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Università degli Studi di Trento

March 2011



2



Abstract

Modelling biological systems allows us to understand how their components interact and give
rise to complex behaviour. Initially, biology relied on mathematical models based on systems of
differential equations whose solution describes the concentration of the molecules in time. Re-
cently, spurred by the metaphor of “cells as computation” by Regev and Shapiro, the scientific
community adapted concurrent languages to describe biological systems. This led to the cre-
ation of computational models which are executable and not simply solvable. Executable models
offer some advantages over systems of differential equations, such as allowing the modeller to
capture the causality relations among the events that constitute the dynamics of the model
evolution. However, these new approaches introduce new issues; for example executing a model
is more computationally intensive than solving a system of differential equations, especially if
the model has to be executed several times because of statistical constraints. In this thesis we
focus on reducing the execution time of biological models by applying static analysis techniques
like control flow analysis and abstract interpretation.

Keywords
[systems biology, process calculi, executable models, control flow analysis, abstract interpreta-
tion]
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Chapter 1

Introduction

1.1 The Context

In the last decades, the amount of data produced by molecular biology has increased exponen-
tially. New technology and experimental techniques enabled projects like The Human Genome
Project which were unthinkable a few years ago. These projects shifted the focus of the disci-
pline from the generation of data to their collection and analysis calling for a new discipline,
bioinformatics. Bioinformatics applies statistics and computer science to molecular biology and
it has carved itself a dominant role in both the generation and the interpretation of biological
data. It is producing results which are both fascinating and extremely concrete, however it is
still based on a reductionist approach. Reductionism is based on the assumption that the single
components contain enough information to explain the complexity of a whole system. Although
effective, this assumption represents one of the main limits of the reductionist approach [111]
because, even once we have a complete network of connections between the components, we do
not necessarily understand the overall behaviour of a system. Biological systems are extremely
complex and show emergent properties and behaviours that cannot be explained or predicted
by only studying the structure of their individual components. As Kitano points out in [61] a
complete system-level understanding requires a shift in the notion of what to look for in biology.
While the understanding of genes and proteins continues to be important, the focus is shift-
ing on understanding the system structure and dynamics. Although it subverts the traditional
reductionist approach, this system-level perspective is not against it but throws the basis for
a new paradigm that in the last years has been identified with systems biology. The scientific
community is still elaborating a unique definition [53, 60, 61, 86, 114], but we can capture its
main principles and goals in the worlds of Kirschner [60]:

“I would simply say that systems biology is the study of the behaviour of complex bi-
ological organization and processes in terms of the molecular constituents. It is built
on molecular biology in its special concern for information transfer, on physiology for
its special concern with adaptive states of the cell and organism, on developmental
biology for the importance of defining a succession of physiological states in that pro-
cess, and on evolutionary biology and ecology for the appreciation that all aspects of
the organism are products of selection, a selection we rarely understand on a molec-
ular level. Systems biology attempts all of this through quantitative measurement,
modelling, reconstruction, and theory.”
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One of the challenges of systems biology is the coherent representation of the studied sys-
tems. This is an open issue and scientific community is still exploring different approaches. A
viable proposal comes from the observation that biological systems share many similarities with
reactive systems [46], which have been widely studied in computer science. These similarities
have been highlighted for the first time in [101], where the cell is presented as a system where
independent agents, through interactions, give rise to a global behaviour. That work proposes
process calculi, originally intended for the description of reactive systems, for modelling biology.
The adaptation of process calculi to the modelling of biological systems, leads to the definition
of new languages (see e.g. [20, 23, 33, 94, 96, 100, 104]). These languages differ from more
traditional mathematical models used in systems biology because they allow the definition of
computational models which are executable and not simply solvable [43]. Executable, in this
context, means that we can describe and predict the flow of control between species and reac-
tions; for instance, the formalism not only captures the kinetics, but also the causality relation
among the events that constitute the dynamics of the model evolution.

This process calculus based approach, makes quite difficult to automatically extract informa-
tion from the defined models. In fact, process calculi are extremely expressive and often Turing
complete [15, 72, 75, 106, 107]. This implies that undecidability makes it not possible to fully
investigate all the properties of a model [103]. A possible solution to this issue consists in the
application of static analysis techniques which, at the price of a loss in precision, makes some
interesting properties decidable. Valuable examples of static analysis applied to bio-inspired lan-
guages are control flow analysis [8, 91], data flow analysis [91] and abstract interpretation [32].
All of those are adaptation of methodologies originally introduced in the computer science area
of compiler construction. In particular, optimising compilers rely on automatic procedures to
maximize or minimize some attributes of an executable program (e.g. execution time). Compiler
optimization is generally implemented using a sequence of optimizing transformations, i.e. al-
gorithms which take a program and transform it to produce an output program that uses less
resources but produces the same output.

In this thesis we observe that, in the context of process calculi, static analysis techniques
have been used prevalently to formally verify qualitative properties of the models. Indeed, the
original purpose of these techniques, which was to speed up the execution of a program, has
not been investigated. However optimization of execution has several advantages in the biolog-
ical context. In fact, when interesting properties cannot be verified through formal methods,
simulations remains the only viable solution. Due the stochastic nature of biological systems a
single simulation cannot give reliable information, and, in order to have informative statistics,
it is sometimes necessary to execute the same model from hundreds to thousands of times [3]
and therefore an optimized execution enables to save time, which immediately reflects in saving
resources. In this work we investigate how to apply and adapt static analysis techniques in order
to speed up the simulation of biological models.

1.2 The Problem

A process calculus can be characterized in different ways. One of the most common approaches
consists in the definition of a syntax and an operational semantics [92]. The former defines how
to write a process, the latter what the process does, i.e. how it executes. The behaviour of a
process is well described by a graph which goes under the name of transition system. The nodes
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of this graph represent the configurations which a process can assume and the arcs the actions
which trigger the configuration changes.

Bio-inspired process calculi are usually equipped with quantitative information that define
the speed and the probability of executing an action. This quantitative information are usually
the rates of a negative exponential distribution [44]. In this way, when multiple actions are
active, the distribution associated with each action is used to randomly choose the one to execute.
Some calculi extend this idea by introducing two kinds of actions: standard actions which are
associated with rates (low priority) and immediate actions (high priority). If a standard action is
active together with an immediate action, it has no chance to be be executed. If more immediate
actions are active different mechanisms can be chosen in order to establish which of them will
fire.

In the case of process calculi without immediate actions, the transition system associated
with a process is a Markov stochastic process and it is effectively described by a continuous time
Markov chain (CTMC) [4]. If the calculus offers the possibility to specify immediate actions, the
transition system is a semi-Markov stochastic process. In particular it is a process of the kind
generated by generalized stochastic Petri nets (GSPNs) [56], where the states are partitioned
in vanishing (which perform immediate actions) and tangible (which do not). Particularly
interesting is the possibility to associate these processes with an underlying CTMC enabling
the use of well known mathematical results in order to extract interesting properties about
the analysed model. Unfortunately, it is often the case that bio-inspired processes generate a
transition system which cannot be computed because of its huge or even infinite size. The same
holds for the underlying CTMC and in practice, researchers have to perform simulations in order
to analyze the system.

The outcome of a simulation consists in a list of paired simulation times and configurations.
Reading this list, we go through the configurations visited by the process together with the time
instant in which the configuration has been entered. The list is computed through the execution
of the following simulation algorithm:

1. The simulation time is set to zero and the current configuration of the process is set to its
initial configuration;

2. The simulation time and the current configuration are stored in the result;

3. The operational semantics is used to extracts the set of active actions from the current
configuration;

4. If the state is tangible:

(a) The rate of the active actions is used to determine the action to be fired and the time
it takes to execute;

(b) Via operational semantics the selected action is applied to the current configuration;

(c) The computed configuration becomes the current one and the execution time of the
fired action is added to the simulation time;

(d) The procedure restarts from point 2;

5. If the state is vanishing

(a) According to the policy of the scheduler one of the active action is chosen;
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(b) Via operational semantics the selected action is applied to the current configuration;

(c) The computed configuration becomes the current one (note that the simulation time
remains unchanged);

(d) The procedure restarts from point 2;

If the simulation is not interrupted it proceeds until the process enters a deadlock configuration,
i.e., at point 3, there are no active actions.

Observing that the sojourn time of vanishing configurations is null we can consider them as
non informative intermediate steps to move from tangible to tangible configurations. Jumping
among tangible configurations opens to the interpretation of the simulation as a walk through the
states of a CTMC, in particular of the CTMC associated with the transition system generated
by the process. This enables the possibility of modifying the simulation procedure in order
to make it faster, while, at the same time, generating the same results in terms of visited
tangible configurations. The idea is to define a simulation algorithm which visits only tangible
configurations, without traversing the vanishing ones. To obtain a method which makes the
simulation visit exclusively tangible configurations is extremely challenging. In practice, we
explore a hybrid solution, i.e. in some cases the simulation jumps from tangible to tangible
configurations, in others, it traverses the vanishing configurations. In this case, the simulations
“travels” in a transition system which is a reduced version of that generated by the process, but
with the same underlying CTMC.

1.3 Contribution

BlenX [104] is a recent language intended for modelling biological systems. This formalism builds
on standard approaches a notion of structural interaction between species. More specifically,
a species has both an internal state and some interfaces: the internal state evolves over time
mimicking the structural modification of a species and the interfaces interact with other species
to form complexes. This approach allows the modelling of complex biological structures such as
chains or grids of proteins.

BlenX represents species with objects named boxes. A box is equipped with a set of inter-
faces and a number of internal processes running in parallel. The processes are written in a
language similar to the π-calculus [76] and can communicate over channels. Boxes also have
the capability to communicate with each other by sending messages through their interfaces.
The same interfaces are used to create bindings between boxes. The interaction capability of
the interfaces are defined by the sort they are associated with. Sorts define binding, unbinding
and communication capabilities of the interfaces. In some cases communication through two
interfaces can happen only if they are bound together, in other cases instead it can happen even
if they are free (i.e. not bound), depending on the modeler’s choice. BlenX allows the modeler
to specify immediate actions, introducing the distinction between vanishing and tangible con-
figurations. The importance of immediate actions is shown, for instance, in the case of models
which describe self-assembly mechanism [66]. In this context, boxes can be programmed to build
long filaments and tree structures: immediate actions allow computations inside boxes which
are invisible in terms of simulation outcome but are necessary to implement spatial and physical
constraints which cannot be expressed with a single primitive of the language.

In this thesis we develop a method based on different static analysis techniques which rec-
ognize when a system is going through the execution of a sequence of immediate actions and
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directly jumps it to the next tangible system. This approach allows us to define an optimized
simulation algorithm which minimizes the number of visited vanishing systems.

The version of BlenX we consider is the one presented in [104], with a slightly different
definition of event. Events are a feature of the language which allows the modeller to substitute
some free boxes (i.e. not bound to anything) with others. Here, we limit the power of this
construct by restricting to substitutions of a single box with a set of boxes. With this change,
we can define a structural operational semantics instead of the reduction semantics of [104].
The introduction of this new semantics, in the style of PEPA [50], makes the presentation of
our results more intuitive and easier to understand.

The key of our work is a radical change of viewpoint. Instead of looking at the whole BlenX

system, we focus our efforts in the analysis of the boxes populating it. The intuition is that the
changes in the configuration of BlenX systems are driven by actions which involve one or more
boxes. This implies that, if we compute the configurations reachable by a box and the actions
which cause its configuration changes, we can collect information about the behaviour of the
whole system. For example, if we know that a box can independently perform an immediate
action, we can deduce that the same holds in any system containing such a box. For this reason,
we set up a method which computes an over-approximation of the configurations a box can
assume with respect to a BlenX system. This over-approximation process is supported by control
flaw analysis which has been successfully applied to many process calculi (e.g. [8, 10, 36, 82]).

In order to be able to compute all the configurations which boxes can assume, we have to
ensure that the total space of configurations is finite. This is not always the case in BlenX.
However, we observe that, in nature, molecules assume a finite set of interesting configurations.
Therefore, if our boxes are intended to mimic such molecules it makes sense to think about the
introduction of some syntax constraints which prevent them from generating infinite configura-
tions. In this work we present such constraints and we prove that they actually limit the boxes
in the way we desire.

A key point in understanding which actions boxes can perform is to understand how they
can bind together. In fact, the activation of some actions depends on interactions over bound
interfaces. To get this information we exploit the abstract interpretation method proposed
in [32]. In that work, starting from a disconnected graph and a set of rewriting rules, a method
is defined to over-approximate the obtainable connected components. The formalism used is
the κ-calculus [33], a bio-inspired language which represents molecules as connected graphs and
biological reactions as graph rewriting rules. Therefore, to exploit the results of [32], we propose
an encoding of the BlenX language in κ-calculus. Exploiting the encoding we gain information
about the possible binding interactions occurring among boxes in a BlenX system.

Using the methodology described, given a system, we identify groups of boxes which can
potentially appear during its evolution and which perform atomic sequences of immediate actions
to finally reach a tangible configuration (i.e., a configuration where no immediate actions are
active). We define sequences of actions as atomic if whatever the boxes involved in the system
are, they cannot be interrupted. The interesting aspect of the identified groups of boxes is that
when one of them appears in a given system we know that, through an atomic sequence of
immediate actions, they always undergo through the same transformation. This leads to the
definition of an optimized simulation algorithm that, once identified a group of boxes obeying the
desired properties, recognizes that the system is entering a sequence of vanishing configurations,
and, instead of computing them, it immediately jumps to the next tangible system. This can be
done by replacing the identified group of boxes with those resulting from the execution of the
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immediate actions (which can be statically precomputed before the simulation starts).

1.4 Structure of the Thesis

Chapter 2 introduces biological systems and process calculi; moreover it gives the mathemat-
ical preliminaries necessary to understand the static analysis techniques we apply;

Chapter 3 presents BlenX and shows some examples which clarifies the role and the importance
of immediate actions;

Chapter 4 presents a running example (actin polymerization) which is used to make more
intuitive the presentation of the techniques defined in the thesis;

Chapter 5 starts with the definition of the method to generate all the configurations which a
BlenX box can assume. After that, it introduces the syntax constraints which ensure the
computability of the configurations reachable by a box;

Chapter 6 defines a control flow analysis for BlenX and explains how refine the technique
presented in Chapter 5;

Chapter 7 presents the encoding of BlenX into κ-calculus;

Chapter 8 shows how to exploit the presented techniques to speed up the execution of BlenX
models;

Chapter 9 concludes the thesis with a summary and the proposal of future works.

1.5 Related Publications
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BlenX. In Systems Biology for Signaling Networks, Springer, 2010.
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Chapter 2

Background

2.1 Biological Systems

The cell is the fundamental unit of life. Even the simplest unicellular organism, in fact, can
grow, reproduce, process information, respond to stimuli, and carry out chemical reactions.
We divide cells in two big families, prokaryotes and eukaryotes. Prokariotic cells consists of a
unique compartment surrounded by the plasma membrane where all the molecules necessary
for carrying on the life activity float together. Eukaryotic cells have a more complex structure.
They have a defined membrane-bound nucleus and extensive internal membranes that enclose
other compartments, the organelles. Even though two kind of cells have several differences, they
can live and reproduce through mechanisms that are based on the same molecules and concepts.
The molecules that are the base of life are Proteins, DNA, RNA, and metabolites [2].

Proteins: Proteins are the machines that carry out the activities inside cells. They play fun-
damental roles in structuring the cell, in reaction catalysis and regulation, transmission
of signal between different compartments, movement of molecules from one location to
another and many other tasks. Proteins are made of a chain of amino acids, whose lin-
ear sequence (also called primary structure) is stored in the DNA. There are twenty-one
different amino acids whose characteristics drive the folding of the protein and determine
its chemical properties. Depending on the amino acids composition, a protein can have
regions with positive or negative charge, regions which are hydrophobic or hydrophilic
and regions which are basic or acidic. Although the process of folding is still poorly un-
derstood, several studies revealed some local regularities in the folding pattern, called
protein’s secondary structure. The secondary structure gives rise to elements called do-
mains that allow the protein to interact with other molecules. Besides local foldings, the
overall three-dimensional structure of a protein is called tertiary structure. When proteins
complex with other proteins or molecules, we obtain the so called quaternary structure.
When a protein interacts with other molecules, even if its amino acid composition remains
the same, its structure changes. This can result in the modification of its properties and
in a different behaviour. The different three-dimensional shapes of a protein are called
conformational states.

DNA and RNA: DNA is an abbreviation for Deoxyribonucleic Acid. The three-dimensional
structure of DNA consists of two long helical strands that are coiled around a common
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axis, forming a double helix. DNA strands are made of small monomers called nucleotides.
There are four different nucleotides: A, T, C and G. Each DNA double helix has a simple
construction: wherever there is an A in one strand there is a T in the other, and each C
is matched with a G. This complementary matching of the two strands is so strong that
if complementary strands are separated, they will spontaneously zip back together. The
information in DNA is stored as a code by the sequence of the four different nucleotides.
The portion of DNA which carries information is divided in units called genes. A gene can
be divided in two regions: one region contains the linear sequence of amino acids necessary
to form a protein and the other region contains regulatory elements which determine
expression levels and timing.

Even if the information for building proteins is stored in the DNA, they are not produced
directly starting from the DNA. An intermediate step is necessary and it is called tran-
scription. Such a process, starting from the DNA, produces a single strain of nucleotides
which is called RNA (Ribonucleic Acid). RNA is produced using the DNA as a template,
and the machine that takes care of creating this molecule is a large enzyme called RNA
polymerase. Once RNA is created, the last step for the creation of the protein takes place.
This process is called transcription and is carried out by an enormously complex molecule
called ribosome. The ribosome reads the sequence of nucleotides and translate it into a
sequence of amino acids which composes the coded protein.

Metabolite: a metabolite is an intermediate product of metabolism. Metabolites can be fuels
and signalling molecules, cellular building blocks, nucleotides, carbohydrates, lipids, hor-
mones, vitamins, and various other molecules concerned with the vast range of cellular
tasks. Usually, metabolites perform very specific tasks and their structure and chemical
properties are relatively simple if compared, for example, with proteins. We can think of
them as having a single identity and state. Indeed, if a metabolite reacts it becomes a
different metabolite with a different identity and function.

The combination of mechanisms that starting from DNA results in the production of a
protein goes under the name of The Central Dogma of Molecular Biology, and was theorized for
the first time by Crick in 1958 [27].

2.1.1 Biochemical Reactions

The molecules inside a cell interact in thousands of different ways. We can describe these
complex networks of interactions as a set of chemical reactions. An example of reaction is:

2A+B → C

Molecules A and B are reactants, while C is the product. When this reaction happens two
molecules of type A and one of type B are consumed in order to generate one molecule of type
C. The number of molecules of each kind involved in the reaction (in this case 2 for A, 1 for B
and 1 for C) are called stoichiometries. A reaction that can happen in both directions is called
reversible. They are frequent in biology and are written adding a reverse arrow for the backward
reaction:

2A+B ⇌ C
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Chemical kinetics is concerned with the time-evolution of a reaction system specified by
a set of chemical reactions. In particular, it is concerned with the behaviour of the system
away form equilibrium. Although the reaction equations capture the key interactions between
substances, on their own they are not enough to determine the full system dynamics. The rates
at which each of the reaction occurs, together with the initial concentration of the reacting
molecules, are also necessary. The rate of a reaction is a measure of how the concentration of
the involved substances changes over time. To better understand the relationship between rate
and concentration, let us consider a single state reaction in which one molecule A reacts with
one molecule B, giving one molecule C.

A+B → C

According to collision theory, C is produced with a rate that is proportional to the hit
frequency of A and B. If we have a bounded volume with a unique molecule A and several
molecules B, the hit frequency depends on how many molecules B we have. The higher their
number, the higher the probability of a collision with the molecule A that leads to the formation
of a C molecule. For the same reason, if we add a molecule A, the rate of formation of C
doubles. In other words, the frequency at which molecules hit and consequently the rate at
which molecules collide, is proportional to the concentration of both A and B. This relation is
captured by the law of mass action, which state that the rate of a chemical reaction is directly
proportional to the product of the effective concentration of each participating molecule. Hence
in our case we have

rate =
d[C]

dt
= k[A][B]

where k is the basal rate and [A], [B] and [C] denote the concentration of molecules A, B and C,
respectively. The basal rate is a constant that depends on several factors, e.g. the temperature
of the solution where the molecules move and the probability that the hit between the reactants
actually cause the formation of the product. In general, the reaction speed is proportional to the
concentration of the reactants involved raised to the power of their stoichiometry. For example,
given the homogeneous reaction1

nA+mB → P

and the global order of the reaction corresponds to the sum of n and m.

2.1.2 Combinatorial Complexity of Biological Systems

Biological systems are driven by chemical reactions. Products and reactants involved in such
reactions are genes, RNA strands, metabolites and proteins.

These molecules (with the exception of metabolites) have a complex structure which can
change in time and influence the way they bind with the others molecules. Let us consider the
case of proteins and how they can influence their structure by interacting among themselves.
Protein-protein interactions can lead to various posttranslational protein modifications, such
as phosphorylation, ubquitinaton, acetylation, or methylation ([89, 109]). The effect of such
modifications may be a change in a protein’s enzymatic2 or binding activity.

1A reaction is said to be homogeneous if it does not summarize any hidden or intermediate reaction.
2To have an enzymatic activity means to have the capability to boost a reaction
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There are proteins which have several sites that can be modified and this gives them the ca-
pability of assuming a large number of conformational states. If we consider that these molecules
can also bind together (forming a complex ) and undergo conformational change, we begin to
appreciate that in a biological systems the number of different molecules that can potentially
appear is huge. This is a well known problem and it is known as combinatorial complexity (as
in [51]).

A good example of a protein which can assume several configurations is the EGFR receptor.
This molecule, according to [55], during its activity can be modified in nine different sites. As a
simplification, let us assume that only one of the nine sites of EGFR can be phosphorylated at a
time. Under this assumption there are still 10 different phosphoforms and if we consider that two
EGFR receptors can bind together we realize that they can generate 55 distinct configurations.
These numbers grow to 512 and 131,328 if more than one site of EGFR can be phosphorylated
at a time. The number of phosphorylation states relevant for signaling in particular contexts
is unknown, and it seems unlikely that all states are functionally relevant or even realized in
a cell. Indeed, some phosphorylation states may be prohibited [57]. However, even if several
configurations are not admitted, if we want to give an effective description of such a system
through the list of reactions that can take place the task is very hard. There are several chemical
species to be considered and even more ways in which these species react.

The elevated number of configurations assumable by a protein is not the only cause of
combinatorial explosion. Another case in which such an event takes place is the presence of
proteins which can bind together forming long chains made of the same bricks repeated hundreds
or even thousands of times. This binding process is called polymerization and the resulting
molecules are called polymers. An example of polymerization is carried on by the actin protein.
Actin is a small globular protein present in almost all known eukaryotes. It is one of the
most conserved proteins among species because it is involved in fundamental cell processes, e.g.
muscle contraction, cell motility, cell division and cytokinesis, vesicle and organelle movement,
cell signalling, and the establishment and maintenance of cell junctions and cell shape. All these
tasks are performed thanks to the ability of actin to polymerize in long filaments. These filaments
are polarized, thus it is possible to distinguish the two ends, called pointed and barbed. Actin
can interact with a multitude of molecules; among these we have the ARP2/3 complex, a seven
subunit complex. This complex has the capability to bind existing actin filaments and become
a nucleation site for a new filament. This leads to the formation of branched filament networks
that are important for process like cell locomotion, phagocytosis, and intracellular motility of
lipid vesicles. For more information regarding actin refer to [2]. This polymerization process
leads to the creation of a huge number (theoretically infinite if we do not limit the dimension of
a filament) of molecules which differ from each other by the number of actin monomers and by
the location of Arp2/3 branches. Therefore, we have an example of the combinatorial explosion,
making it impossible to describe the system by listing all elementary reactions between the
individual species.

2.2 Modelling Biological Systems

2.2.1 Ordinary differential equations

Ordinary differential equations (ODEs) have been widely used for modelling several kind of
systems such as population growth, epidemiology, electric circuits and fluid dynamics. Thanks
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to their success in other fields, biologists started modelling biology with this mathematical tool.
This approach associates each chemical species of the system with a different variable. Each
variable represents a concentration and is associated with an equation which describes how it
changes during the time in relation with the concentration of the other species in the system. We
implicitly used an ordinary differential equation when we introduced biochemical interactions.
The chemical reaction considered was:

A+B → C

For describing the change rate of the concentration concentration of C, we use the following
equation:

d[C]

dt
= k[A][B]

where k is the basal rate of the reaction. The equations describing the concentration of A and
B are the following:

d[A]

dt
=

d[B]

dt
= −k[A][B]

Given an initial concentration of the species involved in the system it is possible to define
a system of differential equations which shows how the concentration of the species changes
over the time. To find an approximate solution of a system of ordinary differential equation
through numerical analysis is an well-studied problem. Furthermore, in order to decrease the
number of the equations and thus the complexity of the system, biologists introduced several
approximations which simplify a set of reactions with only one equation. Among the most
famous there are the Michaelis-Menten equation [74] (for describing enzyme activity) and the
Hill equation [49] (for describing cooperative binding).

Dealing with ODEs can be quite difficult for people without a mathematical background,
and this leads the scientific community to produce several tools in order to simplify this pro-
cedure (e.g. [52, 108]). Those tools take as input a list of reactions and an initial state of the
system and produce and solve the corresponding ODE system. Several kinds of analysis are
possible in order to obtain interesting information from the model.

2.2.2 Stochastic Simulation

Given a set of chemical reactions describing a biological system, a simulation is one of the most
immediate and natural analyses that can be performed on it. The term simulation is generally
used to indicate the calculation of the system’s dynamics over time given an initial specific system
configuration; for biological systems the initial configuration corresponds usually to the number
of molecules of each involved species. Biological systems can be simulated in different ways using
different algorithms depending on the assumptions made about the underlying kinetics. Once
the kinetics have been specified, these systems can be used directly to construct full dynamic
simulations of the system behaviour on a computer.

This approach is particularly interesting in systems where the quantity of some molecules
can be very low. In this case, the thermodynamic limit cannot be always assumed and micro-
scopic random effects arise making the system naturally stochastic. Under this condition ODE
systems, which are deterministic (i.e. given an initial configuration, their dynamics is univocally
determined), are an unsuitable approach. Chemical stochastic systems are usually represented
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by a chemical master equation (CME) that describes the time evolution of the probability dis-
tribution of the discrete molecule quantities (expressed by natural numbers). This evolution is
a Continuous Time Markov Chain (CTMC), of which any possible realizations can be gener-
ated through Monte Carlo sampling methods. The most famous of these methods for chemical
reactions is the SSA algorithm of Gillespie [45, 115].

For stochastic simulations, there are similar tools which take as input a list of chemical
reactions and an initial configuration of the system and automatically carry on stochastic sim-
ulations [69, 99].

2.2.3 Handling the Combinatorial Complexity

Both of the considered approaches require the modeller to list all the species and the reactions
involved in the system. This means that they are not suitable to handle the combinatorial com-
plexity of some biological systems. To handle this problem it is possible to introduce assumptions
in order to limit the number of species and chemical reactions to be considered.

If we consider again the EGFR receptor, an example of such approach is the model of
Kholodenko et. al [58]. This model is based on mechanistic assumptions that result in focusing
the attention on a fraction of the protein complexes that could potentially arise from the protein-
protein interactions considered in the model. For example, one assumption is that ligand-induced
dimers of EFGR are unable to dissociate when receptors are phosphorylated, this assumption is
reasonable, but lacks clear empirical support. The risk is that assumptions, which are difficult
to justify, are introduced for the sake of avoiding combinatorial explosion. For example, in the
Kholodenko model, if we remove some of the simplifications, the size of the model starts growing
and combinatorial explosion rears its ugly head again [7], making manual model specifications
impractical.

A more effective solution to the combinatorial explosion is based on the following idea:
instead of listing the chemical reactions, we can list the protein-protein interactions and use them
as rules that serve for generating the chemical reactions and species. The idea is to exploit the
modularity of the protein interaction domains. In one approach to rule-based modelling ([38],[5]),
which is implemented in BioNetGen software package, rules are used for generating the chemical
reactions and species. A rule comprises patterns for recognizing reactants, a mapping of reactants
to products, and a rate law. Given a set of initial chemical species, represented with text strings
or graphs, each rule is used to identify, through pattern matching, the species that have features
required to undergo the transformation from reactants to products specified in the rule. Each
transformation is assigned a rate law, the one associated with the corresponding rule. With
this approach, more than one species can be involved in a reactions because of the same rule.
The number of reactions generated by a rule depends on the initial state of the system and on
the other rules. The application of the rules, in order to get the list of the reactions and the
species, can be performed with two approaches: the generate-first and the on-the-fly approach.
With the generate-first approach all the species and the reactions are obtained through an
iterative application of the rules until a specified condition is satisfied or no new reactions are
generated [38]. With the on-the-fly approach, reactions are generated as new species become
populated, which may be advantageous when the network is large or unbounded, as it is the case
when rule application is nonterminating in the absence of an arbitrary halting condition [38, 71].
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2.2.4 Rule-based Modelling with Process Calculi

There are many tools which use rules-based modelling in order to model biological systems.
Among them we find StochSim [67], Moleculizer [71], BioNetGen [6, 38, 39], and Biocham [40].
In this thesis we are interested in approaches which differ from these because they belong to the
family of process calculi.

Starting from the Calculus of Communicating Systems [75] (CCS), process calculi have been
defined to provide us with formal specifications of concurrent systems, i.e., computational entities
executing their tasks in parallel and able to synchronise. The model of a system S is typically
given as a term that defines the possible behaviours of the various components of S. Calculi are
equipped with syntax-driven rules, the so-called operational semantics [92]. These rules allow to
infer the possible evolutions of the system under analysis and can be automatically implemented.
For instance, they can specify that a certain system P evolves into system Q, written P → Q.
The basic entities of process calculi are names, an abstract representation of the interaction
capabilities of processes. Names are used to build elementary computations, called actions and
co-actions (complementary actions). In the most basic view, like e.g., in CCS, an action is seen
as an input or an output over a channel. Input and output are complementary actions. The
actual interpretation of complementarity varies from one calculus to the other. The relevant
fact is that complementary actions are those that parallel processes can perform together to
synchronise their (otherwise) independent behaviour.

A process is a computational unit which evolves by performing actions (a, b, . . . ) and co-
actions (a, b, . . . ). The possible temporal order of the concurrent activities is specified by a
limited set of operators. Sequential ordering is rendered via the prefix operator written as an
infix dot. For instance the term a.b.P denotes a process that may execute the activity a, then
b, and then all the activities modelled by P . Two processes P and Q that run in parallel are
represented by the infix parallel composition operator | as in P | Q. Processes P and Q can either
evolve independently or synchronise over complementary actions. For instance, the operational
semantics of a.P | a.Q allows to infer the transition:

a.P | a.Q → P | Q

Another operator is the choice operator, written +. The process P +Q can proceed either
as the process P or the process Q, meaning that the two behaviours are mutually exclusive.
For instance, the operational semantics of a.P | (a.Q + a.R) allows to infer the transition:
a.P | (a.Q+ a.R) → P | Q and a.P | (a.Q+ a.R) → P | R.

Another essential operator is the restriction. In basic calculi as CCS, this operator, written
(νa), is meant to limit the visibility of actions. For instance, it is not possible to infer a.P |
(νa)a.Q → P | (νa)Q because a is a private resource of the right-hand process of the parallel
composition and the left-hand process cannot interact on it. This fact guarantees, e.g., that the
two processes R and S in (νa)(R | S) may interact over a without any interference from the
external world.

Infinite behaviours are usually obtained in process calculi by using operators like replication,
denoted by !P , which allow one to create an unbounded number of parallel copies of a process
P , all placed at the same level. Other mechanisms to generate infinite behaviours are recursion
and iteration [14].

Above we recalled only the fundamental operators which are common to various process
calculi. Each calculus then adopts some specific operators and has a specific view about which
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activities must be considered complementary. A common feature of process calculi is that their
operational semantics allows us to interpret process behaviours as a graph, called transition
system. The nodes of the graph represent processes, and there is an arc between the two nodes
P and Q if P can evolve to Q. For instance the immediate future of P = a.P1 | a.P2 | a.P3 is
drawn as:

P → P1 | P2 | a.P3

and

P → a.P1 | P2 | P3

The depicted transitions highlight that both a.P1 and a.P3 can communicate with a.P2. The
evolution of the system depends upon the temporal order of the interaction. Since no assumption
can be made about this, both transitions are reported in the graph. Typically, the language
of any process calculus contains all the ingredients for the description of concurrent systems: a
system is described in terms of what it can do rather than of what it is.

The behaviour of a complex system is expressed in terms of the meaning of its components.
A model can be designed following a bottom-up approach: one defines the basic operations
that a system can perform, then the whole behaviour is obtained by composition of these basic
building blocks. Moreover, the mathematical rules defining the operational semantics of process
calculi allow to automatically generate the transition system of a given process by parsing the
syntactic structure of the process itself. So, process calculi are specification languages that can
be directly executed.

Process calculi are provided also with stochastic variants, primarily developed as tools for
analysing the performances of concurrent systems [27, 95]. In these variants, process calculi
are usually decorated with quantitative information representing the speed and probability of
actions; these information are used to derive a CTMC.

In this introductory description of process calculi we can appreciate several similarities with
the rule-based approach. The first intuition of this parallelism has been argued by Regev et al.
in [102]. In their abstraction (see Table 2.1) they propose proteins are mobile processes (meaning
agents that exchange messages that can affect their behaviour); protein sites are communication
channels (ports through which messages are passed from senders to receivers); and protein-
protein interactions are communications. The channels of a system and the messages that can
be sent and received along these channels are essentially rules for protein-protein interactions.
The proteins in a complex are linked by a backbone (that is, by co-location in a communication
compartment), and the topology of a complex is indicated by pair-wise communications. In
this framework, signal transduction can be viewed as asynchronous concurrent computation and
studied by using pertinent methods from computer science.

Stochastic extensions of process calculi, moreover, allow the description of the same kind
of stochastic processes used to directly simulate systems of chemical reactions. This analogy
allows us to use stochastic simulation by means of SSA Gillespie’s algorithm also in the context
of process calculi, making process calculi suitable for the representation of biological systems.

After the work of Regev and Shapiro [101] a number of process calculi have been adapted or
newly developed for applications in systems biology.

Biochemical π-calculus [98]: is the first process calculus used to represent biological
systems. In biochemical π-calculus, complementary domains of interaction are represented by
channel names and co-names; molecular complexes and cellular compartments are rendered by
the appropriate use of restrictions on channels; molecules interaction capabilities are represented
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Biology Process calculi

Molecule Process

Interaction Capability Channel

Interaction Communication

Binding
Colocation in a

communication compartment

Dynamics State Change

Table 2.1 – Process calculi abstraction for systems biology.

by communication. Moreover, since the calculus is stochastic, the behaviour of biological system
can also be described and analysed quantitatively. Two simulators for the biochemical stochastic
π-calculus have been implemented: BioSPI [98] and SPiM [90]; these simulators implement the
DM of Gillespie. Moreover, interesting applications of biochemical π-calculus on real biological
scenarios can be found in [17, 20, 65, 68].

Performance Evaluation Process Algebra (PEPA) [50]: is a formal language for
describing CTMC. PEPA allows to quantitatively model and analyse large pathway systems.
PEPA is supported by a large community and a lot of software tools for analysis and stochastic
simulations are available. Moreover, in [22] the authors show how the combined use of PEPA
and the probabilistic model checker PRISM [48] can be used to describe, simulate and analyse
biochemical signalling pathways. Recently, an extension called Bio-PEPA [23] has been intro-
duced. In this extension PEPA is modified to deal with some features of biological models, such
as stoichiometry and the use of generic kinetic laws. The language is provided with a complete
set of tools for performing various kinds of analyses [21].

BioAmbients [100]: is a variant of Mobile Ambients [18] for systems biology and it focuses
on biological compartments. Localization of molecules in specific compartments is extremely
important in regulatory mechanisms and often a molecule can perform its task only if is in
the right compartment. Ambients can be nested and organized in hierarchical way and (like
in π-calculus) biological entities interact by means of communication, which can occur only
between processes belonging to the same compartment, to parallel compartments or to nested
compartments. Moreover, new primitives for movement between compartments are present. The
language is equipped with a stochastic extension and a simulator, based on Gillespie’s algorithm
and implemented as part of the BioSPI project.

Brane Calculi [16]: is a calculus focused on biological membranes, which are not considered
only as containers, but are active entities. A system is viewed as a set of nested membranes and
a membrane as a set of actions. Brane Calculi primitives are inspired by membrane properties;
membranes can merge, split, shift or act as channels. In [34], an extension called Projective Brane
Calculus is presented. The goal of the extension is to refine Brane Calculi with directed actions,
which tell whether an action is looking inwards or outwards the membrane. This modification
brings the calculus closer to biological membranes. Recently, to improve the consistency between
the calculus and biological membrane reactions, a new extension has been proposed in [35]. This
extension uses a generalized formalism for action activation with a receptor-ligand type channel
construction that incorporates multiple association and a concept of affinity.

π@-calculus [113]: is an extension of the π-calculus, obtained with the addition of polyadic
synchronisation and priorities. The expressiveness of the calculus is shown in [112] by providing
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encodings of bio-inspired formalisms like BioAmbients and Brane calculi. The language is pro-
vided with a stochastic variant (the Sπ@) that is shown to be able to model consistently several
phenomena such as formation of molecular complexes, hierarchical subdivision of the system into
compartments, inter-compartment reactions, dynamic reorganisation of compartment structure
consistent with volume variation.

The attributed π-calculus [54]: is an extension of the π-calculus with attributed processes
and attribute dependent synchronization. The calculus is parametrized with a call-by-value
λ-calculus, which defines possible values of attributes. The calculus is provided with a non-
deterministic and a stochastic semantics, where stochastic rates may depend on attribute values.

Beta-binders [96]: this formalism processes are encapsulated into boxes with typed inter-
faces. Types represent the interaction capabilities of the boxes. Beta-binders aims at enabling
non-determinism of communication by introducing the concept of compatibility [94], a notion
that extends the key-lock notion of complementarity between actions and co-actions typical of
process calculi, i.e., the precise matching between an input and an output over a given channel
is always required. In Beta-binders, boxes have to be ready to perform complementary actions
(input/output) over one of their interfaces, and the types of the involved interfaces have to be
compatible. In this way, whichever notion of type compatibility is assumed, the communication
ability of boxes is mainly determined by the types of their interfaces rather than by the actual
naming of the relevant input and output actions. An interesting research line regarding some
possible notions of type compatibility can be found in [93]. The formalism is also provided
with join and split operations, i.e., parametric rules that drive the merging and splitting of
boxes depending on their structure. In Beta-binders the description of such operations is left as
open as possible, with the goal of accommodating possible distinct instances of the same macro-
behaviour. A stochastic extension of Beta-binders for quantitative experiments is presented
in [36].

Now we focus our attention on κ-calculus and BlenX. We will make extensive use of these
calculi in this work and thus we will analyze them more extensively. κ-calculus is presented in
the next paragraph, BlenX is presented in Chapter 3 where we also propose a new operational
semantics for the language, which makes the work of the thesis easier to read and understand.

2.2.5 κ-calculus

The κ-calculus [33] introduces a formal way to express a certain type of graph rewriting sys-
tem. In this language molecules are represented as graphs and molecules modifications and
interactions through rewriting rules over these graphs.

In this context we introduce a simplified version of the calculus which is a mix of the versions
presented in [32] and [29]. We do not provide the stochastic extension ([31]) and we present
the calculus with a process algebra notation (used in [32] and [29]) and not with the graphical
notation of [29].

In κ-calculus we have a finite set of agent types Agent, representing different kinds of proteins;
a finite set of interfaces Interface, corresponding to protein domains and modifiable residues; a
finite set of values Value, representing the modified states. The syntax of agents and expressions
is given in Table 2.2; a signature Σ from Agent to a finite subset of Interface assigning a set
of interfaces to each agent type.

An interface is associated with an internal and a binding state; we write xλι for the interface
named x with internal state ι and binding state λ. If the binding state is ǫλ the interface is free,
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E ::= ε | a,E (expression) s ::= xλι (interface or site)
a ::= ∅ | A (σ) (agent) λ ::= ǫλ | i | − (binding state)
σ ::= ε | s, σ (interface sequence) ι ::= ǫι | v (internal state)

Table 2.2 – Syntax of κ-calculus where A ∈ Agent, i ∈ N, x ∈ Interface and v ∈ Value.

E,A (σ, s, s′, σ′) , E′ ≡κ E,A (σ, s′, s, σ′) , E′

E, a, a′, E′ ≡κ E, a′, a, E′

E ≡κ E, ∅
i, j ∈ N ∧ i does not occur in E ⇒ E[i/j] ≡κ E

i ∈ N ∧ i occurs once in E ⇒ E[ǫλ/i] ≡κ E

Table 2.3 – Structural equivalence for expressions.

otherwise it is bound. The binding state is i ∈ N when we know the binding partner (which is
also bearing the same i), if we only know that an interface is bound and we do not have further
information about its partner we use the wildcard −. On the other hand, if the internal state
is ǫι, this means the internal state is left unspecified. In the concrete notation ǫλ and ǫι are
omitted. Finally an agent is either a proper agent or a ghost agent which we refer as ∅. A proper
agent is given by a name in Agent and an interface sequence. In an expression two interfaces
which share the same binding state i ∈ N are said to be bound.

The language is provided with a notion of structural equivalence which is defined as the
smallest equivalence relation which satisfies the rules of Table 2.3.

This equivalence says that: the order of interfaces in interface sequences and of agents
in expressions does not matter; ghost agents can be erased, binding labels can be injectively
renamed and dangling bonds (i.e. binding labels that occur once) removed. Equivalence class of
≡κ are called solutions and one write JEK for the class of expression E. We refer to the set of
all solutions as Sol.

We now define some classes of expressions.

Definition 2.2.1 (Pattern) A pattern is an expression E such that:

1. an interface x occurs at most once in any agent A (σ) in E.

2. if x occurs in A (σ) then x ∈ Σ(A).

3. each binding label i in E occurs exactly twice. (there are no dangling bonds).

Definition 2.2.2 (Proper pattern) A pattern E is proper if it is made of proper agents.

Definition 2.2.3 (Mixture) A mixture E is a non-empty proper pattern that is fully specified,
i.e. each agent occurrence A in E documents its full interface Σ(A), and interfaces can only be
free or bear a binding label i ∈ N.
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xλι �κ xλι
xiι �κ x−ι
σ �κ ε

s �κ sl σ �κ σl
s, σ �κ sl, σl

σ �κ σl
A (σ) �κ A (σl)

∅ �κ ∅
E �κ ε

a �κ al E �κ El

a,E �κ al, El

λr = i, ǫλ ⇒ xλι [x
λr
ιr ] = xλr

ιr

xλι [x
−
ιr ] = xλιr

σ[ε] = σ

s, σ[sr, σr] = s[sr], σ[σr]

A (σ) [A (σr)] = A (σ[σr])

E[ε] = E

∅[ar] = ar

a[∅] = ∅

(a,E)[ar, Er] = a[ar], E[Er]

Table 2.4 – Definitions of �κ (left) and substitution of an expression in another one (right).

Definition 2.2.4 (Disconnected mixture) A mixture E is disconnected if E = E′, E′′ for
some mixture E′, E′′

Definition 2.2.5 (Complex) A solution JEK is a complex if E is a mixture and it is not
disconnected. We write Com for the set of all the complexes.

Now we introduce the rules. A rule is an ordered pair of patterns El, Er, sometimes written
El → Er, with additional constraints (explained below). The left hand side (lhs) El of a rule
describes the agents taking part in it and various conditions on their bindings states for the rule
to apply. The right hand side (rhs) Er describes what the rule does. Ghost agents are used
for agent creation in the lhs and agent removal in the rhs. Rules do not require the usage of
fully specified patterns, they only have to respect the following constraints. In a rule El, Er, the
pattern Er must be obtainable form the pattern El in the following stepwise fashion (the order
matters):

• some wildcard and pairs of binding labels are removed (edge deletion);

• some ghost agents in El are replaced by agents with full free interfaces (as specified by
Σ)(agent creation);

• some agents with only free interfaces are replaced with ghost agents (agent deletion);

• some free interfaces are bound using fresh labels in N (edge creation).

It follows from the above constraints that both sides El = a1, . . . , an, and Er = a′1, . . . , a
′
n

must have the same number n(r) ≥ 0 of agents (which is the reason of the existence of ghost
agents).

The application of a rule r = El, Er to a mixture E starts with the alignment of E with
El. This step relies on structural congruence to bring the participating agents to the front of E
with their interfaces ordered as in El, renaming binding labels and introducing ghost agents as
necessary (for agents created by r). This yields an equivalent expression E′ �κ El (where �κ is
defined in Table 2.4).
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Once a match is realized, we replace in E′ the lhs El by the rhs Er. We write E′[Er] for the
result of this substitution and this operation is formally defined in Table 2.4. This may produce
dangling bonds (if r unbinds a wildcard bond, there is a “side effect” as the other side of the
bond needs to be removed as well) and/or ghost agents (if r delete agents), which one can clean
up using ≡κ afterwards.

Now we can define the transition system generated by a set of rules R. Suppose E0, E1 are
mixtures, r = El → Er is a rule in R, E0 ≡κ E′

0, E
′
0 �κ El, and E′

0[Er] ≡κ E1 then we write

E0
r
−→
κ

E1. We can naturally lift the transition system to solutions saying that JE0K r
−→
κ

JE1K iff

E0
r
−→
κ

E1.

Here we propose a simple example in order to see in practice the application of a rule to a
mixture. The example involves the following rule and mixture:

r := B (c−) → B (c)
E := A

(

b1
)

, B
(

a1, c2
)

, C
(

b2
)

In order to apply the rule r to the expression E, we rewrite E to the equivalent form
E′ = B

(

c2, a1
)

, A
(

b1
)

, C
(

b2
)

. Then given that E′ �κ B (c−) is true we can proceed with the
substitution of the rhs [B (c)] in the mixture E′:

E′[B (c)] = B
(

c2, a1
)

[B (c)], A
(

b1
)

, C
(

b2
)

= B
(

c2[c], a1
)

, A
(

b1
)

, C
(

b2
)

= B
(

c, a1
)

, A
(

b1
)

, C
(

b2
)

≡κ B
(

c, a1
)

, A
(

b1
)

, C (b)

In the last step we get rid of the dangling bond generated by the application of the rule.

2.3 Static Analysis Techniques

A lot of languages we are used to deal with are Turing complete (for a result regarding the
computational power of BlenX see [106]). This property, which gives them the possibility to
express any computable function, makes in practice impossible to verify interesting property
over programs [103].

The impossibility to give an answer to these properties, which are defined undecidable, does
not mean that we have to give up from extracting interesting information from programs. What
we can do is to introduce some approximations in our analysis, i.e., instead of accepting as
answer to a question only “yes” or “no”, we also accept “may be”.

In order to formalize the correctness of approximations and to express properties about them,
many mathematical frameworks have been set up. Among them we have Data Flow Analysis [59]
which tracks how data moves through a collection of atomic computations, and Control Flow
Analysis [110] which tracks how the point of control traverses a program.

Traditionally Data Flow Analysis has been developed in the context of imperative languages
while Control Flow Analysis in that of functional languages. At the beginning they have been
applied in the development of optimizing compilers, which transform a program in another
program whose execution gives the same results but in a shorter time. These techniques, even if
with different intents, have been transferred to process calculi. For example Data Flow Analysis
has been applied to CCS [83], π-calculus [84], bKlaim [79], and BioAmbients [91] while Control
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Flow Analysis to π-calculus [10, 11], Mobile Ambients [80, 81], BioAmbients [82, 91], Beta
Binders [8] and Brane Calculi [9].

These approaches are defined semantic based, i.e. the analysis information can be proved
correct with respect to a semantic specification. We distinguish semantic based approaches
from semantic directed ones where the specification is calculated from a semantic specification;
this is the approach of Abstract Interpretation [25, 26].

In this dissertation we will make use of Control Flow Analysis and Abstract Interpretation,
therefore, in the rest of the chapter we introduce them together with the mathematics necessary
for their understanding.

2.3.1 Mathematical Preliminaries

We briefly introduce some basilar notions regarding ordered sets.

Definition 2.3.1 (Partial order) A relation ⊑ is a partial order on a set A if

1. ∀x ∈ A, (x, x) ∈ ⊑ (reflexive)

2. ∀x, y ∈ A, (x, y) ∈ ⊑ ∧ (y, x) ∈ ⊑ ⇒ x = y (antisymmetric)

3. ∀x, y, z ∈ A, (y, z) ∈ ⊑ ⇒ (x, z) ∈ ⊑ (transitive)

Definition 2.3.2 (Poset) A poset is an ordered pair (P,⊑) where the relation ⊑ is a partial
order on the set P .

Definition 2.3.3 (Least element) a is the least element of a partial order (P,⊑) if ∀x ∈
P, a ⊑ x. If such an element exists we denote it as ⊥.

Definition 2.3.4 (Greatest element) a is the greatest element of a partial order (P,⊑) if
∀x ∈ P, x ⊑ a. If such an element exists we denote it as ⊤.

Definition 2.3.5 (Lower bound) Given a partial order (P,⊑) and Y ⊆ P , a ∈ P is a lower
bound of Y if ∀x ∈ Y, a ⊑ x.

Definition 2.3.6 (Upper bound) Given a partial order (P,⊑) and Y ⊆ P , a ∈ P is an upper
bound of Y if ∀x ∈ Y, x ⊑ a.

Definition 2.3.7 (Least upper bound) Let (P,⊑) be a partial order and Y ⊆ P then a is
the least upper bound (lub) of Y if

1. a is an upper bound of Y .

2. ∀x : x is an upper bound of Y it holds that a ⊑ x.

We denote the least upper bound of Y with
⊔

Y . The binary least upper bound of p, p′ ∈ P is
written p ⊔ p′.

Definition 2.3.8 (Greatest lower bound) Let (P,⊑) be a partial order and Y ⊆ P then a
is the greatest lower bound (glb) of Y if
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1. a is a lower bound of Y .

2. ∀x : x is a lower bound of Y it holds that x ⊑ a.

We denote the greatest lower bound of Y with
d
Y . The binary greatest lower bound of p, p′ ∈ P

is written p ⊓ p′.

Definition 2.3.9 (Lattice) A poset (P,⊑) is a lattice if ∀x, y ∈ P, x ⊓ y ∈ P and x ⊔ y belong
to P .

Definition 2.3.10 (Complete lattice) A poset (P,⊑) is a complete lattice if ∀S ⊆ P,
d
S

and
⊔

S belongs to P .

Note that if (P,⊑) is a complete lattice, then ⊥ =
⊔

∅ =
d
P is the least element and ⊤ =d

∅ =
⊔

P is the greatest element. Moreover note that every finite lattice is complete.

Definition 2.3.11 (Moore family) A subset Y of a complete lattice (P,⊑) is a Moore family
if it is closed under greatest lower bound, i.e.,

∀S ⊆ Y,
l

S ∈ Y

Note that a Moore family always contains a least element,
d
Y , and a greatest element,

d
∅ =

⊤P ; thus it is never empty.

Definition 2.3.12 (Monotone function) A function f : P → Q, with (P,⊑P ) and (Q,⊆Q)
posets, is monotone if

∀x, y ∈ P, x ⊑P y ⇒ f(x) ⊑Q f(y)

Definition 2.3.13 (Extensive operator) A function f : P → P with (P,⊑P ) a poset is an
extensive operator if

∀x ∈ P, x ⊑P f(x)

Definition 2.3.14 (Reductive operator) A function f : P → P with (P,⊑P ) a poset is a
reductive operator if

∀x ∈ P, f(x) ⊑P x

Definition 2.3.15 (Idempotent operator) A function f : P → P is an idempotent operator
if

∀x ∈ P, f(f(x)) = f(x)

Definition 2.3.16 (Chain) A subset Y of a partial order (P,⊑) is a chain if it is totally
ordered, i.e.

∀x, y ∈ Y, x ⊑ y or y ⊑ x

A sequence (pn)n = (pn)n∈N of elements in P is an ascending chain if n ≤ m implies
pn ⊑ pm.

Definition 2.3.17 (Continuous function) Consider a function f : P → Q with (P,⊑P ) and
(Q,⊑Q) partial orders. The function f is continuous if for all the ascending chains (pn)n of
(P,⊑P ) it holds that f(

⊔

n pn) =
⊔

n(f(pn)).
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Definition 2.3.18 (Fixed point) Consider a monotone function, f : P → P on a complete
lattice (L,⊑). A fixed point of f is an element p ∈ P such that f(p) = p.

Theorem 2.3.19 (Knaster-Tarski [63]) Any monotone and continuous function f : P → P
on a complete lattice (P,⊑) has a unique least fixed point lfp(f) =

⊔

i≥0 f
i(⊥).

Note that if we say the least fixed point greater than p with p ∈ P we refer to
⊔

i≥0 f
i(p) and

we refer it as lfpp(f).
Note that if L satisfies the ascending chain condition, then LFP (f) can be computed in a finite
number of step.

2.3.2 Control Flow Analysis

One of the main advantages of the Flow Logic is that it makes a clear separation between the
specification of the analysis and its implementation. In this way it is possible to concentrate on
the specification without thinking about issues related with its implementation.

In order to reason about programs we need a language for representing their features. We
call the universe of discourse analysis domain. The analysis domain L is usually required to be
a complete lattice.

The elements A ∈ L are in relationship with those of LANG which represents the set of all
the writeable programs. This connection is expressed through the acceptability judgment :

A � P

which means that A is an acceptable analysis estimate for the program P ∈ LANG.
The judgment is usually defined going through the syntactic constructs φ of LANG and

specifying a clause for each of them:

A � φ(P1 · · ·Pn) iff (some formula ϕ with A � P ′ for some sub-programs P ′ ∈ {P1, . . . , Pn})

With these ingredients we can define a Control Flow Analysis as a Flow Logic. We are only
interested in specification which are syntax directed, i.e. each P ′ sub-program which occurs in ϕ
is one of the Pi occurring in φ(P1 · · ·Pn), in this particular case the acceptability judgment can
be adequately defined by ordinary induction. Such specification are called compositional.

A Control Flow Analysis in order to be considered a Flow Logic must have some properties:

Well-definedness: the analysis must be well-defined, i.e. for every combination of P ∈ LANG
and A ∈ L it must hold that A � P or A 2 P . This result for compositional specification
comes immediately by induction on the structural definition of P .

Semantic correctness: we say that an analysis is semantically correct if, in the case it is
acceptable for P , the same holds also for all the possible evolutions of P . Usually this
property is shown through a subject reduction result:

if A � P and P → Q then A � Q

Clearly the full semantics correctness, sometimes called semantic soundness follows by the
transitive closure of the subject reduction result.
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Moore family Property: it is desirable for a program P that among all the elements of L
there is an acceptable analysis estimate, and moreover if more than one exists it would be
nice to ensure that one of this is the best. This is the case if:

{A | A � P} constitutes a Moore Family for all P

In fact a Moore family cannot be empty, as it always contains a greatest element
d
∅ = ⊤L

(which is the less informative acceptable analysis estimate, and it always has a least elementd
{A | A � P} which instead is the most informative acceptable analysis estimate.

The implementation of a Flow Logic specification is enabled by a simple change of viewpoint:
Intuitively, the acceptability judgement

A � P iff ϕ

associates each program, P , with a formula, ϕ, such that an analysis estimate, A, is acceptable
for P if and only if, A constitutes a model of ϕ. Thus, as long as we are able to compute the
appropriate ϕ, the remaining task of finding a suitable model, A, can be left to an auxiliary
logical solver. We precise that this holds only for syntax directed Flow Logics (those we are
interested in).

2.3.3 Abstract Interpretation

The formal verification of a program consists in proving that its semantics satisfies its spec-
ification. The problem is that often to perform this verification is not trivial. One of the
approaches for formally verifying properties of program is a technique called abstract interpreta-
tion [24, 25, 26]. Abstract interpretation is a mathematical framework which allows to abstract
from details which are not necessary in order to verify the property we are interested in.

A simple application of such a technique is the sign rules for the multiplication operation on
integer numbers. We know that when we multiply two numbers in order to know the sign of the
result of the multiplication, we do not need to know the exact values of the multiplied numbers
(which in this case is the useless detail), we only need to know theirs sign (which in this case is
the interesting information). This is a very simple example of abstract interpretation but it is
intuitive and we will use it in order to introduce the terminology related with this technique.

If we analyse the problem from a computer science point of view, we are in the following
situation: we have a program which computes the multiplication between two numbers whose
semantics consists in the classical multiplication operation. Now the idea is to start from this
semantics, which we call concrete semantics, and define an abstract semantics which only takes
care of the details we are interested in (i.e. the signs of the numbers). Our concrete semantics
can be thought as a function f which maps two sets of integers X and Y to another set of
integers Z = {z | ∃x ∈ X y ∈ Y : x · y = z}. The domain over which the concrete semantics
works is called concrete set, in this example it is P(Z), the power set of the set of all integer
numbers. We work on P(Z) rather then on Z because we want the concrete semantics works on
a complete lattice which in this case is defined as (P(Z),⊆) (in this way it is possible to ensure
some interesting properties, as we will appreciate later).

The abstract semantics f ♯, in contrast with f , is defined on the abstract domain. We obtain
the abstract domain starting from the concrete one and eliminating the uninformative details.
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Figure 2.1 – Abstract domain.

f ♯ Z + − 0 ∅

Z Z Z Z 0 ∅

+ Z + − 0 ∅

− Z − + 0 ∅

0 0 0 0 0 ∅

∅ ∅ ∅ ∅ ∅ ∅

Table 2.5 – Abstract semantics.

In this case we want to drop the values of the numbers and keep their signs. Our purpose
is to define an abstract domain which has a representative for each element of the concrete
domain. Therefore we define a + element which represents sets only made of positive numbers,
a − element for sets made of negatives numbers, and 0, which represent the number 0 which is
neither positive nor negative. In order to complete the abstract domain we add the Z element
which represents set made of both negative and positive numbers and then the empty set ∅
which represents the empty set. Also this elements are organized in a complete lattice as shown
if Figure 2.1.

The fact that all the elements of the concrete set are mapped to elements of the abstract
domain is formalized with the definition of a function which we call abstraction function and
we usually regard as α. We also have the counterpart of α which maps all the elements of
the abstract domain to elements of the concrete domain. This function is called concretization
function and is usually regarded as γ.

Now we define the abstract semantics as the function which given the signs of the elements
involved in the multiplication operations (which means two elements of the abstract domain)
returns the sign of the results. The definition of the function is given by the double entry
Table 2.5.

Which is the advantage of setting up such a framework? Let us image that we have two
infinite sets of integer numbers and we want to know which are the signs of the results which
we obtain by multiplying the numbers of the two different sets. In order to do this with our
concrete semantics we would have to perform an infinite number of multiplications. Obviously
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this is not possible. Instead, if we compute the abstraction of the two sets with the α function,
we obtain their abstract images. These images, taken as input by the abstract semantics, tell
us in one step which is the sign of the results.

In the following section we propose an application of the abstract interpretation technique
to the κ-calculus. Before starting we need to introduce some mathematical notions and the-
orems which formalize the correctness of an abstraction and express the relations which exist
among concrete and abstract domains, concretization and abstraction functions and concrete
and abstract semantics.

In the example of the sign rule we explained the existence of a relation which binds the
elements of the concrete domain to the elements of the abstract domain and vice versa. This
relation is formalized through the notion of Galois insertion which is a particular case of the
more general notion of Galois connection.

Definition 2.3.20 (Galois connection) If (C,⊑C) and (A,⊑A) are complete lattices then
(C, γ,A, α) is a Galois connection if:

1. α : C → A and γ : A → C are monotone.

2. γ ◦ α is extensive.

3. ∀a ∈ A,α ◦ γ(a) ⊑A a.

Definition 2.3.21 (Galois insertion) If (C,⊑C) and (A,⊑A) are complete lattices then the
tuple (C, γ,A, α) is a Galois insertion if:

1. α : C → A and γ : A → C are monotone.

2. γ ◦ α is extensive.

3. ∀a ∈ A,α ◦ γ(a) = a.

Through the notion of Galois insertion we give one of the possible definition of correctness
of an abstraction.

Definition 2.3.22 (Correct abstraction) Given a complete lattice (C,⊑), a function f :
C → C, (C, γ,A, α) a Galois insertion and a function f ♯ : A → A we say that (C, γ,A, α)
and f ♯ are a correct abstraction of f if f ◦ γ ⊑ γ ◦ f ♯.

We now introduce some theorems which are necessary in order to present the work of the
next section. The following results are presented in [24, 25].

Theorem 2.3.23 Given a complete lattice (C,⊑), a function f : C → C and a Galois insertion
(C, γ,A, α) then the best correct approximation of f is the function α ◦ f ◦ γ.

Theorem 2.3.24 Given a Galois insertion (C, γ,A, α), a function f : C → C and a correct
abstraction f ♯ of f if f and f ♯ are monotone than ∀x ∈ C it holds that

α(lfp{x}f) ⊆ lfpα({x})f
♯

and
lfp{x}f ⊆ γ(lfpα({x})f

♯)
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Definition 2.3.25 (Additive function) Given a complete lattice (P,⊑) , a function f is ad-
ditive if:

∀Y ⊆ P, f(
⊔

Y ) =
⊔

x∈Y

f(x)

Theorem 2.3.26 Given two complete lattices (C,⊑C) and (A,⊑A), and an additive function
α : C → A then exists γ : A → C such that (C, γ,A, α) is a Galois connection and we can obtain
γ starting from α as follows:

γ(c) =
⊔

{x | α(x) ⊑ c}

Definition 2.3.27 (Upper closure) Given a poset (P,⊑), the function f : P → P is an upper
closure of P if f is extensive, monotone and idempotent.

Theorem 2.3.28 (C, γ,A, α) is a Galois insertion iff γ ◦α is an upper closure operator for C.

2.3.4 Abstract Interpretation applied to κ-calculus

The work we present here is taken from [32]. In that paper the considered κ-calculus is a
subset of the one we presented in Section 2.2.4. In particular agent creation and deletion is not
considered and, in the rules, it is not possible to use the wildcard (−). However, as stated by
the authors, the framework can be easily extended in order to work with these features of the
language.

Our purpose is to compute the set of complexes which can be generated by the evolution
of a system S0 associated with the set of rules R. The most immediate approach consists in
the extraction of the complexes from all the solutions which can be generated through the
application of the rules of R to S0.

However it is possible for S0 to generate an infinite number of solutions and thus we cannot
apply this method. In order to solve the problem we accept to obtain an over-approximation of
the complexes that can be generated via abstract interpretation.

In this example the concrete set is P(Sol). The function which we want to abstract is the
function POSTR : P(Sol) → P(Sol) which is our concrete semantics and can be defined as:

POSTR(X) := X ∪ {S′ | ∃S ∈ X, ∃r ∈ R : S
r
−→
κ

S′}

Definition 2.3.29 (Derivative) We define the set of derivatives of S0 with respect to the set
of rules R as the least fix point of POSTR greater then {S0} written as

lfp{S0}POSTR

Notation 2.3.30 We write JF K ∈ JEK if there is a mixture E′ such that E ≡κ F,E′.

We choose as abstract domain P(Com) and define the abstraction function αc : P(Sol) →
P(Com) and the concretization function γc : P(Com) → P(Sol) as:

αc(X) := {c ∈ Com | ∃S ∈ X : c ∈ S}
γc(Y ) := {S ∈ Sol | c ∈ S ⇒ c ∈ Y }

Note that if we follow what before we called “the most intuitive approach” we can obtain
the set of the reachable complexes as
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v ::= A (σ) (view) λ ::= ǫλ | x.A (binding state)
σ ::= ε | s, σ (interface sequence) ι ::= ǫι | m (internal state)
s ::= xλι (interface)

Table 2.6 – Syntax of views where A ∈ Agent, i ∈ N, x ∈ Interface and m ∈ Value.

ComRS0
= αc(lfp{S0}POSTR)

At this point we can easily verify that (C, γc, A, αc) is a Galois insertion and thus by The-
orem 2.3.23 we know that the best abstraction of POSTR is POSTR

c = αc ◦ POSTR ◦ γc. We
can write POSTR

c as:

POSTR
c (X) = X ∪ {c ∈ Com | ∃[c1], . . . , [cm] ∈ X ∃r ∈ R ∃S ∈ Sol : [c1, . . . , cm]

r
−→
κ

S ∧ c ∈ S}

By Theorem 2.3.24 we can now state that αc(lfp{So}POSTR) ⊆ lfpαc({So})POSTR
c and thus

that ComRS0
⊆ lfpαc({So})POSTR

c . Therefore we obtained an over-approximation of the reachable

complexes. Now the problem is that lfpαc({So})POSTR
c can be infinite as well. For example it is

the case if we have a model which allows agent polymerization. Consider the case where we have
the set of rules R = {A (a) , A (b) → A

(

a1
)

, A
(

b1
)

} and Σ(A) = {a, b}. Here lfpα({x})POSTR
c

contains all the rings and chains made of an arbitrary number of agents A.

At this point the purpose is to set up a finite approximation of lfpαc({So})POSTR
c . The idea

is to only retain from a solution the information which is local to the agents and which we call
agent view (as in [42]). Specifically, we replace each binding state in an expression with its
associated typed link, i.e. the site and agent names of the opposite end of the link. The function
which generates the view starting from a pattern is β. Here is an example of the application of
β to a pattern:

β(A
(

a1, bm
)

, B
(

c, d1
)

) = A
(

ac.B, bm
)

, B
(

c, da.A
)

The syntax of views is given in Table 2.6, and the structural equivalence ≡♯
κ which allows

to reorder interfaces in a view is given by the smallest equivalence relation which satisfies the
following:

A
(

σ, s, s′, σ
)

≡♯
κ A

(

σ, s′, s, σ
)

Operations on solutions transfer naturally to sequences of views. In particular one can define
an abstract transition step between sequences of views (see Table 2.7) that tests from conditions

over the view relation �
♯
κ, and either changes the internal state of a site, or adds/removes the

appropriate types links in the binding state of two modified views.

Now we define the abstraction that collects the set of views that can be built during a
computation sequence. As a first step, referring to the set of equivalence classes of views as
View, we define the abstraction function α : P(Com) → P(View) as:

α(X) = {[vi] | ∃[c] ∈ X, β(c) = v1, . . . , vn}
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xλι �
♯
κ xλι

σ �
♯
κ ε

s �κ sl σ �
♯
κ σl

s, σ �
♯
κ sl, σl

σ �
♯
κ σl

A (σ) �♯
κ A (σl)

xλι [x
λr
ιr ]

♯ = xλr
ιr

xλι [x
−
ιr ]

♯ = xλιr

σ[ε]♯ = σ

s, σ[sr, σr]
♯ = s[sr]

♯, σ[σr]
♯

A (σ) [A (σr)]
♯ = A

(

σ[σr]
♯
)

β(El) = v1l , . . . , v
n
l β(Er) = v1r , . . . , v

n
r vi �♯

κ vil r = El → Er

[v1], . . . , [vn]
r
−→
κ

♯
[v1[v1r ]

♯], . . . , [vn[vnr ]
♯]

Table 2.7 – Abstract semantics.

By construction of α we can verify that it is addictive and thus we can apply the result of
Theorem 2.3.26 and say that (C, γ,A, α) is a Galois connection where the function γ : P(View) →
P(Com) is defined as:

γ(Z) =
⋃

{X ∈ P(Com) | α(X) ⊆ Z}

Starting from this we can easily see that γ ◦ α is an upper closure operator for C and thus
conclude by Theorem 2.3.28 that (C, γ,A, α) is a Galois insertion. Now we define the abstract
function POSTR

v :

POSTR
v (Z) := Z ∪ {ui ∈ View | ∃v1, . . . , vn ∈ Z ∃r ∈ R : v1, . . . , vn

r
−→
κ

♯
u1, . . . , un}

This function is monotone and we can verify that it, together with (P(Com), γ,P(View), α), is a
correct abstraction of POSTR

c given that it holds that

∀x ∈ P(View), (POSTR
c ◦ γ)(x) ⊆ (γ ◦ POSTR

v )(x)

Now we have all the necessary for applying the result of Theorem 2.3.24 and obtaining the
soundness of our abstraction:

lfpαc(S0)POSTR
c ⊆ γ(lfpα(αc(S0))POSTR

v )

Thus, starting from the complexes which appear in the system S0 the views generated by
the abstract system reconstruct, via γ, a superset of the generated complexes. Given that Agent
is finite the same holds for View, this implies that lfpα(αc(S0))POSTR

v is finite as well, given
that it is included in View. The same is not true for its concretization, in any case we have the
possibility to generate a finite set which describe an over-approximation of the complexes that
can be generated starting from an initial solution S0 which evolves through the rules of R.

2.4 Markov and Semi-Markov Processes

In this section we briefly recall two particular classes of stochastic processes: continuous time
Markov processes and a particular case of semi-Markov processes. We are interested in them
because models defined with stochastic process calculi have an underling stochastic process
belonging to these classes (as it is for BlenX).
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A B C

Figure 2.2 – Q-matrix of a CTMC (on the left) and its graphical representation (edges with rate
zero are omitted).

2.4.1 Continuous Time Markov Processes

A continuous time Markov process is a particular case of stochastic process {Xt | t ≥ 0} (see [87]
for an exhaustive definition of stochastic process) which takes values from a countable or finite
set S = {s1, . . . , sn, . . . } called state space and satisfies the Markov property. This means that
for all different n, ti, si the memoryless condition holds:

P (Xtn = sn | Xt0 = s0, . . . , Xtn−1 = sn−1) = P (Xtn = sn | Xtn1
= sn1)

In words we have that a process is Markovian if the transition from one state to another
does not depends on the past history but depends only on the current state.

Continuous time Markov processes are described with continuous time Markov chain (CTMC).
CTMCs are characterized by their generator matrix, or Q-matrix, which is a matrix whose rows
and columns are indexed by S, and whose entry qij ≥ 0, i 6= j represents the rate of an exponen-
tial distribution associated to the transition from state si to state sj . The value qii (exit rate) is
set equal to −

∑

j 6=i qij (assumed to be finite for each i), so that each row of the Q-matrix sums
up to zero. A good way to visualize a CTMC is to associate it with a complete graph, whose
nodes are indexed with elements of S, and whose edges are labeled with the corresponding rates
of the Q-matrix (edges with rate zero can be omitted). The time spent from a process in a
state is called sojourn time. The sojourn time of each state is distributed as an exponential
distribution with rate equal to its exit rate.

The memoryless condition of CTMC can be described as a race condition. We consider all
the positive entries in the generator matrix Q, associating to each qij > 0 an exponentially
distributed random variable Tij ∼ Exp(qij). When the chain is in state si, then a race condition
begins among all random variables Tij , sj ∈ S, qij > 0. Notice that each random variable Tij

corresponds to an edge in the support graph associated to the CTMC. The race is won by the
fastest variable, i.e. the one realizing Ti = infsj∈S{Tij}. If Tik is such variable, then the system
moves in state sk in T = Tik units of time. When the system reaches state sk, then a race
condition between random variables exiting from sk begins anew.

2.4.2 Semi-Markov Processes

A semi-Markov process is a stochastic process {Xt | t ≥ 0} which takes values from a countable
or finite set S = {s1, . . . , sn, . . . } and for which the following property holds:

P (Xtn = sn, θn − θn−1 < τ | Xt0 = s0, . . . , Xtn−1 = sn−1)
= P (Xtn = sn, θn − θn−1 < τ | Xtn1

= sn1)
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Semi-Markov stochastic process Underling CTMC

Figure 2.3 – Semi-Markov stochastic processes (on the left) and their underling CTMCs (on the
right).

where θn is the time when the process change state from Xtn−1 to Xtn . Thus a semi-Markov
process differs from a continuous time Markov process because the probability to move in a state
sn does not depend only from the state in which the process is but it also depends on the time
the process has already spent in that state. Thus we loose the memoryless property and we can
deal with transition times which are not exponentially distributed.

Our interest for these processes arise because in some process calculi (and not only, see
for example GSPN in [56]) two kinds of transitions exist: those fired following an exponential
distribution and those which are immediate, i.e., as soon as they become active they fire (with
different strategies to solve conflicts arising from simultaneous activations). This makes semi-
Markov processes the right candidate to describe their behaviour.

This particular category of semi-Markov processes partition the state set S in vanishing
states (which perform immediate actions) and tangible states (which does not). The former
have a null sojourn time, the latter a negatively exponentially distributed one with rate equal
to its exit rate.

Intuitively the behaviour of this processes can be described as a sequence of immediate
“state jumps” interleaved by “rest times” in some of these states (the tangible states). In many
approaches (and this is the case of BlenX) the system is fully described by its permanence in
tangible states, as the visits of vanishing states do not add any information. This, under the
sufficient assumption that the semi-Markov process starts in a tangible state, allows us to give
a characterization of it through a CTMC. In Figure 2.3 we have three examples of semi-Markov
processes with their associated underling CTMC. An interesting observation is that different
semi-Markov processes (e.g. the first and the third processes of Figure 2.3) can have the same
underling CTMC, therefore, even if they visit different sequences of vanishing states when moving
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from a tangible state to another, they can be considered to have the same behaviour. In order
to read some more details about the computation of the underling CTMC look at [56].
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Chapter 3

BlenX

In recent years there has been a lot of interest in using process algebras — traditionally used
for describing concurrent computation systems — to model biological systems. A number of
languages have been developed, including stochastic π-calculus [98], BioAmbients [100], beta-
binders [105], and BioPEPA [23]. A common feature in all of these is that they are stochastic —
that is to say, they describe systems that evolve probabilistically over time. The semantics is
usually given in terms of a Continuous-Time Markov Chain (CTMC).

BlenX is a recent language that continues in this tradition, but with the addition of a useful
paradigm that is biologically motivated. Rather than just describing a system of species that
can react with one another and evolve over time, it introduces a notion of structural interaction
between species. More specifically, a species has both an internal state and interfaces — not only
can its internal state evolve over time, but it can interact with other species to form complexes.
This allows to model biological structures such as chains of proteins or clusters of cells [66].

Let us consider an example of box, the elementary component of a BlenX system. Boxes are
defined formally using a textual description (which we present in the next section). To make
it easier to understand the structure of the boxes, we will often draw them graphically. In the
following we see how a box looks using both approaches:

{(a, S)(b, T )}[ b!n. P ]

A box consists of a number of interfaces, and an internal process made of a number of processes
running in parallel. Processes are written in a language similar to the π-calculus, and can
communicate with one another over channels. Each interface has a name and a sort — in the
example above, there are an interface a of sort S, and an interface b of sort T . Internal processes
can communicate between boxes over interface names. We use the sorts to determine which
interfaces can bind, unbind and communicate, and the sort of an interface can change over time.

There are three fundamental ways in which boxes can interact, and this is illustrated by the
three stages shown in Figure 3.1:

(a) Two interfaces can bind together if their sorts have a binding affinity with one another, and
neither interface is already bound. Figure 3.1(a) shows interface b of box A and c of box B
binding together.
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(a)

A B A B

(b)

A B A B

(c)

A B A B

Figure 3.1 – Interaction between BlenX boxes. Note that we applied labels to boxes in order to
easily refer them.

(b) Two processes in different boxes can communicate with one another, by sending and receiv-
ing over interface names. They can do so only if the sorts of the interfaces have communica-
tion affinity. Figure 3.1(b) shows the two boxes communicating over the binding b-c, such
that the process in box A outputs n on interface b (b!n), and the process in box B receives
n from interface c into the variable x (c?x).

(c) Two bound interfaces can unbind if their sorts have an unbinding affinity with one another.
Figure 3.1(c) shows the b and c interfaces unbinding.

An action of an internal process (like outputs and inputs of Figure 3.1) can be prefixed by
a condition. This is a Boolean expression, including atomic tests on the state of the interfaces
of the form ‘(a, T )’ (a has the sort T ), ‘(a,⊙)’ (a is unbound), and ‘(a,⊗)’ (a is bound). As
an illustration, we could modify the internal process of A in Figure 3.1 to ‘〈(a,⊙)〉b!n.P ’, which
would mean that it can only output on interface b if interface a is unbound. Actions that are
prefixed with a condition should be interpreted as guarded commands, in that they can only
execute if the condition is true.

3.1 Syntax and Semantics

In the previous section we gave an informal description of the BlenX language. Now we will
present a formal definition. The BlenX syntax is enriched with real numbers named rates —
usually denoted with r — which are typical of languages used for describing systems from
a quantitative point of view. These rates are associated with actions and are parameters of
negative exponential distributions. We use them in order to resolve non determinism when
more than one action can take place.

Let Name be a set of names ranged over by n,m, etc. and let Sort be a set of sorts ranged
over by T, U, etc. such that Name ∩ Sort = ∅. We present the syntax of bio-processes and
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B ::= Bio-processes
I[P ] box
B ‖ B composition

P ::= Processes
M capability
P |P composition

M ::= Capabilities
nil empty
∗π. P replication
π. P action
M +M choice
〈C〉M condition

π ::= Prefixes
n?y input
n!m output
ch(r, a, S) change

C ::= Conditions
true true
(a, T ) test sort
(a,⊙) free
(a,⊗) bound
¬C negation
C ∧ C conjunction

e ::= Event
I ′[P ′ ] ◮r B

′

with
B′ = I[P ] ‖ B

event

Table 3.1 – Bio-processes and events syntax.

events in Table 3.1. Bio-processes of the set Box are generated by the non-terminal symbol B
and we usually refer to them with B,B1, B

′, etc. A bio-process can be either a box, I[P ],
or a parallel composition of bio-processes, B ‖ B. In a box I[P ], the set I describes the
interaction capabilities and P describes the internal behaviour. The non-empty set I contains
interfaces of the form (a, T )r. The name a is called the subject of the interface and is used
by the internal process for performing actions over it and testing its state. T is a sort, and
represents the interaction capabilities of an interface with respect to the other interfaces of the
system. Finally, r describes the rate at which internal communication over the interface takes
place. The sets sub(I) and sorts(I) represent the set of subjects and the set of sorts used in I,
respectively. We often write (a1, T1)

r1 . . . (an, Tn)
rn for {(a1, T1)

r1 , . . . , (an, Tn)
rn}. We refer

the set of BlenX boxes as B.

The internal process of a box is generated by the non-terminal symbol P . We denote the set
of these processes as P and we usually refer to them with P, P1, P

′, etc. A process can be either
a capability (M) or a parallel composition of two processes (P1 |P2). A capability can be one
of the following: the empty process (nil), an action-guarded process (π. P ), the replication of an
action-guarded process (∗π. P ), a non-deterministic choice between capabilities (M1 +M2) or a
capability guarded by a condition (〈C〉M). An action π can take the form n!m, n?y or ch(r, a, T ).
The first two are symmetric actions corresponding respectively to input and output and are used
for exchanging information between two processes which run in parallel: n!m.P1 |n?y.P2. In
this particular case n!m sends the channel name m over the channel n, and n?y receives the
name m which becomes bound to the variable y in the process P2. The third action, ch(r, a, T ),
is used to change the sort associated with the interface a to T . If no interfaces have subject a or
another interface already has the sort T , the change action cannot take place and the execution
of the continuing process P is blocked.

The guard 〈C〉 allows the execution of a capability if the condition C evaluates to true.
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Figure 3.2 – Labelled syntax tree of a bio-process.

Atomic conditions check for properties of the interfaces, i.e. whether an interface has a given
sort (a, T ), is free (a,⊙) or is bound (a,⊗). The set of conditions generated by the syntax is
regarded as Cond .

Replication makes it possible to implement processes with infinite behaviour; it is comparable
with the concept of recursion. A better understanding of this construct will be possible later
on, when we introduce the semantics of the language and give some examples of its usage.

The syntax in Table 3.1 allows to write more bio-processes then we would like to. For this
reason we introduce a notion of well-formedness, which gives a number of constraints that a
bio-process must fulfill in order to be part of a system. The set of well-formed boxes is regarded
as Box.

Definition 3.1.1 A bio-process is well-formed if its component boxes are well-formed. A box
I[P ] is well-formed if I 6= ∅ and for all distinct elements of I, (a1, T1)

r1 and (a2, T2)
r2, it holds

that a1 6= a2 and T1 6= T2.

Two boxes of a bio-process B can be linked through their interfaces. The environment
component ξ records these links. To do this it needs to have pointers to the boxes involved
in the link. Formally, these pointers are labels that linearly describe the position of a box
inside the syntax tree of the bio-process it belongs to. Given that boxes can only be composed
using the ‖ operator, the abstract syntax tree of a bio-process is a binary tree. To describe the
positions of its nodes we label each box with a string in the language generated by the regular
grammar (0|1)∗. We denote the set of label as Label . The empty string ε is associated with the
root of the node, and the other nodes are associated with sequences of zeros and ones. The left
child of the root is associated with 0, and the right child with 1. In general each node is labelled
by the concatenation of the label of its parent with 0 if it is the left child, and with 1, if it is the
right child. Figure 3.2 shows an example illustrating the abstract syntax tree of the bio-process
(I1[P1 ] ‖ (I2[P2 ] ‖ I3[P3 ])), whose nodes are labelled as described.

Using these labels the environment ξ stores links among boxes as sets made up of two pairs:
{(γ1, S1), (γ2, S2)}. Such a set says that the box labelled with γ1 is linked through the interface
associated with the sort S1 to the interface associated with S2 of the box labelled γ2. Note
that in the context of a well-formed bio-process, (γ1, S1) identifies a unique interface on the box
labelled with γ1, since a well formed box cannot have two interfaces of the same sort.

Boxes can also use interfaces for exchanging messages. A box can send/receive messages
through an interface by performing an output/input action over its subject. Note that interface
subjects can also be used for exchanging messages inside a box; in this case they act like an
internal communication channel.

Two interfaces can also bind and unbind. The interaction capabilities of the interfaces depend
on the sorts they are associated with. Information regarding the compatibilities between sorts
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a) axioms for processes

1. (P, |, nil) is a commutative monoid under ≡p

2. (P,+, nil) is a commutative monoid under ≡p

b) axioms for bio-processes

1. B1 ‖ B2 ≡b B2 ‖ B1

2. B1 ‖ (B2 ‖ B3) ≡b (B1 ‖ B2) ‖ B3

3. I[P ] ≡b I[P
′ ] if P ≡p P

′

Table 3.2 – Structural congruence axioms.

is stored in three functions: αb, αu and αc. αb(T, U) gives the rate at which the interfaces
associated with T and U can bind together; αb(T, U) = 0 means that interfaces associated with
T and U cannot bind. Similarly these interfaces can unbind if αu(S, T ) > 0. Communication is
always allowed if αc(S, T ) > 0 and the two interfaces involved are bound together. Otherwise,
if the two interfaces are free, a communication can happen only if αb(S, T ) = 0, αu(S, T ) = 0
and αc(S, T ) > 0.

We use events to substitute a box with two or more boxes. Their definition is based on a
notion of structural congruence that makes it possible to identify bio-processes with the same
behaviour, even if they are not syntactically equal. We define structural congruence for boxes
and events, respectively, as follows:

Definition 3.1.2 The structural congruence ≡b among boxes is the smallest congruence relation
that satisfies the rules of Table 3.2b and is based on the congruence ≡p over processes, that, in
turn, is defined as the smallest congruence relation that satisfies the rules of Table 3.2a1.

Definition 3.1.3 We define I1[P1 ] ◮r1 B1 ≡e I2[P2 ] ◮r2 B2 iff I1[P1 ] ≡b I2[P2 ] ∧ B1 ≡b

B2 ∧ r1 = r2

An event I ′[P ′ ] ◮r B
′ describes the possibility of modifying a bio-process by substituting

the occurrence of a box congruent to I ′[P ′ ] with the bio-process B′. Note that with the side
condition B′ = I[P ] ‖ B we constrain B′ to be composed at least of two boxes. The boxes
involved in an event must not participate in the structure of any complex, in other words, all of
their interfaces must be unbound.

Finally, a BlenX system. It is a triple (B,E, ξ) where B is a bio-process, E an event set and ξ
an environment.

We will now introduce the concepts and the notations necessary for describing the operational
semantics of the language.

Definition 3.1.4 A substitution is a function on names that is the identity except on a finite
set.

1Remember that if (P, |, nil) is a commutative monoid under ≡p, it means that for all P, P1, P2, P3 ∈ P,
P | nil ≡p P , P1 |P2 ≡p P2 |P1 and (P1 |P2) |P3 ≡p P1 | (P2 |P3).
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Notation 3.1.5 We use σ to range over substitution, and write yσ for σ applied to y. The
support of σ, supp(σ), is {y | yσ 6= y} and the co-support of σ, cosupp(σ), is {yσ | y ∈ supp(σ)}.
We write {m1, . . . ,mn/y1, . . . , yn} for the substitution of σ such that yiσ = mi for each i ∈ [1, n] and
yσ = y for y /∈ {y1, . . . , yn}.

We write Pσ for the capture-avoiding replacement of each free occurrence of each name y
in P by yσ. The functions of Figure 3.3 formally give the definition of free and bound names
that, for example, in a bio-process B are denoted as fn(B) and bn(B), respectively. We can lift
the function that computes the free names of bio-processes in order to work with systems. We
define fn(S) as the union of the free names that appear in B and in the bio-processes of the
events of E. Formally for S = (B,E, ξ) the definition is:

fn(S) = fn(B) ∪
⋃

I[P ]◮rB′∈E

fn(B′)

We can also substitute elements inside an environment writing ξ{(γ1, T1)/(γ2, T2)} to mean that
we replace all the occurrences of the pair (γ2, T2) with the pair (γ1, T1) inside the environment ξ.

Related with the concept of substitution is the notion of an α-equivalence relation which we
formally define as follows.

Definition 3.1.6 α-equivalence is the smallest equivalence relation that satisfies the following
rules:

b 6∈ fn(P1) ∪ sub(I) ⇒ {(a, T )r} ∪ I[P1 ] = {(b, T )r} ∪ I[P1{b/a} ]

Note that this is not a congruence, since we strictly identify α-equivalent processes and
bio-processes (as in [107]).

The semantics of BlenX is defined on boxes labelled according to their position inside the
bio-process they belong to. The logic used for the labelling is the one sketched in Figure 3.2.
Formally we perform such an operation through a labelling function L that, through the call
L(ε,B), explores the bio-process B labelling its leaves, i.e. the boxes, with their position in the
abstract syntax tree:

L(γ, I[P ]) = I[P ]γ
L(γ,B1 ‖ B2) = L(γ‖0, B1) ‖ L(γ‖1, B2)

Labelled bio-processes have the same metavariables as normal bio-processes to keep the
semantics more readable. We introduced such a labelling because, when a binding between
two boxes happens, the semantics modifies the system by adding a link between the involved
boxes. This link is recorded by enriching the environment with a new element that, among
other information, stores the position of the boxes involved with respect to the bio-process they
belong to. Given that, locally, the semantics cannot compute the positions of the two boxes we
store this information on each box with the labels.

The semantics of BlenX generates two kind of transitions: box transitions and system tran-
sitions.

Box transitions are defined by the rules of Table 3.4 and have the form

I[P ]γ
C,a
−−→r I

′[P ′ ]γ
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fn(I[P ]) = fn(P ) \ sub(I) bn(I[P ]) = bn(P ) ∪ sub(I)

fn(nil) = ∅ bn(nil) = ∅

fn(B0 ‖ B1) = fn(B0) ∪ fn(B1) bn(B0 ‖ B1) = bn(B0) ∪ bn(B1)

fn(P0 |P1) = fn(P0) ∪ fn(P1) bn(P0 |P1) = bn(P0) ∪ bn(P1)

fn(M0 +M1) = fn(M0) ∪ fn(M1) bn(M0 +M1) = bn(M0) ∪ bn(M1)

fn(〈C〉M) = fn(M) ∪ fn(C) bn(〈C〉M) = bn(M)

fn(∗π.P ) = fn(π.P ) bn(∗π.P ) = bn(π.P )

fn(π.P ) = fn(π) ∪ (fn(P ) \ bn(π)) bn(π.P ) = bn(π) ∪ bn(P )

fn(n?y) = {n} bn(n?y) = {y}

fn(n!m) = {n,m} bn(n!m) = ∅

fn(ch(r, a, T )) = {a} bn(ch(r, a, T )) = ∅

fn(¬C) = fn(C)

fn(C1 ∧ C2) = fn(C1) ∪ fn(C2)

fn((a, S)) = {a}

fn((a,⊙)) = {a}

fn((a,⊗)) = {a}

fn(true) = ∅

Table 3.3 – Definition of free and bound names for bio-processes.

where r is a rate, C is a condition, and a is an action of the form k!t, k?t, (T, U), and τ . We
refer this set of actions as Acti . k!t means that we send the name t over k, k?t means that we
receive t via k (we will see shortly why we need to introduce these new metavariables k and t
and what they stand for), (T, U) changes the sort of the interface associated with T to U , and
τ represent an internal action.

System transitions are defined by the rules of Table 3.6 and Table 3.8. They can be a τ -

transition S
τ
−→r S

′ or have the form S
(γ,a)
−−−→r S

′ where r is a rate, γ is the label of the box that
performs the action in S and a can be either T !n, T?n, or T . T !n means that we send the
free name n through the interface associated with T , T?n means that we receive n through the
interface associated with T , and T means that a bind or an unbind happened by means of the
interface associated with T .

We now go through the rules of the operational semantics. Rule r1 describes the execution
of an output prefix. The label stores the channel or the interface name used for communicating
and the name that is sent. It is important to highlight that for referring to an interface, within a
label, we do not use its subject but we use its sort. This choice has been made because we want
a bijection between derivation trees and the transitions they infer. If we were to use subjects
to refer to interfaces, because of the identification of α-equivalent systems, we would be able to
derive the same transition with infinitely many different derivation trees. Hence, there would
not be a bijection between transitions and derivations trees.
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r1
I[n!m.P ]γ

true,k!t
−−−−−→0 I[P ]γ

provided: ((k = n ∧ n /∈ I) ∨ (n, k)r ∈ I)∧

((t = m ∧m /∈ I) ∨ (m, t)r ∈ I)

r2
I[n?y. P ]γ

true,k?t
−−−−−→0 I[P{m/y} ]γ

provided: ((k = n ∧ n /∈ I) ∨ (n, k)r ∈ I)∧

((t = m ∧m /∈ I) ∨ (m, t)r ∈ I)

r3

{(a, U)r1} ∪ I[ ch(r, a, T ). P ]γ
true,(U,T )
−−−−−−−→r {(a, T )r1} ∪ I[P ]γ

provided: T /∈ sorts(I)

I[π. P ]γ
true,a
−−−−→r I′[P ′ ]γ

r4
I[ ∗π. P ]γ

true,a
−−−−→r I′[ ∗π. P |P ′ ]γ

I[P1 ]γ
C1,k!t−−−−→0 I′[P ′

1 ]γ I[P2 ]γ
C2,k?t−−−−−→0 I′[P ′

2 ]γ
r5-l

I[P1 |P2 ]γ
C1∧C2,τ−−−−−−→r I′[P ′

1 |P
′

2 ]γ

provided: (((a, k)r ∈ I) ∨ (k /∈ Sort ∧ δ(k) = r))

I[P1 ]γ
C1,k?t−−−−−→0 I′[P ′

1 ]γ I[P2 ]γ
C2,k!t−−−−→0 I′[P ′

2 ]γ
r5-r

I[P1 |P2 ]γ
C1∧C2,τ−−−−−−→r I′[P ′

1 |P
′

2 ]γ

provided: (((a, k)r ∈ I) ∨ (k /∈ Sort ∧ δ(k) = r))

I[M ]γ
C′,a
−−−→r I′[M ′ ]γ

r6

I[ 〈C〉M ]γ
*C+∗

I
∧C′,a

−−−−−−−−→r I′[M ′ ]γ

I[P ]γ
C,a
−−→r I′[P ′ ]γ

r7-l
I[P |Q ]γ

C,a
−−→r I′[P ′ |Q ]γ

I[Q ]γ
C,a
−−→r I′[Q′ ]γ

r7-r
I[P |Q ]γ

C,a
−−→r I′[P |Q′ ]γ

I[M ]γ
C,a
−−→r I′[M ′ ]γ

r8-l
I[M +N ]γ

C,a
−−→r I′[M ′ ]γ

I[N ]γ
C,a
−−→r I′[N ′ ]γ

r8-r
I[M +N ]γ

C,a
−−→r I′[N ′ ]γ

Table 3.4 – Operational semantics for boxes.

For making this point clear, we propose an example. Consider the following two derivation
trees where, within the labels, we store the subjects of the interfaces instead of their sorts:

r1
(a, T )r[ a!y. nil ]ε

a!y
−−→0 (a, T )r[ nil ]ε

r1
(b, T )r[ b!y. nil ]ε

b!y
−−→0 (b, T )r[ nil ]ε

The boxes involved in the two transitions are exactly the same. Also the actions that cause
the transitions are exactly the same because of the definition of α-equivalence. However the
derivation trees are different; in fact the label a!y is different from the label b!y breaking the
bijection constraint: we have two derivation trees to infer the same transition. Instead storing
sorts we obtain we obtain the same derivation tree in both cases:

r1
(a, T )r[ a!y. nil ]ε

T !y
−−→0 (a, T )r[ nil ]ε

r1
(b, T )r[ b!y. nil ]ε

T !y
−−→0 (b, T )r[ nil ]ε
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*true+∗I = true

*(a, T )+∗I =

{

true if (a, T ) ∈ I
false otherwise

*(a,⊙)+∗I =

{

(T,⊙) if (a, T ) ∈ sub(I)
false otherwise

*(a,⊗)+∗I =

{

(T,⊗) if (a, T ) ∈ sub(I)
false otherwise

*C1 ∧ C2+∗I = *C1+∗I ∧ *C2+∗I
*¬C+∗I = ¬*C+∗I

Table 3.5 – Partial evaluation of a condition.

Rule r2 describes the execution of an input prefix and is similar to rule r1.

Rule r3 describes how the sort of an interface can be changed through an action ch(r, a, T ).
The transition is allowed only if the sort T is not associated with another interface in I. This
check is important for maintaining the well-formedness of the box that performs the action (a
box cannot have two interfaces associated with the same sort). The label stores the pair of sorts
that are involved in the change action, information that we need when we lift the transition to
the system level.

Rule r4 describes how replication is unfolded. It states that a process guarded by an action
under replication cannot be consumed. When the action π that guards the process P fires,
instead of being consumed and causing the transition of the process in P ′, it is not affected, and
the process P ′ is added in parallel. This mechanism gives the possibility to implement recursion,
and thus describes a box with an internal process that never deadlocks. Here an example of how
we can get this result:

r1
(a, T )r[ a!y. nil ]ε

T !y
−−→0 (a, T )r[ nil ]ε

r4
(a, T )r[ ∗a!y. nil ]ε

T !y
−−→0

(a, T )r[ ∗a!y. nil | nil ]ε

r2
(a, T )r[ a?z. nil ]ε

T?y
−−−→0 (a, T )r[ nil ]ε

r4
(a, T )r[ ∗a?z. nil ]ε

T?y
−−−→0

(a, T )r[ ∗a?z. nil | nil ]ε
r5-l

(a, T )r[ ∗a!y. nil | ∗ a?z. nil ]ε
τ
−→r (a, T )r[ ∗a!y. nil | nil | ∗ a?z. nil | nil ]ε

r12
((a, T )r[ ∗a!y. nil | ∗ a?z. nil ]ε,Nil, ∅)

τ
−→r ((a, T )r[ ∗a!y. nil | nil | ∗ a?z. nil | nil ]ε,Nil, ∅)

In this example the transition is caused by two processes under replication. Given that
they will never be consumed, the result is that the bio-process never deadlocks, and will keep
performing the same action and accumulating nil processes.

Rules r5-l and r5-r describe the intra-communications capability of a box, i.e. the possibility
to exchange information between two processes within the same box. The transition involves
two processes with the capability of performing symmetric actions. By symmetric we mean an
input and an output action which communicate on the same channel k (or the same interface
associated with the sort k) and exchanges exactly the same information, i.e. the channel t (or the
interface associated with the sort t). Note that if the communication happens over an interface,
the rate r is stored in the definition of the interface. On the contrary, in the case of a free name,
the rate is given by the function δ which associates a rate with each free name.

Rule r6 collects in the label the partial evaluation *C+∗I of the condition in front of a ca-
pability M . *C+∗I , whose definition is in Table 3.5, evaluates any atomic condition in C that
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I[P ]γ
C,T !n
−−−−→0 I[P ′ ]γ

r9

(I[P ]γ , E, ξ)
(γ,T !n)
−−−−−→0 (I[P ′ ]γ , E, ξ)

provided *C+γ,ξ = true

I[P ]γ
C,T?n
−−−−→0 I[P ′ ]γ

r10

(I[P ]γ , E, ξ)
(γ,T?n)
−−−−−→0 (I[P ′ ]γ , E, ξ)

provided *C+γ,ξ = true

I[P ]γ
C,(T,U)
−−−−−−→r I′[P ′ ]γ

r11
(I[P ]γ , E, ξ)

τ
−→r (I′[P ′ ]γ , E, ξ{(γ, U)/(γ, T )})

provided *C+γ,ξ = true

I[P ]γ
C,τ
−−→r I[P ′ ]γ

r12
(I[P ]γ , E, ξ)

τ
−→r (I[P ′ ]γ , E, ξ)

provided *C+γ,ξ = true

Table 3.6 – Operational semantics, from boxes to systems.

*true+γ,ξ = true

*(T,⊙)+γ,ξ =

{

true if ∃{(γ, T ), (γ′, T ′)} ∈ ξ
false otherwise

*(T,⊗)+γ,ξ =

{

true if ∄{(γ, T ), (γ, T ′)} ∈ ξ
false otherwise

*C1 ∧ C2+γ,ξ = *C1 +γ,ξ ∧ * C2+γ,ξ
*¬C+γ,ξ = ¬ * C+γ,ξ

Table 3.7 – Evaluation function.

can be solved by looking at the interface set I. In this way we store in the label a condition
whose satisfaction depends only on the binding state of the interfaces. Note that, because of
issues with α-equivalence, the conditions stored in the label refer to the interfaces using their
sort instead of their subject. This condition is evaluated later on in the derivation tree — in
particular as soon as the information regarding the links between the interfaces is available (i.e.,
when one of the rules of Table 3.6 is applied).

Rules r7-l, r7-r, r8-l, and r8-r, allow processes in a context to perform actions.

We will now describe the rules in Table 3.6. They lift the box-level transitions to the level
of BlenX system only if the condition C which they are labelled with evaluates to true with
respect to the environment ξ. Note that C is the result of the conjunction of partially evaluated
conditions, and thus refers to interfaces using their sort and does not contain atomic condition
that test the sort of an interface. This is the reason why the evaluation function defined in
Table 3.7 does not consider the case *(T, U)+γ,ξ.

Rules r9, r10, r11 and r12 lift to the level of a system the transitions which involve boxes that
output a channel name over an interface, input a channel name over an interface, change the
sort associated with an interface, and perform an intra-communication, respectively. Given that
the environment refers to interfaces using their sorts, in rule r11, where the sort of an interface
changes to U , the substitution ξ{(γ, U)/(γ, T )} is necessary to keep the information stored in the
environment consistent.

We can now describe the group of rules in Table 3.8. Rule r13 simply states that one of the
interfaces of the box γ is associated with sort T . This information is exploited by rule r14, which
creates a link between two interfaces with compatible sorts if they are unbound and belong to
different boxes. In a similar way, rule r15 destroys the link between two interfaces.

Rule r16-l and r16-r synchronize an inter-communication between two bio-processes. The
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r13

({(a, T )r} ∪ I[P ]γ , E, ξ)
(γ,T )
−−−−→0 ({(a, T )r} ∪ I[P ]γ , E, ξ)

(B1, E, ξ)
(γ1,T1)
−−−−−→0 (B1, E, ξ) (B2, E, ξ)

(γ2,T2)
−−−−−→0 (B2, E, ξ)

r14
(B1 ‖ B2, E, ξ)

τ
−→αb(T1,T2) (B1 ‖ B2, E, ξ ∪ {{(γ1, T1), (γ2, T2)}})

provided: αb(T1, T2) > 0 ∧ ∀L ∈ ξ : {(γ1, T1), (γ2, T2)} ∩ L = ∅

(B1, E, ξ)
(γ1,T1)
−−−−−→r1 (B1, E, ξ) (B2, E, ξ)

(γ2,T2)
−−−−−→r2 (B2, E, ξ)

r15
(B1 ‖ B2, E, ξ ∪ {{(γ1, T1), (γ2, T2)}})

τ
−→αu(T1,T2) (B1 ‖ B2, E, ξ)

provided: αu(T1, T2) > 0

(B1, E, ξ)
(γ1,T1!n)
−−−−−−−→0 (B′

1, E, ξ) (B2, E, ξ)
(γ2,T2?n)
−−−−−−−→0 (B′

2, E, ξ)
r16-l

(B1 ‖ B2, E, ξ)
τ
−→αc(T1,T2) (B

′

1 ‖ B′

2, E, ξ)

provided: αc(T1, T2) > 0 ∧ (({(γ1, T1), (γ2, T2)} ∈ ξ) ∨ (αb(T1, T2) = αu(T1, T2) = 0))

(B1, E, ξ)
(γ1,T1?n)
−−−−−−−→0 (B′

1, E, ξ) (B2, E, ξ)
(γ2,T2!n)
−−−−−−−→0 (B′

2, E, ξ)
r16-r

(B1 ‖ B2, E, ξ)
τ
−→αc(T1,T2) (B

′

1 ‖ B′

2, E, ξ)

provided: αc(T1, T2) > 0 ∧ (({(γ1, T1), (γ2, T2)} ∈ ξ) ∨ (αb(T1, T2) = αu(T1, T2) = 0))

r17
(I[P ]γ , E, ξ)

τ
−→r (L(γ,B), E, ξ)

provided: I′[P ′ ] ◮r B ∈ E, I′[P ′ ] ≡b I[P ] ∧ ∄(a, T )r ∈ I ∧ L ∈ ξ : {(γ, T )} ∩ L 6= ∅

(B1, E, ξ)
a
−→r (B′

1, E, ξ′)
r18-l

(B1 ‖ B2, E, ξ)
a
−→r (B′

1 ‖ B2, E, ξ′)

(B2, E, ξ)
a
−→r (B′

2, E, ξ′)
r18-r

(B1 ‖ B2, E, ξ)
a
−→r (B1 ‖ B′

2, E, ξ′)

Table 3.8 – Operational semantics for systems.

communication can happen only if the sorts of the involved interfaces have a non-zero communi-
cation rate (αc(T1, T2) > 0). Moreover one of the following must hold: the two interfaces must be
linked together or their binding and unbinding capability must be equal to zero (αb(T1, T2) = 0
and αu(T1, T2) = 0).

Rule r17 allows the replacement of a box I[P ]γ with a bio-process B. The Rule enables
the replacement if the set of events E contains an event whose definition is I ′[P ′ ] ◮r B with
I ′[P ′ ] ≡b I[P ], and if the interfaces of the replaced box γ are not involved in any link. The
rule applies the correct labels to the boxes of the bio-process B through the function L.

Finally the rules r18-l and r18-r describes the evolution of bio-processes in a context.

3.2 Well-formed Systems

In order to work consistently with the operational semantics, a system must be well-formed.
In the following we list the definitions of well-formedness for systems and for its components
(with the exception of the notion of well-formed bio-processes that we introduced earlier for
presentation constraint).
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Definition 3.2.1 A pair (B, ξ), where B is a bio-process and ξ is an environment, is well-
formed if:

1. B is well formed.

2. All the box labels used in ξ are valid pointers to boxes of B.

3. For all {(γ1, T1), (γ2, T2)} ∈ ξ, γ1 6= γ2, the box pointed by γ1 has an interface associated
with T1, and the box pointed by γ2 has an interface associated with T2.

4. For all L1 6= L2 ∈ ξ, L1 ∩ L2 = ∅ (i.e. each interface can be involved in no more than one
element of ξ).

Definition 3.2.2 A set of events E is well-formed if each element I[P ] ◮r B ∈ E belongs to a
distinct congruence class and I[P ] and B are well-formed.

Definition 3.2.3 A system (B,E, ξ) is well-formed if the pair (B, ξ) and the event set E are
well-formed.

The definition of well-formedness for bio-processes and the pairs made of a bio-process and
an environment is intuitive. That is not the same for the notion of well-formedness for set
of events. We introduced it because a system with a generic set of events could compromise
the existence of a bijection between transitions and their derivation trees. Let us consider
the example E = {I1[P1 ] ◮r B, I2[P2 ] ◮r B} with I1[P1 ] ◮r B ≡e I2[P2 ] ◮r B that implies
I1[P1 ] ≡b I2[P2 ]. In this case the system (I1[P1 ]ε, E, ∅) can perform two different transitions
given that both the events of E can be applied to I1[P1 ]ε. However we obtain the two transitions
with the same derivation tree:

r17
(I1[P1 ]γ , E, ξ)

τ
−→r (L(γ,B), E, ξ)

This eventuality cannot happen in the case of a well-formed set of events and hereafter we will
consider only systems belonging to the set of well-formed systems S.

By means of the semantics BlenX can be defined as a multi-transition system (in the style
or PEPA [50]). In general a multi-transition system is defined as a pair made of a set of
state Q and a transition multi-relation defined as a function Q × Q 7→ n. Thus BlenX may
be regarded as a multi-transition system defined as (S, −→ ) where the multi-relation −→ is a
function S × r × S 7→ N with the following definition: −→ (S1, r, S2) = n if S1

τ
−→r S2 with n > 0

distinct derivation trees and −→ (S1, r, S2) = ⊥ if there are not derivation trees for the transition
S1

τ
−→r S2. If −→ (S1, r, S2) = n we write S1−→r S2 with multiplicity n. If we are not interested

in the multiplicity we simply write S1−→r S2.

3.3 Adding Priorities

Since now we associated BlenX actions with rates that belongs to R+
0 . Here we introduce a

typology of actions named immediate actions. In contrast with normal actions, that now we
call actions with finite rate, they are associated with an infinite rate (denoted with ∞). This
actions have high priority which means that a system can perform a transition with finite rate
(i.e. a transition triggered by an action with finite rate) only if it cannot perform an immediate
transition (i.e. a transition triggered by an immediate action).
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Figure 3.3 – Example of concurrent bindings.

The priority mechanism allows to define sequence of actions that are atomically executed
(i.e. cannot be interrupted). We now propose an example (see Figure 3.3) for justifying the
need of this mechanism with two priority levels from a biological point of view. In the example
there are three kind of proteins. Protein A has two binding sites represented by the notches on
its surface. The domain on the left can interact with the protein B, the one on the right with the
protein C. This interactions lead to the formation of the complexes represented in Figure 3.3d
and 3.3e, respectively. Note that the trimer made of the proteins A, B and C cannot form. In
fact the proteins B and C are too big to be simultaneously bound to A. In the following we define
a program describing such a scenario.

As shown in Figures 3.4b and 3.4c, we encode the proteins B and C as two boxes provided
with one interface (they only have one binding site) and with an empty internal process (i.e. nil).
The box encoding the protein A (represented in Figure 3.4a), has two interfaces which are named
left and right and are associated with the sorts L and R, respectively. In order to allow the
protein A to form a complex with the boxes that encode the proteins B and C, we define the
binding capability function as follows: αb = α0[(BS ,L) 7→ r1][(CS ,R) 7→ r2]. Where α0 is the
function that maps every pair of sorts to zero, and r1 and r2 are the rates of binding between B

and A, and C and A, respectively.

The internal process of the box encoding the protein A is defined in such a way that when
an interface binds, the sort associated with the other one is changed. In this way we want to
prevent that the boxes B and C can be bound to A at the same time:

P = 〈(left ,⊗)〉ch(r3, right ,RI ). nil + 〈(right ,⊗)〉ch(r4, left ,LI ). nil

Process P is made of two alternative sub-processes. The left one is guarded by the atomic
condition 〈(left ,⊗)〉 that activates the process ch(r3, right , RI). nil once the left interface binds.
This process associates the sort RI with the interface right. In this way, once a binding on the
left interface occurs, it prevents a future binding of the box A with the box C, indeed the pair of
sorts (RI,CS ) does not have positive binding capability.
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Figure 3.4 – BlenX encoding of the proteins represented in Figure 3.3. In the graphical represen-
tation of the boxes, we omit to write the name of the interfaces, we only specify their sort. We
also omit to represent the internal process when it is too large or when it is not important for the
explanation.

The right alternative process behaves as the left one but the roles of the interfaces are
swapped. If the right interface binds than the binding capability of the left interface is inhibited.

At this point our attention focuses on rates r3 and r4. Let us associate a positive real
value with these rates and look in Figure 3.5 how the represented system evolves respect to this
choice. In the first state S1, two events can happen: B binds to A or C binds to A. In the states
S2 and S3 we would like that the only enabled action is the one which disables the binding on
the free interface and makes the system move in the state S4 and S5, respectively. However,
these actions are concurrently enabled with the binding actions that lead to the formation of the
undesired trimer of states S6. After the formation of the trimer both the alternative processes
of the internal process P are enabled. Depending on which one executes before, the state of
the system becomes S7 or S8. In order to prevent transitions that lead to state S6, we have to
associate the change actions that cause the transition from S2 to S4 and from S3 to S5 with
an infinite rate. In this way the transitions forming the trimer are disabled because concurrent
with immediate transitions having higher priority.

Now the question is, why we need actions associated with infinite rate? Nature can make
very fast reactions but not instantaneous reactions. How can we justify immediate actions from
a biological point of view? The answer is that, with our language, we are not encoding nature
but a small subset of it. For instance the language does not have primitives for encoding space
constraints. We cannot neatly express that proteins B and C are too large to simultaneously
bind to A. We have to use a trick to do that, and the trick consists in using immediate actions.
In this way the language can encode things it is actually missing the primitive for.

We now give a formal definition of BlenX which takes into account the priorities mechanism.
Extending the definition of section 3.2 we say that BlenX can be regarded as a multi-transition
system (S,→), where S is the set of all the well-formed BlenX systems, and the multi relation −→
is defined as the function with the largest domain such that it holds that:
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Figure 3.5 – Evolution of a system with concurrent bindings.

1. If −→ (S1, r, S2) = n then S1
τ
−→r S2 with n > 0 distinct derivation trees.

2. If −→ (S1, r, S2) = ⊥ then there are not derivation trees for S1
τ
−→r S2.

3. If S1
τ
−→∞ S2 then ∄S3 : −→ (S1, r, S3) 6= ⊥ with r 6= ∞.

If −→ (S1, r, S2) = n we write S1−→r S2 with multiplicity n. If we are not interested in the
multiplicity we simply write S1−→r S2.

In Figure 3.5 we informally introduced the representation of an object effectively describing
the behaviour of a system by listing the transitions that a system can perform. Given a system
well-formed system S we call this object the multi-transition system generated by the system
S, and here we introduce some notions necessary to give its formal definition.

Definition 3.3.1 If S1 →r S2, then S2 is a (one-step) derivative of S1. More generally if
S1 →r1 . . . →rn−1 Sn, then Sn is a derivative of S1. We write ds(S) for the set which contains
S and its derivatives.
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Definition 3.3.2 The multi-transition system generated by a system S and written as ΦS is
defined as the pair (ds(S),→S) where the multi-relation →S is defined as the largest subset of
→ such that it holds that if →S(S1, r, S2) 6= ⊥ then S1, S2 ∈ ds(S).

As for the other multi-relations we introduce the compact notation S1 →
S
r S2.

3.3.1 The Underlying Stochastic Process

In this section we use ΦS to define the underlying stochastic process of S. We highlight the
relationship of this process with those generated by GSNPs (General Stochastic Petri Nets)
which implies it can be reduced to a CTMC (under some conditions) [56].

For the sake of clearness we introduce an equivalent representation of ΦS which better fits
our needs. It is a transition system whose state space is made of equivalence classes of labelled
BlenX systems. In the following definition we introduce the function get , which is necessary to
give the notion of structural equivalence between systems.

Definition 3.3.3

get(γ, S) =

{

I[P ]γ if I[P ] appears labelled with γ in S
⊥ otherwise

Definition 3.3.4 (Structural equivalence) The structural equivalence ≡ among systems is
the smallest equivalence relation that satisfies the following:

S = (B,E, ξ) ≡ (B′, E, ξ′) = S′ if one of the following holds

1. ∀γ ∈ Label s.t. get(S, γ) = I[P ]γ and get(S′, γ) = I ′[P ′ ]γ ,
I[P ] ≡b I

′[P ′ ] and
ξ = ξ′

2. ∀γ ∈ Label \ {γ1, γ2}, get(S, γ) = get(S′, γ),
get(S, γ1) = I[P1 ]γ1 , get(S, γ2) = I[P2 ]γ2 ,
get(S′, γ1) = I[P2 ]γ1 , get(S

′, γ2) = I[P1 ]γ2and
ξ′ results by replacing γ1 with γ2 and γ2 with γ1 into ξ

The first condition of Definition 3.3.4 states that two systems are congruent if all of their
boxes with the same label are congruent. The second says that two systems are congruent if the
second can be obtained from the first by swapping two boxes.

Notation 3.3.5 Given a well-formed system S, we refer its equivalence class as JSK.

The state space of the transition system generated by So is the set A where JSK ∈ A iff ∃S′ ∈
JSK s.t. S′ ∈ ds(So). Its relation, which we refer as −→

≡

So and is a subset of A×R∪({∞}×R)×A,

is based on the definition of →So
:

• (JS′′′K , r, JS′K) ∈ −→
≡

So iff

1. ∃S ≡ S′′′ s.t. S →So
r1 S′

1, . . . , S →So
rn S′

n with multiplicity m1, . . . ,mn, respectively
and {S′

1, . . . , S
′
n} ∈ JS′K

2.
∑n

i=0miri = r
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3. ∄S′′ s.t. S′′ ∈ JS′K and S′′ /∈ {S′
1, . . . , S

′
n} and S →So

r′ S′′

• (JS′′′K , (∞, p), JS′K) ∈ −→
≡

So iff

1. ∃S ≡ S′′′ s.t.

(a) S →So
∞ S′

1, . . . , S →So
∞ S′

n′ with multiplicity m′
1, . . . ,m

′
n′ , respectively and it holds

that {S′
1, . . . , S

′
n} ∈ JS′K

(b) S →So
∞ S′′

1 , . . . , S →So
∞ S′′

n′′ with multiplicity m′′
1, . . . ,m

′′
n′′ , respectively and it

holds that S′′
1 , . . . , S

′′
n /∈ JS′K

2. ∄S′′ s.t. S′′ ∈ JS′K and S′′ /∈ {S′
1, . . . , S

′
n, S

′′
1 , . . . , S

′′
n} and S →So

∞ S′′

3. p =
∑n′

i=0 m
′

i
∑n′

i=0 m
′

i+
∑n′′

i=0 m
′′

i

Definition 3.3.6 The transition system generated by So is defined as the pair (A,−→
≡

So) where

S ∈ A iff ∃S′ ∈ JSK s.t. S′ ∈ ds(So). If (JSK , r, JS′K ∈ −→
≡

So) we write JSK −→
≡

So
r JS′K.

Here we highlight that this transition system can be interpreted as the definition of a semi-
Markov stochastic process. In particular it is a semi-Markov stochastic process of the kind
generated by GSPNs [56] where the states are partitioned in vanishing (which perform immediate
actions) and tangible (which do not). As explained in section 2.4.2, if the initial state of this
stochastic process is tangible then it is associated to a CTMC.

In general in BlenX, both the transition system and its underlying CTMC, cannot be com-
puted because they are huge or even infinite. What is done in practice is to perform simulations.
At the beginning of the simulation the simulation time is set to zero and the system is in the
initial state. The first step consists in the computation via the operational semantics of the
actions which can be triggered from the initial state. If the state is tangible each action is
associated to a rate which is the parameter of a negative exponential distribution. These distri-
butions are used to stochastically determine the action to perform. The simulation trigger the
selected action which causes the update of the simulation time and the movement of the system
in the state computed by applying, via the operational semantics, the selected action to the
initial state. In the case of a vanishing initial state each action is associated with a pair (∞, p),
where p is a probability and is used to randomly decide which, among the concurrent immediate
actions, is triggered to move in the next state. When the system move from a vanishing state
the simulation time remains unchanged. Once in the new state, these steps are repeated until
the simulation is interrupted or the system reaches a deadlock, i.e. a state which cannot perform
any action.

If we think about this process in terms of transition system, the simulation is a walk among
its states which is driven by the rates and the probabilities associated with arcs. We can further
observe that considering the interpretation we give to immediate actions, the vanishing states
visited by the system are not of any interest. Therefore a finer interpretation we can give to the
simulation is a walk among the states of the CTMC associated with the stochastic process (i.e.
the tangible state of the stochastic process), where each step of the walk is driven by the rates
associated with the arcs of the CTMC.

Considering that we are interested only in the movement among tangible states introduces
the possibility to define a quicker simulation algorithm. In particular we can make the simulation
move from tangible to tangible states, without traversing all the intermediate vanishing states.
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This means the simulation goes through the states of the underlying CTMC rather then the
states of the transition system. To define a method which makes the simulation exclusively visit
tangible states is extremely challenging thus, in practice, it can be defined a hybrid solution: in
some cases the simulation jumps from tangible to tangible states, in others instead, the vanishing
states are traversed. So doing the simulation moves on a reduced version of the transition system
which is not the same we started with but which has the same underlying CTMC.

3.4 Using the Language: Self-Assembly

Modelling biological systems requires us to deal with a large variety of challenges. Since it is
not possible to tackle all problems, we typically design a language that focuses on developing
innovative solution to specific problems. The main purpose of BlenX is to allow us to describe
in an intuitive way the interaction and the formation of complexes between proteins. Thanks to
this capability, the language is particularly effective in the description of self-assembly processes.
In this section we will illustrate the advantages of BlenX in such a scenario.

The term self-assembly indicates a process in which disordered components form an orga-
nized structure or pattern through only local interactions and without external coordination.
Debates of how complex structures and functions can emerge from local interactions between
simple components can be found in many different fields (e.g. nanotechnology [37], robotics [62],
molecular biology [47, 115], autonomous computation [78]).

Here we concentrate our attention on inter-molecular self-assembly. We are particularly
interested in, i.e. the ability of proteins to form quaternary structures), which is a crucial process
to the functioning of cells.

In the following section we will present some examples of self-assembly. We start with very
simple BlenX programs that build filaments and trees of boxes. After that we introduce some
modifications in order to obtain programs that produce trees with some peculiar structures.

For the sake of simplicity, the models presented in this section can only grow, i.e. we do
not consider reversible processes in which boxes can detach from a complex. Although this is a
simplification, the programs we present give a flavor of the potential of BlenX. In all programs,
the only reactions associated with finite rates are the bindings between boxes. All other actions
(e.g. intra-communications, changes, inter-communications) are executed as immediate actions
that atomically update the internal state of the boxes. Given that change actions are always
immediate we write ch(a, T ) in place of ch(a, T,∞). In this section we are not interested in
investigating the effect of associating different rates to actions, thus all the binding happens at
the same rate r.

For the sake of clarity, in the following we associate bio-processes and internal processes with
identifiers. Moreover, even if it is not formally allowed by the syntax, we do not write the nil

term at the end of a process (e.g. we write ch(a, T ) in place of ch(a, T ). nil) and we write n?−. P
in place of n?x. P if x 6∈ fn(P ). We refer to n?− as empty input. We also write n!− for empty
outputs. An output is defined to be empty if it exclusively synchronizes with empty inputs.
These choices make the presentation of the programs more compact and readable.

3.4.1 Filaments

A polymerization process is one in which large molecules (polymers) are constructed from small
units (monomers) that can bind together. Such a process give rise to the formation of molecules
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Figure 3.6 – Example of filament formation.

like DNA and actin filaments.
Let us consider a simple scenario in which a box M representing a monomer can bind to

boxes of its own species to generate a filament of boxes. For simplicity, and for finer control over
the creation of the filaments, we will also introduce a seed box S. Its role is to recruit the first
monomer and start the formation of a filament. The graphical intuition of the structures of the
boxes S and M is given in the following diagram:

Box S has only one interface, used to bind to a free monomer, while M is equipped with two
interfaces, the left one — used to bind to the last box of a growing filament (can be both a box
S or M) — and the right one — used to bind to a free monomer. The behaviour of the model is
depicted in Figure 3.6 (the starred arrow represents one or more steps).

Notice that a filament can grow only to the right. A box M can accept the binding of another
monomer on its right interface only if it is already part of a growing filament, i.e., its left interface
is bound to a filament.

We start with the definition of the boxes S and M:

S ,B (right , R)[ nil ]

M ,B (left , L)(right , RI )[ 〈(left ,⊗)〉ch(right ,R) ]

We define the binding affinity function αb such that it is zero for all the possible pairs of
sorts with the only exception of R and L: αb(R,L) = r. Due to this compatibility, a monomer M
can bind to the seed S. After the binding, the internal program of M recognizes that something
is bound to the left interface and changes the sort of the right interface from RI (R Inactive)
into R. In this way, the right interface of the bound M becomes capable of binding to the left
interface of another free monomer (see Figure 3.6).
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3.4.2 Trees

It is easy to modify the previous program to create trees. We modify the box M by adding a third
interface, which we refer to by the identifier branching . Like the right interface, the branching
one is activated via change actions only when M is bound to something on its left interface.

M ,B (left , L)(right , RI )(branching , BI )
[ 〈(left ,⊗)〉. ch(right ,R). ch(branching ,B) ]

We also add a branching box T. It has two interfaces and its role is to bind to the branching
interface of a monomer in a filament and to start the formation of a branch. T is defined as:

T ,B (left , TL)(right , TRI )[ 〈(left ,⊗)〉. ch(right ,TR) ]

As with M, the internal program changes the structure of the right interface once the box
becomes bound on the left interface. As final step we modify the binding capability function
adding the following capabilities: αb(B ,TL) = r and αb(L,TR) = r. The first affinity enables
the binding of a box M that is part of a filament with a free box T, the second one enables the
binding of a box T that is bound on the left interface with a free monomer M. A possible run of
this program with one box S, three boxes M and one box T is depicted in Figure 3.7.
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Figure 3.7 – Generation of a tree.

3.4.3 Introducing Controls over Branching Depth and Distance

So far we have seen how to program boxes in order to form large structures. Now we will
introduce some controls over the formation of this structures; in particular, we will present
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a program that builds trees with a maximum depth and a program that imposes a minimum
distance between consecutive branches. Finally we will define a third program where we combine
the two previous models to obtain trees with both the characteristics. We will define the first
two programs following a schema that will make easier their merging.

This schema requires to partition the interfaces of each box into interaction interfaces and
state interfaces, denoted by II and IS , respectively. Interaction interfaces are used by a box
to interact with other boxes, while state interfaces are used to store information regarding the
box state. Note that state interfaces do not have any biological interpretation, they are used
because storing information in the interfaces simplifies the coding; indeed all the components
of the internal program can access this information easily by managing and checking interface
structures through change actions and if statements. The internal program of each box consists of
three parallel processes. We call them the interaction modifier process (IMP), the state modifier
process (SMP) and the messages receiver process (MRP). Here an illustration of the structure of
a box defined with this schema:

L

The IMP, MRP and SMP processes are defined following a list of criteria that restrict their
behaviour and the possible actions they can perform:

• IMP can modify and check the state of the interfaces belonging to II and only check the
interfaces belonging to IS . However, it cannot perform inputs and outputs.

• MRP receives incoming messages from II interfaces and executes outputs over received
names. We mechanically built it from the set of the interfaces II . It is defined as

∗a1?x. x!− | · · · | ∗a1?x. x!−

where {a1, . . . , an} = II .

• SMP can modify and check the state of the interfaces belonging to IS . It cannot perform
inputs over interaction interfaces but it can perform outputs.

Controlling branching depth.

Each node of a tree can be associated with a branching depth level. A node has branching depth
n if there are exactly n − 1 branches from the node to the root. A tree has branching depth
defined as the maximum branching depth of any of its nodes. We define a BlenX model that
generates trees with branching depth less than five. The boxes involved in this model represent
monomers, branches and seeds. The BlenX graphical and textual representation of monomers
is:

L RI

DU

BI

M

M ,B (right , RI )(left , L)
(branch, BI )(depth, DU )
[ MD IMP | MD MRP | MD SMP ]



68 BlenX

The only interface belonging to IS has subject depth and can be associated with five different
sorts: DU , D1 , D2 , D3 and D4 . Sort DU is used when the box is free, while the others are used
when the box is bound and they encode the branching depth of the node, e.g. D1 represents a
branching depth of 1. We refer to this interface as the depth interface.

The interaction modifier process MD IMP enables the binding on the right interface by chang-
ing its sort when the box binds on the left interface. Moreover the MD IMP process changes the
sort of the branching interface depending on the sort of the depth interface. In particular, the
sort has to be changed in order to only allow the box to branch if the sort exposed on the depth
interface is either D1 , D2 , or D3 . Hence, MD IMP is defined as follows:

MD IMP ,P 〈(left ,⊗)〉ch(right ,R)
| 〈¬((depth,D4 ) ∨ (depth,DU ))〉ch(branch,B)

As previously explained we construct the message receiver process MD MRP by composing in
parallel one replicated process for each interface belonging to II :

MD MRP ,P ∗right?channel . channel !−
| ∗ left?channel . channel !−
| ∗ branch?channel . channel !−

The last process composing the internal program is the state modifier process MD SMP. Its
role is to modify the sort associated with the depth interface in order to encode the number of
branches from the root to the box. This task is performed through an exchange of messages
between the state modifier processes of different boxes. The MD SMP process is composed by two
parallel processes, one receiving and using messages for updating the state interfaces, and the
other sending messages to bound boxes and triggering their update:

MD SMP ,P MD r SMP | MD s SMP

These processes exchange information using four channel names: d1 , d2 , d3 and d4 . MD r SMP

is a sum of inputs over channels that we use to trigger modifications of the sort associated with
depth interface:

MD r SMP ,P d1?−.ch(depth,D1 )
+ d2?−.ch(depth,D2 )
+ d3?−.ch(depth,D3 )
+ d4?−.ch(depth,D4 ))

The interacting partner of MD r SMP is:

MD s SMP ,P (〈(depth,D1 )〉right !d1
+ 〈(depth,D2 )〉right !d2
+ 〈(depth,D3 )〉right !d3
+ 〈(depth,D4 )〉right !d4 )
| (〈(depth,D1 )〉branch!d1
+ 〈(depth,D2 )〉branch!d2
+ 〈(depth,D3 )〉branch!d3 )
+ 〈(depth,D4 )〉branch!d4 )
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Figure 3.8 – An instance of the execution of the protocol allowing the propagation of the depth
information from a leaf of a tree to a newly attached box.

This process is composed of two parallel processes. Their task is to propagate the information
regarding the depth of the box to newly attached boxes. The first process propagates this
information along the right interface, the second one along the branch interface. Given that
they share the same structure we only provide an explanation for the first one.

This process is a sum of outputs over the right interface which are guarded by conditions
that check for the sort associated with the depth interface. These checks are mutually exclusive
and thus, in a given instant, only one of the guarded outputs is active. When the box binds, the
active output sends a channel name encoding the depth of the box it is sent from. The channel
name is received by the MD MRP process of the newly attached box which, as required by the
adopted schema, performs an output over it. This output synchronizes with one of the input of
the MD r SMP of the newly attached box and causes the correct update of its depth interface.

In Figure 3.8 we can see an instance of the described communication protocol. The involved
boxes are the monomer M1, a leaf of a tree, and the monomer M2, a free box. The two boxes bind
and the MD r SMP of M1, given that its depth interface is associated with the sort D2, sends the
channel name d2 over the right interface (Figure 3.8b). The MD MRP process of M2 receives the
channel name over the left interface and performs an output over it. This output interact with
the process MD r SMP inside the M2 box, in particular it synchronizes with the process guarded
by the input d2?− (In Figure 3.8c, this intra-communication is represented by the output d2!−
inside the box M2). The execution of this input activate the change action that updates the sort
of the depth interface to D2 (Figure 3.8c). Note that in this protocol the MD IMP process acts in
parallel. Indeed in the states represented in Figure 3.8b and 3.8c the conditions 〈(left ,⊗)〉 and
〈¬((depth,D4 )∨ (depth,DU ))〉 evaluate to true, respectively and thus the sorts of the right and
the branch interfaces are updated to R and B.

In this communication protocol the immediate actions play a fundamental role, in fact they
allow the atomic execution of several actions.

Now we proceed with the description of the branching box T:
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TL TRI

DU
T

T ,B (right , TRI )(left , TL)(depth, DU )
[ TD IMP | TD MRP | TD SMP ]

Also in this case the interaction interfaces of the box are the same we introduced in the
previous section. The interaction modifier process TD IMP has only to change the sort of the
right interface sort when the box binds on the left:

TD IMP ,P 〈(left ,⊗)〉ch(right ,TR)

The message receiver process TD MRP is defined mechanically following the schema previously
described.

The state modifier process TD SMP, with a structure which is similar to the MD SMP, propagates
the depth information to the node which will bind to the right interface. In this case, given that
the message is received by a branching box, the depth level is increased by one. Thus, if the
node receives a message encoding depth equal to one (i.e. d1 ) the depth interface is actually
associated with depth D2. Note that here we do not need to consider depth D1 , because a
branch node must have a branching depth of at least two.

TD SMP ,P d1?−. ch(depth,D2 )
+ d2?−. ch(depth,D3 )
+ d3?−. ch(depth,D4 ))
| 〈(depth,D2 )〉right !d2
+ 〈(depth,D3 )〉right !d3
+ 〈(depth,D4 )〉right !d4 )

The seed box S does not have any state interface and its BlenX graphical and textual de-
scriptions are:

S

R
S ,B (right , R)

[ SD IMP | SD MRP | SD SMP ]

The interaction capabilities of this box never change and therefore the interaction modifier
process SD IMP is the empty process nil. The state modifier process SD SMP has only to prop-
agate the initial depth information when a filament is started, i.e., the first box it binds to is
informed that its depth level is one:

SD SMP ,P right !d1

Figure 3.9 shows an example of complex generated by the branching depth control program.

Controlling branching distance.

Now we consider the generation of trees that have at least four monomers between their branches.
We store in each monomer belonging to a filament its distance from the nearest branch (the
seed node is considered to be a branch). To store this information we use a distance interface
that can be associated with the sorts FU , F1 , F2 , F3 and F4 . The sort FU is used when the
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Figure 3.9 – Example of a tree generated with the branching depth control program. Notice how at
level four the monomer branching interfaces are inactive. Dots indicate the presence of other boxes
in the system.

monomer box is free while the others when it is bound. The number indicates the distance from
the nearest branch with the exception of F4 , which means that the distance is greater than or
equal to four. The BlenX code of M is:

L RI

FU

BI

M

M ,B (right , RI )(left , L)
(branch, BI )(distance, FU )
[ MF IMP | MF MRP | MF SMP ]
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The interaction modifier process MF IMP permits the binding to the right interface when the
box is bound on the left interface and permits a branch to form only if the nearest branch is at
least four nodes away. Hence, if the distance interface has sort F4 , the process changes the sort
of the branch interface into B , allowing the branch formation. It then enables a change action
guarded by a condition that checks for modifications to the distance interface. A modification
can happen if a branch starts growing in the proximity of the box. In this case, the MF SMP

process changes the sort of the distance interface from F4 to the sort that encodes the new
distance and the MF IMP disables the branch interface by changing its sort from B into BI .

MF IMP ,P 〈(left ,⊗)〉ch(right ,R)
| 〈(distance,F4 )〉ch(branch,B).
〈¬(distance,F4 ) ∧ (distance,⊙)〉ch(branch,BI )

Given that the MF MRP process has the same definition of MS MRP we proceed with the BlenX

code description of the state modifier process MF SMP:

MF SMP ,P switch!−
| ∗ switch?−. (
〈(distance,F1 )〉
(f1?− + f2?− + f3?− + f4?−)
+ 〈(distance,F2 )〉
(f1?−. ch(distance,F1 ). propagate!f2
+ f2?− + f3?− + f4?−)
+ 〈(distance,F3 )〉
(f1?−. ch(distance,F1 ). propagate!f2
+ f2?−. ch(distance,F2 ). propagate!f3
+ f3?−. switch!− + f4?−. switch!−)
+ 〈(distance,F4 ) ∨ (distance,FU )〉
(f1?−. ch(distance,F1 ). propagate!f2
+ f2?−. ch(distance,F2 ). propagate!f3
+ f3?−. ch(distance,F3 ). switch!−
+ f4?−. ch(distance,F4 ). switch!−))

| 〈(distance,F1 )〉right !f2
+ 〈(distance,F2 )〉right !f3
+ 〈(distance,F3 ) ∨ (distance,F4 )〉right !f4

| ∗ propagate?distance. (
(〈(right ,⊗)〉right !distance
+ 〈(right ,⊙)〉kill !−)
|
(〈(left ,⊗)〉left !distance))
| ∗ kill?−

The first parallel component is an empty output over the switch channel. As soon as the
program starts running, in each node, this output synchronizes with the empty input that guards
the replication of the second parallel component and makes active a copy of the body of the
replication. The body of the replication is a sum of processes that are guarded by conditions
on the sort associated with the distance interface. These conditions are mutually exclusive
therefore, in a given instant, only one of the processes following the conditions is active. These
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processes wait for an output over one of the channel encoding distances (i.e. f1, f2, f3 and f4 )
which is a request to change the sort associated with the distance interface (to F1, F2, F3 and
F4, respectively). Such a change is performed only if the distance encoded by the new sort is
smaller than the distance encoded by the sort associated with the interface.

For the understanding of this communication protocol we exploit an instance of its execution
(Figure 3.10). The involved boxes are M1, M2, M3 and M4. M1 is a free box instead M1, M2 and
M3 are part of a tree structure and as it is encoded in the sort associated with their distance
interface (that is F4 ), they are distant four or more than four nodes from the nearest branch. In
the first step, shown in Figure 3.10b, the box M1 binds to the right interface of M2. This action
causes the MF IMP process of the box M1 to change the sort of the right interface to R, and the
third parallel component of the MF SMP process of the box M2 to perform an output. Such an
output is performed by the process guarded by the condition 〈(distance,F3 ) ∨ (distance,F4 )〉
which sends the channel name f4 over the right interface (see Figure 3.10b).

The process MF MRP of the box M1 receives the channel name f4 and performs an output over it.
This output synchronizes with the active copy of the body of the replication guarded by the input
switch?−. In particular it interacts with the sum guarded by the condition 〈(distance,F4 ) ∨
(distance,FU )〉. Given that the communication is over f4 the interacting component of the
involved sum is the fourth one. This component associates the sort F4 with the distance interface
and then sends an output in order to start a new copy of the body of the replication guarded by
the action switch?−. The association of the sort F4 with the distance interface is recognized
by the MF IMP process that consequently changes the type of the branch interface to B (see
Figure 3.10c).

At this point we introduce a new participant, the branching box T (in Figure 3.10d we only
represent the interacting interface of this box), which binds to the branching interface of the box
M1. Without considering in detail the internal process of this box, that we will describe later, we
only say that, after the binding, it sends the channel name f1 over its left interface. The MF MRP

process of the box M2 receives the channel name and sends an empty message over it. This
output, as happened in the previous step when the box M1 synchronized a communication on
the channel name f4, interacts with the active copy of the body of the replication guarded by the
action switch?−. In particular the output again interacts with the sum guarded by the condition
〈(distance,F4 ) ∨ (distance,FU )〉. However this time, given that the communication is over f1
(instead of f4 ), the interacting component of the involved sum is the first one. This component
updates the information regarding the distance from the nearest branch by associating the sort
F1 with the distance interface. It then performs an output on the channel propagate which
carries as message the channel name f2 (see Figure 3.10d).

This output activates a copy of the body of the replication guarded by propagate?distance
where the variable distance is replaced with the channel name f2. This newly activated process
propagates the information about the distance (in this case the name channel f2 ) along both the
right and the left interfaces. The process is made of two processes joint by means of the parallel
operator. The first one is a sum that enables two alternative actions guarded by a condition.
The first one checks if the right interface is bound, if it is the case it enables an output over
the right interface that propagates the distance information, the second one checks if the right
interface is free and in this case enables an output over the channel kill that interacts with the
replicated input kill?−. In our example the right interface is free and thus the communication
over the kill channel takes place. The only effect of this communication is to eliminate from
the box the alternative communication over the right interface, in this way we eliminate an
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Figure 3.10 – An instance of execution of the protocol updating distance interfaces in order to
make them encode the distance from the closest branch.

undesired pending communication. The propagation mechanism of the information along the
left interface is simpler, indeed we know that the left interface is always bound and thus we can
simply perform the output without the risk to generate a communication that will be pending
because it cannot be immediately performed (see Figure 3.10e).

After this step (Figure 3.10 does not show the following actions) the box M2 receives the
channel name f2 and performs a series of actions similar to the one we have just described. In
this case the internal program of M2 associates the distance interface with F2 and propagates the
channel name f3. The box that receives the channel name f3 associates the sort of its distance
interface with F3 but it does not propagate the channel name f4. In fact this information
cannot trigger any update of the branch interface of the surrounding boxes (given that the
distance encoded by F4 cannot be smaller than the distance encoded by another sort). Note
that the MF IMP process of the boxes M2 and M3, when their distance interfaces are associated
with sort F2 and F3, respectively, associates the sort BI to the branch interface. In this way
the boxes M2 and M3 are prevented to form a branch. At this point the protocol finished its job,
indeed all the nodes of the tree have properly updated their distance and branch interfaces (see
Figure 3.10f).

Now we introduce the definition of the branching box T. Here, there are no state interfaces,
because the branching box does not have to store any information. Indeed once it is part of a
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tree, its distance from a branch is zero given that it is the branch itself. Therefore a distance
interface is useless and the structure of the box results to be the following:

TL TRI

T

T ,B (right , TRI )(left , TL)
[ TF IMP | TF MRP | TF SMP ]

Note that the interface modifier process TF IMP is the same as in the previous model (TD IMP).
Even though there are no state interfaces, the state modifier process TF SMP is not nil because
it has to cooperate with the state modifier processes of the other boxes in order to propagate
distance information. In particular, when a box binds to the left or to the right interface, TF SMP

has to communicate to the new neighbour that its new distance from a branch is one:

TF SMP ,P left !f1
| right !f1

The seed box S has no state information, like the branching box T. Its structure is the
following:

S

R

S ,B (right, R)
[ SF IMP | SF MRP | SF SMP ]

Here the interaction modifier process SF IMP is empty (nil) because the interaction capa-
bilities of the box never change. The state modifier process SF SMP has the same role of the
branch box TF SMP process with the difference that there is only one interface that another box
can bind to:

SF SMP ,P right !f1

Figure 3.11 shows an example of a tree produced by the branching distance control program.

Merging the behaviours.

We can merge the behaviours of the two models to generate trees with a depth level less than
five and with a branching distance of at least four monomers. To do this, we create a new
seed box S, a new branching box T and a new monomer box M, starting from the corresponding
definitions from the two previous models. We use Sd, Td and Md to denote the box definitions
for the branching depth control model, and Sb, Tb and Mb for the branching distance control
model. Each box B ∈ {S, T, M} has the same interaction interfaces of Bd and Bb and its state
interfaces are the union of the state interfaces of Bd and Bb. The state modifier process of each
box B is obtained by composing in parallel the state modifier processes of Bd and Bb. Moreover,
the message receiver process is the same as that of Bd and Bb because the two boxes have the
same interaction interfaces. Finally we define a new interaction modifier process. Thanks to the
adopted schema, the process of merging the two models is easy. We only need to define a new
interaction modified process (IMP).

The box M of this merged model is:
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Figure 3.11 – Example of a tree generated by the branching distance control program.

L RI

BI

M
DU FU

M ,B (right , RI )(left , L)
(branch, BI )(depth, DU )
(dist , FU )
[ M IMP | MD MRP | MD SMP | MF SMP ]

We define an interaction modifier process that allows the binding on the right interface only if
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the box is bound on the left interface and that allows the growth of a branch only if the box
has a depth level less then five, and is at least three monomers from a branch:

MD IMP ,P 〈(left ,⊗)〉ch(right ,R)
| 〈(distance,F4 ) ∧ ¬(depth,D4 ) ∧ ¬(depth,DU )〉

ch(branch,B).
〈¬(distance,F4 )〉ch(branch,BI )

Merging the behaviour of the boxes Tb and Td is easier because the interaction modifier
processes of the branch boxes of the models we are merging are the same (TD IMP = TF IMP).
Thus we can use one of them:

L RI

DU
T

T ,B (right , TRI )(left , TL)
(depth, DU )
[ TD IMP | TD MRP | TD SMP | TF SMP ]

Similarly, we can build the merged seed box S of this model as follows, because SD IMP =
SF IMP:

S

R
S ,B (right , R)

[ SD IMP | SD MRP | SD SMP | SF SMP ]

Note that in these models we used sorts to encode counters. Since sorts are not numbers, no
arithmetic on them is possible. Hence we have to represent each possible number with a different
sort and implement addition and subtraction operations with processes that change the sorts of
interfaces in the appropriate way (see for example the previous definition of TD SMP process).
It is clear that our approach results in very verbose code when dealing with wide ranges of
numbers. However, since all these operations can be implemented following the same template,
a possible solution is to implement them by adding macros to the BlenX that can be encoded
at compile time. An alternative solution can be found in the BlenX extension presented in [97],
where interface sorts can be numbers which are manipulated through arithmetic operations.
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Chapter 4

Actin

In this chapter we introduce a case study to support the presentation of our analysis. The
adopted example is the formation of actin filaments. Actin is a small globular protein present
in almost all known eukaryotes. It is one of the most conserved protein among species be-
cause it is involved in fundamental cell processes, e.g. muscle contraction, cell motility, cell
division and cytokinesis, vesicle and organelle movement, cell signaling, and the establishment
and maintenance of cell junctions and cell shape. All these tasks are performed thanks to the
ability of actin to polymerize in long polymerized filaments [70] whose tips are called barbed and
pointed. They can interact with a multitude of molecules; for example actin can bind with the
ARP2/3 complex, a seven subunit protein which, once bound, acts as a nucleation site for actin
monomers, giving rise to branched filaments. This leads to the formation of tree like structures
that are important for processes like cell locomotion, phagocytosis, and intracellular motility of
lipid vesicles. Because of their importance in cell life, actin filaments are widely studied and
modelling techniques are often employed. Here we present the approaches adopted in literature,
highlighting their advantages and their limitations and finally we explain why we believe BlenX

a good tool for modelling this kind of protein.

The first modelling attempts are based on ODEs. As previously explained ODE-based
approaches define all the complexes involved in the system with different variables. In the case
of actin this limits the approach because filaments can assume a finite but really huge number
of arrangements, therefore it is necessary to introduce strong approximations [88, 19, 77] in
order to reduce the number of necessary variables. However ODE-based techniques can provide
useful information and abstractions, even if their application to represent the low-level dynamics
underlying the formation and evolution of actin filaments is usually quite difficult and sometimes
not feasible.

Better results can be obtained by adopting methods which introduce species for representing
the possible conformations of the actin monomers and polymerization reactions for composing
them in complexes. These kinds of models, requiring only the definition of the complexes
bricks, avoid to list all the possible arrangements that actin filaments can assume. Preliminary
attempts to use these approaches are in [41, 73] where the authors define ad hoc programs
implementing the Gillespie algorithm to perform simulations. The limitation in this case is the
absence of distinction between the model and the simulator. This makes it impossible to reuse
the work done for other purposes (for example for performing simulations of different models)
and moreover makes it difficult to check for the correctness of the model implementation.

In [17] the authors introduce a clear distinction among model and simulator. They define
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a model of actin polymerization in stochastic π-calculus [95] and simulate it through the SPiM
simulator [90]. This approach has numerous advantages. The process calculi paradigm [98] allows
indeed applying the metaphor of autonomous entities that are interacting with each other in
order to build complex structures. Moreover, models can be written and modified without acting
on the simulator implementation and the correctness of the simulator has to be verified only once
against the semantics of the considered process calculus and not against each written model.
The work of [17] handles the concept of complex, but complexes generated during simulation are
not explicitly listed in the output of the simulation. Actin structures can be extracted from the
output using the geometric plotting, but since the information used for the plotting relies on the
coordinates associated to processes, there are cases in which the interpretation is ambiguous. In
these cases it is not possible, for example, to retrieve the time-course of specific actin structures.

Actin is a good example of a class of problems that are effectively modelled with BlenX. In
fact the language, as the previous approach, makes a clear distinction between the simulator
and the model definition and is based on the process calculi metaphor; moreover some language
characteristics make it possible to overcome the aforementioned limitations. The expressivity
and the ductility of approaches like BlenX is paid in terms of simulation performance. For
example stochastic simulation approaches are significantly slower then deterministic one (such
as ODEs); moreover, in the case of ad hoc programs defined for describing models it is possible
to introduce specific optimization and tricks that are not applicable to the general case. Hence
we have to deal with a trade off between expressivity and performance.

Other rule-based approaches (e.g. [30]) are also candidate for modelling actin polymerization
processes, since in general can be used to model self-assembling systems [28]. In [64], for example,
a rule-based model of genetic regulation (with growing DNA and RNA strands and moving
ribosomes) that avoids the combinatorial state-explosion is presented.

4.1 Model Definition

As explained, modelling actin molecules is a hard challenge. In this work we do not aim at
defining a detailed model, our intention is to provide an example as simple as possible which
makes clear the application of the analysis presented in this thesis. This model is a simplification
of those available in [1] which implement the features of the SPiM [90] models presented in [17].

Here we focus on the actin capability to polymerize and form long filaments. Therefore we
can take inspiration from the model presented in Section 3.4.1, keeping in mind that there are
some new features to implement:

1. The first action of actin monomers is an activation process which enables their polymer-
ization capability;

2. Actin monomers can generate a filament without a seed molecule;

3. Filaments can grow at both ends;

4. Filaments can lose monomers from their tips.

The only box involved in this model is the box A which represents the actin monomer. It has
two interfaces which we refer as b (barbed) and p (pointed). We omit to associate rates with
interfaces because they are not used for intra-communications. In the initial state interfaces
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Figure 4.1 – Actin box transitions with possible binding states of the interfaces. Arrows without
rate are associated with ∞.

are associated with PI and BI , respectively. For the sake of clearness sorts are associated
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with meaningful names. In this case PI stays for Pointed Inactive and BI for Barbed Inactive.
The capabilities of an interface depend on the binding state of the other, for this reason we
associate b with sorts recalling the state of p and vice versa. Beyond PI , the barbed interface
can associate with PF (Pointed Free), and PB (Pointed Bound); for the pointed interface we
have the symmetric sorts BF (Barbed Free), and BB (Barbed Bound). The following list contains
all the sort binding and unbinding capabilities different from zero: αb(PF ,BF ), αb(PF ,BB),
αb(PB ,BF ), αu(PF ,BF ), αu(PF ,BB), αu(PB ,BF ). We associate all of them with the same
rate r ∈ R. This choice is obviously a simplification but keeps the model simpler and still suitable
to present an analysis which does not investigate quantitative aspects. From the capability list
it emerges that all the sorts can be involved in binding and unbinding actions with the exception
of PI and BI .

The internal program is made of three processes joined by means of the parallel operator.
The first process turns the monomer in its active state and then starts a copy of the replications
defined in the other two processes. The first replication (POINTED REP), depending on the binding
state of the interface b, modifies the sort of the interface p; the second replication (BARBED REP)
changes the sort of b depending on the binding state of p.

POINT REP ,P ∗pr?−.
〈p,⊗〉ch(∞, b,PB).
〈p,⊙〉ch(∞, b,PF ).
pr !−

BARBED REP ,P ∗br?−.
〈b,⊗〉ch(∞, p,BB).
〈b,⊙〉ch(∞, p,BF ).
br !−

A ,B (p, BI )(b, PI )
[ ch(r, b,PF ).ch(∞, p,BF ).br !−.pr !−
| POINT REP

| BARBED REP ]

The goal of the internal program is to keep the sort of an interface updated in such a way that
it reflects the binding state of the other. Therefore, when binding or unbinding events occur,
it starts a sequence of immediate actions in order to keep properly updated the sorts. The
updating protocol is supported by immediate communications on channels br and pr , therefore
we have δ(br) = δ(pr) = ∞.

We now refer to Figure 4.1 to understand how the state of a box A can possibly evolve during
a simulation. Each box is associated with two labels. One is applied on the bottom-right and
altogether identifies the box state with the interface binding states; the other is above the box
and only refers the state of the box, this implies that the same identifier can be associated
with more configurations (e.g. G, F and H are associated with the same box state B6). The
initial configuration of A is labelled with A. In this configuration the only active action is
ch(r, b,PF ). It starts the activation process of the monomer which, with two change actions
and two communications, modifies the sort of b to BF , that of p to PF , and starts a copy of
the processes guarded by the input actions br?− and pr?−. In configuration F the monomer
is free (i.e. not bound to other actin molecules), it is in active form and cannot perform any
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Figure 4.2 – Filament of actin boxes.

internal action; it waits for a binding which can possibly occur on both its interfaces. If the
binding involves the barbed interface the monomer moves into configuration G, otherwise into
configuration H. The possible evolutions from G and H are symmetric with respect to the
interfaces b and p, therefore we only follow the behaviour of the monomer in configuration G.
In this configuration an immediate action is active: once executed the sort associated with the
barbed interface changes from BF to BB . The monomer can leave the entered configuration
K for two reasons: the just formed link breaks or the pointed interface gets bound. In the
first case both the interfaces are free and with a sequence of immediate actions, going through
configurations I and E, the monomer goes back to F . In the second case the monomer enters
the vanishing configuration M . Here the internal program recognizes the creation of the new
binding and modifies the sort of b into PB moving the monomer in configuration O. Since
both interfaces are bound, the internal program is blocked until one of them becomes free. The
breaking of the left and the right bindings lead to symmetric evolutions with respect to the two
interfaces, therefore we only follow the unbinding involving the barbed interface. In this case the
monomer enters the vanishing configuration P and through two immediate actions goes back to
state K, where the sort associated with the interfaces are coherent with their binding state: p
remains associated with BB and b changes its sort into PF .

So far we have seen how the internal program respects the following constraint: if a monomer
is in a tangible state its interface p is associated with a sort representing the binding state of b,
and vice versa (with the exception of the state A where the sorts are PI and BI ). Here, with the
example of Figure 4.2, we show the binding and unbinding actions that this behaviour enables.
Keeping in consideration the sort capabilities, the filament can add and lose monomers from
both its tips: in fact boxes labelled with L and K can equally break their links or get bound to
the free monomer F . Note that the filament cannot close into a ring and break in the middle
because the pair of sorts (BB , PB) does not have binding and unbinding capabilities.

Configurations of Figure 4.1 can be partitioned in vanishing and tangible. Vanishing con-
figurations, those capable of performing immediate actions, are the majority (fourteen over
nineteen). They are uninformative intermediate steps necessary to properly update the sorts of
the interfaces when they are involved in binding or unbinding events. Despite being uninfor-
mative these configurations must be computed and this considerably slows down the simulation
of a system populated with A boxes. In the following chapters we show how apply our analysis
in order to reduce the number of computed vanishing configurations. The system we take into
consideration is S = (L(A1 ‖ . . . ‖ An), ∅, ∅), which represents n free and inactive actin monomers
floating in the same solution.
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Chapter 5

Transition System of the Boxes

In this chapter we focus our attention on boxes. We are interested in the computation of the
transition system of the boxes of the system S, which we refer as ΦS

Box
. The state space of ΦS

Box

is the set of boxes which appear during all the possible evolutions of S. The relation of ΦS
Box

relates two boxes, a condition C, an action a, and a rate r if the first box, in the case C is
verified, can perform the action a and transforms with rate r into the second box.

In section 5.1 we define ΦS
Box

by introducing a method for its computation. The state space
of ΦS

Box
is obtained by projecting the boxes from the elements of the state space of ΦS . The

relation of ΦS
Box

is computed by observing how a box transforms during the possible evolutions
of S.

In section 5.2 we observe that, with the introduced method, we cannot compute ΦS
Box

if ΦS

is hard or impossible to be computed. For this reason we introduce a new procedure which,
independently of ΦS , generates an over-approximation of ΦS

Box
, which we refer to as Φ̃S

Box
.

In section 5.3 we investigate the cardinality of Φ̃S
Box

/≡b and we ensure its finiteness by
proposing some constraints to the language syntax.

The chapter concludes by applying the generation of the transition system of the boxes to
the actin case study.

5.1 Transition System of the Boxes of a System

We introduce and prove some properties of the transitions involving BlenX systems. The first
results are related with the notion of sent names. The sent names of a system S are an over-
approximation of the channel names sent by boxes during the possible evolutions of S.

Definition 5.1.1 The set of sent names of a system S = (B,E, ξ) is obtained through the union
of the sets sn(B)∪

⋃

I[P ]◮rB′∈E sn(B′), where sn(B) is defined in Table 5.1. We refer to the set
of sent names of S as sn(S).

The following lemma describes how the set of sent names of a box changes when the box is
involved in a transition.

Lemma 5.1.2 Let I1[P1 ]γ be a well-formed box. If I1[P1 ]γ
C,a
−−→r I2[P2 ]γ, then one of the fol-

lowing holds:

• if a ∈ {S!m,n!m} then m ∈ sn(I1[P1 ]) and sn(I2[P2 ]) ⊆ sn(I1[P1 ]),
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sn(I[P ]) = sn(P ) \ sub(I)

sn(nil) = ∅

sn(B0 ‖ B1) = sn(B0) ∪ sn(B1)

sn(P0 |P1) = sn(P0) ∪ sn(P1)

sn(M0 +M1) = sn(M0) ∪ sn(M1)

sn(〈C〉M) = sn(M)

sn(∗π.P ) = sn(π.P )

sn(π.P ) = sn(π) ∪ (sn(P ) \ bn(π))

sn(π) =

{

{m} if π = n!m
∅ otherwise

Table 5.1 – Definition of sn for bio-processes. The function goes through the structure of the
bio-process collecting the free names sent by output actions.

• if a ∈ {S?m,n?m} then sn(I2[P2 ]) ⊆ sn(I1[P1 ]) ∪ {m},

• otherwise sn(I2[P2 ]) ⊆ sn(I1[P1 ]).

Sketch. By induction over the length of the derivation of I1[P1 ]
C,a
−−→r I2[P2 ].

�

Exploiting the result of the previous lemma, we lift the result from boxes to systems.

Lemma 5.1.3 Let S1 be a well-formed system. If S1
l
−→r S2, then one of the following holds:

• if l = (γ, T !n) then n ∈ sn(S1) and sn(S2) ⊆ sn(S1),

• if l = (γ, T?n) then sn(S2) ⊆ sn(S1) ∪ {n},

• otherwise sn(S2) ⊆ sn(S1).

Sketch. By induction on the length of the derivation of S1
l
−→r S2 exploiting the result of

Lemma 5.1.2.

�

This chain of results regarding the properties of sent names ends with the following corollary
which states that a system, during its evolution, cannot generate new sent names.

Corollary 5.1.4 Let S be a well-formed system. If S′ ∈ ds(S), then sn(S′) ⊆ sn(S).

Sketch. By induction on the number of transitions for obtaining S1 starting from S and exploiting
the result of Lemma 5.1.3.

�
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Hereafter we use the function boxCh. It identifies boxes which change state in the pair of
systems passed as arguments. The function also identifies boxes only present in one of the two
systems. It uses the function get whose behaviour is described in Definition 3.3.3.

Definition 5.1.5 The function boxCh : S ×S 7→ P({⊥}∪B×{⊥}∪B), given a pair of systems
S and S′, returns a set A such that (get(γ, S), get(γ, S′)) belongs to A iff get(γ, S) 6= get(γ, S′).

Note that the boxes present in S and not in S′ are represented by an element of the form
(I[P ]γ ,⊥), and those present in S′ but not in S with one of the form (⊥, I[P ]γ).

Lemma 5.1.6 shows how boxes change state depending on the kind of transition they are
involved in. Point 1 considers transitions caused by the application of an event, a binding or
an unbinding. In the case of the application of an event, a box is replaced by boxes with fresh
labels. Therefore no boxes change state but some of them are removed and some inserted. This
implies that the elements of boxCh(S, S′) have form (⊥, I[P ]γ) or (I[P ]γ ,⊥). In the case of
binding or unbinding, boxes remain unchanged, therefore boxCh(S, S′) = ∅.

Point 2 states that if a transition is labelled with τ and involves exactly one box then such a
box performs a change action or an intra-communication with the same rate r of the transition.
Moreover, this action is associated with a condition evaluating to true with respect to the label
of the involved box and the environment of the system.

Point 3 tells that if a transition changes the state of two boxes they are involved in an inter-
communication. This implies that they perform complementary input and output actions over
interfaces with sorts having positive communication capability. More precisely, the communica-
tion capability is exactly r, the rate at which the transition takes place. Also in this case the
actions are associated with conditions which evaluate to true with respect to the labels of the
involved boxes and the environment of S.

Point 4 considers the case of transitions caused by outputs over an interface. The label of
the transition stores the label γ of the box involved in the action, the sort T of the interface
involved in the output and the sent channel name m. Note that m belongs to the sent names of
S. Point 5 contemplates the case of transitions caused by an input over an interface.

Finally, point 6 considers transitions highlighting the capability of the box γ to perform a
binding or an unbinding on the interface with sort T . No boxes change state, thus boxCh(S, S′) =
∅.

Lemma 5.1.6 Let S = (B,E, ξ) be a well formed system. If S
l
−→r S

′, then one of the following
holds:

1. l = τ and ∄(I[P ]γ , I
′[P ′ ]γ) : (I[P ]γ , I

′[P ′ ]γ) ∈ boxCh(S, S′).

2. l = τ , boxCh(S, S′) = {(I[P ]γ , I
′[P ′ ]γ)} and I[P ]γ

C,a
−−→r I

′[P ′ ]γ with a ∈ {τ, (T, U)} and
*C+γ,ξ = true.

3. l = τ , boxCh(S, S′) = {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1), (I2[P2 ]γ2 , I

′
2[P

′
2 ]γ2)} and Ii[Pi ]γi

Ci,ai−−−→0 I
′
i[P

′
i ]γi

with *Ci+γ,ξ = true for i ∈ [1, 2] and {a1, a2} = {T !n,U?n} with αc(T, U) = r and
n ∈ sn(S).

4. l = (γ, T !n), boxCh(S, S′) = {(I[P ]γ , I
′[P ′ ]γ)} and I[P ]γ

C,T !n
−−−→r I

′[P ′ ]γ with *C+γ,ξ =
true and n ∈ sn(S).
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5. l = (γ, T?n), boxCh(S, S′) = {(I[P ]γ , I
′[P ′ ]γ)} and I[P ]γ

C,T?n
−−−−→r I

′[P ′ ]γ with *C+γ,ξ =
true.

6. l = (γ, T ) and boxCh(S, S′) = ∅

Sketch. By induction on the length of the derivation tree of S
l
−→r S

′ and exploiting the result
concerning sent names of Lemma 5.1.2.

�

Here we lift the result of the previous lemma to the relation −→ . The following corollary
shows that in the case of transitions defined by this relation, if some boxes change state there
are exactly one or two.

Corollary 5.1.7 Let S be a well-formed system. If S−→r S
′ and ∃γ1 : ⊥ 6= get(γ1, S) 6=

get(γ1, S
′) 6= ⊥, then the cardinality of boxCh(S, S′) is either one or two. More precisely it

is equal to {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1)} or {(I1[P1 ]γ1 , I

′
1[P

′
1 ]γ1), (I2[P2 ]γ2 , I

′
2[P

′
2 ]γ2)}.

Proof. The proof is based on the observation that, by definition of −→ , if S−→r S
′ then S

τ
−→r S

′.
Thus, looking among the cases of Lemma 5.1.6, we conclude that boxCh(S, S′) either contains
exactly one or two elements and that these elements are pairs of boxes. Observing that one of
the pairs is (I1[P1 ]γ1 , I

′
1[P

′
1 ]γ1), given that if ∃γ1 : ⊥ 6= get(γ1, S) 6= get(γ1, S

′) 6= ⊥ then, by
definition of boxCh, it holds that (I1[P1 ]γ1 , I

′
1[P

′
1 ]γ1) ∈ boxCh(S, S′).

�

With Corollary 5.1.8, we show that, if two systems S and S′ are involved in a transition and
they differ because of one box, this box is involved in a τ -transition or a change action.

Corollary 5.1.8 Given S = (B,E, ξ) a well-formed system, if boxCh(S, S′) = {(I[P ]γ , I
′[P ′ ]γ)}

and S−→r S
′ then I[P ]γ

C,a
−−→r I

′[P ′ ]γ with a ∈ {τ, (T, U)} and *C+γ,ξ = true.

Proof. Observing that, by definition of −→ , if S−→r S
′ then S

τ
−→r S

′, we conclude by Lemma 5.1.6.

�

Corollary 5.1.9 states that if the system S transforms into S′, and they differ because of two
boxes, these boxes are involved in the same inter-communication.

Corollary 5.1.9 Let S = (B,E, ξ) if boxCh(S, S′) = {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1), (I2[P2 ]γ2 , I

′
2[P

′
2 ]γ2)}

and S−→r S
′ then Ii[Pi ]γi

Ci,ai−−−→0 I
′
i[P

′
i ]γi with *Ci+γ,ξ = true for i ∈ [1, 2] and {a1, a2} =

{T !n,U?n} with αc(T, U) = r and n ∈ sn(S).

Proof. Observing that, by definition of −→ , if S−→r S
′ then S

τ
−→r S

′, we conclude by Lemma 5.1.6.

�

We now define two relations that given a system So and a label γ, project all the transitions
performed by box labelled with γ during the possible evolutions of So. The first one is −−−→

1,Box
γ, S
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and represents the transitions performed independently by the box labelled with γ, without
synchronizing with other boxes. The second is −−−→

2,Box
γ, S and represents those transitions that,

in order to take place, requires the box labelled with γ to synchronize with another one. Each
element of the first relation stores the following information: the two states I[P ] and I ′[P ′ ] of
the box involved in the transition, the binding condition C that must evaluate to true in order
to perform the transition, the action a ∈ {τ, (T, U)} that causes the transition and a simplified
rate rs. If the transition is immediate then rs is ∞ otherwise it is ∞/ .

Definition 5.1.10 Given a well-formed system So, the relation −−−→
1,Box

γ, So ⊆ Box × {∞,∞/ } ×

Cond ×Acti × Box is defined as the set

{(I[P ], rs, C, a, I
′[P ′ ]) : (B,E, ξ) = S ∈ ds(So)∧

S−→r S
′ ∧

boxCh(S, S′) = {(I[P ]γ , I
′[P ′ ]γ)}∧

I[P ]γ
C,a
−−→r I

′[P ′ ]γ with * C+γ,ξ = true∧
a ∈ {τ, (T, U)}∧
rs = ∞ if r = ∞ and rs = ∞/ if r ∈ R}

If (I[P ], rs, C, a, I
′[P ′ ]) ∈−−−→

1,Box
γ, S we write I[P ]

C,a
−−−→
1,Box

γ, S
rs

I ′[P ′ ].

At this point we prove that −−−→
1,Box

γ, S captures all the transitions that the box labelled with

γ can independently perform.

Lemma 5.1.11 Let So be a well-formd system. If S ∈ ds(S0) and S−→r S
′ and boxCh(S, S′) =

{(I[P ]γ , I
′[P ′ ]γ)} then I[P ]

C,a
−−−→
1,Box

γ, So

rs
I ′[P ′ ] with rs = ∞ if r = ∞ and rs = ∞/ if r ∈ R.

Sketch. We can immediately conclude by Corollary 5.1.8 and by definition of −−−→
1,Box

γ, So .

�

The elements of −−−→
2,Box

γ, S store the same information as those of −−−→
1,Box

γ, S . In this case

a ∈ {T !n, T?n} and the simplified rate is always “?”. It means that we do not know the actual
rate of the transition; it depends on the interacting partner.

Definition 5.1.12 Given a well-formed system So, the relation −−−→
2,Box

γ, So ⊆ Box×{?}×Cond×

Acti × Box is defined as the set

{(I1[P1 ], ?, C1, a1, I
′
1[P

′
1 ]) : (B,E, ξ) = S ∈ ds(So)∧

S−→r S
′ ∧

boxCh(S, S′) = {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1), (I2[P2 ]γ2 , I

′
2[P

′
2 ]γ2)}∧

γ = γ1 ∧

Ii[Pi ]γi
Ci,ai−−−→0 I

′
i[P

′
i ]γi with * Ci+γi,ξ = true∧

{a1, a2} = {T !n,U?n} with αc(T, U) 6= 0}

If (I[P ], rs, C, a, I
′[P ′ ]) ∈−−−→

2,Box
γ, S we write I[P ]

C,a
−−−→
2,Box

γ, S
rs

I ′[P ′ ].
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Thanks to Lemma 5.1.13, we prove that this relation captures all the transitions that the
box labelled with γ can perform synchronizing with other boxes.

Lemma 5.1.13 Let So be a well-formed system. If S ∈ ds(S0) and S−→r S
′ and boxCh(S, S′)

is equal to the set {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1), (I2[P2 ]γ2 , I

′
2[P

′
2 ]γ2)} then Ii[Pi ]γi

Ci,ai−−−→
2,Box

γi, So

? I ′[P ′ ] for

i ∈ [1, 2]. Moreover it holds that {a1, a2} = {T !n,U?n} and αc(T, U) 6= 0.

Sketch. We can immediately conclude by Corollary 5.1.9 and by definition of −−−→
2,Box

γ, So .

�

Through the union of −−−→
1,Box

γ, So and −−−→
2,Box

γ, So we obtain a relation that, given a system

So and a label γ, projects all the transitions performed by the box labelled with γ during the
possible evolutions of So.

Definition 5.1.14 Given a well-formed system So, the relation −−→
Box

γ,So ⊆ Box × {∞,∞/ , ?} ×

Cond×Acti×Box is defined as the union of −−−→
1,Box

γ, So and −−−→
2,Box

γ, So . If (I[P ], rs, C, a, I
′[P ′ ]) ∈

−−→
Box

γ,S we write I[P ]
C,a
−−→
Box

γ, S
rs I ′[P ′ ].

In the following lemma we prove that −−→
Box

γ,So represents all the transitions that the box

labelled with γ performs during the possible evolutions of So.

Lemma 5.1.15 Let So be a well-formed system. If S ∈ ds(S0), S−→r S
′, and (I1[P1 ]γ1 , I

′[P ′ ]γ) ∈
boxCh(S, S′) then one of the followings holds:

1. boxCh(S, S′) = {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1)} and I1[P1 ]

C,a
−−→
Box

γ1, So
rs I ′1[P

′
1 ] with rs = ∞ if r = ∞

and rs = ∞/ if r ∈ R.

2. boxCh(S, S′) = {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1), (I2[P2 ]γ2 , I

′
2[P

′
2 ]γ2)} and Ii[Pi ]γi

Ci,ai−−−→
Box

γi, So

? I ′i[P
′
i ]

for i ∈ [1, 2] with {a1, a2} = {T !n,U?n} and αc(T, U) 6= 0.

Proof. By Corollary 5.1.7 it follows that boxCh(S, S′) is either equal to {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1)} or

to {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1), (I2[P2 ]γ2 , I

′
2[P

′
2 ]γ2)}. In the first case we can conclude by Lemma 5.1.11,

in the second by Lemma 5.1.13.

�

Now we introduce the set collecting all the states assumable by the box labelled with γ
during the possible evolutions of a system So.

Definition 5.1.16 The derivatives of the box labelled with γ with respect to a system So is
defined as

ds(γ, So) = {I[P ] : ∃S ∈ ds(So) ∧ get(γ, S) = I[P ]γ}

The set Φγ,So

Box
and the relation −−→

Box

γ,So define a transition system describing how the box

labelled with γ evolves inside the system So.
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Definition 5.1.17 The transition system Φγ,So

Box
generated by the box labelled with γ during the

evolution of the system So is defined as

Φγ,So

Box
= (ds(γ, So),−−→

Box

γ,So)

Generating the object Φγ,So

Box
for each γ appearing in So, we have the information to define a

transition system describing how the boxes of So can evolve.

Definition 5.1.18 The transition system of the boxes of the system So is defined as

ΦSo
Box

=
⋃

γ∈Label

Φγ,So

Box

In the following theorem we prove that the state space of ΦSo
Box

contains all the boxes which
can appear in the derivatives of So. Moreover we show that if a box can perform a state change
in the context of a derivative of So, it can do the same in ΦSo

Box
.

Theorem 5.1.19 Let So be a well-formed system. Given ΦSo
Box

= (A,R), ∀S ∈ ds(So):

1. if get(γ, S) = I[P ]γ then I[P ]γ ∈ A.

2. if S−→r S
′ and (I1[P1 ]γ1 , I

′
1[P

′
1 ]γ1) ∈ boxCh(S, S′) then one of the followings holds:

(a) boxCh(S, S′) = {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1)} and (I1[P1 ], C, a, rs, I

′
1[P

′
1 ]) ∈ R with rs = ∞

if r = ∞ and rs = ∞/ if r ∈ R.

(b) boxCh(S, S′) = {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1), (I2[P2 ]γ2 , I

′
2[P

′
2 ]γ2)}, (Ii[Pi ], C, a, ?, I

′
i[P

′
i ]) ∈

R with {a1, a2} = {T !n,U?n} and αc(T, U) 6= 0.

Proof. We immediately prove point 1 by observing that A =
⋃

γ∈Label{I[P ] : ∃S ∈ ds(So) and
get(γ, S) = I[P ]γ}. As far as point 2 is concerned, we refer to Lemma 5.1.15 and we get the
desired result observing that −−→

Box

γi,So ⊆ R for i ∈ [1, 2].

�

5.2 Over-approximating the transition system of the Boxes

In this section we introduce an over-approximation of ΦS
Box

. Its definition requires some prelimi-
nary notions. Among them we have ΦBox, a transition system describing the state changes BlenX
boxes can potentially perform, without regard to the system S in which they are confined.

Definition 5.2.1 The transition system of the boxes is defined as

ΦBox = (Box,−−→
Box

)

where −−→
Box

⊆ Box×{∞,∞/ , ?}×Cond×Acti×Box is the largest relation satisfying the followings:

1. If (I[P ], rs, C, a, I
′[P ′ ]) ∈ −−→

Box

then I[P ]γ
C,a
−−→r I

′[P ′ ]γ with C 6= false, a /∈ {n!t, n?t}

and:
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(a) if r = ∞ then rs = ∞.

(b) if r ∈ R and a /∈ {T !n, T?n} then rs = ∞/ .

(c) if a ∈ {T !n, T?n} then r = ?.

2. Let I[P ] be a well-formed box. If I[P ]
true,a
−−−→∞ I ′[P ′ ] then ∄I ′′[P ′′ ] : (I[P ],∞/ , C, a, I ′′[P ′′ ]) ∈

−−→
Box

.

The definition of −−→
Box

is based on the rules of Table 3.4. For each transition the elements

of the relation store: the involved boxes, the associated condition C, the action causing the
transition and its simplified rate. The relation −−→

Box

only stores element with condition different

from false. In this context we cannot require the evaluation of C to be true because we miss the
information about the binding state of the box interfaces, therefore C is not always evaluable.
We take into account the priority mechanism of BlenX that prevents the boxes involved in
immediate actions performing transitions associated with simplified rate ∞/ . Observe that for
each well-formed system S, the transition system ΦBox is a valid over-approximation of ΦS

Box
. We

can now cut elements from ΦBox in order to make it specific to a given system S. We obtain
this result by acting on the channel names received by input actions. In the transition system
ΦBox, input over box interfaces can receive any channel name. Now we introduce some notions
in order to define a transition system which allows boxes to only receive names sent in the BlenX
system they are part of.

The set of proper derivatives of I1[P1 ] with respect to the system S is made of the box
configurations we can reach through chains of transitions which start from I1[P1 ]. When a box
performs an input action we require the received channel name to belong to sn(S).

Definition 5.2.2 Let I1[P1 ] and I2[P2 ] be well formed boxes. I2[P2 ] is a (one-step) proper

derivative of I1[P1 ] with respect to the system S if it holds that I1[P1 ]
C,a
−−→
Box

r I2[P2 ] and (a =

T?m) implies (m ∈ sn(S)). More generally if

I1[P1 ]
C1,a1
−−−→
Box

r1 . . .
Cn−1,an−1
−−−−−−−→

Box
rn−1 In[Pn ]

and (ai = T?m) implies (m ∈ sn(S)) for i ∈ [1, n) then In[Pn ] is a proper derivative of I1[P1 ]
with respect to the system S. Finally, the set pds(I[P ], S) of the proper derivatives of I[P ]
with respect to the system S is defined as the set containing I[P ] and all the boxes I ′[P ′ ] such
that I ′[P ′ ] is a proper derivative of I[P ] with respect to the system S.

The set of derivatives of I[P ] with respect to S is obtained closing the set pds(I[P ], S) by
α-equivalence.

Definition 5.2.3 Let I ′′[P ′′ ] and I[P ] be well-formed boxes. I ′′[P ′′ ] is a derivative of I[P ]
with respect to S if exists I ′[P ′ ] ∈ pds(I[P ], S) such that I ′[P ′ ] = I ′′[P ′′ ]. The set ds(I[P ], S)
of the derivatives of I[P ] respect to the system S is defined as the set that contains all the I ′[P ′ ]
such that I ′[P ′ ] = I[P ] and the derivatives of I[P ] respect to the system S.

Here we define the relation −−→
Box

I[P ],S which, exploiting the set ds(I[P ], S), cuts from the

relation −−→
Box

some transitions that I[P ] cannot perform inside the system S.
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Definition 5.2.4 Let I[P ] be a well-formed box, and S a well-formed system. The relation
−−→
Box

I[P ],S is the largest subset of −−→
Box

such that if the element (I1[P1 ], rs, C, a, I2[P2 ]) belongs

to −−→
Box

I[P ],S then I1[P1 ], I2[P2 ] belong to ds(I[P ], S).

Finally we generate the transition system describing the over-approximation of the possible
evolutions of a box I[P ] in the context of the system S.

Definition 5.2.5 Let I[P ] be a box. The over-approximation of the transitions that I[P ] can
perform with respect to the system S is the transition system

Φ̃
I[P ],S
Box

= (ds(I[P ], S),−−→
Box

I[P ],S)

Now we exploit Φ̃
I[P ],S
Box

in order to obtain an over-approximation of ΦS
Box

. For each box

of I[P ] appearing in the bio-process of S we compute Φ̃
I[P ],S
Box

. These sets contain all the
transitions that the boxes of S can perform with the exception of those caused by the application

of events. In fact we build Φ̃
I[P ],S
Box

through the rules of Table 3.4 which do not contemplate
application of events to boxes. In order to add the missing boxes with the related transitions,

given S = (B, {I1[P1 ] ◮r1 B1, . . . , In[Pn ] ◮rn Bn}, ξ), we extend the computation of Φ̃
I[P ],S
Box

to
each box I[P ] appearing in B1, . . . , Bn. We now define the function getBox , which extracts from
S the boxes whose transition system is necessary in order to compute the over-approximation
of ΦS

Box
.

Definition 5.2.6 The function getBox : B → P(B), given a bio-process, returns the set of boxes
which appears in its definition. Given a system S = (B,E, ξ) we lift this function to systems as
follows:

getBox (S) = getBox (B) ∪
⋃

I[P ]◮rB′∈E

getBox (B′)

Now we can define the over-approximation of ΦS
Box

as follows.

Definition 5.2.7 The over-approximated transition system of the boxes of a well-formed system
S is

Φ̃S
Box

=
⋃

I[P ]∈getBox(S)

Φ̃
I[P ],S
Box

We now present some results necessary to prove that Φ̃S
Box

is a valid over-approximation
of ΦS

Box
. We start proving some properties regarding derivation trees generated by the BlenX

semantics. In the following lemma we show that if a box performs an action with rate dif-
ferent from zero, then this action is neither an input nor an output (note that it can be a
synchronization).

Lemma 5.2.8 Let I[P ] be a well-formed box. If I[P ]γ
C,a
−−→r I

′[P ′ ]γ and r 6= 0 then a /∈
{k!t, k?t}.

Sketch. By induction on the length of the derivation tree of I[P ]γ
C,a
−−→r I

′[P ′ ]γ (which is
obtained applying rules of Table 3.4).
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�

Here we show that if a box can perform an immediate action associated with condition true

then all the systems S = (B,E, ξ), such that this box appears in B, are vanishing.

Lemma 5.2.9 Let I[P ] be a well-formed box. If I[P ]γ
true,a
−−−→∞ I ′[P ′ ]γ then ∀S ∈ S, if exists

γ′ ∈ Label s.t. get(γ, S) = I[P ]γ′ then S−→∞ S′ for some S′ ∈ S.

Proof. By Lemma 5.2.8 a /∈ {k!t, k?t}. Thus, depending on the action a, we can apply either
rules r11 or rule r12 (see Table 3.6) and obtain (I1[P1 ]γ , E, ξ)

τ
−→r (I2[P2 ]γ , E, ξ′). Successively

we can add context to I1[P1 ]γ and I2[P2 ]γ with multiple applications of rules r18-l and r18-r
(see Table 3.8). Note that we do not impose any constraints on E, ξ, γ, and the context added
to I1[P1 ]γ , therefore we can deduce an immediate τ -transition for whatever system containing
the box I1[P1 ], and the Lemma follows.

�

In the next lemma we show that if S transforms into S′, all the boxes of S′ either appear in
S or are the result of a transition having as origin a box of S.

Lemma 5.2.10 Let S be a well-formed system and γ a box label. If S
l
−→r S

′ and get(γ, S′) =
I ′[P ′ ]γ then one of the following holds:

1. if l = (γ′, T !n) then

(a) if γ 6= γ′ then I ′[P ′ ] ∈ getBox (S)

(b) if γ = γ′ then get(γ, S) = I[P ]γ and I[P ]γ
C,T !n
−−−→0 I

′[P ′ ]γ with C 6= false and
n ∈ sn(S).

2. if l = (γ′, T?n) then

(a) if γ 6= γ′ then I ′[P ′ ] ∈ getBox (S)

(b) if γ = γ′ then get(γ, S) = I[P ]γ and I[P ]γ
C,T?n
−−−−→0 I

′[P ′ ]γ with C 6= false.

3. if l = τ then

(a) I ′[P ′ ] ∈ getBox (S) or

(b) get(γ, S) = I[P ]γ and I[P ]γ
C,a
−−→r′ I

′[P ′ ]γ with C 6= false, a /∈ {n?t, n!t}, (a ∈
{T !n, T?n} ⇒ n ∈ sn(S) ∧ r′ = 0) and (a /∈ {T !n, T?n} ⇒ r′ = r).

4. if l = (γ′, T ) then I ′[P ′ ] ∈ getBox (S).

Sketch. By induction on the length of the derivation tree of S
l
−→r S

′ and exploiting the result
concerning the sent names of Lemma 5.1.3.

�

Here we lift the result of the previous lemma to the multi-relation −→ .
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Lemma 5.2.11 Let S be a well-formed system and γ a box label. If S−→r S
′ and get(γ, S′) =

I ′[P ′ ]γ then one of the following holds:

1. I ′[P ′ ] ∈ getBox (S).

2. get(γ, S) = I[P ]γ and I[P ]
C,a
−−→
Box

rs I
′[P ′ ] and (a ∈ {T !n, T?n} ⇒ n ∈ sn(S)).

Proof. By definition of −→ , S−→r S
′ implies that S

τ
−→r S

′ which, by Lemma 5.2.10, implies one
of the following:

1. I ′[P ′ ] ∈ getBox (S) which proves the result;

2. get(γ, S) = I[P ]γ and I[P ]γ
C,a
−−→r′ I

′[P ′ ]γ with C 6= false and a /∈ {n?t, n!t} and (a ∈
{T !n, T?n} ⇒ n ∈ sn(S) ∧ r′ = 0) and (a /∈ {T !n, T?n} ⇒ r′ = r).

In the second case we have two sub-cases:

r = ∞ : by definition of −−→
Box

we can conclude:

1. If a ∈ {T !n, T?n} then I[P ]
C,a
−−→
Box

? I
′[P ′ ] with n ∈ sn(S).

2. If a /∈ {T !n, T?n} then I[P ]
C,a
−−→
Box

∞ I ′[P ′ ].

r ∈ R : if a ∈ {T !n, T?n} we can conclude as in the case r = ∞.

If a /∈ {T !n, T?n} we have to verify that ∄I ′′[P ′′ ] : I[P ]γ
true,a′
−−−−→∞ I ′′[P ′′ ]γ . In fact such a

transition, by definition of −−→
Box

, would make the existence of I[P ]
C,a
−−→
Box

∞/ I ′[P ′ ] impossible.

We prove this assuming by contradiction that the transition I[P ]γ
true,a′
−−−−→∞ I ′′[P ′′ ]γ exists.

This, by Lemma 5.2.9, implies that ∃S′′ : S−→∞ S′′ which is logically absurd because, by
definition of −→ , the existence of S−→r S

′ would be impossible. Therefore, given that

∄I ′′[P ′′ ] : I[P ]γ
true,a′
−−−−→∞ I ′′[P ′′ ]γ , we can conclude with I[P ]

C,a
−−→
Box

∞/ I ′[P ′ ].

�

Here we state that all the boxes of the derivatives of a system S are derivative of a box
belonging to S.

Lemma 5.2.12 Let S be a well-formed system and γ a box label. If S′ ∈ ds(S) and get(γ, S′) =
I ′[P ′ ]γ then ∃I[P ] ∈ getBox (S) : I ′[P ′ ] ∈ ds(I[P ], S).

Proof. By induction on the number of transitions necessary to obtain S′ starting from S.

base case: in this case S′ = S, therefore if get(γ, S) = I ′[P ′ ]γ then I ′[P ′ ] ∈ getBox (S) by
definition of the function getBox .

step case: in this case S−→r1 . . . −→rn Sn−→rn+1 S
′. If Sn−→rn+1 S

′ then by Lemma 5.2.11 we
have two cases:
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1. I ′[P ′ ] ∈ getBox (Sn): by definition of getBox either ∃γ′ : get(γ′, Sn) = I ′[P ′ ]γ or,
given Sn = (Bn, E, ξn), that ∃I[P ] ◮r B ∈ E : I ′[P ′ ] ∈ getBox (B). In the first
case we immediately conclude by induction hypothesis. In the second case we note
that transitions between systems do not affect the set of events. This implies that S
is associated with the same event set E of S′ and thus we can conclude that I ′[P ′ ]
also belongs to getBox (S) which lets us conclude with the desired result given that
I ′[P ′ ] ∈ getBox (S) and thus I ′[P ′ ] ∈ ds(I ′[P ′ ], S).

2. get(γ, Sn) = In[Pn ]γ and In[Pn ]
C,a
−−→
Box

r I
′[P ′ ] and (a ∈ {T !m,T?m} ⇒ m ∈ sn(Sn)),

and by Corollary 5.1.4 implies (a ∈ {T !m,T?m} ⇒ m ∈ sn(S)): in this case, by

inductive hypothesis, In[Pn ] ∈ ds(I[P ], S). Considering that In[Pn ]
C,a
−−→
Box

r I ′[P ′ ]

and (a ∈ {T !m,T?m} ⇒ m ∈ sn(S)) we can immediately conclude by definition of
the derivatives of I[P ] that I ′[P ′ ] also belongs to ds(I[P ], S).

�

Lemma 5.2.13 states that if we project a box transition from ΦSo
Box

, the same transition can
be deduced with the rules of Table 3.4. Moreover, if the box receives or sends a name, this name
belongs to sn(So).

Lemma 5.2.13 Let So be a well-formed system and I[P ] a well-formed box. If I[P ]
C,a
−−→
Box

γ, So
rs

I ′[P ′ ] then I[P ]
C,a
−−→
Box

rs I
′[P ′ ] and (a ∈ {T !n, T?n} ⇒ n ∈ sn(So)).

Proof. By definition of −−→
Box

γ,So one of the following holds:

(I[P ], rs, C, a, I
′[P ′ ]) ∈ −−−→

1,Box
γ, So: by definition of −−−→

1,Box
γ, So we can easily deduce that:

∃S ∈ ds(So) : S−→r S
′

I[P ]
C,a
−−→r I

′[P ′ ]
*C+∗I 6= false and
a ∈ {τ, (T, U)}
if rs = ∞ then r = ∞, if rs = ∞/ then r ∈ R

If rs = ∞ we have what is necessary to conclude I[P ]
C,a
−−→
Box

∞ I ′[P ′ ]. If r ∈ R we

have to ensure that ∄I ′′[P ′′ ] : I[P ]γ
true,a′
−−−−→∞ I ′′[P ′′ ]γ . In fact such a transition, by

definition of −−→
Box

, would make the existence of I[P ]
C,a
−−→
Box

∞/ I ′[P ′ ] impossible. We prove

this assuming by contradiction that the transition I[P ]γ
true,a′
−−−−→∞ I ′′[P ′′ ]γ exists. This

by Lemma 5.2.9 implies that ∃S′′ : S−→∞ S′′ but this is logically absurd because, by
definition of −→ , the existence of S−→r S

′ would be impossible. Therefore, given that

∄I ′′[P ′′ ] : I[P ]γ
true,a′
−−−−→∞ I ′′[P ′′ ]γ we can conclude with I[P ]

C,a
−−→
Box

∞/ I ′[P ′ ].

(I[P ], rs, C, a, I
′[P ′ ]) ∈ −−−→

2,Box
γ, So: by definition of −−−→

2,Box
γ, So , we can easily deduce that rs = ?

and
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∃S ∈ ds(So) : S−→r S
′

boxCh(S, S′) = {(I1[P1 ]γ1 , I
′
1[P

′
1 ]γ1), (I2[P2 ]γ2 , I

′
2[P

′
2 ]γ2)}

(I[P ]γ , I
′[P ′ ]γ) ∈ boxCh(S, S′)

I[P ]
C,a
−−→0 I

′[P ′ ]
*C+∗I 6= false and
a ∈ {T !n, T?n}

These observations are enough to exploit the result of Corollary 5.1.9 and obtain that
n ∈ sn(S) which, given that S ∈ ds(So), by Lemma 5.1.4, implies that n ∈ sn(So). Now we

have all that is necessary to conclude, by definition of −−→
Box

, that I[P ]
C,a
−−→
Box

? I ′[P ′ ] with

a ∈ {T !n, T?n} and n ∈ sn(So).

�

Finally, we can show that Φ̃So
Box

is an over-approximation of ΦSo
Box

.

Theorem 5.2.14 Given So a well-formed system

ΦSo
Box

⊆ Φ̃So
Box

Proof. We need to show the following

1. I[P ] ∈
⋃

γ∈Label ds(γ, So) ⇒ I[P ] ∈
⋃

I[P ]∈getBox(So)
ds(I[P ], S)

2.
(I[P ], rs, C, a, I

′[P ′ ]) ∈
⋃

γ∈Label −−→
Box

γ,So⇒

(I[P ], rs, C, a, I
′[P ′ ]) ∈

⋃

I[P ]∈getBox(So)
−−→
Box

I[P ],So

In order to show 1 we prove that:

I[P ] ∈ ds(γ, So) ⇒ ∃I ′[P ′ ] ∈ getBox (So) : I[P ] ∈ ds(I ′[P ′ ], So)

This result follows by observing that if I[P ] ∈ ds(γ, So) then ∃S ∈ ds(So) : get(γ, S) =
I[P ]γ . This, by Lemma 5.2.12, implies that ∃I ′[P ′ ] ∈ getBox (So) : I[P ] ∈ ds(I ′[P ′ ], So).

In order to show 2 we prove that:

I[P ]
C,a
−−→
Box

γ, So
r I ′[P ′ ] ⇒ ∃I ′′[P ′′ ] ∈ getBox (So) : I[P ]

C,a
−−→
Box

I′′[P ′′ ], So
r I ′[P ′ ]

I[P ]
C,a
−−→
Box

γ, So
r I ′[P ′ ], by Lemma 5.2.13, implies that I[P ]

C,a
−−→
Box

r I ′[P ′ ] and that (a ∈

{T?n!, T?n?} ⇒ n ∈ sn(So)). In order to conclude we need to show that ∃I ′′[P ′′ ] ∈ getBox (So) :
I[P ] ∈ ds(I ′′[P ′′ ], So) (note that this implies I ′[P ′ ] also belongs to ds(I ′′[P ′′ ], So)). We

get the result observing that I[P ]
C,a
−−→
Box

γ, So
r I ′[P ′ ] implies I[P ] ∈ ds(γ, So) and applying the

result obtained from point 1. At this point we have all that is necessary to conclude that

∃I ′′[P ′′ ] ∈ getBox (So) : I[P ]
C,a
−−→
Box

I′′[P ′′ ], So
r I ′[P ′ ].

�
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5.3 Investigating the Finiteness of the Over-approximation

The objective of this section is to understand when and how we can give a finite representation
of Φ̃So

Box
. We note that Φ̃So

Box
is finite if all the boxes which appear in S0 deadlock after a finite

number of steps. If it is not the case, a box can assume infinite configurations and consequently
the system it belongs to can do the same. A box with such a property must contain at least one
replication and have the capability to spawn it an infinite number of times. Here is an example:

{b, T}[ ∗n?x. n!m. nil | n!m. nil ]

This box whatever the system in which it appears, never deadlocks. In fact, when the active
action n!m interacts with the input operation guarding the replication, we get a new copy of
the process n!m. nil:

{b, T}[ ∗n?x. n!m. nil | n!m. nil | nil ]

Therefore, after each communication over the channel name n, an additional nil process
appears and the box assumes a new configuration. Note that even if we can generate infinite
different configurations, all of them are congruent to the initial state of the box. Therefore, in
order to get a finite representation of the state space of the box, we can quotient it by congruence.

If we lift this operation to Φ̃
I[P ],S
Box

we obtain the following transition system.

Definition 5.3.1 Let I[P ] be a well-formed box and So a well-formed system.

Φ̃
I[P ],S
Box,≡ = (ds(I[P ], S)/≡b,−−−→

Box,≡

I[P ],S)

where

JI1[P1 ]K
C,a

−−−→
Box,≡

I[P ], So

rs
JI2[P2 ]K iff I ′1[P

′
1 ]

C,a
−−→
Box

I[P ], So
rs I ′2[P

′
2 ] and

I1[P1 ] ≡b I
′
1[P

′
1 ] and

I2[P2 ] ≡b I
′
2[P

′
2 ]

We now extend this idea to ΦS and obtain the following:

Definition 5.3.2 Let S be a well-formed system:

Φ̃S
Box,≡ =

⋃

I[P ]∈getBox(S)

Φ̃
I[P ],S
Box,≡

Summing up, the transition system Φ̃S
Box,≡ is a representation of Φ̃S

Box
which can be finite even

if the system S does not deadlock. More precisely, considering that getBox (S) cannot be infinite,

the object Φ̃S
Box,≡ has finite cardinality if the same holds for each Φ̃

I[P ],S
Box,≡ with I[P ] ∈ getBox (S).

We are interested in defining a class of boxes which ensures the finiteness of Φ̃
I[P ],S
Box,≡ , in this way

we can define systems whose Φ̃S
Box,≡ is certainly finite.

In the next lemma we show that Φ̃
I[P ],S
Box,≡ is finitely branched.

Lemma 5.3.3 If ds(I[P ], S)/≡b has finite cardinality then Φ̃
I[P ],S
Box,≡ is a finite object.
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Proof. The proof comes by observing that, under the assumption that ds(I[P ], S)/≡b is finite,
the relation −−−→

Box,≡

I[P ],S cannot have an infinite cardinality. Each element of this relation has the

following form: (JI1[P1 ]K , C, a, rs, JI2[P2 ]K). We define B1, C, A,R,B2 as the union of the first,
second, third, fourth and fifth projection of the elements belonging to −−−→

Box,≡

I[P ],S , respectively.

Showing that these sets are finite let us deduce the finiteness of the relation.
The sets B1 and B2 are finite because they are subsets of ds(I[P ], S)/≡b which, by hypothe-

sis, has finite cardinality. The same holds for R given that it is a subset of {∞,∞/ , ?}. The set C
is finite as well, in fact its elements are the composition, by means of the conjunction operator,
of a finite number of conditions appearing in the congruence classes of ds(I[P ], S)/≡b. The
set A contains elements with the following form: τ , (T, U), T?m and T !m. This elements are
finite because there is a finite set of sorts from which we can choose T and U and because m
belongs to sn(S), which is a finite set as well. With that we can conclude the desired result.

�

From the previous lemma we conclude that the finiteness of Φ̃
I[P ],S
Box,≡ only depends on that of

ds(I[P ], S)/≡b. More precisely, considering that the set of the sets of interfaces which appear

in ds(I[P ], S)/≡b is finite, the finiteness of Φ̃
I[P ],S
Box,≡ depends on the number of configuration

assumable by the internal program P of the box.
In Table 5.2, we propose a modified version of the semantics of Table 3.4. It describes how

the internal program of a box can evolve without considering information which is not relevant
to establish the finiteness of ds(I[P ], S)/≡b (i.e. interface sets, label conditions and rates). In
the following lemma we show the relation between the original semantics and the simplified one.

Lemma 5.3.4 Let I1[P1 ] be a well-formed box. If I1[P1 ]γ
C,a
−−→r I1[P2 ]γ then P1

a′
−→ P2 and one

of the followings holds:

1. a = a′ ∈ {n!m,n?m, τ}

2. a = (T, U) and a′ = τ

3. a = S?m, (b, S) ∈ I and a′ = b?m

4. a = S!m, (b, S) ∈ I and a′ = b!m

Sketch. By induction on the length of the derivation tree of I[P ]γ
C,a
−−→r I1[P1 ]γ .

�

With Corollary 5.3.5 we lift the result of the previous lemma to the relation −−→
Box

.

Corollary 5.3.5 Let I1[P1 ] be a well-formed box. If I1[P1 ]
C,a
−−→
Box

r I2[P2 ] then P1
a′
−→ P2 and

one of the followings holds:

1. a = a′ ∈ {n!m,n?m, τ}

2. a = (T, U) and a′ = τ

3. a = S?m, (b, S) ∈ I and a′ = b?m
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s1
n!m.P

n!m
−−−→ P

s2
n?y. P

n?m
−−−→ P{m/y}

s3
ch(r, a, T ). P

τ
−→ P

π. P
a
−→ P ′

s4
∗π. P

a
−→ ∗ π. P |P ′

P1
n!m
−−−→ P ′

1 P2
n?m
−−−→ P ′

2
s5-l

P1 |P2
τ
−→ P ′

1 |P
′

2

P1
n?m
−−−→ P ′

1 P2
n!t
−−→ P ′

2
s5-r

P1 |P2
τ
−→ P ′

1 |P
′

2

M
a
−→M ′

s6
〈C〉M

a
−→M ′

P
a
−→ P ′

s7-l
P |Q

a
−→ P ′ |Q

Q
a
−→Q′

s7-r
P |Q

a
−→ P |Q′

M
a
−→M ′

s8-l
M +N

a
−→M ′

N
a
−→N ′

s8-r
M +N

a
−→N ′

Table 5.2 – Operational semantics for internal processes.

4. a = S!m, (b, S) ∈ I and a′ = b!m

Proof. By definition of −−→
Box

it follows immediately that I1[P1 ]γ
C,a
−−→r I1[P2 ]γ which, by Corol-

lary 5.3.4 implies the desired P1
a′
−→ P2.

�

In order to define an over-approximation of the states which can be assumed by an internal
program P1 during the evolution of the box I[P1 ], we define the notion of internal derivative of
I[P1 ] with respect to S.

Definition 5.3.6 (Internal derivative of I[P1 ] with respect to S) Given I[P1 ] is a well-
formed box, P2 is a (one-step) internal derivative of I[P1 ] with respect to the system S if
it holds that P1

a
−→ P2 and a ∈ {n!m,n?m} ⇒ n ∈ sub(I) ∧ m ∈ sn(S). More generally if

P1
a1−→ . . .

an−1
−−−→ Pn and ai ∈ {n!m,n?m} ⇒ n ∈ sub(I) ∧m ∈ sn(S) for i ∈ [1, n), then Pn is a

internal derivative of I[P1 ] with respect to S. We regard the set of processes comprising P1 and
the internal derivatives of I[P1 ] with respect to S as ids(I[P1 ],S).

With the next lemma we show that ids(I[P1 ],S) contains all the internal programs of the
box belonging to pds(I[P ], S).

Corollary 5.3.7 Let S be a well-formed system and I[P ] a well-formed box. If I ′[P ′ ] ∈
pds(I[P ], S) then P ′ ∈ ids(I[P ], S).

Sketch. By induction on the number of transitions necessary in order to reach I ′[P ′ ] starting
from I[P ]. It follows immediately by Corollary 5.3.5.
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�

Lemma 5.3.8 states that two equivalent boxes can perform the same transitions with the
exception of input actions receiving names that clash with the subjects of one of the boxes.

Lemma 5.3.8 Let I1[P1 ] be a well-formed box and γ a box label. If I1[P1 ]γ
C,a
−−→r I2[P2 ]γ and

I ′1[P
′
1 ] = I1[P1 ] then the following hold:

1. if a 6= {k?t} then I ′1[P
′
1 ]γ

C,a
−−→r I

′
2[P

′
2 ]γ with I2[P2 ] = I ′2[P

′
2 ] .

2. if a = {k?t} and m /∈ sub(I ′) then I ′1[P
′
1 ]γ

C,a
−−→r I

′
2[P

′
2 ]γ with I2[P2 ] = I ′2[P

′
2 ] .

Proof. We observe that if I1[P1 ] = I ′1[P
′
1 ], by definition of α-equivalence, the following relation

between I ′1[P
′
1 ] and I1[P1 ] holds: there exists a set of subjects interfaces {b1, . . . , bn} such that:

I1[P1 ] = {(b1, T1), . . . , (bn, Tn)} ∪ I[P1 ]

and

I ′1[P
′
1 ] = {(b′1, T1), . . . , (b

′
n, Tn)} ∪ I[P1{b

′

1, . . . , b
′

n/b1, . . . , bn} ]

For the sake of clarity we consider the particular case where the cardinality of {b1, . . . , bn}
is one. In so doing we do not lose generality because we can obtain the equality between I1[P1 ]
and I ′1[P

′
1 ] creating a chain of equalities for which the cardinality of {b1, . . . , bn} is one. Thus we

consider the case where: I1[P1 ] = {(b, T )}∪I[P1 ] and I ′1[P
′
1 ] = {(b′, T )}∪I[P1{b

′/b} ]. We show

the thesis by induction on the length of the derivation tree of {(b, T )} ∪ I[P1 ]γ
C,a
−−→r I2[P2 ]γ .

We only consider the interesting case of rule s2 with k = T and t = m:

{(b, T )} ∪ I[ b?y. P ]γ
true,T?m
−−−−−→0 I[P{m/y} ]γ

We have to show that if m /∈ {(b′, T )} ∪ I then the following holds:

{(b′, T )} ∪ I[ b′?y. (P{b′/b}) ]γ
true,T?m
−−−−−→0 I[ (P{b′/b}){m/y} ]γ

Given that {(b′, T )} ∈ {(b′, T )} ∪ I and, by hypothesis, m /∈ {(b′, T )} ∪ I, the side condition
of s2 is satisfied and we can obtain the desired transition.

�

We lift the result of the previous lemma to the relation −−→
Box

.

Corollary 5.3.9 Let I1[P1 ] be a well-formed box. If I1[P1 ]
C,a
−−→
Box

r I2[P2 ] and I ′1[P
′
1 ] = I1[P1 ]

then the following hold:

1. if a /∈ {T !m,T?m} then I ′1[P
′
1 ]

C,a
−−→
Box

r I
′
2[P

′
2 ] with I2[P2 ] = I ′2[P

′
2 ] .

2. if a ∈ {T !m,T?m} and m /∈ sub(I ′) then I ′1[P
′
1 ]

C,a
−−→
Box

r I
′
2[P

′
2 ] with I2[P2 ] = I ′2[P

′
2 ] .
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Proof. By definition of −−→
Box

it follows that I1[P1 ]γ
C,a
−−→r I1[P2 ]γ which, by Lemma 5.3.8, lets us

conclude with the desired result.
�

In the following lemma we prove that the set of derivatives and the set of proper derivatives
of I[P ] with respect to S have the same elements under the assumption that the sent names of
S do not clash with the subjects of I.

Lemma 5.3.10 Let S be a well-formed system and I[P ] a well-formed box. If sn(S)∩sub(I) = ∅
and I ′[P ′ ] ∈ ds(I[P ], S) then ∃I ′′[P ′′ ] ∈ pds(I[P ], S) : I ′′[P ′′ ] = I ′[P ′ ].

Proof. By induction on the number of transitions necessary in order to reach I ′[P ′ ] starting
from a process I ′1[P

′
1 ] = I[P ].

base case: it holds that I ′[P ′ ] = I[P ] and I[P ] belongs to pds(I[P ],S) by definition of ds.

step case: we know, by definition of ds(I[P ], S), that there exists I ′1[P
′
1 ] = I[P ] such that:

I ′1[P
′
1 ]

C′

1,a
′

1−−−→
Box

r′1
. . .

C′

n′
,a′

n′

−−−−→
Box

r′
n′

I ′n′ [P ′
n′ ]

C,a
−−→
Box

r I
′[P ′ ]

By definition of ds(I[P ], S), we know that I ′n′ [P ′
n′ ] ∈ ds(I[P ], S) thus, by induction

hypothesis, we can say that ∃In[Pn ] ∈ pds(I[P ], S) : I ′n′ [P ′
n′ ] = In[Pn ]. At this point

we make the following observations:

1. I ′n′ [P ′
n′ ] = In[Pn ];

2. if a ∈ {T !m,T?m} then m ∈ sn(S) by definition of ds(I[P ],S);

3. I[P ] ∩ sn(S) = ∅ implies In ∩ sn(S) = ∅ because −−→
Box

preserves the subjects of the

interfaces.

4. Thanks to points 2 and 3 we can say that m /∈ sub(In).

These observations let us apply the result of Corollary 5.3.9 and obtain the desired result

In[Pn ]
C,a
−−→
Box

r In+1[Pn+1 ] with In+1[Pn+1 ] = I ′n′ [P ′
n′ ] which lets us state ∃I ′′[P ′′ ] ∈

pds(I[P ], S) : I ′′[P ′′ ] = I ′n′ [P ′
n′ ].

�

Lemma 5.3.11 states that the number of interface sets associated with the boxes of pds(I[P ], S)
is finite.

Lemma 5.3.11 Let S be a well-formed system and I[P ] a well-formed box. If we partition the
boxes of the set pds(I[P ], S) according to the set of interfaces they are associated with, then we
obtain a finite number of partitions.

Proof. It follows immediately from two observations:

1. The set pds(I[P ], S) is defined on the relation −−→
Box

which cannot add interfaces to the

starting set of interfaces I.
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2. The interfaces of I can be associated with a finite number of sorts.

�

The result of the previous lemma binds the finiteness of the set ids(I[P ], S)/≡b to the
finiteness of pds(I[P ], S)/≡b. In fact, given that the sets of interfaces associated with the boxes
of pds(I[P ], S) is finite, the only source of infiniteness remains the internal program of the
boxes.

Lemma 5.3.12 Let S be a well-formed system and I[P ] a well-formed box. If ids(I[P ], S)/≡p

has finite cardinality then the same holds for the cardinality of pds(I[P ], S)/≡b.

Proof. We show the contrapositive of the thesis: if pds(I[P ], S)/≡b has infinite cardinality then
the same holds for ids(I[P ], S)/≡p.

We observe that if JI ′[P ′ ]K ∈ pds(I[P ], S)/≡b then ∃I ′′[P ′′ ] ∈ pds(I[P ], S) : I ′′[P ′′ ] ≡b

I ′[P ′ ]. Therefore, given that the cardinality of pds(I[P ], S)/≡b is infinite, we have W ⊆
pds(I[P ], S) such that W is infinite and all the boxes belong to a different congruence class. At
this point, applying the result of Lemma 5.3.11, we can state that if we partition the boxes of W
depending on their interfaces we obtain a finite number of partitions. Given that W is infinite
this implies that there exists at least one partition with an infinite number of boxes which differs
because of their internal program. All these internal programs, by Corollary 5.3.7, belong also
to ids(I[P ], S), thus we can conclude that ids(I[P ], S)/≡p has infinite cardinality.

�

If sn(S) ∩ sub(I) = ∅ we can lift the result of the previous lemma to ds. Note that the
hypothesis fn(S) ∩ sub(I) = ∅ does not compromise the generality of the result, indeed, given a
box I[P ] and a system S, there always exists a box I ′[P ′ ] = I[P ] such that fn(S)∩ sub(I) = ∅
and ds(I[P ], S) = ds(I ′[P ′ ], S).

Theorem 5.3.13 Let S be a well-formed system and I[P ] a well-formed box. If sn(S)∩sub(I) =
∅ and the cardinality of ids(I[P ], S)/≡p is finite then the same holds for the cardinality of
ds(I[P ], S)/≡b.

Proof. By Lemma 5.3.10 sn(S) ∩ sub(I) = ∅ implies ds(I[P ], S)/≡b = pds(I[P ], S)/≡b.
This observation lets us immediately conclude given that, by Lemma 5.3.12, we know that if
ids(I[P ], S)/≡p has finite cardinality then the same holds for the cardinality of pds(I[P ], S)/≡b.

�

Combining the results of Lemma 5.3.3 and Theorem 5.3.13 we know that, given a well-formed

system S and a well-formed box I[P ], if ids(S, I[P ])/≡b is finite the same holds for Φ̃
I[P ],S
Box,≡ .

Therefore we define a class of internal programs whose elements, evolving as defined by the
semantics of Table 5.2, can reach a finite number of congruence classes. In Table 5.3 we present
the grammar generating this class of internal programs. Parallel operator and replication only
appear at the first level of depth. The set Name is partitioned into NameP and NameR. We refer
to the elements of NameP and NameR as np, xp,etc. and nr, xr,etc., respectively. The name of
the first set can be used for internal communication; they can be placed in any position of the



104 Transition System of the Boxes

P ::= P |P | M | ∗ nr?xp.M
M ::= nil | π.M | M +M | 〈C〉M | nr!mp. nil
π ::= np!mp | np?xp | ch(r, np, S)

Table 5.3 – Generating grammar of internal programs in FF .

w(P ) =







w(P1) + w(P2) if P = P1 |P2 and P 6≡p nil

0 if P ≡p nil

1 otherwise

Table 5.4 – Function w which computes the width of an internal program.

internal program but they cannot be used in actions guarding a replication. We reserve the role
of replication guard to input actions over names belonging to NameR. We allow outputs over
channel names of NameR only if they are followed by the process nil.
If P is generated by the grammar of Table 5.3 we say that P is in FF (Finite Form). We lift the
notion of FF to boxes saying that I[P ] is in FF if P is in FF and sub(I) ∩ NameR = ∅. The
condition sub(I) ∩ NameR = ∅ forbids the interface names being involved in actions guarding
replications. The characteristic of the processes in FF is that they cannot increase their width.
The width of a process is defined in Table 5.4 and is based on the concept of elementary parallel
component.

Definition 5.3.14 (Elementary parallel component) A process is said to be an elementary
parallel component if it does not have the form P |P .

In words, we compute the width of a process by counting how many subprocesses, not congruent
to nil, it joins by means of the parallel operator. Processes in FF do not increase their width
because of the followings properties:

1. Replication bodies do not contains the parallel operator;

2. The policy of channel name usage allows a subprocess to spawn a replication only if it
becomes the nil process.

This means that when an output action spawns a replication, the width of the process remains
constant (or decreases in the case of a replication having nil as body). In order to prove this
property we show that FF of internal programs is preserved by τ -transitions.

Lemma 5.3.15 Given P an internal program in FF , if P
a
−→Q then the following holds:

1. if a = n?m and m ∈ NameP then Q is in FF ;

2. if a = n!m then m ∈ NameP and Q is in FF ;

3. if a = τ then Q is in FF .



5.3 Investigating the Finiteness of the Over-approximation 105

Sketch. By induction on the length of the derivation tree of P
a
−→Q.

�

From the previous result it immediately follows that if I[P ] is in FF and the sent names
of S belong to NameP then all the processes belonging to ids(I[P ], S) are in FF .

Corollary 5.3.16 Given a well formed system S and a box I[P ] in FF if Q ∈ ids(I[P ], S)
with sn(S) ⊆ NameP then Q is in FF .

Sketch. By induction on the number of transition necessary to reach Q starting from P , and
exploiting the result of Lemma 5.3.15.

�

In Lemma 5.3.17 we show how transitions deduced with rules of Table 5.2 modify the width
of a process in FF .

Lemma 5.3.17 Given P a process in FF , if P
a
−→Q then the followings hold:

1. if a = nr?m and m ∈ NameP then w(Q) ≤ w(P ) + 1;

2. if a = nr!m then m ∈ NameP and w(Q) = w(P )− 1;

3. if a ∈ {np!m,np?m, τ} and m ∈ NameP then w(Q) ≤ w(P ).

Proof. By induction on the length of the derivation tree of P
a
−→Q. We only consider the

interesting cases.

base case s1: We have two cases.

If n = nr then, by definition of FF , P = nil. This implies that w(nil) = w(nr!m. nil) − 1
and we prove the thesis.

If n = np, given that np!m.P is in FF , then w(n!m.P ) = 1 and P is generated by the
non-terminal M of the grammar of Table: 5.3. This implies the desired w(P ) ≤ 1.

base case s2: If np?m.P is in FF then w(n!m.P ) = 1 and P is generated by the non-terminal
M . This implies that w(P ) ≤ 1 and the same holds for P{m/y}. At this point we have
proved that w(P{m/y}) ≤ w(n?m.P ) which implies the desired result.

step case s4: If ∗π. P is in FF , by definition of FF , we know that π. P = nr?yp. P , a =
nr?m and P ′ = P{m/yp}. This implies that, by proceeding as in the case s2, we obtain
w(P{m/y}) ≤ 1. At this point we have what we need in order to conclude the desired
w(∗π. P |P{m/yp}) = w(∗π. P ) + w(P{m/yp}) ≤ w(∗π. P ) + 1.

step case s5-l: If P1 |P2 is in FF then both P1 and P2 are in FF as well.

If n = nr then, by induction hypothesis, w(P ′
1) ≤ w(P1) + 1 and w(P ′

2) = w(P2)− 1. This
implies the desired w(P ′

1 |P
′
2) = w(P ′

1) + w(P ′
2) ≤ w(P1) + 1 + w(P2)− 1 = w(P1 |P2) .

If n = np then, by induction hypothesis, w(P ′
1) ≤ w(P1) and w(P ′

2) = w(P2) which
immediately implies the desired w(P ′

1 |P
′
2) = w(P ′

1)+w(P ′
2) ≤ w(P1)+w(P2) = w(P1 |P2).
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epc(P ) =

{

epc(P1) ∪ epc(P2) if P = P1 |P2

{P} otherwise

sp(P1 |P2) = {P1 |P2} ∪ sp(P1) ∪ sp(P2)
sp(M1 +M2) = {M1 +M2} ∪ sp(M1) ∪ sp(M2)

sp(〈C〉M) = {〈C〉M} ∪ sp(M)
sp(π. P ) = {π. P} ∪ sp(P )
sp(∗P ) = {∗P} ∪ sp(P )
sp(nil) = {nil}

Table 5.5 – Definition of the functions epc and sp.

�

Finally we prove that, if a process is in FF and can exclusively receive names belonging to
NameP, it cannot increase its width.

Corollary 5.3.18 Given a well formed system S and a box I[P ] in FF , if Q ∈ ids(I[P ],S)
and sn(S) ⊆ NameP then w(Q) ≤ w(P ).

Sketch. By induction on the number of transitions necessary to reach Q starting from P . It
follows immediately exploiting the result of Lemmas 5.3.16 and 5.3.17.

�

We are interested in internal programs which cannot increase their width because they as-
sume configurations belonging to a finite number of congruence classes. Therefore, if a box I[P ]
is in FF and executes in a system where it can only receive names belonging to NameP, we can
conclude that ids(I[P ],S)/≡p has finite cardinality.

The underlying intuition is that the internal programs of ids(I[P ],S) are made of elementary
parallel components belonging to a finite set. We can compute an over-approximation A of such
a set by collecting all the subprograms of P and by substituting, in all the possible ways, their
bound names with the free names of S. It follows that if the internal programs of ids(I[P ],S)
do not have more than w(P ) elementary parallel components different from nil, and we quotient
by congruence ids(I[P ],S), then we obtain a finite set. In fact, given that A is finite, we can
build a limited number of processes by composing its elements.

In the rest of this section we formalize and show what is stated in our intuition. In the
following proofs we heavily use two functions. The first one, epc, is used to extract the elementary
parallel components of an internal program; the function sp, given an internal program, returns
all its subprograms. Their formal definitions are reported in Table 5.5. We also introduce the
set rspP (N,X). It is made of all the internal programs obtained by replacing the names of N
with the names of X inside the subprogram of P which are elementary parallel components.

Definition 5.3.19 (Over-set of reachable subprograms) The over-set of reachable subpro-
grams of the internal program P with respect to the sets of names N and X is defined as



5.3 Investigating the Finiteness of the Over-approximation 107

rspP (N,X) = {Qσ | Q ∈ sp(P ), Q is an elementary parallel component and cosupp(σ) ⊆ N
and supp(σ) ⊆ X}. We write rspP (N) for rspP (N, bn(P )).

In the following observations and lemmas we highlight some results necessary to prove inter-
esting properties of rsp . We start with three observations which immediately follow by definition
of rsp . The first states that if Q is a subprogram of P , then rspQ(N,X) ⊆ rspP (N,X).

Observation 5.3.20 Let N and X be two sets of names and P an internal program. If Q ∈
sp(P ) then rspQ(N,X) ⊆ rspP (N,X).

The next observation says that rspP is monotonic.

Observation 5.3.21 Let N1, N2, X1 and X2 be sets of names and P an internal program. If
N1 ⊆ N2 and X1 ⊆ X2 then rspP (N1, X1) ⊆ rspP (N2, X2).

We also observe that whatever the set of names N , the set rspP (N) contains the elementary
parallel component of P .

Observation 5.3.22 Given an internal program P and a set of names N it holds that epc(P ) ⊆
rspP (N).

In the following lemma we show that the finiteness of rspP (N) depends on that of N .

Lemma 5.3.23 Let N be a set of names and P an internal program. If the cardinality of N is
finite then the same holds for rspP (N).

Proof. The dimension of P is finite, this implies that the sets sp(P ) and bn(P ) have finite
cardinality. Considering these observations and that the cardinality of N is finite, by definition
of rspP (N), we conclude with the desired result.

�

Lemma 5.3.24 states that τ -transitions do not generate free names and bound names.

Lemma 5.3.24 Let P be a process. Suppose P
a
−→Q:

1. If a = n!m then n,m ∈ fn(P ) and fn(Q) ⊆ fn(P ).

2. If a = n?m then n ∈ fn(P ) and fn(Q) ⊆ (fn(P ) ∪ {m}).

3. If a = τ then fn(Q) ⊆ fn(P ).

Moreover bn(Q) ⊆ bn(P ).

Proof. By induction on the length of the derivation tree of P
a
−→Q.

�

Exploiting the previous lemma we show that the free names of the internal programs be-
longing to ids(I[P ],S) are a subset of the free names of P and S.

Corollary 5.3.25 Let I[P ] be a well-formed box and S a well-formed system. If Q ∈ ids(I[P ],S)
then fn(Q) ∈ fn(P ) ∪ fn(S).
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Proof. By induction on the number of transitions necessary for reaching Q starting from P .

base case: In this case P = Q and it follows immediately that fn(P ) ⊆ fn(P ) ∪ fn(S).

step case: In this case P
a1−→ · · ·

an−→ Pn
a
−→Q.

If a 6= x?m, by Lemma 5.3.24, we know that fn(Q) ⊆ fn(Pn).

If a = x?m we have, again by Lemma 5.3.24, that fn(Q) ⊆ fn(Pn)∪{m}. Considering that,
by definition of ids, m ∈ sn(S) ⊆ fn(S) we can say that fn(Q) ⊆ fn(Pn) ∪ fn(S). Thus in
every case we have that fn(Q) ⊆ fn(Pn)∪ fn(S). At this point, observing that by inductive
hypothesis fn(Pn) ⊆ fn(P ) ∪ fn(S) which implies fn(Pn) ∪ fn(S) ⊆ fn(P ) ∪ fn(S), we can
conclude, by transitivity of ⊆, with the desired fn(Q) ⊆ fn(P ) ∪ fn(S).

�

In the following lemma, given two sets of names X and N , we generate a set of substitutions
whose cosupp and supp are subset of X and N , respectively, and we prove that this set is closed
by function composition.

Lemma 5.3.26 Given N,X two sets of names and a set of substitutions Σ = {σ | cosupp(σ) ⊆
N and supp(σ) ⊆ X} if σ1, σ2 ∈ Σ then σ1 ◦ σ2 ∈ Σ.

Proof. We note that x 6∈ supp(σ1 )∪ supp(σ2 ) ⇒ xσ1σ2 = x ⇒ x 6∈ supp(σ1 ◦ σ2 ). x 6∈
cosupp(σ1 )∪ cosupp(σ2 ) ⇒ xσ1σ2 = x ⇒ x 6∈ cosupp(σ1 ◦ σ2 ). The contrapositives of these
implications are the following: x ∈ supp(σ1 ◦ σ2 ) ⇒ x ∈ supp(σ1 ) ∪ supp(σ2 ) and x ∈
cosupp(σ1 ◦ σ2 ) ⇒ x ∈ cosupp(σ1 ) ∪ cosupp(σ2 ). From these implications it follows that
supp(σ1 ◦ σ2 ) ⊆ X and cosupp(σ1 ◦ σ2 ) ⊆ N which implies σ1 ◦ σ2 ∈ Σ.

�

Lemma 5.3.27 states that if we obtain an internal program P by applying a substitution σ
to Q, then we can obtain all the subprograms of P by applying a substitution σ′ to a subprocess
of Q. Moreover, cosupp and supp of σ′ are included in those of σ.

Lemma 5.3.27 Given two internal programs P and Q and a substitution σ, if Qσ = P then
∀P ′ ∈ sp(P ), a subprogram Q′ ∈ sp(Q) and a substitution σ′ exist such that Q′σ′ = P ′ with
supp(σ′) ⊆ supp(σ) and cosupp(σ′) ⊆ cosupp(σ).

Proof. We proceed by induction on the structure of the processes.

base case nil: we have that Qσ = nil iff Q = nil. Given that sp(nil) = {nil} the thesis immedi-
ately follows.

step case x!y.P : given that the σ function does not modify the structure of the processes we
have that Qσ = x!y.P iff Q = z!w.P ′ for some z, w and σ s.t zσ = x and wσ = y.
This, given that fn(P ′) ⊆ fn(z!w.P ′), implies that Qσ = x!y.(P ′σ). Now, observing that
P ′σ = P we apply the inductive hypothesis concluding that for each element of sp(P ) there
exists a process of sp(P ′) such that the first results by the application of a substitution
σ′ to the second, with supp(σ′) ⊆ supp(σ) and cosupp(σ′) ⊆ cosupp(σ). Given that
sp(x!y.P ) = {x!y.P} ∪ sp(P ) and sp(z!w.P ′) = {z!w.P ′} ∪ sp(P ′) we here proved the
thesis by hypothesis: we have that (z!w.P ′)σ = x!y.P .
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step case x?y: as for the previous case it holds that Qσ = x?y.P iff Q = z?y.P ′ for some z, σ
s.t zσ = x. Considering that fn(P ′) ⊆ fn(z?y.P ′) ∪ {y}, we have that Qσ = x?y.(P ′σ1),
where xσ1 = xσ if x 6= y and xσ1 = x otherwise. Now, observing that P ′σ1 = P we
apply the inductive hypothesis concluding that for each element of sp(P ) there exists a
process of sp(P ′) such that the first results by the application of a substitution σ′ to the
second with supp(σ′) ⊆ supp(σ1 ) and cosupp(σ′) ⊆ cosupp(σ1 ). Now, noting that by
definition of σ1, it holds that supp(σ1 ) ⊆ supp(σ) and cosupp(σ1 ) ⊆ cosupp(σ) and that
sp(x?y.P ) = {x?y.P} ∪ sp(P ) and sp(z?y.P ′) = {z?w.P ′} ∪ sp(P ′) we proved the thesis
because, by hypothesis, we have that (z?w.P ′)σ = x?y.P .

We do not consider the other cases because they are simple applications of the inductive hy-
pothesis.

�

The next five lemmas introduce properties of rsp which allow us to prove Lemma 5.3.33,
that, given a set of names N and under the assumption that P

a
−→ Q, shows the relation

between rspP (N) and rspQ(N).

Lemma 5.3.28 Given two sets of names X and N and a process P , if n ∈ N and x ∈ X then
rspP{n/x}(N,X) ⊆ rspP (N,X).

Proof. We define the set of substitutions Σ = {σ | cosupp(σ) ⊆ N and supp(σ) ⊆ X}. Applying
the result of Lemma 5.3.27 on P{n/x} we obtain that, if R ∈ sp(P{n/x}), then ∃R′ ∈ sp(P ) such
that R = R′ or R = R′{n/x}. Therefore, given the set EP{n/x} = {T | T ∈ sp(P{n/x}) and T
is an elementary parallel component}, if R ∈ EP{n/x} then there exists R′ ∈ sp(P ) such that
R′σ = R with σ ∈ {{n/x}, σid}. Now we group in the set W those elements of sp(P ) obtainable
by applying {n/x} or σid to the internal programs of EP{n/x}:

W = {T ∈ sp(P ) | Tσ ∈ E
P{P/Z} with σ ∈ {{n/x}, σid}}

We observe that:

1. All the elements of W are subprograms of P .

2. All the elements of W are elementary parallel components given that, if we apply to them
a substitution among {n/x} and σid we an internal program of EP{n/x}, whose elements are
elementary parallel components.

3. {{n/x}, σid} ⊆ Σ. The first because, by hypothesis, s ∈ N and z ∈ X, and the second by
definition of Σ.

These observations let us state that W ⊆ EP = {T | T ∈ sp(P ) and T is an elementary
parallel component}. Therefore we have that, applying a substitution of Σ to an element of EP ,
we can obtain all the processes of EP{n/x}. Observing that, by definition of rsp, all the elements
of rspP{n/x}(N,X) are generated by applying a substitution σ ∈ Σ to a process that belongs
to EP{n/x}, we can conclude that starting from an element of EP , applying two substitutions
which belong to σ, we can obtain all the elements that belong to rspP{n/x}(N,X). This, by
Lemma 5.3.26, implies that the same holds applying only one substitution that belongs to Σ
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and this lets us conclude, by definition of rsp, that all the elements of rspP{n/x}(N,X) also
belong to rspP (N,X).

�

Lemma 5.3.29 Given an internal program P and a set of names N , if Q ∈ sp(P ) then
rspQ(N) ⊆ rspP (N).

Proof. By Observation 5.3.20, rspQ(N, bn(P )) ⊆ rspP (N). Given that, by definition of bound
names, we have that bn(Q) ⊆ bn(P ), we can also say that rspQ(N) ⊆ rspQ(N, bn(P )). Thanks
to the chain of inclusions rspQ(N) ⊆ rspQ(N, bn(P )) ⊆ rspP (N,) we can conclude with the
thesis.

�

Lemma 5.3.30 Let P and Q be two internal programs. If all the elementary parallel components
T ∈ sp(Q) belong to rspP (N,X) then rspQ(N,X) ⊆ rspP (N,X).

Proof. We define EP and EQ as the elementary parallel components that belong to sp(P ) and
sp(Q), respectively. Moreover we define Σ = {σ | supp(σ) ⊆ X and cosupp(σ) ⊆ N}. By
definition of rsp, if R ∈ EQ belongs to rspP (N,X) then T ∈ EP and σ ∈ Σ exist such that
Tσ = R. After that we observe that U ∈ rspQ(N,X) implies that R ∈ EQ and σ ∈ Σ exist such
that Rσ = T . Thus we can conclude that for each U ∈ rspQ(N,X) a substitution σ1σ2 ∈ Σ
and an internal program T ∈ WP exist such that Tσ1σ2 = U . The last observation let us
conclude, by Lemma 5.3.26, that a substitution σ3 ∈ Σ exists such that Tσ3 = U , therefore
U ∈ rspP (N,X). After that we proved rspQ(N,X) ⊆ rspP (N,X).

�

Lemma 5.3.31 Let P and Q be two internal programs and Ni, Xi with i ∈ [1, 3] sets of names.
If rspP (N1, X1) ⊆ rspQ(N2, X2), N3 ⊆ N2 and X3 ⊆ X2 then it holds that rspP (N3, X3) ⊆
rspQ(N2, X2).

Proof. If rspP (N1, X1) ⊆ rspQ(N2, X2) then, for each R ∈ rspP (N1, X1), a substitution σ
and a process T exist such that supp(σ) ⊆ Z2, cosupp(σ) ⊆ S2, T is an elementary parallel
component and belongs to sp(Q) and Tσ = R. This holds in particular if R is an elementary
parallel component belonging to sp(P ). Therefore we can apply the result of Lemma 5.3.30 and
obtain that rspP (N2, X2) ⊆ rspQ(N2, X2). At this point, given that by hypothesis N3 ⊆ N2 and
X3 ⊆ X2, we can conclude, by Observation 5.3.21, that rspP (N3, X3) ⊆ rspQ(N2, X2).

�

Lemma 5.3.32 Given P1 and P2 two processes, it holds that rspP1|P2
(N,X) = rspP1

(N,X) ∪
rspP2

(N,X).

Proof. By definition of sp we know that sp(P1 |P2) = sp(P1) ∪ sp(P2). Moreover we observe
that P1 |P2 is not an elementary parallel component. These observations imply the following
equality: {Q | Q ∈ sp(P1 |P2) and is an elementary parallel component} = {Q | Q ∈ sp(P1)
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and is an elementary parallel component} ∪ {Q | Q ∈ sp(P2) and is an elementary parallel
component}. The same equality is preserved closing these sets by the substitutions belonging to
{σ | cosupp(σ) ∈ N and supp(σ) ∈ X}. This implies by definition of rsp that rspP1|P2

(N,X) =
rspP1

(N,X) ∪ rspP2
(N,X).

�

Lemma 5.3.33 Let P be an internal program and N a set of names. If fn(P ) ⊆ N and P
a
−→ Q:

1. If a = n?m then rspQ(N) ⊆ rspP (N ∪ {m}).

2. Otherwise rspQ(N) ⊆ rspP (N).

Proof. By induction on the length of the derivation tree of P
a
−→Q.

base case s1:
n!m.P

n!m
−−→ P

By Lemma 5.3.29 we know that rspn!m. P (N) ⊆ rspP (N). The same proof can be applied
to rule s3.

base case s2:
n?x. P

n?m
−−−→ P{m/x}

We know by definition of bound names that bn(P{m/x}) = bn(P ) ⊆ bn(n?x. P ). This
implies that rspP{m/x}(N) ⊆ rspP{m/x}(N ∪ {m}, bn(n?x. P )). Moreover, observing that
m ∈ N ∪ {m} and x ∈ bn(n?x. P ) we can apply the result of Lemma 5.3.28 and ob-
tain that rspP{m/x}(N ∪ {m}, bn(n?x. P )) ⊆ rspP (N ∪ {m}, bn(n?x. P )). As the last
step, given that P ∈ sp(n?x. P ) and by observation 5.3.20, we note that rspP (N ∪
{m}, bn(n?x. P )) ⊆ rspn?x. P (N ∪ {m}, bn(n?x. P )). This chain of inclusions lets us con-
clude with rspP{m/x}(N) ⊆ rspn?x. P (N ∪ {m}, bn(n?x. P )).

step case s4:

π. P
a
−→ P ′

∗π. P
a
−→ ∗ π. P |P ′

We consider the case a = n?m and thus we show that rsp∗π. P |P ′(N) ⊆ rsp∗π. P (N ∪
{m}). By Lemma 5.3.32 we know that rsp∗π. P |P ′(N) = W1 ∪ W2 where the set W1 =
rsp∗π. P (N, bn(∗π. P |P ′)) and W2 = rspP ′(N, bn(∗π. P |P ′)).

In order to prove the thesis we show that both these sets are included in W = rsp∗π. P (N ∪
{m}). In the case of W1 we observe that, by Lemma 5.3.24, bn(∗π. P |P ′) ⊆ bn(∗π. P )
and thus we can conclude by Observation 5.3.21.

In the case of W2 we note that, by inductive hypothesis, rspP ′(N) ⊆ rspπ. P (N ∪ {m}).
Moreover, by Lemma 5.3.29 we know that rspπ. P (N ∪ {m}) ⊆ rsp∗π. P (N ∪ {m}) and
thus, by transitivity, that rspP ′(N) ⊆ rsp∗π. P (N ∪ {m}). Given that N ⊆ N ∪ {m} and
that, by Lemma 5.3.24, we have bn(∗π. P |P ′) ⊆ bn(∗π. P ), we can apply the result of
Lemma 5.3.31 and obtain that W2 ⊆ W . Hence we conclude with the desired result.

We do not consider a 6= n?m because of the similarity with this case.
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step case s5-l:

P1
n!m
−−→ P ′

1 P2
n?m
−−−→ P ′

2

P1 |P2
τ
−→ P ′

1 |P
′
2

By inductive hypothesis we have that rspP ′

1
(N) ⊆ rspP1

(N) and rspP ′

2
(N) ⊆ rspP2

(N ∪
{m}). Considering that fn(P1) ⊆ N and that, by Lemma 5.3.24, m ∈ fn(P1) we know that
N ∪ {m} = N and thus we have rspP ′

2
(N) ⊆ rspP2

(N).

Given that by the definition of bound names bn(P1) and bn(P2) are subsets of bn(P1 |P2),
we can say, by Observation 5.3.21, that rspP1

(N) ⊆ rspP1
(N, bn(P1 |P2)) = WP1 and that

rspP2
(N) ⊆ rspP2

(N, bn(P1 |P2)) = WP2 .

At this point, by transitivity, we have that rspP ′

1
(N) ⊆ WP1 and rspP ′

2
(N) ⊆ WP2 . More-

over, by Lemma 5.3.24, we have that bn(P ′
1 |P

′
2) ⊆ bn(P1 |P2). Therefore we can apply

the result of Lemma 5.3.31 and obtain that WP ′

1
= rspP ′

1
(N, bn(P ′

1 |P
′
2)) ⊆ WP1 and that

WP ′

2
= rspP ′

2
(N, bn(P ′

1 |P
′
2)) ⊆ WP ′

2
.

Finally, observing that by Lemma 5.3.32 it holds that rspP1 |P2
(N) = WP1 ∪WP2 and that

rspP ′

1 |P
′

2
(N) = WP ′

1
∪WP ′

2
, we conclude that rspP1 |P2

(N) ⊆ rspP ′

1 |P
′

2
(N).

We can similarly prove the case s5-r.

step case s7-l:

P
a
−→ P ′

P |Q
a
−→ P ′ |Q

We only consider the case a = n?m. By inductive hypothesis we have that rspP ′(N) ⊆
rspP (N ∪ {m}). Considering that bn(P ) ⊆ bn(P |Q), by Observation 5.3.21, rspP (N ∪
{m}) ⊆ rspP (N ∪ {m}, bn(P |Q)) = WP . At this point we have that:

1. By transitivity, rspP ′(N) ⊆ WP ;

2. By Lemma 5.3.24, bn(P ′ |Q) ⊆ bn(P |Q);

3. N ⊆ N ∪ {m}.

Therefore we can apply the result of Lemma 5.3.31 and obtain that

WP ′ = rspP ′(N, bn(P ′ |Q)) ⊆ WP

Keeping in mind that N ⊆ N ∪ {m} and bn(P ′ |Q) ⊆ bn(P |Q), thanks to Observa-
tion 5.3.21, we can say thatWQr = rspQ(N, bn(P ′ |Q)) ⊆ rspQ(N∪{m}, bn(P |Q)) = WQl

.
Now, considering that

1. W ′
P ∪WQr ⊆ WP ∪WQl

;

2. by Lemma 5.3.32,

3. rspP ′ |Q(N) = WP ′ ∪WQr . rspP |Q(N) = WP ∪WQl
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we can conclude with the desired result.

We can similarly prove the case s7-r.

step case s8-l:

M
a
−→M ′

M +N
a
−→M ′

We only consider the case a = n?m. By inductive hypothesis rspM ′(N) ⊆ rspM (N ∪{m}).
Given that M ∈ sp(M +N), by Lemma 5.3.29, rspM (N ∪ {m}) ⊆ rspM +N (N ∪ {m}).
At this point, by transitivity, we can conclude with the desired result.

We can similarly prove the cases s8-r and s6.

�

The following lemma, extending the previous results, shows that rspP (fn(S) ∪ fn(P )) is an
over-approximation of rspQ(fn(S) ∪ fn(P )) for all the internal programs Q of ids(I[P ],S).

Lemma 5.3.34 Let I[P ] be a well-formed box and S a well-formed system. If Q ∈ ids(I[P ],S)
then rspQ(fn(S) ∪ fn(P )) ⊆ rspP (fn(S) ∪ fn(P )).

Proof. By induction on the number of transitions necessary in order to reach Q starting from
P .

base case: In this case P = Q and there is nothing to be proved.

step case: In this case P
a1−→ · · ·

an−→ Pn
a
−→Q. If a 6= x?m, by Lemma 5.3.33, we know that

rspQ(fn(S) ∪ fn(Pn)) ⊆ rspPn
(fn(S) ∪ fn(Pn)). If a = n?m, again by Lemma 5.3.33, we

know that rspQ(fn(S) ∪ fn(Pn)) ⊆ rspPn
(fn(S) ∪ fn(Pn) ∪ {m}). Given that by definition

of ids(I[P ],S) if a = n?m then m ∈ sn(S) ⊆ fn(S), also in this case we can write
rspQ(fn(S) ∪ fn(Pn)) ⊆ rspPn

(fn(S) ∪ fn(Pn)). At this point we observe that by inductive
hypothesis rspPn

(fn(S) ∪ fn(P )) ⊆ rspP (fn(S) ∪ fn(P )). Thus we can conclude if we show
that rspPn

(fn(S) ∪ fn(Pn)) ⊆ rspPn
(fn(S) ∪ fn(P )) which lets us conclude by definition of

ids. In order to prove it we verify that fn(S) ∪ fn(Pn) ⊆ fn(S) ∪ fn(P ). This inclusion
follows by Corollary 5.3.25, which tells us that fn(Pn) ⊆ fn(P ) ∪ fn(S).

�

After this result we can prove that, given a system S and a box I[P ], all the elementary
parallel components of the processes belonging to ids(I[P ],S) are in the set rspP (fn(S)∪ fn(P )).

Corollary 5.3.35 Let I[P ] be a well-formed box and S a well-formed system. If Q ∈ ids(I[P ],S)
then epc(Q) ⊆ rspP (fn(S) ∪ fn(P )).

Proof. By Observation 5.3.22 we know that epc(Q) ⊆ rspQ(fn(S)∪fn(P )). This, by Lemma 5.3.34,
lets us immediately conclude with epc(Q) ⊆ rspP (fn(S) ∪ fn(P )).

�
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The next theorem states that, if less then k elementary parallel components different from
nil appear inside each internal program of ids(I[P ],S), then ids(I[P ],S)/≡b is finite. The key
to prove this result is to observe that, from the previous corollary, it immediately follows that
the set of elementary parallel components appearing in the processes of ids(I[P ],S) is finite.

Theorem 5.3.36 Let I[P ] be a well-formed box and S a well-formed system.

∃k ∈ N | ∀Q ∈ ids(I[P ],S),w(Q) ≤ k ⇒ ids(I[P ],S)/≡p has finite cardinality.

Proof. Each internal program Q is congruent to an internal program Qnil obtained by eliminating
from Q the elementary parallel components congruent to nil (e.g. Q=n!m. nil | nil and Qnil =
n!m. nil). By its definition, Qnil is congruent to Q, has the same width of Q and is made of
the same elementary parallel components. Considering that if Q ∈ ids(I, [P ],S), by hypothesis,
its width is less then k and, by Corollary 5.3.35, its elementary parallel component belongs to
rspP (fn(S) ∪ fn(P )), we can conclude that the same holds for the congruent internal program
Qnil. Therefore, for each Q ∈ ids(I, [P ],S), it holds that Qnil belongs to the set W of the
internal programs whose width is less then k and whose elementary parallel components belong
to rspP (fn(S)∪ fn(P )) \ {nil}. Given that, by Lemma 5.3.23, rspP (fn(S)∪ fn(P )) \ {nil} is finite,
the set W is finite as well. From this we can conclude that ids(I[P ],S)/≡p is finite because
each element of ids(I[P ],S) is congruent to an element of the finite set W .

�

We can now collect the results of Theorem 5.3.13, Corollary 5.3.18 and Theorem 5.3.36 and

conclude that if a box I[P ] is in FF then Φ̃
I[P ],S
Box,≡ is a finite object. The result follows because,

given a system S such that sn(S) ∈ NameP and a box I[P ] in FF , we can ensure that, for all
the internal programs Q ∈ ds(I[P ], S), it holds that w(Q) ≤ w(P ).

Theorem 5.3.37 Given a well-formed box I[P ] and a well-formed system S, if I[P ] is in FF

and sn(S) ⊆ NameP, then Φ̃
I[P ],S
Box,≡ is a finite object.

Proof. The transition system Φ̃
I[P ],S
Box,≡ is made of the pair (ds(I[P ], S)/≡b,−−−→

Box,≡

I[P ],S). Thanks

to Lemma 5.3.3 we know that if ds(I[P ], S)/≡b is finite then the same holds for Φ̃
I[P ],S
Box,≡ . In

order to prove the finiteness of ds(I[P ], S)/≡b we prove that of ds(I ′[P ′ ], S)/≡b where I ′[P ′ ]
is α-equivalent to I[P ], P ′ is in FF and sub(I ′)∩ sn(S) = ∅. Given that P ′ is in FF we know,
by Corollary 5.3.18, that ∃k ∈ N | ∀Q ∈ ids(I ′[P ′ ],S),w(Q) ≤ k, in particular k = w(P ′).
This observation lets us apply the result of Theorem 5.3.36 and conclude that ids(I ′[P ′ ],S)/≡b

has finite cardinality. Therefore, considering that sn(S) ∩ sub(I ′) = ∅, by Theorem 5.3.13, we
conclude that ds(I ′[P ′ ], S)/≡b is finite which implies also the finiteness of ds(I[P ], S)/≡b.
With that we have proved the thesis.

�

Finally we show that if all the boxes of S are in FF form, then Φ̃S
Box,≡ is finite as well.

Corollary 5.3.38 Let S be a well-formed system. If the boxes of getBox (S) are in FF then
Φ̃S
Box,≡ is a finite object.
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Proof. If all the boxes of getBox (S) are in FF it immediately follows that sn(S) ⊆ NameP. In
fact the generating grammar of the process in FF only allows the definition of output actions
that send channel names belonging to NameP. After this observation we can apply the result

of Theorem 5.3.37 and state that ∀I[P ] ∈ getBox (S), the transition system Φ̃
I[P ],S
Box,≡ has finite

cardinality. Given that Φ̃S
Box,≡ =

⋃

I[P ]∈getBox(S) Φ̃
I[P ],S
Box,≡ we can conclude with the thesis.

�

5.4 Approximating the Behaviour of Actin Monomers

We apply the obtained results to the actin case study presented in Chapter 4. The system in
analysis is a collection of n inactive free monomers of actin.

S = (L(A1 ‖ . . . ‖ An), ∅, ∅)

As a first step, we verify that boxes belonging to getBox (S) generate a finite state space.
Here getBox (S) only contains the box representing the inactive free monomer of actin. From
Figure 4.1 (i.e. the picture representing the possible configurations assumable by A) we can easily
observe that this box assumes a finite number of configurations. However it is worth pointing
out that it is not in FF . In fact the box respects all the constraints with the exception of one:
it has an output action which fires a replication but is not followed by the nil process. The
incriminated action is the output br!− of the first parallel component which is followed by pr!−.

In order to redefine the box in FF and keep the same behaviour (in terms of tangible states),
we should remove one of the two outputs from the first parallel component and put it in parallel
with the other processes:

A ,B (p, BI )(b, PI )
[ ch(r, b,PF ).ch(∞, p,BF ).br !− | pr !−
| POINT REP

| BARBED REP ]

Even if we can redefine the actin box in order to be in FF , we proceed with the definition
of Chapter 4 in order to keep the state space of the box smaller. In this way the output of the
analysis is more readable.

In Figure 5.1 we have the graphical representation of Φ̃A,S
Box,≡. It does not take care of the

binding state of the interfaces, therefore an element of it can correspond to more configurations
of Figure 3.1. For example the congruence class labelled with B6 corresponds to three config-
urations: G, F , and H. Lacking the information regarding the binding state of the interfaces
introduces approximation. For example in Φ̃A,S

Box,≡ we make possible a transition that requires
the congruence class JB4K to be bound on its barbed interface. In particular we allow the ex-
ecution of the action guarded by the condition (b,⊗) which transforms B4 in B7. However, as
we can appreciate in Figure 4.1, the barbed interface of configuration D (the only one whose
box belongs to JB4K), is free. Therefore we have introduced in Φ̃A,S

Box,≡ a transition that actually
cannot happen.

Something similar happens with congruence class B7. In this case we execute the action
guarded by the condition (b,⊙), enabling a transition from B7 to B9. In this case, not only do
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we generate an impossible transition, but we also generate a congruent class that does not exist
in Figure 4.1.

However, even though Φ̃A,S
Box,≡ is an approximation, it is safe. In fact all the boxes which

appear in Figure 4.1 appear in Figure 5.1 and the same holds for the transitions.
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Figure 5.1 – Graphical representation of Φ̃A,S
Box,≡.



118 Transition System of the Boxes



Chapter 6

Control Flow Analysis

In Chapter 5 we introduced an over-approximation of the transition system of the boxes of a
system S. In that context we restricted the names which can be received over an interface to
the set of sent names of S. We showed that this is a safe over-approximation, however, in some
cases, it is extremely imprecise. The objective of this chapter is to use flow logic in order to give
a more precise over-approximation of the names which can be received over box interfaces. We
will show that the analysis can be used in order to increase the precision of the approximated
transition system of the boxes we defined in Chapter 5.

For convenience in the presentation of the analysis we partition Name into two sets: the set
of the constants Const and the set of the variables Var. Constants, which range over n,m, etc.,
represent channel names that can be used for communication. In practice, the scope of a
constant will either be one particular box — being used as the name of an interface — or the
entire BlenX system — being used as a global name that can be passed between boxes. Bound
names introduced by inputs will be called variables which range over x, y etc.

We introduce a special sort ⊥ which is associated with those constants used as global names
rather than interfaces of a box. Moreover we define the function

µ : (Sort ∪ {⊥}) → P(Sort)

which, given a sort S, returns the set of all sorts T ∈ Sort such that αc(S, T ) 6= 0. The special
sort ⊥ has no communication capability with any sort and thus µ(⊥) = ∅. Note that the relation
induced by µ is symmetric, transitive but not necessarily reflexive.

In our Flow Logic we will make use of the following abstract domains:

1. ρ : Var → P(Const) is the abstract environment, which maps a variable to the set of
constants it might be bound to. For convenience, we extend the domain of ρ to all names,
defining ρ(n) = {n} for all n ∈ Const.

2. κ : P(Const) × Const → P(Const) is the abstract channel environment, which maps a
pair (N,n) to the set of constants that may be communicated over the channel n inside
a box I[P ] with sub(I) = N . We use interface subjects instead of labels to refer boxes
because new label can be created by system transitions — it is the case when an event
fires. Therefore, using labels to refer boxes would make impossible to show the semantic
correctness of the analysis.
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We associate channel names with box references because the same channel name can appear
in more than one box, but the set of names sent over it might be different. This is because
the scope of communication over names that are not bound to an interface is limited to
within a box. We write κ(n) =

⋃

N∈P(Const) κ(N,n) for the set of names sent over n in all
boxes.

3. τ : Sort → P(Const) is the abstract interface environment that maps a sort to the set of
names it may be associated with.

Table 6.1 gives our flow logic specification which consists of a set of analysis judgments.
Specifically, there are five different judgments:

1. ρ, κ, τ ⊢S (B,E, ξ) — the BlenX system (B,E, ξ) satisfies the analysis predicates ρ, κ,
and τ .

2. ρ, κ, τ ⊢E E — the event E satisfies the analysis predicates ρ, κ, and τ .

3. ρ, κ, τ ⊢B B — the bio-process B satisfies the analysis predicates ρ, κ, and τ .

4. ρ, κ, τ ⊢
P
P ′ — the process P ′ inside the box I[P ] satisfies the analysis predicates ρ, κ,

and τ .

5. ρ, κ, τ ⊢N
A

π — the action π inside the box I[P ] with sub(I) = N satisfies the analysis
predicates ρ, κ, and τ .

It is important to remember that the analysis predicates are global, meaning that the same
analysis predicates must constitute a valid analysis result for every component of the system.
In the terminology of flow logic, we have what is known as a verbose specification.

Let us now detail the clauses of Table 6.1. The [SYS] clause states that the analysis predicates
ρ, κ, and τ are a valid analysis result for a BlenX system (B,E, ξ), if they are valid for the bio-
process B and the events E. The analysis is independent of the environment ξ, since it considers
only the communication affinity between sorts when determining whether communication is
possible, and not the bound state of the interface.

The [EV] clause considers the set of events in the BlenX system, which have the general form
I[P ]◮rB. Such an event, if applied to a system, is responsible of the creation of the bio-process
B. For this reason we require that B (which is decorated with labels in order to be compatible
with clause [BOX]) satisfies the analysis predicates ρ, κ, and τ . We do not do the same for the
box I[P ] because the event cannot be the cause of the instantiation of such a box in the system.

The only non-trivial clause of the ρ, κ, τ ⊢B B judgement is [BOX]. In addition to requiring
that the analysis judgement constitute a valid solution for the process P inside the box with
interface set I such that sub(I) = N , we additionally need to record in τ the initial sort of each
interface in I.

The [CON] clause checks that the capability M satisfies the analysis judgment but only if
it is possible for the guard C to evaluate to true. If we are certain that C cannot evaluate to
true, then the action can never execute, and so it cannot affect the state of the system. We
determine this using the function checkρ,τ : Cond → P(Bool) which is defined in Table 6.2.
Here, ¬♯ and ∧♯ are the set versions of the standard Boolean connectives, defined such that
¬♯{true, false} = {true, false}, {true, false} ∧♯ {true, false} = {true, false}, ¬♯ ∅ = ∅ and for all x ∈
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[SYS] ρ, κ, τ ⊢S (B,E, ξ) iff ρ, κ, τ ⊢B B ∧ ρ, κ, τ ⊢E E ∧
∀n ∈ fn((B,E, ξ)), n ∈ τ(⊥)

[EV] ρ, κ, τ ⊢E E iff ∀I[P ] ◮r B ∈ E : ρ, κ, τ ⊢B L(γ,B)

[PAR-B] ρ, κ, τ ⊢B B1 ‖ B2 iff ρ, κ, τ ⊢B B1 ∧ ρ, κ, τ ⊢B B2

[BOX] ρ, κ, τ ⊢B I[P ]γ iff ρ, κ, τ ⊢
sub(I)
P

P ∧ ∀(a, S)r ∈ I, a ∈ τ(S)

[CON] ρ, κ, τ ⊢N
P

〈C〉M iff {true} ⊆ (checkρ,τ (C)) ⇒
ρ, κ, τ ⊢N

A
π ∧ ρ, κ, τ ⊢N

P
M

[REP] ρ, κ, τ ⊢N
P

∗π.P ′ iff ρ, κ, τ ⊢N
P

π.P ′

[ACT] ρ, κ, τ ⊢N
P

π.P ′ iff ρ, κ, τ ⊢N
A

π ∧ ρ, κ, τ ⊢N
P

P ′

[PAR] ρ, κ, τ ⊢N
P

P1 |P2 iff ρ, κ, τ ⊢N
P

P1 ∧ ρ, κ, τ ⊢N
P

P2

[SUM] ρ, κ, τ ⊢N
P

M1 +M2 iff ρ, κ, τ ⊢N
P

M1 ∧ ρ, κ, τ ⊢N
P

M2

[CH] ρ, κ, τ ⊢N
A

ch(r, v, T ) iff ρ(v) ⊆ τ(T )

[OUT] ρ, κ, τ ⊢N
A

v!u iff ∀n ∈ ρ(v) : ρ(u) ⊆ κ(N,n)

[IN] ρ, κ, τ ⊢N
A

v?y iff ∀n ∈ ρ(v) : κ(N,n) ⊆ ρ(y) ∧
(∀T ∈ Sort : ρ(v) ∩ τ(T ) 6= ∅ ⇒
(∀n ∈ τ∗(µ(T )) : κ(n) ⊆ ρ(y)))

Table 6.1 – Flow logic specification: ρ, κ, τ ⊢S (B,E, ξ), ρ, κ, τ ⊢E E, ρ, κ, τ ⊢B B, ρ, κ, τ ⊢N
P

P , and
ρ, κ, τ ⊢N

A
π.

P(Bool), {true} ∧♯ x = x, {false} ∧♯ x = {false} and ¬♯ ∅ ∧♯ x = ∅. Finally, τ∗ : P(Sort) → P(Int)
is the extension of τ onto sets of sorts: τ∗(S) =

⋃

S∈S τ(S).

When the condition C tests whether an interface is bound or free we return {true, false}, since
this could be evaluated to either true or false. When the condition tests whether an interface
has a particular sort T , we return {true} if the interface can only ever have type T , {false} if it
can never have type T , ∅ if we are dealing with a variable that cannot be associated with any
name and {true, false} otherwise.

The remaining non trivial clauses in Table 6.1 concern actions π. Clause [CH] handles the
case π = ch(r, v, T ), ensuring that all the interface names that the variable v could take are
associated with the sort T . The [OUT] clause records all possible values of the output u in the
abstract channel environment for each value of the channel v in the box with interface set I,
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checkρ,τ (true) = {true}
checkρ,τ (¬C) = ¬♯(checkρ,τ (C))
checkρ,τ (C1 ∧ C2) = checkρ,τ (C1) ∧

♯ checkρ,τ (C2)

checkρ,τ ((x, k)) =

{

∅ if ρ(x) = ∅
{true, false} otherwise

checkρ,τ ((x, T )) =































∅ if τ∗(Sort) ∩ ρ(x) = ∅
{true} if τ(T ) ∩ ρ(x) 6= ∅ ∧

τ∗(Sort \ T ) ∩ ρ(x) = ∅
{false} if τ(T ) ∩ ρ(x) = ∅ ∧

τ∗(Sort \ T ) ∩ ρ(x) 6= ∅
{true, false} otherwise

Table 6.2 – Definition of check.

such that sub(I) = N .

The [IN] clause is more complex. The first line is the dual of the [OUT] clause — we record
all values that can be sent on v in the box with interface set I such that sub(I) = N in the
abstract environment of the variable y. We now consider the case when v is an interface name,
and we receive a value from an output which takes place in a different box. Here we require
(ρ(v)∩ τ(T ) 6= ∅) for every sort T that v can possibly take. Finally the abstract environment of
the variable y includes all the values that can be sent on all the names that can possibly have a
sort that has communication affinity with T .

6.1 Semantic Correctness

Here we prove that if an analysis is valid for a system S and this system evolve to S′, the same
analysis is valid also for S′.

One of the intermediate results requires to show that the analysis gives the same answer
for congruent systems. This causes issues in the case of systems congruent (or better equal)
because of the application of α-renaming. In fact the analysis results ρ, κ and τ are strictly
linked with the names which appear in the analysed systems. To lose the link with these names
through α-renaming means breaking the analysis results. To solve this problem (as in [82])
we replace the concept of α-renaming with that of disciplined α-renaming and we introduce
canonical names. Disciplined α-renaming means that when we substitute a name n we cannot
use whatever name but we have to choose a name m such that ⌊n⌋ = ⌊m⌋, where ⌊n⌋ denotes
the canonical name of n. This is the same of dividing names in equivalent classes and to allow
substitutions only between names of the same class. We assume that there are infinitely many
classes and infinitely many names for each class. We write ⌊S⌋ for the system where all the
variables and the interface names are replaced by their canonical counterparts. Similarly we
extend this syntax to bio-processes, processes and interfaces. In the following we formally define
the disciplined α-renaming:

b 6∈ fn(P1) ∪ sub(I) ⇒ (a, S)r ∪ I[P1 ] = (b, S)r ∪ I[P1{b/a} ] ∧ ⌊a⌋ = ⌊b⌋

We state now some auxiliary results in order to show the semantic correctness of our analysis.
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In the next lemma, we show that, if τ is a valid abstract interface environment for the set of
interfaces I and the names of the condition C are constants, the results of *C+∗I and checkρ,τ (⌊C⌋)
are related.

Lemma 6.1.1 Let I be an interface set and C a condition. If ∀(⌊a⌋, T )r ∈ ⌊I⌋, ⌊a⌋ ∈ τ(T ) and
fn(C) ⊆ Const then we have:

1. if *C+∗I = true then true ⊆ checkρ,τ (⌊C⌋).

2. if *C+∗I = false then false ⊆ checkρ,τ (⌊C⌋).

3. if *C+∗I /∈ {true, false} then checkρ,τ (⌊C⌋) = {true, false}.

Sketch. By induction on the structure of C.

�

With Lemma 6.1.2 we point out that if a constant ⌊x⌋ can be associated with a variable ⌊y⌋,
then, the set of values ⌊C{x/y}⌋ can possibly evaluate to, is smaller than that of ⌊C⌋.

Lemma 6.1.2 Let x ∈ Const, y ∈ Var, ρ an abstract environment, τ an abstract interface
environment and C a condition. If ⌊x⌋ ∈ ρ(⌊y⌋) then checkρ,τ (⌊C{x/y}⌋) ⊆ checkρ,τ (⌊C⌋).

Proof. The proof is by induction on the structure of the condition C. We only consider the
interesting cases.

case (b, T ) : if b 6= y it is straightforward.

We consider the case b = y. We start observing that if ⌊x⌋ ∈ ρ(⌊y⌋) then ⌊x⌋ ∈ Const and
thus ρ(⌊x⌋) = ⌊x⌋. This implies that ρ(⌊x⌋) ⊆ ρ(⌊y⌋). Therefore checkρ,τ ((⌊y⌋, S)) can
evaluate to four possible values.

If checkρ,τ ((⌊y⌋, T )) = {true}. Given that ρ(⌊x⌋) ⊆ ρ(⌊y⌋) and τ∗(Sort \ {T}) ∩ ρ(⌊y⌋) =
∅ we can state that τ∗(Sort \ {T}) ∩ ρ(⌊x⌋) = ∅. This is enough for concluding that
checkρ,τ ((⌊x⌋, T )) evaluates to ∅ or {true} and thus to ensure that checkρ,τ ((⌊x⌋, T )) ⊆
checkρ,τ ((⌊y⌋, T )).

If checkρ,τ ((⌊y⌋, T )) = {false} we can obtain that τ(T )∩ρ(x) = ∅ and thus checkρ,τ ((⌊x⌋, T ))
evaluates to ∅ or {false}. This, for the same reasons of the previous case, let us conclude
with the desired result.

If checkρ,τ ((⌊y⌋, T )) = {true, false}, whatever is the evaluation of checkρ,τ ((⌊x⌋, T )), the
thesis of the theorem is verified.

If checkρ,τ ((⌊y⌋, T )) = ∅ it is straightforward to ensure that τ∗(Sort \ {T}) ∩ ρ(⌊x⌋) =
τ(T ) ∩ ρ(x) = ∅, and thus, as required, it follows that checkρ,τ ((⌊x⌋, T )) = ∅.

case ¬C : we can similarly handle all the possible values the condition ¬C can evaluate to.
For this reason we consider only the case where checkρ,τ (¬

♯C) = {true}. Observing that
checkρ,τ (¬

♯C) = ¬♯ checkρ,τ (C) = {true}, and thus that checkρ,τ (C) = {false}, we can
apply the inductive hypothesis and obtain that checkρ,τ (C{x/y}) ∈ {{false}, ∅}. Therefore
we conclude with ¬♯ checkρ,τ (C{x/y}) ∈ {{true}, ∅}.
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�

Here we state that, if ρ, κ, τ is a valid solution for the process ⌊P ⌋, the same holds for P{x/y}
under the condition that ⌊y⌋ can possibly assume the channel name ⌊x⌋ as a value.

Lemma 6.1.3 Let x ∈ Const, y ∈ Var, ρ an abstract environment, τ an abstract interface
environment and C a condition. If ⌊x⌋ ∈ ρ(⌊y⌋) and ρ, κ, τ ⊢N

P
⌊P ⌋ then ρ, κ, τ ⊢N

P
⌊P{x/y}⌋.

Proof. We proceed by induction on the structure of P . We only consider the most interesting
cases.

case 〈C〉M : we have two cases. In the first case checkρ,τ (⌊C⌋) ⊆ {false}. We conclude by
Lemma 6.1.2, which ensures that the evaluation of ⌊C{x/y}⌋ is a subset of {false} as well.
In the second case checkρ,τ (⌊C⌋) ⊇ {true}. If check evaluates ⌊C{x/y}⌋ to {false} the result
follows straightforward; otherwise ρ, κ, τ ⊢N

P
M{x/y} follows by inductive hypothesis.

case v!z. P : we have four cases:

case v 6= x and z 6= y: in this case ρ, κ, τ ⊢N
P

⌊v!z. P ⌋ that implies ρ, κ, τ ⊢N
A

⌊v!z⌋ and
ρ, κ, τ ⊢N

P
⌊P ⌋. Given that (v!z. P ){x/y} = v!z. P{x/y} and that, by inductive hypothesis

on P , we get ρ, κ, τ ⊢N
P

⌊P{x/y}⌋, we have all the elements for concluding with ρ, κ, τ ⊢N
P

⌊v!z. P{x/y}⌋.

case v = y and z 6= y: in this case ρ, κ, τ ⊢N
P

⌊y!z. P ⌋ that implies ρ, κ, τ ⊢N
A

⌊y!z⌋ and
ρ, κ, τ ⊢N

P
⌊P ⌋. ρ, κ, τ ⊢N

A
⌊y!z⌋ implies that ∀n ∈ ρ(⌊y⌋), ρ(⌊z⌋) ∈ κ(N,n). Considering

that if ⌊x⌋ ∈ ρ(⌊y⌋) then ⌊x⌋ ∈ Const, we know that ρ(⌊x⌋) = ⌊x⌋. These observations
imply that ρ(⌊x⌋) ⊆ ρ(⌊y⌋) and thus that ∀n ∈ ρ(⌊x⌋), ρ(⌊z⌋) ∈ κ(N,n). This let us
conclude that ρ, κ, τ ⊢N

A
⌊x!z⌋ and, given that as before, by inductive hypothesis, we have

that ρ, κ, τ ⊢N
P

⌊P{x/y}⌋, we obtain the desired result.

case v 6= y and z = y: in this case ρ, κ, τ ⊢N
P

⌊v!y. P ⌋ that implies ρ, κ, τ ⊢N
A

⌊v!y⌋
and ρ, κ, τ ⊢N

P
⌊P ⌋. ρ, κ, τ ⊢N

A
⌊v!y⌋ implies that ∀n ∈ ρ(⌊v⌋), ρ(⌊y⌋) ⊆ κ(N,n). Given

ρ(⌊x⌋) ⊆ ρ(⌊y⌋), ∀n ∈ ρ(⌊v⌋), ρ(⌊x⌋) ⊆ κ(N,n). Thus, exploiting the inductive hypothesis
on P , we can conclude with ρ, κ, τ ⊢N

P
⌊v!x. P{x/y}⌋.

case v = y and z = y: in this case ρ, κ, τ ⊢N
P

⌊y!y. P ⌋ that implies ρ, κ, τ ⊢N
A

⌊y!y⌋ and
ρ, κ, τ ⊢N

P
⌊P ⌋. ρ, κ, τ ⊢N

A
⌊y!y⌋ implies that ∀n ∈ ρ(⌊y⌋), ρ(⌊y⌋) ⊆ κ(N,n). Given that

ρ(⌊x⌋) ⊆ ρ(⌊y⌋), we immediately obtain that ∀n ∈ ρ(⌊y⌋), ρ(⌊y⌋) ⊆ κ(N,n) and we can
conclude with the desired result as in the previous case.

case v?z. P : also in this case we have four cases:

sub-case v 6= y and z 6= y: we handle this case as we have done for v!z. P . We only need
to apply the inductive hypothesis on the process P .

sub-case v = y and z 6= y: in this case ρ, κ, τ ⊢N
P

⌊y?z. P ⌋ which implies ρ, κ, τ ⊢N
A

⌊y?z⌋ and ρ, κ, τ ⊢N
P

⌊P ⌋. ρ, κ, τ ⊢N
A

⌊y?z⌋ implies ∀T : ρ(⌊y⌋) ∩ τ(T ) 6= ∅ ⇒ (∀a ∈
τ∗(µ(T )), κ(a) ⊆ ρ(⌊z⌋)) and ∀w ∈ ρ(⌊y⌋), κ(N,w) ⊆ ρ(⌊z⌋). Considering that ρ(⌊x⌋) ⊆
ρ(⌊y⌋) we know ∀T : ρ(⌊x⌋) ∩ τ(T ) 6= ∅ ⇒ ρ(⌊y⌋) ∩ τ(T ) 6= ∅. This let us conclude
∀T : ρ(⌊x⌋) ∩ τ(T ) 6= ∅ ⇒ (∀a ∈ τ∗(µ(T )), κ(a) ⊆ ρ(⌊z⌋)). From ρ(⌊x⌋) ⊆ ρ(⌊y⌋) and
∀w ∈ ρ(⌊y⌋), κ(N,w) ⊆ ρ(⌊z⌋), is is easy to obtain that ∀w ∈ ρ(⌊x⌋), κ(N,w) ⊆ ρ(⌊z⌋).
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Now, in conjunction with the application of the inductive hypothesis on P , we have all the
necessary in order to state ρ, κ, τ ⊢N

P
⌊x?z. P{x/y}⌋.

sub-case v 6= y and z = y: in this case we immediately conclude by observing that
(v?y. P ){x/y} = v?y. P .

sub-case v = y and z = y: here we have that (y?y. P ){x/y} = x?y. P . In order to obtain
the desired result we have to show that ρ, κ, τ ⊢N

A
x?y and that ρ, κ, τ ⊢N

P
P . The second

statement follows immediately by hypothesis, for the first one we can proceed as we have
shown ρ, κ, τ ⊢N

A
x?z in the case v = y and z 6= y.

case ch(v, S). P : we consider only the case where v = y. Also this proof is based on the
observation that ρ(⌊x⌋) ⊆ ρ(⌊y⌋). In fact this observation, considering that by hypothesis
it follows that ρ(⌊y⌋) ⊆ τ(S), implies ρ(⌊x⌋) ⊆ τ(S). In this way, exploiting the inductive
hypothesis on P , we can conclude with the desired result.

�

With the next lemma we prove a subject reduction result limited to transitions involving
boxes. The thesis of the lemma is divided in three points. They handle output, input and change
actions, respectively.

Lemma 6.1.4 Let x ∈ Const, y ∈ Var, ρ, τ, κ an analysis result, I[P ]γ a well-formed box, N

a set of canonical names. If ρ, κ, τ ⊢B ⌊I[P ]γ⌋ and I[P ]γ
C,a
−−→r I

′[P ′ ]γ with C 6= false then we
have:

1. If a = k!t then k = n or k = T1 with (n, T1)
r1 ∈ I and t = m or t = T2 with (m, T2)

r2 ∈ I
and ⌊m⌋ ∈ κ(sub(⌊I⌋), ⌊n⌋) and ρ, κ, τ ⊢B ⌊I ′[P ′ ]γ⌋.

2. If a = k?t then k = n or k = T1 with (n, T1)
r1 ∈ I and t = m or t = T2 with (m, T2)

r2 ∈ I
and we have:

(a) if ⌊m⌋ ∈ κ(sub(⌊I⌋), ⌊n⌋) then ρ, κ, τ ⊢B ⌊I ′[P ′ ]γ⌋.

(b) if ∃U ∈ Sort : U ∈ µ(T1) and n′ ∈ τ(U) and m ∈ κ(n′) then ρ, κ, τ ⊢B ⌊I ′[P ′ ]γ⌋

3. If a ∈ {(T, U), τ} then ρ, κ, τ ⊢B ⌊I ′[P ′ ]γ⌋.

Proof. By induction on the length of the derivation of I[P ]γ
C,a
−−→r I

′[P ′ ]γ (rules of Table 3.4).
We consider only the most interesting cases.

base case r1: if ρ, κ, τ ⊢B ⌊I[n!m.P ]γ⌋ then ρ, κ, τ ⊢
sub(⌊I⌋)
A

⌊n!m⌋ and ρ, κ, τ ⊢
sub(⌊I⌋)
P

⌊P ⌋ and

∀(⌊a⌋, S)r ∈ ⌊I⌋, ⌊a⌋ ∈ τ(S). This is enough to conclude, indeed ρ, κ, τ ⊢
sub(⌊I⌋)
A

⌊n!m⌋

implies ⌊m⌋ ∈ κ(sub(⌊I⌋), ⌊n⌋), and ρ, κ, τ ⊢
sub(⌊I⌋)
P

⌊P ⌋ and ∀(⌊a⌋, S)r ∈ ⌊I⌋, ⌊a⌋ ∈ τ(S)
imply ρ, κ, τ ⊢B ⌊I[P ]γ⌋.

base case r2: if ρ, κ, τ ⊢B ⌊I[n?y. P ]γ⌋ then ρ, κ, τ ⊢
sub(⌊I⌋)
A

⌊n?y⌋ and ρ, κ, τ ⊢
sub(⌊I⌋)
P

⌊P ⌋ and
∀(⌊a⌋, S)r ∈ ⌊I⌋, ⌊a⌋ ∈ τ(S). If a = k?t we separately consider the cases (a) and (b):
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(a) ρ, κ, τ ⊢
sub(⌊I⌋)
A

⌊n?y⌋ implies that κ(sub(⌊I⌋), ⌊n⌋) ⊆ ρ(⌊y⌋) which, given that by
hypothesis ⌊m⌋ ∈ κ(sub(⌊I⌋), ⌊n⌋), let us state that m ∈ ρ(⌊y⌋). This last observation

together with ρ, κ, τ ⊢
sub(⌊I⌋)
P

⌊P ⌋ make possible to apply the result of Lemma 6.1.3

and to obtain that ρ, κ, τ ⊢
sub(⌊I⌋)
P

⌊P{m/y}⌋. Now we have all the necessary in order
to conclude with the desired result ρ, κ, τ ⊢B ⌊I[P{y/m} ]γ⌋.

(b) ρ, κ, τ ⊢
sub(⌊I⌋)
A

⌊n?y⌋ implies that if U ∈ µ(T1) and n′ ∈ τ(U) then κ(⌊n′⌋) ⊆ ρ(⌊y⌋).
Observing that κ(sub(⌊I⌋), ⌊n′⌋) ⊆ κ(⌊n′⌋) and that, by hypothesis, ⌊m⌋ ∈ κ(⌊n′⌋)
we conclude that ⌊m⌋ ∈ ρ(⌊y⌋) and therefore we can proceed as in the previous case.

base case r3: if ρ, κ, τ ⊢B ⌊{(a, U)r1} ∪ I[ ch(r, a, T ). P ]γ⌋ then ∀(⌊b⌋, S)r ∈ ⌊I⌋, ⌊b⌋ ∈ τ(S)

and ρ, κ, τ ⊢
⌊a⌋∪sub(⌊I⌋)
A

ch(r, ⌊a⌋, T ) and ρ, κ, τ ⊢
⌊a⌋∪sub(⌊I⌋)
P

P . Moreover we know that if

ρ, κ, τ ⊢
⌊a⌋∪sub(⌊I⌋)
A

ch(r, ⌊a⌋, T ) then a ∈ τ(T ) and thus ρ, κ, τ ⊢B {(a, T )r1} ∪ I[P ]γ .

step case r5-l: for the sake of clearness we suppose k = n e t = m. From ρ, κ, τ ⊢B I[P1 |P2 ]γ
we can easily obtain that ρ, κ, τ ⊢B ⌊I[Pi ]γ⌋ for i ∈ {1, 2}. This lets us apply the inductive

hypothesis to I[P1 ]γ
C1,n!m
−−−−→0 I

′[P ′
1 ]γ and obtain that ρ, κ, τ ⊢B ⌊I ′[P ′

1 ]γ⌋ and ⌊m⌋ ∈
κ(sub(⌊I⌋), ⌊n⌋). The last observation makes possible to apply the inductive hypothesis

to I[P2 ]γ
C1,n?m
−−−−−→0 I

′[P ′
2 ]γ and obtain that ρ, κ, τ ⊢B ⌊I ′[P ′

2 ]γ⌋. From ρ, κ, τ ⊢B ⌊I ′[P ′
i ]γ⌋

we have that ρ, κ, τ ⊢
sub(I′)
P

⌊P ′
i⌋ per i ∈ [1, 2] and ∀(a, S)r ∈ I ′, a ∈ τ(S). These let us

conclude with the desired result ρ, κ, τ ⊢B I ′[P ′
1 |P

′
2 ]γ .

step case r6: by hypothesis we know that *C+∗I ∧C ′ 6= false, which implies *C+∗I 6= false. Con-
sidering that if ρ, κ, τ ⊢B ⌊I[ 〈C〉M ]γ⌋ then ∀(⌊a⌋, S)r ∈ ⌊I⌋, ⌊a⌋ ∈ τ(S), by Lemma 6.1.1,
*C+∗I 6= false implies that {true} ⊆ checkρ,τ (⌊C⌋). This implies that if ρ, κ, τ ⊢B ⌊I[ 〈C〉M ]γ⌋

then ρ, κ, τ ⊢
sub(⌊I⌋)
P

⌊M⌋. Hence, we have the necessary to state that ρ, κ, τ ⊢B ⌊I[M ]γ⌋

and to conclude by applying the inductive hypothesis to I[M ]γ
C′,a
−−→r I

′[M ′ ]γ .

�

Now we extend the result of the previous lemma to transitions involving systems. Again,
we separately consider transitions generated by different actions. The three points listed in the
thesis handle transitions fired by input and output actions over an interface, and by internal
actions, respectively.

Lemma 6.1.5 Let S be a well-formed system and ρ, κ, τ an analysis result. If S
l
−→r S

′ and
ρ, κ, τ ⊢S ⌊S⌋ then we have:

1. If l = (γ, T !n) then get(γ, S) = I[P ]γ and (b, T )r1 ∈ I and ⌊n⌋ ∈ κ(sub(⌊I⌋), b) and
ρ, κ, τ ⊢S ⌊S′⌋.

2. If l = (γ, T?n) then get(γ, S) = I[P ]γ and (b, T )r1 ∈ I and (if ∃U ∈ Sort : U ∈ µ(T ) and
m ∈ τ(U) and n ∈ κ(m) then ρ, κ, τ ⊢S ⌊S′⌋).

3. If l ∈ {(γ, T ), τ} then ρ, κ, τ ⊢S ⌊S′⌋.

Proof. By induction on the length of the derivation of S
l
−→r S

′. We consider only the interesting
cases.
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step case r16-l: if ρ, κ, τ ⊢S ⌊(B1 ‖ B2, E, ξ)⌋ then ρ, κ, τ ⊢B ⌊Bi⌋ for i ∈ [1, 2] and ρ, κ, τ ⊢E

⌊E⌋ and ∀n ∈ fn((B1 ‖ B2, E, ξ))⌊n⌋ ∈ κ(⊥). Considering that fn((Bi, E, ξ)) ⊆ fn((B1 ‖
B2, E, ξ)) we know that ρ, κ, τ ⊢S ⌊(Bi, E, ξ)⌋ for i ∈ [1, 2]. This let us apply the inductive

hypothesis to (B1, E, ξ)
(γ1,T !n)
−−−−−→0 (B

′
1, E, ξ) and obtain that get(γ1, (B1, E, ξ)) = I1[P1 ]γ1

and ∃b1 : (b1, T1)
r1 ∈ I1 and ⌊n⌋ ∈ κ(sub(⌊I1⌋), b1) and ρ, κ, τ ⊢S ⌊(B′

1, E, ξ)⌋. Moreover,
given that αc(T1, T2) 6= 0, we know that T1 ∈ µ(T2). These observations, together with the

application of the inductive hypothesis to (B2, E, ξ)
(γ2,T?n)
−−−−−→0 (B

′
2, E, ξ), let us conclude

that ρ, κ, τ ⊢S ⌊(B′
2, E, ξ)⌋. At this point we have that ρ, κ, τ ⊢B ⌊B′

i⌋ for i ∈ [1, 2] and
ρ, κ, τ ⊢E ⌊E⌋ and, considering that by Corollary 5.1.4 we have that fn((B′

1 ‖ B′
2, E, ξ)) ⊆

fn((B1 ‖ B2, E, ξ)) and thus that ∀n ∈ fn((B′
1 ‖ B′

2, E, ξ)), ⌊n⌋ ∈ κ(⊥), we can conclude
that ρ, κ, τ ⊢S ⌊(B′

1 ‖ B′
2, E, ξ)⌋.

base case r17: if ρ, κ, τ ⊢S ⌊(I[P ]γ , E, ξ)⌋ then ρ, κ, τ ⊢E ⌊E⌋ which implies ∀I[P ] ◮r′ B ∈
E, ρ, κ, τ ⊢B ⌊L(γ,B)⌋. These observations, considering that, by Corollary 5.1.4, we
know that fn((I[P ]γ , E, ξ)) ⊆ fn((L(γ,B)γ,E, ξ)), let us conclude with the desired result
ρ, κ, τ ⊢S ⌊(L(γ,B), E, ξ)⌋.

�

Finally we prove the semantic correctness of our analysis, showing that, if ρ, κ, τ is a valid
analysis result for So, the same holds for its derivatives.

Theorem 6.1.6 Let So be a well-formed system and ρ, κ, τ an analysis result. If S ∈ ds(So)
and ρ, κ, τ ⊢S So then ρ, κ, τ ⊢S S.

Proof. By induction on the number of transitions which are necessary in order to reach S starting
from So.

base case: we have that S = So and we can immediately conclude observing that, by definition
of canonical names, this implies that ⌊S⌋ = ⌊So⌋.

step case: we have that S0−→r1 . . . −→rn Sn−→r S. By inductive hypothesis ρ, κ, τ ⊢S Sn. We
conclude observing that that if Sn−→r S then Sn

τ
−→r S and thus, by Lemma 6.1.5, ρ, κ, τ ⊢S

S.

�

6.1.1 Moore Family Result

Here we show that the set of solutions which satisfies a system S is a Moore family. This implies
that there always exists a least solution for S. As first step we prove a result about conditions
and the intersection of couples of abstract environments and abstract interface environments.

Lemma 6.1.7 If ρ = ρ1 ⊓ ρ2 and τ = τ1 ⊓ τ2 then checkρ,τ (C) ⊆ checkρ1,τ1(C) ∩ checkρ2,τ2(C).

Proof. We proceed by induction on the structure of C. We only consider the case C = (x, T )r.
The proof goes through all the possible values checkρ1,τ1(C) and checkρ2,τ2(C) can evaluate to.
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case checkρ1,τ1(C) = ∅: we have that τ∗1 (Sort) ∩ ρ1(x) = ∅ which implies τ∗(Sort) ∩ ρ(x) = ∅.
This is enough for concluding with the desired result given that checkρ,τ (C) = ∅.

case checkρi,τi(C) = {true} for i ∈ {1, 2}: this implies that τi(T ) ∩ ρi(x) 6= ∅ and τ∗i (Sort) ∩
ρi(x) = ∅ with i ∈ {1, 2}. From this we get that τ∗(Sort) ∩ ρ(x) = ∅ which is enough for
concluding that checkρ,τ (C) evaluates to {true} or ∅, which are subsets of {true}.

case checkρi,τi(C) = {false} for i ∈ {1, 2}: this case is similar to the previous because τ(T ) ∩
ρ(x) = ∅. This implies that checkρ,τ (C) can evaluate to ∅ or {false} and thus it is a subset
of {false}.

case checkρ1,τ1(C) = {true} and checkρ2,τ2(C) = {false}: we have to verify that checkρ,τ (C) =
∅. We observe that τ1(T )∩ρ1(x) 6= ∅ and τ2(T )∩ρ2(x) = ∅ which implies τ(T )∩ρ(x) = ∅.
Moreover, we have that τ∗1 (Sort \ {T}) ∩ ρ1(x) = ∅ and τ∗2 (Sort \ {T}) ∩ ρ2(x) 6= ∅ that
implies τ∗(Sort\{T})∩ρ(x) = ∅. Now, τ(T )∩ρ(x) = ∅ and τ∗(Sort\{T})∩ρ(x) = ∅ imply
τ∗(Sort) ∩ ρ(x) = ∅ and thus we can conclude with the desired result checkρ,τ (C) = ∅.

case checkρ1,τ1(C) = {true, false}: in this case τ∗(Sort \ {T}) ∩ ρ(x) = ∅ given that τ∗2 (Sort \
{T}) ∩ ρ2(x) = ∅, instead τ(T ) ∩ ρ(x) can be either empty or not. Anyway we are safe in
both cases given that checkρ,τ (C) evaluates to ∅ and {true} respectively.

case checkρ1,τ1(C) = {true, false} and checkρ2,τ2(C) = {true}: In this case τ∗(Sort\{T})∩ρ(x) =
∅ given that τ∗2 (Sort \ {T}) ∩ ρ2(x) = ∅, instead τ(T ) ∩ ρ(x) can be either empty or not.
Anyway we are safe in both cases given that checkρ,τ (C) evaluates to ∅ and {true}, respec-
tively.

case checkρ1,τ1(C) = {true, false} and checkρ2,τ2(C) = {false}: here, with respect to the previ-
ous case, we obtain the specular situation where τ(T ) ∩ ρ(x) is empty and we cannot say
anything about τ∗(Sort \ {T}) ∩ ρ(x). However, also in this case, we obtain the desired
result given that the result of checkρ,τ (C) is either ∅ or {false}.

case checkρi,τi(C) = {true, false} for i ∈ {1, 2}: we can immediately conclude because we have
checkρ1,τ1(C) ∩ checkρ2,τ2(C) = {true, false}.

�

Here we extend the result of the previous lemma to abstract environments and abstract
interface environments which result from the intersection of a generic number of elements.

Corollary 6.1.8 Let C be a condition, ρi an abstract environment and τi an abstract interface
environment for i ∈ [1, n]. If ρ =

d
i∈[1,n] ρi and τ =

d
i∈[1,n] τi then:

checkρ,τ (C) ⊆
⋂

i∈[1,n]

checkρi,τi(C)

Sketch. It follows by Lemma 6.1.7.
�

Finally, we prove that the set of valid analysis results of the system S is a Moore Family.
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Theorem 6.1.9 Given a system S the set {(ρ, κ, τ) : ρ, κ, τ ⊢S S} is a Moore Family.

Proof. Let us consider an index set I and assume that ∀i ∈ I : ρi, κi, τi ⊢S S so that, given
ρ =

d
i∈I ρi, κ =

d
i∈I κi and τ =

d
i∈I τi we shall prove that ρ, κ, τ ⊢S S. In order to get the

result we should prove this result for all the judgments. However we observe that for ⊢S and ⊢B

the result is immediate and thus we focus our attention on ⊢
P
and ⊢

A
.

In order to get the result for ⊢
A
we should handle all the possible values which π can assume.

However we observe that the result follows from these observations:

1. ∀i ∈ I : ρi(v) ⊆ τi(T ) ⇒ ρ(v) ⊆ τ(T )

2. ∀i ∈ I : ρi(v) ⊆ κi(A, n) ⇒ ρ(u) ⊆ κ(A, n)

3. ∀i ∈ I : κi(A, n) ⊆ ρi(y) ⇒ κ(A, n)⊆ ρ(y)

4. ∀i ∈ I : ρi(v) ∩ τi(T ) ⊇ V ⇒ ρ(v) ∩ τ(T ) ⊆ V

To get the result for ⊢
P
we proceed by induction on the structure of the processes. Most of

the cases can be trivially proved by mere application of the induction hypothesis therefore we
consider only the most interesting case 〈C〉M . Here we have two sub-cases.

sub-case {true} ⊆ checkρ,τ (C): in this case, by Corollary 6.1.8, we know that ∀i ∈ I, {true} ⊆
checkρi,τi(C), which implies ρi, κi, τi ⊢

N
A

π and ρi, κi, τi ⊢
N
P

P . This, exploiting the result
for the judgment ⊢

A
and applying the inductive hypothesis on ρi, κi, τi ⊢N

P
P , let us

conclude with the desired result.

sub-case checkρ,τ (C) ⊆ {false}: here we can conclude considering that checkρ,τ (C) ⊆ {false} is
enough in order to conclude ρ, κ, τ ⊢N

P
〈C〉M .

�

6.2 Exploiting the Analysis

In order to exploit the result of the analysis we redefine the proper derivatives (Definition 5.2.2)
of a box I[P ] with respect to the system S. The new definition replaces the implication
a = T?m ⇒ m ∈ sn(S) with a = T?m ⇒ ⌊m⌋ ∈

⋃

m′∈τ∗(µ(S)) κ(m
′)). In doing so we take into

account that, in order to receive a name m over an interface which is associated with the sort
T , such a name must be sent by an interface which is possibly associated with a sort having
non-zero binding capability with T .

Definition 6.2.1 I2[P2 ] is a (one-step) proper derivative of I1[P1 ] with respect to the system

S if it holds that I1[P1 ]
C,a
−−→
Box

r I2[P2 ] and a = T?m ⇒ ⌊m⌋ ∈
⋃

m′∈τ∗(µ(S)) κ(m
′)) where ρ, κ, τ

is the smallest analysis result such that ρ, κ, τ ⊢S S. More generally if

I1[P1 ]
C1,a1
−−−→
Box

r1 . . .
Cn−1,an−1
−−−−−−−→

Box
rn−1 In[Pn ]

and ai = T?m ⇒ ⌊m⌋ ∈
⋃

m′∈τ∗(µ(S)) ρ(m
′) for i ∈ [1, n) then In[Pn ] is a proper derivative of

I1[P1 ] respect to the system S. Finally, the set pds(I[P ], S) of the proper derivatives of I[P ]



130 Control Flow Analysis

with respect to the system S, is defined as the set containing I[P ] and all the boxes I ′[P ′ ] such
that I ′[P ′ ] is a proper derivative of I[P ] with respect to the system S.

In order to verify that Theorem 5.2.14 is still valid we show a modified version of the
Lemma 5.2.10 in Lemma 6.2.3. This result, through Lemmas 5.2.11, 5.2.12, and 5.2.13, propa-
gates to Theorem 5.2.14. In this way we guarantee that the relation ΦSo

Box
⊆ Φ̃So

Box
is still valid,

even with the modified definition of proper derivatives. After showing an intermediate result we
prove Lemma 6.2.3.

Lemma 6.2.2 Let I[P ]γ be a well-formed box and ρ, τ, κ an analysis result. If exists the box

transition I[P ]γ
C,T !n
−−−→r I[P ]γ and ρ, τ, κ ⊢B I[P ]γ then (b, T )r1 ∈ I and ⌊b⌋ ∈ τ(T ) and

⌊n⌋ ∈ κ(⌊b⌋).

Proof. By induction on the length of the derivation of I[P ]γ
C,T !n
−−−→r I[P ]γ . We only consider

the interesting case of rule r1. We have that ρ, τ, κ ⊢B I[n!m.P ]γ and that (n, T )r1 ∈ I. This
immediately implies that ⌊n⌋ ∈ τ(T ) and that ⌊m⌋ ∈ κ(sub(⌊I⌋), ⌊b⌋) and thus, observing that
⌊m⌋ ∈ κ(sub(⌊I⌋), ⌊b⌋) implies ⌊m⌋ ∈ κ(⌊b⌋), we concluded with the desired result.

�

Lemma 6.2.3 Let S be a well-formed system and ρ, τ, κ an analysis result. If S
l
−→r S

′ and
get(γ, S′) = I ′[P ′ ]γ and ρ, κ, τ ⊢S S then one of the following holds:

1. if l = (γ′, T !n) then

(a) if γ 6= γ′ then I ′[P ′ ] ∈ getBox (S),

(b) otherwise get(γ, S) = I[P ]γ and ρ, τ, κ ⊢B I[P ]γ and I[P ]γ
C,T !n
−−−→0 I

′[P ′ ]γ with
C 6= false and (b, T )r1 ∈ I and ⌊n⌋ ∈ κ(⌊b⌋) and ⌊b⌋ ∈ τ(T ).

2. if l = (γ′, T?n) then

(a) if γ 6= γ′ then I ′[P ′ ] ∈ getBox (S),

(b) otherwise get(γ, S) = I[P ]γ and ρ, τ, κ ⊢B I[P ]γ and I[P ]γ
C,T?n
−−−−→0 I

′[P ′ ]γ with
C 6= false.

3. if l = τ then

(a) I ′[P ′ ] ∈ getBox (S) or

(b) get(γ, S) = I[P ]γ and I[P ]γ
C,a
−−→r′ I

′[P ′ ]γ with C 6= false,
a /∈ {n?t, n!t},
(a = T !n ⇒ (b, T )r1 ∈ I ∧ ⌊n⌋ ∈ κ(sub(⌊I⌋), ⌊b⌋) ∧ ⌊b⌋ ∈ τ(T ) ∧ r′ = 0),
(a = T?n ⇒ ⌊n⌋ ∈

⋃

m∈τ∗(µ(T )) κ(m) ∧ r′ = 0) and

(a /∈ {T !n, T?n} ⇒ r′ = r)

4. if l = (γ′, T ) then I ′[P ′ ] ∈ getBox (S).

Proof. By induction on the length of the derivation of S
l
−→r S

′. We consider only the interesting
cases.
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base case r9: if ρ, τ, κ ⊢S (I[n!m.P ]γ , E, ξ) then ρ, τ, κ ⊢B I[n!m.P ]γ . We immediately con-
clude by Lemma 6.2.2.

base case r16-l: from ρ, τ, κ ⊢S (B1 ‖ B2, E, ξ) we obtain that ρ, τ, κ ⊢S (Bi, E, ξ) for i ∈
[1, 2]. We now observe that if get(γ, (B′

1 ‖ B′
2, E, ξ)) = I ′[P ′ ]γ then it holds that either

(get(γ, (B′
1, E, ξ)) = I ′[P ′ ]γ and get(γ, (B′

2, E, ξ)) = ⊥) or (get(γ, (B′
1, E, ξ)) = ⊥ and

get(γ, (B′
2, E, ξ)) = I ′[P ′ ]γ).

In the case get(γ, (B′
1, E, ξ)) = I ′[P ′ ]γ , given that ρ, τ, κ ⊢S (B1, E, ξ), we apply the

inductive hypothesis to ρ, τ, κ ⊢S (B1, E, ξ)
(γ1,T1!n)
−−−−−→r (B

′
1, E, ξ) and we obtain that one of

the following holds:

1. if γ 6= γ′1 then I ′[P ′ ] ∈ getBox ((B1, E, ξ)) which implies I ′[P ′ ] ∈ getBox ((B1 ‖
B2, E, ξ)) and we are done.

2. otherwise we have that get(γ, (B1, E, ξ)) = I[P ]γ and I[P ]γ
C,T1!n
−−−−→r I

′[P ′ ]γ with
ρ, τ, κ ⊢B I[P ]γ and thus we can apply the result of Lemma 6.2.2 and obtain that
(b, T1)

r1 ∈ I and ⌊b⌋ ∈ τ(T ) and ⌊n⌋ ∈ κ(⌊b⌋). If get(γ, (B1, E, ξ)) = I[P ]γ then
get(γ, (B1 ‖ B2, E, ξ)) = I[P ]γ and we obtained the desired result.

In the case get(γ, (B′
2, E, ξ)) = I ′[P ′ ]γ , given that ρ, τ, κ ⊢S (B1, E, ξ), we apply the in-

ductive hypothesis to ρ, τ, κ ⊢S (B2, E, ξ)
(γ2,T2?n)
−−−−−−→r (B

′
2, E, ξ) and similarly to the previous

case we obtain that:

1. if γ 6= γ2 then I ′[P ′ ] ∈ getBox ((B1 ‖ B2, E, ξ)),

2. otherwise get(γ, (B1, E, ξ)) = I[P ]γ and I[P ]γ
C,T2?n
−−−−→0 I

′[P ′ ]γ .

In this case if γ = γ2, in oder to conclude, we have to verify that ⌊n⌋ ∈
⋃

m∈τ∗(µ(T2))
κ(m).

This follows by observing that we know (as we have seen in the previous case if γ = γ1),
that ∃b : ⌊n⌋ ∈ κ(b) with b ∈ τ(T1) and T1 ∈ µ(T2) (given that αc(T1, T2) 6= 0). This
immediately implies that ⌊n⌋ ∈

⋃

m∈τ∗(µ(T2))
κ(m) therefore we can conclude with the

desired result.

�

Summing up, in this chapter, we refined the over-approximation of ΦSo
Box

proposed in Chap-
ter 5. We obtained the result by modifying the notion of proper derivatives of a box. Proper
derivatives introduce approximation because their generation requires to guess the channel names
which boxes can receive. In Chapter 5 this set of channels is over-approximated to the sent names
of So; this approximation is safe but, in most of the cases, extremely imprecise. Here we defined
a control flow analysis which, for each interface, compute an over-approximation of the sorts it
can be associated with and of the channels it can send. This information allows us to improve
the precision in guessing the channel names receivable by interfaces of a specific box.

Here we do not apply this analysis to the actin case study because, in the actin model, boxes
do not send names over interfaces, therefore, what introduced in this chapter cannot improve
the results obtained in Section 5.4.
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Chapter 7

Encoding to κ-calculus

In this chapter we define an encoding of BlenX into κ-calculus. This allows us to exploit the
results obtained in [32] (see Section 2.3.4) in the context of BlenX.

The representation of a BlenX system in κ-calculus encodes each box with an agent. Inter-
faces of a box have a one to one mapping with the interfaces of the dual agent, and bindings
among agents occur as specified by the environment of the BlenX system. The information to
generate the rules driving the evolution of the κ-calculus expression encoding the system S, is
gathered from the transition system Φ̃S

Box,≡. Here, the finiteness of Φ̃S
Box,≡, which we proved

in Chapter 5.3.38 for system whose boxes are in FF , becomes crucial in order to ensure the
generation of a finite number of κ-calculus rules.

In this chapter we enrich the κ-calculus language by associating priorities with rules:

El →p Er

where p can be either ∞ (high priority) or ∞/ (low priority). We only use priorities to show the
properties of our encoding; they do not play any role in the semantics of the language. For the
sake of readability we modify the syntax of κ-calculus transitions. Originally it was

E
r
−→
κ

E′

where r is the rule applied in order to obtain the transition. Now it becomes

E
r
−→
κ

p E
′

where p is the priority associated with r.

7.1 Encoding BlenX to κ-calculus

The encoding makes use of canonical names introduced in Chapter 6. We perform the encoding
using two functions. The first one is S2κ. Given a BlenX system it returns a triple made of a set
of agent names, a function defining the interfaces associated with each agent name, and a set of
κ-calculus rules. The second function is B2A which, given a bio-process and an environment,
generates a κ-calculus mixture.

Suppose S to be a BlenX system and S2κ(S) = (Agent,Σ, R). The names of Agent are
sets of canonical names. If a set of names is in Agent then it is the subject set of a box of S.
Formally:
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B2A(B1 ‖ B2, ξ) = B2A(B1, ξ),B2A(B2, ξ)

B2A(I[P ]γ , ξ) = sub(⌊I⌋)
(

zJI[P ]K, ⌊b1⌋
j1 , . . . , ⌊bn⌋

jn
)

where

⌊bi⌋ < ⌊bi+1⌋ for i ∈ [1, n),
{(⌊b1⌋, T1), . . . , (⌊bn⌋, Tn)} = ⌊I⌋,

for i ∈ [1, n] ji =

{

ln(L) if ∃T ′, γ′ s.t L = {(Ti, γ), (T
′, γ′)} ∈ ξ

ǫλ otherwise

Table 7.1 – Function for translating a bio-process into a list of agents.

Agent = {sub(⌊I⌋) : I[P ] ∈ getBox (S)}

For each agent name the function Σ is defined as follows:

Σ(sub(⌊I⌋)) = {z, ⌊b1⌋, . . . , ⌊bn⌋} where ⌊b1⌋, . . . , ⌊bn⌋ are distinct names,
{⌊b1⌋, . . . , ⌊bn⌋} = sub(⌊I⌋) and ∀n ∈ Name, ⌊n⌋ 6= z

Therefore, each agent has a set of interfaces mapping to those of the box it corresponds to,
plus a special interface named z. The special interface z stores in its internal state the equivalence
class of the box represented by its agent. The other interfaces have the same binding state of the
BlenX interfaces they map to. Note that the sort associated with the BlenX interfaces is stored
in the internal state of z. What we intuitively explained can be seen in practice in the definition
of B2A (see Table 7.1). This function, taking as argument a bio-process B and an environment
ξ, returns a list whose agents map the boxes of B. It also links the agents in the same way of
the boxes they encode (i.e. as specified by ξ). The binding states of the agent interfaces are
generated through ln, a bijective function which, given a link belonging to ξ, returns a natural
number. Exploiting this function we associate bound interfaces with the same binding state and
use a reserved integer number of each link. We introduce an ordering between canonical names.
In this way, given a set of interfaces, we generate a unique interface sequence.

The following observation formalizes an interesting property of B2A which directly follows
by its definition: we can deduce the links of (B,E, ξ) by looking at the agents of JB2A(B, ξ)K,
and vice versa.

Observation 7.1.1 Given the system (B,E, ξ), it holds that get(γi, B) = Ii[Pi ]γi, (bi, Ti)
ri ∈

Ii for i ∈ {1, 2} and {(γ1, T1), (γ2, T2)} ∈ ξ iff in B2A(B, ξ) the agents sub(⌊I1⌋) (σ1) and
sub(⌊I2⌋) (σ2) occur with the following characteristics: an interface named ⌊bi⌋ with binding
state l ∈ N and the interface zJIi[Pi ]K occur in σi for i ∈ {1, 2}. By definition of ≡κ we can lift

this property to JB2A(B, ξ)K.

The last element of the triple generated by S2κ is the set of rules R. We denote the set R
resulting by the application of the function S2κ to S as RS . The definition of RS is based
on Φ̃S

Box,≡ = (A,U). Rules are extracted from the relations whose union generates U (see

Definition 5.3.2). These relations are those we refer to as −−−→
Box,≡

I[P ],S with I[P ] ∈ getBox (S).

Before formalizing the definition of RS we consider an example in order to give the intuition
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which lies behind its generation. Suppose that we want to express

JI1[P1 ]K
C,τ

−−−→
Box,≡

I[P ], S
∞/ JI2[P2 ]K

with a κ-calculus rule. Given that a = τ , we know that the boxes belonging to JI1[P1 ]K can
perform an internal communication. Internal communications are independent from interactions
with other boxes, therefore we generate a κ-calculus rule involving one agent. The agent name
is a set of canonical names and is obtained from the interface set of the boxes involved in the
transition: sub(⌊I1⌋) = sub(⌊I2⌋) = sub(⌊I⌋).

For the sake of simplicity, firstly, we consider C = true. This implies that the rule we are
defining will not require any binding constraint. As last step we define the internal state of the
interface z, both in the lhs and in the rhs of the rule. If an agent matches this rule we want it
to belong to the equivalence class JI1[P1 ]K, therefore in the lhs we require that z has internal
state JI1[P1 ]K. After the application of the rule the agent must represent a box belonging to
JI2[P2 ]K, hence the internal state of z in the rhs is JI2[P2 ]K. The generated rule looks as follows:

sub(⌊I1⌋)
(

zJI1[P1 ]K

)

→∞/ sub(⌊I1⌋)
(

zJI2[P2 ]K

)

Now we consider a more complex condition C. Suppose C = (T,⊗) with (b, T ) ∈ I1. The
binding constraint can be expressed as follows:

sub(⌊I1⌋)
(

zJI1[P1 ]K, ⌊b⌋
−
)

→p sub(⌊I1⌋)
(

zJI2[P2 ]K, ⌊b⌋
−
)

Not all the conditions can be so easily expressed. This is the case for conditions express-
ing disjunction: e.g. ¬((T1,⊗) ∧ (T2,⊗)) which is equivalent to (T1,⊙) ∨ (T2,⊙). A single
κ-calculus rule cannot express (T1,⊙) ∨ (T2,⊙), in fact a list of constraints expressed in terms
of binding states can express conjunction but not disjunction. We need to introduce more
rules which consider all the cases in which the condition is satisfied. In our example, assuming
(b1, T1), (b2, T2) ∈ I1, we need three rules which handle separately the cases (T1,⊙) ∧ (T2,⊙),
(T1,⊙) ∧ (T2,⊗) and (T1,⊗) ∧ (T2,⊙):

sub(⌊I1⌋)
(

zJI1[P1 ]K, ⌊b1⌋, ⌊b2⌋
)

→p sub(⌊I1⌋)
(

zJI2[P2 ]K, ⌊b1⌋, ⌊b2⌋
)

sub(⌊I1⌋)
(

zJI1[P1 ]K, ⌊b1⌋, ⌊b2⌋
−
)

→p sub(⌊I1⌋)
(

zJI2[P2 ]K, ⌊b1⌋, ⌊b2⌋
−
)

sub(⌊I1⌋)
(

zJI1[P1 ]K, ⌊b1⌋
−, ⌊b2⌋

)

→p sub(⌊I1⌋)
(

zJI2[P2 ]K, ⌊b1⌋
−, ⌊b2⌋

)

Thus, when (T1,⊙) ∨ (T2,⊙) is true, we know that one of these rules is active, in fact it holds
that:

*¬((T1,⊗) ∧ (T2,⊗))+γ,ξ
⇔

*(T1,⊙) ∧ (T2,⊙) +γ,ξ ∨ * (T1,⊙) ∧ (T2,⊗) +γ,ξ ∨ * ¬((T1,⊗) ∧ (T2,⊙))+γ,ξ
Thus we need to define a function which, given a partially evaluated condition C, generates

a set of sets of elementary conditions:

{{(T1, k1,1), . . . , (Tn, k1,n)}, . . . , {(T1, km,1), . . . , (Tn, km,n)}}
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icg(true) = {∅}
icg((T, k)) = {(T, k)} where (T, k)r ∈ I
icg(¬C) = {A \ icg(C)}

where A = {{(b1, k1), . . . , (bn, kn)} |
((b1, k1), . . . , (bn, kn)) ∈ {(b1,⊙), (b1,⊗)} × · · · × {(bn,⊙), (bn,⊗)}
and {(b1, k1), . . . , (bn, kn))} ∈ icg(C)

{icg(C1 ∧ C2) = {A1 ∪A2 | A1 ∈ icg(C1) ∧A2 ∈ icg(C2)∧
∀(T, k) ∈ A1 ∪A2,¬(T, k) /∈ A1 ∪A2}

Table 7.2 – Definition of the icg function. In the case icg(¬C), if icg(C) is either ∅ or {∅}, we
consider that A = {∅}.

such that

*C+γ,ξ ⇔ (*(T1, k1,1) ∧ · · · ∧ (Tn, k1,n) +γ,ξ ∨ · · · ∨ (*(T1, km,1) ∧ · · · ∧ (Tn, km,n)+γ,ξ)

Formally, we give a method to generate a disjunctive normal form formula which is equivalent
to the input condition. This task is performed by the function interface configuration generator
(icg) whose definition is in Table 7.2. Its property is formalized by Lemma 7.1.2.

Lemma 7.1.2 If icg(C) = {{(T1, k1,1), . . . , (Tn, k1,n)}, . . . , {(T1, km,1), . . . , (Tn, km,n)}} then

*C+γ,ξ ⇔ (*(T1, k1,1) ∧ · · · ∧ (Tn, k1,n) +γ,ξ ∨ · · · ∨ (*(T1, km,1) ∧ · · · ∧ (Tn, km,n)+γ,ξ)

Sketch. By induction on the structure of the partially evaluated condition C.
�

In our example the result of icg to ¬((T1,⊗) ∧ (T2,⊗)) is:

{{(T1,⊙), (T2,⊙)}, {(T1,⊙), (T2,⊗)}, {(T1,⊗), (T2,⊙)}}

Note that, in general, the formulas generated by the icg function have the following proper-
ties: the literals of each clause involve the same interfaces, and these interfaces appear exactly
once (in this way we avoid having clauses in which both (T, k) and ¬(T, k)) appear.

In Table 7.3, we give the clauses which formally define the high priority rule set RS
∞.

[INT] generates rules from transitions which involve a single box performing an internal action
(a change action or an internal communication). We make use of the function it (see Table 7.4).
Given a sequence of κ-calculus interfaces σ and a set of BlenX interfaces I, it generates a set
of BlenX literals that, joined by means of the conjunction operator, express the same binding
constraints of σ. Note that the function is defined only if σ is an ordered sequence. In doing
so we make it a bijective function and we avoid having several rules which express the same
transition with interface sequences which only differ in the interface ordering.

The clause [BIND] generates rules which involve two agents with a free interface each. As
a result of the reaction the free interfaces bind together. Note that they map BlenX interfaces
with sorts having ∞ as binding capability. The clause [UNBIND] is very similar but it handles
rules which break a link between two agents.
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[INT]

sub(⌊I′⌋)
(

z
JI′[P ′ ]K

, σ
)

→∞ sub(⌊I′⌋)
(

z
JI′′[P ′′ ]K

, σ
)

∈ R∞

iff

∃I[P ] ∈ getBox(S) s.t. JI′[P ′ ]K C,a
−−−−→
Box,≡

I[P ], S
∞ JI′′[P ′′ ]K with a ∈ {τ, (T, U)}∧ it(σ, ⌊I′⌋) ∈ icg(C)

[BIND]

sub(⌊I′1⌋)

(

zJI′
1
[P ′

1
]K, ⌊b1⌋

)

, sub(⌊I′2⌋)

(

zJI′
2
[P ′

2
]K, ⌊b2⌋

)

→∞

sub(⌊I′1⌋)

(

zJI′
1
[P ′

1
]K, ⌊b1⌋

1

)

, sub(⌊I′2⌋)

(

zJI′
2
[P ′

2
]K, ⌊b2⌋

1

)

∈ R∞

iff
∃Ii[Pi ] ∈ getBox(S) s.t.

q
I′i[P

′

i ]
y
∈ ds(Ii[Pi ], S)/≡b ∧ (⌊bi⌋, Ti)

ri ∈ ⌊Ii⌋ with i ∈ [1, 2] ∧ αb(T1, T2) = ∞

[UNB]

sub(⌊I′1⌋)

(

zJI′
1
[P ′

1
]K, ⌊b1⌋

1

)

, sub(⌊I′2⌋)

(

zJI′
2
[P ′

2
]K, ⌊b2⌋

1

)

→∞

sub(⌊I′1⌋)

(

zJI′
1
[P ′

1
]K, ⌊b1⌋

)

, sub(⌊I′2⌋)

(

zJI′
2
[P ′

2
]K, ⌊b2⌋

)

∈ R∞

iff
∃Ii[Pi ] ∈ getBox(S) s.t.

q
I′i[P

′

i ]
y
∈ ds(Ii[Pi ], S)/≡b ∧ (⌊bi⌋, Ti)

ri ∈ ⌊Ii⌋ with i ∈ [1, 2]∧αu(T1, T2) = ∞

[UCOM]

sub(⌊I′1⌋)

(

zJI′
1
[P ′

1
]K, σ1

)

, sub(⌊I′2⌋)

(

zJI′
2
[P ′

2
]K, σ2

)

→∞

sub(⌊I′1⌋)

(

zJI′′
1
[P ′′

1
]K, σ1

)

, sub(⌊I′2⌋)

(

zJI′′
2
[P ′′

2
]K, σ2

)

∈ R∞

iff

∃Ii[Pi ] ∈ getBox(S) s.t.
q
I′i[P

′

i ]
y Ci,ai−−−−→

Box,≡

Ii[Pi ], S
?

q
I′′i [P

′′

i ]
y

(⌊mi⌋, Ti)
ri ∈ ⌊Ii⌋ ∧ it(σi, ⌊I′i⌋) ∈ icg(Ci ∧ (Ti,⊙)) with i ∈ [1, 2]∧

a1 = T1!n ∧ a2 = T2?n ∧ αc(T1, T2) = ∞∧ αb(T1, T2) = αu(T1, T2) = 0

[BCOM]

sub(⌊I′1⌋)

(

zJI′
1
[P ′

1
]K, ⌊m1⌋

1, σ1

)

, sub(⌊I′2⌋)

(

zJI′
2
[P ′

2
]K, ⌊m2⌋

1, σ2

)

→∞

sub(⌊I′1⌋)

(

zJI′′
1
[P ′′

1
]K, ⌊m1⌋

1, σ1

)

, sub(⌊I′2⌋)

(

zJI′′
2
[P ′′

2
]K, ⌊m2⌋

1, σ2

)

∈ R∞

iff

∃Ii[Pi ] ∈ getBox(S) s.t.
q
I′i[P

′

i ]
y Ci,ai−−−−→

Box,≡

Ii[Pi ], S
?

q
I′′i [P

′′

i ]
y
∧

(⌊mi⌋, Ti)
ri ∈ ⌊I′i⌋ ∧ (it((σi), ⌊I′i⌋) ∪ {(Ti,⊗)}) ∈ icg(Ci ∧ (Ti,⊗))∧ with i ∈ [1, 2]∧

a1 = T1!n ∧ a2 = T2?n ∧ αc(T1, T2) = ∞

[EV]

sub(⌊I1⌋)
(

z
JI1[P1 ]K

, σ1

)

, ∅, . . . , ∅ →∞

sub(⌊I2⌋)
(

z
JI2[P2 ]K

, σ2

)

, . . . , sub(⌊In⌋)
(

z
JIn[Pn ]K

, σn

)

∈ R∞

iff
∃I[P ] ∈ getBox(S) s.t. I′1[P

′

1 ] ◮∞ I′2[P
′

2 ] ‖ · · · ‖ I′n[P
′

n ] ∈ E ∧ ∃ JI1[P1 ]K ∈ ds(I[P ], S)/≡b ∧
I′i[P

′

i ] ≡b Ii[Pi ] ∧ σi = ⌊b1,i⌋, . . . , ⌊bni,i⌋ ∧ Σ(sub(⌊Ii⌋)) = {⌊b1,i⌋, . . . , ⌊bni,i⌋} for i ∈ [1, n]

Table 7.3 – Definition of the set RS
∞

with respect to the system S = (B,E, ξ).

The clauses [UCOM] and [BCOM] generate rules mapping the capability of the boxes to per-
form inter-communication. The first handles the case of inter-communications taking place over
free interfaces, the second of those taking place through bound interfaces. The agents involved
in the rule maps to boxes which can perform symmetric input and output over interfaces with
sorts having communication capability equal to ∞. In the case of [UCOM] the communication
can happen only if sorts have null binding and unbinding capabilities, as it is the case in BlenX

(see Rule 16-l and 16-r in Table 3.8).

The last clause is [EV] which defines rules starting from the event set. In particular an event
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it((b1
λ1
ι1 , . . . , bn

λn
ιn , I) =















{(T1, k1), . . . , (Tn, kn)} with ki = ⊙ if λi = ǫλ ∧
ki = ⊗ otherwise
and (bi, Ti)

r ∈ I ∧ b1 < . . . < bn
⊥ if ∃i ∈ [1, n) : bi ≥ bi+1

it(ε, I) = ∅

Table 7.4 – Definition of the it function. Note that in this table the interfaces have two subscripts.
The integer number is part of the interface name, the symbol ιi with i ∈ N is instead the internal
state of the interface (which in practice is always ǫι).

I[P ] ◮∞ B leads to the generation of a rule if, inside the transition system of the boxes of the
system S, a box congruent to I[P ] exists. The rules generated, when applied, remove from
the target expression the agent mapping the box congruent to I[P ] and introduce the agents
mapping the bio-process B. Note that we use ghost agents in order to obtain the same number
of agents in the lhs and in the rhs (as required in order to have a well formed rule).

For our convenience, we partition the set RS
∞ dividing the rules depending on their generation

clause. The partitions are intuitively named RS,INT
∞ , RS,BIND

∞ , RS,UNB
∞ , RS,UCOM

∞ , RS,BCOM
∞ , and

RS,EV
∞ . The set RS

∞/ is defined with the same clauses of Table 7.3 where the occurrences of ∞

are replaced with ∞/ . Also in this case we introduce the partition in the same way of RS
∞. We

base the definition of RS , the set of rules generated by S2κ(S), on the sets RS
∞ and RS

∞/ :

RS = RS
∞ ∪ {E1 →∞/ E′

1 ∈ RS
∞/ | ∄E3 ∈ JE1K , ∄E2 →∞ E′

2 ∈ RS
∞ : E3 �κ E2}

In words, RS results by joining RS
∞ and the set obtained removing from RS

∞/ the rules we
can ensure to be concurrent with a high priority rule. The concurrency between rules is checked
exploiting the �κ relation; if the lhs of a low priority rule has a congruent expression which
matches the lhs of a high priority rule, then all the expressions matching the lhs of the low
priority rule also match the high priority one. This implies that when the first rule can be
applied the same holds for the second.

We now introduce some intermediate results necessary to prove a soundness and a com-
pleteness result of the encoding. The following lemma states that if the encoding of a system
S performs a step, it transforms into an expression which is congruent to the encoding of a
one-step derivative of S. The lemma exclusively holds if we consider high priority rules and
derivatives obtained through immediate actions.

Lemma 7.1.3 If S = (B,E, ξ) and S2κ(S) = (Agent,Σ, RS) and B2A(B, ξ)
r
−→
κ

∞ E with r ∈

RS then

∃(B′, E, ξ′) : (B,E, ξ)−→∞ (B′, E, ξ′) with B2A(B′, ξ′) ≡κ E

Proof. We only consider the cases where r ∈ RS,INT
∞ ∪RS,BIND

∞ .
If r belongs to RS,INT

∞ , it has the following form:

sub(⌊I ′⌋)
(

zJI′[P ′ ]K, σ
)

→∞ sub(⌊I ′⌋)
(

zJI′′[P ′′ ]K, σ
)

and this implies that:
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∃I[P ] ∈ getBox (S) s.t. JI ′[P ′ ]K C,a
−−−→
Box,≡

I[P ], S
∞ JI ′′[P ′′ ]K

with a ∈ {τ, (T, U)}∧ it(σ, ⌊I ′⌋) ∈ icg(C)

Given that the rule has been applied to B2A(B, ξ), this mixture has an agent A (σ′) which
satisfies the lhs of r. By definition of B2A this means that in B there exists a box I1[P1 ]γ
such that I1[P1 ] ≡b I ′[P ′ ] which implies ⌊I1⌋ = ⌊I ′⌋. Moreover σ = ⌊b1⌋

j1 , . . . , ⌊bn⌋
jn from

which we deduce it(σ, ⌊I1⌋) = {(T1, k1), . . . , (Tn, kn)} where, for i ∈ [1, n], ki = ⊙ if ji = ǫλ
and, otherwise, ki = ⊗. It also holds that bi occurs free in σ′ if ji = ǫλ and bound otherwise.
These observations, by definition of B2A, imply that, for i ∈ [1, n], if ji = ǫλ then ∃T, γ′ :
{{(Tl, γ), (T, γ

′)} ∈ ξ}, if ji 6= ǫλ then ∃T, γ′ : {{(Tl, γ), (T, γ
′)} ∈ ξ}. This lets us conclude

that *(T1, k1) ∧ · · · ∧ (Tn, kn)+γ,ξ = true which, by Lemma 7.1.2, implies *C+γ,ξ = true. Now,

given that JI ′[P ′ ]K C,a
−−−→
Box,≡

I[P ], S
∞ JI ′′[P ′′ ]K we know that I1[P1 ]γ

C,a
−−→∞ I2[P2 ]γ with I2[P2 ] ≡b

I ′′[P ′′ ]. From this, given that *C+γ,ξ = true, applying rules r11 (if a = (T, U)) or r12 (if
a = τ) of Table 3.6 and adding context by applying rules r18-l and r18-r of Table 3.8 we obtain
(B,E, ξ)−→∞ (B′, E, ξ′). Note that we can compute B′ by replacing I1[P1 ]γ with I2[P2 ]γ in
B while ξ′ is equal to ξ if a = τ and to ξ{(γ, T )/(γ, U)} if a = (T, U). It remains to show that
B2A(B′, ξ′) ≡κ E; we only consider (a = τ) where ξ′ = ξ. We observe that if we modify
B2A(B, ξ) by replacing the internal state of the z interface of A (σ′) with I ′′[P ′′ ], we obtain an
expression E′ ≡κ E. We also observe that B′ is equal to B with the exception of the replacement
of I1[P1 ]γ with I2[P2 ]γ which is congruent to I ′′[P ′′ ]. This, by definition of B2A, lets us state
that B2A(B′, ξ) ≡κ E′ which, by transitivity of ≡κ, implies B2A(B′, ξ) ≡κ E.

If r belongs to RS,INT
∞ it has the following form:

sub(⌊I ′1⌋)

(

zJI′1[P ′

1 ]K, ⌊b1⌋
)

, sub(⌊I ′2⌋)

(

zJI′2[P ′

2 ]K, ⌊b2⌋
)

→∞

sub(⌊I ′1⌋)

(

zJI′1[P ′

1 ]K, ⌊b1⌋
1

)

, sub(⌊I ′2⌋)

(

zJI′2[P ′

2 ]K, ⌊b2⌋
1

)

In this case the mixture B2A(B, ξ) contains two agents a1 and a2 matching the first and
the second agent of the lhs of the rule. This, by definition of B2A, implies that in B we
have two boxes I ′′1 [P

′′
1 ]γ1 and I ′′2 [P

′′
2 ]γ2 such that I ′′i [P

′′
i ] ≡b I

′
i[P

′
i ] and (⌊bi⌋, Ti)

ri ∈ ⌊I ′i⌋ and
(γi, Ti) /∈ ξ for i ∈ {1, 2} and αb(T1, T2) = ∞. These observations let us state that applying
the rules r13, r14, r18-l and r18-r we obtain (B,E, ξ)−→∞ (B,E, ξ ∪ {{(γ1, T1), (γ2, T2)})}. It
remains to verify that (B,E, ξ ∪ {{(γ1, T1), (γ2, T2)})} ≡κ E. We note that if we manipulate
B2A(B, ξ) by substituting the binding state of the interfaces ⌊b1⌋ and ⌊b2⌋ of the agents a1
and a2 from ǫλ to ln({(T1, γ1), (T2, γ2)}), we obtain an expression E′ ≡κ E. At this point, by
definition of B2A, we note that B2A(B, ξ∪{{(γ1, T1), (γ2, T2)}}) = E′ which implies B2A(B, ξ∪
{{(γ1, T1), (γ2, T2)}}) ≡κ E.

�

In the next lemma we prove that all the rules belonging to RS and applicable to S′ derivative
of S, also belong to RS′

.

Lemma 7.1.4 Given S = (B,E, ξ), S′ = (B′, E, ξ′), S2κ(S) = (Agent,Σ, RS), S2κ(S′) =
(Agent′,Σ′, RS′

), r = E1 →p E2 ∈ RS and B2A(B′, ξ′) �κ E1 then r ∈ RS′

.
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Proof. We only prove the result for r ∈ RS,INT
∞ . In this case r has the following form:

sub(⌊I ′⌋)
(

zJI′[P ′ ]K, σ
)

→∞ sub(⌊I ′⌋)
(

zJI′′[P ′′ ]K, σ
)

and it holds that

∃I[P ] ∈ getBox (S) s.t. JI ′[P ′ ]K C,a
−−−→
Box,≡

I[P ], S
∞ JI ′′[P ′′ ]K

with a ∈ {τ, (T, U)}∧ it(σ, ⌊I ′⌋) ∈ icg(C)

If B2A(B′, ξ′) �κ E1 then, by definition of B2A, in B′ we have a box I1[P1 ]γ such that I1[P1 ] ≡b

I ′[P ′ ]. This implies that that:

I1[P1 ] ∈ getBox (S′) and JI ′[P ′ ]K C,a
−−−→
Box,≡

I1[P1 ], S
∞ JI ′′[P ′′ ]K

with a ∈ {τ, (T, U)}∧ it(σ, ⌊I ′⌋) ∈ icg(C)

which lets us conclude that r ∈ RS′

.
�

We now have the lemmas necessary to show a completeness result regarding high priority
rules. We cannot extend it to all the rules because κ-calculus semantics ignores priorities.
Therefore we can apply a rule with low priority even in the case it is concurrent with a high
priority one. To modify κ-calculus in order to prevent this behaviour is trivial, however it
prevents the possibility to exploit the result of [33]. Therefore, for the moment we keep the
original κ-calculus semantics. In the future, in order to improve the precision of our analysis,
we will extend the work of [33] to deal with prioritization.

Theorem 7.1.5 If S = (B,E, ξ) ∈ ds(So), S2κ(So) = (Agento,Σo, R
So), B2A(B, ξ)

ro−→
κ

∞

E′ and ro ∈ RSo then ∃(B′, E, ξ′) : (B,E, ξ)−→∞ (B′, E, ξ′) with B2A(B′, ξ′) ≡κ E′.

Proof. By Lemma 7.1.3 we know that, given S2κ(S) = (Agent,Σ, RS), if B2A(B, ξ)
r
−→
κ

∞

E′ with r ∈ RS then ∃(B′, E, ξ′) : (B,E, ξ)−→∞ (B′, E, ξ′) with B2A(B′, ξ′) ≡κ E. In order to
conclude we prove that r0 ∈ RSo . We observe that if ro = E1 →∞ E2 then B2A(B, ξ) �κ E1,
moreover S is associated with the same set of events E of all its derivatives and in particular of
S′. These observations, by Lemma 7.1.4, imply that r0 ∈ RSo and thus we can conclude with
the desired result.

�

Lemma 7.1.6 states that the inclusion of the transition systems of two boxes with respect to
two different systems depends on the inclusion of their state spaces.

Lemma 7.1.6 If ds(I ′[P ′ ], S′) ⊆ ds(I[P ], S) then Φ̃
I′[P ′ ],S′

Box
⊆ Φ̃

I[P ],S
Box

.

Proof. In order to get the result we show that−−→
Box

I′[P ′ ],S′

⊆ −−→
Box

I[P ],S . By definition−−→
Box

I′[P ′ ],S′

is the biggest subset of −−→
Box

such that, if it contains the element (I1[P1 ], rs, C, a, I2[P2 ]), then

I1[P1 ], I2[P2 ] belong to ds(I ′[P ′ ], S′). Instead −−→
Box

I[P ],S is the biggest subset of −−→
Box

such

that, if it contains (I1[P1 ], rs, C, a, I2[P2 ]), then I1[P1 ], I2[P2 ] belong to ds(I[P ], S). From
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these definitions it follows immediately that, if ds(I ′[P ′ ], S′) ⊆ ds(I[P ], S), then −−→
Box

I′[P ′ ],S′

⊆

−−→
Box

I[P ],S .

�

With the following lemma we show the relation between the state space of boxes which are
source and destination of the same transition.

Lemma 7.1.7 If I1[P1 ]
C,a
−−→
Box

rs I2[P2 ] and (a ∈ {T !n, T?n} ⇒ n ∈ fn(S1)) and fn(S2) ⊆ fn(S1)

then ds(I2[P2 ], S2) ⊆ ds(I1[P1 ], S1).

Proof. By Corollary 5.3.9 we know that if I ′1[P
′
1 ] = I1[P1 ] and fn(S) ∩ sub(I ′1) = ∅ then

I ′1[P
′
1 ]

C,a
−−→
Box

rs I ′2[P
′
2 ] with I ′2[P

′
2 ] = I2[P2 ]. Given that fn(S1) ∩ sub(I ′1) = ∅ and sub(I ′2) =

sub(I ′1) and fn(S2) ⊆ fn(S1) we know that fn(S2) ∩ sub(I ′2) = ∅. We have now the hypothesis
to apply the result of Lemma 5.3.10 which let us state that pds(I ′i[P

′
i ], Si) = ds(I ′i[P

′
i ], Si)

for i ∈ {1, 2}. Given that I ′i[P
′
i ] = Ii[Pi ], by definition of ds, we know that ds(I ′i[P

′
i ], Si) =

ds(Ii[Pi ], Si) for i ∈ {1, 2}. Therefore, in order to achieve the desired result, we can prove
that pds(I ′2[P

′
2 ]) ⊆ pds(I ′1[P

′
1 ]) in place of ds(I2[P2 ], S2) ⊆ ds(I1[P1 ], S1). We can obtain

this observing that if I[P ] ∈ pds(I ′2[P
′
2 ], S2) then I ′2[P

′
2 ]

C2,a2
−−−→
Box

r2 . . .
Cn,an
−−−−→
Box

rn I[P ] where

(ai ∈ {T !n, T?n} ⇒ n ∈ fn(S2)) for i ∈ [2, n]. This, given that fn(S2) ⊆ fn(S1) and I ′1[P
′
1 ]

C,a
−−→
Box

rs

I ′2[P
′
2 ] where (a ∈ {T !n, T?n} ⇒ n ∈ fn(S1)), lets us state that I ′1[P

′
1 ]

C,a
−−→
Box

rs I ′2[P
′
2 ]

C2,a2
−−−→
Box

r2

. . .
Cn,an
−−−−→
Box

rn I[P ] where (a ∈ {T !n, T?n} ⇒ n ∈ fn(S1)) which implies I[P ] ∈ pds(I ′1[P
′
1 ], S1).

Therefore we have proved that I[P ] ∈ pds(I ′2[P
′
2 ], S2) ⇒ I[P ] ∈ pds(I ′1[P

′
1 ], S1) which implies

pds(I ′2[P
′
2 ], S2) ⊆ pds(I ′1[P

′
1 ], S1) and thus ds(I2[P2 ], S2) ⊆ ds(I1[P1 ], S1).

�

In the next lemma we show that if two systems are source and destination of the same
transition, the transition system of the boxes of the second is included in that of the first.

Lemma 7.1.8 If S−→r S
′ then Φ̃S′

Box
⊆ Φ̃S

Box
.

Proof. By definition Φ̃S
Box

=
⋃

I[P ]∈getBox(S) Φ̃
I[P ],S
Box

and Φ̃S′

Box
=

⋃

I[P ]∈getBox(S′) Φ̃
I[P ],S′

Box
. This

implies that, in order to obtain the result, we can verify that:

∀I ′[P ′ ] ∈ getBox (S′), ∃I[P ] ∈ getBox (S) : Φ̃
I′[P ′ ],S′

Box
⊆ Φ̃

I[P ],S
Box

Thanks to the result of Lemma 7.1.6 this can be shown by proving that

∀I ′[P ′ ] ∈ getBox (S′), ∃I[P ] ∈ getBox (S) : ds(I ′[P ′ ], S′) ⊆ ds(I[P ], S)

We observe that, by Lemma 5.2.11 we know that, between the boxes which appear in S and
those which appear in S′ there is the following relation: if get(γ, S′) = I ′[P ′ ]γ then one of the
following holds:

1. I ′[P ′ ] ∈ getBox (S).
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2. get(γ, S) = I[P ]γ and I[P ]
C,a
−−→
Box

rs I
′[P ′ ] and (a ∈ {T !n, T?n} ⇒ n ∈ fn(S)).

In the first case we conclude immediately with the desired result. In the second case we observe

that, by Lemma 5.1.3, fn(S′) ⊆ fn(S) and that I[P ]
C,a
−−→
Box

rs I ′[P ′ ] where (a ∈ {T !n, T?n} ⇒

n ∈ fn(S)); therefore, by Lemma 7.1.7 we state that ds(I ′[P ′ ], S′) ⊆ ds(I[P ],S). The last
observation, by Lemma 7.1.6, lets us conclude with the desired result.

�

We now extend the previous result to all the derivatives of a system.

Corollary 7.1.9 If S ∈ ds(So) then Φ̃S
Box

⊆ Φ̃So
Box

Sketch. It follows immediately by induction on the number of transitions which are necessary
in order to reach S starting from So. The proof is based on the result of Lemma 7.1.8.

�

In the next lemma we show that the set of rules generated by applying the function S2κ to
a system, includes all the sets generated by S2κ applied to the derivatives of the same system.

Lemma 7.1.10 Given a well-formed system So, if S ∈ ds(So) then RS ⊆ RSo .

Proof. By Corollary 7.1.9 we know that if S ∈ ds(So) then Φ̃S
Box

⊆ Φ̃So
Box

. This implies that if
S ∈ ds(So) then Φ̃S

Box,≡ ⊆ Φ̃So
Box,≡. After this observation we consider one by one the clauses of

Table 7.3 and we show that if r ∈ RS then r ∈ RSo .
In the cases [INT], [UCOM] and [BCOM] the result immediately follows observing that,

thanks to the inclusion Φ̃S
Box,≡ ⊆ Φ̃So

Box,≡, we know that if JI1[P1 ]K
C,a

−−−→
Box,≡

I[P ], S
∞ JI2[P2 ]K with

I[P ] ∈ getBox (S) then JI1[P1 ]K
C,a

−−−→
Box,≡

Io[Po ], So

∞ JI2[P2 ]K with Io[Po ] ∈ getBox (So).

In the case [BIND] and [UNB] the desired result follows immediately observing that if
Φ̃S
Box,≡ ⊆ Φ̃So

Box,≡ then it holds that I1[P1 ] ∈ ds(Io[Po ], So) with Io[Po ] ∈ getBox (So) implies
I1[P1 ] ∈ ds(I[P ], S) with I[P ] ∈ getBox (S).

In the case [EV] we can conclude with the same observations done for the cases [BIND] and
[UNB] plus the fact that if S ∈ ds(So) then S and So are associated with the same set of events.

�

Lemma 7.1.11 states that, if a system performs a τ -action, the same can do its encoding in
κ-calculus and with the same priority.

Lemma 7.1.11 Given S = (B,E, ξ), S′ = (B′, E, ξ′) and S2κ(S) = (Agent,Σ, RS), if S
l
−→r S

′

then one of the following holds:

1. l = (γ, T !n) and get(γ, S) = I[P ]γ and I[P ]γ
C,T !n
−−−→
Box

0 I ′[P ′ ]γ with get(γ, S′) = I ′[P ′ ]γ

and γ′ 6= γ ⇒ get(γ, S) = get(γ, S′) and *C+γ,ξ = true and n ∈ fn(S).

2. l = (γ, T?n) and get(γ, S) = I[P ]γ and I[P ]γ
C,T?n
−−−−→
Box

0 I ′[P ′ ]γ with get(γ, S′) = I ′[P ′ ]γ

and γ′ 6= γ ⇒ get(γ, S) = get(γ, S′) and *C+γ,ξ = true.
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3. l = (γ, T ) and get(γ, S) = I[P ]γ and ∃b : (b, T )r
′′

∈ I.

4. l = τ and B2A(B, ξ)
r′
−→
κ

p E′ ≡κ B2A(B, ξ) with r 6= ∞ ⇒ p = ∞/ ∧ r′ ∈ RS
∞/ and

r = ∞ ⇒ p = ∞∧ r′ ∈ RS
∞.

Proof. By induction on the length of the derivation of S
l
−→r S

′ (rules of Tables 3.6 and 3.8). We
consider only some representative cases.

base case r9 :

I[P ]γ
C,T !n
−−−→0 I[P

′ ]γ

(I[P ]γ , E, ξ)
(γ,T !n)
−−−−→0 (I[P

′ ]γ , E, ξ)

provided *C+γ,ξ = true

From the premises of the rule I[P ]γ
C,T !n
−−−→0 I[P

′ ]γ and from the side condition *C+γ,ξ =
true. Moreover, by Lemma 5.1.3, if l = (γ, T !n) then n ∈ (I[P ]γ , E, ξ). To conclude we
observe that if γ′ 6= γ then it holds that get(γ′, (I[P ]γ , E, ξ)) = ⊥ = get(γ′, (I[P ′ ]γ , E, ξ)).

step case r14 :

(B1, E, ξ)
(γ1,T1)
−−−−→0 (B1, E, ξ) (B2, E, ξ)

(γ2,T2)
−−−−→0 (B2, E, ξ)

(B1 ‖ B2, E, ξ)
τ
−→αb(T1,T2) (B1 ‖ B2, E, ξ ∪ {{(γ1, T1), (γ2, T2)}})

provided: αb(T1, T2) > 0 ∧ ∀L ∈ ξ : {(γ1, T1), (γ2, T2)} ∩ L = ∅

By inductive hypothesis get(γi, (B1, E, ξ)) = Ii[Pi ]γi and ∃bi : (bi, Ti)
ri ∈ Ii. Moreover,

from the side condition of the rule αb(T1, T2) 6= 0 and ∀L ∈ ξ : {(γ1, T1), (γ2, T2)} ∩L = ∅.

From these observations Ii[Pi ] ∈ getBox ((B1, E, ξ)), JIi[Pi ]K ∈ ds(Ii[Pi ], S), (bi, Ti)
ri ∈

Ii, for i ∈ {1, 2} and αb(T1, T2) 6= 0. Because of the [BIND] rule of Table 7.3, this implies
that r′

sub(⌊I1⌋)
(

zJI1[P1 ]K, ⌊b1⌋
)

, sub(⌊I2⌋)
(

zJI2[P2 ]K, ⌊b2⌋
)

→∞

sub(⌊I1⌋)

(

zJI′1[P ′

1 ]K, ⌊b1⌋
1

)

, sub(⌊I2⌋)

(

zJI′2[P ′

2 ]K, ⌊b2⌋
1

)

belongs to RS
p where p = ∞ if r = ∞ and p = ∞/ if r 6= ∞.

Given that get(γi, (B1, E, ξ)) = Ii[Pi ]γi for i ∈ {1, 2}, we observe that, by definition of
B2A, the expression B2A(B1 ‖ B2, ξ) has the following form:

A (σ) , . . . , sub(⌊I1⌋)
(

zJI1[P1 ]K, σ1
)

, . . . , sub(⌊I2⌋)
(

zJI2[P2 ]K, σ2
)

, . . . , A′
(

σ′
)

= E

where, given that ∀L ∈ ξ : {(γ1, T1), (γ2, T2)} ∩ L = ∅ and (bi, Ti)
ri ∈ Ii, the interface

⌊bi⌋
ǫλ for i ∈ {1, 2} appears in σi. It is easy to observe that such an expression can be

involved in the transition E
p
−→
κ

r′ E
′ with E′ which has the following form:

A (σ) , . . . , sub(⌊I1⌋)
(

zJI1[P1 ]K, σ
′
1

)

, . . . , sub(⌊I2⌋)
(

zJI2[P2 ]K, σ
′
2

)

, . . . , A′
(

σ′
)
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where all the interfaces of σ′
i are the same of those of σi with the exception of ⌊bi⌋

ǫλ ,
whose binding state changes from ǫλ to n ∈ N. Now we observe that B2A(B1 ‖ B2, ξ ∪
{{(γ1, T1), (γ2, T2)}}) has the following form:

E
p
−→
κ

r′ A (σ) , . . . , sub(⌊I1⌋)
(

zJI1[P1 ]K, σ
′′
1

)

, . . . , sub(⌊I2⌋)
(

zJI2[P2 ]K, σ
′′
2

)

, . . . , A′
(

σ′
)

where σ′′
i is equal to σ′

i with the exception of the binding state of the interface ⌊bi⌋ which, in
place of being n, is ln({(Tl, γ), (T

′, γ′)}). Therefore, by definition of ≡κ, E
′ ≡κ B2A(B1 ‖

B2, ξ ∪ {{(γ1, T1), (γ2, T2)}}) and thus we get the desired result.

�

We now prove some transitivity properties regarding the �κ operator.

Lemma 7.1.12 The operator �κ is transitive over interface sequences.

Proof. By induction on the length of the derivation tree of σ �κ σ′.

base case :
xλι �κ xλι

We trivially conclude because the involved sequences are equal.

base case :
xiι �κ x−ι

Here we observe that if σ �κ xiι then σ = xiι, σ
′. From this we get immediately the desired

result observing that:

xiι �κ x−ι σ′ �κ ε

xiι, σ
′ �κ x−ι

base case :
σ �κ ε

For all σ′ �κ σ we conclude immediately observing that σ′ �κ ε.

step case :

s �κ sl σ �κ σl
s, σ �κ sl, σl

Let us suppose to have a sequence σ′ such that σ′ �κ s, σ. In order to get this match it
must hold that σ′ = s′, σ′′, s′ �κ s and σ′′ �κ σ.

By inductive hypothesis we have that s′ �κ sl and that σ′′ �κ σl which lets us conclude
with:

s′ �κ sl σ′′ �κ σl
σ′ = s′, σ′′ �κ sl, σl
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�

Lemma 7.1.13 The operator �κ is transitive over expressions.

Sketch. By induction on the length of the derivation tree of E �κ E′ and exploiting the result
of Lemma 7.1.12. The proof is similar to that of Lemma 7.1.12.

�

Lemma 7.1.14 If E1 �κ E2 and E′
2 ≡κ E2 then ∃E′

1 ≡κ E1 : E
′
1 �κ E′

2.

Proof. By induction on the number of times the transitivity has been applied.

base case :
E,A

(

σ, s, s′, σ′
)

, E′ ≡κ E,A
(

σ, s′, s, σ′
)

, E′

If E1 �κ E,A (σ, s, s′, σ′) , E′ then E1 = E3, A (σ3, s3, s
′
3, σ

′
3, σ

′′
3) , E

′
3 with E = a1, . . . , an

and E3 = a3,1, . . . , a3,n and ai �κ a3, i for i ∈ [1, n] and E′
3 �κ E′ andA (σ3, s3, s

′
3, σ

′
3, σ

′′
3) �κ

A (σ, s, s′, σ′) which implies σ3 �κ σ, s3 �κ s, s′3 �κ s′ and σ′
3, σ

′′
3 �κ σ′. That is enough

to state that E′
1 = E3, A (σ3, s

′
3, s3, σ

′
3, σ

′′
3) , E

′
3 �κ E,A (σ, s′, s, σ′) , E′. After that we can

conclude by observing that E′
1 ≡κ E1.

base case :
E, a, a′, E′ ≡κ E, a′, a, E′

If E1 �κ E, a, a′, E′ then E1 = E3, a3, a
′
3, E

′
3 with E = a1, . . . , an and E3 = a3,1, . . . , a3,n

and ai �κ a3,i for i ∈ [1, n], a3 �κ a′, a′3 �κ a3 and E′
3 �κ E′. These matchings imply that

E′
1 = E3, a

′
3, a3, E

′
3 �κ E, a′, a, E′. Observing that E′

1 ≡κ E1, we can conclude with the
desired result.

base case :
E ≡κ E, ∅

If E1 �κ E we know that E1 = E3, E
′
3 where E = a1, . . . , an and E3 = a3,1, . . . , a3,n

and ai �κ a3,i for i ∈ [1, n]. This implies that E′
1 = E3, ∅, E

′
3 �κ E, ∅. We can conclude

observing that E′
1 ≡κ E1.

base case :
i, j ∈ N ∧ i does not occur in E ⇒ E ≡κ E[i/j]

E1 �κ E implies that E1 = E3, E
′
3 where E = a1, . . . , an and E3 = a3,1, . . . , a3,n and

ai �κ a3,i for i ∈ [1, n]. Now we create an E′′
1 = E1[j/l] where l does not occur in E1.

Then we perform a second substitution to E′′
1 and we obtain E′

1 = E1[i/j]. We have
E′

1 = E3[j/l][i/j], E
′
3[j/l][i/j] and thus E′

1 �κ E[j/l][i/j]. We can conclude observing that
E[j/l][i/j] = E[i/j] (given that j does not occur in E) and that E′

1 ≡κ E1.

base case
i ∈ N ∧ i occurs once in E ⇒ E[ǫλ/i] ≡κ E

Similar to the previous case.
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step case :
E ≡κ E′′ ≡κ E′ ⇒ E ≡κ E′

Given that E1 �κ E, we can apply the inductive hypothesis to E ≡κ E′′ and obtain that
exists E′′

1 ≡κ E1 : E
′′
1 �κ E′′. Given that E′′

1 �κ E′′ we can apply the inductive hypothesis
to E′′ ≡κ E′ and obtain that exists E′

1 ≡κ E′′
1 : E′

1 �κ E′. After that we can conclude by
observing that E′

1 ≡κ E1 by transitivity of ≡κ.

�

Corollary 7.1.15 If E′
1 ∈ JE1K , E′

1 �κ E2 and E �κ E1 then ∃E′ ∈ JEK : E′ �κ E2.

Proof. If E �κ E1 and E′
1 ∈ JE1K, by Lemma 7.1.14, it exists E′ ∈ JEK : E′ �κ E′

1. This let us
conclude by transitivity of the �κ operator (see Lemma 7.1.13), that E′ �κ E2.

�

Finally we prove the soundness of our encoding.

Theorem 7.1.16 If S = (B,E, ξ) ∈ ds(So) and S2κ(So) = (Agento,Σo, R
So) then

S−→r S
′ ⇒ B2A(B, ξ)

r′
−→
κ

p E
′ ≡κ B2A(B′, ξ′)

where S′ = (B′, E, ξ′) and r ∈ R ⇒ p = ∞/ and r = ∞ ⇒ p = ∞ and r′ ∈ RSo .

Proof. By definition of −→ , if S−→r S
′ then S

τ
−→r S

′. This, by Lemma 7.1.11, implies that

B2A(B, ξ)
r′′
−→
κ

p E ≡κ B2A(B′, ξ′) and

1. if r = ∞ then p = ∞ and r′′ ∈ RS
∞;

2. if r ∈ R then p = ∞/ , and r′′ ∈ RS
∞/ .

By Lemma 7.1.10, we know that r′′ ∈ RS implies r′′ ∈ RSo . If r′′ ∈ RS
∞ we get the desired result

because this implies that r′′ ∈ RS and thus r′′ ∈ RSo ; instead if r′′ ∈ RS
∞/ we have to verify that,

given r′′ = E1 →∞/ E′
1, it does not exist E3 ∈ JE1K , r2 = E2 →∞ E′

2 ∈ RS
∞ such that E3 �κ E2.

In order to get this result we suppose by contradiction that E3 and E2 →∞ E′
2 exist. Given that

E3 ∈ JE1K, E3 �κ E2 and B2A(B, ξ) �κ E1 we can apply the result of Corollary 7.1.15 and state
that ∃E′′ ∈ JB2A(B, ξ)K : E′′ �κ E2. This implies that E2 →∞ E′

2 can be applied to B2A(B, ξ)

and thus we can obtain the transition B2A(B, ξ)
r2−→
κ

∞ E′′[E′
2]. However, by Theorem 7.1.5, this

implies that ∃S′′ such that S−→∞ S′′ but this is absurd because such a transition would make
the existence of S−→r S

′ impossible. Therefore we conclude that E3 and r2 do not exist and thus
that, even in the case r′′ ∈ RS

∞/ , r
′′ belongs to RS and thus to RSo .

�

At this point given S2κ((Bo, E, ξo)) = (Agento,Σo, R
So), by Theorem 7.1.5, we can state

that if (B,E, ξ) ∈ ds((Bo, E, ξo)) then B2A(B, ξ)
r1−→
κ

p1 . . .
rn−→
κ

pn E′ with E′ ≡κ B2A(B, ξ) and

r1, . . . , rn ∈ RSo . Thus, exploiting Observation 7.1.1, in order to compute an over-approximation
of the complexes which appear during the possible evolutions of (Bo, E, ξo), we can apply the
abstract interpretation method of [33] to the mixture B2A(Bo, ξo) and the rules of RSo .
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k1 = A
(

zJB2K

)

→∞ A
(

zJB3K

)

k11 = A
(

zJB8K, ⌊p⌋
)

→∞ A
(

zJB9K, ⌊p⌋
)

k2 = A
(

zJB3K

)

→∞ A
(

zJB4K

)

k12 = A
(

zJB8K

)

→∞ A
(

zJB11K

)

k3 = A
(

zJB4K

)

→∞ A
(

zJB6K

)

k13 = A
(

zJB9K

)

→∞ A
(

zJB4K

)

k4 = A
(

zJB4K, ⌊b⌋
−
)

→∞ A
(

zJB7K, ⌊b⌋
−
)

k14 = A
(

zJB9K

)

→∞ A
(

zJB5K

)

k5 = A
(

zJB5K

)

→∞ A
(

zJB6K

)

k15 = A
(

zJB10K, ⌊b⌋
)

→∞ A
(

zJB5K, ⌊b⌋
)

k6 = A
(

zJB5K, ⌊p⌋
−
)

→∞ A
(

zJB8K, ⌊p⌋
−
)

k16 = A
(

zJB10K, ⌊p⌋
−
)

→∞ A
(

zJB12K, ⌊p⌋
−
)

k7 = A
(

zJB6K, ⌊b⌋
−
)

→∞ A
(

zJB10K, ⌊b⌋
−
)

k17 = A
(

zJB11K, ⌊p⌋
)

→∞ A
(

zJB4K, ⌊p⌋
)

k8 = A
(

zJB6K, ⌊p⌋
−
)

→∞ A
(

zJB11K, ⌊p⌋
−
)

k18 = A
(

zJB11K, ⌊b⌋
−
)

→∞ A
(

zJB12K, ⌊b⌋
−
)

k9 = A
(

zJB7K, ⌊b⌋
)

→∞ A
(

zJB9K, ⌊b⌋
)

k19 = A
(

zJB12K, ⌊p⌋
)

→∞ A
(

zJB7K, ⌊p⌋
)

k10 = A
(

zJB7K

)

→∞ A
(

zJB10K

)

k20 = A
(

zJB12K, ⌊b⌋
)

→∞ A
(

zJB8K, ⌊b⌋
)

Table 7.5 – Rules of RS
∞

7.2 Applying the Encoding to the Actin Case Study

The application of the encoding to the actin case study, and in particular to the system S =
(L(A1 ‖ . . . ‖ An), ∅, ∅), is based on the transition system Φ̃A,S

Box,≡ we computed in section 5.4 and
whose representation appears in Figure 5.1.

In order to perform the encoding we firstly apply the function S2κ to S and then B2A to
(L(A1 ‖ . . . ‖ An), ξ). The application of S2κ to S returns the triple (Agent,Σ, RS). The set
Agent contains an element ⌊sub(I)⌋ for each box I[P ] ∈ getBox (S). Given that getBox (S) =
{A}, the set Agent only contains the element {⌊p⌋, ⌊b⌋}. For the sake of readability hereafter
we use A to refer {⌊p⌋, ⌊b⌋}. The function Σ is equal to A 7→ {z, p, b}, therefore the agent A
is provided with the special interface z and with two interfaces whose names correspond to the
subjects of the interfaces of A.

The definition of the set RS is based on RS
∞ and RS

∞/ . Rules can be generated for two reasons:

1. An equivalence class of Φ̃A,S
Box,≡ is involved in a transition associated with simplified rate ∞/

or ∞.

2. In the state space of Φ̃A,S
Box,≡ there are two equivalence classes whose interfaces have sorts

with capabilities allowing their interaction.

The system S does not contemplate sort capabilities with high priority, therefore all the
rules of RS

∞ are of the first kind. Each low priority transition of Φ̃A,S
Box,≡ (i.e. those depicted in

Figure 5.1 and not associated with simplified rate ∞/ ), because of the [INT] clause of Table 7.3,
is responsible for the generation of one rule of RS

∞. As a representative example we propose

the generation of the rule A
(

zJB6K, ⌊b⌋
−
)

→∞ A
(

zJB10K, ⌊b⌋
−
)

. This rule exists because of the

transition JB6K
〈PF,⊗〉,(BF,BB)
−−−−−−−−−−→

Box,≡

A, S

∞ JB10K. The name of the agents involved in the rule is A,

i.e. the canonical form of the subject set of the interfaces of B6 (which is equal to that of
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k21 = A
(

zJB1K

)

→∞/ A
(

zJB2K

)

k22 = A
(

zJB6K, ⌊b⌋
)

, A
(

zJB6K, ⌊p⌋
)

→∞/ A
(

zJB6K, ⌊b⌋
1
)

, A
(

zJB6K, ⌊p⌋
1
)

k23 = A
(

zJB6K, ⌊b⌋
1
)

, A
(

zJB6K, ⌊p⌋
1
)

→∞/ A
(

zJB6K, ⌊b⌋
)

, A
(

zJB6K, ⌊p⌋
)

k24 = A
(

zJB6K, ⌊b⌋
)

, A
(

zJB10K, ⌊p⌋
)

→∞/ A
(

zJB6K, ⌊b⌋
1
)

, A
(

zJB10K, ⌊p⌋
1
)

k25 = A
(

zJB6K, ⌊b⌋
1
)

, A
(

zJB10K, ⌊p⌋
1
)

→∞/ A
(

zJB6K, ⌊b⌋
)

, A
(

zJB10K, ⌊p⌋
)

k26 = A
(

zJB6K, ⌊p⌋
)

, A
(

zJB10K, ⌊b⌋
)

→∞/ A
(

zJB6K, ⌊p⌋
1
)

, A
(

zJB10K, ⌊b⌋
1
)

k27 = A
(

zJB6K, ⌊p⌋
1
)

, A
(

zJB10K, ⌊b⌋
1
)

→∞/ A
(

zJB6K, ⌊p⌋
)

, A
(

zJB10K, ⌊b⌋
)

k28 = A
(

zJB6K, ⌊p⌋
)

, A
(

zJB11K, ⌊b⌋
)

→∞/ A
(

zJB6K, ⌊p⌋
1
)

, A
(

zJB11K, ⌊b⌋
1
)

k29 = A
(

zJB6K, ⌊p⌋
1
)

, A
(

zJB11K, ⌊b⌋
1
)

→∞/ A
(

zJB6K, ⌊p⌋
)

, A
(

zJB11K, ⌊b⌋
)

k30 = A
(

zJB10K, ⌊b⌋
)

, A
(

zJB11K, ⌊p⌋
)

→∞/ A
(

zJB10K, ⌊b⌋
1
)

, A
(

zJB11K, ⌊p⌋
1
)

k31 = A
(

zJB10K, ⌊b⌋
1
)

, A
(

zJB11K, ⌊p⌋
1
)

→∞/ A
(

zJB10K, ⌊b⌋
)

, A
(

zJB11K, ⌊p⌋
)

k32 = A
(

zJB10K, ⌊b⌋
)

, A
(

zJB12K, ⌊p⌋
)

→∞/ A
(

zJB10K, ⌊b⌋
1
)

, A
(

zJB12K, ⌊p⌋
1
)

k33 = A
(

zJB10K, ⌊b⌋
1
)

, A
(

zJB12K, ⌊p⌋
1
)

→∞/ A
(

zJB10K, ⌊b⌋
)

, A
(

zJB12K, ⌊p⌋
)

k34 = A
(

zJB11K, ⌊p⌋
)

, A
(

zJB12K, ⌊b⌋
)

→∞/ A
(

zJB11K, ⌊p⌋
1
)

, A
(

zJB12K, ⌊b⌋
1
)

k35 = A
(

zJB11K, ⌊p⌋
1
)

, A
(

zJB12K, ⌊b⌋
1
)

→∞/ A
(

zJB11K, ⌊p⌋
)

, A
(

zJB12K, ⌊b⌋
)

Table 7.6 – Rules of R
∞/ without the rules which are concurrent with one belonging to R∞.

A and B10). The interface sequences start with the special interfaces z, which have internal
state equal to the equivalent classes involved in the transition. The rest of the sequences is
made of the interface ⌊b⌋− because icg(C) = {{(PF,⊗)}} and it(⌊b⌋−, ⌊I⌋) = {(PF,⊗)} where
I = {(p,BF ), (b, PF )} is the interface set of B6. Summing up, this rule states that an agent
mapping JB6K, if its interface b is bound, can transform in an agent mapping JB10K. This is the
same information carried by the transition JB6K

〈PF,⊗〉,(BF,BB)
−−−−−−−−−−→

Box,≡

A, S

∞ JB10K. The list of the rules

belonging to RS
∞ is reported in Table 7.5.

Rules of RS
∞/ are generated through three clauses of Table 7.3 (where ∞ is replaced with

∞/ ). The [INT] clause generates rule k21 of Table 7.6. Its generation is due to the low priority
transition of Φ̃A,S

Box,≡ which involves the congruent classes JB1K and JB2K. All the other rules
exist because of the clauses [BIND] and [UNB]. For example, rule k22 encodes the capability
of two boxes belonging to JB6K to bind together. The names of the involved agents is again A
(i.e. {⌊p⌋, ⌊b⌋}) and the internal state of the special interface z is JB6K. The other interfaces
are those involved in the binding. In the lhs of the rules they occur free, in the rhs they
become bound. Note that in JB6K the interfaces involved in the reaction have sorts with positive
binding capability. The rules existing because of the [UNB] clause are constructed with a similar
procedure. However, here we require the involved interfaces to occur bound in the lhs and free
in the rhs and their sort to have positive unbinding capability. Some rules belonging to RS

∞/ are

concurrent with rules of RS
∞, therefore they do not belong to RS . It is the case for the rule
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1. A
(

zJB1K, b, p
)

15. A
(

zJB8K, b, p
b.A

)

2. A
(

zJB2K, b, p
)

16. A
(

zJB9K, b, p
)

3. A
(

zJB3K, b, p
)

17. A
(

zJB10K, b, p
)

4. A
(

zJB4K, b, p
)

18. A
(

zJB10K, b
p.A, p

)

5. A
(

zJB4K, b
p.A, p

)

19. A
(

zJB10K, b, p
b.A

)

6. A
(

zJB5K, b, p
)

20. A
(

zJB10K, b
p.A, pb.A

)

7. A
(

zJB5K, b, p
b.A

)

21. A
(

zJB11K, b, p
)

8. A
(

zJB6K, b, p
)

22. A
(

zJB11K, b
p.A, p

)

9. A
(

zJB6K, b
p.A, p

)

23. A
(

zJB11K, b, p
b.A

)

10. A
(

zJB6K, b, p
b.A

)

24. A
(

zJB11K, b
p.A, pb.A

)

11. A
(

zJB6K, b
p.A, pb.A

)

25. A
(

zJB12K, b, p
)

12. A
(

zJB7K, b, p
)

26. A
(

zJB12K, b
p.A, p

)

13. A
(

zJB7K, b
p.A, p

)

27. A
(

zJB12K, b, p
b.A

)

14. A
(

zJB8K, b, p
)

28. A
(

zJB12K, b
p.A, pb.A

)

Table 7.7 – The set lfpV POSTR
S

v .

E = A
(

zJB5K, b
)

, A
(

zJB6K, p
)

→∞/ A
(

zJB5K, b
1
)

, A
(

zJB6K, p
1
)

= E′

In fact E matches A
(

zJB5K

)

and thus the rule is concurrent with k5 = A
(

zJB5K

)

→∞ A
(

zJB6K

)

.

This implies that if a mixture satisfies E, then it also satisfies the lhs of rule k5. Therefore the
rule E →∞/ E′ encodes a BlenX binding with low priority which is concurrent with an immediate
action. In a BlenX system this binding will never take place and thus we can avoid adding the
rule E →∞/ E′ to RS . In Table 7.6 we list the rule of RS

∞/ ∩RS .

The application of B2A to the pair (B, ξ) generates a mixture made of a sequence of n

agents A
(

zJB1K, ⌊b⌋, ⌊p⌋
)

. The name of the agents is A because the canonical form of the

interface subjects of A is {⌊p⌋, ⌊b⌋}, and all the interfaces are free because ξ = ∅.

Once we have encoded S in κ-calculus, we can apply the abstract interpretation based
analysis of Section 2.3.4 to the actin model. In doing so, we generate a finite representation of
an over-approximation of the complexes that can appear during the evolution of S. Hereafter, for
the sake of space, we avoid explicitly writing the interfaces in their canonical form. As first step
we extract the views from B2A(S, ξ). This means to apply the abstraction function to B2A(B, ξ):
α(αc(B2A(B, ξ))). Given that in B2A(B, ξ) we do not have bound interfaces, the generated set

of views is trivially V =
{

A
(

zJB1K, p, b
)}

. Now we compute an over-approximation of the views

we would obtain by applying the function α ◦ αc to the derivatives of B2A(B, ξ). The set is

generated computing lfpV POSTRS

v . In words, we apply, via abstract semantics, the rules of
RS to the elements of V . This process is iterated until we reach a fix-point. In Table 7.7 we
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A
(

z
JB1K

, b, p
)

k1−−→
κ

♯

∞ A
(

z
JB2K

, b, p
)

A
(

z
JB2K

, b, p
)

k2−−→
κ

♯

∞ A
(

z
JB3K

, b, p
)

A
(

z
JB3K

, b, p
)

k3−−→
κ

♯

∞ A
(

z
JB4K

, b, p
)

A
(

z
JB4K

, b, p
)

k4−−→
κ

♯

∞ A
(

z
JB6K

, b, p
)

A
(

z
JB6K

, b, p
)

, A
(

z
JB6K

, b, p
)

k22−−→
κ

♯

∞/ A
(

z
JB6K

, b, pb.A
)

, A
(

z
JB6K

, bp.A, p
)

A
(

z
JB6K

, bp.A, p
)

k8−−→
κ

♯

∞ A
(

z
JB10K

, bp.A, p
)

A
(

z
JB6K

, b, pb.A
)

k9−−→
κ

♯

∞ A
(

z
JB11K

, b, pb.A
)

A
(

z
JB6K

, b, pb.A
)

, A
(

z
JB6K

, bp.A, p
)

k22−−→
κ

♯

∞/ A
(

z
JB6K

, bp.A, pb.A
)

, A
(

z
JB6K

, bp.A, pb.A
)

A
(

z
JB10K

, bp.A, p
)

, A
(

z
JB11K

, b, pb.A
)

k31−−→
κ

♯

∞/ A
(

z
JB10K

, b, p
)

, A
(

z
JB11K

, b, p
)

A
(

z
JB6K

, b, pb.A
)

, A
(

z
JB10K

, bp.A, p
)

k24−−→
κ

♯

∞/ A
(

z
JB6K

, bp.A, pb.A
)

, A
(

z
JB10K

, bp.A, pb.A
)

A
(

z
JB6K

, bp.A, p
)

, A
(

z
JB11K

, b, pb.A
)

k28−−→
κ

♯

∞/ A
(

z
JB6K

, bp.A, pb.A
)

, A
(

z
JB11K

, bp.A, pb.A
)

A
(

z
JB10K

, b, p
)

k16−−→
κ

♯

∞ A
(

z
JB5K

, b, p
)

A
(

z
JB10K

, bp.A, pb.A
)

k17−−→
κ

♯

∞ A
(

z
JB12K

, bp.A, pb.A
)

A
(

z
JB6K

, bp.A, pb.A
)

, A
(

z
JB10K

, bp.A, pb.A
)

k27−−→
κ

♯

∞/ A
(

z
JB6K

, bp.A, p
)

, A
(

z
JB10K

, b, pb.A
)

A
(

z
JB6K

, bp.A, pb.A
)

, A
(

z
JB11K

, bp.A, pb.A
)

k31−−→
κ

♯

∞/ A
(

z
JB6K

, b, pb.A
)

, A
(

z
JB11K

, bp.A, p
)

A
(

z
JB10K

, bp.A, p
)

k16−−→
κ

♯

∞ A
(

z
JB5K

, bp.A, p
)

A
(

z
JB11K

, b, pb.A
)

k18−−→
κ

♯

∞ A
(

z
JB4K

, b, pb.A
)

A
(

z
JB10K

, bp.A, p
)

, A
(

z
JB12K

, bp.A, pb.A
)

k33−−→
κ

♯

∞/ A
(

z
JB10K

, b, p
)

, A
(

z
JB12K

, b, pb.A
)

A
(

z
JB11K

, b, pb.A
)

, A
(

z
JB12K

, bp.A, pb.A
)

k32−−→
κ

♯

∞/ A
(

z
JB11K

, b, p
)

, A
(

z
JB12K

, bp.A, p
)

A
(

z
JB10K

, bp.A, p
)

, A
(

z
JB12K

, b, pb.A
)

k33−−→
κ

♯

∞/ A
(

z
JB10K

, b, p
)

, A
(

z
JB12K

, b, p
)

A
(

z
JB12K

, bp.A, p
)

k23−−→
κ

♯

∞ A
(

z
JB7K

, bp.A, p
)

A
(

z
JB12K

, b, pb.A
)

k24−−→
κ

♯

∞ A
(

z
JB8K

, b, pb.A
)

A
(

z
JB12K

, b, p
)

k23−−→
κ

♯

∞ A
(

z
JB7K

, b, p
)

A
(

z
JB12K

, b, p
)

k24−−→
κ

♯

∞ A
(

z
JB8K

, b, p
)

A
(

z
JB7K

, b, p
)

k10−−→
κ

♯

∞ A
(

z
JB9K

, b, p
)

Table 7.8 – Iterative steps necessary for the generation of the views.
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list the elements of the computed set of views and in Table 7.8 we show the steps leading to
its generation. At this point the analysis ensures that, applying the concretization function γ
to lfpV POSTRS

v , we obtain an over-approximation of the complexes which can form during the
possible evolutions of B2A(B, ξ). In this case the over-approximation is infinite. In fact, for

example, we can build an arbitrary long chain of A
(

zJB12K, b
p.A, pb.A

)

which has A
(

zJB10K, b, p
)

and A
(

zJB11K, b, p
b.A

)

as tips. In the next chapter we present how to exploit the information

enclosed in lfpV POSTRS

v .

7.2.1 Improve the Precision of the Analysis

Here we investigate how to improve the precision of the proposed analysis. We observe that at
the sixth iteration (see Table 7.8), the computation of lfpV POSTRS

v applies rule k22 to views

A
(

zJB6K, b, p
b.A

)

and A
(

zJB6K, b
p.A, p

)

:

A
(

zJB6K, b, p
b.A

)

, A
(

zJB6K, b
p.A, p

)

k22−−→
κ

♯

∞/ A
(

zJB6K, b
p.A, pb.A

)

, A
(

zJB6K, b
p.A, pb.A

)

This generates the view A
(

zJB6K, b
p.A, pb.A

)

, which is without counterpart in the actin BlenX

model where a box congruent to B6 cannot be bound on both its interfaces (see Figure 4.1).
This imprecision happens because abstract and concrete semantics of the κ-calculus do not take
into account rule priorities. If they would, the incriminated application of rule k22 could not
take place. In fact it is concurrent with the high priority rules k8 and k9.

Another way to improve the quality of the analysis is to make more informative the agent
views. Currently, the bound state of a view interface stores the name of the interface and of the
agent it is bound to. Therefore the first view generated by the abstract transition

A
(

zJB6K, b, p
)

, A
(

zJB6K, b, p
)

k22−−→
κ

♯

∞/ A
(

zJB6K, b, p
b.A

)

, A
(

zJB6K, b
p.A, p

)

forgets the internal state and the bound state of the interfaces of the remote agent involved in the
interaction. This implies that the concretization function applied to lfpV POSTRS

v binds the view

A
(

zJB6K, b, p
b.A

)

with whatever view having the capability to bind its b interface to the p inter-

face of an agent named A. For example, it generates complexes where the view A
(

zJB6K, b, p
b.A

)

occurs bound with A
(

zJB12K, b
p.A, p

)

, which actually cannot be the case. To improve the preci-

sion of the analysis we propose to store more information in the views. Considering the previous
abstract transitions we would like to have:

A
(

zJB6K, b, p
)

, A
(

zJB6K, b, p
)

k22−−→
κ

♯

∞/ A

(

zJB6K, b, p
b.A

(

z
JB6K

,b−,p
))

, A

(

zJB6K, b
p.A

(

z
JB6K

,b,p−
)

, p

)

In doing so we prevent the concretization function to join A

(

zJB6K, b, p
b.A

(

z
JB6K

,b−,p
))

with an

agent named A whose z interface has internal state JB12K. To increase the information carried
by views is not a trivial step, in fact it requires to heavily modifying the abstract semantics.



152 Encoding to κ-calculus



Chapter 8

Optimized simulation algorithm

In this chapter we exploit the encoding of BlenX into κ-calculus to define an optimized simulation
algorithm for BlenX. The proposed optimization minimizes the number of visited vanishing
states, without modifying the probabilities of visiting a given tangible state.

8.1 Distance One Expressions

In [32] the set of views generated from a mixture is used to generate all the complexes which can
appear during its evolution. Here we are interested in extracting different information. We want
to generate all the possible subgraphs which can appear during the evolution of the mixture.
We refer to this category of expressions as distance one expressions.

Definition 8.1.1 (Subgraph) Given a mixture E the expression A1 (σ1) , . . . , An (σn) is a sub-
graph of E if its agents are fully specified and if E �κ A1 (σ1) , . . . , An (σn).

Definition 8.1.2 (Distance one expression with n central views) A distance one expres-
sion with n central views is generated taking n views, which we call central views of the expres-
sion, and linking their bound interfaces with a compatible view. The binding state of bound
interfaces not belonging to central views is replaced with “−”. We refer a distance one complex
with n central views as (E, n) where the central views are the first n ∈ N agents occurring in the
expression E.

Notation 8.1.3 We refer the set of distance one expressions generated from the views of the
system S and having n central views as VS,n.

In order to become familiar with this class of expressions we propose some examples using
the views of Table 7.7 . The smallest distance one expression we can generate is made of a
central view whose interfaces are free:

(

A
(

zJB1K, b, p
)

, 1
)

If we choose a central view with a bound interface, such as A
(

zJB11K, b, p
b.A

)

, to obtain a

distance one expression we have to bind its p interface with a compatible view. For example,

choosing: A
(

zJB12K, b
p.A, pb.A

)

, we get:
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((

A
(

zJB11K, b, p
1
)

, A
(

zJB12K, b
1, p−

))

, 1
)

Note that the binding state of the interface p of the compatible view (which is not a central
view) is set to “−”.

In order to make the representation of distance one expressions more intuitive, we introduce
a graphical notation. In this notation, the previous example looks like this:

23 28

Each view looks like a BlenX box whose label corresponds to the numbering introduced in
Table 7.7. Boxes have two interfaces, the one on the left corresponds to the interface b of the
view, the other to p; we do not represent the interface z. An interface whose binding state is
“−” corresponds to an interface with an exiting arc (as it is the case in the previous example
for the p interface of the view labelled with 28). Central views are filled with darker grey.

The next examples show distance one expressions with two central views.
An example of this, using two expressions with one central view is shown below:

((

A
(

zJB1K, b, p
)

, A
(

zJB11K, b, p
1
)

, A
(

zJB12K, b
1, p−

))

, 2
)

In graphical notation:

23 281

Distance one expression with two central views can also be generated by joining two com-
patible views, which become the central views, and then binding other compatible views to the
remaining bound interfaces. As the central views we choose

A
(

zJB11K, b, p
b.A

)

and A
(

zJB12K, b
p.A, pb.A

)

and join them through the interface p of the first and the interface b of the second:

A
(

zJB11K, b, p
1
)

, A
(

zJB12K, b
1, pb.A

)

As a next step, we join a compatible view to the interface p of the second central view. Using:

A
(

zJB12K, b
p.A, pb.A

)

we obtain:

((

A
(

zJB11K, b, p
1
)

, A
(

zJB12K, b
1, p2

)

, A
(

zJB12K, b
2, p−

))

, 2
)

Or, in graphical notation:

28 2823
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We now show how to apply rules to distance one expressions, which is equivalent to use
graph rewriting rules on subgraphs. We only apply to distance one expressions rules which do
not have ghost agents (i.e. agent denoted as ∅ and used to define rules which destroy or create
agents) in their rhs and lhs.

Therefore, the application of a rule never changes the number of agents in the expression.
Given ((a1, . . . , an, E) , n)), ((a′1, . . . , a

′
n, E) , n)) two distance one expressions and r = El →p Er

a rule, if an expression E1 ≡κ a1, . . . , an exists such that E1 �κ El and E1[Er] ≡κ a′1, . . . , a
′
n

then we write

((a1, . . . , an, E) , n)
r
−→
κ

p

((

a′1, . . . , a
′
n, E

)

, n
)

Note that the application of a rule to a distance one expression exclusively modifies its central
views.

Now, we define two functions which extract information from distance one expressions. The
function borders, given a distance one expression, returns the set of pairs of agents having the
following features: the first agent is not a central view and the second is the central view the
first agent is connected to.

Definition 8.1.4 The pair (Ai (σ
′
i) , Aj (σj)) belongs to

borders(((A1 (σ1) , . . . , An (σn) , An+1 (σn+1) , . . . , Am (σm)) , n))

if

1. i ∈ [1, n] and j ∈ (n,m];

2. σi and σj have an interface with the same binding state v ∈ N;

3. σ′
i is obtained replacing the binding states of the interfaces of σi with “−” if they differ

from v or ǫλ (i.e. they are free).

The second function we define is called central view extractor.

Definition 8.1.5 The function central view extractor, henceforth referred to as cve, returns the
set of their central views given a set of distance one expressions, replacing the binding state of
the interfaces with “−” if it differs from ǫλ.

Here we highlight an interesting property of VSo,1: if an agent appears in a mixture encoding
a derivative of So, a congruent version of the same agent is the central view of at least one
element of VSo,1.

Proposition 8.1.6 Given a system S = (B,E, ξ) ∈ ds(So) and (E′, A (σ) , E′′) = B2A(B, ξ),
∃ ((A (σ′) , E′′′), 1) ∈ VSo,1 such that A (σ′′) ≡κ A (σ′′′) where σ′′ and σ′′′ are obtained replacing
the dangling bounds of σ and σ′ with “−”, respectively.

Sketch. It follows by construction of the set VS,1.

�
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8.2 Compressed Rules

Compressed rules are made of three distance one expressions with the following characteristics:

1. The second distance one expression results from the application of a low priority rule to
the first one;

2. The application of all the possible sequences of high priority rules to the second distance
one expression generates an expression congruent to the third distance one expression.

A formal definition follows:

Definition 8.2.1 (Compressed Rule) A triple ((E, n) , (E′, n) , (E′′, n)) is a compressed rule
of S if:

1. E = A1 (yη1 , σ1) , . . . , Am (yηm , σm) and ((A1 (σ1) , . . . , Am (σm)) , n) ∈ VS,n

2. ∃r ∈ RS s.t. (E, n)
r
−→
κ

∞/ (E′, n) . We refer this rule as trigger rule;

3. An infinite sequence of transitions starting from (E′, n) does not exists.

4. For each sequence (at least one has to exists)

(

E′, n
) r1−→

κ
∞ (E1, n)

r2−→
κ

∞ . . .
rm−−→
κ

∞ ((a1, . . . , an, Em) , n)

such that ∄El →∞ Er ∈ RS such that a1, . . . , an, Em �κ El and with r1, . . . , rm ∈ RS the
following holds:

(a) a1, . . . , an, Em ≡κ E′′;

(b) ∄El →∞ Er ∈ RS,UNB
∞ ∪ RS,BCOM

∞ and a1, a2, a
′
1, a

′
2 s.t. (a1, a2) ∈ borders((Ei, n))

with i ∈ [1,m), a′1, a
′
2 ≡κ a1, a2 and a′1, a

′
2 �κ El;

(c) ∄El →∞ Er ∈ RS,BIND
∞ ∪RS,UCOM

∞ , a1, a2, a
′
1, a

′
2 s.t. a′1, a

′
2 ≡κ a1, a2 and a′1, a

′
2 �κ El

and a1 ∈ cve({(E1, n) , . . . , ((a1, . . . , an, Em), n)}), a2 ∈ cve(VS,1).

(d) ∄El →∞ Er ∈ RS,EV
∞ and a ∈ cve({E1, . . . , (a1, . . . , an, Em)}), s.t. a′ ≡κ a and

a′ �κ El.

The first point of this definition states that (E, n) results from a distance one expression
belonging to VS,n whose agents have been provided with a special interface with the reserved
name y. Each y interface has, as internal state, a different label. Rules of RS never modify y
because they are not aware of its existence. By adding this label we can easily trace the evolution
of single agents when rules are applied to (E, n).

The second and third points are self-explanatory. The fourth point verifies that all the ap-
plications of sequences of high priority rules to (E′, n) lead to the same result (condition 4a).
Moreover, it also insures that the sequence of rule applications cannot be interrupted by in-
teractions of the central views with other agents. This check is performed by verifying three
conditions: with condition 4b we require that central views of each intermediate distance one
expression (Ei, n) do not communicate over link or break links with agents which are part of
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(Ei, n) but are not central views. Condition 4c verifies that central views cannot interact through
bindings or communications with agents not belonging to (Ei, n) but which could coexist in a
system with it (we know that cve(VS,1) over-approximates the set of all the agents not belonging
to (Ei, n) because of Proposition 8.1.6). The last condition verifies that central views do not
satisfy events with high priority.

We generate the set of compressed-rules of S in an iterative manner. We start with the
generation of rules which involves distance one expression belonging to VS,1. Then we proceed
with those belonging to VS,2, VS,3 and so on. Given that, in general, this process does not
terminate, we have to fix a limit to the number of iterations to perform. We refer the set of
compressed rule generated by considering distance one expression belonging to

⋃

0<i≤n V
S,n as

CS,n.

8.3 Properties of Compressed Rules

In this section we explain why we are interested in compressed rules. Suppose we have a com-
pressed rule: ((E′

1, n) , (E
′
2, n) , (E

′
3, n)). Consider the distance one expressions (E1, n), (E2, n)

and (E3, n) obtained by removing the special interface y from agents of (E′
1, n), (E

′
2, n) and

(E′
3, n), respectively. Now we take (B1, E, ξ1) ∈ ds(So) such that:

1. If M ≡κ B2A(B1, ξ1) then ∄El →∞ Er ∈ RSo such that M �κ El;

2. ∃M1 = a1,1, . . . , a1,n, E ≡κ B2A(B1, ξ1) such that M1 �κ E1.

Here, with the first constraint, we require that a rule with high priority cannot be applied
to B2A(B1, ξ1). The second constraint, given the transitivity of the operator �κ, requires that
the trigger rule r, which leads to the definition of ((E′

1, n) , (E
′
2, n) , (E

′
3, n)) (condition 2 of

Definition 8.2.1), can be applied to B2A(B1, ξ1).
At this point, we know that M1

r
−→
κ

∞/ M2. The application of r to M1 corresponds to the

replacement of the subgraph represented by E1 with the one represented by E2. This implies
that ∃M ′

2 = a2,1, . . . , a2,n, E ≡κ M2 such that M ′
2 �κ E2. If M ′

2 matches E2 then we can apply
to M2 the sequences of high priority rules which transform (E2, n) into (E3, n) (we know that at
least one of these sequences exists because of condition 4 of Definition 8.2.1). Moreover, thanks
to the constraints introduced with conditions 4b, 4c and 4d of Definition 8.2.1, we know that the
application of these rules to M2 cannot be interrupted by application of other high priority rules.
This means that, whatever sequence of high priority rules we apply to M2, we always obtain
a mixture resulting from the replacement of the subgraph represented by E2 with a subgraph
represented by E3.

We are interested in these properties because they naturally transfer to the system (B1, E, ξ1).
In fact, if no high priority rules can be applied to M1, by the completeness result of Theo-
rem 7.1.5, we know that the same holds for (B,E, ξ1). Moreover, if we verify that (B1, E, ξ1)
performs an action which corresponds to the application of the trigger rule r toM1, then we know
that it becomes the system (B2, E, ξ2) where B2A(B2, ξ2) ≡κ M2. At this point, again by Theo-
rem 7.1.5, we can state that the system (B2, E, ξ2) is a vanishing system and it starts a sequence
of immediate actions leading to a system (B3, E, ξ3) for which it holds that B2A(B3, ξ3) ≡κ M3.

What is particularly interesting is that, by definition of B2A, we know that subgraphs of
M2 map to subgraphs of (B2, E, ξ2), and the same holds for M3 and its corresponding system
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(B3, E, ξ3). This implies that we can obtain a system congruent to (B3, E, ξ3) by replacing in
(B2, E, ξ2) the subgraph represented by E2 with that represented by E3. In the next section we
formally explain how to identify and replace a distance one expression in a BlenX system.

Here we give some examples of compressed rules generated in the context of the actin

case study. Consider the distance one expression
(

A
(

zJB1K, b, p
)

, 1
)

. It is a good candi-

date to become the first component of a compressed rule, indeed it matches the lhs of the

low priority rule k21 of Table 7.6. The application of k21 transforms
(

A
(

zJB1K, b, p
)

, 1
)

into
(

A
(

zJB2K, b, p
)

, 1
)

, which becomes the second component of the compressed rule. We can ap-

ply to
(

A
(

zJB2K, b, p
)

, 1
)

a unique sequence of high priority rules (k1, k2, and k3 of Table 7.5)

generating A
(

zJB6K, b, p
)

, the third component of the compressed rule. In the following picture

we give a graphical representation of the transitions leading to the generation of the compressed
rule:

321 4 8

Observe that, as required by conditions 4b, 4c and 4d of Definition 8.2.1, each central view
of the vanishing distance one expressions obtained by the application of the rules k2 and k3,
together with other agents that could potentially coexist, does not match any rule belonging to
RS,BIND

∞ , RS,UNB
∞ and RS,UCOM

∞ . Moreover, these central views do not match any rule of RS,EV
∞ .

Here these conditions are trivially satisfied because RS,BIND
∞ , RS,UNB

∞ , RS,UCOM
∞ , and RS,EV

∞ are
empty. The generated compressed rule

((

A
(

yη, zJB1K, b, p
)

, 1
)

,
(

A
(

yη, zJB2K, b, p
)

, 1
)

, A
(

yη, zJB6K, b, p
))

carries the following information (note that we added the special interface y): if an inactive
free monomer executes the first step of the activation process, it starts a sequence of immediate
actions, which cannot be interrupted, and becomes active. This implies that, during the evo-
lution of the system S, if a low priority transition transforms a box belonging to JB1K into a
box belonging to JB2K, it goes through a sequence of immediate actions which ends with a box
congruent to B6.

A more complex example involves the distance one expression

((

A
(

zJB1K, b, p
)

, A
(

zJB11K, b, p
1
)

, A
(

zJB12K, b
1, p−

))

, 2
)

As shown in Figure 8.1, the trigger action cause the binding between the two central views.
After the binding, the involved monomers can start two different sequences of immediate tran-
sitions which lead to the same distance one expression. These sequences of transitions are
responsible of the generation of the following compressed rule:

(((

A
(

yη1 , zJB10K, b
1, p

)

, A
(

yη2 , zJB6K, b, p
)

, A
(

yη3 , zJB12K, b
−, p1

))

, 2
)

,
((

A
(

yη1 , zJB10K, b
1, p2

)

, A
(

yη2 , zJB6K, b
2, p

)

, A
(

yη3 , zJB12K, b
−, p1

))

, 2
)

((

A
(

yη1 , zJB12K, b
1, p2

)

, A
(

yη2 , zJB10K, b
2, p

)

, A
(

yη3 , zJB12K, b
−, p1

))

, 2
))
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Figure 8.1 – A distance one expression with two central views leading to the generation of a
compressed rule. The trigger rule binds the central views.

The first, the second and the third box of the distance one expressions in the picture, corre-
spond to the agents whose interfaces y have internal state η3, η1 and η2, respectively. Observe
that the internal state of the interface y allows us to trace how agents transform through the
three distance one expressions of the compressed rule.

As a last example, we propose a compressed rule whose trigger rule is k33 and causes the
unbinding of the central views. The involved distance one expression is

((

A
(

zJB12K, b
1, p2

)

, 2
)

,
(

A
(

zJB10K, b
2, p1

)

, 2
)

,
(

A
(

zJB12K, b
−, p

)

, 2
))

which, through the application of k33, enters the following vanishing configuration:

((

A
(

zJB12K, b
1, p

)

, 2
)

,
(

A
(

zJB10K, b, p
1
)

, 2
)

,
(

A
(

zJB12K, b
−, p

)

, 2
))

We can apply two independent sequences of rules to this distance one expression: k15, k5 and
k19, k10. The two sequences of actions can be applied concurrently, leading to the same distance
one expression. Therefore we have six different sequences of immediate transitions transforming
the vanishing distance one expression in the same way (see Figure 8.2):

((

A
(

zJB10K, b
1, p

)

, 2
)

,
(

A
(

zJB6K, b, p
1
)

, 2
)

,
(

A
(

zJB12K, b
−, p

)

, 2
))

By properly adding the y interface to the previous distance one expressions, we obtain the
compressed rules.
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Figure 8.2 – A distance one expression with two central views leading to the generation of a
compressed rule. The trigger rule unbinds the central views.

8.4 Using Compressed Rules

Given two systems S1 = (B1, E, ξ1), S2 = (B2, E, ξ2) ∈ ds(S), the transition S1 →S
r S2 with

r ∈ R and a compressed rule ((E1, n) , (E2, n) , (E3, n)) we want:

1. To verify if the subgraph represented by E1 appears in S1;

2. In case the subgraph represented by E1 appears in S, to verify if it changes in the subgraph
defined by E2 inside S2 (i.e. to verify if the trigger rule of the compressed rule has been
applied);

3. If the second point holds, to substitute in S2 the subgraph identified by E2 with the
subgraph represented by E3.
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8.4.1 Identifying Subgraphs in a System

Here we verify if the agents of

E1 = A1

(

yη1 , zJI1[P1 ]K, . . .
)

, . . . , Am

(

yηm , zJIm[Pm ]K, . . .
)

map to a subset of the boxes of S1. This is true, if:

∃γ′1, . . . , γ
′
m distinct labels s.t. get(γ′i, S1) = I ′i[P

′
i ]γ′

i
and I ′i[P

′
i ] ∈ JIi[Pi ]K for i ∈ [1,m]

Then we verify if the identified boxes are linked in the same way as the agents they map. First
we check the links which are internal with respect to E1:

{(γ′i, Ti), (γ
′
j , Tj)} ∈ ξ1 iff Aa

(

yηa , zJIa[Pa ]K, . . . , sa
c, . . .

)

with (⌊sa⌋, Ta)
ra ∈ ⌊Ia⌋ for a ∈ {i, j} and c ∈ N

After that, we check the external links by verifying that box interfaces mapping to bound
interfaces of E1, are bound as well.

∃L ∈ ξ s.t. (γ′i, Ti) ∈ L iff Ai

(

yηi , zJIi[Pi ]K, . . . , s
c
i , . . .

)

with (⌊si⌋, Ti)
ri ∈ Ii and c 6= ǫλ

8.4.2 Verifying Trigger Rules Execution

Here we verify that, in the transition S1 →r S2, the only boxes which change their state are
those mapping to the subgraph represented by E1. Moreover, we check that in S2 they map
exactly to the subgraph represented by E2. Here we keep in mind the bijection identified in the
previous step between the labels of the boxes of S1 and the labels used on the y interfaces of
the agents of E1: we know that the box labelled with γ′i maps to the agent whose y interface
has label ηi for i ∈ [1,m].
As a first step, we require boxes labelled with γ /∈ {γ′1, . . . , γ

′
m} to preserve their state:

∀γ /∈ {γ′1, . . . , γ
′
2}, get(γ, S1) = get(γ, S2)

Then, we check if the bijection is still valid among boxes of S2 and agents of E2:

get(γ′i, S2) = I ′i[P
′
i ]γ′

i
iff we have an agent Ai

(

yηi , zJIi[P1 ]K, . . .
)

with I ′i[P
′
i ] ∈ JIi[Pi ]K in (E2, n)

As a last step, we verify that internal links of the subgraph defined by E2 are coherently mapped
by the boxes of S2, and that the transition does not modify other links. In order to check the
internal links, we proceed as previously described:

{(γ′i, Ti), (γ
′
j , Tj)} ∈ ξ2 iff Aa

(

yηa , zJIa[Pa ]K, . . . , s
c
a, . . .

)

is an agent of (E2, n) with (⌊sa⌋, Ta)
ra ∈ Ia for a ∈ {i, j} and c ∈ N

For the other links, we require:

If γa /∈ {γ′1, . . . , γ
′
m} then {(γa, Ta), (γb, Tb)} ∈ ξ2 iff {(γa, Ta), (γb, Tb)} ∈ ξ1
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8.4.3 Replacing Subgraphs

Finally we give the procedure to obtain the system S3 = (B3, E, ξ3) which results from the
substitution of the subgraph represented by E3 into the system S2. The first step, exploiting
the bijection between the labels of box of S2 and those of E2, updates the state of the boxes.
In order to obtain B3, for i ∈ [1,m], we replace in B2 the box I ′[P ′ ]γ′

i
with I[P ]γ′

i
where the

agent A
(

yηi , zJI[P ]K, . . .
)

occurs in E3.

In order to update the links we observe that the mutable links map to the internal links of
E2. Therefore, in order to obtain ξ3, we remove all the links mapping to those of E2 from ξ2
and then add those mapping the links of E3. For the sake of clarity we define two sets, ξ+ and
ξ−. They represent the links mappings the internal links of E2 and E3, respectively.

{(γ′i, Ti), (γ
′
j , Tj)} ∈ ξ+ iff Aa

(

yηa , zJIa[Pa ]K, . . . , s
c
a, . . .

)

is an agent of E3

with (⌊sa⌋, Ta)
ra ∈ ⌊Ia⌋ for a ∈ {i, j} and c ∈ N

The set ξ− has the same definition of ξ+, where we replace the occurrences of E3 with E2.
We can now give the definition of ξ3:

ξ3 = (ξ2 \ ξ−) ∪ ξ+

8.4.4 An Example

Given the compressed rule generated by the transitions of Figure 8.1

(((

E1 = A
(

yη1 , zJB10K, b
1, p

)

, A
(

yη2 , zJB6K, b, p
)

,= A
(

yη3 , zJB12K, b
−, p1

))

, 2
)

,
((

E2 = A
(

yη1 , zJB10K, b
1, p2

)

, A
(

yη2 , zJB6K, b
2, p

)

, A
(

yη3 , zJB12K, b
−, p1

))

, 2
)

((

E3 = A
(

yη1 , zJB12K, b
1, p2

)

, A
(

yη2 , zJB10K, b
2, p

)

, A
(

yη3 , zJB12K, b
−, p1

))

, 2
))

and the systems S1 and S2 of Figure 8.3(a) and 8.3(b), we want to perform the following
operations:

1. To verify that the subgraph represented by E1 is present in S1;

2. To verify that, in the transition from S1 to S2, the subgraph identified through E1 trans-
forms into the one represented by E2.

3. To substitute in S2 the subgraph represented by E2 with the one represented by E3.

Henceforth we refer to the agents using the internal state of their interface y. The first verification
takes place observing that the function

m(η1) = γ3
m(η2) = γ4
m(η3) = γ2

identifies in S1 the subgraph represented by E1. In fact it holds that:
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Figure 8.3 – Graphical representation of the systems used in the example. The identifiers used for
boxes are those introduced in Figure 4.1. The label on the bottom right of the boxes corresponds to
their label in the system.

1. For i ∈ [1, 3], the box m(ηi) belongs to the equivalence class registered in the internal state
of the interface z of the agent ηi;

2. The same internal links occur among the boxes γ1, γ2 and γ3 of S1 and the agents of E1.
This means that the binding between the interface p of box m(η1) = γ3 and the interface b
of box m(η2) = γ4 also occurs between the interface p of the agent η1 and the interface b
of the agent η2.

3. For i ∈ [1, 3], if an interface of ηi is involved in an external link (i.e. it is has binding
state “−”), the same interface of m(ηi) is involved in a link with a box whose label is not
in {γ2, γ3, γ4}. This condition holds because the interface b of the agent η3 is involved in
an external link and the same holds for the interface b of the box m(η3) = γ2.

We now verify that in the transition from S1 to S2, the subgraph made of the boxes γ1, γ2
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and γ3 transforms into the subgraph represented by E2. This holds if the mapping function
m, which identifies in S1 the subgraph represented by E1, also identifies in S2 the subgraph
represented by E2. The verification is performed as in the case of the identification of E1 in S1.

As a last step, we substitute in S2 the subgraph represented by E2 with the subgraph
represented by E3. Again we exploit the function m. For i ∈ [1, 3], we replace in S2 the box
m(ηi) with a box Ii[Pi ] belonging to the equivalent class recorded in the internal state of the
interface z of the agent ηi. The agents changing their state from E1 to E2 are η1 and η2. We
therefore update the state of the boxes labelled with m(η1) = γ3 and m(η2) = γ4. This implies
to change the state of the box labelled with γ3 from B10 to B12, and that of the box labelled
with γ4 from B6 to B10. Note that in place of B12 and B10 we could have used any of the boxes
belonging to the same equivalent classes. This leads to a non-deterministic behaviour of the
substitution operation, which in fact does not compute a unique system but a set of systems
belonging to the same equivalence class. We defined this operation in such a way because we use
it in the context of equivalence classes of systems (see Section 8.5). To complete the substitution,
we update the links among the boxes γ2, γ3 and γ4, which requires us to remove the internal
links of E2, and to add those of E3. Given that E2 and E3 have the same links this operation
does not have any effect. The resulting system is represented in Figure 8.3(c).

8.5 Optimized Simulation Algorithm

Using the previous sections, we have concluded that, given a compressed rule

((E1, n) , (E2, n) , (E3, n)) ∈ CS,n′

we can “apply” it to a system S2 ∈ ds(S) if we have a transition S1 →S
r S2 with this property:

E1 appears in S1 and, in S2, it transforms in E2. Applying the compressed rule to S2 we obtain
S3, which represents the equivalence class of the systems which S2, after a sequence of immediate
actions, can change to. In other words we know that if:

S1 →
S
r S2 →

S
∞ S′

1 →
S
∞ . . . →S

∞ S′
m

with S′
m a tangible system, then S′

m ∈ JS3K. Moreover we can compute JS′
mK in one shot, without

traversing states S′
1, . . . , S

′
n−1.

If we move our point of view to transition system and congruence classes we have:

This means that the tangible congruence class JS1K can perform an action and transforms in JS2K.
JS2K is a vanishing state which, through different sequences of immediate actions, inevitably
transforms into the tangible congruence class JS3K. This subset of the transition system of S, if
we do not care about vanishing states, is equivalent to:

JS1K →r JS2K →∞ JS3K
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In fact they have the same underling CTMC: JS1K →r JS3K. This equivalence, as highlighted in
section 3.3, suggests a path to an optimized algorithm. The underlying intuition is that when
the algorithm deals with a system congruent to JS2K it can immediately jump to JS3K, without
computing the intermediate vanishing configurations. Here, we give a high level description of
the original simulation algorithm applied to a system S and then we introduce its optimization.

1. The simulation time is set to zero and the current configuration is set to S. We refer the
current configuration as Sc;

2. Through operational semantics the active actions of Sc are computed;

3. If Sc is tangible:

(a) The simulation time and JScK are stored in the result;

(b) The rate of the active actions is used to determine the next action and the timestep
of the simulation;

(c) The computed configuration is stored in Sc and the simulation timestep of the fired
action is added to the simulation time;

(d) The procedure restarts from 2;

4. If Sc is vanishing:

(a) According to the policy of the scheduler one of the active actions is chosen;

(b) Via operational semantics the selected action is applied to Sc. Sc is updated with the
just computed system;

(c) The procedure restarts from 2.

In order to optimize the algorithm we modify the handling of vanishing states (i.e. the body
of the if statement at line 4). The mechanism exploits the notion of compressed rule, whose set
is computed in the initialization of the system (see line 1). At line 4a, the optimized algorithm
checks if the last transition (which we refer as Sp →

S
r Sc), corresponds to the application of a trig-

ger rule; in other words it looks for the existence of a compressed rule ((E1, n) , (E2, n) , (E3, n))
such that the subgraph represented by E1 appears in Sp and, as consequence of the transition,
modifies into a subgraph represented by E2 inside Sc . If this is the case, the algorithm knows
that Sc is going to perform a sequence of immediate actions and, instead of executing them,
computes the next tangible configuration. It performs the computation substituting the oc-
currence of the subgraph represented by E2 in Sc with the subgraph represented by E3. Note
that this procedure requires us to store two configurations: the current configuration Sc (as in
the original algorithm) and the previous configuration Sp which stores the configuration whose
transformation led to Sc. In order to properly update Sp, the optimized algorithm is enriched
with the instructions of points 3b and 4c. At point 4c we set Sp to an invalid system because we
triggered an immediate action, and immediate actions cannot trigger compressed rules (trigger
rules always have low priority).

1. The simulation time is set to zero, Sc is set to S and CS,n′

is computed. We refer the
current configuration as Sc;
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2. Through operational semantics the active actions of Sc are computed;

3. If Sc is tangible:

(a) The simulation time and JScK are stored in the result;

(b) Sc is stored in the previous configuration. We refer the previous configu-
ration as Sp;

(c) The rate of the active actions is used to determine the action to be fired and the
timestep of the simulation;

(d) The computed configuration is stored in Sc and the timestep of the fired action is
added to the simulation time;

(e) The procedure restarts from 2.

4. If Sc is vanishing:

(a) if a compressed rule exists ((E1, n) , (E2, n) , (E3, n)) ∈ CS,n′

such that E1

represents a subgraph in Sp which, inside Sc, transforms into the one rep-
resented by E2:

i. inside Sc, the graph represented by E2 is replaced with that represented
by E3. Sc is set to the newly computed system;

(b) otherwise:

i. According to the policy of the scheduler one of the active action is chosen;

ii. Via operational semantics the selected action is applied to Sc. Sc is set to the
just computed system;

(c) Sp is set to NULL (i.e. an invalid system which cannot satisfy the condition
of 4a);

(d) The procedure restarts from 2.

Thanks to the properties of compressed-rules, given a system S, the two algorithms visit the
same sequences of tangible states and with the same probability. However the second algorithm
avoids computing some vanishing states, and therefore computes less steps then the first. We
show the effects of the optimization on the system S1 of Section 8.4.4 which consists of two
actin filaments and a free monomer. One of the possible evolution of S1 is shown in Figure 8.4
where S1 transforms into the vanishing system S2 after the binding between the free monomer
and the longest filament. This causes the execution of two immediate change actions leading to
the update of the interfaces of boxes labelled with γ3 and γ4. The current simulation algorithm,
in order to jump from S1 to the system of Figure 8.4(d), computes two vanishing systems. By
exploiting our optimization, we can avoid computing one of them. In the case of the optimized
algorithm, after the binding between the monomer and the actin filament, the variable Sc is set
to S2 and the variable Sp is set to S1. Given that S2 is a vanishing system, the algorithm enters
the body of the if statement at line 4 where it recognizes that E1 identifies a subgraph in Sp

which, inside Sc, transforms into the one represented by E2. Therefore the algorithm computes
the next system by substituting in Sc the graph E2 with the E3. The operations of identification
and substitution of subgraphs are performed as described in the example of Section 8.4.4. In
conclusion, the algorithm computes the tangible system of Figure 8.4(d) without computing the
vanishing system of Figure 8.4(c).
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Figure 8.4 – One of the possible evolutions of the system S1.
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Chapter 9

Conclusions

In this thesis we applied static analysis techniques to improve the execution of BlenX models.
The optimization technique we describe is based on the partitioning of BlenX systems into two
categories: vanishing (which perform immediate actions) and tangible (which do not). By treat-
ing vanishing systems as uninformative steps, we are able to speed up the simulation by jumping
from tangible configuration to another tangible configuration without computing vanishing ones.

The optimized simulation algorithm is based on a method which, given a BlenX system,
generates an over-approximation of the state space of the boxes, i.e., the boxes which can
appear during its evolution. In order to make the state space of the boxes computable, we
introduced some constraints in the language syntax which ensure the finiteness of the number
of configurations assumable by boxes. To reduce the box expressivity, beside being necessary
for computational issues, also is in agreement with their biological interpretation. As boxes are
intended to model molecules which assume a finite number of interesting conformations, their
ability to generate infinite configurations is inappropriate. To generate the state space of the
boxes, we defined a control flow analysis for BlenX.

Another fundamental step in the definition of the optimized simulation algorithm is the
capability to over-approximate the subgraphs of boxes which can be formed during the evolution
of a BlenX system. Our approach is an abstract interpretation based method, inspired from [32],
a work developed for the κ-calculus language. In order to exploit the results of [32], we defined
an encoding from BlenX to κ-calculus which is based on the generation of the approximated
state space of the boxes.

After that, combining the information gathered through abstract interpretation and the
encoding, we defined a method which, given a system, generates a list of compressed rules. A
compressed rule is a triple of subgraphs (G1, G2, G3) which carries the following information: if
during the evolution of a BlenX system the subgraph G1 appears and transforms in G2, then we
can safely replace G2 with G3. This replacement can take place because the analysis ensures
that if G1 transforms into G2 it starts a sequence of immediate actions (i.e. the system enters a
sequence of uninformative vanishing systems) which cannot be interrupted and finally leads to
the tangible configuration G3.

The optimization of the simulation algorithm consists in applying compressed rules whenever
possible. In doing so we avoid the computation of some vanishing configurations and thus
decrease the number of computed uninformative simulation steps.
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9.1 Future work

At the moment we are working on the implementation of the optimized simulation algorithm.
We think that it will considerably increase the performance of the current BlenX simulator. Our
optimism is supported by the observation that the current simulator, when dealing with realistic
models, spends most of its time executing immediate actions.

Beside implementing the simulation algorithm, we are working on improving the proposed
analyses. In particular, we are refining the control flow analysis of BlenX. In the literature, we
found numerous possible extensions, e.g. it would be interesting to introduce a mechanism for
the detection of dead code taking inspiration from [12, 13, 81, 85]. Another point we are working
on is the encoding from BlenX to κ-calculus. On this side, we note that the current solution is
limited by the absence of immediate actions in the κ-calculus language. To define a new version
of the language with such actions would considerably increase the precision of the encoding.
This modification should also include an adaptation of the abstract interpretation based method
which, at the moment, cannot distinguish between immediate and standard actions.

Another important point we are dealing with is the dimension of the state space of the
boxes. Even if we introduced some constraints on the syntax of the language in order to ensure
its finiteness, in some cases it can be of intractable size. In practical cases, this can happen
when the system involves boxes with several interfaces which can be associated with more than
one sort.

Finally, to apply the algorithm, it is also fundamental to define an efficient way to identify
subgraphs of boxes inside a BlenX system. This operation is necessary to understand if a
compressed rule can be applied. In general the identification of subgraphs is an NP-complete
problem. However we are confident that this in not the case for BlenX systems, as the nodes
of the graph (i.e. the boxes) have some peculiarities (e.g. each interface is associated with a
different sort) which should make it possible to efficiently recognize subgraphs. If this does not
turn out to be the case, the optimized simulation algorithm could still be applied, but we should
limit the generation of compressed rules to those involving small subgraphs.
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