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Outline of the Thesis

Standard microeconomic theory assumes that the the decision-maker (hence-

forth DM) is fully rational. This implies that she perceives all the given

alternatives before deciding, has infinite computational capabilities, and al-

ways chooses the best alternative (alternatives) from any choice set according

to an invariant preference relation. This assumption has being criticized as

unrealistic and many studies have been carried out both at a theoretical and

empirical level in order to provide alternative solutions (Conslik, 1996). One

of the most important criticism is directed by Herbert Simon (1955; 1956),

who proposes a list of simplifications in order to make the standard model

more realistic. For instance, he argues that in the real world individuals

do not perceive all the given alternatives before making the decision, but

typically discover and analyze alternatives sequentially. Moreover, a remark-

able amount of experimental evidence suggests that often subjects’ behavior

is not consistent with the full rationality hypothesis. Rather, experiments

confirm that subjects exhibit attitudes that are closer to what Simon calls

bounded rationality (Payne, Bettman and Johnson, 1993; Gigerenzer, Todd

and the ABC Research Group, 1999; Caplin, Dean and Martin, 2009). In

this thesis we analyze the impact of bounded rationality on various fields

of microeconomic theory by defining boundedly rational agents as individu-

als who follow the so-called satisficing heuristic proposed by Herbert Simon.

That is, individuals discover and analyze alternatives sequentially and stop

searching as soon as they identify the first alternative that they judge to be

satisfactory.
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2 Outline of the Thesis

We first propose a theory of choice within the revealed preference ap-

proach in which the DM behaves consistently with the satisficing heuristic.

We investigate the conditions under which we can infer from choices whether

an alternative is considered to be satisfactory (revealed satisfaction), is re-

vealed to attract attention (revealed attention), and is revealed to be pre-

ferred to some other alternative (revealed preference). We examine these

identification issues under three different domains. Within each domain we

make assumptions about what what variables are observable and what are

not. For instance, if we assume that for each choice problem we can observe

both choice set, choice made by the DM, and search order, then we are able

to provide behavioral definitions of both satisfaction, attention, and prefer-

ence. On the contrary, assuming that we can partially observe search order,

then we are still able to infer satisfaction and preference, but attention only

partially. We also provide an axiomatic characterization of our procedure

under each domain. Finally, we analyze the relationships between our theory

and a related model (Rubinstein and Salant, 2006).

We also examine what are the effects of bounded rationality on indus-

trial organization. A notable amount of literature has been developed in this

field suggesting that boundedly rational individuals are typically subject to

exploitation (Spiegler, 2011). We investigate whether the fact that there is

uncertainty about consumers’ rationality increases their welfare. We ana-

lyze three market models: quality competition, signalling, and monopolistic

screening and show that it is not obvious a priori whether uncertainty helps

boundedly rationality. In particular, it depends on what market model we

assume. For instance, uncertainty increases boundedly rational consumers’

welfare in the quality competition model. On the contrary, uncertainty does

not help bounded rationality under the monopolistic screening model. More-

over, the analysis of our results allows us to derive some suggestions for

policy-makers.

Finally, we propose an experiment aimed at testing whether subjects’ be-

havior is consistent with the satisficing heuristic. We ask subjects to solve
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a sequence of choice problems under time pressure, where each problem is

represented by an incomplete algebraic sum. That is, at each problem only

the result and the operators are visible to subjects that are financially incen-

tivized to get as close as possible to the reported result by inserting numbers

from a given set into the empty spaces. We record not only final choices, but

also intermediate ones and decision time. We analyze the extent to which

subjects commit mistakes (that is, fail to insert the combination of numbers

that maximizes their material payoff) and choose sub-optimal alternatives

and how allocate decision time and make intermediate choices. We show

that on average subjects behavior is consistent with the satisficing heuristic.

We also find that complexity has a stronger impact on subjects’ performance

than the variable familiarity of the environment. In addition, we derive some

useful insights for modeling satisficing behavior. For instance, we find that

the threshold that defines an alternatives to be satisfactory is not fixed, but

vary across choice problems. Finally, we analyze the relationships between

our experiment and a related study (Caplin, Dean and Martin, 2009).

This thesis is organized as follows. Chapter 1 introduces the topics in-

vestigated in this thesis and provides a brief review of the related literature;

Chapter 2 proposes a theory of boundedly rational choice within the revealed

preference approach; Chapter 3 investigates the effects of bounded rational-

ity on industrial organization focusing on the effects of uncertainty; Chapter

4 proposes an experiment aimed at testing whether subjects’ behavior is con-

sistent with the Simon’s idea of bounded rationality; Chapter 5 concludes.

Proofs of proposition and theorems are given in the appendix.
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Chapter 1

Bounded Rationality in

Economics: Theory,

Applications, and Experiments

1.1 Introduction

Standard microeconomic theory assumes that the DM is fully rational, knows

perfectly the choice set before making the decision, and has infinite computa-

tional capability. This implies that she always identifies and selects the best

alternative according to her preference relation. Many studies have been

carried out in order to highlight the limitations of standard theory (Conslik,

1996). They challenge the assumption that the economic man is a realistic

representation of economic agents and propose alternative solutions.

In this thesis we adopt the idea of satisficing proposed by Herbert Si-

mon (1955; 1956), according to which individuals have limited computa-

tional capabilities and typically do not search for the optimum, but look

for satisfactory alternatives. The goal of this chapter is to discuss the most

important studies in economics that assume DMs to be boundedly rational.

In particular we focus on choice theory, industrial organization, and exper-

5



6 Bounded Rationality in Economics

imental economics, topics within which we build our contribution. Section

1.2 summarizes Simon’s satisficing theory and provides a brief discussion of

the studies in psychology and marketing science on bounded rationality; sec-

tion 1.3 proposes a review of the literature on choice theory about bounded

rationality; section 1.4 discusses the most important studies in industrial

organization that assume consumers to be boundedly rational; section 1.5

proposes a review of the experimental literature on boundedly rational indi-

vidual decision-making; section 1.6 concludes.

1.2 Bounded vs Full Rationality

The most systematic and consistent attack to the fully rationality assump-

tion is directed by Herbert Simon. He criticizes many aspects of standard

theory and points out that in reality individuals do not have computational

capabilities and access to information that the paradigm of rationality as-

sumes. He proposes a list of possible simplifications in order to make the

model more realistic. For instance, he suggests a simplified payoff func-

tion that has to be discrete rather than continuous. He illustrates a case in

which the simplified function is equal either to 0 or to 1, which means that

each outcome can be either ‘satisfactory’ (when the function is equal to 1)

or ‘unsatisfactory’ (otherwise). Then, Simon argues that clear comparisons

between alternatives are not always possible, namely payoffs are partially

ordered. As an example, he reports that in some cases it is not possible to

state which is the best option between two alternatives, because they may

not be comparable. A further issue he addressed is that solutions to the con-

sumer problem may not be unique or even exist. In particular, Simon argues

that the assumption about the choice set is unrealistic and that individuals

normally construct their choice set by discovering and exploring alternatives

sequentially. Searching through the choice set, they select the first ‘satis-

factory’ alternative, by which Simon means that people do not maximize a

utility function, but look for sufficiently good solutions, that are not nec-



Full vs Bounded Rationality 7

essarily optimal (Simon, 1955: 104).1 He also suggests that the aspiration

level that defines an alternative to be satisfactory can be updated during the

decision-making, depending on whether the searching process leads to new

satisfactory alternatives or unsatisfactory ones (Simon, 1955: 104-112). In

addition, he argues that the structure of the environment plays a central role

in permitting further simplifications of the standard model. For instance, if

the environment is relatively simple and familiar to the DM, then it is likely

that she will end up choosing an alternative relatively closer to the optimum.

On the contrary, if the environment is relatively complex and unfamiliar,

then most probably the DM will be content with an alternative relatively far

from the optimum (Simon, 1956).

The pioneer work by Simon gave rise to the concept of bounded rationality

and opened a new research field. A huge number of studies have been carried

out in both marketing, psychology, and economics.

If, on the one hand, the bounded rationality approach offers a list of ad-

vantages including a more realistic and adequate representation of economic

agents, then, on the other hand, the neo-classical framework has served as

useful tool for understanding and interpreting various relevant phenomena

that occur in the real world. Before moving to the next section we provide a

couple of examples in which standard theory does a good job in explaining

observed behaviors.

Plott and Uhl (1981) simulate a market in the laboratory. Sellers and

buyers were put into two separated rooms, could not communicate, and were

given marginal cost function and reservation price, respectively. At every

period four subjects, called middlemen (speculators), had first to enter sell-

ers’ room and buy inventories. After this first market, called A, was closed,

middlemen had to move to the buyers’ room and sell the products they pre-

viously bought from sellers. This market is called B. Both markets A and B

were organized as an oral double auction. After market B was closed, mid-

1If DMs are particularly lucky, then the satisfactory solution is also optimal. This

procedure has been called satisficing heuristic.
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dleman returned to market A and a new period started. Products could not

be carried forward to subsequent periods. If sellers and buyers were maximiz-

ing individuals and correctly estimated the probability of sales in market B,

then prices in the two markets should have been the same and attained the

level at which demand and supply intersect. Moreover, middlemen profits

should have been zero. Plott and Uhl (1981) show that what happened in

these markets is very well predicted by standard theory, including equilib-

rium price and the number of objects traded. It was as if middlemen did not

exist and sellers and buyers were in the same market.

There is extensive evidence that suggests that subjects are altruistic.

Consider the so-called dictator game according to which an individual, called

dictator, receives an amount x of money. She has to decide how much of this

amount to give to another player called receiver. Let g be this amount, with

g ∈ [0, x]. Standard theory predicts that g = 0, because it is not rational

to donate any amount of money. A notable amount of evidence has shown

that typically a substantive fraction of dictators (around 60%) donate the

20% of amount x. This finding is clearly in contrast with standard theory.

Cherry, Frykblom and Shogren (2002) design a dictator game that involves

two stages. In the first stage dictators had to answer to some questions

taken from a graduate admission test. After the test they were given an

amount x of money that was linked with the performance in the test. That

is, the greater the number of correct answers, the greater amount x. Cherry,

Frykblom and Shogren (2002) show that the fact that dictators have to earn

money makes them very selfish. In addition, if the experiment is made fully

anonymous then altruistic behavior almost disappears.

1.2.1 Marketing Science

A consumer in a supermarket is typically confronted with hundreds of prod-

ucts (Schwartz, 2005). If she was fully rational, then she would consider all

of them and pick the best product according the her preferences.

A well-established result in the marketing science literature is that con-
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sumer’s behavior is not consistent with the full rationality assumption. Rather,

the consumer typically follows a two-step procedure, in which in the first

phase she restricts her attention on a subset of the available products, which

is called consideration set. Then, she picks the best product from the consid-

eration set according to her preferences. The way in which the consideration

set is constructed does not necessarily depend on consumer’s preferences.

There is strong evidence of this two-stage procedure (Wright and Bar-

bour, 1977; Alba, Hutchinson and Lynch, 1991; Roberts and Lattin, 1997;

Shum, 2004). Lussier and Olshavsky (1979), for instance, investigate how

task complexity affects brand choice strategy. They find that at more com-

plex problems subjects typically first eliminate alternatives that are judged

to be unacceptable by means of a noncompensatory decision strategy. A

strategy is noncompensatory whenever the DM does not make trade-offs be-

tween attributes. Then, among the remaining ones she chooses according to

a compensatory decision strategy, according to which compensation between

attributes takes place.

Hoyer (1984) studies laundry detergent purchases and finds that once

that consumers identify the relevant shelf in the supermarket, the median

number of products that they examine is one. In addition, unless promoted,

consumers typically do not consider superior brands displayed on the same

shelf, even though the products are new.

Finally, it is worth mentioning van Nierop et al. (2010), who propose a

probabilistic model aimed at inferring the consideration set from household

panel data.

1.2.2 Psychology

In psychology there are two main research programs aimed at studying

individual decision-making: the heuristics-and-biases program initiated by

Daniel Kahneman and Amos Tversky and the fast-and-frugal-heuristic pro-

gram proposed by Gerd Gigerenzer, Peter Todd, and the ABC Research

Group. These programs follow two distinct approaches.
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The goal of the heuristics-and-biases program heuristics is to provide

evidence that supports the hypothesis that individuals’ lack of rationality

leads them to behave in way that is not consistent with the laws of logic

and probability. In other words, the use of heuristics allows individuals to

save cognitive effort, but, on the other hand, implies that they do not behave

according to the normative theory. As an example consider the well-known

Monty Hall game (Chugh and Bazerman, 2007: 10-11).2 Monty asked a

participant to choose one of three doors. Behind one of these, there was the

grand prize and behind the other two there were small prizes. In the ‘Monty

always opens’ condition, Monty always opened an unchosen door and offered

to the participant the possibility to change her previous decision. In this case

the winning strategy, which is computed by using the Bayes’ rule, is always

to switch. In the ‘Mean Monty’ condition, Monty could decide either to end

the game, or to open an unchosen door and offer the possibility to switch

and his goal was to minimize the probability of winning. In this second case,

the optimal strategy is not to switch. Clearly, the condition under which

this game is played is crucial to calculate the optimal strategy. Nevertheless,

there is extensive evidence suggesting that in the large majority of the cases

participants decided not to switch.

On the other hand, the fast-and-frugal-heuristic program defines an heuris-

tic to be accurate depending on how well subjects’ behavior is predicted by

the heuristic. Therefore, according to this approach the extent to which

choices made according to an heuristic deviate from what the normative the-

ory prescribes is not a matter of interest. As an example, consider Rieskamp

and Hoffrage (1999), who examine experimentally adaptivity in individual

decision-making in multi-attribute framework by analyzing both process and

outcome data. They find that subjects are adaptive and willing to save cog-

nitive effort and that, under time pressure, fast and frugal heuristics, such as

2The game is based on the American television game called ‘Let us make a deal’, whose

first host was Monty Hall (from 1963 to 1977, and subsequently from 1980 to 1981 and

from 1984 to 1986).
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the lexicographic one, are much more accurate then the normative theory.

Analyzing the debate between these two schools is beyond the scope of

this thesis. As to what concerns us, it is worth underlying that both programs

agree on the assumption that DMs use simple heuristic to make decisions

and a huge literature has been developed on boundedly rational individual

decision-making (Kahneman and Tversky, 1974; 1979; Payne, Bettman and

Johnson, 1993; Gigerenzer, Todd and the ABC Research Group, 1999). In

addition, both approaches propose theories of choice in which they concept

of consideration set is employed.

Tversky (1972), one of the founders of the heuristic-and-biases program,

proposes a theory of choice called elimination by aspects. The idea is that

a good may or may not include an “aspect”.3 At each stage of the choice

process an aspect is selected with a certain probability, depending positively

upon its weight. Given a certain choice of an “aspect”, all alternatives that do

not have the selected aspect are eliminated. This procedure goes on until one

element remains (Tversky, 1972: 284-289). An interpretation of this process

is that a good is defined as a bundle of characteristics (or attributes), a cutoff

level is set for each characteristic, and attributes are ranked from the most to

the least important.4 Then, all elements that do not satisfy the cutoff level

of the most important attribute are eliminated. This procedure goes on with

the second most important attribute, with the third, and so on, until one

alternative remains. The idea is that, if a good does not satisfy the cutoff

3Tversky (1972: 285) provides the following example: assume that a decision-maker

wants to purchase a car. If the price of the car the decision-maker is considering is greater

or equal than $3000, then that car does not possess the aspect “it costs less than $3000”.
4This decision strategy is called characteristic-based search (CBS) because decision-

makers compare attributes across alternatives, such as cost, weight, color, and speed. The

idea is that decision-makers analyze the value of a single attribute of various alternatives

before examining the next attribute. The alternative-based search decision strategy (ABS),

instead, refers to a model in which decision-makers compare attributes within alternatives,

that is they analyze multiple attributes of a given alternative before examining the next

alternative (Payne, Bettman and Johnson, 1993: 29 and 31). The Elimination By Aspects

procedure is a CBS noncompensatory decision strategy.
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level of an attribute, then it does not posses an “aspect” (Payne, Bettman

and Johnson, 1993: 27).

On the other hand, Gigerenzer and Goldstein (1996a), introduce the so-

called take-the-best heuristic, which is a generalization of the well-known

lexicographic heuristic. Attributes are ranked according to their validity,

that is, according to how often each attribute has indicated that an option

is correct or not. The DM compares alternatives according to the most valid

attribute and eliminates all alternatives that are dominated on the selected

attribute. Then, she examines the second most valid attribute and again

eliminates all alternatives that are dominated on the selected attribute. This

procedure goes on until one alternative is left.

1.2.3 Economics

There is a huge literature in economics about bounded rationality. Stud-

ies have been carried out in various fields, such as decision-making under

uncertainty (Starmer, 2000), intertemporal choice (Frederick, Loewenstein

and O‘Donoghue, 2002), finance (Shleifer, 2000), other-regarding preferences

(Rabin, 1993).5

The next three sections provide a review of the literature about bounded

rationality in economics, focusing on choice theory, industrial organization,

and experimental economics, respectively. The remaining part of this section

proposes a brief history of the revealed preference theory, whose approach is

employed in the second chapter.

Brief History of Revealed Preference Theory

Economists have developed two distinct approaches for investigating individ-

ual decision-making: the preference-based and the choice-based (revealed-

preference). The former assumes that consumer preferences are primitive

and imposes requirements of rationality on them. Then, given consumer

5See also Rubinstein (1998).
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preferences, the consequences for choices are analyzed. In the choice-based

approach, choices are treated as primitive and assumptions about consumer

behavior are made.

There are several factors that make the second approach more appeal-

ing. First, the choice-based approach can incorporate a more general kind

of choice behavior. Second, unlike the preference-based approach, the re-

vealed preference one makes assumptions on observable objects (choices).

Therefore, a theory of individual decision-making based on the the choice-

based approach can have a behavioral foundation (Mas-Colell, Whinston and

Green, 1995: 5).

The concept of revealed preference appears for the first time in Samuel-

son (1938). Paul Samuelson (1938) was critical about the preference-based

approach. He thought that making certain assumptions about consumer be-

havior, such as increasing rate of marginal substitution, is an ad hoc strategy

for explaining the kind of demand that is observed in markets. He was also

concerned about the concept of utility that, in his view, cannot be defined

as an entity independent of psychological elements. For this reason, he pro-

posed an alternative approach in which the primitive elements of the theory

are observable and independent of any introspective factor. This novel ap-

proach was not in contrast with the existing one. Rather Samuelson initiated

a research field aimed at providing a behavioral foundation of the theory of

consumer’s behavior.

The first definition of revealed preference is contained in Samuelson (1938)

and reads as follows (Varian, 2006: 2).6

Definition 1 (Revealed Preference) Given some vectors of prices and

chosen bundles (pt, xt) for t = 1, . . . , T , we say that xt is directly revealed

preferred to a bundle x (xtRDx) if ptxt ≥ ptx. We say that xt is re-

vealed preferred to x (xtRx) if there is some sequence r, s, t, . . . , u, v such

6The initial terminology was selected over. Richter (1966) pointed out that selected over

would have been better than revealed preference, because the former has the advantage

that it avoids a circular definition of preference. See also Varian (2006).
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that prxr ≥ psxs, psxs ≥ psxt, . . ., puxu ≥ pux. In this case, R is the

transitive closure of RD.

The intuition behind this definition is the following. Consider two vector

of prices and chosen bundles (pt, xt) and (p, x). The expenditures for (pt, xt)

and (p, x) are ptxt and px, respectively. Now, consider the vector (pt, x),

whose expenditure is ptx. If ptx ≤ ptxt, then this implies that bundle x was

available when xt was chosen. However, the consumer did not choose to do

so. Therefore, one can conclude that xt was selected over x. That is, xt was

revealed to be preferred to x (Samuelson, 1938: 64-65).

Samuelson then introduced a consistency property on individual behav-

ior that later became the well-known Weak Axiom of Revealed Preference

(WARP).

Definition 2 (Weak Axiom of Revealed Preference) If xtRDx
s, then

it is not the case that xsRDx
t

The axiom says that if some bundle xt is chosen when another bundle xs

is available, then it cannot happen that xs is chosen over xt.

Ten years later Samuelson, motivated by the work of Little (1949), pro-

posed a method for reconstructing indifference curves from the revealed pref-

erence relation. However, the proof was mainly graphical and for only two

goods. Houthakker (1950), then, realized that in order to generalize Samuel-

son’s result to n goods an extension of the concept of revealed preference

from direct to indirect was necessary. He proposed the following condition.

Definition 3 (Strong Axiom of Revealed Preference) If xtRxs, then

it is not the case that xsRxt.

Subsequently, Rose (1958) proved rigorously that Strong Axiom and Weak

Axiom are equivalent in the two-commodity case.

The theory of consumer behavior based on the revealed preference ap-

proach was almost brought to completion with Samuelson (1953), even though
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not completely rigorous. Later studies, such as Newman (1960) and Uzawa

(1960), added more formalism to the existing analysis. Finally, Marcel

Richter (1966) provided pure set-theoretic foundations to the problems of

integrability (recovering a utility function, given a demand function) and

representability (recovering the preference relation that induces a given de-

mand function). Formally, a budged space is a pair 〈X,P(X)〉, where X is

the grand set of alternatives (or set of bundles) and P(X) is a family of non-

empty subsets (or budgets) of X. A DM (or a consumer) is a function that

assigns to each A ∈ P(X) a non-empty subset c(A) ⊆ A. The interpretation

is that c(A) is the set alternatives chosen by the DM subject to the budget

A (Richter, 1966: 635).7

Besides Richter (1966) many other studies have been carried out both at

a theoretical and empirical level (Koo, 1963; Afriat, 1965; Sondermann, 1982;

Varian, 1982; Andreoni and Miller, 2002). As to what concerns us in this

study, it is worth mentioning the contributions by Kenneth Arrow (1959)

and Amartya Sen (1971). The former proved that WARP is a necessary

and sufficient property for the observed choice behavior to be rationalized

by a rational preference relation. The latter showed that WARP is logically

equivalent to two basic properties, called property α and β.8

1.3 Revealed Preference and Bounded Ratio-

nality

The key-concept in choice theory is the one of rationalizability. A choice

function is rationalizable whenever there exists a preference relation such

that the chosen alternatives from any given choice set are the best alterna-

7It is possible to impose c() to be a singleton, in which case indifference is ruled out.
8Property α: given an alternative x ∈ A ⊆ B, if x is chosen from the big set B,

then x has also to be chosen from the small set A. Property β: given two alternatives

x, y ∈ A ⊆ B, if x is chosen from the small set A and y is chosen from the big set B, then

x has to be chosen from the big set B (Sen, 1971: 313).
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tives in that set according to that relation. The assumption at the basis of

microeconomic theory is that individual preferences are rational. A prefer-

ence relation is rational whenever it is complete and transitive. Completeness

implies that, given two alternatives, the DM is always able to state whether

she prefers the first to the second one, the second to the first one, or whether

she is indifferent between the two. Transitivity, on the other hand, rules out

cyclical preferences. For instance, if Beatles are judged to be at least as good

as Rolling Stones and Rolling Stones at least as good as Doors, then, by

transitivity, it cannot be that Doors are strictly preferred to Beatles. As we

know from the previous section, Kenneth Arrow (1959) proved that WARP

is a necessary and sufficient condition for a choice function to be rational-

ized by a rational preference relation, provided that the budget set contains

all subsets of grand set up to three elements. Arrow’s result is very impor-

tant because it implies that any choice-theoretic model that departures from

WARP does not assume full rationality.

In what follows we discuss the most relevant boundedly rational models

in choice theory according to the kind of non-standard rationality that they

assume. Kalai, Spiegler and Rubinstein (2002) observe that often in real-life

situations WARP is violated. They argue that one possible explanation is

that the DM does not use a single preference relation, but several, each ap-

plied to a subset of the grand set. Their interpretation is that each choice set

encompasses information about its elements and by considering this informa-

tion, the DM chooses what she judges to be the best alternative according

to the appropriate rationale. Kalai, Spiegler and Rubinstein (2002) formal-

ize this idea and focus on choice functions that employ the minimal number

of rationales. Manzini and Mariotti (2007) propose a model in which the

DM still uses multiple rationales, but, unlike Kalai, Spiegler and Rubinstein

(2002), they assume that the DM applies them sequentially according to a

given order. The so-called Rational Shortlist Method is a choice function se-

quentially rationalized by two rationales. The idea is that the DM follows

a two-step procedure in which in the first phase she eliminates all alterna-
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tives that are dominated according to the first rationale. Then, among any

remaining ones, she selects the best alternative according to the second ra-

tionale. Notice that the set of alternatives that survives the first stage can

be interpreted as a consideration set, because it is from that restricted set

that the DM makes her final decision. One of the major strengths of the ra-

tional shortlist method is that it can explain irrational choice patterns, such

as cycles. Another study that employs the idea of sequential rationalizability

is Apesteguia and Ballester (2009a), who provide a characterization of the

class of models in which the DM sequentially applies a finite list of rationales.

In addition Apesteguia and Ballester relate their model to other well-known

boundedly rational procedures.

A notable amount of evidence suggests that subjects exhibit the so-called

status-quo bias (Samuelson and Zeckhauser, 1988). That is, subjects tend to

pay particular attention to a default option and evaluate it positively relative

to other alternatives. Masatlioglu and Ok (2005) axiomatically characterize

a model that incorporates standard choice theory as a special case in which

the DM is affected by the status-quo bias.9 According to this model the

DM evaluates alternatives by means of various criteria. If she faces a choice

problem without status-quo, then she selects the best alternatives according

to an aggregator of these criteria. On the contrary, if she confronts a choice

problem with status-quo, then she sticks with it, unless there are some al-

ternatives that dominate the status-quo in all dimensions, in which case she

chooses according to the aggregator of the above criteria. In the same spirit

Apesteguia and Ballester (2009b) characterize a class of models in which the

DM exhibits reference-dependent behavior.

Framing effects occur whenever the way in which the same problem is

presented to the DM affects choices (Tversky and Kahneman, 1981; Kahne-

man and Tversky, 1984). Salant and Rubinstein (2008) propose a framework

in which the choice function depends not only on the choice set, but also on

some observable information, called frame, which is irrelevant from a stan-

9See also Masatlioglu and Ok (2009) for an extension of Masatlioglu and Ok (2005).
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dard viewpoint. They investigate the conditions under which their model

is equivalent to standard maximization and discuss the limitations of the

model of choice correspondence when the DM is affected by framing effects.

Bernheim and Rangel (2007) independently develop a similar model called

choice with ancillary conditions aimed at analyzing welfare implications of

bounded rationality.

Mandler, Manzini and Mariotti (2010), inspired by Tversky (1972) and

others, propose a choice procedure according to which the DM makes a deci-

sion by using a checklist. That is, she has in mind a list of ordered properties

and first eliminates all alternatives that do no possess the first property.

Then, among the remaining ones, she eliminates all alternatives that do not

possess the second property and so on until the survivor set does not shrinks

anymore. Mandler, Manzini and Mariotti interestingly show that this proce-

dure is equivalent to standard maximization. Manzini and Mariotti (2010b)

extend checklists by assuming that the order with which the DM goes through

properties can vary depending on the DM’s mood.10

Simon (1956) argues that the structure of the environment plays a central

role in determining the extent to which the standard framework can be sim-

plified. In particular, if the environment is particularly complex, then it is

likely that the DM will encounter relatively more difficulties in searching for

a best alternative. Tyson (2008) addresses this issue and proposes a model

in which the DM does not fully perceive her preferences by assuming that

this bias increases in the complexity of the choice problem. He shows that,

when complexity it is aligned with set inclusion (nestedness of preferences),

then his choice procedure is equivalent to Sen (1971)’s β property.11

The concept of consideration set has attracted a lot of attention among

choice theorists. Besides Manzini and Mariotti (2007), many other studies

10Another extension of Mandler, Manzini and Mariotti (2010) is provided by Manzini

and Mariotti (2010a), who develop a theory of choice called choice by lexicographic

semiorders.
11Property β: given two alternatives x, y ∈ A ⊆ B, if x ∈ C(A) and y ∈ C(B), then

x ∈ C(B). See section 1.3.
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have been carried out in this field. Masatlioglu and Nakajima (2009) pro-

pose a model called choice by iterative search in which the DM starts by

analyzing an exogenously given contemplation point, considers only those al-

ternatives that are similar to it and, by means of an iterative search process,

stops searching as soon as the contemplation point is the best available al-

ternative in the consideration set. Masatlioglu, Nakajima and Ozbay (2009)

propose a model in which the DM still picks the best alternative among

those considered. However, unlike Masatlioglu and Nakajima (2009), they

assume that the consideration set has the property that the removal of an

alternative that the DM does not consider does not change the consideration

set. Eliaz, Richter and Rubinstein (2011) axiomatically characterize three

different procedures by which a consideration set can be constructed.

Simon (1955) criticizes the assumption that the DM perceives all alter-

natives before deciding. He argues that it would be more realistic to assume

that the DM discovers and analyzes alternatives sequentially. In the second

chapter of this thesis we address this issue and propose a model in which the

DM behaves according to the satisficing heuristic. The closest studies to our

model are Rubinstein and Salant (2006) and Caplin and Dean (2011).

Rubinstein and Salant (2006) propose a model in which the DM faces lists

of alternatives and behaves according to the procedure 〈R, δ〉, where R is a

rational preference relation and δ is a priority indicator. Specifically, the DM

selects either the first or the last maximal element from any list according

to the preference relation R, depending on whether the priority indicator is

equal to 1 or 2, respectively.

On the other hand, Caplin and Dean (2011) model a reservation-based

search decision strategy by formalizing the concept of choice process data.

That is, the DM picks the best alternative among the ones she has already

explored at any given point in time and stops searching as soon as she identi-

fies the first alternative that yields at least the reservation utility, given that

searching is costly.

In the second chapter we discuss in detail the relationships between our
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model and Rubinstein and Salant (2006) and Caplin and Dean (2011).

1.4 Industrial Organization and Bounded Ra-

tionality

Plenty of studies have been carried out in order to model boundedly rational

DMs.12 More recently, a remarkable amount of literature has developed on

applications of theories of boundedly rational choice to various economic

fields. For instance, the analysis of welfare under the assumption that the

DM is boundedly rational has attracted a lot of attention (Bernheim and

Rangel, 2007; Apesteguia and Ballester, 2010; Rubinstein and Salant, 2010).

In the third chapter we apply bounded rationality to another important area

of economics: industrial organization (IO).

This research field is relatively new, as one of the pioneer studies was

conducted by Glenn Ellison and Drew Fundenberg in 1993. Ellison and

Fundenberg (1993) investigate the extent to which spread and dispersed in-

formation about product quality is aggregated at the population level and

affects firms’ decision about technology by assuming that boundedly rational

players have limited capacity of perceiving what technology yields the high-

est payoff.13 Despite its relatively young age, this research field has attracted

a lot of attention and many studies have been carried out. Ellison (2006)

proposes a nice survey in which he identifies three distinct traditions aimed

at analyzing the relationships between bounded rationality and IO. The first

one is called rule-of-thumb approach. This tradition, rather than character-

izing equilibrium behavior, assumes that economic agents behave in some

simple way. The second one is called explicit bounded rationality approach,

assumes that cognition is costly, and derives second-best behaviors, given the

costs. The third one models economic agents as individuals subject to biases

12See section 1.3.
13Ellison and Fundenberg (1995) propose a closely related model aimed at investigating

how the structure of information flows affects the learning process.
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typically detected in experimental economics and experimental psychology.

The goal of this section is to discuss the most important studies in this field

related to our work.

Standard contract theory typically assumes that individuals differ in pref-

erences or cost parameters. Eliaz and Spiegler (2006), instead, assume that

individuals have dynamically inconsistent preferences and are heterogeneous

in the sense that they have different abilities in forecasting potential changes

in their future tastes. For instance, more sophisticated types are more capa-

ble of perceiving changes in their preferences. Eliaz and Spiegler (2006) find

that more naive individuals are typically subject to an higher exploitation

and are associated with higher profits for the principal. Moreover, they use

their results to interpret real-life contractual agreements in a several indus-

tries.14 Non-standard preferences are also assumed in Spiegler (2010) that

investigates optimal pricing in a monopolistic setting, where individuals are

loss-averse according to a reformulation of the model by Koszegi and Rabin

(2006).

There are other studies in the IO literature that support the hypothe-

sis that boundedly rational consumers are subject to exploitation. Spiegler

(2006b), for instance, defines boundedly rational consumers as individuals

that follow an ‘anedoctal’ kind of reasoning. He shows that even market

interventions aimed at pushing out low-quality firms do not improve wel-

fare. Spiegler (2006a), instead, proposes a market model in which profit-

maximizing firms compete in a multidimensional pricing framework by defin-

ing boundedly rational consumers as individuals that have limited capacity

of understanding complex objects. In that model each firm to an increase in

competition responds by putting in practice a confounding strategy rather

than a strategy of more competitive prices. Finally, Rubinstein and Spiegler

(2008) investigate vulnerability to exploitation of boundedly rational invi-

diduals that have to decide whether or not to buy a lottery.

The idea of consideration set has attracted a lot of attention also in the

14See also Eliaz and Spiegler (2008).
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field of bounded rationality and IO. Eliaz and Spiegler (2009), for instance,

assumes that two firms compete in order to maximize market shares in a

context in which consumers suffer from the effects of marketing. In particular,

consumers apply their well-defined preferences only to the alternatives that

belong to the consideration set, which, in turn, can be manipulated by firms

by means of marketing strategies.15 Another study that employs the idea

of consideration set is Piccione and Spiegler (2010) that extend Bertrand

competition by modeling a two-firm market in which the consumer is affected

by framing effects. Firms have to decide not only the price of its product,

but also a pricing structure, which is called format. The consumer is assigned

randomly to one firm and the probability that she examines the other firm’s

product depends on the formats.

Finally, it is worth pointing out that Ran Spiegler is writing a book titled

Bounded Rationality and Industrial Organization (Spiegler, 2011) in which

he summarizes his main results in this field.16

1.5 Experiments on Individual Decision-making

and Bounded Rationality

There is a huge experimental literature about boundedly rational individ-

ual decision-making both in economics and psychology. The large majority

of these studies have in common a methodological feature: most of them

make use of data enrichment techniques. That is, not only final choices are

recorded, but also other variables of interests, such as decision time and in-

termediate choices, are taken into account. The idea is that those additional

data can shed light on the process that leads the DM to make her decision.

Payne, Bettman and Johnson (1993) use verbal protocols and mouseLab

to test adaptivity in individual decision-making. Verbal protocols require

subjects to write down what they are thinking during the decision process.

15See also Eliaz and Spiegler (2010) for an extension of Eliaz and Spiegler (2009).
16This book should be available starting from January 2011.
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MouseLab, instead, implies that subjects are presented on their screen with

black boxes, behind which information is hidden. To access, subjects have

to click on the box that they want to open. MouseLab allows experimenters

to know how many times and how long subjects have looked at each piece

of information. A similar analysis is performed by Rieskamp and Hoffrage

(1999; 2008), who use mouseLab to test adaptivity under low and high time

pressure. Those studies find that subjects change decision strategies as task

complexity increases; that is, decision-makers are adaptive and willing to

conserve cognitive effort.

MouseLab is also employed by Gabaix et al. (2006), who analyze aggre-

gate information acquisition patterns in multi-attribute and multi-alternative

choice problems (maximize an algebraic sum). What they find is that the

directed cognition model (Gabaix and Laibson, 2005) seems to fit the ex-

perimental data. In the directed-cognition model DMs do not explore all

possible alternatives, but only those that have the highest ratio of benefit

to cost. Furthermore, when their model and the fully rational one differ,

the directed-cognition model better predicts subjects’ information acquisi-

tion patterns.

Reutskaja et al. (2010), instead, use eye-tracking to investigate consumer

search dynamics in a context characterized by time pressure. Eye-tracking

records eye movement images and pupil dilatation by means of a camera

placed on the computer screen. Eye movement images allow experimenter to

infer subject information acquisition patterns, whereas pupil dilatation yields

information about arousal, pain, and cognitive difficulty. In that experiment

subjects have to choose among snack food items. Reutskaja et al. (2010)

show that first subjects tend to choose the optimal alternative among the

discovered ones. Second, search behavior is compatible with an hybrid of

the optimal search and the satisficing model. Third, subjects seem to search

more often in certain areas of the monitor.

Another study that uses eye-tracking is Arieli, Ben-Ami and Rubinstein

(2010) that tests whether subjects use an ABS or CBS decision strategy while
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choosing binary lotteries.17 Arieli, Ben-Ami and Rubinstein (2010) find that

whenever the computation of the expected value is difficult, subjects tend

to use a CBS decisions strategy. Differently, when computations are easier,

subjects behavior is consistent with an hybrid of a CBS and ABS decision

strategy.

In the fourth chapter we propose an experiment aimed at testing whether

subjects behavior is consistent with the satisficing heuristic. The closest

study to our experiment is Caplin, Dean and Martin (2009).

Caplin, Dean and Martin (2009) propose an experiment in which they

analyze the source of choice errors by using a data enrichment technique

called choice process data. Subjects have to choose the highest sum of money

expressed in terms of a sum of natural numbers. According to choice process

data, not only final choices but also intermediate ones that change with the

contemplation time are recorded. Caplin, Dean and Martin (2009) show

that subjects behavior is consistent with the satisficing procedure proposed

by Herbert Simon (1955).

The relationships between our experiment and Caplin, Dean and Martin

(2009) are discussed in detail in chapter 4.

1.6 Concluding Remarks

This chapter provides a review of the literature in economics about bounded

rationality focusing on choice theory, industrial organization, and experimen-

tal economics.

Equipped with the tools provided in this chapter, one should be able to

better understand not only the content of the coming chapters, but also what

is our contribution relative to the existing literature.

17ABS and CBS stand for alternative-based and characteristic-based, respectively. See

section 1.2.2 for definitions.
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Chapter 2

Satisficing Choice Procedures

2.1 Introduction

The problem of choice is the basis of microeconomic theory. Standard models

of decision theory assume that a choice problem is composed of two elements:

a family P(X) of nonempty subsets of the grand set of alternatives X and

a choice function c : P(X) → X. The problem of choice entails picking one

element from a choice set A ∈ P(X) that is known in advance (Richter, 1966;

Mas-Colell, Whinston and Green, 1995).

This framework has been criticized as unrealistic. According to Herbert

Simon,

in most global models of rational choice, all alternatives are eval-

uated before a choice is made. In actual human decision-making,

alternatives are often examined sequentially. We may, or may

not, know the mechanism that determines the order of procedure.

When alternatives are examined sequentially, we may regard the

first satisfactory alternative that is evaluated as such as the one

actually selected. (Simon, 1955: 110)

Plausibly, in the real world the DM does not evaluate all alternatives

before making the decision. Rather, she discovers and explores new alterna-

27
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tives while the choice-process is taking place. We propose a model within

the revealed preference approach in which we assume that the DM discovers

and analyzes alternatives sequentially. There are various circumstances in

the real world in which alternatives are presented to the DM in form of a

sequence. For instance, alternatives may be disposed horizontally on some

shelf and the DM examines them from left to right. In this case there is

a spatial constraint that prevents the DM from perceiving all alternatives

before deciding. Alternatively, the DM may receive job offers sequentially in

time. There are also circumstances in which constraints are neither spatial

nor temporal, but the DM examines alternatives sequentially, because alter-

natives come to the DM’s mind according to some ordering. As an example

think of a person who has to decide where to spend her summer vacation.

Typically, an individual does not have in mind a complete set of potential

destinations. Rather, she discovers and analyzes new options by searching on

the web and referring to travel agencies while the decision process is taking

place.1

We assume that the DM behaves according to the well-known satisficing

heuristic (Simon, 1955). That is, she explores alternatives sequentially, stops

searching as soon as she identifies the first satisfactory alternative, and se-

lects the best alternative among those discovered. If there is no satisfactory

alternative in the choice set, then the DM reconsiders all alternatives and

picks the best available one. Of course there are other ways in which one

could model satisficing behavior. For instance, suppose that the DM is par-

ticularly lucky and identifies the first satisfactory alternatives in relatively

little time. Then one could assume that since she has exerted little cogni-

tive effort to identify the first acceptable alternative, then she can manage

to keep searching in order to find better alternatives. This would mean to

design a model in which the DM does not necessarily stop as soon as the

first acceptable alternative is discovered, but the extent to which she keeps

searching depends on the length of the search history.

1See Rubinstein and Salant (2006) for further discussion and examples.
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We investigate the conditions under which we can infer from choices

whether or not an alternative is revealed to be satisfactory (revealed sat-

isfaction), to attract attention (revealed attention), and to be preferred to

some other alternative (revealed preference). We explore these issues under

three different domains. We first assume that, for each choice problem, we

can observe not only the choice set and the choice made by the DM, but also

the entire menu sequence according to which she examines alternatives. In

this case we are able to provide behavioral definitions of both attention, satis-

faction, and preference. In addition we show that our procedure is equivalent

to an axiom called Full Attention WARP, which is a weakening of standard

WARP. In particular Full Attention WARP requires the DM to choose con-

sistently with standard WARP restricted to those alternatives to which she

pays attention. Our model includes the standard maxization procedure as a

special case, because if the DM pays attention to all alternatives at all choice

problems, then Full Attention WARP reduces to WARP.

Under the second domain, we assume that we cannot observe the entire

menu sequence, but only its first stage. In this case we provide behavioral

definitions of satisfaction and preference and we show that attention can be

inferred only partially. We also axiomatically characterize our procedure by

using a slightly modified version of Full Attention WARP.

Finally, we assume that the order according to which the DM examines

alternatives is unobservable. Under this domain we show that we can infer

satisfaction and also preference, but only over unsatisfactory alternatives. In

addition we demonstrate that our model is a special case of the standard

maximization procedure.

The model is related to the literature about attention and consideration

set (Manzini and Mariotti, 2007; Eliaz and Spiegler, 2009; Masatlioglu, Naka-

jima and Ozbay, 2009).2 The closest studies to our work are Rubinstein and

Salant (2006) and Caplin and Dean (2011). Rubinstein and Salant (2006) de-

velop a model called choice function from lists in which they assume that the

2See sections 1.3 and 1.4 for more details.
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DM chooses from sequences of alternatives. Unlike the proposed model, they

assume that the DM necessarily examines alternatives one by one. The rela-

tionships between our model and Rubinstein and Salant (2006) are analyzed

in detail in a section below.

Caplin and Dean (2011) propose a reservation-based search decision strat-

egy by formalizing the concept of choice process data. That is, the DM picks

the best alternative among the ones she has already explored at any given

point in time and stops searching as soon as she identifies the first alterna-

tive that yields at least the reservation utility, given that searching is costly.

Unlike their model, we do not make use of choice process data, but consider

only final choices and assume that search order is observable or partially ob-

servable. We also investigate the case in which search order is unobservable

as Caplin and Dean (2011) do, but the two models still differ because un-

like them we assume that in this case the choice correspondence records the

choices made by the DM under multiple menu sequences.

The chapter is organized as follows: Section 2.2 develops the formal

model; Section 2.3 provides an axiomatic characterization of the model and

behavioral definitions of revealed satisfaction, attention, and preference un-

der three different domains; Section 2.4 investigates the relationship between

the our model and and Rubinstein and Salant (2006). Section 2.5 concludes.

2.2 The Model

Let X be a finite grand set of alternatives, where P(X) represents the set of

all non-empty subsets of X. As we know from chapter 1, in standard choice

theory a choice problem is simply a choice set A ∈ P(X). In this framework

we define an extended choice problem as a pair (A, {Aj}), where A ∈ P(X)

is a choice set and {Aj} represents a sequence with which the DM examines

the alternatives in A. We call {Aj} menu sequence and define it as follows.

Definition 4 A menu sequence of the set A ∈ P(X) is a sequence {Aj}N1
such that Aj ⊆ Ak ⊆ A, for all k > j and AN = A.
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We call each element Aj of the menu sequence {Aj} stage of the menu

sequence {Aj}.
Let an extended choice function be a choice function defined on the do-

main D1 = {(A, {Aj})|A ∈ P(X) and {Aj} is a menu sequence of A}. We

assume that c(A, {Aj}) is non-empty and picks one alternative from A.

Let � be a strict linear order on the set X representing DM’s preferences.3

Let xs ∈ X be a distinguished alternative (or an aspiration level) such that

all alternatives to which xs is �-preferred are considered to be unsatisfactory.

Let UC�(A;xs) = {x ∈ A|¬(xs � x)} be the upper-contour set of xs accord-

ing to �, representing the set of satisfactory alternatives available in the set

A.4 Let max(A;�) = {x ∈ A|@y ∈ A s.t. y � x} be the set of maximal

alternatives according to the relation � in the set A. Since � is assumed to

be a linear order, then the set max(A;�) is always a singleton.

Definition 5 c is a Satisficing Choice Function (SCF) if and only if there

exist a strict linear order � on X, an alternative xs ∈ X, and a consideration

set mapping Γ(A,{Aj}) ⊆ A such that

{c(A, {Aj})} = max(Γ(A,{Aj});�)

where

Γ(A,{Aj}) =

{
Aj if UC�(A;xs) 6= ∅
A otherwise

and j = min{j|Aj ∩ UC�(A;xs) 6= ∅}.
3A binary relation � is irreflexive whenever (x, x) /∈�. Given x, y, z ∈ X, a binary

relation � is transitive, whenever (x, y) ∈� and (y, z) ∈� imply that (x, z) ∈�. Given

x, y ∈ X such that x 6= y, a binary relation � is complete whenever either x � y or

y � x. Given x, y ∈ X, a binary relation � is asymmetric whenever (x, y) ∈� implies

that (y, x) /∈�. A strict linear order is a transitive, asymmetric, irreflexive, and complete

binary relation.
4Since xs ∈ X, then we assume that x ∈ UC�(A;xs) whenever x ∈ A and ¬(xs � x)

because we want also the aspiration level xs to be part of the upper-contour set at all

A ∈ P(X) such that xs ∈ A.
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Our interpretation is that the DM has in mind a preference relation �
and a distinguished alternative xs. She judges satisfactory those alternatives

that are at least as good as xs and unsatisfactory those that are worse than

xs. The DM searches through the choice set A according the menu sequence

{Aj} and if she identifies at least one satisfactory alternative in the first stage,

then she stops searching at A1, which becomes the consideration set, and

selects the�-maximal alternative available inA1. Otherwise, she explores the

second stage. Then, again if she identifies at least one satisfactory alternative

in the second stage, then she stops searching at A2, which becomes the

consideration set, and selects the �-maximal alternative available in A2.

Otherwise, she keeps searching and the procedure is the same as before. If

there is no satisfactory alternative in the choice set A (i.e., UC�(A;xs) = ∅),
then she selects the �-maximal unsatisfactory element from A. In this case

the consideration set coincides with the choice set A.

2.2.1 Explained Behaviors

The proposed procedure can be defined also in terms of choices with frames

(Salant and Rubinstein, 2008).5 Let a frame be weak order O on X, repre-

senting an ordering with which the DM examines alternatives. We identify

the choice function with frames cO(A) with the extended choice function

c(O|A), where O|A is the menu sequence induced by restricting the order O

to the choice set A ∈ P(X). An SCF, which we denote by cSCF (O|A), can

then be defined as:

cSCF (O|A) = max(A;�O)

where �O≡ (� \{(x, y) ∈� |x, y ∈ UC�(X;xs)}) ∪ {(x, y) ∈� |x, y ∈
UC�(X;xs) s.t. xOy and (¬(yOx) or x � y)}

Clearly, any cSCF (O|A) satisfies WARP. Therefore, violations of WARP

can take place only when the DM mixes two or more frames. Since the

5See section 1.3.



Axiomatic Characterization 33

proposed model does not place any restriction on menu sequences, then this

implies that an SCF can explain a variety of irrational choice patterns. The

next examples illustrate that the proposed procedure can explain cyclical

choice patterns and menu effects.

Example 1 (Cycles) Let x, y, x ∈ UC�(X;xs) and assume z � x � y. Let

(A, {Aj}), (B, {Bj}), and (C, {Cj}) such that A1 = {x}, y ∈ A, B1 = {y},
z ∈ B, C1 = {z}, and x ∈ C. Since the DM stops searching as soon as

she identifies the first satisfactory alternative, then x = c(A, {Aj}), y =

c(B, {Bj}), and z = c(C, {Cj}). This choice pattern clearly exhibits a cycle.

Example 2 (Menu Effects) Assume that x, y ∈ UC�(X;xs) and x � y.

Let (A, {Aj}), (B, {Bj}), and (C, {Cj}) such that A1 = A = {x, y}, B1 =

B = {x, z}, C1 = {y, z}, and C = {x, y, z}. If c is an SCF, then x =

c(A, {Aj}), x = c(B, {Bj}), and y = c(C, {Cj}). This choice pattern exhibits

menu effects, because x is chosen in binary comparison over y and over z.

However, when the choice set encompasses both x, y, and z, the DM chooses

y.

Despite this feature, the satisficing procedure cannot explain any choice

pattern, as the next example illustrates.

Example 3 (Violations of Satisficing) Assume that x ∈ UC�(X;xs). Let

(A, {Aj}) ∈ D1 be such that A1 = {x}. Since x is satisfactory, then the DM

must stop searching at A1 and chooses x. Therefore, any c that does not

select x from (A, {Aj}) is not an SCF.

2.3 Axiomatic Characterization

Suppose that we observe the DM making choices. Our concern is to find be-

havioral definitions of satisfaction (xs), attention (Γ(A,{Aj})), and preference

(�). Moreover, we are interested in identifying the conditions under which

her behavior is consistent with the satisficing procedure. We explore these

identification issues under three different domains.
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2.3.1 Full Domain

Under the full domain D1, we assume that, for every choice problem, we can

observe not only the choice set and the choice made by the DM, but also the

entire menu sequence.

Assume that c is an SCF. How can we tell whether an alternative is

satisfactory of not? A satisficing DM always stops searching as soon as

she identifies a satisfactory alternative. Therefore, it must be that if an

alternative x is satisfactory, then the DM never discovers x and then explores

further the menu sequence. In other words, if x is acceptable, then it cannot

happen that the DM discovers and chooses some alternative y at some stage

of the menu sequence, given that at an earlier stage she explored x.

Formally, define A
c(A,{Aj})
m as the first stage of the menu sequence {Aj}

to which the chosen alternative c(A, {Aj}) belongs, where m = min{j :

c(A, {Aj}) ∈ Aj}. If x is acceptable, then it cannot happen that x ∈
A
c(A,{Aj})
m−1 . The next proposition states that this condition is not only neces-

sary, but also sufficient for x to be satisfactory.

Proposition 1 (Revealed Satisfaction) Suppose that c is an SCF. Then,

x ∈ UC�(X;xs) if and only if there exists no (B, {Bj}) ∈ D1 such that

x ∈ B
c(B,{Bj})
m−1 . Whenever this occurs we say that x is revealed to be

satisfactory.

Next, we analyze the conditions under which we can unambiguously state

what alternatives are considered by the DM. Assume the DM chooses some

alternative y from (A, {Aj}) and we are instersted in verifying whether she

considers x. If x = y, then obviously she considers x. Next, assume that

x 6= y and that x ∈ Ac(A,{Aj})m . Then, once again we can conclude that the

DM considers x. The reason is that since y is chosen, then it must be that

all alternatives that precede y in the sequence (or are discovered at the same

time as y) are considered. Finally, assume that x /∈ Ac(A,{Aj})m . This implies
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that the chosen alternative y precedes x in the menu sequence. The only

way in which the DM can explore x is that the chosen alternative y is not a

satisfactory alternative. We already know, by proposition 1, that this occurs

whenever there exists a choice problem (B, {Bj}) such that y ∈ Bc(B,{Bj})
m−1 .

Whenever one of these three cases occur we say that x attracts attention at

(A, {Aj}). The next proposition states this concept formally and provides a

behavioral definition of revealed attention.

Proposition 2 (Revealed Attention) Suppose that c is an SCF. Then,

x ∈ Γ(A,{Aj}) if and only if either

1. y = c(A, {Aj}) and x ∈ Ac(A,{Aj})m or

2. y = c(A, {Aj}) and there exists a (B, {Bj}) ∈ D1 such that y ∈
B
c(B,{Bj})
m−1 .

Whenever this occurs we say that x attracts attention at (A, {Aj}).

We are also interested in investigating whether, given two alternatives

x, y ∈ X, x is revealed to be preferred to y or vice versa. Assume that

x = c(A, {Aj}) and that y ∈ A. This information is not enough for ensuring

that x � y. To see why, assume that y is preferred to x, x = c(A, {Aj}), and

y ∈ A. This does not lead to a contradiction, because it might have happened

that the DM stopped searching before exploring y and chose x. Therefore, in

order to conclude that x � y we must also require that y attracts attention

at (A, {Aj}). The next proposition states this result formally.

Proposition 3 (Revealed Preference) Suppose that c is an SCF. Then,

x � y if and only if there is some (A, {Aj}) ∈ D1 such that x = c(A, {Aj})
and y attracts attention at (A, {Aj}). Whenever this occurs we say that x is

revealed to be preferred to y.
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Now we move to the axiomatic characterization.

Standard WARP requires that given two alternatives x, y ∈ A ∩ B, if

x = c(A), then y 6= c(B) without distinguishing between alternatives that

the DM considers and alternatives that she does not. We introduce a weaker

version of this property, which we call Full Attention WARP. This property

requires the extended choice function to satisfy WARP, provided that the

DM pays attention to x and y at both choice problems according to the

definition provided in proposition 2.6

Full Attention WARP (FAWARP). Assume that x and y attract at-

tention at (A, {Aj}) and (B, {Bj}). Then, if x = c(A, {Aj}), then y 6=
c(B, {Bj}).

The main result of this section is stated in the following theorem.

Theorem 1 An extended choice function c is an SCF if and only if c satisfies

Full Attention WARP.

Equipped with the results of this subsection, we are able to infer non-

parametrically whether DM’s behavior is consistent with the satisficing pro-

cedure simply by testing the axiom that characterizes the SCF. In addition,

by using propositions 1, 2 , and 3 we can infer both revealed satisfaction,

attention, and preference.

Finally, notice that if x attracts attention at (A, {Aj}) for any x ∈ A for

all (A, {Aj}) ∈ D1, then FAWARP reduces to WARP and c is rationalizable

by a strict linear order. It is easy to see that this happens if and only if {xs} =

max(X;�). That is, a necessary and sufficient condition for the extended

6Masatlioglu, Nakajima and Ozbay (2009) introduce an axiom called ‘WARP with

Limited Attention’. The difference between FAWARP and WARP(LA) is in the definition

of ‘paying attention to’. Masatlioglu, Nakajima and Ozbay (2009) define a set to be a

consideration set whenever the removal of one alternative that the DM does not consider

does not change the consideration set. On the contrary, in this paper the consideration

set is defined according to the definition of proposition 2.
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choice function to be equivalent to standard maximization is that the minimal

satisfactory alternative is maximal in the grand set. This observation is

intuitive: given that the DM is satisfied only when she chooses a satisfactory

alternative, if there is only one satisfactory alternative in the grand set, then

it is as if the DM got satisfied only at the optimum.

2.3.2 Partially Observable Menu Sequences

There are circumstances in which assuming that we can always observe the

entire menu sequence for any choice problem is too demanding. For instance,

consider a consumer who analyzes the items allocated on a certain shelf. It

is hard to assume that the order with which she examine alternatives is

exogenously given. She may explore items from left to right or form to top

to the bottom. She may even mix multiple search heuristics, in which case

the above assumption would hardly hold. On the contrary, it seems more

realistic to assume that we can identify the set of items at which she starts her

search process. In the above example the observable starting point could be

the set of items placed at the head of the shelf that the consumer necessarily

considers.

In order to capture this kind of situations we introduce the domain D2 =

{(A,A1)|A1 ⊂ A ∈ P(X)}. We interpret (A,A1) as a choice problem, where

A is the choice set and A1 is the first (observable) stage of the menu sequence.

The remaining stages (if any) are assumed to be unobservable. The next

definition formalizes the satisficing procedure on the domain D2.

Definition 6 c is a Satisficing Choice Function under D2 (SCF2) if and only

if there exist a strict linear order �, an alternative xs, and a consideration

set mapping Γ(A,A1) ⊆ A such that

{c(A,A1)} = max(Γ(A,A1);�)

where
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Γ(A,A1) =


A1 if UC�(A1;xs) 6= ∅
Ā if UC�(A \ A1;xs) 6= ∅ = UC�(A1;xs)

A otherwise

and A1 ⊂ Ā ⊆ A.

Our interpretation of the SCF2 is analogous to the SCF’s. The only

difference is that if the DM does not find any satisfactory alternative in the

first stage of the menu sequence, then she keeps exploring the next stages

until she identifies a satisfactory alternative, in which case she stops searching

and selects the �-maximal alternative. Since all stages of the menu sequence

apart from the first one are unobservable, then in this case the consideration

set is given by Ā, where Ā is some subset of A such that A1 ⊂ Ā ⊆ A.

Now we move to the behavioral definitions of satisfaction, attention, and

preference. The definitions of revealed satisfaction and preference are analo-

gous to the ones of previous section.

Proposition 4 (Revealed Satisfaction) Suppose that c is an SCF2. Then,

x ∈ UC�(X;xs) if and only if there exists no (A,A1) ∈ D2 such that x ∈ A1

and c(A,A1) /∈ A1. Whenever this occurs we say that x is revealed to be

satisfactory.

Proposition 5 (Revealed Preference) Suppose that c is an SCF2. Then,

x � y if and only if there is some (A,A1) ∈ D2 such that x = c(A,A1) and

y ∈ A1. Whenever this occurs we say that x is revealed to be preferred

to y.

It is worth observing that in order to infer �, we have to required |A1| > 1

for some suitable (A,A1) ∈ D2. To see why, suppose not and assume that

all alternatives in the grand set are satisfactory. In this case the DM always
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stops searching at the first stage and selects its alternative. This implies that

it is impossible to infer whether x � y for all x, y ∈ X. On the contrary,

revealed satisfaction can be inferred even without this assumption.

Providing a behavioral definition of revealed attention is more compli-

cated, because some stages of the menu sequence are not observable. In

particular we can infer that x is part of the DM’s consideration set only

if two cases occur. First, either x belongs to the first stage of the menu

sequence or x is chosen. Second, the chosen alternative is revealed to be un-

satisfactory and therefore the DM considers all alternatives in the choice set,

including x. These conditions are not necessary for x to be part of the DM’s

consideration set, because it can happen that y is satisfactory and x /∈ A1,

but x ∈ Ā. In this case x is part of the consideration set. However, since Ā

is not observable, it is impossible to infer from choices whether this occurs

or not. The next proposition summarizes this observation.

Proposition 6 (Revealed Attention) Suppose that c is an SCF2. Then,

x ∈ Γ(A,A1), only if either

1. x ∈ A1 ∨ x = c(A,A1) or

2. y = c(A,A1) and there exists a (B,B1) ∈ D2 such that y ∈ B1 and

c(B,B1) /∈ B1.

However, in order to provide an axiomatic characterization of the SCF2

we need a definition of attention. The only case in which we have problems in

inferring attention is when the chosen alternative is satisfactory and x /∈ A1.

In this case x is part of the DM’s consideration set if and only if x ∈ Ā,

where Ā is unobservable. To solve this problem we use the following trick:

assume that the chosen alternative is revealed to be satisfactory and x /∈ A1.

Then, we assume that x attracts attention at (A,A1) whenever x is never

revealed to be preferred to the chosen alternative. In this way, even though

x was not part of the DM’s consideration set, assuming it to be considered
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does not affect neither revealed preference nor revealed satisfaction, because

we require that x is always revealed to be inferior to y. The next definition

formalizes this idea.

Definition 7 We say that x attracts attention at (A,A1) whenever

1. x ∈ A1 ∨ x = c(A,A1) or

2. x /∈ A1, y = c(A,A1) ∈ A1, and there is some (B,B1) ∈ D2 such that

y ∈ B1 and c(B,B1) /∈ B1.

3. x /∈ A1, y = c(A,A1) /∈ A1, and there is no (C,C1) ∈ D2 such that

y ∈ C1 and x = c(C,C1).

The axiom that characterizes the SCF2 is very similar to FAWARP. The

difference is that this version of FAWARP makes use of the concept of atten-

tion provided in definition 7.

Full Attention WARP under D2 (FAWARP2). Assume that x and

y attract attention at (A,A1) and (B,B1). Then, if x = c(A,A1), then

y 6= c(B,B1).

Theorem 2 An extended choice function c is an SCF2 if and only if c sat-

isfies FAWARP2.

We believe that this is an interesting result, because requiring to observe

much less data than under D1, we are still able to characterize the proposed

procedure and provide behavioral definitions of satisfaction and preference.

The only sacrifice, as proposition 6 suggests, is that under the domain D2 we

are able to infer attention only partially.
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2.3.3 Unobservable Menu Sequences

There are also circumstances in which it is also hard to assume that the first

stage of the menu sequence is observable. Consider a consumer who searches

for a new t-shirt in a market place. Assuming that in this case there is a set

of items that she necessarily considers appears to be unrealistic. Since there

are many entries to the market place, there are multiple ways in which she

can starts analyzing the products. In order to capture this kind of situations

we introduce another domain, D3, in which we assume that for each choice

problem we do not observe menu sequences, but only the choice set and the

choice made by the DM, as in the standard model.

Let D3 = P(X). Let C(A) ⊆ A be a choice correspondence defined on D3.

For each A ∈ P(X), let A be the set of menu sequences of the choice set A.

We define C to be a Satisficing Choice Correspondence whenever C records

the choices made by the DM who follows the proposed procedure under

multiple menu sequences. The next definition expresses this idea formally.

Definition 8 C is a Satisficing Choice Correspondence (SCC) if and only

if

C(A) =
⋃

{Aj}∈A

c(A, {Aj})

and c(A, {Aj}) is an SCF.

We first investigate the conditions under which we can unambiguously

state that an alternative is satisfactory. If an alternative x is acceptable,

then there is always a menu sequence at which x is chosen. This implies that

x is chosen for all A ∈ D3 such that x ∈ A, or, equivalently, x ∈ C(X). The

next proposition states that this condition is not only necessary, but also

sufficient for x to be a satisfactory alternative.

Proposition 7 (Revealed Satisfaction) Suppose that C is an SCC. Then,

x ∈ UC�(X;xs) if and only if x ∈ C(X). Whenever this occurs we say that

x is revealed to be satisfactory.
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Proposition 7 suggests that an alternative is satisfactory whenever it is

chosen from all choice sets to which it belongs. Suppose that a choice set

contains at least two satisfactory alternatives. By proposition 7, all satis-

factory alternatives have to be chosen. This implies that under this domain

we cannot identify what is the ranking between two satisfactory alternatives.

On the contrary, we can infer preferences over unsatisfactory alternatives.

Assume that A = {x, y} and assume that x and y are revealed to be unsat-

isfactory. In this case, independently of the menu sequence, the DM always

pays attention to both alternatives. Therefore, if she prefers x to y, then

{x} = C(A). Conversely, if she prefers y to x, then {y} = C(A). Proposition

8 generalizes this idea and provides a behavioral definition of preference over

unsatisfactory alternatives. Let �¬S be the restriction of � to unsatisfactory

alternatives.

Proposition 8 (Revealed Preference) Suppose that c is an SCC. Then,

x �¬S y if and only if there is some A ∈ P(X) such that {x} = C(A) and

y ∈ A and some B ∈ P(X) such that x /∈ C(B).

Now we move to the axiomatic characterization.

We propose two properties. The first one is the well-known Weak Axiom

of Revealed Preference. The second one is called Maximal Indifference and

requires that if and alternative x is jointly chosen with another alternative

y, then x has to be chosen from all choice sets to which x belongs. The idea

behind this axiom is that y represents a kind of reference alternative, where

what makes y special is the fact that it is chosen with another alternative.

If x is chosen when also y is chosen, then this means that also x is a kind of

superior alternative. Therefore, it has to be always chosen.

Weak Axiom of Revealed Preference (WARP). Given x, y ∈ A∩B,

if x ∈ C(A) and y ∈ C(B), then x ∈ C(B).
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Maximal Indifference (MI). If x, y ∈ C(A), then x ∈ C(B) for all

B ∈ P(X) such that x ∈ B.

In appendix A we show that WARP and Maximal Indifference are in-

dependent. The next proposition establishes that these two properties are

necessary and sufficient for C to be an SCC.

Proposition 9 C is an SCC if and only if it satisfies WARP and Maximal

Indifference.

We draw two conclusions from this subsection. First, as proposition 9

suggests, the SCC model is a special case of standard maximization. In

particular C is not rationalizable by any weak order, but only by the weak

order that admits indifference only among maximal alternatives. Second, by

assuming that for each choice problem we cannot observe the menu sequence,

but only the choice set and the choice made by the DM, we are still able to

infer revealed satisfaction and revealed preference below the threshold.

2.4 Relationships with Choice From Lists

Rubinstein and Salant (2006: 5) propose a model called choice from lists in

which the DM does not perceive all alternatives in the choice set before de-

ciding, but examines alternatives one by one. Formally, given any two stages

Aj, Aj+1 of a menu sequence {Aj}, {Aj} is defined to be linear whenever

|Aj| = |Aj+1| − 1 for all j = 1, . . . , N − 1. Let DL ⊂ D1 be the domain D1,

where all menu sequences in D1 are linear. A Rubinstein and Salant’s list is

a linear menu sequence.

Rubinstein and Salant (2006: 6-10) characterize the set of choice functions

that maximize some weak preference relation, where indifference is resolved

according the position that alternatives take up in the lists: either the first
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or the last maximal alternative is selected. Formally, let R be a preference

relation on X and let δ : X → {1, 2} be a priority indicator, where δ(x) =

δ(y) whenever xIy. Given any list (A, {Aj}) ∈ DL, let DR,δ be a choice

function that chooses from A either the first or the last R-maximal element

of the list {Aj} depending on whether the δ-value of the R-maximal set is 1

or 2, respectively. Rubinstein and Salant (2006) show that an axiom called

List Independence of Irrelevant Alternatives is necessary and sufficient for

the choice function from lists to be a DR,δ.
7

The next theorem establishes the relationship between the choice function

from lists DR,δ and the satisficing procedure proposed in this chapter.

Let I(R;\max) be the set of all indifference classes in the grand set X

according to the relation R apart from the class max(X;R).

Theorem 3 If the extended choice function c is an SCF, then the restriction

of c to DL is a DR,δ. Moreover, a DR,δ can be extended to an SCF if and

only if δ = 1 and the sets in I(R;\max) are singletons.

This result provides new insights into the link between the satisficing prin-

ciple and the choice function from lists DR,δ. Rubinstein and Salant (2006:

8) argue that DR,δ is consistent with it when R induces two indifference sets

of satisfactory and unsatisfactory alternatives being the δ-value equal to 1

and 2 for satisfactory and unsatisfactory alternatives, respectively. That is,

the DM chooses the first satisfactory alternative, if any, from any list. Oth-

erwise, she chooses the last alternative. An alternative interpretation that

emerges from Theorem 2 is that there can be more than two indifference

sets, provided that the non-maximal ones are singletons, all R-maximal al-

ternatives in the grand set X are satisfactory and, since δ = 1, the DM stops

searching as soon as she identifies the first one that she encounters in the

7List Independence of Irrelevant Alternatives: assume that x = c(A, {Aj}). Then,

removing any alternative y 6= x from A does not change the choice, ceteris paribus (Ru-

binstein and Salant, 2006: 6-7).



Relationships with Lists 45

list and chooses it. If there is no satisfactory alternative, then she selects the

unique R-maximal one in the list.

The procedure proposed by Rubinstein and Salant (2006) encompasses a

more general class of models than ours. We limit ourselves to model the sat-

isficing heuristic. On the contrary, as explained in the previous paragraph,

Rubinstein and Salant (2006) propose a procedure that includes the satisfic-

ing heuristic as a special case. Nevertheless, there are several aspects of our

model that makes it complementary to theirs.

First, we generalize list to menu sequences. That is, we do not assume

that the DM necessarily examines alternatives one by one. There are many

real world examples that fit within our model, but do not within theirs. For

instance, assume that a person receives job offers sequentially in time. It

may happen that she receives two or more offers simultaneously. Alterna-

tively, think of a driver that has to go past a sequence of junctions. At any

junction the driver compares two alternatives simultaneously. In addition,

there is extensive evidence from experimental psychology that the visual field

may include more than one item. For instance, Pylyshyn and Storm (1988)

provide evidence that suggests that subjects are able to track up to a subset

of 5 items from a set of 10 identical randomly-moving objects in order to

distinguish a change in a target from a change in a distractor.8

Second, unlike Rubinstein and Salant (2006), our model allows for infer-

ring preferences above the threshold xs, not only under D1, but also when

the domain is D2 and only the first stage of the menu sequence is assumed

to be observable.

In order to make the analysis of the relationships between our model and

Rubinstein and Salant (2006) even richer further work could be done. On

the one hand, it would be interesting to characterize the SCF by using List

Independence of Irrelevant Alternatives. On the other hand, a generalization

of their results to menu sequences would shed further light on what are the

8Further evidence is provided by Pylyshyn and Annan (2006) and Franconeri et al.

(2008).
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implications of assuming sequences rather than lists.

2.5 Concluding Remarks

This chapter proposes a theory of boundedly rational choice within the re-

vealed preference approach in which the DM’s behavior is consistent with the

satisficing heuristic. We believe that this chapter has four main strengths.

First, we axiomatically characterize our model and investigate behavioral

definitions of satisfaction, attention, and preference under three different

domains. We think that this provides a rich and complete analysis, because

it allows us to understand how much of DM’s behavior we can infer depending

on how many data we can observe. Our results are summarized in table 2.1.

Domains

D1 D2 D3

Rev.Sat. yes yes yes

Rev.Att. yes partially no

Rev.Pref. yes yes only below xs

Axioms FAWARP FAWARP2 WARP and MI

Figure 2.1: A Summary of the Results

Under D1 we assume that for each choice problem we can observe not

only the choice set and the choice made by the DM, but also the entire menu

sequence. Under this domain we are able to infer both satisfaction, attention,

and preference and we show that Full Attention WARP is equivalent to the

proposed procedure, which incorporates standard maximization as a special

case. If we assume that we cannot observe the whole menu sequence, but

only the first stage, then we are able to fully infer satisfaction and preference,

but attention only partially. In this case FAWARP2 is shown to be equivalent

to our model. Finally, under D3 we assume that search order is unobservable.

In this case we are able to infer satisfaction and preference, but only below

the threshold xs. We also show that under D3 our procedure is a special case
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of standard maximization. In fact it is equivalent to WARP and Maximal

Indifference.

Second, we generalize the framework proposed by Rubinstein and Salant

(2006). Moreover, we show that even though their procedure encompasses a

more general class of models than ours there are some feature that make our

model complementary to theirs. For instance, unlike Rubinstein and Salant

(2006), our model allows us to infer preferences above the threshold not only

under D1, but also under D2.

Third, the issue of inferring the consideration set has become increas-

ingly important and studies have been carried out in various fields, such as

marketing science and psychology.9 For instance, Masatlioglu, Nakajima and

Ozbay (2009) approach the problem from a theoretical perspective and van

Nierop et al. (2010) propose a probabilistic model by using household panel

data. We provide a method for inferring the consideration set when DM’s

behavior is consistent with the satisficing heuristic.

Fourth, there is extensive evidence suggesting that often subjects do not

behave as if they were fully rational. Rather, as if they used simple heuris-

tics to make decisions (Payne, Bettman and Johnson, 1993; Gabaix et al.,

2006).10 Moreover, several experimental studies support the hypothesis that

subjects’ behavior is consistent with the satisficing heuristic. For instance,

Caplin, Dean and Martin (2009) propose an experiment in which they an-

alyze the source of choice errors by using choice process data and find that

that subjects behavior is consistent with a reservation-based model of sequen-

tial search. Reutskaja et al. (2010) use eye-tracking to investigate consumer

search dynamics in a context characterized by time pressure. They show that

subjects tend to choose the optimal alternative among the discovered ones

and that search behavior is compatible with an hybrid of the optimal search

and the satisficing model.

Our work could be further extended by assuming that the threshold is

9See sections 1.3, 1.4, and 1.5.
10See section 1.5.
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not fixed, but can vary depending on the complexity of the choice problem.

The more complex the problem, the more the threshold depreciates. On the

contrary, the simpler the problem, the more the threshold appreciates. We

think that this would make the model more realistic.
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Chapter 3

Does Uncertainty Help

Bounded Rationality? An IO

study

3.1 Introduction

Standard decision theory assumes that the decision-maker is fully rational.

That is, she knows all alternatives in the choice set before deciding and always

picks the best alternative according to her preference relation. However,

many experimental studies have shown that often decision-makers are not

maximizers, but use simple heuristics to make decisions.1 In response to this

growing literature, theorists have proposed new models that assume decision-

makers to be boundedly rational.2 We believe that the natural following step

is to apply the assumption of bounded rationality to more concrete economic

problems.

We decided to analyze the impact of bounded rationality on industrial

organization (IO) for two main reasons. First, as Spiegler (2011: 4) argues,

1See section 1.5.
2See section 1.3.
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IO is a very important area of economics.3 Second, in recent years an increas-

ing number of studies have been carried out in this field (Eliaz and Spiegler,

2009; Piccione and Spiegler, 2010; Spiegler, 2011).

As Ran Spiegler (2011) points out,

bounded rationality is another potential source of market fric-

tion. When some agents have limited understanding of their

market environment (including their own behavior in certain cir-

cumstances), limited ability to process information, and prefer-

ences that are highly unstable, context-dependent and malleable,

market outcomes may differ in interesting and economically sig-

nificant ways from the rational-consumer benchmark. Moreover,

introducing boundedly rational agents into our market models

may challenge conventional wisdom regarding the welfare prop-

erties of market interactions (Spiegler, 2011: 2).

We focus on analyzing the effects of uncertainty on bounded rationality.

We define a consumer to be boundedly rational whenever she behaves con-

sistently with the ‘satisficing’ heuristic (Simon, 1955). That is, she discovers

and analyzes alternatives sequentially and stops searching as soon as she

identifies the first alternative that she judges to be acceptable. In contrast,

a fully rational consumer knows all alternatives before deciding and always

picks the best available good.

We expect that if firms know with certainty the consumer’s type, then

they will exploit this informative advantage to maximize profits by always

supplying an optimal alternative to the fully rational consumer and the min-

imal acceptable alternative to the boundedly rational one. The hypothe-

sis that boundedly rational consumers are subject to exploitation is well-

documented in the literature (Spiegler, 2006b;a; Rubinstein and Spiegler,

2008).4 We are interested in investigating whether the fact that firms are

3Spiegler (2011) has not been published yet, but the introduction is available on-line

at http://www.tau.ac.il/ rani/briocontents.pdf.
4See also section 1.4.
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uncertain about the consumer’s type increases consumers welfare. That is,

whether uncertainty induces firms to supply the optimal alternative, given

that there is a positive probability that consumers are boundedly rational.

We believe that it is worth performing such an analysis because it might lead

to interesting policy implications.

We first investigate a model of quality competition. A store sells n ≥ 2

products and is restocked by n firms. Each firm produces one good and has to

decide its quality. The higher the quality of a good, the higher its production

cost. Whereas fully rational consumers know all alternatives that are sold in

the store in advance and always pick the best alternative, boundedly rational

ones examine the products sequentially and stop searching as soon as they

identify the first satisfactory alternative. We show that if consumers are

fully rational then in equilibrium firms supply the good with the highest

quality. On the contrary, if consumers are boundedly rational, firms supply

the minimal satisfactory alternative, which can be non-optimal. We find that

under uncertainty firms supply the optimal product only if the probability

that the consumer is fully rational is above some threshold. If the threshold is

not met, firms supply some intermediate alternative between the optimal and

the minimal satisfactory one. In this model uncertainty makes the boundedly

rational consumer better off.

Secondly, we analyze a strategic interaction between a consumer and a

firm that play a sequential game. The consumer has to decide first whether

or not to enter the firm. Then, if the consumer decides to enter, the firm can

choose to supply either an optimal or a satisfactory product, provided that

the production cost of the former is greater than the latter’s. We assume

that the fully rational consumer buys only optimal products, whereas the

boundedly rational one buys also satisfactory goods. The main result is

that the fully rational consumer is better off when there is certainty about

consumers’ rationality, because in equilibrium she always gets the optimal

good. On the contrary, when there is uncertainty, she gets either the optimal

product or she does not buy anything. The boundedly rational consumer,
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instead, is better off under uncertainty because if the posterior probability

that the consumer is fully rational is sufficiently high, then she gets the

optimal product in equilibrium.

Thirdly, we investigate how bounded rationality affects the equilibrium

outcome in a model of monopolistic screening. A monopolist supplies a two-

attribute good. There are two types of consumers: the fully rational one

follows a compensatory and the boundedly rational the satisficing decision

strategy, which is noncompensatory. The former refers to those individuals

that make tradeoffs between attributes and the latter refers to individuals

that do not. The firm does not know with certainty whether consumers are of

the first or of the second type. We show that whereas the boundedly rational

consumer gets always the minimal satisfactory alternative, the fully rational

one is better off under uncertainty because under certain conditions she gets

more than her reservation utility. In particular this happens whenever the

threshold of the boundedly rational consumer are particularly high. In this

model uncertainty does not help bounded rationality.

We then conclude the chapter by providing some suggestions for policy-

makers. For instance, in the monopolistic screening model we found that the

fact that fully rational consumer’s preferences are compensatory prevents

the boundedly rational consumers from getting something more than the

minimal satisfactory alternative. That is, compensatory preferences always

allow firms to give the minimum to the boundedly rational consumer and, by

moving along indifference curves, the reservation utility to the fully rational

one. Given this result, we suggest to develop a policy aimed at reducing

the probability that compensation between attributes takes place. As an

example, policy-makers could incentivize advertisement strategies, in which

advantages and disadvantages of similar products are clearly highlighted in

order to minimize the probability that consumers perceive those as substi-

tutes.

This study is closely related to the literature on bounded rationality and
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IO.5 To the best of our knowledge, there are no studies that investigate the

effects of uncertainty on IO by defining boundedly rational consumers as

individuals who behave according to the satisficing heuristic.

This chapter is organized as follows. Section 2.3 investigates a model of

quality competition; Section 3.3 examines a signalling game; Section 4.4 an-

alyzes a model of monopolistic screening; Section 5.5 concludes. Throughout

the chapter the acronym ‘FRC’ stands for ‘fully rational consumer’ and the

acronym ‘BRC’ for ‘boundedly rational consumer’.

3.2 Quality Competition

Consider the following example. Suppose that a consumer wants to buy a

new guitar. There is a big music store in the city, called ‘Hendrix Music

Store’, that sells more than hundred different kinds of guitar. The set of all

guitars in the store represents the choice set. If the consumer is an FRC,

then she knows all products in the store before making the decision. On

the other hand, if she is a BRC and follows the satisficing heuristic, she

discovers and analyzes alternatives sequentially. Moreover, since she is not

aware of how the choice set looks like a priori, she explores it and stops

searching as soon as she identifies the first acceptable alternative. Assume, for

instance, that she does not want to spend more than 2.500 Euros, but needs

an high-quality musical instrument.6 Let a guitar with these characteristics

be called satisfactory. Whereas the FRC’s choice is the best guitar of the

store according to her preferences, which is, for instance, the Gibson Les Paul

Traditional Desert Burst that costs 1.630 Euros, the BRC’s depends on the

extent to which she explores the choice set. For instance, assume that she

examines the department of guitars from left to right and suppose that the

5See section 1.4 for a brief literature review.
6High-quality guitars are, for instance, ‘Fender’, ‘Gibson’, ‘Ibanez’, etc.
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first satisfactory alternative she encounters is the Fender Showmaster Elite

Cherry Sunburst/Ebony that costs 2.200 Euros. Since this product is judged

to be satisfactory, then the BRC stops searching and buys it.

The above story highlights the fact that if a consumer follows the satis-

ficing heuristic, then she discovers and analyzes alternatives sequentially and

may end up with an inferior product. Indeed, the ‘Gibson’ is Pareto-superior

to the ‘Fender’, because it is of the same quality but costs less. The goal

of this section is to investigate the extent to which the fact that consumers

can be either FRCs or BRCs affects an n-firm market that compete within

a given store.

We first introduce some notation and definitions. A binary relation � on

a set X is defined as a subset of the Cartesian product of X with itself. A

binary relation � is complete whenever either x � y or y � x or both. Given

x, y, z ∈ X, a binary relation � is transitive, when x � y and y � z imply

that x � z. A weak order is a transitive and complete binary relation. Let

�= {(x, y) ∈ X ×X|(x � y) ∧ ¬(y � x)} denote the asymmetric part of �
and let ∼= {(x, y) ∈ X ×X|(x � y) ∧ (y � x)} denote its symmetric part.

Let X be a finite set of alternatives. The market is composed of identical

firms that have to decide simultaneously which product x ∈ X to produce.

Let N = {1, 2, . . . , n} be the set of players (firms), where n = |N | ≥ 2 is the

number of firms acting in the market. Let Si ⊆ X be firm i’s set of strategies,

with i ∈ N . A firm i’s pure strategy is denoted by xi ∈ Si. A strategy profile

is a vector x = (x1, . . . , xn) ∈ S = ×ni=1Si. All products x ∈ X, if sold, yield

the same level of revenue, which is normalized to 1. Let c : X → <+ be the

cost function, where c(x) is the cost of producing one alternative x ∈ X. The

goal of firms is to maximize profit.

We assume that there is a unique consumer, that can be either an FRC or

a BRC. Let � be a weak order on X that represents consumer’s preferences.

Let xmax ∈ {x ∈ X|@y ∈ X such that y � x} be a �-maximal alternative

in X and let xmin ∈ {x ∈ X|@y ∈ X such that x � y} be a �-minimal one.

Let xs ∈ X be a �-minimal satisfactory alternative available in X. That



Quality Competition 57

?

�

6

-

1 2

i

n

O

&%
'$

Figure 3.1: Alternatives are ordered according to the strict linear order O,

where 1O2O . . . On.

is, xs is a lowest-quality alternative that is judged to be satisfactory by the

BRC and all alternatives that are at least as good as xs are considered to be

satisfactory as well. Obviously, the FRC does not care about xs because she

always searches for the optimum.

We also assume that the higher the quality of good x the higher its

production cost, that is, c(x) > c(y) if and only if x � y, provided that

c(xmax) < 1
n
.7 Let πi(x) be firm i’s profit (or payoff) when the played strategy

profile is x = (x1, . . . , xn) ∈ S with i ∈ N .

Finally, we assume that the products supplied by the n firms are ordered

according to the strict linear order O.8 In particular, given i, j ∈ N , if iOj,

then the alternative supplied by firm i precedes j’s. We can think of O as

some spatial ordering according to which alternatives are arranged.9 Figure

3.2 shows an example.

If the consumer is an FRC, then she knows the characteristics of all al-

ternatives in advance and picks the maximal available alternative according

to �. If all firms produce a good of the same quality, the FRC chooses

randomly. On the other hand, if the consumer is a BRC and follows the

7We assume that c(xmax) < 1
n in order to make the strategy of supplying some alter-

native feasible.
8A strict linear order is a transitive, complete, and antisymmetric binary relation. A

binary relation is antisymmetric whenever, given x, y ∈ X, x � y and y � x imply x = y.
9Notice that O is defined on N and not on X. Nevertheless, we interpret it as an

ordering over supplied alternatives, because each firm i supplies exactly one good xi.
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satisficing heuristic, then she explores alternatives sequentially according to

O. In particular, we assume that she starts with firm i’s product with proba-

bility 1
n
. If it is satisfactory, then she stops searching and buys it. Otherwise,

she examines firm j’s product, provided that iOj and there is no k ∈ N such

that iOkOj. Again, if this product is satisfactory, she stops searching and

buys it. Otherwise, she goes one and the procedure is the same as before. If

she examines the product supplied by the O-minimal firm in N and finds it

not to be satisfactory and there is some j ∈ N such that jOi, then she ex-

amines the goods supplied by the firms in the set {i ∈ N |jOi} still according

to the relation O. If all alternatives are explored and are of the same quality,

then the BRC chooses randomly.

Formally, let LC(O; i) = {j ∈ N |iOj} and UC(O; i) = {j ∈ N |jOi} be

the lower and the upper contour-set of i according to the relation O, respec-

tively. Let OLC,i = O ∩ (LC(O; i)× LC(O; i)) and OUC,i = O ∩ (UC(O; i)×
UC(O; i)). Let (Oi)i∈N be a family of binary relations on N , where Oi sat-

isfies:

• {i} = max(N ;Oi),

• Oi ∩OLC,i = OLC,i,

• Oi ∩OUC,i = OUC,i, and

• given k, j ∈ N , kOij whenever k ∈ LC(O; i) and j ∈ UC(O; i), pro-

vided that LC(O; i) 6= ∅ 6= UC(O; i).

In short the BRC examines alternatives according to Oi with probability
1
n

for all i ∈ N . See figure 3.2 for an example.

Clearly, there are many other ways in which the BRC could explore alter-

natives. In this study we focus on the above search procedure, but extensions

of the model could encompass other procedures by which the consideration

set is constructed. For instance, more advertised products may have an

higher probability of being discovered first.
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Figure 3.2: The BRC examines alternatives according to the strict linear

order Oi with probability 1
n
, for all i ∈ N .

Let this game be called ‘n-firm game’. The analysis of the equilibrium

market is restricted to pure-strategy equilibria.

3.2.1 Certainty About the Consumer’s Type

Assume first that firms know that the consumer is an FRC.

If the consumer is an FRC, then she knows the products that all firms

produce in advance. She picks the best alternative according to her preference

relation and if products are of the same quality then she chooses randomly.

Given a strategy profile x, let n(i,x) = |{j ∈ N |xj ∼ xi}| be the number

of firms that supply an alternative xj of the same quality as xi. Formally,

firm i’s payoff function is defined as follows.

πi(x) =

{
1

n(i,x)
− c(xi) if xi � xj for all j ∈ N

−c(xi) otherwise

Assume that firm i supplies an alternative xi � xj for all j ∈ N . The

magnitude of profits depends on how many firms supply alternatives of ex-

actly the same quality as xi. For instance, if xi � xj for all j ∈ N , then

n(i,x) = 1 and πi(x) = 1 − c(xi). On the other hand, if xi ∼ xj for all

j ∈ N , then n(i,x) = n and πi(x) = 1
n
− c(xi). Whenever 1 < n(i,x) < n,
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πi(x) = 1
n(i,x)

− c(xi). Hence, the greater n(i,x), the lower profits.

Suppose then that xi ≺ xj for some j ∈ N \ {i}. Then, independently of

how many firms supply an alternative superior to xi firm i’s revenues are zero,

i.e., πi(x) = −c(xi), because the FRC never buys a dominated alternative.

The game of figure 3.3 represents the n-firm game in which the consumer

is an FRC, there are two firms (n = 2), and X = {xmin, x′, xmax}, where

xmin ≺ x′ ≺ xmax.

xmin x′ xmax

xmin 1
2 − c(x

min), 1
2 − c(x

min) −c(xmin), 1− c(x′) −c(xmin), 1− c(xmax)

x′ 1− c(x′), −c(xmin) 1
2 − c(x

′), 1
2 − c(x

′) −c(x′), 1− c(xmax)

xmax 1− c(xmax), −c(xmin) 1− c(xmax), −c(x′) 1
2 − c(x

max), 1
2 − c(x

max)

Figure 3.3: The n-firm game, where the consumer is an FRC, n = 2, X =

{xmin, x′, xmax}, and xmin ≺ x′ ≺ xmax

The row player is firm 1 and the column player is firm 2. For instance,

suppose that firm 1 plays xmax and firm 2 xmin. Since xmax � xmin, then the

FRC buys xmax. Therefore, firm 1’s profits are 1 − c(xmin) and firm 2’s are

−c(xmin).

The next proposition characterizes the equilibrium of the n-firm game,

where the consumer is an FRC.

Proposition 10 In the n-firm game in which the consumer is an FRC, X

is finite, and n ≥ 2, there exists a unique pure-strategy Nash equilibrium in

which firms play xmax and earn profits equal to 1
n
− c(xmax).

If firms play xmax, then they obtain the lowest level of profit and con-

sumers get their most preferred object. Moreover, limn→+∞
1
n
− c(xmax) = 0,

that is, if the number of firms in the market tends to infinity, then firms’ prof-
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its tend to zero. For this reason the equilibrium characterized in Proposition

10 (xmax = (xmax
i )i∈N) is called competitive outcome.

This result is not surprising. Since the FRC knows all alternatives before

deciding, then she always picks the best available good. This implies that

there cannot be equilibria in which firms supply a non-maximal alternative.

The reason is that each firm has an incentive to raise a little bit the quality

in order to attract the FRC. This mechanism pushes the quality upwards

and leads firms to play xmax, the product with the highest quality.

Moreover this result resembles Bertrand competition, that is, two firms

are sufficient for the equilibrium market to be perfectly competitive.

Assume now that firms know that the consumer is a BRC.

A BRC follows the satisficing heuristic. That is, she examines alternatives

sequentially and stops searching as soon as she identifies the first satisfactory

alternative. Moreover, if all products are discovered and are of the same

quality, then she chooses randomly.

Assume firm i’s perspective. Since the BRC examines alternatives sequen-

tially according to Oj with probability 1
n

for all j ∈ N , then the probability

that the BRC actually examines firm i’s product crucially depends on what

the firms that Oj-precede firm i do. For instance, assume that some firm

that Oj-precedes i supplies a satisfactory alternative. In this case, the BRC

does not even consider firm i’s product at Oj, because she stops searching

before encountering it. In the definition of the payoff function we have to

consider this possibility.

Let Pj(i) = {k ∈ N |kOji} for any j ∈ N\{i}. This set is never empty and

contains all firms whose products Oj-precede firm i’s at Oj.
10 Next, given

a strategy profile x, we introduce an indicator function Ij(i,x) that tells us

whether or not firm i’s product belongs to the BRC’s consideration set at

Oj. In particular, if Ij(i,x) = 1, then all products supplied by the firms that

Oj-precede firm i are unsatisfactory and the BRC considers xi at Oj. On the

10We do not need to consider the case in which i = j, because the first alternatives that

the BRC examines under Oi is precisely xi.
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contrary, if Ij(i,x) = 0, then there is at least one firm that Oj-precede firm

i that supplies a satisfactory product and, therefore, xi is not part of the

BRC’s consideration set at Oj. Let UC�(X;xs) = {x ∈ X|x � xs} be the

upper-contour set of xs according to �, representing the set of satisfactory

alternatives available in the grand set X. Formally, Ij(i,x) is defined as

follows: for any j ∈ N \ {i},

Ij(i,x) =

{
1 if xk /∈ UC�(X;xs) for all k ∈ Pj(i)
0 otherwise

Since the BRC examines alternatives sequentially according to Ok with

probability 1
n

for all k ∈ N , then the probability that xi is part of her

consideration set is
∑
j 6=i Ij(i,x)

n−1
+ 1

n
. The second addendum captures the state

of the world in which the BRC starts by exploring firm i’s product (xi is

always part of BRC’s consideration set at Oi). Let q =
∑
j 6=i Ij(i,x)

n−1
+ 1

n
. Notice

that q ∈ [ 1
n
, 1], where q = 1

n
when all firms supply a satisfactory product and

q = 1 when only firm i supplies a satisfactory good.

Formally, firm i’s payoff function is defined as follows.

πi(x) =


q (1− c(xi))− (1− q) (c(xi)) if xi � xs

1
n(i,x)

− c(xi) if (xi, xj /∈ UC�(X;xs))

and (xi � xj )∀j ∈ N
−c(xi) otherwise

Assume first that xi is satisfactory. In this case, firm i’s revenues are

equal to 1, only if the BRC considers xi. We know that this happens with

probability q. Conversely, its revenues are equal to zero with probability

(1 − q), because if (1 − q) > 0, then this implies that at some Oj there is

a firm, which precedes firm i, whose product is satisfactory. Hence, firm i’s

profits are q (1− c(xi))− (1− q) (c(xi)).

Next, suppose that all firms supply an unsatisfactory product, but xi �
xj ∀j ∈ N . In this case, the BRC’s consideration set includes all the supplied
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alternatives. That is, the BRC behaves as if she was an FRC. Since xi is at

least as good as all the supplied products, then firm i’s profits are 1
n(i,x)
−c(xi).

Finally, notice that if either xi is unsatisfactory and some other firm j sup-

plies a satisfactory alternative (i.e., xi /∈ UC�(X;xs) 3 xj for some j) or all

the supplied alternatives are unsatisfactory and xi is worse than some other

alternative xk (i.e., (xj /∈ UC�(X;xs)∀j ∈ N) and (xk � xi for some k 6=
i)), then firm i’s revenues are zero. Hence, its profits are equal to −c(xi).

The game of figure 3.4 represents the n-firm game in which the consumer

is a BRC, there are two firms (n = 2), X = {xmin, xs, xmax}, xmin ≺ xs ≺
xmax, and UC�(X;xs) = {xs, xmax}.

xmin xs xmax

xmin 1
2 − c(x

min), 1
2 − c(x

min) −c(xmin), 1− c(xs) −c(xmin), 1− c(xmax)

xs 1− c(xs), −c(xmin) 1
2 − c(x

s), 1
2 − c(x

s) 1
2 − c(x

s), 1
2 − c(x

max)

xmax 1− c(xmax), −c(xmin) 1
2 − c(x

max), 1
2 − c(x

s) 1
2 − c(x

max), 1
2 − c(x

max)

Figure 3.4: The n-firm game, where the consumer is a BRC, there are two

firms (n = 2), X = {xmin, xs, xmax}, xmin ≺ xs ≺ xmax, and UC�(X;xs) =

{xs, xmax}

Notice that the game of figure 3.4 (in which the consumer is a BRC) is

different, ceteris paribus, from the game of figure 3.3 (in which the consumer

is an FRC). For instance, assume that firms play (xs, xmax). In the case in

which the consumer is an FRC firm 1’s profits are −c(xs) and firm 2’s are

1 − c(xmax). On the other hand, if the consumer is a BRC, then firm 1’s

profits are 1
2
− c(xs) and firm 2’s are 1

2
− c(xmax). The reason is that for the

BRC all products that are at least as good as xs are satisfactory. Obviously,

if xmax ∼ xs, then the BRC is actually an FRC and the two games coincide.

Therefore, from now on we assume that UC�(X;xs) contains at least two

indifference classes.

The next proposition characterizes the equilibrium of the n-firm game in
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which the consumer is a BRC.

Proposition 11 In the n-firm game in which the consumer is a BRC, X

is finite, and n ≥ 2, there exists a unique pure-strategy Nash equilibrium in

which firms play xs and earn profits equal to 1
n
− c(xs).

Proposition 11 suggests that bounded rationality on the demand side

implies that firms supply precisely the minimal satisfactory alternative xs,

which can be non-optimal. The fact that the consumer follows the satisficing

heuristic attenuates the mechanism of competition and induces firms not to

supply the maximal good.

The intuition behind this result is that as long as firms supply a good

worse than xs, then the same mechanism of competition described above is

at work. That is, each firm i, independently of its positioning according to

Oi, has an incentive to deviate and raise the quality in order to capture the

BRC. The reason is that if firm i produces a good inferior to xs, then the

BRC keeps searching looking for a better alternative and acts as if she was

an FRC.

On the contrary, assume that firms supply some good y �-superior to

xs. In this case each firm i’s profits are 1 − c(y) with probability 1
n

and

−c(y) with probability 1− 1
n
. Notice that as long as y � xs all products are

satisfactory and, therefore, the BRC always stops searching at max(N,Oi) for

all i. This implies that each firm i has an incentive to deviate to z, provided

that y � z � xs, because its profits are equal to 1− c(z) with probability 1
n

and to −c(z), otherwise, given that c(y) > c(z). This argument and the one

described in the previous paragraph imply that firms play xs in equilibrium.

Let xmin = (xmin
i )i∈N be called collusive outcome because firms playing

this strategy profile make the highest amount of profits and consumers get

their least preferred alternative.

Notice that if xs /∈ min(X,�) and xs /∈ max(X,�), that is, if the mini-

mal satisfactory alternative is neither minimal nor maximal in X, then the
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Nash equilibrium of the n-firm game played by the BRC lies between the

collusive and the competitive outcome: firms earn less than in the collusive

outcome and more than in the competitive one. The BRC, instead, buys an

intermediate good with respect to the relation �. This result resembles the

Nash equilibrium of the Cournot model.

3.2.2 Uncertainty About the Consumer’s Type

Suppose that firms do not know with certainty whether the consumer is an

FRC or a BRC. In particular, let ρ be the probability that the consumer is

an FRC. Let πui = ρπFRCi + (1 − ρ)πBRCi be firm i’s profit function under

uncertainty, where πFRCi and πBRCi are firm i’s profit functions when the

consumer is an FRC and a BRC, respectively.

The next proposition characterizes the equilibrium of the n-firm game in

which there is uncertainty about whether the consumer is an FRC or a BRC.

Proposition 12 In the n-firm game in which the consumer is an FRC with

probability ρ and a BRC with probability (1−ρ), X is finite, and n ≥ 2, there

exists a unique pure-strategy Nash equilibrium in which firms play xmax and

earn profits equal to 1
n
−c(xmax) only if ρ ≥ ρ̄ = n(c(xmax)−c(xs)). Moreover,

if ρ < ρ̄ firms do not supply alternatives �-worse than xs in equilibrium.

Proposition 12 suggests that the BRC is better off under uncertainty,

because under certainty she gets a minimal satisfactory alternative xs. On

the contrary, under uncertainty she gets her most preferred good xmax if ρ ≥ ρ̄

and at least xs, otherwise.

If the supplied alternatives are unsatisfactory, then the FRC and the BRC

behave exactly in the same way in this model. They are distinguishable only

when some satisfactory alternatives are supplied. In particular, unlike the

FRC, the BRC stops searching as soon as she identifies the first satisfactory

alternative, even though it is not optimal. On the contrary, the FRC is
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satisfied only when she chooses precisely the optimum. The intuition behind

the result of proposition 12 is that for a sufficiently high ρ, the FRC’s desire

to get the optimum has an higher impact on the profit function πu then BRC’

satisfycing attitudes. Therefore, firms find more convenient to supply xmax

rather than xs.

The threshold ρ̄ = n(c(xmax) − c(xs)) increases in n and c(xmax) and

decreases in c(xs). On the one hand, it seems intuitive that the threshold

decreases as the difference between c(xmax) and c(xs) decreases. The reason

is that if c(xmax) and c(xs) get closer and closer to each other, then xs gets

closer and closer to xmax in terms of preferences �. This makes the BRC

progressively more and more similar to the FRC, because the set UC(�, xs)
shrinks and less and less alternatives are considered to be satisfactory. Hence,

a lower ρ̄ is needed to induce firms to supply xmax.

On the other hand, the fact that the threshold increases in n seems coun-

terintuitive, because typically one is led to think that consumer welfare in-

creases as the market becomes more and more competitive. Our interpreta-

tion is that to an increase in the number of firms acting in the market corre-

sponds an higher probability that the BRC stops searching before exploring

the whole choice set. This increases the chances that the optimal alternative

xmax is not part of the BRC’s consideration set and, consequently, reduces

firms’ incentives to supply xmax. This is why an higher ρ is required in order

to induce firms to supply xmax.

Finally, notice that the FRC is worse off under uncertainty. In fact, if ρ is

below the threshold, then xmax is not an equilibrium. The worst alternative

that the FRC can get in equilibrium is xs. Firms, instead, are clearly better

off under certainty when the consumer is a BRC.
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3.3 Signalling

Consider the following example. Assume that a consumer needs to buy a

new camera. There is a beautiful store in the center of the city that sells

either high-quality or intermediate-quality cameras. Suppose that she decides

to visit it. The shop assistant knows that there are mainly two types of

consumers. The first one buys only if she finds high-quality cameras. The

second one buys even though she finds intermediate-quality ones. The shop

assistant has to decide what kind of camera to show first. He is perfectly

aware of the fact that the consumer’s opinion about the store is strongly

influenced by the first product he shows. For instance, if the first showed

camera is a swindle, then the consumer is led to think that the store does not

sell good products and that it is better to change place. The shop assistant is

also aware of the fact that showing the intermediate-quality camera requires

little time, because this kind of product is pretty simple to use. On the

other hand, explaining how the high-quality camera works requires a lot of

effort, more time, and concentration of the consumer. Moreover, the cost-

opportunity of doing that is high, because it prevents him from carrying out

other important tasks in the store. His problem is to choose what kind of

cameras to show first, given that he does not know whether the consumer he

is facing is of the first or of the second type.

The goal of this section is to analyze a situation analogous to the one de-

scribed in the above example. That is, a firm has to decide whether to supply

either an optimal or a satisfactory good. There are two types of consumers:

FRCs and BRCs. FRCs are willing to buy products only if they are maximal

according to their preference relation. On the other hand, BRCs buy not

only maximal products, but also satisfactory ones. The firm’s objective is

to maximize profits, given that she does not know whether consumers are

FRCs or BRCs and the production cost of the optimal good is greater than

the satisfactory good’s one.

Formally, let N = {1, 2} be the set of players, where player 1 is the con-
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sumer and player 2 is the firm. The consumer has to decide first whether to

enter or not the firm. The consumer’s pure strategy space is S1 = {E,NE},
where E stands for “enter” and NE “don’t enter”. Then, if she decides to

enter, then the firm has to choose whether to supply either an optimal or

a satisfactory product. The firm’s pure strategy space is S2 = {xmax, xs},
where the strategy xmax represents the choice of producing the optimal good

and xs represents the choice of supplying the satisfactory one. The cost

c(xmax) of producing xmax is assumed to be greater than the cost c(xs) of

producing xs, where c(xmax) < 1. The consumer always prefers xmax to xs.

If the consumer chooses NE, then the consumer gets the reservation utility

and the firm the reservation profit π̄. A sold product yields a positive level

of revenues, which is normalized to 1. The goal of the firm is to maximize

profits.

Consider first the case in which the consumer is a FRC. If the FRC

chooses E and the firm supplies xmax, then the FRC buys xmax, her utility is

u(xmax), and firm’s profits are 1− c(xmax). On the contrary, if she chooses E

and the firm supplies xs, then the FRC does not buy xs, her utility is u(xs),

and firm’s profits are −c(xs). In this case the FRC does not buy anything

because xs is not optimal. Moreover, since she is wasting time in the store,

then we assume that u(xmax) > ū > u(xs). The firm, on the other hand,

makes negative profits because xs is not sold.

Next, consider the case in which the consumer is a BRC. If the firm

supplies xs, then the BRC buys xs, her utility is v(xs), and firm’s profits

are 1 − c(xs). On the other hand, if the firm supplies xmax, then the BRC

still buys the supplied product, her utility is v(xmax), and firm’s profits are

1− c(xmax). Since the consumer prefers the optimal to the satisfactory good,

then we assume that v(xmax) > v(xs). However, since the consumer is a BRC

and xs is satisfactory, then v(xs) > v̄.

The analysis is restricted to pure-strategy equilibria.
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3.3.1 Certainty About the Consumer’s Type

Consider first the situation in which the consumer is a FRC. Figure 3.5

represents the game described above, where the consumer is a FRC.
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Figure 3.5: The game in which the consumer is a FRC

The firm supplies the maximal good xmax if and only if 1 − c(xmax) >

−c(xs). Since this inequality is always true, then the firm’s optimal choice is

xmax. Hence, the consumer’s best response is to enter, because u(xmax) > 0.

The conclusion is that there is a subgame perfect Nash equilibrium in which

the consumer buys and the firm supplies the maximal alternative.

Consider now figure 3.6 that represents the game described above, where

the firm knows that the consumer is a BRC.

The firm supplies xs if and only if 1−c(xs) > 1−c(xmax), that is, c(xmax) >

c(xs). Since this inequality is always true, then the optimal strategy for the



70 Does Uncertainty Help BR? An IO study

s1
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
As

�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A

2

v(xmax)
1− c(xmax)

v(xs)
1− c(xs)

v̄
π̄

E NE

xmax xs

Figure 3.6: The game in which the consumer is a BRC

firm is to supply xs. Hence, the consumer’s best response is to enter because

v(xs) > v̄. The conclusion is that the subgame perfect Nash equilibrium of

the game of figure 3.6 is (E, xs).

Notice that certainty about consumer’s rationality induces the firm to put

into practice a sort of contingent strategy: (i) supply the maximal product

when facing a FRC and (ii) supply the satisfactory alternative when fac-

ing a BRC. This result is not surprising because, contingent on the specific

situation, the firm simply maximizes its profits.

3.3.2 Uncertainty About the Consumer’s Type

Suppose now that the firm does not know with certainty whether the con-

sumer is a FRC or a BRC. In particular assume that the nature selects with

a certain probability what is the type of consumer. If the state is FRC, then

the game of figure 3.5 is played. On the contrary, if the state is BRC, then
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the game of figure 3.6 is played. The firm has a prior, denoted by p(·), about

what is the state of nature, which is common knowledge between players.

This situation is depicted in figure 3.7.
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Figure 3.7: The game in which the firm does not know with certainty whether

the consumer is a FRC or a BRC

Notice that the game of figure 3.7 is a signalling game.11

At this point one could wonder what kind of strategy the firm will follow.

11In a basic signalling game player 1 is the sender (of a signal), has private information

about her type, and chooses a strategy contingent on her type. Player 2, whose type is

common knowledge, observes the strategy played by player 1 and chooses a strategy. Let Θ

be the set of player 1’s types. It is assumed that player’s 2 prior probability about player’s

1 type is denoted by p(θ) and is common knowledge. Let xi ∈ Si be a pure strategy, where

Si is player i’s strategy space, with i = 1, 2. A player 1’s mixed strategy σ1(·|θ) prescribes

a probability distribution over the set S1 for each type θ ∈ Θ. A player 2’s mixed strategy

σ2(·|σ1) prescribes a probability distribution over S1 for each strategy σ1 played by player

1. Player i’s payoff is denoted by ui(σ1, σ2, θ) (Fundenberg and Tirole, 1991a: 324-325).
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In order to answer this question we compute the perfect Bayesian equilibria

of the game of figure 3.7.12 Remember that under certainty the firm behaves

according to the contingent strategy, that is, playing xmax when the consumer

is a FRC and xs when she is a BRC.

The next proposition characterizes the equilibria of the game of figure

3.7.

Proposition 13 In the game of figure 3.7, there are two sets of pure-strategy

perfect Bayesian equilibria:

(i) the FRC plays E, the BRC plays E, the firm supplies xmax, and the

posterior probabilities are p(FRC|E) ∈ (c(xmax)−c(xs), 1] and p(FRC|NE) ∈
[0, 1];

(ii) the FRC plays NE, the BRC plays E, the firm supplies xs, and the

posterior probabilities are p(FRC|E) = 0 and p(FRC|NE) = 1.

12A perfect Bayesian equilibrium of a signalling game is a strategy profile σ∗ and pos-

terior beliefs µ(·|x1) such that

(i) ∀θ ∈ Θ, σ∗1 ∈ arg max
σ1

u1(σ1, σ
∗
2 , θ)

(ii) ∀x1, σ
∗
2(·|x1) ∈ arg max

σ2

Σθµ(θ, x1)u2(x1, σ2, θ)

and

µ(θ|x1) = p(θ)σ∗1(x1|θ)/Σθ′∈Θp(θ
′)σ∗1(x1|θ′)

if Σθ′∈Θp(θ
′)σ∗1(x1|θ′) > 0

and µ(x1|θ) is any probability distribution over Θ if Σθ′∈Θp(θ
′)σ∗1(x1|θ′) = 0 (Funden-

berg and Tirole, 1991a: 325-326). Since the game of figure 3.7 is a signalling game with

two types, then a strategy profile is a perfect Bayesian equilibrium if and only if it is a

sequential equilibrium (Fundenberg and Tirole, 1991b).
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In the first set of perfect Bayesian equilibria of Proposition 13 both types

of consumer enter and the firm supply the optimal good xmax and in the sec-

ond the FRC stays out, the BRC enters, and the firm supplies the satisfactory

good xs. This result has different implications on FRC’s and BRC’s wel-

fare. In equilibrium the FRC is worse off under uncertainty than under cer-

tainty, because under certainty the contingent strategy implies that she gets

u(xmax) for sure and under uncertainty she gets either u(xmax) or ū, where

ū < u(xmax). On the contrary, in equilibrium the BRC is better off under un-

certainty. The reason is that under certainty she gets v(xs) for sure and under

uncertainty she gets either v(xs) or v(xmax), where v(xs) < v(xmax). That

is, in equilibrium the BRC’ payoffs under uncertainty are Pareto-superior to

the BRC’ payoffs under certainty. The intuition behind this result is that

under uncertainty as long as the posterior probability of the consumer being

a FRC is sufficiently high (p(FRC|E) > c(xmax)− c(xs)), then it is too risky

for the firm to play xs: if the firm chose xs, the FRC would punish the firm

by not buying inducing a negative profit of −c(xs). In order to prevent this

outcome, the firm chooses the optimal alternative xmax even though there is

a positive probability that the consumer is a BRC.

The firm, instead, maximizes its profits when it faces a BRC with cer-

tainty, because in equilibrium it gets 1 − c(xs). On the contrary, whenever

if it deals with a FRC its profits are 1 − c(xmax), where c(xs) < c(xmax).

Moreover, whenever there is uncertainty about whether the consumer is an

FRC or a BRC, it gets in equilibrium either 1− c(xmax) or 1− c(xs), which

is worse than 1− c(xs).

3.4 Monopolistic Screening

A decision strategy is called compensatory whenever decision-makers make

tradeoffs between attributes. On the other hand, a decision strategy is non-
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compensatory whenever DMs do not (Payne, Bettman and Johnson, 1993:

29 and 31). A compensatory decision strategies is, for instance, standard

maximization. On the contrary, the satisfycing heuristic is an example a

noncompensatory strategy. In this section a model of monopolistic screening

is illustrated in which two types of consumers act: the first one relies on a

compensatory and the second one on a noncompensatory decision strategy.

Consider the following example. Assume a consumer is interested in buy-

ing a new car. Suppose that she considers only two characteristics, that is,

price and level of emissions (expressed in Light Duty Vehicle European stan-

dards13). The first type of consumer, called FRC, prefers to spend as little

as possible and to own a car that does not pollute that much. Her main fea-

ture is that she makes tradeoffs between attributes. On the other hand, the

second type of consumer is called BRC. Her preferences over attributes are

similar to FRC’s, however, she judges an alternative to be satisfactory only

if the levels of its attributes are at least as good as some threshold. Suppose

that the BRC judges a car to be satisfactory only if it costs at most 15.000

Euros and its standard is at least Euro 3.

Notice that FRC’s and BRC’s preferences may diverge. For instance,

consider car y = (1.000, 1), where the first element represents the attribute

‘price’ and the second ‘emissions’ in terms of the standard ‘Euro x’ with

x ∈ {1, 2, 3, 4, 5}.
According to BRC’s preferences, y is not acceptable, because its standard

is less than Euro 3. On the other hand, since FRC’s preferences allow for

compensation, then there exists a car z that is indifferent to y. Suppose that

z = (14.000, 5). Notice that whereas z ∼FRC y, it turns out that z �BRC y,

because z is satisfactory.

The goal of this section is to investigate the extent to which the fact that

there are FRCs and BRCs affects the equilibrium outcome of a market in

13In the European Union there are five standards: Euro 1, Euro 2, Euro 3, Euro 4, and

Euro 5. The principle is that the less a car pollutes the highest ‘Euro’ it gets. The cars

that conform to Euro 1 are the ones that pollute more. Currently, Euro 5 is the standard

that certifies the highest level of environmental sustainability.
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which a monopolist supplies a multi-attribute good.

Let X = <0
+ × <+ be a subset of the two-dimensional Euclidean space.

Each vector x = (px, qx) ∈ X represents a two-attribute alternative, where

px > 0 represents the attribute ‘price’ and qx ≥ 0 represents a generic at-

tribute different from price.

We assume that there is a monopolist that produces good x whose profit

function is π(x) = px − c(qx), where c(qx) is the cost of producing good x

with characteristic qx. It is assumed that c(qx) = αqx, where α ∈ (0, 1). The

goal of the monopolist is to maximize profits.

On the demand side, there are two kinds of consumer: the FRC and

the BRC. The FRC is an expected utility maximizer whose Bernoulli utility

function is defined as u(x) = u(g(qx)−px), where the function g measures the

utility of the characteristics qx in monetary units. Let g(qx) = ln(qx+1). This

functional form implies that the FRC evaluates more and more characteristic

qx as it increases, but marginal utility is decreasing. Furthermore, the FRC

is assumed to be risk averse and her reservation utility is ū, where ū > u(0).

The BRC is not a maximizer, but follows the satisficing heuristic. Specif-

ically, she judges a good y ∈ X to be satisfactory only if py ≤ p̄ and qy ≥ q̄,

where (p̄, q̄) ∈ X is a minimal satisfactory alternative.

The goal of the FRC is to maximize her utility and the goal of the BRC

is to get at least a satisfactory product. Throughout this chapter we denote

by x = (px, qx) the product that the monopolist supplies to the FRC and by

y = (py, qy) the product that the monopolist supplies to the BRC.

3.4.1 Certainty About the Consumer’s Type

We assume first that the firm knows that consumers are FRCs. This implies

that the firm maximizes its profits subject to the so called ‘reservation utility

constraint’. That is, the utility of good x must be greater or equal than

the reservation utility. Formally, u(ln(qx + 1) − px) ≥ ū, or, equivalently,

ln(qx + 1)− px ≥ u−1(ū). Thus, the firm has to solve the following problem.
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PROBLEM 1

maxpx,qx px − αqx
s.t. (i) ln(qx + 1)− px ≥ u−1(ū)

The next proposition characterizes the solution of problem 1. Let the

solution be denoted by xc = (pcx, q
c
x), where c stands for certainty.

Proposition 14 Problem 1 has a unique solution xc = (pcx, q
c
x) = (ln( 1

α
) −

u−1(ū), 1
α
− 1).

Proposition 14 suggests that the FRC gets precisely the reservation utility

under certainty. In fact, plugging the optimal solution into constraint (i), we

get ln( 1
α
− 1 + 1)− ln( 1

α
) + u−1(ū) ≥ u−1(ū), which implies that ū = ū.

Suppose now that the firm knows that consumers are BRCs. This implies

that the firm maximizes its profits subject to the constraint that the supplied

product y has to be satisfactory, that is, py ≤ p̄ and qy ≥ q̄. Let these

constraints be called ‘satisficing constraints’. Thus, the firm has to solve the

following problem.

PROBLEM 2

maxpy ,qy py − αqy
s.t. (i) py ≤ p̄

(ii) qy ≥ q̄

The next proposition characterizes the solution of problem 2. Let the

solution be denoted by yc = (pcy, q
c
y), where c stands for certainty.

Proposition 15 Problem 2 has a unique solution yc = (pcy, q
c
y) = (p̄, q̄).

If the consumer is a BRC, then the firm supplies precisely the minimal

satisfactory alternative under certainty. This result confirms what we found

in the quality competition and signalling game models.
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3.4.2 Uncertainty About the Consumer’s Type

Assume now that the firm does not know with certainty whether consumers

are FRCs or BRCs. Let ρ ∈ (0, 1) be the probability that consumers are

FRCs. The firm has to find two goods x = (px, qx) ∈ X and y = (py, qy) ∈ X
such that the expected profit ρ (px − αqx) + (1− ρ) (py − αqy) is maximized,

where x maximizes FRC’s utility and y is at least satisfactory. However,

the optimal solution must satisfy not only the reservation utility and the

satisficing constraints, but also the so called ‘incentive compatible’ ones.

These constraints require that, first, alternative x must yield at least the

same level of utility of good y. Second, good x does not have to be more

than satisfactory, that is, either px ≥ p̄ or qx ≤ q̄ or both. In order to ensure

the second incentive compatible constraint to hold we impose px ≥ p̄. Thus,

the firm has to solve the following problem.

PROBLEM 3

maxpx,py ,qx,qy ρ (px − αqx) + (1− ρ) (py − αqy)
s.t. (i) ln(qx + 1)− px ≥ u−1(ū)

(ii) py ≤ p̄

(iii) qy ≥ q̄

(iv) ln(qx + 1)− px ≥ ln(qy + 1)− py
(v) px ≥ p̄

The next proposition characterizes the solution of problem 3. Let the

solution be denoted by xu = (pux, q
u
x) and yu = (puy , q

u
y ), where ‘u’ stands for

uncertainty.

Proposition 16 The solution of Problem 3 is characterized as follows.

1. Assume ū ≥ u(p̄, q̄).

(a) if p̄ < pcx, then xu = (ln
(

1
α

)
− u−1(ū), 1

α
− 1) and yu = (p̄, q̄);
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(b) if p̄ ≥ pcx, then xu = (p̄, ep̄+u
−1(ū) − 1) and yu = (p̄, q̄).

2. Assume ū < u(p̄, q̄).

(a) if p̄ < pcx, then xu = (ln
(

1
α

)
− ln(q̄+ 1) + p̄, 1

α
− 1) and yu = (p̄, q̄).

(b) if p̄ ≥ pcx, then xu = (p̄, q̄) and yu = (p̄, q̄).

The solution of problem 3 suggests first that even though the firm is

uncertain about the consumer’s type, once again the BRC gets nothing more

than the minimal satisfactory alternative (p̄, q̄).

Second, the characteristics of the FRC’s good depend on whether the

utility of minimal satisfactory alternative (p̄, q̄) is greater or equal or less

than the reservation utility ū and on whether the level of threshold p̄ is

greater or less than, or equal to pcx, the FRC’s optimal price under certainty.

If ū ≥ u(p̄, q̄), then the FRC gets precisely the reservation utility. On the

contrary, if ū < u(p̄, q̄), then the FRC gets more than ū.

Third, the characterization of the solution of problem 3 clearly highlights

the compensatory feature of FRC’ preferences. We know that under cer-

tainty the FRC gets xc = (ln
(

1
α

)
− u−1(ū), 1

α
− 1), which yields precisely the

reservation utility ū. If the FRC follows a compensatory decision strategy,

then it must be the case that if the monopolist supplies a good x whose price

px is greater than pcx, then in order to leave the FRC indifferent between x

and xc it must set the quality qx of good x above qcx. Consider now the case

in which there is uncertainty and suppose that ū > u(ȳ) and p̄ > pcx (case

1b of proposition 16). In this case, xu = (p̄, ep̄+u
−1(ū) − 1) and yu = (p̄, q̄).

Moreover, notice that the FRC gets precisely the reservation utility, because

ln(qux + 1)− pux = ln(ep̄+u
−1(ū) − 1 + 1)− p̄

ln(qux + 1)− pux = u−1(ū)

u(pux, q
u
x) = ū
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Since pcx = p̄ and the FRC gets precisely her reservation utility, then the

quality of good x must be greater than qcx, which is the optimal level of quality

for the FRC under certainty. That is, she gets qux = ep̄+u
−1(ū)−1 > 1

α
−1 = qcx

that compensates her for the higher level of price pux = p̄ > ln( 1
α

)− u−1(ū) =

pcx. In other words, the FRC moves along the indifference curve that yields

the reservation utility ū.

Finally, in terms of welfare the firm entirely bears the cost of informa-

tional asymmetries, which increases in the level of the thresholds p̄ and q̄.

On the demand side, the FRC is better off under uncertainty, because if

the thresholds of (p̄, q̄) are particularly high, then she gets more than the

reservation utility ū. If not, she gets in any case ū. On the other hand,

uncertainty does not increase BRC’s welfare. The fact that the FRC makes

trade-offs between attributes prevents the BRC from getting something more

than the minimal satisfactory alternative. That is, the compensatory feature

of FRC’ preferences always allows the firm to give the minimum to the BRC

and, combining properly the attributes, an unsatisfactory good that yields

the reservation utility to the FRC. Figure 3.8 illustrates graphically this in-

tuition.

Assume that p̄ > pux and that q̄ > qcx, so that both xc and yc are sat-

isfactory and xc is Pareto-superior to yc. In this case, one expects that

under uncertainty the monopolist makes the BRC better off by supplying

to the FRC and to the BRC two goods xu and yu, respectively, such that

xu = yu = xc. Instead, the optimal solution is xu = (p̄, ep̄+u
−1(ū) − 1) and

yu = (p̄, q̄). That is, the monopolist pushes xu towards north-east along the

indifference curve that yields ū until it reaches the border of the satisficing

area, so that xu = (p̄, ep̄+u
−1(ū) − 1). In this way xu is unsatisfactory and

yields the reservation utility ū, (p̄, q̄) is not Pareto-dominated by xu, and

the monopolist is free to supply the minimal satisfactory alternative (p̄, q̄)

to the BRC.14 We believe that this is an interesting result, because it pro-

14Technically, xu = (p̄, ep̄+u
−1(ū) − 1) is satisfactory and xu is still Pareto-superior to

yu, because pux = p̄. However, since we are on the continuum, we interpret pux = p̄ + ε,
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Figure 3.8: Compensatory preferences prevent the BRC from getting some-

thing more than (p̄, q̄)

vides a clear intuition of why in this case uncertainty does not help bounded

rationality.

3.5 Concluding Remarks

This chapter examines what are the effects of uncertainty on bounded ratio-

nality in a variety of IO models. Results are summarized in the parametric

space of figure 3.9. The x-axis identifies the different models, the y-axis

differentiates between certainty and uncertainty, and the z-axis measures

potential extensions of the proposed models.

where ε > 0 is arbitrarily small, so that xu is unsatisfactory.
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Figure 3.9: A parametric space representing BRC’s welfare

Under certainty the BRC gets nothing more than the minimal satisfactory

alternative (min.sat.). This implies that firms prefer to face BRCs rather than

FRCs, because supplying to BRCs increases profits. However, whenever there

is uncertainty about whether consumers are FRCs or BRCs, it is not obvious

a priori whether or not the BRC derives benefits. For example, in the models

of quality competition and signalling, the BRC is better off. In particular,

if the probability that the consumer is an FRC is above some threshold,

then in equilibrium firms supply the optimal product xmax. Interestingly,

we found that in the quality competition model the threshold increases in

the number of firms acting in the market. Our interpretatation is that the

more competitive the market, the higher the probability that the optimal

alternative is not part of the BRC’s consideration set. This implies that

firms are less and less incentivized to supply xmax. Therefore, an higher

threshold is required to induce them to supply an optimal alternative. On

the other hand, in the signalling game the fact that there is a (even small)

probability that the firm faces a FRC rather than a BRC prevents it from

supplying a non-optimal good in order to avoid a punishment (and, therefore,

a drastic reduction of its profits) by the FRC.

In the monopolistic screening model uncertainty does not help BRCs in-
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stead. In particular BRCs get the minimal satisfactory alternative even when

there is uncertainty. The intuition behind this result is that in a multi-

attribute framework the compensatory feature of FRC’s preferences prevents

the BRC from getting something more than the minimal satisfactory alter-

native. Firms give the minimum to the BRC and moving along indifference

curves at least the reservation utility to the FRC.

In the light of these results, we provide some suggestions to policy-makers

aimed at enhancing consumer welfare. First, firms should be induced to be-

lieve that consumers are mainly FRCs. In this way the probability that

all consumers get the optimal alternative is increased. Second, in the long

run FRC’s preferences should be made noncompensatory in order to prevent

firms from giving the minimum to BRCs by moving along FRCs indifference

curves. As an example, advertisement strategies devoted to highlight advan-

tages and disadvantages of products among which consumers are likely to

compensate should be incentivized. In this way, it would be more probable

that rather than perceiving those products as substitutes, consumers rank

them according to a strict preference relation. Third, mechanisms aimed at

facilitating the construction of the consideration set should be developed.

With reference to figure 3.9, further work could be done in various di-

rections. For instance, concerning the x-dimension, the hypothesis that un-

certainty help bounded rationality could be tested on other models, such as

Cournot or von Stackelberg. Moreover, the proposed analysis could be fur-

ther refined by adding more complexity/realism to the models (z-dimension).

For instance, in the quality competition model alternative procedures to form

the consideration set could be investigated.



83



84



Chapter 4

An Experimental Study on the

Satisficing Heuristic

4.1 Introduction

The second chapter of the thesis proposes a theoretical model within the

revealed-preference approach in which DMs behave consistently with the

satisficing heuristic. The third chapter applies this model to more concrete

economic situations, such as markets in which boundedly and fully ratio-

nal consumers interact with firms. This chapter provides an empirical test

aimed at verifying whether subjects behavior is consistent with the satisficing

heuristic.

Standard theory assumes that individuals have infinite computational ca-

pabilities, know all alternatives before deciding, and always select the best

alternative(s) from any choice set. In contrast, Simon (1955) argues that in-

dividuals are boundedly rational. This means that they have bounded com-

putational capabilities, discover and analyze alternatives sequentially, and

often, rather than choosing the optimal alternative, select a satisfactory one.

In addition, he points out that these attitudes depend on the the environment

in which individuals are asked to operate. If the environment is relatively

85
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complex and new to individuals, then it is likely that they will be content

with alternatives relatively far from the optimum. On the contrary, when

the environment is relatively simple and familiar to them, then presumably

they will choose alternatives relatively closer to the optimum.

In order to test Simon (1955)’s model we propose an experiment in which

subjects are asked to solve five problem sets under time pressure. Each

problem set encompasses 3 choice problems of different complexity. Each

choice problem is an algebraic sum where only the operators and the result

are visible. The spaces between operators and before the ‘equal sign’ are

empty. Subjects are financially incentivized to insert into each algebraic sum

the combination of numbers (from a given set) such that the actual result

of the algebraic sum is as close as possible to the reported result. They are

allowed to change the inserted numbers as many times as they want before

the time expires. Moreover, after an insertion is made, they are informed

about what is the updated actual result of the algebraic sum. We record not

only final choices, but also intermediate ones and decision time.

We investigate the extent to which subjects commit mistakes (i.e., fail

to choose the combination of numbers that maximizes their material pay-

off) and choose sub-optimal alternatives and how allocate decision time and

make intermediate choices. Moreover, we analyze how these variables be-

have relative to the environment in which subjects are asked to operate. In

particular, how they are affected by the extent to which the environment is

complex/simple and familiar/unfamiliar to subjects. We define the variable

complexity as the length of an algebraic sum (the longer the sum, the more

complex the problem) and the variable familiarity of the environment as the

temporal order with which subjects solve problem sets (the first problem set

that subjects face constitutes a less familiar environment with respect to the

second and so on).

We found that in general subjects behavior is consistent with the satis-

ficing heuristic. Data on errors and final choices confirm that subjects are

sensitive to the environment in which they are asked to operate. However,
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complexity seems to have a stronger impact on performance then the variable

familiarity of the environment. Decision time data reveal that an increase in

the complexity of the choice problem does not necessarily cause an increase

in the time spent in trying to solve it. Similarly, for the number of interme-

diate choices. Finally, results provide useful insights for modeling satisficing

behavior. For instance, unlike what several existing models assume (Caplin

and Dean, 2011), we found that the threshold that defines an alternative to

be satisfactory is not fixed, but vary across choice problems.

There is a huge literature on individual decision-making in experimental

economics (Payne, Bettman and Johnson, 1993; Gigerenzer, Todd and the

ABC Research Group, 1999; Gabaix et al., 2006; Reutskaja et al., 2010).1

However, the closest study to this work is Caplin, Dean and Martin (2009).

As explained in the first chapter, Caplin, Dean and Martin design an exper-

iment aimed at testing whether subjects behavior is consistent with an RBS

model in which search order is not observable (Caplin and Dean, 2011). Each

alternative is an algebraic sum and a choice set is a list of algebraic sums.

Subjects are asked to solve them and choose the one that yields the high-

est payoff, given that there is a one-to-one correspondence between results

and material payoff. Caplin, Dean and Martin (2009) employ the so-called

choice process data, according to which subjects are allowed to change their

choice as many times as they want before the time expires and the amount

of time pressure is random. In addition, at any point in time subjects can

see what alternative they have provisionally chosen. In contrast, we do not

list alternatives and subjects do not see their provisional choice at any point

in time. In this study alternatives are different objects: an alternative is a

combination of numbers that plugged into an algebraic sum yields a certain

result. Once that an inserted number is replaced, the result changes, and,

therefore, the previous choice is not visible anymore. Finally, the amount of

time pressure is not random, but fixed at 75 seconds. We believe that in the

real-world there are both choice problems in which alternatives are listed and

1See also section 1.5.



88 An Experiment on the Satisficing Heuristic

choice problems in which alternatives are not. As an example of the former,

think of a Google search. As an example of the latter, imagine a consumer

who looks for a new t-shirt in a marketplace. T-shirts are not listed, but the

consumer walks back and forth around the stalls in order to search for her

most preferred alternative. In view of this difference, we think that these

studies are complementary.

This chapter is organized as follows. Section 4.2 explains design and

implementation; Section 4.3 provides a formalization of the kind of choice

problem that subjects are required to solve in this experiment; Section 4.4

formulates hypothesis and shows and discusses the results; Section 4.5 and

section 4.6 examine how performance is affected by the order with which

subjects approach choice problems within a problems set and by individual

features, respectively; Section 4.7 concludes.

4.2 Design and Implementation

Each subject had to solve five problem sets randomly drawn from a dataset of

15 problem sets. Each problem set was presented in one screen shot as figure

4.1 illustrates. On the left-hand part there was a list of six natural numbers

(in the box numeri che puoi utilizzare) ordered in descending ordered. In

the middle there was a list of three algebraic sums (in the box formule da

risolvere), where only the results (called Goals, written in black) and the

operators were visible. On the right-hand part, for each algebraic sum there

was a number in red in the box risultati parziali, which we call Intermediate

Result. At the bottom there was a box in which the amount of time left to

solve the screen shot was reported both numerically (in seconds) and visually

(the horizontal bar shrank).

Subjects had to insert the numbers available from the box numeri che puoi

utilizzare in the empty spaces between operators of each algebraic sums in

such a way that the actual result of the algebraic sum was as close as possible

to the respective Goal. A number could not be repeated within each algebraic
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Figure 4.1: An Example of a Screen Shot

sum, but could be used more than once across algebraic sums. The three

algebraic sums had different length: one had one operator (a minus), one

had two (a plus and a minus), and one had three (a plus and two minuses).

The order with which algebraic sums of different length appeared to the

subject within each screen shot was random. After a number was inserted

in an algebraic sum, the correspondent Intermediate Result was updated

automatically and showed what was the result of the algebraic sum at that

point in time.

In order to insert a number in a sum, subjects had to click on the number

they wanted to select and an horizontal bar appeared just below the number
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to confirm its selection. Then, they had to click on the position in which

they wanted to insert the number. There was the possibility to replace an

inserted number simply by repeating this procedure. Subjects had 75 seconds

for solving one screen shot.

The show-up fee was 2.00 euros. One round was selected at random for

calculating the payoff performance. They payoff of the selected screen shot

was calculated as follows.

π ≡ 2.00 + 4
3∑
i=1

dmax
i − dacti
dmax
i

where index i identifies the ith algebraic sum of the selected screen shot,

dmaxi measures the absolute maximal distance between the Goal and the

Intermediate Result of the ith algebraic sum, and dacti measures the absolute

actual distance between the Goal and the Intermediate Result of the ith

algebraic sum when the time expires.

If, when the time expires, the Intermediate result of the ith algebraic sum

is equal to the Goal, then the respective dacti is zero. Therefore,
dmax
i −dacti

dmax
i

=

1. On the contrary, if, when the time expires, the distance between the

Intermediate result and the Goal of the ith algebraic sum is maximal, then

dacti = dmax
i . Therefore,

dmaxi −dacti

dmax
i

= 0. This implies that in general the

ratio
dmax
i −dacti

dmax
i

∈ [0, 1] and the closer the Intermediate Result to the Goal,

the closer the ratio to one, the higher the payoff. Conversely, the further

the Intermediate Result to the Goal, the closer the ratio to zero, the lower

the payoff. Algebraic sums were equally important for the calculation of the

payoff. Since π = 2.00 + 4
∑3

i=1
dmax
i −dacti

dmax
i

, subjects could earn at most 14

euros and at least 2 euros.

Subjetc were clearly told that only completed algebraic sums (sums with-

out empty spaces between operators) were taken into account for the cal-

culation of the payoff. In order to implement this rule, each dacti associated

with an incomplete algebraic sum was automatically set equal to dmax
i .

Before the experiment subjects were given five minutes to read the in-

structions by themselves. An experimenter then red them loudly. Subse-



Choice Problem and Preference 91

quently, subjects were required to complete a questionnaire aimed at verify-

ing whether or not they understood the instructions. Subjects were allowed

to proceed only if they answered correctly to all questions. Then the ex-

periment started and took on average 8 minutes. After the experiment,

general questions were asked to participants, such as age, sex, etc. Besides

final choices, collected data include intermediate choices, decision time, time

taken to complete the questionnaire, and general information about subjects

(sex, age, etc.).

A total of 60 subjects were recruited and the experiment was conducted

at the Computable and Experimental Economics Laboratory (University of

Trento). Three sessions of 20 subjects each were implemented on Wednesday,

06 October 2010.

4.3 Choice Problem and Preference

Each algebraic sum of a given screen shot can be viewed as a choice prob-

lem, where, in order to maximize material payoff, the right combination of

numbers has to be inserted into each algebraic sum.

Consider, for instance, the problem of figure 4.1. The set of available

numbers is {1, 9, 11, 16, 24, 26} and the three Goals, as they appear on the

screen shot, are {33, 13, 21}. Consider first the simplest algebraic sum, the

one with 1 operator (the second of figure 4.1). In order to maximize material

payoff one needs to plug into the algebraic sum the ordered pair of numbers

(a, b) ∈ {(x, y)|x, y ∈ {1, 9, 11, 16, 24, 26} and x 6= y} such that a−b = 13. In

principle there are 6!
(6−2)!

= 30 ways in which one can complete this sum. The

choice problem under consideration is therefore composed of 30 alternatives.

Since each ordered pair (a, b) is associated with a certain ratio
dmax
i −dacti

dmax
i

, then

we can rank the alternatives according to how much each alternative yields

in terms of payoff, by starting from the best alternative and getting down

progressively to the worst one. In this example the pair (24, 11) is the only

alternative associated with a dact = 0. Indeed, the Goal is equal to 13,



92 An Experiment on the Satisficing Heuristic

24 − 11 = 13, and, therefore, the ratio is equal to one. Notice that there is

no pair for which dact = 1. It is easy to see that there are three pairs for

which dact = 2, that is, (16, 1), (24, 9), and (26, 11). The associated ratio is
38−2

38
= 0.95, because dmax = 38. Proceeding in this way, we can construct

a preference relation � defined on {(x, y)|x, y ∈ {1, 9, 11, 16, 24, 26} and x 6=
y} under the assumption that subjects prefer to earn as much as possible:

(24, 11) � (16, 1) ∼ (24, 9) ∼ (26, 11) � . . ..

Similarly, we can get the same kind of information from the other alge-

braic sums (with 2 and 3 operators) of figure 4.1 and from any other screen

shot that has this structure.

The algebraic sums that subjects faced during this experiment are char-

acterized according to table 4.2.

No of Operators Cardinality Prob of � −max

1 30 1
30

2 120 1
60

3 360 1
90

Figure 4.2: Main Characteristics of the Algebraic Sums

A choice problem associated with an algebraic sum with 1, 2, and 3

operators is composed of 30, 6!
(6−3)!

= 120, and 6!
(6−4)!

= 360 alternatives,

respectively. Moreover, screen shots are designed in such a way that if a

subject inserted numbers at random in the algebraic sums, then the proba-

bilities that she chooses the �-maximal alternative would be 1
30

, 1
60

, and 1
90

for algebraic sums with 1, 2 and 3 operators, respectively.

4.4 Hypotheses and Results

4.4.1 Errors

Suppose that a fully rational individual was asked to participate to this

experiment. Because of the full rationality assumption, she would always
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select the �-maximal alternative from any choice problem. That is, she

would plug into each algebraic sum the ordered sequence of numbers such

that dact = 0.

However, according to Simon (1955)’s bounded rationality, this should

not be always the case. Subjects do not have infinite computational capa-

bilities and are likely to commit mistakes. Moreover, they do not know all

alternatives before deciding. Rather, they discover and analyze options se-

quentially. The first hypothesis assumes that subjects do not always choose

the alternative that maximizes their material payoff.

Hypothesis 1 Subjects do not choose the �-maximal alternative in 100%

of the cases.

In order to test hypothesis 1, we computed the number of times each

subject chose an alternative different from the �-maximal one and then we

averaged across subjects. Since each subject solved 15 choice problems (3

algebraic sums for each of the 5 screen shots), then averages are numbers

between 0 and 15. It turns out that on average subjects failed to choose the

optimum 10.7 times, which, in percentage, is the 71.33% of the cases. If one

looks at this measure within each session, results do not change. In session 1

the average number of failures is 11.05 (73.67%), in session 2 is 10.5 (70%),

and in session 3 is 10.55 (70.33%). We can safely conclude that hypothesis 1

is confirmed.

A central part of Simon’ satisficing theory is that individual’s ability to

identify the optimum crucially depends on the environment in which she is

asked to operate. The extent to which the environment is complex and new

to the subject matters.

As a proxy for complexity we use the number of operators in the algebraic

sum. That is, the longer the sum the more complex the environment. We

think that this assumption is reasonable, because at longer algebraic sums

correspond choice problems with greater cardinality and smaller probabilities

of choosing the optimal alternative (see also figure 4.2). What we expect is
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that at more complex choice problems correspond more errors (i.e., number

of choices different from the �-maximal).

Hypothesis 2 There are more errors at more complex problems, ceteris

paribus.

We called the algebraic sums with 1, 2, and 3 operators algebraic sums

(or choice problems) of complexity 1 (C1), 2 (C2), and 3 (C3), respectively.

For each level of complexity, we computed the number of times each subject

chose an alternative different from the �-maximal and then averaged across

subjects. Since each subject solved 5 choice problems of complexity i, where

i = 1, 2, 3, then averages are numbers between 0 and 5. The average number

of errors for choice problems of complexity 1 is 2.2, of complexity 2 is 4, and

of complexity 3 is 4.5. In percentage, 44%, 80%, and 90%, respectively. We

then compared the average number of errors per subject across complexity by

employing a one-tailed T-test for dependent samples. Results are reported

in figure 4.3.2

Variables Mean Diff. St.Err.Mean Diff. t-stat. Df Sig.(1-tailed)

C2-C1 1.783 .193 9.229 59 .000

C3-C2 .500 .157 3.189 59 .001

C3-C1 2.283 .175 13.061 59 .000

Figure 4.3: T-test for Dependent Samples - Differences in Average Error Per

Complexity

Differences in the average error are all positive and significant at the 1%

level. Hypothesis 2 is, therefore, confirmed.

Since, according to Simon, not only complexity, but also the extent to

which the environment is new to the subject affects performances, we expect

2We tested H0: the average error at complexity i is equal to the average error at

complexity j, against H1: the average error at complexity i is greater than the average

error at complexity j, where (i, j) ∈ {(2, 1), (3, 1), (3, 2)}.
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that the more familiar is the environment, the less number of mistakes sub-

jects commit. As a proxy for familiarity of the environment we employ the

order with which subjects faced screen shots. We believe that it is natural to

assume that the first screen shot that subjects faced constituted for them a

new kind of environment. On the contrary, at the fourth or fifth screen shot,

it seems plausible to assume that subjects learnt and found themselves in a

more familiar situation than at the first or at second one.

Hypothesis 3 Errors decrease with screen shot order, ceteris paribus.

We counted the number of errors each subject committed at the ith screen

shot (Si), with i = 1, 2, 3, 4, 5, and then averaged across subjects. Since each

subject solved 3 problems for each screen shot, then averages are numbers

between 0 and 3. Results are reported in figure 4.4.

S1 S2 S3 S4 S5

# of Average Errors 2.43 2.18 2.08 1.95 2.05

% of Average Errors 81.11 73.78 69.44 65.00 68.33

Figure 4.4: Average Errors Per Screen shot Order

From figure 4.4 it seems that average errors decrease with screen shot

order until the fourth screen shot and then increases again. A T-test for

dependent samples reveals that only the differences in average error between

S1 and S3, S1 and S4, and S1 and S5 are significant at the 1% level (see

figure 4.5).3 Moreover, the differences in average error between S1 and S2

and S2 and S4 are significant at the 5% level. However, it is important to

note that even though there is an average increase in errors from S4 to S5,

the average error at S5 is still less than the one at S1 and this difference is

significant.

3We tested H0: the average error at screen shot Si is equal to the aver-

age error at the screen shot Sj, against H1: the average error at the screen

shot Si is greater than the average error at the screen shot j, where (i, j) ∈
{(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)(3, 4), (3, 5), (4, 5)}.
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Variables Mean Diff. St.Err.Mean Diff. t-stat. Df Sig.(1-tailed)

S1-S2 .250 .118 2.120 59 .019

S1-S3 .350 .108 3.227 59 .001

S2-S3 .100 .125 .799 59 .214

S1-S4 .483 .097 5.007 59 .000

S2-S4 .233 .110 2.124 59 .019

S3-S4 .133 .120 1.112 59 .136

S1-S5 .383 .107 3.598 59 .000

S2-S5 .133 .140 .955 59 .172

S3-S5 .033 .152 .219 59 .414

S4-S5 -.100 .125 -.799 59 .207

Figure 4.5: T-test for Dependent Samples - Differences in Average Error Per

Screen shot Order

An interpretation of this result could be that from the first to the fourth

screen shot subjects learnt and progressively became more and more familiar

with the environment. Consequently, they progressively committed less and

less errors on average. Then, from the fourth screen shot they mastered the

situation, but committed more mistakes because got tired of solving algebraic

sums.

In any case the test seems to suggest that the variable familiarity of the

environment does not have a strong effect on subjects performance. Hence,

we conclude that hypothesis 3 is only partially confirmed.

4.4.2 Choices

Simon (1955) argues that individuals search through the choice set and stop

searching as soon as they identify the first alternative that meets some thresh-

old. The aspiration level that defines an alternative to be satisfactory again

depends on the environment. If the environment is relatively new to subjects

and relatively complex, then the threshold tends to decrease and invididuals

are content with alternatives relatively far from the optimum. On the con-

trary, when the environment is relatively familiar to subjects and relatively
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simple, then the threshold tends to appreciate and inviduals are content with

alternatives relatively close to the optimum. Therefore, we expect that at

more complex problems solutions are more sub-optimal. In addition, chosen

alternatives are closer to the optimum at subsequent screen shots.

Hypothesis 4

1. Solutions are more sub-optimal at more complex problems, ceteris paribus.

2. Chosen alternatives are closer to the optimum at subsequent screen

shots, ceteris paribus.

In order to test these hypotheses we first classified alternatives in indiffer-

ence classes according to the above preference relation �, where ‘1’ identifies

the first class, ‘2’ the second class, and so on for the remaining classes. In a

given algebraic sum, the first class includes all ordered sequences of numbers

such that the distance between the Intermediate Result and the Goal is zero

when the time expires. In general the ith class contains all sequences such

that, when the time expires, the distance between the Intermediate Result

and the Goal is Di, provided that Dj ≥ Di ≥ Dk, for all j ≥ i ≥ k and

i = 1, . . . , N , where N is the number of indifference classes.

The graph of figure 4.6 shows the distribution of chosen indifference

classes per complexity.4

From the graph it seems that subjects actually chose more sub-optimal

solutions at more complex problems. In order to get confirmation of this

intuition, we calculated for each level of complexity the average chosen indif-

ference class per subject and then performed a T-test (see figure 4.7).5

4Indifference classes are cut at the 18th class because of space needs. However, all visible

distributions include more than the third quartile. Specifically, P (Ind.Class ≤ 18th) =

0.9567 for C1, P (Ind.Class ≤ 18th) = 0.8933 for C2, and P (Ind.Class ≤ 18th) = 0.7967

for C3.
5We tested H0: the average chosen class at complexity i is equal to the average chosen

class at complexity j, against H1: the average chosen class at complexity i is greater than

the average chosen class at complexity j, where (i, j) ∈ {(2, 1), (3, 1), (3, 2)}.
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Figure 4.6: Distribution of Chosen Indifference Classes Per Complexity

The test reveals that all differences in the average chosen class are positive

and significant at the 1% level. Hence we can conclude that hypothesis 4.1 is

confirmed, that is, solutions are more sub-optimal at more complex problems.

We repeated the same exercise for testing hypothesis 4.2. The graph of

figure 4.8 shows the distribution of chosen indifference classes per screen shot

order.6

From the graph it seems that for the first two or three classes frequencies

increase with screen shot order at least until the second/third screen shot.

For the remaining classes there is not a clear effect and it is difficult to draw

6Indifference classes are cut at the 20th class because of space needs. However, all visible

distributions include more than the third quartile. Specifically, P (Ind.Class ≤ 20th) =

0.7778 for S1, P (Ind.Class ≤ 20th) = 0.8944 for S2, P (Ind.Class ≤ 20th) = 0.9056 for

S3, P (Ind.Class ≤ 20th) = 0.9333 for S4, and P (Ind.Class ≤ 20th) = 0.9611 for S5.
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Variables Mean Diff. St.Err.Mean Diff. t-stat. Df Sig.(1-tailed)

C2-C1 3.3067 .5840 5.662 59 .000

C3-C2 5.2933 1.0916 4.849 59 .000

C3-C1 8.6000 1.2452 6.906 59 .000

Figure 4.7: T-test for Dependent Samples - Differences in Average Chosen

Class Per Complexity

any kind of conclusion.

In order to shed light on this this relationship, we calculated the average

chosen indifference class per subject for each screen shot and then performed

a T-test (see figure 4.9).7

What we can infer from the test is that the average chosen class decreases

with screen shot order, because mean differences are all positive (second col-

umn of figure 4.9). This implies that subjects got progressively closer to the

optimum. However, only the differences in average chosen class between S1

and all the other screen shots, between S2 and S5, and between S3 and S5

are significant at the 1% level. The differences between S2 and S4 and S4 and

S5 are significant at the 10% level. This implies that subject actually im-

proved their performances over time, but this effect is not strong. Therefore,

hypothesis 4.2 cannot be fully confirmed.

The results of this subsection suggest that subjects’ behavior appear to be

consistent with the satisficing heuristic. Moreover, it seems that complexity

has a stronger impact on average performance than the variable familiarity

of the environment.

7We tested H0: the average chosen class at screen shot Si is equal to the aver-

age chosen class at the screen shot Sj, against H1: the average chosen class at the

screen shot Si is greater than the average chosen class at the screen shot j, where

(i, j) ∈ {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)(3, 4), (3, 5), (4, 5)}.
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Figure 4.8: Distribution of Chosen Indifference Classes Per Screen Shot Order

4.4.3 Decision Time

Subjetc had 75 seconds for solving each screen shot. They were free to

allocate the amount of available time among algebraic sums as they wanted.

What we expect is that subjects spend more time on more complex problems

than on simpler ones. This is also consistent with the bounded rationality

assumption: subjects do not have infinite computational capabilities and,

therefore, handle simple problems in relatively little time and concentrate

most in solving more complex problems.

Hypothesis 5 Decision time increases with complexity.

We computed the average amount of time (in milliseconds) each subject

spent on algebraic sums of different complexity and then averaged across
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Variables Mean Diff. St.Err.Mean Diff. t-stat. Df Sig.(1-tailed)

S1-S2 4.989 1.0480 4.761 59 .000

S1-S3 5.2278 1.047 4.991 59 .000

S2-S3 .2389 .9625 .2480 59 .402

S1-S4 6.3000 1.2130 5.193 59 .000

S2-S4 1.3110 .8880 1.4770 59 .072

S3-S4 1.0722 .8787 1.2200 59 .114

S1-S5 7.4500 1.082 6.887 59 .000

S2-S5 2.4610 .7680 3.204 59 .001

S3-S5 2.2222 .7874 2.8220 59 .003

S4-S5 1.150 .8690 1.3230 59 .095

Figure 4.9: T-test for Dependent Samples - Differences in Average Chosen

Class per Screen shot Order

subjects. Let DT1, DT2, and DT3 denote the amount of time spent on alge-

braic sums of complexity 1, 2, and 3, respectively. On average subjects spent

16,281.97ms, 24,237.46ms, and 26,400.65ms on algebraic sums of complex-

ity 1, 2, and 3, respectively. We then performed a T-test in order to check

whether these differences are significant or not (see figure 4.10).8

Variables Mean Diff. St.Err.Mean Diff. t-stat. Df Sig.(1-tailed)

DT2-DT1 7.95549E3 1.11612E3 7.128 59 .000

DT3-DT2 2.16318E3 1.55605E3 1.390 59 .085

DT3-DT1 1.01187E4 1.27629E3 7.928 59 .000

Figure 4.10: T-test for Dependent Samples - Differences in Average Decison

Time Per Complexity

What emerges from the test is that subject clearly spent more time on

algebraic sums of complexity 2 and 3 than on sums of complexity 1. In fact

8We tested H0: the average amount of time spent on sums of complexity i is equal

to the average amount of time spent on sums of complexity j, against H1: the average

amount of time spent on sums of complexity i is greater than the average amount of time

spent on sums of complexity j, where (i, j) ∈ {(2, 1), (3, 1), (3, 2)}.
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mean differences (DT2-DT1 and DT3 - DT1) are positive and statistically

significant at the 1% level. However, even though on average subjects spent

more time on algebraic sums of complexity 3 than on sums of complexity

2, this difference is significant only at the 10% level. An interpretation of

this result might be that whereas subjects clearly found algebraic sums of

complexity 2 and 3 more demanding than algebraic sums of complexity 1,

they did not have the same feeling about sums of complexity 2 and 3. Even

though subjects spent on average more time on the most complex sums, it

seems that sums of higher complexity (C2 and C3) were perceived almost as

equally demanding. Nevertheless, we can safely conclude that hypothesis 5

is confirmed.

4.4.4 Clicks

Subjects were told in the instructions that only completed algebraic sums

(sums without empty spaces between operators) are taken into account for

calculating the payoff. Clearly, in order to complete a sum of complexity 1

two insertions are necessary: one for the first and one for the second number.

Similarly, for completing an algebraic sum of complexity 2 and 3 at least 3

and 4 inputs are needed, respectively. However, subjects were free to change

the inserted numbers as many times as they wanted before the time expired.

We believe that it is interesting to investigate the extent to which subjects

exploited this opportunity.

We call click the action by which a number is inserted into an algebraic

sum. We can interpret a click as an intermediate decision, because after

a number is inserted in an algebraic sum, the correspondent Intermediate

Result gets updated and by looking at it subjects can easily figure out how

far they are from the Goal. As we have just seen, the minimum number

of clicks for completing an algebraic sum of complexity 1 is 2, for a sum

of complexity 2 is 3, and for a sum of complexity 3 is 4. We first checked

whether subjects made extra clicks, i.e. more clicks than the minimum for

each level of complexity.
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Hypothesis 6 Subjects made extra clicks.

We computed the average number of extra clicks each subject made for

every level of complexity and checked whether these averages are significantly

greater than zero by employing a one-sample T-test (see figure 4.11).9 Let

EC1, EC2, and EC3 denote the average number of extra clicks at complexity

1, 2, and 3, respectively.

Variable Mean Diff. t-stat. Df Sig.(1-tailed)

EC1 1.025 9.068 59 .000

EC2 2.1844 9.189 59 .000

EC3 1.9106 10.125 59 .000

Figure 4.11: One-sample T-test - Average Number of Extra Clicks per Com-

plexity

Mean differences are all positive and significant at the 1% level. This

means that subject actually made extra clicks indipendently of the complex-

ity of the problem.

According to Simon (1955), subjects do not know all alternatives in the

choice set before deciding, but discover and analyze them sequentially. If at

relatively simple problems, individuals easily figure out how the choice set

looks like, at more complex one, they have difficulties. He argues that, for

this reason, they employ a trials and errors kind of search procedure. Hence,

we expect that extra clicks, if any, should increase with complexity, because,

at more complex problems should correspond more trials to get close to the

optimum.

Hypothesis 7 Extra clicks increase with complexity.

We used the average number of extra clicks each subject made for every

level of complexity for performing a T-test (see figure 4.12).10

9We tested H0: the average number of extra clicks at complexity i is equal zero,
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Variables Mean Diff. St.Err.Mean Diff. t-stat. Df Sig.(1-tailed)

EC2-EC1 1.1594 .2023 5.731 59 .000

EC3-EC2 -.2739 .2857 -.959 59 .171

EC3-EC1 .8856 .2209 4.009 59 .000

Figure 4.12: T-test for Dependent Samples - Differences in Average Number

of Extra Clicks Per Complexity

From figure 4.12 we can infer that subjects made on average significantly

more extra clicks at problems of complexity 2 and 3 than at problems of

complexity 1. However, subjects made more extra clicks at problems of com-

plexity 2 than at problems of complexity 3. Even though the difference in

not significant, this result is surprising. An explanation could be that sub-

jects judged choice problems of complexity 3 as too difficult and preferred on

average to draw their attention to simpler problems. Alternatively, subjects

may have judged problems of complexity 2 and 3 almost equally demanding

and decided to focus more on problems of complexity 2 because there were

more chances of getting close to the optimum. The second explanation would

also be consistent with the results of hypothesis 5.

4.5 Order

Each screen shot contained a list of three algebraic sums of different com-

plexity randomly ordered. The order with which sums had to be solved was

completely up to subjects discretion. In this section we investigate the way

in which subjects decided to approach this issue.

Following Caplin, Dean and Martin (2009), we identified five strate-

against H1: the average number of extra clicks at complexity i is is greater than zero,

where i = 1, 2, 3.
10We tested H0: the average number of extra clicks at complexity i is equal to the

average number of extra clicks at complexity j, against H1: the average number of extra

clicks at complexity i is greater than the average number of extra clicks at complexity j,

where (i, j) ∈ {(2, 1), (3, 1), (3, 2)}.
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gies: Top-Bottom (TB), Bottom-Top (BT), Simple-Complex (SC), Complex-

Simplex (CS), and Uncategorized (U). The TB (BT) strategy implies that

subject solve algebraic sums from the top (bottom) to the bottom (top) of the

screen shot. The SC (CS) strategy, instead, implies that subjects solve sums

from the simplest (more complex) to the more complex (simplest). That is,

first sums of complexity 1 (3), then of complexity 2 (2), and finally of com-

plexity 3 (1). The U strategy encompasses any strategy that does not fall in

any of the previous categories.

We then categorized played screen shots according to these strategies.

Notice that TBs and SCs kind of strategies are not mutually exclusive. For

this reason we identified also the intersections. Moreover, since each of the

60 subjects went over 5 screen shots, then we collected 300 observations (1

for each played screen shot). Results are summarized in figure 4.13.

Strategy # %

TB 132 44.00

BT 38 12.67

SC 120 40.00

CS 13 4.33

TB∩SC 39 13.00

TB∩CS 10 3.33

BT∩SC 22 7.33

BT∩CS 0 0

U 68 22.67

Total 300 100.00

Figure 4.13: Frequencies of Chosen Strategies (TB, BT, SC, CS, U) and

Intersections

The results suggest that the most frequent strategy is the TB one, followed

by the SC one. Intersections seem to reveal that strategies BT and CS were

chosen only when they coincided with strategies SC and TB, respectively.

Only the 22.67% of the observations were not classifiable.

We also investigated how the choice of a particular strategy affected the
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performance. We concentrated only on strategies TB, SC, and U, because

these were the most frequently used. This analysis turned out to be compli-

cated because subjects were allowed to switch from one strategy to another

one across the five screen shots. For this reason we proceeded in the following

way. We first averaged chosen indifference classes within each screen shot, so

that for each observation (played screen shot) we had a measure of perfor-

mance. Then, we categorized played screen shots according ‘pure’ strategies.

That is, once that we classified the screen shots according to TB, SC, or U,

we eliminated all played screen shots that were consistent with more than

one strategy. Subsequently, for every pair of strategies, we created two sub-

groups of screen shots. One group, called dependent, contained screen shots

played by subjects who used both strategies. That is, for each subject we

had two observations: one screen shot played with one strategy and another

screen shot played with the other strategy. The second group, called inde-

pendent, contained screen shots played by subjects who used either one or

the other strategy. Figure 4.14 reports the number of observations per group

for every pair of strategies.

Pairs U vs SC U vs TB SC vs TB

Strat. U SC U TB SC TB

Dep. 19 19 26 26 16 16

Indep. 22 12 15 14 15 24

Figure 4.14: No. of Observations per Group for Each Pair of Strategies

Our goal was to check, for every pair of strategies, whether the use of

one strategy yields on average more material payoff than the use of another

strategy. We performed, for each pair of strategies, a T-test for dependent

samples for the observations that belong to the dependent group (figure 4.15)

and a t-test for independent samples for the observations that belong to the

independent group (figure 4.16).11

11In both t-test we tested H0: the average chosen class at screen shots played according
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Variables Mean Diff. St.Err.Mean Diff. t-stat. Df Sig.(1-tailed)

U-SC 2.294 1.551 1.479 18 .076

U-TB 3.564 1.551 2.298 25 .015

SC-TB 1.500 .716 2.095 15 .027

Figure 4.15: T-test for Dependent Samples - Differences in Average Chosen

Class Per Strategy (Dependent Group)

The first test reveals that all differences are positive and significant (U-

SC at the 10% and U-TB and SC-TB at 5% level). This implies that the

strategy that yielded on average the greatest payoff is TB, followed by SC.

The worst strategy is U. This result is not surprising, because we think that

in general subjects who behaves according to U do not approach screen shots

in a systematic and organized way and, therefore, it seems reasonable to

expect them to perform worse than those who use TB or SC.

Eq. Variance T-test for Equality of Means

Pair F Sig. Mean Diff. St.Err.Mean Diff. t-stat. Df Sig.(1-tailed)

U-SC (Eq.Var.) 15.797 .000 3.849 1.879 2.048 32 .025

U-SC (¬Eq. Var.) 3.849 1.394 2.762 22.327 .006

U-TB (Eq.Var.) 13.671 .001 2.932 1.619 1.811 27 .041

U-TB (¬Eq.Var.) 2.932 1.564 1.875 14.454 .041

SC-TB (Eq.Var.) .354 .555 -.562 1.121 -.501 37 .310

SC-TB (¬Eq.Var.) -.562 .976 -.576 35.940 .284

Figure 4.16: T-test for Independent Samples - Differences in Average Chosen

Class Per Strategy (Independent Group)

The results of figure 4.16 only partially confirm the findings of the test for

dependent samples. The t-test for independent samples suggests that we can

reject the null hypothesis that the variables average chosen class at U and

to strategy i is equal to the average chosen class at screen shots played according to strategy

j, against H1: the average chosen class at screen shots played according to strategy i is

greater than the average chosen class at screen shots played according to strategy j, where

(i, j) ∈ {(U, SC), (U, TB), (SC, TB)}. The T-test for independent samples includes also a

Levene’s test for equality of variances.
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at SC have equal variance at the 1% significance level. Similarly, we cannot

at U and at TB. Differences in means (second and fourth row of figure 4.16)

are positive and statistically significant at the 1% and 5% level, respectively.

This means that SC and TB are again revealed to be superior to U. On

the other hand, looking at the pair (SC,TB) we first notice that we cannot

reject the null hypothesis that the variables average chosen class at SC and

at TB have equal variance. Moreover, though not significant, the difference

in means is negative (sixth row of figure 4.16). That is, SC seems to perform

better than TB. This partially contradicts our previous findings.

4.6 Individual Features

Collected data include general information about subjects, such as age, sex,

and time taken to solve the questionnaire. In this section we investigate

whether these individual features affect the performance.

We set as dependent variable the subject average chosen class. Indepen-

dent variables were sex, age, time taken to solve the questionnaire, number

of experiments to which the subject participated in 2010, and enrollment

year.12 We run an ordered probit (see figure 4.17).13

Results suggest only the estimates of the variables time taken to solve

the questionnaire and age are significant at 1% and 10% level, respectively.

Since the estimate for time taken to solve the questionnaire is very close to

zero, but positive, then this implies that the more time subjects spent on the

questionnaire, the worse they performed. This is an intuitive result, because

the variable time taken to solve the questionnaire appears to be a good proxy

for subjects intelligence. The estimate of the variable age is also positive.

This implies that relatively older subjects preformed worse.

12Sex is a dummy variable equal to 1 when the subject is a male. Enrollment year is

defined as follows: 1 = first-year student, 2 = second-year student, 3 = third-year student,

4 = Postgraduate Student, 5 = out-of-course student, and 6 = graduate who works.
13In order to reduce the number of thresholds, we approximated the dependent variable

to the closest inferior integer.
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Estimate St. Error Wald Df Sig.

Class= 2 1.777 1.155 2.368 1 .124

Class= 3 2.914 1.157 6.347 1 .012

Class= 4 3.531 1.168 9.136 1 .003

Class= 5 3.852 1.176 10.724 1 .001

Class= 6 3.976 1.180 11.361 1 .001

Class= 7 4.089 1.183 11.947 1 .001

Class= 8 4.458 1.195 13.907 1 .000

Class= 9 4.662 1.203 15.020 1 .000

Class= 11 5.044 1.220 17.106 1 .000

Class= 12 5.315 1.233 18.582 1 .000

Class= 13 5.527 1.245 19.719 1 .000

Class= 14 5.959 1.274 21.896 1 .000

Class= 16 6.162 1.290 22.829 1 .000

Class= 18 6.431 1.316 23.895 1 .000

Class= 21 6.813 1.366 24.866 1 .000

Sex -.162 .298 .296 1 .587

Age .110 .061 3.257 1 .071

Time Quest. 5.934E-6 1.101E-6 29.070 1 .000

No. Exp. .060 .046 1.693 1 .193

En. Year -.243 .162 2.258 1 .133

Figure 4.17: Ordered Probit of Subjetc Average Chosen Class on Sex, Age,

Time Quest., No.Exp., and En. Year

Having said that, a reason for which the regressors do not explain much

of the dependent variable might be that each observation of the dependent

variable is an average of 15 choices (each subject faced 3 algebraic sums for

each of the 5 screen shots). Hence, a lot of variability of the data is absorbed

by and hidden behind the average. This might have prevented the dependent

variables from exerting their explanatory power.
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4.7 Concluding Remarks

We run an experiment to test whether subjects behavior is consistent with

the Simon (1955)’ satificing heuristic.

We found that often subjects fail to choose the alternative that yields the

maximum payoff, revealing that they have limited computational capabili-

ties and that their behavior is not consistent with the standard assumption.

The analysis of choice data clearly suggests subjects massively selected sub-

optimal solutions. The average performance is negatively affected by the

complexity of the environment and, even though the effect is not strong,

increases as subjects become more familiar with the environment. Decision

time and extra-clicks data confirm these findings. However, it seems that an

increase in complexity does not necessarily cause an increase in decision time

and extra-clicks. A decisive increase occurs only when complexity increases

from its lowest level (1) to higher levels (2 and 3). However, among prob-

lems of higher complexity there is not a clear effect. This may be due to the

fact that either subjects do not perceive complexity as it actually is or they

do, but prefer to concentrate their attention on relatively simpler problems

(of complexity 2) because there are more chances of reaching the optimum.

Further investigation would be needed to disentangle this issue. Concerning

the order with which subjects solve problems, the most frequent strategies

are Top-Bottom and Simple-Complex, which are also the ones that guaran-

tee the highest payoff. We conclude that in general this evidence supports

Simon’s idea of bounded rationality.

The results provide also some useful insights for modeling satisficing be-

havior. For instance, both Caplin and Dean (2011) and the model proposed

in the second chapter of this thesis assume that the threshold that defines an

alternative to be satisfactory is fixed. However, this evidence suggests that

the threshold varies across problems and crucially depends on complexity

and, to a lesser degree, on the extent to which the environment is familiar

to subjects. A nice exercise would be to extend these models in order to

account for this possibility.
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Since collected data include also intermediate choice, it would be inter-

esting to analyze the path that led subjects to their final choice. In Caplin,

Dean and Martin (2009) the alternatives that constitute a choice set are

listed and visible. According to choice process data, subjects are allowed to

change the chosen alternative as many times as they want before the time

expires. Caplin, Dean and Martin find that subjects decide to switch only

when a superior alternative is identified and chosen. That is, subjects always

choose the best alternative in the consideration set. However, this may be

due to the fact that in their experiment search history is partially visible

(the provisional choice at any point in time). We expect that in a context,

such as in this experiment, in which alternatives are not listed and search

history is not visible, subjects do not behave in the same way. Rather, we

expect that, especially at more complex problems, subjects end up choosing

a non-optimal alternative in the consideration set. There are two reasons

behind this intuition. First, subjects might not remember how to reach the

superior alternative. Second, subject might fail to choose the superior alter-

native because they are not able to figure out what is the path that leads

to it. An analysis of intermediate choices could shed light on how subjects

explored the choice set and in particular on this issue.

Finally, a notable amount of experiments has been run within ‘natu-

ral’ environments, such as marketplaces (see Harrison and List (2004) for a

survey and Palacios-Huerta and Volj (2009) and Apesteguia and Palacios-

Huerta (2010) as more recent studies). It would be interesting to investigate

whether subjects still exhibit satisficing attitudes also outside the laboratory

by running a field experiment.
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Chapter 5

Conclusions

In this thesis we investigate what are the effects of assuming economic agents

to be boundedly rational on various fields of microeconomics. In particular we

define a boundedly rational DM as an individual who follows the satisficing

heuristic proposed by Simon (1955; 1956). We first propose a theory of

boundedly rational choice within the revealed preference approach. Then,

we investigate whether the fact that there is uncertainty about consumers’

rationality enhances their welfare in several markets. Finally, we propose

an experiment aimed at testing the extent to which subjects’ behavior is

consistent with the satisficing heuristic.

The next section highlights what is our contribution relative to the exist-

ing literature and discusses limitation of the present work and possible future

developments.

Contribution Relative to the Existing Litera-

ture and Future Work

Our major contribution to choice theory is to provide a formalization of

the satisficing heuristic within the revealed preference approach that differs

from the existing studies (Rubinstein and Salant, 2006; Caplin and Dean,
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2011). On the one hand, Rubinstein and Salant (2006) propose a model in

which DMs analyze alternatives sequentially. We generalize their framework

by assuming that DMs do not necessarily examine alternatives one by one.

On the other hand, unlike Caplin and Dean (2011) we do not make use

of choice process data, but we consider only final choices. Moreover, we

perform a rich and complete analysis by axiomatically characterizing our

procedure and providing behavioral definitions of satisfaction, attention, and

preference under three different domains. This study could be improved in

two ways. First, the relationships between our model and Rubinstein and

Salant (2006) could be further investigated. A nice exercise would be to

extend their results to menu sequences. Second, the experiment proposed

in the fourth chapter highlights the fact that the threshold that defines an

alternative to be satisfactory vary across choice problems. In particular it

is strongly influenced by complexity. It would be interesting to extend our

model by allowing the threshold to vary depending on the extent to which

the choice problem under consideration is more or less complex. This would

make the model more realistic.

The third chapter investigates what is the impact of uncertainty about

consumers’ rationality on their welfare in a variety of markets. An extensive

body of literature has been developed in analyzing the effects of bounded ra-

tionality on industrial organization (Spiegler, 2011) that suggests that bound-

edly rational individuals are typically subject to exploitation. We show that

it is not obvious a priori whether uncertainty enhances consumers’ welfare.

In particular it depends on the assumptions that we make on the market

model. For instance, in the quality-competition model uncertainty increases

boundedly rational consumers’ welfare. On the contrary, in the monopolis-

tic screening model this does not happen. None of the existing studies of

which we are aware assume consumers to behave according to the satisficing

heuristic. In addition, the analysis of the results allows us to derive some

suggestions for policy-makers. On the other hand, the major weakness of

this study is that it provides a simple and preliminary analysis. It could be
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improved both by adding more complexity and realism to the model and by

investigating other markets than those analyzed in the present work.

In the fourth chapter we propose an experiment aimed at testing the

extent to which subjects’ behavior is consistent with the satisficing heuristic.

We show that in general subjects behavior is consistent with it and that

complexity has a stronger impact on subjects’ performance than the variable

familiarity of the environment. In addition we derive some useful insights

for modeling satisficing behavior, such as the one mentioned above. The

closest study to our work is Caplin, Dean and Martin (2009). We depart

from it for several reasons. First, we ask subjects to perform a different

task. Second, unlike Caplin, Dean and Martin (2009), we do not use choice

process data, but other data enrichment techniques, such as intermediate

choices and decision time. Third, our design does not allow subjects to

monitor part of the search history. This study could be improved by further

analyzing intermediate choices. This would allow us to figure out what was

the path that led subjects to their final choice and to shed further light on the

decision-making process. Moreover, it would be interesting to verify whether

also outside the laboratory subjects exhibit satisficing attitudes by running

a field experiment.
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Appendix A

Appendix

A.1 Independence of the Axioms

WARP does not imply MI. Let X = {x, y, z}. {x} = C({x, y, z}),
{x} = C({x, y}), {x} = C({x, z}), and {y, z} = C({y, z}). This choice

correspondence satisfies WARP, but violates MI.�

MI does not imply WARP. Let X = {x, y, z}. {x} = C({x, y, z}),
{y} = C({x, y}), {x} = C({x, z}), and {y} = C({y, z}). This choice corre-

spondence satisfies MI, but violates WARP.�

A.2 Proofs of Propositions

Proof of Proposition 1. Suppose that c is an SCF.

Assume that x ∈ UC�(X;xs). Suppose, by contradiction, that there ex-

ists a (B, {Bj}) ∈ D1 such that x ∈ Bc(B,{Bj})
m−1 . Then there are two cases. As-

sume first that c(B, {Bj}) ∈ UC�(X;xs). In this case, Γ(B,{Bj}) = Bj. How-

ever, since x ∈ UC�(X;xs) ∩Bc(B,{Bj})
m−1 , then j > min{j|Bj ∩ UC�(X;xs) 6=

∅}, which leads to a contradiction. Next, assume that c(B, {Bj}) /∈ UC�(X;xs).
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In this case Γ(B,{Bj}) = B and {c(B, {Bj})} = max(B;�). However, since

x ∈ UC�(X;xs), then x � c(B, {Bj}), which leads to a contradiction.

Conversely, assume that x /∈ UC�(X;xs). We want to show that there

exists some (B, {Bj}) ∈ D1 such that x ∈ Bc(B,{Bj})
m−1 . Let {y} = max(X;�).

Take any (A, {Aj}) ∈ D1 such that y ∈ Aj \Ak with k < j and x ∈ Ak. Since

xs ∈ X, then necessarily y ∈ UC�(X;xs). This implies that y = c(A, {Aj}),
which is the desired result.�

Proof of Proposition 2. Suppose that c is an SCF.

Suppose first that y = c(A, {Aj}) and x ∈ A
c(A,{Aj})
m . Independently

of whether UC�(A;xs) 6= ∅ or not, x ∈ Γ(A,{Aj}). Next, assume that y =

c(A, {Aj}) and there exists a (B, {Bj}) ∈ D1 such that y ∈ Bc(B,{Bj})
m−1 . By

Proposition 1, y is unsatisfactory. Therefore, Γ(A,{Aj}) = A. Since x ∈ A,

then x ∈ Γ(A,{Aj}).

Conversely, assume that x ∈ Γ(A,{Aj}). Assume first that UC�(A;xs) 6= ∅.
In this case c(A, {Aj}) ∈ UC�(A;xs). Since Γ(A,{Aj}) = Aj, where j =

min{j|Aj ∩ UC�(A;xs) 6= ∅}, then x ∈ A
c(A,{Aj})
m , which means that x at-

tracts attention at (A, {Aj}). Next, assume that UC�(A;xs) = ∅. By Propo-

sition 1, c(A, {Aj}) is unsatisfactory. If this is the case, then there exists a

(B, {Bj}) ∈ D1 such that x ∈ Bc(B,{Bj})
m−1 , which is the desired result.�

Proof of Proposition 3. Suppose that c is an SCF.

Assume first that x � y. Take a (A, {Aj}) ∈ D1 such that A = {x, y} =

A1. Since A1 = A, then necessarily x and y attract attention at (A, {Aj})
and Γ(A, {Aj}) = A. Since c(A, {Aj}) = max(A;�), then x = c(A, {Aj}),
as desired.

Conversely, assume that there is some (A, {Aj}) ∈ D1 such that x =

c(A, {Aj}) and y attracts attention at (A, {Aj}). By Proposition 2, y ∈
Γ(A,{Aj}). Since {c(A, {Aj})} = max(Γ(A,{Aj});�), then x � y, which is the

desired result.�
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Proof of Proposition 4. Suppose that c is an SCF2.

Assume that x ∈ UC�(X;xs). Suppose, by contradiction, that there

exists a (B,B1) ∈ D2 such that x ∈ B1 and c(B,B1) /∈ B1. Then there are

two cases. Assume first that c(B,B1) ∈ UC�(B;xs). In this case, Γ(B,B1) =

B̄ ⊃ B1. However, since x ∈ UC�(X;xs) ∩ B1, then it is not true that

UC�(B \ B1;xs) 6= ∅, which leads to a contradiction. Next, assume that

c(B, {Bj}) /∈ UC�(X;xs). In this case Γ(B,B1) = B and {c(B, {Bj})} =

max(B;�). However, since x ∈ UC�(X;xs), then x � c(B,B1), which leads

to a contradiction.

Conversely, assume that x /∈ UC�(X;xs). We want to show that there

exists some (B,B1) ∈ D2 such that x ∈ B1 and c(B,B1) /∈ B1. Let {y} =

max(X;�). Take any (A,A1) ∈ D2 such that y ∈ A \ A1 and x ∈ A1. Since

xs ∈ X, then necessarily y ∈ UC�(X;xs). This implies that y = c(A, {Aj}),
which is the desired result.�

Proof of Proposition 5. Suppose that c is an SCF2.

Assume first that x � y. Take a (A,A1) ∈ D2 such that A = {x, y} = A1.

Notice that necessarily A1 = A = Γ(A,A1). Since c(A,A1) = max(A;�),

then x = c(A,A1), as desired.

Conversely, assume that there is some (A,A1) ∈ D2 such that x =

c(A,A1) and y ∈ A1. Since y ∈ Γ(A,A1) and {c(A,A1)} = max(Γ(A,A1);�),

then x � y, which is the desired result.�

Proof of Proposition 6. Suppose that c is an SCF2.

If x ∈ A1 ∨ x = c(A,A1), then obviously x ∈ Γ(A,A1). Next, assume

that y = c(A,A1) and there exists a (B,B1) ∈ D2 such that y ∈ B1 and

c(B,B1) /∈ B1. By Proposition 4, y is revealed to be unsatisfactory. Hence,

Γ(A,A1) = A. This implies that x ∈ Γ(A,A1), which is the desired result.�

Proof of Proposition 7. Suppose that c is an SCC.
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Assume that x ∈ UC�(X;xs). Since x is satisfactory, then for any A ∈
P(X) such that x ∈ A there exist a {Aj} ∈ A for which x = c(A, {Aj}).
This implies that x = c(X, {Xj}) for some {Xj} ∈ X . Since x ∈ X, then

there exists a sequence Since xs ∈ X, then there exists an (A, {Aj}) ∈ D1

such that x = c(A, {Aj}). This implies that x ∈ C(X).

Conversely, assume that x ∈ C(X). Suppose, by contradiction, that

x ∈ UC�(X;xs). This implies that x = c(X, {Xj}) for all {Xj} ∈ X and

{x} = C(X). However, since xs ∈ X, then there are some {Xj} ∈ X such

that xs = c(X, {Xj}). In this case C(X) is not a singleton, which leads to a

contradiction. Hence, x ∈ UC�(X;xs), as desired.�

Proof of Proposition 8. Suppose that c is an SCC.

Assume first that x �¬S y. Since x is unsatisfactory, then there is some

B ∈ P(X) such that xs ∈ B. In this case, x 6= c(B, {Bj}) for all {Bj} ∈ B,

which implies that x /∈ C(B). Next, since x and y are unsatisfactory, then

there exists some A ∈ P(X) such that x, y ∈ A and x = c(A, {Aj}) for all

{Aj} ∈ A. Hence, {x} = C(A), as desired.

Conversely, assume that there is some A ∈ P(X) such that {x} = C(A)

and y ∈ A and some B ∈ P(X) such that x /∈ C(B). Since x /∈ C(B), then

this implies that x is unsatisfactory. Next, since there is some A ∈ P(X)

such that {x} = C(A), then also y is unsatisfactory. In addition, this implies

that x �¬S y.�

Proof of Proposition 9. Necessity. Assume that C(A) =
⋃
{Aj}∈A c(A, {Aj}),

where c(A, {Aj}) is an SCF. We can rewrite C as:

C(A) = max(A;R)

where R is a weak order on X and the indifference classes apart from the

maximal one are singletons.

It is immediate to see that C satisfies WARP. Moreover, since all indif-
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ference classes different from the maximal one are singletons, then also MI is

satisfied.

Sufficiency. Assume that C satisfies WARP and MI. We have to show

that there exist a weak order on X such that C(A) = max(A;R) and all

indifference classes apart from the maximal one are singletons.

It is well-known that if C satisfies WARP, then there exist a weak order

R such that C(A) = max(A;R) for any A ∈ P(X). Next, suppose, by

contradiction, that x, y ∈ C(A) and there is some B ∈ P(X) such that x ∈ B
and x /∈ C(B), so that x is not R-maximal in X. However, this immediately

contradicts MI. Hence, there exist no such B and all indifference classes apart

from the maximal one are singletons, which is the desired result.�

Proof of Proposition 10. It is immediate to prove existence. Assume

that firms play xmax = (xmax
i )i∈N . In this case firm i’s profits are 1

n
−c(xmax).

We show that there are not profitable deviations. Suppose that firm i deviates

by playing any x′ such that xmax � x′. This implies that its profits are −c(x′)
and the deviation is not profitable.

Now we prove uniqueness. We first show that any equilibrium has to be

symmetric and than that any symmetric strategy profile different from xmax

is not an equilibrium.

Assume that firms play x, where xi � xj for some i ∈ N and for all

j 6= i, so that x is not symmetric. Since the FRC always compares the

products that firms produce in advance, then πi(x) = 1
n(i,x)

− c(xi) for all

i and πj(x) = −c(xj) for all j 6= i. Each firm j can profitably deviate

by supplying an alternative of the same quality as firm i’s. Therefore, a

necessary condition for a strategy profile to be an equilibrium is that it has

to be symmetric.

Finally, suppose, by contradiction, that there is another symmetric Nash

equilibrium x′ different from xmax. Firm i’s profits are 1
n
−c(x′). Assume that

one firm deviates by playing x′′, where x′′ � x′. The firm that deviates gets

a profit equal to 1− c(x′′). We have to show that 1− c(x′′) > 1
n
− c(x′). Since
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sup{c(x)|x ∈ X} = 1
n

and c(x′′) > c(x′), then we can rewrite the previous

inequality as 1− 1
n
> 1

n
−c(x′), which implies that n−2

n
> −c(x′). Since n ≥ 2,

then the deviation is profitable, but this leads to a contradiction. Therefore,

xmax is unique.�

Proof of Proposition 11. We first prove existence. Suppose that firms

play xs = (xsi )i∈N . In this case firm i’s expected payoff is πi(x
s) = 1

n
(1 −

c(xs))− n−1
n
c(xs) = 1

n
− c(xs).

Suppose by contradiction that xs is not a Nash equilibrium. If this is the

case, then there must be at least one profitable deviation.

Assume first that firm i deviates, by playing some pure strategy x′, where

xs � x′. In this case, firm i’s expected payoff is equal to πi(x
′
i, x

s
−i) = −c(x′),

which means that the deviation is not profitable.

Next, suppose that firm i deviates, by playing some pure strategy x′′,

where x′′ � xs. In this case, firm i’s expected payoff is equal to πi(x
′′
i , x

s
−i) =

1
n
(1 − c(x′′)) − n−1

n
c(x′′) = 1

n
− c(x′′). Since x′′ � xs, then c(x′′) > c(xs).

Hence, the deviation is not profitable.

Since there are no profitable deviations, then a contradiction takes place

and xs is a Nash equilibrium.

Now we prove uniqueness. As in proof of Proposition 10 any equilib-

rium has to be symmetric. Suppose, by contradiction, that there is another

symmetric pure-strategy Nash equilibrium x∗ = (x∗i )i∈N different from xs.

Assume that firms play x∗. Hence, each firm i’s profit is 1
n
− c(x∗). Suppose

first that xs � x∗. Applying the reasoning of the proof of Proposition 10

we conclude that x∗ cannot a Nash equilibrium, because each firm i could

profitably deviate by playing x∗∗ � x∗. Next, suppose that x∗ � xs. No-

tice that any deviation to x′′′ such that xs � x′′′ ≺ x∗ is profitable, because

c(x∗) > c(x′′′). Therefore, x∗ is not an equilibrium, which leads to a contra-

diction. Hence, xs is unique.�
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Proof of Proposition 12. Given a strategy profile x, we can rewrite

firm i’s payoff function πui (x) = ρπFRCi (x) + (1− ρ)πBRCi (x) as follows.

πui (x) =



ρ
(

1
n(i,x) − c(xi)

)
+ (1− ρ)[q (1− c(xi))− (1− q) (c(xi))] if (xi � xs) and

(xi � xj∀j ∈ N)

ρ(−c(xi)) + (1− ρ)[q (1− c(xi))− (1− q) (c(xi))] if (xi � xs) and

(xj � xi for some j ∈ N)
1

n(i,x) − c(xi) if (xi, xj /∈ UC(�;xs))

and (xi � xj )∀j ∈ N
−c(xi) otherwise

Assume that ρ ≥ ρ̄ = n(c(xmax)− c(xs)). Notice that ρ̄ ∈ (0, 1). Suppose

not and assume first that ρ̄ ≤ 0. This implies that c(xmax) ≤ c(xs), which

leads to a contradiction. Next, assume that ρ̄ ≥ 1. This implies that 1
n
−

c(xmax) ≤ −c(xs), which leads to a contradiction. Hence, ρ̄ ∈ (0, 1).

We first show existence. Suppose that firms play xmax = (xmax
i )i∈N . Since

xi � xs and xi � xj ∀j ∈ N , then firm i’s expected profits are πui (xmax) =
1
n
− c(xmax).

Suppose by contradiction that xmax is not a Nash equilibrium. If this is

the case, then there must be at least one profitable deviation.

Assume that firm i deviates, by playing some pure strategy x′, where

necessarily xmax � x′. Clearly, if x′ ≺ xs, then the deviation is not profitable,

because, independently of whether the consumer is an FRC or a BRC, firm

i’s profits would be equal to −c(x′). Hence, assume that x′ � xs. Since

x′i � xs and xj � x′i for some j ∈ N , then in this case firm i’s profits are

πui (x′i, x
max
−i ) = ρ(−c(x′))+(1−ρ)( 1

n
(1−c(x′i))− n−1

n
c(x′i)) = 1

n
−c(x′)− ρ

n
. The

deviation is profitable only if 1
n
−c(x′)− ρ

n
> 1

n
−c(xmax) or, equivalently, when

ρ < n(c(xmax) − c(x′)). Since ρ ≥ ρ̄ = n(c(xmax) − c(xs)) and c(x′) ≥ c(xs),

then the deviation is never profitable and a contradiction takes place. Hence,

xmax is a Nash equilibrium.

Now we prove uniqueness. As in proof of Proposition 10 and 11 any

equilibrium has to be symmetric. Suppose, by contradiction, that there is

another symmetric pure-strategy Nash equilibrium x∗ = (x∗i )i∈N different
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from xmax. Assume that firms play x∗. Hence, each firm i’s profit are 1
n
−

c(x∗). Suppose first that xs � x∗. Applying the reasoning of the proof of

Proposition 10 we conclude that x∗ cannot a Nash equilibrium, because each

firm i could profitably deviate by playing x′ � x∗. Next, suppose that x∗ � xs

and assume that firm i deviates by playing x′′, where xmax � x′′ � x∗. Firm

i’s profits are then πui (x′′i , x
∗
−i) = ρ(1−c(x′′))+(1−ρ)( 1

n
(1−c(x′′i ))− n−1

n
c(x′′i ))

= ρ+ 1
n
− c(x′′)− ρ

n
. The deviation is profitable only if ρ+ 1

n
− c(x′′)− ρ

n
>

1
n
− c(x∗) or, equivalently, when ρ > n

n−1
(c(x′′) − c(x∗)). Since ρ ≥ ρ̄ =

n(c(xmax) − c(xs)), c(xmax) ≥ c(x′′′) > c(x∗) ≥ c(xs), then the deviation is

profitable and a contradiction takes place. Hence, xmax is unique.

Assume now that ρ < ρ̄ = n
n−1

(c(xmax)− c(xs)). It is clear that in this

case xmax is not a Nash equilibrium.

Finally, we show that there are no symmetric Nash equilibria x∗ =

(x∗i )i∈N , where xs � x∗. Suppose that x∗ is a Nash equilibrium. Sup-

pose, by contradiction, that xs � x∗. In this case, each firm i’s profits

are 1
n
− c(x∗). Assume that firm i deviates by playing xs. Firm i’s profits

are then πui (xsi , x
∗
−i) = 1− c(xs). Since 1− c(xs) > 1

n
− c(x∗) is always true,

then the deviation is profitable and a contradiction takes place. Hence, x∗ is

not a Nash equilibrium.�

Proof of Proposition 13. Suppose first that the firm plays xmax. If

this is the case, the only candidate to be an equilibrium is strategy profile

(E|FRC,E|BRC, xmax), because the strategy of not entering is dominated

for both types. Let us check whether this is a PBE. Let p(FRC) = 1 −
p(BRC) be the prior probability that the consumer is FRC. In pooling PBE

the firm does not update its beliefs. So, let p(FRC) = p(FRC|E) = p.

The firm supplies xmax if and only if

p(1− c(xmax)) + (1− p)(1− c(xmax)) > p(−c(xs)) + (1− p)(1− c(xs))

1− c(xmax) > −pc(xs) + 1− p− c(xs) + pc(xs)
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p > c(xmax)− c(xs)

Since 1 > c(xmax) > c(xs) > 0, then this implies that the choice of xmax

over xs is feasible. Next, the consumer has not incentives to deviate because,

independently of which type she is, entering is better than not entering.

Indeed, u(xmax) > ū and v(xmax) > v̄. Finally, the posterior probability

p(FRC|NE) ∈ [0, 1], because the strategy NE is always strictly dominated.

Next, assume that the firm plays xs. In this case the only candidate to

be an equilibrium is the strategy profile (NE|FRC,E|BRC, xs). The reason

is that if the firm plays xs, the FRC prefers to stay out and the BRC prefers

to enter. Using the Bayes’ rule we get

p(FRC|E) =
p(FRC)p(E|FRC)

p(FRC)p(E|FRC) + p(BRC)p(E|BRC)

=
p(FRC)(0)

p(FRC)(0) + p(BRC)(1)
= 0

and

p(FRC|NE) =
p(FRC)p(NE|FRC)

p(FRC)p(NE|FRC) + p(BRC)p(NE|BRC)

=
p(FRC)(1)

p(FRC)(1) + p(BRC)(0)
= 1

Let q = p(FRC|E). The firm supplies xs if and only if

q(1− c(xmax)) + (1− q)(1− c(xmax)) < q(−c(xs)) + (1− q)(1− c(xs))

1− c(xmax) < 1− c(xs)

c(xs) < c(xmax)

Since this inequality is always true, then, given these posterior beliefs, xs

is always preferred to xmax. Next, the FRC and the BRC have no incentives

to deviates, because ū > u(xs) and v̄ < v(xs), respectively.�
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Proof of Proposition 14. Problem 1 can be rewritten as follows.

maxpx,qx px − αqx
s.t. (i) px − ln(qx + 1) ≤ −u−1(ū)

We first compute the Lagrangian.

L(px, qx, λ) = px − αqx − λ(px − ln(qx + 1) + u−1(ū))

Now, let us write down the Kuhn-Tucker conditions.

∂L
∂px

= 1− λ = 0 (A.1)

∂L
∂qx

= −α +
λ

qx + 1
≤ 0 qx

(
∂L
∂qx

)
= 0 (A.2)

∂L
∂λ

= ln(qx + 1)− px − u−1(ū) ≥ 0 λ

(
∂L
∂λ

)
= 0 (A.3)

together with px > 0 and qx, λ ≥ 0.

By condition 1, λ∗ = 1. Therefore, constraint (i) binds (holds with

equality). Next, suppose, by contradiction, that qx = 0. This implies that

px = −u−1(ū) < 0, which leads to a contradiction. Therefore, qx > 0 and

condition 2 must bind. Plugging λ∗ = 1 into condition 2 and solving for qx,

we get q∗x = 1
α
− 1. Next, plugging q∗x into condition 3 and solving for px, we

get p∗x = ln( 1
α

)− u−1(ū). Let this solution be denoted by xc.�

Proof of Proposition 15. Problem 2 is the following.

maxpy ,qy py − αqy
s.t. (i) py − p̄ ≤ 0

(ii) q̄ − qy ≤ q

This problem can easily be solved graphically (see figure A.1).
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Figure A.1: Problem 2

Fixing π = π̄, let py = αqy + π̄ be the straight line that represents an

isoprofit. Since the level of profits equals the intercept on the y-axes, then

the higher profits the greater intercept. Next, since α ∈ (0, 1), then the

gradient vector points to North-West. Finally, since py ≤ p̄ and qy ≥ q̄, then

the optimal solution is q∗y = q̄ and p∗y = p̄. Let this solution be denoted by

yc.�

Proof of Proposition 16. Problem 3 can be rewritten as follows.

maxpx,py ,qx,qy ρ (px − αqx) + (1− ρ) (py − αqy)

s.t. (i) px − ln(q1 + 1) ≤ −u−1(ū)

(ii) py − p̄ ≤ 0

(iii) q̄ − qy ≤ 0

(iv) px − ln(qx + 1)− py + ln(qy + 1) ≤ 0

(v) p̄− px ≤ 0

127



We first compute the Lagrangian.

L(px, py, qx, qy, λ1, λ2, λ3, λ4, λ5, λ6) = ρ (px − αqx) + (1 − ρ) (py − αqy) −
λ1(px − ln(qx + 1) + u−1(ū))− λ2(py − p̄)− λ3(q̄ − qy)− λ4(px − ln(qx + 1)−
py + ln(qy + 1))− λ5(q̄ − px)

Now, let us write down the Kuhn-Tucker conditions.

∂L
∂px

= ρ− λ1 − λ4 + λ5 = 0 (A.4)

∂L
∂py

= (1− ρ)− λ2 + λ4 = 0 (A.5)

∂L
∂qx

= −ρα +
λ1

qx + 1
+

λ4

qx + 1
≤ 0 (A.6)

∂L
∂qy

= −(1− ρ)α + λ3 −
λ4

qy + 1
≤ 0 (A.7)

∂L
∂λ1

= ln(qx + 1)− px − u−1(ū) ≥ 0 (A.8)

∂L
∂λ2

= p̄− py ≥ 0 (A.9)

∂L
∂λ3

= qy − q̄ ≥ 0 (A.10)

∂L
∂λ4

= ln(qx + 1)− px − ln(qy + 1) + py ≥ 0 (A.11)

∂L
∂λ5

= px − p̄ ≥ 0 (A.12)

together with px, py > 0, qx, qy, λ1, λ2, λ3, λ4, λ5 ≥ 0, qx

(
∂L
∂qx

)
= 0,

qy

(
∂L
∂qy

)
= 0, λ1

(
∂L
∂λ1

)
= 0, λ2

(
∂L
∂λ2

)
= 0, λ3

(
∂L
∂λ4

)
= 0, and λ5

(
∂L
∂λ5

)
= 0.

Notice that since q̄ > 0, then, by condition 10, condition 7 binds. There-

fore, it must be that λ3 > 0. This implies that q∗y = q̄. Next, condition 5

implies that λ2 > 0. Hence, py = p̄. Further, assume by contradiction that

qx = 0. Then, by condition 8, px ≤ −u−1(ū). Since u−1(ū) > 0, then px < 0,

which leads to a contradiction. Therefore, qx > 0 and condition 6 binds.
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Finally, notice that it cannot be that λ1 = λ4 = 0, because otherwise, by

condition 4, λ5 = −ρ, which leads to a contradiction.

• Assume first that λ5 = 0. This implies that px > p̄.

– Suppose that λ1, λ4 > 0. Hence, constraints (i) and (iv) bind.

Moreover, by condition 4, λ1 + λ4 = 1. Using this result in con-

dition 6 and solving for qx, we get q∗x = 1
α
− 1. Next, plugging q∗x

into condition 8 and solving for px, we get p∗x = ln
(

1
α

)
− u−1(ū).

By condition 11, it must be that

ln

(
1

α

)
− ln

(
1

α

)
+ u−1(ū) = ln(q̄ + 1)− p̄

u−1(ū) = ln(q̄ + 1)− p̄

ū = u(p̄, q̄)

Moreover, since px > p̄ and p̄ = ln(q̄ + 1)− u−1(ū), then

px > p̄

ln

(
1

α

)
− u−1(ū) > ln(q̄ + 1)− u−1(ū)

1

α
− 1 > q̄

– Assume λ1 > 0 and λ4 = 0. This implies that constraint (i)

binds and constraint (iv) holds with strict inequality. Moreover,

by condition 4, λ1 = ρ. Using this result in condition 6 and solving

for qx, we get q∗x = 1
α
− 1. Next, plugging q∗x into condition 8 and

solving for px, we get p∗x = ln
(

1
α

)
− u−1(ū). By condition 11, it

must be that

ln

(
1

α

)
− ln

(
1

α

)
+ u−1(ū) > ln(q̄ + 1)− p̄

u−1(ū) > ln(q̄ + 1)− p̄

ū > u(p̄, q̄)

129



Moreover, since px > p̄ and p̄ > ln(q̄ + 1)− u−1(ū), then

px > p̄

ln

(
1

α

)
− u−1(ū) > ln(q̄ + 1)− u−1(ū)

1

α
− 1 > q̄

– Assume that λ1 = 0 and λ4 > 0. This implies that constraint (i)

holds with strict inequality and constraint (iv) binds. Moreover,

by condition 4, λ4 = ρ. Using this result in condition 6 and solving

for qx, we get q∗x = 1
α
− 1. Next, plugging q∗x into condition 11 and

solving for px, we get p∗x = ln
(

1
α

)
− ln(q̄ + 1) + p̄. By condition 8,

it must be that

ln

(
1

α

)
− ln

(
1

α

)
+ ln(q̄ + 1)− p̄− u−1(ū) > 0

u−1(ū) < ln(q̄ + 1)− p̄

ū < u(p̄, q̄)

Moreover, since px > p̄, then

px > p̄

ln

(
1

α

)
− ln(q̄ + 1) + p̄ > p̄

1

α
− 1 > q̄

• Suppose that λ5 > 0. This implies that p∗x = p̄.

– Suppose that λ1, λ4 > 0. This implies that constraints (i) and

(iv) bind. Plugging p∗x into condition 8 and solving for qx, we get

q∗x = ep̄+u
−1ū − 1. Next, by condition 11
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p̄+ u−1(ū)− p̄ = ln(q̄ + 1)− p̄

u−1(ū) = ln(q̄ + 1)− p̄

ū = u(p̄, q̄)

– Suppose that λ1 > 0 and λ4 = 0. This implies that constraint (i)

binds and constraint (iv) holds with strict inequality. Plugging p∗x

into condition 8 and solving for qx, we get q∗x = ep̄+u
−1ū− 1. Next,

by condition 11

p̄+ u−1(ū)− p̄ > ln(q̄ + 1)− p̄

u−1(ū) > ln(q̄ + 1)− p̄

ū > u(p̄, q̄)

– Suppose that λ1 = 0 and λ4 > 0. This implies that constraint (i)

holds with strict inequality and constraint (iv) binds. Plugging

p∗x into condition 11 and solving for qx, we get q∗x = q̄. Next, by

condition 8

ln(q̄ + 1)− p̄− u−1(ū) > 0

u−1(ū) < ln(q̄ + 1)− p̄

ū < u(p̄, q̄)

This concludes the proof.�

A.3 Proofs of Theorems

Proof of Theorem 1. It is easy to check necessity.
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Sufficiency. Assume that c satisfies FAWARP.

STEP 1: There exists a strict linear order � on X, where x � y whenever

x = c(A, {Aj}), where A = A1 = {x, y}.

Proof. Let x � y whenever x = c(A, {Aj}), where A = A1 = {x, y}.
Notice that y attracts attention at (A, {Aj}). It is immediate to see that �
is asymmetric, irreflexive, and complete. Next, we show that � is transitive.

Assume that x � y and y � z. Consider a (C, {Cj}) ∈ D1 such that C =

C1 = {x, y, z}. Since C1 = C, then necessarily x, y, and z attract attention

at (C, {Cj}). Notice that if z = c(C, {Cj}), then, by FAWARP, z � y,

which leads to a contradiction. Similarly, it cannot be that y = c(C, {Cj}).
Therefore, x = c(C, {Cj}). Then, by FAWARP, x � z. Hence, � is transitive.

Therefore, we conclude that � is a strict linear order.2

STEP 2: Let (A, {Aj}) ∈ D1 and assume that Γ(A,{Aj}) ⊆ A is the set

of alternatives that attract attention at (A, {Aj}). Then, {c(A, {Aj})} =

max(Γ(A,{Aj});�).

Proof. Let (A, {Aj}) ∈ D and assume that Γ(A,{Aj}) ⊆ A is the set of

alternatives that attract attention at (A, {Aj}). Let x = c(A, {Aj}). Sup-

pose, by contradiction, that y � x for some y ∈ Γ(A,{Aj}) \ {x}. In this case,

y = c(B, {Bj}), where B = B1 = {x, y}. Since x and y attract attention

at (B, {Bj}), then, by FAWARP, x 6= c(A, {Aj}), which leads to a contra-

diction. Therefore, there are no y ∈ Γ(A,{Aj}) \ {x} such that y � x. This

implies that {c(A, {Aj})} = max(Γ(A,{Aj});�), which is the desired result.2

STEP 3: There exists a partition (S,X \S) of the grand set X such that

c(A, {Aj}) ∈ S for any (A, {Aj}) with A ∩ S 6= ∅.

Proof. Define S = {x ∈ X|@(B, {Bj}) ∈ D1 such that x ∈ B
c(B,{Bj})
m−1 }.

Consider any (A, {Aj}) ∈ D1 such that x ∈ A∪S 6= ∅. Suppose, by contradic-

tion, that y = c(A, {Aj}) /∈ S. Since y /∈ S, then all alternatives in A attract
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attention at (A, {Aj}). By STEP 2, y � x. Next, since y /∈ S, then there

exists a (B, {Bj}) ∈ D1 such that y ∈ Bc(B,{Bj})
m−1 . Let z = c(B, {Bj}). Notice

that y attracts attention at (B, {Bj}) and, therefore, by STEP 2, z � y.

Let (C, {Cj}) ∈ D1 such that C = {x, y, z} and C1 = {x, y}. Notice that

(C, {Cj}) exists. Suppose not. Assume first that z ∈ A. Since all alternatives

in A attract attention at (A, {Aj}), then, by STEP 2, y � z, a contradiction.

Hence, (C, {Cj}) 6= (A, {Aj}). Next, suppose that (B, {Bj}) = (C, {Cj}).
This would imply that x /∈ S, a contradiction. Therefore, (C, {Cj}) exists.

We want to show that any choice from (C, {Cj}) leads to a contradiction.

Assume first that x = c(C, {Cj}). In this case, by STEP 2, x � y, which

leads to a contradiction. Next, assume y = c(C, {Cj}). This implies that

all alternatives in C attract attention at (C, {Cj}) and, therefore, by STEP

2, y � z, which leads to a contradiction. Assume then that z = c(C, {Cj}).
However this contradicts the fact that x ∈ S. Since {c()} cannot be empty,

then c(A, {Aj}) ∈ S, which is the desired result.2

STEP 4: For any (A, {Aj}) ∈ D1,

Γ(A,{Aj}) =

{
Amin{j|Aj∩S 6=∅} if A ∩ S 6= ∅
A otherwise

Proof. By STEP 2, {c(A, {Aj})} = max(Γ(A,{Aj});�), where Γ(A,{Aj})

is the set of alternatives that attract attention at (A, {Aj}). Suppose first

that A ∩ S 6= ∅. We have to show that Γ(A,{Aj}) = A1. Assume first that

x ∈ Γ(A,{Aj}). Since A∩S 6= ∅, then, by STEP 3, it must be that c(A, {Aj}) ∈
S. If this is the case, then x ∈ Γ(A,{Aj}) implies that x ∈ A

c(A,{Aj})
m and

A
c(A,{Aj})
m = Amin{j|Aj∩S 6=∅}. Hence, x ∈ Amin{j|Aj∩S 6=∅}. Conversely, assume

that x ∈ Amin{j|Aj∩S 6=∅}. This immediately implies that x ∈ Γ(A,{Aj}).

On the other hand, if A∩S = ∅, it is immediate to see that Γ(A,{Aj}) = A.2

Therefore, we conclude that c is an SCF.�
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Proof of Theorem 2. It is easy to check necessity.

Sufficiency. Assume that c satisfies FAWARP2. STEP 1, STEP 2, and

STEP 3 are analogous to those of Theorem 1. For this reason we omit the

proof.

STEP 1: There exists a strict linear order � on X, where x � y whenever

x = c(A,A1), where A = A1 = {x, y}.

STEP 2: Let (A,A1) ∈ D2 and assume that Γ(A,A1) ⊆ A is the set of alter-

natives that attract attention at (A,A1). Then, {c(A,A1)} = max(Γ(A,A1);�
).

STEP 3: There exists a partition (S,X \S) of the grand set X such that

c(A,A1) ∈ S for any (A,A1) with A ∩ S 6= ∅, where S = {x ∈ X|@(A,A1) ∈
D2 such that x ∈ A1 and c(A,A1) /∈ A1}.

STEP 4: For any (A,A1) ∈ D2,

Γ(A,{Aj}) =


A1 if A1 ∩ S 6= ∅
Ā if (A \ A1) ∩ S 6= ∅ = A1 ∩ S
A otherwise

where Ā = A1 ∪ {x ∈ A \ A1|c(A,A1) � x} ∪ {c(A,A1)}.

Proof. By STEP 2, {c(A,A1)} = max(Γ(A,A1);�), where Γ(A,A1) is the set

of alternatives that attract attention at (A,A1). Suppose first thatA1∩S 6= ∅.
We have to show that Γ(A,A1) = A1. Assume first that x ∈ Γ(A,A1). Since

A1 ∩ S 6= ∅, then, by STEP 3, it must be that c(A,A1) ∈ S. This implies

that case 2 and case 3 of Definition 7 cannot occur. Hence, only case 1 of

Definition 7 can occur, that is, x ∈ A1, as desired. Conversely, assume that

x ∈ A1. This immediately implies that x ∈ Γ(A,A1).

Assume that (A\A1)∩S 6= ∅ = A1∩S. We have to show that Γ(A,A1) = Ā,

where Ā = A1 ∪ {x ∈ A \ A1|c(A,A1) � x} ∪ {c(A,A1)}. Assume first that

x ∈ Γ(A,A1). Since (A\A1)∩S 6= ∅ = A1∩S, then, by STEP 2, c(A,A1) ∈ S,
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which rules out case 2 of Definition 7. This implies that x ∈ A1 (case 1)

and x ∈ A \ A1 only if c(A,A1) � x (case 3) or x = c(A,A1). Hence,

x ∈ Ā. Conversely, assume that x ∈ Ā. Since, by STEP 3, it must be that

c(A,A1) ∈ S, then c(A,A1) /∈ A1, which rules out only case 2 of Definition

7. Hence, x ∈ Γ(A,A1), as desired.

Finally, assume that A ∩ S = ∅. We have to show that Γ(A,A1) = A.

Clearly, x ∈ Γ(A,A1) implies x ∈ A. Conversely, assume that x ∈ A. Since

A ∩ S = ∅, then there is some (B,B1) ∈ D2 such that c(A,A1) ∈ B1 and

c(B,B1) /∈ B1. This implies that x ∈ Γ(A,A1) as desired.2

Therefore, we conclude that c is an SCF2.�

Proof of Theorem 3. We first prove that if the extended choice function

c is an SCF, then the restriction of c to DL is a DR,δ.

Assume that c is an SCF. Define the relation R in the following way:

max(X;R) ≡ UC�(X;xs) and R ranks the unsatisfactory alternatives as �
does. It is easy to see that c(A, {Aj}) = DR,δ for any (A, {Aj}) ∈ DL and

δ(xs) = 1.

Next, we show that a DR,δ can be extended to an SCF if and only if δ = 1

and the sets in I(R;\max) are singletons.

We first prove that if a DR,δ can be extended to an SCF, then δ = 1 and

the sets in I(R;\max) are singletons. Assume that DR,δ can be extended to an

SCF. This means that c is a SCF and c(A, {Aj}) = DR,δ for all (A, {Aj}) ∈
DL. Suppose, by contradiction, that δ = 1 and the sets in I(R;\max) are

singletons. Then there are three cases.

Case (i): δ = 2 and the sets in I(R;\max) are singletons. If this is the case,

then c(A, {Aj}) ∈ UC�(X;xs), but there exists some (A, {Aj}) ∈ DL such

that A
c(A,{Aj})
i−1 ∩ UC�(X;xs) 6= ∅. However, this contradicts the fact that

whenever UC�(X;xs) ∩ A 6= ∅, then Γ(A,{Aj}) = Aj, where j = min{j|Aj ∩
UC�(A;xs) 6= ∅}, which leads to a contradiction. Hence, δ = 1.

Case (ii): δ = 1 and there is a non-singleton set in I(R;\max). Assume that
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y, z ∈ X belong to that set. Therefore, y, z /∈ UC�(X;xs). Assume WLOG

that y � z. Let (A, {Aj}), (A, {A′j}) ∈ DL, where A1 = {z}, A2 = {y, z},
A′1 = {y}, and A′2 = {y, z}. Since δ = 1, then yI1z, that is, z = c(A, {Aj)
and y = c(A, {A′j}). However, this contradicts FAWARP and, therefore, c is

not an SCF, which leads to a contradiction. Hence, the sets in I(R;\max) are

singletons.

Case (iii): δ = 2 and there is a non-singleton set in I(R;\max). A con-

tradiction takes place from what is proved in cases (i) and (ii), which is the

desired result.

Conversely, assume that the restriction of c to DL is a DR,δ, where δ = 1

and the sets in I(R;\max) are singletons. We want to show that c can be

extended to an SCF. We first show that the restriction of c to DL is an

SCF. Define UC�(X;xs) ≡ max(X;R). Moreover, define � in the following

way: x � y for all x ∈ max(X;R) and y /∈ max(X;R) and � ranks all

alternatives y /∈ max(X;R) as R does. Since δ = 1, then c always picks

from (A, {Aj}) ∈ DL the first x ∈ UC�(X;xs) that appears in the menu

sequence. Next, the fact that all sets in I(R;\max) are singletons rules out the

possibility that FAWARP is violated in the way it is explained in case (ii).

Therefore, the restriction of c to DL is an SCF. Next, complete the relation

� by imposing the satisfactory alternatives to be ranked according to any

order. Moreover, for the remaining problems (A, {Aj}) ∈ D1 \ DL impose c

to satisfy FAWARP. Hence, c is an SCF.�
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