regarding the environment and failure models.

All relationships are non-reflexive (i.e. an entity cannot be related to itself) and

can be n:n (e.g. a goal can be composed to n subgoals and, vice versa, subgoals can

belong to more than one decomposition, having n parent goals). The semantics for

each relationship are recalled while explaining the mapping. Regarding the AND/OR-

Decomposition, coming to Tropos4AS goal types and conditions, these semantics be-

come more intricate. They are formalized in Chapter 5.

4.2.2 BDI concepts and mapping guidelines

The target BDI architecture used in this mapping is built around the notion

of agent endowed with goals, plans and beliefs, concepts identified already in

[Rao and Georgeff, 1995] for a practical implementation of BDI agents, and are now

implemented in similar fashion by various goal-directed, event-based agent frameworks

such as Jason [Bordini and Hübner, 2005], Jack [Winikoff, 2005], and Jadex. In the fol-

lowing, we report some aspects essential for the mapping, which uses the terminology

and semantics of the Jadex Agent Definition language.

In brief, a goal denotes in general some target to be reached, a plan denotes a list

of activities that can be performed, while the belief base holds various facts and beliefs

about the system and the world. The agent is the execution unit, with messaging

functionalities and an independent thread of control.

Figure 4.2 shows the available mechanisms for activating goals and executing plans.

Goals can be activated (or “dispatched”) by creation conditions evaluated on the belief

base, from inside a plan, or they can be active from beginning (cf. Formal Tropos

model simulation, where all goals are interpreted in this way). Active goals can be

pursued by executing plans; that is, they act as triggering events for plans which were

73

CHAPTER 4. FROM THE MODEL TO RUN-TIME

Figure 4.2: Goal activation and plan execution mechanisms in the target BDI model.

defined to be a means for their fulfilment. Moreover, plans can be executed on request

by an external message (e.g. to handle another agent’s requests).

Figure 4.3: The Jadex meta-reasoning mechanism: (A) representation of the selection

process applied when more than one plans are applicable in the actual context; (B)

graphical representation of the meta-reasoning concept, as used in the following Figures

4.6 and 4.7.

Modelling of alternatives and their decision criteria is a main concern of Tropos4AS .

At run-time, having available various plans that could be executed to pursue a goal, a

selection has to be made. Jadex provides the concept of meta-reasoning, a mechanism

for the selection between plans, each time two or more alternative plans are available

as means to satisfy a goal (Figure 4.3 (A)).

Each time a selection has to be made, on purpose for each goal meta-reasoning

is activated and selects one plan, either respecting some predefined sequence (default

behaviour), or applying user-defined selection mechanisms. The various types of goals

and conditions will be discussed within the mapping of Tropos4AS concepts.

74

4.2. A MAPPING FROM GOAL MODELS TO BDI AGENTS

The specification for the mapping has been conducted along two lines: mapping of Tro-

pos concepts and structures, and mapping of the Tropos4AS extensions. The following

guidelines were observed:

1. Map concepts and relationships available in the BDI model, one-to-one.

2. Map concepts and relationships that can be expressed in the BDI model by a

comprehensible and clearly delimited combination of concepts, one-to-n.

3. Map relationships to a definition by imperative language concepts, if the declar-

ative BDI language concepts do not suffice for an efficient mapping.

Figure 4.4: Tropos concepts which have a direct mapping to the adopted BDI archi-

tecture.

4.2.3 Mapping of Tropos concepts and structures

Hereafter we describe the mapping of the various Tropos concepts and structures to

the BDI architecture identified in the previous section. The need of this mapping is

emphasized mainly by the fact that Jadex, analogous to other existing goal-

oriented agent programming languages, such as Jason and 2APL, does not

support goal hierarchies as a native feature, but supports the creation or

activation of new goals from plans. Actors, (hard)goals, plans and resources can

be directly mapped to the relative BDI concepts, as displayed in Figure 4.4:

75

CHAPTER 4. FROM THE MODEL TO RUN-TIME

Actor A Tropos actor (we always refer to system sub-actors at architectural design)

is represented as an Agent Definition defined in the Jadex Agent Definition language

and containing the definition of its goals, plans and beliefs.

Goal Goals are mapped directly to Jadex goals. It is important to observe that a

goal fails if no one of the plans that it triggers succeeds.

Plan Plans are mapped to Jadex plans. The mapping considers only those Tropos

plans that have a direct means-end relationship to leaf goals. These plans can be seen

as the attachment point for capabilities, implemented e.g. following the approach in

[Penserini et al., 2006b]. In the present work these plans will be called real-plans, to

distinguish them from the several other Jadex plans which are necessary in the following

mappings to activate new goals at run-time (cf. Figure 4.2).

Resource Resources naturally map to an entry or a set of entries in the belief base.

Since in Jadex the belief base corresponds to an object-oriented database, the entry

can be related to an arbitrary Java object.

Softgoal Softgoals are not directly representable by BDI concepts. In Tropos4AS

they are mainly used to define opportunities for the selection of alternative goals or

plans to pursue along the goal model. A softgoal is therefore mapped to a belief base

entry containing its name and a value that expresses the actual importance, which may

change during runtime.

Contribution Contribution relationships to softgoals are therefore also stored only

in the belief base and have no explicit representation by BDI concepts.

AND-decomposition To fulfil an AND-decomposed goal, all its subgoals have to

be dispatched and finally achieved with success. As illustrated in left-hand side of

Figure 4.5, the following solution was adopted: an AND-decomposed goal is set as

trigger for exactly one plan, called AND-dispatch-plan (green hexagon). In the plan

body, all subgoals will be dispatched in (some, perhaps random) order. If one subgoal

fails, the process is stopped and the goal fails. No techniques to attempt compensation

of already executed actions, have been considered for now.

76

4.2. A MAPPING FROM GOAL MODELS TO BDI AGENTS

Figure 4.5: Mapping of the Tropos goal AND-decomposition into an equivalent Jadex

BDI structure.

Means-end The Tropos means-end relationship can be mapped one-to-one to the

Jadex plan triggering mechanism (Figure 4.6). Every time the associated goal is ac-

tivated, plan execution is triggered. Similar to Tropos and i*, Jadex supposes that

every applicable plan for a goal is able to satisfy that goal completely. Therefore, for

the case that more than one plan is available to fulfil the goal, the agent needs to

be able to reason about which is the most convenient at that time. That is, if more

than one plan is applicable for an active goal, a meta-reasoning process is adopted: a

so-called metagoal is dispatched, which triggers an associated plan, the metaplan, that

implements a strategy (e.g. some AI technique) to select between applicable plans.

According to the semantics of the goal model, this algorithm should select alternatives,

maximizing contribution to softgoals. A goal fails if none of the applicable plans can

be executed with success.

OR-decomposition To achieve an OR-decomposed goal with success, one of the

modelled alternative sub-goals has to be activated and finally to succeed. If the first

subgoal fails (note that it can fail also due to a time-out), another one will be activated.

The decomposed goal will fail only if no one of its subgoals succeed.

As previously seen, in the adopted BDI language, goals cannot activate other goals,

but only be the triggering event for a plan. So, to map this kind of decomposition, Jadex

plans have to be placed between goals and the OR-decomposed sub-goals, as illustrated

in Figure 4.7. One of these dispatch-goal plans (hexagon) is triggered on the activation

77

CHAPTER 4. FROM THE MODEL TO RUN-TIME

Figure 4.6: Mapping of the Tropos means-end relationship into an equivalent Jadex

BDI structure.

of the parent goal and dispatches the relative subgoal. Since an OR-decomposition

deals with at least two goals (and related plans) as alternatives to fulfil the triggered

goal, the agent needs to be able to reason about which is the most convenient at that

time. Since this mapping uses the same structures as the means-end relationship, the

same meta-level reasoning mechanisms will be adopted.

Dependency As depicted in the upper part of Figure 4.8, if a dependency for a

goal, plan or resource exists to fulfil a goal, the dependent actor relies on the de-

pendee actor to deliver on this and to achieve or provide it. As our design frame-

work mainly focusses on an actor representing the software system to be developed

and its decomposition, we presume to obtain cooperative, usually closed multi-agent

systems. Therefore, questions on trust and commitments, as dealt with e.g. in

[Giorgini et al., 2005a, Chopra et al., 2010], are not considered in our work.

A flexible implementation of Tropos dependency relationships between two agents

has to involve some form of interaction, which does not restrict the single agent’s auton-

omy. For the mapping we involve the agent’s messaging functionalities. In particular,

we adopt a FIPA-standard request-interaction protocol. Figure 4.8 shows the depen-

dent agent making a request to the dependee agent, indicating the dependum, i.e. the

goal to be fulfilled. On the Jadex side, to the goal that is the cause of the dependency,

a plan has to be associated, which initiates the request protocol.

Its counterpart, on the side of the dependee, is realized by a plan, (request-plan)

triggered by that message. It informs the dependee (which could be, however, not only

a software agent in the system, but also any external or human actor) for acceptance

78

4.2. A MAPPING FROM GOAL MODELS TO BDI AGENTS

Figure 4.7: Mapping of Tropos goal OR-decomposition into the corresponding BDI

structure.

fig:meansEnd

or rejection of the request, eventually dispatches the requested goal and finally

communicates success or failure regarding goal fulfilment. For retrieving the agent

that is able to fulfil a request, a yellow pages service, such as the Jadex Directory Facil-

itator can be utilized. See the FIPA specifications [O’Brien and Nicol, 1998] for details.

Enabling navigation of a goal model at run-time is important for any reasoning activity

on top of it. The representation in the Jadex Agent Definition language describes the

whole goal model and enables thus, theoretically, also its navigation. However, the

Jadex runtime framework allows to navigate only the triggering links from plans to

goals and does not provide any access from goals to plans. On the contrary, one of the

key aspects of our framework is to enable the navigation of goal hierarchies, in order

to improve the agent’s decision making process. To make possible the navigation of

the goal model, the concepts and structures of the goal model are additionally stored

in the belief base.

4.2.4 Tropos4AS concepts mapping

In the following, a mapping for the new concepts introduced with the Tropos4AS frame-

work is provided.

79

CHAPTER 4. FROM THE MODEL TO RUN-TIME

Figure 4.8: Mapping of the Tropos dependency relationship into the corresponding BDI

structure.

The environment Artifacts of the system (and for the purposes of building a pro-

totype, also artifacts of the environment, outside the system boundary) define the

agent’s perception of these objects and are thus mapped to facts in the agent’s belief

base. These artifacts, represented by simple UML class diagrams, are also mapped to

Java classes providing an interface to the requested functionalities.

Extended goal models Goal types, defined in Section 3.2.2 are annotated in the

corresponding goal in the BDI model. The different types of conditions are also mapped

to the goal definition, using boolean formulas to link the goal achievement process to

facts in the belief base, which represent the artifacts in the environment. It has to

be noted that the definition of conditions, specifically of achievement conditions, for

non-leaf goals, can change the goal achievement semantics. Details can be found in

Chapter 5. Goal sequence is annotated in the belief base, whereas the inhibition link, a

concept available in the Jadex language, can be directly mapped to the goal definition

in the BDI model.

80

4.3. TOOL SUPPORT

Failure models In Tropos4AS , a failure is a requirements analysis concept used

mainly for eliciting missing agent capabilities and the conditions for their application.

Thus, failures will not be directly represented in the BDI model.

Recovery activities are represented by pieces of ordinary goal models and are thus

mapped together with the main goal model of the agent. These activities will appear

in the agent, depending on the decision made in modelling step F4 in Section 3.3.2. In

the case recovery activities are part of the main goal model, they will be part of it also

in the implementation.

Alternatively, the recovery activities are kept as “loose” parts of the goal model

structure within the agent definition. Errors are mapped to an achievement goal corre-

sponding to achievement of the respective non-erroneous state, and defining the original

error condition as its creation condition. For each plan or goal representing the entry

point for a recovery activity, the goal representing the error is set as trigger, analo-

gous to means-end relationships and OR-decompositions. In this way, the same meta-

reasoning mechanism can be applied, if more than one recovery activity is available for

an error in the current environmental context. To achieve this in an automated way,

error conditions have to be formalized, regarding the interested environmental artifacts

and the target language (Jadex/Java in our case). Such a mapping would also support

the addition of new recovery activities at run-time, e.g. obtained by learning.

4.3 Tool Support

The visual modelling tool Taom4E 4 was developed by the Software Engineering group

at Fondazione Bruno Kessler (FBK), formerly ITC Irst, Trento [Perini and Susi, 2004,

Morandini et al., 2008a]. It supports the Tropos modelling activities, originally from

requirements analysis to architectural design. It is a plug-in for the Eclipse platform5

and builds on the Eclipse EMF and GEF frameworks. Taom4E implements the Tropos

metamodel, as defined in [Susi et al., 2005], and allows various views on this model.

Actor diagrams can be graphically created and extended for the Tropos early and

late requirements analysis phases. Actors can be detailed in a goal diagram, which is

graphically shown in a“balloon”associated to the actor. In this balloon, delegated goals

are visualized and can be decomposed. The actor representing the software system can

4Tool for Agent Oriented visual Modelling for the Eclipse platform, downloadable, including the
presented extensions, at http://selab.fbk.eu/taom.

5Eclipse is an plug-in based, multi-platform, open-source development environment. See http:

//www.eclipse.org for details and download.

81

http://selab.fbk.eu/taom
http://www.eclipse.org
http://www.eclipse.org

CHAPTER 4. FROM THE MODEL TO RUN-TIME

be detailed to a multi-agent system, in an “architectural design diagram”.

Figure 4.9 shows the principal parts of the tool front-end. The largest window, on

the right hand-side, supports models editing according to the Tropos graphical notation

that is provided by the Palette window (in the centre). Visualized diagrams are often

partial views on the whole model. In the left-hand side window in Figure 4.9, titled

Navigator, the folders with the output of the t2x code generation tool are shown, for

each actor in the system, here Web Server, Search Actor, and Exam Parser.

Figure 4.9: Interface of the Taom4E Eclipse plug-in.

4.3.1 Tool support: Tropos4AS modelling

For the aim of supporting Tropos4AS with a modelling editor, the contribution of this

thesis consists in extending Taom4E along the following directions: the definition of

the environment which surrounds the system; the introduction of goal types and goal

relationships (i.e. inhibition and sequence); and the definition of conditions to correlate

goal fulfilment with the environment.

The environment metamodel, which stores all relevant data for environment entities

and conditions, and its graphical editor were built with the EMF/GMF framework. The

extended Taom4E tool provides a modelling editor to create and manage environment

models, and an interfaces to manage goal conditions and relationships in Taom4E

82

4.3. TOOL SUPPORT

diagrams. Furthermore it provides the generation of UML class diagrams from the

environment model.

The created UML class diagrams can be edited with the Eclipse UML tools. UML-

compatible (commercial) tools can also be used to import and edit them and to generate

Java code and interfaces. We gained positive experience with the EclipseUML and IBM

Rational System Architect tools.

4.3.2 Tool support: code generation

The code generation tool t2x takes in input Tropos4AS models created with the ex-

tended Taom4E tool and produces a Jadex agent definition which adheres to the

mapping guidelines presented in Section 4.2. A first version of this tool, limited to

Tropos , was presented in [Morandini, 2006]. The generated agent prototypes are char-

acterised by a BDI architecture and can be executed on the Jadex agent platform6. The

generated code includes an explicit representation of the goal model and implements

a basic message handling and goal achievement behaviour corresponding to the source

goal model, and a failure-avoiding behaviour that exploits the modelled variability. The

contribution by this tool is threefold:

First, it creates a representation of the goal model at run-time, which is navigable,

monitorable and modifiable and gives thus a solid basis for an implementation

of a self-adaptive system, which would possibly include complex learning and

reasoning techniques, basing on this goal model.

Second, it enables the support for goal AND/OR hierarchies in a BDI architecture.

Third, it automatically generates agent code from goal models, enabling a fast and

simple development of Jadex agent prototypes with the high-level behaviour de-

fined in the requirements model. By strongly reducing the coding effort, this

also facilitates the development of agent systems for students and non-expert

programmers.

The concepts and structures identified in Section 4.2.2 have an almost direct cor-

respondence in the Jadex Agent Definition Language, coded into an ADF (Agent Def-

inition File) with XML format. Figure 7.9 and 7.10 in Section 7.2 (page 144) show a

6See Section 2.4.2 for a brief introduction on the features of the Jadex framework which are im-
portant for this work.

83

CHAPTER 4. FROM THE MODEL TO RUN-TIME

generated directory structure with Java file skeletons, a piece of generated ADF code,

and illustrate some relationships between a goal model and this code.

An agent’s goal model is coded in Jadex by mapping the goal decompositions to

Jadex goals, as defined in Section 4.2, along with plans building the connection between

goals at different levels, and a middleware (based on Jadex Plan classes coded in Java

and accessing the model via the provided API) managing the decomposition logic.

For each Tropos plan, a Java file skeleton is generated and connected to goals in

means-end relationship, by the Jadex triggering mechanism. To enable navigation, the

goal decomposition graph is also stored in the agent’s belief base (Figure 4.10).

<plan name="realPlan_Plan_2">

...

<trigger>

<goal ref="MyGoal_1"/>

</trigger>

</plan>

<beliefset name="meansend" class="TLink">

<fact>new TLink("MyGoal_1", "Plan_2")</fact>

</beliefset>

<expression name="query_ME_link">

select $link.get(1) from TLink $link in $beliefbase.meansend

where $link.get(0).equals($component)

<parameter name="$component" class="String"/>

</expression>

Figure 4.10: Excerpt of an ADF showing the definition of a plan triggered by a goal,

the representation in the belief base and a pre-defined model navigation query.

This architectural choice makes the agent aware about its abilities, namely, at run-

time the agent can monitor and control its behaviour by navigating the modelled goal

graph, to select goals and plans according to the modelled requirements. Softgoals and

contributions to them are solely represented in the agent’s beliefs. Reasoning algorithms

can navigate them efficiently by pre-implemented belief base queries. Furthermore,

t2x generates code for resolving dependency links between agents by the use of FIPA

messaging protocols.

84

4.3. TOOL SUPPORT

Artifacts in the system (for the purposes of building a prototype, also artifacts in

the environment outside the system boundary) define the agent’s perception of the

represented objects and are thus mapped to facts in the agent’s belief base, which can

be accessed from the ADF as well as from Java classes through the API delivered with

Jadex.

Run-time behaviour of generated prototypes

The generated agent prototypes are immediately executable, showing a basic goal-

directed behaviour. At run-time, agents select between the alternatives modelled (OR-

decompositions and means-end relations), based on the evaluation of Tropos contri-

butions to softgoals, giving preference to goals and plans by maximizing contribution

to softgoals. An immediate comparison between softgoals is obtained by defining an

importance value for each softgoal, changeable also at run-time.

The default meta-reasoning plan selection method provided by Jadex is replaced in

the prototype implementation by a simple depth-first tree traversal algorithm, calculat-

ing the utility of each alternative, by analysing contributions and softgoal importance.

Starting at the interested goal and going until the plan level, it searches the path with

the maximal sum of the products of contributions with softgoals importance. The

qualitative Tropos contributions (+,++,. . .) are substituted by values in [−1, 1], such

that positive contributions will give higher, and negative contributions lower utility to

an alternative.

The prototype implementation includes basic self-adaptation mechanisms obtained

by evaluating environmental conditions and by exhibiting simple failure handling skills,

taking full advantage of Jadex mechanisms: Alternatives included in the goal model

are automatically explored if the execution of a plan or the fulfilment of a sub-goal

fails. If all applicable plans fail (and therefore no more plans are applicable), a Jadex

goal fails. These mechanisms is entirely handled by Jadex.

The generation tool was developed on purpose to obtain code which is easy to

customise and to extend, not only in the declarative part of the agent definition, but

also providing interfaces for the customization of the goal decomposition and reasoning

mechanisms. However, this work limits to modelling at an agent’s knowledge level, and

the code does not contain the concrete activities the system has to be able to perform,

which have to be implemented manually or by following proposals such as capability

modelling [Penserini et al., 2006b].

85

CHAPTER 4. FROM THE MODEL TO RUN-TIME

Mapping details, illustrated on an example

Referring to the CleanerSystem example, presented in Section 7.1 (Figure 7.4), we show

some details of the mapping carried out by the t2x tool. Figure 4.11 shows an example

code generated for a goal of type achieve, which triggers the execution of associated

plans, until reaching the defined target (i.e. achievement) condition. In this example,

the goal EmptyFullDustbox has run-time precedence over the goal CleanField and is

achieved when the agent believes that the dustbin is empty (i.e. the dustbin artifact

reports the respective sensor information).

<achievegoal name="EmptyFullDustbox">

<targetcondition>

$beliefbase.dustbin.empty()

</targetcondition>

...

<deliberation>

<inhibits ref=’’CleanField’’/>

</deliberation>

</achievegoal>

Figure 4.11: Example of a goal definition in the Jadex ADF.

A goal of type maintain, MaintainBatteryLoaded, can be mapped straight-forward to

a Jadex MaintainGoal. However, the correspondence between a Tropos4AS goal and a

goal in the Jadex language is not always straight-forward. For example, the behaviour

of a perform-goal, e.g. FindCoarseDust, does not correspond to the homonymous Jadex

goal type, because at execution time associated plans would be executed only once. The

appropriate goal fulfilment behaviour we expect for a perform-goal, denoted as perform

goal with retry-flag in [Dastani et al., 2006], corresponds to a RecurrentPerformGoal in

Jadex. The different types of conditions, defied in Section 3.2.2, are mapped to the

ADF, using boolean formulas to link the goal achievement process to facts in the belief

base, which represent the artifacts in the environment and are implemented in JAVA

classes containing the methods that represent the functionalities of the artifacts. Goal

sequence in an AND-decomposition is annotated in the ADF and implemented in the

Java plans defining the AND-goal decomposition logic. The inhibition link, a concept

available in the Jadex language, can be directly mapped to an XML tag of the form

<inhibits ref="goal_to_inhibit"/> for the inhibiting goal. Further details on the

mapping and code generation, limited to Tropos , can be found in [Morandini, 2006].

86

4.3. TOOL SUPPORT

4.3.3 Tool architecture

Taom4E, its Tropos4AS modelling extensions, and the t2x code generation tool are

developed as three plug-ins for the Eclipse framework. The meta-models for the edi-

tors were defined with the Eclipse Modelling Framework (EMF). The graphical model

editor for Taom4E was developed with the aid of a preliminary version of the Eclipse

Graphical Editor Framework (GEF) and heavy manual modifications on the generated

code. An integration of new graphical modelling elements into the existing Taom4E

diagram editor would thus have required an unproportionately high programming effort

and a partial reprogramming of the editor.

Figure 4.12: Taom4E: Interface for defining conditions on modelled entities.

We thus decided to implement an own plug-in with an editor for the environment

model and support the modelling extensions, basing on the Eclipse Graphical Mod-

elling Framework (GMF). The underlying model for the editor holds not only the

environment diagram, which is graphically visualized, but also an own representation

of the goal model able to hold additional information on to the extensions. To model

additional details within Taom4E, this plug-in links into the context menus of the

Taom4E diagram editor, providing e.g. an interface for defining goal conditions on

modelled environmental entities (visulalized in Figure 4.12) and for additional rela-

tionships, direct access to the environment model of each agent, and the generation of

UML class diagrams.

Figure 4.13 summarizes the layers of the tool architecture, including the t2x tool

which takes the models created by both editors in input, generates a Jadex Agent Def-

87

CHAPTER 4. FROM THE MODEL TO RUN-TIME

Figure 4.13: Taom4E and t2x tool architecture

inition File which represents the extended goal model and supporting Java structures

and prepares the run-time environment. The three plug-ins are installable through the

Eclipse Update Manager, from the Update Site http://selab.fbk.eu/taom/eu.fbk.

se.taom4e.updateSite/. Currently, the Taom4E tool is re-engineered by the use of

GMF with model extendibility as primary requirement. This new version would enable

the integration of extensions, environment and failure models into a single graphical

model editor.

4.3.4 Illustration of the tool-supported process

We now assemble the various tools involved in Tropos4AS and illustrate the process

described in Section 4.1 and Figure 4.1, through their application.

The Tropos goal model, drawn with the Taom4E tool for the early and late re-

quirements analysis phase, and then (if desired) decomposed to sub-actors in an Ar-

chitectural Design Diagram, can be at any time extended, by creating an environment

model for a system actor (in the actor’s context menu). The environment model holds

a simple representation of the artifacts of interest for the actor, grouped in packages.

Failure modelling is currently not supported by these tools. If a representation and

a mapping to agent code for errors and related recovery activities is desired, errors

can be represented by goals for achieving an error-free state, highlighted by a pale red

colour, which are activated by the error condition. Recovery activities are described

by goal model fragments, linked to this goal by a means-end relationship.

The Tropos4AS extensions, including conditions, can subsequently be defined in the

interfaces provided for every goal and plan in the diagram (left part of Figure 4.14).

88

http://selab.fbk.eu/taom/eu.fbk.se.taom4e.updateSite/
http://selab.fbk.eu/taom/eu.fbk.se.taom4e.updateSite/

4.3. TOOL SUPPORT

Figure 4.14: The Tropos4AS process, illustrated through the application of the mod-

elling tools.

Having concluded the modelling activities, by the t2x tool, Jadex ADF files and sup-

porting Java code for agent prototypes can be generated. The class diagrams represent-

ing the environment can be edited by available UML tools (e.g. EclipseUML, upper

left part of Figure 4.14), which also give the possibility to generate Java interfaces,

accessible by the implemented agent prototypes.

The t2x Eclipse plug-in also provides support for an in-place execution of instances

of the generated agents, on the Jadex agent platform. The Jadex Introspector tool

provides various visualizations of the agent’s internals during execution. The molecule-

like graph displayed in the right part of Figure 4.14 graphically shows the activation of

goals and execution of plans for an agent, which can be directly related to its design-

time goal model (see Figure 4.15 for an example).

89

CHAPTER 4. FROM THE MODEL TO RUN-TIME

Figure 4.15: Goal model fragment for a simple example and relationships to the agent’s

execution (graphical run-time representation by the Jadex Introspector tool), for code

generated by the t2x tool (with the only manual modification of defining the failure

of two plans, for visualizing the transversal of the whole model).

4.3.5 Discussion

The mapping and implementation which we propose, is one out of many possible, and in

defining it we had to make inevitably several decisions and simplifications. The imple-

mentation gives a general run-time environment for the interpretation of the knowledge

represented in the models. Adaptivity is thus limited to basic behaviours. However,

the obtained code gives a foundation which can be customised, either centrally at an

agent level, or at the level of the single decision points (e.g. extending meta-level rea-

soning algorithms), with specific, more sophisticated or domain-dependent mechanisms

for monitoring, for decision-making and for performing the adaptation.

Moreover, several problems emerge when dealing with agents at run-time, related

to reliability, security, scalability, and performance. The developed prototype is mainly

used as a feasibility study, so security and performance problems were not addressed.

However, the mapping is linear and the messaging functionalities are provided by the

agent platform, thus these quality requirements are highly dependent from the under-

lying platform. Focusing on reliability and failure handling, non-terminating subgoals

or plans are an issue for the goal satisfaction process. The same problem arises when

goals are delegated to other agents and thus one agent is dependent from the other.

90

4.4. FINAL CONSIDERATIONS AND RELATED WORK

Time-outs were defined in the implementation to prevent deadlocks in such cases. To

address scalability, we suggest to give particular attention to the decomposition of the

system to sub-agents.

A remaining issue is related to the maintainability of the code. Despite having

separated the single functionalities from the knowledge level, the behaviour of the

implemented system soon becomes complex, because of the various threads of con-

trol emerging from the contemporaneous satisfaction of the different goals (especially

maintain-goals) at run-time, and their synchronisation with the monitoring function-

alities.

4.4 Final Considerations and Related Work

In this chapter, the conceptual models and modelling steps introduced in the previous

chapter were integrated to a complete, tool-supported process, which spans the devel-

opment phases until the implementation, focussing on knowledge-level artefacts. This

process includes a mapping from the design artefacts to a BDI agent architecture, to

preserve the representation of the high-level requirements in form of a goal model at

run-time, and to lower the conceptual gap between software requirements, design and

implementation.

Thus, our approach differentiates from other agent-oriented methodologies such

as Prometheus [Padgham and Winikoff, 2002], MaSE [DeLoach et al., 2001] and

ADELFE [Bernon et al., 2005]. These methodologies use goal models for capturing the

high-level requirements, but change the design focus in the later steps from goals to

tasks, messages and data, loosing the concept of goal. [Khallouf and Winikoff, 2009]

refines Prometheus, maintaining goals until the implementation, but looses the goal

model structure. With the same consequence, in O-MaSE a goal model is implemented

by assigning each leaf goal to a single agent role in a MAS [Oyenan and DeLoach, 2010].

For a concrete implementation we adopted the Jadex BDI agent platform, which

provides a reasoning cycle and an explicit representation of goals at run-time. The

Tropos4AS goal hierarchy is mapped to a BDI agent structure, by mapping hierarchical

goal models to Jadex goals along with plans which contain the decomposition logic and

build the connection between goals at different levels of the hierarchy. The obtained

run-time behaviour reflects the intended semantics attributed to the goal model at

design time, preserving variability and defining the decision criteria for alternatives

selection. The approach does not include the detailed modelling and implementation of

the single functionalities, which could however be implemented by the use of traditional

91

CHAPTER 4. FROM THE MODEL TO RUN-TIME

engineering techniques.

In comparison, [Nakagawa et al., 2008] maps goals to behaviours of JADE agents,

thus missing a goal-directed behaviour and an explicit representation of the goal model.

A mapping from Tropos , extended with temporal execution annotations, to Prolog

[Cares et al., 2005] also looses the goal model structure at run-time. [Salehie, 2009]

represents and traverses the goal model at run-time. The aproach in practice rebuilds

parts of a BDI architecture for goal activation and deliberation. On the contrary, Tro-

pos4AS relies on an available BDI architecture with its goal deliberation mechanisms.

[Krishna et al., 2006] defines a mapping from i* models to 3APL agents. Softgoals and

dependencies are mapped similar to our approach. However, the problem of selecting

between alternatives is not addressed and it is not defined how softgoals would influence

rule selection. A direct mapping, without any middleware layer, was achievable, since

the mapping bases on the original i* [Yu, 1995], in which goal AND/OR decomposition

is not specified. Also, no code generation tool is provided.

We provide tool support for conceptual modelling, by extending the Taom4E de-

velopment environment for supporting Tropos4AS modelling concepts. The t2x (Tro-

pos4AS to Jadex) code generation tool provides an automated mapping from Tro-

pos4AS goal models to BDI agents executable on the Jadex platform, including a

middleware for the navigation and decision making on the goal model at run-time.

The generated prototypes have with a basic message handling and goal achievement

behaviour, exhibiting a set of behaviours corresponding to the source goal model, in-

cluding the ability to reason about alternatives to achieve goals. The generated code

can be modified and customized as needed, i.e. adopting more sophisticated, domain-

depended learning and reasoning techniques.

The mapping process can be straightforwardly adapted to other agent languages

with a BDI architecture, whereas for non-goal-oriented languages, such as JADE and

object-oriented programming languages, a middleware layer would be needed, imple-

menting functionalities for goal monitoring and a run-time reasoning cycle. The im-

plementation is also ready for run-time modification of a goal model, and thus of the

agent’s knowledge level behaviour, guided by the users, by supervisor agents, or by the

agent itself, for instance exploiting machine learning techniques.

To further consolidate the Tropos4AS framework, the automated mapping towards

a BDI architecture has to be tested on real-world applications, in which more complex

behaviours have to be implemented. The t2x code generation tool has been used in

university courses for an introduction to BDI agents programming, by various students

for their course projects and in master theses.

92

Chapter 5

Operational Semantics for Goal

Models

5.1 Introduction

Several agent-oriented software engineering methodologies address the emerging chal-

lenges posed by the increasing need of adaptive software. A common denomi-

nator of such methodologies is the paramount importance of the concept of goal

model in order to capture and understand the requirements of a software system

[van Lamsweerde, 2001, Borgida et al., 2009].

Various agent programming languages, such as JACK, Agentspeak1 and Jadex in-

corporate the notion of goal as a language construct and give the possibility to define

goal types. These types define different attitudes that agents can have towards their

goals [Dastani et al., 2006]. A formalisation which unifies and formalizes goal types

and connected conditions defined in various languages, is addressed by Riemsdijk et al.

[van Riemsdijk et al., 2008]. However, this formalisation limits to goals which are di-

rectly operationalised by plans2. Moreover, goal models (i.e. goal hierarchies) are not

natively available, to our knowledge, in any agent programming language.

The modelling language introduced with Tropos4AS allows to define goal models,

enriched with information on the dynamic behaviour, defining goal types and associated

conditions for goals at any level of decomposition. The interplay of these concepts

1AgentSpeak is the language interpreted by the Jason agent platform [Bordini and Hübner, 2005].
2We define goals which are directly operationalised by plans as leaf-level goals or leaf goals, while

non-leaf goals are goals in a goal hierarchy, decomposed to sub-goals and operationalised only at a
lower level.

93

CHAPTER 5. OPERATIONAL SEMANTICS FOR GOAL MODELS

calls for a formalisation of the behaviour intended when modelling them at design

time. Also, a central aim of Tropos4AS is to preserve design-time knowledge on goals

and variability until run-time, to take autonomous decisions for achieving high level

objectives correctly. An implementation should thus respect this intended behaviour.

In this chapter we define an operational semantics for goals in a hierarchical goal

model, building upon the semantics for “leaf-level” goals defined by Riemsdijk et al

[van Riemsdijk et al., 2008]. First we define an abstract architecture, able to capture

a large pool of possible goal achievement behaviours. Upon this, we formalise the

semantics for achieve-goals, maintain-goals, and perform-goals, in goal models with

AND- and OR-decompositions. Higher level (non-leaf) goals are defined through the

achievement of their sub-goals and through the satisfaction of their achievement condi-

tions. These semantics give a formal definition of the behaviour that can be expected

from the execution of a goal model modelled at design time, by defining its run-time

behaviour.

The chapter is structured as follows. Section 5.2 gives an intuitive idea of goal model

semantics at run-time with the help of a simple cleaner agent example, Section 5.3

introduces the formalisation of our goal model semantics as an abstract architecture,

on which, in Section 5.4 the behaviours for various goal types are instantiated. A

discussion on the obtained results and an example for the application of the semantics

conclude this chapter.

5.2 Goal Types and Goal Decomposition

In Tropos4AS we introduce expressive extensions to goals, to concretise the correla-

tions between high-level requirements and system functionalities: goal types and their

conditions. Goal types precisely detail the agent’s life-cycle by defining the run-time

behaviour for (i.e. the agent’s attitude towards) achieving a goal. Conditions guide

and guard state transitions in this life-cycle. Besides, Tropos4AS allows also to model

goal AND/OR decomposition, and thus gives the possibility to model a wide spectrum

of possible agent behaviours. This gives the need for a formal definition of the process

of goal satisfaction, hereafter called the goal life-cycle, for goals embedded in a goal

model.

The semantics for goals in goal models should cover the goal types typically

available in a BDI-based agent language. Following the terminology introduced by

Dastani et al. [Dastani et al., 2006], we consider the three main goal types achieve,

perform and maintain. Moreover, the semantics have to consider goal AND/OR

94

5.2. GOAL TYPES AND GOAL DECOMPOSITION

decomposition. Non-leaf goals are not directly pursued by executing plans, but

by activating one or more of their subgoals. The satisfaction process is thus more

complex, because two facts have to be assessed: the satisfaction of one (OR) or all

(AND) subgoals and the satisfaction of conditions. Also, the definition of goal failure

can depend on both the decomposition and specific conditions.

A prerequisite for the abstract semantics is the ability to cover the following goal

types, characterised by a specific satisfaction behaviour and by various conditions:

An achieve-goal is characterized by an achievement condition that specifies when

a certain state of affairs is reached. The satisfaction of the goal can be attempted

several times till this condition holds. Moreover, a failure condition can terminate goal

achievement, defining it as failed.

To satisfy a perform-goal , the agent has to successfully execute some actions

(plans), without demanding that the plans must reach the states denoted by the goal.

Last, for satisfying a maintain-goal , the agent has to try to maintain a certain

state of affairs. In literature, different types of semantics have been attributed to

maintain-goals. E.g., an agent can act reactively or proactively to maintain a state

[Duff et al., 2006]. In the first case (reactive maintain-goals), it starts taking action

when a particular state is no longer maintained, while in the second case (proactive

maintain-goals) it tries to act to prevent the failure of the maintenance condition. The

implementation of proactive maintenance goals, although suitable for formal verifi-

cation [Fuxman et al., 2001], would, at run-time, require predictive reasoning mecha-

nisms, which are not easily representable through an operational formalisation, and in

procedural, event-guided agent languages in general [van Riemsdijk et al., 2008].

Thus, in this work we focus on reactive maintain-goals, which are available on

most agent platforms. Such goals are activated each time their maintenance condition

is not satisfied and suspended if the condition holds. Proactive maintain goals would

theoretically also be modellable in our framework but ask for a predictive evaluation of

maintain-conditions. This would demand the use of heuristics and reasoning techniques

which is out of the focus of this work and would moreover not be successful in every

domain.

5.2.1 An example: the Cleaner Agent

To illustrate how a goal model captures the intended run-time behaviour, we refer to a

very simple cleaner robot scenario, which can be found in several variations in artificial

95

CHAPTER 5. OPERATIONAL SEMANTICS FOR GOAL MODELS

intelligence and multi-agent systems fields.

The Cleaner Agent, modelled with Tropos4AS (Figure 5.1), represents the control

software for an autonomous robot that could ideally be employed in an office building.

The achieve-goal RoomClean has an achievement condition“room clean at the end of

the day”and is OR-decomposed into the two alternatives DryCleaning and WetClean-

ing (both are perform-goals). These “leaf-level” goals are operationalised by plans that

give different contribution to the quality requirement efficiency, modelled as a softgoal.

Supposing both alternative subgoals are applicable in the current context, the agent

will pursue the subgoal that maximizes contribution to its softgoal efficiency. The

semantics of the goal model now allow designers to characterize various run-time be-

haviours of an agent, like the ones shown in the following scenarios.

Figure 5.1: Fragment of a goal model for the Cleaner Agent example.

Scenario 1. The agent achieved DryCleaning by using a broom, but due to some

stubborn dirt, the achievement condition of the main goal RoomClean is not yet satis-

fied. Thus, the agent should retry the other available alternative, the goal WetCleaning,

hoping that after its achievement the main goal will be achieved.

Scenario 2. Suppose that the agent is cleaning the room with a mop, performing

the goal WetCleaning, and runs out of water. If all the dirty parts of the floor were

already cleaned (and the agent can sense this), the achievement condition of RoomClean

is satisfied and thus, after all, the top goal succeeds.

96

5.3. GOAL MODEL: ABSTRACT ARCHITECTURE

Interesting considerations arise by modelling these scenarios, in which the agent’s

behaviour adheres not only to the semantics of goal AND/OR decomposition but is also

driven by the nature of goal types along with their satisfaction conditions. For example,

in Scenario 1, one of the two alternative subgoals for the main goal RoomClean was

correctly performed. However, the state denoted by the achievement condition is not

yet reached. On the contrary, in Scenario 2, the subgoal was not correctly performed,

but nevertheless the top-level goal should succeed. The different parameters allow for

various interpretations regarding the agent’s behaviour.

5.3 Goal Model: Abstract Architecture

In the following, we provide formal operational semantics to deal with non-leaf goals in

a goal model, and customize these semantics for each goal type, illustrating how they

adhere both to the semantics of run-time goals (as in agent languages, by the use of

conditions) and to the interpretation given to hierarchical goal decomposition in goal

models of agent-oriented software engineering methodologies like Tropos , Tropos4AS

and KAOS.

Taking ideas from the formalisation used in [van Riemsdijk et al., 2008], we first de-

fine an abstract goal architecture able to capture a large pool of possible goal achieve-

ment behaviours (Section 5.3), in order to instance upon this the desired run-time

behaviour for various types of goals (Section 5.4).

The architecture defines the different states of a goal in the run-time goal satisfaction

process, for AND- and OR-decomposed goals, and the operational semantics of goal

satisfaction, in terms of transition rules, where some of the transitions are controlled by

specific conditions and thus allow to customize the goal satisfaction process for various

goal types.

5.3.1 Basic Concepts of the Formalisation

In the abstract architecture proposed by [van Riemsdijk et al., 2008], once adopted,

(leaf) goals can have two different states: suspended and active. In the active state

planning and execution of plans take place. The satisfaction process for non-leaf goals

is more complex, essentially because two facts have to be assessed: the satisfaction

of subgoals of AND/OR decompositions and the satisfaction of the conditions defined

for a particular goal type. The flexible interplay between these two aspects calls for

additional goal states to explicitly represent failure and success in the goal achievement

97

CHAPTER 5. OPERATIONAL SEMANTICS FOR GOAL MODELS

process.

We define an abstract architecture for non-leaf goals, which includes the following

goal states S = {suspended (S), active-deliberate (AD), active-undefined (AU), active-

success (AS), active-failure (AF)}.
In the following we define transition rules between these states, labelled as adopt, ac-

tivate, suspend, deliberate, subgoal-achieve, fail, succeed, retry, reactivate, drop-failure,

and drop-success in Figure 5.2.

Some of these transitions are governed by transition actions (one of Activate,

Suspend, Fail, Succeed, Retry, Reactivate, DropFailure, DropSuccess)

which are correlated to specific transition conditions. In Section 5.4, these conditions

will be instantiated to obtain the desired behaviour for the different goal types, “en-

abling” the proper actions.

The transition rules exactly define the five states. However, to clarify the idea

behind these states, here we give a brief, intuitive description of them.

The suspended state (S) is, analogous to [van Riemsdijk et al., 2008], the state in

which a goal is adopted, but the agent has to wait for the activation of it (e.g. due

to some unsatisfied condition). Once activated, the goal transits to one of the four

states which denote a state in which the agent actively acts for satisfying the goal.

State active-deliberate (AD) is an intermediate state, which is reached directly after

activation of a goal. Immediately, the agent tries to deliberate subgoals, i.e. to reveal

the list of feasible subgoals of the current goal, and passes to active-undefined (AU). In

this state the agent tries to adopt the revealed subgoals and eventually analyses their

success or failure (differently for AND- and OR-decompositions).

Depending on the decomposition type, the goal will transit to the “provisional”

failure or success states (AF) or (AS), depending on subgoal achievement. Transitions

to (AF) and (AS) can also be guided by the satisfaction of the transition actions Fail

or Succeed (which will usually be bound to goal failure and success conditions). The

same transition actions are re-evaluated in (AF) and (AS), to finally drop a goal with

success or failure. However, in these states, transition actions (later instantiated to

proper conditions) can also Suspend a goal (this is usually done for maintain-goals),

restart its achievement process from subgoal deliberation Reactivate (e.g. to restart

goal achievement if all subgoals succeed but the goal is still not satisfied), or Retry

with another subgoal, if available (e.g. if one alternative subgoal succeeds, but the goal

is not yet satisfied and so another available alternative should be tried).

We aimed at minimizing the set of possible transitions. By a sophisticated combi-

nation of transitions all necessary state changes can be covered.

98

5.3. GOAL MODEL: ABSTRACT ARCHITECTURE

Figure 5.2: Possible states and transitions in the abstract architecture for non-leaf goals

in goal models.

Definition 1 The state of an agent is characterised by a tuple 〈B, G〉, where: B is

the agent’s actual set of beliefs (the belief base), which contains a set of beliefs and

known facts about the surrounding world, perceptions, messages and its internal state;

G is the set of goals {g1 . . . gn}, the agent actually has to pursue, i.e. the adopted goals.

B |= c denotes that condition c is satisfied with respect to the actual set of beliefs B.

Definition 2 A generic non-leaf goal at run-time is defined as g(C, E, s, Γ), where

s ∈ S is the actual goal state and Γ is a list of goals that results from a deliberation

activity deliberate(g,B), returning applicable subgoals for g: Γ = {γ1 . . . γn}. C and E

are tuples of the form 〈condition, action〉, where action is one of the transition actions

previously defined and condition is evaluated in B.

Definition 3 A condition c in C is evaluated in B if Γ 6= ∅ (i.e. the set of adopted

subgoals is not empty). A condition c in E is evaluated if Γ = ∅.

5.3.2 Transition rules

The operational semantics for our abstract architecture are defined by a set of inference

rules that define possible state transitions. Each rule is specified as

L

R [rule-name]

where R represents a possible state transition of the system under the set of conditions

L.

In the following, we define the transition rules for goals in G, both for goal AND-

and OR-decompositions in a goal model. We thus assume that the goals are already

adopted, and thus initially in state S (suspended).

99

CHAPTER 5. OPERATIONAL SEMANTICS FOR GOAL MODELS

New goals can be added to G (goal adoption) upon request from outside, triggered

by a creation (adoption) condition or as subgoals during goal achievement. Goal adop-

tion which does not origin from a goal hierarchy, is not further detailed here. In brief, to

guarantee that the control of subgoals is left to the parent goals in a goal tree, external

(user) requests for the adoption of goals (in an agent architecture typically messages)

and creation conditions should be allowed only for root goals.

Goal activation

Goal activation is guided by a condition c. The following two transition rules, [acti-

vateC] and [activateE], define the state transition from the state S (suspended) to AD

(active, deliberation), depending on the condition associated to the action Activate.

The naming includes the transition labels in Figure 5.2; “E” and “C” denote that the

transition is applied for an empty or non-empty set Γ, respectively. Unless otherwise

defined, all rules are used for both AND- and OR-decomposition.

Γ 6= ∅ 〈c,Activate〉 ∈ C B |= c

〈B, g(C, E, S, Γ)〉 → 〈B, g(C, E, AD, Γ)〉 [activateC]

〈c,Activate〉 ∈ E B |= c

〈B, g(C, E, S, ∅)〉 → 〈B, g(C, E, AD, ∅)〉 [activateE]

Subgoal achievement

The first step in non-leaf goal achievement consists in revealing its subgoals. For this,

the function deliberate returns a list Γ of subgoals to satisfy, while the goal state changes

from AD to AU . In its simplest form, the deliberation function returns the whole set of

subgoals, but also complex algorithms for subgoal discovery could be implemented. No

deliberation takes place in the case that there are still subgoals available, i.e. Γ 6= ∅3.
Note that [deliberateE] has no pre-conditionis and is thus an axiom.

〈B, g(C, E, AD, ∅)〉 → 〈B, g(C, E, AU, deliberate(g,B))〉 [deliberateE]

Γ 6= ∅

〈B, g(C, E, AD, Γ)〉 → 〈B, g(C, E, AU, Γ)〉 [deliberateC]

3This particular transition would be required for temporal goal suspension, which is not further
detailed here.

100

5.3. GOAL MODEL: ABSTRACT ARCHITECTURE

At this point, subgoal adoption (and thus, eventually, their achievement) can take

place. AND- and OR-decomposed goals have different achievement semantics. Intu-

itively, the goal remains in the undefined state AU as long as the result of subgoal

achievement is uncertain. Thus, an AND-decomposed goal remains in AU until one

subgoal fails (rule [AND:subg-achieve]), in which case it will change to the“provisional”

failure state AF [AND:subg-fail]. When all subgoals are pursued (Γ = ∅) and the goal

is still in state AD, applying [AND:goal-succeed] it will transit to the “provisional”

success state AS4.

Referring to OR-decomposition, a goal transits to AS at the first success of a

subgoal, and to AF only if all subgoals fail. Each instance of a subgoal γ updates

the belief base with success(γ) or failure(γ), depending if it was achieved or not.

Accordingly, our formalisation provides this information to the belief base when a goal

is dropped. To ensure that transitions triggered by true conditions have precedence

over adopting a new subgoal, the next four transition rules also need the precondition

¬∃〈c, a〉 ∈ C . (B |= c) ∧ a ∈ {Fail, Succeed}

γi ∈ Γ 〈B, adopt(G, γi)〉 → 〈B′, G〉 B′ |= success(γi)

〈B, g(C, E, AU, Γ)〉 → 〈B′, g(C, E, AU, Γ \ {γi})〉 [AND:subg-achieve]

γi ∈ Γ 〈B, adopt(G, γi)〉 → 〈B′, G〉 B′ |= failure(γi)

〈B, g(C, E, AU, Γ)〉 → 〈B′, g(C, E, AF, Γ \ {γi})〉 [AND:subg-fail]

γi ∈ Γ 〈B, adopt(G, γi)〉 → 〈B′, G〉 B′ |= failure(γi)

〈B, g(C, E, AU, Γ)〉 → 〈B′, g(C, E, AU, Γ \ {γi})〉 [OR:subg-achieve]

γi ∈ Γ 〈B, adopt(G, γi)〉 → 〈B′, G〉 B′ |= success(γi)

〈B, g(C, E, AU, Γ)〉 → 〈B′, g(C, E, AS, Γ \ {γi})〉 [OR:subg-succeed]

In these four rules we introduced the function adopt(G, g) to define adoption of

a subgoal, that is, adding the (sub)goal g to the goal base G, in order to start its

achievement process. Eventually, this will result in a new belief B′.

4“provisional” for the reason that in these states it is not yet sure if a goal is dropped with failure
or success. This depends on further achievement and failure conditions, and on an eventual process
repetition (e.g. suspension or reactivation), whose formal semantics are defined later on.

101

CHAPTER 5. OPERATIONAL SEMANTICS FOR GOAL MODELS

The next transition rule defines how to satisfy the main precondition of the former

four rules, the transition from 〈B, adopt(G, γ)〉 to B′, that is, adopting the subgoal γi

in order to start its achievement process, and waiting until γi is dropped:

adopt(G, γi)→ G ∪ {γi} 〈B, G ∪ {γi}〉 → 〈B′, G〉

〈B, adopt(G, γi)〉 → 〈B′, G〉

The function adopt(G, γi) adds {γi} to the current list of adopted goals G. Finally,

the new belief B′ is the result of the application of transitions for the satisfaction of

the goal γi, that concludes with some transition rule that drops γi from G.

Subgoals which are themselves decomposed to goals, will follow the semantics

defined in this work. When they are dropped (applying [DropSuccess] or [DropFailure],

as defined later in this section) the agent’s belief base is updated with success(g) or

failed(g), where g denotes an unique identifier of a goal instance. In the case that

a subgoal is a leaf goal, it will be instantiated for example according to Riemsdijk’s

semantics [van Riemsdijk et al., 2008]. We require that also for these goals the success

or failure is annotated in the agent’s belief base.

Now we define what happens if a goal is still in the state AU , but its list of subgoals

Γ is empty. The following rules define when an AND-decomposed goal, which is still

in AU with Γ = ∅ (thus, no subgoal failed), passes to the provisional success state

AS. Conversely, an OR-decomposed goal fails if none of its subgoals succeeded and no

Success condition is satisfied:

¬∃〈c,Fail〉 ∈ E.(B |= c)

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AS, ∅)〉 [AND:subg-succeed]

¬∃〈c,Succeed〉 ∈ E.(B |= c)

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AF, ∅)〉 [OR:subg-fail]

Success and failure triggered by conditions

The following rules define the possibility to transit to the states AS and AF depending

on conditions related to the actions Succeed and Fail. Satisfied success and failure

conditions lead from AU to the states AS and AF , respectively. In the case that both

conditions are true, failure conditions have precedence.

102

5.3. GOAL MODEL: ABSTRACT ARCHITECTURE

Moreover, two of these rules also consider transitions from AS to AF and vice-

versa, respectively, limited to the case that Γ 6= ∅. The transition AF → AS will

be triggered only if a subgoal of an AND-decomposed goal fails, but its achievement

condition holds. Conversely, the transition AS → AF is used if in an OR-decomposed

goal a subgoal succeeds, but the condition associated to the action Fail is true. By

construction of this transition system, no transitions AS → AF for AND-decomposed

goals, and AF → AS for OR-decomposed goals, are necessary. In the following two

rules, X ∈ {AU,AF} and Y ∈ {AU,AS}.

Γ 6= ∅ ¬∃〈d,Fail〉 ∈ C.(B |= d) 〈c,Succeed〉 ∈ C B |= c

〈B, g(C, E,X, Γ)〉 → 〈B, g(C, E, AS, Γ)〉
[cond-succeedC]

Γ 6= ∅ 〈c,Fail〉 ∈ C B |= c

〈B, g(C, E,Y, Γ)〉 → 〈B, g(C, E, AF, Γ)〉 [cond-failC]

¬∃〈d,Fail〉 ∈ C.(B |= d) 〈c,Succeed〉 ∈ E B |= c

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AS, ∅)〉 [cond-succeedE]

〈c,Fail〉 ∈ E B |= c

〈B, g(C, E, AU, ∅)〉 → 〈B, g(C, E, AF, ∅)〉 [cond-failE]

Goal dropping triggered by conditions

The following transition rules define when to drop a goal from the goal base G. When

dropping a goal from the state AS, the fact success(g) is added to the agent’s belief.

Dropping it from AF , failed(g) is added.

Γ 6= ∅ g(C, E, AS, Γ) ∈ G 〈c,DropSuccess〉 ∈ C B |= c

〈B, G〉 → 〈B ∪ success(g), G \ {g(C, E, AS, Γ)}〉
[drop-successC]

g(C, E, AS, ∅) ∈ G 〈c,DropSuccess〉 ∈ E B |= c

〈B, G〉 → 〈B ∪ success(g), G \ {g(C, E, AS, ∅)}〉 [drop-successE]

103

CHAPTER 5. OPERATIONAL SEMANTICS FOR GOAL MODELS

Γ 6= ∅ g(C, E, AF, Γ) ∈ G 〈c,DropFailure〉 ∈ C B |= c

〈B, G〉 → 〈B ∪ failed(g), G \ {g(C, E, AF, Γ)}〉 [drop-failureC]

g(C, E, AF, ∅) ∈ G 〈c,DropFailure〉 ∈ E B |= c

〈B, G〉 → 〈B ∪ failed(g), G \ {g(C, E, AF, ∅)}〉 [drop-failureE]

Reactivation, Suspension, and Retry

Goal achievement might not always be straight forward. Often, a failure-avoiding be-

haviour is desired: the agent should try alternatives or repeat the whole goal satisfac-

tion process, to achieve goal success. Moreover, some goals will require the permanent

maintenance of some state of affairs. Thus, we introduce transition rules guided by con-

ditions and used to backtrack in the goal achievement process, either from the success

or the failure state.

The following two rules define how to restart the goal achievement process, including

subgoal deliberation, when in the state AF. Remaining subgoals in Γ are deleted. Such

a transition is needed to repeat goal achievement if subgoal achievement failed and

goal failure should be avoided. It is worth noticing that, if more transition rules are

applicable at the same time and no rule is more specific than the others, precedence to

the application of transition rules is given by the order of definition of the conditions

at the instantiation of a goal.

Γ 6= ∅ 〈c,Reactivate〉 ∈ C B |= c

〈B, g(C, E, AF, Γ)〉 → 〈B, g(C, E, AD, ∅)〉 [reactivateC]

〈c,Reactivate〉 ∈ E B |= c

〈B, g(C, E, AF, ∅)〉 → 〈B, g(C, E, AD, ∅)〉 [reactivateE]

Similar rules are needed for goal suspension after a successful goal execution (this

is typically needed for maintain-goals). Note that, in these transitions, the list of

deliberated subgoals is emptied, thus such transitions are not suitable for modelling

particular context conditions, which should temporary suspend a goal and subsequently

reactivate it, resuming from the previous state.

104

5.4. INSTANTIATION OF THE ABSTRACT ARCHITECTURE

Γ 6= ∅ 〈c,Suspend〉 ∈ C B |= c

〈B, g(C, E, AS, Γ)〉 → 〈B, g(C, E, S, ∅)〉 [suspendC]

〈c,Suspend〉 ∈ E B |= c

〈B, g(C, E, AS, ∅)〉 → 〈B, g(C, E, S, ∅)〉 [suspendE]

The last rule defines the semantics for conditions related to the action Retry and

applies only to goals with a non-empty subgoal list Γ. [retryC] backtracks from AS

to the undefined state AU , where goal achievement can be retried with the remaining

subgoals in Γ. This transition can be applied e.g. if an OR-decomposed goal succeeds,

referring to the achievement of one of its subgoals, but the goal’s achievement conditions

are not satisfied:

Γ 6= ∅ 〈c,Retry〉 ∈ C B |= c

〈B, g(C, E, AS, Γ)〉 → 〈B, g(C, E, AU, Γ)〉

5.4 Instantiation of the Abstract Architecture

The abstract architecture for non-leaf goals in goal models, with its different actions

and conditions that drive and guide the goal satisfaction process, is now adapted to

the behaviour needed for the various types of goals and the interplay of their achieve-

ment and failure conditions with the subgoal achievement process. We instantiate the

architecture giving precise semantics for the most significant goal types: perform-goals,

achieve-goals, and (reactive) maintain-goals, as introduced in Section 5.2.

5.4.1 Perform-goals

Perform-goals are available in most agent languages, to execute plans without defining

some particular state to be reached [Dastani et al., 2006].

In a goal model, we associate the following semantics to a perform-goal: depending

on the decomposition type, all (for AND) or at least one (for OR) of the subgoals have

to be satisfied to achieve the goal. The following instance of our abstract architecture

defines a simple perform-goal, for which no explicit conditions can be defined. The

transitions from AU to AF and AS thus depend solely on subgoal satisfaction. The

105

CHAPTER 5. OPERATIONAL SEMANTICS FOR GOAL MODELS

goal fails if subgoals cannot be achieved at the first try, and succeeds, otherwise.

P ≡ g(E, C), with E = C = {〈true,Activate〉,
〈true,DropFailure〉, 〈true,DropSuccess〉}

Alternative run-time semantics associated to perform goals define that failure has

to be avoided and thus goal achievement has to be restarted if the goal enters in

a failure state (also called recurrent or retry-perform goals in literature). This can

be realised by replacing, in both E and C, the condition 〈true,DropFailure〉 with

〈true,Reactivate〉. In this interpretation, also failure conditions can be needed.

Failure conditions will be detailed for achieve-goals.

5.4.2 Achieve-goals

In general, achieve-goals have a success condition (or achievement condition) s that has

to be satisfied, and usually also a failure condition (or drop condition) f . Only these

two conditions guide the dropping of an achieve-goal from the goal base, regardless

of the satisfaction of subgoals. For example, if all subgoals fail, but the goal success

condition is satisfied, then the goal is dropped with success. Moreover, we define that

the success and failure conditions should be tested not only at the end, but also during

subgoal achievement.

The achieve-goal can also have various behaviours to manage failure: if the success

condition is still not met after the subgoals are processed, the goal can a) restart the

achievement process or b) fail completely. Moreover, adding the condition 〈¬s,Retry〉
to the set C of conditions tested if Γ 6= ∅, we can achieve the failure-preventing be-

haviour shown in the example in Section 5.5, that is, for failed OR-decompositions,

goal achievement is restarted with the remaining subgoals. The following instantiation

models the behaviour a):

A(s, f) ≡ g(E, C), with E = H ∪ {〈¬s ∨ f,Fail〉}
and C = H ∪ {〈f,Fail〉, 〈¬s,Retry〉}

with the following set of conditions H, included in both E and C:

H = {〈true,Activate〉, 〈f,DropFailure〉, 〈s,Succeed〉,
〈s,DropSuccess〉, 〈¬s,Reactivate〉}

Behaviour b) can be obtained from the previous one replacing 〈¬s,Reactivate〉
with 〈¬s,DropFailure〉.

106

5.5. APPLICATION OF THE SEMANTICS

5.4.3 Maintain-goals

As discussed in Section 5.2, we limit to reactive maintain-goals, that are endowed with

a maintenance condition m and in most languages also with a drop condition d to

remove the goal from the list of goals to pursue [van Riemsdijk et al., 2008].

Intuitively, maintain-goals try to maintain a certain condition true and never end

their life-cycle, unless they are explicitly dropped from the set of adopted goals (that is,

from the set of goals the agent actively pursues at a certain moment). The transitions

correspond to the ones in achieve-goals, but the goal is suspended if m is satisfied and

dropped only if d is true:

M(m, d) ≡ g(E, C), with E = H ∪ {〈¬m ∨ d,Fail〉}
and C = H ∪ {〈d,Fail〉, 〈¬m,Retry〉}, where

H = {〈¬m,Activate〉, 〈d,DropFailure〉, 〈m,Succeed〉,
〈m,Suspend〉, 〈¬m,Reactivate〉}

Some definitions of maintain-goal include also a target condition t. Having both a

maintain- and a target condition, the goal is activated each time the maintain-condition

is violated, while it is suspended only if the target condition is satisfied. These prop-

erty allows for a behaviour with a hysteresis in goal activation, preventing unwanted

continuous switching between activation and suspension. For example, if room tem-

perature has to be maintained at 20 ◦C, each time the heating is turned on, it should

heat till 22 ◦C. To obtain such a behaviour, the goal architecture can be instantiated as

Mt(m, t, d), with all occurrences of m in M(m, d) changed to t, except for the condition

〈¬m,Activate〉.

5.5 Application of the Semantics

We illustrate the application of the proposed operational semantics, using the cleaner

agent example introduced in Section 5.2.1 (Figure 5.1), Manually executing some steps

of this example, we explain the expected run-time behaviour.

We detail the satisfaction process for the goal RoomClean (RC), with the achieve-

ment condition that the room has to be clean (supposing the belief base will then

contain the predicate room.clean). The goal is OR-decomposed into two goals Wet-

Cleaning (WC) and DryCleaning (DC), both goals of type perform, and thus without

any specific achievement condition. We suppose that the cleaner agent is working in

a room, but after a while it encounters some stubborn dirt that cannot be completely

107

CHAPTER 5. OPERATIONAL SEMANTICS FOR GOAL MODELS

removed by the broom (e.g., colour spots after painting the walls). In this example we

expect the behaviour outlined in the scenarios in Section 5.2.1: the cleaner first pur-

sues DryCleaning, due to a higher contribution to the softgoal efficiency. Sweeping

succeeds (plan sweep), but the floor is still not clean and so the agent, to avoid failure,

also cleans using the mop (plan mop).

Figure 5.3: Possible life-cycle for goal RoomClean in the Cleaner Agent example.

We show a step-by step application of the proposed transition rules, instantiating

the achieve-goal RoomClean with the transition rules for an OR-decomposition. We

apply the set of conditions defined in Section 5.4 for achieve-goals of the form A(s, f),

with satisfaction condition s=room.clean and without failure condition (f = false).

After the adoption of RoomClean, the condition 〈true,Activate〉 enables the ap-

plication of the rule [activateE] (note that, at the beginning, still Γ = ∅) and the

goal passes from state S to state AD (2 in Figure 5.3). Then, with the rule [deliber-

ateE], the state changes to AU (3), and the function deliberate returns the subgoals

Γ = {DC, WC}. Now we expect that DC is adopted and executed and returns with

success. Notice that here we do not cope with the operational semantics for subgoal

prioritisation, e.g. by softgoal contribution. The rule [OR:subg-succeed] now applies

(4), as shown:

adopt(G, DC)→ G ∪ {DC} 〈B,G ∪ {DC}〉 → 〈B′, G〉

〈B, adopt(G, DC)〉 → 〈B′, G〉 B′ |= success(DC)

〈B, g(C,E,AU, {DC, WC})〉 → 〈B′, g(C,E,AS, {WC})〉

The execution of DC can be derived by an application of transition rules that end

with a rule which models success(DC) in B′. Now, to apply a transition starting

from the ‘provisional’ success state AS, the condition s has to be evaluated. As just

described, there are still some colour spots on the floor and thus s is not satisfied.

Therefore, the only true precondition of a transition rule from AS is that of [retryC] :

〈¬s,Retry〉. So the goal state changes back to AU (5). The only goal remaining in

Γ, WC, will now be pursued.

108

5.6. DISCUSSION: GOAL TYPES IN GOAL MODELS

We suppose that after having cleaned most of the floor, this subgoal fails, because

the robot runs out of water. However, the stubborn spots were removed, and thus

the condition s is satisfied. The rules [OR:subg-fail] and [cond-succeedE] are now

candidates for the next transition. Since B |= s, only the latter can be applied and the

goal state changes again to AS (6). Finally, the rule [drop-successE] can be applied

(7), the goal is dropped and the predicate success(RoomClean) is added to the agent’s

beliefs.

On this simple example we can already observe that the agent exhibits a failure-

preventing behaviour, by means of reasoning on the structure of its goal model, taking

advantage of the modelled variability.

5.6 Discussion: Goal Types in Goal Models

Endowing goals in goal models with the semantics defined in this section allows de-

signers for modelling a wide range of complex agent’s behaviours by combining goal

AND/OR-decomposition with different goal types and conditions. However, not all

combinations are meaningful, either for modelling or for implementation purposes.

For example, performing the refinement process within a goal model, a maintain-

goal can be either (a) decomposed to more specific maintain-goals, or (b) by defining

the goals to achieve or perform, in order to maintain the required state. However, at

run-time, maintain-goals have the property that they are not dropped when they reach

the desired state, but suspended, waiting for reactivation. Thus, subgoals of the type

maintain would never return a positive or negative outcome to their parent goal, unless

they are explicitly dropped from the goal base.

For this reason, to achieve a predictable behaviour, we set as –not necessarily

minimal– restrictions to goal model implementation: only the leaf-most maintain-goals

should be implemented, and decomposition of achieve- and perform-goals to maintain-

goals is not allowed. To condensate these guidelines into a single expression, we define

g as a high-level goal, whose implementation is not desired (including maintain-goals of

type (a), as defined above), and m, a and p as the three main goal types, respectively.

The regular expression g∗m?[ap]∗ has to hold for each path from a root goal to a leaf

goal in the goal model at design-time.

109

CHAPTER 5. OPERATIONAL SEMANTICS FOR GOAL MODELS

5.7 Related Work

Up to our knowledge, currently no agent-oriented language natively supports goal mod-

els at run-time. This entails also a lack of formalisation of the details of goal model

satisfaction at run-time.

Few related work goes beyond the definition of semantics for the achievement of

declarative goals by goal-plan relationships. Rule-based agent languages, which define

goals by list of atomic predicates (e.g. 3APL [Hindriks et al., 1999])are able to define

subgoals in the logical sense (e.g. the predicate p is a subgoal of the goal p ∧ q). This

is a special case, covered by our semantics. However, in an open world and including

the use of imperative languages, a logical correspondence between goals and subgoals

cannot always be achieved.

Although coming from a different domain, Formal Tropos [Fuxman et al., 2001] goal

models can also be executed, by simulation. However, goal decomposition semantics

were not defined. Thus, consistency checking between goals in a goal hierarchy and the

definition of the interplay of the different goal types in this hierarchy, e.g. by binding

goal achievement to the success of one or all subgoals, is left to the engineer which does

the formalisation.

We would like to mention a definition of so-called subgoal semantics by Riemsdijk

et al. [van Riemsdijk et al., 2005], which introduces a declarative notion of subgoals

within the 3APL language, in which subgoals (i.e. goals activated by a plan) are

limited to a procedural behaviour. In essence, their achievement is tested after exe-

cuting a plan triggered by that goal, and alternative plans are generated until the goal

is achieved. This pro-active behaviour goes beyond purely procedural, event-driven

semantics, as in the languages Jack and Jason5. Similar semantics, which include a

persistent concept of goal, are however already natively included in languages such as

GOAL [Hindriks et al., 2000] and Jadex and covered by our formalisation.

Sardina et al. [Sardina and Padgham, 2010] extend the BDI agent language CAN

along two lines: failure handling and lookahead planning. Subgoals are defined as goals

which have alternatives (in contrary to “motivating” (high-level) goals). At a failure,

goal achievement can thus be restarted with another alternative, and blocks retrying

the same plans, if no alternative is available. However, a concrete representation of

the goal hierarchy, as in our approach, is missing and no “backtracking” is possible to

find higher level alternatives. Moreover, the important class of maintain-goals, which

5Although, in Jason simple achieve-goals can be realised by a recursive definition of a goal in its
plan, e.g. !p← xyz, !p.

110

5.8. FINAL CONSIDERATIONS

necessitate for a “suspended” state, is not representable. Second, the work adopts hier-

archical task network (HTN) planning techniques within the BDI execution framework

to select between possible alternatives in advance, an replanning on-line each time rele-

vant parameters change or plans fail. This approach is complementary to ours, offering

an effective mechanism for alternatives selection, an issue which our semantics do not

deal with.

In available languages with a persistent goal concept, such as Jadex, GOAL, and

2APL [Dastani, 2008], which adopts ideas from GOAL, goal decompositions and alter-

natives can be defined only by the use of intermediate plans. GOAL and 2APL are

based on formal semantics, but do not support “complex” goal types such as maintain-

goals. Jadex, on the other side, implements a variety of BDI flags to customize goal

processing (e.g. Retry, Repeat), but follows a pragmatic implementation approach and

no attempt is made for a generic formalisation with an uniform set of operations. Our

abstract architecture is able not only to handle goal decompositions, but also to define

formal semantics for a big part of Jadex goal types with their BDI flags and conditions.

Starting from [van Riemsdijk et al., 2008], and referring to our approach, with a

similar life-cycle, Thangarajah et al. [Thangarajah et al., 2010] cover an even higher

variety of goal types, but no goal decomposition. The approach moreover promises

to support proactive maintain-goals. Such goals are suspended until their maintain-

condition is“predicted”to become false, and thus need a prediction mechanism, i.e. fol-

lowing [Duff et al., 2006]. However, as mentioned previously, with this premise proac-

tive maintain-goals can also be handled by our approach.

5.8 Final Considerations

In this section we gave a definition for the interplay between goal models–conceived

as graphs of goal AND/OR decompositions– and goal types along with their achieve-

ment conditions. To deliver on this aim, building upon a proposal by Riemsdijk et al.

[van Riemsdijk et al., 2008], we characterized the behaviour of goals in goal models at

run-time, providing their operational semantics.

Goal models allow designers to characterize an agents’ behaviour in terms of (less

and more concrete) goals and their relationships. Representing these models at run-

time and defining how they guide the run-time behaviour, an agent is able to use

the information available in the models as a means for run-time adaptivity and fault

tolerance.

The presented semantics currently cover only a subset of goal model concepts and

111

CHAPTER 5. OPERATIONAL SEMANTICS FOR GOAL MODELS

relationships and do not cope with the behaviour resulting from complex reasoning

mechanisms, as available for goal adoption, optimisation, conflict resolution, learning

or decision making. Also, these semantics are not amenable for formal verification, e.g.

by model checking.

An automatic mapping from Tropos goal models to Jadex agent code, the t2x tool

(Section 4.3.2), adds a new layer of abstraction on the Jadex agent framework, to

support whole goal models at run-time, for an automatic mapping from Tropos goal

models to agent code. It supports the three goal types achieve, perform, and maintain,

and maps them accordingly, to obtain a behaviour as defined in this chapter. An

important future work would be the use of the defined semantics to test if the run-time

behaviour of an agent is compliant with its goal-directed design.

The modelled behaviour does not only adhere to the semantics of goal AND/OR

decomposition, but it is also driven by the intrinsic nature of goal types along with

their achievement conditions; thus, suitable to model run-time adaptivity and failure

tolerance. Concluding, we remark that a systematic analysis and formalisation of the

semantics is essential, in order to be able to understand the interplay between goal

model hierarchies and the detailed goal satisfaction behaviour, and to study how this

could be incorporated in an agent programming language.

112

Chapter 6

Modelling Adaptation by

Self-Organisation

6.1 Introduction

Nowadays, networked systems require decentralized and flexible configurations, which

are able to support mediated services (e.g. flight booking systems) as well as peer-to-

peer business/social relationships. Such software systems need to exhibit an increasing

level of self-adaptivity in order to operate efficiently in a dynamically changing envi-

ronment.

In the previous chapters, agent self-adaptivity has been studied at the level of an

individual agent, which has the ability to perceive the surrounding environment, to

interpret collected information and to reason on it. This enables the single agent to

decide which behaviour to adopt in a context-aware manner.

In this chapter, we try to apply the concepts inherent to Tropos4AS to the engi-

neering of multi-agent systems (MAS), targeting highly distributed systems and agent

societies without centralised control, which have to exhibit properties of self-adaptivity

to satisfy the goals delegated from their stakeholders in a dynamic, unknown environ-

ment. Such systems have to autonomously organize their internal structure to effect

adaptivity to their changing context for achieving their global, high level goals by

cooperation of the single agents.

Tropos4AS is still limited in capturing the dynamics in relationships between agents

in a system, providing dependency links, which are not suitable for capturing the dy-

namics of interaction and interaction change at an instance level. We extend Tro-

pos4AS , which follows a top-down, goal-oriented approach, with concepts from the

113

CHAPTER 6. MODELLING ADAPTATION BY SELF-ORGANISATION

MAS development methodology ADELFE 1, to obtain a process for the definition of

decentralised, self-organising systems.

ADELFE [Bernon et al., 2002] is a methodology tailored to the engineering of self-

adaptive multi-agent societies of cooperative agents, in a bottom-up approach, by the

definition of agent interactions. Self-organisation of the agents in the system leads

to an emergent system self-adaptation. A MAS in ADELFE is defined from various

viewpoints: the system point of view, which describes the system and its surroundings

in terms of entities (perceptible objects); the agent point of view, which represents

agent-internal characteristics; and the cooperation point of view, which represents Non-

Cooperative Situations an agent is likely susceptible to encounter.

Our approach integrates ideas and concepts from ADELFE to the Tropos4AS

methodology, to guide system decomposition to agents to reflect the entities in the do-

main, and to model cooperation between system agents and their reaction to situations

that are non-cooperative. This is done along two lines: 1) extending the Tropos4AS

modelling language meta-model by including concepts from the ADELFE meta-model;

and 2) revisiting the Tropos4AS design process by including ADELFE activities.

The resulting design process couples Tropos4AS top-down analysis of the intentions

of the system’s stakeholders with a bottom-up approach to the design of interactions

definition of the single agent’s interactions. Thus, it allows to model decentralised,

self-organizing multi-agent systems (MAS) starting from a Tropos requirements model,

and to capture agent coordination and reactions to non-cooperative situations, enabling

agents to optimize their choices, then giving rise to emergent adaptation of the global

MAS.

From the viewpoint of ADELFE, the top-down goal decomposition reduces the gap

from the system’s objectives to the agent’s activities, while as a major benefit from the

viewpoint of Tropos4AS , the agent organisation is formed by a bottom-up definition of

collaboration between agent instances. These achievements were possible also thanks

to a collaboration with the IRIT research centre at the University of Toulouse, France.

The process is applied to a conference management system example, giving a first

evidence for its benefits.

1See Section 2.4.3 for a brief introduction on ADELFE, including the concepts relevant for this
chapter.

114

6.1. INTRODUCTION

6.1.1 Comparing the two methodologies

Tropos4AS and ADELFE are founded on very different principles and have a differ-

ent scope. While ADELFE is tailored to decentralised, adaptive complex systems and

follows a bottom-up approach to eventually reach the global goal of the system in an

emergent way through agent cooperation, Tropos/Tropos4AS claims to be a general

methodology, where the system goals elicited by analysing the organisational settings,

through steps of refinement and decomposition lead to program components imple-

mentable in software agents.

Albeit in both methodologies, agents are a metaphor for an autonomous entity with

own goals and abilities, trying to achieve their local goals, the process of obtaining the

single agent’s goals presents conceptual differences. ADELFE agents are identified and

their behaviour specified, analysing the domain entities, their role in the system and

the relationships between them. They create a complex organisation by having at run-

time a high number of instances for each agent type. The global goal of the system,

which the stakeholders want to obtain from the software system, is modelled in use

cases, but this global goal is not coded by the single agents and can only be observed,

emerging from the collective behaviour.

The Tropos4AS development process starts with capturing the objectives of the

stakeholders, in the requirements analysis phases. The MAS architecture is then ob-

tained by analysing the organisational settings with the goals and tasks delegated to the

system, decomposing them and delegating their satisfaction to single actors (roles or

agents), following general engineering rules to achieve low coupling and high correlation

between the tasks to be achieved by a single actor.

To define structure and abilities of the single agents, in ADELFE, a central role

is given to agent interaction and coordination, specifying behaviour rules and associ-

ated activities both for the agent’s nominal behaviour (i.e. the ordinary behaviour

exhibited by the agent in a working situation without problems and failures) and its

cooperative behaviour (Especially focusing on how to react to collaboration prob-

lems). Moreover, the agent’s belief (called representation) of the outside world, and its

sensors and actuators are defined.

Tropos4AS agents are characterised by the goals delegated from stakeholders and

the dependencies to other agents; the nominal behaviour is defined by the goal model,

including plans to perform and resources to provide to achieve goals. The goal runtime

behaviour can be further specified, defining goal types and conditions on to the envi-

ronment perceived by the agent. Exceptional behaviour can be defined by modelling

115

CHAPTER 6. MODELLING ADAPTATION BY SELF-ORGANISATION

possible failures, the errors causing them, and proper recovery activities.

In the following, we try to integrate aspects from ADELFE in Tropos to obtain

a system which is modelled in a goal-directed way, but architected as a collective

organisation of cooperative agents.

6.2 Modelling of Self-Organising MAS

6.2.1 Integration of Tropos4AS and ADELFE concepts

Tropos and its extension Tropos4AS follow a top-down approach from the system to

the single agents and their behaviour, and achieve traceability by decomposition and

delegation of goals through the design phases. Tropos requirements modelling is promi-

nent for it’s ability to capture the organisational settings where the system to develop

will be integrated and the dependencies and responsibilities of the agents in the system

and the actors playing different roles in the organisation. However, Tropos , as well as

Tropos4AS , lack of support for agent organisations, i.e. for modelling the dynamics

of collaboration between software agent instances in a multi-agent organisation where

each modelled agent has various instances, which can also be dynamically added and

removed.

The ADELFE methodology was created specifically for the development of such

agent organisations. However, it adopts a bottom-up approach, to achieve the sys-

tem’s goal in an emergent way; the relationship between global goal and single agent’s

behaviour is not modelled and the global goal can only be observed from action and

interaction of the parts.

Integrating ideas and modelling steps from ADELFE we enrich Tropos4AS for the

modelling of agent organisations. A bottom-up addition of ADELFE cooperation rules

(which fit into the concept of Tropos4AS failure modelling) will give to the run-time

agent instances the knowledge for selection of and cooperation with their peers, and

thus achieve an emergent self-organising behaviour to adapt to a changing environment.

6.2.2 Metamodel extension

We now investigate how to extend the Tropos4AS meta-model with concepts taken

from the ADELFE meta-model, and revise the Tropos4AS design process including

steps that belong to the ADELFE approach. To improve the modelling of the interplay

of an agent with the artifacts and actors inside and outside the software system under

116

6.2. MODELLING OF SELF-ORGANISING MAS

development, we explicitly add the concept of agent’s knowledge about itself and about

its environment (Fig. 3.6).

ADELFE provides modelling of the agent’s knowledge by characteristics (facts the

agent is sure about), representations of the environment as perceived through sensors,

and the agent’s skills (Fig. 2.5). We integrate characteristics and representations (corre-

sponding to the agent’s belief) in the extended model. Information captured by Skills,

Aptitudes, the agents Actions and its nominal behaviour, encoded in Rules, is mainly

covered by the Tropos goal model, a main component of the Tropos4AS metamodel.

Understanding the interplay between the agent and its environment is of major im-

portance to model a system’s self-adaptivity. Adopting Tropos4AS concepts, artifacts

represent the non-intentional entities (ADELFE passive entities) in- and outside the

boundary of the system to develop. They provide an interface to the external world,

to the users and also to other agents, through social artifacts such as a whiteboard or

a communication channel.

The extended metamodel, shown in Fig. 6.1, defines an agent in the system (rep-

resented as a Tropos system actor) with its components: goal model, knowledge (i.e.

the “belief base”), the system and the external environment.

Figure 6.1: Metamodel for adaptive, cooperative agents, which extends the Tropos4AS

meta-model with ADELFE concepts (simplified view of the Tropos4AS goal model).

117

CHAPTER 6. MODELLING ADAPTATION BY SELF-ORGANISATION

Regarding our objective, the central ADELFE concept integrated in the method-

ology, is the elicitation of non-cooperative situations and modelling of the discovered

so-called cooperation rules. Tropos4AS failure modelling is modified and concretised

by allowing to directly specify failure recovery rules for goals in a goal model (class

Failure recovery rule in Fig. 6.1). Cooperation rules are considered as a specialization

of failure recovery rules, with a well defined scope. Failure recovery rules are com-

posed by conditions on the agent’s knowledge (on itself and its environment) and by

recovery activities consisting of goal model fragments — a single Tropos Plan (which

corresponds to an Action in ADELFE) or a more complex activity involving goals and

plans.

6.2.3 Modelling Steps

We enhance the Tropos4AS modelling process for modelling of the newly introduced

concepts. The proposed modelling steps are placed after the Late Requirements (LR)

phase. As result of the LR phase, the requirements are modelled in terms of strategic

dependencies between stakeholders and the software system. The system actor has

its own goals, plans and resources which were derived along these dependencies. This

model is given as input to the following modelling steps:

Step 1 With the LR model in input (an example is shown in Figure 6.3), define the sys-

tem from the ADELFE viewpoint (i.e. activity 12 in the ADELFE methodology):

identify passive and active entities in- and outside the system to develop, and

identify from the active entities the autonomous agents participating in the col-

lective task. Output: an AMAS-ML System-Environment diagram (Figure 6.4).

Step 2 In the architectural design (AD) phase, guide the decomposition of the system

actor identified in the LR diagram into sub-actors (the agents in the system),

according to the agents identified in the AMAS-ML system-environment diagram.

The resulting Tropos4AS model includes agents participating to this global task,

and agents achieving non-collective goals delegated by some stakeholder, or that

have to supervise the collective task. The agents participating in self-organisation

are annotated with a cooperative agent stereotype (Figure 6.5).

Step 3 With the Tropos4AS model resulting from Step 2 in input, detail the high-

level nominal behaviour of the single agents in the system by defining their

goal and plan dependencies and detailing their goal models by goal modelling (see

Section 3.3 and Figure 3.8 in this thesis), until finding the plans to achieve the

118

6.3. APPLICATION TO AN EXAMPLE

goals. The environment perceived by the agent is modelled considering the pas-

sive entities identified in the previous step, and the resources modelled. From the

dependencies and interactions between entities, the perception and action func-

tionalities of the artifacts in the environment can be identified. Beliefs describe

the agent’s perception of these artifacts. This step is no more detailed here, as it

is not central to self-organisation.

Step 4 With the Tropos4AS model of Step 3 in input, which includes the dependencies

between agents, focus on the collective task and define the necessary interactions

(i.e. activity 13 in ADELFE). Give special attention to failures that can arise

from perturbations in the interaction between agents (which are cooperative by

definition). The exceptional behaviour of each agent is now detailed by iden-

tifying non-cooperative situations that can arise. It is captured by conditions on

the agent’s knowledge together with the recovery activities to execute (an exam-

ple in Table 6.1). These rules guide the single agent’s self-organising behaviour,

with activities that can be categorised in three groups: change of the own be-

haviour (tuning), change of partnership (reorganisation), and creation/deletion

of agents (evolution).

An overview on the four newly introduced modelling steps is given in Figure 6.2.

Next, following the Tropos4AS process, the goal model built in step 3 can be detailed,

adding conditions, goal types and relationships, to define a more detailed nominal

behaviour, and modelling possible failures not ascribed to collaboration. Modelling

can continue with Tropos Detailed Design (DD), detailing plans (the capability level

and low-level interactions by UML diagrams [Penserini et al., 2007b]. Following the

mapping described in Chapter 4, the goal models can be mapped to Jadex agent code,

artifacts to Java classes, and failure conditions (including cooperation rules) to goal

conditions.

6.3 Application to an Example

The design process is shown on a conference management system (CMS) exam-

ple, described in [DeLoach, 2002], a case study used several times for agent sys-

tems developed with different agent-oriented software engineering methodologies

[DeLoach et al., 2009, Morandini et al., 2008a].

A conference management system involves several stakeholders and has to satisfy

users playing various roles, such as authors, reviewers, program committee members

119

CHAPTER 6. MODELLING ADAPTATION BY SELF-ORGANISATION

Figure 6.2: Overview on the newly introduced modelling steps.

and the publisher. In the submission phase, authors need to be supported, and sub-

sequently, R4P suitable reviewers have to be found for each paper, distributing the

workload evenly. For this, each paper is described by KP keywords providing its main

expertise area. Each reviewer describes its expertise fields with KR keywords and

should review at most P4R papers.

Reviews have to be collected and evaluated to decide about acceptance or rejection

of each submission, and finally the authors have to be notified, and the corrected

camera ready papers collected and formatted. The prepared proceedings have then

to be handed out to the publisher for printing. Figure 6.3 shows the corresponding

Tropos LR diagram. The aim is to obtain a MAS composed by agents associated to

each physical entity or role that has the need of autonomous decision and interaction,

e.g. one for each paper, reviewer, etc. These agents are not “personal agents” acting

selfish for the benefit of their relative stakeholder, but agents belonging to the system

that are trusted and cooperative.

Interesting phases from the point of view of self-organisation between agents (which

will then result to a system-mediated collaboration between physical actors or entities)

are the assignment of papers to reviewers, the collection of reviews and the decision of

120

6.3. APPLICATION TO AN EXAMPLE

Figure 6.3: Tropos Late Requirements (LR) analysis: Definition of the system’s ob-

jectives. Notice that dependencies between actors entail a flow of information in the

opposite direction.

paper acceptance. We focus on the scenarios involving the reviewers. The reviewing

process can be exposed to various kinds of perturbations. For example, unavailable

reviewers, an unbalanced amount of papers in a particular area with a small number of

competent reviewers, or withdrawn for any reason. Despite these eventualities could,

in this small example, also be handled deterministically, they give a good example to

show how a robust system should self-adapting, to meet its objectives. We now show

the modelling process, going through the steps defined in Section 6.2.3.

6.3.1 Architecture

Following Step 1, we analyse the diagram in output of the Tropos LR phase (Figure 6.3).

6 active and 2 passive entities are identified (Figure 6.4). The active entities participat-

ing in the system’s collective task are the paper and reviewer agents, representing

the single submitted papers and the reviewers. We assign to the PC chair agent –

identified as an agent in Tropos , and as an active entity (which is not participating to

the collective task) in the ADELFE diagram – the charge to observe the society and

to decide when a stable and optimal state is reached, in which all papers are assigned

to reviewers. It will also have to advise reviewer agents to relax some constraints (e.g.,

allocation of more than P4R papers per reviewer).

Guided by the decomposition to agents and active entities identified in Figure 6.4,

in Step 2 we decompose the CMS system in (Figure 6.3) into four sub-actors: paper

agent and reviewer agent, which take part in the collective task of paper-review

121

CHAPTER 6. MODELLING ADAPTATION BY SELF-ORGANISATION

Figure 6.4: Adelfe system-environment diagram showing the participating entities and

the cooperative agents, inside the system boundary, related to the review assignment

scenario.

assignment, will be associated to the single physical papers and reviewers. The program

chair agent and the proceedings agent get their goals delegated from the physical

actors playing the respective role in the organisation where the system is deployed and

have thus also to be part of the software system (Figure 6.5).

Figure 6.5: Tropos diagram of the multi-agent architecture.

122

6.3. APPLICATION TO AN EXAMPLE

6.3.2 Detailed design

In Step 3, the goals delegated from the stakeholders to the system are refined in the

goal models of each sub-actor. Goals are decomposed until they can be operationalised

by plans. Also, new dependencies between the different sub-actors arise (Figure 6.6).

Figure 6.6: Details form the goal models of the sub-actors Paper and Reviewer.

Tropos4AS provides the means for capturing the nominal goal achievement be-

haviour, defining when a goal will be activated, achieved, or dropped, capturing its

representation of the environment and linking its execution to environmental changes.

For example, the goal get approp review is created after R4P reviewers were assigned

to a paper; achieved when R4P reviews are collected; and failed if a review is missing

at the deadline.

Agent interaction In Step 4, with the Tropos4AS model in output of step 3, we

focus on the interactions (goal, task and resource dependencies) of the agents partici-

pating in the collective task, whose details will now be further modelled following the

ADELFE process. In order to give a detailed view, we limit to the scenario of pa-

per assignment to reviewers. Without a centralised distribution of papers to reviewers,

the relative agents have to find a relevant allocation between papers and reviewers by

self-organising to achieve an optimal distribution of papers and a timely collection of

appropriate reviews, being robust for possible perturbations.

In order for papers to ’meet’ reviewers, we design the system environment as a

big room (a grid) where reviewers can stand on at most one square. Paper agents

123

CHAPTER 6. MODELLING ADAPTATION BY SELF-ORGANISATION

can move on it to find matching reviewers. This approach was already experimented

with satisfactory results for a dynamic time-tabling elaboration [Picard et al., 2005].

Furthermore, we define the notion of criticality of a paper agent, a criteria to know

which paper has the greatest number of constraints. It describes its difficulty to find

a reviewer; it corresponds to the number of reviewers who have been met but are not

relevant.

Name State Description Conditions Recov. Activi-

ties

PaperNCS2 Exploration Two reviewers are per-
ceived

One of them
already busy

Move towards the re-
viewer that is free

PaperNCS3 Reviewer
conflict

A paper contacted a re-
viewer that is already as-
sociated to P4R papers

Reviewer is
full

Ask the less critical
paper to search for
another reviewer

PaperNCS4 Highly
critical

Paper agent is very crit-
ical and adequacy with
reviewer 6= 0 (and < KP)

High critical-
ity and 0<

adequacy<KP

Association with re-
viewer is concluded

RevNCS1 No match-
ing

No matching keywords
with an arriving paper
obtained

No matching
keywords

Reviewer gives links
to relevant neighbour
agents

RevNCS2 Search
promotion

Reviewer agent promotes
mutual search by ask-
ing paper agent which re-
viewers were already met

No matching
keywords

Remember reviewers
met by paper agent

Table 6.1: Description of main NCS for Paper-agents and Reviewer-agents, activating

conditions and recovery activities, which define the cooperation rules.

Nominal behaviour: Reviewer agents are placed on the grid and don’t move. Paper

agents are initially placed randomly on the grid and move in order to find reviewers.

Each paper agent remembers the last N reviewer agents that it met, where it met them

and what are the keywords associated to each of them.

Cooperative behaviour: The interactions between paper agents and reviewer

agents originate from a goal dependency get approp review and from a resource de-

pendency for the review. The behaviour for the cooperation between instances of these

agents is defined by the agent’s reaction to situations that are recognised to be “non-

cooperative”.

We identify and describe possible non-cooperative situations, characterised by con-

124

6.4. RELATED WORK

ditions on the agent’s knowledge and the recovery activities to perform (Table 6.1). In

this way, the collaboration rules are defined, containing the activating conditions and

associated recovery activities. Take the example of the paper agent: If a paper finds

a reviewer that fits to its keywords but is already associated to P4R papers, the less

critical of them is asked to find a new reviewer (reviewer conflict). So, if a paper agent

is very critical and adequacy (keywords matching) is not null, the association with

the reviewer must be established. At the reviewers side, when a paper agent arrives,

adequacy is computed. If matching is not obtained, the reviewer gives hints for other

reviewers in its neighbourhood which could have enough matching keywords.

To decide when to conclude self-organisation (at a point that a suitable configuration

is achieved), the PC chair agent (which is a single instance) observes the papers, which

expose their criticality and their state, ranging from satisfied to unsatisfied.

Validation The resulting design and architecture can be compared with a design of

the same CMS example following the methodologies Tropos , Prometheus and O-MaSE,

published in [DeLoach et al., 2009]. Despite it is divided into different agents, the

Tropos architecture achieved by a top-down decomposition of the system to sub-systems

is centralised and not, as defined in the original requirements, a MAS of collaborating

agents. For the same example, also the Prometheus methodology provides a similar

solution, while O-MaSE gives a MAS architecture similar to ours, with personal agents

to support the stakeholders, but a centralised review assignment and paper selection.

6.4 Related Work

Currently, the works on methodologies focusing on self-organisation in multi-agent

systems tends to increase. Tom de Wolf and Tom Holvoet [Wolf and Holvoet, 2005]

proposed a full lifecycle methodology customising the Unified Process. At the require-

ment analysis phase, a step for the identification of high-level properties which must

be shown by the running system, is added to the classical steps. The design phase

is customised with two steps: one for deciding whether or not it is relevant to use a

self-organising system and the other for exploiting existing practices and experiments.

At the verification and testing phase, an empirical approach based on iterative devel-

opment feedback is proposed. The interesting and original part of this method is that

it focuses on system validation.

In [Penserini et al., 2010] the authors present a case study of a decentralised multi-

agent system for ambient intelligent scenarios, motivating the need of novel organiza-

125

CHAPTER 6. MODELLING ADAPTATION BY SELF-ORGANISATION

tional structures of agents that result more flexible than traditional ones, e.g. broker

and matchmaker, in order to deal with context changes. The architectural design

phase has been conducted by the Tropos modelling language in order to include the so-

cial surroundings needed to better characterize MAS architectural requirements. The

resulting structure, Implicit Organisation, includes self-organising properties for the

reassignment of the mediator role, i.e., the architectural requirement of disinterme-

diation. Nevertheless, [Penserini et al., 2010] does not detail the agent coordination

level.

Dalpiaz [Dalpiaz et al., 2010] defines interaction in a heterogeneous MAS by com-

mitments between agents. As a possible adaptation tactic, actions are defined, which

take place in case a commitment between agents is threatened. However, this adapta-

tion is seen for the sake of the agent itself, and the effect to the MAS organisation and

its emergent behaviour is not considered.

Gerhenson [Gershenson, 2005] proposes a domain-independent methodology for de-

signing and controlling self-organizing systems. This iterative and incremental method-

ology includes several interrelated steps: Representation, Modelling, Simulation, Ap-

plication and Evaluation. The main point of this method is that a distributed control is

specified in order to influence the system (by reducing friction and promoting synergy)

to ensure that it will produce the desired behaviour. This mainly philosophical work

aims more at understanding these complex systems than at designing them.

Gardelli [Gardelli et al., 2008] presents an approach to engineer self-organising MAS

from the early design phases. The architectural pattern adopted is based on the Agents

and Artefacts metamodel [Omicini et al., 2006]. Designing a self-organising MAS con-

sists in embedding the self-organisation mechanisms in environmental agents and prop-

erly designing their interactions with the artefacts of the environment. The design ap-

proach comprises three-steps. Modelling first provides an abstract model of the system

in which user agents, artefacts and environmental agents are characterised. The sec-

ond step uses stochastic simulation to study the system dynamics through statistical

analysis of results, considering that proper parameters are provided for artefacts and

agents. The last step consists in tuning them until the desired dynamics appear. This

proposal is mainly a guide for early-design of systems based on self-organising patterns

that already exist, such as natural ones.

126

6.5. FINAL CONSIDERATIONS

6.5 Final Considerations

To promote the development of decentralized, collaborative MAS, in this chapter we

propose to enhance Tropos4AS with concepts and modelling steps from ADELFE

methodology. The proposed approach couples the viewpoint of a bottom-up approach

to an emergent system objective with a top down analysis of the intentions of the

system’s stakeholders (the goal model).

The synergy of both software engineering methodologies allows to characterise a

decentralised MAS by the definition of intra-agent coordination properties. The de-

signer is now guided along a goal-oriented modelling process enhanced with specific

design steps devoted to the specification of agent coordination through the modelling

of recovery from non-cooperative situations. The resulting agents are able to rearrange

their collaborations, leading the MAS to optimise the achievement of its current or-

ganisational goal, bringing forth an emergent behaviour. Furthermore, the conceptual

modelling gains from the detailed guidelines available in ADELFE to identify system

entities and agents and to define inter-agent cooperation.

If the system to develop is adequate for an AMAS approach (this can be verified,

following the first steps of ADELFE), the proposed combined approach promotes the

development of decentralised, distributed MAS for problem solving, and gives the pos-

sibility to deal with self-organisation of the collaboration links between agent instances,

at a class (agent or role) level, which is not representable immediately in Tropos . The

application of this approach combining the two modelling paradigms and metamodels

is therefore restricted to a particular set of systems.

By Tropos4AS goal modelling, traceability of requirements through the design

phases until the definition of the agent’s behaviour is maintained, reducing the concep-

tual gap by maintaining the concept of goal until detailed design and – if a BDI platform

is used for the implementation – even until run-time. This traceability is important

especially if requirements change during system development and maintenance.

However, the link between the bottom-up approach and the objectives of the

system is still not straight-forward. The emergent behaviour coming from the

bottom-up approach to self-organisation, performed by modelling the single reactions

to non-cooperative situations, can be only validated empirically, by observation or

testing. A suitable approach for testing such MAS is proposed by Nguyen et al

[Nguyen et al., 2009]. It derives testing goals from Tropos goals (e.g. for a goal review

by 3 reviewers, a testing goal not less than 3 reviewers) and generates test in-

puts for the agents under test, by an automated, evolutionary technique. Still, we are

127

CHAPTER 6. MODELLING ADAPTATION BY SELF-ORGANISATION

convinced that by combination with top-down Tropos4AS goal analysis and decom-

position, we are able to shrink the gap between global system goals and cooperation

rules.

Future work concerns carrying on the implementation of systems developed with the

present approach, their observation and testing, to gain experience on how to bridge the

still existing gap between low-level goals and the behaviour emerging from cooperation.

128

Chapter 7

Evaluation Through Examples

In this chapter we present case studies, in which the Tropos4AS framework was ap-

plied to the development of small, illustrative systems. These resulting examples show

the applicability of the framework and were used for the improvement and consoli-

dation of the modelling language, the process and the tool support. Moreover, these

examples anticipate an iterative approach, where feedback from run-time is used for

an improvement of the models.

In Section 7.1, the whole Tropos4AS modelling process is applied to a simple cleaner

robot system. A special focus is given to the novel extensions introduced with Tro-

pos4AS and the forms of self-adaptivity resulting from a direct, automated mapping

of the Tropos4AS models to an agent-oriented prototype implementation.

Section 7.2 presents a case study for a second, different cleaner robot, with the

main focus on the implementation of the software running in a virtual environment, the

testing and evaluation of the exhibited behaviour. In several (documented) iterations,

the behaviour of the software and its self-adaptivity, are improved, considering feedback

from the testing activities to improve requirements, design and implementation.

In Section 7.3 we give a first sketch for an evaluation of the behaviour of generated

early prototypes, using the feedback for a refinement of the requirements. A simplified

travel planner [Morandini et al., 2008e] and a on-line computer recommender system

(with feedback from real users) [Tomasi, 2009] are used for a feasibility study.

Moreover, in Chapter 8, we report on a detailed empirical evaluation of the Tro-

pos4AS modelling language in comparison to standard Tropos modelling. This evalua-

tion consists of two experiments carried out with various subjects, to collect statistical

evidence on the effectiveness (modelling effort, model correctness, model comprehensi-

bility) of Tropos4AS models.

129

CHAPTER 7. EVALUATION THROUGH EXAMPLES

7.1 Process application to an Example

In this section, we apply the Tropos4AS framework for the development of a simple

cleaner agent system, to illustrate the process, the models and the obtained run-time

behaviour of a generated prototype.

7.1.1 Description of the system

As example to apply the Tropos4AS modelling process, we refer to a cleaner agent,

an example for a self-adaptive system, which is used in several variations in artificial

intelligence and multi-agent systems fields. This robot should be able to autonomously

clean the floor where it is situated, by recognizing the different types of dirt and remov-

ing them with proper tools. To clean optimally, the robot shall autonomously choose

its mechanical configuration, including cleaning tools, and the appropriate behaviour,

ensuring proper cleaning for various environments (outdoor, indoor, etc.).

The CleanerSystem represents the control software for this autonomous robot, which

could ideally be employed in a company building. Its main goal is to clean the com-

pany’s office building, which includes offices, lavatories, as well as the outside areas.

The robot can move in all directions and is equipped with two different sensors, with

a mop, a broom, a leaf blower and a dust box. One of the robot’s sensors is able to

reveal the floor type, which can be either outside (grass, tarmac, gravel) or inside a

building (linoleum, tiles). The second sensor reveals type and amount of dirt (dust, liq-

uid, gravel, leaves or mud). To adapt to the different working environments, the robot

will be able to choose among various settings of its equipment. The area to clean is

plane and it is provided with automatic sliding doors, dustbins and at least one battery

charging station. The cleaner has to properly clean every surface it encounters, while

avoiding failure, caused e.g. by a complete discharge of its battery.

Cleaning should be carried out autonomously, including battery loading and emp-

tying of the robot’s internal dust box. The CleanerSystem should optimise the cleaning

behaviour depending on the current location and the type of dirt the robot has to clean.

In particular, the adjective “clean” in the requirements does not denote a particular,

well defined state – cleaning has to be carried out appropriately. For example, in the

outside areas, the cleaner should be configured for cleaning from coarse dirt and gravel,

ignoring remaining fine dust or liquid. Conversely, in the lavatory, the robot will pos-

sibly encounter dust and liquid, and it has to configure itself (reduce trim height, slow

down movement, etc.) to be able to accurately clean this type of dirt, cleaning not only

the dirty spots, but sanitising the whole area. Moreover, it should be able to clean in

130

7.1. PROCESS APPLICATION TO AN EXAMPLE

a satisfactory way unexpected dirt types in unexpected locations, such as coarse gravel

in the office (e.g. suppose that bricklayers carried out some small work), by adapting

its configuration accordingly.

The CleanerSystem shall be implemented as a (simple) self-adaptive system, having

alternative ways to reach its goals, being able to adapt its behaviour to the dynamic

environment autonomously switching between them with a limited switching overhead,

and be able to avoid basic cleaning failures.

7.1.2 Tropos modelling

We start modelling the CleanerSystem performing requirements analysis and architec-

tural design, following the Tropos methodology. After the Tropos Early Require-

ments Analysis, where the system is modelled as-it-is (i.e. before introducing the

cleaning robot), in the Late Requirements Analysis (LR) phase we obtain an ac-

tor diagram showing the expectations from the newly introduced system, modelled by

delegation of goals and softgoals from the stakeholders (here, Director and Employee)

to the system actor, as illustrated in Figure 7.1. The only hard goal delegated to the

simple cleaner system is CleanEnvironment. In the system’s goal model it is decom-

posed to two more concrete goals: MaintainPlaceClean and MaintainBatteryLoaded. For

the sake of conciseness, we skip details about battery charging and dust box emptying

activities.

In the Architectural Design (AD) phase, still following Tropos as described

in [Penserini et al., 2007b], with actor modelling and capability modelling, the system’s

goals are delegated to the actors and roles that will take part of the MAS realising the

system’s goals. To put the focus on the modelling of a single agent, the small example

has a single main system actor, the CleanerSystem. Therefore, these AD actor depen-

dencies, displayed in Figure 7.1, are similar to the ones in output of the LR phase.

We have an agent CleanerSystem, which has to achieve the main goals delegated to

the system in the LR phase. The only actor added is a Movement role, to which all

subgoals related to robot movement were delegated. The Movement actor will not be

detailed in the following.

The goals of the CleanerSystem are now analysed and decomposed with high vari-

ability modelling in mind. To detail the goal MaintainPlaceClean, the designer defines

three main alternative subgoals, represented by the goals OutsideClean, OfficesClean,

and LavatoryClean. These goals are further detailed until delegating parts to the Move-

ment role or operationalising them with plans (some of them shown in Figure 7.1).

131

CHAPTER 7. EVALUATION THROUGH EXAMPLES

Figure 7.1: Architectural Design goal model for the CleanerSystem, obtained following

the Tropos methodology.

As a quality criterion e.g. the softgoal clean accurate is modelled. It obtains pos-

itive contributions from OfficeClean (+) and LavatoryClean (++), while OutsideClean

contributes negatively (–).

Therefore, softgoal contributions may be used as criteria for an optimization of

the selection of alternatives, either at design time (following ’traditional’ Tropos), or

at run-time (the main idea behind Tropos4AS). Plans defining the low-level activities

may be further detailed only later in the Tropos Detailed Design phase, which is out

of the scope of this work.

The Tropos model in Figure 7.1 defines the knowledge level of the CleanerSystem

agent. It shows the requirements the system has to achieve, including various alterna-

tives to reach the root goal MaintainPlaceClean, but it is still missing important details

that are of high importance to obtain a system that is self-adaptive: the relationship

between the agent’s goals and the environment. We bring such relationship to the

knowledge level, modelling “why” an agent has to play some behaviour. As an ex-

ample, the agent has the goal MaintainBatteryLoaded, to load the battery when it is

charged less than 20%. However, the related dependency is not explicit, until linking

the goal to the battery artifact. With the Tropos LR and AD models in input, now

the Tropos4AS process is applied as described in Section 3.3.

132

7.1. PROCESS APPLICATION TO AN EXAMPLE

7.1.3 Extended goal modelling

The Tropos model captures the goals of an agent and it’s dependencies to others, but

lacks a specification of the details of goal achievement, For the selection of alternatives,

which will no more be done solely by the engineer at design time, but also autonomously

by the agent at run-time, evaluation criteria are particularly important.

For example, the CleanerSystem modelled in Figure 7.1 has three alternatives to

achieve the goal MaintainPlaceClean. However, in standard Tropos the engineer has no

possibility to express details on what circumstances are crucial for selecting between

these alternatives. By which criteria are alternatives selected (e.g. by floor type, by

dirt type, or even battery level), and when will they be achieved? We give to the

CleanerSystem a representation of its perceivable environment, then we explicitly relate

the goals to it.

Environment modelling First, we model the agent’s environment (step E1). The

resources in Figure 7.1 are modelled as artifacts in the system. Moreover, the designer

adds an engine in charge for the robot’s movement (the MovementRole), and the sensors

necessary for sensing floor and dirt type (dust, gravel,. . .). As external entities involved

in the system, the area to clean, the dirt, floor and obstacles are identified to be

necessary for the robot to work. The CleanerSystem will only have a partial vision of

the real environment, covering the data sensed so far. Thus, for example, there will be

an artifact representing the area already visited. The obtained environment diagram

is shown in Figure 7.2.

Figure 7.2: Environment model for the CleanerSystem.

Conditions modelling In step E2, the designer tries to link the achievement of

goals in the system-to-be to perceptions from the environment. The modelled root

goal CleanEnvironment describes a high-level goal, which is difficult to define, which is

133

CHAPTER 7. EVALUATION THROUGH EXAMPLES

also a reason for having decomposed it, making the requirements more concrete. Thus,

we decided to start condition modelling only on its subgoals.

For the goal MaintainBatteryLoaded, we defined two conditions on the battery state

(also see Figure 4.12): its charge should be maintained above 10% and when loading,

the battery should be loaded above 99% (target condition).

Special interest has been given to the three alternatives defined for the goal Main-

tainPlaceClean: adaptability to these configurations is restricted by setting context-

conditions, such as ‘linoleum|tiles’ for the floor type sensed and ‘fine|dust’ for the dirt

sensed, both associated to the goal OfficesClean. Moreover, such goals need an achieve-

ment condition, to determine precisely if one of the alternatives was achieved or if it

would be necessary to try to achieve another one of them. For OfficesClean, we want

that the whole room was visited and all the dirt removed, setting the achievement

condition ‘actualArea.scanned & actualArea.sensedDirt=empty’. Similar context and

achievement conditions are set for lavatoryClean and OutsideClean.

Figure 7.3: Table defining part of the goal conditions for the CleanerSystem.

In addition, pre-conditions have been set to restrict plans applicability. For the use

of the plan mop the pre-condition has been specified that sensed dirt can only be of

two types: liquid or dust. On the contrary, sweeping should only be performed when

the floor type is not ‘grass’ and the dirt sensor senses no ‘liquid’ or ‘mud’. The table

in Figure 7.3 summarizes some of the conditions set for the CleanerSystem agent.

134

7.1. PROCESS APPLICATION TO AN EXAMPLE

Detailed goal modelling In Step E3 the designer defines the type of each of the

goals to implement. We decide not to detail the goal CleanEnvironment, which, as

already said, describes an abstract concept, concretized by decomposition in the re-

quirements modelling phase. We start with detailing its subgoals MaintainPlaceClean

and MaintainBatteryLoaded, which are straightforward defined as maintain goals. When

battery loading is necessary, this goal must have precedence on cleaning. Thus, an ad-

ditional «inhibits» relationship between the two goals is defined. Since the subgoals

of MaintainPlaceClean will try to achieve some state in a particular environment, they

are defined to be achieve-goals. The subgoals of them are either achieve or perform-

goals, depending on if they have to reach some state, e.g. CleanOutsideAdequately, or

to perform some action, e.g. FindFineDust, which should not fail if no dust is found.

All types are defined in Figure 7.4.

The process is iterated, reworking the conditions defined in step E2, and detailing

them to comply to the goal types defined. For example, a drop-condition “dirt sensor

senses gravel or mud” is defined for OfficesClean. As defined in the metamodel in

Figure 3.3, for achieve-goals we have to define failure or achievement conditions to

drop a goal from the goal base. Thus, we change this condition’s type to a failure

condition.

7.1.4 Failure modelling

The nominal behaviour of the CleanerSystem has been modelled in the previous steps

and would enable the agent to perform it’s work in the predefined environment. With

this step, we try to identify possible failures of the system (F1), to elicit missing

requirements that often originate from environmental conditions that were not foreseen.

In this way, we complete the model of the system, giving it the capabilities to reach

it’s goals also in some unexpected situations.

For the purpose of the example, we look at a possible failure of the high-level goal

MaintainPlaceClean, which we name unable to clean. In step F2, we identify possible

errors, such as mud detected (an error which can easily be predicted and prevented,

adding new capabilities to the agent), cleaning tool broken (a non predictable, but

recoverable error), and sudden power failure (which cannot be predicted nor recovered

from, unless the error is prevented by additional hardware, e.g. an emergency battery

circuit).

As next step (F3), recovery activities are defined: if mud is detected, the agent could

cope with this error e.g. by notifying the user and return to another place to work or

135

CHAPTER 7. EVALUATION THROUGH EXAMPLES

by using new capabilities, combining cleaning tools for a new cleaning strategy. This

is modelled by the plan cleanMudWithMop, which combines two new plans mop slowly

and rinse out frequently to recover from the error, using available cleaning tools. In step

F4 we have to decide if to integrate the recovery activities identified for an error into

the nominal behaviour of the agent, that is, its core goal model, or, if we leave them

as exceptional behaviour, in the failure model. The plan cleanMudWithMop might be

added in the core goal model as a means to achieve the goal CleanOutsideAdequately,

with a precondition that corresponds to the detection of the error, “dirtSensor.sense()

= mud”. However, we suppose that the error will be a rare event and leave it as

an exceptional behaviour, whose creation condition corresponds to the detection of the

error. In other words, the designer increases the agent’s effectiveness, putting apart this

exceptional behaviour from the core part of the goal model, to get a clear separation

of concerns. The resulting failure model can be seen in Figure 7.4.

Figure 7.4: The CleanerSystem, built following the Tropos4AS process with its mod-

elling extensions (some environmental artifacts are not explicitly represented for clarity

reasons), with a failure model for avoiding cleaning failure.

136

7.1. PROCESS APPLICATION TO AN EXAMPLE

7.1.5 Implementation and behaviour of the prototype

The models of the CleanerSystem obtained from the previous step are now mapped to

BDI agent code, as defined in Chapter 4. The tool-supported code generation results in

a Jadex Agent Definition File with ca. 850 lines of XML code, containing 16 goals, 30

plans (including auxiliary goals and plans), meta-reasoning structures for alternatives

selection, the representation of the goal model in the belief base, and a definition of

accepted messages (e.g. for communication with the agent in charge for managing the

movement).

Since we are interested to the adaptive behaviour of the obtained prototype at a

knowledge level, the code was modified and completed only in few parts, and imple-

menting only the parts for the capabilities (i.e. the Java code for the plans) which

are necessary for making the prototype work correctly at the knowledge level. The

environment, sensor inputs and failures were directly implemented for the purpose of

running various scenarios.

We show the behaviour of the CleanerSystem on a simple scenario of adaptation:

The robot is achieving the goal OfficeClean, because the sensors report a typical floor

profile. Suddenly, the agent senses some gravel (e.g. imagining that bricklayers carried

out some small work). In this situation, we expect that the robot switches to the

configuration OutsideClean until the room is clean from gravel, and then comes back to

the achievement of OfficeClean for a more accurate cleaning.

Due to the modelled context-conditions, the subgoal OfficeClean is no more suitable

when coarse gravel is sensed. Therefore, the system adapts by tracking back to the par-

ent goal MaintainPlaceClean, and switches to the only remaining applicable goal Outside-

Clean and tries to clean the floor from the gravel. Once the gravel is removed, Outside-

Clean succeeded. Notice that, in the traditional Tropos OR-decomposition, achievement

of OutsideClean would lead to the achievement of the top level goal MaintainPlaceClean.

On the contrary, in Tropos4AS , MaintainPlaceClean has its own maintain-condition

(area.clean=true), which is not yet satisfied. Since the gravel was removed, the sub-

goal OfficeClean is again applicable and can now be reactivated to clean the location

properly from the remaining fine dust.

Selection between alternative capabilities – i.e., for the subgoal CleanOf-

fice adequately, the plans mop and sweep fine – is made by optimizing softgoal con-

tribution [Penserini et al., 2007a], since both plan pre-conditions are true. In our case,

the plan sweep fine is executed and the goals are achieved.

137

CHAPTER 7. EVALUATION THROUGH EXAMPLES

7.1.6 Final Considerations

In this section we applied the Tropos4AS process and models to the development

of a small system, to capture various forms of variability and to show the resulting

requirements-level adaptivity to changes in the environment. The main parts of the

prototype, which characterise its knowledge level behaviour, were generated by auto-

mated mapping tools, and its execution shows the expected goal-directed behaviour,

reasoning on the goal model at run-time. The selection of alternatives is carried out

observing context conditions and softgoal contributions, while the goal satisfaction be-

haviour for goals in the goal model depends on the achievement (or failure) of their

subgoals, as well as on their own achievement or maintenance conditions.

138

7.2. DEVELOPMENT AND EVOLUTION OF A PROTOTYPE

7.2 Development and Evolution of a Prototype

In this section we describe a case study with a second cleaner robot, which however

differs from the one in the example in Section 7.1 form the requirements analysis phase

on. We detail the modelling, mapping and implementation of the system, as well as

various documented process iterations which take into account the feedback from an

automated testing of implemented prototypes at run-time, for an improvement of the

system and its adaptivity properties.

Carrying out this case study, after the requirements analysis and an accurate defini-

tion of the goal satisfaction dynamics (with goal types and conditions) with Tropos4AS ,

following the steps defined in Section 3.3, the main effort is put on the implementation

and testing for giving feedback for further process iterations. The software is imple-

mented as a BDI agent on the Jadex platform. The knowledge level definition of the

agent (its goals, available plans, beliefs, etc.) in a Jadex Agent Definition File and the

main skeleton of the Java code, were generated by the t2x tool. Capability modelling

(as e.g. in [Penserini et al., 2006c]) was not performed, thus the single functionali-

ties (represented by plans) have to be implemented manually. The software agent is

deployed in a virtual environment. It is then tested for carrying out the desired be-

haviour, applying the goal-oriented testing method described in [Nguyen et al., 2010].

Feedback from this testing is given back to the design and implementation, to improve

the robot’s behaviour.

We show various iterations of the development process, in which bugs are corrected,

the goal model is modified and functionalities added, to achieve the desired adaptive

behaviour. Adaptivity features were explicitly considered for the application. However,

using the t2x tool, paying attention to the correspondence between models and imple-

mentation, and with the aim of using as much as possible the features provided by the

t2x implementation and the Jadex platform, only basic adaptivity features have been

implemented. Further details on this case study and on the iterative modelling process

can be found in the technical report [Qureshi et al., 2010b].

7.2.1 The case study: iCleaner

We have the aim to develop a cleaning robot, called iCleaner, which has to work

autonomously to properly clean the environments (e.g. a room) assigned to it. To

achieve this goal, the agent has to adapt its cleaning strategies to each environment, to

maintain its battery level, to be efficient and robust. The cleaning agent needs to be

adaptive to deal with the open environments where attributes of objects may change

139

CHAPTER 7. EVALUATION THROUGH EXAMPLES

(e.g. locations of obstacles), or unknown objects may appear. Finally, it should to

perform the following tasks autonomously:

1. Explore the area for important objects (waste and obstacles).

2. Collect waste and bring it to the closest bin which is not full.

3. Maintain the battery charged, by sufficient re-charging.

4. Avoid obstacles, by changing course when necessary.

The cleaning robot needs basic adaptivity features to deal with the dynamic en-

vironments where attributes of objects may change (e.g. locations of obstacles), or

unknown objects may appear. Adaptivity allows the agent keep or improve its perfor-

mance as well as its robustness. The performance of the agent can be calculated based

on its efficiency (the waste collected in a time slot) and its power consumption, while

the robustness of the iCleaner can be estimated e.g. by the number of crashes during

a unit of operation time. Since the environment is open and dynamic, it influences the

performance and robustness of the agent.

Figure 7.5: Actor diagram showing a stakeholder (User) delegating goals and softgoals

to the newly introduced iCleaner system.

7.2.2 Applying Tropos4AS

Applying the Tropos4AS process, in the requirements analysis phases, the requirements

of the stakeholder (in our case, the user of the cleaner robot) are elicited (Figure 7.5)

and the goal model of the system is built, starting from the goals delegated to it,

decomposing and analysing them and operationalising them with plans.

140

7.2. DEVELOPMENT AND EVOLUTION OF A PROTOTYPE

This goal model builds the basis to be exploited and extended in the subsequent

iterations of the modelling process, iterating first between requirement-time and design-

time and, once code is available, also through run-time and testing. The goal model

corresponding to version 1 of the iCleaner, depicted in Figure 7.6, is used for the

following illustration.

Figure 7.6: Goal model for the iCleaner agent, first version (V1).

In the architectural design phase, due to the simple system, no decomposition to

sub-actors is performed. Now, the Tropos4AS process extensions, as defined in Chap-

ter 3, are applied. In this example, we limit to extended goal modelling, which is

tool-supported, and do not consider failure modelling (considering that failure mod-

els are finally also mapped to goal and plan constructs, enabled by conditions). The

goal model is detailed adding an environment model, goal types, various conditions for

defining goal satisfaction (e.g., achievement, maintenance) and conditions for acquiring

and for dropping goals in relation to the environment.

The artificial simulation environment for the iCleaner was adopted from the testing

environment used in [Nguyen et al., 2010], which extends an existing Jadex example.

A domain ontology is provided which defines the interface between an agent and the

environment. It defines concepts (objects) and actions available for an agent to act and

percept in this environment, and is also used for the ontology-based test generation.

141

CHAPTER 7. EVALUATION THROUGH EXAMPLES

The environment model (Figure 7.7) provides the agent the perception about the

domain, based on the entities specified in the domain ontology. It thus represents an

instance of this ontology for all external perceptions of the system. Artifacts internal

to the system, such as the battery and the water bucket were already represented as

resources in the goal models at the late requirements analysis phase.

Figure 7.7: Environment model for the iCleaner.

Figure 7.8: Goals with types and modelled conditions (right side, related entities are

not displayed in this view) and the entities (artefacts) in the environment (left side).

Conditions on the environmental artifacts are first captured informally and then

defined with the syntax of Java expressions, ready for the automated code generation.

As an example, the goal TrashWaste (a sub-goal of DoCleaning in Figure 7.6) shall be

142

7.2. DEVELOPMENT AND EVOLUTION OF A PROTOTYPE

adopted when the internal dirt box or the water bucket are full, and it will be achieved if

the full one is empty again. In the following we report some of the modelled conditions.

Goal EnsureCleaning: failureCondition on Battery:Battery chargingStatus < 0.01
Goal MaintainBattery loaded: maintainCondition on Battery:Battery chargingStatus > 0.20
Goal Observe Environment: maintainCondition on KnownWastes:Waste size() > 0
Goal PerformCleaning: maintainCondition on KnownWastes:Waste size() == 0
Goal Locate Wastebin: achieveCondition on WasteBins:WasteBin isOn(my location)==true
Goal TrashWaste: creationCondition on WaterBucket:DirtBox full() ==true
Goal FindDirt: achieveCondition on KnownWastes:Waste isEmpty() ==false

An excerpt of the conditions, modelled in the extended Taom4E tool, can be seen in

Figure 7.8, which displays also the defined goal types: three maintain-goals, the rest

achieve-goals. Inhibition links are defined from MaintainBattery loaded to DoCleaning

and from ThrashWaste to PerformCleaning and Observe Environment.

Mapping to the implementation The obtained models were mapped to a Jadex

agent definition file (ADF) and Java code skeletons, by the t2x tool. The resulting

ADF (>1200 lines of code, 16 goals and 36 plans, including auxiliary ones, for the last

version of the goal model) contains the definition of the agent’s belief base, available

goals with their details, references to plans (which have to be implemented in Java),

and accepted messages. The goal model structure, which guides the achievement of the

high-level goals at run time and alternatives selection, is technically implemented by

means of specialized auxiliary plans, together with a representation of the goal model

in the agent’s belief (Figure 7.9).

The example in Figure 7.10 shows a small part of the generated ADF for the iCleaner

and the corresponding goal model part. The goal Observe Environment is decomposed

to two subgoals. This decomposition is annotated in the belief base (upper part of

Figure 7.10) and handled by a dedicated plan. Plans (e.g. MoveToTarget) are han-

dled by the Jadex goal triggering mechanism. Goal selection in means-end and OR-

relationships is done by evaluation of softgoal contributions and the importance given

to softgoals. For this system, we gave the same importance to each softgoal.

The interface to the simulation environment and the classes representing the onto-

logical concepts were automatically generated from the above-mentioned ontology, by

tools provided with Jadex.

Implementation and run-time After the automated code generation, the agent’s

plans (its capabilities, the concrete sensing and acting functionalities) were implemented

143

CHAPTER 7. EVALUATION THROUGH EXAMPLES

Figure 7.9: Excerpt of Jadex XML code and Java files (left side), generated with t2x .

in the predisposed JAVA files. Moreover, the agent’s belief base had to be adjusted

for a correct access to the environment, and several settings in the ADF had to be

performed.

One or more agents can be deployed on the simulation environment. They com-

municate with the environment by message passing and try to achieve their top goal,

EnsureCleaning. Their knowledge of the environment can be displayed graphically (Fig-

ure 7.11). Furthermore, Jadex provides a visualisation of the goals dispatched, plans

executed and messages sent at run-time, which can be useful for debugging.

Testing We adopted the agent testing tool eCat [Nguyen et al., 2008] for an auto-

mated testing of the iCleaner system for the achievement of its main goals, to obtain

feedback to improveme not only of the implementation, but also the design and re-

quirements models.

The tool consists of a test execution process with automated input generation with

an evolutionary, ontology-based algorithm, evaluation and reporting functionalities.

Testing proceeds without human intervention (and without time-consuming graphical

interfaces), thus allowing to arbitrary extend testing time and to exercise and stress the

agents under test as much as possible. A Tester agent generates new test cases (new

144

7.2. DEVELOPMENT AND EVOLUTION OF A PROTOTYPE

Figure 7.10: Part of a goal model and the corresponding generated Jadex ADF.

environments as well as dynamic changes in environments during a test) and executes

the system on them. Monitoring agents monitor communication among agents and all

events happening in the execution environments in order to trace and report errors.

They are deployed transparently to the system under test, in order to avoid possible

side effects.

In our case, for each version of the iCleaner, 1000 testcases of 30 seconds each were

performed, measuring the performance in terms of waste removed, obstacles hit and

battery failures. The generated environments differ for the number and placement of

waste, obstacles, charging stations and waste bins.

7.2.3 Evolution of the iCleaner

We applied the Tropos4AS process along five iterations, resulting in five versions of

the iCleaner. Testing results of the preceding version are used as a feedback which

gives rise to new requirements and bug reports that were taken into account in the

development of the subsequent version. Resembling a spiral model, the importance

attributed to the different development phases varies in each iteration: in the first

iterations, more importance is given to early phases, while later iterations focus more

on detailed design and implementation. In the following we briefly describe the five

documented iterations for the development of the iCleaner.

145

CHAPTER 7. EVALUATION THROUGH EXAMPLES

Figure 7.11: Run-time graphical simulation environment, the view of the iCleaner on it

(upper left part) and the Jadex representation of the agent’s internal goal achievement

and plan execution behaviour (lower left part).

Version 1 The iCleaner goal model was extended, as illustrated in the previous

section, with an environment model, conditions, goal types and relationships, before

generating code with the t2x tool. Although this goal model was already discussed with

the system designer, upon a detailed analysis of the expected run-time behaviour for

goal achievement and on the corresponding agent’s plans, different lacks were identified

in the model, mainly regarding agent movement, whose specification was scattered in

different plans and sensing activities in this initial model. Thus, we decided to limit

this version to the evolution of the goal model and to enact changes to the model before

spending specific programming effort on the generated code.

Version 2 A main change in the goal model for version 2 consisted in adding a

dedicated goal and plan for movement MoveToTarget, whereas the plans deciding the

target location remained scattered in different parts of the model. The decision on

which target to select was made at a goal level, by defining inhibition links, e.g. between

146

7.2. DEVELOPMENT AND EVOLUTION OF A PROTOTYPE

MaintainBatteryLoaded and TrashWaste, to give precedence to battery loading.

The resulting goal model (which is similar in its structure to the one shown in

Figure 7.12) leads to the following nominal run-time behaviour: the agent always tried

to observe the environment, by locating new target destinations and moving to them.

If there was some waste in the range of its cleaning tools, it was cleaned, either by

absorbing or by mopping. After a revision of the conditions and a new code generation

with t2x , the plans were implemented and the goal and plan deliberation adapted

to the needed behaviour, setting proper Jadex properties. This version was delivered

to the testing step, with all behaviours implemented except obstacle avoidance and

cleaning of wet dirt.

Figure 7.12: Goal model for the iCleaner, corresponding to the software implemented

in version 5.

Version 3 For this version, the requirements did not change. By feedback from

the testing, the code of different plans defining the agent movement towards battery

loading stations and for emptying the cleaner’s internal dust box into a waste bin were

revised. Also, the code of plans for discovery of new charging stations and waste bins

was improved by re-using the plan ExploreLeastSeenPlaces. Moreover, the previously

147

CHAPTER 7. EVALUATION THROUGH EXAMPLES

missing avoidance of obstacles is implemented as requested in the requirements. This

involved changes to the movement plan and memorization of the target destination

while bypassing obstacles.

Version 4 To increase the efficiency of the iCleaner agent, plans for cleaning of wet

waste were added to the goal model. Also, the wet waste has to be properly collected

in the agent’s internal water bucket and trashed to the waste bin. The updated goal

model was re-mapped to the agent definition file and the plans were implemented,

involving also changes to the goal achievement properties and conditions for the other

two goals which are directly related to the cleaning activity.

Version 5 To further improve efficiency, a new alternative to achieve the goal Lo-

cateNextTarget was added: MoveToNearestWaste, which should be applied always if

there exist waste perceived but not yet cleaned. For example, if some waste is per-

ceived, but the internal dust box is full or the battery is too low, its position has to be

added to the belief base. When the problem is resolved, the iCleaner moves towards

the nearest known waste. The updates to the goal model (Figure 7.12) needed a new

plan and belief set, which were implemented.

7.2.4 Testing results and improvements

Maintaining the battery loaded demands a change of the goals and of the behaviour of

the agent (a simple form of adaptation), trying to find a free station where to recharge

the battery if its level is low. Similarly, a full dustbag needs a change in the goal to

achieve. Moreover, if the targeted waste bin is full, the agent has to properly adapt,

searching a free one. Also, the detection of an obstacle in driving direction needs a

temporary change of the target.

For testing the implemented agent for obtaining the desired behaviour, we use the

following measures of efficiency and robustness, calculated over the test-cases run by

the testing framework for each version: the dirt collected per test-case (efficiency),

the number of crashes per test-case (robustness) and the total number of runs out of

battery (robustness).

Figures 7.13 and 7.14 depict the improvement in efficiency and robustness of

iCleaner throughout the versions. They report the average number of crashes with

obstacles in the environment and the waste collected, respectively, computed on 1000

runs of the agent. We see that the number of crashes has reduced significantly in

148

7.2. DEVELOPMENT AND EVOLUTION OF A PROTOTYPE

version 3, which is obvious since in version 2 the agent still has no capability to avoid

obstacles. Further improvements in the next versions are the result of an optimization

of distance parameters. However, for this reason the cleaning efficiency (Figure 7.14)

decreases in version 3 because keeping a safe distance to objects and thus has to follow

longer paths. The efficiency improved in the subsequent versions, adding the cleaning

of wet waste and optimized movement strategies.

v1 v2 v3 v4
11.681 8.119 13.598 14.232

19.853 0.165 0.13 0.1
14 13 33 16

0

7.5

15

v1 v2 v3 v4

11.681

8.119

13.598
14.232

Efficiency

Average waste collected

0

10

20

v1 v2 v3 v4

19.853

0.165 0.13 0.1

Robustness

Average number of crashes

0

20

40

v1 v2 v3 v4

14 13

33

16

Out of Battery

Out of battery

Figure 7.13: Crashes

v1 v2 v3 v4
11.681 8.119 13.598 14.232

19.853 0.165 0.13 0.1
14 13 33 16

0

7.5

15

v1 v2 v3 v4

11.681

8.119

13.598
14.232

Efficiency

Average waste collected

0

10

20

v1 v2 v3 v4

19.853

0.165 0.13 0.1

Robustness

Average number of crashes

0

20

40

v1 v2 v3 v4

14 13

33

16

Out of Battery

Out of battery

Figure 7.14: Waste

v1 v2 v3 v4
11.681 8.119 13.598 14.232

19.853 0.165 0.13 0.1
14 13 33 16

0

7.5

15

v1 v2 v3 v4

11.681

8.119

13.598
14.232

Efficiency

Average waste collected

0

10

20

v1 v2 v3 v4

19.853

0.165 0.13 0.1

Robustness

Average number of crashes

0

20

40

v1 v2 v3 v4

14 13

33

16

Out of Battery

Out of battery

Figure 7.15: Battery

Figure 7.15 depicts the total number of times the agent runs out of battery in

1000 executions. In version 4 an unexpected value stands out: battery failures are

nearly doubled. The value returns back to the previous level in version 5, although

the behaviours regarding battery loading were not modified. We can explain this with

the fact that the agent, cleaning more, has also to search more frequently for a waste

bin. If the way from the wastebin to the battery loading station is far and obstructed

by obstacles, the agent can easily run out of battery. In version 5, a new behaviour

for moving to the nearest known waste is added. Therefore, the agent will prevalently

move around in known area, reducing the probability of reaching hardly accessible

places from which it is difficult to exit to reach the charging station in time.

7.2.5 Final Considerations

We developed a simple system following the Tropos4AS process until an implemen-

tation as goal-directed BDI agent. In five iterations of the process, the behaviour of

the system was improved, basing on quantitative (by measurements for efficiency and

robustness) and qualitative (by observation) feedback from an automated testing of

the implemented prototypes. This feedback led to changes in the goal models, in the

detailed design and the implementation.

Explicitly representing the goal model at run-time and guiding the agent behaviour

149

CHAPTER 7. EVALUATION THROUGH EXAMPLES

directly with this goal model, wrong behaviours can be quickly localised, missing func-

tionalities can be added seamless (as long as they have a well-delimited scope), and

modifications can be enacted to the models and then mapped to the code.

The tool-support helps maintaining the consistency and traceability between goals

and implemented functionalities and reduces the effort spent in each development phase

and iteration. Similarly, the ontology is kept aligned with the code, as the classes for

the domain entities are generated using tool support provided by Jadex. However, the

tools miss round-trip engineering functionalities, which could improve the consistency

and simplify changes on both sides. Also, the expertise requested on the tools, the

modelling process and the implementation language, is quite high. Three subjects with

different skills were involved in this case-study, for requirements engineering, detailed

modelling and implementation, and testing.

The system exhibits basic adaptivity properties, which mainly arise from the inter-

pretation of the extended goal model and the interplay of its goal types and conditions,

at run-time. Thus it heavily differs from the example in Section 7.1, where adaptivity

mainly arises from selection of alternatives and maximisation of softgoal contributions.

The main focus was on implementing adaptivity features which directly arise form the

knowledge captured in the goal models. More sophisticated forms of adaptivity would

need an implementation of more complex reasoning and learning mechanisms, which

have no direct correspondence in design time models and are thus out of the scope of

this work.

We encountered various difficulties in the modelling and implementation of the sys-

tem. Some of them led to improvements of the modelling process and of the code

generation tool. Especially, the evaluation of conditions for guiding the goal delib-

eration behaviour of Jadex caused various problems, because the agent’s beliefs were

in some cases not updated in time. Also, the mapping of some goal types had to be

adjusted to respect the intended meaning, by setting various flags in the goal defini-

tions. Moreover, the interplay of the various goals which are active in parallel (e.g.

maintain-goals) led to behaviours which were difficult to comprehend and thus chal-

lenging to debug and to maintain. This issue is common to various (e.g. agent-oriented,

distributed) programming paradigms with more than one control flow and needs to be

dealt with to promote these languages.

For future research it would be challenging to analyse how testing feedback can be

interpreted from the system itself at run-time to adapt dynamically.

150

7.3. EVALUATION: FEEDBACK FROM RUN-TIME TO THE DESIGN

7.3 Evaluation: Feedback from Run-Time to the

Design

In this sections we present two preliminary experiments, whose objective is twofold: on

one hand, we aim at verifying the behaviour of the of a system created following the

Tropos4AS process, with respect to the designed specifications; on the other hand, we

give an outline for a feedback mechanism from run-time to the design models,

to correct and to refine the system specification by exploiting information retrieved

from an evaluation of the run-time behaviour of the system.

The envisioned process takes into account that new requirements may emerge also

at run-time. A feedback of these requirements to the requirements analysis and design

phases would be of crucial importance for the optimisation of a self-adaptive system.

An effort in this direction can be seen as a first step towards a system which is able

to interpret this feedback and to effect proper changes in its requirements specification

and to adapt its behaviour at run-time.

The performed experiments start from a goal-oriented modelling and implementa-

tion following Tropos4AS . At run-time, changing user preferences guide the behaviour

of the system simulation. An evaluation of the system execution leads to the refine-

ment of the designed goal models (such as the modification or introduction of new

relationships) upon the analysis of the system’s run-time behaviour.

7.3.1 Outline of the applied feedback process

We develop a system following Tropos4AS , defining its requirements in a goal model.

Variability, including desires and preferences of possibly changing users, is captured

in goal models, e.g. by alternatives, softgoals and contributions to them. From the

so-obtained models we automatically derive agent skeletons in the defined tool-based

process. At run-time, the system (i.e. in this case, the obtained prototype) exhibits a

certain behaviour in correspondence to variability in user desires and in environmental

conditions. Users can communicate their needs and preferences to the system, e.g. via

request messages. The resulting agent behaviours can be traced back to the specifica-

tion of the alternatives in the goal model (since the agent is aware of and guided by

its goal model at run-time), showing the effectiveness of the proposed framework in

supporting traceability between run-time and design-time artefacts.

In a next step, the run-time behaviour of the system, in correspondence to the users’

preferences, has to be analysed ad evaluated. In this step, the two small experiments,

151

CHAPTER 7. EVALUATION THROUGH EXAMPLES

which are presented in the following, follow different paths. The first one relies on

the opinion of experts for the definition of the model, while the analysis limits to a

refinement of contribution values. In the second experiment, the users have to comment

on the appropriateness of the obtained results. Moreover, in the second experiment the

executed agent capabilities are also analysed quantitatively: capabilities used rarely

can indicate a problem in the design of the decision making, or in the capability itself.

The results of this analysis can call for an improvement of the design artefacts. For

instance, in the following preliminary experiments, contribution relationships between

model elements will be corrected or further qualified. However, also goal refinements

and operationalisations could be modified. Changes in goal models can be enacted

at design time and re-mapped to code for a subsequent version of the software in an

iterative process. In future, they could possibly also be effected on-line, directly to the

run-time representation of the goal model (at the implementation level this is already

supported for most of the artefacts in a goal model). We consider this work a first

step towards setting up feedback mechanisms from run-time to design, a core aspect

in developing self-adaptive systems.

7.3.2 Example 1: the Travel Agency

As first example to illustrate the idea of a feedback from run-time to the design arte-

facts, and also to show the effectiveness of reasoning on the goal model at run-time, we

take a simple travel agency recommender system, TravelAgent, as modelled by a Tropos

goal model in Figure 7.16. The system handles requests from several categories of cus-

tomers (e.g. business customers, vacation customers or students) and gives proposals

for a full travel package, according to the users’ preferences. These preferences are

modelled through softgoals. For example, as illustrated in Figure 7.16, possible soft-

goals to characterize a customer category are reasonable cost, good comfort, and relax

vacation. The agent tries to achieve them exploiting different alternatives for journey

and accommodation and selecting suitable additional activities.

The main idea is to focus on the preferences of different customer categories, which

are recognized by the system at run-time by profiling users from the set of queries

they submitted. We observe the system while it is adapting to each category, trying

to maximize customer satisfaction (customer’s softgoals delegated to the TravelAgent

system) and providing evidence of how such softgoals have different impact to the

system’s own internal softgoals, e.g. maximize profit, which were delegated from the

business stakeholders, e.g. from a travel agency. The models used in this evaluation are

152

7.3. EVALUATION: FEEDBACK FROM RUN-TIME TO THE DESIGN

Figure 7.16: Goal model of the TravelAgent example with a detailed modelling of

softgoal contributions.

Tropos goal models without the Tropos4AS extensions. Focussing on goal AND/OR

hierarchies and softgoal contributions, we specifically evaluate the mapping to the

implementation obtained by the Tropos4AS mapping to agent code using the t2x tool.

In the following, we give a sketch of the experiment and the obtained results. Further

details can be found in [Morandini et al., 2008e].

Experiment description

Suppose that a generic Customer can be distinguished into three categories: busi-

ness customer (BC), vacation customer (VC) and student customer (SC), each one

composed by individuals having similar preferences and similar requests to the travel

agency system. For each category, an expert sets typical preference values, by vary-

ing softgoal importances (Table 7.1). A domain expert also defines contribution rela-

153

CHAPTER 7. EVALUATION THROUGH EXAMPLES

tionships between each capability and internal softgoals, such as maximize profit, see

[Morandini et al., 2008e] for details.

Ci Vacation Customer Student Customer Business Customer

good business travel 0 0 1

good comfort 0.6 0.2 1

action vacation 0.4 1 0

good time utilization 0.3 0 1

reasonable cost 0.6 1 0.1

relax vacation 0.6 0.3 0

Table 7.1: Softgoal importances defined to profile user preferences in the three cate-

gories. These values are supposed to be given by domain experts.

In the simulation, the Customer (in the following also user) interacts with the system

by submitting request messages that can be conceived as activation events for the

system’s goals. Moreover, the system is supposed to perform user profiling, analysing

the queries, to recognize the category of a customer and and to adapt its selection

criteria (i.e. the softgoal importances) accordingly. On the basis of this information

the system is able to assume the best-suiting behaviour and thus to activate proper

capabilities.

Table 7.2 shows the components of the process for the choice of capabilities. In

particular, the 2nd column represents the input elements. The possible queries related

to a customer class are denoted as, e.g. qBC for a business customer query, whereas CBC

holds the set of user preferences and constraints denoting a user category, perceived

by the system via user profiling activities or by user-guided configuration. The system

chooses an appropriate set of appropriate behaviours, i.e. a set of leaf-level goals, for the

query and constraints in input, denoted in the 3rd column, e.g. bBC
i . For a behaviour

bi, Cpi (column 4) denotes the possible sets of capabilities (i.e., here, sets of plans) an

agent can execute to exhibit this behaviour. The system is able to compute the set

of possible behaviours bBC
1−m that it can exploit in order to accomplish user requests,

maximizing their preferences, and to retrieve the capabilities that have to be activated

in order to operatively execute the chosen behaviour.

We prepared the experiments, defining a set of queries for every different customer

category. Table 7.3 gives examples for sets of queries for the three classes of users we

considered.

154

7.3. EVALUATION: FEEDBACK FROM RUN-TIME TO THE DESIGN

User class Trigger events Behaviours Capabilitiy sets

BC qBC
1 , CBC bBC

1 CpBC
1

.

qBC
m , CBC bBC

m CpBC
m

VC qV C
1 , CV C bV C

1 CpV C
1

.

qV C
n , CV C bV C

n CpV C
n

SC qSC
1 , CSC bSC

1 CpSC
1

.

qSC
k , CSC bSC

k CpSC
k

Table 7.2: System inputs (Events and constraints) and outputs (behaviours and sets

of capabilities) for the simulation

Query Vacation Customer Student Customer Business Customer

q1 give proposals give proposals give proposals

q2 provide camping, car journey, prop. act. propose activities provide room, flight journey

q3 provide room, train journey provide room, flight journey select journey

q4 select accommodation camping, train journey select accommodation

Table 7.3: Queries that characterize each customer category.

Analysis of results

After the simulation, the data related to the experiment has been collected. According

to our first objective, we are able to monitor the system behaviour (b), each time a

query (e.g. qBC
4) occurs, along with some user preferences (e.g. CBC={good comfort}),

verifying that b coreectly belongs to the goal model. Specifically, we observe that the

system has the ability to adapt its behaviour to accommodate with the current customer

category. For example, assuming that qBC
4 will trigger the goal select accommodation,

along with giving preference to good comfort. Now, the system is able to navigate the

goal model in order to maximize the softgoal which captures this user preference.

Looking at the goal model illustrated in Figure 7.16, we can see that the goal

select accommodation has two alternative ways to be achieved, i.e. provide room and

provide camping. The system will first try to select provide room, because its capabilities

(characterized by the two plans search hotel and search BB) give the biggest contribution

to the given user preference. The same procedure will be used in a next step to

discriminate between the two available capabilities, this time resulting in the selection

of search hotel. These experiments confirm the ability of the framework in supporting

traceability between run-time and design-time artefacts.

To meet our second objective, we simulate the execution of a set of user queries

155

CHAPTER 7. EVALUATION THROUGH EXAMPLES

and preferences in order to revise softgoal relationships in the goal model. Table 7.4

shows the sets of capabilities activated by the system, i.e. the behaviour instances it

selected at run-time, as a response to the simulated user queries described in Table 7.3.

In Table 7.4, each row specifies a query from a particular category of users (BC, VC

and SC). Contributions to maximize profit are calculated by summing the values of

contribution (defined by the domain experts) to the executed capabilities, e.g. for

CpBC
1 : eurostar train + search hotel + gastronomy = 0.2+0.8+0 = 1. Notice that an

analysis by simulation does not cope with the possible contribution produced by all the

different capability groupings. On the contrary, the simulation will converge towards

the only sets of capabilities requested by the real customer categories.

Query Sets of executed capabilities Contribution to maximize profit

qBC
1 CpBC

1 : eurostar train, search hotel, gastronomy 1

qBC
2 CpBC

2 : business flight, search hotel 1.7

qBC
3 CpBC

3 : eurostar train 0.2

qBC
4 CpBC

4 : search hotel 0.8 avg = 0.925

qV C
1 CpV C

1 : low cost flight, search BB, culture 0.6

qV C
2 CpV C

2 : use own car, camping 0.3

qV C
3 CpV C

3 : intercity train, search BB 0.5

qV C
4 CpV C

4 : search BB 0.4 avg = 0.45

qSC
1 CpSC

1 : low cost flight, search camping, nightlife 0.5

qSC
2 CpSC

2 : nightlife 0

qSC
3 CpSC

3 : low cost flight, search BB 0.6

qSC
4 CpSC

4 : intercity train, camping 0.4 avg = 0.375

Table 7.4: Capability groups associated to every query at run-time.

With the results of these queries we can observe how (in our case simulated) cus-

tomer preferences affect system behaviour. The capability groups corresponding to the

different behaviours of the TravelAgent can then be used to add or quantify Tropos

contribution links.

Figure 7.17 A), shows the averages favg of the values obtained in Table 7.4, con-

sidering the internal softgoal maximize profit. In Figure 7.17 B), a softgoal customer

satisfaction is introduced to aggregate the softgoals relevant to a specific customer cat-

egory. Contributions between them and the internal softgoal maximize profit can be

drawn and quantified by the contribution values computed at run-time. This result

can contribute both to validate existing contribution links and to add new ones. In

the case run-time feedback is in contrast with the design-time models, a revision of the

goal model could be required.

In a subsequent step, these new relations could be used by the system to adapt its

strategic behaviours, not only according to the user preferences (i.e. softgoal customer

156

7.3. EVALUATION: FEEDBACK FROM RUN-TIME TO THE DESIGN

Customer

Satisfaction

Contribution to

maximize profit

BC 0.925

VC 0.45

SC 0.375

A) B)

Figure 7.17: A) Resulting quantitative contributions between customer categories and

the softgoal maximize profit; B) visualizing the results in terms of a goal model refine-

ment. The labels define the new contribution values.

satisfaction), but also according to its internal organizational objectives (i.e. softgoal

maximize profit), following a trade-off for the achievement of these two softgoals.

7.3.3 Example 2: a computer recommender system

As second example for an implementation following the Tropos4AS automanted map-

ping from goal models to code and for evaluating the idea of feedback from run-time to

the design artefacts (or for a modification of the implemented goal models at run-time),

we present a computer recommender agent.

The computer recommender agent handles requests from customers and gives pro-

posals for several computer compositions, according to the users’ input requests. As

in the previous example, in the Tropos4AS goal model these preferences are modelled

through softgoals (see Figure 7.18 for a reduced example). Softgoals that characterize

an user’s preferences are, for example, high performance, storage space, simplicity of

usage, versatility and compactness. The agent tries to recommend a computer system,

selecting from the various configurations available in commerce1, exploiting different

alternatives for processor, memory, graphic card and additional services.

In the following, we give a sketch of the experiment and the obtained results. Fur-

ther details on the implementation, the survey and its evaluation can be found in

[Tomasi, 2009].

1The prototype accesses to a locally stored version of the DELL website to search for suitable
configurations

157

CHAPTER 7. EVALUATION THROUGH EXAMPLES

Figure 7.18: Part of the Computer Seller System goal model.

Experiment description

The system is implemented in Jadex, basing on the automated mapping, with the

goal model represented at run-time. At run-time, the modelled softgoals (with their

positive or negative contribution relationships) build the main link between the system

and its users. Users who need a recommendation for a new computer, make a request to

the system, expressing their preferences by filling a questionnaire. This questionnaire

is directly related to the modelled softgoals, thus the user gives different weigh to

softgoals, defining selection criteria for available alternatives.

To achieve the user’s request for a computer system, the system tries to find an

operationalisation (i.e. a set of capabilities Cp) which satisfies this goal and maximizes

the contribution to the softgoals which are important for the user. Basing on the

selected capabilities, which determine computer configurations, the system then selects

the best-suited systems from its database, which it proposes to the user. In fact, the

system performs only a single traversal of the goal model per user request, but this

simple mechanism suffices to motivate the following feedback process.

The proposals are then given to the users, which rate them with one out of the

three keywords “satisfied”, “oversized” and “undersized”. Figure 7.19 gives an example

of preference values given in input to the system and feedback values obtained from the

users for the selected system. This evaluation was performed with 20 participants from

158

7.3. EVALUATION: FEEDBACK FROM RUN-TIME TO THE DESIGN

Figure 7.19: Preference values in input and feedback values for the recommended

computer systems, for different users.

various user categories (although many of them were experienced computer users).

Figure 7.20: Illustration of the user-driven feedback process.

As next step in the feedback process sketched in Figure 7.20, the obtained data

has to be evaluated. Recommendations which were not satisfactory for the users, have

to be examined in detail, analysing the preferences given and the capabilities (i.e.

plans) activated, and trying to find the problematic points in the model, typically

improper softgoal contributions. A second source of data for a possible improvement

of the models is a global analysis of plan activations. Plans which were rarely or

never activated can indicate problems in the decision algorithms (e.g. wrong softgoal

159

CHAPTER 7. EVALUATION THROUGH EXAMPLES

contributions) or capabilities which are not useful for the system (and which thus could

be deprecated in further versions of the software). However, in different domains such

capabilities could also denote critical exceptional situations. In this case they should

be properly captured in failure models, as presented in Section 3.3.2 of this thesis.

Necessary changes in a system can be carried out in the design time goal model, or

else directly in the goal model represented at run-time, e.g. for softgoal contributions,

by performing changes to the agent’s belief base. By the evaluation we recognized

some needs for contribution change. They were effected and the problematic user

queries were repeated. While part of the users now gave a satisfactory feedback, oth-

ers did not. However, these users were also not satisfiable with a manually selected

computer, since we limited the system to offers from a single manufacturer. Moreover,

the evaluation was performed manually and required a deep knowledge of the system

and the domain. Repeating the tests, introducing, for testing purpose, various artifi-

cial errors, we could also observe that such models, which are considerably complex,

are quite resilient to errors, and thus it remains difficult to localize errors. Our initial

aim, a statistical analysis for the discovery of correlations between unsatisfied users

and inadequate contribution links, would require a much higher number of subjects.

7.3.4 Contributions

In this section we presented two case studies with the aim to show the behaviour of a

system aware of its goal model at run-time, and, specifically, to give a first sketch for

feedback mechanisms from run-time to the design time artefacts (i.e. the goal model

in our case) to correct errors in the requirements and to accommodate requirements

changes emerged at run-time.

With a simple travel agency example, implemented with the help of the t2x tool,

we gave a first approach on how to refine a goal model by information acquired from

the execution of the software, which navigates its goal model at run-time, adapting to

users’ needs and preferences. The approach was tested by simulating an environment

where several categories of users, which are characterized by their own preferences,

interact with the system, requesting a service. Starting from the run-time behaviour

of the system in response to user queries, a way to refine the relationships among a

set of user preferences and the preferences (softgoals) of the business stakeholders, was

described. This information can then be considered by a revised version of the system,

to achieve a behaviour that better satisfies the stakeholders’ preferences. This study

preceded and inspired the introduction of some of the Tropos4AS modelling extensions,

160

7.3. EVALUATION: FEEDBACK FROM RUN-TIME TO THE DESIGN

emphasizing the need for obtaining systems with more dynamic forms of adaptivity.

The second case study, performed in the context of a master thesis [Tomasi, 2009],

follows a slightly different direction: users of a system are asked for their satisfaction

with the given service (in this case a suggestion for a suitable computer system). This

feedback is used, together with the user’s preferences and usage statistics, for an anal-

ysis of problems in the requirements model. This study is limited with respect to the

analysis of the feedback and should moreover be extended to systems with a more

complex goal satisfaction behaviour, integrating also Tropos4AS modelling extensions.

However, it is worth mentioning, because it points out critical issues such as the the

resilience of the system to small errors and the number of participants necessary for an

evaluation based on statistical results.

With these case studies a first investigation was carried out, for bringing information

gathered at run-time back to the requirements and design phases, to contribute to the

general problem of requirements and software evolution.

161

Chapter 8

Empirical Evaluation of Tropos4AS

Modelling

8.1 Introduction

The Tropos4AS framework, presented in Chapter 3, introduces various extensions to

the agent-oriented methodology Tropos , aimed to support the development of self-

adaptive systems. In this section we present an evaluation of the Tropos4AS modelling

language in comparison to the underlying Tropos modelling language1, performed by

running an empirical study, consisting of modelling and comprehension tasks performed

by a group of researchers and students.

The evaluation of a modelling language can be characterised by three main aspects:

(1) the effort for modelling, (2) the effectiveness of modelling (i.e. the expressiveness

of the obtained models) and (3) the comprehensibility of the models. The empirical

study is subdivided into two experiments:

• First, we evaluate if Tropos4AS is effective in modelling self-adaptive systems,

with an acceptable modelling effort, in comparison to Tropos .

• Second, we evaluate if the Tropos4AS modelling extensions increase the compre-

hensibility of the requirements of a system.

Along these experiments, we are also interested in understanding how software

engineers feel with and use the Tropos4AS modelling extensions. The design of the

experiments follows the guidelines by Wohlin et al. [Wohlin et al., 2000] on how to set

1We refer to the Tropos modelling language, as defined in [Bresciani et al., 2004a, Susi et al., 2005].
In particular, we focus on Tropos goal diagrams, which are mainly affected by the novel extensions.

163

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

up and document empirical studies in software engineering. It allows to have a high

degree of control over the study, to achieve results with statistical significance.

Discussion on the study set-up A comparison of Tropos4AS with a similar en-

gineering methodology (except Tropos), from a methodological point of view, would

inevitably also assess the performance of the whole Tropos language. Thus, an evalua-

tion limited to the novel extensions proposed in this thesis, which is our scope, would

be impossible.

Tropos4AS covers the whole development cycle until the implementation. Thus,

a comparison with code written without methodological aid (or with code developed

with a cut-down version of the Tropos4AS methodology, which limits to concepts that

are available one-to-one in the implementation language Jadex) would give significant

results for the efficiency of the framework. However, such an empirical study, which

involves implementation, would require participants that are experienced in the use of

the implementation language (which is, in our case, Jadex) and, in particular, would

demand an unacceptably high time effort for them.

Moreover, the experimental setup is guided to some extent by the availability and

the experience of the potential subjects of the study (i.e. the participants). This

influences the choice of the treatments that will be used for the comparison (in this

study, the methodologies to compare), of the objects under study (i.e. the systems that

are modelled) and the tasks to perform in the experiment.

Considering these constraints, we decided to compare Tropos4AS with its under-

lying methodology Tropos , focussing on the modelling aspects. A comparison of the

whole modelling process between the two treatments Tropos4AS and Tropos would not

have been feasible within the given time constraints, on a non-trivial model.

We are specifically interested in studying the use that the subjects make of the

available modelling concepts for representing requirements, and in evaluating the effort

and efficiency of modelling. Thus, our first aim is to compare the two modelling

languages, by performing an off-line experiment that demands from the subjects the

construction and analysis of the respective models. To ensure a fair comparison despite

the higher expressiveness of the Tropos4AS language, we address experimental tasks

which can be performed with both languages, satisfactorily.

A drawback in an experiment where the participants have to model some part of

a system is, that the obtained models are typically difficult to be compared, since re-

quirements modelling is a creative process which has not a single correct solution2. The

2Note that it is not our aim to have a complete, formal representation of requirements, for whose

164

8.2. EXPERIMENT PLANNING

analysis has therefore to be mainly based on subjective results obtained by question-

naires and by a high-level analysis of the obtained diagrams.

Second, we examine the comprehensibility of models created by applying the two

methodologies. In this study of model comprehensibility the subjects have to answer to

various questions, analysing models prepared by the researchers, understanding them,

and extracting information. Such a study which limits to model comprehension ensures

a higher controllability of the experiment execution and is thus able to provide more

objective measurements, e.g. by calculating precision and recall (see page 189) of the

answers given, with respects to the set of expected answers.

8.2 Experiment planning

8.2.1 Goal of the study

The goal of this empirical study is to compare the Tropos4AS modelling language,

presented in Section 3.2 in this thesis, to the Tropos modelling language, to show if

the benefits expected from Tropos4AS modelling are present also if used by both non-

experts and experts of Tropos , in a realistic environment. Hence, the main factor of

both experiments will be the modelling approach used: Tropos and Tropos4AS , the

treatments that we want to compare.

8.2.2 Context selection

The experiment is run in a research centre with participants (researchers, doctorate

students and programmers) from the software engineering group3. The experiment is

run off-line, as a blocked subject-object study [Wohlin et al., 2000, Chapter 5]. The

two objects, requirements specifications of two software systems, have been assigned

to each of the participants (the subjects).

8.2.3 Objects of Study

The experiment has to be fair, not giving disadvantage to one of the two methodologies,

to achieve expressive results. In our case, one methodology completely includes the

other. The difficulty consists in selecting modelling tasks that can be performed with

both methodologies and are not only tailored towards the new extensions, but that are

correctness can be verified, as e.g. in Formal Tropos [Fuxman et al., 2001].
3http://se.fbk.eu

165

http://se.fbk.eu

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

challenging enough to prompt for the use of the novel extensions, whenever they are

available.

In our work we define self-adaptivity as the ability to automatically take the correct

actions, based on their knowledge of what is happening in the operating environment,

guided by objectives assigned by the stakeholders (cf. our definition in Section 1).

Self-adaptivity can not be easily synthesised to a single property of a sample system.

Taking this into account, we provide two small system specifications as objects of this

study. Covering as much as possible the definition, they provide a normal as well as

some exceptional behaviour, and some circumstances drive the system to change its

behaviour, to satisfy its requirements.

The objects of the study are two small, imaginary software systems, a Patient

Monitoring Agent (PMA) and a Washing Machine Manager (WMM). PMA is a system

that monitors elderly people in a smart home, for taking meals and medicine. WMM

explains an intelligent washing machine controller, which adapts the washing settings

to the user’s preferences for energy saving and cleanness. The detailed requirements

for each system are defined in system stories, reported in Appendix A.

8.2.4 Subjects

The subjects of the experiment are 12 employees of the research centre (which were not

involved in the preparation and pilot run of the study), 6 researchers and 6 doctorate

students and programmers. Only part of them are known to have used goal-oriented

modelling languages (mainly Tropos), before.

8.2.5 Experiment design

We adopt a paired, counterbalanced experiment with two laboratories. In this

experiment design, each subject has to perform the experimental task with both objects,

and with both treatments. Moreover, half of them have to use e.g. the PMA system for

the first experimental task (1st laboratory) and the WMM system for the second; vice-

versa for the others. This design mitigates learning effects between the two treatments

and between the two objects.

The subjects are randomly divided into 4 groups of 3 people each, to whose the

treatments and the two objects, PMA and WMM, are associated as defined in Table 8.1.

The paired design, having the same number of subjects in each of these groups, enables

a better comparison and the application of more precise statistical methods.

166

8.3. EXPERIMENT 1: MODELLING

1st laboratory 2nd laboratory

Group 1A PMA with Tropos WMM with Tropos4AS

Group 1B WMM with Tropos4AS PMA with Tropos

Group 2A PMA with Tropos4AS WMM with Tropos

Group 2B WMM with Tropos PMA with Tropos4AS

Table 8.1: Assignment of subject groups to laboratories, objects, and treatments.

8.3 Experiment 1: Modelling

In the following, we show the design, procedure, analysis and results of the modelling

experiment performed.

8.3.1 Research questions and hypotheses

With the goal of evaluating the benefits of Tropos4AS for modelling self-adaptive sys-

tems, in comparison to traditional Tropos modelling, we define two research questions.

RQ1: Is the effort of modelling requirements with Tropos4AS significantly higher than

the effort of modelling them with Tropos?

RQ2: Is the effectiveness of Tropos4AS models significantly higher than the effective-

ness of Tropos models, for representing requirements of an adaptive system?

As a basis for statistical analysis of the experiment, each research question has

been translated to the corresponding null-hypothesis H0 and alternative hypothesis

Ha. The null-hypothesis typically denotes that the treatment has no significant effect

on the result. Thus, the experimenter typically wants to reject it with high statistical

significance. The null-hypothesis will be rejected in favour of the alternative hypothesis,

which denotes that there exists a significant effect of the different treatment.

We frankly expect that the extended language needs a higher modelling time than

the base language. However, we want to understand if the additional effort and the

model complexity is still perceived to be reasonable. On the other side, we want to

verify that Tropos4AS is more effective in modelling, obtaining models that reflect the

requirements in a more complete way, and that would better support the developers in

the implementation. These two assumptions lead us to the following hypotheses and

define their direction (i.e., the hypotheses are one-tailed). For RQ1 we define:

• H01: The effort of modelling requirements with Tropos4AS is not significantly

higher than the effort of modelling with Tropos .

167

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

• Ha1: The effort of modelling requirements with Tropos4AS is significantly higher

than the effort of modelling with Tropos .

whereas the following are the null-hypothesis and alternative hypothesis relative to

RQ2:

• H02: The effectiveness of Tropos4AS models is not significantly higher than the

effectiveness of Tropos models.

• Ha2: The effectiveness of Tropos4AS models is significantly higher than the ef-

fectiveness of Tropos models.

Aspects characterising the research questions The two research questions in-

clude the abstract terms effectiveness and effort, which have to be detailed in order to

associate them to variables that can be evaluated in the experiment. We decompose

RQ1 and RQ2 to various aspects that characterise them and therefore define the terms

effectiveness and the effort for the scope of the study. RQ1 is decomposed to aspects

considering the time spent, the effort perceived by the subjects, and the difficulties

encountered by the subjects during modelling. In detail they are:

(a1) overall time consumed for the modelling task

(a2) adequateness of the effort required for creating the models: We want to know if

the modelling effort is subjectively perceived to be adequate by the subjects.

a) required overall effort for modelling

b) adequateness of the additional modelling effort specifically needed by Tro-

pos4AS modelling in comparison with Tropos .

(a3) effort distribution: We want to study the changes in the distribution of the time

spent on the following activities.

a) reading modelling language specification

b) understanding the example

c) modelling the example

(a4) difficulties encountered in modelling: We want to know if the subjects perceived

any difficulties in modelling the examples and in using the concepts of the mod-

elling language.

168

8.3. EXPERIMENT 1: MODELLING

a) difficulty of modelling all the example details

b) difficulty of using the modelling language

The aspects for RQ2 consider the expressiveness of the modelling language, per-

ceived by the subjects, and the correctness of the models built:

(a5) perceived expressiveness of the modelling language: We are interested in the sub-

ject’s judgement on the adequateness on the concepts provided by the language,

for describing the requirements.

a) effectivity in capturing the requirements

b) adequateness of the modelling concepts

(a6) perceived effectiveness of modelling for an implementation: The subjects, as po-

tential users, should comment on the utility of the models for software architects

and programmers.

(a7) perceived utility of extensions for modelling adaptivity: We would like to know

the opinion of the subjects on the single extensions introduced with Tropos4AS .

a) modelling conditions

b) modelling failures

c) overall

(a8) measured correctness of the models drawn by the subjects, tested by evaluating

the coverage of various scenarios, to know if the modelling concepts were used in

a correct way and to which extent the models cover the requiements.

Each aspect has been investigated with its own research question (and associated hy-

potheses), of the same form and direction as the high-level questions RQ1 and RQ2.

For instance, let us consider the aspect (a1). Its research question is RQa1: “Is the

time required to model requirements with Tropos4AS higher than the time required

with Tropos?”.

8.3.2 Variables and measures

The independent variable and main factor of the study is the modelling language

used to model requirements, considered with the two treatments Tropos and Tro-

pos4AS . This variable is manipulated and controlled and should be independent from

169

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

the objects, subjects, and experiment tasks, by the design of the experiment (see Sec-

tion 8.5.5).

The dependent variables are the 8 aspect (a1,. . . , a8) identified and evaluated my

means of questionnaires filled by the subjects before and after the experimental task.

The continuous variables a1 and a3, are associated to the questionnaire, measuring

the time spent for the whole experiment and fractions of time (in %) spent for various

activities, and the Likert scale variables a2 and a4,. . . , a7.

Likert scale variables specify the level of agreement to a statement. They are

defined, in our case, on an ordinal scale from 1 to 5, as follows: 1 strongly agree; 2

agree; 3 not certain (neutral answer); 4 disagree; 5: strongly disagree. The discrete

variable a8 is evaluated on a scale from 0 to 4 by an expert, evaluating the correctness4

of the models by counting the relevant aspects identified for covering two predefined

execution scenarios.

8.3.3 Experiment procedure and material

Experiment procedure The experiment consists of the following steps:

1. Tutorial on Tropos and Tropos4AS

2. Pre-questionnaire

3. Laboratory 1

4. Questionnaire for laboratory 1

5. Laboratory 2

6. Questionnaire for laboratory 2

7. Post-questionnaire

Since the subjects had different levels of experience with Tropos and Tropos4AS , to

prepare them for the experiment we gave a tutorial of 90 minutes on Tropos and

Tropos4AS modelling, some days before the experiment. The tutorial presentation

slides were sent to all participants, to be used also during the experiment, if needed.

The questionnaires and laboratories is done individually by each participant, at

their desk, in a time frame of approximately three hours. Only after completing the

first laboratory, the documents for the second laboratory are handed over.

4Note that we are not aiming for a verification of the formal correctness of the models in respect
to the requirements specifications.

170

8.3. EXPERIMENT 1: MODELLING

Prepared input material To perform the experiment, each participant receives the

following documents (a complete sample is shown in Appendix A): a detailed descrip-

tion of the experiment procedure, the pre-questionnaire, the post-questionnaire, and,

for each of the two laboratories, the following material:

- A summary of the modelling language to use (either Tropos or Tropos4AS).

- The requirements specification of the system to model (WMM or PMA).

- A sheet with an outline of the goal model, to be used to draw the model,

and two control questions, useful for the subjects to cross-check the models.

- The relative questionnaire.

Experiment task The subjects have to model the two systems, one with Tropos , and

one with Tropos4AS , as assigned to them (Table 8.1). Each system should be modelled

with as much details as possible, with the methodology assigned to it, following step

by step the scenario description. To eliminate the training effort with the Taom4E

modelling tool [Morandini et al., 2008b], with its constraints and usability issues, and

thus to eliminate the influence of a possible further threat, we opted for drawing the

diagrams on paper.

Each system description includes two control questions (an example can be found

on page 228, Appendix A), which should be answered by the subjects, specifying the

plans executed in a certain situation. These questions are not evaluated, but should be

used by the subjects to cross-check the models. Before the tasks, after each laboratory

and at the end, the corresponding questionnaires should be filled. A collection of the

questions in the three questionnaires is listed in Table 8.2.

The pre-questionnaire asks for name and position of the participants, and a signa-

ture for authorisation for the collection of sensitive data. Moreover, some questions

are made ([preq12]. . . [preq17] at the top of Table 8.2), which help to evaluate the

knowledge of the two methodologies, and thus the adequateness of the tutorial.

The questionnaire associated to each of the laboratories includes the questions

[q4]. . . [q17] in Table 8.2, which analyse the adequateness of the objects and the time,

and collect the subject’s perceptions for the specific treatment applied. Moreover, the

overall time needed for completing the experimental task of each laboratory, should be

recorded (except questionnaire filling). The participants are also asked to keep track

of the time fractions (in %) spent for the various activities, and specifically for mod-

elling the Tropos4AS extensions, as reported in Table reftable:questtime, questions [t],

[q1]. . . [q3], and [q13]. . . [q15]. An indicative time of 1h is given as a suggestion for

performing each laboratory, but the participants are free to take the time they need.

171

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

21 strongly agree 22 agree 23 not certain 24 disagree 25 strongly disagr.

preq12 Experience with requirements analysis 2Few 2Research 2Industry

preq13 Experience with Tropos modelling 2None 2Small 2Experienced

preq15 I understood the basic notions of Tropos modelling 21 22 23 24 25

preq16 The visaul notation used in Tropos is clear 21 22 23 24 25

preq17 The visual notation used in Tropos4AS is clear 21 22 23 24 25

q4 The explanation of the example was clear to me 21 22 23 24 25

q5 I had no difficulties in modelling its requirements in a goal model . . .

q6 I had enough time for accomplishing the modelling task. . . .

q8 The concepts of the modelling language were detailed enough to model the

requirements.

q9 I had difficulties in modelling user preferences with contributions to softgoals.

q10 The effort of modelling seems too high for an efficient use in practice.

q11 The obtained model is concrete enough to guide the programmers to an imple-

mentation respecting the requirements.

q12 The obtained model is too abstract to be able to properly guide the program-

mers to an implementation respecting the requirements.

q16 Enriching Tropos with conditions modelling seems useful for the scope of mod-

elling adaptivity to the environment (Tropos4AS models only)

q17 Enriching Tropos with failure modelling seems useful for the scope of modelling

adaptivity to the environment (Tropos4AS models only)

postq43 It was difficult to model the example, with all its details, with Tropos

postq44 It was difficult to model the example, with all its details, with Tropos4AS

postq45 In my opinion, the Tropos model captures the described requirements in a

satisfying and complete way

postq46 In my opinion, the Tropos4AS model captures the described requirements in a

satisfying and complete way

postq47 I had no difficulties in using the Tropos4AS extensions.

postq48 I feel to have used the full potential of the Tropos4AS modelling concepts

postq49 I think it is useful to have the extensions introduced with Tropos4AS for mod-

elling requirements of systems that have to adapt to their environment.

postq53 In my opinion, it is worth putting effort in modelling details of the requirements

with Tropos4AS .

Table 8.2: A selection of the questions in the questionnaires, with answers on a 1 . . . 5

Likert scale (on top of the table).

172

8.4. DATA ANALYSIS

Finally, the post-questionnaire, [postq43]. . . [postq53] at the bottom of Table 8.2,

collects data on a comparison of the two treatments Tropos and Tropos4AS , and on

the usefulness of the Tropos4AS extensions.

Questions for both experiments:

t Time used for the task, in minutes

q1 Time spent for re-reading the modelling language tutorial in %

q2 Time spent for reading & understanding the example in %

q3 Time spent for modelling the example in %

Questions for the Tropos4AS experiment only:

q13 Time spent for goal modelling in %

q14 Time spent for environment & conditions modelling in %

q15 Time spent for failure modelling in %

Table 8.3: Questions on the time spent on the activities in the experiment.

8.4 Data Analysis

For the analysis of the main factors, we (1) mapped the aspects a1 to a7, identified

in Section 8.3.1, to one or more answers in the questionnaire, (2) applied a statistical

analysis to evaluate the null-hypothesis expressed for each aspect, and (3) we grouped

the aspects to answer to the two research questions RQ1 and RQ2.

The mapping between each aspect and the questions (reported in square brackets),

can be found in the Tables 8.5, 8.6, and 8.7). To evaluate the main factor (i.e. to

compare the two methodologies Tropos and Tropos4AS), the questions which were

repeated for both treatments ([q1]. . . [q12]) can be directly compared with each other.

Similarly, the answers in the post-questionnaire that are related, separately, to Tropos

and to Tropos4AS , can be compared with one another (postq43/44 and postq45/46).

The remaining answers, which are not directly related to any treatment or refer only

to Tropos4AS , will be compared with the value 3, i.e., the neutral answer in the Likert

scale used. The answers to the questions [q1], [q2] and [q3], capturing the relative time

spent on the reading and modelling activities in %, are multiplied with the overall time,

to obtain absolute time measures that can be compared between the two treatments.

173

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

8.4.1 Statistical evaluation

Proper statistical tests were selected to test if it is possible to reject the null-hypotheses

or not (in this case, no conclusion can be drawn neither on rejection nor on acceptance

of the hypothesis), based on the data obtained in the experimental tasks.

Considering the nature of the variables (they are not necessarily normally dis-

tributed), the limited number of data points (for most variables, two for each object),

and the design of the experiment (balanced, with both treatments applied to each

subject), we selected the non-parametric paired Wilcoxon test [Dalgaard, 2008] for

evaluating the main factor (Tropos versus Tropos4AS). Since we have paired measure-

ments for each subject, this test, which is based on a ranking of the differences in the

pairs, can be used. Moreover, the Wilcoxon test does not make any assumption on the

distribution in the sample.

We adopt a 5% significance level for the obtained p-values to determine if the null-

hypothesis can be rejected or not. The p-value denotes the lowest possible significance

with which it is possible to reject the null-hypothesis [Wohlin et al., 2000]. Hence,

we will reject a null-hypothesis only if for the probability that it is true, p, we have

p < 0.05.

Furthermore, for each data set we compute average (µ = 1
n

∑n
i=1 xi), median (the

numeric value separating the higher half of a sample from the lower half) and the

Cohen.d effect size (for a paired design: d = µ2−µ1

σD
, where σD is the standard

deviation of the pairwise differences) to analyse trends and to estimate the magnitude of

the obtained result, to facilitate its interpretation (as defined by Cohen [Cohen, 2004],

0.2: small, 0.5: medium, 0.8: large effect).

Co-factors are all factors different from the main factor (i.e. the two treatments),

that could possibly have an (undesired) impact on the results of the experiment. An

analysis to test if various co-factors (object, subject experience, subject position) had

a statistically significant impact on the results, is made by a two-way ANOVA (Anal-

ysis of Variance) test. The calculation of ANOVA bases on the idea that a test for

significance between means of different groups can be performed by comparing the two

variance estimates [Dalgaard, 2008]. If the obtained p-values are smaller than 0.05, we

have to reject our hypothesis that there was no relevant impact of a co-factor to the

experiment results.

The statistical analysis is carried out with the R tool5.

5R is a language and environment for statistical computing and graphics. R is a GNU project
published under GNU General Public License and can be obtained at http://www.r-project.org.

174

http://www.r-project.org

8.4. DATA ANALYSIS

8.4.2 Evaluation of model correctness

The evaluation of model correctness, for aspect a8, is carried our by an expert that

analyses each model and identifies the plans that would be activated and the goals

that fail in a certain scenario. Two scenarios were defined by the expert, for each of

the two systems, the first one (MQ1) characterising some normal system behaviour,

the second one (MQ2) including some exceptional happenings, see Table 8.4. Each

scenario contains 3 or 4 relevant concepts, which have to be covered by the subjects’

models6. The analysis of the 24 models obtained from the experiments (48 analyses

with a total of 180 concepts), counting how many concepts are covered correctly for

each scenario. The results are subjectively to some extent because of the big variety of

models and different modelling ideas.

Example WMM

1) The machine is fully filled with 4kg of delicate clothes and the“Energy saving”wheel

is in position 1 (most saving). Which plans will be activated? Expected result: Put 2

doses of detergent, set heating to 50◦C, recycle water internally (3 concepts).

2) The machine is filled with 1kg of very dirty clothes and the “delicate” knob is

pressed. The “Super Cleanness” wheel is in position 1 (most clean) and the “Energy

saving” wheel is in position 0 (less saving). Expected result: Put 1 dose of detergent,

set heating to 60◦C, drain out dirt water and refill with fresh water, inhibiting heating

(4 concepts).

Example PMA

3) The patient is very accurate and does not miss any meal and medicine. Which plans

are activated during a day? Expected result: Monitor breakfast eating, monitor lunch

eating, monitor dinner eating, monitor medicine intake (4 concepts).

4) The patient did not eat for breakfast. Now its time for lunch. Which plans will be

executed? Suppose the patient will finally not eat for lunch, also after reminding him.

Expected result: Monitor lunch eating, remind for lunch, “Eat lunch” fails and “Eat at

least 2 meals” fails, so call care assistant (4 concepts).

Table 8.4: The four scenarios used to validate model correctness (in brackets, the

number of concepts that are present in the scenario).

6Scenario 1 contains only 3 concepts, thus the result of the analysis is multiplied with 4
3 to be

comparable with the others.

175

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

8.5 Results and Interpretation

8.5.1 Adequateness of the experimental settings

Before analysing the main factors of the experimental study, we analyse if the ex-

perimental settings were adequate. The questionnaire contained several questions to

evaluate if the participants had difficulties with the modelling languages, if they worked

under time pressure, and if the object descriptions were clear. Moreover, the subject’s

position and their experience with Tropos is asked, to be able to calculate the influence

of these co-factors.

Question median reject

null-hyp?

p-value

q4 The explanation of example clear to me 2 Y 0.0024

q6 I had enough time for accomplishing the task 2 Y 0.00012

preq15 I understood the basic notions of Tropos

modelling

2 Y 0.0014

preq16 The visual notation used in Tropos is clear 1.5 Y 0.00095

preq17 The visual notation used in Tropos4AS is

clear

2 Y 0.0034

postq47 I had no difficulties in using the Tropos4AS

extensions

2 Y 0.02

preq48 I feel to have used the full potential of the

Tropos4AS modelling concepts

3 N 0.6

Table 8.5: Results of the statistical analysis (Wilcoxon) for the adequateness of the

experimental settings: medians and p-values for rejecting the null-hypotheses.

For each of the questions in Table 8.5, regarding the adequateness of the settings,

we define a null-hypothesis of this form: The answer to the question is not significantly

more positive than“not certain” (the neutral answer), i.e. the corresponding value 3. In

the results, in Table 8.5, it can be observed that the median of 6 out of 7 questions we

investigated, is 1.5 or 2. We can also observe that, by the statistical analysis performed

(Wilcoxon), except for question [postq48], for all questions in Table 8.5 the p-values

are smaller than 0.05, and thus the relative null-hypotheses can be rejected. Thus we

can say that, although the subject experience with Tropos is small on average (result

for question [preq13]), the initial understanding of both modelling languages seems

to have been adequate (questions [preq15], [preq16], and [preq17]). The subjects did

176

8.5. RESULTS AND INTERPRETATION

also not reveal particular difficulties in using the modelling concepts introduced with

Tropos4AS [postq47]. However, many of the subjects had the feeling that the novel

modelling concepts could be potentially better used [postq48].

Also, the objects of the experiment were adequate, since they were well-understood

by the subjects [q4]. Moreover, the objects were considered nearly equally difficult (the

PMA system was considered more difficult to model by 5/8 of the subjects) - this is

also proven by co-factor analysis, later in this section. Most subjects also took enough

time for completing the experiment (note that there was no fixed time limit given).

Therefore, we can claim that in overall the experimental settings were adequate.

8.5.2 Main factor: results and interpretation

Aspect median

Tropos

median

Tr4AS

reject

null-hyp?

p-value Cohen-d effect size

a1 [time] in minutes 49.5 75 Y 0.018 0.83 (large)

a2(a) [q10] 3.5 3 N 0.6 0.18 (negligible)

a3(a) [q1] in minutes 3.65 9.35 Y 0.0046 0.87 (large)

a3(b) [q2] in minutes 24.6 27.3 N 0.4 0.21 (small)

a3(c) [q3] in minutes 21.3 23.25 N 0.47 0.29 (small)

a4(a) [postq43postq44] 3 3 N 0.88 0 (small)

a4(b) [q5] 3 3 N 0.42 0.27 (small)

a5(a) [postq45postq46] 4 2 Y 0.023 1.7 (large)

a5(b) [q8] 3 2.5 N 0.2 0.42 (small)

a6 [q11] 3 2 Y 0.03 0.62 (medium)

a6 [q12] 4 2 Y 0.0039 0.68 (medium)

Model correctness:

a8 3 4 Y 0.005 0.7 (medium)

Table 8.6: Results of the statistical analysis (comparison of Tropos vs. Tropos4AS) with

Wilcoxon and rejection of the null-hypothesis. Related questions in square brackets.

We now give results for the main factor (the approach used), comparing the two

treatments. The results of the statistical analysis are shown in Table 8.6 (for the

results obtained by a comparison of values available for both modelling languages),

and in Table 8.7 for the results of the questions regarding only Tropos4AS , compared

with the neutral response (3 in the 1 . . . 5 Likert scale). Figure 8.2 reports boxplots for

177

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

Median reject null-hyp? p-value Cohen-d effect size

a2(b) [postq53] 2 Y 0.0043 1.16 (large)

a7(a) [q16] 2 Y 0.002 1.6 (large)

a7(b) [q17] 2 Y 0.006 1.04 (large)

a7(c) [postq49] 2 Y 0.001 2.1 (large)

Table 8.7: Results of the statistical analysis (values for Tropos4AS only) with Wilcoxon

and rejection of the null-hypothesis

some of the aspects, giving a picture of the median and distribution of the results.

In the following, we interpret the results for each of the 8 aspects (a1,. . . ,a4 and

a5,. . . ,a8), which were identified in Section 8.3.1, to detail the two research questions

RQ1 and RQ2. Finally, the results are aggregated to give an answer to these research

questions.

Research question 1: effort

(a1) Modelling an example with Tropos4AS requires more time than modelling

it with Tropos (75 minutes vs. 50 minutes for the median, 51 vs. 72 for the average).

With a p-value of 0.018 we can reject the null-hypothesis H0a1, since we adopted a

significance level of 0.05.

(a2) However, the subjects perceive that the effort of modelling with Tro-

pos4AS is not higher than with Tropos ([q10]). This fact cannot be proven sta-

tistically (we cannot reject H0a2), but the medians (3 vs. 3.5) show a trend that the

effort is even slightly lower. We can speculate that giving the possibility for e.g. an

explicit modelling of conditions and of the exceptional workflow enables to express

the requirements in a more intuitive way, and thus decreases the perceived modelling

effort. Moreover, the subjects agree that it is worth to put additional effort in mod-

elling details of the requirements with Tropos4AS , with a median of 2 and statistical

significance (data in Table 8.7) ([postq53]).

(a3) Tropos4AS requires more effort for reading the language specification

(question [q1]), while no statistically significant difference exists for the

other activities ([q2] and [q3]). This result is also confirmed by the medians and the

Cohen-d effect sizes: for reading and understanding the example, and for modelling it,

the time difference is negligible (11% in reading: median of 24.6 minutes for Tropos

178

8.5. RESULTS AND INTERPRETATION

vs. 27.3 for Tropos4AS ; 3% in modelling: 21.3 minutes for Tropos vs. 23.25 for

Tropos4AS). The time averages, reported graphically in Figure 8.1, show the same

trend (a huge difference in reading the language specification, but limited differences

for requirements reading and modelling), albeit not to the same extend, because the

arithmetic average is sensitive with respect to outliers. However, with two negative

evaluations we cannot reject H0a3.

(a4) Tropos4AS gives not more difficulties than Tropos for modelling the require-

ments of the object. This result cannot be confirmed statistically, by a comparison of

[postq43] (regarding Tropos) and [postq44] (regarding Tropos4AS), but we obtained

identical medians and averages, and thus also Cohen’s effect size is zero. The subjects

perceived the same or even slightly less difficulty in using Tropos4AS than Tropos [q5].

This result can be explained taking into account further comments of the participants:

the additional modelling concepts introduced with Tropos4AS seem not only to bring

higher complexity, but also to facilitate expressing the modelling intentions. Thus, we

cannot reject H0a4.

Considering all these four aspects, we have to answer in affirmative way to

the research question RQ1:

Yes, the effort required to apply Tropos4AS is higher than the effort required

to apply Tropos. However, the additional effort is not perceived by the users

as such. They do not face particular difficulties, and spent significantly more

time only for studying the new Tropos4AS modelling concepts.

Research question 2: effectiveness

(a5) The participants agree that Tropos4AS produces models more expressive than

Tropos models [postq45postq46]. Moreover, although, the relative null-hypothesis H0a5

cannot be rejected, the medians and the effect size show a trend that the participants

were more confident for Tropos4AS , than for Tropos , that the concepts of the modelling

language are detailed enough for modelling the requirements [q8].

(a6) Tropos4AS is perceived to be more effective than Tropos , for producing models

that are concrete and can guide the developers to the implementation [q11, q12]. H0a6

can be rejected with statistical significance, with p-values of 0.03 for [q11] and 0.0039

for [q12].

179

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

(a7) The subjects agree that enriching Tropos is useful for modelling adaptivity (in

general, and also for both the conditions and the failures) [postq49,q16,q17]. H0a7 can

be rejected.

(a8) The analysis of model correctness performed evaluating the relative scenarios

(Table 8.4) shows with statistical evidence (i.e., with a p-value of only 0.005, H0a8

can be rejected), that the models produced with Tropos4AS are more correct than

the models produced only with Tropos . The medians, 4 of 4 for Tropos4AS and 3 of 4

for Tropos , and the averages (2.7 for Tropos and 3.5 for Tropos4AS) confirm this result.

Considering all these four aspects, we can answer in an affirmative way to

the research question RQ2:

Yes, Tropos4AS allows the users to produce models more effective than Tro-

pos for representing requirements of an adaptive system.

Figure 8.1: Comparison of the averages of times spent in the different activities: reading

the language specification, reading the requirements and modelling.

8.5.3 Additional results

An additional analysis of the results shows various findings that are not directly re-

lated to the research questions, but are important for understanding how Tropos and

Tropos4AS are used in practice, by both experienced and novice software engineers.

The participants spent from 27 to 90 minutes for the Tropos assignment, and from

37 minutes to 110 minutes for Tropos4AS , with high, but very similar variances. More

details can be seen in the boxplots in Figure 8.2, which give an immediate graphi-

180

8.5. RESULTS AND INTERPRETATION

Time overall Time read method % [q1] Time read example % [q2]

Time modelling % [q3] [postq45] vs. [postq46] Correctness (evaluated)

Figure 8.2: Boxplots with median, lower and upper quartiles, minimum, maximum,

and eventual outliers, for selected questions. Differences in the range of values, in their

distribution and medians become visible.

cal impression of the differences. They show the median, upper and lower quartile7,

minimum, maximum, and eventual outliers, for selected results. On average, for both

treatments together, the participants spent 47% of their time with the reading of re-

quirements and only 42% with modelling. 11% were used for looking at the language

specification, but this time could for sure be reduced with a better training. The times

for Tropos and Tropos4AS can be compared with the help of Figure 8.1. Moreover,

creating Tropos4AS models, on average 59% of the time was used for goal modelling,

25% for conditions modelling and only 16% for failure modelling.

The subjects experienced only low difficulties in using the new extensions, but were

not certain to have used the full potential of them. In their opinion it is worth putting

effort in modelling such details, for supporting the developers. For both treatments,

they had some difficulty in modelling softgoal contributions (median 3), but they agreed

7Quartile: the region containing, respectively, the lower 50% of values higher than the average, and
the upper 50% of values lower than the average

181

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

on the usefulness of goal decomposition (median 2 on the 1. . . 5 Likert scale).

The subjects used most extensions as expected, accordingly to the modelling

philosophy. They only had some difficulty with the semantics of the different types

of condition and goals. This was expected due to the brief training and the missing

knowledge about the implementation. However, the correctness of the models created

with Tropos4AS is significantly higher (with a median of 4, the maximum value) com-

pared to the Tropos models. With one exception, the models covered the evaluation

scenarios by more than 66%, as it can be seen in the bottom right boxplot of Figure 8.2.

8.5.4 Co-factors

We identified three relevant co-factors and analysed if they could have an undesired im-

pact on the experiment: the position of the subject (joined in two groups: researchers

+ post-docs and students + programmers), the experience in working with Tropos (low

or high) and the objects of the experiment (WMM and PMA). By an ANOVA (analy-

sis of variance) test, we analyse the presence of statistically significant (but undesired)

interaction between a co-factor and the main factor (i.e. the two treatments). More-

over, the ANOVA test also reports (with a p-value) if there are statistically significant

differences in the test results, partitioning them not by treatment, but by one of the

co-factors.

The three co-factors seem to have had only a very limited impact on the experiment.

In Table 8.8 we report the co-factor analysis relative to the experience of the subjects

in working with Tropos .

Observing the p-values in the third row of Table 8.8, we can see that the subjects

which indicated to be experienced with Tropos , (notice that this set is nearly congruent

to the set of researchers and post-docs), produce (in general, despite the treatment)

more correct models than students and programmers (aspect a8). Moreover, this set of

subjects perceives less effort in modelling (aspect a2) and gives stronger agreement to

the claim that the concepts of the modelling languages are detailed enough to model

the requirements (aspects a5 and a6). However, despite these results, no statistically

significant impact can be seen, considering the interaction between the experience and

the treatment, i.e. the p-values in row 4 of Table 8.8. This can be explained by the

random, even distribution of the experienced participants in the experiment groups.

An analysis of the other co-factors gave similar, but statistically less significant re-

sults. Only one variable, for aspect (a4b), gave a significant difference in the interaction

182

8.5. RESULTS AND INTERPRETATION

between object and treatment (p-value = 0.03). This means that the participants had

slightly more difficulty in modelling the personal monitoring agent (PMA) example.

Aspect Treatment Experience Treatment:Experience

a1 [time] 0.42 0.75 0.52

a2(a) [q10] 0.34 0.0049 0.74

a2(b) [postq53] x 0.89 x

a3(a) [q1m] 0.003 0.14 0.91

a3(b) [q2m] 0.44 0.69 0.7

a3(c) [q3m] 0.32 0.71 0.41

a4(a) [postq43postq44] 1 0.12 0.67

a4(b) [q5] 0.35 0.07 0.74

a5(a) [postq45postq46] 0.0005 0.58 0.052

a5(b) [q8] 0.14 0.02 0.21

a6 [q12] 0.0061 0.024 0.17

a6 [q11] 0.02 0.3 0.69

a7(a) [q16] x 0.63 x

a7(b) [q17] x 0.56 x

a7(c) [postq49] x 0.65 x

a8 0.0027 0.04 0.91

Table 8.8: Co-factor analysis (ANOVA) for the 8 aspects, for the interaction between

the treatment and the subject’s experience. The table reports the p-values obtained

by an analysis regarding the treatment (these values are expected to have the same

trend as the results of the Wilcoxon test), regarding the subject’s experience only, and

regarding interaction between the treatment and the experience. Aspect a7 contains

only values for Tropos4AS .

8.5.5 Threats to validity

Conclusion validity The experiment has a balanced design, with both treatments

applied to each subject, to lower the effect of the different experience of the participants.

Proper statistical tests were performed to reject the null-hypotheses. We used the

non-parametric Wilcoxon test and ANOVA (which is quite robust with respect to

the non-normality of the distribution of the samples) and no specific assumptions on

183

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

the distribution of the samples. The medians and Cohen’s effect size confirm the

results. We make available the anonymised raw data of the experiment online (http:

//selab.fbk.eu/morandini/T4ASmodellingexperiment_rawdata.zip).

Internal validity We adopted a paired and balanced design to mitigate learning

effects and group assignment. The number of tests (24, two for each subjects) is rea-

sonably high to get statistical validity. The subjects had different background knowl-

edge, but the division into groups was balanced. This is confirmed by an analysis of

various co-factors that did not give any suspected result that would reduce internal

validity. Also, the average times spent for each treatment and the correctness of the

results showed that the subjects were still motivated in the second laboratory of the

experiment.

Construct validity Half of the subjects did not have any reasonable knowledge

of the Tropos methodology, but the differences in performance between Tropos and

Tropos4AS modelling were similar to Tropos experts (proven by co-factor analysis).

Moreover, the modelling languages were mostly used in a correct way, thus we can

conclude that the short tutorial and the available documentation were adequate.

The experiment reflects the use of the modelling languages, not the modelling pro-

cess of the methodologies. A big part of our measures results from subjects’ opinions

and gives thus a subjective impression of the object under study. Nevertheless we have

an objective measure of the time for RQ1, and RQ2 is supported by a measure of the

model correctness, performed by an expert.

For achieving completely objective results, we would have had to limit ourselves to

a small piece of modelling, or to a comprehension task. Both of these are not suitable

for the aim of understanding how software engineers would accept and use the newly

proposed extensions. The objects under study (i.e. the systems to model) are small,

even if not trivial. In fact they required a quite high understanding and modelling

effort. Much more complex objects would not be treatable in such an empirical study.

Performing an industrial case study was not considered for this primary evaluation of

a new methodology. However, such a study would give complementary results to an

empirical study with subjects.

External validity All subjects are part of a single research group, but most of

them are not working in requirements engineering or modelling. Because of similar

results achieved with expert and non-expert participants, we expect that these results

184

http://selab.fbk.eu/morandini/T4ASmodellingexperiment_rawdata.zip
http://selab.fbk.eu/morandini/T4ASmodellingexperiment_rawdata.zip

8.6. EXPERIMENT 2: COMPREHENSION

can be generalised to subjects without a deep background on Tropos (e.g. bachelor

or master students) or to experts in goal modelling. Only further studies, explicitly

focussing on these differences (e.g. as in [Ricca et al., 2010]) could evaluate this. It

remains doubtful if professional, traditional engineers would give similar results for the

effectiveness of both the methodologies. This would be a threat to Tropos in general

and not specifically to the extensions in test.

However, our evaluation is not intended to get feedback on how subjects perform

with Tropos , but on how performance is improved with the extensions introduced. To

encourage a repetition of the study with different subjects, the replication package,

containing the instructions and the work packages for the subjects, is available online

at http://selab.fbk.eu/morandini/T4ASmodellingexperiment_package.zip,

8.6 Experiment 2: Comprehension

Having previously examined the effort of modelling and the effectiveness of the models

created, the goal of the second part of this empirical study is to examine the compre-

hensibility of models created by applying the two methodologies.

The experiment, lasting about thirty minutes in total, consists of several compre-

hension questions, which have to be answered by the subjects in a concise time, using

both the model and the textual requirements specification, and additional questions to

strengthen the results of the analysis. It is carried out with the same subjects, objects

and paired, counterbalanced design. The participants were reassigned randomly to the

groups in Table 8.1.

8.6.1 Research questions and hypotheses

With the goal of evaluating the comprehensibility of Tropos4AS models in comparison

to traditional Tropos models, we define the following research question:

RQ3: Do Tropos4AS models significantly improve the comprehension of the require-

ments of a self-adaptive system, in comparison to Tropos models?

The research question has been translated, with the expected direction (they are

one-tailed), to the corresponding null-hypothesis H03 and alternative hypothesis Ha3:

• H03: The comprehensibility of system requirements cannot be significantly im-

proved by using Tropos4AS models, in comparison to Tropos models.

185

http://selab.fbk.eu/morandini/T4ASmodellingexperiment_package.zip

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

• Ha3: The comprehensibility of system requirements can be significantly im-

proved by using Tropos4AS models, in comparison to Tropos models.

8.6.2 Experiment design and discussion

To evaluate the comprehensibility of the two modelling languages, we set up an ex-

periment to measure the subjects’ effectiveness of retrieving correct information from

a model. However, we have to consider that Tropos4AS includes various additional

concepts to Tropos . Thus, the resulting models are inevitably more complex. How-

ever, therefore, as also shown in the previous part of the experiment, they are more

expressive and contain more details of the requirements than Tropos models.

To achieve a fair comparison of the comprehensibility, the same amount of details

must be present for both treatments. Basing the comparison only on models, this would

be problematic in our case, since Tropos4AS is a specific extension of Tropos . Thus,

we provide the models together with a textual summary of the systems’ requirements

specifications. This represents a reasonably realistic scenario in which a modeller uses

both the models and the specifications to understand a system.

The experiment design bases on the assumption that the comprehension tasks can

be carried out faster by looking at the models than by reading the textual specification.

We therefore give a strict time limit of 12 minutes for each laboratory, to encourage

the use of the diagram and avoid that the tasks are resolved directly by reading the

specifications. Performing a pilot study prior to the execution of the experiment (with

different subjects), we recognised that 12 minutes were an appropriate time for our

needs.

Since we also hand out the textual requirements specifications, we have also

to evaluate our assumption, by asking the subjects for the amount of information

extracted from the model and from the textual specifications. Hence, research question

RQ3 will be covered by the following questions:

RQ31: Can the effectiveness of retrieving correct information (in limited time) be

increased by combining the textual specifications with Tropos4AS models, than when

combining them with Tropos models?

RQ32: Is a Tropos4AS model more useful than the Tropos model, to extract the

information asked?

186

8.6. EXPERIMENT 2: COMPREHENSION

To evaluate this question in our experimental setup, we analyse the following aspects

a, b and c. For the sake of conciseness, we do not report here the null- and alternate

hypotheses for each aspect.

a) the correctness of the information extracted by the subjects from the models and

the textual specifications

b) the amount of information extracted from the model

c) the amount of information extracted from the textual requirements specification

Objects For this second experiment, we have deliberatively chosen to use the same

objects as in the first experiments, that is, the requirements of the systems WMM

and PMA. Executing the experiment about three months after the first one, the par-

ticipants will remember the context, but no details.

8.6.3 Experiment procedure and material

The experiment consists of a short introduction, and two laboratories lasting exactly

12 minutes, each one followed by a short questionnaire with four questions. The labo-

ratories are done in small groups, in a time frame of approximately 30 minutes.

Prepared input material To perform the experiment, each participant receives the

following material, for each laboratory (a complete sample is shown in Appendix A,

page 235:

- A summary of the modelling language to use (either Tropos or Tropos4AS).

- The requirements specification of the system (WMM or PMA).

- The model of the WMM or PMA system, constructed either with Tropos or

Tropos4AS .

- 5 model comprehension questions, either for WMM or PMA.

- A short questionnaire.

The system models handed out to the subjects are of fundamental importance for the

success of the comprehension experiment. To ensure a fair comparison, for creating

them, we observed the following process.

We analysed the models obtained from the previous experiment and constructed

both the Tropos and Tropos4AS models, taking ideas and model parts from models

built by the participants during that experiment. We then corrected these models,

187

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

to correctly capture a high number of requirements (hence obtaining a sort of “gold

standard” model written by an expert), but still respecting the characteristics of the

modelling language. The four resulting models, two for each WMM and PMA, can be

looked up in Appendix A, page 237.

The model comprehension questions (Appendix A, page 239) are general questions

on the requirements specifications. The main parts of the answers is included in the

Tropos4AS and Tropos models. Remaining details can be found in the 1-page textual

requirements specifications.

Experiment task The subjects should answer the model comprehension questions.

This can be done by looking at the goal model (either Tropos or Tropos4AS) assigned

to them, or, if the answers are not in the model, or the subjects encounter difficulties

in extracting them, by searching them in the textual specifications. Each task has a

strict time limit of 12 minutes. After it, the short questionnaire (Table 8.9) should be

filled in.

cq1 I had enough time for accomplishing the tasks

21 strongly agree 22 agree 23 not certain 24 disagree 25 strongly disagree

cq2 The comprehension questions were clear

21 strongly agree 22 agree 23 not certain 24 disagree 25 strongly disagree

cq3 I was able to extract the asked information from the goal model

21 nearly all 22 most 23 half 24 somewhat 25: nearly nothing

cq4 I needed to search the information in the textual requirements

21 nearly all 22 most 23 half 24 somewhat 25: nearly nothing

Table 8.9: Comprehension experiment: questionnaire.

8.6.4 Variables and measures

The independent variable of the study is again the modelling language used, considering

the treatments Tropos and Tropos4AS . The dependent variables are the correctness of

the subjects’ answers to the comprehension questions and the amount of information

extracted by the subjects from models and textual requirements.

To measure the comprehension level and test the hypotheses, we assessed the an-

swers to the comprehension questionnaire. Since we expected each answer in terms of a

list of elements, we evaluated each answer of the subjects by measuring precision, recall

and f-measure. In particular, considering Answs,i,t, the set of elements mentioned in

188

8.6. EXPERIMENT 2: COMPREHENSION

the answer given with treatment t by a subject s in question i, and ExpAnswi, the

set of elements we expected to be in the correct answer for question i, we measured

precision, recall and f-measure, defined as follows:

Precisions,i,t =
|Answs,i,t ∩ ExpAnswi|

|Answs,i,t|

Recalls,i,t =
|Answs,i,t ∩ ExpAnswi|

|ExpAnswi|

F −measures,i,t =
2 · Precisions,i,t ·Recalls,i,t
Precisions,i,t + Recalls,i,t

These three measures represent continuous variables in the range [0,1]. Precision

indicates the fraction of correct elements out of the elements in the answer, whereas

recall indicates the fraction of relevant elements, that were retrieved. The F-measure

combines these two measures, by calculating their harmonic mean, into a single measure

which represents the effectiveness of the answer retrieval. The average of each of these

measures, by subject, for the 5 questions, has been used for the statistical analysis of

the result, e.g.:

Avg(Precision)s,t =

∑5
i=1 Precisions,i,t

5

where {Avg(Precision)s,T1}, for subjects s = 1 . . . n and treatment T1 (e.g. Tro-

pos), is be the set of data in input to the statistical analysis.

We additionally asked the subjects 4 questions in a questionnaire. Two questions

(cp3, cp4) concern the source (model and/or requirements specification) used by a

subject to extract the information required to answer each question and are defined on

a scale from 1:nearly all to 5:nearly nothing of the amount of information extracted

from the models or the textual requirements (see Table 8.9). The questions cp1 and

cp2 concern the adequateness of the experimental settings (i.e., the time to fill the

questionnaire and the clearness of the questions) and use ordinal Likert scale variables,

defined on a scale from 1 to 5, as follows: 1 strongly agree; 2 agree; 3 not certain

(neutral answer); 4 disagree; 5: strongly disagree.

Notice that we fixed the time to answer the questions, thus time is not considered

as a depended variable in this experiment. Possible co-factors of the experiment might

be the object, the subject experience and position, and the laboratory.

189

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

Remark Precision, recall and f-measure cannot be defined if the respective denom-

inator is 0. This could happen in two cases: (1) the set ExpAnswi is empty (i.e., no

correct answer exists for question i); or (2) the set Answs,i is empty (i.e., the subject

s gives no answer to question i). In our case, ExpAnswi is never empty, thus only the

second case could happen, making the precision (for this specific subject and question)

undefined in some cases.

In these cases, we decided to set precisions,i = 0, with the aim of preserving the

meaning of the precision measure and also, at the same time, taking into account

the not given answer. However, as a double-check, we repeated the analysis using

precision, recall and f-measure computed considering the entire set of answers given by

each subject (i.e., we put together all answers given by the subject s). In other terms,

for each subject we compute Precisions, Recalls and F − measures using: Answs,

the set of the sets of elements in the answers given by a subject s; and ExpAnss,

the set of the sets of correct answers. This approach to compute precision, recall and

f-measure is often used in literature (e.g., [Bacchelli et al., 2010, Antoniol et al., 2002])

to overcome the problem of having“undefined”measures for precision and recall. In our

case, however, the main disadvantage of this second approach is, that having different

sets of elements in the correct answer expected for each question, we could not give

different weights to the answers given by the subjects.

Hence, considering that we have few cases in which subjects cannot answer to our

questionnaire, we prefer to focus on the first computation method for precision, recall

and f-measure, and using the second method only to double-check the results.

8.6.5 Statistical evaluation

To analyse the results with respect to the main factor – considering the nature of the

variables (Precision, recall and f-measure are continuous in the range [0,1]), the limited

number of data points, and the paired experimental design – we use the paired, non-

parametric Wilcoxon test, adopting a 5% significance level. Where useful, we use the

Cohen.d effect size to estimate the magnitude of the results obtained (see Section 8.4.1

for details).

To analyse the four questions cq1-cq4 of the questionnaire we adopted the following

strategy: Considering the nature of variables (1-5 on an ordinal scale) and the limited

number of data points, for each of the questions we applied the paired non-parametric

Wilcoxon test, adopting a 5% significance level, in two analyses:

(A) Comparison of the whole set of answers with the threshold 3, representing the

190

8.7. RESULTS AND INTERPRETATION

neutral answer in the Likert scale used.

(B) Comparison of the answers given by the use of Tropos4AS with those given by the

use of Tropos .

Additionally, for better studying cq3 and cq4, we performed a further analysis:

(C) We subdivided the answers into two groups: G1 (answers < 3) and G2 (answers

> 3). The answers equal to 3 have been added to G1 for cq3 and to G2 for cq4,

according to the expected trend. Then, we counted the answers of each group, G1

and G2, relative to the two treatments (Tropos vs. Tropos4AS).

Analysis (C) has additionally been applied considering both the answers to cq3 and

cq4, grouping in G1 all the subjects having answers < 3 in cq3 and at the same time

answers > 3 in cq4. The remaining set of subjects is part of the group G2.

To conclude the experiment, we applied a two-way ANOVA (analysis of variance)

test to analyse if there is a statistically significant impact of various co-factors (the

laboratory, the objects, subject experience and position) on the results. Results are

reported in Section 8.7.3.

8.7 Results and Interpretation

8.7.1 Adequateness of the experimental settings

Before analysing the main factors, we analyse if the experimental settings were ad-

equate. The questionnaire contained two questions cq1 and cq2 to evaluate if the

participants worked under time pressure, and if the example descriptions were clear

(ref. to Table 8.9). The associated high-level research questions (RQcq1: Is the time to

fill the questionnaire adequate? and RQcq2: Is the clearness of the questions adequate?)

result to the following Hypotheses:

• Null-hypothesis H0cq1: The time to fill the questionnaire is not adequate.

• Alternate hypothesis Hacq1: The time to fill the questionnaire is adequate.

• Null-hypothesis H0cq2: The clearness of the questions is not adequate.

• Alternate hypothesis Hacq2: The clearness of the questions is adequate.

191

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

Question (see Table 8.9) median reject null-hyp? p-value

cq1 adequateness of time 2 Y 0.049

cq2 clearness of questions 2 Y 0.000015

Table 8.10: Results of the statistical analysis (Wilcoxon) for the adequateness of the

experimental settings.

We can define the answers “strongly agree” and “agree” (1 and 2 on the Likert scale

used) as adequate , comparing the answers with a threshold of 3 (the neutral answer).

The p-values (in Table 8.10) obtained by applying the Wilcoxon test, lead us to the

following comments:

The hypothesis H0cq2 can be rejected, with a very small p-value of 1.5 · 10−5, thus

we can state that the comprehension questions have been perceived to be clear. The

time has been perceived as adequate (p-value 0.049), even if the subjects have the

feeling that more time was better for answering the questions. However, a tight time

limit was selected on purpose, to avoid that the participants are able to read the whole

textual specifications.

Also, the subjects perceived a bit less time pressure when using Tropos4AS (median

2) than Tropos (median 2.5), but these differences are not statistically significant.

Overall, we can confirm that the experiment setting have been perceived as adequate

by the subjects.

8.7.2 Main factor: results and interpretation

To give an answer to the research question RQ3 – understanding if Tropos4AS models

improve the comprehension of the requirements of a system – now we analyse the results

of the statistical analysis.

The analysis of the answers to the comprehension questions was repeated using

both methods we defined in Section 8.6.4, to compute precision, recall and f-measure.

However, considering that: (1) we obtained only one case (out of 120 received answers)

in which a subject gave no answer for a question (out of the ten considered per sub-

ject); and (2) the results we obtained repeating the analysis with both methods are

very similar (only minor differences exist), we decided to omit the description of the

results obtained using the second method, and describe the results obtained by the

first calculation method, considering the average of precision, recall and f-measure on

all questions, for each subject. The second computation method confirms the results

obtained. Figure 8.3 shows the boxplots of the obtained results for precision, recall,

192

8.7. RESULTS AND INTERPRETATION

and f-measure.

Precision Recall F-measure

Figure 8.3: Boxplots for the distribution of the averages per subject, for precision,

recall and f-measure of the single answers to the comprehension questions.

Aspect median

Tropos

median

Tr4AS

reject

null-hyp?

p-value Cohen-d effect size

Precision 0.7 0.9 Y 0.021 0.74 (medium)

Recall 0.58 0.75 Y 0.020 0.82 (large)

F-measure 0.65 0.81 Y 0.008 0.87 (large)

Table 8.11: Comprehension test: results of the statistical analysis for the main factor,

with a paired Wilcoxon test.

By looking at Table 8.11, we observe that Tropos4AS significantly improved the

precision of the subject answers (referring to the median, form 70% to 90%). This

result is statistically relevant and supported by a medium effect size. In other terms,

from a Tropos4AS model (together with the textual requirements specifications), in a

fixed, limited time, “more correct/precise” information can be extracted, in comparison

to a Tropos model (together with the same specifications).

Tropos4AS also improved the recall of the subjects’ answers with statistically signif-

icant evidence (form 58% to 75% for the median). Also this is a statistically supported

result. In other terms, information extracted from a Tropos4AS model can be expected

to be “more complete” with respect to those extracted from a Tropos model.

Correspondingly, Tropos4AS improved, with statistical significance, also the f-

measure of the subject answers (form 65% to 81% for the median), denoting the general

effectiveness of information retrieval.

193

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

Therefore, we can answer with statistical evidence in an affirmative way

to the research question RQ31:

Yes, a Tropos4AS model, together with the textual specifications, is more

effective for retrieving correct information than a Tropos model, together

with the same textual specifications.

To understand if the Tropos4AS model was more useful to extract the information

asked, than the Tropos model (research question R32), we analyse the answers given to

cq3 and to cq4 and moreover also to cq3 and cq4 together, as defined in Section 8.6.5

(B) and (C).

The Tropos4AS models seem to contain information more useful to answer the

questions. In particular, the results of the analysis (analysis B in Section 8.6.5), shown

in Table 8.12, show for question cq3 that the amount of information extracted from

Tropos4AS models is (quantitatively) larger than the amount extracted from Tropos .

Similarly, the results for question cq4 confirm that the amount of the information ex-

tracted from textual requirements is (quantitatively) lower when using Tropos4AS than

when using Tropos models. These results are confirmed with statistical significance (p-

value < 5%) and a large effect size. Figure 8.4 shows this distribution graphically. A

median of 1 (“nearly all”) for the information extracted from the Tropos4AS model, in

comparison to a median of 3 (“half”) for Tropos , shows that not only the Tropos4AS

answers are more correct (RQ1), but also that they were retrieved to a much higher

amount from the models. The use of the textual requirements specifications (qc4) by

the subjects seems to be quite limited in general, with a median of 4 for Tropos4AS

and Tropos together. Comparing Tropos4AS models and Tropos models, our hypothe-

sis that the subjects were able to extract most of the information from the Tropos4AS

model, is confirmed (median=4.5), while using the Tropos model, half of the informa-

tion, on average, had to be extracted from the textual specifications (median=3).

Aspect median

Tropos

median

Tr4AS

reject

null-hyp?

p-value Cohen-d

effect size

expected

value

cq3 (model) 3 1 Y 0.015 0.8 (large) low

cq4 (text) 3 4.5 Y 0.038 1.2 (large) high

Table 8.12: Analysis (Wilcoxon) of the main factor, for the amount of information

extracted from the model (cq3) and from the specifications (cq4).

To show more concrete results, we apply the analysis C, defined in Section 8.6.5.

For both questions cq3 and cq4, we group the “positive” answers (from the viewpoint

194

8.7. RESULTS AND INTERPRETATION

cp3(model) cp4(text)

Figure 8.4: Boxplots comparing the main factor, for the questions cp3 (amount ex-

tracted from the model) and cp4 (amount extracted from the textual specifications.

Y-axis: 1 (nearly all) to 5 (nearly nothing).

of the use of the model) to the respective sets G1 and G2. The results, shown in

Table 8.13, confirm the previous ones. 4 out of 12 subjects (33.3%) found the Tropos

models (almost) sufficient to answer the questions while 8 out of 12 (66.6%) were not

able to extract from the models more than half of the information asked, while the

Tropos4AS model was (almost) sufficient for 10 out of the 12 subjects (83.3%).

On the other side, 9 out of 12 subjects (75%) that used Tropos models, needed to

extract a significant amount of the answers from the textual requirements specifications,

while only 2 out of 12 subjects (16.6%) that used the Tropos4AS models needed them

for a substantial part of the answers to the comprehension questions.

To ignore eventual false positives, in a last analysis we combine the questions cq3

and cq4. Only the subjects that gave a “positive” answer to both questions for a

treatment, are grouped to the group G1+, while all the rest is put to G2+. In other

words, the subjects in G1+ found the models almost sufficient to answer the questions

and used the requirements only partially.

The results in the lower part of Table 8.13 show that 3 out of 12 subjects (25%)

found the Tropos models sufficient to answer the questions while using only partially the

requirements. On the other hand, 10 out of 12 subjects (83.4%) found the Tropos4AS

models sufficient to answer the questions and used only partially the requirements.

Combining the results of the evaluation of the questions cq3 and cq4, we can affirm

that in the experiment, the Tropos4AS model was more useful than the Tropos model,

to extract the information asked (RQ32).

Summing up, we can answer with statistical evidence to the main research

195

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

cq3 G13 (answers<3) G23 (answers ≥ 3)

Tropos 4 8

Tropos4AS 10 2

cq4 G14 (answers≤ 3) G24 (answers>3)

Tropos 9 3

Tropos4AS 2 10

cq3 & cq4 G1+ (cq3: answers < 3

∧ cq4: answers > 3)

G2+ (all others)

Tropos 3 9

Tropos4AS 10 2

Table 8.13: Count of subject answers, grouped around the threshold 3.

questions: Tropos4AS is more effective than Tropos to support retrieving correct

information from the requirements specifications (RQ31); in this evaluation, a substan-

tial part of the information was extracted from the models. Specifically, Tropos4AS

models were more useful than Tropos models, to extract the information asked (RQ32).

Considering these results, we can reject the null-hypothesis H03 and answer

in an affirmative way to the research question RQ3:

Yes, the comprehensibility of system requirements can be significantly in-

creased by using Tropos4AS models, in comparison to Tropos models.

8.7.3 Co-factors

We investigated the impact of four main co-factors in the experiment: the laboratory

(first vs. second), the position of the subject (researchers vs. PhD-students & pro-

grammers), the experience of the subjects in working with Tropos (low vs. high)8, and

the objects of the experiment (WMM vs. PMA). This analysis was concluded without

observing any kind of statistically relevant impact on the main factor, with respect to

the treatment, see the results in Table 8.14.

Only the experience of the subjects with Tropos shows a small, but not statistically

confirmed impact, when considered with respect to the treatment. From the interac-

8Position and experience of each subject have been enquired in the first experiment.

196

8.7. RESULTS AND INTERPRETATION

Treatment Laboratory Treatment:Laboratory

Precision 0.08 0.75 0.69

Recall 0.048 0.93 0.81

F-measure 0.044 0.82 0.71

Treatment Position Treatment:Position

Precision 0.07 0.74 0.19

Recall 0.036 0.91 0.12

F-measure 0.035 0.98 0.14

Treatment Experience Treatment:Experience

Precision 0.07 0.62 0.13

Recall 0.0.34 0.8 0.08*

F-measure 0.031 0.67 0.08*

Treatment Object Treatment:Object

Precision 0.071 0.15 0.59

Recall 0.037 0.16 0.48

F-measure 0.033 0.13 0.46

Table 8.14: Co-factor analysis (ANOVA) for the interaction between the main factor

(the treatment) and the co-factors.

tion plots (Figure 8.5) showing the interaction between treatment and experience with

respect to precision, recall, and f-measure, we can make interesting observations:

– Subjects with high experience achieved a performance not particularly influenced by

the treatment.

– Instead, subjects with low experience achieved a performance quite influenced by the

treatment, in fact, their results have been improved with Tropos4AS by about 20/25%.

– An interaction between experience and treatment exists, even if it is not statistically

relevant.

– The difference of the performance of subjects with low and high experience seems to

be increased when considering Tropos4AS . Moreover, with the Tropos4AS treatment,

subjects with low experience overcame (about +10%) the results obtained by subjects

with high experience.

197

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

Precision Recall F-measure

Figure 8.5: Interaction plots for the treatment with respect to the subject’s experience

(experienced vs. few/small experience), for Precision, Recall and F-Measure.

8.7.4 Threats to validity

Having used the same balanced experimental design, identical subjects and the same

statistical evaluation methods, the considerations made in Section 8.5.5 are valid also

for the comprehension experiment: A paired, balanced design was adopted to mit-

igate learning effects. The subjects remained unchanged and the co-factor analy-

sis has shown no relevant differences in the performance, with respect to position,

expertise on Tropos and the objects of the experiment. We make available the

anonymised raw data of the experiment online at http://selab.fbk.eu/morandini/

T4AScomprehensionexperiment_rawdata.zip.

By construction of the experimental task, additional possible threats to validity

come up. The evaluation was not based on the subjects’ perceptions and opinions,

but on more objective questions. However, two parts of the experimental setup could

have influenced the results: the models provided for the comprehension questions, and

the questions themselves. As already mentioned, we constructed the models by metic-

ulously analysing the models constructed by the participants of the first experiment,

and by paying attention to the peculiarities of the methodologies. Thus, the Tropos4AS

models were not a simple refinement of the Tropos models, but built from scratch (see

Appendix A, page 237). The questions can be answered mostly also by using the Tro-

pos model only. They were discussed and corrected after a pilot study performed with

subjects which did not participate to the experiment.

Moreover, the data analysis of the answers to the comprehension questions in-

volved some subjectivity. It was performed by an expert (the author), by mapping

the answers with a list of expected answers. Additional concepts, outside the re-

198

http://selab.fbk.eu/morandini/T4AScomprehensionexperiment_rawdata.zip
http://selab.fbk.eu/morandini/T4AScomprehensionexperiment_rawdata.zip

8.8. RELATED WORK

quested ones, were not counted as such, in the evaluation. This analysis should pos-

sibly be performed by further persons and discussed, to remedy this possible threat

to validity. To encourage the repetition of the experiment with other subjects, we

make available the replication package online at http://selab.fbk.eu/morandini/

T4AScomprehensionexperiment_package.zip.

8.8 Related Work

In a recent work, Y. Brun [Brun, 2010] analyses the current state of publications dealing

with self-adaptive systems. He ascribes their low impact in current premier software

engineering conferences and journals to the lack of a proper evaluation of the proposed

ideas, techniques and methods and the difficulty of a head-to-head comparison with

traditional techniques.

The evaluation we performed can be seen as a first step to fill this gap, not only for

evaluating Tropos4AS , but also as a pilot study to understand how experts and novices

make use of the Tropos modelling language. The work in [Hadar et al., 2010] empiri-

cally evaluates the goal-oriented approach Tropos against the scenario-based UML Use

Cases, with a positive outcome for the goal modelling language. However, to achieve

comparable, objective results, Hadar et al. need to explicitly limit the experiment to

the comprehension of few constructs and small modification tasks. On the contrary, a

modelling task could capture how people actually and intuitively use the language to

display requirements graphically, and the modelling effort needed.

A similar comprehension study by Ricca et al [Ricca et al., 2010, Ricca et al., 2006]

evaluates a type of diagrams (here, UML class diagrams) with one of its extensions (as

an important analogy to our study). The study bases on example diagrams which were

semi-automatically reverse-engineered from code. However, for our aim of extending

an existing modelling language, an important, critical point to get expressive results

would also be to evaluate the effort of modelling and the usage of the available modelling

concepts.

Shehory and Sturm [Shehory and Sturm, 2001] propose a set of criteria to evaluate

the quality of a methodology. Important criteria identified are, among others, precise-

ness, expressiveness, modularity, executability and refinability, from a software engi-

neering viewpoint, and, from an agent orientation viewpoint, autonomy, adaptability

and complexity. Such an evaluation would be interesting also for our new framework,

but it is not so suitable for having a comparison of a modelling language with its

extension.

199

http://selab.fbk.eu/morandini/T4AScomprehensionexperiment_package.zip
http://selab.fbk.eu/morandini/T4AScomprehensionexperiment_package.zip

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

Various works deal with the evaluation of goal-oriented modelling frameworks, first

of all KAOS and i*. Estrada et al. [Estrada et al., 2006] present the results of an

in-depth empirical evaluation of i*, the basis of Tropos , on industrial case studies. The

evaluation (which was not conducted as an experiment with subjects) was carried out

over a long time period with three teams of professional requirements engineers, evaluat-

ing the coverage of different aspects of the modelling language in-the-field. Reusability

and scalability were recognized to be missing aspects, which remain still present in

both Tropos and Tropos4AS , but Tropos4AS adds some of the expected granularity in

the models.

Matulevicius and Heymans [Matulevicius and Heymans, 2007] compare the two

prominent goal modelling languages i* and KAOS by an experiment consisting of

three steps: interviewing, creating goal models and evaluating models and languages.

In groups, students interviewed persons that played the stakeholders and then delivered

the requirements model created with the assigned language, within two weeks. The

students then individually evaluated the used language and the model of a compet-

ing group, with questionnaires. Similarly to ours, the experiment was evaluated with

Wilcoxon tests, following [Wohlin et al., 2000]. They conclude that the models created

with i* are evaluated better than KAOS models, whereas as language, KAOS is evalu-

ated slightly better than i*. The experiment includes a realistic, detailed approach to

modelling and well-structured questionnaires. However, the results are based on only

two models per methodology and thus the statistical tests are questionably applied to

the single set of answers of each subject, while our analysis is performed (as usually

done) on the subject answers for each question. It is undoubtedly a drawback that

our subjects would not have been available for longer experiments. However, with our

experimental design we were able to get modelling feedback from a variety of partici-

pants, from programmers to RE experts, and could do evaluations and statistical tests

on them.

Our framework also includes an implementation in an agent programming language.

Thus, as mentioned in the introduction of this section, an empirical study on the agent

code produced with the framework, was also taken into consideration, but abandoned

because of the complexity of the resulting code and the lack of subjects that are ex-

perienced in agent programming. However, there is a lack on empirical studies for the

use of such languages in general, to justify the claims that motivate the introduced

high-level constructs, which are also used in our framework. A first empirical study

on the practical use of an agent programming language was performed by Riemsdijk

and Hindriks [van Riemsdijk and Hindriks, 2009], trying to motivate the claim that

200

8.9. FINAL CONSIDERATIONS

high-level notions such as goals and beliefs provide appropriate abstractions to develop

autonomous software. The study is performed with three programmers implementing

small examples, which were then analysed quantitatively and qualitatively. Moreover,

six subjects commented on readability of the code. Various observations on the use

of the programming constructs by expert and non-expert programmers were made,

although the small numbers did not permit any statistical analysis.

8.9 Final Considerations

We performed an empirical study, with the aim of evaluating the effectiveness of the

Tropos4AS modelling language in comparison to Tropos modelling. The study in-

cluded a first experiment based on a modelling task on self-adaptive systems, and a

second experiment based on a comprehension task on models of the same systems,

both performed by subjects from a research centre. The experimental settings and the

short training on the modelling languages have shown to be adequate, giving enough

expertise to solve the tasks properly.

We can conclude, accepting the alternative hypotheses with statistical evidence:

Regarding research question RQ1, the effort required to apply Tropos4AS is higher

than the effort required to apply Tropos . However, this additional effort is not perceived

as such by the users, and they did not face particular difficulties (as evaluated with

the questionnaire). The additional time was spent mainly for studying the Tropos4AS

specifications, as the recorded times show. Regarding RQ2, Tropos4AS allows the users

to produce models more effective and correct than Tropos for representing requirements

of an adaptive system.

Finally, with a second study we were able to give a statistically significant answer to

the research question RQ3 (Section 8.6.1): Tropos4AS models are more effective for the

comprehension of system requirements than Tropos models. Moreover, by a subjective

analysis of the models, we can say that Tropos and the Tropos4AS extensions were

used as expected, by nearly all participants, including the ones which previously had

no knowledge of Tropos . Although, a better training for both languages could improve

the quality of the models.

The results of this empirical evaluation meet our expectations and strengthen them.

In particular, the use of Tropos and the Tropos4AS extensions by novice users was

better than expected and their comments show that the additional constructs bring

few more complexity, but facilitate to express a set of requirements with applications

having to adapt to the environment such as the examples. This was confirmed, from a

201

CHAPTER 8. EMPIRICAL EVALUATION OF TROPOS4AS MODELLING

different viewpoint, by the comprehension experiment.

However, we have to remark that the results of the study are limited to the use of the

modelling languages and are thus not generalisable to the modelling process. Moreover,

the small example systems used as objects of the study had a specific focus on self-

adaptivity and thus the findings cannot be generalised to every kind of model, e.g. if

the focus is on actor dependency diagrams. Also, the experiments were performed on

small examples and thus not considering scalability issues that are expected in larger

applications.

202

Chapter 9

Conclusion

9.1 Summary and Contributions

Among the challenges of developing self-adaptive systems, this work identified as key

one that of capturing the knowledge necessary for a system to self-adapt and of bring-

ing this knowledge to run-time. We introduced the Tropos4AS framework, which is

described in detail in the Chapters 3 and 4 of this thesis. Tropos4AS extends Tropos

goal modelling along different lines, enabling to model: i) the environment, capturing

the influence of artifacts in the surroundings of an actor in the system to the actor’s

goals and their achievement process; ii) the modelling of goal types and inter-goal rela-

tionships, to detail goal achievement and alternatives selection dynamics; and iii) the

modelling of possible failures, errors and proper recovery activities, to make the sys-

tem more robust by eliciting missing functionalities, to separate the exceptional from

the nominal behaviour of the system, and to create an interface for domain-specific

diagnosis techniques.

The combination of (i – iii) contributes to our first research objective (given in

Section 1.2), giving to the designer a conceptual tool to capture, with intuitive, com-

prehensible concepts, specific knowledge and decision criteria necessary to increase

self-adaptivity in a system at run-time. This is a first, relevant step towards making

the system aware of the objectives it has been designed for, and able to carry out deci-

sions on the proper behaviour to exhibit at run-time. Thereby, we consider adaptivity

which originates from variability and non-determinism in the requirements, while we

do not consider run-time changes in the high-level requirements.

With environment and failure modelling, the framework anticipates some of

the issues tackled also in recent works specific to self-adaptivity, for example

203

CHAPTER 9. CONCLUSION

[Qureshi and Perini, 2009] and [Baresi and Pasquale, 2010]. However, both of these

works lack of a direct mapping of these concepts to run-time.

The Tropos4AS modelling extensions were then integrated to a process which spans

the development phases until the implementation, focussing on knowledge-level arte-

facts (Chapter 4). This process includes a mapping from the design artefacts to a BDI

agent architecture (adopting the Jadex agent definition language), which preserves the

representation of the requirements in form of a goal model at run-time, taking advan-

tage of the features provided by Jadex, and extending it for reflecting the intended

behaviour captured in the goal model.

Contributing to our second research objective (Section 1.2), by representing its re-

quirements model at run-time, we give to an agent the awareness of ’why’ to exhibit

some behaviour, a core requisite for self-adaptivity. Moreover, a causal dependency be-

tween high-level requirements and executed functionalities is maintained. Supporting

tools for conceptual modelling and for automated code generation for the Jadex agent

platform, were presented. The implementation provides a goal model directed execu-

tion and basic mechanisms for goal model reasoning, monitoring and adaptation, for

executing agent prototypes, which can be used to validate the model by observing its

run-time behaviour. The obtained goal model can be navigated to improve the decision

making, to allow the system for monitoring its goals and possibly also for modifying

them. Moreover, the representation of the goal model at run-time eases traceability of

artefacts and decisions back to the design and the requirements.

The Tropos4AS framework offers conceptual models for capturing the information

necessary to carry out an adaptation, but does not focus on delivering specific run-

time algorithms and mechanisms to perform the monitoring and decision making and

to enact the adaptation. Thus, the proposed mapping to a BDI agent architecture

should be considered as a basic architecture which can be customized with more so-

phisticated reasoning, monitoring and adaptation mechanisms, which take advantage

of the mapped knowledge. Concretely, alternatives selection could be improved by im-

plementing sophisticated goal reasoning mechanisms, learning mechanisms or including

risk analysis, whereas the selection of recovery activities could be improved by imple-

menting diagnosis mechanisms. Also, the run-time goal deliberation mechanisms can

be extended.

Abstract operational semantics to define the attitude of an agent towards the sat-

isfaction of various types of goals inside a goal model, were defined in Chapter 5, to

set the basis for a formal definition of both the Tropos4AS goal models and for an

implementation (i.e. agent platforms) supporting goal models at run-time. This work

204

9.2. CONCLUSION AND FUTURE WORK

contributes to the state of the art by extending the unifying semantics for basic goal

types in agent platforms defined in [van Riemsdijk et al., 2008], and differentiates from

works such as [Thangarajah et al., 2010] by including goal decomposition.

The main contribution of Chapter 6 consists in the combination of a “top-down”

goal-oriented modelling approach (Tropos4AS) with a “bottom-up” interaction-based

approach (ADELFE), to achieve adaptation by agent self-organisation. From the view-

point of ADELFE, this approach reduces the gap between global goals and the single

agent’s behaviour, while for Tropos and Tropos4AS , the main novelty lies in a flexi-

ble definition of agent interaction on an instance level. This is achieved by handling

interaction failures, to optimize the dependencies between agents. Further research is

required to assess the extent of the remaining gap between low-level agent goals and

the behaviour arising from changing peer agents for interaction.

With an empirical study, in Chapter 8 we quantitatively evaluated the usability of

the modelling concepts newly introduced with Tropos4AS , in comparison to standard

Tropos , for modelling systems with self-adaptivity properties. Few controlled experi-

ments with subjects on goal modelling, and on Tropos in particular, are available in

literature. To our knowledge, this is the first comparative experiment which analyses

both modelling and model comprehension, and obtains statistically significant data.

From the feedback of the subjects we can conclude that Tropos4AS models are more

comprehensible and more effective in capturing requirements, while the modelling effort

does not seem to have been significantly higher.

9.2 Conclusion and Future Work

Addressing the research problems identified as thesis objectives, the tool-supported

framework Tropos4AS presented in this thesis makes an important step towards an

effective development of self-adaptive software systems.

First, the goal-oriented engineering approach used by Tropos4AS extends Tropos to

effectively deal with requirements for self-adaptive systems, by capturing, on a knowl-

edge level, the perceived environment and its effects on the goal achievement process,

and by supporting the designer in the analysis of possible failures, errors causing them,

and recovery activities.

Second, the development process preserves the concepts of agent and goal model

through all development phases until run-time, lowering conceptual gaps and simpli-

fying traceability of decisions and changes from requirements to code and vice-versa.

Our approach captures adaptivity, modelling alternative behaviours and selection cri-

205

CHAPTER 9. CONCLUSION

teria at design time, which can then be exploited at run-time. Techniques that further

optimize adaptation at run-time, such as reasoning on goal models and learning, are

not covered in this thesis, but would complement our approach and can be added when

needed.

The work provides an early investigation on aspects that were pointed out later on in

recent research agendas for engineering of self-adaptive systems [Di Nitto et al., 2008,

Cheng et al., 2009a, Sawyer et al., 2010]. Our results provide a first approach for mod-

elling and for bringing requirements to run-time. Although specific to agent-based

frameworks, they may be generalized to other implementation platforms.

Modelling tools and a tool-supported mapping from Tropos4AS models to a BDI

agent architecture realise a direct transition from the requirements models to code for

the Jadex agent platform, to deliver an explicit representation of requirements at run-

time. For a generalization to non-BDI systems, the implementation of an appropriate

middleware layer with a run-time reasoning loop for monitoring and goal evaluation

would be necessary.

The modelling process and the mapping were applied to various examples, and

a controlled experiment with subjects, carried out to collect empirical evidence

about the effectiveness of Tropos4AS , gave positive, statistically relevant results,

both for the modelling of system specifications and for model comprehension. The

t2x code generation tool has been used in university courses for an introduction

to BDI agents programming, by students for their course projects, and in master theses.

Several open issues are left, which are worth to be investigated in future. We mention

principal research directions. To further consolidate Tropos4AS , the modelling process

has to be validated on bigger case studies in dynamic domains. Here, also scalability

issues have to be considered, even though the approach limits to the single agents in

a system. Also, the complete goal model semantics should be defined by a formal

mapping to a well-defined BDI language. If Jadex is used as a target language, its

goal satisfaction semantics need to be precisely determined and captured e.g. with the

operational semantics defined in this thesis. A formalisation obtained in this way could

also be used to validate models and identify conflicts.

The automated mapping towards a BDI architecture has to be tested on bigger

examples, in which a more complex behaviour is needed. A model-driven approach

supporting round-trip engineering would be of high interest for keeping the design

models synchronized with the implementation. It would also be interesting to investi-

gate on failure diagnosis mechanisms and the discovery of proper recovery activities at

206

9.2. CONCLUSION AND FUTURE WORK

run-time, by combining available capabilities or services or by collaboration between

agents.

A further research direction concerns the possibility to give to the software the abil-

ity to enrich and modify its requirements model at run-time, to achieve a self-adaptive

behaviour by learning from failures and collaboration. Our vision is to give auto-

mated feedback from run-time to developers for improving the correspondent design

time models. An automated evaluation of modelled softgoal contributions in running

prototypes, to give feedback for improving them at design time, could be a first step

toward this aim.

The framework could be generalized by mappings to different agent platforms or

to service-oriented architectures. Performance and scalability problems, arising mainly

due to the use of the Jadex language, could be reduced by a mapping to a more

lightweight platform. Finally, the empirical study, which gave promising results with

graduate students and researchers, would have to be repeated with different subjects,

available for longer time periods, and with an evaluation of the obtained models by

different experts, to achieve more general results.

207

Bibliography

[Ali et al., 2010] Ali, R., Dalpiaz, F., and Giorgini, P. (2010). A goal-based frame-

work for contextual requirements modeling and analysis. Requirements Engineering,

15(4):439–458.

[Antoniol et al., 2002] Antoniol, G., Canfora, G., Casazza, G., Lucia, A. D., and Merlo,

E. (2002). Recovering traceability links between code and documentation. IEEE

Trans. Software Eng., 28(10):970–983.

[Asnar et al., 2006] Asnar, Y., Bryl, V., and Giorgini, P. (2006). Using risk analysis to

evaluate design alternatives. In AOSE, pages 140–155.

[Avizienis et al., 2004] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C. E.

(2004). Basic concepts and taxonomy of dependable and secure computing. IEEE

Trans. Dependable Sec. Comput., 1(1):11–33.

[Bacchelli et al., 2010] Bacchelli, A., D’Ambros, M., and Lanza, M. (2010). Extracting

source code from e-mails. In ICPC, pages 24–33.

[Baresi and Pasquale, 2010] Baresi, L. and Pasquale, L. (2010). Live goals for adaptive

service compositions. In SEAMS ’10: Proceedings of the 2010 ICSE Workshop on

Software Engineering for Adaptive and Self-Managing Systems, pages 114–123, New

York, NY, USA. ACM.

[Bellifemine et al., 2007] Bellifemine, F. L., Caire, G., and Greenwood, D. (2007). De-

veloping Multi-Agent Systems with JADE. Wiley.

[Bernon et al., 2005] Bernon, C., Camps, V., Gleizes, M.-P., and Picard, G. (2005).

Engineering Adaptive Multi-Agent Systems: The ADELFE Methodology. In

Henderson-Sellers, B. and Giorgini, P., editors, Agent-Oriented Methodologies, pages

172–202. Idea Group, NY, USA.

209

BIBLIOGRAPHY

[Bernon et al., 2002] Bernon, C., Gleizes, M., Peyruqueou, S., and Picard, G. (2002).

ADELFE, a Methodology for Adaptive Multi-Agent Systems Engineering. In Third

International Workshop Engineering Societies in the Agents World (ESAW-2002).

[Berry et al., 2005] Berry, D., Cheng, B., and Zhang, J. (2005). The four levels of

requirements engineering for and in dynamic adaptive systems. In Proceedings of the

11th International Workshop on Requirements Engineering: Foundation for Software

Quality, Porto, Portugal.

[Bordini et al., 2005] Bordini, R. H., Dastani, M., Dix, J., and Fallah-Seghrouchni,

A. E., editors (2005). Multi-Agent Programming: Languages, Platforms and Appli-

cations, volume 15 of Multiagent Systems, Artificial Societies, and Simulated Orga-

nizations. Springer.

[Bordini and Hübner, 2005] Bordini, R. H. and Hübner, J. F. (2005). Bdi agent pro-

gramming in agentspeak using jason (tutorial paper). In CLIMA VI, pages 143–164.

[Borgida et al., 2009] Borgida, A., Chaudhri, V. K., Giorgini, P., and Yu, E. S. K.,

editors (2009). Conceptual Modeling: Foundations and Applications - Essays in

Honor of John Mylopoulos, volume 5600 of LNCS. Springer.

[Bratman, 1987] Bratman, M. E. (1987). Intention, Plans, and Practical Reason. Har-

vard University Press, Cambridge, MA.

[Braubach et al., 2004] Braubach, L., Pokahr, A., Moldt, D., and Lamersdorf, W.

(2004). Goal representation for bdi agent systems. In PROMAS, pages 44–65.

[Bresciani et al., 2004a] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., and

Perini, A. (2004a). Tropos: An Agent-Oriented Software Development Methodology.

Autonomous Agents and Multi-Agent Systems, 8(3):203–236.

[Bresciani et al., 2004b] Bresciani, P., Penserini, L., Busetta, P., and Kuflik, T.

(2004b). Agent patterns for ambient intelligence. In 23th International Confer-

ence on Conceptual Modeling (ER 2004), LNCS 3288, pages 682 – 695, Shanghai,

China. Springer-Verlag.

[Brun, 2010] Brun, Y. (2010). Improving impact of self-adaptation and self-

management research through evaluation methodology. In Proceedings of Software

Engineering for Adaptive and Self-Managing Systems (SEAMS10), pages 1–9.

210

BIBLIOGRAPHY

[Capera et al., 2003] Capera, D., Georgé, J.-P., Gleizes, M.-P., and Glize, P. (2003).

The AMAS Theory for Complex Problem Solving Based on Self-organizing Coop-

erative Agents . In TAPOCS 2003 at WETICE 2003, Linz, Austria, 09/06/03-

11/06/03. IEEE CS.

[Cares et al., 2005] Cares, C., Franch, X., and Mayol, E. (2005). Extending tropos for

a prolog implementation: A case study using the food collecting agent problem. In

CLIMA VI, pages 396–405.

[Castro et al., 2002] Castro, J., Kolp, M., and Mylopoulos, J. (2002). Towards

Requirements-Driven Information Systems Engineering: The Tropos Project. In-

formation Systems. Elsevier, Amsterdam, the Netherlands.

[Cheng et al., 2009a] Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P., and

Magee, J., editors (2009a). Software Engineering for Self-Adaptive Systems (outcome

of a Dagstuhl Seminar), volume 5525 of Lecture Notes in Computer Science. Springer.

[Cheng et al., 2009b] Cheng, B. H. C., Sawyer, P., Bencomo, N., and Whittle, J.

(2009b). A goal-based modeling approach to develop requirements of an adaptive

system with environmental uncertainty. In MODELS ’09: 12th Int. Conference on

Model Driven Engineering Languages and Systems, pages 468–483. Springer-Verlag.

[Cheng et al., 2004] Cheng, S.-W., Huang, A.-C., Garlan, D., Schmerl, B. R., and

Steenkiste, P. (2004). Rainbow: Architecture-Based Self-Adaptation with Reusable

Infrastructure. In ICAC, pages 276–277.

[Chopra et al., 2010] Chopra, A. K., Dalpiaz, F., Giorgini, P., and Mylopoulos, J.

(2010). Reasoning about agents and protocols via goals and commitments. In AA-

MAS, pages 457–464.

[Cohen, 2004] Cohen, J. (2004). Statistical Power Analysis for the Behavioral Sciences.

Lawrence Erlbaum Associates, Hillsdale, NJ.

[Dalgaard, 2008] Dalgaard, P. (2008). Introductory Statistics with R (Statistics and

Computing). Springer, 2nd edition.

[Dalpiaz et al., 2010] Dalpiaz, F., Chopra, A. K., Giorgini, P., and Mylopoulos, J.

(2010). Adaptation in open systems: Giving interaction its rightful place. In ER,

pages 31–45.

211

BIBLIOGRAPHY

[Dalpiaz et al., 2009] Dalpiaz, F., Giorgini, P., and Mylopoulos, J. (2009). An archi-

tecture for requirements-driven self-reconfiguration. In CAiSE, pages 246–260.

[Dardenne et al., 1993] Dardenne, A., van Lamsweerde, A., and Fickas, S. (1993).

Goal-directed requirements acquisition. In Selected Papers of the 6. Int. Workshop

on Software Specification and Design, pages 3–50, Amsterdam, The Netherlands.

Elsevier.

[Darimont et al., 1997] Darimont, R., Delor, E., Massonet, P., and van Lamsweerde,

A. (1997). Grail/kaos: An environment for goal-driven requirements engineering. In

ICSE, pages 612–613.

[Dastani, 2008] Dastani, M. (2008). 2apl: a practical agent programming language.

Autonomous Agents and Multi-Agent Systems, 16(3):214–248.

[Dastani et al., 2006] Dastani, M., van Riemsdijk, M. B., and Meyer, J.-J. C. (2006).

Goal types in agent programming. In ECAI, pages 220–224.

[DeLoach, 2002] DeLoach, S. A. (2002). Modeling organizational rules in the multi-

agent systems engineering methodology. In Canadian Conference on AI, pages 1–15.

[DeLoach and Miller, 2009] DeLoach, S. A. and Miller, M. (2009). A goal model for

adaptive complex systems. In International Conference on Knowledge-Intensive

Multi-Agent Systems (KIMAS 2009), St. Louis, MO.

[DeLoach et al., 2009] DeLoach, S. A., Padgham, L., Perini, A., Susi, A., and

Thangarajah, J. (2009). Using three aose toolkits to develop a sample design. Int.

J. Agent-Oriented Softw. Eng., 3(4):416–476.

[DeLoach et al., 2001] DeLoach, S. A., Wood, M. F., and Sparkman, C. H. (2001).

Multiagent systems engineering. International Journal of Software Engineering and

Knowledge Engineering, 11(3):231–258.

[Di Nitto et al., 2008] Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M. P., and

Pohl, K. (2008). A journey to highly dynamic, self-adaptive service-based applica-

tions. Automated Software Engineering, 15(3-4):313–341.

[Duff et al., 2006] Duff, S., Harland, J., and Thangarajah, J. (2006). On proactivity

and maintenance goals. In AAMAS ’06: Proceedings of the fifth international joint

conference on Autonomous agents and multiagent systems, pages 1033–1040, New

York, NY, USA. ACM.

212

BIBLIOGRAPHY

[Estrada et al., 2006] Estrada, H., Rebollar, A. M., Pastor, O., and Mylopoulos, J.

(2006). An empirical evaluation of the i* framework in a model-based software

generation environment. In CAiSE, pages 513–527.

[Feather et al., 1998] Feather, M., Fickas, S., van Lamsweerde, A., and Ponsard., C.

(1998). Reconciling System Requirements and Runtime Behaviour. In 9th IEEE Int.

Workshop on Software Specification and Design (IWSSD-98), Isobe, Japan.

[Fuxman et al., 2004] Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M., and Traverso,

P. (2004). Specifying and analyzing early requirements in tropos. Requir. Eng.,

9(2):132–150.

[Fuxman et al., 2001] Fuxman, A., Pistore, M., Mylopoulos, J., and Traverso, P.

(2001). Model checking early requirements specifications in Tropos. In IEEE Int.

Symposium on Requirements Engineering, pages 174–181, Toronto (CA).

[Ganek and Corbi, 2003] Ganek, A. G. and Corbi, T. A. (2003). The dawning of the

autonomic computing era. IBM Systems Journal, 42(1):5–18.

[Garćıa-Ojeda et al., 2007] Garćıa-Ojeda, J. C., DeLoach, S. A., Robby, Oyenan,

W. H., and Valenzuela, J. (2007). O-mase: A customizable approach to develop-

ing multiagent development processes. In AOSE, pages 1–15.

[Gardelli et al., 2008] Gardelli, L., Viroli, M., Casadei, M., and Omicini, A. (2008). De-

signing self-organising environments with agents and artefacts: a simulation-driven

approach. IJAOSE, 2(2):171–195.

[Gershenson, 2005] Gershenson, C. (2005). A general methodology for designing self-

organizing systems. CoRR, abs/nlin/0505009.

[Giorgini et al., 2005a] Giorgini, P., Massacci, F., Mylopoulos, J., and Zannone, N.

(2005a). Modeling security requirements through ownership, permission and delega-

tion. In RE, pages 167–176.

[Giorgini et al., 2004] Giorgini, P., Mylopoulos, J., Nicchiarelli, E., and Sebastiani, R.

(2004). Formal Reasoning Techniques for Goal Models. Journal on Data Semantics.

[Giorgini et al., 2005b] Giorgini, P., Mylopoulous, J., and Sebastiani, R. (2005b). Goal-

Oriented Requirements Analysis and Reasoning in the Tropos Methodology. Engi-

neering Applications of Artificial Intelligence, 18(2):159–171.

213

BIBLIOGRAPHY

[Goldsby et al., 2008] Goldsby, H. J., Sawyer, P., Bencomo, N., Hughes, D., and

Cheng., B. H. C. (2008). Goal-based modeling of dynamically adaptive system re-

quirements. In ECBS 08, Belfast, Northern Ireland.

[Hadar et al., 2010] Hadar, I., Kuflik, T., Perini, A., Reinhartz-Berger, I., Ricca, F.,

and Susi, A. (2010). An empirical study of requirements model understanding: Use

Case vs. Tropos models. In SAC, pages 2324–2329.

[Henderson-Sellers and Giorgini, 2005] Henderson-Sellers, B. and Giorgini, P., editors

(2005). Agent-Oriented Methodologies. Idea Group Inc.

[Hindriks et al., 1999] Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyer,

J.-J. C. (1999). Agent programming in 3apl. Autonomous Agents and Multi-Agent

Systems, 2(4):357–401.

[Hindriks et al., 2000] Hindriks, K. V., de Boer, F. S., van der Hoek, W., and Meyer,

J.-J. C. (2000). Agent programming with declarative goals. In 7th Int. Workshop

on Agent Theories Architectures and Languages (ATAL 2000), Boston, MA, USA,

pages 228–243.

[Hindriks and van Riemsdijk, 2007] Hindriks, K. V. and van Riemsdijk, M. B. (2007).

Satisfying maintenance goals. In DALT, pages 86–103.

[Howden et al., 2001] Howden, N., Ronnquist, R., Hodgson, A., and Lucas, A. (2001).

JACK intelligent agents - summary of an agent infrastructure. In Proceedings of the

5th ACM International Conference on Autonomous Agents.

[Jennings, 2000] Jennings, N. R. (2000). On agent-based software engineering. Artif.

Intell., 117(2):277–296.

[Jureta et al., 2010] Jureta, I. J., Borgida, A., Ernst, N. A., and Mylopoulos, J. (2010).

Techne: Towards a new generation of requirements modeling languages with goals,

preferences, and inconsistency handling. In 18th IEEE Int. Requirements Engineering

Conference, pages 115–124, Sydney, Australia.

[Kephart and Chess, 2003] Kephart, J. O. and Chess, D. M. (2003). The vision of

autonomic computing. IEEE Computer, 36(1):41–50.

[Khallouf and Winikoff, 2009] Khallouf, J. and Winikoff, M. (2009). The goal-oriented

design of agent systems: a refinement of prometheus and its evaluation. IJAOSE,

3(1):88–112.

214

BIBLIOGRAPHY

[Kiessel et al., 2002] Kiessel, J., Beard, J., and Nielsen, P. (2002). Failure recovery:

A software engineering methodology for robust agents. In SELMAS 2002, Orlando,

Florida, USA.

[Kinny et al., 1996] Kinny, D., Georgeff, M. P., and Rao, A. S. (1996). A methodology

and modelling technique for systems of bdi agents. In MAAMAW, pages 56–71.

[Kolp et al., 2001] Kolp, M., Giorgini, P., and Mylopoulos, J. (2001). A goal-based

organizational perspective on multi-agents architectures. In Proceedings of the Eighth

International Workshop on Agent Theories, architectures, and languages (ATAL-

2001).

[Krishna et al., 2006] Krishna, A., Guan, Y., and Ghose, A. K. (2006). Co-evolution

of i* models and 3apl agents. In Sixth International Conference on Quality Software

(QSIC 2006), pages 117–124.

[Laddaga, 2006] Laddaga, R. (2006). Self adaptive software problems and projects.

In Proceedings of the 2nd International IEEE Workshop on Software Evolvability

(SE’06), pages 3–10, Washington, DC, USA. IEEE Computer Society.

[Lapouchnian et al., 2006] Lapouchnian, A., Yu, Y., Liaskos, S., and Mylopoulos, J.

(2006). Requirements-driven design of autonomic application software. In CASCON,

pages 80–94.

[Liaskos et al., 2006] Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., and Mylopoulos, J.

(2006). On goal-based variability acquisition and analysis. In 14th IEEE Interna-

tional Conference on Requirements Engineering, Minneapolis.

[Liaskos and Mylopoulos, 2010] Liaskos, S. and Mylopoulos, J. (2010). On temporally

annotating goal models. In 4th International i* Workshop (i* 2010).

[Maes, 1994] Maes, P. (1994). Modeling adaptive autonomous agents. Artificial Life,

1(1-2):135–162.

[Matulevicius and Heymans, 2007] Matulevicius, R. and Heymans, P. (2007). Com-

paring goal modelling languages: An experiment. In REFSQ, pages 18–32.

[Mermet and Simon, 2009] Mermet, B. and Simon, G. (2009). Gdt4mas: an extension

of the gdt model to specify and to verify multiagent systems. In AAMAS (1), pages

505–512.

215

BIBLIOGRAPHY

[Molesini et al., 2005] Molesini, A., Omicini, A., Denti, E., and Ricci, A. (2005). Soda:

A roadmap to artefacts. In ESAW, pages 49–62.

[Morandini, 2006] Morandini, M. (2006). Knowledge level engineering of BDI agents.

Master’s thesis, DIT, Università di Trento, Italy. Available at http://disi.unitn.

it/~morandini/resources/ThesisMirkoMorandini.pdf.

[Morandini et al., 2009a] Morandini, M., Migeon, F., Gleizes, M.-P., Maurel, C.,

Penserini, L., and Perini, A. (2009a). A Goal-Oriented Approach for Modelling Self-

Organising MAS. In Proceedings of the 10th International Workshop on Engineering

Societies in the Agents’ World (ESAW 2009), volume 5881 of LNCS. Springer.

[Morandini et al., 2008a] Morandini, M., Nguyen, D. C., Perini, A., Siena, A., and

Susi, A. (2008a). Tool-supported development with tropos: The conference man-

agement system case study. In Luck, M. and Padgham, L., editors, Agent Oriented

Software Engineering VIII, volume 4951 of LNCS, pages 182–196. Springer. 8th

International Workshop, AOSE 2007, Honolulu, HI, USA, May 2007.

[Morandini et al., 2008b] Morandini, M., Penserini, L., and Perini, A. (2008b). Au-

tomated mapping from goal models to self-adaptive systems. In Demo session at

the 23rd IEEE/ACM International Conference on Automated Software Engineering

(ASE 2008), pages 485–486.

[Morandini et al., 2008c] Morandini, M., Penserini, L., and Perini, A. (2008c). Mod-

elling self-adaptivity: A goal-oriented approach. In 2nd IEEE International Con-

ference on Self-Adaptive and Self-Organizing Systems (SASO’08), pages 469–470.

IEEE.

[Morandini et al., 2008d] Morandini, M., Penserini, L., and Perini, A. (2008d). To-

wards goal-oriented development of self-adaptive systems. In SEAMS ’08: Work-

shop on Software engineering for adaptive and self-managing systems, colocated with

ICSE 2008, pages 9–16, New York, NY, USA. ACM.

[Morandini et al., 2009b] Morandini, M., Penserini, L., and Perini, A. (2009b). Op-

erational Semantics of Goal Models in Adaptive Agents. In 8th Int. Conf. on Au-

tonomous Agents and Multi-Agent Systems (AAMAS’09). IFAAMAS.

[Morandini et al., 2010] Morandini, M., Penserini, L., and Perini, A. (2010). Goal-

oriented development of self-adaptive systems. Technical report, Fondazione Bruno

216

http://disi.unitn.it/~morandini/resources/ThesisMirkoMorandini.pdf
http://disi.unitn.it/~morandini/resources/ThesisMirkoMorandini.pdf

BIBLIOGRAPHY

Kessler, Trento, Italy. Submitted to the Journal of Information and Software Tech-

nology, under review.

[Morandini et al., 2008e] Morandini, M., Penserini, L., Perini, A., and Susi, A. (2008e).

Refining goal models by evaluating system behaviour. In Luck, M. and Padgham,

L., editors, Agent Oriented Software Engineering VIII, volume 4951 of LNCS, pages

44–57. Springer. 8th Int. Workshop, AOSE 2007, Honolulu, HI, USA, May 2007.

[Müller et al., 2008] Müller, H., Pezzè, M., and Shaw, M. (2008). Visibility of control

in adaptive systems. In Proceedings of the 2nd Int. Workshop on Ultra-large-scale

software-intensive systems (ULSSIS’08), pages 23–26, New York, NY, USA. ACM.

[Nakagawa et al., 2008] Nakagawa, H., Ohsuga, A., and Honiden, S. (2008). Construct-

ing self-adaptive systems using a kaos model. In Proc. of the 2nd IEEE Self-Adaptive

and Self-Organizing Systems Workshops (SASOW ’08), pages 132–137. IEEE.

[Nakagawa et al., 2010] Nakagawa, H., Ohsuga, A., and Honiden, S. (2010). Coop-

erative behaviors description for self-* systems implementation. In PAAMS, pages

69–74.

[Nguyen et al., 2009] Nguyen, C. D., Miles, S., Perini, A., Tonella, P., Harman, M., and

Luck, M. (2009). Evolutionary testing of autonomous software agents. In 8th Int.

Conf. on Autonomous Agents and Multiagent Systems, pages 521–528. IFAAMAS.

[Nguyen et al., 2008] Nguyen, C. D., Perini, A., and Tonella, P. (2008). ecat: a tool for

automating test cases generation and execution in testing multi-agent systems (demo

paper). In 7th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2008), pages 1669–1670. IFAAMS.

[Nguyen et al., 2010] Nguyen, C. D., Perini, A., and Tonella, P. (2010). Goal-oriented

testing for MASs. Int. J. Agent-Oriented Software Engineering, 4(1):79–109.

[O’Brien and Nicol, 1998] O’Brien, P. and Nicol, R. (1998). FIPA - Towards a standard

for software agents. BT Technology Journal, 16(3):51–59.

[Omicini et al., 2006] Omicini, A., Ricci, A., and Viroli, M. (2006). Agens Faber: To-

ward a theory of artefacts for MAS. Electr. Notes Theor. Comput. Sci., 150(3):21–36.

[Oyenan and DeLoach, 2010] Oyenan, W. H. and DeLoach, S. A. (2010). Towards a

systematic approach for designing autonomic systems. Web Intelligence and Agent

Systems, 8(1):79–97.

217

BIBLIOGRAPHY

[Padgham and Winikoff, 2002] Padgham, L. and Winikoff, M. (2002). Prometheus: a

methodology for developing intelligent agents. In AAMAS, pages 37–38.

[Padgham et al., 2008] Padgham, L., Winikoff, M., DeLoach, S. A., and Cossentino,

M. (2008). A unified graphical notation for aose. In AOSE, pages 116–130.

[Parhami, 1997] Parhami, B. (1997). Defect, fault, error,..., or failure? IEEE Trans-

actions on Reliability, 46(4):450–451.

[Pavón et al., 2008] Pavón, J., Sansores, C., and Gómez-Sanz, J. J. (2008). Modelling

and simulation of social systems with ingenias. IJAOSE, 2(2):196–221.

[Penserini et al., 2006a] Penserini, L., Kolp, M., and Spalazzi, L. (2006a). Social-

oriented engineering of intelligent software. WIAS: Web Intelligence and Agent

Systems: An International Journal., IOS Press.

[Penserini et al., 2010] Penserini, L., Kuflik, T., Busetta, P., and Bresciani, P. (2010).

Agent-based organizational structures for ambient intelligence scenarios. JAISE,

2(4):409–433.

[Penserini et al., 2007a] Penserini, L., Perini, A., Susi, A., Morandini, M., and My-

lopoulos, J. (2007a). A Design Framework for Generating BDI-Agents from Goal

Models. In 6th Int. Conf. on Autonomous Agents and Multi-Agent Systems (AA-

MAS’07), Honolulu, Hawaii, pages 610–612.

[Penserini et al., 2006b] Penserini, L., Perini, A., Susi, A., and Mylopoulos, J. (2006b).

From capability specifications to code for multi-agent software. In 21st IEEE/ACM

International Conference on Automated Software Engineering (ASE-06), pages 253

– 256, Tokyo, Japan. IEEE press.

[Penserini et al., 2006c] Penserini, L., Perini, A., Susi, A., and Mylopoulos, J. (2006c).

From Stakeholder Intentions to Software Agent Implementations. In Proceedings

of the 18th Conference On Advanced Information Systems Engineering (CAiSE’06),

volume 4001 of LNCS, pages 465–479, Luxemburg. Springer-Verlag.

[Penserini et al., 2007b] Penserini, L., Perini, A., Susi, A., and Mylopoulos, J. (2007b).

High variability design for software agents: Extending tropos. ACM Transactions

on Autonomous and Adaptive Systems (TAAS), 2(4).

218

BIBLIOGRAPHY

[Perini and Susi, 2004] Perini, A. and Susi, A. (2004). Developing Tools for Agent-

Oriented Visual Modeling. In Lindemann, G., Denzinger, J., Timm, I., and Unland,

R., editors, Multiagent System Technologies, Proc. of the Second German Confer-

ence, MATES 2004, number 3187 in LNAI, pages 169–182. Springer-Verlag.

[Picard et al., 2005] Picard, G., Bernon, C., and Gleizes, M.-P. (2005). Etto: Emergent

timetabling organization. In International Central and Eastern European Conference

on Multi-Agent Systems (CEEMAS), Budapest, Hungary, pages 440–449. Springer.

[Pokahr et al., 2003] Pokahr, A., Braubach, L., and Lamersdorf, W. (2003). Jadex:

Implementing a bdi-infrastructure for jade agents. EXP - in search of innovation

(Special Issue on JADE), 3(3):76–85.

[Pokahr et al., 2005] Pokahr, A., Braubach, L., and Lamersdorf, W. (2005). Jadex:

A bdi reasoning engine. In R. Bordini, M. Dastani, J. D. and Seghrouchni, A. F.,

editors, Multi-Agent Programming, pages 149–174. Springer, USA. Book chapter.

[Qureshi and Perini, 2010] Qureshi, N. and Perini, A. (2010). Continuous adaptive re-

quirements engineering: An architecture for self-adaptive service-based applications.

In RE@RunTime Workshop at RE’10, pages 17–24, Sydney, Australia.

[Qureshi et al., 2010a] Qureshi, N., Perini, A., Ernst, N., and Mylopoulos, J. (2010a).

Towards a continuous requirements engineering framework for self-adaptive systems.

In RE@RunTime Workshop at RE’10, pages 9–16, Sydney, Australia.

[Qureshi et al., 2010b] Qureshi, N. A., Morandini, M., Nguyen, C. D., and Perini, A.

(2010b). A tool-supported development process for adaptive systems. Technical

report, SE unit, Fondazione Bruno Kessler, Trento, Italy. Available at http://

disi.unitn.it/~morandini/resources/TRQureshiMorandini10.pdf.

[Qureshi and Perini, 2009] Qureshi, N. A. and Perini, A. (2009). Engineering adaptive

requirements. In Workshop on Software Engineering for Adaptive and Self-Managing

Systems (SEAMS’09), pages 126–131, Vancouver, BC.

[Rao and Georgeff, 1995] Rao, A. S. and Georgeff, M. P. (1995). Bdi agents: From

theory to practice. In ICMAS, pages 312–319.

[Ricca et al., 2006] Ricca, F., Penta, M. D., Torchiano, M., Tonella, P., and Ceccato,

M. (2006). An empirical study on the usefulness of conallen’s stereotypes inweb

application comprehension. In WSE, pages 58–68.

219

http://disi.unitn.it/~morandini/resources/TRQureshiMorandini10.pdf
http://disi.unitn.it/~morandini/resources/TRQureshiMorandini10.pdf

BIBLIOGRAPHY

[Ricca et al., 2010] Ricca, F., Penta, M. D., Torchiano, M., Tonella, P., and Ceccato,

M. (2010). How developers’ experience and ability influence web application com-

prehension tasks supported by uml stereotypes: A series of four experiments. IEEE

Transactions on Software Engineering, 36(1):96–118.

[Rougemaille, 2008] Rougemaille, S. (2008). Model Driven Engineering for Adaptive

Multi-Agent Systems. PhD thesis, Université Paul Sabatier, Toulouse, France.

[Salehie, 2009] Salehie, M. (2009). A Quality-Driven Approach to Enable Decision-

Making in Self-Adaptive Software. PhD thesis, University of Waterloo, Ontario,

Canada.

[Salehie and Tahvildari, 2009] Salehie, M. and Tahvildari, L. (2009). Self-adaptive soft-

ware: Landscape and research challenges. ACM Transactions on Autonomous and

Adaptive Systems (TAAS), 4(2).

[Sardina and Padgham, 2010] Sardina, S. and Padgham, L. (2010). A BDI agent proga-

rmming language with failure recovery, declarative goals, and planning. Autonomous

Agents and Multi-Agent Systems.

[Sawyer et al., 2007] Sawyer, P., Bencomo, N., Hughes, D., Grace, P., Goldsby, H. J.,

and Cheng, B. H. C. (2007). Visualizing the analysis of dynamically adaptive systems

using i* and dsls. In 2nd International Workshop on Requirements Engineering

Visualization, New Delhi, India.

[Sawyer et al., 2010] Sawyer, P., Bencomo, N., Whittle, J., Letier, E., and Finkelstein,

A. (2010). Requirements-aware systems: A research agenda for re for self-adaptive

systems. IEEE Int. Conference on Requirements Engineering (RE2010), 0:95–103.

[Shehory and Sturm, 2001] Shehory, O. and Sturm, A. (2001). Evaluation of modeling

techniques for agent-based systems. In Agents, pages 624–631.

[Shoham, 1993] Shoham, Y. (1993). Agent-Oriented Programming. Artificial Intelli-

gence, 60:51 – 92.

[Simon et al., 2005] Simon, G., Mermet, B., and Fournier, D. (2005). Goal decomposi-

tion tree: An agent model to generate a validated agent behaviour. In DALT, pages

124–140.

220

BIBLIOGRAPHY

[Souza et al., 2010] Souza, V., Lapouchnian, A., Robinson, W., and Mylopoulos, J.

(2010). Awareness requirements for adaptive systems. Technical Report DISI-10-

049, DISI, Università di Trento, Italy.

[Susi et al., 2005] Susi, A., Perini, A., Giorgini, P., and Mylopoulos, J. (2005). The

Tropos Metamodel and its Use. Informatica (Slovenia), 29(4):401–408.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learn-

ing: An Introduction (Adaptive Computation and Machine Learning). The MIT

Press.

[Thangarajah et al., 2010] Thangarajah, J., Harland, J., Morley, D. N., and Yorke-

Smith, N. (2010). On the life-cycle of bdi agent goals. In ECAI, pages 1031–1032.

[Tomasi, 2009] Tomasi, B. (2009). Improving the design of software agents based on the

evaluation of run-time preferences. Master’s thesis, DISI, Università di Trento, Italy.

Advisors: Angelo Susi and Mirko Morandini. Available at http://disi.unitn.it/

~morandini/resources/ThesisBarbaraTomasi.pdf.

[van Lamsweerde, 2001] van Lamsweerde, A. (2001). Goal-oriented requirements engi-

neering: A guided tour. In RE, page 249.

[van Lamsweerde, 2004] van Lamsweerde, A. (2004). Elaborating security require-

ments by construction of intentional anti-models. In ICSE ’04, pages 148–157,

Washington, USA. IEEE.

[van Lamsweerde and Letier, 2000] van Lamsweerde, A. and Letier, E. (2000). Han-

dling obstacles in goal-oriented requirements engineering. IEEE Transactions on

Software Engineering, Special Issue on Exception Handling, 26(10).

[van Riemsdijk et al., 2008] van Riemsdijk, B., Dastani, M., and Winikoff, M. (2008).

Goals in agent systems: A unifying framework. In Proceedings of the 7th Int. Confer-

ence on Autonomous Agents and Multiagent Systems (AAMAS’08), pages 713–720.

[van Riemsdijk et al., 2005] van Riemsdijk, M. B., Dastani, M., and Meyer, J.-J. C.

(2005). Subgoal semantics in agent programming. In EPIA, pages 548–559.

[van Riemsdijk and Hindriks, 2009] van Riemsdijk, M. B. and Hindriks, K. V. (2009).

An empirical study of agent programs. In PRIMA, pages 200–215.

221

http://disi.unitn.it/~morandini/resources/ThesisBarbaraTomasi.pdf
http://disi.unitn.it/~morandini/resources/ThesisBarbaraTomasi.pdf

BIBLIOGRAPHY

[Wang et al., 2007] Wang, Y., McIlraith, S. A., Yu, Y., and Mylopoulos, J. (2007).

An automated approach to monitoring and diagnosing requirements. In ASE, pages

293–302.

[Weyns et al., 2007] Weyns, D., Omicini, A., and Odell, J. (2007). Environment as a

first class abstraction in multiagent systems. Autonomous Agents and Multi-Agent

Systems, 14(1):5–30.

[Whittle et al., 2009] Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H. C., and

Bruel, J.-M. (2009). Relax: Incorporating uncertainty into the specification of self-

adaptive systems. In 17th IEEE International Requirements Engineering Conference,

RE ’09, pages 79–88, Washington, DC, USA. IEEE Computer Society.

[Winikoff, 2005] Winikoff, M. (2005). Jack intelligent agents: An industrial strength

platform. In [Bordini et al., 2005], pages 175–193.

[Wohlin et al., 2000] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B.,

and Wesslén, A. (2000). Experimentation in software engineering: an introduction.

Kluwer Academic Publishers, Norwell, MA, USA.

[Wolf and Holvoet, 2005] Wolf, T. D. and Holvoet, T. (2005). Towards a methodology

for engineering self-organising emergent systems. In SOAS, pages 18–34.

[Wooldridge, 1997] Wooldridge, M. (1997). Agent-based software engineering. IEEE

Proceedings - Software, 144(1):26–37.

[Yu, 1995] Yu, E. (1995). Modelling Strategic Relationships for Process Reengineering.

PhD thesis, University of Toronto, Department of Computer Science.

[Yu et al., 2008] Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., and

do Prado Leite, J. C. S. (2008). From goals to high-variability software design.

In ISMIS, pages 1–16.

[Zambonelli et al., 2003] Zambonelli, F., Jennings, N. R., and Wooldridge, M. (2003).

Developing multiagent systems: The gaia methodology. ACM Transactions on soft-

ware Engineering and Methodology, 12(3):317–370.

[Zhu et al., 2008] Zhu, Q., Lin, L., Kienle, H. M., and Müller, H. A. (2008). Char-

acterizing maintainability concerns in autonomic element design. In ICSM, pages

197–206.

222

Appendix A

Empirical Study: Experiment

Material

The following pages contain the replication packages for the two experiments car-

ried out for the empirical study described in Chapter 8. First , from page 226, we

present the material used for the modelling experiment. It includes a description of

the assignment task, short descriptions of the two treatments (i.e. the goal mod-

elling languages for Tropos and Tropos4AS), the objects in form of a “system story”

defining the requirements of the systems PMA (Patient Monitoring Agent) and WMM

(Washing Machine Manager), draft pages for the modelling, and the pre-, mid- and

post-questionnaires. Second, from page 235, the material for the comprehension ex-

periment is shown: A short description of the experiment task to execute, together

with the textual requirements specifications for the systems (PMA and WMM); the

“gold standard” models for these two systems, both for Tropos and for Tropos4AS

(including conditions and failures), and the questionnaires (for PMA and WMM) con-

taining the comprehension questions together with a short post-questionnaire. The

anonymised raw data of the experiment results will be made available online at http:

//selab.fbk.eu/morandini/T4ASmodellingexperiment_rawdata.zip and http://

selab.fbk.eu/morandini/T4AScomprehensionexperiment_rawdata.zip.

223

http://selab.fbk.eu/morandini/T4ASmodellingexperiment_rawdata.zip
http://selab.fbk.eu/morandini/T4ASmodellingexperiment_rawdata.zip
http://selab.fbk.eu/morandini/T4AScomprehensionexperiment_rawdata.zip
http://selab.fbk.eu/morandini/T4AScomprehensionexperiment_rawdata.zip

1

Empirical study: Tropos – Tropos4AS

Guide to the Experiment

You will be given the following sheets:

• A pre-questionnaire

• The description of example A and the corresponding questionnaire

• The description of example B and the corresponding questionnaire

• A final post-questionnaire

Your tasks:

1. Fill in the pre-questionnaire (page 2)

2. Write the starting time (on page 5A)

3. Carefully read the whole system story of the first example (page 4A)

4. Imagine to be an analyst and model the requirements of the first example
with the first methodology assigned to you, as detailed as possible.

• Follow step by step the system story (page 4A).

• Use page 5A (and 6A, if you need) to draw the model

• Cross-check the model by answering to the control questions provided
(page 5A) and refine it if needed.

• Please try to remember the relative time used for the different modelling
activities you perform.

5. Write the end time (on page 5A)

6. Answer to the questionnaire (page 7A+8A)

7. Repeat steps 2 to 6 for the second example (pages 3B-8B) with the
second methodology assigned to you.

8. Fill in the short post-questionnaire (page 9)

Thank you!

Assigned to you:

A) Example PMA with methodology Tropos.

B) Example WMM with methodology Tropos4AS.

APPENDIX A. EMPIRICAL STUDY: EXPERIMENT MATERIAL

224

2

Pre-Questionnaire

• Name & Surname: __

• Position: ______________________________

Are you working on research in requirements engineering? ❏ Yes ❏ No

How much experience do you have in practice with requirements analysis?

❏ Few

❏ I worked as software analyst in research projects

❏ I worked as software analyst in industry

How much experience do you have with TROPOS modelling?

❏ None

❏ I modelled some small examples

❏ I am experienced in the use of TROPOS

How much experience do you have in general with the development of agent-oriented software?

❏ I never used any agent programming language

❏ I developed small examples. I know what a “BDI architecture” is.

❏ I developed agent-oriented systems with BDI architecture.

1 – Strongly agree 2 – Agree 3 – Not certain 4 – Disagree 5 – Strongly disagree

• I understood the basic notions of TROPOS modelling ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• The visual notation used in TROPOS is clear ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• The visual notation used in TROPOS4AS is clear ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

Thank you for your collaboration!

The data of the questionnaires in this experiments will be used only for research purposes and will be
divulged only in aggregated form.

Date …………………………

Signature ___________________________

225

3A
Tropos

The main concepts of Tropos that can/should be used in the modelling experiment:

Tropos models in a nutshell
Call goals and plans with names that describe their “content”!

• Goals can be decomposed to sub-goals, in AND or in OR.
• Plans (“activities”) can be decomposed to sub-plans, in AND or in OR.
• Plans are the means to achieve a goal.

Plans in relation to a goal are alternatives!
• Goals and Plans can contribute to satisfice softgoals.
• Contribution can be positive to negative (++, +, -, --).
• Resources are used by plans.

• Semantics: By analysis of softgoal contribution, alternative goals and plans can be selected. If at
run-time some goal or plan fails, alternatives can be tried!

Tropos goal modelling process
• Decompose goals, starting from the root goal, to more detailed, more concrete goals...

• ...until you are able to define plans that can achieve the goals.

• Define the Resources used, to execute the plans.

• Try to model contributions to the satisficement of softgoals.

APPENDIX A. EMPIRICAL STUDY: EXPERIMENT MATERIAL

226

4A
Example: Patient Monitoring Agent

System story
Summary: You have to develop an “intelligent” patient monitoring agent (PMA) software. The main aim
of this software is to ensure that a patient, in a “smart home” environment, follows the medical
instructions on eating meals and taking medicine. The system should reduce the need for human
assistance, but not bring annoyances to the patient’s life.

The system can access to reliable sensors that are able to measure if the patient takes the medicine and
how often he eats. The flat is set up with loudspeakers in each room. It is also connected to the phone
line for the system to request assistance from the care-assistant.

Requirements: The PMA has the goal to ensure that the patient follows the medical instructions. This
goal can be detailed to two sub-goals: eating meals regularly, and taking the medicine on schedule. The
first sub-goal is achieved if the patient had at least two meals a day. The second one is achieved if the
the medicine was taken in the evening, after 6PM, but fails if the medicine was not taken until 8PM.
Moreover, the medicine has to be taken after the last meal.
The goal of eating meals regularly can be further detailed into eating breakfast (at 8AM), eating lunch (at
noon) and eating dinner (at 6PM). How can each of these goals be achieved? For one hour, the patient
should just be monitored to see if he eats by himself. In this way the system does not bring annoyances to
accurate patients. Only after one hour the PMA should change its plan and remember the patient (through
the loudspeakers), repeatedly. Obviously, this goal contributes negatively to the softgoal of not bringing
annoyances, but still it contributes positively to reduce the need for human assistance.

If the patient does not eat the meal also after one hour of such requests, the respective plans will fail. If
after dinner time the patient did still not have at least two meals (remember that this was the achievement
condition of the goal of eating meals regularly), assistance from the case-assistant should be requested.

The system should remember the patient for taking the medicine. If the medicine was not taken until
8PM, the care-assistant should be called for assistance.

[Suggestion: first try to complete the model until here]

Now, suppose that the patient didn't eat for dinner before 8PM. Thus the subgoal of taking the medicine
on schedule may fail (as defined above, he should not eat after taking the medicine). But the error could
be prevented: With the precondition that the patient already took breakfast and lunch (and thus he already
had two meals), he would be requested to take the medicine immediately, skipping the dinner. Try to
model this and imagine other possible errors and activities to be done to prevent this failure!

Modelling Task
Try to model the requirements for the patient monitoring agent as detailed as possible, following
Tropos, starting from the goal model of the actor “PMA” provided to you, which already contains the
main goal and two softgoals. Draw the models by hand, following the modelling guidelines provided.
Feel free to ask us questions on modelling constraints.

Model the example step by step following the system story. When modelling, try to freely interpret the
requirements. There is no “right” or “expected” solution your models have to conform to. Remember to
model contributions to the softgoals!

227

5A
Patient Monitoring Agent Tropos model

Start time _________ End time __________

Control questions:
Which plans are activated in the following scenarios?

The patient is very accurate and does not miss any meal and medicine. Which plans are activated during a
day? Plans: ___
The patient did eat for breakfast and lunch. Now its dinner time. What happens supposing that the patient
will not eat it?
Plans: ___
If, answering to these questions you encountered any difficulty, please try now to correct the model.

APPENDIX A. EMPIRICAL STUDY: EXPERIMENT MATERIAL

228

7A
Questionnaire for example “Patient Monitoring Agent”

Post-modelling questions:
How much % of the time did you approximately spend in:

Re-reading the Tropos explaination _____%

Reading & understanding the example _____%

Modelling the example _____%

1 – Strongly agree 2 – Agree 3 – Not certain 4 – Disagree 5 – Strongly disagree

• The explanation of the example was clear to me ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• I had no difficulties in modelling its requirements in a goal model ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• I had enough time for accomplishing the modelling task. ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• Goal decomposition was very useful in this modelling task. ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• The concepts of the modelling language were detailed enough to model the requirements.
❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• I had difficulties in modelling the user preferences with contributions to the softgoals.
❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• The effort of modelling seems too high for an efficient use of the methodology in practice.
 ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• Suppose to be the programmer that has to detail and to implement the application. What do you
think:

◦ The obtained model is concrete enough to guide the programmers
to an implementation respecting the requirements. ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

◦ The obtained model is too abstract to be able to properly guide the programmers
to an implementation respecting the requirements. ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

Additional questions (Tropos4AS modelling only”) ↪

229

3B
Tropos4AS

Tropos4AS includes all TROPOS: goals, softgoals, plans (activities) to execute to reach goals;
AND/OR decomposition of goals, contribution to softgoals (++, +, -, --).
Environment model: Defines the agent's perception of the environment

• Environment entities, represented as simplified UML classes, provide functionalities to sense
and to act:
◦ Entities used by the agent, with the functionalities to act and to sense (to evaluate conditions).

e.g. Tropos Resources, devices in the system (e.g. battery with sensing functionalities
capacity, isCharging,...) and outside (battery charger,...).

• Goals and plans are connected to environment artifacts through conditions:
◦ PreCondition: the goal/plan can only be activated if it is true.
◦ CreationConditon: activates the goal. Note: sub-goals are activated implicitly through the

decompositions.
◦ AchievementCondition/MaintainCondition: achieve / maintain the state.
◦ FailureCondition: if true, the goal fails.

Extended goal model: Detail dynamics of goal achievement
• Model many alternatives: some could be more specialised to a specific context, while others

would contribute less to the softgoals, but are more general. Characterise alternatives by
contribution to softgoals and by modelling PreConditions.
◦ If at run-time some goal or plan fails, less optimal alternatives will be selected!
◦ At run-time, users can change importance of softgoals, giving more or less

weight to softgoal contributions, thus possibly changing selection decisions.
• Goal types:

◦ (A) Achievement: achieve the state one time.
◦ (M) Maintain: maintain a state over time (agent tries to act each time it is not maintained).
◦ (P) Perform: the goal to succeed to perform an activity (of the ones modelled).

• Relations between two goals:
◦ A B: Achieve goal A before activating goal B
◦ A B: Goal B can not be active as long as goal A is active.

Failure model: Elicit missing requirements regarding the exceptional work flow
• Explicit a possible Failure (also from modelled failure conditions), correlating it to a the

corresponding goal (if any), e.g. “the bike is unable to brake”
• Find one or more Errors that can be the cause of such a failure, e.g. “rear brake cable broken”.
• Model recovery activities (plans or pieces of goal models) to recover from an error, to prevent

failure, e.g. “brake gently with front brake”, “goal to replace brake cable”.

‹‹sequence››

‹‹inhibits››

MM

AA

FloorSensor
+ FloorType
FloorSensor

+ FloorType

DirtSensor

+ DirtType

DirtSensor

+ DirtType
FailureCondition
DirtAmount>10
OR DirtType=mud

PreCondition
FloorType=wood

AchievementCond.
DirtType=du s t

AA

PP
Tool broken

Error

Failure

+ DirtAmount

AA

‹‹sequence››

APPENDIX A. EMPIRICAL STUDY: EXPERIMENT MATERIAL

230

4B
Example: Washing machine manager

System story
Summary: You have to develop an “intelligent” washing machine manager (WMM) software for a high-
tech washing machine. The main aim of the stakeholders (both the producers and the users) is,
undoubtedly, that it washes clothes. Doing this, the machine should achieve an appropriate level of
cleanness, while being energy efficient.

The WMM will have to take various high-level decisions on the cleaning process, regarding heating,
water use, detergent use, etc. We assume that the low level washing process is handled by a separate
controller chip that takes the values from the WMM in input.

The machine has the following sensors: a water heat sensor, a weight sensor to measure how much the
tumble is filled with clothes, and a sensor that reports the dirt level of the water in the tumble (on a scale
from 0 to 9).

The user has the following ways to control washing:

• An “Energy saving” adjustment wheel to select the relative user preference in a range between 0 (less
saving) and 1 (most saving) and a “Super Cleanness” adjustment wheel to select between 0 (less clean)
and 1 (most clean). Suppose that turning these wheels reflects directly to the importance the user gives to
the two respective softgoals “EnergyEfficiency” and “Cleanness” represented in the provided goal model.

• An On/Off knob for delicate clothes

Requirements: The WMM has the goal to wash the clothes respecting the user's settings. One sub-goal
is to dose the detergent appropriately, depending on the weight sensor data the system should select to
put one portion of detergent (<2 kg clothes) or two (>2 kg clothes).

Another sub-goal is to heat the water appropriately. Depending on the user's preferences represented by
importance of the softgoals “EnergyEfficiency” and “Cleanness”, the water should be heated accordingly,
to 50°C (contributes more to “EnergyEfficiency”) or to 90°C (contrib. more to “Cleanness”). If the
“delicate clothes” knob is pressed, these two temperatures to achieve should be lowered to 30°, and 60°C.

Moreover, a sub-goal of the system will be to ensure that the washing water is clean enough. This
should be achieved adapting the behaviour to the sensed dirt level of the water in the machine: the water
should be recycled internally if it is not too dirty. Otherwise, the system should drain out the dirt water
and refill with fresh water. Possibly, this decision should also be influenced by the position of the “Energy
saving” wheel and the “Super Cleanness” wheel . During water draining and refilling, inhibit heating!

[suggestion: first try to complete the model until here]

During the washing process, there could arise several problems that may let fail the system's top-goal.
What if the reported water dirt level is very high after the washing process and thus the clothes could
not really be clean? Possibly the clothes should be soaked in fresh water for some time. If the “Super
Cleanness” wheel is in position 1 (most clean)., the system should even start a new short washing cycle
with one portion of detergent. Try to model this and imagine another possible error and activities to be
done to prevent this failure!

Modelling Task
Try to model the requirements for the Washing Machine Manager as detailed as possible, following
Tropos4AS, starting from the goal model of the actor “WMM” provided to you, which already contains
the main goal and two softgoals. Draw the models by hand, following the modelling guidelines provided.
Feel free to ask us questions on modelling constraints.

Model the example step by step following the system story. When modelling, try to freely interpret the
requirements. There is no “right” or “expected” solution your models have to conform to. Remember to
model contributions to the softgoals!

231

5B
Washing machine manager Tropos4AS model

Start time _________ End time __________

Control questions:
Which plans are activated in the following scenarios?

The machine is fully filled with 4kg of delicate clothes and the “Optimal Energy” wheel is in “energy
saving” position:

Plans: ___
Suppose that at the end of this washing cycle the water is very dirty. Which plans will be activated?

Plans: ___
If, answering to these questions you encountered any difficulty, please try now to correct the model.

APPENDIX A. EMPIRICAL STUDY: EXPERIMENT MATERIAL

232

7B
Questionnaire for example “Washing Machine Manager”

Post-modelling questions:
How much % of the time did you approximately spend in:

Re-reading the Tropos4AS explaination _____%

Reading & understanding the example _____%

Modelling the example _____%

1 – Strongly agree 2 – Agree 3 – Not certain 4 – Disagree 5 – Strongly disagree

• The explanation of the example was clear to me ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• I had no difficulties in modelling its requirements in a goal model ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• I had enough time for accomplishing the modelling task. ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• Goal decomposition was very useful in this modelling task. ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• The concepts of the modelling language were detailed enough to model the requirements.
 ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• I had difficulties in modelling the user preferences with contributions to the softgoals.
❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• The effort of modelling seems too high for an efficient use of the methodology in practice.
❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• Suppose to be the programmer that has to detail and to implement the application. What do you
think:

◦ The obtained model is concrete enough to guide the programmers
to an implementation respecting the requirements. ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

◦ The obtained model is too abstract to be able to properly guide the programmers
to an implementation respecting the requirements. ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

Additional questions (Tropos4AS only) ↪

233

8B
Questions for the Tropos4AS modelling task:

How much % of the modelling time did you approximately spend on

Goal modelling: _____% Environment&conditions modelling: _____%

Failure modelling: _____% (sum = 100%).

1 – Strongly agree 2 – Agree 3 – Not certain 4 – Disagree 5 – Strongly disagree

• In my opinion, enriching Tropos with conditions modelling is very useful for the scope of
modelling adaptivity to the environment ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

Your thoughts about conditions modelling:________________________________

• In my opinion, enriching Tropos with failure modelling is very useful for the scope of modelling
adaptivity to the environment ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

Your thoughts about failure modelling: __

APPENDIX A. EMPIRICAL STUDY: EXPERIMENT MATERIAL

234

1C

Comprehension study Tropos vs. Tropos4AS

Example: Patient Monitoring Agent

Task:

Answer to the model comprehension questions on the next page, looking at the goal model
(either Tropos or Tropos4AS) assigned to you. If the answers are not in the model, or you have
difficulties extracting them, you can read them also in the system requirements. Remember that
you have a tight, fixed time for the whole task: 12 minutes! Afterwards, please respond to the
questionnaire.

System requirements

You have to develop an “intelligent” patient monitoring agent (PMA) software. The main aim of
this software is to ensure that a patient, which is usually auto-sufficient and does not necessarily
need the daily presence of a care assistant, follows the medical instructions on eating meals and
taking medicine. The system should reduce the need for human assistance (and thus, reduce the
cost for health care), but it should also not bring annoyances to the patient’s life.

The system should be installed in a “smart home” environment where it can access to reliable
sensors that are able to measure if the patient takes the medicine and how often he eats (for the
sake of simplicity, we suppose that such sensors exist). The flat is set up with loudspeakers in
each room. It is also connected to the phone line for the system to request assistance from the
care-assistant.

The PMA has the goal to ensure that the patient follows the medical instructions. This goal can
be detailed to two sub-goals: eating meals regularly, and taking the medicine on schedule. To eat
regularly, by the instructions of the doctor, the patient has to have at least two meals a day.

The patient has the possibility to eat for breakfast at 8AM, for lunch at noon and for dinner at
7PM. For each meal, starting from the specific time, for one hour, the patient should only be
monitored to see if he eats autonomously. In this way the system does not bring any annoyances
to accurate patients. Only after one hour the PMA should change its plan and gently remember
the patient repeatedly, through the loudspeakers installed in the apartment. Obviously, with this
the system contributes negatively to the requirement of not bringing annoyances, but still it
contributes positively to a reduction of the need for human assistance. If the patient does not eat
the meal also after one hour of repeated requests through the loudspeakers, the system should
cease to do the requests and the respective plans fail. But only if the patient will no more be able
to eat two meals in a day, assistance from the case-assistant should be requested.

The medicine should be taken daily in the evening, between 6PM and 8PM. Moreover, it is
important that the patient does not eat after taking the medicine, and thus the medicine has to be
taken after the last meal of the day. The system should ensure that the patient takes the medicine
on within the given time interval and remember the patient for taking it, gently giving request
through the loudspeaker system. If the medicine was not taken until 8PM, the care-assistant
should be called for assistance.

If the patient is late with eating the dinner, he should skip it, to be able to take the medicine on
time. However, if he did not eat both for breakfast and for lunch, this is not possible and thus the
care-assistant has to be called also in this circumstance.

235

1C
Comprehension study Tropos vs. Tropos4AS

Example: Washing machine manager

Task:

Answer to the model comprehension questions on the next page, looking at the goal model
(either Tropos or Tropos4AS) assigned to you. If the answers are not in the model, or you have
difficulties extracting them, you can read them also in the system requirements. Remember that
you have a tight, fixed time for the whole task: 12 minutes! Afterwards, please respond to the
questionnaire.

System requirements

You have to develop an “intelligent” washing machine manager (WMM) software for a high-tech
washing machine. The main aim of the stakeholders (both the manufacturers and the users) is,
undoubtedly, that it washes clothes. Doing this, the machine should achieve an appropriate level
of cleanness, while being energy efficient. The WMM will have to take various high-level
decisions on the cleaning process, regarding heating, water use, detergent use, etc. We assume
that the low level washing process is handled by a separate controller chip that takes the values
from the WMM in input. The machine has various sensors: a weight sensor to measure how
much the tumble is filled with clothes, a sensor that reports the dirt level of the water in the
tumble (on a scale from 0 to 9) and a water heat sensor.

To control washing, the user can do various settings on the washing machine: An “Energy
saving” adjustment wheel to select the relative user preference in a range between 0 (less saving)
and 1 (most saving) and a “Super Cleanness” adjustment wheel to select between 0 (less clean)
and 1 (most clean). Suppose that turning these wheels reflects directly to the importance the user
gives to the two respective softgoals “EnergyEfficiency” and “Cleanness” represented in the
provided goal model. Moreover, the machine has an On/Off knob for delicate clothes

The WMM should wash the clothes, cleaning them, respecting the user's settings. One
requirement is to dose the detergent appropriately, depending on the weight sensor data the
system should select to put one portion of detergent (<2 kg clothes) or two (>2 kg clothes).

A further requirement for the system is to heat the water appropriately. Depending on the user's
preferences represented by the position of the two wheels softgoals “EnergyEfficiency” and
“Cleanness”, the water should be heated accordingly, to 50°C (contributes more to
“EnergyEfficiency”) or to 90°C (contributes more to “Cleanness”). If the “delicate clothes” knob
is pressed (before starting the washing cycle), the two temperatures to achieve should be lowered
to 30°, and 60°C, respectively.

Moreover, the system should ensure that the washing water (which is typically recycled several
times during the washing cycle) is clean enough. This should be achieved adapting the behaviour
to the sensed dirt level of the water in the machine, thus the machine should drain out the dirt
water and refill with fresh water if it is too dirty (at least a value of 5 on a scale from 1 to 10,
measured by the water dirt sensor). However, this decision should also be influenced by the
position of the “Energy saving” wheel and the “Super Cleanness” wheel. If energy efficiency is
more important for the user than cleanness, the system should command the washing machine to
recycle the water, up to a dirtiness threshold of 7. During water draining and refilling, heating
should be inhibited, to avoid an unnecessary waste of energy.

During the washing process, there could arise several problems that may let fail the system's
main requirements. If, after the washing process, the water dirt level reported by the sensor is
still very high (more than 5 on the scale from 1 to 10), the clothes are not yet clean enough. In
this case, the clothes should be soaked in fresh water for some time, or, if cleanness is more
important for the user than energy efficiency (i.e. the “Super Cleanness” adjustment wheel is set
to a higher position), the system should even start a new washing cycle.

APPENDIX A. EMPIRICAL STUDY: EXPERIMENT MATERIAL

236

meals not
eaten

medicine
not taken

creation-c:
8 AM

A

M

creation-c:
12 PM

creation-c:
7 PM

«s
eq

.»

A

achieve-c:
meal taken

--

-++
-

failure-c: passed
1h from activation

precond:
2 meals

creation-c:
6 AM

medicine sensor

achieve-c:
2 meals

meal sensor

meal sensor

Note: contribution links
without annotation are “+”.…

+

237

--
-

++
-

++
-

Note: contribution links
without annotation are “+”.…

+

delicate knob

A

M

A

A

weight sensor

precond:
≥2kg

precond:
<2kg

precond:
dirt ≤ 7

precond:
not pressed

not clean
after washing

---++
-

++
-

«inhibits»

maintain-c.
dirt < 5

water dirt sensor

Note: contribution links
without annotation are “+”.…

+

APPENDIX A. EMPIRICAL STUDY: EXPERIMENT MATERIAL

238

2C

PMA Model comprehension questions Tropos I

Time: 12 minutes. Start: __________

1. In which occasions can the dinner be skipped?

2. Which activities will the system perform during the day, if a careful patient takes every meal at
the scheduled time, and the medicine right after being prompted to by the system?

3. When exactly will the patient be remembered to take the medicine (after which patient's and/or
system's actions)?

4. With which sensors does the system have to interact to get the necessary information?

5. In which circumstances will the system call the assistant? (please list all possibilities and write
“why” (of the form e.g. “after breakfast, if the coffee was cold”)

End time __________

Post-Questionnaire (AFTER finishing the comprehension task)

1 – Strongly agree 2 – Agree 3 – Not certain 4 – Disagree 5 – Strongly disagree

• I had enough time for accomplishing the tasks ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• The comprehension questions were clear ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• I was able to extract the asked information from the goal model

❏ 1 nearly all ❏ 2 most ❏ 3 half ❏ 4 somewhat ❏ 5 nearly nothing

• I needed to search the information in the textual requirements

❏ 1 nearly all ❏ 2 most ❏ 3 half ❏ 4 somewhat ❏ 5 nearly nothing

THANK YOU!

239

2C

WMM Model comprehension questions Tr4AS II

Time: 12 minutes. Start: __________

1. 3 kg of delicate, but very dirty clothes are put into the washing machine. Energy efficiency is
much more important than cleanness.
Which dosage and heat will the WMM system set?

2. With the clothes and settings from question 1, the water becomes dirtier and dirtier (i.e. dirty=1,
dirty=2, ...) during the washing cycle. How will the system ensure an appropriate water quality?
Give details!

3. What happens if cleanness is much more important than energy efficiency, and the water is still
very dirty after the cleaning process? Suppose that this activity will fail. What will the system do?

4. Which sensor interfaces are needed?

5. With which user settings and conditions will the system restart a new washing cycle?

End time __________

Post-Questionnaire (AFTER finishing the comprehension task)

1 – Strongly agree 2 – Agree 3 – Not certain 4 – Disagree 5 – Strongly disagree

• I had enough time for accomplishing the tasks ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• The comprehension questions were clear ❏ 1 ❏ 2 ❏ 3 ❏ 4 ❏ 5

• I was able to extract the asked information from the goal model

❏ 1 nearly all ❏ 2 most ❏ 3 half ❏ 4 somewhat ❏ 5 nearly nothing

• I needed to search the information in the textual requirements

❏ 1 nearly all ❏ 2 most ❏ 3 half ❏ 4 somewhat ❏ 5 nearly nothing

THANK YOU!

APPENDIX A. EMPIRICAL STUDY: EXPERIMENT MATERIAL

240

Appendix B

Own Publications

The contributions of this thesis are supported by a set of publications carried out

throughout this research work, with main contributions of the author. These have

been published in several international conferences and workshops:

Mirko Morandini, Luca Sabatucci, Alberto Siena, John Mylopoulos, Loris Penserini,

Anna Perini, and Angelo Susi. On the use of the Goal-Oriented Paradigm for System

Design and Law Compliance Reasoning. In Proceedings of the 4th International i*

Workshop (i* 2010) at CAiSE’10, Hammamet, Tunisia, June 2010, pp. 71-75.

Mirko Morandini, Frederic Migeon, Marie-Pierre Gleizes, Christine Maurel, Loris

Penserini, and Anna Perini. A Goal-Oriented Approach for Modelling Self-Organising

MAS. In 10th International Workshop on Engineering Societies in the Agents’ World

(ESAW 2009), Utrecht, November 2009, Springer, LNCS vol. 5881, pp. 33-48.

Mirko Morandini, Loris Penserini and Anna Perini. Operational Semantics of Goal

Models in Adaptive Agents. In Proceedings of the 8th International Conference on Au-

tonomous Agents and Multi-Agent Systems (AAMAS’09), Budapest, Hungary, May

2009, IFAAMAS, pp. 129-136.

Mirko Morandini, Loris Penserini and Anna Perini. Modelling Self-Adaptivity: A

Goal-Oriented Approach. In 2nd IEEE International Conference on Self-Adaptive and

Self-Organizing Systems (SASO), Venezia, Italy, 20-24 October 2008. IEEE Press, pp.

469-470.

241

APPENDIX B. OWN PUBLICATIONS

Mirko Morandini, Loris Penserini, Anna Perini. Automated Mapping from Goal

Models to Self-Adaptive Systems. In Proceedings of the 23rd IEEE/ACM International

Conference on Automated Software Engineering (ASE 2008), demo session, L’Aquila,

Italy, September 2008, IEEE Press, pp. 485-486.

Mirko Morandini, Loris Penserini and Anna Perini. Towards Goal-Oriented De-

velopment of Self-Adaptive Systems. In Proceedings of the Workshop on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS) at ICSE08, Leipzig,

Germany, May 2008, ACM, pp. 9-16.

Loris Penserini, Anna Perini, Angelo Susi, Mirko Morandini, and John Mylopoulos.

A Design Framework for Generating BDI-Agents from Goal Models. In Proceedings

of the 6th International Conference on Autonomous Agents and Multi-Agent Systems

(AAMAS’07), Honolulu, Hawaii, May 2007, IFAAMAS, pp. 610-612.

Mirko Morandini, Loris Penserini, Anna Perini and Angelo Susi. Refining Goal Mod-

els by Evaluating System Behaviour. In Proceedings of the 8th International Workshop

on Agent-Oriented Software Engineering (AOSE 2007), Honolulu, Hawaii, May 2007.

In Agent Oriented Software Engineering VIII. LNCS Vol. 4951, Lin Padgham, Michael

Luck editors. Springer, 2008, pp. 44-57.

Mirko Morandini, Duy Cu Nguyen, Anna Perini, Alberto Siena and Angelo Susi.

Tool-supported Development with Tropos: the Conference Management System Case

Study. In Proceedings of the 8th International Workshop on Agent-Oriented Software

Engineering (AOSE 2007), Honolulu, Hawaii, May 2007. In Agent Oriented Software

Engineering VIII. LNCS Vol. 4951, Lin Padgham, Michael Luck editors. Springer,

2008, pp. 182-196.

242

	Introduction
	Challenges in Developing Self-Adaptive Systems
	Objectives and Approach
	Contributions
	Outline of the Thesis

	State of the Art & Background
	Analysis and Design for Self-Adaptive Systems
	Software Agents
	Multi-Agent Systems
	Agent-Oriented Programming

	Agent-Oriented Software Engineering
	Work Context
	Tropos
	Jadex
	ADELFE

	Extending Goal Modelling for Adaptivity
	Introduction
	Conceptual Models
	The environment model
	The Extended Goal Model
	The failure model
	Graphical modelling language

	Modelling Process
	Extended goal modelling
	Failure modelling
	A pattern for modelling variability

	Final Considerations and Related Work

	From the Model to Run-Time
	The Process: Overview
	A Mapping from Goal Models to BDI Agents
	The considered subset of Tropos4AS concepts and structures
	BDI concepts and mapping guidelines
	Mapping of Tropos concepts and structures
	Tropos4AS concepts mapping

	Tool Support
	Tool support: Tropos4AS modelling
	Tool support: code generation
	Tool architecture
	Illustration of the tool-supported process
	Discussion

	Final Considerations and Related Work

	Operational Semantics for Goal Models
	Introduction
	Goal Types and Goal Decomposition
	An example: the Cleaner Agent

	Goal Model: Abstract Architecture
	Basic Concepts of the Formalisation
	Transition rules

	Instantiation of the Abstract Architecture
	Perform-goals
	Achieve-goals
	Maintain-goals

	Application of the Semantics
	Discussion: Goal Types in Goal Models
	Related Work
	Final Considerations

	Modelling Adaptation by Self-Organisation
	Introduction
	Comparing the two methodologies

	Modelling of Self-Organising MAS
	Integration of Tropos4AS and ADELFE concepts
	Metamodel extension
	Modelling Steps

	Application to an Example
	Architecture
	Detailed design

	Related Work
	Final Considerations

	Evaluation Through Examples
	Process application to an Example
	Description of the system
	Tropos modelling
	Extended goal modelling
	Failure modelling
	Implementation and behaviour of the prototype
	Final Considerations

	Development and Evolution of a Prototype
	The case study: iCleaner
	Applying Tropos4AS
	Evolution of the iCleaner
	Testing results and improvements
	Final Considerations

	Evaluation: Feedback from Run-Time to the Design
	Outline of the applied feedback process
	Example 1: the Travel Agency
	Example 2: a computer recommender system
	Contributions

	Empirical Evaluation of Tropos4AS Modelling
	Introduction
	Experiment planning
	Goal of the study
	Context selection
	Objects of Study
	Subjects
	Experiment design

	Experiment 1: Modelling
	Research questions and hypotheses
	Variables and measures
	Experiment procedure and material

	Data Analysis
	Statistical evaluation
	Evaluation of model correctness

	Results and Interpretation
	Adequateness of the experimental settings
	Main factor: results and interpretation
	Additional results
	Co-factors
	Threats to validity

	Experiment 2: Comprehension
	Research questions and hypotheses
	Experiment design and discussion
	Experiment procedure and material
	Variables and measures
	Statistical evaluation

	Results and Interpretation
	Adequateness of the experimental settings
	Main factor: results and interpretation
	Co-factors
	Threats to validity

	Related Work
	Final Considerations

	Conclusion
	Summary and Contributions
	Conclusion and Future Work

	Bibliography
	Empirical Study: Experiment Material
	Own Publications

