
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Semantic Annotation of

Business Process Models

Chiara Di Francescomarino

Advisor:

Dr. Paolo Tonella

Fondazione Bruno Kessler (FBK)

April 13, 2011

To my Family

and my Angels

Abstract

In the last decades, business process models have increasingly been used by companies

with different purposes, such as documenting enacted processes or enabling and improving

the communication among stakeholders (e.g., designers and implementers). Aside from

the differences, all the roles played by process models involve human actors (e.g., business

designers, business analysts, re-engineers) and hence demand for readability and ease of

use, beyond correctness and reasonable completeness. It often happens, however, that

process models are large and intricate, thus resulting potentially difficult to understand

and to manage.

In this thesis we propose some techniques aimed at supporting business designers and

analysts in the management of business process models. The core of the proposal is the

enrichment of process models with semantic annotations from domain ontologies and the

formalization of both structural and domain information in a shared knowledge base, thus

opening to the possibility of exploiting reasoning for supporting business experts in their

work. In detail, this thesis investigates some of the services that can be provided on top

of the process semantic annotation, as for example, the automatic verification of process

constraints, the automated querying of process models or the semi-automatic mining, doc-

umentation and modularization of crosscutting concerns. Moreover, special care is devoted

to support designers and analysts when process models are not available or they have to

be semantically annotated. Specifically, an approach for recovering process models from

(Web) applications and some metrics for evaluating the understandability of the recovered

models are investigated. Techniques for suggesting candidate semantic annotations are

also proposed. The results obtained by applying the presented techniques have been vali-

dated by means of case studies, performance evaluations and empirical investigations.

Keywords

Business Processes, Semantic Annotation, Reverse Engineering, Crosscutting Concerns,

Constraint Verification

Acknowledgements

I would like to thank all the people who supported me, in different ways, during the PhD.

First of all, my full gratitude to my advisor Paolo Tonella, who guided me with patience,

encouraged me and provided me with precious suggestions and advices.

I would like to thank Alessandro Marchetto, Chiara Ghidini, Marco Rospocher and

Luciano Serafini for the interesting and fruitful collaboration we carried out. They stim-

ulated the investigation of new research fields and allowed me to look at things from

different perspectives. A special thank to Marco for the amount of time he spent in an-

swering my questions and clarifying my doubts. A warm thank to Alessandro for the

interesting work experiences we shared, for his advices and for his invaluable support.

Thanks to Professor Michele Flammini and Maria Luisa Villani who encouraged me in

starting this new experience and to Professor Massimiliano Di Penta who introduced me

in the world of empirical studies.

Thanks to Anna Perini and Angelo Susi: with their presence and advices, they sup-

ported me in facing difficulties and in the everyday life.

Thanks to all my friends and colleagues who shared with me the whole or part of

this road. In alphabetical order by name: Alberto Siena, Andrea Avancini, Andrea

Mattioli, Birhanu Eshete, Carlos Cares, Cu Du Nguyen, Cuong To Tu, Elena Cardillo,

Fitsum Kifetew, Francis Palma, Karen Najera Hernandez, Komminist Sisai Weldemariam,

Ismênia Galvão, Leonardo Leiria Fernandes, Luca Sabatucci, Mariano Ceccato, Martin

Homola, Mathew Joseph, Matteo Ceriotti, Mirko Morandini, Nauman Qureshi, Roberto

Tiella, Sapna Poranaseri, Sepideh Ghanavati, Shiva Vafadar and Surafel Lemma. Their

presence, their ideas, as well as discussions and experiences we shared created a welcoming,

stimulating and pleasant environment of work and life.

Moreover, my gratitude to all the persons who spent their time participating in the

empirical studies.

Grazie ai miei Angeli che, con la loro costante presenza, sono stati e sono sempre

accanto a me in tutti i momenti importanti, sia in quelli di gioia che in quelli di difficoltà.

Infine, un grazie speciale alla mia mamma, al mio papà e a mia sorella per il loro aiuto

ed il loro supporto, per i loro continui incoraggiamenti, per la forza che ogni giorno mi

danno e per il loro infinito amore.

Contents

Abstract e

Acknowledgements g

1 Introduction 1

1.1 Context . 1

1.2 Problem . 1

1.3 Solution . 2

1.4 Innovative Aspects . 6

1.5 Publications . 7

1.6 Structure of the Thesis . 8

2 Background 11

2.1 Business Process Management . 11

2.1.1 Business Process Models . 11

2.2 Semantic Business Process Management 15

2.2.1 Semantic Annotation of Process Models 15

2.2.2 Ontologies . 16

3 Reverse Engineering of

Business Process Models 19

3.1 Reverse Engineering of Business Processes 20

3.1.1 Background . 21

3.1.2 GUI-based Reverse Engineering . 24

3.1.3 Dynamic Process Extraction . 26

3.1.4 Process Clustering . 30

3.1.5 Cluster Labelling . 39

i

3.1.6 The tool . 41

3.1.7 Reverse Engineering Technique Evaluation 43

3.2 Understandability Metrics . 52

3.2.1 Process Metrics . 53

3.2.2 Experimental Study . 63

4 Business Process

Semantic Annotation 85

4.1 Semantic Annotation of BPMN Process Models 86

4.1.1 Enriching BPMN Processes with Semantic Annotations 86

4.1.2 Formalizing Semantically Annotated BPMN Processes 87

4.1.3 Automatically encoding a BPD into an Abox 92

4.2 Semantic Annotation Suggestions . 94

4.2.1 Background . 95

4.2.2 Domain Ontology Analysis . 97

4.2.3 Business Process Semantic Annotation Suggestions 105

4.2.4 Domain Ontology Extension . 109

4.2.5 Automatic Suggestion Evaluation 115

5 Constraint Verification 123

5.1 Process Requirement Specification . 124

5.1.1 An Explanatory Example . 124

5.1.2 Merging Axioms . 127

5.1.3 Process Specific Constraints . 130

5.1.4 User-friendly Constraint Representation 148

5.2 Constraint Verification . 149

5.2.1 Compatibility Checking of Process Constraints 150

5.2.2 Constraints Verification over an Annotated BPD 152

5.3 Constraint Checking Performance Evaluation 153

6 Crosscutting Concern Documentation 157

6.1 Concern Querying . 158

6.1.1 BPMN VQL . 159

6.1.2 BPMN VQL Evaluation . 166

6.2 Crosscutting Concern Mining . 173

6.2.1 Crosscutting Concern Mining . 174

ii

6.2.2 Crosscutting Concern Mining Evaluation 176

6.3 Concern Documentation . 186

7 Business Process Aspectization 189

7.1 Semantically enhanced aspects . 190

7.1.1 Aspect Oriented Programming . 191

7.1.2 BPMN VRL . 192

7.2 Exception Handling Aspectization . 209

7.2.1 Using semantic constraints to support aspect definition 212

7.3 Performance Evaluation . 214

8 Experimental Results:

BPMN VQL Empirical Evaluation 217

8.1 Experiment Definition, Planning and Design 218

8.1.1 Goal of the Study and Research Questions 218

8.1.2 Context . 220

8.1.3 Design, Material and Procedure . 221

8.1.4 Variables . 223

8.2 Experimental Results . 227

8.2.1 Data Analysis . 228

8.2.2 Cofactors . 233

8.3 Threats to Validity . 240

8.3.1 Conclusion Validity . 240

8.3.2 Internal Validity . 240

8.3.3 Construct Validity . 241

8.3.4 External Validity . 241

8.4 Discussion . 242

9 Related Works 247

9.1 Reverse Engineering and Understandability Metrics 247

9.1.1 Reverse Engineering . 247

9.1.2 Process Understandability . 250

9.2 Business Process Semantic Annotation . 251

9.3 Constraint Verification on Business Processes 254

9.4 Crosscutting Concerns . 258

9.4.1 Crosscutting Concerns in Software 258

iii

9.4.2 Crosscutting concerns and processes 261

9.5 Business Process Exception Handling . 264

9.6 Visual Process Query Language Evaluation 265

10 Conclusions and Future Works 267

Bibliography 271

A Empirical Study Pre-questionnaire 291

B Empirical Study Post-questionnaire 292

iv

List of Tables

3.1 Initially recovered process data . 46

3.2 Clustered sub-process and label quality . 48

3.3 Experiment design . 65

3.4 Descriptive statistics of the metric measures 65

3.5 Descriptive statistics of the normalized metric measures 66

3.6 Descriptive statistics about MOs . 69

3.7 Correlation between process metrics and MOs 73

3.8 Correlation between pairs of metrics . 74

3.9 Analysis of the modellers’ opinions . 76

3.10 Regression models . 79

3.11 Accuracy of the predictions . 80

3.12 Accuracy of understandable/non-understandable predictions 81

3.13 Understandability and process metrics: flat versus modularized models . . 82

4.1 Mapping from MGCS
′

to WNPOS: function wnPOS. 97

4.2 Example values for the RDA . 100

4.3 An example of possible problems raised by RDA 101

4.4 Example values for the CDA . 103

4.5 Application of DBDA to search . 104

4.6 icsLin between an activity label and an ontology concept 108

4.7 Five ontology concepts most similar to the label “Choose a product group” 108

4.8 Heuristic rules to create a candidate ontology 110

4.9 Ranking of BDO concepts similar to the concept group 113

4.10 Three composed concepts most similar to the label “Choose a product group”114

4.11 Disambiguation algorithm application to ontology in Figure 4.11 116

4.12 Disambiguation algorithm application to the ontology in Figure 4.12 (left) 117

4.13 Disambiguation algorithm application to the ontology in Figure 4.12 (right) 117

v

4.14 Case study data . 119

5.1 Merging axiom patterns . 129

5.2 Requirement Patterns . 148

5.3 Perofrmance Evaluation Results I . 154

5.4 Performance Evaluation Results II . 155

6.1 Visual Query Language Comparison . 169

6.2 BPMN VQL performance . 172

6.3 BPMN VQL performance on non-preprocessed ontologies 172

6.4 On-line purchase case study: top ranking of the FCA-concepts 180

6.5 Issue-voting case study: top ranking of the FCA-concepts 185

7.1 Aspectization and Validation performance 215

8.1 Study balanced design . 221

8.2 Dependent variable description . 225

8.3 Descriptive statistics for the Query Understandability assignment 230

8.4 Results Query Understandability assignment 230

8.5 Descriptive statistics of the Query Execution assignment 231

8.6 Results Query Execution assignment . 233

8.7 Summary table of the cofactors considered in the experiment evaluation . . 234

8.8 Cofactor analysis related to RQ1 . 234

8.9 Cofactor analysis related to RQ2 . 236

8.10 Personal judgement survey results . 239

vi

List of Figures

1.1 Thesis flow . 9

2.1 An example of Business Process Diagram 13

3.1 Flow Analysis Framework . 23

3.2 Application of the Flow Analysis Framework for dominators 25

3.3 Business process reverse engineering approach 26

3.4 An example of user navigation trough web pages 27

3.5 Business process recovery algorithm . 28

3.6 Fragment of the process example . 30

3.7 Loop clustering examples . 32

3.8 Alternative clustering example . 33

3.9 Hill climbing algorithm . 37

3.10 Dependency clustering example . 37

3.11 Term-based analysis example . 38

3.12 Example of TFIDF values . 41

3.13 The recovered Softslate process . 51

3.14 PMexample1(top) and PMexample2(bottom) process models 56

3.15 Distribution of the measured normalized metrics 69

3.16 Distribution of MOs . 69

3.17 Softslate, Communicart and Erol boxplots 71

3.18 Plot of some metrics and modellers’ opinions 72

3.19 Plot of predicted and actual MO values 80

4.1 An example of a semantically annotated BPMN process 88

4.2 The Business Process Knowledge Base . 89

4.3 The graphical elements of BPMNO . 89

4.4 A sub-process for the cart management in an on-line purchase process . . . 91

vii

4.5 The encoding of the to manage cart sub-process in an OWL Abox 92

4.6 A fragment of the mapping file . 93

4.7 Information extracted by MINIPAR . 96

4.8 Examples of ontologies . 100

4.9 Automatically suggested position for concept group 114

4.10 Candidate ontology skeleton construction 115

4.11 An example of an ontology with a structure different from the one of WordNet116

4.12 Examples of ontologies similar to WordNet 117

4.13 Extracts of the OntoSem ontology . 120

5.1 A portion of the on-line shopping business process diagram. 125

5.2 Diagrams with equivalent behaviour . 127

5.3 The classification of intermediate events 142

5.4 Two views of the functionalities provided by BP-MoKi 149

5.5 Example of BP-MoKi “annotates only” merging axiom 150

5.6 Explanation generation . 151

6.1 An example of a semantically annotated BPMN process. 161

6.2 Example of a query using semantic annotations 162

6.3 Example of a query using BPMN, stereotypes and semantic annotations . . 162

6.4 Example of a query using logical operators 163

6.5 Example of a query using the OR operator 164

6.6 Example of a query using the NOT operator 164

6.7 Example of a query using the PATH operator 166

6.8 Example of a query using the NEST operator 167

6.9 Example of a query using the DOR operator 168

6.10 Examples of FCA-concepts and concept lattice 175

6.11 Semantically annotated on-line purchase process 178

6.12 On-line purchase case study: concept lattice 179

6.13 Precision, recall and F-Measure of the two case studies 181

6.14 Ontology for the annotation of an on-line purchase process 182

6.15 Semantically annotated e-mail vote process 184

6.16 Visual query for the “user preference management” concern 186

7.1 Simple example of BPMN VRL rule adding behaviour 193

7.2 Simple example of BPMN VRL rule removing behaviour 193

7.3 Example process . 195

viii

7.4 A portion of the On-line shopping business process diagram. 197

7.5 Example of a BPMN VRL rule adding behaviour 198

7.6 Example of a BPMN VRL rule removing behaviour 199

7.7 Example of a BPMN VRL rule adding and removing behaviour 200

7.8 Example of a BPMN VRL rule using the BPMN VQL OR operator 202

7.9 Example of a BPMN VRL rule using the BPMN VQL NOT operator 203

7.10 Example of a BPMN VRL rule using the BPMN VQL PATH operator 205

7.11 Example of a BPMN VRL rule using the BPMN VQL NEST operator 207

7.12 Example of a BPMN VRL rule with “update” parts of different cardinality . 208

7.13 Example of two BPMN VRL rules for solving problems of cardinality 208

7.14 Product unavailability aspect . 210

7.15 Compulsory log-in failure aspect . 212

7.16 Partial view of the woven on-line Shop process 213

8.1 Detailed study procedur . 224

8.2 Boxplots related to the Query Understandability assignment 229

8.3 Boxplots related to the Query Execution assignment 232

8.4 Boxplots related to the time spent in matching queries 235

8.5 Plots related to the perceived effort in matching querie 236

8.6 Plots related to the perceived effort in executing queries 237

8.7 Plots related to the perceived effort in specification understanding 238

ix

Chapter 1

Introduction

In the current chapter we introduce the work presented in this thesis, by starting from

the description of its context (Section 1.1) and the problems arising in this scenario

(Section 1.2). Moreover, we present an overview of the solutions we propose to deal with

these problems throughout the thesis (Section 1.3) and their contributions to the state of

the art (Section 1.4). Finally, Section 1.5 provides the list of published papers containing

the material presented in the thesis and Section 1.6 a description of the thesis structure.

1.1 Context

Starting from the process orientation trend that involved companies in the 1990s, the

importance and the spread of Business Process Management (and hence of business pro-

cesses) in companies’ organization has notably increased. In this scenario, business process

models have played a fundamental role. In fact, beyond being the outcome of the first

step of the business process life-cycle (i.e., they are designed to be implemented by devel-

opers), they also act as a means for facilitating the communication among stakeholders

(including business experts) and as a form of documentation of the process enacted by

the company, thus providing a faster response to analysis needs. All these different uses

of business process models, however, share a common goal: they mainly aim at meeting

business people’s (i.e., designers, analysts, business men, re-engineers) needs.

1.2 Problem

Business process models, depending on their purpose, could be very large, involve many

different business perspectives and weave several distinct business concerns. As a con-

1

1.3. Solution 1. INTRODUCTION

sequence, in these cases, they can be difficult to read, understand, analyse, design or

re-engineer, thus going against their initial objectives. Business process description and

modelling languages provide means for describing the main views, which define the prin-

cipal decomposition of the business process, such as the control flow, data flow and per-

formers. However, they do not allow to describe concerns that are scattered across the

process and tangled with other concerns (crosscutting concerns), which, hence, are often

left implicit. Moreover, there is a lack of mechanisms supporting business experts to check

whether the requirements they specify over the models are verified, as well as to handle

exceptions without making processes complicated and intricate.

Stakeholders in charge of dealing with business process models could be supported by

exploiting reasoning services and providing them with automatic tools. To this purpose,

however, semantic knowledge is required.

The benefits of having formal semantic information in business processes would be

twofold: on one side, it would facilitate the communication among stakeholders, by pro-

viding a clear business and domain semantics to the process elements and, on the other,

it would allow information systems to acquire knowledge, thus enabling reasoning and

providing stakeholders with automatic tools for their support.

Despite the advantages and services semantic information could provide to business

experts, it may happen that: (i) a business process model documenting the actual re-

alization of processes enacted in companies does not always exist; (ii) even if it exists,

enriching it with semantic knowledge can be an expensive activity for business designers

and analysts. Business designers and analysts, hence, should be supported also in the

preparatory phase, i.e., in process model recovery (if the model is not available) and in

its semantic enrichment.

1.3 Solution

The main goal of this thesis is to support people working with business process models

in their management (i.e., comprehension, design, analysis), thus attempting to limit the

drawbacks they face (as those presented in the previous section). In detail, to this aim,

aware of the lack of semantic information in business process models, we propose to enrich

the models with a formal semantics by annotating process elements with domain concepts.

The added knowledge aims at supporting business designers and analysts, by clarifying

the process model semantics and by enabling reasoning services, such as constraint ver-

ification, process querying, crosscutting concern retrieval and documentation, as well as

2

1. INTRODUCTION 1.3. Solution

aspect and exception handling management in process models.

In this thesis, we propose a framework in which the structural and the semantic infor-

mation contained in the enriched process models are formalized and included in a com-

mon knowledge base, the Business Process Knowledge Base (BPKB). The specific process

model information, however, represents only the changeable part (assertional knowledge)

of the knowledge base, i.e., the process-specific instances populating the knowledge base.

The BPKB classes that are instantiated in the assertional knowledge (including the classes

describing the process structure, the classes related to the business domain knowledge and

a set of axioms constraining their relationships) represent instead the unchangeable part

of the knowledge base, i.e., the terminological knowledge.

In detail, in this thesis, we focus on BPMN (Business Process Modeling Notation)

processes and, in particular, on BPMN processes enriched with semantic annotations be-

longing to one or more domain ontologies. The terminological part of the knowledge base

contains classes from a BPMN ontology (formalized starting from the BPMN specifica-

tions [66]), as well as from one or more domain ontologies (specializations of an upper

level ontology [65]) including the concepts used for the semantic annotation of the specific

process model.

By taking advantage of the business domain knowledge added to business process

models and of the BPKB formalization, we investigated some of the possible services for

the business experts’ support. In detail, on the top of the process semantic annotation

and formalization we considered:

• the automatic verification of process constraints. It supports business experts when

a number of constraints have to be enforced by the process model, especially in cases

of collaborative environments, for large processes and when maintenance or restruc-

turing operations are required. The proposed approach is theoretically grounded on

the Description Logics. Once the semantically annotated process model has been

encoded in the BPKB, the constraints have been formulated as Description Logics

axioms and have been added to the knowledge base, constraint verification is realized

by checking the consistency of the BPKB. A classification of some of the constraint

categories, and of the corresponding pattern translations in Description Logics, is

reported in this thesis.

• the possibility of automatically querying semantically annotated business process

models by formulating queries in a visual query language, BPMN VQL (BPMN Visual

Query Language). It allows business designers and analysts to retrieve particular

concerns characterized by specific business and structural features. Moreover, BPMN

3

1.3. Solution 1. INTRODUCTION

VQL is an easy-to-use language for querying BPMN processes with a syntax, close

to the BPMN itself, that aims at reducing the learning effort of BPMN experts.

Queries, formulated in BPMN VQL, are automatically executed by exploiting the

process model formalization into a knowledge base and their results are visually

highlighted in the process model.

• an approach for semi-automatically mining and documenting crosscutting concerns.

Crosscutting concerns are those concerns that are scattered across the process and

tangled with other concerns, thus resulting difficult to locate and analyse mainly in

large processes. Business designers and analysts are often interested in their location

and inspection, for example for analysis or maintenance purposes. The proposed

approach, by exploiting the formal domain knowledge added to the process model

as well as Formal Concept Analysis [64], allows to retrieve candidate crosscutting

concerns to be later checked and refined by analysts. In fact, though, when known,

crosscutting concerns can be located for example by formulating a BPMN VQL query,

when business analysts lack an exhaustive view of their presence, this can be gen-

erated by the proposed approach. Moreover, once (manually or semi-automatically)

retrieved, crosscutting concerns can be stored (directly or by means of an automated

translation) in the form of BPMN VQL queries.

• the opportunity of modularizing, and hence locally managing, crosscutting concerns,

by means of a visual aspect-oriented language. The proposed language, BPMN VRL

(BPMN Visual Rule Language), is based on rules and extends the BPMN VQL with

mechanisms allowing to denote process updates (in detail, additions and removals).

BPMN VRL rules allow to describe the crosscutting concern (separately from the

main process), as well as its connection points with the process itself. In detail,

in this thesis, we focus on the aspect-oriented representation of exception handling

mechanisms. In fact, in case of large business processes, in which business designers

prefer to focus only on the “happy path”, by forgetting the exceptional flows, separate

management of exception handling mechanisms is a valid alternative with respect to

their complete omission. Again, the graphical syntax of the language, similar to

BPMN, aims at relieving BPMN experts from an over-learning effort.

Moreover, in this thesis, we attempt to partially deal with the problems related to

the input material required for enabling the automated services (deriving from the use of

semantic annotations) described in the previous section, i.e., process models (documenting

the application flows) and their semantic annotation with domain ontology concepts.

4

1. INTRODUCTION 1.3. Solution

With respect to the need of recovering process models, when they are not available, we

propose a technique that reverse engineers business process models from existing software

systems, which expose the business processes by means of Web applications. In detail,

the approach: (a) recovers an initial process model from the log files obtained by tracing

the exercised User Interface elements of the application; (b) refines the initial model

by clustering process elements according to different criteria. It has been shown [149],

in fact, that process modularity positively impacts process model understandability and

readability, key factors for process models aiming at facilitating the communication among

humans and serving as process documentation. The evaluation of the recovered process

models, hence, should include an assessment of their understandability, that, however, is

not trivial to estimate. In order to overcome this problem, we investigated several process

metrics (related to different process properties) to evaluate relevant factors potentially

influencing the readability of the recovered processes. The identified metrics are used as

early indicators of the quality of the recovered processes.

With respect to the need of semantically annotating process models, we propose an

approach for supporting business experts in this activity. In detail, the proposed technique

provides designers and analysts with suggestions for the semantic annotation of a process

element starting from the analysis of the label of the element itself. The annotation

suggestions are computed on the basis of a similarity measure between the text information

associated with process element labels and the ontology concepts. In turn, this requires

support for the disambiguation of terms appearing in ontology concepts, which admit

multiple linguistic senses, and for ontology extension, when the available concepts are

insufficient.

Different forms of evaluations (e.g., case studies, performance evaluations) have been

conducted for each of the different techniques in order to provide a first assessment of

their effectiveness. Moreover, for one technique in particular, a deeper analysis (a study

involving human subjects) has been conducted. We performed an empirical study with

subjects in order to investigate the effectiveness for business experts (in terms of benefits

gained and effort required) of the BPMN VQL with respect to using natural language. In

detail, we analysed the ease of understanding and executing BPMN VQL rather than nat-

ural language queries on semantically annotated business process models. Our empirical

study shows that understanding BPMN VQL queries is easier than understanding natural

language ones, thus supporting our proposal of exploiting BPMN VQL queries for docu-

mentation purposes. Moreover, the study indicates that formulating BPMN VQL queries

is less expensive than executing queries expressed in natural language, thus suggesting

5

1.4. Innovative Aspects 1. INTRODUCTION

that the advantages deriving from the automatic execution of queries on semantically

annotated business processes are superior to the difficulties deriving from formulating

queries in BPMN VQL.

Though the current study is limited to only one of the possible uses of the proposed

approach, we plan, in future works, to investigate the effectiveness of the framework

also for the other proposed uses. In detail, we would be interested to execute further

empirical studies with humans, so as to corroborate the promising results obtained from

our preliminary case studies and evaluations.

1.4 Innovative Aspects

This thesis supports business experts in managing business processes by providing them

with techniques for reverse engineering process models, suggesting semantic annotations

for process elements, automatically verifying constraints on the process, querying pro-

cesses, mining and documenting crosscutting concerns, modularizing crosscutting con-

cerns as well as managing exceptions and exception handling. The main contributions of

this thesis to the state of the art are hence the following:

1. we propose a novel approach for reverse engineering a process model from the ex-

ecution traces of a Web application that exposes the process, as well as clustering

techniques to be applied on top of reverse engineering for improving process read-

ability1 [48, 47];

2. we investigate several metrics proposed in the literature for the evaluation of the

process model quality and we identified among them the most relevant for the un-

derstandability of recovered process models (i.e., the metrics empirically correlated

to model understandability), thus innovatively proposing them as early indicators of

process model understandability in process mining approaches;

3. we propose the enrichment of BPMN business process models with domain ontol-

ogy concepts, by means of the semantic annotation of process elements, and the

formalization of such information, as well as of process structural information, in a

knowledge base [44, 45];

4. we suggest novel techniques to support business designers in the semantic annotation

of process elements and in the related domain ontology building/enrichment as well

1Though approaches exist in the literature for process modularization (e.g., [4] and [14]), to the best of our knowledge,

clustering-based modularization techniques have never been applied on top of process model recovering.

6

1. INTRODUCTION 1.5. Publications

as concept sense disambiguation [50, 51];

5. we propose an innovative approach based on Description Logics for the automated

verification of constraints [44, 45, 46, 153];

6. we define BPMN VQL, an easy-to-use, visual language for querying BPMN busi-

ness processes (and hence also manually retrieving crosscutting concerns in business

processes) [49];

7. we investigate a novel technique for semi-automatically mining candidate crosscutting

concerns in business processes;

8. we define a visual aspect oriented language for BPMN business process models,

allowing to locally manage crosscutting concerns (such as exception handling) and

to weave them only when needed;

9. we provide a first evaluation of the advantages of the graphical language BPMN VQL

for querying processes.

1.5 Publications

We report in the following the list of workshop, conference and journal papers, in which

the material presented in the thesis has been published:

• Ghidini C., Di Francescomarino C., Rospocher M., Serafini L., Tonella P., Semantics

based aspect oriented management of exceptional flows in business processes. ((To

appear in IEEE Transactions on Systems, Man, and Cybernetics Part C, Special

issue on Semantic-enabled Software Engineering.)

• Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini L., Tonella, P., A

Framework for the Collaborative Specification of Semantically Annotated Business

Processes. (To appear in Journal of Software Maintenance and Evolution: Research

and Practice, 2011).

• Di Francescomarino, C., Marchetto, A., Tonella, P., Cluster-based modularization

of processes recovered from web applications. (To appear in Journal of Software

Maintenance and Evolution: Research and Practice, 2011).

• Di Francescomarino, C., Tonella, P., Supporting Ontology-Based Semantic Annota-

tion of Business Processes with Automated Suggestions. In: International Journal

of Information System Modeling and Design, vol. 1, n. 2, 2010, pp. 59-83.

7

1.6. Structure of the Thesis 1. INTRODUCTION

• Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P., Semantically-

aided business process modeling. In Proc. of the 8th International Semantic Web

Conference (ISWC2009), pp. 114- 129.

• Rospocher, M., Di Francescomarino, C., Ghidini, C., Serafini, L., Tonella, P., Col-

laborative Specification of Semantically Annotated Business Processes. In: Business

Process Management Workshops (BPM2009), 3rd International Workshop on Col-

laborative Business Processes (CBP2009).

• Di Francescomarino, C., Tonella, P., Supporting Ontology-based Semantic Anno-

tation of Business Processes with Automated Suggestions. In: Proc. of the 14th

International Conference on Exploring Modeling Methods in Systems Analysis and

Design (EMMSAD2009).

• Di Francescomarino, C., Marchetto, A., Tonella, P., Reverse Engineering of Business

Processes exposed as Web Applications. In: Proc. of the 2009 European Conference

on Software Maintenance and Reengineering (CSMR2009).

• Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P., Rea-

soning on semantically annotated processes. In: Proc. of the 6th International

Conference on Service-Oriented Computing (ICSOC2008), pp. 132-146.

• Di Francescomarino, C., Tonella, P.: Crosscutting concern documentation by vi-

sual query of business processes. In: Business Process Management Workshops

(BPM2008), 4th International Workshop on Business Process Design (BPD2008).

1.6 Structure of the Thesis

The structure of the thesis is inspired by the life-cycle of semantically annotated process

models, as shown in Figure 1.1. Process models can be either manually designed by busi-

ness modellers or, in case of legacy systems, they can be reverse engineered starting from

the execution logs of the considered application. Once available, the process model can

then be enriched with semantic annotations that can be automatically suggested to the

annotator. The semantically annotated process model allows to provide business experts

with a number of reasoning services, such as the constraint verification, the crosscut-

ting concern retrieval, documentation and aspectization, thus supporting them in process

understanding, analysis and management.

In detail, the thesis is structured as described in the following.

8

1. INTRODUCTION 1.6. Structure of the Thesis

Figure 1.1: Thesis flow

Chapter 2 introduces some background concepts used throughout the thesis.

Chapter 3 focuses on cases in which applications are not documented (i.e., no business

process is available describing the execution flow). In these situations a possibility is

reverse engineering the business processes underlying the applications ([A1] in Figure 1.1).

This chapter describes a technique for reverse engineering process models starting from

the execution logs. It also presents some approaches for modularizing BPMN process

elements into sub-processes in order to limit the complexity of the recovered models.

Moreover, this chapter investigates some metrics from the literature for measuring the

understandability of recovered process models.

In Chapter 4 we present our proposal related to the semantic annotation of BPMN

business processes ([A3] in in Figure 1.1) with concepts belonging to a domain ontology.

We exploit the the formalization of process models into a knowledge base. In detail, the

elements of a process diagram are annotated with concepts taken from a domain ontology

and some techniques are presented for supporting designers in the semantic annotation,

by suggesting the candidate annotations .

Chapter 5, Chapter 6 and Chapter 7 show applications of the proposed semantic an-

notation framework.

Chapter 5 ([A4] in Figure 1.1) demonstrates how semantic annotations can be ex-

9

1.6. Structure of the Thesis 1. INTRODUCTION

ploited in order to support business experts to verify structural requirements formalized

in Description Logics.

In Chapter 6 ([A5] in Figure 1.1), the same annotations are used for querying the

process as well as for retrieving and documenting concerns crosscutting the process.

In Chapter 7 the modularization of crosscutting concerns into aspects is presented.

In particular, such a mechanism is proposed as a solution to the problem of exception

handling management in business processes, by means of the modularization of exception

handlers into aspects. Moreover, exception handling requirements are used to verify the

correct management of exception handling.

Aside from case studies and evaluations scattered across the different chapters, Chap-

ter 8 presents a first step towards the empirical verification of one of the proposed ap-

proaches. In detail, the advantages provided by the visual language based on BPMN and

used for documenting crosscutting concerns are evaluated by means of an empirical study

with human subjects.

Chapter 9 presents the main works in the literature related to the research fields in

this thesis. It is structured in subsections each related to one of these main topics: re-

verse engineering approaches for process models and understandability metrics for their

evaluation, process model semantic annotations, constraint verification on business pro-

cesses, works related to the management of crosscutting concerns and aspects in business

processes, exceptions and exception handling mechanisms and empirical studies for the

evaluation of visual process query languages.

Conclusions are finally presented in Chapter 10.

10

Chapter 2

Background

In the current chapter we provide an overview of Business Process Management (Sec-

tion 2.1) and Semantic Business Process Management (Section 2.2), as well as some of

the main concepts and notations of these fields used in the remainder of the thesis.

2.1 Business Process Management

Business Process Management (BPM) [162, 175, 191] aims at providing tools and tech-

niques supporting definition, automation and control of business activities for narrowing

the gap between business requirements (management intent) and information technologies

(management execution) [78, 162]. Business processes, by organizing business activities

and managing their integration with people and systems, represent the key instruments

for achieving the ambitious goal of bridging business organization and technology [191].

A business process is defined as “a set of activities that are performed in coordination in

an organizational and technical environment and that aim at jointly realizing a business

goal” [191]. BPM includes concepts, methods and techniques to support the design,

management, enactment and analysis of business processes [175]. In other terms, at the

core of BPM, there is the explicit representation of business processes with their activities

and constraints (Business Process Modelling) that can later on be analysed, improved

and enacted [191].

2.1.1 Business Process Models

According to the definition by Weske [191], “A business process model consists of a set

of activity models and execution constraints among them”. It is, hence, an abstract

representation of how a business organization achieves a particular objective by means of

11

2.1. Business Process Management 2. BACKGROUND

a set of business activities. The concrete enactment of this model in the organization’s

operational business, is instead, realized by activity instances.

According to the four layers of the Meta Object Facility (MOF) specification 1.4.[2],

process instances populate the M0 level in process domains; process models, instantiated

by process instances, lie in the M1 layer; the process meta-model, instead, is placed in the

M2 layer and provide concepts that are associated with the components of the specific

notation used for describing the process model [191].

Though a number of languages and notations with different components have been

proposed for representing processes and workflows, there exists a subset of components

associated with shared concepts in meta-models. A process model usually consists of

activities, representing the units of work, connected by a control flow. The control flow is

described by means of directed edges as well as of splitting and merging points. Splitting

points allow to decide, according to their type and conditions (if any), which outgoing

edge to activate, while merging points describe how to reconcile different incoming paths.

Business process notations can be formal, as for example Petri Nets [141], or less formal,

as, for instance, EPC (Event-driven Process Chains) [89], YAWL (Yet Another Workflow

Language) [174], UML Activity Diagrams [132] and BPMN (Business Process Modeling

Notation [25, 131] or Business Process Model And Notation [135, 136]: BPMN acronym

has been recently changed from Business Process Modeling Notation to Business Process

Model And Notation).

BPMN

Business Process Modeling Notation [25, 131] or Business Process Model And Nota-

tion [135, 136] (BPMN) is a (graphical) language for the specification of business processes

developed by the Business Process Management Initiative and standardized by the OMG.

Though it is a relatively young notation, due to its growing use, four versions have already

been released since 2006. The most important changes with respect to the original ver-

sion [25] have been introduced in the last specifications, BPMN 2.0 [136] specifications,

which have been recently released. Hereafter, however, we refer to BPMN v1.1 [131],

which is the BPMN version we used throughout the thesis as process model notation.

The main purpose of BPMN is bridging the gap between process models and process

implementation [131], thus allowing to represent BPMN process models that are easily

readable and usable both by business people and by developers by means of a graphical

notation.

The core of BPMN is the specification of a BPD (Business Process Diagram), which is a

12

2. BACKGROUND 2.1. Business Process Management

Figure 2.1: An example of Business Process Diagram

diagram designed to be used by the people who model and manage business processes. An

example of BPD is shown in Figure 2.1. BPMN also provides a mapping to an execution

language of BPM Systems (BPEL4WS) [131].

A BPD is composed of a set of graphical elements. The BPMN graphical elements can

be categorized in four main classes:

• The first group is composed of flow objects. These are the graphical elements en-

countered when executing the business process flow and they can be further refined

in the following three groups:

– events, which denote something that happens at some time in the process and

are represented as circles (e.g., se1, ee1 and ie1 in Figure 2.1);

– activities, which are the real work units in the process, represented as rounded

boxes (e.g., t1, t2 and sp1 in Figure 2.1);

– gateways, which represent decision and merging points in a process and are

depicted as diamonds (e.g., g1, g3, g4, and g7 in Figure 2.1).

In detail, each of these three groups of flow objects has several specializations. For

example, activities can be atomic (task, e.g., t1 and t2) or composed activities (sub-

processes, e.g., sp1 and sp2). Events, instead, can be categorized with respect to

13

2.1. Business Process Management 2. BACKGROUND

the type of action they trigger, i.e., the start or the end of a process (start and

end events, e.g., se1 and ee1, respectively), or the continuation of the process flow

execution (intermediate events, e.g., ie1 and ie2), but also with respect to the type

of event (e.g., message event as ie1 or timer event as ie2). Finally, gateways can

be classified with respect to their role of decision or merging points, but also with

respect to the type of semantics the specific decision or merging point conveys (e.g.,

in case of AND decision gateways, as g1, all the outgoing flows have to start in

parallel; in case of OR decision gateways, as g6, at least one of the outgoing flows

has to start; and in case of XOR gateways, both data-based as g3 or event-based as

g4, only one of the outgoing flows has to start).

• Graphical objects that allow to connect flow objects populate the second group. They

can describe the process control flow (sequence flows, which are depicted as arrows

between pairs of flow objects, as sf1 and sf2 in Figure 2.1), the communication

between flows of the process realized by different participants (message flows, which

are represented as dashed arrows, as mf1 and mf2 in Figure 2.1), and, finally,

the association of additional information to flow objects (associations, which are

depicted as dashed lines, as the dashed line connecting the task t6 to the annotation

usemodelB in Figure 2.1).

• The third group of graphical elements is composed of swimlanes, objects aiming at

clarifying the process organization. They can be either pools (e.g., RetailSeller and

WholesaleSeller in Figure 2.1), representing participants, e.g., in B2B (Business To

Business) contexts, and lanes (e.g., SaleDepartment and DeliveryDepartment in

Figure 2.1), sub-partitions of pools that are often used for representing roles, in that

they allow to organize elements and categories.

• Artefacts, finally, populate the fourth group. They allow to represent additional

information that does not affect the process control and interaction flow. An artefact,

in turn, can be: a text annotation, as usemodelB in Figure 2.1, allowing to specify

additional text information (it can be connected to a specific graphical object by

means of an association); a data object, used for modelling documents and data

exchanged as input and output between activities (it is depicted as a box with a

folded corner); and groups for clustering flow objects according to logical categories

(they are depicted as dashed boxes grouping the graphical objects to be clustered in

the same category).

14

2. BACKGROUND 2.2. Semantic Business Process Management

2.2 Semantic Business Process Management

Semantic Business Process Management (SBPM) [56, 78] originates from the need of pro-

viding an automated way for querying business processes and reasoning about them. To

this purpose, Hepp et al. [78] in their visionary paper, advocate for the need of providing a

machine-readable representation of business processes at a semantic level and propose the

integration of semantic technologies (ontologies and Semantic Web Services) with business

process management.

Each phase of the business process life-cycle (modelling, implementation, execution and

analysis) is affected by this new semantic dimension, as well as potentially enhanced with

increased automation and extended functionalities [56]. In detail, Wetzstein et al. [56]

envisage the following benefits:

• discovery and auto-completion of process fragments in the process modelling phase

(subject to process model semantic annotation);

• Web service discovery and composition in the implementation phase, by exploiting

the semantic annotation of the modelling phase;

• run-time discovery (e.g., in case of new information available only at run-time) in

the execution phase;

• process monitoring, mining, querying and analysis by exploiting reasoning on seman-

tically annotated logs and models;

2.2.1 Semantic Annotation of Process Models

According to Wetzstein et al. [56], semantic annotation represents the first step for en-

abling querying and reasoning services in business process life-cycle. Semantic annotations

can be added to documents, web pages, models, in order to define or clarify their hid-

den semantics. To this purpose, semantic annotation takes often advantage of ontologies

(whose objective is to provide a shared, formal and explicit specification of concepts),

thus resulting in an approach associating ontology concepts to the information being an-

notated. According to Lautenbacher et al. [98], also in case of process models, it is possible

to characterize semantic annotation according to the level at which it is performed, simi-

larly to the distinction between document-level (i.e., concerning the whole document) and

character-level (i.e., concerning only specific parts of the document) annotation in linguis-

tics. In detail, they identify a metamodel-level annotation and a model-level annotation.

Metamodel-level annotation occurs when constructs of a process model are annotated

15

2.2. Semantic Business Process Management 2. BACKGROUND

(e.g., with ontologies describing process model notations, as sBPEL [129] or sBPMN [3]),

while model-level annotation consists of annotating process model elements (e.g., with

domain ontologies).

2.2.2 Ontologies

An ontology is a “formal, explicit specification of a shared conceptualisation” [74]. It

allows to describe in a formal way a domain by specifying its concepts and the relations

between concepts. However, two essential characteristics distinguish ontologies from other

types of models [57]:

• they provide a formal semantics, thus allowing machines to reason about them;

• they define real-world semantics, so that, based on a consensual terminology, they

allow also humans’ comprehension.

These two characteristics make ontologies suitable for three main purposes [76]: (i) the

communication among humans, among machines and among humans and machines; (ii)

exploitation of reasoning; and (iii) knowledge reuse.

Differently from controlled vocabularies, taxonomies and thesauri, which only allow

a restricted description of their terms/concepts, ontologies allow to express customized

relationships between concepts. From a structural point of view, in fact, an ontology is

usually composed of concepts, also called classes, individuals (or class instances), rela-

tions between concepts and attributes, i.e., class properties. From the content viewpoint,

instead, ontologies can be classified according to their level of abstraction, into upper-level

and domain ontologies. An upper-level ontology (top ontology) is an ontology describing

very general concepts (as for example, object and action), spanning across and abstract-

ing over different domains. SUMO1, DOLCE [63] and GFO [79] represent some examples

of widely recognized upper level ontologies. A domain ontology (or domain-specific ontol-

ogy) models a specific domain (e.g., the On-line shop domain) and uses specific concepts

(e.g., cart and checkout) for its description.

Ontologies can be represented by using specific languages: CycL [99] and OWL [134]

are examples of this type of languages.

OWL

Web Ontology Language (OWL) is a family of languages for representing ontologies. It

is an extension of RDF (Resource Data Framework) and it aims at enabling reasoning by
1http://protege.stanford.edu/ontologies/sumoOntology/sumo_ontology.html

16

http://protege.stanford.edu/ontologies/sumoOntology/ sumo_ontology.html

2. BACKGROUND 2.2. Semantic Business Process Management

providing a formal and machine-interpretable semantics. Two versions of OWL have been

standardized: OWL [134] and OWL 2 [133], each including, in turn, variants of different

expressiveness.

In detail, OWL specifications [134] propose three variants of increasing expressiveness

(i.e., each of them is an extension of the previous sub-language) of the OWL language:

OWL-Lite, OWL-DL and OWL-Full. OWL-Lite was conceived as a light version of OWL

with a low expressiveness (SHIF(D)) aimed at supporting the hierarchical classification

and simple properties. OWL-DL is based on a strict correspondence with Description

Logic. This allows to maximize the expressiveness (it includes all OWL constructs with

an expressiveness of SHOIN (D) such that only specific combinations of restrictions are

not allowed), while preserving the advantages of being formally grounded to Description

Logic (e.g., the availability of practical algorithms with known complexity). Description

Logics (DLs), in fact, are a family of logics that are decidable fragments of the First Order

Logic (FOL) with desirable properties. Both OWL-Lite and OWL-DL are based on DL,

while OWL-Full was mainly conceived for compliance with RDF, that it semantically

extends. It enriches FOL with new constructs but it is undecidable. OWL 2 DL has an

expressiveness of SROIQ(D).

OWL allows to describe classes (corresponding to DL concepts), e.g., Person. Classes

can be organized hierarchically by exploiting the is a relationship (corresponding to the

DL subsumption, v), so that sub-classes inherit super-class properties. For example

a class Child is a sub-class of the class Person. The root class of this hierarchy is the

owl:Thing class (DL top, >), while the common leaf is the owl:Nothing (DL bottom,

⊥). Moreover, OWL allows the representation of instances and of properties. Instances

correspond to DL individuals, while properties, corresponding to DL roles, are oriented

relationships between two objects and, as such, allow to specify a domain and a range.

For example Mark is an individual of the class Person, while has person pet is a property

having as domain the class Person and as range the class Pet. In detail, properties can be

of two types: object properties between instances of two classes (e.g., has person pet) and

datatype properties between class instances and literal data (e.g., is person age old, where

age is of type integer). Moreover, each property can be defined as symmetrical (in case

the relationship is bidirectional), transitive (i.e., if p(x, y) and p(y, z), then p(x, z), where

p is the property and x, y and z individuals) or functional (i.e., for each x in the domain,

only one y in the range is allowed) and a property can be defined as the inverse of another

property (i.e., if p(x, y), the inverse of p, p−1 is such that p−1(y, x)). For example, the

object property is person married with (having as both domain and range the class Person),

17

2.2. Semantic Business Process Management 2. BACKGROUND

is symmetric; an example of transitive property is the object property is elder than; a

functional property could be the datatype property is person age old; while the object

property is wife of is the inverse of the property is husband of. Finally, several operators

like union, intersection, complement, enumeration, disjointness, quantifiers, cardinality

can be used for defining special classes as composition of others, as well as to specify

special properties among classes (e.g., disjointness).

OWL is supported by many available reasoners, as for example, Pellet2, RacerPro3,

Fact++4.

2http://clarkparsia.com/pellet/
3http://www.racer-systems.com/
4http://code.google.com/p/factplusplus/

18

http://clarkparsia.com/pellet/
http://www.racer-systems.com/
http://code.google.com/p/factplusplus/

Chapter 3

Reverse Engineering of

Business Process Models

“All truths are easy to understand once they are discovered;

the point is to discover them.”

Galileo Galilei

Business processes operated by companies are often scarcely documented and, even when

some form of documentation exists, this is often incomplete and inconsistent with the

actual realization. Nevertheless, accurate and consistent business process documentation

is crucial to have a clear understanding of the business flow and to make strategic business

decisions (e.g., aimed at maintaining or restructuring existing processes).

Many business processes in companies are realized as software systems and Web appli-

cations are often the preferred way of exposing them to the users. In fact, Web applications

can be implemented on a wide variety of platforms and in many different environments

provided a browser and an Internet connection are available.

In such a scenario, an appealing option is reverse engineering the documentation about

the business processes from the implementation, so as to ensure that it exactly represents

the actual process, as realized in the software system supporting it. Reverse engineering

is an interesting option even when some form of documentation exists, since this can be

improved and aligned with the actual implementation [126].

Several works in the literature propose techniques to recover process models starting

from the static analysis of different artefacts, such as the software specification or the

source code (e.g., [197], [67], [138]) or by dynamically investigating the application execu-

tion, for example by analysing the execution logs (e.g., [24], [179], [178]). In all cases, the

resulting process should be reasonably close to the actual application while preserving a

19

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

good degree of understandability1. Static techniques, though allowing to better control

the process complexity, have limited adherence to the process execution. On the other

hand, one of the main problems with techniques extracting processes from execution logs

is that the recovered models are often large, complex and intricate, thus resulting difficult

to read and understand (the so called “spaghetti” processes [185]). The assessment of

the understandability of recovered models plays hence a key role in the evaluation of the

quality of recovered process models. This is, however, not trivial to estimate, lacking an

overall and shared means to measure it.

In this chapter we propose a dynamic technique that recovers business processes from

application execution traces, while exploiting modularization techniques for limiting the

model complexity and hence easing their readability (Section 3.1). Empirical evidence

shows in fact that modularity affects positively process understandability [149]. In detail,

exploiting the role of Web Applications as a means for exposing processes to the users,

we focus our analysis on exercised Web-GUI elements captured by tracing the application

execution with the aim of extracting initial process models. The initial processes are then

refined with different clustering techniques in order to improve their understandability.

Moreover, in the perspective of measuring the quality of the recovered process models, we

investigate and empirically evaluate a set of metrics proposed in the literature to asses

the quality of processes in terms of understandability and readability (Section 3.2).

The material presented in this chapter related to the reverse engineering of business

processes from execution traces and their clusterization has been published in [48, 47].

3.1 Reverse Engineering of Business Processes

In this section we present a technique for the reverse engineering of BPMN business

processes from Web applications. Differently from reverse engineering approaches that

statically infer process models from software artefacts, our technique analyses the ap-

plication dynamically. It is often the case, in fact, that software artefacts are not fully

available (e.g., in case of third-party component code). Moreover, Web applications are

intrinsically dynamic, (e.g., pages can be constructed dynamically, the DOM structure

is dynamically manipulated by means of reflection mechanisms), which make them hard

to be statically analysed. Finally, Web applications are based on user events, i.e., their

operations are mainly guided by user actions, which cannot be captured statically.

In detail, the approach we propose analyses application execution logs, similarly to

1According to the related literature (e.g., [154] and [185]), we refer to model understandability in terms of the extent

to which the artefact (e.g., a software, a model) is easily comprehended with respect to purpose and structure ([20]).

20

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

process mining techniques (e.g., [24], [179]), which try to infer processes by analysing the

workflow logs, i.e., traces containing real and traced information about organizations and

process executions. However, in our case, execution logs are not provided automatically

by the execution environment, hence a preliminary step is required in order (to select and)

trace the information of interest. Since Web applications are mainly guided by actions

performed by users, our technique focuses on the analysis of the user interactions with the

Web application, which are made available from the application Web-GUI. Web applica-

tion forms and links implicitly contain information about the underlying process and its

elements [90]. In fact, accomplishing a user task usually involves providing (through forms

and links) some data and requesting the server to perform operations (server-side tasks).

The idea is hence to trace the application execution for capturing information about the

exercised GUI elements and using it to infer an (initial) process model, as exposed on the

Web.

Furthermore, since the initial recovered process can be very detailed, flat and large,

different clustering techniques are applied to modularize and organize the process, as well

as to increase its readability and understandability [149].

In the next subsection (Subsection 3.1.1), we provide some concepts used in the re-

mainder of the chapter about modularization and flow graph analysis. Subsection 3.1.2 in-

troduces the business process recovery technique, while Subsection 3.1.3, Subsection 3.1.4

and Subsection 3.1.5 detail its main steps. Finally Subsection 3.1.6 presents a tool sup-

porting the presented reverse engineering technique and Subsection 3.1.7 a case study for

the evaluation of the approach.

3.1.1 Background

Modularization

Modularity is the design principle of having a complex system composed of smaller sub-

systems that can be managed independently though functioning together as a whole.

Similarly, in process modelling, modularity is the design principle of having a complex

business process composed of smaller sub-processes.

Modularization in process models [149, 111] is mainly a modelling style (i.e., stepwise

task refinement) but it also helps in stimulating model reuse and concurrent execution

(sub-processes may be executed by means of different engines). In addition, modulariza-

tion helps programmers and designers in model and software understanding. In a recent

experiment related to process modularization, Reijers et al. [149] showed that process

modularization impacts positively process understanding.

21

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

However, drawbacks can limit this impact. For instance, no objective criteria and pre-

cise guidelines exist to identify the adequate process modularization granularity as well

as no unique way exists to modularize a process model. As shown by Reijers et al., alter-

native process modularization may affect differently the ease of process understanding.

Flow Analysis

Static code analysis is often realized by extracting the control flow graph (CFG) and

propagating flow information inside it. In the CFG, each node represents a statement

and an edge between two statements represents a (syntactically) possible execution flow

between them. For example, the CFG of the fragment of code in Figure 3.2a is depicted in

Figure 3.2b (see below for details). The label of each node of the graph is the line number

of the corresponding code statement. Properties holding for a certain CFG (e.g., data and

control dependences) can be determined by traversing the graph and propagating proper

information. The procedure performed for the propagation (through the CFG) of the flow

information and its modification according to statement computations can be described

in a general way by the Flow Analysis Framework [5]. Given a graph G = (N,E) where

N is the set of nodes and E the set of edges, the Flow Analysis Framework consists of:

1. a set V of values that can be propagated in the graph. Elements of V are assigned

to IN[n] (input of n) and OUT[n] (output of n) for each node n in the graph.

2. a transfer function f (or a set of them). Every node n is associated to a function

fn : V → V representing the computation performed in the node: OUT [n] = fn(IN [n]).

The transfer function is assumed to be monotonic.

3. a confluence (meet) operator
∧

used to join flow values coming from the OUT

set of the predecessor (or successor) nodes into the IN set of the current one n:

IN [n] =
∧
m∈z(n) OUT [m], where m is a node of the node set z(n) defined according

to the direction of the information propagation (see below). Each meet operator has

an identity (top) element >. Examples of meet operators are union and intersection

operators, respectively having > = ∅ and > = U , when V = 2U . The meet operator

is associative, commutative and idempotent.

4. the direction of the information propagation can be forward or backward. This de-

termines if the information is propagated starting from predecessors or successors of

a node. In case of forward propagation, the meet operator is applied to the set of

22

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

** Initialization **

For each n ∈ N

IN [n] = >
OUT [n] = f(IN [n])

End For

** Flow propagation **

While any OUT [n] or IN [n] changes

For each n ∈ N

IN [n] =
∧

m ∈ z(n) OUT [m]

OUT [n] = fn(IN [n])

End For

End While

where:

if (direction = ‘‘fwd’’) z = pred

if (direction = ‘‘bwd’’) z = succ

Figure 3.1: Flow Analysis Framework

predecessors of n (z(n) = pred(n)), while in the other case it is applied to the set of

successors of n (z(n) = succ(n)).

The generic flow analysis algorithm is reported in Figure 3.1. The algorithm starts

with an initialization step in which IN and OUT sets are defined for each node of the

graph. Then the information is propagated in the graph by applying meet operator and

transfer function, according to the selected propagation direction, until the fix point is

reached.

The flow analysis framework has been successfully applied for determining different

properties of a program, e.g., reachable uses, dominators, postdominators. For each type

of analysis, the framework is instantiated by defining the most suitable: (1) set of flow

values V, (2) transfer function f, (3) meet operator
∧

, and (4) propagation direction.

For example, the instantiation of the flow analysis framework for the computation of

the dominators of the nodes in a CFG will propagate the information related to the nodes

themselves. A node n in a CFG, in fact, dominates a node m in the same graph if n is

contained in every path of the CFG from the initial node of the CFG to m. The flow

analysis framework, in this case, can be instantiated in the following way:

1. V contains sets of nodes of the CFG (i.e., V = 2N , where N is the set of graph

nodes).

2. The transfer function f has the following structure:

f(x) = GEN [n] ∪ (x−KILL[n])

23

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

where GEN [n] and KILL[n] are defined as:

GEN [n] = {n ∈ N}

KILL[n] = ∅

Hence, for each iteration of the flow propagation, OUT [n] = GEN [n] ∪ IN [n].

3. The confluence (meet) operator is set intersection, thus detecting, for each node n,

only those nodes that have to be necessarily traversed for reaching node n itself. The

corresponding top element is > = N .

4. The direction of the information propagation is forward, thus the meet operator is

applied, for each node n, to the set of predecessors of n (z(n) = pred(n)).

The graph in Figure 3.2b shows next to each node the corresponding IN and OUT values

both in the initialization phase (IN0 and OUT0) and in the only iteration of the algorithm

occurring in this example (IN1 and OUT1). Next to each statement in Figure 3.2a is

reported the final set of statements dominating the current statement. For instance, the

code statement at line 3 (“goto a;”) is dominated by the statements at lines 1 and 2

(respectively: “x=3;” and “if (x)”).

3.1.2 GUI-based Reverse Engineering

The proposed reverse engineering approach for extracting the process underlying a Web

application is based on the analysis of the application GUI exercised during the execution.

Figure 3.3 shows the overall approach. It is performed by means of the following main

steps: (A) trace of application execution; (B) process extraction from the recorded traces;

and (C) process refinement by means of clustering. The idea is to build an initial pro-

cess that describes the workflow exposed via the application GUI by analysing execution

traces. The traces contain information about the behaviour of the application (in terms of

visited pages and executed events, such as button clicks and links), the structure of each

visited page (in terms of its forms and links) and its content (in terms of textual content

related to GUI-elements). By analysing such traces the initial process is inferred and

represented in BPMN. Afterwards, different clustering techniques (i.e., D. structural, E.

page-based, F. dependency-based and G. semantic) can be applied to the resulting process

for its refinement and for improving its modularization. As shown in Figure 3.3, different

combinations of clustering techniques can be applied to the recovered process (e.g., struc-

tural and dependency-based clustering, only structural clustering). However, different

clustering combinations and orders can impact process modularization in different ways.

24

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

(a) (b)

Figure 3.2: Example of application of the Flow Analysis Framework for the computation of dominators

in a code fragment

25

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

Figure 3.3: Overall picture of the business process reverse engineering approach. Ovals represent activities

while squares the produced artefacts.

3.1.3 Dynamic Process Extraction

During the application execution, three types of information are stored in the execution

traces:

• structural information: the structure of each visited client Web page in terms of all

its links, forms and their fields, e.g., input text and checkbox;

• behavioural information: the sequence of GUI-elements (forms and links) activated

by the user during the navigation of the application and used to submit informa-

tion/requests to server-side components;

• content information: the (textual) content of the application Web pages related to

each GUI element part of structural or behavioural information (this information

will be used only in the process clustering phase C).

Let us consider for example the user navigation described in Figure 3.4 for the user

login. If the user is already registered, he only needs to insert his login and password

in the LoginForm form and to sign-in, by pressing the Sign-in button. However, in our

example, he is not yet registered, thus he needs to click the RegisterNow submit button.

Such an event triggers the RegisterNow.do server component (e.g., a servlet), which dis-

plays the RegistrationPage page. Now the user can choose whether to proceed with the

short or complete registration. In this example, the RegistrationForm is filled and its Sub-

mit button pressed by the user. Hence, the Registration.do server component is executed

and the ConfirmationPage is visualized. For this example of navigation we store both

behavioural information (e.g., the pair 〈RegisterNow,RegisterNow.do〉) and structural in-

formation (e.g., the Login and Password fields in the LoginForm of the WelcomePage).

26

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

Figure 3.4: An example of user navigation trough web pages

Starting from the set of traces t obtained during the application execution, the initial

workflow process is built by applying the algorithm in Figure 3.5.

During the initialization (step 1 of the algorithm), execution traces are analysed for

initializing three sets, GUIESS,CSS,APTS. Figure 3.4 shows the three sets built on

the basis of our example. GUIESS contains the structural information related to each

visited Web page in terms of its forms, fields and links (e.g., in Figure 3.4 GUIESS con-

tains information related to both the LoginForm and RegisterNowForm forms of the page

WelcomePage). CSS contains the behavioural information related to pairs of submission

events and the associated triggered server components (e.g., in Figure 3.4 CSS describes

the connection between form submission events, such as RegisterNow in the form Regis-

terNowForm, and their server-side components, such as RegisterNow.do). Finally, APTS

is a set of pair-action traces, obtained by exploiting both structural and dynamic informa-

tion. APTS is structured in sequences of action pairs ap such as: ap = (WP, se), where

WP is a Web page abstraction and se is the form/link submission event, contained in WP

and exercised by the user (e.g., in APTS in Figure 3.4, the first action pair trace apt1

contains the beginning of the sequence of exercised events, i.e., RegisterNow and Submit,

each associated to the Web page abstraction in which it is contained, i.e., WelcomePage

and RegistrationPage, respectively).

By analysing the action-pair traces we build a finite state machine (FSM, step 2) then

used for building the client side process p. The FSM is realized (line 2.1) by defining

a node for each GUI-element of the traced Web pages (e.g., LoginForm and Register-

NowForm in the example). For each pair of consecutive ap (api and api+1), an edge is

added to the FSM (line 2.2) from the node representing the source form/link in api to all

forms/links contained in the target page of api+1. For instance, in APTS of the example

the pairs ({SignIn,RegisterNow}, RegisterNow) and ({Submit,GotoSRF}, Submit)

27

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

Input: Set of traces(t)

Output: BPMN model

1. Initialize

1.1 extract the GUI-element structure set GUIESS

GUIESS = {ges | ges = (ge, structuralComponents(ge))}
where ge is a a form or link GUI-element in t and

structuralComponents(ge) =

fields(f) if ge is a form f

{l} if ge is a link l

and fields(f) is the field set of a form f

1.2 extract the set of client-server component pairs CSS

CSS = {cs | cs = (se, ss)}
where se is the submit event exercised by the user via submit button or link

and ss the correspondent triggered server component

1.3 extract the set of pair-action traces APTS

APTS = {apt | apt =〈ap1,...,apz〉}
where api = (WPi, sei)

WPi =
⋃

ge∈GUIElements(WPi)
submitElement(ge)

and submitElement(ge) is the submit event (i.e. the submit button or the link)

of the GUI-element (respectively the form or the link) exercised by the user

2. Build client-side FSM = (N, E)

2.1 N =
⋃

apt ∈ APTS

⋃
ap = (WP, se) ∈ apt GUIElements(WP)

2.2 E =
⋃

apt=〈..., (WPi, sei), (WPi+1, sei+1), ...〉∈APTS

⋃
sej∈WPi+1

(GUIElement(sei), GUIElement(sej))

where GUIElement(se) is the GUI-element (i.e., form or link) activated by exercising the submit event

(i.e. the submit button or the link respectively)

3. Convert client-side FSM to the client BPMN process p = (cPool, MF)

3.1 create the client pool cPool = (T , S, G, E, SF)

3.2 add tasks and sequence flows

3.2.1 for each n in N: add tn to T

3.2.2 for each (ni, nj) in E: add (tni, tnj) to SF

3.3 add necessary gateways to G

3.4 populate subprocesses with structural information

for each ges = (ge, structuralComponents(ge)) in GUIESS

if |structuralComponents(ge)| > 1 (i.e. if ge = f && |fields(f)| > 1)

3.4.1 move tge from T to S

3.4.2 for each field in fields(ge)

add tfield task to tge

4. Add server-side to the BPMN process ps = (cPool, sPool, MF)

4.1 add the server pool sPool = (sT , sS, sG, sE, sSF)

4.2 create server tasks, events and process message flows

for each cs = (se, ss) in CSS

4.2.1 add tss to sT,

ess to sE and

(ess, tss) to E

if structuralComponents(GUIElement(se)) = {se}
4.2.2 add (tGUIElement(se), ess) to MF

else

4.2.3 add (tse, ess) to MF

4.3 add necessary gateways to sG

Figure 3.5: Business process recovery algorithm

28

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

are two consecutive action pairs representing the fact that the event RegisterNow of

the form RegisterNowForm in the page WelcomePage connects the WelcomePage, repre-

sented as the sequence of the submit events of its forms ({SignIn,RegisterNow}), to the

page RegistrationPage, represented as {Submit,GotoSRF}. Hence, an edge is added to

the FSM from the node RegisterNowForm to all the nodes in the RegistrationPage (i.e.,

ShortRegistrationForm and RegistrationForm).

The built FSM is converted into a BPMN process. Figure 3.6 shows a fragment of the

BPMN process obtained by applying the algorithm to the example. An empty process is

initially created and a client pool is added to it (line 3.1), Figure 3.6 top. For each node

of the FSM, a task (line 3.2.1) and the set of sequence flows (line 3.2.2) corresponding to

the FSM-edges are added to the pool. For instance, in Figure 3.6, the tasks RegisterNow

(corresponding to the node RegisterNowForm), GotoSRF (corresponding to the node

ShortRegistrationForm) and RegistrationForm, as well as the sequence flows corresponding

to the edges connecting the first task with the second and the third ones, are added to the

client pool. Moreover, the required BPMN gateways are added in decision and merging

points (line 3.3), e.g., for tasks with more than one incoming or outgoing edge. The

process p is enriched by considering also the structural information in GUIESS (line 3.4).

If a task of the process represents a form of the application GUI, the task is converted

into a sub-process (line 3.4.1) populated with a set of tasks, one for each field of the

form (line 3.4.2). For instance, the form RegistrationForm of the page RegistrationPage

contains several fields; each of them corresponds to a task in the related sub-process

RegistrationForm in Figure 3.6.

Finally, the server component activation and execution are modelled in the process. To

this aim, a server pool is added (line 4.1), Figure 3.6 down. The pool is then populated

(line 4.2.1) with events and tasks representing respectively server events and compo-

nents (e.g., servlets) triggered by the user. Moreover, by analysing each pair (se, ss) in

CSS, gateways, sequence and message flows are added to the process. In particular, a

message flow is created between the two pools by connecting each se task contained in

GUIElement(se) with its server-side counterpart (the event firing the activated servlet).

For instance, in the example in Figure 3.6, the server-side component RegisterNow.do,

called by the form RegisterNowForm, represents a task of the server pool activated by an

event triggered by the client pool task RegisterNow.

29

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

Figure 3.6: Fragment of the process example

3.1.4 Process Clustering

The client pool of the recovered process may be large and complex. We improve its read-

ability by modularizing it [149]. In detail, sub-processes, grouping cohesive and meaning-

ful sets of process tasks, are identified and introduced in the process by applying clustering

techniques.

We consider the following clustering criteria: structural clustering (the structure of

each group of nodes in the graph matches a loop, a sequence or an alternative pattern);

page clustering (all the nodes in each group represent elements of the same Web page);

dependency clustering (each group of nodes minimizes coupling with other groups and

maximizes internal cohesion); and semantic clustering (the nodes in each group corre-

spond to page elements with similar textual content).

These techniques can be applied individually or composed in specific orders for im-

proving the process modularization. The input to each clustering technique is a graph

extracted from the recovered process (a graph node corresponds to a process task and

a graph edge to a sequence flow) and used as intermediate artefact for grouping process

elements. The produced output is a refined BPMN process, whose client pool (obtained

by converting the clustered graph back to a new BPMN process) contains a set of sub-

processes which replace the clustered process elements. Furthermore, in order to improve

process understandability, for each sub-process some characterizing terms are identified

by analysing the terms contained in such a sub-process. These terms are suggested to the

analyst as meaningful sub-process labels.

In the rest of this section we present each clustering technique.

30

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

Structural Clustering

This type of clustering was inspired by structured programming [40]. Several structuring

techniques and methodologies have been proposed over time for removing or reducing the

use of GOTO statements (i.e., writing so called “structured programs”). Structured pro-

grams are composed of simple (single-input, single-output), composable and hierarchical

program-flow structures, such as sequence, selection, and repetition.

By means of structural clustering we structure the process by grouping a set of graph

nodes (process tasks) if their arrangement matches a structural pattern such as loop, se-

quence and alternative pattern. Each structural pattern is detailed in this section. We

identify “blocks” of nodes representing tasks in the initial process and group them into

sub-processes. A set of graph nodes (process tasks) is a block if: (i) it respects at least

one of the three clustering criteria (see below); and (ii) no nodes have edges incoming

into or outgoing from the block (with source or destination not in the block), except

for exactly one source and one sink node. This notion of block has already been used in

some existing works (e.g., [137] and [182], in the process conversion from BPMN to BPEL).

Loop Clustering

Loop clustering groups tasks whose flow creates a cyclic structure. Such a pattern is

recognized by applying the algorithm by Tarjan [166] for computing the strongly connected

components (SCCs) in the process. The identified SCCs are then filtered by considering

only those of them having at most one node with incoming SCC-external edges (i.e., edges

whose extreme nodes are not both contained in the SCC) and at most one node with SCC-

external outgoing edges (the target node is out of the SCC), respectively representing the

SCC source and sink nodes.

After filtering, each remaining SCC is mapped to a cyclic sub-process of the initial

process. If the SCC, instead, contains an edge from the sink to the source node (return

edge), the SCC is transformed into a BPMN loop sub-process, in which a fictitious exit

node is added, the target of all the edges pointing the SCC source node is replaced with

such an exit node and the return edge is removed. Figure 3.7a shows an example in which

an SCC (containing the tasks B, C, D) is identified and transformed into a BPMN loop

sub-process.

The excluded SCCs (those with more than one node with incoming or outgoing edges

outside the SCC) are analysed again with the aim of finding sub-SCCs that can be con-

verted into smaller sub-processes. In detail, for each pair of nodes having SCC-external

edges, an induced graph is built by considering the node-pair and all reachable nodes

31

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

(a) BPMN loop clustering example (b) Cyclic clustering example

Figure 3.7: Loop clustering examples

having only SCC-internal edges. Such iterative analysis may identify more than one (par-

tially) overlapping sub-SCCs. In this case, the set with the maximum cardinality of nodes

is selected. Finally, the SCC components are grouped into a generic cyclic or BPMN loop

(if a return edge exists) sub-process.

Figure 3.7b shows an example in which the SCC identified by applying the Tarjan

algorithm to the whole graph of the initial process (task set: B, C, D, E, F, I) cannot be

directly grouped into a sub-process. Indeed, more than one of its tasks has at least one

incoming/outgoing sequence flow coming from/leading to a task out of the SCC (e.g., F).

However, by analysing the SCC subsets, the maximal sub-SCC that is free from any node

with SCC-external edges (except for source and target nodes) is identified (task set: C,

D, I). Since no sequence flow exists between tasks I and C, the resulting sub-process is

not a BPMN loop sub-process.

Sequence Clustering

Sequence clustering identifies all the sequences of tasks in the process that can be grouped

into subprocesses. To this purpose the process graph is analysed by applying the generic

flow analysis framework with the following setting:

1. V = 2N where N is the set of graph nodes;
2. the transfer function f is defined as:

f(x) = GEN [n] ∪ (x−KILL[n])

where GEN [n] and KILL[n] are defined as:

GEN [n] = {n ∈ N : |outE(n)| ≤ 1 ∧ |inE(n)| ≤ 1}

KILL[n] = {m ∈ N : |outE(n)| > 1 ∨ |inE(n)| > 1}

32

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

Figure 3.8: Alternative clustering example

and

outE(n) = {(n,m) ∈ E : m ∈ N}

inE(n) = {(m,n) ∈ E : m ∈ N}

3.
∧

= ∪, so that IN [n] =
⋃
m∈z(n) OUT [m]

4. forward (z(n) = pred(n)) is the information propagation direction.

This flow analysis allows us to identify all the task sequences. Sequences are then

additionally filtered by discarding: (i) each sequence that is not composed of, at least,

three tasks; and (ii) in case of overlapping sequences, each non maximal sequence. The

output of this clustering technique is a new BPMN process in which the identified task

sequences are grouped into sub-processes.

Alternative Clustering

Alternative clustering analyses the process to identify alternative paths (i.e., different

sequences of process elements connecting the same pair of decision and merging points)

and groups them into sub-processes.

Figure 3.8 shows an example of a process in which an alternative path pattern is

identified. The pattern includes three out of the four paths between the two gateways

g1 and g3 (source and sink of the candidate cluster). The last path (<L,M,N>) is not

included since it contains elements, e.g., the gateway g2, on a path that does not pass

through the sink gateway g3 (i.e., this path is not in the set of paths between g1 and g3).

Given a process graph, the flow analysis framework is applied two times to the whole

graph with different purposes and settings to find the candidate alternative clusters (a

cluster is considered a candidate alternative cluster if it is composed of, at least, two

alternative paths).

The flow analysis is executed in the graph to compute (i) dominance (a node nB is

33

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

dominated by a node nA if every path from the initial node of the graph, i.e., the root of

the graph, to nB contains nA) and (ii) postdominance (a node nA is postdominated by a

node nB if all paths from the node nA to the graph’s leaves, i.e., nodes with no outgoing

edges, contain nB), for all nodes representing BPMN gateways.

The setting required for instantiating the generic flow analysis framework for the dom-

inance analysis is the following:

1. V = 2Gw where Gw is the set of nodes representing gateways;
2. the transfer function f is defined as:

f(x) = GEN [n] ∪ (x−KILL[n])

where GEN [n] and KILL[n] are defined as:

GEN [n] = {n ∈ N : n ∈ Gw}

KILL[n] = ∅

3.
∧

= ∩, so that IN [n] =
⋃
m∈z(n) OUT [m]

4. forward (z(n) = pred(n))) is the information propagation direction.

The output of the dominance analysis is, for each task-node, the set of gateways that

have to be necessarily traversed for reaching the current node from the graph root.

The setting applied for instantiating the generic flow analysis framework to find the

postdominators of each node n is the following:

1. V = 2Gw where Gw is the set of nodes representing gateways;
2. the transfer function f is defined as:

f(x) = GEN [n] ∪ (x−KILL[n])

where GEN [n] and KILL[n] are defined as:

GEN [n] = {n ∈ N : n ∈ Gw}

KILL[n] = ∅

3.
∧

= ∩, so that IN [n] =
⋂
m∈z(n) OUT [m]

4. backward (z(n) = succ(n)) is the information propagation direction.

The output of the postdominance analysis is the set of gateways that have to be

necessarily traversed for reaching the final nodes from each task-node.

Once dominance and postdominance are known for every node n, they are used for

each pair of gateways (gA, gB), to find out the CandidateNodes set containing all nodes:

(i) dominated by gA and (ii) postdominated by gB. For instance, in Figure 3.8 all the

nodes contained in the four paths from the source to the sink gateway (respectively g1

and g3) are dominated by g1. However, since the nodes in the path <L, M, N, g2> are

34

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

not postdominated by the sink gateway g3 only the nodes in the other paths belong to

the CandidateNodes set.

The CandidateNodes set defines a sub-graph of the original process graph, whose edges

are all and only the original edges connecting two nodes in the set. When considering this

sub-graph, some nodes may become unreachable from gA or unable to reach gB. Those

nodes are excluded from the alternative pattern through a simple reachability analysis.

Hence, for each pair of gateways, the set of nodes in an alternative pattern between

them is identified and their corresponding BPMN elements are grouped into a sub-process.

In case of overlapping patterns, the instance with the highest number of tasks is selected.

Page Clustering

Page clustering groups sets of tasks contained in the same Web page into a sub-process by

starting from the assumption that elements (e.g., forms) in the same page are related to

the same functionality. The initial BPMN process consists of tasks representing the GUI

forms and links found in the visited Web pages. Hence, the purpose of this clustering

is to group tasks that represent elements defined in the same Web page. Besides the

specific tasks, also gateways connected only to tasks in the cluster are added to the page

cluster. On the other hand, in case of tasks representing elements shared among more

than one Web page (e.g., forms with the same target action and the same field set), no

page clustering is applied.

Dependency Clustering

The objective of this clustering technique is optimizing the partitioning level of the process

elements, so that the resulting organization simultaneously minimizes coupling (i.e., the

connections among elements of distinct clusters) while maximizing cohesion (i.e., the

connections among elements of the same cluster).

Coupling and cohesion are often evaluated in system maintenance and evolution for

improving system architectures and source code quality. In our case, their use in process

modularization relies on the assumption that strictly connected process elements (i.e.,

elements characterized by high cohesion among them and low coupling with other process

elements) represent logically related activities, so that they can be considered as sub-

systems (sub-processes).

Therefore the goal of this type of clustering is, given a graph representing a process,

finding a “good” partition of the graph itself. A partition is the decomposition of a set

of graph elements (nodes and edges) into mutually disjoint clusters. The partition is a

35

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

“good partition” when: highly interdependent nodes (elements of the initial process) are

grouped in the same cluster and independent nodes are assigned to separate clusters. Once

clusters are identified in the graph they can be converted into sub-processes containing

process elements corresponding to the graph nodes in the cluster. Additional gateways

are added, if required, to the resulting process when converting the clustered graph into

the corresponding process.

The following measures [106] for cohesion (Ai) of cluster i and coupling (Ei,j) between

clusters i and j are used to find such a partition in a given graph:

Ai =
µi

N2
i

Ei,j =
εi,j

2NiNj

where Ni and Nj are respectively the number of graph nodes in clusters i and j; µi is

the number of dependencies internal to cluster i; and εi,j is the number of dependencies

between clusters i and j. Since auto-loops on activities cannot occur in processes2, the

denominator of Ai becomes Ni(Ni − 1). Ai and Ei,j are between 0 and 1, being 0 when

no dependency holds and 1 when there is full connectivity.

The Modularization Quality MQ [106], which will be the objective function of the

optimization process, is defined as a measurement of the modularity in terms of process

element cohesion and coupling:

MQ =
1

k

k∑
i=1

Ai −
1

k(k−1)
2

k−1∑
i=1

k∑
j=i+1

Ei,j

where k is the number of graph partitions. If k = 1, MQ = A1. The MQ measurement

ranges between -1 (no cohesion, maximum coupling) and 1 (no coupling, maximum cohe-

sion). Given a dependency graph, the modularization algorithm partitions the software

system so as to maximize MQ. Given a set S that contains n elements, the number Sn,k
of distinct k−partitions (i.e., partitions consisting of k non-empty clusters) satisfies the

recursive equation:

Sn,k =

{
1 if k=1 or k=n

Sn−1,k−1 + kSn−1,k otherwise

The Sn,k entries grow exponentially with the size of S. For instance, a dependency

graph with 5 nodes is associated with 52 distinct partitions, while a graph with 15 nodes

is associated with 1,382,958,545 distinct partitions. Hence, the exact optimal solution

cannot be found for real and non trivial graphs. Heuristic-based techniques are often

2We assume activities can have only one input and output sequence flow.

36

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

** Hill-climbing clustering algorithm: **

S ← Graph elements

P ← GenerateRandomPartition(S)

repeat

BNP ← BetterNeighboringPartitions(P)

if BNP !=0

P ← SelectRandomly(BNP)

end if

until P does not change

Pmax ← P

Figure 3.9: Hill climbing algorithm

aiming at maximizing the modulariza-

tion quality of a process Figure 3.10: Dependency clustering example

applied to identify sub-optimal solutions. Such heuristic techniques use the notion of

neighbouring partitions, obtained by moving elements among the clusters of the partition,

so as to improve MQ. A partition NP is a neighbour of a partition P if it is the same as

P except for a single element that belongs to different clusters in the two partitions.

The clustering process is treated as an optimization problem in which a heuristic-

based algorithm tries to maximize the objective function MQ in charge of measuring the

“quality” of graph partitions. A pseudo-code for a hill-climbing algorithm is given in

Figure 3.9.

In this pseudo-code, a random solution is generated (GenerateRandomPartition) and

then evolved by considering its neighbouring solutions evaluated by means of the objective

function MQ (BetterNeighboringPartitions). Evolution is iterated until neighbours

exist. Alternative implementations can use genetic algorithms, for example see Mancoridis

et al. [106]. When a large graph is analysed, the number of clusters in the (sub-)optimal

partition may be large. In this case, it makes sense to group the clusters, thus creating a

hierarchy of clusters.

Figure 3.10 shows an example in which the dependency cluster has been applied for

grouping process elements. The gateway g3 (Figure 3.10 “Initial” pool) is the join point

for two high-quality (maximally cohesive and minimally coupled) partitions of the process.

The “Clustered” pool in Figure 3.10, shows the clustered process. Notice that, in this

process, one gateway (g6) has been added in order to make the process consistent. By

considering the process elements of the obtained clusters, cohesion (AS1, AS2) and coupling

(ES1,S2) have been computed as follows: AS1 = 4
16

; AS2 = 7
36

; ES1,S2 = 2
2(4)(6)

; and so

MQ = AS1+AS2

2
− ES1,S2/2

2
= 0.21.

37

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

Figure 3.11: Term-based analysis example

Semantic Clustering

The objective of this clustering technique is grouping the process elements based on the

similarity in their content. The content of a GUI element (form or link) is represented

by a list of automatically extracted terms characterizing the text contained in the GUI-

element (and/or, in case of forms, in its fields) rendered in a Web page. This clustering

technique mainly groups process elements according to their “shared” terms. To this aim

a Natural Language Processing technique is applied to determine the terms in the Web

page that could be associated to each element and to cluster them.

By means of the analysis of the content information traced during the initial process

recovery (see Subsection 3.1.3) a list of terms is extracted for each process element e.

Let K be the vector containing all terms extracted from all the application pages and

related to the process elements (i.e. the union of terms contained in each of the pages in

which a process element is contained), with each term uniquely represented by a single

entry. A feature vector Ve is built for each element e, with Ve[i] holding the weight of

the term K[i]. A measure of this term-weight is based on the presence of the term itself

K[i] in the element content. When a term is present in the content element e, the related

entry Ve[i] in the feature vector is 1; 0 otherwise. More sophisticated metrics for the term

weights (e.g., term frequency and inverse document frequency) could be also used.

For example, let us consider the content of three fictitious elements e1, e2 and e3 of a

process. Boxes in Figure 3.11 report terms and occurrences for those elements (e.g., the

term “add” occurs one time in e1).

Given the description of each element e in terms of its feature vector Ve, it is possible

to exploit similarity or distance measures to agglomerate entities into clusters. Similar-

ity/distance between clusters is generalized from the similarity/distance between entities

by means of the complete linkage rule (different rules such as average linkage could be

38

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

also applied). According to this rule, the distance between two clusters is computed as

the minimum similarity between pairs of cluster elements (this measure privileges clus-

ter cohesion over coupling). We preferred a similarity measure over a distance measure,

because the latter is prone to the known problem of sparse or empty vectors: distances

become small not only when vectors are close to each other, but also when they are very

sparse (or empty), thus leading to the creation of inappropriate clusters. The similarity

measure used with the feature vectors described above is the normalized vector product,

given by:

sim(e1, e2) =
〈Ve1, Ve2〉
‖Ve1‖ ‖Ve2‖

where Ve1 and Ve2 are the feature vectors of elements e1 and e2 respectively; angular

brackets indicate the scalar product, which is normalized by the product of the norms,

thus giving a similarity measure which ranges from 0 to 1 (under the hypothesis of non-

negative weights). After executing the agglomerative clustering, a proper cut point needs

to be manually selected. The possibility for the user to choose a given abstraction level

(number of clusters or, equivalently, cut point), and then to adjust it toward the top

of the hierarchy (less clusters with more elements inside) or toward the bottom (more

clusters containing fewer elements) can be an important interactive facility for improving

the clustering operation.

In our example, by applying the semantic clustering to the three elements shown in

Figure 3.11 and choosing number of clusters equal to 2, elements e1 and e2 can be grouped

into a unique sub-process since their content similarity is higher than the content simi-

larity of other element combinations. More sophisticated Natural Language Processing

approaches could be further investigated for improving this semantic clustering technique.

For instance, different term extraction, grouping criteria and language analysis algorithms

may be considered.

3.1.5 Cluster Labelling

As suggested by Mendling et al. in their studies [111, 112], labels of process tasks and

sub-processes impact the level of process readability and understandability.

In our reverse engineering technique, a term-frequency analysis (based on term frequency-

inverse document frequency, TFIDF [107]) is applied to the process element (task and sub-

process) labels for identifying “representative” terms for each cluster. The assumptions

behind this choice are that: (i) a natural language processing technique can be applied to

the labels of process tasks for identifying terms characterizing each sub-process (cluster

39

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

of tasks), and (ii) these terms are adequate to be labels of such sub-processes. These

assumptions will be further investigated and evaluated by means of empirical analyses.

Generally, TFIDF is a statistical measure used to evaluate how relevant a term is

in a document contained in a document collection. The relevance of a term increases

proportionally to the number of times the term appears in the document (term frequency)

but is offset by the frequency of the word in the collection of documents. A term, in fact,

can occur frequently in a document, as well as in all the others, thus resulting to be a

general term rather than a specific term characterizing that document. In order to avoid

this kind of situation, the frequency of a term in a document is compared with the average

frequency of that term in the whole set of documents by offsetting its frequency with the

inverse document frequency.

Term frequency (TFi,j) of a term ti in the document dj is defined as follows:

TFi,j =
ni,j∑
k kk,j

where: ni,j is the number of occurrences of term ti in the document dj and
∑

k kk,j is the

sum of the occurrences of all terms in document dj.

The inverse document frequency (IDFi) of the term ti is defined as follows:

IDFi = log
|D|
d(ti)

where: |D| is the number of documents in the collection; and d(ti) is the number of

documents in which the term ti occurs.

Hence, TFIDF for the term ti in the document dj is computed as follows:

TFIDFi,j = TFi,j ∗ IDFi

In our case, a document is the union of the sets of terms extracted from the labels

of the elements (tasks, sub-processes and nested elements) in each process cluster. The

complete “dictionary” of terms derived from the document collection is composed of all

terms contained in labels of the entire set of process elements.

Figure 3.12 shows an example of TFIDF computed for three process clusters c1, c2

and c3. TFIDF (c) represents the vector of TFIDF values of terms characterizing the

cluster c. For example, the weight of the term add in the vector TFIDF (c2) = 0.05 is

lower than all other positive (and non-zero) weights in TFIDF (c2), though it would be

the highest weight when calculated using only the term frequency. The term add, in fact,

is not specific of the element c2, since it is shared between c2 and c1.

40

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

Figure 3.12: Example of TFIDF values

By exploiting the TFIDF value computed for each term of the labels associated to the

clusters, we identify the terms characterizing the whole clustered sub-process as those

having highest TFIDF. In detail, the following steps are used for finding representative

sub-process terms:

1. Identification of labels of process elements (tasks, sub-processes and nested elements)

contained in a cluster c;

2. Analysis of each identified label and decomposition into terms. For example, the

label “Add item to cart” is decomposed into three main terms: “add”, “item” and

“cart”. In this step, stop words (e.g., “to”, “the”) are removed;

3. Creation of a common dictionary of terms as the union of the identified terms;

4. Creation of the vector TFIDF (c) for each cluster c of the process, by computing the

TFIDF value for each term in the dictionary;

5. For each cluster c, ranking of its terms according to their TFIDF values and selection

of those with the highest TFIDF value (e.g., the top 3). The terms are provided to

the analyst as suggestions for the creation of a meaningful sub-process label.

3.1.6 The tool

We developed JBPRecovery, a tool supporting the proposed reverse engineering approach

and implementing all the introduced clustering methods. It is composed of the following

six logical modules:

- Tracer: a Javascript extension of the Mozilla Firefox browser3 tracing the execution of
3Mozilla Firefox provides special features that can be used by its extensions https://developer.mozilla.org/En with

the aim of simplifying the implementation of browser utilities.

41

https://developer.mozilla.org/En

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

a target Web system.

- Process Constructor: a Java module analysing the execution traces with the aim of

extracting a BPMN-based description of the process implemented by the target applica-

tion.

- Cluster Detector: a Java module implementing the clustering techniques. It provides

sub-modules realizing respectively structural, page-based, dependency-based and seman-

tic clustering. Configuration files are used to select clustering types and their application

order. This module takes as input a graph representing the process under analysis, it ap-

plies the selected clustering technique/s and it produces a list of clusters, each grouping

a set of graph nodes (process elements).

- Label Generator: a Java module implementing the labelling suggestion approach. It

applies TFIDF to sets of terms in order to find those regarded as representative for each

clustered sub-process. This module is used by the Cluster Detector module to suggest

terms for labelling clustered sub-processes.

- Format Converter: a Java module converting BPMN-based processes into their re-

lated intermediate graph representation (and vice versa); it is mainly used by the Cluster

Detector module.

- Utility Provider: a Java module providing utilities to other modules. Examples

of provided functionalities are setting and configuration management, reading/writing

from/to files and the user interface.

Moreover, the following existing tools are used by the JBPRecovery ’s modules:

- Bunch4: a clustering tool for software systems. Bunch allows to evaluate the quality

of application modularization, by analysing a source code graph modelling code depen-

dencies. It is used by the Cluster Detector module for realizing the dependency-based

clustering.

- RapidMiner5: a tool for machine learning and data mining. It provides several oper-

ators (e.g., for agglomerative/hierarchical clustering, Support Vector Machines and Meta

Learning) for data mining, data visualization and an IDE to define operator trees (a tree is

a composition of operators) for data analysis. RapidMiner is used by the Cluster Detector

module for realizing the semantic clustering by means of a specialized composition of op-

erators (implementing the semantic clustering technique introduced in Subsection 3.1.4).

- WVtool6: Java library providing special capabilities for statistical Natural Language

Processing. It is used by the Label Generator module for computing the TFIDF value of

4http://serg.cs.drexel.edu/redmine
5http://sourceforge.net/projects/yale
6http://nemoz.org/joomla/content/view/43/83/lang,de/

42

http://serg.cs.drexel.edu/redmine
http://sourceforge.net/projects/yale
http://nemoz.org/joomla/content/view/43/83/lang,de/

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

terms and suggesting representative clustered sub-process terms.

3.1.7 Reverse Engineering Technique Evaluation

A case study has been conducted, by applying the proposed approach to real Web applica-

tions. The goal of the case study is investigating the applicability of the proposed reverse

engineering techniques in recovering business processes exposed as Web applications and

modularizing them.

Three e-commerce applications (either downloadable or available on-line) have been

selected as subjects of our case study: Softslate7, Erol8 and Communicart9. The applica-

tions implement shopping carts that allow the user to manage on-line stores. They realize

functionalities to support the on-line retail of products (e.g., catalog, cart, order form and

payment checkout management), systems for handling customer accounts (e.g., user ac-

count login and registration) and product shipping. All the applications represent medium

Web systems — in terms of application size and complexity — developed by adopting dif-

ferent languages and technologies (mainly Java/Jsp and PHP), using a database to store

information about the product catalog, carts and users. For all the three applications,

fully-functioning demo versions can be accessed on-line on the respective application Web

sites.

Research Questions and Metrics

The main aim of the case study is to evaluate in real applications the effectiveness of the

proposed reverse engineering and clustering techniques in respectively recovering processes

and modularizing them for improving process readability. To this aim we tried to answer

the following research questions:

RQ1 What is the accuracy of the reverse engineering technique, in terms of over-approximation

and under-approximation?

RQ2 What is the quality of the modularization produced by each clustering technique?

RQ3 What is the usefulness of the labelling suggestion technique, in suggesting meaningful

terms for clustered sub-processes?

RQ1 deals with the ability of the reverse engineering technique in recovering “rea-

sonable” processes for the analysed application. To evaluate this ability we estimated

over and under approximation of the recovered processes. There is under-approximation

7http://www.softslate.com
8http://www.eroldemostore.co.uk
9http://www.communicart.biz

43

http://www.softslate.com
http://www.eroldemostore.co.uk
http://www.communicart.biz

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

when relevant process tasks (missed tasks) are not captured/modelled in the recovered

processes. There is over-approximation when non-business process tasks (misidentified

tasks) are part of the recovered processes. To measure under and over approximation,

an expert manually analysed each application (i.e., he ran the application and analysed

its documentation and code, if any) with the aim of identifying the implemented process

tasks. According to works in the literature [82], we used the result of this manual analysis

as a “gold standard” and we compared it with the recovered process by computing the

following accuracy measures:

Recall =
|identified tasks

⋂
gold standard tasks|

|gold standard tasks|

Precision =
|identified tasks

⋂
gold standard tasks|

|identified tasks|

F −Measure =
2*Precision*Recall

Precision+Recall

Recall gives an idea about the ability of the technique in detecting all business tasks in

the application. A high recall corresponds to a limited number of missed business tasks.

Precision gives an idea about the ability of the technique in discarding non-business tasks

(misidentified tasks). A high precision corresponds to a limited number of non-business

tasks in the recovered process. Finally, the F −Measure provides an overall evaluation

by evenly weighting recall and precision.

RQ2 deals with the ability of clustering techniques in modularizing recovered pro-

cesses according to “good modularization” principles. For the evaluation of this ability,

we manually analysed each sub-process identified by individually applying each clustering

technique and we classified it in terms of “well-clustered” or “not-well-clustered”. Hence,

by determining the fraction of “well-clustered” sub-processes the following clustering qual-

ity measure has been computed:

ClustQuality =
#well-clustered sub-processes

#evaluated sub-processes

ClustQuality gives an idea about the ability of a specific clustering technique in group-

ing process elements. Higher clustering quality corresponds to a limited number of sub-

processes not adequately clustered. When manually deciding if a sub-process reported

by a clustering technique is to be considered “well-clustered” or “not well-clustered”, we

based our decision on the answers given to the two following questions: How well does

the recovered sub-process model a subsystem? How well does the recovered sub-process

model the functionality/behaviour provided by the subsystem?

44

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

RQ3 deals with the ability of the labelling suggestion technique in selecting meaningful

terms for clustered sub-processes. For this evaluation we estimated the “appropriateness”

of the suggested terms. To this aim, we manually classified each set of suggestions au-

tomatically provided by our technique (a set of suggestions for a sub-process contains

the top 3 terms in the TFIDF ranking) as “meaningful” or “non-meaningful”, where

“meaningful” means that at least one of the terms in the list is expected to be used in

constructing a full label for the sub-process. In this case, the automatic suggestion is

considered “meaningful”. The following suggestion quality measure has been computed:

MeaningfulSuggestion =
#meaningful suggestions

#evaluated subprocesses

MeaningfulSuggestion gives an idea about the ability of the technique in selecting

“appropriate” terms. A higher ratio of meaningful suggestions corresponds to a reduced

effort for the analyst in identifying meaningful sub-process labels able to improve the

process readability.

Execution

In the case study, the following steps have been performed for each considered application:

1 JBPRecovery has been used to trace some executions of the application with the

aim of exercising each application functionality, at least, once;

2 The traces have been analysed for building the initial BPMN business process;

3 JBPRecovery has been used to refine the initial process by introducing sub-processes

for grouping related tasks. The clustering techniques have been applied in differ-

ent orders and combinations with the purpose of evaluating their effectiveness in

improving the process structure;

4 The application has been manually analysed for collecting the “gold standard” (in

terms of tasks, clustered sub-processes and labels);

5 The required measures (e.g., number of “well-clustered” sub-processes and “mean-

ingful” suggested terms) have been computed for each process extracted, as de-

scribed above.

Results and Discussion

JBPRecovery has been used to trace, on average 8 executions (10, 7 and 7 respectively

for Softslate, Erol and Communicart) per application with the aim of covering/exercising

45

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

App. Tasks Gat.s Events Seq. Msg. Rec. Prec. F-Measure

(client) Flows Flows % % %

Softslate 100 (87) 24 31 155 27 96 87 91

Erol 59 (31) 23 34 166 30 82 74 77

Communicart 61 (41) 28 32 160 28 81 85 82

average (dev.std) 86 (8) 82.5 (7) 83 (7)

Table 3.1: Initially recovered processes and their (task) under/over approximation

each implemented functionality at least once. On average, 20.5 user actions (13.7, 15.3

and 32 respectively for Softslate, Erol and Communicart), i.e., link and submit clicks,

have been performed during each execution. Table 3.1 (left) summarizes the number of

process elements (e.g., tasks, gateways) composing the initially recovered processes. On

average, each process contains 314 process elements and 33% of them are tasks.

RQ1: Process under and over approximation

Table 3.1 (right) presents the results obtained for Recall, Precision and F −Measure

computed for the recovered processes. We can observe that the F −Measure is high (on

average 83%). Recall and Precision are high too and they show that under and over

approximation of the recovered processes are quite limited.

The obtained Recall is, on average, 86% and it is always higher than 81% (the lowest

value has been obtained for Communicart). This suggests that business tasks realized

by a Web application can be adequately inferred by tracing the execution of its GUI ele-

ments. Furthermore, the obtained Precision is, on average, 82.5% and it is always higher

than 74% (the lowest value has been obtained for Erol). This suggests that discarding

application non-business tasks by considering sets of GUI elements is the most challenging

activity. In other terms, links and forms seem to be effective in identifying all business

tasks even though (slightly) less effective in discarding non-business tasks.

RQ2: Process modularization

Table 3.2 (left) presents the results obtained by clustering the initially recovered pro-

cesses. The column “Clustering” of the table shows combinations and orders of the clus-

tering techniques considered in the experiment. We applied structural (loop clustering

followed by the alternative one), dependency and semantic clustering individually, and

the three-combinations (without repetitions) of these clustering techniques in all possi-

ble different orders. We do not report the results of the page clustering technique since

the limited number of pages of the considered Web applications does not allow a flexible

46

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

combination of this technique with the others. Columns “Clustered Subprocesses” and

“ClustQuality” of the table summarize the number of the identified clusters and the qual-

ity measure of such clusters according to the expert’s evaluation. We can observe that,

on average, we identified 8.6 clusters of tasks per process (10, 7.4 and 8.4 respectively

for Softslate, Erol and Communicart) and that, by combining the three clustering tech-

niques, the number of identified clusters is double, on average, than individually applying

each of them. Moreover, the measured cluster quality evaluated according to the expert’s

opinion, is on average 69.7% and it seems to be reasonably adequate for automatically

recovered and clustered processes. Table 3.2 (left) shows that the dependency cluster-

ing obtained the best performance (in terms of higher number of identified clusters and

cluster quality evaluation) with respect to the other two clustering techniques individ-

ually applied. Among the considered clustering technique combinations and orders, the

structural-dependency-semantic and structural-semantic-dependency clusterings obtained

the best performance.

RQ3: Clustering labelling

Table 3.2 (right) presents the results obtained in the evaluation of the terms automat-

ically suggested for the clustered sub-processes. The expert evaluated the suggestions

proposed for 283 clustered sub-processes and, on average, for 70.3% of them, the sugges-

tion has been classified as “meaningful”. The obtained result indicates that the use of a

term-frequency analysis applied to task labels is an adequate starting point for identifying

sub-process labels that improve the process readability.

Overall Considerations

According to the overall results of the experiment we can notice that a limited number

of application executions (10, 7 and 7 for Softslate, Erol and Communicart, respectively)

are adequate to reach a reasonable accuracy of the recovered processes (limited under/over

approximation). Hence, a stable process (in terms of number of its components) with a

high accuracy can be obtained in a short time. This is particularly interesting when a

fast comprehension of the application is required (e.g., for maintenance activities).

In the experiment we notice that GUI links and forms seem to be effective in identifying

all application business tasks even though slightly less effective in discarding application

non-business tasks. This result gives us confidence that the recovered processes actually

represent the processes underlying Web applications. Furthermore, the structure of the

application seems to affect the recovered process accuracy. The best accuracy (highest

47

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

App. Clustering Clustered ClustQuality MeaningfulSuggestion

Combination Subprocess # % %

Softslate St 6 100 100

Dep 7 71 85

Sem 6 83 100

St-Dep-Sem 14 85 71

St-Sem-Dep 15 86 73

Dep-St-Sem 8 87 87

Dep-Sem-St 11 63 81

Sem-St-Dep 12 83 91

Sem-Dep-St 12 66 75

average (dev.std) 10 (3) 80.4 (11) 84.7 (11)

Erol St 3 66 100

Dep 7 57 57

Sem 4 75 50

St-Dep-Sem 11 63 81

St-Sem-Dep 10 70 60

Dep-St-Sem 7 66 66

Dep-Sem-St 9 44 55

Sem-St-Dep 9 66 44

Sem-Dep-St 7 66 57

average (dev.std) 7.4 (3) 63.6 (8) 63.3 (17)

Communicart St 5 80 80

Dep 8 65 75

Sem 2 50 100

St-Dep-Sem 11 81 81

St-Sem-Dep 10 71 71

Dep-St-Sem 10 50 66

Dep-Sem-St 8 62 50

Sem-St-Dep 10 50 75

Sem-Dep-St 12 57 57

average (dev.std) 8.4 (3) 62.8 (12) 73.7 (15)

average (dev.std) 8.6 (3) 69.7 (13) 70.3 (16)

Table 3.2: Quality of clustered sub-processes and meaningfulness of suggested labels
St = Structural (Loop-Alternative), Dep = Dependency and Sem = Semantic clustering

48

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

F −Measure) has been obtained for Softslate, whose Web-GUI uses more forms than

links for submitting data and requests to server components. Communicart uses a mix of

forms and links (links and forms are evenly distributed), while Erol, which had the lowest

accuracy, uses mainly links. We can therefore hypothesize that forms positively influence

the accuracy of the process.

The experiment results show also that process clustering is effective in reducing the

overall size and complexity of the recovered processes by grouping process tasks. In

particular, the combination of the three clustering techniques increases the process mod-

ularization. By inspecting the clustered processes we found that a possible reason for this

difference in process modularization is that the overlapping of process tasks, clustered by

applying each clustering technique (structural, dependency and semantic based) individ-

ually, is quite limited. Moreover, the cluster quality evaluation reveals that the quality of

the identified clusters is reasonably high. In the experiment, the ClustQuality is higher

than 50% (60%) for 85% (77%) of the 27 differently clustered processes. As in the case of

the process accuracy evaluation, the structure of the application (number of forms with

respect to links) seems to influence the quality of the modularization obtained by apply-

ing structural and dependency clustering techniques. For example, by applying structural

clustering only, Softslate obtained the highest value for the ClustQuality measure while

Erol scored the lowest. This result is reasonable considering that GUI-forms are often

used to guide the user application navigation in realizing specific execution flows (e.g.,

providing services), thus “structuring” the application underlying process.

According to both quantitative (i.e., based on the number of clustered sub-processes)

and qualitative (i.e., considering how the process elements have been clustered) analy-

sis, the structural-dependency-semantic and structural-semantic-dependency techniques

seem to be the more adequate for increasing the understandability of recovered pro-

cesses. On one side, they have the higher percentage of identified process clusters (on

average, 75% more than processes clustered with a single clustering technique). On the

other side, according to the expert’s opinion, they better capture relevant application

macro-functionalities (e.g., user login, item selection, cart management and checkout) by

describing them as sub-processes. Therefore, the overall process obtained by applying

such clustering techniques results to be more readable and understandable. Figure 3.13

shows the client-side part of one of them: the Softslate process clustered by applying

structural-semantic-dependency technique. Due to space limitation, in the figure some of

the clustered sub-processes are shown by means of collapsed BPMN sub-processes, while

two of them (representing user login/registration and cart management) are expanded

49

3.1. Reverse Engineering of Business Processes 3. REVERSE ENGINEERING

showing their internal structure, including also nested clusters.

Finally, the experiment results seem to confirm that meaningful labels can be identified

for the clustered sub-processes by analysing the labels of the tasks in those sub-processes.

We can notice that some statistical correlation exists in the experiment results between

the number of meaningful suggestions and the cluster quality (last two columns in Table

3.2). By applying the Pearson’s correlation10 [88] between ClustQuality and Meaningful-

Suggestion we obtained P > 0.4 and p − value = 0.03. Hence, the obtained correlation

indicates that the meaningfulness of the suggested labels improves when increasing the

quality of the clustered sub-processes.

Summarizing, the experiment confirms the intuitions that: (a) Web applications forms

and links implicitly contain information about the underlying application process; (b)

dynamic analysis of the Web-GUI can be used to infer this underlying process; and (c)

clustering techniques can be successfully applied to the recovered process to abstract and

better modularize it.

Threats to Validity

The reduced number of subjects of the case study and their unique application domain

(e-commerce) is one of the threats to validity that limit the generalization of the ob-

tained results (external validity). However, we found the considered applications quite

representative in the Web for such a domain. The e-commerce domain is one of the

most well-known domain for Web applications that expose business processes. Different

application domains will be considered in the next experiments.

Another threat to the external validity is related to the application executions traced

to recover the initial BPMN-based processes. Different processes can be obtained by con-

sidering different sets of traces. We tried to limit the impact of this factor by applying

a functionality-based coverage criterion for selecting application executions. Further in-

vestigations will be devoted to verify the effect of different sets of traces in the obtained

processes.

Additional threats involve measures used to answer the research questions (internal

validity threats). For RQ1, we only considered over and under approximation of the

recovered processes in terms of “task coverage” [82] with respect to the gold standard.

This coverage criterion is used to compare models when exhaustive criteria cannot be

10The Pearson’s correlation coefficient reflects the degree of linear relationship between two variables and ranges from

+1 to -1. A correlation of +1 means that there is a perfect positive linear relationship between variables, while a coefficient

of 0 means no correlation.

50

3. REVERSE ENGINEERING 3.1. Reverse Engineering of Business Processes

Figure 3.13: The recovered Softslate process clustered by applying structural-semantic-dependency clus-

tering.

51

3.2. Understandability Metrics 3. REVERSE ENGINEERING

applied [82]. Furthermore, strong subjectivity characterizes answers to the research ques-

tions. For instance, in answering RQ2, an expert is asked to analyse each sub-process.

In this task, expert skills and expertise influence the final result. In further evaluation we

plan to involve more than one expert with the aim of limiting the subjectivity influence.

Even though these threats to validity limit the obtained results, the overall case study

outcome is encouraging, since it indicates a strong potential of the presented techniques

in recovering models useful for better documenting and understanding business processes

implemented by Web systems.

3.2 Understandability Metrics

Among purposes and uses of business process models, their role in activities directly

involving humans (e.g., they facilitate the communication between designers and imple-

menters, they represent a form of documentation of the processes enacted by companies)

is of primary importance, thus demanding for process models readable and understand-

able. Nevertheless, as shown in the previous section, when process models are recovered

from executions, they can be very large, complex and intricate (i.e., “spaghetti” pro-

cesses [185]), thus resulting difficult to read and understand. Model understandability

is hence a key factor for maximizing the quality of recovered processes, and hence their

effectiveness and usefulness.

Although a lot of effort has been spent in proposing new process recovery techniques,

to the best of our knowledge, not so much work has been devoted to study and validate an

overall and shared means to evaluate the understandability of the recovered processes. In

fact, existing works in the literature focus on: the identification of factors making process

models understandable (e.g., personal factors and model characteristics [111]); the analysis

of specific factors impacting the understandability (e.g., control-flow complexity [28] and

process modularization [149]); the evaluation of the understandability in generic process

models (e.g., [110]). However, an overall set of empirically validated process metrics

that can be easily and automatically applied to early evaluate the understandability of

recovered business process models lacks.

In this chapter, we analyse and empirically evaluate a set of surveyed metrics for

the assessment of process understandability. In detail, we collect and customize a set of

process metrics related to the process understandability (Subsection 3.2.1) and we conduct

and experimental study to evaluate their effectiveness as early indicators of the process

understandability (Subsection 3.2.2).

52

3. REVERSE ENGINEERING 3.2. Understandability Metrics

3.2.1 Process Metrics

In the rest of this subsection, we present a three-layer view for evaluating process model

understandability according to relevant model characteristics. In detail, such a view is

built by applying a bottom-up approach in which we: (1) survey existing metrics for

process models; (2) group the metrics according to the process properties and artefacts

they evaluate; and (3) hierarchically organize the groups of metrics. In the following we

present the most relevant factors (layer one) and properties (layer two) concerning the

characteristics of recovered process models that impact the understandability of this type

of models. Moreover, we present a set of metrics (layer three) collected by inspecting

existing literature and customized to be used with BPMN process models (some of the

metrics were originally proposed for different process languages such as EPC and Petri

Nets).

Process Understandability Factors

According to the literature, the most relevant high-level factors impacting the under-

standability of recovered process models are related to:

• Term: the quality of process element labels [113]. To evaluate the quality of a pro-

cess element label we need to answer the following questions: Is the label composed

of relevant and clear terms? Does it have a real meaning for human modellers?

• Structure: the quality of the process structure. To evaluate the quality of the

process model structure we need to answer the following questions: Is the process

structure clear and well organized? Is the overall process model reasonably sim-

ple and readable for a human? Although several languages, syntactical process

elements and representations can be used to model a process, it has been shown

(e.g., [28] and [149]) that some model characteristics, as for example the process

model modularity or the number of alternative flows, can influence model quality

and effectiveness.

• Conformance: the adherence of the recovered models to the actual processes ac-

cording to the information used to generate them. Studies in the literature (e.g.,

[173]), in fact, indicate that the model conformance is strongly related to the com-

pleteness of the recovered process models and its ability of describing and repre-

senting the actual process. Different recovery algorithms and algorithm settings

can influence the conformance of the recovered models with the initial artefacts. In

53

3.2. Understandability Metrics 3. REVERSE ENGINEERING

the evaluation of the process conformance, relevant questions can be: How does the

process model capture the information used to generate it? How much does the

process model generalize the information used to generate it?

Process Understandability Properties

For each of the factors introduced above, a set of properties can be identified. In detail:

• Term. Activity labels are a way to provide process models with domain knowledge,

thus improving the process model understandability. Previous studies (e.g., [113])

proved that quality aspects in process activity labels are mainly related to label

size (in terms of word number) and ambiguity. In fact, an activity label can be

composed of a limited number of terms (i.e., key concepts coming from the domain of

the modelled process) or can be a complete-sense sentence. Furthermore, labels can

be composed according to different styles (e.g., verb-object versus action-noun) and

can contain ambiguous terms (e.g., terms subjected to the 0-derivation property, i.e.,

the same term can be used either as verb or noun), thus making its comprehension

more difficult. According to the results reported by Mendling et al. [113], both a

too high/low label size and a high label ambiguity can potentially compromise the

understandability of the process model.

• Structure. The most relevant issues with respect to the understandability of pro-

cess models are recognized to be related to the process structure, organization and

design. Hence, the process size (e.g., the number of elements in the process), the

complexity of the process flow (e.g., the complexity of the process control-flow), and

the overall structure (e.g., the structuredness of the process flow) of the process

model can impact its understandability, readability and effectiveness in representing

the process. Therefore, an increase in the process size or in the flow and structure

complexity can potentially compromise the understandability of the process model;

on the other hand, an increase of the flow structuredness can improve the under-

standability.

• Conformance. A process model recovered from existing artefacts needs to “fit”

with them, i.e., the model must conform to the artefacts. In other terms, the model

needs to be able to represent the whole (structural and behavioural) information

contained in the artefacts. However, it is well-known that a recovered model can

introduce some degree of generalization/approximation in the model with respect to

54

3. REVERSE ENGINEERING 3.2. Understandability Metrics

the initial artefacts, e.g., by adding or removing behaviours and structural informa-

tion. The introduced generalization/approximation, which can be due for example

to spurious information, can potentially compromise the understandability of the

process model, and hence has to be limited.

Process Understandability Metrics

In order to measure the process understandability factors and properties, we present here

a set of metrics, surveyed from works existing in the literature and customized for our

research (e.g., with respect to the specific process language we use, BPMN). Each metric is

presented by using the following pattern: metric name, references to introductory works,

informal metric presentation, formal metric description, and its expected relation with

the process understandability properties (i.e., the hypothesis to be validated) of recovered

process models. In the rest of this subsection we introduce the suite of metrics. The three

event-based traces t1, t2 and t3 in (3.1) below (each t is a trace, i.e., a list of exercised

GUI-elements) and the process models PMexample1 and PMexample2 shown in Figure 3.14

are used hereafter as running examples. The PMexample1 and PMexample2 are the same

models used in Figure 3.7a of Subsection 3.1.4 for illustrating the loop modularization;

in this case, however, actual names are provided for GUI-events and, hence, for process

activity labels, based on a simple process for order management. By assuming that

each page contains only one GUI-element and hence that it is not necessary tracing also

the page information (e.g., A represents the pair 〈A page,A〉), the process reported on

top of Figure 3.14 is inferred by applying the reverse engineering technique presented in

Section 3.1 to traces t1, t2 and t3. The process at the bottom of Figure 3.14 represents

the same process, modularized according to the loop pattern.

t1 :< A,B,C,D,E >

t2 :< A,B,C,D,B >

t3 :< A,B,C,D,B,C,D,E >

(3.1)

- Label length (Ll). It refers to the average number of words used per activity label in

a process P .

Ll(P) =
∑

l∈Labels |words(l)|
|Labels|

where words(l) is the set of words of the label l. Ll(P) ≥ 1; by assuming that each

activity contains at least a word, Ll(P) is equal to 1 if each label contains only one word,

55

3.2. Understandability Metrics 3. REVERSE ENGINEERING

Figure 3.14: PMexample1(top) and PMexample2(bottom) process models

otherwise it is > 1. We expect that a too low or high value of the metric indicates a too

short or long label. For example, the Ll of PMexample1 is equal to 1.8 , since 4 activity

labels have length equal to 2 and one equal to 1.

- Label 0-derivation (L0d). It refers to the number of words in the labels suffering the

0-derivation property (i.e., words that can be either a noun or a verb depending on the

context).

L0d(P) =
∑

l∈Labels has a 0 derivation word(l)

|Labels|

where has a 0 derivation word(l) has value 0 if no word in the label l is a 0-derivation

word, 1 if there exists at least a 0-derivation word in words(l). 0 ≤ L0d(P) ≤ 1; L0d(P)

is 0 if no labels contain 0-derivation words, while it is 1 if all the labels contain at least one

0-derivation word. We identify words suffering the 0-derivation property by automatically

consulting the Wordnet dictionary [118] and by requiring the human decision in case of

words not included in the dictionary. We expect that a high value of the metric indicates a

high ratio of ambiguous labels. For instance, in case of PMexample1, L0d(PMexample1) = 0.4

since two labels “Process Order” and “Order Closure” contain 0-derivation words: both

“Process” and “Order” in the first case (thus leading to a possible ambiguity in the

semantics of the short sentence, that could be interpreted either as “process an order” or

“order a process”), only “Order” in the second.

- Label style (Ls). It refers to the style of the terms used in activity labels. Since

activity labels are usually defined in the verb-object or in the action-noun form [116],

their style can be classified according to one of the following categories: (vo) verb-object,

(an) action-noun, and (rest) other. Ls measures the weighted distribution of the process

56

3. REVERSE ENGINEERING 3.2. Understandability Metrics

labels in these three categories. Weights are assigned to words according to the assumed

ambiguity of their category, i.e., a weight of 3 is assigned to terms in the category (rest),

2 to those in the category (an) and 1 to words in the (vo) group. It has been shown [116],

in fact, that the (vo) form in process labels is the less ambiguous and more useful form,

followed by the (an) form and by the (rest) style.

Ls(P) = 3∗|rest|+2∗|an|+1∗|vo|
3∗|Labels|

where vo, an and rest are respectively the set of verb-object, action-noun and other

than verb-object/action-noun labels in the set of the process activity labels Labels. 0 <

Ls(P) ≤ 1; Ls(P) is 1 if no label in the style (vo)/(an) exists in the process. We evaluate

the style category of labels by exploiting the MINIPAR11 linguistic analyser. We expect

that a high value of the metric indicates a high ratio of ambiguous labels. For instance,

in the PMexample1, two labels are in the (vo) form (“Process Order” and “Collect Item”),

two in the (an) form (“Item Retrieval” and “Order Closure”) and one in the (rest) style

(“I.S.P”), hence Ls(PMexample1) = 0.67.

- Structure size (Sz). It refers to the number of elements, in terms of activities and

gateways, contained in the process model [28].

Sz(P) = |Activities|+ |Gateways|+ |Events| = |FlowObjects|

where Activities, Gateways, and Events are respectively the sets of activities, gateways

and events of the process, i.e., the set of process flow objects. Sz(P) ≥ 0; Sz(P) is 0 if the

process is empty. We expect that a high value of the metric indicates a large process. For

instance, PMexample1 contains 5 activities and 2 gateways, hence, Sz(PMexample1) = 7.

- Density (Sd). It refers to the density of connections between pairs of process activities

and/or gateways [180].

Sd(P) = |SequenceF lows|
|FlowObjects|∗(|FlowObjects|−1)

where SequenceF lows and FlowObjects are respectively the set of sequence flows and

flow objects (i.e., activities, gateways and events) in the process. 0 ≤ Sd(p) ≤ 1; Sd(P)

is 0 if no flow exists among process flow objects, 1 if in the process each flow object is

connected to any other flow object. We expect that a high value of the metric implies

a high connectivity. For instance, PMexample1 contains 7 flow objects (5 activities and 2

gateways) and 7 sequence flows, hence, Sd(PMexample1) = 0.16

- Net Complexity Coefficient (Scnc). Similarly to Sd, it refers to the relation between

connections (sequence flows) and flow objects (activities, gateways and events) of the

process model [28].
11http://www.cs.ualberta.ca/~lindek/minipar.htm.

57

http://www.cs.ualberta.ca/~lindek/minipar.htm.

3.2. Understandability Metrics 3. REVERSE ENGINEERING

Scnc(P) = |SequenceF lows|
|FlowObjects|

0 ≤ Scnc(P) ≤ |FlowObjects| − 1; Scnc(P) is 0 if no flow exists among process flow

objects, while its maximum value corresponds to the number of process flow objects when

in the process each flow object is connected to any other flow object. We expect that a high

value of the metric indicates a complex control flow. For instance, PMexample1 contains 7

flow objects (5 activities and 2 gateways) and 7 sequence flows, hence, Scnc(PMexample1) =

1

- Control-Flow Complexity (Scfc). It refers to the number of alternative execution

flows contained in the whole process [28].

Scfc(P) =
∑

g∈P∧g∈GatewaysdecisionAND

ScfcAND(g) +

∑
g∈P∧g∈GatewaysdecisionXOR

ScfcXOR(g) +

∑
g∈P∧g∈GatewaysdecisionOR

ScfcOR(g)

where GatewaysdecisionAND
, GatewaysdecisionXOR

and GatewaysdecisionOR
are the set of pro-

cess gateways representing decision points of type AND, XOR and OR, respectively; g is

one of these points in the process; and Scfc of a decision gateway g varies according to the

number of different process states that can be reached once the gateway of the specific type

has been executed. A process state is the description of the state of the process in a precise

time (i.e., the set of activities that can be executed in that precise instant), corresponding

to the mental state of a designer. Hence, ScfcAND(g) = 1 (since a unique state contain-

ing all the activities outgoing from g can be activated); ScfcXOR(g) = FanOut(g), where

FanOut(g) is the number of sequence flows in output to the decision point g (since FanOut

possible states can be activated); and ScfcOR(g) = 2FanOut(g) − 1 (since 2FanOut(g) − 1

states can be activated with FanOut outgoing sequence flows). Scfc(P) ≥ 0; Scfc(P) is

0 if no decision gateway exists in the process. We expect that a high value of the metric

indicates a high complexity of the process flow. For instance, PMexample1 contains 2 XOR

gateways (g1 and g2) with FanOut(g1) = 1 and FanOut(g2) = 2, respectively; hence,

Scfc(PMexample1) = 3.

- Average Connector Degree (Sacd). It represents the average number of sequence

flows incoming to (FanIn) or outgoing from (FanOut) process gateways [114].

Sacd(P) =
∑

g∈Gateways FanIn(g)+FanOut(g)

|Gateways|

58

3. REVERSE ENGINEERING 3.2. Understandability Metrics

Sacd(P) ≥ 0; Sacd(P) is 0 if no decision/merging gateway exists in the process. We

expect that a high value of the metric indicates a high complexity of the process flow.

For instance, the PMexample1 model contains 2 gateways (g1 and g2) with, respectively,

FanOut equal to 2 and 1 and FanIn equal to 1 and 2; hence, Sacd(PMexample1) = 3.

- Cross Connectivity (Scc). It measures how “strong” is the connection between all

the possible pairs of connected process flow objects [181], where, intuitively, the strength

of a connection between two flow objects is the degree of freedom from possible alternative

choices in the path connecting the two flow objects.

Scc(P) =
∑

fo1,fo2∈FlowObjects∧fo1 6=fo2∧(∃flowfo1,fo2) CC(flowfo1,fo2)

where ∃flowfo1,fo2 means that there exists at least one process execution flow (i.e., path

in the process) connecting the flow object fo1 to the flow object fo2 and

CC(flowfo1,fo2) =

max
flowfo1,fo2∈FLOWfo1,fo2

(
∏

sf∈flowfo1,fo2

CC(source(sf)) ∗ CC(target(sf)))

where FLOWfo1,fo2 is the set of all possible execution flows between fo1 and fo2. For a

generic flow object fo, CC(fo) = 1 in case of fo ∈ Activity ∪ Events ∪ GatewaysAND,

while CC(fo) = 1
d(fo)

in case of fo ∈ GatewaysXOR and CC(fo) = 1
2d(fo)−1

+ 2d(fo)−2
2d(fo)−1

∗ 1
d(fo)

in case of fo ∈ GatewaysOR, where GatewaysAND, GatewaysXOR and GatewaysOR are

respectively the set of parallel, exclusive and inclusive gateways and d(fo) = FanIn(fo)+

FanOut(fo). The intuition behind this metric is that the strength of a sequence flow

between two flow objects varies according to the type of objects it directly connects; for

example, a sequence flow directly connecting an AND gateway with an activity is stronger

than a sequence flow directly connecting a XOR gateway with an activity, because the

latter is an optional sequence flow. Scc(P) ≥ 0; Scc(P) is 0 if no flow exists among flow

objects. There exists also a relative version of this metric that normalizes the absolute

metric with respect to the theoretical maximum number of paths between all the flow ob-

jects. We expect that a high value of the metric indicates a process flow with few possible

alternative choices in the path connecting objects. For instance, in case of PMexample1,

Scc(PMexample1) = 75.6

- Separability (Ssep). It refers to the degree of separability of a process [114].

Ssep(P) = |CutElements|
|FlowObjects|

where CutElements represents the set of process flow objects that, if removed from the

process, separate the process into disconnected components (i.e., when removing a cut-

element from the process, at least one among the process flow objects is disconnected

59

3.2. Understandability Metrics 3. REVERSE ENGINEERING

from the process Start element). 0 ≤ Ssep(P) ≤ 1; Ssep(P) is 1 if all the process flow

objects generate disconnected components when removed from the process, 0 if it does

not happen for any flow object. We expect that a high value of the metric indicates a

well-structured process. For instance, the PMexample1 contains 2 CutElements (the two

gateways of the process), hence, Ssep(PMexample1) = 0.28.

- Sequentiality (Sseq). It refers to the number of “sequential” sequence flows contained

in the process [114]. A sequence flow between two flow objects is “sequential” if it does

not connect gateways.

Sseq(P) =
|SESequenceFlows|
|SequenceF lows|

where SESequenceF lows represents the set of sequence flows connecting only activities and

events (i.e., source and target flow objects of the sequence flow are not gateways). 0 ≤
Sseq(P) ≤ 1; Sseq(P) will be 1 if the process does not contain gateways, 0 if no connection

exists between pairs of activities. We expect that a high value of the metric indicates a

low complexity. For instance, the PMexample1 contains 2 SESequenceF lows (i.e., the one

connecting B to C and the one connecting C to D), hence, Sseq(PMexample1) = 0.28.

- Depth (Sdep). It refers to the nesting degree of flow objects in the process [75].

The nesting depth of a process flow object is given by the minimum number of decision

elements (not matched by any merging point) that have to be traversed for reaching the

flow object itself. Sdep of a process represents the maximum value of nesting depth of its

flow objects.

Sdep(P) = maxfo∈FlowObjects {depth(fo)}

where depth(fo) is the minimum number of decision gateways (not matched by any

merging gateway) encountered from the process Start element to the flow object fo.

Sdep(P) ≥ 0; Sdep(P) is 0 if no decision gateway exists. We expect that a high value of

the metric indicates a highly complex structure of the process. For instance, the Sdep of

PMexample1 is equal to 1, since there exists only one level of nesting for reaching activities

B, C and D from the Start element.

- Connector Mismatch (Scm). It refers to the mismatch, if any, between the number

of sequence flows outgoing from the decision gateways and the number of sequence flows

incoming to merging gateways [114]. Scm(P) ≥ 0; Scm(P) is 0 if, for each sequence

flow outgoing from a decision gateway, there exists at least a sequence flow incoming to

60

3. REVERSE ENGINEERING 3.2. Understandability Metrics

a merging gateway.

Scm(P) =

∣∣∣∣∣∣
∑

g∈GatewaysdecisionAND

FanOut(g)−
∑

g∈GatewaysmergingAND

FanIn(g)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

g∈GatewaysdecisionXOR

FanOut(g)−
∑

g∈GatewaysmergingXOR

FanIn(g)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

g∈GatewaysdecisionOR

FanOut(g)−
∑

g∈GatewaysmergingOR

FanIn(g)

∣∣∣∣∣∣
We expect that a high value of the metric indicates a non well-structured process. For

instance, considering both FanOut and FanIn of the two gateways of PMexample1,

Scm(PMexample1) = 0.

- Cyclicity (Scy). It measures the number of process flow objects involved in cyclic

process flows (i.e., cyclic connection among elements) [114].

Scy(P) = |ElementsInCycles|
|FlowObjects|

where ElementsInCycles represents the set of flow objects contained in a cycle. 0 ≤
Scy(P) ≤ 1; Scy(P) is 1 if all the considered process elements are involved in a cycle,

0 if there are not cyclic flows. We expect that a high value of the metric indicates the

presence of a high number of process flow objects in cycles, hence, we expect a complex

process control flow. For instance, 3 activities and 2 gateways out of 7 elements of the

process PMexample are involved in a cycle, hence, Scy(PMexample1) = 0.71.

- FanIn/FanOut (Sfifo). It refers to the connection degree between external flow

objects and sub-processes [28, 75].

Sfifo(P) =
∑

subp∈Subprocesses Sfifo(subp)

|Subprocesses|

where Subprocesses is the set of process sub-processes, subp is one of them and Sfifo(subp)

measures the connection between subp and external flow objects. The flow object inter-

connection of subp, Sfifo(subp), i.e., the complexity of the connections of subp with

its environment, is computed by considering the quadratic product of the sub-process

FanIn and FanOut, Sfifo(subp) = (FanIn(subp)∗FanOut(subp))2, where FanIn(subp)∗
FanOut(subp) represents the total number of possible combinations of a subp incoming

sequence flow to a subp outgoing sequence flow. Sfifo(P) ≥ 0; Sfifo(P) is 0 if no sub-

process exists in the process. We expect that a high value of the metric indicates a highly

complex structural process. For instance, Sfifo is 0 for the process PMexample1 since no

61

3.2. Understandability Metrics 3. REVERSE ENGINEERING

sub-process is in the model. Sfifo is 1 in the clustered version of the same process model,

PMexample2, in which the only sub-process has both fan-in and fan-out equal to 1.

- Structural appropriateness (Ac). It refers to the structural complexity of a process

model in terms of the proportion of flow objects that are not control flow objects with

respect to the whole set of process flow objects [155].

Ac(P) = |Activities|+|Events|
|FlowObjects|

0 < Ac(P) ≤ 1; Ac(P) is 1 if the process does not contain gateways. We expect that a

high value of the metric indicates a high process model conformance (i.e., a limited model

generalization). For instance, PMexample1 contains 5 activities and 2 gateways, hence,

Ac(PMexample1) = 0.71.

- Behavioural flexibility (Ab). It refers to the model flexibility [155]. It takes into ac-

count both the flexibility introduced by the different behaviours described in the original

artefacts used to recover the process model (e.g., in case of dynamic analysis, log files)

and the generalization introduced by the model with respect to the artefacts themselves.

In particular, it measures the average number of behaviours added by the model with

respect to the model listing all the possible sequences described in the initial artefacts,

hence including also behaviours not traced in the considered artefacts. To compute this

metric, the behaviours directly documented in the artefacts (e.g., traces) are “re-parsed”

and reproduced in the generated process model, thus computing the average quantity

of additional behaviours allowed by the model for each traversed node. In the existing

literature, Ab is only defined to be measured for process models recovered from execu-

tion traces. Since we use a dynamic approach from log files for process model recovery,

we preserve such a definition but we are aware that, in case of recovery from different

initial artefacts (e.g., behaviours described in documentation scenarios, UML sequence

diagrams), it needs to be extended.

Ab(P) =
∑

tr∈Traces (|Activities∪Events|−Z(tr))

|Traces|∗(|Activities∪Events|−1)

where Z(tr) measures the average number of (direct or passing through gateways) con-

nections between process activities or events, traversed when re-parsing the trace tr, and

activities or events, i.e., Z(tr) =
∑ne(tr)−1

i=1 noSF (i)

ne(tr)−1
, where ne(tr) is the number of activities

or events collected in the trace tr and noSF (i) is the number of (direct or passing through

gateways) connections from the process activity or event i, traversed when reproducing the

trace tr, and another process activity or event (or the process element itself if it is cyclic).

0 ≤ Ab(P) ≤ 1; Ab(P) is 1 if the process does not contain gateways while it is 0 if all the

actvities and events can cycle on themselves and all the pairs of distinct activities and

62

3. REVERSE ENGINEERING 3.2. Understandability Metrics

events are connected. We expect that a high value of the metric indicates a limited gener-

alization introduced in the process model with respect to the initial traces. For instance,

considering the three traces t1, t2 and t3 in Figure 3.14, Ab(PMexample1) = 0.89, since

|Activities| = 5, |Traces| = 3, Z(t1) = 6
4

= 1.5, Z(t2) = 6
4

= 1.5 and Z(t3) = 9
7

= 1.29.

- Fitness (Afit). It refers to the “fitting” degree between the initial artefacts (e.g.,

traces) and the generated process model [155]. In other terms, it estimates the amount

of behaviour documented in the initial artefacts that is reproduced by the process model.

Also in this case, as for the Ab metric, we refer to Afit as a metric devoted to measure the

conformity between process models and traces. To compute Afit, the traces are re-parsed

for traversing the process model and the identified mismatches are considered.

Afit(P) = 1− 1
|Traces| ∗

∑
tr∈Traces

reqSFtr

exsSFtr

where reqSFtr is the number of sequence flows to be added to the process model to

make it able to correctly reproduce the trace tr, and exsSFtr the number of sequence

flows (including those added to the model for reproducing tr) that are activated when

reproducing the trace tr in the process. 0 ≤ Afit(P) ≤ 1; Afit(P) is 1 if the process

model captures all the behaviours described in the initial traces, 0 if none of them is

captured. We expect that a high value of the metric indicates a process model that

completely describes the traces and thus is, often, rich and complex. A low value of

Afit may indicate that the model is not sufficiently adequate to describe the actual

behaviours of the process. For instance, considering t1, t2 and t3, Afit(PMexample) = 1

since reqSF = 0, for each of the three traces.

3.2.2 Experimental Study

Following the indications in the related literature (e.g., Briand et al. [1], Rolon et al. [55]

and Alves et al. [168]), a two-step pilot experimental study has been conducted to test

the validity of the proposed metrics for reverse engineered process models. In the first

step, an experiment with human modellers has been performed for evaluating the con-

nection between the proposed suite of metrics and the process model understandability.

In the second step, another experiment based on the construction and evaluation of a

prediction model has been conducted to evaluate the use of such metrics for estimating

the understandability in absence of human modellers.

Seven e-commerce applications (Softslate, Erol12, Communicart13, Avactis14, Inter-

12http://www.eroldemostore.co.uk
13http://www.communicart.biz
14http://www.avactis.com

63

http://www.eroldemostore.co.uk
http://www.communicart.biz
http://www.avactis.com

3.2. Understandability Metrics 3. REVERSE ENGINEERING

spire15, Digistore16, and WinestoreEvol17) have been selected and analysed to infer the

processes they implement (by using the model recovery technique described in Subsec-

tion 3.1). All of them represent medium/large (in terms of application size and com-

plexity) Web applications implementing shopping carts for on-line stores. They realize

functionalities to support the on-line retail of products (e.g., catalog, cart, order form

and payment checkout management) and systems for handling customer accounts as well

as product shipping. Six applications out of seven are real e-commerce systems (three

of them have already been introduced in Subsection 3.1.7 for the evaluation of the re-

verse engineering technique) widely used and adopted to implement on-line stores and

do real business. WinestoreEvol, instead, represents a realistic e-commerce application

implemented by students at FBK. It evolves an application published in a book [193] as

example of PHP language. It was also used as case study in other works (e.g., [108]).

Metrics Distribution and Correlation Analysis

The first step of the experiment has been conducted to empirically assess the connection

between metrics and process understandability. In detail, the main aim of the experiment

was to answer the following research question:

RQ1 Is there correlation between each metric of our suite, considered in isolation, and

the process model understandability?

Objects

Our process model recovery technique has been applied to the seven Web applications

by using different settings (e.g., without the clustering-based refinement, with different

combinations of the clustering techniques, with different sets of traces), thus obtaining

different recovered process models for each application. Overall, we generated 35 process

models (5 processes for each Web application).

Subjects

Six human process modellers have been involved in the experiment with the aim of collect-

ing their opinion about the understandability of the recovered models. All the modellers

are Ph.D. or Ph.D. students working with processes at FBK.

Variables

The process model measurements obtained with our metrics represent the independent

15http://www.interspire.com
16http://www.digistore.it
17http://www.webdatabasebook.com

64

http://www.interspire.com
http://www.digistore.it
http://www.webdatabasebook.com

3. REVERSE ENGINEERING 3.2. Understandability Metrics

WAs: A, B, C

BPs: p1 (flat), p2, p3, p4, p5 (clustered)

Experts: e1, e2, e3

Lab1 Lab2 Lab3 Lab4 Lab5

A p1 A p2 A p3 A p4 A p5

B p5 B p4 B p3 B p2 B p1

C p2 C p5 C p1 C p3 C p4

Table 3.3: Experiment design

Structure

Sz Sd Scnc Scfc Sacd Scc Ssep Sdep Scy Scm Sfifo

min 22 0.001 1.09 18 4.42 0.80 0.31 0 0 4.00 0.30

max 152 0.07 2.76 168 11.20 18.90 0.99 7 0.73 109.00 1.00

avg 57.37 0.03 1.47 62.03 5.78 11.31 0.72 4.17 0.34 32.80 0.71

median 43.50 0.03 1.43 50.50 5.30 11.00 0.78 4.50 0.30 19.50 0.63

st.dev. 34.36 0.02 0.30 38.35 1.70 3.75 0.28 1.80 0.22 30.25 0.24

Term

Ll L0d Ls

min 0.15 0.61 0.43

max 1.00 0.98 0.89

avg 0.76 0.85 0.66

median 0.94 0.88 0.64

st.dev. 0.29 0.10 0.10

Conformance

Afit Ab Ac

min 2.00 0.30 0.47

max 3.96 1.50 1.56

avg 2.92 0.83 0.89

median 3.05 0.71 0.86

st.dev. 0.59 0.37 0.35

Table 3.4: Descriptive statistics of the metric measures, organized according to the corresponding process

understandability factor, obtained for the 35 process models involved in the experiment. Note that Sseq

is not reported since in the considered recovered models it is always 0.

65

3.2. Understandability Metrics 3. REVERSE ENGINEERING

Structure

Sz Sd Scnc Scfc Sacd Scc Ssep Sdep Scy Scm Sfifo

min 0.14 0.02 0.39 0.11 0.39 0.04 0.31 0.00 0.00 0.04 0.30

max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

avg 0.38 0.46 0.53 0.37 0.52 0.60 0.72 0.60 0.47 0.30 0.71

med. 0.29 0.49 0.52 0.30 0.47 0.58 0.79 0.64 0.41 0.18 0.63

std 0.22 0.24 0.11 0.23 0.15 0.20 0.28 0.25 0.30 0.27 0.24

Term

Ll L0d Ls

min 0.51 0.20 0.30

max 1.00 1.00 1.00

avg 0.74 0.55 0.57

median 0.77 0.48 0.55

std 0.15 0.24 0.22

Conformance

Afit Ab Ac

min 0.15 0.62 0.48

max 1.00 1.00 1.00

avg 0.76 0.87 0.74

median 0.94 0.90 0.72

std. 0.29 0.10 0.11

Table 3.5: Descriptive statistics of the linearly normalized metric measures, organized according to the

corresponding process understandability factor, obtained for the 35 process models involved in the ex-

periment. Note that Sseq is not reported since in the considered recovered models it is always 0.

66

3. REVERSE ENGINEERING 3.2. Understandability Metrics

variables in the experiment, while the process model understandability, defined according

to the modellers’ opinions, the dependent variables.

Design

We considered six out of the seven Web applications involved in the experiment (i.e.,

Digistore was excluded in this experiment), randomly divided into two sets, each one

used in one of the two experiment iterations. The experiment has been repeated two times

considering each time a different set of Web applications (Softslate, Erol and Communicart

in the first iteration and Avactis, Interspire and WinestoreEvol in the second one) and

of human modellers (three in the first iteration and three in the second one)18. For

each experiment iteration, we adopted a simple experiment design [194] intended to fit

a set of five 1-hour lab sessions in order to limit the learning effect on applications.

Each modeller was asked to analyse and evaluate more models of the same application.

Table 3.3 summarizes the experiment design: we extracted five process models (p1 to

p5) from each of the three Web applications considered (A, B, and C) and we involved

three modellers (e1, e2 and e3). In detail, p1 is the “flat” process model obtained without

applying the clustering-based process refinement, while p5 represents the clustered version

of the model; the remaining processes (p2, p3 and p4) are obtained by applying different

combinations of the clustering techniques, with different sets of traces. The distribution

of the processes to be evaluated in the lab sessions, their combination, and the order in

which they are provided to the modellers have been chosen for limiting the learning effect

and the impact of co-founding factors. For instance, in the first lab session, the experts

have been provided with three models inferred from three different Web applications: a

flat model (A p1), a clustered model (B p5) and a third process model with a random

recovery technique setting and configuration (C p2).

Procedure

For each of the two iterations, we performed the following steps:

1 For each of the three Web applications, we applied the model recovery technique

described in Section 3.1 by considering five different settings and technique con-

figurations. In detail, we applied the recovering technique (i) without the cluster-

based modularization, (ii) with the cluster-based modularization considering differ-

ent combinations of clustering (e.g., sequence-alternative-loop and loop-sequence)

and (iii) by considering different sets of software execution traces. The output of

this step is a set of five different process models, each representing a different view

of the process underlying the considered application (see Figure 3.13 for an example

18Both the Web application and the modeller sets have been defined randomly.

67

3.2. Understandability Metrics 3. REVERSE ENGINEERING

of recovered process model).

2 We applied the whole suite of metrics to each recovered process model.

3 We provided the human modellers with five process models (according to the schema

in Table 3.3) and we asked them to rate the process model understandability based

on their knowledge and experience in process modelling. The modellers’ rate about

the process model (i.e., the “modellers’ opinion” MO) could vary on a 5-point scale

(1 = very low, 2 = low, 3 = medium , 4 = high, 5 = very high). Moreover, to

support modellers in the understandability evaluation, we asked them to answer

five comprehension questions about the process model (e.g., “Is the login operation

always required in order to load items in the shopping cart?”, “Can the user remove

an item from the cart if no item has ever been added to the cart before?”) before

rating each model. We collected information about the number of correct answers

and the time required for answering, though the main aim of the questionnaire was

supporting the experts in the process understandability evaluation, hence only the

expert opinions MOs have been considered in the experiment.

4 We analysed the collected data by means of four steps: (i) analysis of the descrip-

tive statistics and of the boxplots of the obtained measures, in order to evaluate the

trends of the measures; (ii) correlation analysis by means of the Spearman’s coeffi-

cient between pairs of process metrics, in order to detect unexpected relationships;

(3) correlation analysis by means of the Spearman’s coefficient between each process

metric and the modellers’ opinions (MOs), in order to find common trends; and (iv)

analysis by means of the Spearman’s coefficient and the Wilcoxon statistical test of

the potential relationship existing between pairs of opinions expressed by modellers

evaluating the same recovered process model. This last step is particularly rele-

vant to evaluate the variability of modellers’ subjective opinions about the model

understandability.

Summarizing, by considering both the experiment iterations, we analysed six Web

applications and recovered, for each of them, five process models representing different

views of the process it implements. We then collected the process metrics described in

the previous subsection (Subsection 3.2.1) on each generated process model, as well as the

opinions of the six modellers about the understandability of each process model. Finally,

we analysed the correlation between the collected measures to detect whether relationships

exist in their trends.

68

3. REVERSE ENGINEERING 3.2. Understandability Metrics

Figure 3.15: Distribution of the measured metrics with respect to the analysed process model (the metric

values are linearly normalized).

Figure 3.16: Distribution of the modellers’ opinions (MOs) with respect to the process understandability

(the metric values are linearly normalized).

MO1 MO2 MO3 MO4 MO5 MO6

min 1 1 1 1 1 1

max 4 4 4 5 4 4

avg 2.53 2.60 2.93 2.73 2.67 2.80

median 3 3 3 3 3 3

st.dev. 1.06 1.06 1.16 1.16 1.11 1.01

min 0.20 0.20 0.20 0.20 0.20 0.20

max 1.00 1.00 0.80 1.00 1.00 1.00

avg 0.51 0.52 0.59 0.55 0.53 0.56

med. 0.60 0.60 0.60 0.60 0.60 0.60

std 0.21 0.21 0.23 0.23 0.22 0.20

ANS1 ANS2 ANS3 ANS4 ANS5 ANS6

avg 98.6 96 97.3 89.3 97.6 92.1

T1 T2 T3 T4 T5 T6

avg 378.6 360 450 437.5 510.4 401.3

Table 3.6: Descriptive statistics about the (non-normalized and normalized) modellers’ understandability

opinions MOs, percentage of correct answers ANS, and required time T (sec.) for a set of 30 recovered

processes

69

3.2. Understandability Metrics 3. REVERSE ENGINEERING

Results: Process Metrics and Understandability correlation

Table 3.5 reports the descriptive statistics of the obtained process measurements (the

non-normalized values are reported in Table 3.4), while Figure 3.15 presents the boxplots

of these measures. Boxplots show that, for some metrics (e.g., Sd, Sdep), values are widely

distributed in the range [0-1], differently from other metrics (e.g., the values of Scnc and

Sacd are concentrated around 0.5 while Ab and Ac around 0.8).

Table 3.6 reports the descriptive statistics related to the non-normalized and normal-

ized modellers’ opinions (MOs) about the process understandability (the corresponding

boxplots are depicted in Figure 3.16), as well as, the average percentage of correct answers

ANS and the average time T (expressed in seconds) required to complete the compre-

hension questionnaire provided to subjects for helping them in expressing their evaluation

on the process model understandability. The table shows that the percentage of correct

answers given by modellers is high (on average 95%) and the time spent is quite limited

(on average 1.4 minutes for question). For completeness, we reported all the collected

data in Table 3.6, however, we recall that only the expert opinions MOs have been con-

sidered in the experiment, while the purpose of the questionnaire was helping experts in

the evaluation of process understandability.

Figure 3.17 reports instead, individually, the boxplots of both normalized metrics and

modellers’ opinions collected for the applications evaluated by the first group of subjects:

Softslate, Communicart and Erol. The boxplots give an idea of how metrics and average

modellers’ opinion vary for each application as well as of the differences in the distribution

of metrics and modellers’ opinions among applications. In particular, Erol has been

perceived by the first group of subjects as the most difficult application to understand.

By plotting the process model metrics versus the experts’ opinions, in most of the

cases, clear linear and curvilinear relationships come out. We hence used the Spearman’s

correlation coefficient to evaluate these relationships19. We computed correlation on nor-

malized metric values; since a linear normalization is applied, the value of the correlation

is not affected. Table 3.7 shows the correlation results. The table reports only the re-

sults that are statistically relevant at 5 percent confidence level, i.e., there is the 5% of

probability that the correlation is coincidental (p-value≤0.05). Data reported in the table

show that Sz and Scfc have a strong (negative) correlation20 with the modellers’ under-

standability evaluation, while Sd and Afit have a moderate correlation. This outcome

19The correlation coefficient ranges from -1 (a negative correlation) to 1 (a positive correlation), while a coefficient of 0

means no correlation.
20The use of terms “strong” and “moderate” for describing the obtained statistical correlation is based on a well-known

convention [35].

70

3. REVERSE ENGINEERING 3.2. Understandability Metrics

(a) Softslate

(b) Communicart

(c) Erol

Figure 3.17: Softslate, Communicart and Erol boxplots

71

3.2. Understandability Metrics 3. REVERSE ENGINEERING

(a) Sz vs. 1-MOAvg (b) Scfc vs. 1-MOAvg

Figure 3.18: Plot of some metrics and modellers’ opinions

seems consistent with the results obtained in previous works (e.g., [110] and [28]) and

confirmed by Figure 3.18, reporting the plots of Sz versus 1−MOAvg and Scfc versus

1 −MOAvg. Plots have similar shapes, though variations in average modellers’ opinion

are limited when compared to Sz’s and Scfc’s peaks. Other metrics (i.e., Sacd, Scy,

Scm and L0d), instead, show some degree of correlation with the modellers’ opinions

while only non-statistically relevant results have been observed for the metrics not listed

in Table 3.7. According to the obtained overall results, hence, we can empirically validate

8 of the proposed metrics (i.e., Sz, Sd, Scfc, Sacd, Scy, Scm, Afit and L0d) with respect to

the research question RQ1, by assessing their connection with the process model under-

standability. On the contrary, we cannot positively answer the research question RQ1,

in case of the remaining metrics.

Beyond the information related to the specific metrics, results in Table 3.7 also sug-

gest interesting observations about the relationship between process model properties

and understandability. According to the table, in fact, process size (measured by Sz)

and flow (measured by Sd and Scfc) are the properties more related to the process un-

derstandability. On the contrary, metrics depending on more properties of the process

model (e.g., Scnc depends on the number of both flow objects and sequence flows, i.e.,

on both process size and process flow), do not have statistically relevant correlations with

72

3. REVERSE ENGINEERING 3.2. Understandability Metrics

Metric Corr.(%) p-value

Sz -59.1 8.5e−10

Scfc -58.3 1.6e−9

Sd 54 3.4e−8

Afit -52.2 1.27e−7

Sacd -46.9 3e−6

Scm -38 0.0002

Scy -21.3 0.043

L0d 19.9 0.05

Table 3.7: Spearman’s correlation between process metrics and modellers’ opinions on the understand-

ability. The table shows only the metrics with a p− value ≤ 0.05.

the process model understandability. Nevertheless, this result could be due to the lim-

ited variance of this type of metrics (e.g., the standard deviation of Scnc is very low,

as shown in Table 3.5 and in the boxplot in Figure 3.15), thus suggesting the need to

perform further investigations devoted to study how a higher variance of these metrics

can affect the obtained results. Finally, further investigations would also be advisable for

the three metrics related to the quality of the activity labels. In fact, most of the labels

are single words or very short sentences rather than complete-sense sentences (the value

of the Ll metric is in general quite low, as shown in Table 3.5). This result is reason-

able since labels are automatically recovered during the process inference. Moreover, the

use of few words for composing activity labels influences negatively the label style and

hence model understandability (in fact, the value of the Ls metric is negatively correlated

with the understandability). Probably, a user intervention during the label recovery or

a label-refinement step could be required to better assess the impact of labels in model

understandability.

Tables 3.8 summarizes the correlation existing between pairs of metrics measuring the

same factor according to the measurements collected in the recovered process models.

Tables report both the statistically relevant (p− value < 0.05) and non-relevant values.

As expected, limited/moderate correlations exist between pairs of metrics in label and

conformance categories, while some strong correlations exist between pairs of process

structure metrics. This outcome was expected since, in our suite, different metrics have

been proposed to measure the same process property by considering different granular-

ities and points of view. For instance, Sz (size), Sd (density) and Scfc (control flow

complexity) strongly correlate: Sz positively correlates with Scfc, while both negatively

correlate with Sd. The reason is that, in a process with a non-trivial control flow (e.g.,

the flow is neither a chain of activities and events nor it describes a process in which each

73

3.2. Understandability Metrics 3. REVERSE ENGINEERING

Sz Sd Scnc Scfc Sacd Scc Ssep Sdep Scy Scm Sfifo

Sz 1 -97.1 -33.2 97.5 82.4 32.3 48.7 3.3∗ -15.2∗ 89.1 -22.4

Sd 1 38.1 -93.5 -77.9 -36.4 -44∗ -16.1 20.4∗ -91.8 24.5

Scnc 1 -24.7 -44 30.4 -1.8 -0.7∗ 63 -47.7 38.1

Scfc 1 82.4 29.1∗ 48.4 -1.3∗ -12.4∗ 86 -22.7

Sacd 1 -6.7∗ 35.8 -11.7 -45.1 79.7 -40.4

Scc 1 35.5 43.1 39.4 23.1 6.8∗

Ssep 1 -19.8∗ -24.1 39.2 31.6

Sdep 1 23.6 16.1∗ 12.5∗

Scy 1 -34.2 52.8

Scm 1 -39.4

Sfifo 1

Ll L0d Ls

Ll 1 -25.1 -39.8

L0d 1 70.3

Ls 1

Afit Ab Ac

Afit 1 -56.5 -9.1∗

Ab 1 36.4

Ac 1

Table 3.8: Spearman’s correlation (%) between pairs of structure (top table), label (middle table) and

conformace (bottom table) process metrics (∗ indicates correlations with p− value > 0.05)

74

3. REVERSE ENGINEERING 3.2. Understandability Metrics

flow object is connected to any other), a non-trivial increase of the number of flow objects

(i.e., Sz) likely implies a consistent increase of sequence flows in input to/output from the

process gateways21 (i.e., Scfc), thus slightly varying their ratio. Hence, this consistent

increase (of both flow objects and sequence flows) reasonably determines that the ratio

between the number of sequence flows and the number of all the potential sequence flows

connecting each process flow object to any other (i.e., about the square of the process

size) decreases. Such a relation of Sz (size) with Sd and Scfc, confirms hence the results

reported in Table 3.5.

Summarizing, Table 3.8 shows that some metrics in our suite can be considered surro-

gates of other metrics since similar and correlated trends have been observed.

Finally, to evaluate the agreement between modellers, we applied the Spearman’s corre-

lation coefficient to the understandability opinions MOs expressed by different modellers

on the same process. According to the experiment design, in fact, each process model has

been evaluated by three human modellers. Table 3.9 shows that the correlations between

pairs of modellers’ opinions on the same process are very high (on average 83.4%) and

the results are always statistically significative. We additionally perfomed a Wilcoxon

statistical test with the aim of investigating whether the opinions expressed by the three

modellers (i.e., the three experts involved in the first and in the second iteration of the

experiment, respectively) about the understandability of the same set of models were

consistent. In detail, we tried to answer the following question:

Do the opinions we obtained from the tree experts on the same process have the same

values?

According to this question we formulated the following null-hypothesis: (H0) The

modellers’ opinions on the same process do not diverge and the alternative hypothesis:

(Ha) Modellers’ opinions diverge. Table 3.9 shows the obtained p-values. For none of the

pairs of modellers’ opinions we were able to reject the null hypothesis since the obtained

p-value is always p − value > αBonferroni (αBonferroni = 0.0083). In fact, since we used

a repeated statistical test, the Bonferroni correction has to be applied (i.e., the null

hypothesis can be rejected if and only if the p-values are lower than αBonferroni = 0.05/6 =

0.0083). Both the results obtained in the correlation analysis and in the Wilcoxon test

show that strong consistency exists among the modellers’ evaluations. This outcome

corroborates the validation of the obtained results even in case, as in this experiment, the

number of subjects is limited.

21We assume activities can have only one input and output sequence flow.

75

3.2. Understandability Metrics 3. REVERSE ENGINEERING

Corr.(%) p-value Wilcoxon p-value

MO1-MO2 85.5 4.8e−5 1

MO1-MO3 86.4 3.2e−5 0.03

MO2-MO3 72.5 0.0022 0.09

MO4-MO5 85.5 0.0002 0.58

MO4-MO6 85.5 0.0006 0.77

MO5-MO6 85.5 1.1e−8 0.37

Table 3.9: Analysis of the modellers’ opinions

Prediction Analysis

In the second step of the experiment, the metrics collected for the recovered processes

have been used in a prediction system for assessing their ability in predicting model

understandability. This result helps in evaluating the suitability of the metrics as early

understandability predictors for recovered process models. In detail, the main aim of this

part of the experiment is answering the following research question:

RQ2 Are the metrics of our suite predictors of process model understandability?

To this purpose, we built a prediction model that, using the metrics computed for the

considered process models, predicts the modellers’ opinions and we checked the obtained

predictions against the actual modellers’ opinions. In detail, the following steps have been

performed:

1 Process metrics reduction by applying the Principal Component Analysis (PCA);

2 For different disjoint sets datamodel and datatest from the initial data set:

(a) Prediction model construction by applying a stepwise linear regression model

to datamodel set;

(b) Prediction model evaluation by measuring the accuracy of the prediction. The

accuracy is computed by comparing the predicted and the actual (i.e., provided

by the human modeller) understandability values for each process model in the

datatest set.

In the first step the Principal Component Analysis (PCA) has been applied in order

to understand whether the initial set of process metrics in the suite can be reduced by

removing some related metrics. PCA is a statistical test that reduces complex sets of data

composed of many dimensions to smaller ones.

76

3. REVERSE ENGINEERING 3.2. Understandability Metrics

In the second step, more prediction models have been built and evaluated by using

different datamodel and datatest sets, in order to validate the proposed metrics as predictors

of the process model understandability.

In detail, for each considered pair of datamodel and datatest, a (forward) stepwise linear

regression analysis [87] has been performed with the aim of understanding how process

model understandability (dependent variable) varies when one of the measurements (in-

dependent variables) in the datamodel set of observations changes and the others are kept

fixed. By means of the forward stepwise regression analysis, a linear regression model is

iteratively built considering different sets of the independent variables for each iteration.

The selection of the variable to be added to the model in each iteration is performed by

evaluating each variable according to its statistical relevance with respect to the variance

of the dependent variable. Hence, in each iteration, the independent variable that captures

more variation of the dependent variable is selected for being added to the model. At the

end, the obtained regression model is composed of the subset of the independent variables

that explains the maximum variance of the dependent variable. Such a regression model

is also used for the prediction of the value of the dependent variable.

For the evaluation of the prediction models, two rounds of validation have been applied.

In the first round, we used the leave-one-out cross-validation strategy (Myrtveit et

al [127]) in which the prediction model is built by removing, on a rotating basis, one

instance from the set of (N) observations in the data set used for building the prediction

model and using it as a test case (datatest set) for evaluating the prediction. In other

terms, only the remaining (N − 1) observations are used to generate the model aimed

at predicting the value of the removed case (i.e., as datamodel set). In general, the leave-

one-out cross-validation consists in dividing the initial data in k parts and repeating

the prediction, using k − 1 parts as dataset (datamodel set) and one for the prediction

test (datatest set), by rotating the part used as prediction test over all the k parts. By

averaging the validation results over the rounds, this analysis provides an evaluation about

how the considered metrics generalize to an independent data set. Using a cross-validation

is a common procedure (e.g., Myrtveit et al. [127] and Zhou et al. [196]) for evaluating

prediction systems when a limited number of observations is available. In our case, in

all the leave-one-out cross-validation rounds we used all the processes related to one Web

application as datatest set for the evaluation of the prediction model and all the process

models of the remaining five Web applications as datamodel set.

In the second round of validation, we built the prediction model by considering the

whole set of process metrics of the six considered applications and we evaluated the

77

3.2. Understandability Metrics 3. REVERSE ENGINEERING

model using a new set of processes recovered for Digistore (i.e., the Web application

not considered for the prediction model construction). In other terms, we generated the

prediction model with the process metrics of the 6 applications, and we applied such a

model to the five processes recovered for Digistore and evaluated by all the six human

modellers. Hence we evaluated the accuracy of the prediction by comparing the actual

understandability with the predicted one. This last prediction model takes advantage of

a larger set of data (the process models related to all the six applications), and should

hence confirm and improve the previous results.

Each built prediction model has been evaluated by comparing the predicted and the

actual (i.e., provided by humans) understandability values (of the datatest set). To this

purpose, we resorted to two metrics used in prediction model evaluation: the means of the

absolute error MAE (e.g., [60] and [86]) and Pred(q), i.e., the percentage of predictions

falling within q percent of the actual value (e.g., [36], [86] and [196]). They are different

measures with different evaluation capabilities: while the first is a measure of error, the

second is a measure of accuracy.

In detail, MAE measures the mean of the absolute error of the modellers’ opinions

predictions (approximated to the closest value) with respect to their actual opinions:

MAE =
∑

i∈N |actual(MOi)−predicted(MOi)|
N

where N is the number of observations in the datatest (i.e., used in the prediction eval-

uation), actual(MOi) and predicted(MOi) are the ith actual modeller’s opinion and the

predicted value of the ith modeller’s opinion (approximated to the closest value in the

Likert scale) on the understandability of the process model, respectively.

Pred(q), instead, measures the percentage of predictions about modellers’ opinions

lying within ±q% of the actual modellers’ opinions:

Pred(q) =

{
i∈N | |actual(MOi)−predicted(MOi)|

actual(MOi)
≤ q

100

}
N

We adapted this measure to our range of values by computing the percentage of predic-

tions of modellers’ opinions falling within a range ±1 on the Likert scale (corresponding

to ±0.2 on the normalized scale), i.e., the percentage of predictions that are either correct

or incorrect for at most one point in the Likert scale:

Pred5(q) = {i∈N | |actual(MOi)−predicted(MOi)|≤q∗0.2}
N

In detail, for the prediction model evaluation, we considered MAE and Pred5(1).

Results: Prediction Model Construction and Evaluation

Applying PCA we obtained a reduction of the initial set of considered metrics. PCA,

78

3. REVERSE ENGINEERING 3.2. Understandability Metrics

Model ID Metrics Regression Model R2 Adj R

PrMall all 1.06 - 5.1*Sz+2*Scfc-0.86*Sacd 0.71 0.68

-0.17*Scc+0.54*Sep-0.13*Scy

+2.23*Scm+0.46*Ab-0.33*Ls

PrMpca PCA-reduced 0.05496-2.2*Sz+0.4*Sd+0.36*Scnc 0.67 0.63

-0.14*Scc+0.32*Sdep-0.22*Scy

+1.8*Scm+0.23*Sfifo+0.42*L0d

Table 3.10: Regression models

in fact, suggested the use of 12 out of 18 process metrics (i.e., Sz, Sd, Scnc, Scfc, Scc,

Sdep, Scy, Scm, Sfifo, Afit, Ll, L0d). Moreover, this analysis also revealed that five

components of PCA allow to explain 86.4% of the total variance.

We applied the (stepwise) linear regression analysis to both the whole set of process

metrics measured on the recovered processes and to the reduced set of metrics obtained as

output of the PCA. Table 3.10 details the components of both regression models. PrMall is

the prediction model built considering all the metrics, while PrMpca the one obtained with

the reduced set of metrics. In the table, R2 represents the amount of variance explained by

the model and Adjusted R2 explains any bias in R2 by considering the degrees of freedom

of the independent variables. By observing the values of R2, we can conclude that the

constructed models can explain a large amount (71% and 67%, respectively) of the total

variance. Moreover, we can notice that a limited number of metrics (i.e., Sz, Scc, Scy and

Scm) is part of both the regression models. This strengthen the relevance of such metrics

with respect to process understandability. Finally, it is interesting to observe that the

regression model contains metrics (e.g., Sz, Scfc, Scnc, Ls) measuring different process

properties (e.g., process structure size / complexity / flow, conformance and terms). This

indicates that there does not exist a unique process model property that predicts process

understandability.

Table 3.11 shows the accuracy evaluation measures MAE and Pred5(1) computed

by averaging the measures obtained in the different iterations of the leave-one-out cross-

validation procedure, as well as those obtained by considering the Digistore’s process

models as datatest set. Figure 3.19 plots the predicted and the actual values for all the

predictions built by considering the whole set of metrics PrMall. We observe that, on

average, in case of PrMall the error (MAE) done in the prediction is in the range [9-14]%.

It means that, on average, the prediction is far from the actual value less than half of

a point of the Likert scale, in case of the prediction evaluation based on Digistore, and

about 3
4

of the Likert scale point in case of the leave-one-out approach. Moreover, by

79

3.2. Understandability Metrics 3. REVERSE ENGINEERING

Figure 3.19: Plot of predicted (cross points) and actual (circle points) MO values for PrMall.

Leave-one-out Digistore-based

Model MAE Pred5(1) MAE Pred5(1)

PrMall 0.14 0.91 0.09 0.93

PrMpca 0.14 0.95 0.14 0.93

Table 3.11: Accuracy of the predictions

looking at the Pred5(1) value, we can notice that the percentage of predictions falling

within the range ±1 of the acutal modeller’s opinion in the Likert scale is in the range

[91-93]%, i.e., only less than 10% of predictions has an error greater than one point in the

Likert scale. In case of PrMpca, results are quite similar: MAE is 0.14 and Pred5(1) in

the range [93-95]%. These results make the prediction models moderately effective with

respect to the considered applications, since one point in the Likert scale can be, in some

cases, not only a matter of small opinion variations.

We hence investigated the capability of the prediction model to correctly evaluate a

process model as understandable or not. By taking out the neutral values of modellers’

opinions about model understandability (i.e., MO = 3 in the Likert scale), we classified

the remaining values as non-understandable if they are in the range [1-2] of the Likert scale

and understandable if they are in the range [4-5] of the scale. Table 3.12 reports the values

of the accuracy measures obtained by computing the percentage of correct predictions

(accuracy) with respect to the two categories, understandable and non-understandable.

80

3. REVERSE ENGINEERING 3.2. Understandability Metrics

Leave-one-out Digistore-based

Model Accuracy Accuracy

PrMall 82.3 100

PrMpca 91.9 88.9

Table 3.12: Accuracy of the predictions obtained by classifying modellers’ opinions as understandable or

non-understandable

Results show that, in case of the leave-one-out evaluation approach, predictions about

understandability/ non-understandability opinions of process models are correct for the

82%, when using all the metrics for computing prediction, and for 92%, when using the

PrMpca metrics. In case of Digistore-based evaluation, results are strongly improved for

PrMall (full accuracy is reached), while for PrMpca they show a trend similar to the

one of the leave-one-out approach (88.9%). Hence, though the investigated metrics are

moderately good predictors of the understandability degree of recovered process mod-

els, these last results suggest the suitability of their use as predictors of process model

understandability/non-understandability, as well as encourage further investigations (e.g.,

with classification techniques as Support Vector Machines).

Overall, considering the obtained results, we can partially positively answer to question

RQ2, though further investigations (e.g., by exploiting other prediction systems), are

required, in order to understand if and to what extent the proposed metrics, properly

combined, are good predictors for recovered process models. We plan, in our future

works, to investigate other classification techniques and to validate the obtained results

on a larger experiment involving a higher number of recovered processes and human

modellers.

Follow-up

The results obtained with the analysis of the relationship between process metrics and un-

derstandability confirm the outcome of the evaluation of the reverse engineering approach

proposed in Section 3.1 and, in particular, of the motivation leading to the application

of clustering techniques for improving process readability. Table 3.13 reports the expert

opinions and the most relevant metrics (i.e., those metrics that strongly correlate with

the understandability according to the performed experiment) of a flat and a modularized

version (in detail, we applied the “sequence-alternative-loop” clustering) of the process

underlying each of the six Web applications considered. Results show that the cluster-

based process modularization improves the overall understandability. In other terms, the

81

3.2. Understandability Metrics 3. REVERSE ENGINEERING

WA Model MOAvg Sz Sd Scfc

Softslate flat 1.67 40 0.037 44

Softslate clust 3.33 36 0.042 37

Communicart flat 1 43 0.037 43

Communicart clust 1.67 39 0.04 35

Erol flat 1.33 60 0.023 72

Erol clust 2.33 57 0.025 66

Avactis flat 1 152 0.008 168

Avactis clust 1.67 151 0.0084 165

Interspire flat 2.33 80 0.019 101

Interspire clust 3 78 0.001 96

Winestore flat 2.67 42 0.04 55

Winestore clust 2.67 42 0.04 49

Table 3.13: Understandability and process metrics: flat versus modularized models

average of modellers’ opinions (MOAvg) is improved by process model clustering. On

the other hand, from Table 3.13, we can also observe that the structural metrics having a

strong correlation with understandability detect the improvement, if any (e.g., in case of

Winestore, the almost negligible variations in the structural metrics values correspond to

no difference in the average modellers’ opinions). This example, hence, confirms that the

process modularization obtained by applying the proposed clustering-based technique in

general improves the process model understandability [149] and that structural process

metrics can be used as indicators for detecting such an improvement.

Threats to validity

A number of threats affect the validity of the results obtained in the performed experi-

mental study.

External validity threats concern the generalization of results. The major threat to

the external validity is due to the limited number of process models analysed in the

experiment. A larger dataset of processes could have highlighted different connections

between the process characteristics measured by metrics and the understandability. This

threat is particularly strong for results related to label metrics, since all the process models

related to the same application actually contain a subset of the label set recovered from the

specific application (except for labels of clustered sub-processes). The obtained results,

presenting only a low positive correlation (20%) between understandability and L0d, while

reporting a lack of a strong relation between label metrics and understandability, could

hence be due to the fact that only five sets of labels, one per application, have been

82

3. REVERSE ENGINEERING 3.2. Understandability Metrics

evaluated. We believe that further iterations of the experiment, in which heterogeneity of

process model label sets is also taken into account, can better corroborate the obtained

results. Another relevant threat that affects the generalization of the outcome is the

limited number of human modellers involved in the experimentation and their job position

as researchers. Unfortunately, it is difficult to find professional modellers voluntarily

collaborating in this type of investigations. However, we believe that the strong correlation

we obtained among the modellers’ opinions encourage us in upholding the experiment

outcome. Finally, a third threat to external validity concerns the representativeness of

the application domain with respect to “all possible domains”; in fact, we considered

three e-commerce applications. Further experiments need to be conducted in applications

belonging to different domains.

Internal validity threats concern external factors that affect a dependent variable.

Two main threats to validity related to the modeller understandability evaluation can

influence the results. First of all, the choice of using only a subjective evaluation of the

actual understandability of process models. In order to limit this threat, we supported

modellers in the (subjective) evaluation by asking them to answer some comprehension

questions. Another threat is the choice of a 5-point scale for the evaluation; in fact, a

more fine/coarse scale could be considered and different results could be obtained.

Construct validity threats concern the relationship between theory and observation.

Two main threats to construct validity can affect the experiment results: (i) the learning

effect of the modeller in the process model evaluation; each modeller, in fact, evaluated 5

processes related to the same application; and (ii) the process model layout. We tried to

limit the first problem by using an experiment design based on five laboratories performed

in different days and the second by manually adjusting the layout of process models used

in the experiment.

Conclusion validity threats concern the relationship between treatment and outcome.

A possible threat that may affect the drawn conclusions is related to the small sample

size considered in the experiment (i.e., the limited number of processes and modellers),

which may limit the capability of statistical test to reveal effects.

83

3.2. Understandability Metrics 3. REVERSE ENGINEERING

84

Chapter 4

Business Process

Semantic Annotation

“Why is a raven like a writing desk?”

Lewis Carrol

Semantic Business Process Management (SBPM) [78, 56] aims at improving the level of

automation in the specification, implementation, execution, and monitoring of business

processes by extending business process management tools with the most significant re-

sults from the area of semantic web. The importance of semantic information in business

process management is hence recognized starting from the design stage, i.e., the phase

in which business processes are specified at an abstract (descriptive and non-executable)

level. Thomas and Fellman [167] argued that annotating process descriptions with a set

of tags taken from a set of domain ontologies would provide an additional support to the

business analysis during the modelling activity. As remarked by Born et al [22], in fact,

semantic annotation of business processes allows analysts to give a precise meaning to the

process elements they are modelling, thus improving, among others: the reuse of parts

of process models when creating new models; the detection of cross-process relations; the

management of change; and providing a structured basis for knowledge transfer and for

enabling automated reasoning on the process and its properties.

On the other hand, the semantic annotation of business process models is a time and

resource consuming activity. It requires business designers to browse the source of the

semantic knowledge (e.g., the domain ontology) and to select the appropriate annotation.

Moreover, in some cases, the semantic knowledge to be used for the annotation is not

available in a structured form, thus imposing an extra effort for its formalization. Auto-

matic mechanisms (e.g., tools able to suggest candidate semantic annotations or to help

85

4.1. Semantic Annotation of BPMN Process Models 4. BP SEMANTIC ANNOTATIONS

in the construction or extension of structured knowledge sources) would hence be useful

to support business designers and analysts in the semantic annotation activity.

In this chapter, we provide a description of our approach for the semantic enrichment

of BPMN processes and for their formalization into a knowledge base with the aim of

enabling automated reasoning on them and their properties (Section 4.1). Moreover,

we propose a set of techniques for the automated suggestion of semantic annotations to

business designers and for the enrichment of existing ontologies with missing concepts,

when needed (Section 4.2).

The material related to the knowledge base formalization presented in this chapter

has been published in [44, 45, 46], while the material related to the semantic suggestions

in [50, 51].

4.1 Semantic Annotation of BPMN Process Models

Labelling of activities in BPMN is not a rigorous and well documented task: it is of-

ten performed with freedom [163] and subjectivity, thus generating unclear labels with

mismatching, overlapping and often specific [115] (and hence difficult to understand out-

side the specific context) terms. The consequence is that human comprehension [115]

of business processes, as well as acquisition of knowledge, become harder. Moreover, the

information conveyed by labels lacks of structure and formality, thus resulting inaccessible

to machines and preventing automated reasoning on processes and their properties.

In this section we describe our proposal to cope with this issue. In detail, we suggest

to enrich BPMN business processes with domain annotations, thus clarifying the process

domain semantics (Subsection 4.1.1), and to encode the annotated processes into an OWL

knowledge base, thus providing a starting point for exploiting reasoning on the processes

(Subsection 4.1.2).

4.1.1 Enriching BPMN Processes with Semantic Annotations

Business process models are mainly focused on the representation of activities, performers,

as well as control and data flows. Domain information is conveyed only as informal labels.

However, process element labelling is usually not rigorously performed by designers, thus

resulting (e.g., in cases of large business processes) in situations of label inconsistency.

It may happen, in fact, that tasks with different labels are used to represent the same

activity or that different labels are used for describing different specializations of the same

activity, adding irrelevant information with respect to the considered abstraction level.

86

4. BP SEMANTIC ANNOTATIONS 4.1. Semantic Annotation of BPMN Process Models

Moreover, the amount of information that can be encoded in a human readable label is

necessarily limited.

In order to deal with the problem of providing business process elements with domain

knowledge that is both clear for humans and accessible to machines (thus enabling au-

tomated reasoning mechanisms), we propose to enrich process elements with annotations

characterized by a semantics explicitly organized in a structured source of knowledge, i.e.,

with semantic concepts belonging to a (set of) domain ontology(es). Semantic annota-

tions, in fact, can be used to provide a precise, formal meaning to process elements.

We graphically represent the semantic annotation of business processes and, in partic-

ular, of their underlying Business Process Diagrams (BPDs), by taking advantage of the

BPMN textual annotations. In detail, we propose a semantic variant of BPMN, in which

the ontology concept associated to a BPD element is prefixed by an “@” symbol. Such

annotations allow us to categorize BPD elements, by unifying labels that represent the

same concept and abstracting them into meaningful generalizations.

An example of a semantically annotated BPD is shown in Figure 4.1. It represents a

process for realizing an assembled product starting from three raw products. Before the

purchase data can be stored (sub-process “Store Purchase Data”) and the task for product

assembly (“Assemble Products”) is executed, the three control flows for the acquisition

of the raw products need to be executed in parallel and completed.

In this example, for instance, the tasks starting the three parallel flows for the raw

product purchase, though exhibiting different labels (“Look For Product in the Ware-

house”, “Check Product Availability” and “Search for Product”), represent the same

concept, i.e., all of them check whether the product is available in the warehouse. In this

case, a semantic annotation, would allow to unify the semantics of the three tasks, though

preserving their original labels. For example, assuming to have an ontology describing

this domain and containing a to check product availability concept, the three tasks could

be semantically annotated by this, more general, concept. A similar argument can be

used also for the other elements in the process.

4.1.2 Formalizing Semantically Annotated BPMN Processes

Semantic information is crucial for activities that involve reasoning and require automated

support [78], as for example documenting or querying a process [49], enforcing a policy, or

verifying constraints on the business logics [45]. In order to enable automated reasoning

on a semantically annotated BPD and hence to automate the activities listed above, we

encode the process into a logical knowledge base, the Business Process Knowledge Base

87

4.1. Semantic Annotation of BPMN Process Models 4. BP SEMANTIC ANNOTATIONS

Figure 4.1: An example of a semantically annotated BPMN process

(BPKB).

A BPKB, schematized in Figure 4.2, is composed of four modules: a BPMN ontology,

a domain ontology, a set of constraints and the BPD instances. We have implemented

the BPKB using the standard semantic web language OWL (Web Ontology Language)

based on Description Logics [12] (OWL-DL). Description Logics (DL) are a family of

knowledge representation formalisms which can be used to represent the terminological

and assertional knowledge of an application domain in a structured and formally well-

understood way. The terminological knowledge, contained in the so-called Tbox, repre-

sents the background knowledge and the knowledge about the terminology (classes and

properties) relevant for the described domain. The assertional part, the so-called Abox,

contains knowledge about the individuals which populate the given domain in the form of

membership statements. In our case, the terminological part (Tbox), which is the stable

description of the domain, is provided by the upper level modules of Figure 4.2. Instead,

the changeable part, which corresponds to a specific process description, is provided in

the form of assertional knowledge (Abox).

The BPMN Ontology

The BPMN ontology, hereafter called BPMNO1, formalizes the structure of a BPD. It is

a formalization of the BPMN standard as described in Annex B of [131], and consists

of a set of axioms that describe the BPMN elements and the way in which they can

be combined for the construction of BPDs. The taxonomy of the graphical elements of

BPMNO is illustrated in Figure 4.3. The ontology has currently the expressiveness of

ALCHOIN (D) and a detailed description is contained in [66]. We remark that BPMNO

1Available for download at http://dkm.fbk.eu/index.php/BPMN_Related_Resources

88

http://dkm.fbk.eu/index.php/BPMN_Related_Resources

4. BP SEMANTIC ANNOTATIONS 4.1. Semantic Annotation of BPMN Process Models

Figure 4.2: The Business Process Knowledge Base

provides a formalization of the structural part of BPDs, describing which are the basic

elements of a BPD and how they are (can be) connected. BPMNO is not intended to

model the dynamic behaviour of BPDs (that is, how the flow proceeds within a process).

Ontology languages are not particularly suited to specify behavioural semantics. This

part can be better modelled using formal languages for Workflow or Business Process

Specification based on Petri Nets, as proposed in [93].

Figure 4.3: The graphical elements of BPMNO

89

4.1. Semantic Annotation of BPMN Process Models 4. BP SEMANTIC ANNOTATIONS

The Domain Ontology

The domain ontology component, hereafter called BDO, consists of a (set of) OWL on-

tology(es) that describes a specific business domain. It allows to give a precise semantics

to the terms used to annotate business processes. The BDO can be an already existing

business domain ontology (e.g., RosettaNet or similar standard business ontologies), a

customization of an existing ontology, or an artefact developed on purpose. Top level

ontologies such as DOLCE [63] can be included as “standard” components of the domain

ontology and used to provide typical annotation patterns to the BPD objects.

The Constraints

Constraints are used to ensure that important semantic structural requirements of process

elements are satisfied. We distinguish between two different kinds of constraints: merging

axioms and process specific constraints. Merging axioms state the correspondence

between the BDO and the BPMNO. They formalize the criteria for correct/incorrect se-

mantic annotations. Process specific constraints are expressions used to state specific

structural requirements that apply to the process under construction. Differently from

merging axioms, these expressions can have many different forms to match the specific

properties of the process.

The BPD Instances

The BPD instances (or BPD objects) component of the BPKB consists of a set of on-

tology individuals and assertions which represent the elements of an annotated BPD in

terms of instances of BPMNO and BDO classes. In order to clarify the description of

this component we consider the (small) fragment of process reported in Figure 4.4. It

represents the sub-process that manages the addition/removal of items in the shopping

cart of the on-line shopping process. In detail, each graphical object g of a semantically

annotated BPD β corresponds to an ontology individual in the set of BPD instances and

to a set of assertions, both contained in Aβ, the Abox which formalizes the BPD β (for

example, the main part of the Abox associated with the sub-process in the example in

Figure 4.4 is shown in Figure 4.5).

The assertions on the β’s graphical objects can be divided into three groups: BPM-

type assertions, BPM-structural assertions and BPM-semantic assertions. The first two

groups of assertions involve concepts from BPMNO only, while the third group involves

concepts from BDO only.

90

4. BP SEMANTIC ANNOTATIONS 4.1. Semantic Annotation of BPMN Process Models

Figure 4.4: A sub-process for the cart management in an on-line purchase process

BPM-type assertions are used to store informations on the BPMNO-type2 of a graphical

object g. For every graphical element g of type T occurring in β, Aβ contains the assertions

T (g), i.e., g is an instance of concept T 3. For instance, we represent the fact that the

gateway on the left in Figure 4.4 is an exclusive gateway with the BPM-type assertion

data based exclusive gateway(g1) in Figure 4.5. Similarly, the assertion sequence flow(s1)

states that the BPMNO-type of s1 is sequence flow.

BPM-structural assertions are used to store information on how the graphical ob-

jects are connected. For every connecting object c of β that goes from a to b, Aβ
will contain two structural assertions of the form has sequence flow source ref(c, a) and

has sequence flow target ref(c, b). For instance, the assertion has sequence flow source ref

(s2, g1) in Figure 4.5, states that the sequence flow s1 originates from the gateway g1.

Finally, BPM-semantic assertions are used to store information on the BDO-type4

of a BPD element, which is described by the semantic annotation associated with the

BPD object. For every graphical element g of the diagram β which is annotated with

a label C (where C is a BDO concept), Aβ contains the assertion C(g). For instance,

the assertion to update cart(t1) states that task t1 in Figure 4.5 is an instance of the

concept to update cart and is obtained from the semantic annotation to update cart of the

sub-process in Figure 4.4.

2The term BPMNO-type specifies the BPMNO type of a BPD object, i.e., the BPMNO class/superclass of the corre-

sponding instance in the BPKB.
3For the sake of readability, we omit the BPMNO prefix in non ambiguous expressions.
4Similarly to the term BPMNO-type, the term BDO-type specifies the BDO type of a BPD object, i.e., the BDO

class/superclass of the corresponding instance in the BPKB.

91

4.1. Semantic Annotation of BPMN Process Models 4. BP SEMANTIC ANNOTATIONS

BPD objects

p1 corresponds to the entire sub-process

s1, . . . , s4 correspond to the four sequence flows

g1 and g2 correspond to the left and right gateways

t1 and t2 correspond to the top and bottom atomic task

BPM-type assertions

embedded loop sub process(p1) /* p1 is an iterative sub-process */

data based exclusive gateway(g1) /* g1 is a data-based XOR gateway */

data based exclusive gateway(g2)

sequence flow(s1) /* s1 is a sequence flow object */

sequence flow(s2)

sequence flow(s3)

sequence flow(s4)

task(t1) /* s1 is an atomic task object */

task(t2)

BPM-structural assertions

has embedded sub process sub graphical elements(p1, g1)

.

.

. /* p1 contains g1, g2, s1 . . . s4, t1 and t2 */

has embedded sub process sub graphical elements(p1, t2)

has sequence flow source ref(s1, g1)

has sequence flow target ref(s1, t1)

has sequence flow source ref(s2, g1)

has sequence flow target ref(s2, t2)

has sequence flow source ref(s3, t1)

has sequence flow target ref(s3, g2)

has sequence flow source ref(s4, t2)

has sequence flow target ref(s4, g2)

BPM-semantic assertions

to manage cart(p1) /* pi is an activity of managing of carts */

to update cart(t1)

to remove product(t2)

Figure 4.5: The encoding of the to manage cart sub-process in an OWL Abox

4.1.3 Automatically encoding a BPD into an Abox

We developed a tool for the automated transformation of a BPD into an OWL Abox.

Given BPMNO, BDO and an annotated BPD β, the tool creates the Abox Aβ and popu-

lates the ontology with instances of BPMN elements belonging to the specific process.

The input BPMN process is currently described in a .bpmn file, one of the files generated

by both the Eclipse SOA Tools Platform and the Intalio Process Modeler tools. The .bpmn

file is an XML file that contains just the structural description of the process, leaving out

all the graphical details. The ontology is populated by parsing the file and instantiating

the corresponding classes and properties in the BPKB Tbox.

The mapping between the XML elements/attributes used in the .bpmn file of the

Eclipse tool and concepts and properties in the BPKB Tbox is realized by means of a

mapping file. It associates each XML element of the .bpmn file to the corresponding con-

cept in BPMNO and each of its attributes and child elements to the corresponding concept

92

4. BP SEMANTIC ANNOTATIONS 4.1. Semantic Annotation of BPMN Process Models

Figure 4.6: A fragment of the mapping file

or property, when this exists in the BPMNO. The fragment of mapping file in Figure 4.6

shows the correspondences between the pool process element (i.e., the XML element hav-

ing type bpmn:Pool in the .bpmn file) and the BPMNO. Each XML element of this type in

the .bpmn file will be translated into an instance of the concept BPMNO:Pool. The values

of its attributes name and documentation will be the values of the two data properties

has swimlane name and has BPMN element documentation of the concept BPMNO:Pool.

Moreover, the two values (instances of the classes BPMNO:Object and BPMNO:Process)

of the BPMNO:Pool’s object properties has BPMN element id and has pool process ref, will

be instantiated by exploiting the unique id of the process element pool. Finally, the pool’s

child elements annotated with the XML tags lanes and vertices will respectively be the

values of the BPMNO:Pool’s object property has pool lanes and of the BPMNO:Process’s

object property has process graphical elements.

The BPMN process descriptions currently generated by the Eclipse or the Intalio tool

do not exhaustively cover the features provided by the BPMN specification and, therefore,

the full ontology potential. The mapping file is hence limited to the subset of the BPMN

specification actually implemented by the considered tools and is based on assumptions

implicitly made by the tools. Similarly, the mapping file depends on the particular process

representation adopted by these tools and must be adjusted if a different tool is used for

process editing.

Finally, the semantic annotations added to process elements and contained in the

.bpmn file as XML elements of type bpmn:TextAnnotation are also used for populating

the BDO concepts. By parsing the file, the process element associated to each XML

element having type bpmn:TextAnnotation will be added as an instance of the BDO

93

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

concept corresponding to the value of the semantic annotation, for each value prefixed by

“@”.

Our tool uses the org.w3c.dom XML parsing library to manage the .bpmn input file,

Protégé5 libraries to populate the resulting OWL Abox, and Pellet6 for reasoning.

4.2 Semantic Annotation Suggestions

Despite the several potential advantages offered by the semantic enrichment of business

processes, it presents a high cost. In fact, semantically annotating BPD elements, either

at design time or after the process has been modelled, is resource and time consuming

for business designers and analysts. It involves, for each BPD element to be annotated,

browsing of the ontology and selection of the appropriate concept to be used for the

element annotation. Moreover, it might happen that domain ontologies are not available

or are incomplete, thus requiring designers to manually build or enrich them.

We use the linguistic analysis of the process element labels and of the concept names

for providing semantic annotation suggestions to business designers. By taking advan-

tage of these suggestions the experts are facilitated in adding semantic annotations to

process elements without however changing their original and specific labels. This allows

to limit the drawbacks deriving from the semantic annotation (e.g., time and resource

consumption), while preserving its benefits.

After a short overview about concepts and notations used in the remainder of the

section (Subsection 4.2.1), we describe our techniques for the semi-automated disam-

biguation of ontology concepts (three different algorithms for the analysis of the domain

ontology aimed at extracting a WordNet “sense” for each of the concepts in the ontology

are reported in Subsection 4.2.2), the annotation of process elements (an algorithm for

the semi-automated semantic annotation of the process elements is reported in Subsec-

tion 4.2.3) and to support the business analyst in ontology creation and extension (Sub-

section 4.2.4). Finally, a preliminary evaluation of the proposed techniques is reported in

Subsection 4.2.5.

5http://protege.stanford.edu/
6http://clarkparsia.com/pellet/

94

http://protege.stanford.edu/
http://clarkparsia.com/pellet/

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

4.2.1 Background

Linguistic Analysis

Natural language processing is a wide research area, including a number of different

tasks and approaches. The analysis of short sentences, like those characterizing labels

or ontology concepts, is one such task. Linguistic analysers, as for example MINIPAR7,

do not only allow to tokenize (short) sentences, reduce words to their stems and clas-

sify terms into grammatical categories (e.g., verbs, nouns, adjectives), but they are also

able to find dependencies and grammatical relationships between them (e.g. verb-object,

article-noun, specifier-specified). In detail, given a sentence s, MINIPAR is able to to-

kenize it, thus extracting its word list, WS(s) = {wi ∈ Dict|s = w1...wn}, where Dict

is a given dictionary of words8. Moreover, for each word wi, it identifies the grammat-

ical category mGCat(wi) ∈ MGCS, as well as the dependency relationship (→R, with

R ∈ MGREL) with its head word (headw(wi)), if any. The head word of a word wi, in

fact, is the word in the sentence dominating the dependency relationship →R with wi,

so that, if wi →R wj, then wj = headw(wi). The only word free from dependencies in

a sentence s, is the sentence head word (heads(s)). It represents the root of the depen-

dency tree, a tree that, built upon the dependency relationships, connects all the terms in

the sentence. MGCS = {V,N, V BE,A, ...} is the set of the MINIPAR classification of

grammatical categories (e.g., V = verb, N = noun, V BE = “to be” verb, A =adjective

or adverb, ...), while MGREL is the set of the MINIPAR dependency relationships.

MGREL = MGRELterm ∪ MGRELclause is the union of the set of the dependencies

between pairs of terms, MGRELterm = {subj, obj, nn, det, ...}, e.g., subj = verb-subject

(subject →subjverb), obj = verb-object (object→objverb), nn = specified-specifier (speci-

fier →nn specified) or det = determined-determiner (determiner →det determined) rela-

tionship, and the set of the relationships involving clauses, MGRELclause = {rel, fc, ...},
e.g., rel = noun-relative clause (noun →rel relative clause), verb-final clause (verb →fc

final clause) relationship.

Henceforth, we will refer to a verb of a parsed sentence with the character v (i.e.,

MGCat(v) = V) and to a noun with the character n (i.e., MGCat(n) = N). Moreover,

we introduce the function o(v) to denote the object of the verb v (i.e., o(v) →obj v) and

s(n) to represent the specifier of n (i.e., s(n)→nn n). For example, by applying MINIPAR

to the short sentence “Choose a product group”, we obtain the information in Figure 4.7

(top left); by applying it to the sentence “Select quantity”, we get the results shown in

7http://www.cs.ualberta.ca/~lindek/minipar.htm.
8MINIPAR takes advantage of WordNet.

95

http://www.cs.ualberta.ca/~lindek/minipar.htm.

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

Figure 4.7 (top right).

Figure 4.7: Information extracted by MINIPAR

Unfortunately, short sentences are intrinsically difficult to analyse through linguistic

processing, because they carry limited and compact information. Sometimes, it happens

that the analysis performed by the parser is wrong or inaccurate. For example, parsing

of the label “Store payment method” by means of MINIPAR gives the (partially wrong)

result shown in Figure 4.7 (bottom).

WordNet

The simple parsing of a sentence executed by MINIPAR is usually not enough for deter-

mining its semantics. The same term, in fact, can have multiple meanings (polisemy),

as well as more terms (synonyms) can represent the same concept. WordNet [118] is

one of the most known resources allowing to categorize terms according to their meaning

(sense) and synonym set (synset). The same word, in fact, can be used as the represen-

tative for different Parts Of the Speech (POS) and for each of them, it can have multiple

senses. The information gathered from POS type and sense allows to disambiguate the

word meaning. A WordNet Dictionary, WNDict, is therefore a collection of (word, word-

sense, word-type) triples (WNDict = {(wi, sj, wnpos)|wi ∈ Dict ∧ wnpos ∈ WNPOS},
where WNPOS = {N, V,Adj, Adv} is the WordNet set of different type categories, e.g.,

N = noun, V= verb, Adj = adjective, Adv = adverb). Each triple (wi, sj, wnpos) iden-

tifies a unique synset including (wi, sj, wnpos), as well as all the other (if any) WordNet

triples (wu, sv, wnpos) having the same, specific meaning of (wi, sj, wnpos). Hereafter

we will use the function senses (senses(wi, wnpos) = {sj|(wi, sj, wnpos) ∈ WNDict})
to compute all the senses of a word wi belonging to a specific type category wnpos, the

function wnPOS : MGCS → WNPOS to map a subset of the MINIPAR categories

MGCS
′ ⊆ MGCS to the WordNet type categories (the main mappings of the function

96

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

WNPOS/MGCS
′

V N V BE A

V ∗ ∗
N ∗
Adj ∗
Adv ∗

Table 4.1: Mapping from MGCS
′

to WNPOS: function wnPOS.

are summarized in Table 4.1) and the function SynsetRepr(syn) = (wi, sj, wnpos), where

syn is a synset, to denote the synset canonical representative.

Information Content Similarity Measure

The information content similarity approach is based on the term information content:

the more frequently a term occurs, the less information it conveys. The information con-

tent can be measured as the negative logarithm of the normalized term frequency. Given

two concepts, their semantic similarity depends on the amount of information they share.

Assuming we can map them onto a hierarchical structure, such as WordNet, the semantic

similarity is given by the information content of the Most Specific Common Abstraction

(MSCA). The information content of a term can be measured on the basis of the term

occurrences in large text corpora (normalized with respect to the hierarchical structure).

An approximation of such a measure can be obtained by analysing the hierarchical struc-

ture and counting the number of hyponyms, under the assumption that a term with lots of

hyponyms tends to occur quite frequently in large corpora. In this work, we approximate

the probability of terms by using hyponyms in WordNet: p(t) = hypo(t)+1
maxWN

, where maxWN is

the number of hyponyms of the term t and maxWN is the total number of WordNet words.

One of the most used ways of computing the information content similarity between two

terms t1 and t2 is Lin’s formula [101]:

ics(t1, t2) =
2 ∗ log(p(MCSA(t1, t2)))

log(p(t1)) + log(p(t2))

Henceforth, when talking about the information content similarity, we refer to Lin’s for-

mula.

4.2.2 Domain Ontology Analysis

In the literature, several WSD (Word Sense Disambiguation) algorithms have been pro-

posed. They determine senses for words appearing in large corpora of texts, written in

97

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

natural language [83]. Only a few WSD works, in particular in the context of the semantic

web [187], deal with the mapping between ontology concepts and WordNet synsets. In

order to simplify the semantic annotation of process activities and make it more accurate,

we also need to solve the semantic ambiguity of ontology concepts, by mapping them to

unique synsets. For this purpose, we exploit the information we can gather from the BDO

itself (in particular from its hierarchical structure) and compare it with the WordNet

taxonomy. However, the mapping, as well as the comparison, presents several issues. The

first challenge is the structural difference between strings representing ontology concepts

and words with a specific sense characterizing a synset. A concept name can be a single

word or a short sentence describing the concept. While in the first case the concept name

is mapped to one of the synonyms in a synset (the sense with the highest similarity value),

in the second case, the short sentence needs to be analysed linguistically in order to mine

the word that, representing the dominant meaning of the concept, also determines its

ontology relationships (in particular its is a relationship).

Let us consider, for example, the BDO concept to record information. By assuming that

concept names have been meaningfully assigned, the concept will very likely represent the

action of storing information. Therefore, the concept head word is the verb “to record”,

which probably has an is a relationship with some action or event concept in the ontology

(see for example SUMO9 or OntoSem10).

The word representing the dominant meaning in a short sentence can be mined by

applying a linguistic analyser, as for example MINIPAR, to the sentence itself. It will be

the root word in the dependency tree produced by the parser, i.e., the sentence head word.

Once the head word has been identified for each concept, the concept has to be mapped

to a WordNet synset. To this purpose we propose three approaches: two of them take

advantage of the ontology hierarchical structure, while the third requires the existence of

comments and/or labels in the BDO. Due to their different kind, the first two approaches

can be complemented by the third and vice-versa.

We do not expect that automated disambiguation of ontology concepts is completely

error free, especially because we deal with short sentences, while the available approaches

have been proven to work well with long texts in natural language. Moreover, it only

allows disambiguating the sentence head word of the concept (i.e., if the concept name

is a sentence only the sentence head word is considered for the disambiguation). Hence,

the automatically produced disambiguation may need to be revised by the user before

moving to the next step of process annotation.

9http://protege.stanford.edu/ontologies/sumoOntology/sumo_ontology.html
10http://morpheus.cs.umbc.edu/aks1/ontosem.owl

98

http://protege.stanford.edu/ontologies/sumoOntology/ sumo_ontology.html
http://morpheus.cs.umbc.edu/aks1/ontosem.owl

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

Relative Disambiguation Algorithm

In order to determine the sense of the sentence head word of each ontology concept, the

Relative Disambiguation Algorithm (RDA) exploits the information coming from each of

the concepts having a relationship (i.e., parent-child, sibling-sibling or child-parent) with

the current node in the hierarchical structure.

In detail, for each concept c we consider its similarity with concepts of the same synset

type and belonging to its relative concept set RC(c) = PC(c) ∪ SC(c) ∪ CC(c), where

PC(c) is the set of the super-concepts of c, SC(c) the set of sibling concepts of c and

CC(c) the set of sub-concepts of c. Given the synset type of the sentence head word

wc of the current concept c (it can be inferred from the grammatical category of wc),

for each sense si of such a word and for each relative concept rc ∈ RC(c) of the same

type, we compute the maximum information content similarity value maxics((wc, si), wrc)

(see Subsection 4.2.1) between the two head words (wc and wrc) with respect to all the

possible senses of wrc. The identified synset, characterized by the pair (wc, si) chosen for

the current concept c, will be the one with the highest average of maxics((wc, si), wrc)

computed over all the relative concepts of c. Algorithm 1 reports the pseudo-code of the

proposed algorithm.

Algorithm 1 Relative Disambiguation Algorithm (RDA)

Input DO: Domain Ontology

Input WNO: WordNet Ontology

Input c: ontology concept

Output s∗: sense for the head word of the concept c

1: wc = heads(c)

2: wc type = wnPOS(mGCat(wc))

3: for each si ∈ senses(wc, wc type) do

4: RC(c) = PC(c) ∪ SC(c) ∪ CC(c)

5: rc n = 0

6: for each rc ∈ RC(c) do

7: wrc = heads(rc)

8: wrc type = wnPOS(mGCat(wrc))

9: if wrc type = wc type then

10: maxics((wc, si), wrc) = maxsj∈senses(wrc,wrc type)icsLin((wc, si), (wrc, sj))

11: rc n = rc n+ 1

12: end if

13: end for

14: avgics(wc, si) =

∑
rc∈RC(c) maxics((wc,si),wrc)

rc n

15: end for

16: s∗ = argmax(maxsi∈senses(wc,wc type)avgics(wc, si))

17: return s∗

Let us consider the ontology on the left in Figure 4.8 and let us assume we are interested

in computing the WordNet sense associated with the concept c4. The sentence head word

of the concept (the root of the parsing tree) is, for example, the verb v4. We also assume

that the sentence head words of its parent c1 (v1), its sibling concept c2 (v2) and its child

99

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

wc wc’s senses wrc wrc’s senses ics((wc, si), wrc) maxics avgics

v4

#1

v1

#1 0.2

0.8 0.7#2 0.4

#3 0.8

v2 #1 0.5 0.5

v5
#1 0.7

0.7
#2 0.3

v6
#1 0.2

0.8
#2 0.8

#2

v1

#1 0.4

0.4 0.65#2 0.1

#3 0.0

v2 #1 0.5 0.5

v5
#1 0.8

0.8
#2 0.4

v6
#1 0.9

0.9
#2 0.3

Table 4.2: Example values for the RDA

concepts c5 and c6 (v5 and v6, respectively) are all verbs. Table 4.2 shows some possible

similarity values between each sense of v4 (#1 and #2) and each sense of the sentence head

words of each of its relative concepts. For each relative concept, the maximum similarity

measure over all its senses has been computed (sixth column in the table). Finally, in the

seventh column, the average of these similarities has been computed for each sense of v4.

Since the maximum value is 0.7, the sense chosen for the verb v4 (in the concept name

c4) is #1.

Figure 4.8: Examples of ontologies

Open Problems

Although it may work well in practice, the algorithm presented above has a limitation:

the sense that it infers for each concept of the ontology (on the basis of the concept

relationships with other ontology concepts) is independent from the senses inferred for

the other concepts. Though the sense of a single concept is computed on the basis of the

senses of its relative concepts, the final sense assigned to each of the relative concepts could

be different from the one used for inferring the sense of the current concept. For example,

let us consider again the ontology in Figure 4.8 (on the left) and the concept c6, whose

100

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

wc wc’s senses wrc wrc’s senses ics((wc, si), wrc) maxics avgics

v6

#1

v4
#1 0.2

0.9

0.9
#2 0.9

v5
#1 0.9

0.9
#2 0.6

#2

v4
#1 0.8

0.8

0.55
#2 0.3

v5
#1 0.3

0.3
#2 0.1

Table 4.3: An example of possible problems raised by RDA

sentence head word is v6. Table 4.3 shows the information content similarity between each

of the senses of v6 and each of the senses of its relatives (c1 and c2). Moreover, it reports the

highest similarity with respect to the relative senses, and the average over the relatives for

each sense of v6. The algorithm will choose the sense of v6 with the maximum avgics, i.e.,

#1. However, by looking at Table 4.2, we can notice that the choice of the sense #1 for the

concept v4 was based on its maximum similarity with (v6,#2): ics((v4,#1), (v6,#2)) =

0.8. On the contrary, by fixing the sense of v6 (sense #1), the maximum avgics of v4

would have been the one related to the sense #2 (ics((v4,#2), (v6,#1)) = 0.9, while

ics((v4,#1), (v6,#1)) = 0.2).

In order to deal with this problem, we propose a second algorithm. Due to the excessive

computational effort deriving from the exploration of the whole set of possible combination

of senses among the sentence head words of all the concepts in the ontology, it limits the

information used for the sentence head word disambiguation to the child nodes of the

current concept.

Child Disambiguation Algorithm

The Child Disambiguation Algorithm (CDA) computes the sense of (the sentence head

word of) a concept on the basis of similarities with concepts having a child-parent rela-

tionship with the current concept.

It is based on a bottom-up visit of the ontology graph, from leaves up to the root.

The first senses to be computed are those related to leaf concepts. To perform this

computation, we consider each of the possible senses of the leaf’s parent. For each parent

sense, we maximize the semantic similarity with the senses of each child node and take

the sum over the children. The parent sense with maximum sum is chosen for this node

and determines the children’s senses.

For intermediate nodes, the node’s sense can be computed as the sense maximizing the

sum of the semantic similarities with the synsets associated to the sentence head word

101

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

of each of its children. Algorithm 2 and 3 represent the pseudo-code description of the

algorithm, based on the recursive visit function visit concept.

Algorithm 2 visit concept(c)

Input DO: Domain Ontology

Input WNO: WordNet Ontology

Input c: ontology concept

Output s∗: sense for the head word of the concept c

1: if CC(c) = ∅ then

2: return null

3: end if

4: for each cc ∈ CC(c) do

5: visit concept(cc)

6: end for

7: wc = heads(c)

8: wc type = wnPOS(mGCat(wc))

9: s∗ = argmax(maxsi∈senses(wc,wc type)∑
cc∈RC(c)|wnPOS(mGCat(heads(cc)))=wc type

icsLin((wc, si), (headscc, comp sense(cc, (wc, si)))))

10: set sense(c, s∗)
11: for each cc ∈ CC(c) do

12: if is leaf(c) then

13: set sense(cc, get sense(heads(cc), (wc, s
∗)))

14: end if

15: end for

16: return s∗

Algorithm 3 comp sense(c,(w,s))

Input WNO: WordNet Ontology

Input c: ontology concept

Input (w, s): pair head word, sense for the parent concept of c

Output s∗: sense for the head word of the concept c

1: if is leaf(c) then

2: wc = heads(c)

3: wc type = wnPOS(mGCat(wc))

4: s∗ = argmax(maxsj∈senses(wc,wc type)icsLin((w, s), (wc, sj)))

5: return s∗

6: else

7: return get sense(c)

8: end if

As in the previous example, let us consider the ontology on the left in Figure 4.8 and let

us assume we are interested in computing the WordNet sense associated with the concept

c4, whose sentence head word (the root of the parsing tree) is v4. Similarly to the previous

example, let us also assume that the sentence head words of its descendants c5, c6 and c7

are all verbs: v5, v6 and v7, respectively. By applying the CDA, only child concepts (c5

and c6), have to be considered. One of them (c6) is a leaf of the ontology graph, therefore

the sense associated to its head word v6, will be the one maximizing the current concept

global similarity over all the children; the other concept, c5, is not a leaf, therefore we

assume a sense (#2) has already been assigned to its head word v5 on the base of c5’s

children (i.e., c7). Table 4.4 shows some values related to this scenario. The sense for

102

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

wc wc’s senses wcc wcc’s senses ics((wc, si), wcc) maxics icssum

v4

#1

v5 #2 0.3 0.3

1.1
v6

#1 0.2
0.8

#2 0.8

#2

v5 #2 0.4 0.4

1.3
v6

#1 0.9
0.9

#2 0.3

Table 4.4: Example values for the CDA

v4 (#2) is computed as the one corresponding to the highest icssum value (1.3), where

icssum is the sum, for each concept sense, of the maxics values with its child concepts.

Once the parent sense has been set, senses for child leaf concepts can also be assigned:

in this case #1 is assigned to v6 due to the highest information content similarity with

(v4,#2).

Open Problems

When a concept, whose sentence head word has to be mapped to a WordNet synset,

does not have children in the ontology (i.e., is a leaf) and does not have a parent belonging

to the same grammatical category, the algorithm fails in finding the mapping synset. In

fact, in WordNet the hierarchy related to a synset of a given grammatical category belongs

to the same category. Hence, if parent and child have different types, they also belong to

different hierarchies, thus resulting in a non-existent WordNet is a relationship between

the domain ontology parent and child concept.

Let us consider the ontology in Figure 4.8 (right), where a concept name starting

with “n” is used for denoting a sentence head word of the concept belonging to the

noun grammatical category and a concept name starting with “v” is used for denoting a

sentence head word of the concept belonging to the verb grammatical category.

Let us consider the leaves v4 and v5, belonging to the verb grammatical category and

their parent n1, belonging to the noun category. The corresponding synsets in WordNet

belong to completely unrelated hierarchies (of verbs and nouns, respectively). Hence it

is impossible to compute the similarity between parent and children in this case. This

is also reflected in the Algorithm 2, which restricts the computation of the similarity to

synsets of the same type.

This situation suggests the need to be able to exploit also other types of information

in the ontology disambiguation phase.

103

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

Term Concept definition Senses Sense Description Sim(c, (wc, s))

search

to actively search for
#2 search or seek 2/3 = 0.67

#4 subject to a search 1/4 = 0.25

or seek #1
try to locate or discover, or

0.0
try to estabilish the existence of

Table 4.5: Similarity computed on the basis of the shared terms between the search concept definition

and the WordNet synset definition for each sense of the verb search when applying the DBDA.

Description-Based Algorithm

Often the domain ontology comes with concept descriptions, similar to those that are

found in WordNet. This information can be exploited for the mapping between the two

ontologies. We propose an algorithm, the Description-Based Disambiguation Algorithm

(DBDA) that measures the similarity between the sentence head word of a concept in the

ontology and a synset in the WordNet ontology on the basis of the number of terms shared

by the two descriptions (the domain ontology and the WordNet one). In detail, once both

descriptions have been tokenized and stemmed, the similarity between a concept and a

WordNet synset is computed as the ratio between the cardinality of the intersection and

the union sets of the two groups of terms produced by the linguistic analysis:

sim(c, (wc, s
∗)) =

|description(c) ∩ description(wc, s
∗)|

|description(c) ∪ description(wc, s∗)|

The WordNet synset with the description most similar to the ontology concept determines

the sense for that concept.

Table 4.5 shows the similarity measure, as defined above, between the description of

the concept search in the OntoSem ontology and the descriptions characterizing each of

the synsets associated to the senses of search in WordNet. The chosen sense suggested

for the word is the one associated with the highest similarity, i.e., sense #2.

This algorithm can also be combined with either of the previous ones and used in a

complementary way in order to deal with their limitations. The DBDA, for example, could

be combined with the CDA disambiguation algorithm in cases in which a sense cannot

be determined for nodes having only relationships with nodes of different grammatical

categories. In general, both with RDA and CDA, when the similarity value is not sig-

nificant enough (i.e., when it does not reach a given threshold), we can resort to DBDA

disambiguation.

104

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

4.2.3 Business Process Semantic Annotation Suggestions

Once the ontology concepts are linked to a single WordNet sense, the business designer

can be supported in the semantic annotation, by receiving suggestions for each process

activity she intends to annotate. The choice of the suggestions is based on the semantic

similarity between BPMN element label and ontology concepts: the higher the similarity

measure, the higher the score given to the candidate ontology concept c as a possible

semantic annotation for the element label l. Simpler criteria (e.g., those based on string

or syntactic similarity), in fact, do not allow to capture more complex and meaningful

mappings between pairs of natural language sentences, taking into account the semantics

of the terms in the sentences.

The semantic similarity of a pair (l, c) can be based on the semantic similarity between

pairs of words respectively in l (Wl = {wi ∈ Dict|l = w1...wn}) and in c (Wc = {wj ∈
Dict|c = w1...wm}). We define the candidate set of pairs CSP as CSP ⊆ Wl ×Wc such

that:

1. Each word wi ∈ Wl and wj ∈ Wc appears at most once in CSP ;

2. ∀ (wi, wj) ∈ CSP

(a) wi and wj do not depend on any other term in their respective sentences;

(b) if wi →R wk and wj →R wl, then (wk, wl) ∈ CSP , R ∈MGREL;

3. The total semantic similarity (i.e., the weighted sum of similarity values over each

pair in CSP) is maximized by CSP .

We take advantage of the linguistic information available from linguistic analysis (pars-

ing and synset computation) to choose proper candidate pairs (e.g., verbs are never paired

with sentence objects, as well as objects are never paired with object specifiers), but also

to give weights to the semantic similarity measures. In detail, the Business Process Mod-

elling guideline, suggesting the use of the verb-object form for labelling activities (e.g.,

[117], [160], [105]), is the premise for our choice of limiting the clause analysis in the

semantic annotation of an activity to verbs, objects and object specifiers and for ranking

the three components according to their role (i.e., the verb has greater importance than

the object, in turn more important than the specifier). Similarly, in the infrequent case of

short sentences including also dependent clauses (e.g., “sign the order to send”), a weight,

in inverse proportion with the dependency level, is assigned to clauses.

The enforcement of the constraints defined above and the different weights assigned

to the different parts of the sentences, suggested us a simple heuristics to compute the

105

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

CSP with maximum match. We start from the roots of the two parsing trees, and in

particular from the verbs, since these have higher weight. Specifically, we consider the

verbs that are located higher in the hierarchy and we go down in the two trees following

the grammatical dependencies.

Hence, the matching CSP (Wl,Wc) between the words in label l and the words in

concept c is built in the following steps:

1. given V (l) and V (c), the set of verbs in l and c respectively, the pair of verbs (vl, vc),

with vl ∈ V (l) and vc ∈ V (c) located higher in the parsing trees of the sentences in

l and c, is added to CSP (Wl,Wc);

2. the pair composed of the respective objects11 (o(vl), o(vc)), where o(vl) →obj vl and

o(vc)→obj vc is added to CSP (Wl,Wc) (when both verb objects exist);

3. the pair composed of the object specifiers (s(o(vl)), s(o(vc))), where s(o(vl)) →nn

o(vl) and s(o(vc))→nn (o(vc)) is added to CSP (Wl,Wc) (when both object specifiers

exist);

4. recursively, if the specifiers of the two sentences are, in turn, specified by another

pair of specifiers (s∗(o(vl)) and s∗(o(vc))), the pair (s∗(o(vl)) and s∗(o(vc))) is added

to CSP (Wl,Wc);

5. steps 1-4 are possibly iterated for each pair of clauses (cli, clj) ∈ CLS(l)× CLS(c),

respectively dependent on l and c via the same grammar relationship (e.g., cli and

clj are both relative clauses of l and c, respectively) and maximizing their semantic

similarity, where CLS(l) and CLS(c) are the sets of clauses dependent on l and c,

respectively.

Algorithm 4 and 5 show the pseudo-code of the algorithm used for computing the CSP

and the semantic similarity between the two sentences.

In practical cases, for short sentences such as those used in process labels and ontology

concept names, there is typically at most one clause with one verb and its object ([22],

[160], [105]). Hence, step (1) produces an initial CSP with at most one pair, containing

the two verbs. Step (2) adds the pair of objects for the two verbs, when such objects

exist in both short sentences. Finally, when in some cases, the object specifiers (at most

one per sentence) also exist in the label and the concept name, the object specifier pair

is added.
11We assume that every clause has at most one object and that the parser, in case of ditransitive verbs, is able to retrieve

the “main” object.

106

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

Algorithm 4 analyze sentences

Input l: activity label

Input c: ontology concept

Input n: clause nesting level

Output CSP (Wl,Wc): candidate set pair between words in l and c

Output SemSim(l, c): semantic similarity between l and c

1: cll = main clause(l)

2: clc = main clause(c)

3: 〈CSP, SemSim〉 = analyze clause(cll, clc)

4: CSP (Wl,Wc)←CSP
5: SS = SemSim

6: n = n+ 1

7: for each R ∈MGREL clauses do

8:
〈
CSPR, SemSimR

〉
= argmax(

max〈
CSPR

i,j
,SemSimR

i,j

〉
| SemSimR

i,j)〈
CSPR

i,j
,SemSimR

i,j

〉
=analyze sentences(cli,clj)∧

cli∈CLS(cll)∧cli→Rcll∧clj∈CLS(clc)∧clj→Rclc

9: CSP (Wl,Wc)← CSPR

10: SS = SS +DEP CLAUSE WEIGHT ∗ SemSimR

11: end for

12: return CSP (Wl,Wc), SS
1+n/DEP CLAUSE WEIGHT

Algorithm 5 analyze clauses

Input cll: label clause

Input clc :: concept clause

Output CSP (Wcll,Wclc): candidate set pair between words in cll and clc
Output SemSim(cll, clc): semantic similarity between cll and clc
1: SS = 0

2: n = 0

3: if V (cll) 6= ∅ then

4: n = V ERB WEIGHT

5: if V (clc) 6= ∅ then

6: vcll ∈ V (cll)|vcll is higher in the parsing tree

7: vclc ∈ V (clc)|vclc is higher in the parsing tree

8: CSP (Wcll,Wclc)← (vcll, vclc)

9: SS = V ERB WEIGHT ∗ icsLin(vcll, vclc)

10: if o(vcll) exists then

11: n = n+OBJECT WEIGHT

12: if o(vclc) exists then

13: SS = SS +OBJECT WEIGHT ∗ icsLin(o(vcll), o(vclc))

14: ncll = o(vcll)

15: nclc = o(vclc)

16: i = 1

17: while s(ncll) exists do

18: n = n+ i ∗OBJ SPEC WEIGHT

19: if s(ncll) exists then

20: CSP (Wcll,Wclc)← (s(ncll), s(nclc))

21: SS = SS + i ∗OBJ SPEC WEIGHT ∗ icsLin(s(ncll), s(nclc))

22: ncll = s(ncll)

23: nclc = s(nclc)

24: i = i/2

25: end if

26: end while

27: end if

28: end if

29: end if

30: end if

31: return
〈
CSP (Wcll,Wclc), SS

n

〉

107

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

term1 term2 MCSA icsLin

choose#1 select#1 %synonyms% 1.0

group#1 category#1 group#1 0.58

product#1 product#1 1.0

SemSim(l, c) 0.88

Table 4.6: Semantic similarity measure between an activity label and an ontology concept

Ontology Concept SemSim(l, c)

to select product category 0.88

to select product quantity 0.83

to select category 0.74

to select quantity 0.7

to select method payment 0.62

Table 4.7: Five ontology concepts most similar to the label “Choose a product group”

Let us consider, for example, the semantic similarity of the label “Choose a prod-

uct group” and the semantic concept to select product category. In this case, the la-

bel and the concept contain a verb, an object and an object specifier, which are easily

matched (CSP = {(choose, select), (group, category), (product, product)}). We weight

these three different linguistic components according to the proportions: 4:2:1 (in the

algorithm of Figure 5 V WEIGHT , OBJ WEIGHT and OBJ SPEC WEIGHT , re-

spectively). Hence, the formula for the semantic similarity becomes: SemSim(l, c) =

(4 ∗ icsLin(verbl, verbc) + 2 ∗ icsLin(objectl, objectc) + icsLin(objSpecl, objSpecc))/7, where

l is the label and c is the ontology concept. Table 4.6 shows the result for this pair.

Once the semantic similarity measure is known for all pairs, consisting of a BPMN

element label and a BDO concept, we determine the subset of such pairs which maximizes

the total semantic similarity, using the maximum cut algorithm [37] applied to the bi-

partite graph of BPMN element labels and ontology concepts. The result is a suggested

semantic annotation for each BPMN element.

Table 4.7 shows the five highest values of semantic similarity between the label “Choose

a product group” and each of the concepts in a manually built ontology. The highest score

determines the concept automatically suggested to annotate the task labelled “Choose a

product group”. This algorithm is specialized for the automatic annotation suggestion

of process activities but it can be extended to other types of BPMN elements, e.g., data

objects (by exploiting their labels) or swimlanes (by exploiting their names), by slightly

adapting, in these cases, the clause analysis and the weight assignment.

108

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

4.2.4 Domain Ontology Extension

Often available domain ontologies are not directly applicable for the annotation of a

specific business process, which may need concepts narrowed to its own, specific domain.

We propose a semi-automatic approach to suggest new concepts, missing in the available

ontology, so as to support business designers in the BDO extension. At the same time,

we want to avoid as much as possible term redundancy. For domain extension, we exploit

the linguistic information carried by process labels, by considering only its main clause

and, within the main clause, its main components (verbs, objects and object specifiers).

Ontology extension consists of the addition of new concepts, which can be either com-

pletely new in the ontology or can be obtained by combining concepts already in the

ontology. Let us start with considering the second case. The name of the new concept is

a compound name created from other concept names according to the following heuristic

rules (summarized in Table 4.8):

(H1) the new concept is a sub-concept of the concept whose name is the head word of

the sentence;

(H2) if the compound name of the new concept combines a verb and an object concept,

it will be a sub-concept of the verb concept;

(H3) if the compound name of the new concept combines a specified noun and a

specifier noun concept, it will be a sub-concept of the specified noun concept;

(H4) if the verb (the specified noun) in the compound verb-object (specified-specifier)

name of the new concept appears in the ontology in the form of the combination of the verb

with another object (of the specified noun with another specifier), the verb (the specified

noun) is added to the ontology as a single word and a new is a relationship is added

between the verb (the specified noun) and both the old and the new compound concepts.

Algorithm 6 shows the pseudo-code of the algorithm implementing these heuristics.

Let us consider, for example, the label “Choose a product” and let us assume that

the ontology already contains a to select concept, whose semantic similarity with the verb

“choose” is 1.0; a concept good, whose semantic similarity with the word “product” is

0.45; and no concept exists with an acceptable semantic similarity for the whole label.

The two concepts to select and good can be composed, thus generating a new concept

to select good (that will be a subconcept of the concept to select), whose similarity value,

with respect to the “Choose a product” label, is 0.92.

There are also cases in which new concepts, made of single words, have to be introduced

in the ontology. In order to provide a quite flexible way for managing such a situation

we introduce the possibility to specify two thresholds tw and ts. The former is referred to

109

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

Id Linguistic Analysis Ontology

H1 v ∈ WS; GCat(v) = V v′ = SynsetRepr(v): v′ is a Action

H2 n ∈ WS; GCat(n) = N n′ = SynsetRepr(n): n′ is a Object

H3

v ∈ WS; GCat(v) = V v′ = SynsetRepr(v): v′ is a Action

o ∈ WS; GCat(o) = N o′ = SynsetRepr(o): o′ is a Object

v obj o v′o′ is a v′, v′o′ hasTargetObject o′

H4

n ∈ WS; GCat(n) = N n′ = SynsetRepr(n): n′ is a Object

s ∈ WS; GCat(s) = N s′ = SynsetRepr(s): s′ is a Object

n nn s s′n′ is a n′, s′n′ hasObjectSpecifier s′

H5

v ∈ WS; GCat(v) = V v′ = SynsetRepr(v): v′ is a Object

o ∈ WS; GCat(o) = N o′ = SynsetRepr(o): o′ is a Object

s ∈ WS; GCat(s) = N s′ = SynsetRepr(s): s′ is a Object

v nn o v′o′ is a v′, v′o′ hasTargetObject o′

o nn s s′o′ is a o′, s′o′ hasObjectSpecifier s′

v′s′o′ is a v′o′, v′s′o′ hasTargetObject s′o′

Table 4.8: Heuristic rules to create a candidate ontology

Algorithm 6 compose

Input (v, o, os): triple of verb, object and object specifier composing a sentence

Input DO: domain ontology

Output DO′: enriched domain ontology

Output comp sen: composed sentence

1: DO′ ← DO

2: if o 6= null ∧ os 6= null then

3: oos← concatenate os to o

4: if oos /∈ classes(DO′) then

5: DO′ ← add oos as o’s child

6: end if

7: comp sen = oos

8: end if

9: if v 6= null ∧ o 6= null then

10: vo← concatenate o to v

11: if vo /∈ classes(DO′) then

12: DO′ ← add vo as v’s child

13: end if

14: comp sen = vo

15: if oos 6= null then

16: voos← concatenate os to o

17: if voos /∈ classes(DO′) then

18: DO′ ← add voos as vo’s child

19: end if

20: comp sen = voos

21: end if

22: end if

23: return
〈
DO′, comp sen

〉

110

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

single words, i.e., it allows discarding a matching between a single word and an ontology

concept whose semantic similarity value is under the threshold. The latter, instead, is a

parameter referring to whole sentences, i.e., it allows to determine the set of pairs (label,

ontology concept) having an acceptable global similarity, thus considering these concepts

as good candidate annotations for the given process activity label.

Whenever no ontology concept (directly contained in the ontology or composed of

other ontology concepts) reaches the ts threshold, a new concept is added to the domain

ontology. In order to decide which sentence component (i.e., the verb, the object or the

object specifier) to add, we follow the ranking given to the various parts of a sentence

(verb: 4; object: 2; specifier: 1). If the label contains a verb that the concept with the

highest similarity does not contain, we add the verb; otherwise we repeat the same check

for the object and, eventually, in case of failure, for the object specifier. If the sentence

threshold ts cannot be satisfied, we have to add one or more concepts to the ontology so as

to be able to match the words in the label. We give precedence to the missing concept with

the lowest semantic similarity value among those characterizing each sentence component,

so as to increase the similarity of the least similar label component (i.e., the component

with the highest margin of similarity improvement). Algorithm 7 shows the pseudo-code

for this choice mechanism.

The introduction of a new concept in the ontology raises the problem of its relationships

with the concepts already in the ontology. We limit our analysis to the identification of

the child-parent relationship. To this purpose, we again exploit the properties of Lin’s

semantic similarity. For each possible parent concept pc in the hierarchical structure of

the ontology (i.e., for each possible direct super-concept), restricted to the concept type

category, we compute icsLin(wca, RCpc(ca)), i.e., the average of the maximum semantic

similarity values over the possible senses of the head word of the new concept, wca, between

wca and the head word of each of the relatives in RCpc(ca), that the concept would have

if it were a sub-concept of pc. The highest similarity value with respect to all the possible

parent concepts, determines the direct super-concept. Algorithm 8 reports the pseudo-

code of the described procedure.

Let us consider the ontology in Figure 4.9 and a process activity labelled “Choose a

product group”. Let us assume word and sentence thresholds equal to 0.6 and 0.8, re-

spectively. Since none of the possible combinations of concepts already in the ontology

(those with the highest values are shown in Table 4.10) allows to satisfy the two thresholds

(icsLin(group#1, event#1) < tw, icsLin(group#1, family#2) < tw and all the other con-

cept combinations have lower values), the group concept (in the ranking verb-object-object

111

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

Algorithm 7 sentence suggestion

Input l: activity label

Input tw: word threshold

Input ts: sentence threshold

Input DO: domain ontology

Output DO′: enriched domain ontology

Output sugg: sentence suggestion for the semantic annotation of the label l

1: DO′ ← DO

2: SemSim = maxci∈classes(DO′)|〈CSPi,SemSimi〉=analyze clauses(l,ci)
SemSimi

3: while SemSim < ts do

4: if V (l) 6= ∅ then

5: vl ∈ V (l)|vl is higher in the parsing tree

6: vc = argmax(maxci∈classes(DO′)icsLin(vl, ci))

7: if icsLin(vl, vc) < tw then

8: DO′ ← add new concept(vl, DO
′)

9: vc = vl
10: end if

11: SemSim = V ERB WEIGHT ∗ icsLin(vl, vc)

12: if SemSim > ts then

13: return
〈
DO′, vc

〉
14: end if

15: end if

16: if o(vl) exists then

17: ol = o(vl)

18: oc = argmax(maxci∈classes(DO′)icsLin(ol, ci))

19: if icsLin(ol, oc) < tw then

20: DO′ ← add new concept(vl, DO
′)

21: oc = ol
22: end if

23: SemSim = SemSim+OBJ WEIGHT ∗ icsLin(ol, oc)

24: if SemSim > ts then

25: return compose(vc, oc, null)

26: end if

27: end if

28: if s(ol) exists then

29: osl = s(ol)

30: osc = argmax(maxci∈classes(DO′)icsLin(osl, ci))

31: if icsLin(osl, osc) < tw then

32: DO′ ← add new concept(osl, DO
′)

33: osc = osl
34: end if

35: SemSim = SemSim+OBJ SPEC WEIGHT ∗ icsLin(osl, osc)

36: if SemSim > ts then

37: return compose(vc, oc, osc)

38: end if

39: end if

40: end while

41: (w∗l , w
∗
c) = argmin(min(wl,wc)∈{(vl,vc),(ol,oc),(osl,osc)}icsLin(wl, wc))

42: DO′ ← add new concept(w∗l , DO
′)

43: return (DO′, null)

112

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

Algorithm 8 add new concept

Input DO: domain ontology

Input ca: new concept to add to the ontology DO

Output DO′: enriched domain ontology

1: DO′ ← DO

2: wca = heads(ca)

3: wca type = wnPOS(mGCat(wca))

4: for each pc ∈ classes(DO′) do

5: wpc = heads(pc)

6: wpc type = wnPOS(mGCat(wpc))

7: if wpc type == wca type then

8: RCpc(ca) = CC(pc) ∪ {pc} (i.e., ca’s relatives if it were pc’s son leaf)

9: rcn = 0

10: for each rc ∈ RCpc(ca) do

11: wrc = heads(rc)

12: wrc type = wnPOS(mGCat(wrc))

13: src = get sense(rc)

14: if wrc type == wca type then

15: maxics(wca, wrc) = maxsi∈senses(wca,wca type)icsLin((wca, si), (wrc, src))

16: rcn = rcn + 1

17: end if

18: end for

19: avgics(wca, RCpcca) =

∑
rc∈RCpc(ca) maxics(wca,wrc)

rcn
20: end if

21: end for

22: p∗c = argmax(maxpci∈classes(DO′)avg(wca, RCpc(ca)))

23: DO′ ← add ca as pc’s child

24: returnDO′

Concept position p (direct sub-concept of) ics(wca, RC(p))

family 0.76

social-object 0.61

computer-data 0.45

user-name 0.41

abstract-object 0.38

Table 4.9: Ranking of BDO concepts similar to the new concept group (to be added to the ontology)

specifier, the first part of the sentence with icsLin < tw) needs to be added.

Table 4.9 reports the semantic similarity values ics(wca, RCpc(ca)) for the head word

wca = “group”. A direct is a relationship with the family concept, corresponding to the

best value, is suggested to the designer.

Let us consider again the label “Choose a product group” and let us now suppose

that this is the first label we are going to analyse (i.e., the skeleton ontology is still

empty). By MINIPAR, we obtain the information in Figure 4.7 (top left). According to the

heuristics H1, H2, the concept to choose is added to the ontology skeleton as an Action

sub-concept, and product and group concepts as Object sub-concepts. Since the word

“group” is the object of the verb “choose”, we can apply H3 and build the sub-concept

to choose product, whose has target object relationship is restricted to the concept group.

Since the word “product” specifies the word “group”, product group is added as group

113

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

Figure 4.9: Automatically suggested position for concept group

Label Concept ICSLin Activity
Concept name SemSim(l, c)

word w1 word w2 (w1, w2) label

Choose#1 to select#1 1.0 Choose a

to select good event 0.823group#1 event#1 0.5 product

product#1 good#4 0.76 group

Choose#1 to select#1 1.0 Choose a

to select good family 0.815group#1 family#2 0.47 product

product#1 good#4 0.76 group

Choose#1 to determine#1 0.97 Choose a

to determine good event 0.82group#1 event#1 0.5 product

product#1 good#4 0.76 group

Table 4.10: Three composed concepts most similar to the label “Choose a product group”

114

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

sub-concept, with has object specifier object property restricted to the concept product

(heuristics H4). The concept to choose product group, whose has target object property is

restricted to product group, is added as a sub-concept of to choose group. The resulting

ontology fragment is shown in Figure 4.10 (left).

Figure 4.10: Candidate ontology skeleton construction

For the label “Select quantity” MINIPAR suggests (top right in Figure 4.7) that “se-

lect” is a verb and “quantity” a noun. Since the ontology already contains the concept

to choose, returned by SynsetRepr as the canonical representative of the “select” synset,

to select is not added to the ontology. The concept quantity is added as an Object sub-

concept and the concept to choose quantity as a sub-concept of the concept to choose,

with the has target object property restricted to quantity. The resulting updated ontology

structure is shown in Figure 4.10 (right).

4.2.5 Automatic Suggestion Evaluation

In this subsection we provide a first evaluation of the proposed techniques, both those

analysing the domain ontology for term disambiguation and those supporting designers

with the automated suggestion of semantic annotations and ontology extension, when

necessary.

Domain Ontology Analysis

The three algorithms for sense disambiguation of head words of domain ontology concepts

have been applied to three small ontologies (selected portions of OntoSem).

The first ontology, shown in Figure 4.11, is a generic ontology, classifying terms into

very high-level categories. These categories have a structural organization quite different

from the one adopted in WordNet, in which the hierarchies of different grammatical

115

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

heads(w)
RDA RDA CDA CDA DBDA DBDA Correct

sense semSim sense semSim sense semSim sense

event - 0.0 - 0.0 - 0.0 -

analyze #1 0.5 - 0.0 #1 0.11 #1

determine #6 0.24 #5 0.22 #3 0.5 #3

compare #3 0.33 #3 0.5 #1 0.75 #1

differentiate #3 0.5 #3 0.5 - 0.0 #1

decide #1 0.23 - 0.0 - 0.0 #1

err - 0.0 - 0.0 - 0.0 #1

define #1 0.31 #5 0.9 #3 0.4 #3

evaluate #2 0.4 - 0.0 - 0.0 #1

identify #3 0.33 - 0.0 #1 0.5 #1

solve #2 0.32 - 0.0 #1 0.29 #1

test #1 0.34 #6 0.57 #1 0.11 #5

study #1 0.5 - 0.0 - 0.0 #1

Table 4.11: Results obtained by applying the disambiguation algorithms to the ontology in Figure 4.11

categories are strictly separated. By applying the three disambiguation algorithms to this

ontology we get the results presented in Table 4.11.

Figure 4.11: An example of an ontology with a structure different from the one of WordNet

The RDA and CDA algorithms seem not to work very well: only 3 senses out of 12 are

correct for the first algorithm and none for the second. For both algorithms, the similarity

values guiding the choice of the sense are lower than 0.5 (except for the concept define

in the CDA), indicating that the match found by the algorithm has low confidence and

that it would be highly recommended to complement both algorithms with the outcome

of the DBDA algorithm. Indeed, the DBDA algorithm has better performance: 7 out of

12 correct senses; moreover, in case of incorrect or absent answers it also reports a very

low similarity value, indicating low confidence in the match that was found. Hence, in

this case, the similarity level provides an important clue regarding the reliability of the

results.

116

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

heads(w)
RDA RDA CDA CDA DBDA DBDA Correct

sense semSim sense semSim sense semSim sense

agree #2 0.4 #2 0.4 #2 0.22 #2

approve #1 0.4 #1 0.8 #1 0.2 #1

promise #1 0.43 #1 0.86 #1 0.14 #1

guarantee #1 0.86 #1 0.9 #1 0.08 #1

swear #3 0.82 #3 0.82 #4 0.11 #3

Table 4.12: Results obtained by applying the disambiguation algorithms to the ontology in Figure 4.12

(left)

heads(w)
RDA RDA CDA CDA DBDA DBDA Correct

sense semSim sense semSim sense semSim sense

push #1 0.65 #1 0.37 #1 0.5 #1

expel #1 0.53 #1 0.6 #1 0.2 #1

launch #2 0.5 #2 0.53 #2 0.2 #2

press #5 0.24 #5 0.5 #5 0.1 #5

imprint #2 0.5 #2 0.5 #2 0.2 #2

Table 4.13: Results obtained by applying the disambiguation algorithms to the ontology in Figure 4.12

(right)

On the contrary, when considering ontologies with a structure more similar to the

WordNet one and characterized by a sufficient level of detail, as in the case of the ontologies

in Figure 4.12, the performance of the disambiguation algorithms improves substantially.

As shown in Table 4.12 and Table 4.13, both the RDA and the CDA algorithms provide

very good results corresponding to high similarity values (almost all are greater than

0.4), while DBDA performs just a bit worse than the other algorithms (giving very low

similarity values).

Figure 4.12: Two examples of ontologies with structure and granularity similar to the WordNet one

These results suggest therefore the possibility of integrating the RDA and the CDA

algorithms with the DBDA one, when the domain ontology comes with descriptions that

can be compared to those that can be found in WordNet. The choice of the algorithm can

be done on the basis of the ontology type (e.g., considering its similarity with the WordNet

structure and its granularity level), whenever the problem due to different grammatical

categories belonging to the same hierarchy occurs, but also by evaluating the similarity

117

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

values independently for each word.

Semantic Annotation Suggestion and Domain Ontology Extension

The approaches proposed for the business process semantic annotation and ontology ex-

tension have been applied to an on-Line Shop process and to an extract of a generic

ontology (both available at http://selab.fbk.eu/OnLineShop). The process contains

36 activities to be annotated. The ontology, instead, is an extract of 231 classes out of the

7956 of the OntoSem ontology, whose concepts have been previously mapped to WordNet

synsets using our approach.

For this case study, we chose as thresholds for word and sentence acceptances tw = 0.6

and ts = 0.85, respectively, based on our previous experience in similar annotation exer-

cises. When considering the first label, “Choose a product group”, the business designer is

suggested to extend the ontology with the concept group. In fact, the maximum similarity

value of the label with a concept in the ontology, is obtained with the to select concept

and is equal to 0.57, i.e., the weighted average over the semantic similarity values of the

sentence components (1.0/(4+2+1) = 0.57), which is below ts. Moreover, introducing

new concepts by composing concept names already in the ontology is also not enough

for satisfying the threshold: the best information content similarity value for the object

“group” is 0.5 < tw; for the sentence it is 0.68 < ts. A group concept has therefore to be

added to the ontology, as well as the composed concepts to select group, good group and

to select good group, since the word “product” is matched with the concept good in the

maximized information content similarity.

When analysing the label “Update product quantity” the concept product is proposed

as a new concept for the ontology, since its best information content similarity value

with respect to the ontology concepts is lower than those characterizing the other parts

of the sentence. After the business designer accepts this suggestion, it is possible to

annotate the current activity with a new to modify product concept. It is also possible

to improve the annotation of the “Choose a product group” activity: the annotation

becomes to select product group and the new similarity value 1.0. Whenever the ontology

is extended, the previous annotation suggestions are automatically revised to identify

cases where a better match has become possible.

Going ahead with the annotation of the other activities, the process will finally be

annotated and the ontology extended with new concepts. The automatically suggested

annotations are shown in the second column in Table 4.14. The single words added as new

concepts to the ontology are marked by an asterisk. On the contrary, since the starting

118

http://selab.fbk.eu/OnLineShop

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

Activity label Automated suggestion S.sim Manual annotation R&C R TBR

Choose a product group to select product∗ group∗ 1.0 to select product group 3 3 3

Search for a product 0.0 to search for product 0 0 2

Read policies to read document 0.9 to read policy 1 2 2

Choose a product to select product∗ 1.0 to select product 1 2 2

Select quantity to select number 0.93 to select number 2 2 2

Add the product to the cart to add product∗ 1.0 to add product 2 2 2

Update product quantity to modify product∗ number 0.86 to modify product number 3 3 3

Remove product from cart to remove product∗ 1.0 to remove product 2 2 2

Ask for checkout to request checkout∗ 0.97 to request checkout 2 2 2

Provide personal data to supply data 1.0 to supply data 2 2 2

Log-in to logIn∗ 1.0 to login 1 1 1

Choose shipment method to select product∗ method 0.98 to select shipment method 2 3 3

Choose a payment method to select marketing method 0.96 to select payment method 2 3 3

Provide payment information to supply marketing data 0.96 to supply payment data 2 3 3

Confirm order to confirm order 1.0 to confirm order 2 2 2

Show the home page to show page∗ 0.86 to show home page 2 2 3

Provide summarized
to supply 1.0

to supply
1 1 3

product info product data

Search for a product 0.0 to search for product 0 0 2

Provide policy information to supply document data 0.95 to supply policy data 2 3 3

Show product data to show product∗ data 1.0 to show product data 3 3 3

Provide detailed to supply
1.0

to supply
3 3 3

product information product∗ data product data

Check product to confirm
0.96

to check

2 3 3quantity availability product∗ availability∗ product availability

Create cart to create cart∗ 1.0 to create cart 2 2 2

Warn buyer to warn∗ buyer∗ 1.0 to warn buyer 2 2 2

Compute total to calculate model 0.86 to calculate total 1 2 2

Visualize cart to visualize∗ cart∗ 1.0 showCart 1 2 2

Check out to confirm 0.93 to check out 0 1 1

Collect personal data to accumulate data 1.0 to accumulate data 2 2 2

Check login data 0.0 to check login data 0 0 3

Store shipment method 0.0 to store shipment method 0 0 3

Store payment method 0.0 to store payment method 0 0 3

Store payment information 0.0 to store payment data 0 0 3

Update stocked product data to modify product∗ 0.92 to modify product data 3 3 3

52 61 80

Table 4.14: Case study data for the semi-automatic annotation suggestion and domain ontology extension

ontology does not contain composite concepts of the form verb-object, specified-specifier,

verb-specifier-object, almost all the composite concepts have been automatically added

to the ontology during the preliminary analysis of the process labels.

Without suggestions, the semantic annotation activity is hard, mainly in the case of

huge domain ontologies. As an example, let us consider the activity labelled with the

short sentence “Provide product information”. In order to find a good annotation for

the verb “provide” (i.e., the concept supply), the business designer has to go down, by

manually browsing the extract of the OntoSem ontology, through four nested levels from

the event category (Figure 4.13, left). Moreover, while browsing the ontology, she could

also be wrong by choosing as semantic annotation the verb give instead of supply. This

119

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

verb, in fact, may seem to be a synonym of the verb “to provide”, while in OntoSem it

represents the transfer of possession. Similarly, before retrieving the noun data for the

semantic annotation of the “information” part of the short sentence, the business designer

has to go down through 3 levels of nesting (Figure 4.13, right). Also in this case, she

may easily be wrong, maybe stopping at a higher nesting level and therefore choosing a

too general concept (for example knowledge instead of data). Finally in the case of the

term “product” a new term has to be added to the ontology and, before coming up with

this resolution, the business designer needs to browse a relevant part of the ontology to

check whether the needed concept exists or not.

Figure 4.13: Extracts of the OntoSem ontology

In order to evaluate the approach, we asked a human (a BPMN expert with a good do-

main knowledge) to perform the same task, starting from the same domain ontology and

giving her the possibility to add new concepts, when necessary, but working without any

automated suggestion. The guidelines followed in the execution of this exercise were simi-

lar to those implemented in our approach. We compared (Table 4.14) the manual semantic

annotations, i.e., our gold standard, with those obtained with the automated approach.

The comparison has been performed separately on the three main label components (i.e.,

verb, object, and object specifier). We base the evaluation on two assumptions:

1. if a concept for the annotation of a part of a sentence is in the ontology, in order to

be correct, it has to be exactly the same in both manual and automated result;

2. if a new concept has to be added to the ontology it will likely have the same name

of the sentence part it is required to match.

We define: (1) reported and correct (R&C), the number of label parts semantically

annotated by our technique with exactly the same concepts used in the gold standard;

(2) reported (R), the number of the label parts for which our technique has provided a

suggestion; (3) to be reported (TBR), the number of annotation concepts (already in the

120

4. BP SEMANTIC ANNOTATIONS 4.2. Semantic Annotation Suggestions

ontology or added later) in the gold standard. We computed precision and recall for our

case study: precision = R&C/R = 0.85 and recall = R&C/TBR = 0.65.

Both these quantitative results and the qualitative assessment we made of the re-

sults shown in Table 4.14 indicate that the proposed approach is viable and effective in

supporting the difficult and expensive task of adding semantic annotations to business

processes.

121

4.2. Semantic Annotation Suggestions 4. BP SEMANTIC ANNOTATIONS

122

Chapter 5

Constraint Verification

“Contrariwise, if it was so, it might be;

and if it were so, it would be; but as it isn’t, it ain’t.”

Lewis Carrol

A crucial step in process modelling is the creation of valid diagrams, which not only

comply with the basic requirements of the process semantics, but also satisfy properties

associated with the specific process domain. For instance, an important requirement for

a valid on-line shopping process should be the fact that the activity of providing personal

data is always preceded by an activity of reading the policy of the organization.

As the notion of semantically annotated processes becomes more and more popular

(e.g., [167], [54]) and business experts start annotating elements of their processes with

semantic objects taken from a domain ontology, there is an increasing potential to use

the Semantic Web technology to support business experts in their modelling activities,

including the modelling of valid diagrams which satisfy semantically enriched and domain

specific constraints. In turn, the same process annotation can be constrained by special

requirements. An example of the latter constraints in the on-line shopping process is the

fact that a complex action like managing the cart cannot be used for annotating an atomic

BPMN task.

Our proposal of enriching process models with concepts belonging to (a set of) domain

ontology(es) (described in Chapter 4) aims at supporting business designers also in con-

straint verification. The domain semantic information added to the process elements as

well as the formalization of semantically annotated processes into the BPKB, in fact, en-

able automated reasoning on the process and on its constraints, thus supporting business

experts in the realization of valid process models.

In this chapter, we propose a concrete formalization of typical classes of structural

123

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

requirements over annotated BPMN processes in Description Logics [12] (Section 5.1)

and we show how Description Logic (DL) reasoners can be used to provide the auto-

mated verification of process requirements and models (Section 5.2). Finally, we provide

an evaluation of the proposed approach in terms of DL expressivity and performance

(Section 5.3).

The material presented in this chapter has been published in [44, 45, 46, 153].

5.1 Process Requirement Specification

Many recent works in the literature use semantic annotations for supporting process

modelling activities. These different approaches can be classified in two main groups: (i)

those adding semantics to specify the dynamic behaviour exhibited by a business process,

and (ii) those adding semantics to specify the meaning of the entities of a business process

in order to improve the automation of business process management.

Our work falls in the second group and, in detail, it focuses on the usage of Seman-

tic Web technology to specify and verify structural constraints, that is, constraints that

descend from structural requirements which refer to descriptive properties of the anno-

tated process diagram and not to its execution. The reason for this choice is twofold:

(i) structural requirements complement behavioural properties, as they can be used to

express properties of the process which cannot be detected by observing the execution of

a process; (ii) structural requirements provide an important class of expressions whose

satisfiability can be directly verified with existing DL reasoners.

In order to provide examples of structural requirements and clarify how they are en-

forced in the process, we describe an on-line shopping process and a set of requirements

that could be specified by business experts on the process itself in the next subsection

(Subsection 5.1.1). In detail, to verify the process adherence to the specified requirements,

we transform them into constraints. As already described in Subsection 4.2.5 of Chap-

ter 4, we distinguish between two different kinds of constraints: merging axioms and

process specific constraints. In Subsection 5.1.2 and 5.1.3 we provide details about

merging axioms and process specific constraints, respectively.

5.1.1 An Explanatory Example

We use the portion of a semantically annotated on-line shopping process reported in

Figure 5.1 as an explanatory example in the whole section. The process represents the

initial steps of an on-line shopping process (e.g., the product presentation and selection

124

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

Figure 5.1: A portion of the on-line shopping business process diagram.

and the customer authentication), leaving out the last phases, e.g., the checkout. It is

structured in two sides: the server side, represented by the On-line Shop pool, which

describes the process from the point of view of the shop, and the client side, represented

by the Customer pool, describing the process from the point of view of the buyers.

The realization of the on-line shopping process depicted in Figure 5.1 can involve a

team of business experts, who may wish to impose requirements (constraints) on the

process itself. These requirements could cover different aspects of the process, ranging

from the correct annotation of business process elements to security issues, from privacy

issues to issues related to management of exceptions and exception handling mechanisms,

as in the following examples:

• issues related to the semantic annotation:

(a) “to manage” is a complex action and can be used only to annotate BPMN sub-

125

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

processes (and not atomic activities).

• privacy issues:

(b) the activity of providing personal data is always preceded by the activity of reading

the policy of the organization;

(c) the activity of reading the policy of the organization is activated by an event

generated from the activity of providing these policies to the customer itself ;

• security issues:

(d) the Customer pool must contain an authentication sub-process which, in turn,

contains a log-in activity and an insertion of personal data activity ;

• issues related to the exception handling:

(e) the activity of reserving products in the On-line Shop pool has always to catch a

“product unavailability” error event ;

(f) the “product unavailability” error event caught by the activity of reserving prod-

ucts in the On-line Shop pool has to be handled by executing in parallel two

activities. The first one is an activity for warning the buyer; the second one is

a sub-process for ordering the unavailable products ;

(g) the activity of “sending customer data” in the “log-in” sub-process has always

to allow, after its execution, receiving a “compulsory log-in failure” error event

from the On-line Shop pool. The “log-in” sub-process has, in turn, always to

catch this error and the error event has to be handled by immediately stopping

the process ;

• general issues :

(h) in the on-line shopping process there must be a Customer pool and an On-line

shop pool ;

(i) inclusive gateways cannot be used in the on-line shopping process (to force all

the alternative actions to be mutually exclusive);

(j) each gateway must have at most 2 outgoing gates (to keep the process simple);

(k) each pool must contain a single authentication activity / sub-process (to ease

maintenance);

126

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

(l) the activity of managing a shopping cart is a sub-process which contains an ac-

tivity removing products from the cart.

All these constraints are examples of structural requirements as they are related to

the descriptive properties of the annotated process diagram and complement properties

which may refer to the process execution. While some of the requirements listed above

can bear some similarity with behavioural properties, it is important to note here that

expressing them as structural requirements constraints the structure (in addition to the

behaviour), as it is possible to obtain the same process behaviour by completely different

process diagrams. To make a simple example we could “rephrase” constraint (k) in the

apparently equivalent the execution paths of all pools must contain a single authentication

activity. Nevertheless, while this requirement is satisfied by both diagrams in Figure 5.2,

requirement (k) is only satisfied by diagram 5.2b, which is definitely easier to maintain

if changes to the authentication sub-process are foreseen. Thus, structural requirements

are the appropriate way to express static properties of the diagram, which may even not

be discovered by analysing the behaviour of the process.

5.1.2 Merging Axioms

Process model semantic annotation aims at supporting business experts in design and

analysis activities, thus affecting the creation of high quality process models. However

an unavoidable precondition to their effectiveness is that they are correct. Though the

notion of correct semantic annotation deserves a precise definition, we can intuitively say

that a necessary condition for a correct annotation is that it respects types. For exam-

ple, activities in a business process should be annotated with concepts actually denoting

actions; similarly, BPMN data objects should be annotated with concepts representing

objects, and so on. Thus, for instance, an activity annotated with a cart concept or a

BPMN data-object annotated with a to manage cart concept are intuitively incorrect an-

notations. Additional requirements for a correct annotation could be imposed because of

(a) (b)

Figure 5.2: Diagrams with equivalent behaviour

127

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

the specific application domain. For instance, in a domain in which simple actions only

come from a fixed set, BPMN tasks should be only annotated with actions taken from

this set. Hence, though belonging to different ontologies, concepts from the BPMN on-

tology and the domain ontology are not totally unrelated. Precise correspondences which

define criteria for correct / incorrect semantic annotations often exist and it is important

to make them explicit. Examples of these criteria, which may hold in many application

domains, are:

A BPMN activity can be annotated only with actions of the domain ontology

(and not for example, with objects).
(5.1)

A BPMN data-object cannot be annotated with actions or events of the

domain ontology (but for example, with objects).
(5.2)

A BPMN Event can be annotated only with events of the domain

ontology (and not for example, with objects).
(5.3)

A domain specific criterion, which refers to the particular business process or domain

ontology at hand, is requirement (a) in Subsection 5.1.1.

To allow the business designer to specify the kind of positive and negative constraints

described above, we propose the usage of four constructs: “annotatable only by”(
AB−→) and

“not annotatable by” (
nAB−→) from BPMNO concepts to BDO concepts (also defined as “can

represent only” and “cannot represent”, respectively), and the symmetrical “annotates

only” (
A−→) and “cannot annotate” (

nA−→) from BDO concepts to BPMNO concepts (also

defined as “can be represented only as” and “cannot be represented as”, respectively).

Their intuitive meaning and their formalization as DL axioms is reported in Table 5.11.

We use W to denote a concept of BPMNO and Y to denote a concept of BDO.

The formalization of the four constructs as DL axioms is the basis for the trans-

lation of informal expressions such as (5.1)–(5.3) and (a) into a formal set of expres-

sions, denoted with MA(BPMNO,BDO). Note that though the meaning of X
nAB−→ Y and

Y
nA−→ X coincide, we provide both primitives as, depending on the case to be modelled,

one may result more intuitive than the other. For example the requirement (a) can be

represented in the form BDO:to manage
A−→ BPMNO:sub process, which is formalized as

BDO:to manage v BPMNO:sub process.

Merging axioms can describe “domain independent” criteria, such as (5.1)–(5.3), and

“domain specific” criteria, such as requirement (a). Domain independent criteria, may

1We recall that we use the term BPMNO-type for specifying the BPMN type of a BPD object, i.e., the BPMNO

class/superclass of the corresponding instance in the BPKB, as introduced in Chapter 4.

128

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

Merging Axiom Intuitive meaning DL Axiom

BPMNO:W
AB−→ BDO:Y

A BPMN element of BPMNO-type W can be annotated

BPMNO:W v BDO:Yonly with (can represent only) a domain specific concept

equivalent or more specific than Y

BPMNO:W
nAB−→ BDO:Y

A BPMN element of BPMNO-type W cannot be annotated

BPMNO:W v ¬ BDO:Ywith (cannot represent) a domain specific concept

equivalent or more specific than Y

BDO:Y
A−→ BPMNO:W

Any domain specific concept equivalent or more specific than Y

BDO:Y v BPMNO:Wcan be used to annotate only (can be represented only as)

(can be represented only as) BPMN elements of BPMNO-type W

BDO:Y
nA−→ BPMNO:W

Any domain specific concept equivalent or more specific than Y

BDO:Y v ¬ BPMNO:Wcan not be used to annotate (can not be represented as)

BPMN elements of BPMNO-type W

Table 5.1: Merging axiom patterns

hold in many application domains, as they relate elements of BPMN, such as data-objects,

activities or events to very general concepts, like the elements of a top-level ontology, e.g.,

DOLCE [63]. These kinds of constraints can be thought of as “default” criteria for correct

/ incorrect semantic annotations, and in this case DOLCE can be provided as a “default”

component of the domain ontology in the workspace. The advantage of having these

criteria already included in the BPKB is that in many situations it might be the case

that the analysts, which are usually very focused on their application domain, forget to

add them explicitly while they may tend to add more domain-specific constraints; these

“default” criteria, however, could still be modified by the analysts to reflect the actual

annotation criteria for the specific domain at hand.

To support the creation of merging axioms, a first library of domain independent merg-

ing axioms between BPMN and DOLCE has been implemented (see [65] for a detailed de-

scription). Based on this work, expression (5.1) can be represented with the merging axiom

BPMNO:activity
AB−→ BDO:process (identifying action with class process in DOLCE), which

in turn is formally represented with the DL statement BPMNO:activity v BDO:process,

expression (5.2) can be represented with the merging axiom BPMNO:data object
nAB−→

BDO:perdurant (where DOLCE class perdurant is a general class covering both processes

and events) which in turn is represented with BPMNO:data object v ¬BDO:perdurant,

and similarly with the other expressions.

Finally, the specification of these constraints on correct / incorrect annotations can

be exploited to refine and strengthen the technique, described in Subsection 4.2.3 of

Chapter 4, for the suggestion of candidate semantic annotations. The definition of merging

axioms, in fact, allows the suggestion algorithm to both reduce the annotation search space

and come up with annotation suggestions compliant with the merging axiom constraints.

129

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

5.1.3 Process Specific Constraints

Process specific constraints are expressions used to state specific properties that apply

to the process under construction. Differently from merging axioms, these expressions

can have many different forms to match different properties of the process. We identified

five types of process specific constraints that can be expressed over the Business Process

Diagrams: (i) containment constraints (including existence constraints), (ii) enumera-

tion constraints, (iii) precedence constraints, (iv) exception handling constraints and (v)

composed constraints.

Containment Constraints

Containment constraints are of the form X contains Y or X does not contain Y and

are used to represent the fact that the BPD or certain graphical elements contain/do not

contain other graphical elements. A simple containment constraint of the form X contains

Y which can be expressed over the on-line shopping process is provided by requirement

(l).

Containment constraints can be encoded in Description Logics using specific BPMNO

roles which formalise the containment relations existing between different BPD objects as

described by specific attributes in [131]. Examples of these roles, used in DL to represent

object properties and data properties, are:

• has embedded sub process sub graphical elements, which corresponds to the Graphi-

calElement attribute of an Embedded Sub-Process, as described in [131], and rep-

resents all the objects (e.g., Events, Activities, Gateways, and Artifacts) that are

contained within the Embedded Sub-Process;

• has pool process ref, which corresponds to the ProcessRef attribute and is used to

represent the process that is contained within a pool;

• has process graphical element, which corresponds to the GraphicalElements attribute

of BPMN and identifies all the objects that are contained within a process2;

• has business process diagram pools, which allows to relate a BPD with the pools it

contains.

For the sake of readability hereafter we abbreviate the four roles described above with

has embedded, has process ref, has graphicals and has diagram pools, respectively. Using

2We assume that the GraphicalElement attribute of a process identifies all the objects in the process including those

nested in embedded sub-processes

130

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

r to indicate any of the roles above, containment constraints are typically expressed as

statements of the form X v ∃r.Y or X v ∀r.Y which use the basic existential and

universal quantification constructs ∃r.Y and ∀r.Y .

Requirement (l) can therefore be formalized as follows:

BDO:to manage cart vBPMNO:embedded sub process (5.4)

BDO:to manage cart v∃BPMNO:has embedded.(BPMNO:activityu
BDO:to remove product)

(5.5)

Replacing the specific domain activities in requirement (l) with X and Y , we can

obtain a pattern of the form X is a sub-process that contains the activity Y, which can be

formalized as:

BDO:X vBPMNO:embedded sub process (5.6)

BDO:X v∃BPMNO:has embedded.(BPMNO:activity u BDO:Y) (5.7)

Relaxing the condition that X is a sub-process, instead, we obtain the (more general)

pattern The (embedded) sub-process X contains the activity Y, which is encoded in DL

as3:

BDO:X u BPMNO:embedded sub process v
∃BPMNO:has embedded.(BPMNO:activity u BDO:Y)

Finally, abstracting also with respect to the BPMNO-type, we obtain a general require-

ment pattern:

W of BDO-type4 X contains Z of BDO-type Y

The DL formalization of this pattern (and the roles involved in the formalization) changes

according to the BPMNO-type W of X. We provide hereafter some of the most common

examples:

• In caseW is an embedded sub-process or a process, the has graphicals and has embedded

roles are used in the DL axiom, respectively:

BDO:X u BPMNO:embedded sub process/BPMNO:process v
∃BPMNO:has embedded/BPMNO:has graphicals.(BPMNO:Z u BDO:Y)

(5.8)

3In order to make the axiom compatible with some of the available tools for encoding axioms, the (non-atomic) expression

on the left part of the v relationship can be reconducted to a single term by defining an auxiliary class. For example,

the axiom expr1 v expr2 can be reformulated by defining the auxiliary class aux ≡ expr1 and using it in the axiom:

aux v expr2.
4We recall that we use the term BDO-type for specifying the domain type of a BPD object, i.e., the BDO class/superclass

of the corresponding instance in the BPKB, as introduced in Chapter 4.

131

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

• In case W is a pool, the formalization also uses the has process ref role:

BDO:X u BPMNO:pool v
∃BPMNO:has process ref.(BPMNO:processu
∃BPMNO:has graphicals.(BPMNO:Z u BDO:Y))

(5.9)

• Finally, in case W is a business process diagram (the main diagram or a diagram

referenced by a reusable sub-process and encoded in a different BPKB), the formal-

ization also contains the has diagram pools role:

BDO:X u BPMNO:business process diagram v
∃BPMNO:has diagram pools.(BPMNO:poolu
∃BPMNO:has process ref.(BPMNO:processu
∃BPMNO:has graphicals.(BPMNO:Z u BDO:Y)))

(5.10)

The negative containment pattern is similar. It has the form:

W of type X does not contain Z of type Y

The DL formalization differs according to the typeW (BPMNO:process/BPMNO:embedded

sub-process, BPMNO:pool or BPMNO:business process diagram):

•

BDO:X u BPMNO:embedded sub process/BPMNO:process v
∀BPMNO:has embedded/BPMNO:has graphicals.¬(BPMNO:Z u BDO:Y)

(5.11)

•

BDO:X u BPMNO:pool v
∀BPMNO:has process ref.(BPMNO:processu
∀BPMNO:has graphicals.¬(BPMNO:Z u BDO:Y))

(5.12)

•

BDO:X u BPMNO:business process diagram v
∀BPMNO:has diagram pools.(BPMNO:poolu
∀BPMNO:has process ref.(BPMNO:processu
∀BPMNO:has graphicals.¬(BPMNO:Z u BDO:Y)))

(5.13)

132

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

Requirement (d) can also be seen as a containment constraint, though it is slightly

more complex. In order to formalize the constraint in a readable manner we split it in

two parts. We first define a concept goodAuthProcess which describes the second part

of the constraint, that is, an authentication sub-process which contains both a to log in

activity and a to provide customer data activity5.

goodAuthProcess ≡
BPMNO:embedded sub process u BDO:to authenticateu
∃BPMNO:has embedded.(BPMNO:activity u BDO:to log in)u
∃BPMNO:has embedded.(BPMNO:activity u BDO:to provide customer data)

Then, we can require that all Customer pools are associated to a process that contains a

goodAuthProcess:

BPMNO:pool u BDO:customer v∃BPMNO:has process ref.(BPMNO:processu
BPMNO:has graphicals.goodAuthProcess)

Existence Constraints

Existence constraints are constraints of the form exists X or non-exists X and are used

to represent the fact that a certain element X is present / absent in the BPD. In this

perspective, hence, their form can be rephrased into diagram X contains Y and diagram

X does not contain Y, thus falling in a particular case of containment constraints. The

constraint may concern a plain BPMN element or a semantically annotated one. Two

simple examples of existence constraint in the on-line shopping process in Figure 5.1 are

provided by requirements (h) and (i).

A formal encoding of the existence constraint (h), hence, can be provided by simply

asserting that the business process diagram encoded in the current BPKB must contain at

least a pool object annotated with the BDO concept customer and a pool object annotated

with on-line shop:

BPMNO:business process diagram v
∃BPMNO:has diagram pools.BDO:customeru
∃BPMNO:has diagram pools.BDO:on-line shop

Similarly, requirement (i) can be realized by asserting that the processes referenced by

the business process diagram encoded in the current BPKB must contain pools referencing
5We do not require them to be different activities.

133

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

processes containing no inclusive gateway:

BPMNO:business process diagram v
∀BPMNO:has diagram pools.(BPMNO:poolu
∀BPMNO:has process ref.(BPMNO:processu
∀BPMNO:has graphicals.¬BPMNO:inclusive gateway))

By assuming that the diagram is formally correct with respect to the BPMNO formaliza-

tion, the same merging axiom can be more simply encoded by asserting that processes in

BPKB do not contain inclusive gateways:

BPMNO:process v
∀BPMNO:has graphicals.¬BPMNO:inclusive gateway

Abstracting the specific BDO types, hence, the pair of requirement patterns:

There exists Z of type Y

and

There does not exist Z of type Y

can be formalized in DL, similarly to the general containment constraints, according

to the BPMNO-type Z of the object whose existence we are interested in verifying :

• In case Z is a pool, existence and non-existence constraints can be respectively

encoded as:

BPMNO:business process diagram v
∀BPMNO:has diagram pools.(BPMNO:pool u BDO:Y)

(5.14)

BPMNO:business process diagram v
∃BPMNO:has diagram pools.¬(BPMNO:pool u BDO:Y)

(5.15)

• In case Z is a graphical object contained in a pool, instead, the DL formalization of

the two constraints is the following:

BPMNO:business process diagram v
∀BPMNO:has diagram pools.(BPMNO:poolu
∀BPMNO:has process ref.(BPMNO:processu
∀BPMNO:has graphicals.(BPMNO:Z u BDO:Y)))

(5.16)

134

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

BPMNO:business process diagram v
∃BPMNO:has diagram pools.(BPMNO:poolu
∃BPMNO:has process ref.(BPMNO:processu
∃BPMNO:has graphicals.¬(BPMNO:Z u BDO:Y)))

(5.17)

These patterns, of course, can be adapted to cases in which the BDO-type Y is not

specified and the only BPMNO-type is available, or vice versa.

Enumeration Constraints

Enumeration constraints further refine containment constraints by stating that X contains

(at least / at most / exactly) n objects of type X. A simple example of enumeration

constraint which concerns a plain BPMN element is provided by requirements (j). An

enumeration constraint which also involves semantically annotated objects is provided by

requirement (k). Enumeration constraints can be encoded in Description Logics using the

constructs: number restriction and qualified number restriction [12]. Number restrictions

are written as ≥nR (at-least restriction) and ≤nR (at-most restriction), with n positive

integer, while qualified number restrictions are written as ≥ nR.C and ≤ nR.C. The

difference between the two is that number restriction allows to write expressions such

as, e.g., (≤ 3)hasChild, which characterise the set of individuals who have at most 3

children, while qualified number restriction allows to write expressions such as, e.g., (≤
3)hasChild.Female, which characterise the set of individuals who have at most 3 female

children. At-least and at-most operators can be combined to obtain statements of the

form =nR.

A formalization of requirements (j) can then be provided by the DL statement:

BPMNO:gateway v (≤ 2)BPMNO:has gateway gate

while a formalization of requirement (k) is given by:

BPMNO:pool v∀BPMNO:has process ref.

(= 1)BPMNO:has graphicals.BDO:to authenticate

Abstracting with respect to the specific BDO-type and BPMNO-type, we obtain con-

straints of the type:

W of BDO-type X contains (at least/at most/exactly) n objects Z of BDO-type Y

135

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

Their formalization is hence the same of containment constraints in which the subsump-

tion relationship is constrained by (≤ n/≥ n/= n). For example, in case W is an embed-

ded sub-process, the DL formalization is:

BDO:X u BPMNO:embedded sub process v
(≤ n/ ≥ n/ = n)∃BPMNO:has embedded.(BPMNO:Z u BDO:Y)

(5.18)

Precedence Constraints

Precedence constraints are used to represent the fact that certain graphical objects appear

/ do not appear before others in the BPD. They can be of several forms. Significant

examples are: X is always preceded by Y in all possible paths made of sequence flows

and X is once preceded by Y in at least a path composition of sequence flows and the

corresponding negated forms: X is not always preceded by Y and X is never preceded

by Y. Particular cases of these constraints are X is always immediately preceded by Y,

X is once immediately preceded by Y, X is not always immediately preceded by Y and

X is never preceded by Y. These constraints also require that X is a graphical object

(not) immediately preceded by Y by means of a sequence flow. Finally the precedence

constraint X is activated by Y requires that X is activated by Y by means of a message

flow. Two simple examples of precedence constraint are provided by requirements (b) and

(c).

Precedence constraints can be encoded in DL using specific BPMNO roles which for-

malize the connection between graphical objects. In particular the key roles we can use

are:

• has sequence flow source ref and has sequence flow target ref.

• has message flow source ref and has message flow target ref.

These roles represent the SourceRef and TargetRef attributes of BPMN and identify

which graphical elements the connecting object is connected from and to respectively.

The first two roles (hereafter abbreviated with has sf source and has sf target for the sake

of readability) refer to sequence flow connecting objects, while the other two roles (here-

after abbreviated with has m source and has m target for the sake of readability) refer to

message flows.

136

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

Constraint (b) can be formalized in DL by means of two statements:

BDO:to provide sensible data u BPMNO:activity v
∀BPMNO:has sf target−.∀BPMNO:has sf source.BDO:to read policy∗

(5.19)

BDO:to read policy∗ ≡
¬BPMNO:start eventu
((BDO:to read policy u BPMNO:activity)t
∀BPMNO:has sf target−.∀BPMNO:has sf source.BDO:to read policy∗)

(5.20)

The statements above use has sf source and has sf target, together with an auxiliary

concept BDO:to read policy∗. In a nutshell the idea is that the concept BDO:to provide

sensible data is immediately preceded, in all paths defined by a sequence flow, by a graphi-

cal object of type BDO:to read policy∗. This new concept is, in turn, defined as a graphical

object which is not the start event and either it is an activity of type BDO:to read policy

or it is preceded in all paths by BDO:to read policy∗. By replacing to provide sensible data,

to read policy, and to read policy∗ with X, Y and Y ∗ in (5.19) and (5.20) and activity in

(5.19) withW and activity in (5.20) with Z, we can obtain a general encoding of constraints

of the form:

W of BDO-type X is always preceded by Z of BDO-type Y

Its formalization in DL is:

BDO:X u BPMNO:W v∀BPMNO:has sf target−.

∀BPMNO:has sf source.BDO:Y∗

BDO:Y∗ ≡¬BPMNO:start eventu
((BDO:Y u BPMNO:Z)t
∀BPMNO:has sf target−.∀BPMNO:has sf source.BDO:Y∗)

(5.21)

In addition, by replacing ∀ with ∃ we can obtain an encoding of:

W of BDO-type X is once preceded by Z of BDO-type Y

137

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

BDO:X u BPMNO:W v∃BPMNO:has sf target−.

∃BPMNO:has sf source.BDO:Y∗

BDO:Y∗ ≡¬BPMNO:start eventu
((BDO:Y u BPMNO:Z)t
∃BPMNO:has sf target−.∃BPMNO:has sf source.BDO:Y∗)

(5.22)

Similarly, for the corresponding negated forms, i.e.,:

W of BDO-type X is not always preceded by Z of BDO-type Y

and

W of BDO-type X is never preceded by Z of BDO-type Y

the DL formalizations are:

BDO:X u BPMNO:W v∃BPMNO:has sf target−.

∃BPMNO:has sf source.¬BDO:Y∗

BDO:Y∗ ≡¬BPMNO:start eventu
((BDO:Y u BPMNO:Z)t
∀BPMNO:has sf target−.∀BPMNO:has sf source.BDO:Y∗)

(5.23)

and

BDO:X u BPMNO:W v∀BPMNO:has sf target−.

∀BPMNO:has sf source.¬BDO:Y∗

BDO:Y∗ ≡¬BPMNO:start eventu
((BDO:Y u BPMNO:Z)t
∃BPMNO:has sf target−.∃BPMNO:has sf source.BDO:Y∗)

(5.24)

If we replace the constraint (b) with a simpler constraint of the form “the activity of

providing personal data is once immediately preceded by an activity of reading the policy

of the organization” then, we do not need to introduce the auxiliary concept Y ∗ and the

encoding is directly provided by the statement:

BDO:to provide sensible data u BPMNO:activty v
∃BPMNO:has sf target−.

∃BPMNO:has sf source.(BDO:to read policy u BPMNO:activity)

(5.25)

138

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

Again, we can abstract from the specific types and obtain a pattern of the form:

W of BDO-type X is always immediately preceded by Z of BDO-type Y

and

W of BDO-type X is once immediately preceded by Z of BDO-type Y

Their formalizations in DL are, respectively:

BDO:X u BPMNO:W v
∀BPMNO:has sf target−.

∀BPMNO:has sf source.(BDO:Y u BPMNO:Z)

(5.26)

and

BDO:X u BPMNO:W v
∃BPMNO:has sf target−.

∃BPMNO:has sf source.(BDO:Y u BPMNO:Z)

(5.27)

Their negated forms, instead, are:

W of BDO-type X is not always immediately preceded by Z of BDO-type Y

and

W of BDO-type X is never immediately preceded by Z of BDO-type Y

Their formalizations, hence, are:

BDO:X u BPMNO:W v
∃BPMNO:has sf target−.

∃∀BPMNO:has sf source.¬(BDO:Y u BPMNO:Z)

(5.28)

BDO:X u BPMNO:W v
∀BPMNO:has sf target−.

∀BPMNO:has sf source.¬(BDO:Y u BPMNO:Z)

(5.29)

In general, however, it is also possible to define patterns of the form:

The activity of BDO-type X is once immediately preceded allowing gateways in-between

by the activity of BDO-type Y

139

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

by using the expression once immediately preceded allowing gateways in-between for indi-

cating that activity X immediately precedes activity Y or that there exists a path between

the two activities that traverses only gateways. The formalization of this pattern is:

BDO:X u BPMNO:W v∃BPMNO:has sf target−.

∃BPMNO:has sf source.BDO:Y∗

BDO:Y∗ ≡BPMNO:gatewayu
((BDO:Y u BPMNO:activity)t
∀BPMNO:has sf target−.∀BPMNO:has sf source.BDO:Y∗)

(5.30)

DL translation for the always immediately preceded allowing gateways in-between (indi-

cating that there exist one or more paths between activity X and activity Y and that each

of these paths either does not traverse other process elements or traverses only gateways)

is analogous.

Finally, patterns of the form X is always followed by Y, X is once followed by Y, X is

always immediately followed by Y, X is once immediately followed by Y and their negated

forms can be encoded by swapping has sf source and has sf target roles. For example, the

generic pattern:

W of BDO-type X is once immediately followed by Z of BDO-type Y

is encoded as:

BDO:X u BPMNO:W v
∃BPMNO:has sf source−.

∃BPMNO:has sf target.(BDO:Y u BPMNO:Z)

(5.31)

In the last group of these constraints we find those involving the messaging flow. To

formalise (c) we need to check that the activities annotated with BDO:to read policy are

activated by an intermediate event (message) which refers to a message flow originated

by an activity of BDO-type BDO:to provide policy data:

BDO:to read policy u BPMNO:activity v
∃BPMNO:has sf target−.∃BPMNO:has sf source.

(BPMNO:intermediate eventu
∃BPMNO:has m target−.∃BPMNO:has m source.

(BDO:to provide policy data u BPMNO:activity))

(5.32)

140

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

Again, by replacing the specific BDO concepts with X and Y , and the specific BPMNO

concepts with W and Z, we can obtain a schematic encoding of constraints of the form:

W of BDO-type X is activated by Z of BDO-type Y

that is:

BDO:X u BPMNO:W v∃BPMNO:has sf target−.∃BPMNO:has sf source.

(BPMNO:intermediate eventu
∃BPMNO:has m target−.∃BPMNO:has m source.

(BDO:Y u BPMNO:Z))

(5.33)

Similarly, for its negative form:

W of BDO-type X is not activated by Z of BDO-type Y

BDO:X u BPMNO:W v∀BPMNO:has sf target−.∀BPMNO:has sf source.

(BPMNO:intermediate eventu
∀BPMNO:has m target−.∀BPMNO:has m source.¬

(BDO:Y u BPMNO:Z))

(5.34)

Exception Handling Constraints

These constraints are expressions used to represent the way specific exceptions should

be handled. They describe structural properties of BPMN diagrams and, similarly to

the other types of structural constraints, they can have many different forms. They can

specify simple requirements stating the need for an exception handling mechanism at a

certain point in the process, as in the requirement (e), or more complex issues, as in the

requirement (g).

The formalization of exception handling constraints is based on the representation of

BPMN Intermediate Events (None, Message, Timer, Error, Cancel, Compensation, Con-

ditional, Link, Signal, and Multiple) in BPMNO. Intermediate events belong to the ex-

tended set of BPMN Graphical Elements described in [131] and are the mechanism BPMN

suggests to use to represent exception or compensation handling. Intermediate events are

part of the graphical objects of BPMNO, as depicted in Figure 5.3. In accordance with

the properties of intermediate events [131] encoded in BPMNO, these elements are further

classified, via reasoning, in different groups: the events classified as activity boundary inter-

mediate events can only appear on the boundary of an activity (i.e, on the boundary of its

141

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

Figure 5.3: The classification of intermediate events

graphical representation), the events classified as not activity boundary intermediate events

must not appear on the boundary of an activity, and finally the events which are not clas-

sified under any of these concepts can appear in both circumstances. Two BPMNO roles

are used to describe the attributes of intermediate events:

• has intermediate event target, which encodes the Target attribute. This attribute is

used to describe the fact that the intermediate event is attached to the boundary of

an activity.

• has intermediate event trigger encodes the Trigger attribute. This attribute is used

to describe the type of trigger expected for an intermediate event.

For the sake of readability, we abbreviate the two roles above with has target and has trigger,

respectively.

The constraint corresponding to requirement (e) can be formalized in DL by means

of the following statement where, for the sake of presentation, we separately define the

reserveProductOn-line concept used to denote the activities contained in the On-line Shop

142

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

pool and annotated with the to reserve product concept:

reserveProductOn-line ≡
BPMNO:activityu
BDO:to reserve product u ∃has graphicals−.

∃has process ref−.BDO:on-line shop

(5.35)

reserveProductOn-line v ∃BPMNO:has target−.

(BPMNO:error intermediate event u BDO:product unavailability)
(5.36)

Requirement (f) can instead be formalized in DL by a statement which makes use of

precedence constraints. In the following we use ∀BPMNO:is followed by as a shorthand for

∀BPMNO:has sf target−. ∀BPMNO:has sf source. Similarly, for ∃BPMNO:is followed by.

productUnavailabilityInOn-line ≡(BPMNO:error intermediate eventu
BDO:product unavailabilityu
∀BPMNO:has target.reserveProductOn-line)

(5.37)

productUnavailabilityInOn-line v∀BPMNO:is followed by.

(BPMNO:parallel gatewayu
∃BPMNO:is followed by.

(BPMNO:task u BDO:to warn buyer)u
∃BPMNO:is followed by.

(BPMNO:sub process u BDO:to order product))

(5.38)

Axiom (5.37) defines the class product unavailability error events caught by the activity of

reserving products in the On-line Shop pool, while axiom (5.38) states that error events

of this BDO-type must be followed by a parallel gateway which leads to two activities: a

task for warning the buyer, and a sub-process which takes care of ordering the missing

products.

Finally, in order to ease the readability of the formalization of requirement (g), we split

it into three parts. The first one asserts that the activity sending customer data contained

in a sub-process for the log-in has to be followed by an error event originated from the On-

line Shop pool and representing the failure of a compulsory log-in (The activity of sending

customer data in the log-in sub-process is always immediately followed by a compulsory

log-in error event originated in the On-line Shop pool). The DL formalization of such a

143

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

requirement is the following:

sendCustomerDataLogin ≡BPMNO:activityu
BDO:to send customer datau
∃BPMNO:has embedded−.

(BPMNO:embedded sub process u BDO:to log in)

(5.39)

graphicalElementOnline ≡BPMNO:graphical elementu
∃BPMNO:has graphicals−.∃BPMNO:has process ref−

(BPMNO:pool u BDO:on-line shop)

(5.40)

loginFailureFromOnline ≡BPMNO:error intermediate eventu
BDO:compulsory log in failureu
∃BPMNO:has m target−.

∃BPMNO:has m source.graphicalElementOnline

(5.41)

sendCustomerDataLogin v∀BPMNO:is followed by.loginFailureFromOnline (5.42)

Axiom (5.39) defines the class of to send customer data activities contained in a to log in

sub-process, axiom (5.40) defines the class of graphical elements contained in the On-line

Shop pool, axiom (5.41) the class of compulsory log in failure error intermediate events

originated by a graphicalElementOnline and, finally, axiom (5.42) states that the sendCus-

tomerDataLogin activities have to be followed by a compulsory log in failure event.

The second part of the requirement (g), states, instead, that the log-in sub-process has

to catch a compulsory log-in error event. Its DL formalization is the following:

BDO:to log in u BPMNO:sub process v
∃BPMNO:has target−.

(BPMNO:error intermediate event u BDO:compulsory log in failure)

(5.43)

Finally, the third part is related to the exception handler: the compulsory log-in fail-

ure error event caught by the login sub-process is always followed by an end event. The

144

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

corresponding DL statement is the following:

loginFailureLoginSubprocess ≡BPMNO:error intermediate eventu
BDO:compulsory log in failureu
∃BPMNO:has target−.

(BPMNO:embedded sub process u BDO:to log in)

(5.44)

loginFailureLoginSubprocess v∃BPMNO:has sf source−.

∃BPMNO:has sf target.BPMNO:error end event
(5.45)

In detail, axiom (5.44) defines the class of compulsory log in failure error events caught by

to log in sub-processes and axiom (5.45) states that it has been immediately followed by

an error end event.

If we abstract away from the specific activities in requirement (e) we can obtain a

pattern of the form:

The activity X has always to catch an error event Y

which can be encoded in an axiom skeleton of the form:

BDO:X u BPMNO:activity v∃BPMNO:has target−.

(BPMNO:error intermediate event u BDO:Y)

Abstracting also from the specific BPMNO-type Z of the event, we can obtain a pattern

of the form:

The activity X has always to catch an event Z of BDO-type Y

which can be encoded in an axiom skeleton of the form:

BDO:X u BPMNO:activity v∃BPMNO:has target−.(BPMNO:Z u BDO:Y) (5.46)

The definition of patterns that specify how exceptions are handled is more complex.

This is due to the different specific ways in which an exception may be handled in a single

process. Nevertheless, a number of papers focused on the description of error handling

patterns exists (see e.g., [157]). These efforts can provide some guideline on how to define

classes of constraints for typical exception handling patterns. Hereafter, we denote with

SC(BPMNO,BDO) the set of axioms encoding structural constraints (including exception

handling constraints).

145

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

Combining different constraints

By combining containment, enumeration precedence and exception handling constraints,

we can encode more complex requirements. An example is provided by the following

requirement:

All the paths that originate from the exclusive gateways contained in the

On-line Shop pool must start with an event which comes from the Customer pool.

We first formalize the first sentence:

onLineShopPool ≡ BPMNO:pool u BDO:on-line shop

onLineShopPool v ∃BPMNO:has process ref.(BPMN:processu
∃BPMNO:has graphicals.BPMNO:event based exclusive gateway)

To formalize the remaining part we introduce some additional concepts: the first two

concepts represent graphical elements which reside in the Customer and On-line Shop

pools respectively; the third for representing “split” exclusive event gateways, that is,

exclusive event gateways which multiply paths; and the fourth for events which originate

from the Customer pool. Finally, we define a concept for split event exclusive gateways

in the On-line shop pool. Note that since BPMN does not distinguish between “split”

and “merge” gateways, the only way to characterise the gateway where an exclusive path

starts is to rely on some of its properties. We consider here a “merge” exclusive event

gateway a gateway that has a single sequence flow exiting from it.6

6An alternative approach would be to “force” the designer to annotate gateways with a “split” or “merge” label but we

do not follow this approach as this would mean adding semantics to the BPMN language itself.

146

5. CONSTRAINT VERIFICATION 5.1. Process Requirement Specification

customerPool ≡BPMNO:pool u BDO:customer

customerGraphicalElement ≡BPMNO:graphical elementu
∃has graphicals−.∃has process ref−.customerPool

onLineShopGraphicalElement ≡BPMNO:graphical elementu
∃BPMNO:has graphicals−.∃has process ref−.onLinePool

splitEventExclusiveGateway ≡BPMNO:event based exclusive gatewayu
∃(> 1)BPMNO:has sf source−.>

eventFromCustomer ≡BPMNO:intermediate eventu
∃.BPMNO:has m source−.customerGraphicalElement

onLineShopSplitEventExclGateway ≡splitEventExclusiveGatewayu
onLineShopGraphicalElement

onLineShopSplitEventExclGateway v∀BPMNO:has sf source−.

∀BPMNO:has sf target.eventFromCustomer

Another example of requirement combining different types of constraints is the require-

ment (g) previously formalized in (5.39)–(5.42), (5.43) and (5.44)–(5.45).

Relaxed constraints

Due to expressiveness limitation imposed by Description Logics and by the fact that

we want to remain in a decidable version of OWL, there are also constraints on the

static parts of the BPMN diagram which are are not representable in our approach. In

particular all the properties that, once translated into first order logic, require more than

two variables cannot be represented. A typical example of this kind of constraint is the

fact that X mutually excludes Y, that is: X and Y are always preceded by the same

exclusive gateway. In fact we can express this property as follows, where precede is used

to indicate the precedence relation between graphical elements:

∀X.∀Y.∃Z(xor(Z) ∧ precede(Z,X) ∧ precede(Z, Y) ∧ ∀W.(precede(Z,W)∧
precede(W,X) ∧ precede(W,Y))→ ¬gateway(W))

We can instead represent a weaker version of the constraint above, which states that

X and Y are immediately preceded by an exclusive XOR gateway, by using precedence

constraints. Similar limitations apply to constraints involving parallel gateways.

147

5.1. Process Requirement Specification 5. CONSTRAINT VERIFICATION

Table 5.2 provides a summary of the main (and most general) requirement patterns

analysed and of their formalization in DL.

Category Pattern Formalization

Containment W of BDO-type X contains Z of BDO-type Y (5.8), (5.9) and (5.10)

Constraints W of BDO-type X does not contain Z of BDO-type Y (5.11), (5.12) and (5.13)

Existence It exists Z of BDO-type Y (5.14) and (5.16)

Constraints It does not exist Z of BDO-type Y (5.15) and (5.17)

Enumeration W of BDO-type contains (at least/at most/ exactly)
e.g., (5.18)

Constraints n objects Z of BDO-type Y

Precedence

W of BDO-type X is always preceded by Z of BDO-type Y (5.21)

W of BDO-type X is once preceded by Z of BDO-type Y (5.22)

W of BDO-type X is never preceded by Z of BDO-type Y (5.24)

W of BDO-type X is not always preceded by Z of BDO-type Y (5.23)

Constraints

W of BDO-type X is always immediately preceded by Z of BDO-type Y (5.26)

W of BDO-type X is once immediately preceded by Z of BDO-type Y (5.27)

W of BDO-type X is not always immediately preceded by Z of BDO-type Y (5.28)

W of BDO-type X is never immediately preceded by Z of BDO-type Y (5.29)

The activity of BDO-type X is once immediately preceded
(5.30)

allowing gateways in-between by the activity of BDO-type Y

...

W of BDO-type X is immediately followed by Z of BDO-type Y (5.31)

...

W of BDO-type X is activated by Z of BDO-type Y (5.33)

W of BDO-type X is not activated by Z of BDO-type Y (5.34)

Exception

The activity of BDO-type X has always to catch Z of BDO-type Y (5.46)Handling

Constraints

Table 5.2: Requirement Patterns

5.1.4 User-friendly Constraint Representation

Besides the classification of requirement patterns, some work has been done for provid-

ing a user-friendly support to business experts, for business process editing and semantic

annotation, for ontology editing and for constraint definition. In detail, we realized BP-

MoKi, a tool based on Semantic MediaWiki (SMW)7 [95] and thus also supporting the

collaborative aspect of semantically annotated processes. Its current functionalities allow

to design processes (by means of the Oryx8 process editor, a state of the art collabo-

rative tool for the graphical modelling of business processes), to import, edit, manage

and visualize ontologies, to define merging axioms, as well as, to check the correctness

of the annotations (with respect to the merging axioms). For example, Figure 5.4 shows

two views of the process and ontology editing functionalities, respectively. Though, in

the current version of the tool the support to the definition of constraints is limited to

the merging axioms (Figure 5.5 shows an example of template for the definition of an

7http://semantic-mediawiki.org - We currently use MediaWiki v1.14 and SMW v1.4.2.
8http://bpt.hpi.uni-potsdam.de/Oryx

148

http://semantic-mediawiki.org
http://bpt.hpi.uni-potsdam.de/Oryx

5. CONSTRAINT VERIFICATION 5.2. Constraint Verification

(a) Process model editing in BP-MoKi

(b) Ontology editing in BP-MoKi

Figure 5.4: Two views of the functionalities provided by BP-MoKi

“annotates only” merging axiom of the BDO concept to estimate date), it can similarly,

be extended to structural constraint patterns.

5.2 Constraint Verification

By encoding all the information about a semantically annotated business process into a

logical knowledge base (as described in Chapter 4), several reasoning services over it can

be implemented. Key reasoning services we present in this section are: compatibility

checking of process constraints and constraints verification over an annotated

BPD.

149

5.2. Constraint Verification 5. CONSTRAINT VERIFICATION

Figure 5.5: User-friendly definition of an “annotates only” merging axiom (bottom box) of the BDO

concept to estimate date

5.2.1 Compatibility Checking of Process Constraints

In formalizing the requirements that an annotated business process has to satisfy, the

constraints specified by the user may generate inconsistencies in the resulting BPKB.

This is due to the introduction of at least a process constraint which is incompatible

with the axioms encoded in BPMNO or in BDO, or with other process constraints. The

detection of incompatible process constraints can be automatically performed by verifying

the consistency of the Tbox component of the BPKB:

BPMNO ∪ BDO ∪MA(BPMNO,BDO) ∪ SC(BPMNO,BDO)

with a standard state-of-the-art OWL DL reasoner. In the case of inconsistency, when

some unsatisfiable class is detected, the usage of DL reasoners and explanation techniques

similar to the ones described in [80] can be also useful to provide justifications to the

business experts.

For example, Figure 5.6 shows an explanation (obtained by using the Explanation

Workbench plugin for Protégé-49) for the unsatisfiable concept to manage cart in case the

assertion BDO:to manage cart vBPMN:task is added to the knowledge base, together with

constraint (5.4). The Explanation Workbench plugin finds four possible justifications for

the unsatisfiable concept (only three are shown). For each justification, the set of axioms

making the class unsatisfiable is reported. For instance, in the example, the first two

justifications, which in their laconic form are equivalent, concern the conflict between

9http://owl.cs.manchester.ac.uk/explanation/

150

http://owl.cs.manchester.ac.uk/explanation/

5. CONSTRAINT VERIFICATION 5.2. Constraint Verification

Figure 5.6: Explanation generation

151

5.2. Constraint Verification 5. CONSTRAINT VERIFICATION

the sub-process and the task has activity type role. In fact, to manage cart is an embed-

ded sub process, i.e., a sub process that, in turn, is an activity, whose only activity type

role (an activity can have only one activity type) is a sub process activity type that, how-

ever, cannot be a task activity type. On the other hand, to manage is also a task and

the has activity type of a task is a task activity type. The third explanation, instead, is

simpler. It relies on the fact that to manage, that is an embedded sub process and hence

a sub process, cannot be a task. However, to manage is also a task, hence the class is

unsatisfiable.

5.2.2 Constraints Verification over an Annotated BPD

Given an Abox Aβ containing the OWL representation of a semantically annotated BPD

β, the extension of the mechanism used for the compatibility checking to the constraint

checking on annotated BPDs (i.e., the verification of the consistency of the knowledge base

BPMNO ∪ BDO ∪MA(BPMNO,BDO) ∪ SC(BPMNO,BDO) ∪Aβ) might seem straightfor-

ward. On the contrary, such a verification requires some care. This because the OWL

semantics is based on the Open World Assumption (i.e., a failure in proving a statement

does not imply that the statement is false) and does not satisfy the Unique Names As-

sumption (i.e., two entities with different identifiers are distinct objects), which makes it

difficult to use OWL for data validation where complete knowledge can be assumed (i.e.,

a closed world), like in the case of an annotated BPD.

For example, OWL allows to encode the requirement (e), as shown in equation (5.35),

but having an activity in the On-line Shop pool of BDO-type to reserve product with

no error intermediate event of BDO-type product unavailability attached to its boundary

would not cause a logical inconsistency in the BPKB. In fact by reasoning in Open World

Assumption, a failure of proving that any of the product unavailability error intermediate

events explicitly mentioned in the Abox Aβ is attached to the boundary of an activity of

BDO-type to reserve product in the On-line Shop pool would not imply that this element

does not exist.

However, as discussed in [161], it is possible to define an Integrity Constraint (IC)

semantics for OWL axioms in order to enable closed world constraints validation: con-

straints are written as standard OWL axioms but are interpreted with a different seman-

tics for constraint validation. To support the validation of IC in OWL, the Pellet IC

Validator10, a prototype tool that extends the Pellet OWL reasoner by interpreting OWL

axioms with IC semantics, can be used [161]. Technically, each axiom representing an IC

10http://clarkparsia.com/pellet

152

http://clarkparsia.com/pellet

5. CONSTRAINT VERIFICATION 5.3. Constraint Checking Performance Evaluation

is first translated to a SPARQL query, and then executed by a SPARQL query engine

over the Pellet reasoner to perform the validation over a given set of individuals11. By

reasoning with IC semantics, the existence of an activity of BDO-type to reserve product

in the On-line Shop pool, such that none of the error intermediate events of BDO-type

product unavailability defined in the BPKB is attached to its boundary, would cause a

violation of requirement (e).

5.3 Constraint Checking Performance Evaluation

We performed a preliminary experiment in order to provide a first evaluation of the per-

formance of semantic reasoning techniques used to support the verification of constraints

over annotated BPDs. In particular, the goal of the evaluation was to provide an estimate

of the performance when (i) checking the consistency of the BPKB, (ii) transforming an

annotated BPD into an OWL Abox and (iii) validating the populated BPKB against

constraints.

The evaluation study that we conducted comprised two experiments12. In the first

experiment we considered six different processes (P1- P6) of increasing size (with a number

of process graphical elements ranging from 92 to 475), and, for each of them, a single

requirement (of the same kind of requirement (e)). P1, P2, P4 and P6 describe an on-line

shopping process. In detail, P1, P2 and P6 are three incremental versions of the same

process, where P1 and P2 only describe a part of the process (i.e., the product browsing

and the cart management, leaving out the checkout phase), while P6 represent the whole

process. P4, instead is a variant of the complete process P6. Moreover, P1 contains only

the “Customer” pool, while P2, P4 and P6 contain both the “Customer” and the “On-

line Shop” pool, thus describing the process from both the perspectives. P3 describes

the procedure about the management of a mortgage request performed by a potential

customer (i.e., its acceptance or refusal by the mortgage company). This process also

involves two pools, the “Potential Customer” and the “Mortgage Company” pool. Finally,

P5 describes a seller supplier chain for product management. In detail, in this process

four pools are involved: the “Retail Seller Company”, the “Warehouse Company”, the

“Delivery Company” and the actual “Transporter”. The product/service supplier chain

is initiated by the Retail Seller Company after a warehouse check and evaluation. The

purpose of this experiment was to study the performance of the semantic technology tools

11The Pellet reasoner provides also some basic automatic explanations of why an IC is violated.
12The machine used for both the experiments is a desktop PC with an Intel Core i7 2x2.80GHz processor, 6Gb of RAM,

and running Linux Red Hat 5.

153

5.3. Constraint Checking Performance Evaluation 5. CONSTRAINT VERIFICATION

used, as the size of the BPKB (in terms of instances) grows. The main characteristics

of the domain ontologies used to annotate the processes are reported in the top rows of

Table 5.3. The DL expressiveness of the BPKBs considered is ALCHOIN (D)13.

P1 P2 P3 P4 P5 P6

Process Graphical Process Elements 92 175 237 327 387 475

Domain Ontology
Classes 124 124 101 114 79 124

Class Axioms 133 133 101 113 77 133

Consistency Phase Consistency Check Time (s)
1.422 1.447 1.439 1.445 1.422 1.429

(0.100) (0.098) (0.094) (0.104) (0.097) (0.099)

Population Phase

Added Individuals 188 361 493 676 806 977

Added Assertions 628 1170 1643 2276 2721 3434

Population Time (s)
4.079 4.503 4.981 5.572 5.883 6.794

(0.122) (0.122) (0.141) (0.164) (0.156) (0.182)

Validation Phase Constraint Validation Time (s)
6.357 10.532 14.300 16.064 26.008 37.596

(0.312) (0.480) (0.969) (1.262) (5.922) (4.775)

Table 5.3: Perofrmance Evaluation Results I

The first experiment was carried out in three phases. In the first phase, we checked

the consistency of the Tbox of the BPKB (Consistency Phase). In the second phase, we

ran the population tool to transform an annotated BPD into an OWL Abox (Population

Phase). In the last phase, we validate the BPKB against the constraint considered, to

check whether the given process satisfies it or not (Validation Phase).

The reasoning tasks required in each phase have been performed with the support

of the Pellet reasoner (v2.0.2)14, integrated with the Pellet IC Validator (v0.4)15 for the

constraint validation tasks.

The results of this first experiment are reported in the lower half of Table 5.316. As

shown by the results, the constraint validation phase is the most expensive one: in this

phase the computation time increases considerably as the size of the process (and, hence,

of the BPKB) grows. As expected, the same trend (related to the size of the process to

encode) is also exhibited by the population phase, though with a minor impact on the

performance.

In the second experiment we considered a single process (P4, from the first experiment)

and an increasing number (1, 5, 10, 50, and 100) of process constraints (of the same kind of

requirement (e)). The purpose of this second experiment was to study the performance of

the constraint validation phase as the number of process constraints grows. The results of

13We recall that checking the consistency of an ALCHOIN (D) ontology is an NExpTime-hard problem.
14http://clarkparsia.com/pellet/
15http://clarkparsia.com/pellet/icv/
16 The time values reported in Tables 5.3 and 5.4 are in the form avg (sd), where avg and sd are respectively the

arithmetic mean and the standard deviation of the execution times obtained over 100 runs on the same input data.

154

http://clarkparsia.com/pellet/
http://clarkparsia.com/pellet/icv/

5. CONSTRAINT VERIFICATION 5.3. Constraint Checking Performance Evaluation

the second experiment are reported in Table 5.416. As shown by the results, the number of

Number of Constraints 1 5 10 50 100

Validation Time (s) 16.147 16.245 16.017 16.197 16.177

(0.995) (0.944) (1.114) (1.159) (1.144)

Table 5.4: Performance Evaluation Results II

constraints to validate does not significantly impact on the performance of the constraint

validation phase.

Overall the results show that the performance of the current (state of the art) tools is

compatible with the modellers’ needs and that these tools also allow an on-line usage on

processes of small / medium size.

155

5.3. Constraint Checking Performance Evaluation 5. CONSTRAINT VERIFICATION

156

Chapter 6

Crosscutting Concern

Documentation

“Most of the fundamental ideas of science

are essentially simple, and may, as a rule,

be expressed in a language comprehensible to everyone.”

Albert Einstein

Beyond the process workflow itself, business processes usually involve several other con-

cerns (i.e., “any matter of interest in a software system” [165]), often scattered across

the whole process and tangled with the main view. A crosscutting concern in a business

process is a process feature that cannot be modularised into a single unit (e.g., an activ-

ity or a sub-process), thus resulting scattered across the process and tangled with other

concerns (either classic process units or other crosscutting concerns).

For example, several points in the workflow of a business process associated with

online shopping may deal with user preferences (either collecting preferences or making

suggestions based on them). However, the “user preferences” concern is not represented

separately, documented explicitly or even searchable (except for pure textual search) in

the business process. Consistent evolution of user preference management becomes hence

troublesome and error prone. Whenever, for example, the user preference policy has to be

changed or one of its occurrences scattered across the process is impacted by local changes

in the process, documentation and knowledge related to the concern could support the

designer in this difficult task.

Though allowing to represent classic process perspectives, existing business process

modelling languages do not provide any constructs to describe crosscutting concerns.

Knowledge about the crosscutting functionalities modelled in a process (e.g., preferences

157

6.1. Concern Querying 6. CROSSCUTTING CONCERN DOCUMENTATION

in an on-line purchase process or workflow patterns), in fact, mainly pertains to the seman-

tic (domain-related) description rather than to the syntactic perspective of the business

process. This lacking capacity in identification and explicit representation of crosscutting

concerns demands for mechanisms devoted to their retrieval and documentation.

In this chapter we investigate how the knowledge provided by semantic annotations and

the formality deriving from the process model encoding into the BPKB allow to retrieve

and document, either by manually querying or semi-automatically mining, crosscutting

concerns. In detail, in Section 6.1 we will introduce a visual language, BPMN VQL, for

querying process models (and hence manually retrieving crosscutting concerns), while in

Section 6.2 we will describe an approach to semi-automatically mine crosscutting concerns.

The material presented in this chapter has been published in [49].

6.1 Concern Querying

Business processes can be very large and retrieving information scattered across their

flow is often resource and time-consuming. One option to retrieve business concerns (and

hence also crosscutting concerns) is querying the process, i.e., matching the query asking

for the desired concern against the process elements. The possibility of automatically

querying processes and visualizing the retrieved results would be very useful for business

designers and analysts in order to save their time and effort. The relevance of adequate

means to query business processes has also been recognized by the Business Process

Management Initiative (BPMI), that started the definition of a standard query language

for business processes (BPQL) [84]. Querying business processes demands for languages

able to specify process model characteristics and, at the same time, close enough to the

knowledge of people working with process models. Many of the process query languages in

the literature (e.g., [9, 16]), in fact, are visual languages, exploiting the process-like visual

representation for expressing process model properties. In this trend of the languages

for querying processes, we propose a visual language for BPMN processes, BPMN VQL

(BPMN Visual Query Language). BPMN VQL syntax is close to the BPMN and it exploits

the formal framework underlying semantically annotated processes for retrieving query

results. In the next sections we first describe the BPMN VQL syntax and the mechanism

allowing the query execution and then we provide an evaluation of the language in terms

of expressive power with respect to the alternative visual languages and time performance.

158

6. CROSSCUTTING CONCERN DOCUMENTATION 6.1. Concern Querying

6.1.1 BPMN VQL

The automatic querying of processes is an appealing possibility for business analysts and

designers in many situations, e.g., when locating specific parts of the process, analysing

a particular process concern, as well as retrieving parts of process presenting known

characteristics. BPMN VQL is a query language able to quantify over BPMN business

process elements, localize interesting concerns and, once identified, present them to the

user by visually highlighting their occurrences in the BPMN BPD. Moreover, since a

critical issue of the query language is usability (it is going to be used by business designers

and analysts), the proposed language is a visual language, as close as possible to what

business experts already know: BPMN itself.

Queries in BPMN VQL are built by using:

• standard BPMN graphical notation, to quantify over BPD objects;

• stereotypes for BPMN hierarchies of BPD graphical objects;

• semantic annotations and inference reasoning for BPD objects with a specific business

domain semantics;

• composition of semantic annotations by means of the logical operators (∧,∨ and ¬),

to quantify over specific BPD objects or groups of objects with a precise business

domain semantics;

• composition of more subqueries by means of the OR and/or the NOT operators;

• the transitive closure of direct connections and sub-process inclusions between BPD

flow objects by means of the PATH operator, matching two BPD objects connected

by at least one path in the BPD, and the NEST operator, matching activities nested

in sub-processes;

• domain ontology relationships, by means of the DOR (Domain Ontology Relation-

ship) operator (that allows to directly refer to a BDO relationship).

The language allows the description of queries with a structure similar to those for-

mulated in SQL (Structured Query Language) for querying relational databases. In fact,

it provides a different notation to distinguish between the “matching” part (matching

criterion) of the query, that determines the criterion to match (i.e., the WHERE clause in

an SQL query), and the “selection” part (selection pattern), that allows to visualize only

the selected subpart of the matching result (i.e., the SELECT clause in an SQL query).

159

6.1. Concern Querying 6. CROSSCUTTING CONCERN DOCUMENTATION

The components of the selection pattern have a darker background, thicker lines and bold

font style.

Since BPMN language and syntactic matching allow to trivially obtain, via enumer-

ation, every process subpart, including the whole process, the described visual language

is complete. However, the ability to quantify and reason, allows to express queries in a

more compact and concern-oriented form.

BPMN VQL queries are translated automatically into SPARQL (SPARQL Protocol and

RDF Query Language) [72, 73] and executed by exploiting a SPARQL implementation.

SPARQL, in fact, is an RDF-based query language, standardized by the World Wide Web

Consortium [72] and widely accepted in the semantic web community (thus supported by

several implementations). Its latest (draft) proposed version is the SPARQL 1.1. [73]: it

enriches SPARQL 1.0. with new features1. In detail, we use the Jena2 API for the query

formulation and the ARQ3 engine for the query execution.

The SPARQL translation of the BPMN VQL queries is based on the BPMNO and BDO

ontologies and the query results are obtained by querying the BPKB populated with the

BPD and its objects. The translation is obtained by: (i) requiring that each BPD graphi-

cal object in the visual query is an instance of the corresponding BPMNO class and each se-

mantically annotated BPD object an instance of the BDO class corresponding to the anno-

tation (e.g., in Figure 6.2, “?t rdf : type BPMNO:task” and “?t rdf : type BDO:to check”,

respectively); (ii) constraining the BPD graphical objects in the query according to the

corresponding BPMN structural properties (e.g., “?as :has sequence flow source ref ?t” in

Figure 6.2); (iii) using FILTER and EXISTS SPARQL constructs for realizing the NOT op-

erator and the SPARQL UNION construct for the OR operator; (iv) using the SPARQL 1.1

property paths for composing ontology properties and/or denoting their transitive closure

(e.g., “?a1 (BPMNO:has sequence flow source ref inv /BPMNO:has sequence flow target ref

)∗ ?a2” in Figure 6.7); (v) filling the SPARQL SELECT clause with variables representing

the part of the query to be retrieved in the process (i.e., the darker or thicker graphical

objects and the semantic annotations in bold).

In the following we describe in more detail the BPMN VQL, using examples that refer

to the product assembly process shown in Figure 6.1 (the same used in Chapter 4). For

each example, in order to formalize the query and give it a precise semantics, we also

provide the translation of the query into SPARQL.

Queries using standard BPMN graphical notation. Single graphical objects

1A list of the working draft documents related to the new features of SPARQL is available at http://www.w3.org/TR/

#tr_SPARQL
2http://jena.sourceforge.net/
3http://jena.sourceforge.net/ARQ/

160

http://www.w3.org/TR/#tr_SPARQL
http://www.w3.org/TR/#tr_SPARQL
http://jena.sourceforge.net/
http://jena.sourceforge.net/ARQ/

6. CROSSCUTTING CONCERN DOCUMENTATION 6.1. Concern Querying

Figure 6.1: An example of a semantically annotated BPMN process.

in the BPMN notation (e.g., rounded rectangles, diamonds, arrows) are used to match

either an instance with a specific label (if the BPD object in the query is labelled), or

all the instances of the corresponding BPMNO class (if the BPD object in the query is

unlabelled). In the first case, it is necessary to specify both the BPMNO-type of the BPD

object and the label of the specific instance required. In the second case, it is sufficient

to provide the specific BPMN object representation, without any label, thus indicating

any instance of the specified BPMNO-type. However, the expressive power of the BPMN

notation in the BPMN VQL is not limited to individual graphical objects. By composing

together more BPD objects, in particular by linking flow objects and/or artefacts by

means of connecting objects, it is possible to match whole subparts of the process.

Queries using stereotypes. Stereotypes are indicated within guillemets inside the

BPMN activity symbols (i.e., rounded rectangles) and represent (sub-)hierarchies of BPD

graphical objects.

Queries using semantic annotation. Queries exploiting semantic annotations are

used to select instances of the BPMNO, representing, directly (i.e., without inference)

or indirectly (i.e., with inference), a specific ontological concept (i.e., of a given BDO-

type). The BPMNO instances in the query result, hence, will also be instances of a

class/superclass of the BDO ontology. In Figure 6.2, for example, we ask for all the tasks

that check something. Although annotated with different (i.e., more specific) concepts,

tasks are added to the result, as long as to check is an ancestor of their annotations

(e.g., their annotation being to check product availability and to check product price). Fig-

ure 6.3, instead, provides an example in which the standard BPMN VQL, stereotypes and

semantic annotations are used together for retrieving all the pairs of directly connected

activities, such that the source is a to search activity, and for retrieving their connecting

sequence flow. The result of the query, hence, contains only the triplet composed of the

161

6.1. Concern Querying 6. CROSSCUTTING CONCERN DOCUMENTATION

Figure 6.2: Example of a query using semantic annotations: it queries for all the tasks that check

something.

Figure 6.3: Example of a query using standard BPMN, stereotypes and semantic annotations: it queries

for all the pairs of directly connected activities, such that the source is a searching activity, and for the

sequence flow connecting them.

162

6. CROSSCUTTING CONCERN DOCUMENTATION 6.1. Concern Querying

Figure 6.4: Example of a query using logical operators for composing semantic annotations: it queries

for all the tasks that check something, except the product price.

task labelled with “Search for product C supplier”, the task labelled with “Examine good

cost” and for retrieving the sequence flow representing their direct connection.

Queries using logical operators for semantic annotations. In order to compose

queries involving annotations, the classic logical operators (∧, ∨, ¬) are used. Their

semantics is the following one: the ∧ (and) operator is a binary operator representing the

intersection between two concepts, returning all the instances common to the two operands

in the ∧ expression. The ∨ (or) operator is another binary operator representing the union

between two concepts, returning all the instances belonging to one or more operands in

the ∨ expression. The ¬ (not) operator is a unary operator representing the negation of a

concept, returning all the instances that do not belong to the negated set. In Figure 6.4,

the ∧ and the ¬ operators are composed together in order to select all the activities (both

tasks and sub-processes) in the process that check something, except the product price.

The result consists of the three tasks that check the product availability.

Queries using operators for composing subqueries. In order to be able to express

more complex queries, BPMN VQL provides three operators for composing subqueries.

The default operator between two or more subqueries is the intersection of the results

provided by each subquery. Two more operators are introduced in order to support also

163

6.1. Concern Querying 6. CROSSCUTTING CONCERN DOCUMENTATION

Figure 6.5: Example of a query using the OR operator for composing two or more subqueries: it queries

for all the activities connected to a gateway or to another activity checking something.

Figure 6.6: Example of a query using the NOT operator for composing two or more subqueries: it queries

for all the tasks that check something and that are not preceded (via sequence flow) by any gateway.

164

6. CROSSCUTTING CONCERN DOCUMENTATION 6.1. Concern Querying

the union and the negation of subquery results. The OR operator is depicted as a dotted

table listing all possible alternative subparts of the query to match. The query in the

example in Figure 6.5 asks for all the instances of any activity followed by an exclusive

gateway or by an activity that checks something. The result is provided by the eight

activities preceding the six exclusive gateways and by the “Search Product C Supplier”

sub-process preceding the “Check Product C Price” task. The NOT operator is depicted

as a cross over the negated (set of) BPD object(s). The query in Figure 6.6, for example,

looks for all the tasks that check something but that are not preceded by any kind of

gateway. Therefore in the result, the three tasks that are instances of the BDO class

to check product availability are discarded, while only the “Check Product C Price” task

is reported.

Queries using the transitivity operators. In order to ensure users a higher nav-

igability of process models, two operators supporting transitivity have been introduced:

the PATH and the NEST operators.

The PATH operator allows to match paths connecting two BPD flow objects (of the

same level of nesting). It is depicted as a BPMN sequence flow but with two heads, thus

symbolizing any intermediate graphical object (both flow objects and sequence flows)

encountered along the path. The query in Figure 6.7, for example, asks for all the ac-

tivities that buy a product and for which there exists a sequence flow path starting from

a to check product availability activity and reaching them. The result of this query ap-

plied to the product assembly process consists of the three sub-processes annotated by

to buy product, since there exists at least a path from the “Check Product A In The

Warehouse” task to each of them.

The NEST operator, instead, allows to capture BPD graphical objects nested at any

level of depth in sub-processes. It is depicted as a small oblique arrow in the upper right

corner of the sub-process and with the head pointing to the external part of the sub-

process. The query in Figure 6.8, for example, retrieves all the to retrieve tasks directly

or indirectly contained in sub-processes storing purchase data. The result is provided by

the task “Retrieve stored data” contained in the sub-process “Manage data storing”, in

turn contained in the to store purchase data sub-process.

Queries using the DOR Operator. Sometimes it might be useful to be able to ex-

press also domain ontology relationships for querying specific business domain concerns.

In order to allow users to formulate a query involving a domain ontology relationship, an

operator has been introduced in the BPMN VQL: the DOR operator. It is depicted as a

dashed arrow connecting graphical objects and/or semantic concepts and it represents a

165

6.1. Concern Querying 6. CROSSCUTTING CONCERN DOCUMENTATION

Figure 6.7: Example of a query using the PATH operator: it queries for all the activities that buy

products and for which there exists at least a path, consisting of sequence flows, that connects a

to check product availability activity to the current activity.

domain ontology relationship. For example, the query in Figure 6.9, looks for all the pairs

of instances of data objects, whose first component refers to supplier and whose second

component concerns any of the supplied products. The provides relationship is a domain

relation between the instances of the two semantic concepts, supplier and product, respec-

tively. The other two DOR operators labelled has specifier represent the domain ontology

relationships between the pairs of data objects’ BDO classes (in this case derived from

the BDO classes supplier data and product data) and their specifiers (supplier and product,

respectively). In the example shown in Figure 6.9, the two pairs of activities (“Prod-

uct A Supplier Info”, “Product A Data”) and (“Product C Supplier Data”, “Product C

Information”) are reported in the result.

6.1.2 BPMN VQL Evaluation

In this subsection we provide a first evaluation of the BPMN VQL in terms of functionality

provided with respect to similar process query languages and in terms of time performance.

A further evaluation of BPMN VQL (related to its ease of use), carried out by means of

an empirical study, is described in Chapter 8.

166

6. CROSSCUTTING CONCERN DOCUMENTATION 6.1. Concern Querying

Figure 6.8: Example of a query using the NEST operator: it queries for to retrieve tasks directly or

indirectly contained in sub-processes storing purchase data.

BPMN VQL Functionality Evaluation

Several process query languages, including BPMN VQL, have been proposed in the litera-

ture (e.g., [120, 119, 16, 9, 49]) for querying processes and process repositories. Though all

of them advocate the need to be “easy” to use, they implement their objective in different

ways. In detail, they can be classified in two main categories: the textual and the visual

one.

BPQL [120], a language based on the Stack Based Query Language (SBQL) [164],

mainly used to retrieve (and manage) information with specific characteristics related not

only to the process structure, but also to execution objects and performers, belongs to

the first class. Similarly, the language proposed by Missikoff et al. [119] falls in the first

group. Beyond the process design, it also deals with the execution level (by allowing to

query process traces) and the orthogonal dimension of the business ontology (by querying

about business aspects). It presents to users a syntax similar to the SQL (i.e., a textual

syntax), that is then translated into Prolog rules [104].

In the second category, to the best of our knowledge, beyond BPMN VQL, two other

languages exist: BP-QL [16] and BPMN-Q [9]. All these three visual languages for

querying processes are based on graph matching. However, each of them has peculiarities

that makes it different from others. BP-QL is a language for querying BPEL processes,

167

6.1. Concern Querying 6. CROSSCUTTING CONCERN DOCUMENTATION

Figure 6.9: Example of a query using the DOR operator: it queries for all the pairs of data object instances

representing data of pairs of suppliers and products connected by a BDO provides relationship.

while the others use BPMN. Moreover, the BP-QL and the BPMN-Q are intended to

be languages for mining process repositories, while BPMN VQL is mainly intended to be

used for querying a single process [11]. BPMN VQL and BPMN-Q are both thought to be

specification languages, but BPMN-Q can also be used as an execution language.

In detail, BP-QL is based on business process patterns, that allow to describe the

desired control-flow or data flow pattern of interest. It enables the navigation along

two axes (the path-based and the zoom-in axis), thus allowing users to have paths in

query results, as well as to control the granularity in business processes. The BP-QL

implementation exploits the graph matching functionality of XML and is based on Active

XML (AXML)4, an XML enriched with service calls to Web services.

Similarly, BPMN-Q allows to express structural BPMN queries and to query reposito-

ries of business process models. It also hides the query complexity behind a visual interface

and exploits the graph matching for the query execution by following a step-by-step pro-

cedure that incrementally binds the query graph to one or more process graphs (i.e., the

query results). However, BPMN-Q also provides special constructs and mechanisms to

abstract over graph nodes both structurally and semantically, by applying information

4http://activexml.net

168

http://activexml.net

6. CROSSCUTTING CONCERN DOCUMENTATION 6.1. Concern Querying

Feature BP-QL BPMN-Q BPMN VQL

Type of Flow

Design-time Control Flow + + +

Design-time Data Flow + + +

Business Flow - - +

Abstraction

Node Type abstraction - + +

Edge Abstraction + + +

Node Label Abstraction - + +

Node Negation + - +

Edge Negation + + +

Abstraction over hierarchical structures
+ - +

(i.e., sub-processes)

Projection Projection + - +

Usage scenarios
Process search in repositories + + -

Single Process Querying + + +

Compliance Checking and Anomaly Detection - + -

Table 6.1: Feature-based comparison among three visual query languages for business processes

retrieval techniques, as the notion of similarity in the enhanced topic-based vector space

model, eTVSM [96].

We extended the work by Awad et al. [11] that analyses differences and similarities

between BP-QL and BPMN-Q based on language features. In detail, we refined the

characteristics of the languages identified by the authors and, in the comparison, we

analysed the BPMN VQL too. Table 6.1 summarizes the performed analysis.

Similarly to Awad et al. [11], we identified four main characteristics of process query

languages: (i) the type of flows they allow to query; (ii) their capability of abstraction; (iii)

their capability of projecting the retrieved results; and (iv) the envisaged usage scenarios.

With respect to the first feature, all the three query languages allow to query the

control and the data flows of business process models, though BPMN-Q is able to query

not only direct but also indirect associations of data and activities. However, only BPMN

VQL allows to query the business flow. This capability is particularly helpful for business

analysts, for example when they need to retrieve the business relationship(s) existing

among business objects, as well as to locate the business objects involved in a business

relationship.

Among the characteristics of the abstraction category, all the three languages allow to

abstract over edges (i.e., to represent paths, as well as to negate edges). Only BPMN-Q

and BPMN VQL allow to abstract over node types and node labels, though BPMN-Q,

differently from BPMN VQL, always abstracts over node labels, i.e., it does not allow the

exact matching of a label. Finally, only BP-QL and BPMN VQL allow to negate a given

node. The language versatility, i.e., its capability to allow, besides the exact matching,

the abstraction over process nodes, labels and edges (i.e., to actually support the features

in the “abstraction” category), makes the language very useful for designers, using it in

169

6.1. Concern Querying 6. CROSSCUTTING CONCERN DOCUMENTATION

different circumstances, i.e., both when they have a specific knowledge of the target of

their queries and also when they are not precisely aware about the searched concern.

In the third category, the capability of the languages to project specific parts of the

matched pattern is considered. Both BP-QL and BPMN VQL provide mechanisms for

specifying the selected part of the pattern, while BPMN-Q always returns the whole

pattern. This capability is of great importance for business people, for example when a

precise and quick-to-visualize answer is required for analysis purposes or when the query

results have to be provided as input parameters to other services.

Finally, in the fourth group, the envisaged usage scenarios are investigated. While

BPMN VQL aims at querying a single process model, among the goals of BP-QL and

BPMN-Q there is also the capability of querying repositories of business processes in

order to retrieve interesting processes or parts of processes. Finally, Awad et al. [11] also

envisage a third use for BPMN-Q: the compliance checking and the anomaly detection.

Summarizing, BPMN VQL presents the most complete set of abstraction and projection

mechanisms, while the list of usage scenarios envisaged for the language does not include

querying repositories and verifying constraints. However, though BPMN VQL has been

conceived as a language for retrieving interesting concerns in single process models, its use

to query repositories of process models and to verify constraints is quite straightforward.

We included these features in the table to be coherent with the comparison provided by

Awad et al. [11], though they are out of the scope of our analysis.

BPMN VQL Performance Evaluation

We performed an experiment in order to provide a first evaluation of the performance

of the BPMN VQL. The time of query answering, in fact, is a critical factor for business

analysts and designers. We hence performed a preliminary experiment to evaluate whether

BPMN VQL queries have a reasonable response time.

In the experiment5 we considered six different processes (the same used for constraint

checking evaluation in Chapter 5) of increasing size (with a number of process graphical

elements ranging from 92 to 475), and, for each of them, a set of seven queries each aimed

at investigating a different construct of the language. BPMN VQL queries were translated

into SPARQL 1.1 queries and executed by means of the SPARQL ARQ implementation6.

The purpose of the experiment was to study the performance of BPMN VQL as the size of

the BPKB (in terms of instances) grows and as the structure (and hence the complexity) of

5The machine used for the experiment is a desktop PC with an Intel Core i7 2.80GHz processor, 6 Gb of RAM, and

running Linux RedHat.
6http://jena.sourceforge.net/ARQ/

170

http://jena.sourceforge.net/ARQ/

6. CROSSCUTTING CONCERN DOCUMENTATION 6.1. Concern Querying

queries changes. The number of BPD graphical objects as well as the main characteristics

and the DL expressivity of the domain ontologies used to annotate the processes are listed

in the top rows of Table 6.2, while a reference to an example query similar to the one used

in this experiment is shown among brackets next to each query (in the first column of

Table 6.2). Each of the seven types of queries considered in the experiment, in fact, has

the same structure of one of the examples introduced in Subsection 6.1.1 for presenting

the different BPMN VQL operators. In detail, the first query (Q1) looks for tasks of a

given business domain type (i.e., similarly to the query in Figure 6.2); the second (Q2)

retrieves direct connections between pairs of flow objects, where the domain type of the

first one is specified (similarly to the query in Figure 6.3); the third (Q3) investigates

the use of logical operators for the composition of semantic annotations (similarly to the

query in Figure 6.4); the fourth (Q4) makes use of the OR operator (similarly to the

query in Figure 6.5); the fifth (Q5) contains the NOT operator (similarly to the query

in Figure 6.6); the sixth (Q6) analyses the PATH operator (similarly to the query in

Figure 6.7); and, finally, the seventh (Q7) investigates the use of the NEST operator

(similarly to the query in Figure 6.8).

The results of the experiment are reported at the bottom of Table 6.27. Times related

to query executions have been collected after an ontology preprocessing phase, in which

the inferred model has been computed by the Pellet8 reasoner9.

As expected, not only the time required for loading the ontology increases when the

process size grows (sixth row in the Table 6.2), but also the time used for the ontology

preprocessing and for query execution (ranging from an average of 0.007 seconds for

the process with the smallest size to about 0.013 seconds for the process containing 475

process elements). On the contrary, the type of the query does not significantly impact the

performance of query execution, though minor differences among the considered types of

queries exist. The largest amount of time was taken by the query using logical operators

(both and and not operators in Q3) for the composition of semantic annotations (Q3),

and the one exploiting the OR operator for the composition of subqueries (Q4). The

cheapest queries in terms of time, instead, are Q5 and Q7, i.e., the query using the NOT

and the NEST operator, respectively. All types of queries, however, complete their run

in a very limited time, though a quite significant time is spent for ontology preprocessing

(around 35 seconds in case of the largest process). The ontology preprocessing, carried

on in this case study, is useful when the ontology is rarely modified. When, instead,

7The time values are expressed in seconds in the form avg (sd), where avg and sd are respectively the arithmetic mean

and the standard deviation of the execution times obtained over 100 runs on the same input data.
8http://clarkparsia.com/pellet/
9The preprocessing phase includes also the time for structure construction required by the execution of the first query.

171

http://clarkparsia.com/pellet/

6.1. Concern Querying 6. CROSSCUTTING CONCERN DOCUMENTATION

P1 P2 P3 P4 P5 P6

Process Graphical
92 175 237 327 387 475

Objects

DL Expressivity ALC ALC AL ALC AL ALC
Classes 124 124 101 114 79 124

Class Axioms 133 133 101 113 77 133

Ontology Loading
1.445(0.033) 1.476(0.037) 1.498(0.037) 1.513(0.038) 1.528(0.037) 1.564(0.040)

Time (s)

Ontology

4.459(0.999) 8.318(0.373) 13.090(0.892) 15.298(2.935) 37.237(14.238) 35.349(6.393)Preprocessing

Time (s)

Q1 (Figure 6.2) 0.003(0.000) 0.004(0.000) 0.012(0.002) 0.006(0.000) 0.012(0.001) 0.008(0.001)

Q2 (Figure 6.3) 0.004(0.000) 0.004(0.000) 0.006(0.000) 0.005(0.000) 0.006(0.001) 0.006(0.001)

Q3 (Figure 6.4) 0.017(0.001) 0.019(0.001) 0.020(0.001) 0.021(0.001) 0.021(0.002) 0.023(0.002)

Q4 (Figure 6.5) 0.011(0.001) 0.014(0.001) 0.018(0.001) 0.022(0.002) 0.025(0.003) 0.030(0.003)

Q5 (Figure 6.6) 0.003(0.001) 0.004(0.000) 0.004(0.000) 0.005(0.000) 0.005(0.002) 0.006(0.002)

Q6 (Figure 6.7) 0.009(0.000) 0.010(0.001) 0.009(0.001) 0.011(0.001) 0.012(0.002) 0.012(0.001)

Q7 (Figure 6.8) 0.003(0.001) 0.003(0.000) 0.005(0.000) 0.004(0.000) 0.005(0.000) 0.005(0.000)

Query Average
0.0071 0.0083 0.0106 0.0106 0.0123 0.0129

Time (s)

Table 6.2: BPMN VQL performance

P1 P2 P3 P4 P5 P6

Query Average Time (s) 0.1256 0.4769 0.9806 1.5899 3.0777 4.4373

Min Query Time (s) 0.034 0.083 0.138 0.206 0.295 0.411

Max Query Time (s) 0.292 0.891 1.817 2.922 5.763 8.492

Table 6.3: BPMN VQL performance on non-preprocessed ontologies

frequent changes occurs in the ontology, queries can be directly executed on the original

ontology, on which no reasoning is applied before query execution. We collected the query

execution performance also in this case and reported the average values in Table 6.3. As

expected, query execution on non-preprocessed ontology takes more time than on the

inferred ontology and it increases as the process size grows. However, the average and

the worse response times (4 and 8 seconds, respectively, for the largest process) are still

reasonable to be used in activities involving human interaction.

Given the results related to the BPMN VQL performance in this initial evaluation, we

can state that the use of the language for querying processes is compatible with business

designers’ and analysts’ needs and hence confirm its applicability as a means for supporting

their work in retrieving business concerns in process models.

172

6. CROSSCUTTING CONCERN DOCUMENTATION 6.2. Crosscutting Concern Mining

6.2 Crosscutting Concern Mining

Automatically querying business processes is an interesting avenue for business analysts

and designers in order to retrieve interesting business concerns. However, the manual iden-

tification of crosscutting concerns, especially in large processes, could be non-exhaustive:

acquiring knowledge about the concerns of interest for querying the process may be hard

and expensive. For example, when a change occurs locally in the process, other instances

of the same crosscutting concern could be directly or indirectly impacted too, thus requir-

ing a consistent change across all the occurrences. It is likely, however, that the analyst is

unaware of the crosscutting nature of concern occurrences involved in the change, hence

a time-consuming analysis could be required for propagating the change to other concern

occurrences, scattered across the process.

In order to support analysts in the identification of crosscutting concerns in business

processes, we propose an approach for mining concerns in a semi-automatic way. Business

domain knowledge enriching business processes by way of semantic annotations can, in

fact, be exploited in order to mine candidate crosscutting concerns by analysing the

occurrence of concepts used as annotations through Formal Concept Analysis, a technique

for data analysis. The list of the retrieved candidate crosscutting concerns, ranked by level

of scattering in the business process, is presented to the user in order to be further assessed

and manually investigated.

We envisage at least three uses in which this semi-automatic mining of crosscutting

concerns and their explicit documentation can be particularly helpful: (1) in process

comprehension: it provides additional views on specific process concerns, thus supporting

analysts in the comprehension of existing business processes going beyond the control

flow view; (2) in the evolution phase: it allows to collect and document critical concerns

requiring a separate and specific analysis in case of changes, thus supporting business

analysts’ tasks such as the location of changes scattered across the process and impact

analysis; (3) during the transition to the implementation phase: by providing a view on

crosscutting concerns, it supports the developers’ work on different concerns (e.g., which

concern has to be developed before/after another and what components or other concerns

it affects).

173

6.2. Crosscutting Concern Mining 6. CROSSCUTTING CONCERN DOCUMENTATION

6.2.1 Crosscutting Concern Mining

FCA is a branch of lattice theory used to build a lattice of FCA-concepts10 (i.e., maximal

groups of objects sharing common attributes) starting from a given context.

We apply FCA in order to find business domain concerns which crosscut multiple

business process elements. This is achieved by searching for maximal groups of instances

of process elements sharing common semantic concepts. Such maximal groupings are

obtained as the FCA-concepts computed for a context C = (E, S,R), where E is the set

of instances of process elements, S the set of semantic concepts of the business domain

and R ⊆ E×S, the relation specifying that a given business process element instantiates

a semantic concept of the business domain, as well as all its superconcepts in the ontology

hierarchy of the business domain. If (e, s) ∈ R, e is said to be annotated by s. An FCA-

concept c is a pair of sets (X, Y) where X, the extent of the FCA-concept, is defined as

X = {e ∈ E|∀s ∈ Y : (e, s) ∈ R}, while Y , the intent of the FCA-concept, is defined

as Y = {s ∈ S|∀e ∈ X : (e, s) ∈ R}. Intuitively, an FCA-concept is any maximal

set of process elements associated with a maximal set of semantic concepts (including

superconcepts) they instantiate.

An FCA-concept c0 = (X0, Y0) is an FCA-subconcept of the FCA-concept c1 = (X1, Y1)

(c0 v c1) if X0 ⊆ X1 (or, equivalently, Y1 ⊆ Y0). The containment relationship between

the FCA-concept extents (or intents), determines a partial order relationship. It is possible

to show that this relationship defines a lattice [64].

Figure 6.10 shows the input context in tabular form (Figure 6.10(c)) for the BPMN

process in Figure 6.10(a), whose elements are annotated by semantic concepts taken from

the ontology in Figure 6.10(b). A relationship between a process element and a semantic

concept exists if the element is annotated by the semantic concept itself or by one of

its subconcepts. The set of FCA-concepts (Figure 6.10(d)) for such a context can be

obtained by applying available tools (e.g., ToscanaJ11) implementing a concept analysis

algorithm [64]. In Figure 6.10(e) we show the associated concept lattice, representing

the sub-concept relationship as parent-child edges. Labels in the lattice depict the most

generic (specific) node with a semantic annotation (process element) in the intent (extent),

meaning that all downward (upward) reachable nodes have the same annotation (element)

in their intent (extent). This is known as the sparse labelling of the concept lattice. For

example, concept c0 is labelled only by s0 and e0 in the lattice. The other element of its

intent, s4, is “inherited” from its parent in the lattice.

10In order to distinguish FCA concepts from ontology concepts we will always use FCA-concept in the former case.
11http://toscanaj.sourceforge.net

174

6. CROSSCUTTING CONCERN DOCUMENTATION 6.2. Crosscutting Concern Mining

(a) (b)

s0 s1 s2 s3 s4 s5

e0
√ √

e1
√ √

e2
√ √

e3
√ √

e4
√ √

e5
√ √

e6
√ √

e7
√ √

(c)

(e)

top ({e0, e1, e2, e3, e4, e5, e6, e7}, ∅)
c5 ({e1, e3, e5, e7}, {s5})
c4 ({e0, e2, e4, e6}, {s4})
c3 ({e3, e5, e7}, {s3, s5})
c2 ({e2, e4, e6}, {s2, s4})
c1 ({e1}, {s1, s5})
c0 ({e0}, {s0, s4})
bot (∅, {s0, s1, s2, s3, s4, s5})

(d)

Figure 6.10: FCA-concepts (Figure 6.10(d)) and concept lattice (Figure 6.10(e)) for the context table in

Figure 6.10(c) extracted from the process in Figure 6.10(a) annotated by concepts from the ontology in

Figure 6.10(b).

Looking at their position in the lattice, FCA-concepts with large extent (business

process BPMN elements) share few semantic concepts (in the intent), hence appearing

high in the lattice (generic FCA-concepts). FCA-concepts with large intent (semantic

concepts) have few instances of process elements sharing all those semantic concepts

(small extent), hence appearing down in the lattice (specific FCA-concepts). The bottom

FCA-concept contains those elements that instantiate all the semantic concepts in the

ontology and the top FCA-concept those semantic concepts that describe all the BPMN

process instances.

By analysing the FCA-concept lattice, it is possible to find candidate business domain

concerns that crosscut the BPMN process. The extent of each FCA-concept in the lattice

gives an immediate intuition about the level of scattering involved. Crosscutting con-

cern mining is achieved by ranking FCA-concepts according to the size of their extent

(scattering). High scattering indicates the potential existence of a crosscutting concern.

175

6.2. Crosscutting Concern Mining 6. CROSSCUTTING CONCERN DOCUMENTATION

Inspection of the semantic concepts in the FCA-concept intent gives clues for a seman-

tic interpretation of the concern candidate. The shared semantic concepts of a candidate

crosscutting concern are used by the business analyst for evaluating whether the candidate

crosscutting concern actually represents a relevant business crosscutting concern. Visu-

ally, all BPD graphical objects in the extent of an FCA-concept are highlighted (through

colours) whenever the given FCA-concept is selected by the user (through mouse click)

in the lattice (see Figure 6.12).

In the example in Figure 6.10, c4 and c5 are the first two FCA-concepts found by

ranking the FCA-concepts according to their extent size. Their scattering level is 4, since

each of them has four process elements in the extent. Their meaning is provided by their

semantic annotations, s4 and s5, respectively. Immediately down in the ranked list we

encounter c2 and c3 with scattering equal to 3. Their meaning is the conjunction of the

two semantic concepts that label them: s2 ∧ s4 and s3 ∧ s5 respectively.

Summarizing, the steps to follow in order to mine crosscutting concerns in business

processes are the following:

1. FCA context construction based on the relationships between process elements and

the semantic concepts they instantiate;

2. FCA lattice construction;

3. FCA-concept ranking according to decreasing scattering levels (i.e., extent sizes);

4. FCA-concept filtering according to a scattering threshold (i.e., the minimum extent

size for an FCA-concept representing a candidate crosscutting concern);

5. semantic evaluation of the FCA-concept intent by the business analyst in order to

discriminate whether it represents a relevant business concern or not.

6.2.2 Crosscutting Concern Mining Evaluation

The proposed technique has been applied to two case studies: an on-line purchase process

and a process for resolving issues through e-mail votes. We evaluated the accuracy of the

results obtained by applying the technique (i.e., steps 1 to 4 described in Subsection 6.2.1)

to the two case studies, by resorting to two metrics of accuracy widely used in Information

Retrieval [62]. In detail, for each of the two case studies, we computed precision and

recall, as well as their combination, the F-Measure. Precision measures the proportion of

candidate concerns reported by the proposed crosscutting concern mining technique that

are judged as good (interesting and meaningful) candidates by an expert. Recall measures

176

6. CROSSCUTTING CONCERN DOCUMENTATION 6.2. Crosscutting Concern Mining

the proportion of concerns reported by the technique among all concerns that are judged

of interest. F-Measure is the geometric average between precision and recall:

• Precision = Reported and correct / Reported

• Recall = Reported and correct / To be reported

• F-Measure= 2∗precision∗recall
precision+recall

To determine precision, recall, and F-Measure for our case studies, we have carefully

analysed the FCA-concept lattices, built on the basis of the relationships between their

process elements and the respective annotations, to find out which reported FCA con-

cepts (above scattering threshold) are correct and which ones are correct but unreported.

Such assessment involves inevitably some degree of subjectivity for the identification of

the “correct” crosscutting concerns (i.e., the gold standard). In order to deal with this

subjective judgement, we adopted a guideline. In detail, to determine the gold standard

crosscutting concerns, for each FCA-concept in the FCA-concept lattice we answered the

following question: In the context of the given process, is the FCA-concept a business

concern for the analyst?

On-line Purchase Case Study

The first case study (shown in Figure 6.11) is a generic on-line shopping process, obtained

by looking at various existing on-line shopping Web sites and abstracting the underlying

process into the common workflow. Two pools represent the customer and the on-line

shop respectively. They repeatedly communicate by means of events generated by the

customer’s choices (e.g., product browsing, product search and cart management), until

the customer asks for the checkout. This request leads to the control flow described

inside the checkout sub-process. Activities are annotated with semantic information, i.e.,

concepts taken from a domain ontology, added to the process by means of the standard

BPMN textual annotation. The process contains 23 top-level (i.e., not contained in sub-

processes) activities, divided into 20 top-level tasks and 3 sub-processes, 14 top-level

gateways and 13 top-level events. The domain ontology used for annotating the BPMN

process contains 81 concepts and 29 of them have been explicitly used for annotating the

process elements.

In applying the proposed mining technique to this process we used abbreviations for

both the process elements (e.g., AC = Activity on Customer’s pool; AS = Activity

177

6.2. Crosscutting Concern Mining 6. CROSSCUTTING CONCERN DOCUMENTATION

Figure 6.11: Semantically annotated on-line purchase process: for each activity and for each semantic

annotation the corresponding abbreviation is reported.

178

6. CROSSCUTTING CONCERN DOCUMENTATION 6.2. Crosscutting Concern Mining

on Shop’s pool) and the ontology concepts used to annotate them (all reported in Fig-

ure 6.11). The latter are shown in Figure 6.14 as they are depicted by the plugin Jam-

balaya of the tool Protégé12, together with their abbreviations (only is a relationships are

drawn).

Figure 6.12: On-line purchase case study: concept lattice representing groups of process element instances

sharing common semantics. Process elements in the extent of the selected FCA concept (green arrow)

are highlighted at the bottom.

The FCA context for this case study relates process elements with the respective an-

notations. Closure of the context is automatically computed with respect to inheritance

between ontology concepts. The resulting context consists of 35 BPMN elements and 50

semantic annotations (ontology concepts). We applied the tool ToscanaJ to this context

and obtained the set of all its FCA-concepts arranged as a concept lattice (shown in Fig-

ure 6.12). In total, 37 FCA-concepts are obtained for this example. Sparse labelling is

12http://protege.stanford.edu/

179

http://protege.stanford.edu/

6.2. Crosscutting Concern Mining 6. CROSSCUTTING CONCERN DOCUMENTATION

used in the concept lattice in Figure 6.12. For example, the FCA-concept associated with

the node marked with “SM” (“to select method”) has the activities AC14 and AC15 in

the extent (i.e., all those downward reachable). The FCA-concept labelled by the activ-

ity AS17 has “ST” (“to store”), “STM” (“to store method”) and “STSM” (abbreviation

of “to store ship method”) as its semantic concepts (intent), i.e., all upward reachable

attributes.

Concept
|Extent| Scattering Judgement

Extent Intent

{AC12, AC13, AS1, AS2, {to provide[P],
8 22.86 % *

AS4, AS5, AS6, AS13} to provide data[PD]}
{AC1, AC4, AC5, AC14, AC15} {to select[S]} 5 14.29 % *

{AS1, AS2, AS4, AS6}
{to provide[P],

4 11.43 %to provide data[PD],

to provide product data[PPRD]}

{AS15, AS17, AS18} {to store[ST]} 3 8.57 % *

{AC6, AS8}
{to add[A],

2 5.71 %
{to add product [AP]}

{AC3, AC10} {to ask for[AF]} 2 5.71 %

{AS7, AS16} {to check[C]} 2 5.71 %

{AC11, AS14} {to checkout[CHKO]} 2 5.71 %

{AC12, AC13}
{to provide[P],

2 5.71 %to provide data[PD],

to provide customer data[PCUD] }

{AC9, AS11}
{to remove[R],

2 5.71 %
to remove product[RP]

{AC14, AC15}
{to select[S],

2 5.71 %
to select method[SM] }

{AC2, AS3}
{to search for[SF],

2 5.71 %
{to search for product[SFP]}

{AS17, AS18}
{to store[ST],

2 5.71 %
{to store method[STM] }

{AC8, AS19} {to update[U] } 2 5.71 %

...

Table 6.4: On-line purchase case study: top of the list ranking the FCA-concepts according to their

extent size. The FCA-concepts marked with an asterisk are judged as meaningful crosscutting concerns.

Table 6.4 shows the first FCA-concepts in the list of all FCA-concepts obtained for the

analysed case study, ranked by decreasing level of scattering (i.e., decreasing extent size),

top FCA-concept excluded. If we use a scattering threshold equal to 3 (corresponding to

8.57% of the activities in the process), we obtain the list of four candidate crosscutting

concerns shown at the top of Table 6.4.

In order to evaluate the obtained result, we followed the guideline described above. By

looking at the FCA-concept lattice in Figure 6.12, the three FCA-concepts labelled respec-

tively by “to select” (“S”), by “to store” (“ST”), and by “to provide” and “to provide data”

(“P” and “PD”) have been judged as meaningful crosscutting concerns, that are worth

180

6. CROSSCUTTING CONCERN DOCUMENTATION 6.2. Crosscutting Concern Mining

documenting explicitly. In fact, the FCA-concept labelled “S” represents all process points

where the user makes some choice and expresses some preferences. The FCA-concept “ST”

is associated with system’s activities devoted to storing information about the user and

her current selections. The FCA-concept “P, PD” identifies all points in the workflow

where information is exchanged between the user and the system. In Figure 6.12, the

BPMN elements in the extent of this concept are highlighted in the process depicted at

the bottom. Taken together, these three concerns convey important knowledge about user

preference management, by showing when the user makes selections (“S”), what data is

currently stored (“ST”) and what data is currently provided (“P, PD”). If user preference

management is going to be modified and improved in the future (e.g., by adding sugges-

tions or advertisements), knowledge about these three concerns simplifies localization of

the changes, as well as consistent implementation and evaluation of their impact on the

process.

Based on this analysis of the concept lattice, we can conclude that in this example

our technique performed as follows: precision = 75%, recall = 100% and F-Measure =

0.86. If, instead of 3, the chosen threshold is 4, precision and recall are both 66%, and the

F-Measure 0.66. The distribution of precision and recall (on the left) and the F-Measure

distribution (on the right) parameterised over the threshold value are shown as solid lines

in Figure 6.13.

Figure 6.13: On-line purchase (solid line) and issue-voting (dashed line) case-studies: precision versus

recall and F-Measure distributions. The triangles indicate the best result obtained according to the

F-Measure: in both case studies the best choice for the scattering threshold (t) is t = 3.

181

6.2. Crosscutting Concern Mining 6. CROSSCUTTING CONCERN DOCUMENTATION

Figure 6.14: Ontology used for the annotation of the on-line purchase process. Abbreviations used to

represent ontology concept names are reported next to the corresponding concept in square brackets.

E-mail Voting Case Study

The second case study analysed in this work is the process used as a working example in

the BPMN 1.2 specification [135]. It describes a procedure for solving issues by means of

votes provided by email. Leaving the semantics unchanged, the process structure has been

slightly modified by: (i) promoting the BPD graphical objects contained in a sub-process

with no label to the top level (i.e., by adding the needed gateways and removing the sub-

process); and (ii) by splitting two tasks, characterized by labels that are the conjunction of

different actions (e.g., “Reduce number of Voting Members and Recalculate Vote”), into

a number of tasks (e.g., “Reduce number of Voting Members” and “Recalculate Vote”)

182

6. CROSSCUTTING CONCERN DOCUMENTATION 6.2. Crosscutting Concern Mining

ensuring one action annotation per task. The resulting process, reported in Figure 6.15,

contains 14 top-level activities, 12 tasks and 2 sub-processes (including, in turn, 6 tasks

each), 8 top-level gateways and 5 top-level events. It has been semantically annotated

with concepts from an ontology containing 83 concepts, 21 of which have been actually

used for process annotation. By analysing the concept lattice, built on the basis of the

relationships between the BPMN elements and the respective annotations, and ranking

the FCA-concepts according to decreasing extent size (Table 6.5), candidate crosscutting

concerns are automatically detected.

As in the on-line purchase case study, a subjective evaluation has been conducted

in order to assess the validity of the obtained results. By applying the same guideline,

six business concerns have been identified in the issue-voting case study. Among these,

one corresponds to the FCA-concept highest in the list ranked according to the scattering

level, i.e., the FCA-concept labelled by “to communicate”. It represents all process points

where some form of communication takes place. However, also some of its specializations

have been judged as meaningful concerns, potentially requiring per se specific attention

and documentation. For example, the FCA-concept labelled by “to inform”, as well as the

one labelled by “to moderate” and “to moderate discussion” represent the points in the

workflow in which some knowledge is provided or a discussion takes place, respectively. In

turn, the “to inform” concern, can be further refined and specialized in still relevant and

meaningful concerns. For example, the FCA-concepts labelled by “to warn about” and

“to announce” characterize specific kinds of provided information. The corresponding

concerns, in fact, are useful for documenting all the points of the process generating

alerts or making some information known. Separate identification and documentation of

different kinds of communication, as well as different kinds of provided information, could

be extremely useful, for example in all cases in which the analysts are interested in locating

all the places in the process where just generic or some specific kind of communication

takes place. An example of scenario of this type is when analysts have to change the

management of alerting communications.

The last crosscutting concern that has been evaluated as a business concern corresponds

to the FCA-concept labelled by “to change” and “to change number”. Unlike the others,

the relevance of this concern is tied to the specific case-study process in which it appears,

i.e., a process in which the final result about issues has to be reached by applying vote

evaluation policies. Such a concern, in fact, represents all the points in the process, where

the specific policies related to the vote computation are applied (e.g., the number of the

proposed solutions is reduced to the most voted ones because the quorum has not been

183

6.2. Crosscutting Concern Mining 6. CROSSCUTTING CONCERN DOCUMENTATION

Figure 6.15: Semantically annotated e-mail vote process: for each activity the corresponding abbreviation

is reported.

184

6. CROSSCUTTING CONCERN DOCUMENTATION 6.2. Crosscutting Concern Mining

Concept
|Extent| Scattering Judgement

Extent Intent

{A3, A5, A6, A7, A8, A11, S1,

{to act } 16 61.54 %S1A1, S1A2, S1A3, S1A4, S1A5,

S2A1, S2A2, S2A3, S2A4}
{A3, A5, A6, A7, A8, A11,

{to act, to communicate} 14 46.15 % *S1, S1A1, S1A2, S1A4, S1A5,

S2A2, S2A3, S2A4}
{A3, A5, A6, A7, A8, A11, {to act, to communicate,

10 38.46 % *
S1, S1A1, S1A4, S2A4} to inform}

{S1A2, S1A5, S2A2, S2A3}
{to act, to communicate,

4 15.38 % *
to moderate, to moderate discussion}

{A8, A11, S1A4, S2A4}
{to act, to communicate,

4 15.38 % *
to inform, to warn about}

{A3, A6, A7, S1A1}
{to act, to communicate,

4 15.38 % *
to inform, to announce}

{A2, A4, A10, S1A6} {to think } 4 15.38 %

{A1, S2, S2A5} {to get } 3 11.54 %

{A9, A12, S2A6} {to change, to change number } 3 11.54 % *

{S2A4, S2A5}
{to act, to communicate

2 7.69 %to inform, to warn about,

to warn about deadline }

{A3, A7}
{to act, to communicate,

2 7.69 %to inform, to announce

to announce vote }

{S1A2, S2A3}
{to act, to communicate,

2 7.69 %to moderate, to moderate discussion,

to moderate email discussion }

{S1A5, S2A2}
{to act, to communicate,

2 7.69 %to moderate, to moderate discussion }
to moderate conference call discussion }

{S1A3, S2A3}
{to act, to check ,

2 7.69 %
to check calendar }

{A9, A12}
{to change, to change number,

2 7.69 %
to decrease, to decrease number }

{A4, A10}
{to think, to compute,

2 7.69 %to compute result,

to compute vote result}
{A2, S1A6} {to think, to evaluate} 2 7.69 %

{A1, S2A5} {to get, to receive } 2 7.69 %

...

Table 6.5: Issue-voting case study: top of the list ranking the FCA-concepts according to their extent

size. The FCA-concepts marked with an asterisk are judged as meaningful crosscutting concerns.

reached in a previous vote iteration).

The evaluation of meaningful crosscutting concerns described above allows us to com-

pute precision, recall and F-Measure for different scattering thresholds. For example, for

a scattering threshold equal to 3 (corresponding to 11,54% of the semantically annotated

activities), precision and recall are respectively 66% and 100%, while the F-Measure is

equal to 0.8. If instead of 3, the threshold is 4, the resulting measures are 71%, 83% and

0.77. For this second case study the two distributions (precision vs. recall and F-Measure)

185

6.3. Concern Documentation 6. CROSSCUTTING CONCERN DOCUMENTATION

Figure 6.16: Visual query for the “user preference management” concern of the on-line purchase case

study described in Subsection 6.2.2. It is the union of the three crosscutting concerns mined for the use

case.

according to the scattering thresholds are depicted in Figure 6.13 as dashed lines.

6.3 Concern Documentation

Whenever business concerns are retrieved, by either querying or mining them in business

processes, relevant knowledge about the synergy between the process flow and the business

domain is acquired. This information can be recorded in a form that is easy to understand

and visualize, and hence useful for designers and analysts to document the existence (and

later the evolution) of crosscutting concerns. The graphical and intuitive nature of BPMN

VQL makes it a good candidate to this purpose. Moreover, the BPMN VQL documentation

query not only is available in case of process querying, but its formulation can be also

easily automated in case of crosscutting concern mining.

Turning the FCA concepts that have been regarded as good candidate concerns into

BPMN VQL queries, in fact, is a straightforward task: the query consists of one BPMN

element and one annotation per concept. The type of the BPMN element is the least

common superclass in the BPMNO, among all BPMNO-types of the elements in the FCA

concept extent. The annotation is the and-composition of all annotations in the intent

of the selected FCA-concept. The resulting and-expression can be simplified by replacing

domain concepts in the and-expression, that are hierarchically structured in the BDO,

with their least common superclass. For example, the concept labelled “P, PD” in the

concept lattice of the on-line purchase case study (Figure 6.12) has only tasks in the

186

6. CROSSCUTTING CONCERN DOCUMENTATION 6.3. Concern Documentation

extent. Hence, the BPMNO-type of the BPMN element in the query is a task. The and-

expression composing the semantic annotations of this FCA-concept is “@to provide ∧
@to provide data”, which can be automatically simplified into “@to provide data”, based

on the inheritance relationship between PD and its superconcept P in the domain ontol-

ogy. Finally, when multiple FCA-concepts are involved, the associated BPMN elements

(semantically annotated with the intent concepts) become alternatives of the documen-

tation query (i.e., they are composed by means of the BPMN VQL OR operator).

The query documenting the “user preference management” concern of the on-line pur-

chase case study described in Subsection 6.2.2 (Figure 6.12) is shown in Figure 6.16 as

the union (alternative) of the three crosscutting concerns that have been automatically

mined.

187

6.3. Concern Documentation 6. CROSSCUTTING CONCERN DOCUMENTATION

188

Chapter 7

Business Process Aspectization

“A designer knows he has achieved perfection

not when there is nothing left to add,

but when there is nothing left to take away.”

Antoine de Saint-Exupéry

Though allowing to represent classic process perspectives, existing process modelling lan-

guages do not provide any constructs to describe crosscutting concerns. In Chapter 6 we

propose a manual and a semi-automatic approach for retrieving crosscutting concerns in

business processes and to separately document them, thus supporting business designers

and analysts in comprehension and analysis tasks. However, modularization and sepa-

rate management (specification and evolution, not just documentation) of crosscutting

concerns would be helpful for design and refactoring purposes.

In the literature, aspects are proposed as a possibility to cope with the separation

of concerns for general purpose programming languages [97]. In business process mod-

elling, aspects would allow designers to modularize information in separate views, hence

easing the job of modelling and maintaining crosscutting concerns, but also of reading

and understanding process models by providing a view of the process that is oblivious of

crosscutting concerns.

The separate modularization of crosscutting concerns would allow analysts to deal with

business process modelling issues, as for example exception handling. In fact, caring about

exceptional behaviours and verifying their correct management is a key factor for process

model robustness [43]. However, the management of exceptional flows can introduce a

high complexity in processes, thus business designers often prefer to focus only on the

main flow (i.e., the so called “happy path”). The use of aspects could hence allow to

manage exceptional behaviours while preserving the readability of the happy path.

189

7.1. Semantically enhanced aspects 7. BUSINESS PROCESS ASPECTIZATION

In this chapter we first present an approach for the modularization of business process

concerns into aspects (Section 7.1), we then provide an example of use of the proposed

approach, by applying it to exception handling (Section 7.2) and we finally provide a

preliminary evaluation of the applicability of the approach (Section 7.3).

7.1 Semantically enhanced aspects

Process description languages do not provide any mechanism to modularize crosscutting

concerns, i.e., concerns that, being scattered across the process, go beyond the local

boundary of sub-process elements. On the other hand, process models, in order to guar-

antee readability and understandability, would need mechanisms for modularizing special

structural and domain concerns.

We consider the use of aspects [58] to cope with this lacking capacity of process lan-

guages at design time. An aspect is a module that encapsulates a secondary behaviour of

a main view. Taking advantage of the separation of concerns, designers can deal with as-

pects separately and independently from the main view. If needed, aspects can be added

to the principal perspective in the weaving phase, when the “woven” (integrated) process

is generated, thus providing a global view of the process. This allows the business experts

to manipulate each crosscutting concern locally, leaving the weaver the responsibility of

propagating the changes consistently and completely to all process portions matching the

pattern change to be applied. Moreover, while aspects are mainly used for capturing

non-functional requirements, in case of processes enriched with semantic annotations, the

semantic domain-related properties of crosscutting concerns can also be captured.

As classic aspect-based languages (e.g., AspectJ [97]) are tailored to the specific textual

programming language they enhance with aspects, aspect-based languages for processes

should extend the process language they want to aspectize. This would also have the ad-

vantage to make it easier for language experts learning the aspect-based extension. Some

of the aspect-based languages for processes proposed in the literature, in fact, partially

realize this idea. For instance, AO4BPEL [7] is an aspect-based extension for BPEL [39]

executable processes; its syntax allows to describe the new behaviour to be added or

removed in the form of BPEL fragments. Similarly, in case of (semantically annotated)

BPMN process models, in order to support business designers, analysts and managers in

the use of aspects for the modularization of concerns crosscutting the processes, we pro-

pose an aspect-based language based on BPMN with semantic annotations, the BPMN

VRL (BPMN Visual Rule Language).

190

7. BUSINESS PROCESS ASPECTIZATION 7.1. Semantically enhanced aspects

In this section we first provide some details about Aspect Oriented Programming and

aspects (Subsection 7.1.1) and we then present the BPMN VRL language we propose for

the aspect definition of BPMN semantically annotated processes (Subsection 7.1.2).

7.1.1 Aspect Oriented Programming

Aspect Oriented Programming (AOP) [58] investigates the separation of crosscutting con-

cerns and their modularization into aspects. An aspect is a module containing information

about the three main dimensions (“where”, “what” and “when”) of a given crosscutting

concern. A so called pointcut designator answers the “where?” question by providing

a condition to specify a set of so called join points, i.e., precise points in the execution

flow that the aspect intercepts, by means of some quantification mechanism. An advice,

instead, answers the “when?” and “what?” questions, by specifying how to realize the

concern and when in the join points of interest (i.e., before, after or around) the concern

execution has to be activated. AOP is therefore quantification (through the conditions

that filter the execution flow) and obliviousness (the primary program ignores, i.e., has no

reference to, advices) [58]. The aspect is eventually woven, i.e., integrated with the core

functionality, at compile time (static weaving) or at runtime (dynamic weaving). Classic

examples of crosscutting concerns that can be modularized into aspects are related to

non-functional properties, such as logging and transactional functionalities. Both of them

are scattered across different primary modules and tangled with other concerns. The

idea is therefore to extract and modularize them, making the principal code oblivious of

logging and transaction concerns.

In business processes an aspect is a separate module that adds behaviour to the prin-

cipal decomposition of the process by specifying where the behaviour has to be added

(“where?”) and what kind of behaviour has to be added (“what?”). In detail the point-

cut designator answers the “where?” question, by providing a condition that allows to

intercept a set of precise points (join points) in the process execution flow (quantification).

An example of pointcut in BPMN processes, could be a sub-process, thus indicating that

the new behaviour has to be added at each sub-process occurrence. The advice, instead,

answers the “what?” question by specifying how to realize the concern. An example

of advice for BPMN processes could be an intermediate error event directly followed by

an end event, to be added on the boundary of the specific sub-process (pointcut). The

main view of the process is hence oblivious of (i.e., has no reference to) aspects, that are

woven in the core functionality only when needed [58]. This allows the business experts

to manipulate each crosscutting concern locally, leaving the weaver the responsibility of

191

7.1. Semantically enhanced aspects 7. BUSINESS PROCESS ASPECTIZATION

propagating the changes consistently and completely to all process portions that match

the pattern change to be applied. For instance, for the aspect described above, the weaver

will enrich each sub-process in the process model with an exception handler terminating

the sub-process whenever an exception occurs (i.e., with the error event on the sub-process

boundary and with the connected end event).

7.1.2 BPMN VRL

The purpose of BPMN VRL is to provide business experts with an intuitive and easy-to-

learn means to modularize crosscutting concerns into aspects in semantically annotated

business processes. This would allow managing crosscutting concerns separately from the

main view and, when necessary, integrating them into the main flow of the process by

exploiting the weaving mechanism.

Similarly to BPMN VQL (described in Chapter 6), BPMN VRL has been designed so as

to be close to business experts’ knowledge. It is hence a graphical language extending the

BPMN. It is a rule language that exploits the same mechanism of the BPMN VQL (see

Subsection 6.1.1 of Chapter 6) for the quantification (“where?”) and that, additionally,

provides a process manipulation mechanism for the process updates (“what?”).

Each BPMN VRL rule is expressed in a visual language which consists of two parts:

the “matching” and the “update” part. The first part looks like a BPMN VQL query.

It is composed of a matching pattern (corresponding to the BPMN VQL matching cri-

terion), which represents the pattern to be matched (in terms of graph matching and

domain semantics) and of a selection sub-pattern (corresponding to the BPMN VQL selec-

tion pattern), which is the subset of matching pattern components, whose occurrences are

returned to the user. In BPMN VRL, however, the selection sub-pattern is not explicitly

represented with a darker background (as in BPMN VQL queries), but it is inferred from

the “update” part of the rule. In detail, the selection sub-pattern is the subset of match-

ing pattern components directly involved in the modification (i.e., the BPMN elements

connected to new BPMN elements to be added or BPMN elements to be removed, respec-

tively). The “update” part, with a darker background, thicker lines and bold font style,

represents the modifications (behaviour addition or removal) to apply whenever a match

occurs. The addition of new behaviour to the process is represented by using BPMN

elements (with a darker background and thicker lines), while the REMOVE operator is

introduced for representing the removal of one or more BPMN elements. The REMOVE

operator is depicted as a filled cross, over the BPMN elements to be removed.

Figure 7.1a shows an example of a BPMN VRL rule that inserts an end event as new

192

7. BUSINESS PROCESS ASPECTIZATION 7.1. Semantically enhanced aspects

(a) (b)

Figure 7.1: Simple example of BPMN VRL rule adding behaviour

(a) (b)

Figure 7.2: Simple example of BPMN VRL rule removing behaviour

alternative for a data-based exclusive gateway directly preceding a task of BDO-type con-

cept A. The BPMN elements with white background and thinner lines (i.e., the concept A

task, the data-based XOR gateway and their connecting sequence flow) represent the pat-

tern to be matched against the process. The BPMN elements with darker background

and thicker lines (i.e., the end event and the sequence flow connecting it to the gateway)

represent instead the behaviour to be added to the process, whenever the pattern matches.

Figure 7.2a shows an example of a BPMN VRL rule that removes tasks of BDO-type

concept A from the process. The BPMN elements with white background and thinner

lines (i.e., the concept A task) represent the pattern to be matched against the process.

The BPMN elements crossed by the REMOVE operator (i.e., the same concept A task)

are the elements to be removed.

Once a BPMN VRL rule has been defined by a business expert, in the rule weaving phase

the changes described in the “update” part of the rule are automatically applied to the

process (i.e., to the knowledge base and hence to the BPD), by changing all occurrences

in the process satisfying the matching criterion. Operationally: (i) the occurrences of

the semantically annotated process satisfying the matching criterion and specified by the

selection sub-pattern are identified by querying the knowledge base encoding the process

(the BPKB); (ii) for each retrieved occurrence, the modifications specified in the “update”

part of the rule are applied, by adding/removing instances to/from the BPKB.

193

7.1. Semantically enhanced aspects 7. BUSINESS PROCESS ASPECTIZATION

In detail, the BPMN VRL aspect weaving is realized in two steps: (i) the “matching”

part of the rule is translated into a SPARQL query (similarly to the matching criterion

of BPMN VQL queries described in Chapter 6); (ii) the “update” part is translated into

a set of assertions affecting the BPKB.

The “update” part of the rule builds upon each set of instances resulting from the

query execution1. For each set of instances returned by the query: (a) a set of new BPM-

type, BPM-structural, BPM-semantic assertions is added to the BPKB according to the

elements with darker background and thicker lines in the rule; (b) a set of assertions

in the BPKB is removed. The assertions to be eliminated are all those involving BPD

instances associated to elements to be removed according to the BPMN VRL rule (i.e., all

those crossed by the REMOVE operator) and, in case of flow objects, also all assertions

involving BPMN connecting objects (i.e., sequence flows, message flows and associations)

and text annotations2 “pending” in the process (i.e., connecting objects without source or

target or text annotation not associated to any flow object) due to the elimination of the

flow object. To this purpose, a new query that allows to identify all instances of “pending”

connecting objects and text annotations to be removed, is formulated. However, the query

does not guarantee the reachability of all the flow objects in the process flow, as well as

of data objects associated to one or more activities. Caring about a correct use of the

REMOVE operator so as to guarantee the reachability of all the process elements is left

to the aspect designer. Support tools could be of course developed to help the designer

handle any reachability problem in the woven process. For a generic flow object fo to be

removed according to a BPMN VRL rule, the query (7.1) can be executed for collecting

the “pending” BPD elements to be eliminated.

1BPMN VRL rules are not recursive, i.e., the pattern is matched against the non-woven process and modifications are

applied only to the result of the match (and not to partially updated parts of the process).
2Special care is reserved to text annotations in the BPMN VRL language due to their large use in semantically annotated

processes.

194

7. BUSINESS PROCESS ASPECTIZATION 7.1. Semantically enhanced aspects

Figure 7.3: Example process

SELECT?co, ?do

WHERE {

?co rdf:type BPMNO:connecting object

{?co bpmn:has connecting object source ref fo.}

UNION

{?co bpmn:has connecting object target ref fo.}

OPTIONAL

{?co rdf:type BPMNO:association.

?do rdf:type BPMNO:annotation.

?co bpmn:has connecting object source ref ?do.

?co bpmn:has connecting object target ref fo.}

}

(7.1)

For example, weaving the aspect in Figure 7.1a on the example process in Figure 7.3,
requires as first step the execution of the following SPARQL query:

SELECT?g1

WHERE {

?t1rdf:typeBPMNO:task.

?t1rdf:typeBDO:concept A.

?g1rdf:typeBPMNO:data based exclusive gateway.

?sf1BPMNO:has sequence flow source ref?g1.

?sf1BPMNO:has sequence flow target ref?t1.

?sf1rdf:typeBPMNO:sequence flow.

}

(7.2)

It retrieves all the instances of data-based exclusive gateways directly followed by at

least a concept A task, as shown in Figure 7.1b. By running the query on the process in

Figure 7.3, we only get as result g1. The update part of the rule is hence applied to the

only result of the query. In detail, two new BPM-type assertions are added to the BPKB:

end event(e) and sequence flow(sf), where e and sf represent the new end event and the

new sequence flow, respectively. Moreover, two BPM-structural assertions are also added:

has sequence flow source ref (sf, g1) and has sequence flow target ref (sf, e).

195

7.1. Semantically enhanced aspects 7. BUSINESS PROCESS ASPECTIZATION

When weaving the aspect in Figure 7.2a on the same process, instead, the following

simpler SPARQL query is executed:

SELECT?t

WHERE {

?trdf:typeBPMNO:task.

?trdf:typeBDO:concept A.

}

(7.3)

In this case, all the instances of concept A tasks are retrieved. By running the query

on the process in Figure 7.3, we get two results: t1 and t3. The update part of the

rule is hence applied twice: once to t1 and the other to t3. For each of them not only

all the BPKB assertions involving the considered task have to be removed, but, since

each result is a flow object, all the assertions involving one of its connecting objects

or text annotations are also removed. In practice, in case of t1, the BPM-type asser-

tion task(t1), the BPM-semantic assertion concept A(t1), the BPM-structural assertions

has sequence flow target ref (sf2, t1), has sequence flow source ref (sf3, t1), has connecting

object target ref (as1, t1) (assuming that as1 is the name of the association connecting

the task t1 to its textual annotation “@concept A”) are removed. Moreover, the execution

of the query (7.1) returns three result sets: sf2, sf3 and (as1, an1), where we assume

that an1 is the name of t1’s textual annotation “@concept A”, thus leading to the dele-

tion of four BPM-type assertions (sequence flow(sf2), sequence flow(sf3), association(as1)

and annotation(an1)) and of the BPM-structural assertion has connecting object target ref

(as1, an1). Similarly, in case of t3, the following assertions will be removed: task(t3), con-

cept A(t3), has sequence flow target ref (sf6, t3), has sequence flow source ref (sf7, t3),

has connecting object target ref (as3, t3), sequence flow(sf6), sequence flow(sf7), associa-

tion (as3), annotation(an3) and has connecting object target ref (as3, an3), where we as-

sume that an3 is the name of t3’s “@concept A” annotation and as3 the name of the

association connecting an3 to t3. This last BPMN VRL rule (the process resulting from

its application is shown in Figure 7.2b) is an example of aspect designed without caring

about the flow of the woven process since, after the weaving, it leaves parts of the process

not connected.

In the following we provide some examples of BPMN VRL rules describing aspects

applied to the semantically annotated process reported in Figure 7.4 (the same as used in

Chapter 5). In detail we describe the BPMN VRL aspect, the SPARQL translation of the

matching pattern, the assertions to be added, as well as the instances whose assertions

have to be removed for the “update” part of the rule. Finally, a view of the process

196

7. BUSINESS PROCESS ASPECTIZATION 7.1. Semantically enhanced aspects

Figure 7.4: A portion of the On-line shopping business process diagram.

obtained after the aspect weaving3 is also reported.

Aspects adding behaviour. Figure 7.5 shows an example of a BPMN VRL rule that,

in the weaving phase, adds an end event (and hence also the sequence flow required for

the connection) outgoing from each data-based XOR gateway having as outgoing alter-

native an activity labelled with “Search for a product”. The BPMN elements with white

background and thinner lines (i.e., the data-based XOR gateway and the task labelled

with “Search for a product” connected by at least a sequence flow and the sequence flow

itself) represent the pattern to be matched against the process. The BPMN elements with

darker background and thicker lines (i.e., the end event and the sequence flow connecting

it to the gateway) represent instead the behaviour to be added to the process, whenever

the pattern matches. Finally, the selection sub-pattern contains the only BPMN element

3In order to ease reading of the example, only views of the updated process in the Customer pool are reported and

query prefixes are omitted.

197

7.1. Semantically enhanced aspects 7. BUSINESS PROCESS ASPECTIZATION

involved in the modification, i.e., the data-based exclusive gateway. The variable rep-

resenting the gateway is, in fact, the only variable in the select clause of the SPARQL

query. For each solution g1 of the query, the two BPM-type and the two BPM-structure

assertions reported in Figure 7.5 are added to the BPKB4.

SPARQL Query:

SELECT ?g1

WHERE {
?t1 rdf:type bpmn:task.

?t1 bpmn:has flow object name “Search for a product”.

?g1 rdf:type bpmn:data based exclusive gateway.

?sf1 bpmn:has sequence flow source ref ?g1 .

?sf1 bpmn:has sequence flow target ref ?t1 .

?sf1 rdf:type bpmn:sequence flow.

}

For each result g1 :

ASSERTIONS TO BE ADDED:

end event(e)

sequence flow(sf)

has sequence flow source ref(sf, g1)

has sequence flow target ref(sf, e)

Figure 7.5: Example of a BPMN VRL rule adding behaviour: in the weaving phase, an outgoing end event

is added to each data-based XOR gateway having as outgoing alternative at least a task labelled with

“Search for a product”.

Aspects removing behaviour. Figure 7.6 shows an example of a BPMN VRL rule

that, in the weaving phase, removes all tasks labelled with “Choose a product group”

and connected to two data-based gateways. The BPMN elements with white background

and thinner lines (i.e., the two data-based XOR gateway, the task labelled with “Choose

a product group” and directly connected to them, inbound and outbound, respectively,

as well as the corresponding sequence flows) represent the pattern to be matched against

the process. The task labelled with “Choose a product group” crossed by the REMOVE

operator represents the behaviour to be removed from the process, whenever the pattern

matches. Finally, the selection sub-pattern is composed of the BPMN elements involved

in the modification: in this case, the only task crossed by the REMOVE operator. The

select clause of the SPARQL query, hence, contains the variable ?t1 representing the

task “Choose a product group”. For each solution t1 of the query, all the BPM-type,

BPM-structural and BPM-semantic assertions involving t1 will be removed. Moreover,

4For each distinct query result set g1, e and sf represent new instances.

198

7. BUSINESS PROCESS ASPECTIZATION 7.1. Semantically enhanced aspects

since the removed object is a flow object, all the assertions involving connecting objects

and text annotations related to the removed flow object are also eliminated (i.e., for each

result t1 of the query reported in Figure 7.6, all the assertions involving the results of the

query (7.1) with fo = t1 are removed)5.

SPARQL Query:

SELECT ?t1

WHERE {
?t1 rdf:type bpmn:task.

?t1 bpmn:has flow object name “Choose a product group”.

?g1 rdf:type bpmn:data based exclusive gateway.

?sf1 bpmn:has sequence flow source ref ?g1 .

?sf1 bpmn:has sequence flow target ref ?t1 .

?sf1 rdf:type bpmn:sequence flow.

?g2 rdf:type bpmn:data based exclusive gateway.

?sf2 bpmn:has sequence flow source ref ?t1 .

?sf2 bpmn:has sequence flow target ref ?g2 .

?sf2 rdf:type bpmn:sequence flow.

}

For each result t1 :

INSTANCES TO BE REMOVED:

t1

sf1

sf2

as

an

Figure 7.6: Example of a BPMN VRL rule removing behaviour: in the weaving phase, all tasks labelled

with “Choose a product group” and connected, inbound and outbound, to event-based gateways are

removed.

Aspects adding and removing behaviour. Figure 7.7 shows an example of a

BPMN VRL rule that, in the weaving phase, adds the end event after the to ask for activ-

ities directly followed by another activity. In detail, it removes the existing sequence flow

connecting the two activities and adds a data-based XOR gateway with two outgoing se-

quence flows, one having as target the activity directly following the to ask for activity in

the original process and, the other, connected to a new end event. The matching pattern

is provided by the BPMN elements with white background and thinner lines, i.e., the two

activities (both tasks and sub-processes, since the “<< activity >>” stereotype has been

5For each result set t1, sf1 and sf2 represent the sequence flows connecting the first gateway to t1 and t1 to the second

gateway, respectively. an and as are the textual annotation and the corresponding association used for annotating t1 with

the domain information. All assertions involving each of these instances are removed.

199

7.1. Semantically enhanced aspects 7. BUSINESS PROCESS ASPECTIZATION

used for representing the BPMNO activity hierarchy) and their connecting sequence flow

represent the pattern to be matched against the process. The BPMN elements with darker

background and thicker lines (i.e., the data-based exclusive gateway, the end event and

the three sequence flows), represent, instead, the behaviour to be added to the process.

Finally, the sequence flow crossed by the REMOVE operator represents the behaviour to

be removed from the process, whenever the pattern matches. The selection sub-pattern

is composed, in this case, of the two activities and of their connecting sequence flow. The

select clause of the SPARQL query contains, hence, the variable ?a1 representing the

to ask for activity, the variable ?a2 denoting the second activity and ?sf1 representing

their connecting sequence flow. For each solution (a1, a2, sf1), the five BPM-type and

the six BPM-structural assertions reported in Figure 7.7 are added to the BPKB6 and all

the BPM-type, BPM-structural and BPM-semantic assertions involving sf1 are removed.

SPARQL Queries:

SELECT ?a1 , ?a2 , ?sf1

WHERE {
?a1 rdf:type bpmn:activity.

?a1 rdf:type bdo:to ask for.

?a2 rdf:type bpmn:activity.

?sf1 bpmn:has sequence flow source ref ?a1 .

?sf1 bpmn:has sequence flow target ref ?a2 .

?sf1 rdf:type bpmn:sequence flow.

}

For each result (a1, a2, sf1)

ASSERTIONS TO BE ADDED:

data based exclusive gateway(g)

end event(e)

sequence flow(sf2)

has sequence flow source ref(sf2, a1)

has sequence flow target ref(sf2, g)

sequence flow(sf3)

has sequence flow source ref(sf3, g)

has sequence flow target ref(sf3, a2)

sequence flow(sf4)

has sequence flow source ref(sf4, g)

has sequence flow target ref(sf4, e)

INSTANCES TO BE REMOVED:

sf1

Figure 7.7: Example of a BPMN VRL rule adding and removing behaviour: after the weaving phase, it

will be possible to end the current (sub-)process starting from all the to ask for activities directly followed

by another activity.

Aspects using the BPMN VQL OR operator. Figure 7.8 shows an example of

6For each distinct query result set (a1, a2, sf1), g, e, sf2, sf3 and sf4 represent new instances.

200

7. BUSINESS PROCESS ASPECTIZATION 7.1. Semantically enhanced aspects

a BPMN VRL rule that, in the weaving phase, adds the end event after the to ask for

activities. In detail, if the to ask for activity is followed by a data-based XOR gateway,

the rule only adds an end event to the gateway alternatives; otherwise (i.e., if the activity

is followed by a flow object that is not a data-based exclusive gateway), the rule removes

the existing sequence flow connecting the activity with the flow object and adds a data-

based XOR gateway with two outgoing sequence flows, one having as target the flow object

directly following the to ask for activity in the original process and, the second, connected

to a new end event. It uses the BPMN VQL OR operator, thus allowing the matching

of more than one pattern. The BPMN elements with white background and thinner

lines, i.e., the to ask for activity and either the directly connected data-based exclusive

gateway or the directly connected flow object (as well as the connecting sequence flows)

represent the pattern to be matched against the process. The behaviour to be added

to the process is provided, instead, by the BPMN elements with darker background and

thicker lines (i.e., either the end event and the connecting sequence flow, in the first OR

alternative, or the data-based exclusive gateway, the end event and the three sequence

flows in the second OR alternative). Finally, the sequence flow crossed by the REMOVE

operator represents the behaviour to be removed from the process, whenever the second

of the OR alternatives matches (i.e., when the to ask for activity is not directly followed

by any data-based exclusive gateway). The selection sub-pattern is composed of the

to ask for activity, the data-based XOR gateway, the flow object directly following the

activity and the sequence flow connecting the activity with the flow object. The select

clause of the query contains, hence, the variable ?a1 representing the to ask for activity,

the variable ?g1 representing the gateway, when the first pattern matches, and ?a2 and

?sf2 representing the flow object and the sequence flow, when the second OR alternative

matches. For each result of the query, either the two BPM-type and the three BPM-

structural assertions (in case g1 exists), or the five BPM-type and the six BPM-structural

assertions (in case a2 exists) of Figure 7.8 are added to the BPKB7. Moreover, all the

BPM-type, BPM-structural and BPM-semantic assertions involving sf2, if this is valued,

are removed.

Aspects using the BPMN VQL NOT operator. Figure 7.9 shows an example

of a BPMN VRL rule that, in the weaving phase, adds the end event after the to remove

activities, if they are followed by gateways. In detail, the new end event is added only if the

gateway (following the to remove activity) does not already have an outgoing edge with

an end event as target. It uses the BPMN VQL NOT operator, thus allowing to discard

7For each distinct query result set (a1, g1, a2, sf1), e and sf4 or g, e, sf4, sf5 and sf6 represent new instances if g1

or a2 is valued, respectively.

201

7.1. Semantically enhanced aspects 7. BUSINESS PROCESS ASPECTIZATION

SPARQL Queries:

SELECT ?a1 , ?g1 , ?a2 , ?sf2

WHERE {
?a1 rdf:type bpmn:activity.

?a1 rdf:type bdo:to ask for.

{ ?sf1 bpmn:has sequence flow source ref ?a1 .

?sf1 bpmn:has sequence flow target ref ?g1 . }
?g1 rdf:type bpmn:data based exclusive gateway.

?sf1 rdf:type bpmn:sequence flow }.
UNION

{ ?sf2 bpmn:has sequence flow source ref ?a1 .

?sf2 bpmn:has sequence flow target ref ?a2 .

?sf2 rdf:type bpmn:sequence flow }.
?a2 rdf:type bpmn:flow object.

?sf3 bpmn:has sequence flow target ref ?a1 .

?sf3 bpmn:has sequence flow target ref ?a3 .

?sf3 rdf:type bpmn:sequence flow }.
?a3 rdf:type bpmn:data based exclusive gateway.

FILTER (?a2 != ?a3) }
}

For each result (a1, g1, a2, sf2):

ASSERTIONS TO BE ADDED:

if g1 is valued

end event(e)

sequence flow(sf4)

has sequence flow source ref(sf4, g1)

has sequence flow target ref(sf4, e)

if a2 is valued

data based exclusive gateway(g)

end event(e)

sequence flow(sf4)

has sequence flow source ref(sf4, a1)

has sequence flow target ref(sf4, g)

sequence flow(sf5)

has sequence flow source ref(sf5, g)

has sequence flow target ref(sf5, a2)

sequence flow(sf6)

has sequence flow source ref(sf6, g)

has sequence flow target ref(sf6, e)

INSTANCES TO BE REMOVED:

if sf2 is valued

sf2

Figure 7.8: Example of a BPMN VRL rule using the BPMN VQL OR operator: after the weaving phase,

it will be possible to end the current (sub-)process from all the to ask for activities.

202

7. BUSINESS PROCESS ASPECTIZATION 7.1. Semantically enhanced aspects

specific patterns in the matching. The matching pattern is provided by the to select

activity, the directly connected data-based exclusive gateway and the negated outgoing

end event. The BPMN elements with darker background and thicker lines (i.e., the end

event and the connecting sequence flow), represent, instead, the behaviour to be added to

the process. The selection sub-pattern is composed of the data-based exclusive gateway.

The select clause of the query contains, hence, the variable ?g1 representing the data-

based exclusive gateway. For each result of the query, the two BPM-type and the three

BPM-structural assertions reported in Figure 7.9 are added to the BPKB8.

SPARQL Queries:

SELECT ?g1

WHERE {
?a1 rdf:type bpmn:activity.

?a1 rdf:type bdo:to select.

?sf1 bpmn:has sequence flow source ref ?a1 .

?sf1 bpmn:has sequence flow target ref ?g1 . }
?g1 rdf:type bpmn:data based exclusive gateway.

?sf1 rdf:type bpmn:sequence flow }.
FILTER (

NOT EXISTS {
?e1 rdf:type bpmn:end event.

?sf2 bpmn:has sequence flow source ref ?g1 .

?sf2 bpmn:has sequence flow target ref ?e1 .

?sf2 rdf:type bpmn:sequence flow

}.)
}

For each result g1:

ASSERTIONS TO BE ADDED:

end event(e)

sequence flow(sf3)

has sequence flow source ref(sf3, g1)

has sequence flow target ref(sf3, e)

Figure 7.9: Example of a BPMN VRL rule using the BPMN VQL NOT operator: after the weaving phase,

it will be possible to end the current (sub-)process from all the to select activities directly followed by a

gateway.

Aspects using the BPMN VQL PATH operator. Figure 7.10 shows an example

of a BPMN VRL rule that, in the weaving phase, adds a request check immediately before

activities providing data and preceded by the receipt of a message. In detail, a new

to check message task is added immediately before any to provide data activity, for which

at least a path from a message intermediate event exists, and immediately after the

flow object directly preceding the to provide data activity in the non-woven process. The
8For each distinct query result set g1, e and sf3 represent new instances.

203

7.1. Semantically enhanced aspects 7. BUSINESS PROCESS ASPECTIZATION

sequence flow between the flow object and the to provide data activity is also removed. It

uses the BPMN VQL PATH operator thus allowing the matching of pairs of BPMN elements

connected by at least a path in the process model. The BPMN elements with white

background and thinner lines, i.e., the intermediate message event, the to provide data

activity and the flow object directly preceding the to provide data activity in the original

process, represent the pattern to be matched against the process, i.e., the to provide data

activities for which there exists a path from an intermediate message event and that

are preceded by at least a flow object. The BPMN elements with darker background

and thicker lines (i.e., the to check message task and its semantic annotation), represent,

instead, the behaviour to be added to the process. Finally, the sequence flow crossed by

the REMOVE operator is the behaviour that has to be removed. In this case, the selection

sub-pattern is composed of the to provide data activity, the flow object directly preceding

the activity and the sequence flow connecting these two elements. The select clause of

the query contains, hence, the variable ?a1 , representing the to provide data activity, the

variable fo1 , denoting the flow object immediately preceding the to provide data activity

in the non-woven process and sf1 for the sequence flow. For each result of the query,

the three BPM-type and the four BPM-structural assertions reported in Figure 7.10 are

added to the BPKB9. Moreover, all the assertions involving sf1 are removed.

Aspects using the BPMN VQL NEST operator. Figure 7.11 shows an example of a

BPMN VRL rule that, in the weaving phase, adds an end event after the to update activities

included in a to manage sub-process. In detail, if the to update activity (contained in

a to manage sub-process at whatever level of nesting) is followed by a data-based XOR

gateway, the rule only adds an end event to the gateway alternatives; otherwise (i.e., if the

activity is followed by a flow object that is not a data-based exclusive gateway), the rule

removes the existing sequence flow connecting the activity with the flow object and adds a

data-based XOR gateway with two outgoing sequence flows, one having as target the flow

object directly following the to update activity in the original process and, the second,

connected to a new end event. It uses the BPMN VQL NEST operator thus allowing the

matching of BPMN elements nested in sub-processes. The BPMN elements with white

background and thinner lines, i.e., the to manage sub-process, the to update activity and

either the directly connected data-based exclusive gateway or the directly connected flow

object (as well as the connecting sequence flows) represent the matching pattern. The

behaviour to be added to the process, instead, is provided by the BPMN elements with

darker background and thicker lines (i.e., either the end event and the connecting sequence

9For each distinct query result set (a1, fo1, sf1), t1, sf2 and sf3 represent new instances.

204

7. BUSINESS PROCESS ASPECTIZATION 7.1. Semantically enhanced aspects

SPARQL Queries:

SELECT ?a1 , ?fo1 , ?sf1

WHERE {
?a1 rdf:type bpmn:activity.

?a1 rdf:type bdo:to provide data.

?me1 rdf:type bpmn:message intermediate event.

?me1 (bpmn:has sequence flow source ref inv/

bpmn:has sequence flow target ref)* ?a1 . }
?sf1 bpmn:has sequence flow target ref ?a1 . }
?sf1 bpmn:has sequence flow source ref ?fo1 .

?fo1 rdf:type bpmn:flow object }.
?sf1 rdf:type bpmn:sequence flow }.
}

For each result (a1, fo1, sf1):

ASSERTIONS TO BE ADDED:

task(t1)

sequence flow(sf2)

has sequence flow source ref(sf2, fo1)

has sequence flow target ref(sf2, t1)

sequence flow(sf3)

has sequence flow source ref(sf3, t1)

has sequence flow target ref(sf3, a1)

INSTANCES TO BE REMOVED:

sf1

Figure 7.10: Example of a BPMN VRL rule using the BPMN VQL PATH operator: after the weaving

phase, immediately before all the to provide data activities for which there exists at least a path from a

message intermediate event, the “Check message” task is executed.

205

7.1. Semantically enhanced aspects 7. BUSINESS PROCESS ASPECTIZATION

flow, in the first OR alternative, or the data-based exclusive gateway, the end event and the

three sequence flows in the second OR alternative). Finally, the sequence flow crossed by

the REMOVE operator represents the behaviour to be removed from the process, whenever

the second of the OR alternatives matches (i.e., when the to update activity is not directly

followed by any data-based exclusive gateway). The selection sub-pattern is composed

of the to update activity, the data-based XOR gateway, the flow object directly following

the to update activity and the sequence flow connecting the to update activity to the flow

object. The select clause of the query contains, hence, the variable ?a1 representing

the to ask for activity, the variable ?g1 representing the gateway, when the first pattern

matches, and ?a2 and ?sf2 when the second OR alternative matches. For each result

of the query, either the two BPM-type and the three BPM-structural assertions (in case

g1 is valued), or the five BPM-type and the six BPM-structural assertions (in case a2

is valued) reported in Figure 7.11 are added to the BPKB10. Moreover, all the BPM-

type, BPM-structural and BPM-semantic assertions involving sf2, if this is valued, are

removed.

BPMN VRL was designed to guarantee an easy use (in terms of, for example, limited

learning effort, simple aspect understanding) of the aspectization mechanism for business

designers, favouring a simple semantics of the language over a very powerful expressivity.

An example of a possible limitation of the BPMN VRL expressivity is its inability to

distinguish among different “update” parts of a rule (e.g., behaviour addition and removal,

or many behaviour removals), when the cardinality of the variables (characterizing the

different “update” parts) of the selection sub-pattern is different. For instance, we can

consider the aspect requiring the removal of all the outgoing sequence flows from a data-

based exclusive gateway and the introduction of new flows (e.g., a new sequence flow

connected to a “Read paper” task and another connected to an end event). Such an

aspect can not be represented with only one BPMN VRL rule (as done in the BPMN VRL

rule in Figure 7.12) unless as many pairs of tasks and end events (and related sequence

flows) as the outgoing sequence flows are introduced in the woven process. In the example,

the designer is supposed to specify two rules: the first removing all the sequence flows

outgoing from the data-based exclusive gateway (Figure 7.13a), and the second adding two

outgoing sequence flows (one connected to a “Read paper” task and the other connected

to an end event) to the gateway (Figure 7.13b). We think the relatively simple semantics

of BPMN VRL compensates its limited expressivity. Often, splitting the intended update

part into two or more rules is sufficient to achieve the designer’s purpose.

10For each distinct query result set (a1, g1, a2, sf2), e and sf4 or e, sf4, sf5 and sf6 represent new instances if g1 or

a2 is valued, respectively.

206

7. BUSINESS PROCESS ASPECTIZATION 7.1. Semantically enhanced aspects

SPARQL Queries:

SELECT ?a1 , ?g1 , ?a2 , ?sf2

WHERE {
?a1 rdf:type bpmn:activity.

?a1 rdf:type bdo:to update.

{ ?sp1

bpmn:has embedded sub process sub graphical elements+

?a1 .

?sp1 rdf:type bpmn:embedded sub process.

?a1 rdf:type bdo:to manage.

{ ?sf1 bpmn:has sequence flow source ref ?a1 .

?sf1 bpmn:has sequence flow target ref ?g1 . }
?g1 rdf:type bpmn:data based exclusive gateway.

?sf1 rdf:type bpmn:sequence flow }.
UNION

{ ?sf2 bpmn:has sequence flow source ref ?a1 .

?sf2 bpmn:has sequence flow target ref ?a2 .

?sf2 rdf:type bpmn:sequence flow }.
?a2 rdf:type bpmn:flow object.

?sf3 bpmn:has sequence flow target ref ?a1 .

?sf3 bpmn:has sequence flow target ref ?a3 .

?sf3 rdf:type bpmn:sequence flow }.
?a3 rdf:type bpmn:data based exclusive gateway.

FILTER (?a2 != ?a3) }
}

For each result (a1, g1, a2, sf2):

ASSERTIONS TO BE ADDED:

if g1 is valued

end event(e)

sequence flow(sf4)

has sequence flow source ref(sf4, g1)

has sequence flow target ref(sf4, e)

if a2 is valued

data based exclusive gateway(g)

end event(e)

sequence flow(sf4)

has sequence flow source ref(sf4, a1)

has sequence flow target ref(sf4, g)

sequence flow(sf5)

has sequence flow source ref(sf5, g)

has sequence flow target ref(sf5, a2)

sequence flow(sf6)

has sequence flow source ref(sf6, g)

has sequence flow target ref(sf6, e)

INSTANCES TO BE REMOVED:

if sf2 is valued

sf2

Figure 7.11: Example of a BPMN VRL rule using the BPMN VQL NEST operator: after the weaving

phase, it will be possible to end the current sub-process from all the to update activities included in a

to manage sub-process, at whatever level of nesting.

207

7.1. Semantically enhanced aspects 7. BUSINESS PROCESS ASPECTIZATION

Figure 7.12: Example of a BPMN VRL rule for which the different “update” parts (i.e., the task and the

end event addition and the sequence flow removal) could have a different cardinality (i.e., one for the

addition and X for the removal, according to the number of outgoing sequence flows in the non-woven

process). The matched gateway in the woven process will contain as many outgoing to read paper and

end events as the sequence flows outgoing the gateway in the non-woven process.

(a) (b)

Figure 7.13: Example of two BPMN VRL rules that, if applied in sequence, replace all the outgoing

sequence flows of data-based exclusive gateways with two sequence flows, one connected to a “Read

paper” task and the other connected to an end event.

We developed a tool for the automated weaving of aspects in the BPKB (aspectiza-

tion tool). It takes advantage of the ARQ11 implementation of SPARQL1.1.[73] and of

the population tool for, respectively, querying the BPKB (and hence retrieving the BPD

instances that satisfy the matching criterion) and for managing the modifications in the

rule advice. It uses the org.w3c.dom XML parsing library to manage the aspect file, the

Jena12 API for query formulation and the ARQ engine for query execution, Protege13

libraries to populate the resulting OWL Abox, and Pellet14 for reasoning. Once business

experts have separately modelled the desired aspects as BPMN VRL rules, they can gen-

erate the woven process by providing the aspects as input to the aspectization tool, that

parses them and populates the BPKB accordingly.

11http://jena.sourceforge.net/ARQ/
12http://jena.sourceforge.net/
13http://protege.stanford.edu/
14http://clarkparsia.com/pellet/

208

http://jena.sourceforge.net/ARQ/
http://jena.sourceforge.net/
http://protege.stanford.edu/
http://clarkparsia.com/pellet/

7. BUSINESS PROCESS ASPECTIZATION 7.2. Exception Handling Aspectization

7.2 Exception Handling Aspectization

In business processes, exception handling represents a typical example of crosscutting

concern. The exception handler can be tangled in different scattered points of the process,

thus increasing the process complexity, when explicitly managed. Hence, though processes

meeting exception handling requirements have higher robustness ([43]), business designers

often focus only on the “happy path”, to make the process model easier to understand.

Aspects offer the possibility to take out the complexity added to the “happy path” by

the exception handling. Business experts can modularize exception handlers into aspects

defined in BPMN VRL, thus separating them from the “happy path” and hence ensuring

a better readability. Aspects can then be woven only when needed, e.g., for constraint

verification of the whole process.

For example, as observed in Chapter 5, modelling of the on-line shopping process

depicted in Figure 7.4 may need the definition of exception handling requirements to be

verified on the process itself, as for example15:

(a) Existence of product unavailability exception:

the activity of reserving products in the On-line Shop pool has always to catch a “prod-

uct unavailability” error event ;

(b) Handling of product unavailability:

the “product unavailability” error event caught by the activity of reserving products in

the On-line Shop pool has to be handled by executing in parallel two activities. The

first one is an activity for warning the buyer; the second one is a sub-process for

ordering the unavailable products ;

(c) Handling of compulsory-login failure:

the activity of “sending customer data” in the “log-in” process has always to allow

receiving a “compulsory-login failure” error event from the On-line Shop pool. The

“log-in” process has, in turn, always to catch this error and the error event has to be

handled by stopping the process ;

The verification of these constraints can lead to the detection of violations (as in the

case of the on-line shopping process in Figure 7.4), which demand for exception handling

mechanisms. Aspects (and BPMN VRL rules) can be exploited for the modularization of

the exception handlers.

15For completeness, we recall here the same exception handling constraints reported in Chapter 5.

209

7.2. Exception Handling Aspectization 7. BUSINESS PROCESS ASPECTIZATION

Figure 7.14: Product unavailability aspect

For example, Figure 7.14 reports a BPMN VRL aspect describing a possible exception

handling (compliant with requirements (a) and (b)) for the resource unavailability excep-

tion. A product unavailability intermediate error event has to be added on the boundary of

activities reserving products in the On-line Shop pool, and it has to be handled by warn-

ing the buyer and ordering the unavailable products. The matching criterion looks for

process elements that require exception handling mechanisms: it intercepts occurrences

of On-line Shop activities reserving products (i.e., annotated with the semantic concept

to reserve products). Moreover the matching criterion locates the process elements re-

quired by the aspect advice (e.g., the event-based exclusive gateway originating from the

start event of the On-line Shop pool). The advice of the aspect describes the catching of

the exception and its management: the caught exception is handled by means of a par-

allel gateway with two outgoing edges, one connected to a to order product sub-process

(followed by an end event) and the other connected to a to warn buyer activity followed

by the initial event-based gateway.

Figure 7.15 describes a second example of aspect related to the log-in failure exception

(according to the exception handling requirement (c)). This rule has a more complex

semantics than the one of the previous rule and it involves both the Customer and the

On-line Shop pool.

With regards to the On-line Shop pool, the pointcut intercepts the occurrences of

the activities checking customer data, contained in an authentication sub-process and for

which there exists at least a path (the sequence flow with double head) from a message

intermediate event (contained in the same authentication sub-process) generated by the

to send customer data activity in the to log in sub-process of the Customer pool. Once

all the occurrences of activities matching this criterion have been identified, the action

to take is chosen according to the type of flow object following the activity checking the

customer data. Three possible different cases may occur (see the three cells of the dotted

table in the On-line Shop pool in Figure 7.15):

210

7. BUSINESS PROCESS ASPECTIZATION 7.2. Exception Handling Aspectization

(a) the activity checking the customer data is directly followed by a flow object that is

not a data-based exclusive gateway (top cell of dotted table in Figure 7.15). In this

case: (i) the sequence flow connecting the to check customer data activity and the

non-gateway flow object is removed (filled cross); (ii) a data-based exclusive gateway

is added; (iii) the new gateway is connected through an incoming sequence flow to

the to check customer data activity; (iv) the new gateway is connected through two

outgoing sequence flows to the non-gateway flow object and to a new activity notifying

the login failure to the Customer pool, respectively.

(b) the to check customer data sub-process is followed by a split data based exclusive

gateway (i.e., an exclusive gateway with only an incoming edge). The middle cell of

the dotted table in Figure 7.15 is matched, hence only a sequence flow connecting the

gateway to the new activity notifying the login failure is added.

(c) the to check customer data activity is directly followed by a data-based exclusive

gateway with more than one incoming sequence flow (bottom cell of dotted ta-

ble in Figure 7.15). As in the first alternative: (i) the sequence flow connecting

the to check customer data activity and the data-based exclusive gateway is removed

(filled cross); (ii) a new split data-based exclusive gateway is added; (iii) the new gate-

way is connected to the to check customer data activity; and (iv) the new gateway is

connected to the original exclusive gateway and to the new “Notify login failure”

activity, respectively.

In all three cases, the added “Notify login failure” activity is followed by a login failure

end event, terminating the sub-process in which it is contained.

In the Customer pool, instead, the aspect manages the login failure intermediate event

generated by the On-line Shop pool. Similarly to the On-line Shop pool, according to

the type of flow object immediately following the to send customer data activity in the

to log in sub-process, a different behaviour is specified in order to catch the failure event.

Moreover, the to log in sub-process containing the received login failure event has to catch

the event and manage it by terminating the (sub-)process.

At weaving time, all the scattered occurrences captured by the quantification part

of each rule will be identified and modified according to the corresponding advice. For

example, the aspect handling the product unavailability will exploit the process semantic

information in order to match the sub-process “Reserve product/s” and it will apply on

it the corresponding modifications (as shown in Figure 7.16).

In order to make aspects reusable across processes, generic exception handlers may be

defined for a class of activities that are likely to require that kind of handlers. Then,

211

7.2. Exception Handling Aspectization 7. BUSINESS PROCESS ASPECTIZATION

Figure 7.15: Compulsory log-in failure aspect

specific aspects are specializations of such exception handler categories, defined according

to the specific needs of the designers and of the process itself. For example any to log in

activity is likely to require a login failure handler, that can be specialized into different

aspects. Well known exception handling strategies could be specified as reusable BPMN

VRL aspect libraries.

7.2.1 Using semantic constraints to support aspect definition

After defining the exception handling aspects in BPMN VRL, business designers can verify

that exception handling requirements (e.g., the same requirements that could have led

to the detection of exception handling constraint violations and, hence, to the aspect

definition, as for example the requirement (a) for the process in Figure 7.4), translated

212

7. BUSINESS PROCESS ASPECTIZATION 7.2. Exception Handling Aspectization

Figure 7.16: Partial view of the on-line Shop process in Figure 7.4 in which the aspect in Figure 7.14 has

been woven. For space reasons only the parts of the process affected by the aspect are reported.

into semantic constraints, are satisfied on the woven process. In addition to that, the

exception handling constraints, formalized before the aspect definition, can be useful

to support business designers also in the modelling of the exception handling aspects.

Semantic constraints are thus useful both before and after aspects are defined by business

designers.

The definition of exception handling aspects can be based on the verification of the

constraints originated from the exception handling requirements. In fact, constraint ver-

ification does not only return the process occurrences violating the constraints (if any),

but it also suggests where modifications have to be applied in order to solve constraint

violations. For instance, given a violated inclusion axiom, by exploiting the concept on

the left of the inclusion as matching criterion and the part on the right for the advice,

a skeleton aspect (i.e., a starting point for the definition of the exception handling as-

pect) can be automatically generated. For example, in the process in Figure 7.4, the

requirement (a) is violated by the sub-process “Reserve product/s”. A skeleton aspect

can be automatically generated starting from the violated inclusion axiom (7.4) (already

formalized in Chapter 5):

213

7.3. Performance Evaluation 7. BUSINESS PROCESS ASPECTIZATION

reserveProductOn-line ≡
BPMNO:activityu
BDO:to reserve product u ∃has graphicals−.

∃has process ref−.BDO:on-line shop

reserveProductOn-line v ∃BPMNO:has target−.

(BPMNO:error intermediate event u BDO:product unavailability)

(7.4)

The generated aspect will capture all the reserve product On-line instances (i.e., all the

to reserve product activities in the On-line Shop pool) and it will add a product unavailability

intermediate event on its boundary. By taking advantage of the visualization of the pro-

cess elements violating the constraints, the business designer can complete this skeleton

aspect in order to handle the exception according to the requirements. The skeleton aspect

automatically produced from the violated constraint can describe the exception handling

with different levels of detail according to the type of violated constraint, ranging from

just exception catching (“where?”) to the complete exception handling (“what?”), as

in case of the skeleton aspect that is generated by the violation of the constraint (b).

Constraint verification on the woven process will finally check whether all the constraint

violations have actually been solved.

7.3 Performance Evaluation

In order to provide a first evaluation of the applicability for business designers of the

proposed aspect-oriented approach, we performed an experiment16 to evaluate its perfor-

mance in one of its main use: the exception handling management. In the experiment,

we considered six different processes of increasing size (the same used for the BPMN

VQL evaluation in Chapter 6 and for the constraint verification evaluation in Chapter 5)

and, for each of them, an exception handling requirement (of the same kind of require-

ment (a)). The purpose of this experiment was to investigate the performance of the

exception handling management approach (including both the detection of violations of

exception handling constraints and the modularization of exception handling requirements

into aspects) proposed in Section 7.2, and, in general, the applicability of business process

aspectization, as the size of the BPKB increases.

16The machine used for the experiment is a desktop PC with an Intel Core i7 2.80GHz processor, 6 Gb of RAM, and

running Linux RedHat.

214

7. BUSINESS PROCESS ASPECTIZATION 7.3. Performance Evaluation

In detail, first we validated the BPKB (populated with the BPD graphical objects)

against each constraint considered, to check whether the given process satisfies or not

the requirement (Validation Phase I). Once the appropriate aspect handlers have been

selected for the process concerns violating the requirements, we ran the aspectization tool

to weave the aspects in the main process (Aspectization Phase). Finally, we validated

again the BPKB against the considered constraint, to check whether the woven process

satisfied the exception handling requirement imposed on the process (Validation Phase

II). The reasoning tasks required in each phase have been performed with the support

of the Pellet reasoner (v2.0.2), integrated with the Pellet IC Validator (v0.4) for the

constraint validation tasks. For each phase, the average time spent over 100 runs and the

corresponding standard deviation have been computed.

P1 P2 P3 P4 P5 P6

Process Graphical Process Elements 92 175 237 327 387 475

Domain Ontology Classes 124 124 101 114 79 124

Class Axioms 133 133 101 113 77 133

Validation Phase I Constraint 6.357 10.532 14.300 16.064 26.008 37.596

Validation Time(s) (0.312) (0.480) (0.969) (1.262) (5.922) (4.775)

Aspectization Phase Added Graphical Elements 8 16 9 16 27 22

Added Individuals 16 32 18 40 54 48

Added Assertions 50 95 54 117 162 146

Aspectization Time(s) 3.634 3.790 3.842 3.992 3.997 4.068

(0.099) (0.095) (0.080) (0.116) (0.110) (0.095)

Validation Phase II Constraint 6.681 10.929 14.770 16.612 33.491 39.307

Validation Time(s) (0.536) (0.527) (1.073) (1.285) (5.473) (6.004)

Table 7.1: Experimental Evaluation Results. The time values reported in Tables 7.1 are in the form

avg (sd), where avg and sd are respectively the arithmetic mean and the standard deviation of the

execution times obtained over 100 runs on the same input data.

The results are reported in Table 7.1. As shown in the Table, the most demanding

phases in terms of performance are the constraint validation ones, for which the compu-

tation time increases considerably as the size of the process (and, hence, of the BPKB)

grows. The time required for the aspectization phase, instead, is reasonable for all the six

processes considered and, in general, less sensitive to process size variations.

Though this first analysis is a preliminary evaluation and more replications would be

required with different types of aspects, processes and usage scenarios, the obtained results

indicate that the proposed business process aspectization approach (in particular the

detection of exception handling constraint violations and its aspectization) is compatible

with an on-line usage at modelling time by designers on small/medium size processes.

This result encourages us to proceed with further analyses.

215

7.3. Performance Evaluation 7. BUSINESS PROCESS ASPECTIZATION

216

Chapter 8

Experimental Results:

BPMN VQL Empirical Evaluation

“As far as the laws of mathematics refer to reality,

they are not certain, and as far as they are certain,

they do not refer to reality.”

Albert Einstein

As part of the evaluation of the proposed approach, we analysed in depth one of the

possible uses of business process semantic annotations considered in the thesis. In detail,

we investigated the effectiveness and efficiency (in terms of benefits gained and effort re-

quired) of the BPMN VQL language for retrieving information scattered across the process

and for documenting it.

In Subsection 6.1.2 of Chapter 6, we provided a first evaluation of the BPMN VQL in

terms of expressive power (with respect to the other visual languages for querying business

processes) and performance. In this chapter we are interested in evaluating the usefulness

of the BPMN VQL in terms of benefits gained versus effort required by business experts in

retrieving and documenting information scattered across semantically annotated business

processes. More precisely, our aim is to compare the advantages of the adoption of BPMN

VQL with respect to the base approach (i.e., using natural language) for documenting and

retrieving information scattered across the process. To this purpose, we conducted an

experimental study with human subjects.

In the next sections we first describe the goal and the design of the experiment (Sec-

tion 8.1). We then provide the experiment results (Section 8.2) and, finally, we present

some possible threats to its validity (Section 8.3) and an overall discussion (Section 8.4).

217

8.1. Experiment Definition, Planning and Design 8. BPMN VQL EMPIRICAL EVALUATION

8.1 Experiment Definition, Planning and Design

In the rest of this subsection we describe the study by following the methodology presented

by Wohlin [194].

8.1.1 Goal of the Study and Research Questions

The goal of the study is to analyse two approaches (one based on natural language queries

and the other on BPMN VQL queries) with the purpose of evaluating query understand-

ability for documentation purposes and query execution performance in the context of

business process maintenance operations. The quality focus is related to the accuracy1 of

the results obtained, the time spent in matching the queries against the process and the

subjective perception of the effort required during query understanding and execution.

The perspective considered is of both researchers and business managers, interested in

investigating the benefits of the adoption of a visual language for supporting business

designers and analysts in retrieving crosscutting concerns scattered across the process

and documenting them. The context of the study consists of two objects (two semanti-

cally annotated processes and the ontologies used for their annotation) and a group of

researchers and PhD students working at Fondazione Bruno Kessler (FBK) as subjects.

The objective of the study is: (i) investigating the understandability of BPMN VQL

queries with respect to natural language (NL) queries; and (ii) evaluating the performance

(in terms of results and effort required) of BPMN VQL queries with respect to the NL for

retrieving information. To this purpose, we asked the involved subjects to perform two

different types of assignment: the Query Understandability and the Query Execution

assignment, respectively. The Query Understandability assignment (aimed at comparing

the ease of understanding queries in BPMN VQL and NL) consists, for both the languages,

in matching the queries against the process. The Query Execution assignment, instead,

differs depending on the language. Since the purpose of the Query Execution assignment

is to evaluate the performance required by the query execution, it consists in matching

the query against the process, in case of NL, and in formulating BPMN VQL queries (to

be automatically executed by a tool), in case of BPMN VQL.

We believe that the graphical notation of BPMN VQL queries, as well as their higher

formality with respect to natural language, helps designers and analysts in disambiguating

and clarifying queries and hence the concerns they represent. Moreover, we also expect

that formulating queries in BPMN VQL, which can be automatically executed, is easier

1In this chapter we will use the term accuracy with an informal meaning, i.e., with no reference to any classification

measure.

218

8. BPMN VQL EMPIRICAL EVALUATION 8.1. Experiment Definition, Planning and Design

than matching NL queries against the process. These two expectations provide a direction

for the research questions (and the hypotheses) we are interested in investigating:

RQ1 Are BPMN VQL queries easier to understand than natural language queries?

RQ2 Is BPMN VQL query formulation easier to perform as compared to matching the

results of natural language queries?

RQ1 deals with the understandability of BPMN VQL queries with respect to NL queries.

The hypotheses related to this question are the following:

• (H10) When performing query understanding tasks, understanding BPMN VQL

queries is not easier than understanding NL queries.

• (H1a) When performing query understanding tasks, understanding BPMN VQL

queries is easier than understanding NL queries.

We investigated this first research question by taking into account and inspecting three

different factors:

• the (objective) impact that query understanding is expected to have on the accuracy

of the results obtained (we expect higher accuracy for BPMN VQL queries);

• the (objective) effort, in terms of time, required to perform query understanding

tasks (for BPMN VQL queries it would be desirable to observe a time not significantly

higher than for NL queries);

• the perceived (subjective) effort required to perform query understanding tasks (we

expect a lower effort for BPMN VQL queries).

Hence, H1a can be decomposed in the following three sub-hypotheses:

• (H1aA) The results obtained by performing BPMN VQL query understanding tasks

are more accurate than those obtained performing NL query understanding tasks;

• (H1aB) There is no difference between the time required to perform BPMN VQL

and NL query understanding tasks;

• (H1aC) The effort perceived when performing BPMN VQL query understanding

tasks is lower than the one perceived when performing NL query understanding

tasks.

RQ2 deals with the formulation of BPMN VQL queries, that can be automatically

matched against the process (by means of a tool), compared to the manual matching of

NL queries. Similarly to RQ1, the hypotheses for RQ2 are the following:

219

8.1. Experiment Definition, Planning and Design 8. BPMN VQL EMPIRICAL EVALUATION

• (H20) When performing query execution tasks, formulating BPMN VQL queries is

not easier than matching NL queries against the process;

• (H2a) When performing query execution tasks, formulating BPMN VQL queries is

easier than matching NL queries against the process.

Also in this case, in order to deal with the research question, we considered and eval-

uated three main factors:

• the (objective) impact that query formulation/matching has on the accuracy of the

results obtained by respectively formulating/matching the query in query execution

tasks (we expect higher accuracy for BPMN VQL queries);

• the (objective) effort, in terms of time, required to perform query execution tasks

(for BPMN VQL queries we expect a time not higher than NL queries);

• the perceived (subjective) effort required to perform query execution tasks (we ex-

pect a lower effort for BPMN VQL queries).

Hence, the corresponding hypotheses in which H2a can be decomposed are the following:

• (H2aA) The results obtained when executing the BPMN VQL queries formulated in

query execution tasks are more accurate than those obtained by matching the NL

queries (in query execution tasks);

• (H2aB) There is no difference between the time required to formulate BPMN VQL

queries and matching NL queries (in query execution tasks);

• (H2aC) The effort perceived when formulating BPMN VQL queries is lower than the

one perceived when matching NL queries against the process (in query execution

tasks).

8.1.2 Context

The objects of the study are two semantically annotated business processes describing

real-life procedures: Bank Account Process and Mortgage Process . The Bank Account

Process2 represents the exchange of information between the customer and the bank for

opening and activating a bank account. It is made of 2 pools (the “Bank” and the

“Customer”) and it contains 30 activities, 16 events and 16 gateways. The associated

2The Bank Account Process is based on a process used as example in the book by Havey [77] (it is reported in the

Havey’s article “Modeling Orchestration and Choreography in Service Oriented Architecture” available at http://www.

packtpub.com/article/modeling-orchestration-and-choreography-in-service-oriented-architecture).

220

http://www.packtpub.com/article/modeling-orchestration-and-choreography-in-service-oriented-architecture
http://www.packtpub.com/article/modeling-orchestration-and-choreography-in-service-oriented-architecture

8. BPMN VQL EMPIRICAL EVALUATION 8.1. Experiment Definition, Planning and Design

L1 L2

NL BPMN VQL NL BPMN VQL

G A Bank Account Process Mortgage Process

G B Bank Account Process Mortgage Process

G C Mortgage Process Bank Account Process

G D Mortgage Process Bank Account Process

Table 8.1: Study balanced design

ontology used for its annotation contains 77 concepts and 30 of them are used for the

process semantic annotation. The Mortgage Process3 is instead a process describing the

procedure regulating the acceptance or the refusal by the “Mortgage Co.” company of

mortgage requests formulated by potential customers. It is also made of two pools (the

“Mortgage Co.” and the “Potential Customer”) and it is slightly larger than the Bank

Account Process : it contains 35 activities, 26 events and 18 gateways. The associated

ontology has 99 concepts and 31 of them are used for semantically annotating the process.

The subjects involved in the study were 12 persons working at FBK in the domain of

software engineering or knowledge management: 5 PhD students and 7 researchers.

8.1.3 Design, Material and Procedure

The design adopted in this study is a balanced design [194]. Subjects are divided into four

groups (G A, G B, G C and G D) and asked to perform two types of assignment (Query

Understandability and Query Execution) on two different objects (Bank Account Process

and Mortgage Process) with two treatments (NL or BPMN VQL queries) in two laboratory

sessions (L1 and L2). Each group worked with both treatments and with both objects,

by performing both the Query Understandability and Query Execution assignment on one

process with the NL queries in one laboratory and on the other process with BPMN VQL

queries in the other laboratory. In detail, the schema adopted in the study is reported in

Table 8.1. Such a schema allows to limit the impact of the learning effect on the objects

and to limit possible undesired effects on the results due to the learning effect on the

treatment.

During the experiment, subjects received the following material4 to perform the re-

quired tasks:

• a pre-questionnaire collecting information about knowledge and experience of sub-

jects (reported in Appendix A);

3The Mortgage Process is based on a process used as running example in the BPMN book by White et al. [192]
4The experimental package (containing the material used in the experiment) is available on-line at http://selab.fbk.

eu/difrancescomarino/BPMNVQLEval for repetition purposes.

221

http://selab.fbk.eu/difrancescomarino/BPMNVQLEval
http://selab.fbk.eu/difrancescomarino/BPMNVQLEval

8.1. Experiment Definition, Planning and Design 8. BPMN VQL EMPIRICAL EVALUATION

• a BPMN quick handbook for recalling the main constructs of the language to novel

users;

• a BPMN VQL handbook for recalling the main notions of the query language (when

needed);

• a semantically annotated process (the Bank Account Process or the Mortgage Pro-

cess);

• the ontology used for annotating the process;

• an extract of the BPMN ontology for clarifying relationships among BPMN con-

structs;

• a description of the tasks to perform, i.e., either:

– 10 queries: 6 NL queries to be matched against the process for the Query Un-

derstandability assignment and 4 NL queries to be matched against the process

for the Query Execution assignment; or

– 10 queries: 6 BPMN VQL queries to be matched against the process for the

Query Understandability assignment and 4 queries described in natural lan-

guage to be translated into BPMN VQL queries for the Query Execution assign-

ment;

• the answer book for reporting the answers related to the 10 required tasks. It is a

set of 10 sheets, each reproducing the same annotated process and devoted to report

answers for the corresponding task;

• a post-questionnaire investigating personal judgements about the executed tasks,

as well as the general impression deriving from the used approach (reported in

Appendix B);

• a final post-questionnaire investigating subjective judgement about the BPMN VQL

benefits versus effort (reported in Appendix B).

Before the experiment execution, subjects were trained on BPMN, ontologies, semantic

annotation of business processes and BPMN VQL. Moreover, subjects were also provided

with a first description of the object processes in order to be able to easily understand

the domain.

After the training session, in the first laboratory, subjects were asked to fill a pre-

questionnaire. Then, for each laboratory, the procedure described in Figure 8.1 was

222

8. BPMN VQL EMPIRICAL EVALUATION 8.1. Experiment Definition, Planning and Design

followed. For both the assignments, subjects were asked to mark the starting time before

executing each task and the ending time after the task execution. The Query Understand-

ability consists, for both the treatments, in matching the queries against the process. The

Query Execution for NL queries, instead, differs from the BPMN VQL Query Execution.

The reason is that our goal is to evaluate, for each of the two approaches, the effort

required for executing the query. Hence, in case of NL queries, we have to evaluate the

effort required in matching the NL query, while, in case of BPMN VQL queries, we have

to evaluate the effort required in formulating the BPMN VQL query, by assuming that the

query is then executed by an automatic tool at no cost. Moreover, the automatic execu-

tion of the query, by allowing to visualize the retrieved results and hence to potentially

reveal possible false positives and true negatives captured by the formulated query, would

further support users in query refinement.

The use of the tool in the experiment, however, would have been not completely fair

with respect to the manual natural language matching. Hence, we decided to partially

penalize subjects involved in the BPMN VQL treatment. We allowed them to match the

formulated BPMN VQL query, in order to verify its correctness, only manually, and we

asked them to refine it, if necessary, by marking an estimation of the percentage of time

spent in matching the query.

Finally, at the end of both laboratory sessions, subjects were asked to fill a final post-

questionnaire.

8.1.4 Variables

The independent variable considered in the study is the type of query language used

for performing the assignments. The independent variable, hence, can assume only two

values, i.e., the two treatments: NL or BPMN VQL.

The number of dependent variables in the study, instead, is higher since for the eval-

uation of the two research questions we analysed both objective and subjective factors.

In detail, we used the accuracy of the results of the Query Understandability and Query

Execution assignments as well as the time spent to perform the tasks as objective mea-

sures. The personal judgements expressed by subjects about the effort required by tasks

as subjective measures.

The set of dependent variables defined to answer the two research questions, as well as

the corresponding descriptions, are reported in Table 8.2. For each of the two hypotheses,

H1 and H2 (answering the research questions RQ1 and RQ2, respectively), the related

sub-hypotheses described in Subsection 8.1.1 have been considered (column “Sub-hp”

223

8.1. Experiment Definition, Planning and Design 8. BPMN VQL EMPIRICAL EVALUATION

1. Query understanding assignment.

For each task (i.e., for each NL or BPMN VQL query matching):

1.1. mark the starting time;

1.2. read the (NL or BPMN VQL) query;

1.3. match the query;

1.4. mark the ending time.

2. Query execution assignment.

2.a. In case of NL queries, for each task

(i.e., for each NL query matching):

2.a.1. read the query;

2.a.2. mark the starting time;

2.a.3. match the query;

2.a.4. mark the ending time.

2.b. In case of BPMN VQL queries, for each task

(i.e., for each BPMN VQL query formulation)

2.b.1. read the query;

2.b.2. mark the starting time;

2.b.3. formulate the initial BPMN VQL query;

2.b.4. match the formulated query;

2.b.5. mark the initial query ending time;

2.b.6. refine the BPMN VQL query;

2.b.7. mark the ending time.

3. fill the post-questionnaire.

Figure 8.1: Detailed study procedure (followed in each of the two laboratory sessions)

in Table 8.2). In turn, each sub-hypothesis has been further decomposed, according to

the different measures (e.g., precision, recall) considered for its evaluation, into detailed

sub-hypotheses (column “Det. sub-hp” in Table 8.2), each corresponding to a dependent

variable (column “Variable” in Table 8.2).

In detail, we evaluated the results obtained in the Query Understandability assignment

in order to investigate the query language understandability RQ1 and those obtained in

the Query Execution assignment for RQ2. For the evaluation of the accuracy of the

task results, we exploited two metrics widely used in Information Retrieval: precision and

recall. In case of the Query Understandability assignment, for each subject sj and for

each query qi, we identified the set of correct results (CRqi) of the query qi and the set of

results reported by the subject sj for the query qi (RRqi,sj). In case of the Query Execution

assignment, instead, CRqi and RRqi,sj are identified for each NL query qi and subject sj
exactly as above, while the corresponding values, for each task ti with the BPMN VQL

treatment, are collected by automatically executing the corresponding BPMN VQL query

qi formulated by the subject sj.

Starting from these values we computed precision Pqi,sj and recall Rqi,sj for each query

224

8. BPMN VQL EMPIRICAL EVALUATION 8.1. Experiment Definition, Planning and Design

Hp Sub-hp Det. sub-hp Variable Unit/Scale Description

H1

H1A

H1Ap PQU [0, 1] precision

H1Ar RQU [0, 1] recall

H1Afm
FMQU [0, 1] f-measure

H1B H1Bt TQU sec. time

H1C

H1Cpequ PEQU [0, 4] perceived effort in query understanding

H1Cpeou PEOU [0, 4] perceived effort in ontology understanding

H1Cpeqm PEQM [0, 4] perceived effort in query matching

H2

H2A

H2Ap PQE [0, 1] precision

H2Ar RQE [0, 1] recall

H2Afm
FMQE [0, 1] f-measure

H2B H2Bt TQE sec. time

H2C
H2Cpeqe PEQE [0, 4] perceived effort in query execution

H2Cpesu PESU [0, 4] perceived effort in specification understanding

Table 8.2: Dependent variable description

qi and for each subject sj as follows:

Pqi,sj =

∣∣CRqi ∩RRqi,sj

∣∣∣∣RRqi,sj

∣∣ (8.1)

and

Rqi, sj =

∣∣CRqi ∩RRqi,sj

∣∣
|CRqi |

(8.2)

Finally, in order to obtain a comprehensive measure for the evaluation of the assign-

ments, we computed the F-Measure FMsj ,qi , i.e., the harmonic mean of (8.1) and (8.2):

FMqi,sj =
2 ∗ Pqi,sj ∗Rqi, sj
(Pqi,sj +Rqi, sj)

. (8.3)

The formula for the F-Measure can also be rewritten by considering for each query qi
and for each subject sj the set of correct reported results (CRRqi,sj = CRqi ∩ RRqi,sj),

the set of the incorrect reported results (IRRqi,sj = RRqi,sj \ CRqi) and the set of the

unreported correct results (UCRqi,sj = CRqi \ RRqi,sj). Given these sets, the set of the

retrieved results can be seen as the union of the set of correct reported results and the

set of the incorrect reported results, i.e., RRsj ,qi = CRRqi,sj ∪ IRRqi,sj (and, hence, since

the two sets are disjointed
∣∣RRsj ,qi

∣∣ =
∣∣CRRqi,sj

∣∣ +
∣∣IRRqi,sj

∣∣). Similarly, the set of

correct results for the query qi (CRqi) can be seen as the union of the set of correct

results reported by a subject sj and the set of the unreported correct results by the same

subject, i.e., CRqi = CRRqi,sj ∪ UCRqi,sj (and, hence, since the two sets are disjointed

|CRqi | =
∣∣CRRqi,sj

∣∣+
∣∣UCRqi,sj

∣∣). The resulting F-Measure formula will hence be:

225

8.1. Experiment Definition, Planning and Design 8. BPMN VQL EMPIRICAL EVALUATION

FMqi,sj =
2 ∗ Pqi,sj ∗Rqi, sj
(Pqi,sj +Rqi,sj)

(8.4)

=
2 ∗
∣∣CRRqi,sj

∣∣
2 ∗
∣∣CRRqi,sj

∣∣+
∣∣IRRqi,sj

∣∣+
∣∣UCRqi,sj

∣∣ (8.5)

This formula allows to have a defined F-Measure even in cases of undefined values

of precision or recall. In fact, in our study, in few cases in which subjects found no

results for a query (i.e., RRqi,sj = ∅), we had undefined values for precision. In the

literature these situations are faced in different ways. When possible, the value of the

precision is left undefined (NaN). In other cases, in which the value is required for

further computations, as in our study, either the undefined value is discarded from the

computation or it is evaluated to 1 [151]. Finally, there are works in which, Psj , Rsj

and FMsj are computed starting from
∣∣CRRsj

∣∣ =
∑

i

∣∣CRRqi,sj

∣∣, ∣∣RRsj

∣∣ =
∑

i

∣∣RRqi,sj

∣∣
and |CR| =

∑
i |CRqi | (e.g., [8, 13]). In our study we chose to compute precision by

taking out the undefined values. However, we also carried out the analyses considering

the few cases of undefined values for precision as 1 and we found almost no difference

with the analyses performed by discarding the same values. Moreover, since in our study

the size of the set of correct results is not the same for all the queries and each query is

read and interpreted independently by subjects, we discarded also the last solution from

the literature and we chose to evaluate each query separately, by computing precision and

recall for each of them. This approach avoids to penalize and emphasize too much possible

misunderstandings/perfect understandings in the specification of the queries with a high

number of correct results.

In order to get a global result for each assignment k (i.e., k ∈ {Query Understandability,

Query Execution}), and for each subject sj, we computed (and we draw the boxplots of)

the average of the three values (Pk,sj , Rk,sj and FMk,sj) over all the queries in the set of

queries of the assignment k (Qk), i.e.:

Pk,sj =

∑
qi∈Qk

Pqi,sj
|Qk|

(8.6)

Rk,sj =

∑
qi∈Qk

Rqi, sj

|Qk|
(8.7)

and

FMk,sj =

∑
qi∈Qk

FMqi, sj

|Qk|
(8.8)

226

8. BPMN VQL EMPIRICAL EVALUATION 8.2. Experimental Results

In the objective evaluation, the time spent for completing the assignment is also con-

sidered. In case of RQ1, the time required for performing the Query Understandability

assignment is collected. In detail, for each query qi the time spent by the subject sj
(Tqi,sj) is computed by considering both the time spent for reading the NL/BPMN VQL

query and for retrieving the query results against the process. For RQ2, it is the time

required for realizing the Query Execution assignment to be investigated. In case of the

NL treatment, Tqi,sj represents the time required by the subject sj for retrieving the re-

sults of the query qi. In case of BPMN VQL queries, instead, Tqi,sj is the time spent by

the subject sj for formulating and refining the query (in case of problems emerging from

the manual execution of the formulated query). The time spent in matching the query is

however excluded from Tqi,sj because in principle it can be automatically performed.

As for Information Retrieval metrics, also in this case, an average value per assign-

ment type k ∈ {Query Understandability,Query Execution} and per subject sj has been

computed and corresponding boxplots drawn:

Tk,sj =

∑
i∈Qk

Tsj ,qi
|Qk|

(8.9)

With respect to the subjective evaluation, a set of answers is collected through the post-

questionnaire. In detail, each subject was asked to express her evaluation on a 5-point

Likert scale (from 0 to 4, where 0 is very low and 4 is very high) about the perceived effort

in query understanding (PEQUsj), ontology understanding (PEOUsj), query execution

(PEQEsj) and specification understanding (PESUsj).

8.2 Experimental Results

In this section we will describe the statistical analyses performed on the collected data.

For each of the variables reported in Table 8.2, we analysed:

• the influence of the main factor, i.e., the treatment;

• possible cofactors influencing the obtained results.

With respect to the main factor, due to the violation of the preconditions of parametric

tests (small number of data points and non-normal distribution), we decided to apply a

non-parametric test to compare the distributions of data obtained with the two different

treatments. Moreover, since each of the subjects performed the assignments both with

the NL and the BPMN VQL treatment, we performed a paired statistical test. Starting

from these considerations, we resorted to the Wilcoxon test, a non-parametric paired test.

227

8.2. Experimental Results 8. BPMN VQL EMPIRICAL EVALUATION

Finally, according to the direction of the hypotheses to verify, we opted for a one-tailed

or two-tailed analysis.

In order to evaluate the magnitude of the statistical significance obtained, we computed

also the effect size, that provides a measure of the strength of the relationship between

two variables. To this purpose we used the Cohen’s d formula (the effect size is considered

to be small for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d < 0.8 and large for d ≥ 0.8):

d =
µNL − µBPMN VQL√

(σ2
1 + σ2

2)/2
(8.10)

Such a formula is slightly modified in case of paired analyses. In this case the pooled

standard deviation is replaced by the standard deviation of the difference of the two

distributions σD, i.e.,

d =
µNL − µBPMN VQL

σD
(8.11)

For the analysis of the cofactors, we used ANOVA. Though it is a parametric test, it

is quite robust (as also confirmed by the results we obtained). In detail we used two-way

ANOVA for investigating the impact of the cofactors and of their interaction with the

main factor on the dependent variables.

All the analyses are performed with a level of confidence of 95% (p-value < 0.05), i.e.,

there is only a 5% of probability that the results are obtained by chance.

8.2.1 Data Analysis

Research Question 1

Table 8.3 reports the descriptive statistics of the data related to the RQ1, i.e., to the

Query Understandability assignment of the study and Figure 8.2a reports the boxplots of

precision, recall and F-Measure for the same assignment. We can notice, that, the values

of precision, recall and F-Measure of the results obtained for the Query Understandability

assignment in case of BPMN VQL queries are higher than those obtained in case of the NL

queries. However, while in case of precision and F-Measure, the first quartile for BPMN

VQL queries is very far from the first quartile of NL queries, the two values are much more

closer in case of recall.

We applied a one-tailed Wilcoxon test in order to decide whether to reject the sub-

hypothesis H1A. As shown in Table 8.4, two out of the three detailed sub-hypotheses

related to H1A (i.e., H1AP
, H1AR

and H1AFM
in Table 8.2) could be rejected. In detail,

though we were not able to reject the null hypothesis H1AR
(corresponding to the variable

228

8. BPMN VQL EMPIRICAL EVALUATION 8.2. Experimental Results

(a) Precision, recall and F-Measure

(b) Time (c) Query and ontology understanding as well as query match-

ing perceived effort

Figure 8.2: Boxplots related to the Query Understandability assignment

229

8.2. Experimental Results 8. BPMN VQL EMPIRICAL EVALUATION

Variable
Mean Median

NL BPMN VQL NL BPMN VQL

PQU 0.870349326 0.978505291 0.916666667 1

RQU 0.92037 0.951852 0.958333 1

FMQU 0.861113 0.951918 0.883333 0.974074

TQU 0.02.36 0.02.42 0.02.15 0.02.29

PEQU 2.083333333 1.08333333 2 1

PEOU 1.583333333 1 1.5 1

PEQM 1.833333333 1.33333333 1.5 1

Table 8.3: Descriptive statistics for the Query Understandability assignment

Variable Wilcoxon p-value Cohen d

PQU 0.02959 0.698703

RQU 0.1308

FMQU 0.04118 0.698885

TQU 0.8501

PEQU 0.009864 0.8864053

PEOU 0.02386 0.6479058

PEQM 0.04734 0.6267832

Table 8.4: Summary table of the results obtained by performing a paired analysis on the data related to

the Query Understandability assignment

RQU , as reported in Table 8.2), we rejected H1AP
(p-value = 0.02959), as well as H1AFM

(p-value = 0.02959), both with a medium effect-size value. Overall, by considering the

F-Measure as a global measure of the query answers, we can reject H1A, i.e, we can affirm

that the use of the BPMN VQL allows to get more accurate results than the NL.

Figure 8.2b depicts the boxplot of the time spent for the Query Understandability

assignment. In this case, for the BPMN VQL queries, the values of the time spent in

understanding BPMN VQL queries are only slightly higher than those related to the time

spent for understanding NL queries. We applied a two-tailed Wilcoxon test for investi-

gating the hypothesis H1B related to the time. In this case, we were not able to reject

the two-tailed null hypothesis (p-value = 0.8501), hence we cannot affirm that there is a

difference of effort, in terms of time, to perform the Query Understandability assignment

in case of NL queries and in case of BPMN VQL queries.

Finally, the boxplots of the perceived effort required for understanding queries, under-

standing the ontology used for the process annotation and matching the queries against

the process, both for NL and BPMN VQL, are reported in Figure 8.2c. In all the three sub-

jective ratings of the perceived effort with BPMN VQL, the boxplot is mainly concentrated

in the bottom part of the plot (i.e., in the interval [0, 2]), meaning that subjects perceived

a low/medium effort. The corresponding NL values, instead, are higher. We applied a

230

8. BPMN VQL EMPIRICAL EVALUATION 8.2. Experimental Results

Variable
Mean Median

NL BPMN VQL NL BPMN VQL

PQE 0.90625 0.989583 0.9375 1

RQE 0.90625 1 0.958333 1

FMQE 0.869742 0.994048 0.895833 1

TQE 0.02.03 0.02.18 0.01.53 0.01.48

PEQE 1.833333333 1.33333333 1.5 1

PESU 2.083333333 1.58333333 2 1.5

Table 8.5: Descriptive statistics of the Query Execution assignment

one-tailed Wilcoxon paired test in order to investigate the sub-hypothesis (H1C) for all

the three dependent variables. The results (p-values 0.009864, 0.02386 and 0.04734 for

query understanding, ontology understanding and query matching, respectively), allows

to reject each of the null hypotheses and hence the whole H1C , i.e., when performing

query understanding tasks, the effort perceived in understanding BPMN VQL queries is

lower than the one perceived in understanding NL queries. In the specific case of query

understanding, the result related to the perceived effort (PEQU) is also strengthened by

a large Cohen d effect size (d = 0.8864053).

Research Question 2

The descriptive statistics of the data related to the query execution assignment are re-

ported in Table 8.5, while the corresponding boxplots are reported in Figure 8.3.

In detail, Figure 8.3a shows that the boxplots related to precision, recall and F-Measure

obtained by automatically executing the BPMN VQL queries formulated by subjects are

squeezed up to 1. On the contrary, the NL boxplots are spread across the interval [0.7, 1].

The BPMN VQL values for precision, recall and F-Measure are hence higher than the

values obtained by the manual match of NL queries performed by subjects. The intuition

suggested by the boxplots is confirmed by the one-tailed Wilcoxon test, whose results

are reported in Table 8.6. In all the three cases, we are able to reject, with a level

of confidence of 95%, the null hypothesis related to the specific dependent variable (p-

values 0.02099, 0.01802 and 0.007001 for precision, recall and F-Measure, respectively).

Moreover, in case of recall and F-Measure the result is strenghtened by the high value

of the Cohen d measure. The H2A sub-hypothesis can hence be finally rejected, i.e., the

results obtained by automatically executing BPMN VQL queries manually formulated by

subjects are better than those obtained by manually matching NL queries against the

process.

By looking at Figure 8.3b, we can observe that the time spent for formulating and

231

8.2. Experimental Results 8. BPMN VQL EMPIRICAL EVALUATION

(a) Precision, recall and F-Measure

(b) Time (c) Query execution and task specification understanding per-

ceived effort

Figure 8.3: Boxplots related to the Query Execution assignment

232

8. BPMN VQL EMPIRICAL EVALUATION 8.2. Experimental Results

Variable Wilcoxon p-value Cohen d

PQE 0.02099 0.588606

RQE 0.01802 0.8436

FMQE 0.007001 0.903492

TQE 0.6377

PEQE 0.07023

PESU 0.02054 0.7416198

Table 8.6: Summary table of the results obtained by performing a paired analysis on the data related to

the Query Execution assignment

refining the BPMN VQL queries is almost the same as the time spent for matching the

NL queries against the process. In Table 8.6 we can also find statistical evidence of this

observation. In fact, we are not able to reject the two-tailed null sub-hypothesis H2B,

i.e., we cannot state that there is a difference in the time spent in matching NL queries

(against the process) and the time spent for translating them in BPMN VQL.

Finally, with respect to the effort perceived when executing queries (i.e., either match-

ing the NL queries or formulating BPMN VQL queries), in Figure 8.3c we can observe that,

differently from the NL boxplot, in case of BPMN VQL queries, the boxplot is mainly dis-

tributed around low values of the Likert scale. The shape of the boxplots related to the

perceived effort in understanding the natural language specification of the queries to be

used for matching it against the process or for formulating the corresponding BPMN VQL

query, is also similar. By applying a one-tailed Wilcoxon test, we are not able to reject the

null hypothesis related to the perceived effort in query execution (p − value = 0.07023),

but we can reject the one related to the perceived effort in specification understanding

(p− value = 0.02054)

8.2.2 Cofactors

For both research questions and both the objective and the subjective analyses we inves-

tigated the possible impact of cofactors that, together with the main factor could have

been responsible for influencing the final result. Table 8.7 summarizes the investigated

factors. The cofactors analysed are mainly three:

1 the laboratory session in which the assignments have been performed;

2 the object on which the assignments have been realized; and

3 the declared experience of subjects in process modelling, with ontologies, with visual

query languages and their general experience (i.e., their position).

233

8.2. Experimental Results 8. BPMN VQL EMPIRICAL EVALUATION

Variable unit description

L {L1, L2} Laboratory

O { Bank Account Process, Mortgage Process } Object used in the experiment

PME [0, 4] Experience in process modelling

OE [0, 4] Experience with ontologies

V QLE [0, 4] Experience with visual query languages

E { PhD, researcher } Experience

Table 8.7: Summary table of the cofactors considered in the experiment evaluation

Laboratory (L)

Variable TR L TR:L

PQU 0.003802 0.007688 0.112106

FMQU 0.03064 0.27106 0.13181

T 0.78364 0.02594 0.54037

PEQU 0.01514 0.38635 0.66266

PEQM 0.11426 0.28399 0.03957

Process Modelling Experience (PME)

Variable TR PME TR:PME

PQU 0.009031 0.303607 0.076417

FMQU 0.03677 0.36127 0.30435

PEQU 0.01514 0.35877 0.75744

Object (O)

Variable TR O TR:O

PQU 0.01384 0.38678 0.43181

FMQU 0.04369 0.66664 0.69323

PEQU 0.01690 0.66867 1.00000

Ontology Experience (OE)

Variable TR OE TR:OE

PQU 0.01583 0.93453 0.50906

FMQU 0.04193 0.45208 0.70444

PEQU 0.01514 0.35877 0.75744

Experience (E)

Variable TR E TR:E

PQU 0.01619 0.59753 0.91322

FMQU 0.03962 0.27540 0.90538

PEQU 0.01477 0.34017 0.65685

Visual Language Experience (VLE)

Variable TR VLE TR:VLE

PQU 0.01569 0.62128 0.60640

FMQU 0.0449 0.8501 0.8116

PEQU 0.01649 0.56479 0.88966

Table 8.8: Cofactor analysis related to RQ1

For each of the considered cofactors we applied the two-way ANOVA in order to inves-

tigate its influence on the dependent variables, as well as the impact of its interaction with

the main factor. Table 8.8 reports a selected subset5 of the results obtained by applying

the two-way ANOVA to the variables considered in RQ1.

We can observe that, in most of the cases, the cofactors, as well as their interaction with

the treatment, has no influence on the dependent variables, thus further strengthening our

results. However, there are some exceptions. For example, the time spent for performing

the assignments is influenced by the laboratory session. In detail, the time spent in the

second laboratory is, on average, lower than the time used in the first one, as shown in

Figure 8.4.

Moreover, the interaction between the laboratory and the treatment has an impact

on the perceived effort in query matching. In this case, people involved in the second

5We only reported results for which at least one among the main factor, the considered cofactor and their interaction

has an influence on the dependent variable.

234

8. BPMN VQL EMPIRICAL EVALUATION 8.2. Experimental Results

Figure 8.4: Boxplots related to the time spent in matching queries in the first and the second laboratory

laboratory perceived more effort in matching queries than subjects involved in the first

one, as shown in the boxplot in Figure 8.5a. In detail, as clarified in the interaction plot

in Figure 8.5b, in case of NL, the perceived effort in matching queries increases from the

first to the second laboratory, while in case of BPMN VQL, it decreases.

We performed the same analyses also for the variables related to the research question

RQ2. As for RQ1, Table 8.9 reports an interesting subset of the results obtained for the

RQ2 variables.

Also in this second part of the experiment, we found that the interaction between the

treatment and the laboratory has an impact on one of the monitored perceived efforts,

i.e., the effort required in executing (matching or formulating) queries. The boxplot in

Figure 8.6a shows that the perceived effort, in general, increases from the first to the

second laboratory. However, by looking at the interaction plot in Figure 8.6b, it is clear

that the described behaviour is determined by NL queries, while the perceived effort in

formulating BPMN VQL queries decreases from the first to the second laboratory. These

results suggest that the effort required by BPMN VQL could decrease by practice and

encourage us to further investigate this aspect, for example by performing longer training

sessions.

Finally, we found, as shown in boxplot in Figure 8.7, that the experience in using

and modelling ontologies positively influences the perceived effort in understanding the

235

8.2. Experimental Results 8. BPMN VQL EMPIRICAL EVALUATION

(a) Boxplots related to the perceived effort in matching

queries in the first and the second laboratory

(b) Interaction plots of treatment and laboratory on the

perceived effort in matching queries

Figure 8.5: Boxplots and interaction plots related to the perceived effort in matching queries

Laboratory (L)

Variable TR L TR:L

PQE 0.04115 0.18766 0.42271

RQE 0.01048 0.60672 0.60672

FMQE 0.003989 0.308016 0.471126

PEQE 0.11426 0.28399 0.03957

Process Modelling Experience (PME)

Variable TR PME TR:PME

PQE 0.009031 0.78749 0.92834

RQE 0.01050 0.61042 0.61042

FMQE 0.004927 0.586534 0.738287

Object (O)

Variable TR O TR:O

PQE 0.02819 0.05160 0.15480

RQE 0.009637 0.466713 0.466713

FMQE 0.001803 0.064023 0.121759

Ontology Experience (OE)

Variable TR OE TR:OE

PQE 0.04623 0.31800 0.58522

RQE 0.009404 0.43603 0.43603

FMQE 0.005262 0.960006 0.832598

PESU 0.16655 0.01406 0.90934

Experience (E)

Variable TR E TR:E

PQE 0.0359 0.26768 0.12192

RQE 0.01131 0.87667 0.87667

FMQE 0.004453 0.578383 0.419483

Visual Language Experience (VLE)

Variable TR VLE TR:VLE

PQE 0.0458 0.2782 0.6524

RQE 0.01135 0.90848 0.90848

FMQE 0.005168 0.702525 0.987179

Table 8.9: Cofactor analysis related to RQ2

236

8. BPMN VQL EMPIRICAL EVALUATION 8.2. Experimental Results

(a) Boxplots related to the perceived effort in executing

queries in the first and the second laboratory

(b) Interaction plots of treatment and laboratory on the

perceived effort in executing queries

Figure 8.6: Boxplots and interaction plots related to the perceived effort in executing queries

natural language specification used for describing tasks, i.e., the more the subject is expert

in modelling ontologies, the less is the effort perceived in understanding the specification.

This result can be traced back to the idea that a different mental attitude (e.g., matching

queries rather than formulating them) can lead to different results and effort perception

(as remarked in Section 8.4).

Survey Results

In order to be sure that everybody knew and clearly understood the basic concepts of

BPMN and ontologies, explained in the training session, we evaluated the subjects’ level

of comprehension about these two topics, by asking them to answer some simple closed

questions in the pre-questionnaire. We measured the degree of comprehension of BPMN as

well as ontologies and ontology concepts by computing the percentage of correct answers.

We found an average degree of comprehension of 1 for the BPMN and 0.96 for the ontology

and the ontology concepts, thus clearly showing a good comprehension of the two topics.

In the post-questionnaire, besides the perceived effort, subjects were also asked to

provide personal judgements on:

• their training and understanding of BPMN VQL;

• the BPMN VQL;

237

8.2. Experimental Results 8. BPMN VQL EMPIRICAL EVALUATION

Figure 8.7: Boxplots related to the perceived effort in specification understanding for subject with low

and high experience in modelling ontologies

• the utility of querying processes for supporting designers and analysts in under-

standing and maintaining processes;

• the benefits gained by BPMN VQL queries versus the effort associated with their

formulation.

A summary and a description of the factors considered in the post-questionnaire is

reported in Table 8.10.

For each of the factors, we performed a one-tailed unpaired (Mann-Whitney test)

analysis in order to investigate:

• whether the subjects understood the BPMN VQL before starting the experiment;

• whether the subjects had a positive judgement about the BPMN VQL (in terms of

the effort its use requires and expressive power);

• whether the subjects found querying processes for documentation and maintenance

purposes useful; and

• whether the subjects judged the effort required by the BPMN VQL compensated by

the benefits gained.

238

8. BPMN VQL EMPIRICAL EVALUATION 8.2. Experimental Results

Factor Description mean p-value Cohen d

UV QL BPMN VQL Comprehension 2.75 0.001331 1.407125

TEV QL BPMN VQL Training Effectiveness 0.416666667 3.444e-06 4.348508

JEQU
Judgement on the effort required

1.333333333 0.002554 1.211060
in understanding BPMN VQL queries

JEQF
Judgement on the effort required

1.083333333 3.644e-05 2.517557
in formulating BPMN VQL queries

JEPV QL Judgement on the expressive power of BPMN VQL 2.75 0.0001164 2.345208

JEQS
Judgement on the querying processes support

3.166666667 1.228e-05 2.857738
to process understanding and maintenance

JV QLB
Judgement on the balance between

3.583333333 3.444e-06 4.348508
benefits and limitations of the BPMN VQL

Table 8.10: Personal judgement survey results

The results of the analyses (reported in Table 8.10) show that the BPMN VQL has

been understood by subjects (the understanding of the BPMN VQL declared by subjects

ranges from “medium” to “very high”) and that the BPMN VQL training was effective

(the BPMN VQL training has been declared by subjects either “very useful” or “useful”).

In both cases the p-value was lower than 0.05 and the Cohen d effect size greater than

0.8.

Moreover, subjects did not judge the general effort required for understanding, as well

as for formulating BPMN VQL queries, high. In detail, the declared efforts for both under-

standing and formulating BPMN VQL queries range from “very low” to “medium”, with

the exception of one “high” judgement for the BPMN VQL understanding. The judge-

ment provided by the same subject for the two different assignments (i.e., understanding

or formulating queries) is the same in most of the cases, with few exceptions in which,

surprisingly, the same subject judged formulating BPMN VQL easier than understanding

them. Finally, though we are aware that subjects’ experience with BPMN VQL was lim-

ited, their intuition about its expressive power was positive: the formulated judgements

ranged between “medium” and “high”.

A similar positive opinion is also expressed by subjects with respect to the usefulness

for business process analysts and designers, when querying processes for documentation

and maintenance purposes. In detail, all the subjects judged querying processes “useful”

or “very useful” for documentation and maintenance purposes, with the exception of one

subject considering the advantages provided by querying processes only “medium”. This

confirms, though informally, our assumption that querying processes helps in understand-

ing and documenting them.

Finally, subjects found the overall advantages deriving from the use of BPMN VQL

queries for documentation and maintenance purposes superior to the possible drawbacks

239

8.3. Threats to Validity 8. BPMN VQL EMPIRICAL EVALUATION

in terms of effort required in understanding and formulating BPMN VQL queries. All

the subjects, in fact, evaluated the effort required in using BPMN VQL as “mostly” or

“definitively” justified by the benefits gained by the use of the BPMN VQL itself (p-

value=3.444e− 06 and d = 4.348508).

8.3 Threats to Validity

8.3.1 Conclusion Validity

Conclusion validity deals with the relation between the treatment and the outcome.

In order to ensure such a validity, since not all the preconditions required by parametric

statistical tests held in our study, we used non parametric tests (the Wilcoxon test) for

our analysis of the main factor. ANOVA was instead used for the analysis of the cofactors.

In fact, though it is parametric, it is a robust test and part of its results is also checked

against the outcomes of the non parametric Wilcoxon test.

For the evaluation we chose to use both objective and subjective metrics. The first

type, including metrics widely used in Information Retrieval (i.e., precision, recall and

F-Measure) as well as the time spent to perform the assignments, provides a real and

robust measurement of the performance of the two approaches. However, since our goal is

to globally evaluate the ease of use of the approaches, we believe that also the subjective

perception has to be taken into account. To this aim, we resorted to personal judgements

about the effort required by the different treatments involved in the assignments. Though

they are subjective measurements, by using standard settings and scales, we were able to

apply statistical tests to the collected data.

8.3.2 Internal Validity

Internal validity threats concern external factors that could affect the dependent variables

considered.

By performing an analysis of the possible cofactors (by means of ANOVA), we found

that some of them have an influence on the dependent variables. The effect of the con-

founding factors, however, was limited by the adoption of the balanced design. In detail,

we found that the laboratory session impacts the precision of the results and the time

spent in the Query Understandability assignment. Moreover, the interaction between the

treatment and the laboratory session has an influence on the perceived effort in query

matching and query execution in the Query Understandability and Query Execution as-

signments, respectively. The influence of the laboratory session is mainly due to the

240

8. BPMN VQL EMPIRICAL EVALUATION 8.3. Threats to Validity

limited time devoted to training subjects and hence to the need of more practice both

with BPMN and with BPMN VQL. The impact of the laboratory session on the data is

however mitigated by the balanced design and by the fact that the training session was

the same for all the subjects, thus balancing and therefore limiting the effect of this factor.

Finally, though subjects were aware of the goal of the study they were not informed

about the hypotheses.

8.3.3 Construct Validity

Construct validity is related to the relationship between theory and observation.

In order to limit the construct validity threats, we conducted a controlled experiment

(i.e., laboratory sessions were performed under our supervision) and we carefully measured

the analysed data. Precision, recall (and hence F-Measure) were measured in an objective

way, by validating the answers provided by subjects or obtained by running the query

formulated by subjects against the correct and a-priori known answers. Time was also

measured in a precise way by providing subjects, during the experiment, with a watch

providing granularity of seconds. In this way, they were able to report exact start and end

times and hence the time spent was recovered as precisely as possible. Finally, though

subjective, personal judgements too were measured by means of standard scales.

A possible construct validity threat is related to the type of tasks: they are not real-life

tasks, but they have been conceived in order to be as similar as possible to real-world

tasks.

The two compared approaches are quite different: the BPMN VQL one requires tool

support, while the other does not. We tried to limit the effect of this threat by only

simulating the use of the tool, thus choosing to penalize the BPMN VQL approach rather

than conducting an unfair experiment and hence causing another threat to the construct

validity. This solution, however, does not not prevent us from comparing the matching of

NL queries and the formulation of BPMN VQL queries.

8.3.4 External Validity

External validity is related to the generalization of the findings. The number of subjects,

and hence the number of points considered was not high (12 people) and subjects involved

in the study are all PhD and researchers. Although their experience with process mod-

elling, with the use of ontologies and with visual languages widely ranges (from less than

6 months to more than 5 years) we did not find any specific trend (except for the posi-

tive influence of the ontology experience on the perceived effort in understanding natural

241

8.4. Discussion 8. BPMN VQL EMPIRICAL EVALUATION

language specifications). This consideration encourages us in believing that the obtained

results could be generalized also to experienced business designers and analysts.

A second threat to the external validity is related to process objects: they do not have

the dimension of real life processes, due to the need to provide subjects with processes

that can be managed in a reasonable time. However, we tried to mitigate this threat by

choosing processes describing real-life procedures.

8.4 Discussion

The main goal of our analysis was investigating the difference of understanding as well

as executing NL versus BPMN VQL queries, both from an objective point of view (in

particular with respect to the accuracy of the results obtained by the query execution

and to the time spent to perform the task) and a subjective point of view (in terms of

perceived effort).

We found that, on average, the results obtained when manually matching BPMN VQL

queries are more precise, more complete and, hence, more accurate than those obtained

when manually matching NL queries. Though the result obtained for the recall only

shows a trend that is not statistically relevant (i.e., the p-value of RQU > 0.05), the one

obtained for the precision clearly shows that BPMN VQL allows to be more precise in

understanding requests related to semantically annotated processes. This finding could

be explained with the higher formality of BPMN VQL with respect to NL, that hence

better fits with the BPMN description, enriched with semantic annotations, of business

processes.

Moreover, the positive result obtained for the accuracy of the answers is not excessively

penalized by the effort required in terms of time. On average the time spent for performing

the Query Understandability assignment in case of BPMN VQL queries is only 3.8% more

than the time spent for performing the same assignment in case of NL queries (as also

clearly shown in Figure 8.2b).

However, the additional time actually required for performing the understanding as-

signment with BPMN VQL queries rather than with natural language, is not perceived

as an effort increase by subjects. As shown in Table 8.6, in fact, the effort perceived in

BPMN VQL query understanding is lower (p-value < 0.05) than the one perceived for

understanding NL queries. Moreover, we found that also the effort perceived in under-

standing the ontology, as well as in matching the query is significantly lower (p-value

< 0.05) for BPMN VQL queries rather than for NL queries. The first result could be due

242

8. BPMN VQL EMPIRICAL EVALUATION 8.4. Discussion

to the formal structure in which ontologies are organized, which is closer to the BPMN

VQL than to the NL. Similarly, we can speculate that having in mind a graphical rep-

resentation of the pattern to look for, as well as having a clear and formal description

of the semantics of the searched pattern components, could relieve the effort required by

the matching task. By looking at Figure 8.2c we can also note that, when matching NL

queries against the process, the most expensive aspect of the activity seems to be query

understanding (on average 2.08 in the Likert scale, i.e., a perceived effort slightly higher

than “medium”), followed by query matching (on average 1.83 in the [0, 4] scale). This

observation is in-line with the qualitative answers provided by subjects. The main diffi-

culties found by subjects in understanding NL queries, in fact, are the ambiguity and the

lack of precision of the natural language (reported by 6 subjects), as well as the difficulty

in mapping natural language to structural properties of the process (5 subjects). When

matching BPMN VQL queries, instead, the aspect requiring more effort is the actual query

matching (on average 1.33 in the Likert scale), that is however lower, on average, than

the effort required by the NL query match. In this case, the difficulties encountered by

subjects in understanding queries are not common to more than one subject, and they

differ from subject to subject.

By considering the collected results and taking into account the different factors anal-

ysed, we can hence reject the first null hypothesis and affirmatively answer the re-

search question RQ1: understanding BPMN VQL queries is easier than understanding

NL queries.

With respect to the research question RQ2, we found several statistically relevant

results. In this case, in fact, the results obtained when automatically executing BPMN

VQL queries formulated by subjects are not only more specific than those obtained by

manually executing NL queries, but they are also more sensitive, and hence, more accurate.

Also in this case, the good result obtained in terms of accuracy is not heavily penalized

by time performances. The time spent for formulating BPMN VQL queries, in fact, is,

on average, just slightly higher than the one spent in matching NL queries (it took about

10% more of the time required for NL queries). However, the high average time of BPMN

VQL queries is mainly due to two outliers. As shown in Table 8.5, in fact, the median

value of the BPMN VQL query formulation time is lower than the median time required

for matching NL queries (107.75 seconds versus 113.125 seconds). Moreover, since, when

the process size increases, the time required for the BPMN VQL query formulation remains

unchanged and the time spent for the automatic BPMN VQL query execution increases

of the order of milliseconds (with respect to the almost null time considered in the study

243

8.4. Discussion 8. BPMN VQL EMPIRICAL EVALUATION

for the small Bank Account Process and Mortgage Process processes), the BPMN VQL ap-

proach scales better (with respect to the time spent) than the NL one, heavily influenced

by the manual query matching time. For example, the time required for manually match-

ing NL queries on the Bank Account Process , whose size (in terms of graphical elements)

is about 80% of the Mortgage Process size, is 25% lower than the time spent by subjects

for the same activity on the Mortgage Process .

Finally, we got other interesting findings related to the perceived effort in the Query

Execution assignment. Though the results are not statistically significant, the effort

perceived in formulating BPMN VQL queries is overall lower (on average 27% lower)

than the effort required for matching NL queries, as shown in the boxplots in Figure 8.3c.

Moreover, the perceived effort required for understanding natural language specifications

of the tasks to perform seems to be positively influenced by the type of activity to be

executed. In other words, understanding natural language specifications with the aim

of transforming them into BPMN VQL queries is perceived as easier than understanding

the same specifications with the aim of matching them against the process. Moreover,

by inspecting the boxplots in Figure 8.3c, the same observation made for the Query

Understandability assignment (i.e., understanding the natural language takes most of the

effort involved) is confirmed also for the Query Execution assignment both for BPMN

VQL and NL tasks. The perceived effort required for understanding natural language

specifications is higher (with respect to the same Likert scale) than the effort perceived

when formulating BPMN VQL queries or matching NL queries against the process.

The qualitative answers related to the main difficulties faced in formulating BPMN VQL

queries for this assignment mainly concern the lack of the use of a tool for inspecting the

ontology (reported by 3 subjects) and the poor experience with the BPMN VQL (reported

by 3 subjects, too). These answers further encourage us in believing that, with the tool

availability and with a bit more of practice, results could further improve.

By taking into account these observations, we can, hence, also provide an affirmative

answer to RQ2.

As confirmed by the answers given to the last question in the post-questionnaire, we

can conclude that, overall, the proposed BPMN VQL language, being easier to understand

than natural language and making it easier to retrieve results scattered across processes,

provides a good support to business designers and analysts in documenting as well as in

retrieving specific information scattered across large processes, as for example crosscutting

concerns.

Though a detailed evaluation has been limited to only one branch of the whole work

244

8. BPMN VQL EMPIRICAL EVALUATION 8.4. Discussion

(the BPMN VQL), the positive results we obtained make us confident taht we could get

similar results also with other similar uses of the framework described in previous chapters

(e.g., the visual representation of aspectized crosscutting concerns). We plan to investigate

this in future works.

245

8.4. Discussion 8. BPMN VQL EMPIRICAL EVALUATION

246

Chapter 9

Related Works

Hereafter we analyse relevant works in the literature related to the main topics presented

in the thesis: reverse engineering of business processes and empirical investigations re-

lated to process understandability metrics (Section 9.1), semantic annotation of business

processes (Section 9.2), constraint verification (Section 9.3), crosscutting concern manage-

ment (Section 9.4), exception handling management (Section 9.5) and, finally, empirical

studies involving visual process query languages (Section 9.6).

9.1 Reverse Engineering and Understandability Metrics

In this section we first provide an overview of the main works related to the reverse

engineering of business processes (Subsection 9.1.1) and we then provide an overview

about the main works relating process metrics and understandability (Subsection 9.1.2).

9.1.1 Reverse Engineering

Works in the literature for the reverse engineering of business processes from existing

applications can be divided into static and dynamic approaches. While works in the first

group statically analyse software artefacts, works in the latter dynamically examine the

application execution.

Typical examples of static approaches are those recovering process models from the

source code. For instance, Zou et al. [198] propose the use of static analysis of the source

code to extract the business processes implemented by e-commerce applications. On the

other hand, process mining techniques (e.g., [24], [178]), which try to infer processes by

analysing the workflow logs containing information about process executions, represent

typical examples of dynamic approaches. Though some works that are related to the

247

9.1. Reverse Engineering and Understandability Metrics 9. RELATED WORKS

recovery of organizations and roles (e.g., [177]) from execution logs or that are more

focused on the recovery of interaction protocols between different participants (e.g., [124])

exist in the process mining field, most of the effort has been devoted to control flow

mining. For instance, van der Aalst et al. [179] proposed the α-algorithm that detects

causal dependencies (e.g., sequences, potential parallels, alternatives) among activities

traced in logs by means of some heuristics. A Petri Net model of the mined process is

then constructed according to the activity dependencies.

Moreover, focusing on Web applications, approaches in the literature can be classified

according to the type of artefact they investigate to recover the process model.

Code-based Approaches. These techniques are focused on the analysis of the applica-

tion source code. As mentioned above, for example Zou et al. [198] extract the business

processes implemented by e-commerce applications by statically analysing the source code.

In detail, the following steps are applied: (i) the source code is parsed to identify code

entities candidate to be business entities; (ii) the source code is statically analysed to re-

cover the control structure that manages these entities; (iii) the as-implemented workflow

is built. A set of rules is applied to reduce the size of the analysed code and data (e.g.,

utilities and libraries are not considered).

GUI-based Approaches. These techniques are focused on the analysis of the applica-

tion GUI without accessing application artefacts (such as the source code). For instance,

Kim et al. [90] introduce an approach for recovering business processes by starting from

the analysis of the forms contained in the GUI of an application. The intuition is that the

GUI can be analysed to identify the business data: data in input and output to/from the

application are business data. Kim et al. propose this technique in particular for business

process reengineering.

GUI+code-based Approaches. These techniques recover the implemented process by

starting from the analysis of the application GUI (mainly used for identifying business

objects) and enrich it by exploring the application source code by means of static code

analysis. For instance, Zou et al. [199] (and other works of the same authors such as

[197]) describe an approach for recovering a two-layers process from a Web application.

The high-level process is built by analysing the navigational structure of the application,

while the low-level process details the high-level and it is generated by statically analysing

the application code. Di Lucca et al. [52] introduce an approach for recovering business

object models from applications. The approach focuses on the analysis of the elements of

the application GUI (to identify the business objects) and on the use of a static analysis

of the application code (to identify the relationships among business objects).

248

9. RELATED WORKS 9.1. Reverse Engineering and Understandability Metrics

Data-based Approaches. These techniques are focused on the analysis of the data

managed by the application. For instance, Paradauskas et al. [138] describe an approach

to extract business knowledge from legacy code. The starting step of the approach is the

analysis of the data stored in the database with the aim of recovering its schema. The

schema is then semantically enhanced using clues extracted by analysing the system arte-

facts (e.g., source code, business reports, e-mail correspondence and corporate memos).

Another example is the work by Hung et al. [81]. This work introduces an approach to

extract business processes by the analysis of the communication flows between business-

logic and business data of a three-layers Web application. To this purpose, a static code

analysis is applied for controlling fetch and update operations used in the code to put

data into and get data from the database.

Query-based Approaches. These techniques are focused on the analysis of several

application artefacts (e.g., code, documentation) by means of (pattern-based) queries

exploiting the presence of specific information in such artefacts. For instance, Ghose et

al. [67] present an approach for querying several system artefacts (documentation, source

code and web-content) with the aim of extracting its underlying process. Two types of

artefacts are considered: text and model. The first one groups documents such as manuals,

requirement documents, mission/vision statements, meeting minutes. Model artefacts are

structural documentation of the software described by using notations such as UML and

enterprise models.

Our reverse engineering technique is a GUI-focused approach that differs from the

others in the literature since it extracts business processes exposed as Web applications

by using a dynamic analysis in which application GUI elements are traced. No specific

application knowledge and artefact availability are required. The reasons behind the

choice of a dynamic analysis approach are mainly the following: (i) software artefacts are

often not fully available (e.g., the code of third-party components is not available); (ii)

the operations performed by a Web system are usually executed according to user actions

(Web applications are event-based systems); (iii) Web applications involve dynamism (e.g.,

dynamic page construction) and reflection (e.g., dynamic DOM manipulation), which

make them hard to analyse statically.

However, differently from process mining techniques, in which traces are provided

with the execution environment, in our approach the GUI elements of Web applications,

considered as implicitly conveying information about the underlying process, are chosen

to be traced and execution logs are registered with this information.

Furthermore, we apply different types of clustering techniques (structural, logical and

249

9.1. Reverse Engineering and Understandability Metrics 9. RELATED WORKS

semantic) to the recovered process models in order to improve their readability and un-

derstandability by modularizing them. Process modularity and possible criteria for pro-

cess modularization have been investigated in the literature from different perspectives

(e.g.,[14], [183] and [189]). For example, Weber et al. [189] define the modularization

of a sub-process in process aware information systems as a change pattern. Vanhatalo

et al. [183] define SESE (single-entry-single-exit) fragments, i.e., blocks with one entry

and one exit point, as good candidates for the modularization of process models. In

a work made available on-line during the thesis writing, moreover, Reijers et al. [150],

with the aim of identifying and providing guidelines for an effective modularization of

processes into sub-processes, propose and investigate three different modularization crite-

ria (block-structuredness, connectedness and label similarity), corresponding to the three

clustering techniques proposed in our approach. According to their exploratory study the

connectedness criteria seem to be the most promising candidates.

9.1.2 Process Understandability

Understandability is one of the major factors impacting the overall quality of models [123]

and, in particular, of recovered models used to document or comprehend existing systems

and organizations [154]. Mendling et al. [111] empirically highlight what makes a pro-

cess model understandable. They reason about six factors influencing the process model

understandability: personal factors (e.g., modeller skills), model characteristics (e.g., pro-

cess structure), modelling purpose (e.g., documentation), model domain (e.g., hospital

organization), modelling language (e.g., BPMN), and visual layout strategies (e.g., hor-

izontal layout). Their results show that (i) personal factors, such as modeller skills and

knowledge, and (ii) model characteristics, such as the process size, strongly impact process

model understanding. In a more recent work, two of the same authors [148], focused on

two out of the six factors investigated in their previous work (personal and model factors),

by replicating the experiment with modelling experts. They found that, by keeping con-

stant the size of models, two of the model factors they analysed (i.e., average connector

degree and density) are related to the model understandability. Moreover, though results

are not completely reliable due to the constant size of models, they found that personal

factors have a stronger impact than model factors on the capability of understanding pro-

cess models. Finally, their results also show that there is not so much difference between

students’ and practitioners’ performance, though students more trained performed better

than both less-trained students and experts. Other works, instead, focus on a single spe-

cific aspect potentially influencing process understandability. For example, Cardoso [29]

250

9. RELATED WORKS 9.2. Business Process Semantic Annotation

investigates the impact of the control-flow complexity on the process model complexity

perceived by subjects and he found that the two complexities are actually related. Reijers

et al. [149] analyses the impact of modularization on process model understanding. Their

analysis reveals that modularization in process models is positively related to its under-

standability and that this effect is more evident in large process models. Other works

investigate the relation of process metrics with other factors. For example, Canfora et

al. [27] focus on the relation between metrics of size, complexity and coupling with main-

tainability. Mendling [114] analyses the relation between structural metrics and error

probability. Finally, only few works exist devoted at investigating the relation between

a complete set of metrics and understandability of general process models (e.g., [110]

and [55]). For example, Rolón et al. [55] found that only 12 out of the 29 metrics they

analysed are related to process model understandability.

Hence, summarizing, existing works in the literature focus on: the identification of fac-

tors making process models understandable (e.g., personal factors, model characteristics)

[111, 148]; the analysis of specific factors impacting understandability (e.g., control-flow

complexity [28] and process modularization [149]); the relation between process metrics

and factors as maintainability or errors in process models (e.g., [27] and [114]); the evalu-

ation of the understandability of generic process models (e.g., [110] and [55]). Differently

from all these approaches, our empirical investigation aims at identifying a set of met-

rics to be used as indicators for the understandability of process models recovered from

existing applications, that, up to now, is missing.

9.2 Business Process Semantic Annotation

In the literature several approaches have been proposed aimed at providing a shareable

and understandable basis for business modelling by attempting to integrate different cross-

domain and cross-organizational aspects. Some of them try to merge different perspectives

in new languages (e.g., [94]); others, instead aim at adding missing semantic information.

The problem of adding formal semantics to business processes has been extensively

investigated in the literature [16, 41, 53, 54, 71, 93, 102, 167, 190, 195]. We can roughly

divide the existing proposals into two groups: (1) those adding semantics to specify the

dynamic behaviour exhibited by a business process [190, 195, 93], and (2) those adding

semantics to specify the meaning of the entities of a process in order to improve the

automation of business process management [102, 16, 54, 167, 41, 71]. Our approach

belongs to the second group.

251

9.2. Business Process Semantic Annotation 9. RELATED WORKS

Thomas and Fellmann [167] consider the problem of augmenting EPC (Event-Driven

Process Chain) process models with semantic annotations. They propose a framework

which joins process model and ontology by means of properties (such as the “semantic

type” of a process element). Markovic [109] considers the problem of querying and reason-

ing on business process models. He presents a framework for describing business processes

which integrates functional, behavioural, organizational and informational perspectives:

the elements of the process are represented as instances of an ontology describing the pro-

cess behaviour (based on π-calculus), and the annotations of these elements with respect

to the ontologies formalizing the aforementioned perspectives are described as relation

instances. Born et al. [22] propose to link the elements of a business process to the ele-

ments of an ontology describing objects, states, transitions, and actions. These proposals

differ substantially from ours, which establishes a set of subsumption (aka subclass or

is a) relations between the classes of the two ontologies being integrated (BPMN meta-

model and domain ontology), instead of associating annotation properties to the process

instances. De Nicola et al. [41] propose an abstract language (BPAL) that bridges the

gap between high-level process descriptions (e.g., in BPMN) and executable specifications

(e.g., in BPEL). The formal semantics offered by BPAL refers to notions such as activity

and decision. They developed a BPAL platform that exploits reasoning to verify the com-

pliance of process models with respect to a metamodel as well as of process traces with

respect to the process definition [42]. Differently from our approach, they have not yet in-

tegrated business ontologies in their frameworl and their language is based on Horn clause

logic and their engine exploits Prolog systems. In the SUPER project [54], the SUPER

ontology is used for the creation of semantic annotations of both BPMN and EPC process

models in order to support automated composition, mediation and execution. Recently,

Groener and Staab [71] presented a pattern-oriented approach in which OWL representa-

tion and reasoning capabilities enable expressive process modelling and retrieval. Their

process formalisation considers the language primitives of the UML-Activity Diagram and

the connection with the domain knowledge involves the representation of terminological

information about activities and subactivities only. Di Noia et al. [130] semantically an-

notate building blocks (BBs), i.e., flexible and transparent pieces of functionality within

ERP (Enterprise Resource Planning) systems. By exploiting standard and non-standard

reasoning services, they provide a framework that automatically selects the set of BBs

needed for satisfying a requested business process and, if it does not exist, provides ex-

planations on what is in conflict and what is still missing to cover the request. Lin [102]

in her work uses the semantic annotation of process and goal models with the purpose

252

9. RELATED WORKS 9.2. Business Process Semantic Annotation

of guaranteeing the interoperability of process and goal models. She exploits a GPO

(General Process Ontology) ontology to reconcile the heterogeneous semantics of process

modelling constructs of different process modelling languages, while she uses concepts

belonging to an agreed domain ontology for reconciling model contents.

Our work represents an extension of the existing literature in that, semantically anno-

tating BPMN process elements with concepts of a domain ontology, aims at supporting

business experts with different services (e.g., automatic verification of constraints and

process querying).

Moreover, in our approach, we also support process designers in performing the time-

consuming task of process annotation.

Several tools exist for the automatic and semi-automatic semantic annotation of Web

documents and Web Services in the Semantic Web field. According to a classification

based on the type of automation they exploit, we can identify three main groups [172].

Tools belonging to the first group (e.g., KIM [142] and AeroDAML [91]) use rules cap-

turing known patterns for the automatic annotation. Works belonging to the remaining

two groups are instead based on learning systems: some of them (e.g., MnM [184] and

Melita [34]) are supervised systems, i.e., they learn from user annotations, while others

apply unsupervised learning (e.g., Armadillo [33]), i.e., they employ different techniques

in order to avoid consequences deriving from wrong manual annotations. Moreover, most

of these tools apply some form of Natural Language Processing (NLP). Our approach

exploits techniques from NLP, as for example word stemming, grammatical category clas-

sification as well as POS (Part of the Sentence) recognition. However, these techniques

are applied to short sentences rather than complete text sentences.

Though some work also exist in the literature for the semantic annotation of Web

services starting from the structured information provided by their WSDL (e.g., [139]),

few work has been done in the specific field of (semi-)automatic semantic annotation

of business processes. In their work, for example, Bögl et al. [21] target EPC process

model elements. In detail, in order to provide an automated semantic annotation of EPC

functions and events, they analyse the textual structure of natural language labels of

EPC elements by means of semantic patterns and relate them to instances of a reference

ontology.

Wang et al. [188] propose, instead a weighted mean of three similarity measures (syn-

tactic, linguistic and structural), based on string-matching, for suggesting domain anno-

tations in supply chain models. In detail, in their work, they consider the SCOR (Supply-

Chain Operation Reference) ontology (an ontology developed to specify constructs and

253

9.3. Constraint Verification on Business Processes 9. RELATED WORKS

terminology in supply chain processes on the basis of the SCOR model), as the domain

ontology and a BPMN ontology for the process structural knowledge. By combining these

two ontologies, a so-called scorBPMN ontology is derived, which is used to suggest anno-

tations for BPMN process elements, by ranking candidate annotations from scorBPMN

according to their weighted similarity measure with BPMN process elements.

Born et al. [22] also deal with the problem of supporting process designers in the

integration of domain ontology and BPMN process modelling knowledge. The process in-

formation they exploit to this purpose is related to the process structure and the matching

technique they use is mainly based on string matching (e.g., distance metrics). Moreover,

they integrate their approach for semantic annotation suggestions in the Maestro for

BPMN, a modelling tool from SAP Research and use it for web service discovery and

composition [23].

Differently from these two latter techniques, our approach takes advantage of linguistic

analysis (natural language parsing) of process element labels and of concept names, by

looking for special semantic patterns, for BPMN activities, similar to those proposed by

Bögl et al. [21] for function and event EPC elements. Moreover, our approach differs from

all those described above because it exploits a measure of information content similarity

for providing suggestions to business designers. The same similarity measure is also used

for supporting the business designer in the disambiguation of the domain ontology with

respect to the possible senses of each concept (thus reducing the search space of the

automatic suggestion algorithm) and in the ontology extension and/or creation (when

necessary).

9.3 Constraint Verification on Business Processes

There exists a number of works realizing constraint verification in business processes in

the context of business process compliance. Compliance checking has been defined by

Governatori et al. [70] as the adherence of one set of rules (source rules) to another set

of rules (target rules). By looking at the mere verification aspect of process compliance

works, we can place our approach in this trend of research.

In general, we can classify process compliance checking approaches in two main groups:

those realizing compliance checking backward and those realizing compliance checking

forward. Backward techniques are reactive approaches, i.e., they can only detect non-

compliance by looking at already executed process instances, but they are unable to pre-

vent non-compliant behaviours. Forward techniques, instead, are pro-active approaches.

254

9. RELATED WORKS 9.3. Constraint Verification on Business Processes

By targeting the verification of rules during design time or execution time, they can,

in principle, allow to prevent (in case of design-time) or solve (in case of run-time) the

problem.

Backward Approaches

Backward techniques verify if executions of business processes are in accordance with

certain constraints or rules. These works often use traces as representatives of process

instances. An example of this kind of approaches is the work by Rozinat et al. [156],

in which two metrics (fitness and appropriateness, quantifying model completeness and

generalization, respectively) are used for measuring the adherence of model behaviours

with execution trace behaviours. The ProM1 LTL Checker by Van der Aalst et al. [176],

instead, uses a variant of LTL that supports absolute time, while avoiding state explosion.

Another work in this group is the SCIFF/CLIMB framework [32, 121] by Chesani et al. It

is based on Abductive Logic Programming and it performs compliance checking between

process execution traces and rules specified in declarative languages. In detail, SCIFF

is able to formalize ConDec [140] constraints, while CLIMB uses extensions of Logic

Programming for modelling and verifying business processes, extending the expressiveness

of ConDec. Horn clauses are instead used by De Nicola et al. [42] to describe process

models and traces in BPAL and to verify the compliance of process traces with the process

model by exploiting Prolog systems.

Forward Approaches

Run-time Approaches. Run-time forward techniques target executable business pro-

cess models and potentially allow to solve non-compliance problems in time. An example

of this type of approaches is the one proposed by Namiri et al. [128]. Constraints (here

called controls) are described as declarative rules external to the process. Their monitor-

ing at run-time, however, requires the manual selection of the concrete control pattern.

Similarly, Weber et al. [190] introduce a notion of Semantic Business Process Validation

(SBPV), which exploits semantic annotations to verify constraints about the process exe-

cution semantics. In their work, semantic annotations referring to a background ontology

are used to ensure that an executable process model behaves as expected in terms of

preconditions to be fulfilled for the execution and its effects. Approaches based on LTL

for specifying run-time requirements, instead, have to face the problem deriving from the

fact that standard models of linear temporal logic are infinite traces, while, during the
1http://prom.win.tue.nl/tools/prom/

255

http://prom.win.tue.nl/tools/prom/

9.3. Constraint Verification on Business Processes 9. RELATED WORKS

execution, traces are finite and new events can occur. In order to deal with this problem

Bauer et al. [15], for example, introduce a 3-values semantics (true, false, inconclusive)

for LTL formulas. Another example of run-time compliance checking technique is the

SCIFF/CLIMB framework [6, 121]. The framework, in fact, allows not only to check

whether a complete execution trace complies with a given rule, but also to dynamically

reason on a partial trace, by exploiting a list of pending expectations.

Design-time Approaches. Design-time techniques for checking the compliance aim at

guaranteeing that all process instances will be compliant to a set of regulations. Some

of these approaches are conceived to be applied during the modelling phase, while others

use techniques like model checking to verify properties in already designed processes.

Some of the works in this group are based on the notions (derived from the norma-

tive field) of obligations, permissions and prohibitions investigated by Deontic Logic2.

For example, Governatori et al. propose the Formal Contract Language [69] (FCL) for

describing normative rules (called business contracts). FCL is a formalism combining

Deontic Logic with logic of violations and thus allowing to represent exceptions as well

as to capture violations, obligations resulting from violations and reparations. In detail,

compliance checking is given by the notions of ideal, sub-ideal, non-ideal and irrelevant

situations (Ideal Semantics), describing various degrees of compliance between execution

paths and FCL constraints. Goedertier et al. [68], instead, introduce a language, PENE-

LOPE (Process ENtailment from the ELicitation of Obligations and PErmissions), that

allows to specify obligations and permissions (temporal deontic assignments) extracted

from business regulations in order to generate a compliant process model to be used for

verification and validation purposes.

The SCIFF/CLIMB framework [6, 121] also allows the static verification of process

compliance. To this purpose, g-SCIFF, a generative version of the framework, is proposed.

g-SCIFF is able to simulate execution traces starting from a given goal and to abduce

event occurrences. In this way it is used to prove system properties at design time, or to

generate counterexamples of properties that do not hold. Similarly, the BPAL framework

by De Nicola et al. [42], can be used to verify the compliance of process models with

respect to a meta-model (well-formedness). The process model, translated into a set of

BPAL facts, and the metamodel, also described as a set of BPAL composition rules,

constraints and inclusion axioms, are provided as input to the BPAL engine that exploits

an extension of the Prolog system to check the consistency of the metamodel with respect

to the process model.

2A definition of deontic logic can be found at http://plato.stanford.edu/entries/logic-deontic/

256

http://plato.stanford.edu/entries/logic-deontic/

9. RELATED WORKS 9.3. Constraint Verification on Business Processes

Other works express constraints as LTL formulas and use model checking techniques

for verifying their compliance with process models. In order to deal with the complexity

of these formulas, most of these works also propose a visual representation of constraints,

close to the language used for describing the process control flow. For example, Forster

et al. [59] use UML Activity Diagrams to specify the business process and PPSL (Process

Pattern Specification Language), a graphical language similar to the Activity Diagrams, to

represent the business rules. In detail, they transform the process from the UML Activity

Diagram into a Labeled Transition System and PPSL rules into past-LTL formulas. A

similar approach for processes described in BPMN is proposed by Awad et al. [10]. They

adapt the visual query language BPMN-Q [9] to express the constraints they want to verify

on BPMN processes. BPMN-Q queries are first used to extract sub-graphs from a BPMN

process model repository and, then, converted into past-LTL formulas. The retrieved

sub-graphs are reduced by removing BPMN elements non-relevant for the business rule

and, once the state space has been adequately reduced (thus solving the problem of the

state explosion), they are transformed in Petri Nets on which LTL formulas are verified by

model checkers. Another approach of the same type but investigating rule verification on

BPEL processes is the one proposed by Liu et al. [103]. They also describe business rules

by means of a graphical language, BPSL (Business Property Specification Language) and

then convert them into LTL formulas. The BPEL process, instead, is first transformed

into a representation based on pi-calculus and then into a Finite State Machine; model

checkers are used to verify the compliance of the rules.

A different example of design-time approaches is the work by Schmidt et al. [159], that

is based on ontologies and exploits ontology reasoners for verification purposes. In detail,

the authors define two ontologies (described in OWL): a process ontology and a compliance

ontology. The process ontology contains the concepts needed to represent service processes

and its classes are instantiated in order to provide an ontology-based representation of

a process model. The compliance ontology, instead, contains concepts used to represent

objectives and requirements of compliance rules. Some of these requirements (named

syntactic requirements) can be directly encoded as OWL axioms, while the others require

human intervention either to add missing concepts and formalize constraints to be verified

by reasoners (semantic requirements) or to manually check the constraint (in case of

pragmatic requirements).

Our approach belongs to the category of works verifying compliance at design-time.

Similarly to the approach by Schmidt et al., it also populates the classes of a BPMNO

ontology with instances of BPMN BPDs and it exploits ontology reasoners for checking

257

9.4. Crosscutting Concerns 9. RELATED WORKS

constraints, thus allowing not only the detection of exceptions, but also their separate

management as aspects and eventually further verification of the woven process model.

However, our approach is theoretically grounded on Description Logics and applied to

semantically annotated business processes. Hence, by paying the cost of the process

semantic annotation with domain concepts, it does not require the manual addition of

special concepts for representing semantic requirements. The formalization of constraints

into Description Logic axioms and the availability of Semantic Web technologies allow us

to automatically express and verify both syntactical and semantic constraints. Moreover,

the patterns we identified allow to describe the main constraints related to the execution

flow, shared with other languages as ConDec [140], CLIMB [121], BPMN-Q [10], PPSL [59]

(e.g., existence, precedence and response), while introducing new types of requirements.

Some of these new requirements are specific of the BPMN as, for example, those related

to message flows; others, instead, are more general, like, for example, the existence of at

least a path between two BPD elements.

9.4 Crosscutting Concerns

In this section we first provide an overview of crosscutting concerns in generic software

(Subsection 9.4.1) and then we look at the approaches that apply techniques for the

separation of concerns to processes (Subsection 9.4.2).

9.4.1 Crosscutting Concerns in Software

Some of the most challenging problems in software engineering are related to code under-

standability, maintainability, evolution and reuse. At the core of software engineering is

the “divide and conquer” principle: a complex problem can be solved by breaking it up

into smaller subproblems, that can be solved in isolation and combined modularly with

each other to solve the original problem. This principle provides the basis for software

modularization. However, existing programming paradigms fail to support proper modu-

larization for scattered and tangled functionalities, commonly referred to as crosscutting

concerns.

In order to face the problem of the separation of concerns, the AOSD community pro-

posed several approaches, with different levels of invasiveness in the primary code, aimed

at supporting the programmer in crosscutting concern documentation and browsing, in

crosscutting concern mining, and in aspect refactoring.

Crosscutting Concern Browsing. Software maintenance and evolution often imply the

258

9. RELATED WORKS 9.4. Crosscutting Concerns

need for localizing specific concerns. In large systems, this task is not trivial, especially

for those concerns which crosscut the system. Several tools have been introduced in order

to support the programmer in source code navigation and concern localization. Usually

they allow users to browse the concern code starting from a ”seed” of the concern (one

or more source code entities tightly related to the concern) and incrementally extending

the exploration to the whole concern implementation. The seed expansion can be realized

semi-automatically, by proposing links to code related to the concern, or manually, by

providing the user with a query language supporting source code navigation. Examples

of such tools are JQuery and FEAT.

JQuery [85] is a generic source code browser developed as an Eclipse plugin. Eclipse

is an IDE (Integrated Development Environment) which, by itself, allows to browse the

source code looking for predefined, non customizable and mostly local code structures.

JQuery extends Eclipse by allowing to logically query the code, so as to obtain results

related to specific concerns (both crosscutting and non crosscutting). In the displayed

results, more than one view coexist in the same visual space, thus facilitating inspection

of multiple views at the same time. JQuery supports also refinement of previously defined

queries, by means of filters, and execution of further queries on elements of an existing

view, thus avoiding loss of context. JQuery is mainly focused on the exploration of the

code, in that it represents the history of the exploration process, without providing explicit

support for capturing the representation of a concern.

The FEAT [152] tool, on the contrary, is more specifically concern-oriented. It allows

to explicitly model a concern as a container of source elements (classes, methods or at-

tributes) and to graphically display a tree representation of the code contributing to its

implementation. Starting from a ”seed” of the concern, the full concern is incrementally

built by querying the structural relationships in the source code.

Crosscutting Concern Mining. In large systems, even with browsing and documenting

tool support, manual search for crosscutting concerns can be a difficult and error-prone

task. A number of different techniques, proposed in the context of migration of legacy

code to aspect-oriented code, have been developed to automate aspect mining. They can

be grouped into static techniques, looking for candidate aspects in the source code, or

dynamic, finding patterns in the executions (e.g., in the execution traces). Moreover, they

can be based on formal analysis, like Formal Concept Analysis, on metrics (as the fan-in

technique) or on heuristics.

For the purpose of aspect mining, FCA (Formal Concept Analysis) has been used in

several different ways. FCA produces a lattice of concepts out of a relationship between

259

9.4. Crosscutting Concerns 9. RELATED WORKS

objects and attributes. Concepts group maximal sets of objects sharing maximal sets

of attributes. Tonella and Ceccato [170] applied the FCA algorithm to execution traces.

They use execution traces associated with use cases as objects and methods invoked during

the execution of the use case as attributes. Then, they focus on concepts containing traces

belonging to a single use case and among these, they consider as candidate aspects those

labelled by methods belonging to more than one module and to modules whose methods

label more than one use case (thus enforcing scattering and tangling of the concern).

Tourwè and Mens [171] applied FCA to the static code, performing an identifier analy-

sis. They consider modules and operational units as objects and meaningful substrings of

their identifiers as attributes. They finally obtain maximal groups of classes and methods

that share a maximal number of subterms in their identifiers.

Another work in which FCA is used for detecting crosscutting concerns has been pro-

posed by Tonella and Antoniol [169]. They applied this technique in order to find design

patterns. They consider groups of classes as objects and class relationships and prop-

erties as attributes of concepts. They finally find structural patterns without using any

predefined library.

Aspect Refactoring. Software refactoring [61] is a technique that helps to improve

the internal structure of a software system, while preserving its external behaviour. Im-

provements consist of design level enhancements. Their goal is to get a better organized,

more readable and clean code, avoiding code duplications and producing a modulariza-

tion easier to understand and maintain. Aspect refactoring techniques are based on the

transformation of crosscutting concerns, either manually determined with browsing tool

support, or automatically discovered by means of aspect mining tools, into actual aspects.

This process implies a range of design choices for the right crosscutting concern organiza-

tion and modularization into aspects, hence the introduction of new specific refactorings,

as for instance those related to the advice choice. Several attempts aimed at organizing

aspect refactorings into a coherent catalogue have been made, mainly for object oriented

systems and with different levels of granularity. Monteiro [122], for example, proposes a

low-level aspect refactoring catalogue for the migration from Java to AspectJ. At a higher

level of granularity, Laddad [97] suggests some concrete applications of aspect refactor-

ing, like aspect modularization of the logging functionality, of business rules, exception

handling and design patterns.

260

9. RELATED WORKS 9.4. Crosscutting Concerns

9.4.2 Crosscutting concerns and processes

Although the idea of the separation of concerns originated in the context of general-

purpose programming languages and was initially applied to the implementation phase

only, its principles have been extended not only throughout the software development

process (e.g. starting with aspect-oriented requirement analysis), but also to specific

process languages.

Mezini and Charfi [7], for example, stress the lack of flexibility and modularization of

crosscutting concerns in classic process definition languages. In their work, they propose

to apply an aspect oriented approach to business processes and, in particular, to the as-

sociated process execution languages. AO4BPEL [7] is an aspect oriented extension of

BPEL [39], designed to be as close as possible to the AOP programming language As-

pectJ [97], thus providing similar concepts for describing pointcut designators, joinpoints

and advices. In AO4BPEL, advices are fragments of BPEL code, while pointcut des-

ignators take advantage of XPath expressions to locate the places in the BPEL process

where the aspect is applied. The language allows to break the ”tyranny of the hierarchical

decomposition” usually adopted in process definition languages, thus enabling a concern-

based modularization. Such decomposition not only separates non functional crosscutting

concerns, but, taking advantage of the particular structure of workflow processes, it also

makes the system more open and adaptable to functional changes, by encapsulating func-

tional concerns too. Dynamic weaving is realized by means of a custom BPEL engine.

Courbis and Finkelstein [38] propose an approach similar to AO4BPEL: XPath as

pointcut language and a custom engine for dynamic weaving. The main differences lie

in the choices related to the advice language, that is Java, and the crosscutting concern

type, basically non functional.

Verheecke, Cibràn and Jonckers [186] present aspects as solutions for capturing con-

cerns that are both typical of the web service world, like, for example, service selection

and billing, and classic non functional concerns, e.g., transactions. They propose WSML

(Web Service Management Layer), a layer that uses aspects implemented in JAsCo, a

dynamic aspect oriented extension of Java, for representing aspects related to services

and independent from the composition of services in processes.

Kongdenfha et al. [92], instead, use run-time weaving of aspects for adaptation pur-

poses. In detail, they focus on the problem of service mismatching with external speci-

fications (i.e., the external descriptions of the service interfaces). They classify possible

mismatches (e.g., signature, order mismatch) according to a taxonomy and they propose

aspect templates for dealing with each of these situations. Their joinpoint definition is

261

9.4. Crosscutting Concerns 9. RELATED WORKS

based on a query language, similar to executable process query languages, but enriched

with the capability to specify runtime conditions, while advices are expressed in BPEL.

On the other hand, Padus [26] focuses more on aspects concerning activity composition,

i.e., on process centered aspects. Padus is yet another aspect-oriented BPEL extension,

quite similar to AO4BPEL, but without dynamic weaving (so that it is independent from

the BPEL engine used) and with some improvements. In detail, the proposed pointcut

language is more abstract than XPath (so that it is possible to achieve independence from

the document structure), the joinpoint model is richer (by allowing to capture all types

of activities) and finally an explicit construct for the deployment is introduced in order

to be able to specify instances of a given process by means of a logic language.

Finally, other works, similar to these approaches but not explicitly using aspects, exist

in the literature. For example, Casati et al. [30] propose an approach for the manage-

ment of flexible workflows based on rules and patterns to be used in particular for the

separate modelling of exceptional flows. In fact, rules allow to model exceptional flows

independently from the main flow, while patterns provide support to designers address-

ing exception and exception handling situations. A rule, in the WIDE framework they

propose, is composed of an event (specifying when the rule is triggered), a condition

(specifying a condition to be verified to activate the rule) and the action (the operations

to be performed). Similarly to aspect definitions, their rules answer the when (event) and

what (action) question, as well as allow to specify a condition to be verified.

All these works, however, mainly focus on the developers’ perspective, without con-

sidering the business designers’ one. In practice, business experts prefer a higher level

modelling notation, such as BPMN to a process executable language. Our aspect-based

language BPMN VRL, by proposing a solution for the modularization of crosscutting con-

cerns into aspects at design-time and a syntax as close as possible to BPMN, takes into

account the modellers’ needs. In particular, similarly to lower level approaches (e.g.,

implementation-oriented), BPMN VRL has been applied for the separate management of

exception handling mechanisms in business processes. Similar approaches, i.e., proposing

the separate modelling of exceptional flows by exploiting rules, have been investigated in

the literature.

In some cases, however, the explicit decomposition of the process into totally separate

aspects may hinder, instead of simplifying, process design and comprehension for business

experts. Hence, offering the possibility to choose among different degrees of modulariza-

tion, similarly to the solutions proposed for the separation of concerns in general purpose

code, can represent an important support for business designers. For example, a valid al-

262

9. RELATED WORKS 9.4. Crosscutting Concerns

ternative to the decomposition into totally separate aspects is represented by crosscutting

concern retrieval (mining) and documentation.

By taking inspiration from the aspect mining techniques described in the previous

subsection, FCA has been applied to semantically annotated processes for automatically

mining crosscutting concerns. In detail, maximal set of process elements, associated

with a maximal set of semantic concepts (including superconcepts) they instantiate, are

identified.

BPMN VQL allows not only to manually retrieve crosscutting concerns but also to

query the process with respect to generic concerns, thus supporting designers in process

browsing. Several languages for querying process models exist in the literature (e.g., [120,

119, 16, 9]). Some of them are textual, while others are visual languages. For example,

BPQL [120], a textual language based on the Stack Based Query Language (SBQL) [164],

mainly used to retrieve (and manage) information with specific characteristics related not

only to the process structure, but also to execution objects and performers, belongs to

the first class.

Some of these textual languages share with our approach the capability to query both

structural and semantic knowledge. For example, Missikoff et al. [119] propose a lan-

guage, similar to SQL (Structured Query Language), allowing to query the process also

about business concepts and process traces, i.e., beyond the structural, both the business

semantic and the execution dimensions are considered.

To the best of our knowledge, instead, only two process query languages have a graph-

ical syntax: BPMN-Q [9] and BP-QL [17].

BPMN-Q [9] is a BPMN extension for visually querying business processes, differing

from BPMN VQL on purpose and operators provided to the business designers. Its ob-

jective, in fact, is to query process repositories for retrieving process models with desired

structural features, thus promoting process reuse.

BP-QL [17], instead, is a language for querying BPEL processes based on business

process patterns, that allow to describe the desired control-flow or data flow patterns of

interest. It enables the navigation along two axes (the path-based and the zoom-in axis),

thus allowing users to have paths in query results, as well as to control the granularity in

business processes. The BP-QL implementation exploits the graph matching functionality

of XML and is based on Active XML (AXML)3, an XML enriched with service calls to

Web services. Also BP-QL, differently from BPMN VQL, is mainly conceived for querying

repositories. Moreover, it targets executable processes described in BPEL [39] and it does

3http://activexml.net

263

http://activexml.net

9.5. Business Process Exception Handling 9. RELATED WORKS

not allow to query processes about semantic aspects,

9.5 Business Process Exception Handling

Among the requirements business designers are interested to ensure, exception handling

holds a crucial role for enhancing the process robustness since the modelling phase. With

the aim of supporting process designers in the correct management of exceptions, several

works in the literature have investigated exceptions and their handling. Some of them

classify exception handlers according to patterns at different levels of abstraction [30,

100, 157]; others [18, 43] exploit semantic information stored in a repository or added to

the process in order to warn designers against potential errors and/or to suggest possible

solutions for their management.

In the first group, Russel et al. [157], for example, propose a categorization of excep-

tions and exception handling in Process Aware Information Systems (PAIS). In detail,

they classify exceptions into five categories (activity failure, deadline expiration, resource

unavailability, external trigger and constraint violation) and exception handling on the

basis of three different levels of granularity (activity, case and recovery action perspec-

tive). In case of the activity perspective, they analyse a rich description of the activity life

cycle and try to identify possible exception handling reactions, according to the presence

of non-normative transitions; with respect to the case level, they categorize the possi-

ble impacts of the exception on the other activities of the current instance or of other

instances of the same process currently executing (continue workflow, remove current,

remove all); and, finally for the recovery action they distinguish among three different

strategies (no action, rollback and compensation). Their work of classification results

in the identification of process exception handling patterns, obtained by considering all

the possible combinations of these four factors. For each type of exception, they hence

combine the different exception handling strategies at activity level (according to the lo-

cation of the occurrence of the exception), case level and with respect to the recovery

action. Exception patterns proposed by Lerner et al. [100], instead, are at a higher level

of abstraction than those proposed by Russel et al.. In detail, they classify the patterns

in three main categories: patterns allowing to choose among alternatives, patterns adding

new behaviour and patterns cancelling some behaviour. Moreover, they provide evidence

of pattern occurrence in real processes and a description of the pattern applicability (i.e.,

what problem can be solved with the specific pattern).

In the second group of works Dellarocas and Klein [43] propose the use of a reusable

264

9. RELATED WORKS 9.6. Visual Process Query Language Evaluation

and extensible body of knowledge describing and classifying exceptions and their handlers

for detecting, diagnosing and resolving exceptions. Eliahu and Elhadad [18] infer the

existence of likely errors by analysing the structure of the process and some semantic

information added to process activities in the form of semantic tags.

In our work we exploit semantics both for verifying the correct handling of exceptions

and for modularizing their management into aspects, thus allowing not only the detection

of the exception, but also the separate management and eventually further verification of

the woven aspect. As already mentioned in the previous subsection, the use of aspects

for exception handling has been deeply investigated in the AOP literature, for example

for the AOP refactoring of object oriented code [97].

9.6 Visual Process Query Language Evaluation

Due to the relatively new introduction of visual query languages for business processes,

no empirical evaluation on their usability exists in the literature.

We can identify, however, two main group of works (experiments about visual query

languages and empirical studies about BPMN processes), which can be related to the

BPMN VQL empirical evaluation.

Some works investigating the advantages of visual languages for querying databases

rather than using standard textual languages, as SQL, can be found in the literature. For

example, Catarci et al. [31] in their work conduct an empirical study with subjects for

comparing the QBD* (Query By Diagram) visual query language, which is based on a

conceptual data model, with the SQL language. Though they found that the effectiveness

of the language varies depending on the types of queries and users, the general trend is in

favour of the visual language. Sadanandan et al. [158], instead, conducted an exploratory

study in order to investigate the usability of the visual language they propose for querying

ontologies. Results confirm a high usability of the approach.

A second group of related works is the one empirically assessing the usability of the

BPMN notation, which represents the basis of the BPMN VQL language. Recker et

al. [145, 143] analysed BPMN against the Bunge-Wand-and-Weber ontology and validated

their findings by means of exploratory studies. Though they identified some weaknesses

in the language, they confirmed BPMN to be a mature language for modelling business

processes. Recker et al. [146] evaluated BPMN versus EPC from a teaching perspective.

Untrained BPMN modellers overperformed with respect to trained participants working

with EPC. In a recent empirical study with human subjects about the usability of BPMN

265

9.6. Visual Process Query Language Evaluation 9. RELATED WORKS

and UML Activity Diagrams, Birkmeier et al. [19] found that UML Activity Diagrams are

at least as usable as BPMN. This result confirms the one obtained by Recker et al. [147]

about BPMN complexity. In their study they found that BPMN has very high levels of

complexity, but that, however, such complexity could be significantly reduced through the

use of modelling conventions and limiting the use of BPMN symbols to a subset [125, 144].

266

Chapter 10

Conclusions and Future Works

The core of this thesis is the presentation of a framework that formalizes business process

models enriched with semantic annotations into a knowledge base. The semantic anno-

tation of business process models, besides clarifying their semantics, thus making them

more understandable to people, enables several advanced analyses and manipulations,

e.g., the documentation of crosscutting concerns by means of a visual and formal language

(BPMN VQL), their semi-automatic mining in process models, as well as their aspectiza-

tion, by means of another visual language (BPMN VRL). Moreover, the formalization into

a knowledge base allows to automatically verify constraints and query semantically anno-

tated process models, by enabling reasoning services. Since process models are not always

available and, when they exist, enriching them with semantic annotations is an expensive

task, we support designers and analysts with techniques for the reverse engineering of

process models and for the automated suggestion of semantic annotations for business

process elements. A preliminary empirical investigation of process structural metrics as

early indicators of the recovered process model understandability and an empirical study

with subjects investigating benefits of and efforts required by the BPMN VQL with respect

to the natural language have been conducted.

In summary, this thesis contributes to the state of the art by:

• proposing a technique for the reverse engineering of business process models;

• investigating the use of process metrics as early indicators of the recovered process

model quality (in terms of human understandability);

• presenting semi-automatic techniques supporting business designers in the semantic

annotation of business process models with domain ontology concepts, as well as in

the domain ontology construction and extension;

267

10. CONCLUSIONS AND FUTURE WORKS

• introducing a business process knowledge base allowing to formalize both the struc-

tural and the business domain information of semantically annotated business pro-

cess models;

• proposing an approach for constraint definition and automatic verification in se-

mantically annotated process models;

• defining a visual language (BPMN VQL) to query business process models and doc-

ument scattered and tangled business concerns;

• proposing a technique (based on Formal Concept Analysis) for the semi-automatic

retrieval and documentation of crosscutting concerns in semantically annotated

business processes;

• defining an aspect-oriented language (BPMN VRL) to modularize crosscutting con-

cerns (e.g., exceptional flows) in process models;

• presenting the results of an empirical study with human subjects conducted to

evaluate and assess the ease of use of BPMN VQL with respect to using natural

language.

Despite the limitations of the work in this thesis, we believe that it shows how enriching

process models with semantics and formality, while preserving their ease of use, can

enhance the current support to business experts (hence strengthening the role of business

process models as artefacts intended to be used by humans). On one side, in fact, results

related to the quality of reverse engineered process models from Web applications and

of semantic annotation suggestions show that, even if applications are not documented,

process models describing their flow can be recovered and that business experts can be

partially relieved from the time-consuming activity of semantically annotating processes.

On the other side, results related to the performance of the process encoding into the

knowledge base, to the process querying, to the automated verification of constraints

and to the concern aspectization demonstrate that the automated support provided by

the process semantic annotation is useful for business designers’ and analysts’ activities.

Furthermore, the results obtained in the empirical study with human subjects on BPMN

VQL demonstrate the actual effectiveness and efficiency (in terms of benefits gained and

effort required) of one of the proposed uses of the process semantic annotation. These

promising results make us believe that similar benefits could be expected for the other

application scenarios (e.g., for the similar BPMN VRL language).

268

10. CONCLUSIONS AND FUTURE WORKS

In future studies, we are interested and we plan to empirically investigate the impact of

semantic annotation in each application scenario. Moreover, we plan to improve automatic

suggestion approaches by exploiting merging axioms and other user-defined constraints.

Finally, we are interested in strengthening the support provided to business designers

and analysts in the generation of semantically annotated business process models when

initial process models do not exist. In detail, we would like to investigate techniques

for extending our reverse engineering technique to other (non-Web) types of application

interfaces as well as for improving syntax and semantics of element labels in recovered

process models, thus also enhancing the quality of the semantic annotation suggestions.

269

Bibliography

[1] Property-based software engineering measurement. IEEE Transactions on Software

Engineering, 22(1):68–86, 1996.

[2] Meta-Object Facility (MOF) 1.4 Specification. http://www.omg.org/technology/

documents/formal/mof.htm, April 2002.

[3] W. Abramowicz, A. Filipowska, M. Kaczmarek, and T. Kaczmarek. Semantically

enhanced business process modelling notation. In Proceedings of the Workshop on

Semantic Business Process and Product Lifecycle Management (SBPM), Innsbruck,

Austria, 2007.

[4] M. Adler. An algebra for data flow diagram process decomposition. Software Engi-

neering, IEEE Transactions on, 14(2):169 –183, February 1988.

[5] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers. Principles, Techniques, and

Tools. 1985.

[6] Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,

Marco Montali, and Paolo Torroni. Expressing and verifying business contracts with

abductive logic programming. Int. J. Electron. Commerce, 12:9–38, July 2008.

[7] Mira Mezini Anis Charfi. Aspect-oriented web service composition with AO4BPEL.

In Proceedings of the 2nd European Conference on Web Services (ECOWS), volume

3250 of LNCS, pages 168–182. Springer, September 2004.

[8] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering

traceability links between code and documentation. Software Engineering, IEEE

Transactions on, 28(10):970 – 983, October 2002.

[9] Ahmed Awad. Bpmn-q: A language to query business processes. In Manfred Re-

ichert, Stefan Strecker, and Klaus Turowski, editors, EMISA, volume P-119 of LNI,

pages 115–128. GI, 2007.

271

http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/mof.htm

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance checking using

bpmn-q and temporal logic. In Proceedings of the 6th International Conference on

Business Process Management, BPM ’08, pages 326–341, Berlin, Heidelberg, 2008.

Springer-Verlag.

[11] Ahmed Awad, Sherif Sakr, and Ghazi Al-Naymat. Querying Business Processes on

Multiple Layers. IGI Global, 2010.

[12] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,

editors. The Description Logic Handbook: Theory, Implementation, and Applica-

tions. Cambridge University Press, 2003.

[13] Alberto Bacchelli, Marco D’Ambros, Michele Lanza, and Romain Robbes. Bench-

marking lightweight techniques to link e-mails and source code. In Proceedings of the

2009 16th Working Conference on Reverse Engineering, WCRE ’09, pages 205–214,

Washington, DC, USA, 2009. IEEE Computer Society.

[14] Amit Basu and Robert W. Blanning. Synthesis and decomposition of processes in

organizations. Info. Sys. Research, 14:337–355, December 2003.

[15] Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring of real-time

properties. In S. Arun-Kumar and Naveen Garg, editors, FSTTCS 2006: Foun-

dations of Software Technology and Theoretical Computer Science, volume 4337 of

Lecture Notes in Computer Science, pages 260–272. Springer Berlin / Heidelberg,

2006.

[16] Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo. Querying business

processes. In Proceedings of the 32nd International Conference on Very large data

bases (VLDB ’06), pages 343–354, 2006.

[17] Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo. Querying business

processes with bp-ql. Information Systems, 33(6):477–507, 2008.

[18] Ziv Ben-Eliahu and Michael Elhadad. Semantic business process for improved ex-

ception handling. Technical report, Department of Computer Science, Ben Gurion

University of the Negev, Israel, 2009.

[19] Dominik Birkmeier, Sebastian Kloeckner, and Sven Overhage. An empirical com-

parison of the usability of bpmn and uml activity diagrams for business users. In

Proceedings of the 18th European Conference on Information Systems (ECIS), 2010.

272

BIBLIOGRAPHY BIBLIOGRAPHY

[20] B.W. Boehm, J.R. Brown, and M.L. Lipow. Quantitative evaluation of software

quality. In International Conference on Software Engineering (ICSE), 1976.

[21] Andreas Bögl, Michael Schrefl, Gustav Pomberger, and Norbert Weber. Semantic

annotation of epc models in engineering domains to facilitate an automated identifi-

cation of common modelling practices. In Will Aalst, John Mylopoulos, Norman M.

Sadeh, Michael J. Shaw, Clemens Szyperski, Joaquim Filipe, and Jos Cordeiro,

editors, Enterprise Information Systems, volume 19 of Lecture Notes in Business

Information Processing, pages 155–171. Springer Berlin Heidelberg, 2009.

[22] Matthias Born, Florian Dörr, and Ingo Weber. User-friendly semantic annotation in

business process modeling. In Mathias Weske, Mohand-Säıd Hacid, and Claude Go-

dart, editors, Proceedings of the 2007 International Conference on Web Information

Systems Engineering, volume 4832/2007 of LNCS, pages 260–271. Springer-Verlag

Berlin, Heidelberg, 2007.

[23] Matthias Born, Jörg Hoffmann, Tomasz Kaczmarek, Marek Kowalkiewicz, Ivan

Markovic, James Scicluna, Ingo Weber, and Xuan Zhou. Semantic annotation and

composition of business processes with maestro. In Proceedings of the 5th European

semantic web conference on The semantic web: research and applications, ESWC’08,

pages 772–776, Berlin, Heidelberg, 2008. Springer-Verlag.

[24] R.P.J.C. Bose and W.M.P. van der Aalst. Context aware trace clustering: Towards

improving process mining results. In Proc. of Symposium on Discrete Algorithms

(SDM-SIAM), pages 401–412, USA, 2009.

[25] Business Process Management Initiative (BPMI). Business process modeling nota-

tion: Specification. http://www.bpmn.org, 2006.

[26] Mathieu Braem, Kris Verlaenen, Niels Joncheere, Wim Vanderperren, Ragnhild

Van Der Straeten, Eddy Truyen, Wouter Joosen, and Viviane Jonckers. Isolating

process-level concerns using padus. In Schahram Dustdar, Jos Luiz Fiadeiro, and

Amit P. Sheth, editors, Business Process Management, volume 4102 of Lecture Notes

in Computer Science, pages 113–128. Springer, 2006.

[27] G. Canfora, F. Garćıa, M. Piattini, F. Ruiz, and C. A. Visaggio. A family of

experiments to validate metrics for software process models. J. Syst. Softw., 77:113–

129, August 2005.

273

http://www.bpmn.org/Documents/OMG Final Adopted BPMN 1-0 Spec 06-02-01.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[28] J. Cardoso, J. Mendling, G. Neumann, and H.A. Reijers. A discourse on complexity

of process models. In Proc. of Workshop on Business Process Intelligence (BPI),

2006.

[29] Jorge Cardoso. Process control-flow complexity metric: An empirical validation.

Services Computing, IEEE International Conference on, 0:167–173, 2006.

[30] Fabio Casati, Silvana Castano, Mariagrazia Fugini, Isabelle Mirbel, and Barbara

Pernici. Using patterns to design rules in workflows. IEEE Trans. Softw. Eng.,

26:760–785, August 2000.

[31] Tiziana Catarci, Giuseppe Santucci, and Tiziana Catarci. Are visual query lan-

guages easier to use than traditional ones? an experimental proof. In In Interna-

tional Conference on Human-Computer Interaction (HCI95, pages 323–338, 1995.

[32] Federico Chesani, Paola Mello, Marco Montali, Fabrizio Riguzzi, Maurizio Sebas-

tianis, and Sergio Storari. Checking Compliance of Execution Traces to Business

Rules. In Danilo Ardagna, Massimo Mecella, and Jian Yang, editors, Business Pro-

cess Management Workshops, volume 17, chapter 13, pages 134–145. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2009.

[33] Fabio Ciravegna, Sam Chapman, Alexiei Dingli, and Yorick Wilks. Learning to

harvest information for the semantic web. In In Proceedings of the 1st European

Semantic Web Symposium, pages 10–12, 2004.

[34] Fabio Ciravegna, Alexiei Dingli, Daniela Petrelli, and Yorick Wilks. User-system

cooperation in document annotation based on information extraction. In In Proceed-

ings of the 13th International Conference on Knowledge Engineering and Knowledge

Management, EKAW02, pages 122–137. Springer Verlag, 2002.

[35] J. Cohen, editor. Statistical Power Analysis for the Behavioral Sciences. Lawrence

Erlbaum Assoc., 1988.

[36] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software engineering metrics and

models. Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1986.

[37] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press, 1990.

[38] Carine Courbis and Anthony Finkelstein. Towards aspect weaving applications. In

ICSE ’05: Proceedings of the 27th international conference on Software engineering,

pages 69–77, New York, NY, USA, 2005. ACM.

274

BIBLIOGRAPHY BIBLIOGRAPHY

[39] Francisco Curbera, Yaron Goland, Yohannes Klein, Frank Leymann, Dieter Roller,

and Sanjiva Weerawarana. Business process execution language for web services.

Web page. Version 1.0 - July 31, 2002.

[40] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editors. Structured programming.

Academic Press Ltd., London, UK, UK, 1972.

[41] A. De Nicola, M. Lezoche, and M. Missikoff. An ontological approach to business

process modeling. In Proceedings of Proceedings of the 3rd Indian International Con-

ference on Artificial Intelligence (IICAI 2007), pages 1794–1813, December 2007.

[42] Antonio De Nicola, Michele Missikoff, Maurizio Proietti, and Fabrizio Smith. An

open platform for business process modeling and verification. In Proceedings of the

21st international conference on Database and expert systems applications: Part I,

DEXA’10, pages 76–90, Berlin, Heidelberg, 2010. Springer-Verlag.

[43] Chrysanthos Dellarocas and Mark Klein. A knowledge-based approach for designing

robust business processes. In Business Process Management, Models, Techniques,

and Empirical Studies, pages 50–65. Springer-Verlag, 2000.

[44] Chiara Di Francescomarino, Chiara Ghidini, Marco Rospocher, Luciani Serafini,

and Paolo Tonella. Semantically-aided business process modeling. In Abraham

Bernstein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico

Motta, and Krishnaprasad Thirunarayan, editors, 8th International Semantic Web

Conference (ISWC 2009), volume 5823/2009 of Lecture Notes in Computer Science,

pages 114–129, Westfields Conference Center, Washington, DC. USA, 25-29 October

2009. Springer Berlin / Heidelberg.

[45] Chiara Di Francescomarino, Chiara Ghidini, Marco Rospocher, Luciano Serafini,

and Paolo Tonella. Reasoning on semantically annotated processes. In ICSOC,

pages 132–146, 2008.

[46] Chiara Di Francescomarino, Chiara Ghidini, Marco Rospocher, Luciano Serafini,

and Paolo Tonella. A framework for the collaborative specification of semantically

annotated business processes. Journal of Software Maintenance and Evolution: Re-

search and Practice, pages n/a–n/a, 2011.

[47] Chiara Di Francescomarino, Alessandro Marchetto, and Paolo Tonella. Reverse

engineering of business processes exposed as web applications. In 13th European

275

BIBLIOGRAPHY BIBLIOGRAPHY

Conference on Software Maintenance and Reengineering, CSMR 2009, Architecture-

Centric Maintenance of Large-SCale Software Systems, Kaiserslautern, Germany,

24-27 March 2009. IEEE, 2009.

[48] Chiara Di Francescomarino, Alessandro Marchetto, and Paolo Tonella. Cluster-

based modularization of processes recovered from web applications. Journal of Soft-

ware Maintenance and Evolution: Research and Practice, 2010.

[49] Chiara Di Francescomarino and Paolo Tonella. Crosscutting concern documentation

by visual query of business processes. In Proc. of BPD2008, 2008.

[50] Chiara Di Francescomarino and Paolo Tonella. Supporting ontology-based se-

mantic annotation of business processes with automated suggestions. In BM-

MDS/EMMSAD, volume 29 of Lecture Notes in Business Information Processing,

pages 211–223. Springer, 2009.

[51] Chiara Di Francescomarino and Paolo Tonella. Supporting ontology-based semantic

annotation of business processes with automated suggestions. IJISMD, 1(2):59–84,

2010.

[52] Giuseppe Antonio Di Lucca, Anna Rita Fasolino, Porfirio Tramontana, and Ugo De

Carlini. Recovering a business object model from web applications. In International

Computer Software and Applications Conference (COMPSAC). IEEE Computer

Society, November 2003.

[53] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Formal semantics and

automated analysis of bpmn process models, 2007. http://eprints.qut.edu.au/

archive/00005969/.

[54] M. Dimitrov, A. Simov, S. Stein, and M. Konstantinov. A bpmo based semantic

business process modelling environment. In Proceedings of the Workshop on Seman-

tic Business Process and Product Lifecycle Management (SBPM 2007), volume 251

of CEUR-WS, 2007.

[55] E.Rolón, L.Sánchez, F.Garćıa, F.Ruiz, M.Piattini, D.Caivano, and G.Visaggio. Pre-

diction models for bpmn usability and maintainability. In Proc. of the International

Conference on Commerce and Enterprise Computing (CCEC). IEEE Computer So-

ciety, 2009.

276

http://eprints.qut.edu.au/archive/00005969/
http://eprints.qut.edu.au/archive/00005969/

BIBLIOGRAPHY BIBLIOGRAPHY

[56] B. Wetzstein et. al. Semantic business process management: A lifecycle based

requirements analysis. In Proc. of the Workshop on Semantic Business Process and

Product Lifecycle Management, volume 251 of CEUR Workshop Proceedings, 2007.

[57] Dieter Fensel. Ontologies: Dynamic networks of formally represented meaning, 2001.

[58] Robert E. Filman, Tzilla Elrad, Siobhn Clarke, and Mehmet Aksit. Aspect-Oriented

Software Development. Addison-Wesley, October 6, 2004.

[59] Alexander Forster, Gregor Engels, Tim Schattkowsky, and Ragnhild Van

Der Straeten. Verification of business process quality constraints based on visual

process patterns. In Proceedings of the First Joint IEEE/IFIP Symposium on The-

oretical Aspects of Software Engineering, pages 197–208, Washington, DC, USA,

2007. IEEE Computer Society.

[60] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation study of the

model evaluation criterion mmre. IEEE Transactions on Software Engineering,

29(11):985–995, 2003.

[61] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-

Wesley, Boston, MA, USA, 1999.

[62] W. B. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and

Algorithms. 1992.

[63] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening

Ontologies with DOLCE. In Proc. EKAW ’02, volume 2473 of LNCS, pages 166–181,

2002.

[64] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.

Spring-Verlag, 1999.

[65] C. Ghidini, M. K. Hasan, M. Rospocher, and L. Serafini. A proposal of merg-

ing axioms between bpmn and dolce ontologies. Technical report, FBK-irst, 2009.

https://dkm.fbk.eu/index.php/BPMN_Related_Resources.

[66] C. Ghidini, M. Rospocher, and L. Serafini. A formalisation of BPMN in description

logics. Technical Report TR 2008-06-004, FBK-irst, 2008. https://dkm.fbk.eu/

index.php/BPMN_Related_Resources.

277

https://dkm.fbk.eu/index.php/BPMN_Related_Resources
https://dkm.fbk.eu/index.php/BPMN_Related_Resources
https://dkm.fbk.eu/index.php/BPMN_Related_Resources

BIBLIOGRAPHY BIBLIOGRAPHY

[67] A. Ghose, G. Koliadis, and A. Chueng. Process discovery from model and text

artefacts. In International Workshop on Service- and Process-Oriented Software

Engineering (SOPOSE). IEEE Computer Society, July 2007.

[68] Stijn Goedertier and Jan Vanthienen. Designing compliant business processes with

obligations and permissions. In Business Process Management Workshops, pages

5–14, 2006.

[69] Guido Governatori, Zoran Milosevic, and Shazia Sadiq. Compliance checking be-

tween business processes and business contracts. In Proceedings of the 10th IEEE

International Enterprise Distributed Object Computing Conference, pages 221–232,

Washington, DC, USA, 2006. IEEE Computer Society.

[70] Guido Governatori and Shazia Sadiq. The journey to business process compliance.

In Handbook of Research on BPM. IGI Global, 2008.

[71] G. Gröner and S. Staab. Modeling and query patterns for process retrieval in owl.

In Proceedings of the 8th International Semantic Web Conference (ISWC 2009),

volume 5823 of LNCS, pages 243–259. Springer, 2009.

[72] RDF Data Access Working Group. SPARQL query language for RDF.

W3C recommendation, W3C, January 2008. http://www.w3.org/TR/2008/

REC-rdf-sparql-query-20080115/.

[73] SPARQL Working Group. Sparql new features and rationale. Web page, July 2009.

http://www.w3.org/TR/2010/WD-sparql11-query-20100126/.

[74] Thomas R. Gruber. A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2):199–220, June 1993.

[75] Volker Gruhn and Ralf Laue. Complexity metrics for business process models. In

International Conference on Business Information Systems (BIS), 2006.

[76] Nicola Guarino. Formal ontology and information systems. pages 3–15. IOS Press,

1998.

[77] Michael Havey. SOA Cookbook: Design Recipes for Building Better SOA Processes.

October 2008.

[78] Martin Hepp, Frank Leymann, John Domingue, Alexander Wahler, and Dieter

Fensel. Semantic business process management: A vision towards using semantic

web services for business process management. In Proc. of ICEBE2005, 2005.

278

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2010/WD-sparql11-query-20100126/

BIBLIOGRAPHY BIBLIOGRAPHY

[79] Heinrich Herre, Barbara Heller, Patryk Burek, Robert Hoehndorf, Frank Loebe,

and Hannes Michalek. General Formal Ontology (GFO) – A foundational ontology

integrating objects and processes [Version 1.0]. Technical Report 8, Research Group

Ontologies in Medicine, Institute of Medical Informatics, Statistics and Epidemiol-

ogy, University of Leipzig, Leipzig, July 2006.

[80] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and precise justifica-

tions in owl. In International Semantic Web Conference, volume 5318 of Lecture

Notes in Computer Science, pages 323–338. Springer, 2008.

[81] Maokeng Hung and Ying Zou. Extracting business processes from three-tier archi-

tecture systems. In Reverse Engineering to Requirements (REtR). IEEE Computer

Society, June 2005.

[82] Maokeng Hung and Ying Zou. Recovering workflows from multi tiered e-commerce

systems. In International Conference on Program Comprehension (ICPC). IEEE

Computer Society, June 2007.

[83] Nancy Ide and Jean Vronis. Word sense disambiguation: The state of the art.

Computational Linguistics, 24:1–40, 1998.

[84] Business Process Management Initiative. Business process: Business process query

language. http://www.service-architecture.com/web-services/articles/

business_process_query_language_bpql.html.

[85] Doug Janzen and Kris De Volder. Navigating and querying code without getting

lost. In AOSD ’03: Proceedings of the 2nd international conference on Aspect-

oriented software development, pages 178–187, New York, NY, USA, 2003. ACM

Press.

[86] M. Jorgensen. Experience with the accuracy of software maintenance task effort

prediction models. IEEE Transactions on Software Engineering, 21(8):674–681,

1995.

[87] S.K. Kachingan, editor. Statistical Analysis. Radius Press, 1986.

[88] Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-

Wesley, 2003.

[89] G. Keller, M. Nüttgens, and A. W. Scheer. Semantische Prozeßmodellierung auf der

Grundlage Ereignisgesteuerter Prozeßketten (EPK). Technical Report 89, Univer-

sität des Saarlandes, Germany, Saarbrücken, Germany, January 1992.

279

http://www.service-architecture.com/web-services/articles/business_process_query_language_bpql.html
http://www.service-architecture.com/web-services/articles/business_process_query_language_bpql.html

BIBLIOGRAPHY BIBLIOGRAPHY

[90] K.-H. Kim and Y.-G. Kim. Process reverse engineering for bpr: A form-based

approach. Journal of Information and Management, 23(4):187 – 200, 1998.

[91] Paul Kogut and William Holmes. Aerodaml: Applying information extraction to

generate daml annotations from web pages. In First International Conference on

Knowledge Capture (K-CAP 2001). Workshop on Knowledge Markup and Semantic

Annotation, 2001.

[92] Woralak Kongdenfha, Rgis Saint-Paul, Boualem Benatallah, and Fabio Casati. An

aspect-oriented framework for service adaptation. In Asit Dan and Winfried Lamers-

dorf, editors, Service-Oriented Computing ICSOC 2006, volume 4294 of Lecture

Notes in Computer Science, pages 15–26. Springer Berlin / Heidelberg, 2006.

[93] A. Koschmider and A. Oberweis. Ontology based business process description. In

Proceedings of the CAiSE-05 Workshops, LNCS, pages 321–333. Springer, 2005.

[94] John Krogstie. Eeml2005: Extended enterprise modeling language. Technical report,

Norwegian University of Science and Technology, Norway, 2005.

[95] Markus Krotzsch, Denny Vrandecic, and Max Volkel. Wikipedia and the semantic

web - the missing links. In Proceedings of the 1st Internation Wikimedia Conference

(Wikimania 2005), 2005.

[96] Dominj Kuropka. Modelle zur reprsentation natrlichsprachlicher dokumente:

Information-filtering und -retrieval mit relationalen datenbanken (in german). In-

formation Systems and Management Science, 10th issue. Logos Verlag, Berlin, 2004.

[97] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.

Manning, July 2003.

[98] F. Lautenbacher, B. Bauer, and C Seitz. Semantic business process modeling -

benefits and capability. In AAAI 2008 Stanford Spring Symposium - AI Meets

Business Rules and Process Management (AIBR), 2008.

[99] Douglas B. Lenat and R. V. Guha. The evolution of cycl, the cyc representation

language. SIGART Bull., 2:84–87, June 1991.

[100] Barbara Staudt Lerner, Stefan Christov, Leon J. Osterweil, Reda Bendraou, Udo

Kannengiesser, and Alexander Wise. Exception handling patterns for process mod-

eling. IEEE Transactions on Software Engineering, 99(RapidPosts):162–183, 2010.

280

BIBLIOGRAPHY BIBLIOGRAPHY

[101] Dekang Lin. An information-theoretic definition of similarity. In ICML’98, pages

296–304, 1998.

[102] Yun Lin. Semantic Annotation for Process Models: Facilitating Process Knowledge

Management via Semantic Interoperability. PhD thesis, Norwegian University of

Science and Technology, Trondheim, Norway, 2008.

[103] Y. Liu, S. Müller, and K. Xu. A static compliance-checking framework for business

process models. IBM Syst. J., 46:335–361, April 2007.

[104] John W. Lloyd. Foundations of logic programming. Springer-Verlag New York, Inc.,

1987.

[105] Thomas W. Malone, Kevin Crowston, and George A. Herman. Organizing Business

Knowledge: The MIT Process Handbook. MIT Press, Cambridge, MA, USA, 2003.

[106] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: a clustering

tool for the recovery and maintenance of software system structures. pages 50–59,

Oxford, England, 1999.

[107] Chrisotpher D. Manning and Hinrich Schtze. Foundations of Statistical Natural

Language Processing. The Mit Press, Cambridge MA, 1999.

[108] Alessandro Marchetto, Roberto Tiella, Paolo Tonella, Nadia Alshahawan, and Mark

Harman. Crawlability metrics for automated web testing. (to appear) Journal of

Software Tools for Technology Transfer, 2010.

[109] Ivan Markovic. Advanced querying and reasoning on business process models. In

Proceedings of the 11th International Conference on Business Information Systems

(BIS 2008, LNBIP, pages 189–200. Springer, 2008.

[110] Joachim Melcher, Jan Mendling, Hajo A. Reijers, and Detlef Seese. On measur-

ing the understandability of process models. In Proc. of Workshop on Empirical

Research in Business Process Management (ER-BPM), 2009.

[111] J. Mendling, H. Reijers, and J. Cardoso. What makes process models understand-

able? In Business Process Management (BPM), pages 117–128. Springer, 2007.

[112] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst. Seven process modeling

guidelines (7pmg). Inf. Softw. Technol., 52:127–136, February 2010.

[113] J. Mendling and H.A. Reijers. How to define activity labels for business process

models? In SIGSAND Europe2008, pages 117–128, 2008.

281

BIBLIOGRAPHY BIBLIOGRAPHY

[114] Jan Mendling. Detection and prediction of errors in epc business process models.

Ph.D. Thesis on Vienna University of Economics and Business Administration,

2007.

[115] Jan Mendling and Jan Recker. Towards systematic usage of labels and icons in

business process models. In Proc. of EMMSAD2008, volume 337 of CEUR WS,

pages 1–13. T. Halpin, E. Proper, J. Krogstie, X. Franch, E. Hunt, R. Coletta, eds.,

June 2008.

[116] Jan Mendling and Hajo A. Reijers. The impact of activity labeling styles on process

model quality. In SIGSAND-EUROPE, pages 117–128, 2008.

[117] Lawrence D. Miles. Techniques of Value Analysis and Engineering. Mcgraw-Hill

(Tx), 1972.

[118] George A. Miller. Wordnet: a lexical database for english. Commun. ACM,

38(11):39–41, 1995.

[119] Michele Missikoff, Maurizio Proietti, and Fabrizio Smith. A Business Process Knowl-

edge Base for Composite Services Development. In Proceedings of International

Workshop on Business System Management and Engineering (BSME 2010), 2010.

[120] Mariusz Momotko and Kazimierz Subieta. Process Query Language: A Way to

Make Workflow Processes More Flexible. In András Benczúr, János Demetrovics,

and Georg Gottlob, editors, Proceeding of the 8th East European Conference on

Advances in Databases and Information Systems (ADBIS 2004), pages 306–321,

September 2004.

[121] Marco Montali. Specification and Verification of Declarative Open Interaction Mod-

els: a Logic-Based Approach, volume 56 of Lecture Notes in Business Information

Processing. Springer, 2010.

[122] M. Monteiro and J. Fernandes. Towards a catalog of aspect-oriented refactorings.

In Mira Mezini and Peri L. Tarr, editors, Proceedings of the 4th International Con-

ference on Aspect-Oriented Software Development, AOSD 2005, Chicago, Illinois,

USA, March 14-18, 2005, pages 111–122. ACM, 2005.

[123] D. Moody. Theoretical and practical issues in evaluating the quality of conceptual

models: current state and future directions. Data and Knowledge Engineering,

55:243–276, 2005.

282

BIBLIOGRAPHY BIBLIOGRAPHY

[124] H.R. Motahari-Nezhad, R. Saint-Paul, B. Benatallah, and F. Casati. Deriving pro-

tocol models from imperfect service conversation logs. Knowledge and Data Engi-

neering, IEEE Transactions on, 20(12):1683 –1698, 2008.

[125] Michael Zur Muehlen and Jan Recker. How much language is enough? theoretical

and practical use of the business process modeling notation. In Proceedings of

the 20th international conference on Advanced Information Systems Engineering,

CAiSE ’08, pages 465–479, Berlin, Heidelberg, 2008. Springer-Verlag.

[126] G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: Bridging

the gap between source and high-level models. In Proceedings of the Third ACM

Symposium on the Foundations of Software Engineering, pages 18–28, 1995.

[127] I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and validity in comparative

studies of software prediction models. IEEE Transactions on Software Engineering,

31(5):380–39, 2005.

[128] Kioumars Namiri and Nenad Stojanovic. Pattern-Based Design and Validation of

Business Process Compliance. In Robert Meersman and Zahir Tari, editors, On

the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA,

and IS, volume 4803 of Lecture Notes in Computer Science, chapter 6, pages 59–76.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[129] Jörg Nitzsche, Daniel Wutke, and Tammo van Lessen. An ontology for executable

business processes. In Proceedings of the Workshop on Semantic Business Process

and Product Lifecycle Management held in conjunction with the 3rd European Se-

mantic Web Conference (ESWC 2007), Innsbruck, Austria, June 7, 2007, 2007.

[130] Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini, Eufemia Tinelli,

Francesco di Cugno, and Azzurra Ragone. Automated building blocks selection

based on business processes semantics in erps. Service Oriented Computing and

Applications, 1(3):171–184, 2007.

[131] OMG. Business process modeling notation, v1.1. http://www.bpmn.org.

[132] OMG. Unified modelling language, v2.3. http://www.omg.org/spec/UML/2.3/.

[133] OMG. Owl 2: Web ontology language. http://www.w3.org/TR/owl2-overview/,

2004.

[134] OMG. Owl: Web ontology language. http://www.w3.org/TR/owl-ref/, 2004.

283

http://www.omg.org/spec/BPMN/1.1/PDF
http://www.omg.org/spec/UML/2.3/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl-ref/

BIBLIOGRAPHY BIBLIOGRAPHY

[135] OMG. Business process modeling notation (bpmn) version 1.2.

http://www.bpmn.org, 2009.

[136] OMG. Business process modeling notation (bpmn) version 2.0.

http://www.bpmn.org, 2011.

[137] C. Ouyang, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Traslat-

ing bpmn to bpel. Technical report, Queensland University of Technology, The

Netherlands and Eindhoven University of Technology, Australia, 2006.

[138] Bronius Paradauskas and Aurimas Laurikaitis. Business knowledge extraction

from legacy information systems. Journal of Information Technology and Control,

35(3):214 – 221, 2006.

[139] Abhijit Patil, Swapna Oundhakar, Amit Sheth, and Kunal Verma. Meteor-s web ser-

vice annotation framework. In In Proceedings of the 13th International Conference

on the World Wide Web, pages 553–562. ACM Press, 2004.

[140] M. Pesic and W. van der Aalst. A Declarative Approach for Flexible Business

Processes Management. pages 169–180. 2006.

[141] James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 1981.

[142] Borislav Popov, Atanas Kiryakov, Damyan Ognyanoff, Dimitar Manov, and Angel

Kirilov. Kim a semantic platform for information extraction and retrieval. Nat.

Lang. Eng., 10:375–392, September 2004.

[143] J. Recker, M. Indulska, M. Rosemann, and P. Green. How Good is BPMN Really?

Insights from Theory and Practice. pages 1582–1593. Association for Information

Systems, 2006.

[144] Jan Recker. Opportunities and constraints: the current struggle with BPMN. Busi-

ness Process Management Journal, 16(1):181–201, 2010.

[145] Jan Recker, Michael Rosemann, Marta Indulska, and Peter F. Green. Business

process modeling- a comparative analysis. J. AIS, 10(4), 2009.

[146] Jan C. Recker and Alexander Dreiling. Does it matter which process modelling lan-

guage we teach or use? An experimental study on understanding process modelling

languages without formal education, 2007.

284

http://www.omg.org/spec/BPMN/1.2/PDF
http://www.omg.org/spec/BPMN/2.0/PDF

BIBLIOGRAPHY BIBLIOGRAPHY

[147] Jan C. Recker, Michael Zur Muehlen, Siau Keng, J. Erickson, and M. Indulska.

Measuring Method Complexity: UML versus BPMN. 2009.

[148] H. A. Reijers and J. Mendling. A study into the factors that influence the under-

standability of business process models. Systems, Man and Cybernetics, Part A:

Systems and Humans, IEEE Transactions on, PP(99):1 –14, 2010.

[149] Hajo Reijers and Jan Mendling. Modularity in process models: Review and effects.

In Business Process Management (BPM), 2008.

[150] Hajo Reijers, Jan Mendling, and Remco Dijkman. On the usefulness of subprocesses

in business process models. Technical report, 2010.

[151] Edwina L. Rissland, David B. Skalak, and M. Timur Friedman. Evaluating a legal

argument program: The bankxx experiments. Artif. Intell. Law, 5(1-2):1–74, 1997.

[152] Martin P. Robillard and Gail C. Murphy. Concern graphs: finding and describing

concerns using structural program dependencies. In ICSE ’02: Proceedings of the

24th International Conference on Software Engineering, pages 406–416, New York,

NY, USA, 2002. ACM.

[153] Marco Rospocher, Chiara Di Francescomarino, Chiara Ghidini, Luciano Serafini,

and Paolo Tonella. Collaborative specification of semantically annotated business

processes. In Stefanie Rinderle-Ma, Shazia Sadiq, and Frank Leymann, editors,

Business Process Management Workshops - BPM 2009 International Workshops,

volume 43 of Lecture Notes in Business Information Processing, pages 305–317.

Springer, 2010.

[154] A. Rozinat, A.K. Alves de Medeiros, C.W. Gunther, A.J.M.M. Weijters, and W.M.P.

van der Aalst. Towards an evaluation framework for process mining algorithms.

Technical report, Technical report Eindhoven University of Technology, The Nether-

lands., 2007.

[155] A. Rozinat and W.M.P. van der Aalst. Conformance checking of processes based on

monitoring real behavior. Information Systems, 33(1):64–95, 2008.

[156] Anne Rozinat and Wil M. P. van der Aalst. Conformance testing: Measuring the

fit and appropriateness of event logs and process models. In Business Process Man-

agement Workshops, pages 163–176, 2005.

285

BIBLIOGRAPHY BIBLIOGRAPHY

[157] Nick Russell, Wil M. P. van der Aalst, and Arthur H. M. ter Hofstede. Exception

handling patterns in process-aware information systems. Technical report, BPM-

center.org, 2006.

[158] Arun Anand Sadanandan, Kow Weng Onn, and Dickson Lukose. Ontology based

graphical query language supporting recursion. In Proceedings of the 14th interna-

tional conference on Knowledge-based and intelligent information and engineering

systems: Part I, KES’10, pages 627–638, Berlin, Heidelberg, 2010. Springer-Verlag.

[159] Rainer Schmidt, Christian Bartsch, and Roy Oberhauser. Ontology-based represen-

tation of compliance requirements for service processes. In SBPM, 2007.

[160] Alec Sharp and Patrick Mcdermott. Workflow Modeling: Tools for Process Improve-

ment and Application Development. Artech House Publishers, 2001.

[161] Evren Sirin and Jiao Tao. Towards integrity constraints in owl. In OWLED, volume

529 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[162] Howard Smith and Peter Fingar. Business Process Management: The Third Wave.

Meghan-Kiffer Press, 2003.

[163] Veda C. Storey. Comparing relationships in conceptual modeling: Mapping to se-

mantic classifications. IEEE Trans. on Knowl. and Data Eng., 17(11):1478–1489,

2005.

[164] Kazimierz Subieta, Catriel Beeri, Florian Matthes, and Joachim W. Schmidt. A

stack-based approach to query languages. In East/West Database Workshop’94,

pages 159–180, 1994.

[165] Stanley Sutton Jr. and Isabelle Rouvellou. Modeling of software concerns in Cos-

mos. In Gregor Kiczales, editor, Proc. 1st Int’ Conf. on Aspect-Oriented Software

Development (AOSD-2002), pages 127–133. ACM Press, April 2002.

[166] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2):146 – 160, 1972.

[167] O. Thomas and M. Fellmann. Semantic epc: Enhancing process modeling using

ontology languages. In Proceedings of the Workshop on Semantic Business Process

and Product Lifecycle Management (SBPM 2007), pages 64–75, June 2007.

286

BIBLIOGRAPHY BIBLIOGRAPHY

[168] T.L.Alves, C.Ypma, and J.Visser. Deriving metric thresholds from benckmark data.

In Proc. of the International Conference on Software Maintenance (ICSM). IEEE

Computer Society, 2010.

[169] Paolo Tonella and Giuliano Antoniol. Object-oriented design pattern inference. In

ICSM, pages 230–, 1999.

[170] Paolo Tonella and Mariano Ceccato. Aspect mining through the formal concept

analysis of execution traces. In WCRE ’04: Proceedings of the 11th Working Con-

ference on Reverse Engineering (WCRE’04), pages 112–121, Washington, DC, USA,

2004. IEEE Computer Society.

[171] Tom Tourw and Kim Mens. Mining aspectual views using formal concept analysis.

In Proceedings of the 4th IEEE International Workshop on Source Code Analysis

and Manipulation (SCAM 2004). IEEE Computer Society, 2004.

[172] Victoria Uren, Philipp Cimiano, Jose Iria, Siegfried Handschuh, Maria Vargas-Vera,

Enrico Motta, and Fabio Ciravegna. Semantic annotation for knowledge manage-

ment: Requirements and a survey of the state of the art. Web Semantics: Science,

Services and Agents on the World Wide Web, 4(1):14–28, January 2006.

[173] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B.F. van Dongen, E. Kindler,

and C. W. Gnther. Process mining: a two-step approach to balance between un-

derfitting and overfitting. Journal of Software and Systems Modeling, 9(1):87–111,

2008.

[174] W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl: yet another workflow

language. Inf. Syst., 30:245–275, June 2005.

[175] Wil M. P. van der Aalst, Arthur, and Mathias Weske. Business Process Management:

A Survey. Lecture Notes in Computer Science, 2678:1–12, January 2003.

[176] Wil M. P. van der Aalst, H. T. de Beer, and Boudewijn F. van Dongen. Process

mining and verification of properties: An approach based on temporal logic. In

OTM Conferences (1), pages 130–147, 2005.

[177] Wil M. P. Van Der Aalst, Hajo A. Reijers, and Minseok Song. Discovering social

networks from event logs. Comput. Supported Coop. Work, 14(6):549–593, December

2005.

287

BIBLIOGRAPHY BIBLIOGRAPHY

[178] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster1, G.Schimm, and

A.J.M.M. Weijters. Workflow mining: A survey of issues and approaches. Journal

of Data and Knowledge Engineering, 47(2):237 – 267, 2003.

[179] W.M.P. van der Aalst, A.J.M.M. Weijter, and L. Maruster. Workflow mining: Dis-

covering process models from event logs. IEEE Transactions on Knowledge and

Data Engineering, 16:2004, 2003.

[180] Irene Vanderfeesten, Jorge Cardoso, Jan Mendling, Hajo A. Reijers, and Wil van der

Aalst. Quality metrics for business process models. In Proc. of BPM and Workflow

Handbook, pages 179–190, 2007.

[181] Irene Vanderfeesten, Hajo A. Reijers, Jan Mendling, Wil M. P. van der Aalst, and

Jorge Cardoso. On a quest for good process models: The cross-connectivity metric.

In Conference on Advanced Information Systems Engineering (CAISE), 2008.

[182] Jussi Vanhatalo, Hagen Vlzer, and Jana Koehler. The refined process structure tree.

In International Conference on Business Process Management (BPM), 2008.

[183] Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. Faster and more focused

control-flow analysis for business process models through sese decomposition. In

Proceedings of the 5th international conference on Service-Oriented Computing, IC-

SOC ’07, pages 43–55, Berlin, Heidelberg, 2007. Springer-Verlag.

[184] Maria Vargas-vera, Enrico Motta, John Domingue, Mattia Lanzoni, Arthur Stutt,

and Fabio Ciravegna. Mnm: A tool for automatic support on semantic markup,

kmi. Technical report, 2003.

[185] Gabriel M. Veiga and Diogo R. Ferreira. Understanding spaghetti models with

sequence clustering for prom. In Proc. of Workshop on Business Process Intelligence

(BPI), 2009.

[186] Bart Verheecke, Mara Agustina Cibrán, and Viviane Jonckers. Aspect-oriented

programming for dynamic web service monitoring and selection. In Liang-Jie Zhang,

editor, ECOWS, volume 3250 of Lecture Notes in Computer Science, pages 15–29.

Springer, 2004.

[187] Xia Wang. owsd: A tool for word sense disambiguation in its ontology context. In

International Semantic Web Conference (Posters & Demos), 2008.

288

BIBLIOGRAPHY BIBLIOGRAPHY

[188] Xiaodong Wang, Nan Li, Hongming Cai, and Boyi Xu. An ontological approach for

semantic annotation of supply chain process models. In Robert Meersman, Tharam

Dillon, and Pilar Herrero, editors, On the Move to Meaningful Internet Systems:

OTM 2010, volume 6426 of Lecture Notes in Computer Science, pages 540–554.

Springer Berlin / Heidelberg, 2010.

[189] Barbara Weber, Manfred Reichert, and Stefanie Rinderle-Ma. Change patterns and

change support features - enhancing flexibility in process-aware information systems.

Data Knowl. Eng., 66:438–466, September 2008.

[190] Ingo Weber, Joerg Hoffmann, and Jan Mendling. Semantic business process vali-

dation. In Proceedings of the Workshop on Semantic Business Process and Product

Lifecycle Management (SBPM 2008), June 2008.

[191] Mathias Weske. Business Process Management: Concepts, Languages, Architec-

tures. Springer, 2007.

[192] Sthephen A. White and Derek Miers. BPMN Modeling and Reference Guide. Un-

derstanding and Using BPMN. Future Strategies Inc., Lighthouse Pt, FL, 2008.

[193] Hugh Williams and David Lane, editors. Web Database Applications with PHP, and

MySQL. O’Reilly Media, 2002.

[194] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Bjöorn Regnell, and

Anders Wesslén. Experimentation in software engineering: an introduction. Kluwer

Academic Publishers, Norwell, MA, USA, 2000.

[195] P. Wong and J. Gibbons. A Relative Timed Semantics for BPMN. Submitted.

Extended version available at http://web.comlab.ox.ac.uk/oucl/work/peter.

wong/pub/bpmntime.pdf, 2008.

[196] Y. Zhou and H. Leung. Predicting object-oriented software maintainability us-

ing multivariate adaptive regression splines. Journal of Systems and Software,

80(8):1349–1361, 2007.

[197] Ying Zou, Jin Guo, King Chun Foo, and Maokeng Hung. Recovering business pro-

cesses from business applications. Journal of Software Maintenance and Evolution:

Research and Practice, 21(5):315–348, 2009.

[198] Ying Zou, Terence C. Lau, Kostas Kontogiannis, Tack Tong, and Ross McKeg-

ney. Model driven business process recovery. In Working Conference on Reverse

Engineering (WCRE). IEEE Computer Society, June 2004.

289

http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmntime.pdf
http://web.comlab.ox.ac.uk/oucl/work/peter.wong/pub/bpmntime.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[199] Ying Zou, Qi Zhang, and Xulin Zhao. Improving the usability of e-commerce ap-

plications using business processes. IEEE Transactions on Software Engineering,

33(12):837 – 855, 2007.

290

Appendix A

Empirical Study Pre-questionnaire

Pre-Questionnaire.

1. How are the two tasks (A and B) in the following fragment of BPMN process executed?

(a) A is always executed before B;
(b) A is always executed after B;
(c) Either A or B is executed;
(d) A and B are executed in parallel;
(e) A or B or both can be executed.

2. By considering the following fragment of ontology, which are all the superconcepts (according to the

is_a relationship) of the concept “to_write_news”?

3. How long have you been modeling processes in BPMN or in any other process modeling language?

(a) less than 6 months;
(b) between 6 months and 1 year;
(c) between 1 and 3 years;
(d) between 3 and 5 years;
(e) more than 5 years.

4. How long have you been modeling (or using) ontologies?
(a) less than 6 months;
(b) between 6 months and 1 year;
(c) between 1 and 3 years;
(d) between 3 and 5 years;
(e) more than 5 years.

5. How long have you been using visual languages such as UML, Tropos, BPEL (e.g., for designing,
programming, …)?
(a) less than 6 months;
(b) between 6 months and 1 year;
(c) between 1 and 3 years;
(d) between 3 and 5 years;
(e) more than 5 years.

Data collected will be used only for research purposes and they will be revealed only in aggregated form.

291

Appendix B

Empirical Study Post-questionnaire

Natural Language Final Questionnaire.

1. Understanding the query description in natural language has been:
(a) immediate; (b) easy; (c) reasonable; (d) difficult; (e) complex.

2. Understanding ontology and ontology concepts, when used, in natural language query has been:
(a) immediate; (b) easy; (c) reasonable; (d) difficult; (e) complex.

3. Matching the query in the process has been:
(a) immediate; (b) easy; (c) reasonable; (d) difficult; (e) complex.

4. What are the main difficulties you found in understanding natural language queries?

BPMN VQL Final Questionnaire.

1. Understanding BPMN VQL queries has been:
(a) immediate; (b) easy; (c) reasonable; (d) difficult; (e) complex.

2. Understanding ontology and ontology concepts, when used, in BPMN VQL queries has been:
(a) immediate; (b) easy; (c) reasonable; (d) difficult; (e) complex.

3. Matching the query in the process has been:
(a) immediate; (b) easy; (c) reasonable; (d) difficult; (e) complex.

4. The BPMN-VQL language training has been:
(a) very useful; (b) useful; (c) not relevant; (d) not useful; (e) counterproductive.

5. How do you judge your understanding of the BPMN VQL?
(a) very low; (b) low; (c) medium; (d) high; (e) very high.

6. How do you judge the effort required for understanding queries in BPMN VQL?
(a) very low; (b) low; (c) medium; (d) high; (e) very high.

7. What are the main difficulties you found in understanding BPMN-VQL queries?

8. Understanding query formulation specifications has been:
(a) immediate; (b) easy; (c) reasonable; (d) difficult; (e) complex.

9. Using the BPMN VQL for formulating the query has been:
(a) immediate; (b) easy; (c) reasonable; (d) difficult; (e) complex.

10. How do you judge the effort required in writing queries in BPMN VQL?
(a) very low; (b) low; (c) medium; (d) high; (e) very high.

11. How do you judge the BPMN-VQL expressive power?
(a) very low; (b) low; (c) medium; (d) high; (e) very high.

12. Querying support to designers and analysts in understanding and maintaining processes is:
(a) very low; (b) low; (c) medium; (d) high; (e) very high.

13. What are the main difficulties you found in writing queries in BPMN VQL?

14. How could we improve BPMN-VQL?

Overall Question.

Do you think that the benefits of BPMN VQL justify the effort involved in formulating the BPMN VQL queries?

(a) not at all; (b) for a small part; (c) partially; (d) mostly; (e) definitively.

292

	Abstract
	Acknowledgements
	Introduction
	Context
	Problem
	Solution
	Innovative Aspects
	Publications
	Structure of the Thesis

	Background
	Business Process Management
	Business Process Models

	Semantic Business Process Management
	Semantic Annotation of Process Models
	Ontologies

	Reverse Engineering of Business Process Models
	Reverse Engineering of Business Processes
	Background
	GUI-based Reverse Engineering
	Dynamic Process Extraction
	Process Clustering
	Cluster Labelling
	The tool
	Reverse Engineering Technique Evaluation

	Understandability Metrics
	Process Metrics
	Experimental Study

	Business Process Semantic Annotation
	Semantic Annotation of BPMN Process Models
	Enriching BPMN Processes with Semantic Annotations
	Formalizing Semantically Annotated BPMN Processes
	Automatically encoding a BPD into an Abox

	Semantic Annotation Suggestions
	Background
	Domain Ontology Analysis
	Business Process Semantic Annotation Suggestions
	Domain Ontology Extension
	Automatic Suggestion Evaluation

	Constraint Verification
	Process Requirement Specification
	An Explanatory Example
	Merging Axioms
	Process Specific Constraints
	User-friendly Constraint Representation

	Constraint Verification
	Compatibility Checking of Process Constraints
	Constraints Verification over an Annotated BPD

	Constraint Checking Performance Evaluation

	Crosscutting Concern Documentation
	Concern Querying
	BPMN VQL
	BPMN VQL Evaluation

	Crosscutting Concern Mining
	Crosscutting Concern Mining
	Crosscutting Concern Mining Evaluation

	Concern Documentation

	Business Process Aspectization
	Semantically enhanced aspects
	Aspect Oriented Programming
	BPMN VRL

	Exception Handling Aspectization
	Using semantic constraints to support aspect definition

	Performance Evaluation

	Experimental Results: BPMN VQL Empirical Evaluation
	Experiment Definition, Planning and Design
	Goal of the Study and Research Questions
	Context
	Design, Material and Procedure
	Variables

	Experimental Results
	Data Analysis
	Cofactors

	Threats to Validity
	Conclusion Validity
	Internal Validity
	Construct Validity
	External Validity

	Discussion

	Related Works
	Reverse Engineering and Understandability Metrics
	Reverse Engineering
	Process Understandability

	Business Process Semantic Annotation
	Constraint Verification on Business Processes
	Crosscutting Concerns
	Crosscutting Concerns in Software
	Crosscutting concerns and processes

	Business Process Exception Handling
	Visual Process Query Language Evaluation

	Conclusions and Future Works
	Bibliography
	Empirical Study Pre-questionnaire
	Empirical Study Post-questionnaire

