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Abstract 

 

Remotely-sensed precipitation and soil moisture products are becoming increasingly 

important sources of information in earth science system. However, there are still high 

degree of uncertainties inherited in remotely-sensed precipitation and soil moisture 

products, and limited studies have focused on evaluation of these products.  

In this study, GEOtop model (Rigon et al. 2006), which is physically-based distributed 

hydrological model, is used to assess the use of remotely-sensed precipitation and soil 

moisture products for hydrological applications. The study area is Little Washita 

watershed (583 km
2
), Oklahoma, USA. To assess these products, the model has to be 

first calibrated and validated at different locations in the watershed using extensive 

ground-based measurements. The Southern Great Plains 1997 (SGP97) and SGP99 

Hydrology Experiment are used for model calibration and validation, respectively. The 

model is reasonably calibrated and validated at watershed scale at different locations in 

the watershed for: heat fluxes, soil temperature profiles, soil moisture profiles, and 

streamflows. 

Regarding soil moisture evolution, we studied the spatial variability of the near-surface 

soil moisture from GEOtop simulations and estimates from Electronically Scanned 

Thinned Array Radiometer (ESTAR). Results show that GEOtop simulations and 

ESTAR estimates show very different magnitude and spatial patterns of near-surface 

soil moisture. Spatial patterns derived from GEOtop simulations are in agreement with 

the previous findings obtained from the same study area using ground-based 

measurements of soil moisture and theoretical model simulations. We conclude that 

GEOtop simulation results are more accurate and that ESTAR estimates are not a 

reliable source of data for characterizing the spatial variability of near-surface soil 

moisture. GEOtop simulations show that the spatial distribution of near-surface soil 

moisture is highly controlled by soil texture and river network. Furthermore, we 

investigated the effect of vegetation, surface roughness, and topography on ESTAR. 

Results show that there are insignificant effects of vegetation except for interception, 

surface roughness, and topography on ESTAR. In addition, we investigated the scaling 

properties of near-surface soil moisture. Results show that near-surface soil moisture 

has multiscaling behaviour. 
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On the other hand, spatial soil moisture patterns are studied using geostatistical 

techniques: Ordinary kriging, external drift kriging and conditional Gaussian 

simulations (CGSs). Krigings show that soil moisture patterns in the watershed are 

highly controlled by gradient and cosine aspect. All CGSs clearly show soil moisture 

patterns. Spatial soil moisture patterns produced by CGSs are much better than the 

patterns reproduced by kriging algorithms. 

 

Regarding remotely-sensed precipitation products, we have investigated the utility of 

these products for hydrological simulations during non-winter seasons. Results show 

that all remotely-sensed precipitation products (Climate Prediction Center’s morphing 

technique (CMORPH), Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Networks - Cloud Classification System (PERSIANN-CCS)- 

and Next Generation Weather Radar (NEXRAD Stage III)) are fairly reproducing the 

streamflows, but CMORPH often overestimates streamflows. Thus it concluded that all 

the above mentioned remotely-sensed precipitation products have value for streamflow 

simulations. 
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Distributed hydrological model; GEOtop, passive microwave radiometer soil moistures 

(ESTAR), space-time soil moisture variability, remotely-sensed precipitation, Little 

Washita watershed. 
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1 Introduction  

1.1 Motivation 

 

Remotely-sensed precipitation and soil moisture products are becoming increasingly 

available across the globe. These products are widely used in earth science system and 

have wide range of applications e.g., regional scale hydrologic or general circulation 

models. Notwithstanding their wide use, there are still high degree of uncertainties 

inherited in remotely-sensed precipitation and soil moisture products, and limited 

studies have focused on the evaluation of these products. 

 

1.2 Soil moisture 

 

Near-surface soil moisture is a key state variable that determines the partitioning of 

available energy into latent and sensible heat fluxes, and precipitation into runoff and 

infiltration. It is known for its high degree of space and time variability, caused by 

variabilities in atmospheric forcing, topography, land cover and soil texture (e.g., 

Vereecken et al. 2007). However, scientific knowledge about the nature of variability of 

soil moisture across different space-time scales is very much limited. The limitation 

arises from lack of reliable soil moisture data at different space-time scales over large 

domains. 

One way of generating spatially distributed soil moisture data on an experimental 

(prohibitive costs for operational) level is to fly microwave sensors aboard aircrafts. 

This approach has been used in large-scale soil moisture field campaigns, such as 

Washita 92 (Jackson et al. 1995), Washita 94 (Starks and Humes 1996), SGP97 and 

SGP99 (Famiglietti et al. 1999; Famiglietti et al. 2008), SMEX 02 (Jackson et al. 2004), 

SMEX 03 (Jackson 2002), SMEX 04 (Jackson et al. 2008) and SMEX 05 (Yilmaz et al. 

2008) in which aircraft-based microwave sensors were flown for about a month and in-

situ soil moisture measurements were taken at selected sites to develop the microwave-

based retrieval algorithms and assess their accuracy. Studies show that while 

microwave-based algorithms have the potential to provide useful information on the 

space-time variability of soil moisture, they are also subject to a number of error 

sources, vegetation effects, temperature depth profile and surface roughness (Crosson et 
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al. 2005; Ulaby et al. 1983), atmospheric conditions (Drusch et al. 2001), radio- 

frequency interface (Njoku et al. 2005), topography, and satellite azimuth angle and 

zenith angle (Flores et al. 2009). 

Another convenient (and operational) way of generating spatially distributed soil 

moisture data is through the use of well-calibrated distributed hydrologic model 

simulation. The word ‘well-calibrated’ (i.e. through the use of observed streamflow 

hydrographs and additional sets of observations, such as, soil moistures, soil 

temperatures and energy fluxes at multiple points) is critical here, because the 

traditional way of calibrating hydrological models through the exclusive use of 

observed streamflow hydrographs at the outlet of the watershed fails to reproduce the 

spatial pattern of soil moisture across the watershed since the same simulated 

hydrograph can be obtained by assuming quite different spatial soil moisture patterns. 

Both sources of spatial soil moisture data (aircraft-based microwave observation, and 

well-calibrated hydrologic model simulations) have their own error sources. However, 

no study to our knowledge has done a comparative study of the soil moisture variability 

estimates derived from both data sources. Do both data sources yield comparable space-

time patterns of soil moisture variability? Or do they give us contradictory results 

raising alarm on the suitability of one of the data sources? 

Furthermore, the spatial soil moisture patterns (e.g., Blöschl and Grayson, 2000) are 

studied in the watershed using different kriging techniques aiming to establish 

sustainable network of soil moisture measurements in the watershed. 

 

1.3 Remotely-sensed precipitation 

Precipitation is critical element in the hydrological cycle and it varies also very much in 

space and time, and yet there is no unique reliable instrument can measure precipitation 

at different spatial and temporal scales. Traditionally, raingauges are widely used to 

estimate precipitation over land surface. Although there are uncertainties in raingauge 

measurements, raingauges are considered one of the most reliable instruments for 

estimating precipitation. However, raingauges are point measurements, and it is costly 

and time consuming to deploy dense raingauge network over large areas to capture the 

small-scale precipitation variability. Moreover, it is difficult to deploy raingauges over 

oceans and water bodies. Alternative methods of estimating precipitation are the use of 

remote sensing techniques that have the ability to estimate precipitation in uniform 
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spatial and temporal grids for the whole globe. Precipitation estimation from remote 

sensing techniques is increasing tremendously in the last years. Remotely-sensed 

precipitation products, for example, include Climate Prediction Center’s morphing 

technique (CMORPH), Precipitation Estimation from Remotely Sensed Information 

using Artificial Neural Networks - Cloud Classification System (PERSIANN-CCS), 

Next Generation Weather Radar (NEXRAD), and Tropical Rainfall Measuring Mission 

(TRMM) Multi-satellite Precipitation Analysis (TMPA) are widely used for 

precipitation estimation across the globe. However, the footprint of remotely-sensed 

precipitation is taken at scales larger than the appropriate scales for the underlying 

hydrological processes. 

The scale discrepancy and the uncertainties inherited in remotely-sensed precipitation 

hindered the use of remotely-sensed precipitation for hydrological applications. One 

possibility to know to what extent remotely-sensed precipitation products are suitable 

for hydrological applications, is to use physically-based distributed hydrological models 

constrained with dense raingauge network, and other meteorological forcing data. The 

physically-based distributed models have to be first calibrated and validated on 

intensive ground field data, such as Southern Great Plains Hydrology Experiment- 1997 

(SGP97) and SGP99, constrained with dense raingauge network and other measured 

meteorological forcing data. Once the physically-based distributed models are 

reasonably calibrated and validated on intensive ground field data, the raingauge data 

can be replaced by remotely-sensed precipitation measurements, and then the 

distributed models can be used to test the utility of remotely-sensed precipitation 

products for hydrological simulations. 

 

1.4 Objective 

=42!&1M2*/)A2,!&5!/4),!%2,2+%*4!+%2!+,!5&''&3,N!

 

1) To evaluate ESTAR soil moisture products using soil moisture measurements 

and GEOtop model simulations.  

2) To study the spatial and temporal variability of soil moistures using ESTAR 

estimates and GEOtop simulations. 

3) To study the scaling properties of soil moisture. 

4) To study the spatial soil moisture patterns using geostatistical techniques. 
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5)  To assess the suitability of remotely-sensed precipitation products for 

hydrological simulations. 

 

1.5 The structure 

This work is structured as follows. In chapter 2, GEOtop model is applied to the Little 

Washita watershed (583 km
2
), Oklahoma, USA, using Southern Great Plains Hydrology 

Experiment-1997 (SGP97) dataset. The model is calibrated at watershed scale and the 

results of model simulations against the measured heat fluxes (latent heat, sensible heat, 

ground heat and net radiation), soil temperature profiles at different locations in the 

watershed, soil moisture profiles at different locations in the watershed, and 

streamflows at the watershed outlet are shown. In chapter 3, GEOtop model is applied 

to the Little Washita watershed, and is validated using Southern Great Plains Hydrology 

Experiment-1999 (SGP99) dataset. Similar results to that obtained in chapter 2 are 

shown here, but using SGP99 dataset. Chapter 4 focuses on simulated and ESTAR soil 

moisture patterns obtained during SGP97 and SGP99. The simulated soil moisture maps 

for the whole watershed are compared to their corresponding ESTAR soil moisture 

maps for the days at which we have ESTAR soil moisture estimates. The effect of soil 

texture on soil moisture variability is also shown. In addition, the effects of topography, 

vegetation, surface roughness, vegetation-intercepted water, and surface runoff on 

ESTAR soil moistures are investigated. Chapter 5 deals with the characterization of soil 

moisture during the SGPs using ESTAR passive microwave radiometer and GEOtop 

model simulations, using both SGP97 and SGP99 datasets. The relationships between 

statistical moments of soil moisture against the spatial mean soil moisture are identified. 

Furthermore, soil moisture scaling is also elaborated in this chapter. The comparison of 

geostatistical techniques with simulated soil moistures is presented in chapter 6. The 

roles of terrain indices on soil moisture variability are also investigated. The utility of 

remotely-sensed precipitation, namely, Climate Prediction Center’s morphing technique 

(CMORPH), Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks - Cloud Classification System (PERSIANN-CCS)- and Next 

Generation Weather Radar (NEXRAD), for hydrological simulations are shown in 

chapter 7. Simulations obtained using remotely-sensed precipitation are compared to the 

raingauge simulations and to the measured streamflows. Finally, concluding remarks of 

the whole work are presented in chapter 8. 
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1.6 Study area 

The study area is the Little Washita experimental watershed located in the southwest 

Oklahoma in the Southern Great Plains region of the USA. The watershed has been 

operated by the Agricultural Research Service – Grazinglands Research Laboratory 

(ARS-GRL) since 1961 (Allen and Naney 1991). Little Washita drains about 583 km
2
 to 

the USGS gage #07327550 east of Ninnekah, OK, and landuse is mostly grazing land 

and winter wheat (Fig. 1.2d). Soil textures range from fine sand to silt loam (Fig. 1.2c), 

with more than 75% of the watershed having SCS hydrologic soil group B soils 

(moderately well to well-drained). The more slowly drained soils lay in the western and 

eastern ends of the watershed with the more sandy soils in the centre. Topography is 

rolling with minimum elevation of about 300m and maximum elevation of about 500m 

(Fig. 1.2a). Soils are 0.25 to 1.5m thickness (Fig. 1.2b) and are underlain by 

sedimentary rocks, primarily sandstone. Climate is considered sub-humid, with 760mm 

of annual precipitation, and July average daily minimum and maximum temperatures of 

21 and 35°C, respectively and January average daily minimum and maximum 

temperatures of -4 and 10°C, respectively. The watershed is well instrumented [Fig. 1.1] 

for hydrological studies and has been the site for several major soil moisture field 

experiments (e.g., SGP97, and SGP99). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Little Washita river watershed instrumentation site. 
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Figure1.2: Little Washita watershed properties: a) Digital elevation model [m], b) Soil 

thickness [mm], c) Soil texture, and d) Landuse classes. All maps have 200m-grid 

resolutio 

 

 

 

1.7 The GEOtop model 

 

GEOtop model (Rigon et al. 2006) is a distributed hydrological model with coupled 

water and energy budgets. GEOtop includes solution of the Richards’ (Richards 1931) 

equation in three dimensions for evolution of soil water content and pressure, coupled 

with one-dimensional simulation of soil heat transport. All hydraulic soil properties are 

assigned through Van Genuchten (1980) schematization. The energy balance equation 

includes the effects of slope, aspect, shadow and sky view factor. Sensible and latent 

heat fluxes are estimated using similarity theory (Monin and Obukhov 1954). The 

ground heat flux is computed as a function of soil temperature gradient according to the 

Fourier heat diffusion equation. The surface runoff is routed according to a kinematic 
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scheme that accounts for local slopes and surface resistance. The surface water flow in 

channels is described by the convolution of the incoming discharge with the solution of 

the Barré de Saint-Venant equations (Barré de Saint-Venant 1871).  

The basic inputs of the model are Digital Elevation Model (DEM), land cover map, and 

soil texure map. For each grid, land cover and soil properties are specified. Forcing data 

of the model are precipitation, wind speed and direction, air pressure, air temperature, 

relative humidity, cloudiness, solar global short-wave radiation, and if available diffuse 

and long-wave radiation. The precipitation is partitioned into rain and snow. If more 

raingauges are available, the value of precipitation in every grid is obtained using 

kriging method. For more details about the GEOtop model and its capabilities see Rigon 

et al. (2006), Bertoldi (2007), Bertoldi and Rigon (2004), Dall’Amico (2010), Endrizzi 

(2007), Bushara and Rigon (2010), Bushara et al. (2010), Bushara et al. (2011a), 

Bushara et al. (2011b), Simoni et al. (2008). 
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2 Model calibration using Southern Great Plains 1997 

(SGP97) hydrology experiment dataset 

 

We used the comprehensive field data collected during the SGP97 in the Little Washita 

watershed (583 km
2
), Oklahoma, USA to fully calibrate the physically-based distributed 

hydrological model, GEOtop (Rigon et al. 2006). Then the model can be used to 

validate ESTAR soil moistures. GEOtop model is driven by meteorological forcings 

taken at an hourly time step from 45 meteorological stations. The model runs once at 

the watershed scale, and is reasonably calibrated for the energy fluxes (latent heat, 

sensible heat, ground heat, and net radiation), soil temperature profiles up to 60cm 

depth from the ground surface at different locations, volumetric soil moisture profiles 

up to 60cmm depth from the ground surface at different locations, and streamflows at 

the watershed outlet. 

2.1 Dataset 

The Southern Great Plains 1997 (SGP97) Hydrology Experiment took place from June 

18 to July 17, 1997, and was a cooperative effort between NASA, USDA, and several 

other government agencies and universities conducted with the primary goal of 

collecting a time series of spatial soil moisture data. The core of the experiment 

involved the deployment of the L-band ESTAR for daily mapping of surface soil 

moisture. ESTAR is a synthetic aperture, passive microwave radiometer operating at a 

frequency of 1.413 GHz (21 cm). ESTAR was flown on a P-3B aircraft (at an altitude of 

7.5 km) operated by the NASA Wallops Flight Facility. The P-3B flew over Little 

Washita (Fig. 1.1) at approximately 16:00 UTC (10:00 CST). The footprint of the raw 

brightness temperature data is 400m, but the raw data were resampled to 800m to derive 

soil moisture maps. Further details on the ESTAR instrument and the inversion of 

ESTAR brightness temperatures to volumetric soil moisture can be found in LeVine et 

al. (1994), Jackson et al. (1995), Jackson and LeVine (1996), and Jackson et al. (1999). 

ESTAR soil moisture estimates, available at 

http://daac.gsfc.nasa.gov/fieldexp/SGP97/estar.html (verified June 2009), have been 

used in this study. The estimates cover a large strip of approximately 50km (West-East) 

by 250km (North-South), with a pixel grid size of 800m ! 800m. The subset of the data 
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that covers the Little Washita was selected. The estimates represent approximately 

volumetric soil moisture of the top 5cm soil layer, i.e., 800m ! 800m ! 5cm volume of 

soil that is occupied by water. 

For this study, the comprehensive dataset available through the SGP97 makes a great 

opportunity to use such rare and intensive dataset to calibrate hydrological models and 

to further use hydrological models to validate remotely-sensed soil moistures. During 

the SGP97 experiment, heat fluxes, soil temperature profiles, soil moisture profiles, 

meteorological forcing data, and streamflows time series are measured at different 

locations in the watershed. Landuse cover and soil texture maps are available for the 

whole watershed. 

2.2 Atmospheric forcing to the GEOtop model 

 

GEOtop model is driven by meteorological forcing data taken at an hourly time step 

from 45 stations [ARS and MESONET networks, see Fig. 1.1] and each station 

measures precipitation, relative humidity, air temperature, downward solar radiation, 

wind speed, wind direction and air pressure. Furthermore, the cloudiness for each 

meteorological station is computed as reported in Liston and Elder (2006). The GEOtop 

model runs once for the period from July 1 to August 30, 1997 at the watershed scale, 

for 200m grid resolutions, considering all energy and water balance components. 

2.3 Model initialization and setup 

2.3.1 Initial and boundary conditions and parameters derived from literature 

 

Each of the landuse and soil texture classes have a total of 13 and 18 parameters, 

respectively, required initialization during model setup. Each landuse type is initialized 

for the following parameters: surface roughness, momentum roughness length/heat 

roughness length ratio, zero-plane displacement height, canopy height, canopy fraction, 

leaf area index (LAI) for both summer and winter seasons, minimum stomatal 

resistance, root depth, water content of wilting point, water content of field capacity, 

albedo, soil emissivity and the coefficient of the law of uniform motion of surface flow. 

The properties of landuse classes are shown in table 2.1. The data shown in this table 

are calibrated parameters, but the ranges of these parameters are taken from Mohanty 

(1999), Dingman (1994), and Garratt (1992). The water flow parameters are also 
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initialized: the mean velocity in channels, hydrodynamical dispersion in channels, and 

the exponent of the law of uniform motion of the surface. Since the simulation is during 

summer time (July 1 - August 30, 1997), both the snow and the glacier modules are 

switched off. 

 

 Table 2.1: Calibrated parameters of landuse properties used in GEOtop model  

 

hc canopy height [mm], d0 displacement height [mm], Z0 surface roughness [mm], 

Z0/Z0T momentum roughness to heat roughness ratio, fc canopy fraction [-], LAI leaf area 

index[L
2
/ L

2
], rs minimum stomatal resistance [s/m], rd root depth [mm], !wp water 

content of wilting point[-], !fc water content of field capacity[-], Cm coefficient of the 

law of uniform motion on the surface [L
-[1-"] 

T
-1

], and " emissivity[-]. 

Landuse 

type 

hc 

[mm] 

d0 

[mm] 

Z0 

[mm] 

Z0/Z0T 

[-] 

fc 

[mm] 

LAI 

[L
2
/ L

2
] 

rs 

[s/m] 

rd 

[mm] 

!wp 

[-] 

!fc 

[-] 

Cm 

 

Albedo " 

[-] 

Alfalfa 750 480 500 100 0.9 6 70 800 0.09 0.21 3.8 0.2 0.97 

Bare 

soil 

100 66 10 10 0.1 0.001 10 200 0.14 0.29 3.8 0.2 0.97 

Corn 1750 1166 175 10 0.9 4 70 1300 0.12 0.32 3.8 0.2 0.95 

Forage 600 350 60 10 0.6 3 70 700 0.21 0.36 3.8 0.2 0.95 

Legume 750 500 75 10 0.9 4 70 800 0.088 0.15 3.8 0.2 0.95 

Pasture 500 400 5 10 0.55 2.5 70 700 0.09 0.21 3.8 0.04 0.95 

Trees 7000 1000 700 10 0.8 5 70 1500 0.14 0.29 3.8 0.2 0.96 

Urban 1600 1066 16 10 0.01 2.5 10 600 0.12 0.32 0.05 0.01 0.95 

Water 100 66 10 10 0.01 1 3 200 0.21 0.36 5 0.3 0.96 

Wheat 1750 30 75 10 0.95 6 70 1300 0.088 0.13 3.8 0.3 0.98 

Summer 

corn 

750 500 75 10 0.9 4 70 800 0.088 0.15 3.8 0.2 0.95 

Summer 

legume 

1750 1166 175 10 0.9 4 70 1300 0.09 0.21 3.8 0.2 0.95 

Shrub 4000 1000 400 10 0.4 3 70 800 0.09 0.21 3.8 0.2 0.95 
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Each soil type is divided into 7 layers, the centres of these layers from the ground 

surface are: 25, 100, 150, 200, 350, 600 and 925mm. These soil layers are considered 

because most of the measurements, including soil moistures and soil temperatures, are 

taken at these depths and this allows for a direct comparison of the measurements with 

the model results. The model initial soil moisture of the first soil layer (5cm thickness) 

is taken to be the mean soil moisture estimated by ESTAR for the whole watershed on 

July 1, 1997, which is the starting date of the simulation. The initial pressure head for 

the top 5cm soil layer is obtained using the pedotransfer functions (Vereecken et al. 

1989) given the measured soil moisture content from ESTAR. While for the deep soil 

layers the model is initialized considering hydrostatic pressure profile. Other soil 

properties: residual water content, saturated water content, alpha of Van Genuchten 

(Van Genuchten 1980), n of Van Genuchten, and hydraulic conductivities are taken 

from the estimation of soil water properties study by Rawls et al. (1982). While soil 

parameter m has been set to 1 according to Vereecken et al. (1989) and soil parameter v 

set to 0.5, which is a usual value as indicated by Mualem (1976). The thermal 

conductivity and volumetric heat capacity of each soil layer are also initialized as 

described in Brutsaert (1983) and Garratt (1992). The initial soil temperature for each 

soil layer is taken to have the same value of the measured temperature at the considered 

depth. The soil hydraulic and thermal properties used in the GEOtop model simulations 

are shown in table 2.2. 

 

2.3.2 Procedure of model spin-up 

Following the initialization of model parameters, GEOtop is first calibrated for net 

radiation, sensible heat, and latent heat fluxes by changing landuse, soil, and surface 

parameters, such as albedo, soil emissivity, LAI, canopy fraction, surface roughness, 

and momentum roughness length/heat roughness length ratio. Then the ground heat flux 

is calibrated by changing soil thermal conductivities and soil volumetric heat capacity. 

For each soil type and at each depth, the soil thermal properties (i.e. thermal 

conductivity and volumetric heat capacity) are calibrated. Right calibration of soil 

thermal properties results on right soil temperatures at deep soil layers. Then the model 

runs for two months (July 1 to August 30, 1997). As shown in figure 2.8, for each soil 

layer, the soil moisture on July 1, approximately equals to the soil moisture on July 18. 

Figure 2.8 shows that soil moisture seems to have persistent temporal periodicity.  
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 Table 2.2: Calibrated parameters of soil hydraulic and thermal properties used in the GEOtop model 

 

Kh horizontal hydraulic conductivity [mm/s], Kv vertical hydraulic conductivity [mm/s], !r residual water content, !sat saturated water content, " of 

Van Genuchten [mm
-1

], n of Van Genuchten, # thermal conductivity [Wm
-1

 k
-1

], $C volumetric heat capacity [J m
-3

 k
-1

]. Within the soil type, the 

soil hydraulic and thermal properties vary with the depth. 

Soil texture Kh 

[mm/s] 

Kv 

[mm/s] 

!r 

[-] 

!sat 

[-] 

" 

[mm
-1

] 

n 

[-] 

# 

[W m
-1

 k
-1

] 

$C 

[J m
-3

 k
-1

] 

Sandy loam 0.001-0.9 0.001-1.6 0.03-0.13 0.29-0.4 0.0006-0.01 1.1-1.322 0.3 1E6- 2E6 

Loam 0.003-0.5 0.001-0.015 0.09-0.13 0.39-0.42 0.009-0.012 1.1- 1.3 0.3 2E6 

Silt loam 0.009-0.5 0.001-0.16 0.09-0.17 0.39-0.47 0.0048-0.01 1.1-1.41 0.2- 5.3 0.7E6-2E6 

Clay 0.008-0.01 0.0001-0.01 0.09-0.11 0.36-0.37 0.0027-0.006 1.131 0.3 2E6 

Loamy sand 0.022-0.025 0.01-0.5 0.05-0.07 0.37-0.41 0.0115-0.014 1.474 0.3 2E6 

Sand 0.08-0.09 0.05-1.4 0.02-0.04 0.39-0.41 0.0138-0.017 1.592 0.3 2E6 
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It found that the soil moisture on August 30 approximately equals the soil moisture on 

July 1. The concept of spinning the model is well expressed here: 

http://abouthydrology.blogspot.com/2011/01/geotop-guidlines-for-distributed.html 

Then the model is reinitialized by taking the new values of the pressure head obtained 

on August 30, as the input to the GEOtop model. This process is repeated six times 

(about one year) in order to have spatially correct pressure head in each model grid and 

in each soil depth. After calibrating the surface heat fluxes and the soil temperatures, the 

subsurface flow is calibrated. The subsurface flow is calibrated first because the 

subsurface flow component is small, compared to the total flow, and there is sufficiently 

relatively long dry-down period (July 1 to 4) without rainfall. Then the surface flow is 

calibrated, and mainly by changing the coefficient of the law of the uniform motion of 

the surface, Cm, the mean velocity in the channels and the hydrodynamical dispersion in 

the channels, while keeping the exponent of the law of the uniform motion of the 

surface (!) fixed after it has been calibrated. The surface flow is described by the 

following equation: 

 

! 

qsup = Cmh
"
i
0.5           (2.1) 

 

Where qsup is the surface flow per unit surface area [L/T], Cm is coefficient of the law of 

the uniform motion of the surface [L
-[1-!] 

T
-1

], h is surface water thickness [L], i is the 

local slope [dimensionless] and ! is exponent of the law of the uniform motion of the 

surface [dimensionless]. 

Successive model simulations are conducted by calibrating the initial pressure head and 

alpha and n of Van Genuchten parameters in order to reproduce the soil moisture 

measurements for the 1
st
 day of the simulation, and that is applied for each soil type (in 

total 18 soil types) and for each soil layer (in total 7 layers). Once the correct soil 

moistures at the start of the simulation have been granted, the full soil moisture time 

series are simulated by tuning again the initial pressure head, alpha and n of Van 

Genuchten parameters, residual water content, horizontal hydraulic conductivity and 

vertical hydraulic conductivity. Then the whole process is repeated from the beginning 

for tuning all the above-mentioned parameters. To reproduce the correct flow at the 

watershed outlet, only the exponent of the law of the uniform motion of the surface (!) 

is tuned. 
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2.4 Performance statistics 

 

We used the Nash-Sutcliffe efficiency (Nash and Sutcliffe 1970) and normalized bias to 

evaluate the model performance. The Nash-Sutcliffe efficiency (NSE) is computed as 

follows: 

 

! 

E =1"

(SIM
i
"OBS

i
)
2

i=1

n

#

(OBS
i
"OBS

mean
)
2

i=1

n

#

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 

       (2.2) 

  

While the normalized bias is computed as follows: 

 

! 

Bias =
1

n OBSmax "OBSmin( )
(OBS

i
" SIM

i
)

i=1

n

#      (2.3) 

 

Where SIM, OBS, OBSmean, OBSmax, OBSmin, is the simulated, observed, mean of 

observed, max of observed, and min of observed, respectively, and n is the total number 

of pairs of simulated and observed data. NSE ranges from -! to 1, with higher values 

indicating better agreement between the data and the simulations. An efficiency of 1 

indicates a perfect match of the simulations to the observed data. An efficiency of 0 

indicates that the model predictions are as accurate as the mean of the observed data, 

while efficiency less than zero indicates that the observed mean is a better predictor than 

the model. 

2.5 Results and discussions 

2.5.1 Simulated heat fluxes 

 

GEOtop model is calibrated at LW02-NOAA site (Figs. 1.1 and 1.2) for all fluxes: 

latent heat, sensible heat, ground heat, and net radiation, as shown in figure 2.1. GEOtop 

model is fairly reproducing the diurnal cycles of all energy fluxes. GEOtop is fairly 

reproducing the fluxes for both daytimes and nights, and that all the simulated fluxes 

follow similar trends of the measurements. Among the fluxes, net radiation performed 

well compared to the other fluxes. Figure 2.1d shows that the ground heat flux increases 
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as soil moisture increases, resulting on high negative ground heat fluxes on July, 4, 10, 

and 15, 1997, at which there were storm events. These high negative ground heat fluxes 

(Fig. 2.1d ) together with sensible heat (Fig. 2.1b) are counterbalanced by the latent heat 

flux (Fig. 2.1c ). 

 

Generally, all the simulations show good agreement with the observations. The NSE for 

the fitted net radiation, sensible heat, latent heat, and ground heat is 0.408, -0.05, 0.46, 

and -1.23, respectively, while their normalized biases values are 0.11, 0.08, 0.02, and 

0.06, respectively. The correlation coefficient between the simulated and the measured 

net radiation, sensible heat, latent heat, and ground heat is 0.73, 0.61, 0.72, and 0.19, 

respectively. 

 

 

Figure 2.1: Simulated and measured heat fluxes at LW02-NOAA site, for: a) net 

radiation, b) sensible heat, c) latent heat, and d) ground heat. There were two light 

rainfall events on July 4 and 15, and heavy rainfall event on July 10, 1997. 

 

2.5.2 Simulated soil temperatures 

 

The surface temperature is computed by solving the surface energy balance equation 

(Rigon et al. 2006). The simulated soil temperatures are compared to the observations at 

stations: NOAA, 136, 146, 144,149, 154, and 159 (Fig. 1.1) for depths at 2.5, 10, 15, 20 
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and 60cm from the ground surface. The stations are distributed across the watershed and 

lay on different elevations, slopes, aspects, landuses and soil types. In general, the 

simulations show good agreement with the observations at all locations. Figure 2.2 

shows soil temperature profile at LW02-NOAA site, while figures 2.3 to 2.6 show the 

soil temperature profile at station 136, 146, 149 and 159, respectively. The measured 

and the simulated soil temperatures for stations 144 and 159 are shown in appendix A. 

Figures 2.3 to 2.6 also show that the model is fairly simulating the soil temperature 

profiles at stations 136, 146, 149 and 154. Following the rainfall event on July 4, 1997 

all temperature time series become more damped as soil moisture increases with the 

depth from the ground surface. The diurnal temperature effects diminish at about 60cm 

depth. At NOAA site, the model is perfectly simulating the temperature measurements 

for each soil layer, but with less fitting to the 1
st
 top layer. The differences between the 

measurements and the GEOtop simulations for the first layer is due to the fact that the 

soil temperature is simulated at 2.5cm depth, while the measured temperature is taken at 

3cm depth. Moreover, the differences may be enhanced due to possible soil tension 

cracks and surface soil disturbance due to human activities, e.g., during the installation 

of temperature measuring devices. The model is reasonably reproducing the mean soil 

temperature. We observe that for all stations, the topsoil layer is not well simulated 

compared to the deep soil layers. This is due to the fact that the model does not consider 

the heat conduction between the stagnant air layer above the terrain and the soil. For 

more details about the heat conduction between the stagnant air layer and the soil see 

Bohren and Albrecht (1998). The slight mismatch often seen between the simulated and 

the measured temperatures for stations 144, 146, and 159 (see Fig. 2.4 and appendix A) 

is due to the difference in the chosen initial soil temperatures. If offset values of 

temperature were added to the simulated or to the measured temperatures, there would 

be perfect match between the simulated and the measured temperatures. This is due to 

the fact that we chose only spatially uniform soil thermal properties for each soil type. 
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Figure 2.2: Simulated and measured soil temperature profile at LW02-NOAA site for 

depths: a) top 5cm layer (measurement at 3cm and GEOtop simulations at 2.5cm), b) 

10cm, c) 20cm, and d) 60cm from the ground surface. 

 

 

Figure 2.3: Simulated and measured soil temperature profile at station 136, at depths: a) 

2.5cm, b) 10 cm, c) 15cm, d) 20 cm, and e) 60cm from the ground surface. 
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Figure 2.4: Simulated and measured soil temperature profile at station 146, at depths: a) 

2.5 cm, b), 15 cm, c) 20 cm, and d) 60cm from the ground surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Simulated and measured soil temperature profile at station 149, at depths: a) 

2.5 cm, b) 10 cm, c) 15cm, d) 20 cm, and e) 60cm from the ground surface. 
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Figure 2.6: Simulated and measured soil temperature profile at station 154, at depths: a) 

2.5cm, b) 10 cm, c) 15cm, d) 20 cm, and e) 60cm from the ground surface. 

 

2.5.3 Simulated streamflows 

 

Figure 2.7 shows the measured and the simulated total streamflows (m
3
/s) at the 

watershed outlet as well as the total precipitation (mm) that falls in the watershed during 

the study period. The model is reasonably simulating the base flows as well as the peak 

flows. In spite of that, the model is slightly underestimating some parts of the discharge 

recession curve after the heavy rainfall event on July 10. Although the simulated and the 

measured streamflow time series are taken every 15 minutes, acceptable values for NSE 

and bias are obtained. The values of Nash-Sutcliffe and bias are equal to 0.6000 and 

0.00086, respectively. The mean channel velocity is calibrated to be 1.8 m/s and the 

channel hydodynamical dispersion is calibrated to be 15 m
2
/s, while the exponent of the 

law of uniform motion of the surface is calibrated to 0.32. The q1 and q2, which are the 
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slope of the land converging to the channel, and fraction of the pixel occupied by the 

channel, respectively, are calibrated to be 0.17 and 0.10, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Simulated and measured streamflows at the watershed outlet and the 

watershed total rainfall. 

 

2.5.4 Simulated soil moistures 

 

Figure 2.8 shows the measured and the simulated soil moisture profiles at LW02-

NOAA site whose landuse type was Alfalfa on sandy loam soil (soil type 13 - hydraulic 

conductivity = 2.00 - 6.30 mm/s). The soil moistures were measured at all depths using 

Water Content Reflectometer. Figure 2.8a shows the simulated and the measured soil 

moisture for the top 6cm soil layer. The model is reasonably simulating the whole 

measured time series of soil moisture. 

Figure 2.8b shows the simulated and the measured soil moisture at a depth of 10cm. The 

model is also fairly simulating the measurements although the model is slightly 

overestimating the second dry-down period (July 4-10) of the soil moisture time series. 

The model is also fairly simulating the full soil moisture time series at depths of 10, 

15,20 and 60cm from the ground surface as shown in figures 2.8b, 2.8c, 2.8d, and 2.8e, 

respectively. The NSE for the soil moisture at NOAA site at 2.5cm, 10cm, 15cm, 20cm, 

and 60cm depths is 0.83, 0.4, 0.66, 0.76, and -1.97, respectively. While the correlation 

coefficient for the soil moisture at NOAA site at 2.5cm, 10cm, 15cm, 20cm, and 60cm 

depths is 0.87, 0.79, 0.88, 0.89, and 0.15, respectively. 
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As seen from all above figures the max difference between the measured and the 

simulated soil moisture contents is less than 0.05, and the simulated soil moistures are 

timely responding to the rainfall events. 

This section shows the ability of GEOtop model to simulate the diurnal cycles of soil 

moistures at different depths from the ground surface after it reasonably reproduced the 

total flow at the watershed outlet, as well as the heat fluxes and soil temperature 

profiles. In addition to that, this section shows the potentials of distributed hydrological 

models to simulate soil moistures at different depths, in oppose to the remotely-sensed 

soil moisture instruments that measure soil moisture for only shallow depths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Simulated and measured volumetric soil moisture profile at LW02-NOAA 

[see Figs. 1.1 and 1.2] at depths: a) 2.5cm, b) 10 cm, c) 15cm, d) 20cm, and e) 60cm 

from the ground surface. 
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Figures 2.9a, 2.9b, and 2.9c show the measured and the simulated soil moisture at 

LW03, LW13 and LW21 experimental sites, respectively for the top 5cm soil layer. For 

each site, which is 800m ! 800m, volumetric soil moistures were measured at 49 

locations, and named Site_1 to Site_49. However, in each figure only few measured 

time series are shown in order to make the figures more readable. The exact coordinates 

of these 49 sites were not reported in the SGP97 experiment. However, coordinates of 

some locations inside each site are known and the surface soil moistures are simulated 

at these locations. For each site, the soil moistures are simulated at these known 

locations, and named Model_1 to Model_4 and shown with thick lines in the figures. 

At LW03 the soil type at the four known locations is sandy loam (soil type 13 - 

hydraulic conductivity = 2.00 - 6.30 mm/s), which is the same soil type at LW02. At 

LW13, Model_1, Model_2 and Model_3 points lay on silt loam (soil type 8 - hydraulic 

conductivity = 0.63 - 2.00 mm/s), while Model_4 point lies on another kind of silt loam 

(soil type 15 - hydraulic conductivity = 2.00 – 6.30 mm/s). Finally, at LW21 Model_1 

and Model_2 points lay on silt loam soil (soil type 8 - hydraulic conductivity = 0.63 - 

2.00 mm/s). It is evident that the simulated soil moistures follow the same trends of the 

measurements and within the measurements range at all the experimental sites. The 

model is fairly simulating the soil moistures for the sandy loam (soil type 13 - hydraulic 

conductivity = 2.00 - 6.30 mm/s) at LW02 and LW03 experimental sites. Also the 

model is fairly simulating the soil moistures for different kinds of silt loam soils (soil 

type 8 - hydraulic conductivity = 0.63 - 2.00 mm/s, and soil type 15 - hydraulic 

conductivity = 2.00 – 6.30 mm/s) at LW13 experimental site. Furthermore, the model is 

reasonably simulating the soil moisture for the silt loam soil (soil type 8 - hydraulic 

conductivity = 0.63 - 2.00 mm/s) at the LW21 experimental site.  

The model is able to simulate soil moistures for different soil types in the experimental 

sites. Furthermore, the model is able to simulate soil moistures for a given soil type at 

different experimental sites. 

From all the above simulations, it is evident that the model is reasonably reproducing 

soil moistures at LW02, LW03, LW13 and LW21 experimental sites. These sites lay on 

different elevations, soil types and land use types. The types of soil textures and landuse 

at each experimental site are shown in table 2.3. Soil textures shown in table 2.3 are 

dominant in the study watershed (Fig. 1.2). Sandy loam (soil type 13 - hydraulic 

conductivity = 2.00 - 6.30 mm/s), silt loam (soil type 8 - hydraulic conductivity = 0.63 - 
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2.00 mm/s), and silt loam (soil type 15 - hydraulic conductivity = 2.00 – 6.30 mm/s) 

represent 19.8%, 25%, and 8% of watershed coverage, respectively. Soil type is found 

to be the main controlling factor of soil moisture distribution in the watershed (see 

section 4.1). As the soil type is the main controlling factor of the soil moisture 

distribution in the watershed and as GEOtop model is reasonably reproducing soil 

moistures at all the experimental sites for surface and deep soil layers, the GEOtop 

ability to reproduce the spatial patterns of soil moistures for the whole watershed is 

trusted, and the model results can be taken with high confidence to validate ESTAR soil 

moisture products. 

 

 

Figure 2.9: Simulated and measured soil moisture of the top 5cm soil layer at: a) LW03, 

b) LW13, and c) LW21 ground-based measurement sites. The continuous thick lines are 

the simulated soil moistures. The thin lines are the soil moisture measurements. Thin 

lines are often broken because of missing measurements. The plot shows that the 

simulated soil moistures have the same trends of the measurements and within the 

measurement range. 
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Table 2.3: Landuse and soil textures at the ground-based measurement sites 

 

 

 

 

 

 

 

 

 

 

 

*Sandy loam (soil type 13 - hydraulic conductivity = 2.00 - 6.30 mm/s) 

**Sandy loam (soil type 13 - hydraulic conductivity = 2.00 - 6.30 mm/s) 

***Silt loam (soil type 8 - hydraulic conductivity = 0.63 - 2.00 mm/s, and soil type 15 - 

hydraulic conductivity = 2.00 – 6.30 mm/s) 

****Silt loam (soil type 8 - hydraulic conductivity = 0.63 - 2.00 mm/s) 

 

 

 

 

 

2.6 Conclusion 

 

In this chapter, we use the comprehensive field data collected during the SGP97 in the 

Little Washita watershed (583 km
2
) to fully calibrate the physically-based distributed 

hydrological model, GEOtop (Rigon et al. 2006). The model is constrained by 

meteorological data from 45 stations and the model runs once at watershed scale for the 

period from July 1 to August 30, 1997. Results show that the model and is reasonably 

reproducing energy fluxes (latent heat, sensible heat, ground heat, and net radiation), 

soil temperature profiles up to 60cm depth from the ground surface at different 

locations, volumetric soil moisture profiles up to 60cm depth from the ground surface at 

different locations, and streamflow at the watershed outlet with acceptable accuracies. 

Therefore, the model ability to produce spatial soil moisture is trusted and the model 

can be used to validate ESTAR soil moistures. 

 

 

 

Site Landuse type Soil texture 

LW02 Alfalfa *Sandy loam 

LW03 Bare soil, forage, and pasture **Sandy loam 

LW13 Forage, pasture and urban ***Silt loam 

LW21 Pasture, urban, and wheat ****Silt loam 
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3 Model validation using Southern Great Plains 1999 

(SGP99) hydrology experiment dataset 

 

 

 

The purpose of this chapter is to validate GEOtop model using the comprehensive 

ground-based measurements that was collected during the SGP99. GEOtop model was 

calibrated using the comprehensive dataset that was collect during the SGP97 (see 

chapter 2). The model is initialized and driven by meteorological forcings taken at an 

hourly time step from 44 meteorological stations. Results show that the model is 

reasonably validated for energy fluxes (latent heat, sensible heat, ground heat, and net 

radiation), soil temperatures, soil moistures, and streamflows at the watershed outlet. 

Once the model is validated, the model can be use to validate ESTAR soil moisture. 

 

 

 

3.1 Model initialization and setup 

 

All the calibrated parameters that were obtained during the SGP97 for the GEOtop 

model are kept fixed, except the initial soil water pressure, and the initial soil 

temperatures. Furthermore, the coefficient of the law of the uniform of the motion of the 

surface, Cm, is slightly modified for some landuses to account for possible landuse 

changes. The initial soil water pressures are obtained by running the GEOtop model 

several times until the hydrological equilibrium of the watershed is reached. The model 

runs for the period from July 5 to 31, 1999, and the GEOtop model is driven by 

atmospheric forcings taken at an hourly time step from 44 meteorological stations (Fig. 

1.1), excluding Ninnekah station, after performing quality control. The DEM and all 

other geomorphological maps that are used in the model have 200m grid resolutions; 

same grid resolutions used for the SGP97. At LW02, LW04, LW05, LW06, LW08, 

LW09, LW11, LW12, LW13, LW14, LW21, LW22, and LW23 experimental sites (Fig. 

3.1), the model is validated for sensible heat, latent heat, ground heat, net radiation, soil 

temperatures at 10cm depth, streamflows at the watershed outlet (USGS stream gage # 

07327550), and soil moistures for the top 5cm soil layer. During the SGP99, and at each 
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experimental site, the soil moistures were measured for the layers 2.5 - 5cm and 0 - 

5cm, and the mean soil moisture was estimated for each depth of the experimental sites. 

In this study, for each experimental site, the measured soil moisture for the top 5cm soil 

layer is obtained by taking the average soil moistures measured at the layers 2.5 - 5cm 

and 0 - 5cm. The measured soil moistures at these layers are gravimetric. The 

gravimetric soil moisture, G, is defined as follows: 

 

! 

G =
M

w

M
t

          (3.1) 

 

Where Mw is the weight of water, and Mt is the overall weight of the soil. 

The gravimetric soil moistures have to be converted to volumetric soil moistures to be 

compared to the model results. Volumetric soil moistures, !, is defined as follows: 

 

! 

" =
V
w

V
t

           (3.2) 

 

Where Vw is the volume of water, and Vt is total volume of the soil. 

 

The gravimetric soil moistures are converted to volumetric soil moistures by 

multiplying the gravimetric soil moistures by the specific gravity of the soils. The 

specific gravity, SG, is defined as follows: 

 

! 

SG =
"
s

"
w

          (3.3) 

 

Where "s is the density of soil sample, and "w is the density of water. 
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Figure 3.1: Little Washita experimental sites on soil type map of the watershed, the map 

has 200m-grid resolution. 

 

3.2 Results and discussions 

3.2.1 Simulated surface fluxes 

 

The surface fluxes: sensible heat, latent heat, ground heat and net radiation are 

reasonably simulated at LW08 and LW21 experimental sites, as shown in figures 3.2 

and 3.3, respectively. The precise locations at LW08 and LW21, for which the heat 

fluxes were measured, were not reported in the experiment, but we knew coordinates of 

some locations inside LW08 and LW21 experimental sites, and we simulated the heat 

fluxes at these known locations and we compare the simulated heat fluxes to the 

measurements. 

Figures 3.2 and 3.3 show that the simulated latent heat fluxes increase as soil moisture 

increases, resulting on large amount of latent heat flux on July 10, for which there was 

rainfall event. To complete the energy balance, this large amount of latent heat flux has 

to be counterbalanced by sensible heat and ground heat. As shown in Figures 3.2 and 

3.3, the sensible heat and ground heat have counterbalanced the latent heat on July 10. 

From the figures it appears that the model is fairly reproducing the diurnal cycles of 

heat fluxes, with often little differences, and that the simulated and the measured heat 

fluxes have similar trends. The differences between the simulated and the measured heat 
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fluxes is most likely due to the mismatch in locations between the measured and the 

simulated heat fluxes; measured and the simulated heat fluxes most likely are in 

different locations inside the experimental sites. Even though, the differences might be 

smaller if errors in the measurements have to be considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Simulated and measured heat fluxes at LW08 experimental site, for: a) Net 

radiation, b) Sensible heat, c) Latent heat, and d) Ground heat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Simulated and measured heat fluxes at LW21 experimental site, for: a) Net 

radiation, b) Sensible heat, c) Latent heat, and d) Ground heat. 
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3.2.2 Simulated soil temperatures 

Figure 3.4 shows the measured and the simulated soil temperatures at 10cm depth at 

LW02, LW06, LW09, LW12, and LW14 experimental sites. Again, the precise 

locations of the measured temperatures at each experimental site were not reported in 

the experiment, but locations of some points inside each experimental site are known, 

and the soil temperatures are simulated at these known locations, and the simulated soil 

temperatures are compared to the measurements.  

Although the measured soil temperature time series are short, the model is reasonably 

reproducing the soil temperatures measurements; at least the mean soil temperatures, at 

all the experimental sites. This indicates that the GEOtop model is capable of simulating 

soil temperatures for deep soil layers, and indicates that the GEOtop model is implicitly 

capable of simulating shallow soil temperatures, as shown during the SGP97 (see 

chapter 2). Therefore, the model capability for reproducing heat fluxes and soil 

temperatures is trusted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Simulated and measured soil temperature at 10cm depth at: a) LW02,  

b) LW06, c) LW09, d) LW12, and e) LW14. 
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3.2.3 Simulated soil moistures 

 

At each experimental site in the Little Washita watershed, gravimetric soil moistures 

(see equation 3.1) were measured for two layers: 2.5 - 5cm and 0 - 5cm from the ground 

surface, and the soil moisture was estimated for each layer of the experimental sites. In 

this study, the soil moisture of the top 5cm soil layer is obtained by taking the average 

soil moistures measured for the layers 2.5 - 5cm and 0 - 5cm, and then, the gravimetric 

soil moistures are converted to volumetric soil moistures. 

Although many soil types could be available at each experimental site, only one value 

of soil specific gravity has been assigned for each experimental site. The mean 

measured bulk density of the soil for each experimental site was measured during the 

experiment. As the density of water is assumed to be 1gm/cm
3
, the soil specific gravity 

(see equation 3.3) equals to the soil mean bulk density. The volumetric soil moistures 

(see equation 3.2) are obtained by multiplying the gravimetric soil moistures by the soil 

specific gravity. 

At each experimental site, coordinates of some points are known, and the soil moistures 

are simulated at these known points and named Model_1, Model_2, and Model_3. The 

simulated soil moistures are taken at 2.5cm depth. Then the simulated soil moistures are 

compared to the aggregated measured gravimetric soil moistures at the corresponding 

experimental site after converting the gravimetric soil moistures to volumetric soil 

moistures.  

Figure 3.5 illustrates the simulated and the measured volumetric soil moistures for the 

top 5cm soil layer at LW04, LW05, LW08, LW09, LW11, LW12, LW13, LW21, 

LW22, and LW23 experimental sites. At each experimental site in the Little Washita 

watershed, the measured soil specific gravity that is used in this study is shown in table 

3.1. As shown in figure 3.5, it is evident that the GEOtop model is fairly simulating the 

soil moisture measurements at each experimental site. Although the measured soil 

moistures are the averaged values of soil moistures for the top 5cm soil layer for each 

individual experimental site, the differences between the simulated and the measured 

soil moistures are quite small. Moreover, the soil moisture of the top 5cm soil layer is 

obtained by averaging the soil moisture measurements for the layers 2.5 - 5cm and        

0 - 5cm. 

The model is fairly reproducing the soil moisture measurements at different locations 

across the watershed (Fig. 3.1) and these locations lay on different soil types, landuses, 
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and elevations, implying that the model is capable of simulating soil moistures for the 

whole Little Washita watershed. 

 

Figure 3.5: Simulated and measured volumetric soil moistures for the top 5cm soil layer 

at: a) LW04, b) LW05, c) LW08, d) LW09, e) LW11, f) LW12, g) LW13, h) LW21, i) 

LW22, and j) LW23 
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Table 3.1: Measured soil specific gravity for the Little Washita experimental sites 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.4 Simulated streamflows 

 

Figure 3.6 shows the simulated and measured streamflows during the validation period; 

SGP99, at which there was rainfall event on July 10. Both simulated and measured 

streamflows are printed every 15minutes. The figure also shows the total precipitation 

that falls in the watershed during the validation period. The model is perfectly capturing 

the peakflow. In addition, the model is reasonably simulating the base flows. However, 

the discharge recession curve of the measurements is not well simulated by the model, 

and this can have significant effect on the model performance. For the simulated and 

measured streamflows, the NSE (equation 2.2) is calculated to be 0.231, while the 

calculated normalized bias (equation 2.3) is 0.049. This low value of NSE is mainly due 

to the fact that the model is not well simulating the discharge recession curve of the 

measurements. From the figure it is clear that the simulated water volume is less than 

the measured volume. This means either the measured precipitation that subsequently 

used for the simulations is underestimated or there is pre-storm water has been released 

from reservoirs. The former is not likely to make the difference in water volume since 

the precipitation is measured from dense network. The latter is likely to make the 

Little Washita site 

ID 

Soil specific gravity 

[-] 

LW04 1.41 

LW05 1.42 

LW08 1.17 

LW09 1.19 

LW11 1.15 

LW12 1.19 

LW13 1.2 

LW21 1.19 

LW22 0.95 

LW23 1.16 



3. Model validation using the Southern Great Plains 1999 (SGP99) experiment dataset 

A.I.Bushara 

 

 

35 

difference in water volume since there was storm on July 1. In the watershed there are 

about 42 flow retarding structures (FRSs) used for flood control during precipitation 

storms, and the released water from FRSs lasts some days after the storms (Allen and 

Naney 1991; Tortorelli and Bergman 1985). 

From all the above simulations, it is evident that the GEOtop model is able to reproduce 

the soil moistures that were measured at different locations across the watershed: 

LW04, LW05, LW08, LW09, LW11, LW12, LW13, LW21, LW22, and LW23 

experimental sites (Fig. 3.5). In addition, the model is reasonably simulating the 

sensible heat, latent heat, net radiation and ground heat fluxes at LW08 and LW21 

experimental sites, and is reasonably simulating the temperature measurements for deep 

soil layers at LW02, LW06, LW09, LW12, and LW14 experimental sites.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Simulated and measured streamflows at the watershed outlet, and the 

watershed total rainfall. 

 

3.3 Conclusion 

 

The comprehensive field data collected during the SGP99 in the Little Washita 

watershed (583 km
2
) is used to validate the GEOtop model that was already calibrated 

using the SGP97 dataset (see chapter 2). The model is forced by meteorological forcing 

data from dense network (see Fig. 1.1) and the model runs once at watershed scale 

considering all water and energy balance components. Results show that the model is 
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reasonably validated for energy fluxes (latent heat, sensible heat, ground heat, and net 

radiation), soil temperatures at different locations, volumetric soil moistures at different 

locations, and streamflows at the watershed outlet. Therefore, the model can be used to 

validate ESTAR soil moistures.  
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4 Simulated and ESTAR soil moisture patterns during 

SGPs 

 

Simulated and ESTAR soil moisture patterns obtained during the SGP97 and SGP99 in 

the Little Washita watershed (583 km
2
), Oklahoma, USA, are studied. Do both GEOtop 

and ESTAR give the same patterns? Can the information coming from the two sources 

be combined to obtain better results? Can the biases observed in ESTAR be corrected? 

First we compared the spatial patterns then we calculated their statistics, followed by 

investigating the relationships vegetation, surface roughness, topography, and ESTAR 

soil moisture, and finally investigating the relationships brightness temperatures, soil 

temperatures and soil moistures.  

GEOtop and ESTAR give different spatial patterns. GEOtop spatial patterns showed to 

be more realistic then ESTAR patterns. No well-defined relationships between GEOtop 

simulations and ESTAR hinder the use of combining ESTAR estimates and GEOtop 

simulations to obtain better estimates of soil moistures. 

 

4.1 Simulated and ESTAR soil moisture patterns during SGP97 

4.1.1 Comparison between simulated and ESTAR soil moisture patterns 

 

We compare the spatial soil moisture patterns obtained from GEOtop simulations and 

ESTAR estimates for the days at which we have ESTAR estimates. Figure 4.1 shows 

the comparison between simulated and ESTAR soil moistures for July 1, 2, 3, 11, 12, 

13, 14, and 16, 1997 and for the top 5cm soil layer. For all the days of the comparison, 

there are some differences between GEOtop simulations and ESTAR estimates. For 

relatively dry soil (July 1 - 4), ESTAR estimates and GEOtop simulated soil moistures 

are comparable, but for wet conditions (July 11 - 16), ESTAR soil moistures are higher 

than the simulated soil moistures. The simulated soil moisture maps always look very 

similar to the watershed soil type map (compares Fig. 1.2c and 4.1), while ESTAR 

estimates did not show any similarity to the watershed soil type map. From the 

comparison between GEOtop simulations and ESTAR estimates, ESTAR smoothes soil 

moistures patterns, and this partly due to the low resolution of ESTAR maps; 800m 
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resolution, while GEOtop simulations have been carried out for 200m resolutions. 

Furthermore, ESTAR estimates are also subjected to some errors from inverting 

brightness temperatures to volumetric soil moistures. For all the days of the comparison, 

ESTAR estimates show zero soil moistures, while GEOtop simulations do not show 

zero soil moistures. There should be some residual water content given that the smallest 

soil thickness in the watershed is about 250 mm (see Fig. 1.2b), indicating that GEOtop 

results appear more realistic than ESTAR. 

From the simulated soil moistures and for the entire simulation period (July 1 - August 

30, 1997) and from the soil moisture measurements, the maximum value of the 

volumetric soil moisture content at LW02, LW03, LW13 and LW21 sites does not go 

beyond 0.41. While ESTAR estimates of soil moistures are greater than 0.41 and goes 

up to 0.73 sometimes for some of the locations. Except for peat soil, no soil has 

saturated water content of 0.73. In the watershed there is no peat soil (see Fig. 1.2c). 

Even on July 11, after the heavy rainfall event on July 10, the simulated soil moisture 

maps look very similar to the watershed soil type map. Therefore, it can be concluded 

that the soil type controls the soil moisture variability in the watershed, and there are 

little effects of precipitation distribution as well as the topography. The low effect of 

topography is partly explained by the gentle slope of the Little Washita watershed, 

which is in agreement with Bertoldi (2007). We observe that the control of landuse on 

soil moisture variability is minimal. Our result agrees with Cosh and Brutsaert (1999) 

finding who concluded that the soil type is the main controlling factor of soil moisture 

variability in the Little Washita watershed. On the other hand, Bertoldi (2007) and Mohr 

et al. (2000) concluded that the main controling factor of soil moisture spatial 

distribution in the watershed is the soil type during dry periods and precipitation during 

wet periods. 

 

 

 

 

 

 

Figure continues in the next page 
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Figure 4.1: Volumetric water content of the top 5cm soil layer for July 1, 2, 3, 11, 12, 

13, 14, and 16, 1997, from left to right and from top to bottom, respectively. Each row 

(couple) refers to a different day. (right) estimated using ESTAR remote sensor. (left) 

simulated using GEOtop model.  

 

Figure 4.2 shows the spatial mean, spatial standard deviation (STDEV), and spatial 

coefficient of variation (CV) of soil moisture derived from ESTAR estimates and 

GEOtop simulations for the entire watershed. ESTAR soil moisture values are higher in 

the mean than the GEOtop simulations following a rain event, but this discrepancy 

shrinks as the soil dries. According to ESTAR estimates, the spatial STDEV decreases 

as the soil dries following a rain event, and increases as the soil wets up. On the 

contrary, according to GEOtop simulations, the STDEV remains fairly insensitive to 

changes in soil moisture. For the CV statistic, let us consider only the soil moisture 

fields whose mean values exceed 0.20 to avoid the unrealistically large values caused by 

the very small magnitudes of mean soil moisture. Both ESTAR and GEOtop show that 

the CV increases as the soil dries – this agreement is due to the fact that both have 

captured the decrease in the spatial mean during the dry-down period following a rain 

event. The ESTAR estimates show smaller CV values than the GEOtop results, and this 

can be explained by the higher spatial mean of ESTAR estimates. 
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Figure 4.2 also shows the spatial correlation, root mean square error (RMSE), and bias 

for the relationships between ESTAR and simulated soil moistures for the entire 

watershed. The spatial correlation, RMSE, and bias are obtained after resampling the 

200m-model resolution to 800m resolution, to match ESTAR resolution, using 

JGRASS-GIS (www.jgrass.org) interface. Results show that there is no correlation 

between ESTAR and simulated soil moistures. Both RMSE and bias are relatively small 

during relatively dry period (July 1 - 4), and relatively large during the wet period (July 

11 - 16). During the wet period, and as soil dries, both RMSE and bias decrease and 

both increase again as soil wets up. 

 

 

 

 

Figure 4.2: Left graph shows the mean, standard deviation and CV for the ESTAR and 

simulated soil moistures, and right graph shows the root mean square error, bias and 

coefficient of determination of water content [-] for the relationships between ESTAR 

estimates and GEOtop simulations for the entire watershed and for the top 5cm soil 

layer. 
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In order to investigate the differences between the simulated and ESTAR soil moistures, 

the statistical properties (e.g., mean, STDEV, and CV) of sandy loam (soil type 13 - 

hydraulic conductivity = 2.00 - 6.30 mm/s), silt loam (soil type 8 - hydraulic 

conductivity = 0.63 - 2.00 mm/s), sandy loam (soil type 6 - hydraulic conductivity = 

0.63 – 2.00 mm/s) and loam soil (soil type 7 - hydraulic conductivity = 0.63 – 2.00 

mm/s) are characterized. As the soil type is the main controlling factor of the soil 

moisture distribution in the watershed, and to avoid the smoothness of soil moisture 

statistical properties resulting from averaging the watershed statistical properties, the 

statistical properties for the all above-mentioned soil types are characterized. These soil 

types are dominant in the watershed and represent 19.8%, 25%, 7%, and 10% of the 

watershed coverage, respectively. Here only the statistical properties of silt loam (soil 

type 8 - hydraulic conductivity = 0.63 - 2.00 mm/s) and sandy loam (soil type 13 - 

hydraulic conductivity = 2.00 - 6.30 mm/s) are shown (Fig. 4.3). As shown in figure 4.4, 

sandy loam lies along the main river and in the central north part of the watershed, 

while silt loam lies in the northeast and northwest parts. 

 

Figure 4.3 presents the spatial mean, spatial STDEV, and spatial CV of soil moisture 

derived from ESTAR estimates and GEOtop simulations, over the sandy loam and silt 

loam parts of the watershed. With regard to the spatial mean, ESTAR estimates are 

higher than the corresponding GEOtop simulations, and the discrepancy gets smaller at 

lower moisture contents, for both soil types. With regard to the spatial STDEV, ESTAR 

estimates give higher values than GEOtop simulations, for both soil types. For the sandy 

loam soil, ESTAR estimates indicate that the STDEV decreases as the soil dries down, 

while the contrary is shown by the GEOtop simulations. For the silt loam soil, ESTAR 

estimates indicate that the STDEV decreases as the soil dries down, while GEOtop 

simulations do not indicate a monotonic pattern of STDEV during dry-down. With 

regard to CV, ESTAR estimates are often higher than the GEOtop simulations. 
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Figure 4.3: Statistical moments of simulated and ESTAR soil moisture time series, for 

the sandy loam (left) and silt loam (right) soils, and for the top 5cm soil layer. Figures 

a), b) and c) show the mean soil moisture, soil moisture STDEV, and soil moisture CV 

for sandy loam soil, respectively, while figures d), e), and f) show the mean soil 

moisture, soil moisture STDEV and soil moisture CV for silt loam soil, respectively. 

 

 

 

Figure 4.4: Sandy loam (left) and silt loam (right) soils superimposed on the watershed 

DEM. 

Sandy loam Silt loam 
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4.1.2 The relationships vegetation, surface roughness, topography, and ESTAR 

soil moisture 

 

To further investigate the differences between the GEOtop simulations and ESTAR soil 

moistures, we compare the mean soil moisture content obtained from GEOtop 

simulations and ESTAR estimates for bare soil in a fixed soil type. This is performed to 

investigate whether the ESTAR measures the soil moisture of vegetation or soil 

moisture of the soil. In a bare soil, both GEOtop simulations and ESTAR estimates are 

expected to have the same mean water content if the differences between ESTAR 

estimates and GEOtop simulations are mainly due to the presence of vegetation. For 

both GEOtop simulations and ESTAR estimates, we find that the mean soil moisture 

content for bare soil is similar to the mean soil moisture content of the same soil type 

under different landuse types, as shown in figures 4.5, and 4.6. This excludes that the 

differences between ESTAR estimates and GEOtop simulations are not mainly due to 

the presence of vegetation. 

To investigate where and when the ESTAR and the GEOtop give similar spatial soil 

moisture patterns, the effect of surface roughness on ESTAR soil moisture is 

investigated for channel network pixels as well as for non-channel pixels in a fixed soil 

type. For each soil type, the mean soil moisture contents for pixels only inside channel 

networks and for pixels only outside channel network are computed. Results show that 

for both GEOtop simulations and ESTAR estimates, the mean soil moisture content, for 

a particular soil type, for only channel network pixels is similar to the mean soil 

moisture content for the same soil type considering only non-channel network pixels 

(Fig. 4.5). This excludes that the differences between ESTAR estimates and GEOtop 

simulations are not mainly due to differences in surface roughness. 

To further investigate where and when the ESTAR and the GEOtop give similar spatial 

soil moisture patterns, the effect of topography on ESTAR soil moisture is investigated 

for only concave pixels and for only convex pixels in a fixed soil type. For each soil 

type, the mean soil moisture contents for only concave pixels and for only convex pixels 

are computed. For both GEOtop simulations and ESTAR estimates, the mean soil 

moisture contents, for a certain soil type, for only concave pixels is similar to the mean 

soil moisture content for the same soil type considering only convex pixels (Figs. 4.5 

and 4.6). This excludes that the differences between ESTAR estimates and GEOtop 

simulations are not mainly due to topography effects. 
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Figure 4.5: Simulated and ESTAR soil moisture content time series for the top 5cm soil 

layer for: a) Soil moisture content for all pixels of silt loam soil, b) Soil moisture 

content for silt loam in only bare soil, c) Soil moisture content for silt loam in only 

concave pixels, d) Soil moisture content for silt loam in only convex pixels, e) Soil 

moisture content of silt loam only in non-channel network pixels, and f) Soil moisture 

content for silt loam in only channel network pixels.  
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Figure 4.6: Simulated and ESTAR soil moisture content time series for the top 5cm soil 

layer for: a) Soil moisture content for all pixels of sandy loam soil, b) Soil moisture 

content for sandy loam in only bare soil, c) Soil moisture content for sandy loam in only 

concave pixels, d) Soil moisture content for sandy loam in only convex pixels, and e) 

Soil moisture content of sandy loam in only non-channel network pixels. There are no 

pixels of ESTAR estimates for only channel network. ESTAR resolution is 800m, while 

GEOtop simulations have 200m-grid resolution. 
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As there are little effects of vegetation, surface roughness, and topography on ESTAR 

soil moistures, we hypothesized that ESTAR soil moistures are influenced by surface 

runoff and vegetation-intercepted water. Furthermore, we hypothesize that ESTAR is 

influenced by surface water from irrigation. This hypothesis is supported by the 

observation that ESTAR estimated exceedingly high values of soil moistures along the 

channel network. Figure 4.2 shows that for the wet period (July 11 - 16) the minimum 

difference (RMSE and bias) between ESTAR and simulated soil moistures is on July 

14. On this day, which has the minimum surface runoff depth (Fig. 4.7), ESTAR 

estimates and GEOtop simulations are more comparable than any other day in the wet 

period. In the dry period (July 1 - 4), ESTAR estimates and GEOtop simulations 

somehow show comparable soil moisture patterns and show low values of RMSE and 

bias, as shown in figure 4.2. Figure 4.7 shows the simulated surface runoff depth maps 

for July 11, 12, 13, 14, and 16, while figure 4.8 shows the simulated intercepted water 

on vegetation leaves on July 11 and 16. The intercepted water map on July 11 is very 

similar to the watershed landuse map (Fig. 1.2d). There is no intercepted water on July 

12, 13 and 14, since there were no rainfall events on these days. 

In the dry period there is no runoff, only streams flows, and the maximum difference 

(bias) in water content between ESTAR estimates and GEOtop simulations is about 

0.05, as shown in figure 4.2. Figure 4.2 shows that on July 11, the difference is large, 

and the difference decreases as soil dries. The difference increases again on July 16 

following the rainfall event on July 15. Along the channels, ESTAR shows soil moisture 

values higher than porosity, and the more higher when more wetter is the period.  

Comparing ESTAR soil moisture maps in the wet period with the corresponding surface 

runoff depth maps, it is evident that the estimated ESTAR soil moistures are higher than 

the GEOtop simulations when the surface runoff depths and surface runoff coverage are 

high, and the difference between ESTAR estimates and GEOtop simulations decreases 

as the surface runoff depths and surface runoff coverage decrease. 

Similarly, comparing ESTAR soil moisture maps in the wet period with the 

corresponding intercepted water maps, it is evident that the estimated ESTAR soil 

moistures are higher than the GEOtop simulations when the intercepted water depths 

and coverage are high, and the difference between ESTAR estimates and GEOtop 

simulations decreases as the vegetation-intercepted water and converge decrease. One 

possible explanation of this is that ESTAR is influenced by vegetation-intercepted water 
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(Bushara et al. 2010). Furthermore, it is likely that ESTAR is influenced by dew on 

vegetation leaves. 

The surface runoff in the watershed decreases from July 11 to 14, consequently, the 

areas with high soil moistures detected by ESTAR are decreased. The runoff depths and 

runoff converge increase again on July 16, resulting on high ESTAR soil moistures in 

large areas in the watershed. The intercepted water on July 16 (Fig. 4.8) has little effect 

on ESTAR estimated soil moistures. The little effect of intercepted water on ESTAR 

soil moisture on July 16 is due to the small depths and coverage of the vegetation-

intercepted water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Simulated surface runoff depth (mm) on July 11, 12, 13, 14, and 16, 1997, 

from left to right and from top to bottom, respectively. 
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Figure 4.8: Simulated intercepted water on vegetation leaves (mm), on July 11, 1997 

(left), and July 16, 1997 (right). 

 

 

4.1.3 The relationships brightness temperatures, soil temperatures and soil 

moistures 

 

In this section we investigated the possibility of using soil moistures and soil 

temperatures for the top 5cm soil layer derived from GEOtop simulations to produce 

bias-adjusted ESTAR soil moistures.  

Figure 4.9 shows the scatter plot of simulated and ESTAR soil moistures for the days at 

which we have ESTAR measurements fitted with linear models. It is evident that the 

correlations between simulated and ESTAR soil moistures are very low. Nevertheless, 

from visual inspection, it appears that there is a better correlation between simulated and 

ESTAR soil moisture in the wet period (July 11-16) than in the dry period.  

Figure 4.10 shows the relationship between the soil moisture derived from GEOtop 

simulations versus the measured brightness temperature for the whole watershed for 

different days during the experiment. Jackson et al. (1999) derived an algorithm to 

estimate soil moistures based on the relationship between the measured volumetric soil 

moistures and the measured brightness temperatures. In this study, the dry period (July 

1 - 4) it evident that there is no defined relationship between the soil moistures derived 

from GEOtop simulations and the brightness temperatures. The wet period (July 11 - 

14) it appears there is a relationship between the soil moistures derived from GEOtop 

simulations and the measured brightness temperatures. However, this relationship is 

weak (correlation coefficient in the wet period varies from 0.22 to 0.4). However, If few 

datapoints were used, as used by Jackson et al. (1999), the correlation between the soil 

moistures derived from GEOtop simulations and the brightness temperatures is expected 
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to be very strong. Even in bare soil, in order to eliminate the possible effects of 

vegetation on the brightness temperatures, there is weak correlation between the soil 

moistures derived from GEOtop simulations and the measured brightness temperatures 

(Fig. 4.11), the highest correlation coefficient is 0.5 on July 11. This indicates that the 

differences between the soil moistures derived from GEOtop simulations and ESTAR 

estimates are not mainly due to the presence of vegetation. This confirms our previous 

findings (see section 4.1.2) stating that effects of vegetation on ESTAR soil moistures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Simulated soil moisture versus ESTAR soil moisture for the whole 

watershed and for the days at which we have ESTAR estimates. 

 

 



4. Simulated and ESTAR soil moisture patterns during SGPs 

A.I.Bushara 

 

 

51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Simulated soil moisture [-] versus the measured brightness temperature [K] 

for the whole watershed. 
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Figure 4.11: Simulated soil moisture [-] versus the measured brightness temperature [K] 

in bare soil. 
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Jackson et al. (1999) derived an algorithm for the relationship between the measured 

brightness temperature and the observed volumetric soil moistures. However, they 

validated the algorithm for the observed soil moistures only in the range of (0 – 0.4). 

The algorithm was used to estimate ESTAR soil moistures, based on a relationship 

between the volumetric soil moisture and the brightness temperature, and ESTAR soil 

moistures higher than 0.4 were obtained by extrapolation. In order to avoid any 

uncertainties in ESTAR soil moistures caused by the extrapolation, we compare the 

ESTAR soil moistures that in the range of (0 – 0.4) with the corresponding soil 

moistures derived from GEOtop simulations (Fig. 4.12). Even in the wet period, where 

it appears there is defined relationship between the simulated soil moisture and the 

measured brightness temperature, there is weak relationship between ESTAR soil 

moisture and soil moisture derived from GEOtop simulations. The highest correlation 

coefficient is 0.39 on July 11. This excludes that the differences between the ESTAR 

soil moistures and the soil moistures derived from GEOtop simulations are not mainly 

due to the algorithm extrapolation problem. 

Figure 4.13 shows the relationship between the simulated soil temperature for the top 

5cm soil layer and the corresponding measured brightness temperature. It is evident that 

there is weak correlation between the simulated soil temperature and the brightness 

temperature. Furthermore, the simulated soil temperature is higher than the estimated 

brightness temperature, and that most of brightness temperature values are less than 

absolute zero 
0
C (273.15 

0
K). The simulated soil temperature varies in a short range 

compared to the measured brightness temperature. High values of simulated soil 

temperatures compared to the measured brightness temperatures resulted in low values 

of emissivities, since the emissivity, !, is calculated using the following equation: 

 

! 

" =
T
B

T
           (4.1) 

 

Where TB is the measured brightness temperature, and T is the simulated soil 

temperature. 

During the SGP97, the brightness temperatures were measured for the whole watershed 

and the brightness temperatures are inverted to volumetric water content. For more 

details about the brightness temperatures please see LeVine et al. (1994), Jackson et al. 

(1995), Jackson and LeVine (1996), and Jackson et al. (1999). 
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Figure 4.12: Simulated soil moisture [-] versus ESTAR soil moistures [-] that are lower 

than 0.4. 
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In order to investigate the effect of vegetation on brightness temperature, we compare 

the simulated soil temperature for the top 5cm soil layer with the brightness temperature 

in only bare soil (Fig. 4.14). Results show that the brightness temperature is lower than 

the simulated soil temperature, and that the simulated soil temperature varies in a short 

range compared to the brightness temperature. It appears there is upward quadratic 

relationship between the simulated soil temperature and the measured brightness 

temperature. The brightness temperature decreases as the simulated soil temperature 

increases, up to the minima, and increases again as the simulated soil temperature 

increases. Weak correlation between the simulated soil temperature and the brightness 

temperature in only bare soil; the highest correlation is 0.39 on July 14, indicates that 

the weak correlation is not mainly due to the presence of vegetation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Simulated soil temperature [K] versus brightness temperature [K] for the 

whole watershed. 
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Figure 4.14: Simulated soil temperature [K] versus brightness temperature [K] in bare 

soil. 
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The low values of measured brightness temperatures compared to the simulated soil 

temperatures resulted in low values of emissivities (Figs. 4.15 and 4.16). Figure 4.15 

shows the 5
th

, 50
th

, and 95
th

 quantiles of the calculated emissivities, while the spatial 

emissivities for each day during the SGP97 experiment is shown in figure 4.16. The 

emissivities are calculated using equation 4.1. The calculated emissivities are lower than 

the values reported in the literature, for example see Dingman (1994). Even though, the 

emissivities in the dry period (July 1 - 4) are higher than in the wet period (July 11 - 16). 

This also supports our hypothesis stating that ESTAR soil moistures are influenced by 

surface runoff and interception. 

From all above, we suspect that the brightness temperature and subsequently the 

algorithm used for deriving ESTAR soil moistures are not accurate, since the brightness 

temperature is highly dependent on the type of the model used for computing the 

brightness temperatures. For instance, Schmugge and Choudhury (1981) show that the 

brightness temperature varies significantly depending on the type of the model used for 

computing the brightness temperature, and on the wave frequency of the aircraft or 

satellite sensor used to measure the brightness temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Soil emissivity for the 5
th

, 50
th

 and 95
th

 quantiles for the whole watershed, 

as derived from equation 4.1. 
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Figure 4.16: Spatial surface emissivity for July 1, 2, 3, 11, 12, 13, 14, and 16, from left 

to right, and from top to bottom, respectively. 
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4.2 Simulated and ESTAR soil moisture patterns during SGP99 

4.2.1 Comparison between simulated and ESTAR soil moisture patterns 

 

Figure 4.17 shows the spatial soil moisture patterns for ESTAR estimates and GEOtop 

simulations for July 8, 14, and 20, 1999, and for the top 5cm soil layer. The ESTAR soil 

moisture maps are downloaded from NASA website (Verified August 2009): 

(http://daac.gsfc.nasa.gov/fieldexp/SGP99/estar_sm.shtml). We observe that the 

simulated soil moisture patterns are different from the ESTAR soil moisture patterns. 

Again, the simulated soil moisture maps always look very similar to the watershed soil 

type map, confirming the previous result of the SGP97, which concludes that the soil 

type is the main controlling factor of the soil moisture distribution in the Little Washita 

watershed. While ESTAR spatial soil moisture patterns are very smoothed and are 

different from the watershed soil type map. For all the days of the comparison, ESTAR 

soil moisture maps are drier than the corresponding simulated soil moisture maps. 

GEOtop simulations show small number of small scattered portions with high soil 

moistures; effect of river network and concave pixels, while ESTAR estimates do not 

show any pixels with high soil moistures. 

Comparing soil moistures for ESTAR estimates and GEOtop simulations during the 

SGP99, ESTAR estimates show very low soil moistures range compared to the GEOtop 

simulations, and this most likely ESTAR underestimates the soil moistures. It is evident 

that ESTAR estimates do not consider the effect of the river network and concave zones 

at which the soil is saturated or have high soil moisture levels.  

Comparing the spatial soil moistures during the SGP97 with the spatial soil moistures 

during the SGP99, both ESTAR estimates and GEOtop simulations show that spatial 

soil moistures during the SGP99 are much drier than that during the SGP97. A 

noticeable difference in soil moistures between SGP97 and SGP99 is that, generally, 

during the SGP97, ESTAR overestimates soil moistures with respect to the GEOtop 

simulations, while during the SGP99, ESTAR underestimates soil moistures with 

respect to the GEOtop simulations. Another noticeable difference is that during the 

SGP97 always there are some locations with zero soil moistures for ESTAR estimates. 

As there are many locations with zero soil moistures during the SGP97, and as the soil 

is much drier during the SGP99, more locations with zero soil moistures for ESTAR 

estimates are expected during the SGP99; however, that is not the case. This shows 
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inconsistency in ESTAR estimates, and suggests that ESTAR during the SGP97 and the 

SGP99 are computed slightly in different ways. 

The mean differences in spatial soil water content between ESTAR estimates and 

GEOtop simulation shown in figure 4.17, are computed quantitatively in terms of 

RMSE and bias, and are shown in figure 4.18. The differences decrease on July 14 and 

15, following the rainfall event on July 10, and then increase again as soil dries. The 

RMSE and bias are relatively low; simulated and ESTAR soil moisture maps are 

somehow comparable, especially on July 14 and 15. Although both RMSE and bias are 

small, ESTAR soil moisture patterns are different from the simulated patterns. This 

means having low values of RMSE and bias do not necessarily having the actual soil 

moisture patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Volumetric water content of the top 5cm soil for July 8, 14, and 20, 1999, 

from left to right and from top to bottom, respectively. Each row (couple) refers to a 

different day. (right) estimated using ESTAR [800m resolution]. (left) simulated using 

GEOtop model [200m resolution].  
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Figure 4.18: a) Root mean square error of water content [-] between ESTAR estimates 

and simulated soil moisture, and b) Bias between ESTAR estimates and simulated soil 

moisture for the whole watershed. 

 

 

4.2.2 The relationships vegetation, surface roughness, topography, and ESTAR 

soil moisture  

 

The effect of vegetation on ESTAR soil moistures is investigated by comparing the 

mean soil moisture content for only bare soil in a fixed soil type, with the mean soil 

moisture content for all the landuse classes in the same soil type. The effect of surface 

roughness on ESTAR soil moistures is investigated by comparing the mean soil 

moisture content for only channel network pixels in a fixed soil type, with the mean of 

soil moisture content for only non-channel network pixels in the same soil type. While 

the effect of topography on ESTAR soil moistures is investigated by comparing the 

mean soil moisture content for only concave pixels in a fixed soil type, with the mean 

soil moisture content for only convex pixels in the same soil type. 

In this chapter, we investigated the effect of vegetation, surface roughness, and 

topography on ESTAR soil moistures for silt loam (soil type 8 - hydraulic conductivity 

= 0.63 - 2.00 mm/s), and sandy loam (soil type 13 - hydraulic conductivity = 2.00- 6.30 

mm/s), as shown in figures 4.19 and 4.20, respectively. 
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Results show that for both soil types there are insignificant effects of vegetation on 

ESTAR soil moistures; mean soil moisture content for only bare soil in a fixed soil type 

is similar to the mean soil moisture content of all landuse classes in the same soil type. 

Similarly, for both soil types, there are insignificant effects of surface roughness on 

ESTAR soil moistures; mean soil moisture content for only channel network pixels in a 

fixed soil type is similar to the mean soil moisture content for the only non-channel 

network pixels in the same soil type. Finally, for both soil types, there are insignificant 

effects of topography on ESTAR soil moistures; the mean soil moisture content for only 

concave pixels in a fixed soil type similar to the mean soil moisture content for the only 

convex pixels in the same soil type. These results confirm the previous results that were 

obtained during the SGP97; there are insignificant effects of vegetation except of 

interception, surface roughness, and topography on ESTAR soil moistures. 

From figures 4.19 and 4.20, it is evident that ESTAR underestimates soil moistures with 

respect to the simulated soil moistures, and the differences between the ESTAR 

estimates and the GEOtop simulations decrease for July 14 and 15, 1999, following the 

rainfall event on July 10, and as soil dries, the differences increase again. At a certain 

wetness conditions in the watershed, the differences between the ESTAR estimates and 

GEOtop simulations are minimal. In spite of that, ESTAR estimates and GEOtop 

simulations are comparable to a large extent. 

Crosson et al. (2005) studied parameter sensitivity of soil moisture retrievals from 

airborne L-Band radiometer measurements (ESTAR) during the SMEX02 experiment, 

and they reported that the uncertainties in ESTAR soil moisture estimates are related to 

surface roughness and absorption, scattering, and emission by vegetation. In addition to 

that, Crosson et al. (2005) and Ulaby et al. (1983) reported that microwave brightness 

temperature is strongly depends on temperature depth profile of the soil.  

Crosson et al. (2005) showed that volumetric soil moisture content increases 

monotonically with the increase of surface roughness, and that the volumetric soil 

moisture versus surface roughness relationship is very sensitive for wet soils than for 

dry soils. They showed that this relationship depends on polarization approach to a large 

extent. Moreover, they observed that the effects of surface roughness and vegetation on 

brightness temperature are higher for wet soils than for dry soils.  

On the other hand, Drusch et al. (2001) studied the dependency of surface emissivity on 

atmospheric and vegetation effects, and they reported that the variability in integrated 

atmospheric water vapour introduces variations of about 0.023 in surface emissivity. 
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This value is !~36% of the variability caused by changes in soil moisture. They 

concluded that atmospheric corrections should generally improve the soil moisture 

retrieval from passive microwave remote sensing. 

So, at least in this case (SGP99), where there are insignificant effects of vegetation, 

surface roughness, and topography on ESTAR soil moistures, the differences between 

GEOtop simulations and ESTAR estimates is more likely due to the effects of 

temperature depth profile of the soil, atmospheric effects, and other errors (such as 

errors in the algorithm used for inverting brightness temperatures to volumetric soil 

moistures) that are not accounted for. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19: Simulated and ESTAR soil moisture time series for the top 5cm soil layer 

for: a) Soil moisture content for all pixels of silt loam soil, b) Soil moisture content for 

silt loam soil in only bare soil, c) Soil moisture content for silt loam soil in only concave 

pixels, d) Soil moisture content for silt loam soil in only convex pixels, e) Soil moisture 

content of silt loam soil in only non-channel network pixels, and f) Soil moisture 

content for silt loam soil in only channel network pixels. 
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Figure 4.20: Simulated and ESTAR soil moisture series for the top 5 cm soil layer for: 

a) Soil moisture content for all pixels of sandy loam soil, b) Soil moisture content for 

sandy loam soil in only bare soil, c) Soil moisture content for sandy loam soil in only 

concave pixels, d) Soil moisture content for sandy loam soil in only convex pixels, and 

e) Soil moisture content of sandy loam soil in only non-channel network pixels. There 

are no pixels of ESTAR estimates for only channel network. 

 

 

4.3 Conclusion 

 

Simulated and ESTAR soil moisture patterns obtained during the SGP97 and SGP99 in 

the Little Washita watershed (583 km
2
), Oklahoma, USA, are studied. Results show that 

ESTAR estimates and simulated soil moistures are comparable when the watershed is 
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relatively dry, but they are very different when the watershed is wet. The RMSEs  and 

biases for the relationships between the simulated and ESTAR soil moistures are very 

small during dry periods. We find that obtaining small value of RMS it doesn’t mean 

necessarily obtaining the actual soil moisture patterns. Modeling results show that soil 

texture controls the spatial soil moisture distribution in the watershed. This is consistent 

with the findings of Cosh and Brutsaert (1999) who concluded that soil texture is the 

main factor controlling the spatial distribution of soil moisture in the Little Washita 

watershed. In addition, we investigated the effect of vegetation, surface roughness, and 

topography on ESTAR soil moistures, and it found that vegetation except intercepted 

water, surface roughness, and topography have little effects on ESTAR soil moistures 

(Bushara et al. 2010). Possible explanation for the discrepancy between simulated and 

ESTAR soil moistures is that ESTAR is highly influenced by surface runoff, and by 

vegetation-intercepted water to some extent. Furthermore, we used simulated soil 

moistures and soil temperatures to produce bias-adjusted ESTAR soil moisture maps. 

However, we are not able to produce such maps because there is no well-defined 

relationship between the GEOtop simulated soil moisture and the ESTAR measured 

brightness temperature or between the GEOtop simulated soil temperature and the 

brightness temperature as given by ESTAR. The calculated emissivities, based on 

simulated soil temperature and measured brightness temperature, are much lower than 

the values reported in the literature. Therefore, we conclude that there is a problem with 

the algorithm that is used for inverting the brightness temperatures to volumetric soil 

moistures. 
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5 Characterization of space-time soil moisture variability 

during SGPs 

This chapter focuses on characterization of space-time soil moisture variability from 

two sources of data: ESTAR passive microwave radiometer and GEOtop simulations, 

and using SGP97 and SGP99 datasets. This study is important because to our 

knowledge no study has done comparative study of soil moisture variability from 

aircraft-based microwave observation and distributed model simulations. Do both 

methods perform similarly? Or which one performs better?. First, we compared 

distributions, followed by moments, then scaling, and finally spatial statistics, including 

covariances. The relationships between the STDEV, CV, skewness and kurtosis versus 

spatial mean soil moisture are identified. Further, the scaling characteristics of soil 

moisture are studied. The last section is dedicated to the re-thinking of the soil moisture 

assessment in SGP experiments.  

 

5.1 Statistical characterization of soil moisture 

5.1.1 Soil moisture frequency distributions  

 

Figures 5.1 and 5.2 present the frequency distribution of soil moisture, during the 

SGP97 and SGP99, respectively, derived from ESTAR estimates and GEOtop 

simulations, over the sandy loam and silt loam parts of the watershed.  

During the SGP97 (Fig. 5.1), ESTAR estimates cover a larger range of soil moisture 

values than GEOtop simulations. ESTAR estimates have unimodal, bell-shaped 

distributions that can be approximated by normal distribution. On the contrary, GEOtop 

simulations show negative skewness at high wetness levels and as soil dries, the 

distributions change to positive skewness. The evolution of soil moisture from negative 

skewness to positive skewness suggests that the soil moisture distribution could be well 

represented by beta distribution. As soil dries, GEOtop simulations show that silt loam 
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soil has bimodal distribution, while sandy loam dries gradually and have a negative 

skewness. The gradual drying of soil moistures of the sandy loam soil and the 

bimodality distribution of the silt loam soil indicate the effect of the river network on 

the spatial distribution of soil moisture. This is due to the fact that sandy loam soil lies 

along the river network, while the silt loam soil lies in the northeast (along the river 

network; relatively high soil moistures) and in the northwest (upper part of the 

watershed; relatively low soil moistures) (see Fig. 4.4). This effect of the river network 

on the soil moisture distribution is not reported by ESTAR estimates. On July 11 and for 

the sandy loam soil, GEOtop simulations show that most of pixels have the same high 

soil moisture level. This is because the sandy loam soil lies along the river network (see 

Fig. 4.4) and the watershed was saturated. 

During the SGP99 (Fig. 5.2) ESTAR underestimates soil moistures with respect to the 

GEOtop simulations. For both soil types, ESTAR estimates show that soil moistures can 

be approximated by normal distribution, while GEOtop simulations show that soil 

moistures are positively skewed; most of pixels have low and the same soil moisture 

values with few pixels with varying soil moisture levels (soil moisture varies from 

minimum soil moisture to the saturation). Except for July 8 and 9, and for both soil 

types, GEOtop simulations show that most of pixels have the same low soil moisture 

level. Since the watershed is dry during the SGP99, this behaviour of GEOtop, i.e., most 

of pixels have the same low soil moisture level, is not attributed to the saturation 

conditions in the watershed. This is likely that the watershed is at wilting point. For both 

soil types, the low soil moisture levels shown by GEOtop simulations are not the 

residual water contents of the soils since in the GEOtop simulations the residual water 

contents of the top 5cm soil layer are taken to be 0.03 and 0.09 for sandy loam and silt 

loam, respectively. 

As discussed earlier, and for both soil types, there are some pixels lay on the river 

network with high levels of soil moistures. Further, as there is streamflow at the 

watershed outlet, there should be some pixels at saturation. GEOtop simulations show 

that there are some pixels at saturation, while ESTAR estimates do not show any pixels 
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at saturation. This indicates that GEOtop simulations are more accurate than ESTAR 

estimates. 

 

Figure 5.1: Simulated and ESTAR soil moisture frequency distributions for the top 5cm 

soil layer for both sandy loam and silt loam soils. Sandy loam (left) and silt loam (right) 

for July 11, 12, 13, and 14, 1997. On July 11 and for the sandy loam soil, model 

simulations show that most of pixels have the same high soil moisture level. This is 

because the sandy loam soil lies along the river network (see Fig. 4.4) and the watershed 

was saturated. 
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Figure 5.2: Simulated and ESTAR soil moisture frequency distributions for the top 5cm 

soil layer for both sandy loam and silt loam soils. Sandy loam (left), and silt loam (right) 

for July 8, 9, 14, 15, 19, and 20, 1999.  
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5.1.2 Standard deviation, coefficient of variation, and skewness  

 

In this section, we characterize soil moisture variability for the two main soil textures in 

the watershed: sandy loam (soil type 13 - hydraulic conductivity = 2.00 - 6.30 mm/s) 

and silt loam (soil type 8 - hydraulic conductivity = 0.63 - 2.00 mm/s), which represent 

19.8% and 25% of the watershed coverage, respectively. As shown in figure 4.4, sandy 

loam lies along the main river and in the central north part of the watershed, while silt 

loam lies in the northeast and northwest parts. 

Figures 5.3 and 5.4 present the spatial STDEV, CV and skewness of near-surface soil 

moisture as a function of the spatial mean, during the SGP97 and SGP99, respectively, 

derived from ESTAR estimates and GEOtop simulations for both soil types.  

During the SGP97 (Fig. 5.3) ESTAR estimates show linear relationship between 

STDEV and mean, with STDEV increasing with increasing mean wetness, for both soil 

types. On the contrary, GEOtop simulations show a downward quadratic relationship 

between the STDEV and mean, where the STDEV is low at low and high ends of mean 

wetness and takes maximum values at moderate mean wetness levels, for both soil 

types. We fit the relationship between the standard deviation and spatial mean of soil 

moisture with second order polynomial, while Pan and Peters-Lidard (2010) fit this 

relationship with third order polynomial. In both approaches (our approach and Pan and 

Peters-Lidard approach) the relationship between the standard deviation and the spatial 

mean is assumed to have downward relationship. Pan and Peters-Lidard assume that the 

maximum point of the curve is at the field capacity, and the low ends of the curve are 

for the saturation and wilting point of the soil. Their main assumption to derive the 

relationship between the standard deviation and the spatial mean is that most of 

observed soil moistures are between the states of saturation and wilting point. In our 

approach we find that at saturation condition the standard deviation is equal zero. 

Likewise, we find that for dry conditions, when all plants at wilting point, the standard 

deviation is also equal zero. Similar to the Pan and Peters-Lidard approach we also 

assume that the maximum point of the curve is at the field capacity. Knowing the 

boundary conditions at the two low ends and the maxima of the curve allow us to fit the 

relationship between the standard deviation and the spatial mean with second order 

polynomial. 

 



Hydrological simulations at basin scale using distributed model and remote sensing 

A.I.Bushara 

 

72 

ESTAR estimates also show a linear relationship between the spatial CV and spatial 

mean, with CV decreasing with increasing wetness, for both soil types. On the contrary, 

GEOtop simulations show downward quadratic relationship between CV and mean, for 

both soil types. ESTAR estimates show zero skewness for the spatial frequency 

distribution of near-surface soil moisture regardless of the mean wetness level, while 

GEOtop simulations show positive skewness for dry soils, zero skewness for moderate 

wet soils, and negative skewness for very wet soils, for both soil types. 

 

Figure 5.3: STDEV, CV, and skewness versus mean soil moisture for the top 5cm soil 

layer during the SGP97, for sandy loam soil (left) and silt loam soil (right). 
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The relationships between the spatial STDEV, CV and skewness of near-surface soil 

moisture as a function of the spatial mean during the SGP99 (Fig. 5.4) are very similar 

to the same relationships obtained during the SGP97. Because the watershed is dry, i.e. 

short range of soil moisture dynamics during the SGP99, the STDEV and CV versus the 

spatial mean of soil moisture derived from GEOtop simulations did not show downward 

quadratic relationships, but they tend to show downward quadratic relationships. 

Furthermore, because the watershed is dry, the soil moistures derived from GEOtop 

simulations have positive skewness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: STDEV, CV, and skewness versus mean soil moisture for the top 5cm soil 

layer during the SGP99, for sandy loam soil (left) and silt loam soil (right). The 

skewness in the main ordinate is for the soil moisture derived from GEOtop simulations, 

while the skewness in the secondary ordinate is for the soil moisture derived from 

ESTAR estimates. 
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5.1.3 Kurtosis of soil moisture 

 

As known, kurtosis describes the flatness or peakedness of a distribution relative to the 

normal distribution. Kurtosis equals 3 for normal distribution. Kurtosis is greater than 3 

for distributions that are steeper than the normal distribution. It is smaller than 3 for 

flatter distributions. 

Figures 5.5 and 5.6 present kurtosis of near-surface soil moisture as a function of the 

spatial mean, during the SGP97 and SGP99, respectively, derived from ESTAR 

estimates and GEOtop simulations, for both soil types. 

During the SGP97 (Fig. 5.5), and for both soil types, ESTAR estimates show that soil 

moisture distribution can be well approximated by normal distribution (kurtosis around 

3, although for silt loam soil the distribution is slightly flatter than the normal 

distribution), while GEOtop simulations show that only midrange soil moistures can be 

approximated by normal distribution. GEOtop simulations show that low soil moistures 

have distributions flatter than the normal distribution (kurtosis less than 3), and high soil 

moistures have distributions steeper than the normal distribution (kurtosis greater than 

3), for both soil types. 

During the SGP99 (Fig. 5.6), and for both soils, ESTAR estimates show that soil 

moistures have distributions flatter than the normal distribution, while GEOtop 

simulations show that soil moistures have distributions steeper than the normal 

distribution. Because the watershed was dry during the SGP99, GEOtop simulations 

show that soil moistures have distributions steeper than the normal distribution. On the 

contrary, during the SGP97, GEOtop simulations show that dry soils have distributions 

flatter than the normal distribution. This contradiction in soil moisture distribution for 

dry soils is most likely due to the differences in soil moisture dynamics mechanisms. 

During the SGP99, majority of pixels in the watershed have low soil moistures, while 

during the SGP97, the soil dries gradually after the saturation following the heavy 

rainfall event on July 10, 1997. We have to mention that during the SGP97, there was 

heavy rainfall event on July 10, and light rainfall events on July 4 and 15, while during 

the SGP99, there was light rainfall event on July 10,1999. 
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Figure 5.5: Kurtosis versus mean soil moisture for the top 5cm soil layer during the 

SGP97, for the sandy loam (left) and silt loam (right). a) and c) for simulated soil 

moistures, while b) and d) are for ESTAR estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Kurtosis versus mean soil moisture for the top 5cm soil layer during the 

SGP99, for the sandy loam (left) and silt loam (right). a) and c) for simulated soil 

moistures, while b) and d) are for ESTAR estimates. 
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5.2 Scaling analysis of simulated and ESTAR soil moistures 

 

We used random filed theory described in Vanmarcke (1983) to model the complex 

patterns of soil moisture. The soil moisture is assumed to be a random process in space 

and time. This theory is feasible for the cases where deterministic treatment is 

insufficient and conventional statistics in sufficient (Vanmarcke 1983). An ideal random 

field model has to capture the essential feature of the complex random phenomena in 

terms of a minimum number of physically meaningful and experimentally accessible 

parameters (Vanmarcke 1983). The scale at which the random process is observed is 

very important. A phenomenon that appears deterministic on the microscale -have 

defined structured atoms- may at large-scale exhibit highly variable properties that call 

for the probabilistic description. In this study, we used the coarse graining method 

(Vanmarcke 1983) that uses minimum number of physically meaningful parameters to 

describe the spatial process of soil moisture. For the full explanation of the coarse 

graining method, please see Vanmarcke (1983). 

Figures 5.7 and 5.9 show the log soil moisture variance versus log area during the 

SGP97 and SGP99, respectively, for both ESTAR estimates and GEOtop simulations 

and for the top 5cm soil layer along the main transect (Fig. 5.10). While figures 5.11 

and 5.12 show the log correlation of soil moisture versus log distance during the SGP97 

and SGP99, respectively, and for the top 5cm soil layer along the same transect. The 

soil moisture sampling transect crosses varying elevations, landuses, and soil textures 

(Figs. 5.10 and 1.2). 

The soil moisture was aggregated at increasing spatial scales, from a pixel of 200m side 

to a pixel of 2600m side for the simulated soil moistures, and from a pixel of 800m side 

to a pixel of 9600m side for ESTAR soil moistures. At each aggregation level, the soil 

moisture was taken to be the average soil moistures of the 200m and 800m pixels for the 

GEOtop simulations and ESTAR estimates, respectively, and no overlapping was 

considered in the aggregation. The model spatial scale is limited to 2600m in order to 

have more sampling points in the analyses. During the SGP97 the watershed was 

relatively wet, while during the SGP99, the watershed was dry. 

For the wet conditions; SGP97, results show that the log soil moisture variance versus 

the log area has an increasing power law relationship, for both simulated and ESTAR 

soil moistures with statistically significant correlations. This suggests that the spatial 

soil moisture variance have the property of scale-invariance. This result is in agreement 
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with Gebremichael et al. (2009) who found that the soil moistures have the property of 

scale-invariance in the variograms of spatial soil moistures. For the dry conditions; 

SGP99, the soil moisture variance is spatially uniform and is independent of scale. 

The slope time series of the power law relationship of figure 5.7 for the GEOtop 

simulations and ESTAR estimates are shown in figure 5.8. During the dry-down period 

(July 11-14) the slopes of both ESTAR and model, in general, decrease with the time. 

This indicates that the drying process produces large degree of heterogeneity at large 

scale. This is in disagreement with Rodriguez-Iturbe et al. (1995) who found that the 

drying process produces large degree of heterogeneity at small scale. This disagreement 

is likely due to the effect of initial conditions of soil moisture and to different 

mechanisms of soil moisture dynamics. 

 

The log correlation of soil moisture versus log separation distance (Figs. 5.11 and 5.12) 

for both simulated and ESTAR soil moistures show that soil moisture has multiscaling 

behaviour. The average correlation range of near-surface soil moisture is estimated to be 

around 7km. In agreement with Rodriguez-Iturbe et al. (1995), GEOtop simulations 

show that the spatial correlation of the near-surface soil moisture follows power law 

decay up to about 1km. For scales larger than 1km, both GEOtop simulations and 

ESTAR estimates show that soil moisture has multiscaling behaviour (Bushara and 

Rigon, 2010). The multiscaling behaviour of soil moisture is due to the high 

heterogeneities of soil moistures along the transect, since the transect crosses varying 

elevations, landuses, and soil textures. The decay of spatial correlation of soil moisture 

with the increase of distance is also observed by Khandani and Kalantari (2009) who 

analyzed soil moisture data in the Little Washita watershed during the SMEX03, and 

they found that the soil moisture correlation is exponentially decaying with the increase 

of distance, with zero correlation for distances beyond 0.4km. 
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Figure 5.7: Log soil moisture variance versus log area for GEOtop simulations and 

ESTAR estimates along the transect (Fig. 5.10) for the top 5cm soil layer for: a) July 11, 

b) July 12, c) July 13, d) July 14, and e) July 16, 1997. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Slopes of the fitting lines in figure 5.7. 
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Figure 5.9: Log soil moisture variance versus log area for GEOtop simulations and 

ESTAR estimates along the transect (Fig. 5.10) for the top 5cm soil layer for: a) July 8, 

b) July 9, c) July 14, d) July 15, e) July 19, and f) July 20, 1999. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Soil texture map of the Little Washita watershed showing the transect of 

soil moisture scaling. 
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Figure 5.11: Spatial correlation of soil moisture along the transect (Fig. 5.10) for the top 

5cm soil layer for: a) July 11, b) July 12, c) July 13, d) July 14, and e) July 16, 1997. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Spatial correlation of soil moisture along the transect (Fig. 5.10) for the top 

5cm soil layer for: a) July 8, b) July 9, c) July 14, d) July 15, e) July 19, and f) July 20, 

1999. 
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5.3 Soil moisture variograms 

 

Figures 5.13 and 5.14 present the soil moisture variograms for ESTAR estimates and 

GEOtop simulations during the SGP97 and SGP99, respectively, while the properties of 

the variograms are presented in tables 5.1 and 5.2, respectively. The experimental 

variograms of both simulated and ESTAR soil moistures are fitted with spherical 

theoretical models that well fit the experimental variograms. During the SGP97 the 

watershed was relatively wet, while during the SGP99 the watershed was dry. 

During the SGP97 (Fig. 5.13 and table 5.1) GEOtop simulations show large nugget, 

implying high subgrid variability (Western and Blöschl 1999), while ESTAR estimates 

show low nugget, meaning that ESTAR smoothes the subgrid variability. Remember 

that the model support is 200m, while the ESTAR support is 800m, and that the model 

and ESTAR are different techniques for estimating soil moistures. Generally, both 

ESTAR estimates and GEOtop simulations show that the nugget decreases as soil dries, 

and increases as soil wets up. This means that the subgrid variability decreases as soil 

dries, and increases as soil wets up. In a case of a measurement, the nugget is the sum of 

the measurement errors and the subgrid variability (Blöschl and Grayson, 2000). 

Similarly, both ESTAR estimates and GEOtop simulations show that the variance (sill) 

decreases as soil dries and increases as soil wets up. During the dry-down period (July 

11 - 14), as soil dries, simulated soil moisture range decreases, while ESTAR soil 

moisture range increases. Generally, GEOtop simulations show that soil moisture 

correlates well to larger scales compared to the ESTAR estimates. 

ESTAR experimental variogram on July 16 is shown to be nonstationary. It suggests 

that the variogram is stationary at scale larger than the considered scale. The 

nonstationary variograms is likely to be well fitted with linear models than the spherical 

models. Therefore, the variogram properties are highly affected by the considered scale.  

Furthermore, we investigated the soil moisture anisotropy in different directions. The 

investigation is carried out only for July 12, 1997, because on this day the watershed is 

moderately wet, for moderately wet watersheds, the soil moisture shows high degree of 

spatial organization (Western et al. 1999). The analysis of soil moisture anisotropy is 

presented in section 6.2. 
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Table 5.1 : Variograms properties of simulated and ESTAR soil moisture during SGP97 

 

GEOtop simulations ESTAR estimates Day 

Nugget Sill Range (m) Nugget Sill Range (m) 

July 11 0.0030 0.0056 10448.15 0.0015 0.0066 3928.23 

July 12 0.0035 0.0055 7244.243 0.0013 0.0054 4665.08 

July 13 0.0031 0.0047 5307.736 0.0009 0.0037 5144.216 

July 14 0.0027 0.0041 5152.216 0.0008 0.0033 5261.572 

July 16 0.0029 0.0044 7289.494 0.0012 0.0083 9389.073 

 

 

 

 

Figure 5.13: Soil moisture variograms of the top 5cm soil layer for the Little Washita 

watershed for: a) July 11, b) July 12, c) July13, d) July14, and e) July16, 1997. 
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During the SGP99 (Fig. 5.14 and table 5.2) and similar to what happened during the 

SGP97, GEOtop simulations show large nugget, implying high subgrid variability, 

while ESTAR estimates show almost no subgrid variability. In comparison to the 

GEOtop simulations, ESTAR estimates show very low sill. Although GEOtop 

simulations show relatively high sills, the variability between the elements (sill - 

nugget) shown by GEOtop simulations is very similar to the variability between the 

elements shown by ESTAR estimates. This suggests that the differences between 

ESTAR estimates and GEOtop simulations are highly affected by the nugget that is 

mainly attributed to the subgrid variability. GEOtop simulations show that the soil 

moistures correlate well at small scales, while ESTAR estimates show that the soil 

moistures correlate well at large scales. 

Western et al. (1998) studied the geostatistical characterization of soil moisture patterns 

in Tarrawarra catchment, and they found that for wet conditions the sill is high and the 

correlation length is short, and for dry conditions the sill is low and the correlation 

length is long. This is in agreement with our findings for both ESTAR estimates and 

GEOtop simulations during the SGP97 and SGP99, but GEOtop simulations show long 

correlation length for wet conditions; SGP97, and short correlation length for dry 

conditions; SGP99. 

From figures 5.13 and 5.14 and tables 5.1 and 5.2 we observe that the soil moisture 

correlation range estimated along the transect (see section 5.2) corresponds well with 

the soil moisture range estimated with variograms. 

 

Table 5.2: Variograms properties of simulated and ESTAR soil moisture during SGP99 

 

GEOtop simulations ESTAR estimates Day 

Nugget Sill Range (m) Nugget Sill Range (m) 

July 8 0.0018 0.0023 2755.855 0.000038 0.0003 10607.8 

July 9 0.0016 0.0020 2624.432 0.00003 0.0004 15241.91 

July 14 0.0011 0.0015 3245.392 0.000007 0.0005 12142 

July 15 0.0011 0.0015 3360.688 0.000009 0.0004 10308.18 

July 19 0.0012 0.0015 4933.548 0.00002 0.0002 10475.55 

July 20 0.0012 0.0016 5292.643 0.000018 0.0001 7932.047 
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Figure 5.14: Soil moisture variograms of the top 5cm soil layer for the Little Washita 

watershed for: a) July 8, b) July 9, c) July14, d) July15, e) July19, and f) July 20,1999. 

 

 

5.4 Re-thinking the soil moisture assessment in SGP experiments 

 

Here, we only compare our findings obtained during the SGP97 with the previous 

studies that were conducted in the Little Washita watershed. This is because during the 

SGP97, the soil moisture varies in a large range, while during the SGP99, the soil 

moisture varies in a short range; the watershed was dry. 

According to our results for both soil types (sandy loam and silt loam), GEOtop 

simulations exhibit a downward quadratic relationship between the spatial STDEV and 

the spatial mean of near-surface soil moisture (i.e., STDEV is low when the soil is dry, 

then increases with increasing wetness until a certain threshold of mean soil moisture, 

beyond which the STDEV decreases with increasing wetness level, becoming low when 
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the soil is saturated), while ESTAR estimates exhibit a linear increase of the spatial 

STDEV with the spatial mean. Famiglietti et al. (2008) based on ground-based 

volumetric soil moisture measurements collected from three field campaigns in the 

study area (SGP97, SGP99, and SMEX03), Vereecken et al. (2007) based on an 

analytical stochastic model, Pan and Peters-Lidard (2008) and Pan and Peters-Lidard 

(2010) based on theoretical approach reported a downward relationship between the 

spatial STDEV and spatial mean, consistent with our results for the GEOtop 

simulations. However, Pan and Peters-Lidard (2010) fitted the downward relationship 

between the standard deviation and the spatial mean of soil moisture with third order 

polynomial. If the two low ends of the curve are known, the relationship between the 

standard deviation and the spatial mean can be fitted with second order polynomial. In 

our GEOtop simulations, we fit this relationship with second order polynomial because 

the standard deviation is zero at the two low ends of the curve (when the watershed at 

saturation and wilting point). 

According to our results for both soil types, GEOtop simulations show that the spatial 

frequency distribution of near-surface soil moisture depends on the state of the soil 

moisture, it has positive skewness at low spatial mean soil moisture, zero skewness at 

moderate spatial mean soil moisture, and negative skewness at high spatial mean soil 

moisture. This is consistent with the results reported by Famiglietti et al. (1999) based 

on ground-based volumetric soil moisture measurements. While our results for ESTAR 

estimates show that the spatial frequency distribution of near-surface soil moisture has 

zero skewness regardless of the state of the soil moisture.  

According to our results for both soil types, GEOtop simulations show that the soil 

moisture distribution can be approximated by beta distribution consistent with the 

findings of Famiglietti et al. (1999), while ESTAR estimates show that the soil moisture 

distribution can be approximated by normal distribution. 

GEOtop simulations are in agreement with the previous findings obtained in the 

watershed using ground-based measurements. Furthermore, GEOtop simulations are in 

agreement with the theoretical models of soil moisture. So, we conclude that GEOtop 

simulations are more accurate than ESTAR estimates. 

 

5.5 Conclusion 
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In this chapter, we characterized the spatial and temporal variability of the near-surface 

soil moisture derived from two sources of data: estimation obtained from the L-band 

ESTAR microwave radiometer observation on board aircraft, and simulation obtained 

from the physically-based GEOtop hydrological model using SGP97 and SGP99 

datasets. During the SGP97 the watershed was relatively wet, while during the SGP99, 

the watershed was dry. We found that it is important to study soil moisture variability 

when the soil moisture varies in a large range. Results show that the GEOtop 

simulations and ESTAR estimates show very different spatial patterns of near-surface 

soil moisture. Whereas ESTAR estimates do not show any control of river network on 

the spatial distribution of the near-surface soil moisture, GEOtop simulations clearly 

show the control of river network on the spatial distribution of the near-surface soil 

moisture. Whereas ESTAR estimates show a linear functional relationship between the 

spatial STDEV and spatial mean (and also between the spatial CV and spatial mean) of 

soil moisture, GEOtop simulations show a downward quadratic relationship. Whereas 

ESTAR estimates show zero skweness for the spatial frequency distribution regardless 

of the spatial mean soil moisture level, GEOtop simulations show positive skewness at 

low spatial soil moisture, zero skewness at moderate spatial mean soil moisture, and 

negative skewness at high spatial mean soil moisture. Compare to previous findings 

based on ground-based measurements of soil moisture and theoretical models indicate 

that the GEOtop simulations are more accurate. It is concluded that the ESTAR 

estimates do not provide a reliable source of soil moisture data for characterizing the 

spatial patterns of near-surface soil moisture. 
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6 Comparison of the geostatistical techniques with 

dynamical modeling 

 

This chapter uses geostatistical techniques to reproduce the simulated soil moisture 

patterns obtained by GEOtop model. The objective is to know how well can we 

reproduce the simulated soil moisture patterns using geostatistical techniques? What is 

the best kriging technique should be used to reproduce the patterns? Can we use 

geostatistical techniques to establish sustainable network for soil moisture 

measurements in the study area? The study area is Little Washita watershed (583 km
2
), 

Oklahoma, USA. The high- resolution (200m) simulated volumetric soil moisture map 

produced from the SGP97 simulation (see chapter 4) on July 12, 1997, is used as an 

input map. 

Some soil moisture measurement points are carefully selected, considering the effects of 

the controlling factors of the soil moisture variability in the watershed, to form the 

network. Different kriging techniques are used: Ordinary kriging (OK) and external 

drift krigings (EDKs). Using OK, and predictors (e.g., terrain indices) for EDK, soil 

moisture maps are produced and compared to the simulated soil moisture map (input). 

Suitability of the proposed soil moisture network is tested. Finally, soil moisture 

patterns are studied using conditional Gaussian simulations. 

6.1 Setup of soil moisture measurement network  

 

The spatial patterns of hydrological processes have high degree of variability and have 

different degree of spatial organization. The degree of spatial organization can be 

critically important in hydrological science, for instance, in runoff simulations (Western 

et al. 1999), risk analyses (e.g., landslide triggering), design measurement strategies, 

data interpretation, and biogeochemical processes. The spatial patterns of hydrological 

processes depend on spacing, support, and extent scales of the measurements (Blöschl 

and Grayson, 2000). Representation of the spatial variability of soil moisture is needed 

at different scales. An accurate way to represent the spatial variability is to use 

distributed models (Western et al. 1999). However, distributed models require huge 

amount of data that is not always available. A relatively simple method is to use 
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geostatistical techniques (e.g., Bárdossy and Lehmann 1998; Western et al. 1999). The 

main purpose of this work is to know how well can the geostatistical techniques 

reproduce the spatial soil moisture patterns that are obtained by distributed models? 

Western et al. (1999) show that terrain indices are found to be powerful tools for 

reproducing the spatial patterns of soil moisture when they used as predictors for 

kriging algorithms. To explore the potentials of the terrain indices, the terrain indices of 

the Little Washita watershed are used as predictors for EDK. The role of each terrain 

index on soil moisture distribution, and the limits of the terrain indices are also 

discussed in Western et al. (1999). Furthermore, Western et al. (1999) have reviewed 

the application of terrain indices in other watersheds, and they reported that terrain 

indices have worked well for some watersheds and have worked poorly for other 

watersheds. In another study, Bárdossy and Lehmann (1998) concluded that the external 

drift indicator kriging and Bays Markov updating (BMU) are the best algorithms for 

reproducing the spatial patterns of soil moisture.  

 

In this study, we used the simulated volumetric soil moisture map for the top 5cm soil 

layer produced from the SGP97 simulation on July 12, as an input map, and we used 

OK, and EDK to reproduce the spatial soil moistures. The last rainfall event in the 

watershed before July 12 was on July 10, 1997. So, on July 12, the watershed is 

relatively wet, according to Western et al. (1999) in moderately wet watersheds, the soil 

moisture shows high degree of organization, while in dry watersheds, the soil moisture 

shows little spatial organization. 

The predictors that are used for the EDK are: Digital Elevation Model (DEM), gradient, 

cosine aspect, wetness index, longitudinal curvature, soil depth, laplacian, coordinates, 

river network, hydraulic conductivity, and their combinations. The kriging algorithm is 

called universal kriging (UK) when the coordinates are used as predictors for EDK. All 

predictors except DEM, soil depth, hydraulic conductivity, and coordinates are derived 

from DEM using JGRASS-GIS (www.jgrass.org). These indices are chosen because, 

generally, they play crucial role in soil moisture distribution in watersheds. 

 

In this study, the effect of soil type on OK and EDKs is considered implicitly by taking 

soil moisture measurement points (actually from GEOtop simulations) in different soil 

types and for each soil type different values of soil moistures are selected. This is 

because the soil type is found to be the main controlling factor of the soil moisture 
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distribution in the watershed (see chapter 4). In addition, the effect of the landuse type 

on the spatial soil moistures is considered implicitly by taking the soil depth map as 

predictor for the EDK. The distribution of landuse classes depends on the soil depth to a 

large extent. 240 soil moisture measurement points are selected to form the soil 

moisture network. Webster and Oliver (2007) recommend that at least 50 measurement 

points should be considered to have reliable experimental variogram, while Western et 

al. (1998) recommend about 300 measurement points to have meaningful sample 

variogram. The fitted theoretical variogram of the 240-points is used for kriging soil 

moistures with OK algorithm. 

The simulated soil moisture content on July 12, 1997, and the locations of the selected 

measurement points are shown in figure 6.1. All the analyses are carried out using R 

programming language (http://www.r-project.org) and the JGRASS-GIS interface 

(www.jgrass.org). 

 

 

 

Figure 6.1: Simulated volumetric soil moisture content [-] on July 12, 1997 for the top 

5cm soil layer, and the locations of the selected 240 points of the soil moisture network 

shown in (+). 
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6.2 Results and discussions 

6.2.1 Variogram 

 

Figure 6.2 shows the experimental variograms of the simulated soil moisture and the 

soil moisture of the selected 240-points fitted with spherical models. The experimental 

variograms are reasonably fitted with the theoretical models, and the variograms have 

defined sills and ranges. A defined sill indicates that the soil moisture is stationary. The 

properties of the fitted variograms of the simulated soil moisture and the selected 240-

points are shown in table 6.1. The two variograms differ mainly on the range and 

nuggets. However, the variabilities between the elements (sill-nugget) are similar. This 

indicates that the 240-points capture the statistics of the spatial structure of the soil 

moisture. Furthermore, we investigated soil moisture anisotropy in four directions. If the 

soil moisture field is anisotropic, this anisotropy has to be considered when computing 

the soil moisture variograms that are subsequently used by krigings to generate the 

spatial soil moisture patterns. This analysis of directional variograms shows that the soil 

moisture field is isotropy. Figure 6.3 shows the directional experimental variogram of 

the selected 240 points fitted with the same spherical model used in figure 6.2, without 

considering any anisotropy. As the number and the configuration of the data-points 

affect the reliability of the experimental variogram, the number and the configuration of 

the selected points seem reasonably enough to have reliable experimental variogram.  

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Experimental variograms of the simulated soil moisture (original map) and 

the soil moisture of the selected 240-points fitted with spherical models. 
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Figure 6.3: Variogram of the soil moisture for the selected 240 points in four directions. 

 

Following the decision tree for selecting the right spatial prediction technique, as 

proposed by Hengl (2009), the EDK is found to be the right predicting algorithm since 

all the residuals clearly show spatial autocorrelation. Figure 6.4 shows the variogram of 

the residuals fitted with spherical model for the case that uses all predictors except river 

network, hydraulic conductivity, and coordinates for EDK. While the variogram of the 

residuals of all other predictors of the EDK are presented in appendix B. The properties 

of the variograms of the residuals are also shown in table 6.1. The nuggets for the 

variograms of the residuals obtained using gradient, gradient and cosine aspect, and all 

predictors except river network, hydraulic conductivity and coordinates as predictors for 

EDK are lower than the nugget of the simulated soil moisture map. It is interesting to 

note that when using gradient, gradient and cosine aspect, and all predictors except river 

network, hydraulic conductivity and coordinates as predictors for EDK reproduced the 

closest patterns to the actual patterns (see section 6.2.2). The nugget in both soil 

moistures (the case of OK) and residual variograms can be attributed mainly to the 

subgrid variability. The nugget due to the subgrid variability will disappear if the data 

are taken at sufficiently small spacing (Blöschl and Grayson, 2000). 

According to Western et al. (1999), the value of variogram of the soil moisture at a 

given lag represents the total variance at that lag, while the value of the variogram of the 

residuals represents the unexplained variance at that lag. The difference between the 

value of the variogram of the soil moisture and the residuals at a given lag represents the 

explained variance at that lag. From table 6.1 it is evident that the variogram of soil 

moisture is very similar to the variograms of the residuals for all the predictors. So, as 
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the variogram of the soil moisture is very similar to the variograms of the residuals, 

meaning that there is no significant variance is being explained considering the above-

mentioned predictors for EDK. Furthermore, we observe weak correlation between the 

soil moisture and the predictors, as shown in table 6.2. In the case of no correlation 

between the soil moisture and the predictors, the EDK gives results very similar to the 

OK (e.g., Goovaerts, 1997; Bárdossy and Lehmann, 1998). The weak correlation is 

likely due to the subgrid variability. Western et al. (1999) have used terrain indices as 

predictors for EDK, and they reported that the subgrid variability cannot be captured by 

the terrain indices and can contribute significantly to the performance of the terrain 

indices. 

 

Table 6.1: Properties of variograms of soil moisture and residuals, and mean of 

residuals of soil moisture 

Predictor Nugget Sill Range (m) Mean of residuals of 

soil moisture [%] 

Simulated map (original) 0.0035 0.0055 7244.243 - 

OK (240-points) 0.0041 0.0061 3959.020 -0.09 

Elevations (DEM) 0.0040 0.0060 3136 0.08 

Gradient 0.0034 0.0060 2158.4 0.25 

Cosine aspect 0.0043 0.0060 3489.2 -0.04 

Wetness index 0.0041 0.0061 4046 0.14 

Longitudinal curvature 0.0043 0.0061 6243 0.08 

Soil depth 0.0042 0.0061 3721.6 -0.03 

Laplacian 0.0042 0.0061 4652 -0.02 

Coordinates 0.0039 0.0058 2860.083 -0.12 

River network 0.0040 0.006 3765.4 0.09 

Gradient and cosine aspect 0.0031 0.0059 2187 0.21 

Hydraulic conductivity 0.0040 0.0061 3962.4 -0.32 

All predictors except river 

network, hydraulic conductivity, 

and coordinates 

0.0031 0.0056 2083.2 -0.29 

 

For OK, the variogram is for soil moistures, while for others the variograms are for 

residuals. The mean of residuals is obtained from kriging cross validation. 
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Figure 6.4: Variogram of the residuals combining all predictors except river network, 

hydraulic conductivity, and coordinates for EDK, fitted with spherical model. 

 

 

Table 6.2: Correlation coefficient for the relationships between volumetric soil 

moistures and predictors  

Predictor Correlation coefficient 

Elevations (DEM) -0.207 

Gradient -0.197 

Cosine aspect +0.055 

Wetness index -0.13 

Longitudinal curvature +0.084 

Soil depth -0.084 

Laplacian -0.032 

Coordinates +0.367 

River network +0.158 

Gradient and cosine aspect +0.286 

Hydraulic conductivity -0.095 

All predictors except river network, 

hydraulic conductivity, and 

coordinates 

+0.362 

 

The sign of the correlation is indicated by the plus or minus before the correlation 

coefficient. 
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6.2.2 Spatial soil moisture patterns 

 

Figure 6.5 shows soil moisture patterns reproduced by the OK and the EDK using 

different predictors, and in comparison to the original simulated soil moisture map that 

has to be reproduced.  

From visual comparison, it is evident that when using gradient and to some extent 

cosine aspect as univariate predictors for EDK, produce the best soil moisture patterns 

that are more close to the actual patterns. Western et al. (1999) they also used EDK, and 

found that cosine aspect and potential solar radiation index are the best univariate 

predictors to reproduce the spatial patterns during dry periods. The combination of 

gradient and cosine aspect as predictor for EDK has improved the patterns. 

Nevertheless, the reproduced patterns are very similar to the patterns reproduced using 

gradient as univariate predictor for EDK. This indicates the strong control of gradient on 

the soil moisture distribution in the watershed for the current wetness condition. 

The combination of all predictors except river network, hydraulic conductivity, and 

coordinates for EDK reproduced the best spatial patterns. Even though, the reproduced 

patterns are similar to the patterns reproduced using gradient, cosine aspect, and the 

combination of gradient and cosine aspect as predictors for EDK. This further indicates 

the strong influence of gradient and cosine aspect in the reproduced spatial patterns. The 

uses of the other univariate predictors (elevations, wetness index, longitudinal 

curvature, soil depth, laplacian, river network, hydraulic conductivity, and coordinates) 

for the EDK have poorly reproduced the patterns. It is interesting to note that although 

the soil type controls the soil moisture distribution in the watershed, the soil moisture 

patterns obtained using hydraulic conductivity (soil type was classified further 

depending on the hydraulic conductivity) as a univariate predictor for EDK are very 

different from the actual patterns. This indicates that the soil hydraulic conductivity is 

not a good predictor for EDK. It is important to note that the hydraulic conductivity map 

that is used as predictor for EDK is classified for a certain ranges of hydraulic 

conductivities. This suggests that the hydraulic conductivity is a property of the soil, 

and it is not appropriate to consider the hydraulic conductivity as an external drift for 

kriging. However, it is important to include the soil type (also including the hydraulic 

conductivity) as a categorical variable for indicator kriging, and then combining the 

indicator kriging with external drifts (predictors) to obtain external drift indicator 

kriging. In our analyses the EDK implicitly includes indicator kriging. 
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The spatial patterns reproduced using soil depth as predictor for EDK, are very similar 

to the patterns reproduced by the OK. The poorly reproduced patterns using soil depth 

as predictor for EDK indicate that the spatial soil moisture patterns do not depend on 

vegetation distribution. 

Poorly reproduced spatial soil moisture patterns using wetness index as univariate 

predictor for EDK indicate that the saturation excess is not the dominant runoff process 

in the watershed. Wetness index is a good predictor for the situations at which the 

saturation excess is the dominant runoff process (e.g., Blöschl and Grayson, 2000). 

Furthermore, the UK produces spatial patterns very similar to the patterns reproduced 

by the OK. Comparing the OK patterns with the EDK patterns, generally, the EDKs 

show the soil moisture patterns better than the OK, and the OK patterns are very 

smoothed. When there is no correlation between the soil moistures and the predictors, 

the EDK tends to OK. Although there are weak correlations between the soil moistures 

and the predictors, the reproduced spatial patterns of soil moistures are improved very 

much when using gradient and cosine aspect as univariate or bivariate predictor for 

EDK. 
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Figure continues in the next page 
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e) Cosine aspect      f) Wetness index  

 

 

 

 

 

 

 

 

 

g) Longitudinal curvature     h) Soil depth 
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k) Hydraulic conductivity     l) River network 

 

 

Figure continues in the next page 
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m) All predictors except river network, n) Combination of gradient 

and cosine aspect 

hydraulic conductivity, and coordinates 

 

 

Figure 6.5: Simulated and Kriged soil moistures for OK and for EDK using different 

predictors. 

 

 

Figures 6.6, and 6.7 and table 6.1 show soil moisture variance, soil moisture residuals, 

and the mean of residuals, respectively. In figures 6.6 and 6.7, the soil moisture variance 

maps and the soil moisture residuals are shown only for the case in which all predictors 

except river network, hydraulic conductivity, and coordinates are used for EDK. The 

soil moisture variance maps and the soil moisture residual maps for all other predictors 

of EDK are presented in appendix B. Although all krigings show low soil moisture 

variance, OK, and EDK that uses soil depth as predictor have the highest soil moisture 

variance. Values around zero of the mean of the residuals indicate that the kriging 

estimates are unbiased. Western et al. (1999) reported that if the terrain indices captured 

the key topographic control on soil moisture, the residual maps should appear random. 

As shown in figure 6.7 and figure B.3 (appendix B), all the maps have similar residuals, 

and the residuals are randomly distributed. Although there are little differences between 

the produced residual maps, the soil moisture patterns have improved very much when 

using gradient and cosine aspect as univariate or bivariate predictor for EDK, and when 

using all predictors except river network, hydraulic conductivity, and coordinates as 

multivariate predictor for EDK. The residual maps show that some soil moisture 

patterns in the southern part of the watershed are not well captured by the EDKs. In 

these areas more points could be added to further improve the prediction. 
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Figure 6.6: Kriged soil moisture variance [%] obtained using the combination of all 

predictors except river network, hydraulic conductivity and coordinates as predictor for 

the EDK. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Soil moisture residuals obtained applying kriging cross validation. The 

applied kriging is EDK that uses all predictors except river network, hydraulic 

conductivity and coordinates as predictor. 

 

 

Although the OK and EDKs reproduced different soil moisture patterns, all krigings 

reproduced similar residuals and variances. This indicates that reproducing the soil 

moisture measurements do not necessarily mean reproducing the actual soil moisture 

patterns. This is consistent with the findings of Bárdossy and Lehmann (1998) who 

characterized the spatial distribution of measured soil moistures in an experimental 

watershed in Germany applying 5 different kriging algorithms. They found that OK and 

indicator kriging are applicable, but they did not show any spatial distribution of the soil 

moisture, while EDK shows good spatial soil moisture patterns, but the estimated soil 

moisture values are often outside the measurement range; only for the extreme 

measurements. On the other hand, they found that the external drift indicator kriging 
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and the BMU that also considers the effects of landuse and soil type are the best 

algorithms for reproducing the spatial soil moisture patterns. Consistent with our 

findings, they concluded that all kriging algorithms are unbiased.  

In this study, the indictor kriging is included implicitly in the OK and in the EDKs by 

considering the effects of landuse and soil type on the soil moisture distribution. As 

mentioned above, the uses of soil depth (landuse) as predictor for EDK is poorly 

reproducing the soil moisture patterns. Considering the external drift indicator kriging 

as the best algorithm for reproducing the spatial soil moisture patterns, and as the soil 

depth (as surrogate of landuse) is poorly reproducing the patterns, the soil type is the 

only categorical variable that is used for the indicator kriging. Therefore, the uses of the 

soil type as indicator for EDK is reasonably reproducing the spatial soil moisture 

patterns if the right predictor accompanies it. This means the spatial soil moisture 

patterns in the Little Washita watershed are controlled by topography and heterogeneity 

of soil porosity, at least for the considered wetness condition. 

Thus it concluded that the selection of the right predictor for the external drift 

(indicator) kriging is the best way to reproduce the spatial soil moisture patterns. 

Although the selection of the 240 points with their existing coordinates is reasonably 

enough to establish soil moisture measurement network, it is recommended to add new 

measurement points in the southern part of the watershed to further improve the 

prediction of the soil moisture patterns. It is also recommended to repeat this procedure 

several times using different soil moisture levels to establish permanent soil moisture 

measurement network. 

6.2.3 Soil moistures frequency distributions 

 

To further investigate the capabilities of the predictors for reproducing the spatial soil 

moisture patterns, the frequency distribution of soil moistures that are reproduced using 

different indicators for the EDK and using OK are plotted and compared to the 

frequency distribution of the simulated soil moistures as well as to the frequency 

distribution of the soil moisture of the selected 240 points. 

Figure 6.8 shows the frequency distribution of the simulated soil moistures, soil 

moisture of the selected 240 points, and the kriged soil moistures. The frequency 

distribution of the simulated map is very similar to the frequency distribution of the 

selected 240 points. This indicates the representation of the selected 240 points to the 
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watershed soil moistures. All the kriged soil moistures showed to have normal 

distribution, while the simulated soil moistures and the soil moistures of the selected 

240 points somehow showed to have bimodal distributions. The frequency distribution 

obtained using gradient as predictor for EDK has captured part of the high soil 

moistures and fails to capture the low soil moistures. The frequency distribution 

reproduced using all predictors (multivariate) except river network, hydraulic 

conductivity, and coordinates for the EDK is similar to the frequency distribution 

reproduced using gradient and cosine aspect as univariate predictors for EDK. This 

indicates that the gradient and cosine aspect are significantly influencing the frequency 

distribution of the soil moisture, when they used as predictors for EDK. The frequency 

distribution reproduced using all predictors except river network, hydraulic 

conductivity, and coordinates for EDK is the only frequency distribution has soil 

moisture class higher than 0.4. It is noted that the closer the frequency distribution, that 

reproduced using a predictor for the EDK and using OK, to the simulated frequency 

distribution, the good the reproduced the soil moisture patterns. This is in disagreement 

with Western et al. (1999) who reported that a terrain index can well reproduce the soil 

moisture distribution function, but it is not necessarily reproducing the spatial soil 

moisture patterns. From figure 6.8 it is also evident that no frequency distribution is 

well capturing the low values of soil moisture. Even when multivariate predictor is used 

for EDK, the reproduced frequency distribution is partially capturing the high soil 

moisture values. This concludes that kriging algorithms should be used with caution for 

extreme values. This is consistent with the findings of Goovaerts (1997) who reported 

that the kriging algorithms typically overestimate the low values and underestimate the 

high values. 

For the current wetness condition in the watershed, the use of gradient and cosine aspect 

as predictors for EDK showed to have the greatest influence on the reproduced soil 

moisture patterns. Under different wetness conditions, other controlling factors might 

have significant influence on the spatial distribution of the soil moisture patterns. 

The main uncertainties in the analyses are associated to the quality of the DEM; DEM is 

always obtained by interpolation, and to the derived geomorphological maps. Other 

uncertainties depend on the type of the fitted variograms. Blöschl and Grayson (2000) 

reported that the type of the fitted variogram is highly influencing the interpolated soil 

moistures. 
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Figure 6.8: Soil moisture frequency distributions of the top 5cm soil layer for: a) 

Simulated soil moisture, b) Selected 240 points, c) OK, d) Elevations, e) Gradient, f) 

Cosine aspect, g) Wetness index, h) Longitudinal curvature, i) Soil depth, j) Laplacian, 

k) UK, l) River network, m) Combination of gradient and cosine aspect, n) Hydraulic 

conductivity, and o) All predictors except river network, hydraulic conductivity, and 

coordinates. 

6.3 Sensitivity analysis of the soil moisture network 

The purpose of this section is to know whether the spatial soil moisture patterns change 

when the locations of the soil moisture measurement points change, considering the 

same approach that was applied in section 6.1. This is to test the robustness of the 

applied approach. In what follow, we called the soil moisture network described in 

section 6.1 and figure 6.1 network A, while the new soil moisture network that is 
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formed after changing the locations of the measurement points of network A, network 

B. So, both networks are composed of 240-points. 

The soil moisture measurement points of network A are selected in different soil types, 

and for each soil type different values of soil moistures are selected. To form network 

B, for each soil type, we considered the same number of soil moisture measurement 

points; the same number used for network A, and for each soil type different values of 

soil moistures are selected. The watershed authority has created soil moisture 

measurement network in the watershed and is known as Vitel. The network is 

composted of stations: 111, 133, 134, 136, 144, 146, 149, 154, 159, 162, Berg, and 

NOAA. Stations 111 and Berg are outside the watershed. Furthermore, we aim to test 

the suitability of Vitel network for reproducing the spatial soil moisture patterns. Note 

that network B also includes Vitel stations inside the watershed. The spatial locations of 

network A, network B, and Vitel are shown in figure 6.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Locations of soil moisture measurement points for: network A, network B, 

and Vitel. Network B also includes Vitel network. Vitel network compose of stations: 

111, 133, 134, 136, 144, 146, 149, 154, 159, 162, Berg, and NOAA. Stations 111 and 

Berg are outside the watershed. 

 

 

In order to reproduce the spatial soil moisture patterns, it is important that the soil 

moisture variograms of the soil moisture measurement networks are similar to the 

variogram of the simulated soil moisture map (input). Furthermore, the experimental 

variograms of soil moisture networks should be well fitted with the theoretical models. 

Figure 6.10 shows the experimental variograms of the soil moisture measurement 
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networks and the simulated soil moisture map fitted with spherical theoretical models, 

while the properties of the variograms are shown in table 6.3. Except for Vitel network, 

all the experimental variograms are reasonably fitted with the theoretical models, and 

the well-fitted variograms can be used for soil moisture krigings. The variogram of Vitel 

network is poorly fitted with spherical model, and this is obviously due to the small 

number of the soil moisture measurement points that forms Vitel network. As the 

experimental variogram of the Vitel network is poorly fitted with theoretical model, the 

Vitel network is not used for reproducing the spatial soil moisture patterns. The 

variability between the elements (sill-nuggets) for both network A and network B are 

similar to the variability between the elements for the simulated soil moisture map. This 

indicates that both network A and network B have captured the spatial variability of soil 

moisture. Therefore, both networks can be used to reproduce the spatial soil moisture 

patterns using EDKs. 

 

 

Table 6.3: Properties of variograms of soil moisture and residuals for the simulated soil 

moisture map, network A, network B, and Vitel network, and the mean of residuals of 

soil moisture. 

Predictor Nugget Sill Range (m) Mean of residuals of 

soil moisture [%] 

Simulated map (original) 0.0035 0.0055 7244.243 - 

240-points (Network A)  0.0041 0.0061 3959.020 - 

240-points (Network B)  0.004 0.0061 2706.0 - 

Vitel network 0.0032 0.0041 6796 - 

Gradient 0.004 0.0062 2633.7 +0.111 

Cosine aspect 0.0049 0.0064 12263 -0.017 

Gradient and cosine aspect 0.0037 0.0058 2075.7 +0.118 

All predictors except river 

network, hydraulic conductivity, 

and coordinates 

0.003 0.0055 1417.6 -0.067 

 

For the simulated soil moisture map, network A, network B, and Vitel network, the 

variograms are for soil moistures, while for others, the variograms are for residuals. The 

mean of residuals of soil moisture is obtained from kriging cross validation. 
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Figure 6.10: Experimental variograms of soil moisture for simulated soil moisture map, 

network A (network illustrated in section 6.1 and Fig. 6.1), network B (shown in Fig. 

6.9), and Vitel network (shown in Fig. 6.9) fitted with spherical models. 

 

 

 

 

For network A, results show that when using gradient, cosine aspect, combination of 

gradient and cosine aspect, and all predictors except river network, hydraulic 

conductivity, and coordinates as predictors for EDK have clearly showed the spatial soil 

moisture patterns (see section 6.2.2). So in this section, the above-mentioned predictors 

are used as predictors for EDKs and using network B to reproduce the spatial soil 

moisture patterns. Figure 6.11 shows the simulated soil moisture map in comparison to 

the kriged soil moistures obtained using soil moisture network B. Results shows that all 

the kriged soil moisture maps are somehow similar to the simulated soil moisture 

(input), and all the kriged soil moisture patterns are very similar to their corresponding 

patterns shown in figure 6.5. The properties of the variograms of the residuals obtained 

from EDKs that are used for reproducing the spatial soil moisture patterns (Fig. 6.11) 

are also shown in table 6.3. Table 6.3 also shows the mean of residuals of soil moisture 

as obtained from kriging cross validation. Values around zero of the mean of the 

residuals indicate that the kriging estimates are unbiased. The properties of the 

variograms of residuals for network B are very similar to their corresponding values 
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obtained for network A except for the soil moisture range obtained using cosine aspect 

as predictor for EDK. 

Figure 6.12 shows the frequency distribution of soil moisture for the simulated soil 

moisture map, network A, network B, and kriged soil moistures using gradient, cosine 

aspect, combination of gradient and cosine aspect, and all predictors except river 

network, hydraulic conductivity, and coordinates as predictors for EDK. The frequency 

distributions of the simulated soil moisture map, network A, and network B somehow 

showed to have bimodal distributions, while the frequency distributions obtained using 

all EDKs showed to have normal distributions. The frequency distributions obtained in 

this section (see Fig. 6.12) are very similar to their corresponding frequency 

distributions obtained using network A (see Fig. 6.8). This indicates the robustness of 

the approach used for characterizing the spatial soil moisture patterns. Furthermore, we 

compared the main quantiles of soil moistures for the simulated soil moisture map, 

network A, network B, and kriged soil moistures. Figure 6.13 shows the main quantiles 

of soil moisture for the simulated soil moisture map, network A, and network B. While 

figure 6.14 shows the main quantiles of soil moisture for network B and kriged soil 

moistures obtained using gradient, cosine aspect, combination of gradient and cosine 

aspect, and all predictors except river network, hydraulic conductivity, and coordinates 

as predictors for EDK. Figure 6.13 shows the representativeness of both network A and 

network B to the simulated soil moisture map. As shown in figure 6.14, it is interesting 

to note that all krigings are well reproducing average soil moisture, and the differences 

between the simulated and kriged soil moistures increase monotonically as the soil 

moisture level drop or rise from the average soil moisture. This indicates that krigings 

should be used with cautions when dealing with extremes; both low and high.  
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a) Simulated soil moisture     b) Gradient 

 

 

c) Cosine aspect  d) Combination of gradient and 

cosine aspect 

 

 

 

 

 

 

 

 

 

 

e) All predictors except river network, hydraulic conductivity, and 

 coordinates 

 

Figure 6.11: Simulated and kriged soil moistures for EDKs obtained using soil moisture 

network B.  
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Figure 6.12: Soil moisture frequency distributions of the top 5cm soil layer for: a) 

Simulated soil moisture, b) 240-points of soil moisture network A, c) 240-points of soil 

moisture network B, d) Gradient, e) Cosine aspect, f) Combination of gradient and 

cosine aspect, h) All predictors except river network, hydraulic conductivity, and 

coordinates. 
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Figure 6.13: Main quantiles of soil moisture for simulated soil moisture map, 240-points 

of network A, and 240-points of network B. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Main quantiles of soil moisture for 240-points of network B and kriged soil 

moistures obtained using gradient, cosine aspect, combination of gradient and cosine 

aspect, and all predictors except river network, hydraulic conductivity, and coordinates 

as predictors for EDK. In the legend combination refers to the combination of gradient 

and cosine aspect, while all refers to all predictors except river network, hydraulic 

conductivity, and coordinates. 
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6.4 Spatial soil moisture using defined neighbourhood 

 

In the previous sections all the measurement points are used for kriging interpolations. 

Looking at the simulated soil moisture map it is evident that we have very fine soil 

moisture patterns, and it might not be appropriate to use all the measurement points in 

the interpolation. It might be appropriate to use only the closest measurement points in 

kriging interpolations. In this section, we used the closest 40 measurement points in 

kriging interpolation and using soil moisture network B. We chose the closest 40 pints 

in kriging interpolation because it gives reasonable estimates of spatial soil moisture 

patterns, using less than 40 points often gives unrealistic values (negative) of soil 

moistures. The spatial soil moisture patterns obtained using OK and EDKs using 

different predictors are shown in figure 6.15, while the frequency distributions of 

simulated and kriged soil moistures are shown in figure 6.16. It is evident that when 

using all predictors except hydraulics conductivity, coordinates and river network for 

EDK produces soil moisture patterns that are more close to the simulated patterns 

(input). Using combination of gradient and cosine aspect as a predictor for EDK also 

shows the patterns. OK and EDK that uses coordinates as predictor produce smoothed 

patterns. Using other univariate predictors for EDK somehow show the patterns. We 

observe that the patterns reproduced by krigings using the closest 40 measurement 

points in the interpolation are slightly better that the patterns reproduced by krigings 

when all the measurement points are used in interpolations by krigings. Nevertheless, 

the results obtained using the closest 40 points in kriging interpolations are similar to 

the results obtained using all the measurements in the interpolations. The frequency 

distributions obtained using cosine aspect and river network as predictors for EDK 

showed to have bimodal distributions, similar to the frequency distribution of the 

simulated soil moisture map, while the frequency distributions obtained for all other 

krigings showed to have normal distributions. Only the frequency distributions obtained 

using longitudinal curvature and all predictors except hydraulic conductivity, 

coordinates and river network for EDK have soil moisture class lower than 0.1. On the 

other hand, only the frequency distributions obtained using wetness index, longitudinal 

curvature, coordinates, and all predictors except hydraulic conductivity, coordinates and 

river network for EDK have soil moisture class higher than 0.4. In general, we observe 

that the frequency distributions obtained using all the measurement points in kriging 
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interpolations are more close to the normal distribution than the frequency distributions 

obtained using the closest 40 measurement points in kriging interpolations. 

 

 

 

 

 

 

 

a) Simulated map      b) OK 
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e) Cosine aspect     f) Wetness index 

 

 

 

 

 

 

g) Longitudinal curvature    h) Soil depth 

 

Figure continues in the next page 
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i) Laplacian      j) Coordinates  

 

 

 

 

 

 

k) Hydraulic conductivity    l) River network  

 

 

 

 

 

 

 

m) Combination of gradient and cosine  n) All predictors except river  

aspect  network, hydraulic conductivity  

and coordinates  

 

 

Figure 6.15: Simulated and kriged soil moistures for OK and EDK using different 

predictors. Kriged soil moistures are obtained using 40 nearest measurement points. 
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Figure 6.16: Soil moisture frequency distributions of the top 5cm soil layer for: a) 

Simulated soil moisture, b) OK, c) Elevations, d) Gradient, e) Cosine aspect, f) Wetness 

index, g) Longitudinal curvature, h) Soil depth, i) Laplacian, j) UK, k) Hydraulic 

conductivity, l) River network, m) Combination of gradient and cosine aspect, and n) 

All predictors except river network, hydraulic conductivity, and coordinates. 
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6.5 Conditional Gaussian simulations 

 

 

The purpose of this section is to use conditional Gaussian simulations (CGSs) to 

reproduce the spatial soil moisture patterns. CGSs are performed using the closest 40 

measurement points and using soil moisture network B. Furthermore, CGSs are 

performed using the predictors that are used for EDKs as secondary data. Figure 6.17 

shows the spatial soil moisture patterns obtained using CGSs including and excluding 

secondary data in the simulations and in comparison to GEOtop simulated soil moisture 

map (input), while figure 6.18 shows the frequency distributions of soil moisture maps 

of figure 6.17. Figure 6.17 shows that when using gradient as secondary data to CGSs 

produces spatial soil moisture patterns that are more close to the actual patterns. Using 

secondary data from only one source (e.g., cosine aspect) to the CGSs also somehow 

show soil moisture patterns (figures 6.17c – 6.17l). In addition, performing CGSs 

without considering any secondary data (figure 6.17b) also somehow show the patterns. 

When using secondary data from two sources to the CGSs (figure 6.17m) produce 

spatial soil moisture patterns worse than the patterns reproduced without including 

secondary data or including secondary data from one source to the CGSs. On the other 

hand, when secondary data from multi sources are used in the CGSs, produce the worst 

soil moisture patterns (figure 6.17n). Therefore, we conclude that the more the 

secondary data sources are incorporated in CGSs, the worse the reproduced the patterns. 

Therefore, care should be taken when incorporating secondary data in CGSs. In general, 

all CGSs reproduce spatial soil moisture patterns better than the soil moisture patterns 

reproduced by kriging algorithms. 

Figure 6.18 shows that all CGSs produce bimodals soil moisture frequency 

distributions, similar to the frequency distribution of GEOtop simulated soil moisture 

map. This is due to the fact that in CGSs the data (input) is first transformed into normal 

score, then the CGSs are performed on the transformed data, and finally simulated 

normal scores are back-transformed into simulated soil moisture patterns (e.g., 

Goovaerts 1997). In the previous sections we show that kriging algorithms are poorly 

reproducing soil moisture frequency distribution of the input. In this section we show 

that all CGSs are well reproducing soil moisture frequency distribution of the input. As 

the soil moisture patterns reproduced by CGSs are much better than the soil moisture 

patterns reproduced by kriging algorithms, this indicates that reproducing the frequency 
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distribution of the input is necessary to reproduce the actual spatial soil moisture 

patterns. 
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Figure continues in the next page 



6. Comparison of the geostatistical techniques with dynamical modeling  

A.I.Bushara 

 

 

115 

 

 

 

 

 

 

 

 

 

i) Laplacian      j) Coordinates 

 

 

 

 

 

 

 

 

 

 

k) Hydraulic conductivity    l) River network 

 

 

 

 

 

 

 

 

 

m) Combination of gradient and cosine  n) All predictors except river  

aspect  network, hydraulic conductivity  

and coordinates  

 

 

Figure 6.17: Soil moisture maps obtained using conditional Gaussian simulations and in 

comparison to the simulated soil moisture map (input). 
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Figure 6.18: Frequency distribution of the top 5cm soil layer obtained using conditional 

Gaussian simulations in comparison to the simulated soil moistures: a) Simulated soil 

moisture, b) No secondary data is used, c) Elevations, d) Gradient, e) Cosine aspect, f) 

Wetness index, g) Longitudinal curvature, h) Soil depth, i) Laplacian, j) Coordinates, k) 

River network, l) Hydraulic conductivity, m) Combination of gradient and cosine 

aspect, n) All predictors except coordinates, river network and hydraulic conductivity. 
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6.6 Conclusion 

 

 

Soil moisture patterns are studied using OK, and external drift indicator kriging (EDIK). 

The soil type is used as indicator for krigings, while the following indices: DEM, 

gradient, cosine aspect, wetness index, longitudinal curvature, soil depth, laplacian, 

coordinates, river network, hydraulic conductivity, and their combinations are used as 

drifts (predictors) for EDIK. Furthermore, CGSs are used to reproduce soil moisture 

patterns. 

Analysis of directional variogram of soil moisture shows that there is no anisotropy. 

Results show that all krigings reproduced unbiased soil moisture estimates. Although all 

krigings reproduced unbiased soil moisture estimates, OK, and UK reproduced very 

smoothed patterns and are very different from the actual patterns. The patterns 

reproduced using DEM, wetness index, soil depth, river network, hydraulic 

conductivity, and laplacian as predictors for EDIK, are similar to the patterns 

reproduced by the OK and UK. While using gradient and cosine aspect as predictors for 

EDIK have clearly showed the patterns. The combination of all predictors except river 

network, hydraulic conductivity, and coordinates for EDIK, reproduced the closest 

patterns to the actual patterns. The frequency distribution and the variogram of soil 

moisture of the selected 240 points are very similar to the frequency distribution and the 

variogram of the simulated soil moisture map, respectively. The frequency distribution 

of the simulated soil moisture somehow showed to have bimodal distribution, while the 

frequency distributions obtained using all kriging algorithms showed to have normal 

distributions. Result shows that the closer the frequency distribution to the simulated 

frequency distribution, the better the reproduced the soil moisture patterns. 

Nevertheless, none of the above krigings is able to capture the extreme values of soil 

moisture. The residual soil moisture maps, as obtained from kriging cross validation, 

and the frequency distributions of soil moisture show that the 240-soil moisture 

measurement points are reasonably enough to establish permanent soil moisture 

network in the watershed. On the other hand, CGSs show that when using gradient as 

secondary data, reproduced the best patterns (similar to the actual patterns). In general, 

all CGSs clearly show the spatial soil moisture patterns and all CGSs reproduce soil 

moisture histogram of the input. Therefore, CGSs are preferred than krigings in 

studying spatial patterns. 
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7 Utility of remotely-sensed precipitation products for 

hydrological simulations 

 

In this chapter, we investigated the utility of remotely sensed rainfall products (Climate 

Prediction Center’s MORPHing technique (CMORPH), Precipitation Estimation from 

Remotely Sensed Information using Artificial Neural Networks - Cloud Classification 

System (PERSIANN-CCS), and Next Generation Weather Radar (NEXRAD) stage III) 

for hydrological simulations at basin scale in the Little Washita (583 km
2
) watershed, 

Oklahoma, USA. The distributed hydrological model, GEOtop (Rigon et al. 2006) is 

used to simulate the streamflows. We simulated the streamflows for the years 2003 and 

2007, for which we have complete measurements, including remotely-sensed 

precipitation, raingauge, and streamflow data. Results show that, in general, all 

remotely-sensed precipitation products have value for streamflow simulations. 

 

7.1 Remotely-sensed precipitation products 

 

The National Weather Service Next Generation Weather Radar (NEXRAD) 

precipitation is considered as an important and reliable source of ground-based 

precipitation in USA. The spatial and temporal scales of NEXRAD are 4km and 1hour, 

respectively. NEXRAD Stage III version is the most important precipitation product. In 

Stage I, precipitation is estimated by finding the relationship between radar-measured 

reflectivity (Z) and precipitation rate (R). Stage II, multiple raingauges observations are 

used for bias adjustment. Stage III is mosaicking of Stage II products using multiple 

radars. 

Satellite precipitation is estimated using visible (VIS) and infrared (IR) spectral bands 

of Geostationary Earth Orbiting (GEO) satellites and microwave (MW) spectral bands 

from Low Earth Orbiting (LEO) satellites. MW sensors on LEO are accurately 

estimating precipitation, but at the cost of limited sampling, while IR sensors on GEO 

are less accurate for estimating precipitation, but with high sampling frequency. 

Satellite precipitation products combine the MW and IR to take the advantage of 

complementary strengths. 
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CMORPH (Joyce et al. 2004) estimates precipitation using the most accurate, but not 

frequent passive microwave (PMW) data and the less accurate but more frequent IR 

data. IR data are used only to derive cloud motion field that is subsequently used to 

propagate raining pixels. CMORPH products are available every 30 minutes at 0.0727
0
 

latitude and longitude (8km at the equator) grid resolution. 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Network-Cloud Classification System (PERSIANN-CCS) uses artificial neural network 

to derive relationship between IR and PMW data for the IR data to estimate 

precipitation. 

 

7.2 Setup of simulations 

 

GEOtop model (Rigon et al. 2006) is used for streamflow simulations. All the 

calibration parameters obtained during the SGP97 for the GEOtop model were kept 

fixed for the streamflow simulations for the years 2003 and 2007 except the initial 

temperatures, initial water contents, and the coefficient of the uniform of the motion of 

the surface to account for possible landuse changes are modified. Simulated 

streamflows for both years are continuous simulations. Streamflow simulations for 

years 2004, 05 and 06 were not carried out because there are only one or two significant 

measured streamflow events.  

For 2003, the streamflows are simulated using precipitation data from: raingauge, 

CMORPH (Joyce et al. 2004), PERSIANN-CCS (Hsu et al. 1997), NEXRAD Stage III 

(e.g., Fulton et al. 2007), and bias-adjusted CMORPH. Precipitation data from 45 

raingauges (meteorological stations) along with other measured meteorological forcing 

data (i.e., air temperature, relative humidity, solar radiation, air pressure, wind speed 

and wind direction) are used for raingauges streamflow simulations in the watershed 

(Fig. 1.1). As the meteorological forcing are given as point measurements to the 

GEOtop model, the values of precipitation estimated by NEXRAD, CMORPH, and 

PERSIANN-CCS are extracted at these 45 meteorological stations (same stations used 

for raingauges) and they used along with other measured meteorological forcing data for 

GEOtop streamflow simulations. In GEOtop model, point precipitation data are 

spatially distributed using either krigings or MicroMet (Liston and Elder 2006). In this 

chapter, point precipitation data are spatially distributed using kriging algorithm. 
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For 2007, the streamflows are simulated using raingauge and CMORPH precipitations. 

Precipitation data from 17 raingauges are used for raingauge simulations (Fig. 7.1), 

along with other measured meteorological forcing data. The CMORPH precipitation 

data are extracted from the CMORPH precipitation grids at the same locations of the 17 

raingauges, and then the extracted precipitation data are used for the streamflow 

simulations, along with other measured meteorological forcing data at these 17 

meteorological stations. Only storms that produce streamflows greater than 15m
3
/s are 

selected. Figure 7.1 shows the raingauge network and the CMORPH precipitation grids 

over the Little Washita watershed. 

The temporal resolution of all precipitation products that are used for forcing the 

GEOtop model is 1 hour. The spatial resolution of CMORPH is 8km, while the spatial 

resolutions of PERSIANN-CCS and NEXRAD are 4km. For more details about model 

initialization and simulation setup, please see section 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Raingauge network and CMORPH grids that are used for the 2007 

simulations. 
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7.3 Performance statistics 

 

7.3.1 Bias ratio and root mean square error 

 

We used bias ratio and the root mean square error (RMSE) to evaluated the performance 

of the model. The bias ratio for the simulated streamflows is calculated as follows: 

 

Bias ratio = 

! 

simulated

observed
         (7.1) 

 

While the RMSE of the simulated streamflows is calculated as follows: 

 

! 

RMSE =
1

n
Qi

obs "Qi

sim( )
2

i

i= n

#         (7.2) 

 

Where n is the number of discharge values, Q is the runoff discharge, and superscrips 

obs and sim are for observed and simulated, respectively. 

 

7.3.2 Error in peaks 

 

This statistic performance criterion is applied only to the 2007 simulations. Quantitative 

performance statistics for each peak is performed. For each peak, the peak magnitudes 

are compared to the measured peaks, error in peaks for both raingauge and CMORPH 

simulations are calculated, and peak flows time lag for both raingauge and CMORPH 

simulations are also calculated. The error in peaks is calculated using the following 

relationship: 

 

Error in peaks = 

! 

P
sim
" P

obs

P
obs

        (7.3) 

 

Where P is runoff peak, and superscripts sim and obs are for simulated and observed, 

respectively.  
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7.4 Streamflow simulation for 2003 

 

First, we have calculated total precipitation that falls in the watershed during March 26 - 

July 6, 1997 as estimated by raingauge, NEXRAD, PERSIANN-CCS, CMORPH, and 

bias-adjusted CMORPH. The period March 26- July 6, 1997 is selected because we 

have complete streamflow measurements, and the simulated streamflows obtained using 

all the above precipitation products will be evaluated at this period. The bias-adjusted 

CMORPH precipitation is calculated as follows: 
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Where x1 is raingauge precipitation and x2 is CMORPH precipitation, !1, !2 are the 

standard deviations of raingauge and CMORPH precipitations, respectively. For both 

raingauge and CMORPH precipitation time series the standard deviations are calculated 

for the whole time series of precipitation. The optimal generated hourly precipitation is 

the average of xopt1 and xopt2. 

 

 

The total precipitation falls in the watershed during March 26 - July 6, 1997 that is 

estimated using different precipitation products is shown in figure 7.2. Raingauge and 

NEXRAD estimated the same amount of precipitation. This is not surprising since in 

stage II of NEXRAD multiple raingauges observations are used for bias adjustment. 

PERSIANN-CCS also estimates precipitation similar to raingauges and NEXRAD. On 

the other hand, CMORPH is highly overestimating precipitation compared to the 

raingauges, NEXRAD and PERSIANN-CCS. Bias-adjusted CMORPH precipitation is 

much less than the precipitation estimated by the CMORPH, but it is larger than the 

precipitation estimated by raingauges, NEXRAD and PERSIANN-CCS. This indicates 

the robustness of the method used for the bias adjustment of precipitation. 
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Figure 7.2: Watershed total precipitation for the period March 26 - July 6, 1997 

estimated using different precipitation products. Assimilation refers to bias-adjusted 

CMORPH precipitation. 

 

 

The streamflows simulated using raingauge precipitation are presented in figure 7.3, in 

comparison to the measured streamflows. Both measured and simulated streamflows are 

taken every 15 minutes. Furthermore, the streamflows are simulated using precipitation 

data from: NEXRAD, CMORPH, PERSIANN-CCS, and bias-adjusted CMORPH. The 

simulated streamflows obtained using all these products are also shown in figure 7.3, 

and in comparison to the measured streamflows. The measured and the simulated 

streamflows are also printed every 15 minutes. 

We used bias ratio (equation 7.1) and RMSE (equation 7.2) to evaluate the performance 

of simulated streamflows obtained using all precipitation products for the period March 

26 - July 6, for which we have complete streamflow measurements. The mean bias 

ratios for the simulated streamflows obtained using precipitation data from raingauge, 

NEXRAD, PERSIANN-CCS, CMORPH, and bias-adjusted CMORPH are 1.76, 1.65, 

1.71, 11.71, and 4.09, respectively, while the calculated RMSEs for the same 

precipitation products are 2.74, 3.14, 2.33, 10.81, and 5.61, respectively. The raingauge 

seems reasonably reproducing the streamflows. Nevertheless, raingauge slightly 

overestimating streamflows, i.e., bias ratio = 1.76, and often there is phase shift between 

the measrured and the simulated streamflows. NEXRAD performs similar to the 

raingauge, and it perform slightly better than the raingauge in terms of mean bias ratio, 
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but worse than raingauge in terms of RMSE. PERSIANN-CCS seems to reasonably 

reproduce the streamflows. Surprisingly, it performs slightly better than the raingauge in 

terms of both bias ratio and RMSE, and it performs a bit worse than NEXRAD in terms 

of mean bias ratio. CMORPH is significantly overestimating streamflows. This is 

obviously due to the large amount of precipitation estimated by CMORPH (see Fig. 

7.2). Bias-adjusted CMORPH is also overestimating the streamflows, but it performs 

better than the CMORPH and worse than the all other precipitation products, including 

raingauge that are used for bias-adjustment of CMORPH. 

From figure 7.3, it is evident that the streamflows are fairly simulated using 

precipitation data from all the above-mentioned products except for CMORPH 

simulation that is significantly overestimating the streamflows for the period from 

March to June. Also note that except for the simulation of CMORPH precipitation, all 

products are reasonably reproducing the watershed baseflows. CMORPH streamflow 

simulations have improved very much when the CMORPH precipitations combined 

with raingauge precipitations. The mismatch between the measured and the simulated 

streamflows obtained using all the above-mentioned precipitation products is partly 

attributed to the operation of flow retarding structures (FRSs) that are used in flood 

control during precipitation storms (Allen and Naney 1991; Tortorelli and Bergman 

1985). In the watershed there are about 42 FRSs (Allen and Naney 1991). The ponds 

behind these FRSs cover different areas and have different storage capacities. The area 

varies from about 137ha to 2860ha, and the storage capacity varies from about 0.158 to 

2.97 million m
3
. 

Since the measured streamflow is not continuous throughout the year, the simulated 

streamflows obtained using all the above-mentioned precipitation products are 

compared, and shown in figure 7.4. From figure 7.4, it is clear that the streamflow 

simulations obtained using precipitation products of PERSIANN-CCS, NEXRAD, and 

bias-adjusted CMORPH produce streamflows very close to the streamflows obtained 

using raingauges. CMORPH clearly overestimates streamflows during the period from 

March to June, and it seems that something goes wrong with the CMORPH algorithm 

during this period; however, after June, CMORPH produces streamflows very close to 

the streamflows obtained using other precipitation products. Nevertheless, CMORPH 

often overestimates streamflows after June compared to the streamflows obtained using 

other precipitation products. 
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Figure 7.3: Comparison of measured streamflows with the simulated streamflows using 

precipitation data from: raingauge, NEXRAD, PERSIANN-CCS, CMORPH, and bias-

adjusted CMORPH (assimilation), from top to bottom, respectively. 
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Figure 7.4: Comparison of simulated streamflows obtained using precipitation data 

from: raingauge, NEXRAD, CMORPH, PERSIANN-CCS, and bias-adjusted CMORPH 

(assimilation), in semi-log scale. 

 

7.5 Streamflow simulation for 2007 

 

Raingauge and CMORPH precipitations are used to simulate streamflows for warm 

storms (June - September). Figure 7.5 shows the amount of precipitation [mm] for each 

of the storms as estimated by Raingauge and CMORPH. For storms 2, 6, and 7, the 

amount of precipitations estimated by raingagues are higher than that estimated by 

CMORPH. Only for storm 4, the amount of precipitations estimated by CMORPH is 

greater than that estimated by raingagues. For other storms, i.e., storms 1, 3, and 5, both 

CMORPH and raingagues produce similar amount of precipitation. 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: Watershed total precipitation for each storm 
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Figure 7.6 shows the simulated runoff depth for each storm obtained using precipitation 

data from raingauges and CMORPH in comparison to the measured runoff depth, while 

figure 7.7 shows the simulated and the measured streamflows for the main storms 

during the study period. From figure 7.7 it is clear that both raingauge and CMORPH 

precipitations produce comparable streamflow hydrographs, and both hydrographs, in 

general, very close to the measured streamflow hydrographs. However, the simulated 

runoff depth for storms 4 and 6 that are obtained using precipitation data from both 

raingauge and CMORPH are significantly lower than the measured runoff depth. One 

possible scenario for this underestimation is that both raingauge and CMORPH 

underestimate the actual precipitation. 

For most of storms, CMORPH produces streamflow hydrographs higher than the 

streamflow hydrographs produced by raingauge precipitations. As the CMORPH 

estimates precipitation from clouds, it seems that some water evaporates below the 

cloud base before reaching the ground surface, resulting on high CMORPH streamflows 

compared to the raingauge streamflows. Comparing CMORPH simulations in 2003 with 

the CMORPH simulations in 2007, it is evident that CMORPH simulations in 2007 are 

pretty good, while they were not so good during the warm period of 2003. Zeweldi and 

Gebremichael (2008) have evaluated CMORPH precipitation product over the Little 

Washita watershed using data from 2003 to 2005, and found that CMORPH 

overestimates precipitation significantly during the warm seasons compared to the 

NEXRAD Stage III precipitation. It seems that in 2007, CMORPH algorithm has 

undergone significant improvements. For instance, if there is difference in the amount 

of precipitation measured by raingauge and CMORPH, but both precipitations are not 

effective, there would be no difference in streamflows obtained using raingauge and 

CMORPH precipitations. 

In general, all storms are reasonably simulated. In spite of that, we observe that there is 

mismatch between the measured and the simulated streamflows for storms 2 and 4. The 

time lag between storm 1 and storm 2 is about 3 days, while the time lag between storm 

3 and storm 4 is only few hours. This mismatch between the measured streamflows and 

the simulated streamflows for storm 2 and storm 4, is most likely due to the operation of 

flow retarding structures (FRSs) that are use to control floods during storms. Tortorelli 

and Bergman (1985) reported that the released stored water in ponds that are regulated 

by FRSs lasts some days after the storms. It seems that the ponding water on the 

upstream of the FRSs is released while another storm is coming, resulting on earlier 
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peaks of streamflows, and it seems that the second peak of storm 4 is delayed because 

of the operation of the FRSs. Tortorelli and Bergman (1985) showed that the FRSs 

could have significant influence on the shape of the recession part of the hydrographs; 

depending on whether the ponds (of the FRSs) are spilling or not. Furthermore, they 

showed that the hydrograph peaks are reduced significantly due to the operation of the 

FRSs. They also observed composite peak of hydrograph in the watershed due to the 

operation of these FRSs. We note that the measured hydrograph of storm 7 tend to have 

composite peak. 

Although the GEOtop model is reasonably calibrated and validated using raingauge 

precipitation data, and although the measured and the simulated streamflows are printed 

every 15 minutes, CMORPH produces streamflows comparable to both raingauge 

streamflows and to the measured streamflows. Therefore, it can be concluded that 

CMORPH products are suitable for streamflow simulations at finer time steps, at least 

in the study period in the watershed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Runoff depth for each storm 
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Figure 7.7: Simulated and measured streamflow hydrographs that are greater than 

15m
3
/s. 
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Figure 7.8 shows the bias ratio and the RMSE for each storm. Using the bias ratio as an 

evaluation criterion, both CMORPH and raingauge simulations produce comparable 

results, except for small storms: storm 1 and storm 7, for which the differences are 

noticeable. 

With regard to the RMSE, also both CMORPH and raingauge simulations are 

comparable. Nevertheless, CMORPH simulations are slightly better than raingauge 

simulations; low values of RMSE. The worst simulation is obtained for storm 4; high 

RMSE for both CMORPH and raingauge simulations, while the best simulation is 

obtained for storm 1; low RMSE for both CMORPH and raingauge simulations. 

 

Figure 7.8: Bias ratio (left) and RMSE (right) for each storm. 

 

 

 

 

Figure 7.9 shows the peak magnitudes and the error in peaks, while figure 7.10 shows 

the peak flow time lag from the measured peak flow. Note that storm 4 has double peak. 

The peak magnitudes of both CMORPH and raingauge simulations are very close to the 

measured peaks except for storm 4, and this is more likely due to the operation of the 

FRSs. Similarly, both raingauge and CMORPH simulations display similar error in 

peaks. Nevertheless, raingauge simulations seem to underestimate the peaks. 

From figure 7.10, it is evident that except for storms 5 and 7 which are very small 

storms, the peak flow time lags for both CMORPH and raingauge simulations are very 

similar. Note that the max peak flow time lag is for storm 7 (for raingauge simulations), 

and it is about half day. In spite of the presence of the FRSs, and despite the fact that the 

measured and the simulated streamflows are printed every 15 minutes, the max peak 

flow time lag is about 12 hours (half day). This indicates the suitability of GEOtop 
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model for flood forecasting on sub-daily time scales at watershed scale using both 

CMORPH and raingauge data. 

 

 

 

 

 

 

 

Figure 7.9: Peak magnitudes (left), and error in peaks (right). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10: Peak flow time lag from the measured peak flow, negative time lag means 

the peak occurred before the measured peak flow and positive time lag means the peak 

occurred after the measured peak flow. 

 

7.6 Conclusion 

 

First, the GEOtop model is calibrated and validated for the energy fluxes (sensible heat, 

latent heat, ground heat, and net radiation), soil temperature and moisture profiles, and 

streamflows, using SGP97 and SGP99 datasets (see chapters 2 and 3). Using this 

calibrated model, simulated streamflows are obtained using CMORPH, PERSIANN-

CCS, and NEXRAD precipitation data and compared to the measured streamflows and 

to the simulated streamflows obtained using raingauge measurements. Simulated 

streamflows from a further CMORPH precipitation product, bias-adjusted by us based 

on the raingauge measurements, are also tested. 
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Results show that overall the remotely-sensed precipitation products all produce 

comparable streamflows, and the streamflows they produce are very similar to the 

streamflows produced using the raingauge data and to the measured streamflows. 

However, during one period (Mar-Jun, 2003) CMORPH overestimates streamflows 

compared to the streamflows produced by the other precipitation products and the 

measured streamflows. Thus it is concluded that all the above mentioned remotely-

sensed precipitation products have value for streamflow simulations at the watershed 

scale. 
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8 Conclusion  

 

This study is conducted with two main objectives. First, to study the spatial and 

temporal variability of near-surface soil moisture derived from two sources of data: 

estimation obtained from the L-band ESTAR microwave radiometer observation on 

board aircraft, and simulation obtained from the physically-based GEOtop hydrological 

model. Furthermore, the spatial soil moisture patterns are characterized at the watershed 

scale using different geostatistical techniques: different kriging algorithms and 

conditional Gaussian simulations. Second, to examine the utility of remotely-sensed 

precipitation products for hydrological simulations. The study region is the Little 

Washita watershed (583km
2
) in the USA, characterized by humid climate and gently 

rolling topography. The main findings of the study are as follows: 

 

1. GEOtop simulations show that the soil moisture distribution can be 

approximated by beta distribution consistent with the findings of Famiglietti et 

al. (1999) who used ground-based measurements of soil moistures during 

SGP97, while ESTAR estimates show that the soil moisture distribution can be 

approximated by normal distribution. 

 

2. ESTAR estimates show a linear functional relationship between spatial standard 

deviation and spatial mean (and also between spatial coefficient of variation and 

spatial mean), while GEOtop simulations show a downward quadratic 

relationship. 

 

3. ESTAR estimates did not show any control of river network on the spatial 

distribution of the near-surface soil moisture, while GEOtop simulations clearly 

show the control of river network on the spatial distribution of the near-surface 

soil moisture. 

 

4.  ESTAR estimates show zero skewness for the spatial frequency distribution 

regardless of the spatial mean soil moisture level, whereas GEOtop simulations 
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show positive skewness at low spatial mean soil moisture, zero skewness at 

moderate spatial mean soil moisture, and negative skewness at high spatial mean 

soil moisture. 

 

5. GEOtop simulations and ESTAR estimates give very different spatial patterns of 

near-surface soil moisture. Spatial patterns derived from GEOtop simulations are 

in agreement with previous findings obtained from the same study area using 

ground-based measurements of soil moisture and theoretical model simulations. 

Therefore, we conclude that GEOtop simulation results are more accurate and 

that ESTAR estimates are not a reliable source of data for characterizing the 

spatial variability of near-surface soil moisture. 

 

6. For moderately wet watersheds, the soil moisture variance shows an increasing 

power law relationship as a function of the support, while for dry watersheds, 

the soil moisture variance is spatially uniform and is independent of scale. 

 

7. In agreement with Rodriguez-Iturbe et al. (1995), GEOtop simulations show that 

the spatial correlation of the near-surface soil moisture follows power law decay 

up to about 1km. For scales larger than 1km, the near-surface soil moisture 

shows to have multiscaling behaviour. 

 

8. Using gradient, cosine aspect, and all predictors (multivariate) except river 

network, hydraulic conductivity, and coordinates as predictors for the EDK, 

clearly show the spatial soil moisture patterns. On the other hand, CGSs show 

that when using gradient as secondary data to CGSs, reproduce the best patterns. 

Comparing kriging algorithms with CGSs, CGSs produce spatial soil moisture 

patterns better than kriging algorithms. 

 

9. All remotely-sensed precipitation products (CMORPH, PERSIANN-CCS, and 

NEXRAD Stage III) have proved to have considerable value for streamflow 

simulations at the watershed scale. 
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10 Appendices 

Appendix A: Simulated and measured soil temperature 

profiles during SGP97 

 

 

The presented stations in this appendix are stations144, and 159. 

 

 

Figure A. 1: Simulated and measured soil temperature profile at station 144, at depths: 

a) 2.5cm, b) 10cm, c) 15cm, d) 20cm, and e) 60cm from the ground surface. 
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Figure A. 2: Simulated and measured soil temperature profile at station 159, at depths: 

a) 2.5cm, b) 10cm, c) 15cm, d) 20cm, and e) 60cm from the ground surface. 
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Appendix B: Comparison of the geostatistical techniques with 

dynamical modeling 

 

This section presents the variograms of residuals, kriged soil moisture variance, and soil 

moisture residuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B. 1: Variograms of the residuals fitted with spherical models for the following 

predictors: a) Elevations, b) Gradient, c) Cosine aspect, d) Wetness index, e) 

Longitudinal curvature, f) Soil depth, g) Laplacian, h) Coordinates (UK), i) River 

network, j) Hydraulic conductivity, and k) Combination of gradient and cosine aspect. 
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a) OK        b) Elevations 

 

 

 

 

 

 

 

 

c) Gradient       d) Cosine aspect 

 

 

 

 

 

 

e) Wetness index      f) Longitudinal curvature 

 

Figure continues in the next page 
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g) Soil depth       h) Laplacian 

 

 

 

 

 

 

 

i) River network      j) Coordinates 

 

 

 

 

 

 

 

k) Combination of gradient and cosine aspect  l) Hydraulic conductivity 

 

 

 

Figure B. 2: Soil moisture variance [%] for ordinary kriging and external drift krigings 

for different predictors. 
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a) OK        b) Elevation 

 

 

 

 

 

 

 

 

 

 

c) Gradient       d) Cosine aspect 

 

 

 

 

 

 

 

 

 

 

e) Wetness index      f) Longitudinal curvature 

 

 

 

 

 

 

 

 

 

 

g) Soil depth       h) Laplacian 

 

 

Figure continues in the next page 
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i) River network      j) Coordinates 

 

 

 

 

 

 

 

 

 

 

k) Combination of gradient and cosine aspect  l) Hydraulic conductivity 

 

 

 

Figure B. 3: Soil moisture residuals from the kriging cross validation, for both ordinary 

kriging and krigings with external drift using different predictors. 


