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Abstract

A methodology for designing Wireless Camera Network nodes featuring

long lifetime is presented. Wireless Camera Networks may find widespread

application in the fields of security, animal monitoring, elder care and

many others. Unfortunately, their development is currently thwarted by

the lack of nodes capable of operating autonomously for a long period of

time when powered with a couple of AA batteries. In the proposed ap-

proach, the logic elements of a Wireless Camera Network node are clearly

identified along with their requirements in terms of processing capabilities

and power consumption. For each element, strategies leading to signifi-

cant energy savings are proposed. In this context, the employment of a

custom vision sensor and an efficient architecture are crucial. In order to

validate the methodology, a prototype node is presented, mounting a smart

sensor and a flash-based FPGA. The node implements a custom algorithm

for counting people, a non trivial task requiring a considerable amount of

on-board processing. The overall power consumption is limited to less than

5 mW, thus achieving a two orders of magnitude improvement with respect

to the state of the art. By powering the system with two batteries providing

2200 mAh at 3.3 V, the expected lifetime of the system exceeds two months

even in the worst-case scenario.

Keywords

Wireless Sensor Network, ultra-low-power, vision sensor, FPGA, power

measurements, image processing
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Chapter 1

Introduction

A Wireless Sensor Network (WSN) node (often referred to as just mote) is

an autonomous computing system that is equipped with one or more sen-

sors and that operates in absence of infrastructure, i.e., it is not connected

to the power network and it communicates with other devices through a

wireless channel [1]. Unlike the wired counterpart, with a WSN we can

place the nodes very close to the phenomenon being monitored, without

caring about the nodes positioning as long as the number of sensors pro-

vides enough information to filter out erroneous measurements. The ac-

quired data are then processed on the node before being transmitted to a

data collector which merges the pieces of information for analysis purposes

or to generate an output, typically consisting on an alarm message or a

command for some actuators.

Fields of application include, but are not limited to, the environmental

monitoring (e.g., tracking the movement of animals, or acquiring informa-

tion about the status of the soil for agricultural purposes), health control

(e.g., recording the physiological activity of a living being, which moves

and therefore cannot be connected to the infrastructure through wires),

elder care (e.g., detecting people that fall on the ground and are not able

to get up) and the military field (e.g., monitoring the status of troops and
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CHAPTER 1. INTRODUCTION

acquiring information about unexplored terrains).

This thesis deals with Wireless Camera Networks (WCNs), a subclass

of WSNs in which the sensing element is an imager. WCN may find

widespread application in fields such as security, assisted living, road traffic

monitoring, and natural sciences, and offer a number of advantages with

respect to standard wired camera networks [2]. In particular, they are

much easier to deploy and to remove, thus reducing installation time and

costs. This is important for applications that require high density of place-

ment, either to obtain many different views of the scene, or for increased

robustness. Impromptu surveillance installations (for example, to monitor

a building during a special event or animals in their natural habitat) also

require fast installation, re-positioning and removal of a possibly large num-

ber of cameras, and thus would benefit from wireless technology. In-home

elder care and home security may be facilitated by camera monitoring, and

the use of wireless nodes would allow for discreet and unobtrusive instal-

lations at no costs, since the intervention of an operator is not needed [3].

WCNs represent a convenient solution also in those situations in which an

external power source is unavailable or very expensive to provide, such as

in borderlands and dangerous zones. For example, obtaining low voltage

power supply from high-voltage power lines may increase the price of the

wired surveillance system by a factor of 10. Finally, we note that WCNs

are largely immune to failure of the power distribution system, and thus

may support back-up of wired systems in the case of natural or man-made

disasters.

Typically, a WSN node either operates on batteries or extracts the en-

ergy it needs from the environment, thus dictating the employment of

ultra-low-power components to achieve a long lifetime. Of course, the lim-

ited energy resources affect the processing capabilities of the node, but this

is not a problem whenever the amount of acquired data is not huge and
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CHAPTER 1. INTRODUCTION

acquisitions are performed at low rates. This is the case for temperature,

pressure and humidity measurements, for example. In general, the average

power consumed by the sensing and processing units is limited to less than

a milliwatt and most of the power is spent for wireless communication.

This condition is not true anymore when the sensing unit is a video sen-

sor, which is much more complex and power-demanding than other sensors

such as the ones that measure temperature, pressure or humidity. Not only

the sensing process itself is more expensive (as the imager is composed of an

array of thousands or millions of sensors), but also data buffering, process-

ing and transmission require much more power. At the moment, no feasible

energy scavenging system exists that can provide enough power and the

use of batteries seem the only viable solution. Unfortunately, in this con-

text, batteries have a very limited energy budget, resulting in a trade-off

between the system’s lifetime (typically dictated by the application) and

the desired computational power to process the data. Thus, video nodes

must be designed by carefully selecting the hardware components and by

producing high-efficiency embedded software.

In the past decade, several WCN nodes have been proposed [4, 5, 6, 7, 8],

but they have either high power consumption or limited performance.

These systems employ standard imaging sensors, which are typically de-

signed “for humans”, providing high resolution images with several bits

per pixel. Better energy efficiency is achieved by decreasing the sensor

resolution, as long as the resolution is enough for the task at hand [5, 7].

Nevertheless, transmission of the full video stream via IEEE 802.11 or

Bluetooth still requires too much power to be viable. Hence, a certain

amount of on-board processing is necessary, but also data processing is

expensive in terms of power, and it introduces a latency that may reduce

the effective frame rate.

The source to the problem of the above mentioned systems lies in the
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CHAPTER 1. INTRODUCTION

use of standard imagers, which are not necessarily the optimal solution for

a WCN node. In fact, in most cases only particular portions of the image

(such as moving areas, or objects in the foreground) or features (edges,

corners, histograms of brightness or color) are of interest. This suggests

the use of custom imagers that only acquire the data one is interested in,

thus saving energy in the acquisition and in the processing phases. In such

a framework, a new approach to the design of video sensors has been re-

cently proposed by Teixeira et al. [9], one that attempts to limit power

requirements by implementing the processing (or some parts of it) directly

on-chip, thus allowing the entire system to save considerable amount of

power and time. One step further is presented in [10], where the authors

suggest the development of sensors able to perform object detection au-

tonomously, with a very limited external control.

This thesis proposes a design methodology for very low-power WCN

nodes based on this kind of sensors [11]. By pre-processing the images di-

rectly on chip, less data is generated, thus reducing power at multiple levels

(less data to transfer, buffer, and process). Nevertheless, the problem is

still challenging because even running algorithms on already pre-processed

data is a power consuming task. The components present on the node

need to operate with a very limited energy budget and at the same time

to have enough computational capabilities to execute the algorithms in a

short period of time. The solution to the problem is not unique and needs

to be faced from different standpoints. On the one hand, one must identify

which are the components that best fit the case at hand, having clear in

mind how to exploit the resources they provide; on the other hand, one

must implement efficient algorithms on the basis of the images generated

by the sensor and of the available hardware, power and timing resources.

These are concurrent aspects that one has to consider as a whole. We

have analyzed the main logic components of a WCN node pointing out
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CHAPTER 1. INTRODUCTION

the characteristics they need to have in order to maximize the network

lifetime, as long as the provided performance suits the application. Ac-

cordingly, we have proposed power-saving strategies that guide the design

process by defining the choices about the hardware components and the

firmware implementation. The key element lays in developing within the

firmware techniques to exploit the low power capabilities offered by the

hardware.

To validate the proposed methodology, we have created a prototype

WCN node. Such prototype exploits an ultra-low-power binary contrast-

based imaging sensor that also features on-chip frame differencing [10].

The node core is represented by a flash-based Field Programmable Gate

Array, which manages the system and processes the data generated by the

sensor. Techniques to limit power consumption have been applied in a

real situation. We have designed the node to operate as a People Counter,

which has been used as a case study. In the end, the prototype’s power

consumption has been analyzed, and we have proved that the node can

operate autonomously for more than a month when powered with a couple

of standard batteries, which is two order of magnitudes longer than the

other camera nodes proposed by the research community.

The proposed approach is suitable for many applications, but we are

aware of its limitations. Of course, we cannot expect an ultra-low-power

node to provide as many details as a standard wired video network. Nev-

ertheless, our solution may play a fundamental role also in an advanced

wireless surveillance system, in which the network is constituted by hetero-

geneous nodes [12]. Such kind of networks are organized hierarchically in

multiple tiers, in which nodes belonging to the lower tiers are in charge of

detecting the presence of some event of interest in the scene and possibly

of localizing it. Such nodes are always active and therefore must consume

very little power. When something relevant takes place, a wake-up trigger
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is generated for the higher tiers, where nodes equipped with high resolu-

tion imagers process the frames with complex algorithms and, in case the

situation requires the intervention of a human operator, transmit them. In

this way, power is optimized since intensive processing is performed only

when really needed. In this context, the lowest tiers determine the lifetime

of the network, since they operate unceasingly until their power source is

depleted, but, at the moment, no camera node seems to have the charac-

teristics to fill such a role in the network. As a result, WCNs’ lifetime is

limited to few days, thus obstructing the development of this technology,

especially in the commercial sector. We believe that our solution represents

the answer to these needs.

The thesis is organized as follow. In Ch. 2 we provide the state of the art

about low power WSN systems which are commercially available and about

other hardware solutions which one needs to take into account when de-

signing an ultra-low-power WCN node. We also provide some background

about other existing WCN nodes as reported in the literature, pointing

out their strong and weak points. In Ch. 3, we describe our general design

methodology for an ultra-low-power WCN node, both from the hardware

and the firmware points of view. We provide the detailed power model

for a generic node designed according to our method as well. In Ch. 4 we

describe the architecture of the prototype node that we developed. The

chapter is structured following the design method, getting into the details

of the hardware and firmware aspects. Then, the implemented People

Counter is described firstly from a high level point of view, and then in its

hardware implementation. Power requirement analysis and lifetime esti-

mate of this node are presented in the last part of the chapter. Ch. 5 has

the conclusions.
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Chapter 2

State of the Art and Related Work

This thesis main goal is to provide a method for designing WCN nodes

capable of operating for long periods with a very limited power source. In

pursuing this goal , in this chapter we will concentrate on the system’s

hardware configuration rather than on other aspects such as the network

communication architecture, sensor network topology, energy scavenging

methods, etc. Generally speaking, “a sensor node is made up of four basic

components: a sensing unit, a processing unit, a transceiver unit and a

power unit” [1]. In the following we will consider just the first three of

them, since those are the ones of major interest from the system designer’s

point of view. This is because we expect the system to guarantee proper

functionality continuously for a certain period of time, disregarding what

the power source is, as long as it provides a given (small) capacity.

Several solutions are offered by the market and by the research commu-

nity to develop a wireless node. One may choose to buy a commercial, off-

the-shelf (COTS) node platform (typically including the processing unit,

the transceiver and expansion ports for the sensors), which provides an in-

tegrated environment for fast and easy development. Nevertheless WCNs,

and ultra-low-power WCNs in particular, have critical requirements with

respect to the technology currently available, and COTS platforms either
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do not provide sufficient processing power to run the algorithms or the

available processor are too expensive in terms of energy to run continu-

ously, clocked at high frequency. Therefore researchers opted for develop-

ing their own custom platform, thus achieving a node highly fitted to the

application. Such platforms may be either stand-alone modules including

all the four basic components, or daughter boards which integrate the sen-

sor and processing units and have to be attached to a COTS host-node,

which takes care of interfacing the sensor with the network. Nevertheless,

we will see that there is a lack of ultra-low-power nodes in the field, and

no WCN node, an therefore no WCN either, seems to be able to operate

on batteries for a long time without replacing the power source.

In this chapter we are going to present a roundup about the state of the

art in individual devices and in host-nodes for WCNs, and discuss about

the related work in the field. This chapter is organized as follows. In the

first part we will briefly introduce the most popular low-power cameras,

field programmable devices and wireless transceivers, and general purpose

WSN host-nodes available in the market. Then we will concentrate on

complete WCN nodes present in the literature that brought original ideas

from the architectural point of view, aiming at lowering power consump-

tion and improving power efficiency, without compromising the network

effectiveness. Since a great variety of hardware platforms were developed

by the research community in the past 10 years, we will concentrate on the

few nodes which in our opinion effectively introduced important improve-

ments in the field. The other relevant nodes will be briefly mentioned at

the end of the chapter.
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2.1 Commercial, Off-the-Shelf Products

2.1.1 Image sensors

As we will see later in this chapter, most of WCN nodes employ OmniVi-

sion CMOS camera modules. OmniVision is a company founded in 1995

and headquartered in Santa Clara (CA, USA), that designs CMOS sensors

and camera modules. Products range from sub-VGA cameras to HD de-

vices. Within the low-range product series, OmniVision cameras provide

low power consumption, around 100 mW at quite high frame rates, 30 to

60 fps. Acquisitions at different resolutions are possible too. Moreover,

their camera modules provide easy interfacing, automatic image control

functions and basic image manipulation inside the module itself. As an

example, the OV6680 [13] includes a CMOS camera providing images at a

resolution that ranges from CIF up to 400× 400 pixels, and exhibiting an

active power consumption of 70 mW at 30 fps, CIF format, and a standby

current lower than 20 µA.

Other solutions that suit WCN applications are all those cameras that

can be mounted on mid-range cellphones, such as the old VS6524 [14],

released by ST MicroElectronics in 2004.

2.1.2 Processing devices

The market of processing devices is huge. A great multitude of solutions

from several companies are available to design a camera node. Mainly, we

can distinguish between four classes of processing devices: low-power mi-

crocontrollers, high performance ones/embedded processors, Complex Pro-

grammable Logic Devices and low-power Field Programmable Gate Arrays.

Both microcontrollers and embedded processors are based on a single
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microprocessor executing a software stored into a ROM. The more ad-

vanced modules often run an Operating System (OS), specifically designed

for embedded systems, that manages the processes on that processor, in-

cluding the access to hardware resources. Lately, multi-core processors

have been introduced in the market, slightly relieving the “one instruction

at a time” limitation introduced by the presence of a single processing core.

A MicroController Unit (MCU) is a single integrated circuit that con-

tains a processor, memory and a set of peripherals such as counters, watch-

dog timers1, multipliers, dividers, ADCs and DACs, and many more. Low

power modes are typically supported, too. The number of available con-

figurations are countless. One may choose a MCU based on a 8-, 16-, or

32-bit architecture and clocked at a speed that ranges from a few kilohertz’s

to hundreds of megahertz’s; MCUs are available with different amounts of

flash ROM to store the program instructions and SRAM for data buffering,

ranging from a few bytes to a few megabytes. Power consumption varies

accordingly, from less than a milliwatt, as in the 8 bit PIC10 series by

Microchip Technologies [15], to hundreds of milliwatts, as in the dual core

32 bit Qorivva device by Freescale Semiconductor [16].

Embedded processors can be seen as high performance MCUs or as low-

power processors, and in fact they represent the boundary between the two

classes. An example is given by Marvell’s PXA3xx family of processors [17],

which can operate at more than 800 MHz clock frequency, include up to

768 Kbytes of internal SRAM and 32+32 KB of cache for instructions and

data. Available peripherals include counters, watchdog timers and pulse

width modulators and the chip features all types of interfaces, including

one for a camera. Of course all these properties come at the price of a

higher power consumption with respect to low-power MCUs: at maximum

1A watchdog timer is a timer that generates a system reset every time it overflows. It is used to avoid

the MCU to be stuck into an infinite loop due to some unexpected behavior. Its the programmer’s task

to reset the watchdog timer periodically to avoid a reset.
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speed the processor consumes several hundreds of milliwatts. Even more

powerful devices are considered embedded processors; among these there

is the Intel Atom Processor [18], but in this case consumption increases

significantly, exceeding the watt.

Complex Programmable Logic Devices (CPLDs) and Field Program-

mable Gate Arrays (FPGAs) are two classes of Programmable Logic De-

vices (PLDs) which are typically programmed in Hardware Description

Language (HDL), namely VHDL or Verilog. They contain a matrix of

configurable logic blocks, which in an FPGA typically contain Look-Up

Tables (LUTs), flip-flops, MUltipleXers (MUXs) and other logic. Such ba-

sic elements can be configured and routed “on the field” to carry out the

required task. Since VHDL and Verilog are languages describing hardware

at a lower abstraction lever with respect to programming languages such

as Java, C and even Assembly, writing the code for a CPLD/FPGA is

much more time consuming than a processor. Nevertheless such devices

allow to overcome many of the limitations that processors have, even the

multi-core ones. Consider a simple processor: it has a well defined ar-

chitecture that we cannot change, and the processor core executes all the

instructions sequentially, one after the other. Moreover, only one periph-

eral at a time can write on the bus, since it is shared. As a consequence,

a processor core executes far less than one instruction per clock cycle.

Programmable logic devices are different in the sense that they allow to

configure the internal logic, and it is the programmer’s task to create the

architecture of the processing unit. This allow to write highly optimized

code, and to design processing units which overcome the “one clock-cycle

per instruction” limit imposed by processors, thus boosting the system’s

performance. Furthermore, the manufacturers of PLDs provide tools for

the generation of complex and customizable structures such as First In,

First Out (FIFO) memories, filters, and even processors, in a completely

11
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automatic fashion. Since these structures are built exploiting the config-

urable blocks, they are called “soft”-cores, in contrast with the “hard-”,

unchangeable counterparts, printed on silicon.

CPLDs and FPGAs are built on different technologies and their basic

blocks are designed with different goals in mind; from a general, high level

perspective, FPGAs, even the low-power ones, allow for much bigger de-

signs and improved performance with respect to CPLDs, which, on the

other hand, are cheaper and consume less power. Moreover, FPGAs are

typically volatile, therefore they require some additional logic when they

are turned on in order to be programmed, while CPLDs are non-volatile,

thus enabling a significant reduction in system complexity. Lately, flash-

based FPGAs has been introduced in the market, filling the gap between

standard FPGAs and CPLDs.

From the perspective of WCNs, each class has its own pros and cons,

which we try to summarize here and in Tab. 2.1.

� Processor based devices are relatively easy to program, especially

when there is an OS that manages the resources to avoid conflicts;

on the other side, the presence of a few processing elements and a sin-

gle bus introduces significantly latency delays, which could severely

limit the performance of a WCN node. Another negative aspect is

represented by the limited amount of memory which typically char-

acterizes these devices, thus forcing the employment of an additional,

external element serving both as interface between the sensor and the

processor and as a temporary buffer while processing the data.

� PLDs allow to generate an architecture fitted to the application and

in which tasks are executed in parallel without the risk of long latency

delays and conflicts among the implemented entities. As a drawback,

programming such devices is very difficult, and the time required for

12
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Table 2.1: Processing devices - Summary table

Processor

based
PLDs

Low power

consumption
MCUs CPLDs

High

performance

Embedded

processors

Low-power

FPGAs

writing the code increases exponentially with the complexity of the

design. Nevertheless, manufacturers provide soft-cores which are be-

coming easier and easier to use, thus limiting the difficulties introduced

by the use of HDL.

� Low-power MCUs and CPLDs consume very little power, and have

been widely used in standard WSNs. Nevertheless, their limited pro-

cessing capabilities may constitute a problem in WCNs, due to the

huge amount of data (represented by the images) that needs to be

processed.

� Embedded processors and low-power FPGAs seem to respect the high

processing power requirements set by WCNs, but may not be able to

operate for a long period of time due to their elevate power consump-

tion.

� Mixed solutions, such as the combination of a low-power MCU and

an FPGA, introduce more flexibility and allow to overcome the limi-

tations introduced by the single devices; the disadvantage lays in the

fact that the entire system is more complex to design and power con-

sumption may increase due to the higher activity on input and output

pads.

In conclusion, the choice of the hardware devices responsible for pro-

cessing strongly depends on the amount of data generated by the sensor,

13
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the complexity of the algorithms that need to be executed by the node, and

by requirements in terms of acquisition rate, latency and lifetime imposed

by the application.

2.1.3 Wireless transceivers

There are mainly four wireless technologies that are considered in the devel-

opment of low-power systems: ZigBee, Bluetooth, Wi-Fi, and Ultra Wide

Band [19]. The ZigBee protocol is universally accepted as the protocol that

best suits for WSNs. This is because it exhibits ultra-low-power capabil-

ities and at the same time enables to build wireless mesh networks, i.e.,

networks in which all devices are actively involved in the network construc-

tion, as “they dynamically join the network, acting as both user terminals

and routers for other devices, consequently further extending network cov-

erage” [20]. The Bluetooth protocol provides higher data rates (1−3 Mbps

vs 250 kbps), but is more oriented towards “short-range and cheap devices

to replace cables for computer peripherals” [19]. This is because Bluetooth

does not support Mesh networks as ZibBee, but piconets and scatternets.

Piconets are networks in which one master device manages the connection

among itself and several slave devices. In this configuration, each slave de-

vice can communicate only with the master. Scatternets are composed by

several interconnected piconets. The rigidity imposed by the master-slave

configuration makes Bluetooth unsuited for WSNs. Wi-Fi and UWB may

be of interest for camera-based SNs. In fact, ZigBee is efficient only when

the amount of transmitted/received data is low, so that the transceiver

is mostly idle. But when we need to transmit images or, even more, to

stream videos, Wi-Fi and UWB are much more power efficient [21, 22],

i.e., they exhibit a lower consumption per bit transmitted. Nevertheless,

these products exhibit a higher absolute power consumption, which makes

them unsuitable for ultra-low-power WCN nodes.
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The market leader of low-power wireless transceivers, based on the Zig-

Bee/IEEE 802.15.4 standards, is ChipCon. ChipCon is a Norvegian Com-

pany founded in 1996, and acquired by Texas Instruments in 2006, which

became popular for its CC1xxx and CC2xxx families of low-power wireless

transceivers. The CC1xxx family operates in the 300−1000 MHz frequency

range while the CC2xxx one is IEEE 802.15.4 compliant [23], operating at

2.4 GHz. The most popular chips are the CC1000 [24] and the CC2420 [25],

which are widely employed in WSN nodes thanks to their low current con-

sumption (7.4/10.4/0.8 mA for the former and 19.7/17.4/0.8 mA for the

latter, while receiving, transmitting and being idle respectively), support

for low-power modes, high flexibility in the configuration and small form

factor. The provided data rates are 76.8 kbps for the CC1000 and 256 kbps

for the CC2420. Lately, Texas Instruments released the CC2500 [26], an

improved version of the CC2420, achieving higher power efficiency.

Another important player is Nordic Semiconductor. Nordic Semicon-

ductor ASA is a Norwegian company headquartered in Oslo, that operates

in the field of wireless communication and multimedia. This company pro-

poses ultra-low-power solutions that exhibit performance similar to Chip-

Con devices; nevertheless the are not part of the ZigBee Alliance, meaning

that they developed their own technology, still based on the IEEE 802.15.4

standard.

Texas Instruments manufactures Bluetooth devices also, such as the

CC2540 [27]. Power consumption is in the same order of magnitude as the

ZigBee-based solutions; in fact it draws 19.4 mA in reception mode, 24 mA

in transmission mode and much less than 1 mA when exploiting one of the

low-power modes. Recently, a new, Bluetooth-based, ultra-low-power de-

vice has been introduced by Nordic Semiconductor: the nRF8001 [28]. This

device consumes very little power, namely 14.5/13/1.6 mA when receiving,

transmitting and while in stand-by respectively.
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(a) Tmote Sky/TelosB (b) MicaZ (c) iMote2

Figure 2.1: Three popular COTS motes by Moteiv/Memsic

2.1.4 General purpose motes

Moteiv, from San Francisco (CA, USA), is a company that operates in the

field of WSN. Moteiv main product is the Tmote Sky. Moteiv was founded

by three University of California, Berkeley (UCB) Ph.D. students in 2003.

Since 2006 Moteiv became a subsidiary of Sentilla, a Redwood City (CA,

USA)-based company operating in the field of energy. Memsic is another

company from Andover (MA, USA) founded in 1999, which is currently the

world leading supplier of wireless sensor technology. They provide several

wireless modules as host nodes for WSN: TelosB, MICA2 and MICAz,

and iMote2, which were originally manufactured by CrossBow, another

American company operating in the field of smart-sensor technology.

Tmote Sky [29] is an ultra-low power host-mote, equipped with a

Texas Instruments MSP430 Microcontroller [30] and a Chipcon CC2420

RF transceiver. The MSP430 is based on a 16 bit RISC architecture and

is designed to operate at low frequencies, in the order of 1 MHz. It is

widely used in WSNs, since it provides very high flexibility in terms of

power consumption: five different power modes are supported, with a sup-

ply current ranging from 330 µA when the processing core is running at

1 MHz, down to 0.5 µA when most of the system is disabled. In addition,

the node is equipped with sensors for temperature, light and humidity
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measurements, and allows to attach other devices through two expansion

connectors. From the firmware point of view, the system runs TinyOS, a

light yet efficient open source operative system, developed at University of

California, Berkeley, USA. TelosB [31] is the same design.

MICA2 [32] and MICAz [33] are slightly more computationally pow-

erful then TelosB, at the price of a higher power consumption. An Atmel

ATmega128L [34] represents the core of the node: it is an 8-bit, RISC

based MCU, clocked at up to 8 MHz, and draws no more than 20 mA

in active mode. It supports six different sleep modes, which allow to re-

duce power consumption down to a few micro-Watts, when the resources

are not needed. MICA2 and MICAz provide respectively a 868/916 MHz

multi-channel transceiver (the Chipcon CC1000), and an IEEE 802.15.4

compliant RF one (the Chipcon CC2420), but do not have any sensor al-

ready present on board; access to external devices is achieved through two

expansion connectors. These nodes run a TinyOS based operative system

called MoteWorks.

iMote2 [35, 36] is well above the previous nodes in terms of processing

capabilities thanks to a high performance Marvell PXA271 XScale proces-

sor [37], a highly configurable processor supporting an operating frequency

in the 13 − 413 MHz range. It is also equipped with 250 kB of SRAM,

32 MB of SDRAM and 32 MB of flash memory, and has a built in Digital

Signal Co-Processor with MMX instruction set for multimedia applications

enhancement [38]. Power consumption in active mode ranges from 40 mW

to several hundreds of milli-watts, depending on the clocking frequency.

Low power modes are also supported, consuming as little as a few milli-

watts in Idle mode, with the core supply voltage enabled, or even less than

1 mW in deep sleep mode, with the core completely off. The PXA27x

XScale processor family was originally designed by Intel. The node pro-

vides several options for I/O interfacing, such as UART, I2C, USB, camera
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(a) Panoptes (b) Cyclops

Figure 2.2: Examples of WCN nodes present in the literature

interface, etc. A ChipCon CC2420 [25] implements the wireless interface

through the IEEE 802.15.4 standard. iMote2 can run TinyOS, embedded

Linux or University of California, Los Angeles’ SOS [39].

We would like to point out that the presented current consumptions have

been extracted from the datasheets of the chips. Measurement setups are

not known, except in some documents in which the manufacturer declares

that “all current consumption measurements are performed with all I/O

pins configured as inputs and with internal pull-ups enabled” [34]. As we

will see in Sec. 4.3, driving a pin of a peripheral requires lots of energy,

therefore the provided currents have to be considered as lower limits.

2.2 Related Work

2.2.1 Panoptes

The first significant example of a WCN node is Panoptes [40, 4], first devel-

oped in 2003 by Feng et al. at the OGI School of Science and Engineering at

Oregon Health & Science University and then improved at the Department

of Computer Science of Portland State University. The first prototype is

built on the Applied Data Bitsy board, based on the Intel StrongARM 206
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MHz embedded processor [41], equipped with a Logitech 3000 USB-based

video camera, which applies some proprietary compression algorithm on

the acquired images, 64 Mbytes of memory, and an 802.11-based network-

ing card. The system runs the Linux 2.4.19 Operating System (OS) kernel.

The entire system consumes approximately 5.5 W while capturing, com-

pressing and delivering the stream of images acquired at 18 − 20 frames

per second (fps) with a resolution of 320× 240.

The authors moved to the Crossbow Stargate Platform [42] for the sec-

ond prototype. The Stargate Platform features a 400MHz, Intel PXA255

Processor, supported by an Intel StrongARM SA1111, 64 MB of RAM

and 32 MB of flash memory, from which the Linux 2.4.19 OS is loaded at

start-up. A daughter board mounted on the processor board provides USB

connectivity for the camera. In addition to being more powerful in terms

of processing capabilities with respect to the Bitsy Board, the Crossbow

Stargate Platform is also less power demanding (about 4 W).

From the point of view of the firmware, the authors developed a unit

for power management, and a set of blocks for capturing, filtering, com-

pressing and transmitting the images. The power manager is in charge of

determine the best acquisition and wireless transmission policy according

to the energy available, in compliance with the application. Video cap-

turing consists on decompressing the data coming from the USB interface

to allow image manipulation. Then, images are filtered to remove redun-

dant information, e.g. by detecting the only portions in the scene that has

changed with respect to the previous frame. The filtered images are then

compressed, e.g., with JPEG, to reduce the amount of power spent in the

transmission, and then sent to the wireless transceiver, which is in charge

of managing the available bandwidth by selecting the frames to the trans-

mitted according to a priority-based mechanism. The nodes communicate

to a host-PC in which a surveillance application merges the generated in-
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formation for surveillance purposes.

The overall performance strongly depends on the specific implementa-

tion of the video capturing, filtering and compressing blocks. In particular,

the amount of processing load is strictly connected to the resolution of the

acquired images and the routines developed for image compression. The

authors analyzed the power consumed by one board in several configura-

tions (idle, camera on, camera and networking on, etc.), finding out that

1/3 of the power budget is spent for wireless transmission. In order to save

power, the system switches components off or sets them to low power modes

whenever possible. In general, this approach partially solves the problem,

as on/off or wake/sleep transitions may require a substantial amount of

energy.

2.2.2 Cyclops

Another important example of WCN is Cyclops [5], an electronic interface

between a camera module and a standard WSN host mote. It was devel-

oped by Rahimi et al. at the Center for Embedded Networked Sensing,

UCLA, Los Angeles, CA, USA in conjunction with the Agilent Technology

Laboratories, in Palo Alto, CA, USA.

Cyclops consists on an Atmel ATmega128L MCU supported by a 64 KB

SRAM and 640 KB of flash memory. The MCU, based on an 8 bit RISC

architecture, is clocked at approximately 8 MHz and interfaces with a

352 × 288 CMOS imager through a CPLD, which is also responsible for

simple but fast image processing while receiving data. The combination of

CMOS imager, an ADCM-1700 from Agilent Technology [43], and a CPLD,

a Xilinx XC2C256 CoolRunner[44], brings several advantages. CMOS im-

agers are cheap and low-power, and at the same time they allow to perform

some control and processing directly on-chip. CPLDs are fast, overcoming

the limitations of low-power MCU for data exchange and processing at high
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speeds, and power efficient, since negligible energy is consumed when their

clock source is disabled. This can be done as soon as they terminate their

tasks, without the need to turn them off completely. The MCU represents

the core of Cyclops: it is responsible for the management of the entire

node, selecting the power mode of the other elements, determining what

and when to transmit, and interfacing with the host mote. The CPLD

is used as interface between the sensor and the MCU itself, which is too

slow to cope with the sensor output data rate, and as a first level image

processor that operates while grabbing the image.

The firmware in Cyclops consists of a set of drivers required by the

MCU to communicate with the peripherals, a library to perform image

manipulation both at low (e.g., matrix operations) and high level (e.g.,

background subtraction), and a so called “Sensing Application” which re-

ceives commands from a host-PC and executes them, exploiting the avail-

able resources. Tested applications include a simple object detection al-

gorithm, based on background subtraction, and hand postures recognition

for human-computer interaction.

The joint use of a low-power device and of a fast one achieves a signif-

icant (one order of magnitude) improvement in terms of energy require-

ments with respect to Panoptes (the authors declare a power consumption

of less than 100 mW for Cyclops, to be added to the consumption of the

external sensor network host node), but it offers limited processing capa-

bilities and a low acquisition rate (only 5 fps, according to the imager’s

datasheet).

2.2.3 Philips Smart Camera Mote

Kleihorst et al., from the Philips Research Laboratories, Eindhoven, The

Netherlands, proposed a different solution in [6]. In order to minimize

the time spent for pixel-level processing on the images provided by up
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to two VGA color image sensors, the node exploits a Massively-Parallel

Single-Instruction, Multiple-Data (MP-SIMD) processor, the Xetal-II [45].

The architecture of this processor consists on a linear processing array

with 320 processing elements supported by a 10 Mb on-chip memory to

buffer the image. Three further processor are present, managing the input

stream, the output stream and for global control respectively. Everything

is included in one sigle chip, which is clocked at 84 MHz. The rationale

behind this approach is that often, when processing an image, the same

calculations (e.g., convolution) are repeated on relatively small blocks of

neighboring pixels by sliding a “kernel” throughout the image. The SIMD

architecture exploits such intrinsic parallelism of images by elaborating all

the fetched data in parallel with the same instruction, thus providing a

very high throughput and low latency even with high resolution images

and complex image-processing algorithms. As an example, the authors

tested the processor with a 11 × 11 convolution on a 640 × 480 image,

requiring as little as 2 ms to execute. Power efficiency is achieved also,

since the mechanism reduces the number of accesses to the memory and

cuts down the overhead for control and address decoding. Nevertheless,

the absolute power consumption is high, with a peak value on the order

of several hundreds of milli-watts. With such requirements, it would not

be feasible for such a node to run on batteries continuously, acquiring

several frames per second. On the other side, the Xetal-II power efficiency

perfectly suits to camera-based WSNs, enabling many applications which

usually require a pc connected to the power outlet to run. In a multi-tier

network of wireless nodes, this node would lie near the highest tier.

2.2.4 MeshEye

Sensor diversity is the main characteristics of MeshEye [7], developed at

the Wireless Sensor Networks Lab of Stanford University, CA, USA by
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(a) Philips’s smart camera node (b) MeshEye

Figure 2.3: More examples of WCN nodes present in the literature

Hengstler and Aghajan. This node hosts up to eight (but two are ac-

tually used) low-power, low resolution, low color depth imagers and one

VGA camera. In particular, the ADNS-3060 optical mouse sensors [46]

(3030 pixel, 6-bit grayscale), and the ADCM-2700 CMOS camera module

[47](480640 pixel programmable, grayscale or 24-bit color) by Agilent Tech-

nologies are the ones present on the board. A high performance MCU, the

Atmel AT91SAM7S64 [48], represents the node core and is responsible for

both control and data processing. It incorporates an ARM7TDMI ARM

Thumb processor based on a power-efficient 32-bit RISC architecture that

can be clocked up to 55 MHz, a 16 KB SRAM and a 64 KB flash memory,

and is supported by an external MMC/SD 32 MB flash memory card for

temporary frame buffering/image archival. The acquisition policy consists

on performing acquisitions having only one low-power imager on, to per-

form basic motion detection, when the scene is static. If the node detects an

event, it turns on also the second low-power imager to perform stereo-vision

based 3D blob dimensioning and localization, and a high resolution image

is taken with the VGA camera. The output of the two low-power imagers

is used to determine the portion of the high resolution image in which the

detected object is present, in order to avoid transmission of uninformative
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data. Then, the ChipCon CC2420 2.4 GHz IEEE 802.15.4/ZigBee-ready

RF transceiver allows wireless communication.

The authors claim that, when the frequency of events is low, the lifetime

of the node, powered with two AA batteries (2850 mAh), ranges between

ten and forty days, for an average current of 3 mA in the best case. How-

ever, the frame rate of the system is low (less than 2 fps]); increasing the

acquisition rate significantly reduces the lifetime of the node, with an incre-

ment in power consumption which is almost linear. Nevertheless, a frame

rate of at least 10 fps is often desirable, but such a high acquisition rate

would deplete the batteries in less than two days.

2.2.5 Yale’s AER imager-based node

All of the systems above acquire and process images at full resolution and

full pixel depth. This approach requires substantial memory to store the

images and powerful processing units to process them. A different approach

was taken by Teixeira et al. [9] at Yale University, New Haven, CT, USA.

Their work proposes a non-standard imager in which the concept of frame

is replaced by an Address Event Representation (AER). In practice, every

pixel is uniquely identified by an address and, instead of just measuring

the amount of light impinging on each pixel, it senses a precise property

of the scene, such as temporal and spatial difference. Every time the mea-

sured “amount” of such property exceeds a predefined threshold, the pixel

address is “fired”. The higher the frequency of firings associated to a pixel,

the greater the intensity of the phenomenon for that pixel. No image is

actually generated, at least not in the way we are used to: the concept of

frame is totally missing and the generated data are not directly readable

by humans. Nevertheless, this approach simplifies the detection of the por-

tions of the image in which most of the activity is taking place and might

get closer to the way a machine thinks. In fact, such architecture moves a
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significant amount of processing inside the sensor, therefore reducing the

overall processing and power requirements. As it will be discussed later in

Sec. 3.1.2, this is a crucial point in the development of low-power WCN

nodes.

With the data generated by this sensor, the authors were able to de-

velop applications for assisted living, including recognition of behaviors

of people in a house. Unfortunately, the sensor node is a standard, high-

performance iMote2, featuring an Intel XScale processor, operating at more

than 100 MHz, supported by a 32 MB SDRAM and a 32 MB flash mem-

ory. Such high processing capabilities have a critical impact on the power

requirements, which are in the order of hundreds of milli-watts. Moreover,

the previously described camera has not been really mounted on the mote,

but just simulated. In the end, it seems that no measurements on a real

prototype have been carried out to prove the effectiveness of the approach.

2.2.6 Other nodes

The previous list of research works does not include many other nodes

that have been proposed in this field. Our selection of works is focused

on power aspects rather then application development, networking or any

other issue. Here in the following we will briefly introduce other popular

nodes which, in our opinion, brought a marginal contribution, but still

important, in our field of investigation.

Cao et al. proposed a mote in [49] in which image acquisition, image

processing and data compression are delegated to an FPGA, while sensor

control and RF module management are performed by an embedded 32-bit,

RISC processor by Samsung, the S3C44B0X [50]. An external flash mem-
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ory and SDRAM are required to store the program and for data buffering.

As RF module, the ChipCon CC1000 has been chosen. Images are pro-

cessed with the aim of detecting unusual events, in which case the acquired

frame is compressed and transmitted. No power consumption analysis has

been provided, but according to the hardware equipment we can expect it

to be in the order of the watt.

WiSN nodes [51], where the “i” stands for “image”, presented by

Downes, Rad and Aghajan from the Wireless Sensor Networks Lab of Stan-

ford University (CA, USA) are the very first example of nodes equipped

with heterogeneous imagers, and basically represent the embryonic form of

MeshEye, since they were developed in the same laboratory and are based

on the same processor (please refer to Sec. 2.2.4).

eCam [52] is an “ultra-compact, high data-rate wireless sensor node

with a miniature camera”. Basically, it consists on a camera module inte-

grating a multi-resolution camera, the OmniVision OV7640 [53], attached

to the Eco Wireless Sensor platform [54], a tiny (' 1 cm3) host-node, inte-

grating a 2.4GHz RF transceiver with embedded 8051-compatible MCU2

and ADC, the NRF24E1 by Nordic Semiconductor [56], and 3-axial ac-

celeration, temperature and optical sensors. The node can interface with

other modules via a 16 pin expansion connector. The system processing

capabilities are very limited, no image processing is performed. All the

node can do is acquiring images and transmitting them. The low power

characteristics of the node do not seem to fit to camera-based sensor net-

works.

CMUcam3 [57] is mainly oriented towards a simple programming inter-

face, thanks to its open source framework and C programming. It consists

on an Omnivision camera module, either an OV6620 [58] or an OV7620 [59],

2“The 8051 is an 8 bit MCU originally developed by Intel in 1980. It is the world’s most popular

microcontroller core, made by many independent manufacturers.” [55]
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a NXP LPC2106 microcontroller [60], based on a 32 bit ARM7TDMI-S pro-

cessor, and a Fitst In, First Out (FIFO) memory chip for image buffering,

an Averlogic AL4V8M440 [61]. The presence of the FIFO significantly re-

duces the complexity of the system, but at the same time introduces an

important source of power consumption, which is in the order of several

hundreds of milli-watts for the entire node. CMUcam3 has been interfaced

with a Firefly platform [62] in [63] to achieve a complete WCN system.

The Firefly platform is a low-power custom node developed at Carnegie

Mellon University, Pittsburgh, PA, USA, which achieves a tight time syn-

chronization among nodes.

MicrelEye [64] consists of a hybrid architecture System on a Chip

(SoC), the Atmel FPSLIC [65], which contains a low power MCU and an

FPGA. A CMOS sensor, 1MB of external SRAM and a Bluetooth mod-

ule complete the mote hardware configuration. The tasks delegated to the

MCU include sensor configuration and part of the object recognition algo-

rithm, while the FPGA performs image capturing, SRAM access and Blue-

tooth management, image processing and the top level control through a

finite state machine. As software application, an Support Vector Machine-

based object-detector has been developed. Power consumption is in the

order of hundreds of milli-watts.

Citric [8] is a daughter board of a Tmote Sky host-node. It integrates

an OmniVision OV9655 [66], a low power, multi-resolution (from 40× 30,

up to 1280 × 1024 pixels) CMOS camera module with image processing

capabilities, and a Marvell PXA270 embedded processor connected to a

64 MB SDRAM and a 16 MB FLASH for image buffering and code storage

respectively. A microphone is present too. Developed applications include

image compression, target tracking and camera localization. Due to the

very high processing capabilities, power consumption is almost 1 W.
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In this section we have listed the WCN nodes proposed by researchers

in the past years: most of them offer good processing power, but they

run algorithms on images provided by high resolution, high color depth

sensors. Therefore, the latency delays introduced by image processing and

the power consumed by the entire node are often so high that the “low

power” characteristics are achieved only by reducing the frame rate to one

or two frames per second.

This general condition conflicts with the requirements set by applica-

tions in the fields of security, automotive, animal monitoring, etc., where

the dynamics of the monitored objects is much faster than a second. Con-

sider for example an application in which we want to monitor the speed

of cars on a highway. At the speed of 130 km/h, cars cover more than 36

meters in a second. Many frames are required in order to provide a reliable

measure. At low frame rates, we would need to place the node far away

from the scene to have a view wide enough to take several snapshots of

the same object with the same camera. This may not be feasible and in

general is not desirable.

We think that most of the previously described nodes would fit through-

out the tiers of a multi-tier WCN, but none of them could occupy the lowest

tier, meaning that the whole network would not be able to survive for a

long period of time. Even MeshEye nodes (presented in Sec. 2.2.4), which

try to overcome the problem exploiting both low- and high-resolution im-

agers, do not succeed in achieving a long lifetime. In fact, the presence of

a high performance MCU, which is required to process the high-resolution

images, reduces the advantages brought by the presence of low-resolution

cameras.

There is the need for ultra-low-power nodes that monitor the scene

continuously at high frame rate, even in a coarse way, looking for events of

interest to happen, and that generate wake-up triggers for higher tiers only
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in particular circumstances. This would guarantee a better usage of the

energy resources, increasing the network lifetime by one, even two orders

of magnitude. Moreover, it would allow even to more powerful nodes to

take part to the system. Within the previous example, the task of the

nodes belonging to the lowest tier would consist on detecting the presence

of cars and possibly determining a rough estimate of their speed. They

would then activate the higher tiers only when they discover the presence

of a fast car. In practice, they would act as a filter that cancels all the

events that are clearly unimportant.
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Chapter 3

Designing an Ultra-Low-Power WCN

Node

There are several problems underlying the design process of an ultra-low-

power WCN node. We will analyze these problems and suggest a design

method that leads to a node that can work for months powered with a cou-

ple of standard batteries. This chapter is organized as follows. In Sec. 3.1

we will identify the logic elements that make up a WCN node and we will

summarize the characteristics that the hardware embodiments of such el-

ements need to have in order to achieve ultra-low power consumption. In

Sec. 3.2 we will discuss about the firmware implementation, describing how

to manage the hardware resources to get the most out of our node, how

to exploit the low-power characteristics of the devices and when to use the

high-processing capabilities present on board. Finally, the power model

corresponding to such a design is described in Sec. 3.3.

3.1 Hardware

Within an embedded system we can always identify a set of logic elements

that make up the system, i.e., a set of entities with specific tasks to carry

out, receiving commands and data as inputs, and generating outputs that
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will be used by some other entities. Each logic element provides its con-

tribution to accomplish the duty for which the entire system has been de-

signed for. This can be also seen in a hierarchical way, with logic elements

that are divided into smaller elements.

Each logic element has an hardware embodiment in which it is imple-

mented, a device that has been designed or programmed to carry out the

tasks assigned to the logic element itself. The association between logic

elements and hardware embodiment is not necessarily bijective: the imple-

mentation of a logic element could be split into several devices and, at the

same time, one single device may contain more than one logic element.

We conceive a WCN node as made up by four main logic components:

� a control unit (CU), which manages the whole node, deciding when the

other logic components need to be operative and coordinating their

activities, aiming at executing the node’s tasks spending the minimum

amount of power;

� a sensor, seen as an entity that transforms the information present

in the outside physical world into data that can be processed by a

computing system;

� a memory, that acts both as a buffer where to store the data coming

from the sensor, waiting to be processed, and as a place where to store

the processing results, which may be needed in the future;

� a processing unit (PU), which runs algorithms on the acquired images,

trying to reduce the amount of data to transmit as much as possible;

� a transceiver (TRX), for wireless communication.

We will try now to identify the most suitable hardware embodiment for

each of these logic components according to their tasks.
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3.1.1 Control unit

The CU’s job consists of several simple tasks such as providing timing

signals to the sensor, managing the data transfer from the sensor itself and

the memory, activating/disabling the PU, deciding when to enable wireless

transmission and reception. Such tasks do not typically require high timing

resolution and no high processing capabilities are required too, as long as

most of the processing is carried out by the PU. Therefore, the CU can be

implemented on an ultra-low-power device, clocked at a very low frequency

(low frequency clocks easily exceed the kilohertz, thus achieving a precision

smaller than 1 µs, which is sufficient for most sensors). This is the case, for

example, of low-power microcontrollers, as the Texas Instruments MSP430

Microcontroller, which is also present in the Tmote Sky and the TelosB

nodes (refer to Sec. 2.1.4). The availability of a well supported embedded

OS such TinyOS is also an important factor, since it provides facilities for

time synchronization among nodes, multi-hop routing, self-management of

the network, etc. An ultra-low-power PLD represents a second option:

it allows to design multiple Finite State Machines (FSMs) operating in

parallel, to disable portions of the system by simply AND-gating their

clock and to employ multiple clock domains. When needed, it can also

generate high accuracy timing signals with a high frequency clock that is

fed to a small portion of the internal logic, with a limited effect on the

overall power consumption.

3.1.2 Imager

The choice of the imager has a strong impact on power consumption. The

higher the resolution and the color depth, the higher is the amount of data

to transfer, buffer, and process. The activity on input and output pins

deeply affects consumption, and its effect is multiplied by several times
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if the hardware unit responsible for processing does not provide enough

memory to buffer the entire image. In this case, another device such as

a FIFO memory has to be involved in the entire process. Therefore, the

designer should select the imager that provides enough, but not more visual

information than necessary to run the algorithms.

Although standard imagers are mere light sensors, it may be convenient

to use a device that senses specific visual properties of the scene, such as

local contrast, image texture, or motion. We will call such device a “vision

sensor”, as opposite to image sensors. This approach can reduce the power

consumption of the overall node. First of all, the chip generates less data,

thus limiting signal activity and required memory size. Performing opera-

tions on-chip rather than on an external component is also power-efficient.

Processing is inherently parallel, with the same local operator replicated at

each pixel. By performing the initial (and often most computationally in-

tense) operations at the sensor level, subsequent (and more power hungry)

processors only need to deal with selected frames and image areas, with

positive impact in terms of latency, device occupancy and system com-

plexity. For instance, suppose that the application requires to enhance the

edges of the acquired image. Assuming a resolution of 128×64 with 8bpp,

we have to transfer and buffer 64Kb of data. Then, edges can be extracted

sliding a 3 × 3 mask throughout the image. This operation requires, for

each pixel, 9 multiplications, 8 additions and 1 division. Thresholding may

be used to reduce the amount of data down to 8 Kb, too. Performing such

operations on a processor running at 10 MHz, assuming only 1 clock cycle

per operation, introduces a latency of 15 ms. Clearly, such memory and

processing requirements are not suitable for an ultra-low-power system. On

the other side, a custom imager can achieve the same goal by performing

the processing task in the analog domain or in the in-pixel digital circuitry,

during the acquisition. The amount of data to be transferred and buffered
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is reduced by a factor of 8, no latency is introduced and the requirements in

terms of processing capabilities can be relaxed. This comes at the expense

of a more complex sensor design process.

If most of the initial processing is performed at the sensor level, the

sensor itself can communicate whether a frame contains relevant image

data to be further processed. For example, the sensor may produce the

number of “active” (interesting) pixels in a frame; accordingly, the CU

may then decide whether the image data should be further analyzed by

the PU or not. In the first case, we will say that the sensor is in Active

mode, which implies data transfer to the PU. In the second case, the sensor

is in Idle mode, and no data needs to be transferred. Note that, even when

in Idle mode, the sensor still acquires and processes the image, although

data is not transferred to the PU.

In other words, vision sensors merge the sensing unit with part of the

processing unit, moving portions of the whole computation closer to where

data are generated. This turns to be very efficient especially in case of

mask filters, that operate on small groups of neighboring pixels and thus

allow to exploit the spatial proximity of the sensor’s photodiodes. This

helps to save time and energy with respect to a processor which needs to

fetch data located far away in the memory.

3.1.3 Memory

A memory unit is required every time the processing unit is not able to

process the data right away as they become available at the sensor output

pins. This situation occurs most of the times, e.g., when we have no

complete control over the readout process, as in the case in which the

sensor provides output data in a single burst after a “start” trigger. Or

we may need to compare two images, for motion detection or background

subtraction. We may also need to run more than one image processing
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algorithm on the same image. Again, we may decide to apply a filter on

the acquired image only in particular circumstances, according to some

parameter extracted from the image itself.

Mainly, the memory component must satisfy the requirements set by

the node in terms of size, speed and power consumption. As usual, these

parameters are conflicting. It is also important that Direct Memory Access

is supported when the burst of data runs at high speed. Other important

parameters include latency and interface modality.

In the light of these consideration, Static RAMs (SRAMs) seem to be

the right solution, since they are faster and consume less power with re-

spect to Dynamic RAMs (DRAMs), which also require data refresh. The

problem with SRAMs lies in their price, which is much higher due to the

higher number of transistors required per memory element, if compared

to DRAMs. Another possibility involves the use of soft memories imple-

mented in a PLD, which, by the way, are usually built on SRAM tech-

nology. This solution allows an easy interface and typically satisfies the

requirements in terms of speed imposed by the sensor. This is optimal

when the CU and/or the PU are implemented on the same PLD, since

system complexity is reduced. In addition, such an architecture allows to

reduce power consumption simply by disabling the soft-memory clock.

3.1.4 Processing unit

Unlike in standard WSNs, where the major source of power consumption

is represented by the only transceiver [67], in camera-based SNs the contri-

bution brought by the PU becomes as much as important. In fact, WCNs

combine the huge amount of data generated by the sensing unit with the

high acquisition rates imposed by the applications. Thus, the PU is re-

sponsible of reducing the entire stream of data to a single, short message

that can be transmitted wirelessly spending a limited amount of energy,
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Moreover, this “information synthesis” task needs to be carried out in a

limited amount of time. Therefore, once the right sensor has been iden-

tified, the designer must choose the processing device that allows to meet

the two conflicting requirements set by the application: processing power

and power consumption.

The required processing capabilities depend on the complexity of the al-

gorithms to implement and the rate at which such algorithms are executed.

Basically, the time tproc required for processing has to be much shorter than

the frame period tframe. We say “much shorter” because we would like to

execute the algorithm in a fraction of the frame period, so that the PU

stays idle for most of the time. Once the algorithm has been designed, and

given the resolution (m×n) of the images provided by the sensor, the value

for tproc depends on the clock frequency fclock and the architecture of the

PU itself. In fact, the same instruction can be executed in one clock cycle

by a processor and in several clock cycles by another processor. We can

measure the efficiency of a processor through the average number of In-

structions Per Cycle (IPC) that it performs while executing the algorithm.

Features such as hardware multipliers, availability of floating point arith-

metics and multitasking affect such parameter. From our point of view,

in order to take into account the complexity of the algorithm, we extract

the average number of clock cycles per pixel Ncpp required to process the

images, which is given by the IPC multiplied by the number of instructions

per pixel. In the end, it has to be that:

tproc =
(m× n)×Ncpp

fclock
� tframe. (3.1)

For instance, suppose we equip our node with a 128 × 64 camera that

acquires images at up to 30 fps, and suppose that the algorithm that we

need to run requires roughly 100 clock cycles per pixel to generate the
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output. Well, in this case, we would need a processor that can run at:

fclock �
(m× n)×Ncpp

tframe
' 24 MHz. (3.2)

By employing FPGAs instead of processors, we can significantly relax the

requirements. This is due to their intrinsic ability to process data in a

parallel and pipelined fashion, which allows to reduce the Ncpp parameter

by several factors.

Within the given set of devices which fulfill the requirements in terms

of computational capabilities, we need to find the one(s) that satisfies the

power requirement set by the application. Generally speaking, there are

two working modes that we need to take into account. The node can

either monitor the scene just looking for some event of interest to happen or

carefully analyze the full image when a potential event has been discovered.

In the former case, we will apply simple and fast algorithms, so that the PU

spends most of the time in a low-power mode. In the latter case, we need

to produce accurate results about the ongoing events, therefore we would

like to exploit the PU at its full potential. For each of these cases, we define

a selection criterion that applies to the power consumed in low-power and

active mode respectively, whose values are present on the datasheet of each

device. The constraints are given by the capacity C provided by the node’s

power source and the minimum expected lifetime L.

Let’s first consider the low-power working mode and determine the max-

imum current ilow−power that is allowed by the constraints. Since the entire

network will succeed in achieving long lifetime only if the PU operates in

this mode in the great majority of the cases, and since we are just defining

“order-of-magnitude” requirements, we can assume that the node always

operates in low power mode. Thus, it has to be that:

C

ilow−power
≫ L. (3.3)
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For the maximum current iactive that the device can draw in active mode,

we need to change our assumptions. Let’s consider the ideal case in which

no power is wasted in idle mode, i.e., ilow−power = 0; then it has to be that:

C

R× iactive
≫ L, (3.4)

where R denotes the percentage of time spent by the PU being fully op-

erative. Such ratio can be estimated according to the application and the

complexity of the algorithms we are going to implement.

The “≫” relations, meaning “one order of magnitude greater than”,

are required to compensate the approximations, above all the fact that we

are assuming to devote all the energy to the PU.

Just to provide a numerical example, consider C = 2200 mAh and an

expected lifetime of a month, i.e., L = 720 hours. For the current drawn

in low power mode, according to Eq. (3.3) we get:

ilow−power ≪
C

L
=

2200× 10−3

720
= 3 mA, (3.5)

and thus:

ilow−power ∼ 100 µA (3.6)

Assuming that the time spent by the PU in active mode is 1� of the

total time (meaning that, on average, we detect one event per hour, and

that the event lasts four seconds), from Eq. (3.4) we obtain:

iactive ≪
C

L×R
=

2200× 10−3

720× 10−3
= 3 A, (3.7)

therefore:

iactive ∼ 100 mA. (3.8)

Of course, these are rough estimates which the designer needs to carry

out before choosing the hardware embodiment for the PU. There are other

features which we may look for in a device. For example, support for
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standard communication protocols (e.g. for data transfer from/to an ex-

ternal memory) and image processing libraries is also desirable, for easy

programming.

3.1.5 Transceiver

In the context of WCNs, one may need to transmit entire images or even

video streams to a host pc, where images can be processed by a powerful

computer or analyzed by a human operator. In this case, the best option is

to use a high performance wireless transceiver, based on the WiFi protocol.

But this is not the case for ultra-low-power nodes, which are designed to

perform the detection of events in a completely autonomous way and spread

short messages such as alarms. Only in this way it is possible to achieve

a long lifetime. If a snapshot of the scene is required, the ultra-low-power

node may wake up a more powerful node that takes care of acquiring and

transmitting the high resolution image.

Due to these considerations and for what has been discussed in Sec. 2.1.3,

two main options for low-power communication are currently available:

Bluetooth and ZigBee, with the latter being more suited for our case. We

can safely say this because of Bluetooth-based devices typically provide

higher data rates at the price of a higher power consumption. Even more

importantly, the network topology supported by ZigBee introduces more

flexibility with respect to Bluetooth, which is based on a Master-Slave

scheme. ZigBee networks are self organizing, meaning that when we intro-

duce a new node in the network, the process of node insertion is automatic,

and we do not need to care about it. In Bluetooth networks such a process

is not as easy, due to some constraints imposed by the network architec-

ture. For example, one device can belong to several piconets, but can be

master only in one of them. Again, each piconet has a 3-bit address space,

meaning that the maximum number of devices that can take part of the
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piconet is eight; when the ninth device asks to be part of the network, a

new piconet has to be created, thus requiring a network re-organization.

In the end, ChipCon’s ZigBee-based transceivers seem to be the devices

that best fit our case.

3.2 Firmware

By firmware we refer to the implementation of both the CU and the PU.

The way the node controller and the image processing algorithms are imple-

mented depend on the devices chosen to be part of the node’s hardware.

Of course, high-level programming languages provide easy and fast pro-

gramming, while HDL such as VHDL allow to achieve a better performing

system. Nevertheless, the functionalities should be the same, both if we

use a MCU and if we use an FPGA.

The CU’s main task is to ensure correct functionality of the node while

maximizing its lifetime. In other words, the CU needs to create a time-

base, in which each of the other logic elements of the system have to be

mapped either as active or as idle throughout the frame period, according

to what is happening in the monitored scene.

If we equip our node with a “smart” sensor capable of detecting events

autonomously, as the one depicted in Sec. 3.1.2, we can consider two main

operating conditions of the node. In the first one the sensor reports no

“activity” of interest in the scene, meaning that the frame needs no fur-

ther processing. We will refer to this operating modes as Idle, since a vast

portion of the node’s hardware will not be activated at all. In the second

case, something is happening in the scene and the frame needs to be ana-

lyzed by the PU, or transmitted by the transceiver; therefore we will say

that the node is Active.

While the node is in Idle mode, the CU only provides the timing signals
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Figure 3.1: Control Unit: flowcharts. In Idle mode, the CU provides the timing signals to

the sensor, which generates as output a single value representing the number of non-zero

pixels in the output image. The CU compares this value with a pre-defined threshold

and selects the operating mode for the following frame. This is shown in (a). When

something is happening in the scene, Active mode is enabled, and, after the acquisition,

the entire image is read out. The processing unit operates at two levels: it first extracts

some features from the image and, if things have changed with respect to the previous

frame, it executes a high-level, decision making algorithm. If an event occurred, a message

is transmitted to the other node. When the scene does not change for a relatively long

period of time, the node is switched back to Idle mode.

42



CHAPTER 3. DESIGNING AN ULP WCN NODE 3.2. FIRMWARE

  

tframe tacq treadout tFE tDM ttrx trest
Control
Unit

sensor
control

wake
up?

trx 
control wait

Sensor acqui- 
-sition

read
out reset

Memory sleep

Processing
Unit sleep

Transceiver sleep rx sleep

HF
clock off

Figure 3.2: Idle frame period: status of the node’s elements. The figure shows which

logic elements are active and when within a frame period. Time flows from the left to the

right. In Idle mode, the sensor monitors the scene autonomously, by generating as output

only the number of non-zero pixels of the output image. The control unit compares this

value with a threshold and, in case, switches the node to Active mode. Finally, it asks

the transceiver to communicate with the other nodes. The other elements of the node,

the most power hungry ones, are never activated, thus consuming very little power.

to the imager and asks it to count the number of active pixels present in

the acquired frames, i.e., the imager itself is set to operate in Idle mode.

At each frame, the CU evaluates the reported number of active pixels and

decides either to remain in Idle mode or to switch to Active mode. The

flowchart in Fig. 3.1(a) summarizes this process. Moreover, the CU disables

the memory and the PU, while the communication activity is limited to

receiving information from other nodes. In this case, since the only CU

needs to be operative, and since it has to be operative all the time, the

system should be clocked at a low frequency, thus achieving power saving.

This is shown in Fig. 3.2, where the status of each element in the node

throughout the frame period is shown.

The frame period is divided into six intervals: tacq represents the im-

ager’s integration time, after which the sensor counts the number of active
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pixels and provides the result at the CU. This is carried out during treadout .

tFE and tDM refer to the processing phase, which in this case is not per-

formed, being the node idle. Then, the node communicates with the other

nodes during ttrx before resting until the next frame. From Fig. 3.2, we

can easily see that most of the node is sleeping, and minimum power is

consumed.

If the number of active pixels exceeds a fixed threshold nthpix, the imager

and the node are set to Active mode. When in this mode, after acquisition,

the CU wakes up the memory and asks the sensor to readout the whole

data. Once the readout has been completed, the CU activates the PU,

which reads the data from the memory and processes it. A high frequency

(HF) clock is usually required for this latter task, thus introducing an

important source of power consumption. The minimum frequency at which

such clock has to run has to be extracted from the algorithm complexity

and the frame period. Of course, the criterion is that the processing phase

must be short enough to allow the entire process to terminate without

introducing delays for the following frame.

The PU typically performs a two-stage process: image Feature Extrac-

tion (FE), followed by higher-level Decision Making (DM). FE aims at

extracting from the images the information that we care about, filtering

all the useless data and synthesizing the information in a few concise pa-

rameters which will pass to the next phase. Sample FE algorithms include

background subtraction, motion detection, edge detection, histograms of

oriented gradients, etc. DM receives as inputs these features and generates

the final output of the entire algorithm. At this stage of the process, we

are not dealing with images anymore, but we are working at a higher level

with the parameters of interest extracted from the images.

For example, the DM stage may consist in a classifier based on the

features computed in the FE stage, as it happens in [64], where the authors

44



CHAPTER 3. DESIGNING AN ULP WCN NODE 3.2. FIRMWARE

  

tframe tacq treadout tFE tDM ttrx trest
Control
Unit

sensor
control

processing
control

trx 
control wait

Sensor acqui- 
-sition

read
out reset

Memory sleep write read + 
write read sleep

Processing
Unit sleep extract 

features 
make 

decision sleep

Transceiver sleep tx/rx sleep

HF
clock off on off

Figure 3.3: Active frame period: status of the node’s elements. The figure shows which

logic elements are active and when within a frame period. Time flows from the left to

the right. In Active mode, after acquisition, the imager provides the entire image at the

output pins. Therefore, the CU wakes up the memory to receive the data. Then, data

are processed by the processing unit before transmitting the result to the other nodes of

the network. The high frequency clock is enabled for the memory and the processing unit

for all the time required to receive and process data, thus introducing a significant source

of power consumption.

present a Support Vector Machine-based object detection system. Here,

FE consists in a three phase process: the PU first performs background

subtraction, and in a subsequent phase detects a Region of Interest (RoI)

in which the only intrusive object is present. Finally, it generates the

features by calculating the average gray values for each column and row of

the RoI. The features are then provided to the SVM, which represents the

DM algorithm.

The activity of the node when active mode is enabled is shown in

Fig. 3.3. We can easily see that power consumption increases significantly,

due mainly to the activation of the memory, the PU, and the high frequency

clock source. The memory needs to operate during the entire readout pe-

riod treadout , in which the image is written in the memory, and during the
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FE and DM processing phases. While extracting the features (tFE ), the

PU reads the image from the memory and then may need to write the

results back to it. Then, decision making is performed during tDM , and

the PU reads from the memory the previously extracted features to gen-

erate the final output. The result is transmitted shortly after during the

communication phase ttrx .

In general, the image features can be local, or a single feature may

summarize the whole image content. In the latter case, we will say that

the feature represents the state of the frame. Here is an example of a

power-efficient structure for the PU. At each time instant, i.e., at each

frame, the FE algorithm generates a state s ∈ S from the images, where

S = {s1, s2, . . . , sN} and N is the cardinality of the state space. The DM

algorithm keeps track of how the state evolves with time to generate its

output y, expressed as y = f(s0, s1, . . . , st), where st represents a sequence

of consecutive frames all with the same state. Notice that the output of

DM stage may change only when a state transition occurs. Thus, at each

frame, the PU needs to be activated for the amount of time necessary to

accomplish the only FE stage if the state of the system does not change,

or both the FE and the DM when the state changes.

After processing, several transmission policies can be considered. For

example, one may transmit either full images, or simply the low-rate data

produced by the image analysis algorithm. The latter approach is the

preferred solution, since transmitting an entire image or even a portion of

it would quickly deplete the batteries. If an alarm is sent and we really

need to show to a human operator what is going on in the monitored scene

or in case we need to analyze the scene more accurately, we had better

employ our ultra-low-power node to wake up other, more powerful nodes,

that can take care of the emergency situation.

Switching between Idle and Active modes needs careful planning in order
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to maximize the node lifetime on the one hand, and reduce the risk of

frequent switches from Active to Idle on the other, which would result

in possibly missed detections of events and high energy wasted during

transitions. A typical policy is to activate the node as soon as the measured

amount of activity exceeds the threshold, in order to acquire as much

information as possible about the event, and to switch the Active node back

to Idle after a waiting period TW in which the images are characterized by

low activity (i.e., the number of active pixels in each frame is below the

threshold). In this way we avoid the interruption of the detection algorithm

while the event is still ongoing. For example, assume we perform motion

detection in the FE phase and an object that we want to monitor enters

the scene. As long as the object moves, we are able to track it, but if

it stops for a few instants it disappears from the node’s sight. Without

applying the waiting period before switching the node to Idle mode, we

would stop tracking the object. Of course we would start tracking it again

when the object starts moving again, but in order to associate the previous

event with this new one we would need a more complex system. Moreover,

the system could keep on switching from one mode to the other with a

negative impact on power consumption. By waiting for TW , we introduce

some flexibility in the system which allows us to avoid such problems.

3.3 Power Consumption Model

According to the structure described in Sec. 3.2, there are two main con-

figurations in which the system can run:

(a) Idle mode, when no activity is detected for a period longer than TW ;

(b) Active mode, when something is happening the monitored scene and

we need to process the images.

47



3.3. POWER MODEL CHAPTER 3. DESIGNING AN ULP WCN NODE

We will refer to the average power Px consumed and the average time

Tx spent by the system in these configurations with PI , PA and TI , TA

respectively.

The Px ’s vary according to the hardware configuration and the firmware

implementation. On the one hand more powerful devices draw more cur-

rent; on the other hand an efficient implementation of the CU runs at a low

clocking frequency, while an efficient implementation of the PU terminates

its task much earlier than the next acquisition starts, and can be disabled

for most of the frame period. The values of the Tx ’s depend on the period

of low activity that we wait before switching mode from Idle to Active,

TW , on the average duration of the events TD , and the time between two

following events TE .

Typically, we expect events to be sparse in time, meaning that the period

of events is much longer than their duration plus the waiting period, i.e.,:

TE > TD + TW . (3.9)

This basically means that events are far from overlap, and we expect the

node to spend a certain amount of time in Idle mode before an event is

detected. Therefore, when this condition takes place, in the interval of

duration TE that occurs between two following events, the node works in

Active mode for a time TD , during which the PU process the images. After

the event has terminated, the system remains in Active mode and keeps

monitoring the area for a TW -long time window, just to be sure that the

event effectively has terminated. Then, the CU activates the system Idle

mode, which holds until a new event rises, i.e., after an interval of length

TI .

Conversely, if the frequency of the events is higher, meaning that:

TE ≤ TD + TW , (3.10)

the sensor’s Idle mode is never enabled.
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We can summarize the two situations with:

TI = max {0, TE − TD − TW } (3.11)

TA = min {TE , TD + TW } (3.12)

Accordingly, the overall average power consumption turns out to be:

P =
TI · PI + TA · PA

TE
(3.13)

The impact of TW on the lifetime depends on the ratio TW/TE, thus

having its maximum for small values of TE and decreasing accordingly.

Therefore, by using greater values for TW , we are safer since we reduce

the probability of interrupting the process of event detection while it is

still happening, but we pay a higher power consumption. The minimum

value for TW is given by the application, which is characterized by an

average period of time in which objects temporarily stop their activity in

the middle of an event. For example, consider we are tracking people in

a room and we perform background subtraction in order to determine if

an event is occurring; there may be some occluding objects which are part

of the background such that the imager is not able to detect any activity.

In this case we may choose TW to be equal to the average time required

for a person to walk through the hidden zone. This is usually limited to

very few seconds. A safer approach consists on choosing TW equal to the

average duration of events TD .

Using (3.13) and assuming to power the node with a battery of capacity

C and voltage V , we can easily estimate the node’s lifetime TLt = C · V/P
as a function of TE . In particular, (3.13) shows that the node lifetime

increases as TE increases, as expected.

Now, consider the power efficient implementation of the algorithm de-

scribed in Sec. 3.2, based on a feature extraction phase that provides as

output one among finite set of states. In this case, things change a little,

since we have three main configurations in which the system can run:
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(a) Idle mode;

(b) Active mode, when no system state transition occurs, therefore only

the FE algorithm is executed;

(c) Active mode, when the system state changes, thus requiring the exe-

cution of the DM algorithm also.

We can replicate the same reasoning as above, thus we have PI , PA,FE ,

PA,DM and TI , TA,FE , TA,DM that represent respectively the power con-

sumed and the time spent in each of these configurations. In addition,

within the period of time in which an event takes place, we have the prob-

ability Prtrans that a state transition occurs at each frame. Therefore,

when we consider the situation represented by (3.9), in which the period

of events is much longer than their duration, while an event is happening

the PU always extracts the features (i.e., the state), but it executes the

DM algorithm only once every Pr−1
trans frames, on average. After the event

has terminated, the system remains in Active mode and keeps monitoring

the area for a TW -long time window, in which the system state does not

change, being the scene static, and DM is never performed.

The other situation needs to be split into two cases: if TD < TE ≤
TD + TW , the sensor’s Idle mode is never enabled, while the amount of

time in which the scene is static is less than TW . While if TE ≤ TD , a state

transition can happen at any times.

Thus we have:

TI = max {0, TE − TD − TW } (3.14)

TA,FE = min {TE , TD} · (1− Prtrans) +

+min {max {0, TE − TD} , TW } (3.15)

TA,DM = min {TE , TD} · Prtrans (3.16)
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And the overall average power consumption is given by:

P =
TI · PI + TA,FE · PA,FE + TA,DM · PA,DM

TE
. (3.17)

The dependence of TA,DM on Prtrans underlines the need to developed

as simple an algorithm as possible, i.e., an algorithm based on a FE phase

in which the number of possible states that we assign to the system is

low. By doing so, we reduce the probability of state transitions, lower the

complexity of the PU and shorten the time required for processing. This

translates into the HF clock running for a shorter period of time within

the frame period, thus achieving lower values for PA,FE and PA,DM .
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Chapter 4

Implemented Node Architecture

In order to prove the effectiveness of our approach, we have developed a

prototype based on an ultra-low-power sensor and a flash-based FPGA [68].

The sensor is a custom contrast-based vision sensor prototype designed

for ultra-low-power applications. It automatically detects the presence

of moving objects in the scene and wakes up the node when something

relevant is taking place. The node then runs a custom people counting

algorithm and provides as output just the number of counted people that

cross the monitored area.

In the process of selecting the processing devices that best fit our case,

we have been monitoring the market of low-power processing devices, tak-

ing into account all the possibilities as we pointed out in Sec. 2.1.2. Among

the selection criteria we considered power consumption, processing capa-

bilities, easiness of programming and impact on the node’s complexity.

We ended up choosing one single flash-based FPGA, which features ultra-

low static power consumption. When clocked at a low frequency, current

drain is very limited. Moreover, thanks to the availability of multiple clock

domains, this solution allowed us to reduce system complexity by imple-

menting both the CU and the PU on the same device. At the same time,

PLDs allow to build efficient architectures for data processing. Of course,
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we had to pay the price of a long and tedious programming phase, but the

achieved results are worth the effort.

Despite being designed for wireless applications, our prototype does

not include the wireless transceiver. The complexity that such component

would add to the node design is significant and would have delayed the

research activity. Nevertheless, the purpose of this thesis is to propose

a method for designing ultra-low-power nodes based on a camera, which

translates into reducing the power consumed by the entire node by one to

two orders of magnitudes with respect of the state of the art. We have seen

in Sec. 2.2 that the WCN nodes present in the literature exhibit a power

consumption in the order of hundreds of milliwatts, most of which spent to

process and/or transmit images. In our case, we concentrated the activity

on developing an ultra-low-power control unit and an efficient algorithm

that reduces the amount of data to transmit to a few bytes. By succeeding

in doing this with much less than ten milliwatts, we can safely claim that

we reached our goal. In fact, we believe that the presence of a wireless

transceiver would not yield a dramatic increase in power consumption with

respect to the values we measured. We could also consider our prototype as

a daughter board to be attached to a standard WSN node such as Moteiv’s

TmoteSky or Memsic’s TelosB. Having said this, in this chapter we will

develop our considerations as if the transceiver was present, in order to

provide a more complete view of the node.

In this chapter we will analyze in details the hardware and firmware

architectures of our prototype, underlying how the system exploits the

low-power characteristics of the devices. In Sec. 4.1 we define the node

architecture from a hardware point of view, while the firmware is described

in Sec. 4.2. We performed power measurements on the node and the results

are shown in Sec. 4.3, followed by an estimate of the node lifetime when

powered with a couple of standard batteries.

54



CHAPTER 4. IMPL. NODE ARCH. 4.1. HARDWARE

  

Control Unit

In
te

rfa
ce

 (I
F)

Video
Sensor

Transceiver

15 kHz

15 MHz

FI
FO

Pr
oc

es
si

ng

# active
pixels

control
signals

control
signals

FPGA

IF
En

FIFO
En

Proc
En

Sys En

Figure 4.1: Block scheme of the proposed video-node.

4.1 Hardware

As shown in Fig. 4.1, the proposed video-node is composed of three main

hardware elements: the imager, the FPGA, and a transceiver. A detailed

analysis of these elements is presented in the following.

4.1.1 Sensing

The imager employed in our system is a prototype called GrainCam [10, 69]

developed by researchers at the Fondazione Bruno Kessler in Trento (Italy).

This is a 128× 64 pixels, binary, contrast-based sensor which provides

address-based output data asynchronously.

Imaging is achieved by a two-stage process: an analog phase, aiming

at the acquisition of the current frame, and a digital phase, in which the

output frame is generated. During the acquisition process, each pixel re-

ceives a binary value obtained by comparing the incoming irradiance at

three locations: the pixel itself, the pixel above and the pixel at its right.
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(a) (b)

Figure 4.2: Pictures of the GrainCam vision sensor developed at the Fondazione Bruno

Kessler in Trento (Italy).

We refer to this L-shaped structure as the kernel. The pixel is said to be

active if the difference of incoming light between the most and the least

irradiated pixels in the kernel exceeds a predefined amount. Thus, at the

end of the acquisition process, the active pixels represent the parts of the

image characterized by high contrast. In the second part of the process,

the sensor computes the pixel-by-pixel (bit-by-bit) difference of the cur-

rent image with a previously acquired (binary) frame, stored in an internal

memory. For instance, we can set a reference frame representing an empty

background to achieve a basic background subtraction mechanism, or, by

subtracting each frame with the previous one, we can detect the high con-

trast points in the scene undergoing motion. Fig. 4.3shows some examples

of the images that can be produced by this sensor. The images exhibit

some isolated active pixels corresponding to points in the scene charac-

terized by a measured contrast close to the threshold. The noise present

in the analog section of the system causes the difference of irradiance in

the kernel of these pixels to oscillate above and below the threshold, thus

generating a blinking effect. Nevertheless, the method allows to effectively

detect the foreground elements, as shown in Fig. 4.4.

The sensor features the two output modes introduced in Sec. 3.1, and
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behaves as follows. When the Active mode is selected, the sensor waits for

an external command to start the read-out process, in which the column

address and the sign of the non-zero pixels of the difference image are

provided at the output pins (the row address is derived from an end-of-row

signal). This process is asynchronous, meaning that the difference image is

raster-scanned, and an output enabling signal running at 80 MHz is raised

every time the data at the chip’s output pins represents the address of a

non-zero pixel. This process is executed in less than 200 µs. Notice that

this kind of output data allows to achieve image compression when the

active pixels are not too many. Typically, this is true when the sensor is

set to detect motion, as shown in Tab. 4.1. Conversely, when the scene is

full of details, this method for compressing data is counter-productive.

In Idle mode, the sensor scans the image and, at the end of the process,

it provides at the output pins only the number of non-zero pixels present

in the difference image. This number can be used as an indicator of the

presence or absence of foreground/moving objects when setting the sensor

to operate in background subtraction/motion detection configuration [70].

The frame rate can be quite high, since it is only limited by the duration

of the acquisition process. Under normal light conditions the integration

time required by the sensor can be as low as 5 ms, enabling a frame rate

as high as 200 frames/s.

The overall power consumption of the sensor is extremely small. At a

frame rate of 50fps, with 25% active pixels, the sensor draws approximately

100 µW when in Active mode. Notice that, since active pixels represent

high contrast areas (typically edges), it is unlikely that more than 25%

of the pixels are active. If the system is set to Idle mode, the power

consumption reduces to 30µW. This value is over two orders of magnitude

less than virtually any other image sensor available on the market.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 4.3: Images taken by our camera compared with a picture of the same subjects

taken with a standard camera: in (a) we can easily identify the tree with its branches and

the house at its left; note that the bottom of the tree disappears due to the presence of

the roof of another building behind it. This effect is due to the lack of contrast between

the tree and the roof, but we can hardly distinguish them in (b) also. Another example

is provided in (c), representing the mascot of the Brazilian soccer team Flamengo, shown

in (d). The sensor efficiently detects strong, sharp contrasts, as it can be seen in (e) with

reference to (f), but it provides very good performance even when the contrast patterns

are more complex, as in (i), which represents the detected high contrast points of the

landscape in (j).
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(a) (b) (c) (d)

Figure 4.4: Images taken by our camera from the same location: (a) and (c) represent

a static background, while (b) and (d) represent a person walking by. The result of the

acquisition process is given by (a) and (b). The sensor generates (c) and (d) by subtracting

the last acquired frame to the current one. Note that in this case, each pixel can take

three values, since it is the difference between two binary values.

4.1.2 Control, storage and processing

The core of our video-node is represented by an FPGA-based board. As

pointed out in Sec. 2.1.2, FPGA processors have well known advantages in

terms of speed and processing power with respect to general purpose mi-

crocontrollers, such as those used in standard, low-power wireless network

nodes. Furthermore, FPGAs offer several advantages over high perfor-

mance embedded processors such as the Intel XScale family [37], employed

in some motes [35, 9]. For example, they allow for parallel task execu-

tion, which can be very advantageous in image processing, where the same

mask can be replicated multiple times throughout the image [71], and in

system control, where individual components may need to be managed in-

dependently. Another advantage of FPGA processors is that they provide

easy and fast implementation of several custom components (such as soft

memories and CPU soft cores) within the same device. They also can

support multiple clock domains, thus enabling separate clocks for different

tasks. In particular, flash-based FPGAs have two main advantages with
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respect to standard SRAM technology: ultra-low static power consumption

and non-volatility. Unfortunately, since flash-based FPGA technology is a

few generations behind SRAM technology, it still offers a lower density of

logic gates and a lower maximum operating frequency, due to longer signal

propagation delays. For our video-node we selected the flash-based Actel

IGLOO M1-AGL600, which is characterized by 600k system gates and a

static power consumption on the order of tens of micro-watts [72].

4.1.3 Communication

In the current implementation, data is transmitted to a host computer

through a RS-232 interface, but the node has been conceived to integrate

a wireless module such as the ChipCon CC2420 IEEE 802.15.4-compliant

radio, which is described in Sec. 2.1.3. In short, this device communicates

at 250 kbps and draws a current of less than 20 mA when transmitting or

receiving. Power consumption reduces to less than 0.5 mA when in idle

mode and around 20 µA in power-down mode [25].

4.2 Firmware

Within the FPGA we implemented a ring oscillator, a FIFO memory with

its interface, the processing unit PU and the controller CU. Two clock

domains are implemented, as suggested in Sec. 3.1: one running at a low

frequency (fLF ' 15 kHz), which is fed to the CU, and one running at

a higher frequency (fHF ' 15 MHz), for high speed operations. Both

are derived from the ring oscillator’s output which is divided through a

frequency-divider chain. The CU controls this latter clock through a set

of AND gates, as shown in Fig. 4.1. Since the components implemented in

the FPGA core need to be enabled in different time intervals, a dedicated

gate is provided for each controlled component. The CU also generates the
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Figure 4.5: Sensor-to-FIFO interface. Data are 8-bit wide and represent the row addresses

of the active pixels in the image and their sign. The interface performs a serial to parallel

conversion in order to cope with the high rate at which the sensor reads out the data.

Addresses are written in the SIPO memory at a maximum rate of 80 MHz. They are

then copied into the PIPO memory which is clocked at a frequency fHF ' 15 MHz.

Then, a set of decoders reconstruct the image row. When the end of a row is reached

(signaled through the assertion of an End-Of-Row signal), the row is transferred to the

FIFO memory.

timing signals for the imager, asks it to perform detection of motion, and

selects its output mode, either Active or Idle.

In our prototype the transitions between Active and Idle camera modes

are triggered using a threshold nthpix on the number of active pixels in a

frame and a waiting time TW , as described in Sec. 3.2. The value for nthpix
has been chosen a little greater than the number of active pixels in a static

scene due to the analog noise. Moreover, we chose the value of TW to be

equal to the expected event duration TD, that is 2 s, which is a reasonable

choice since it prevents the system to be switched to Idle mode while an

event is still occurring.

When the imager’s Active mode is enabled, the data produced by the

imager flows at a maximum rate of 80 MHz, which can not be supported
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by big soft memories implemented in the FPGA, while adding an exter-

nal FIFO would increase the node’s complexity and power consumption.

Therefore, the data goes through the serial-to-parallel interface depicted

in Fig. 4.5 that slows down the access to the internal soft memory. The

interface also decodes the image converting it from the address-based rep-

resentation into a bitmap with 2 bpp color depth. This is obtained by

means of a 7-bit input Serial Input Parallel Output (SIPO) memory, with

a number of elements n such that:

1. n >= 80 MHz
fHF

;

2. the corresponding synthesized circuit can run at such speeds.

Of course, the higher n, the lower is the fHF that we can use, but, at the

same time, the maximum frequency at which the FPGA allows us to write

data on the SIPO memory decreases, since the memory becomes more

complex. In our case, things work fine with n = 8. While reading out a

row of the image, the 7-bit addresses of the active pixels are written in

the SIPO memory at a maximum rate of 80 MHz. The pixel sign bits are

saved also. Then, the data are copied into a Parallel Input Parallel Output

(PIPO) memory, clocked at fHF , in order to allow the SIPO memory to be

overwritten without data loss. The first of the two previous constraints on n

is required to ensure that no data drops out from the SIPO memory without

being first transferred to the PIPO. The addresses and the corresponding

sign bits in the PIPO memory undergo the decoding process, through which

we reconstruct the current row of the acquired image, which is stored into

a 256-bit buffer. In this case, n decoders operate in parallel. It may

happen that the same address is decoded multiple times, but this is not an

issue since it will always be decoded into the same value. The image row

is then safely transferred into the FIFO memory when the End-Of-Row

signal is asserted. This process is repeated for every row, and at the end
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the FIFO memory will contain the whole image. The soft FIFO is a 16 Kb

memory. The data are currently packed in bytes, although the system can

be configured for different word sizes. Once the read-out process is over,

the PU processes the image to generate the desired output, which is then

sent to the transceiver for transmission.

Bandwidth and power issues preclude video streaming and limit image

transmission to very few situations. According to the data provided by

the manufacturer and the power model present in [1], the transmission of

an entire frame (16 Kb) requires about 65 ms while consuming 18 mW.

Therefore, the transmission of the whole set of images acquired by one

single node at 15fps would fill the available bandwidth, adding a significant

contribution to the overall power consumption (about 17 mW).

We can achieve better performance by compressing the images, e.g using

a Run-Length Encoder (RLE), which well suits to the employed sensor.

The encoding process, implemented in the FPGA, is performed at the same

time as the read-out process (thus requiring less than 200 µs), by comparing

the addresses of non-zero pixels present at the sensor’s output pin. The

impact of the RLE in terms of device occupancy is almost negligible, while

the reduction of transmitted bytes may be consistent, as shown in Tab. 4.1.

When the scene is full of details and the sensor generates a high number

of active pixels, it reduces the amount of data by one third with respect to

the standard 2 bpp bitmap coding, and halves the size achieved with the

address-based representation used by the sensor. If the image is sparse,

the RLE cuts the data size to less than 10% of the bitmap image, but in

this case the sensor compression method may achieve better rates.

The encoder has been implemented to prove that the node could sup-

port image transmission, nevertheless it is not part of the system on which

we performed power measurements. This is because the node should be

a smart mode, capable of detecting objects, tracking people or perform-
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Table 4.1: Compression ratios achieved with the used sensor and a RLE with respect to a

bitmap coding scheme with 2 bpp color depth. The images in Fig. 4.4 are considered. In

order to better understand the effect of data compression, the percentage of active pixels

for each of the images is shown also.

Fig. 4.4(a) 4.4(b) 4.4(c) 4.4(d)

Active pixels 29.1% 28.9% 0.3% 4.9%

Sensor read-out 130.8% 129.9% 1.3% 22.1%

RLE 68.7% 68.3% 5.7% 21.4%

ing any other function required by the application. Therefore, in order to

demonstrate the capabilities of the proposed system in a realistic scenario,

we configured it to function as a “people counter” [73]. Despite this may

not seem a revolutionary application, it is definitely not a trivial task and

it requires to implement some intelligence within the node. In the follow-

ing section we will describe the algorithm and its implementation on the

FPGA.

4.2.1 An Integrated People Counter

We developed an integrated system based on the vision sensor described

in Sec. 4.1.1, customized as an autonomous counter for persons passing

through a “gate”, such as a door or a corridor. The algorithm has been

developed in cooperation with Roberto Maduchi (University of California,

Santa Cruz, USA). The camera node is attached to the ceiling, placed such

that its field of view encompasses the width of the corridor or of the door,

as depicted in Fig. 4.6(a). Persons are seen entering from the top or bottom

of the image and exiting through the opposite end. The task is to count

the number of persons transiting in each direction. It should be clear that

this is just one possible (and simple) way to use this system; the camera

node could be reconfigured for many other monitoring tasks.

Data is processed at full frame rate (30 fps), while using a relatively
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Figure 4.6: Camera node setup (a) and an acquired image representing a person that

moves upwards (b). Fig.(b) shows the two implemented VILs. Each VIL can be on or off

according to the number of non-zero pixels that it contains.

simple image analysis procedure. The dynamic characteristics of the ap-

plication dictate this frame rate. A person walking at normal speed can

transit through the field of view of the camera in as little as half a second.

Robust estimation of the direction of motion requires analysis of several

image frames, hence the need for frame rates in excess of 10 fps. Further-

more, when two persons transit through the field view in close sequence,

a high frame rate is necessary to correctly separate the two, otherwise the

system may incorrectly count just one passage.

The algorithm for people counting based on the binary data produced

by the camera is presented in the following paragraphs.

Image Summarization

We borrow the concept of “Virtual Inductive Loops” (VIL) from Via-

rani [74], who introduced it for visual traffic monitoring. A VIL mim-

ics the action of an inductive loop, such as those embedded in the road

pavement for car counting. In our case, a VIL is simply a particular, typ-

ically rectangular region of the image. The system counts the number of

asserted pixels in a VIL, reporting a binary ‘active’ or ‘inactive’ state for
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S00 S00 S01 S01 S11 S11

S11 S11 S11 S10 S10 S10

S10 S10 S10 S10 S00 S00

Figure 4.7: An example of a sequence of frames of mode Mout, along with the state of

each frame. The active VILs are represented in red.

the VIL according to whether the number of asserted pixels is above a

fixed threshold. This threshold is chosen empirically based on the noise

characteristics of the system. In order to increase robustness, hysteresis is

implemented. If the image has NVIL virtual loops, the overall state S is

summarized by a binary word with NVIL bits. In our experiments, we used

2 VILs, placed as shown in Fig. 4.6(b) and Fig. 4.7. This is admittedly

a crude summarization (a 2-bit state) of the binary image content. Yet,

this representation is sufficient to accomplish our task with good accuracy.

In fact, this summarization procedure has two main advantages. Firstly,

the sequence of 2-bit states can be processed very efficiently by the low-

power FPGA sensor node architecture. Secondly, counting the number of

asserted pixels within a VIL could be achieved without the need to buffer

the whole binary image data within the FIFO memory. The FPGA could

simply count the number of asserted pixels as they are produced by the

sensor, checking their address to ensure that it is within either VIL.

In order to simplify our representation further, we group consecutive

frames characterized by the same 2-bit state S into segments σ = (S, t).
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t contains the information about the number of frames that make up the

segment, i.e., its duration. Thus, the video is represented by the sequence

of segments (σ1, σ2, . . . , σN), where superscripts represent the index of the

segment in the sequence. Accordingly, Si and ti represent the state and the

duration of a generic segment σi. We also define Σi→j = (σi, σi+1, . . . , σj)

and Si→j = (Si, Si+1, . . . , Sj). When we want to indicate a particular value

for a segment’s state, we write its 2-bit representation in the subscript

(e.g. Si01). Each segment contains frames with the same state, and two

subsequent segments have frames with different states.

We will say that a frame is of mode Mm
in when it is an image of the m-th

person seen in the scene, and this persons is entering the monitored area,

i.e., it is transiting from the top to the bottom of the image. Mode Mm
out

represents the m-th person seen in the scene, who is exiting, i.e., moving

from the bottom to the top of the image. In the following, when the index

m of the person transiting is irrelevant, we will drop the superscript, in

which case mode Min and Mout simply represent the fact that a persons is

walking in a particular direction. For example, Fig. 4.7 shows a sequence

of frames of mode Mout
1. We also introduce mode Mnone representing

sequences with no persons visible in the scene.

An interval I(l) = Ii→j , where the superscript within parentheses de-

notes an index, is a maximal sequence of segments Σi→j = (σi, . . . , σj) with

the same mode Mm
k , summarized by Ii→j = (Σi→j,Mm

k ). Note that modes

and thus the extent of each interval are not directly observable, and must

be inferred from the observable states.

1Although the sequence of states in Fig. 4.7 is fairly typical for a mode Mout , much more complex

sequences can be observed. This is because different parts of one’s body may activate the VILs in various

orders.
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Mode Assignment

The goal of our algorithm is to assign to each segment its correct inter-

val. The algorithm is based on a statistical generative model. We assume

that, within an interval, the sequence of segments being generated forms

a Markov chain. However, a Markov chain of the first order would not

be sufficiently descriptive. A Markov chain of the first order is such that

P (Sn|Sn−2, Sn−1;Mm
k ) = P (Sn|Sn−1;Mm

k ), where P (Sn|Sn−2, Sn−1;Mm
k )

is the probability of the segment state Sn appearing after states Sn−2

and Sn−1 in an interval of mode Mm
k . But this is unrealistic in our

case, as shown by the following example. The conditional probability

P (S3
01|S2

00;M
m
out) can be expected to be close to 0.5 (for example, it may

correspond to the beginning of the sequence, as a person enters from be-

low and crosses over the second VIL). This is not the case, though, for

P (S3
01|S1

10, S
2
00;M

m
out), which is bound to take a very small value since it is

an unlikely sequence during upwards motion. Using a second-order Markov

chain removes this ambiguity.

Assume that a generic sequence of segments Σi→j with states Si→j =

(Si, Si+1, . . . , Sj) is contained in an interval of mode Mm
k (as denoted by

the writing Σi→j ⊂ Mm
k ). The likelihood of observing the sequence of

states Si→j under this assumption is:

P (Si→j|Σi→j ⊂Mm
k ) =P (Si|Mm

k ) · P (Si+1|Si;Mm
k )· (4.1)

·
j∏

n=i+2

P (Sn|Sn−2, Sn−1;Mm
k )

In addition, we introduce two fictitious (and thus non-observable) seg-

ments, σI = (SI , 0) and σI = (SF , 0), that are assumed to occur at the

beginning and at the end (respectively) of each interval. If an observed

sequence Σi→j with Si→j = (Si, Si+1, . . . , Sj) is assumed to encompass a

whole interval (as denoted by Σi→j = Mm
k ), then the probability of observ-
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ing Si→j should be modified as follows:

P (Si→j|Σi→j = Mm
k ) =P (SI |Mm

k )· (4.2)

· P (Si|SI ;Mm
k )·

· P (Si+1|SI , Si;Mm
k )·

·
j∏

n=i+2

P (Sn|Sn−2, Sn−1;Mm
k )·

· P (SF |Sj−1, Sj;Mm
k )

In practice,

P (Si|SI ,Mm
k ) (4.3)

and

P (Si, Si+1|SI ;Mm
k ) = P (Si+1|SI , Si;Mm

k ) · P (Si|SI ;Mm
k ) (4.4)

represent the probability that state Si or the sequence (Si, Si+1) are seen

at the beginning of an interval.

P (SF |Sj−1, Sj;Mm
k ) (4.5)

represents the probability that the sequence (Sj−1, Sj) is seen at the end

of an interval. Note that the marginal probability P (SI |Mm
k ) is equal to 1,

since the first state in an interval is always SI . The first and second order

conditional probabilities in (4.2) can be learned from labeled training data

sets.

The conditional probabilities in (4.1) and (4.2) are independent of the

person index m. However, the segments must all belong to the same mode

Mm
k . For example, consider the case with two persons traversing right

after each other in the same direction. The first person, with index m = 1,

is seen in the segments Σ1→N1 with states S1→N1 (S1 through SN1), while

the second person (m = 2) is seen in segments Σ(N1+1)→N2 with states
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S(N1+1)→N2 (SN1+1 through SN2). In this case,

P (S1→N2|Σ1→N1 = M 1
k ,Σ

N1+1→N2 = M 2
k ) = (4.6)

= P (S1→N1|Σ1→N1 = M 1
k ) · P (SN1+1→N2|ΣN1+1→N2 = M 2

k )

= P (S1→N1|Σ1→N1 = Mk) · P (SN1+1→N2|ΣN1+1→N2 = Mk)

where S1→N2 is the juxtaposition of the two state sequences, and each of

the corresponding sequences of segments is equal to a distinct interval.

In our model we assume that intervals with mode Mnone contain only one

segment. When nobody is walking through the area under surveillance, we

expect no state transitions; in particular, we expect the system to be in the

S00 state, since no motion should be detected and therefore no VIL should

be on. In practice, noisy pixels may generate unexpected and uncorrelated

state transitions, which are hardly compatible with any of the modes. In

order to be able to explain such noisy transitions, we force Mnone intervals

to be only one segment long. In this way a S00 → S01 → S00 transition

generated by noise would be detected as three distinct intervals of mode

Mnone. In addition, we assume that intervals of mode other thanMnone have

at least two segments Finally, we assume that any given interval cannot

have length more than a pre-determined value Tmax, where Tmax is defined

in terms of frames, rather than of segments. Basically, Tmax is the length

(in frames) of the longest observed interval. In our tests, we set Tmax = 60

frames (2 seconds at 30 fps). These assumptions simplify our algorithm

considerably without affecting its accuracy.

Let Îi→j be a candidate interval, consisting of the sequence of segment

Σi→j, that has been assigned to mode Mk. We can compute its likelihood

as by (4.2)

P i→j
Mk

= P (Si→j|Σi→j = Mk). (4.7)

For every sequence of segments Σ1→N , we can build a set of possible in-

tervals (̂I(1), Î(2), . . . , Î(L)), where the lth interval Î(l) = Îi(l)→j(l), is made
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up by Σ(l) = Σi(l)→j(l), is assigned to mode Mk(l), and has likelihood

P
(l)
Mk(l)

= P
i(l)→j(l)
Mk(l)

. Armed with these definitions, we can state our problem:

Problem: Find the subset of indices L ⊂ {1, 2, . . . , L} that maximizes

the product of the likelihoods: ∏
l∈L

P
(l)
Mk(l)

(4.8)

under the following constraints:

1. intervals do not overlap, i.e., they do not have any segment in common:

∀l1, l2 ∈ L , with l1 6= l2,Σ
(l1) ∩ Σ(l2) = ∅; (4.9)

2. no segment is left uncovered, but all segments belong to an interval:⋃
l∈L

Σ(l) = Σ1→N . (4.10)

Differently stated, we find the sequence of people crossing in both directions

that maximizes the likelihood of the observed data. Then the number of

people who traversed from top to bottom (or viceversa) in a certain period

of time is equal to the number of distinct indices l ∈ L with Mk(l) equal

to Min (or Mout).

Multigraph representation

The problem can be represented through an acyclic, directed multigraph

in which we add a node for each segment σi and we draw an edge for every

candidate interval Î(l) that we take into account (we will then use the terms

node and segment and the terms edge and interval interchangeably). More

specifically, if the interval Î(l) = Îi→j includes the segments σi, σi+1, . . . , σj,

then the corresponding edge will connect the node σi to the node σj+1.
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Figure 4.8: The image shows the process of insertion of a new node (σ4) into the graph.

The first step requires to find the new edges (bold arrows) and calculate their cost. Each

edge is associated to an interval. For example, the edge connecting σ2 to σ4 represents

the Î2→3 interval, i.e., the interval that includes segments σ2 to σ3. No edge can be drawn

connecting σ1 to σ4 because the Î1→3 interval does not fit in the Tmax-wide observation

window (sketched with the dashed vertical lines at the top). Then, all the paths to the

current node have to be compared and only the one with maximum cost is kept. Edges to

previous nodes are kept too (i.e., Î1→1), even if they do not belong to the current path at

maximum cost. This is because in the future there may be a highest cost path to another

node σ5 that does not passes through the one that we have just inserted. The resulting

graph has one single edge directed inwards for each node σn; therefore we can enumerate

edges (intervals) using the same index as their destination node.
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No cost is associated to the nodes, while the cost of each edge is given by

the likelihood P
(l)
Mk(l)

= P (Si(l)→j(l)|Σi(l)→j(l) = Mk(l)) of the interval that it

represents. The graph origins on an initial node σI meaning that the node

just woke up from Idle mode, and ends on a final node σF , which represents

the instant at which the node switches its mode from Active to Idle, i.e.,

when a single segment longer than Tmax occurs. Since the initial state is

fictitious, it can not be part of a real interval; we solve this problem with

an edge ÎI connecting σI to σ1 with cost PI = 1.

Note that the number of edges in the graph is bounded from above by

Nsegm · Tmax, where Nsegm is the total number of segments in the video.

This is a very conservative upper bound, since it is highly unlikely that all

segments are made up by a single frame. In practice, within an interval of

Tmax frames, there are about 5 segments on average.

Thus, our problem becomes one of finding the maximum cost path in

the multigraph from the first to the last node (segment), where the cost

of a path is the product of the costs of the edges in the path. Since all

costs are positive and less than or equal to one, this problem is equivalent

to one of finding a minimum cost path where the path cost is the sum of

the (non-negative) negative logarithms of P
(l)
Mk(l)

. Note that two nodes have

multiple edges linking them, one for Min and one for Mout, but only the

edge with the maximum cost needs to be kept. Dijkstra’s algorithm can

then be used to find the maximum cost path in the resulting graph, with a

complexity of O(Nsegm) (since the number of edges grows linearly with the

number of nodes). In the following, we will describe the procedure, with

reference to Fig. 4.8.

At every state transition, a new segment σn+1 is generated, thus we in-

sert a new node into the graph. Then, we create edges to it, i.e.,, according

to our representation, we find all the possible intervals that end with the

segment σn (we cannot use σn+1 within an interval since it is still ongoing
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and we do not know its duration tn+1, but this is fine with the way we

build an edge) and calculate their cost, i.e., the likelihood of the associated

interval. The graph is such that if there exist an edge from node Σn−p to

Σn, then all the edges from node Σn−r with r < p exist too, since they

include less segments. Viceversa, if we cannot build an edge from node

Σn−p to Σn, then we can not build any edge from a node Σn−r with r > p

either. Once we have found the edges, we need to compare all the paths

(there is one path for each edge) that bring to node σn+1 and keep only the

one that maximizes the cost. Since we keep track, for each node σn−p, of

the highest cost path P path to σn−p

to it, this task simply involves multiplying

the cost of each newly generated edge Î(n−p)→n by the total cost of the path

up to σn−p (which is the source node of that edge). At the end, there will

be only one edge Î(l) directed inward for each node σn; therefore we can

re-enumerate the intervals by choosing l = n. All we need to remember

about each edge are: its source node σn−p(n), the total cost P path to σn

of

the path it belongs to, and the mode Mk(n) associated to the interval that

it represents. When the system state does not change for a period longer

than Tmax, the node switches to Idle mode. This is translated into a σF

node which is added to the graph. The highest cost path leading from

σI to σF then represents the set of intervals that are more likely to have

generated the observed sequence of states.

Experimental Evaluation

Two videos (Video 1 and Video 2) were acquired with the binary camera.

Each video was hand-labeled, resulting in a list I =
{
Il
}L
l=1

of “ground

truth” intervals (the lth interval is labeled with mode Mk(l)). In some

instances, more than one person was seen at the same time in the camera’s

field of view. These sequences are labeled with a mode of type Mother. Note

that our algorithm can only identify sequences of mode Mnone, Min or Mout,
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so a situation with Mothers will produce an error. Video 1 contained 186

intervals, 23 of which of type Mothers. Video 2 contained 193 intervals, 37

of which of type Mothers. The two videos were taken in different locations

with different light conditions. In the case of Video 1, persons transiting

in the scene casted shadows that were well visible in the binary images.

No shadows were noticeable in Video 2.

Method of Benchmarking

Our algorithm produces a list of intervals Î =
{

În
}N
n=1

with the nth in-

terval of mode M̂k(n). In order to assess the quality of classification, one

needs a way to compare the list of hand-labeled and automatically pro-

duced intervals. The approach we use is to find the set of unique ordered

assignments between elements of I and of Î that maximizes a certain

criterion. By “unique” we mean that one interval of I can be assigned to

at most one interval of Î , and vice-versa. By “ordered” we mean that if

Il1 is assigned to În1 and Il2 is assigned to În2 with l2 > l1, then n2 > n1.

The criterion to be maximized is the sum of the overlap (in frames) of

the sequences in each assignment. More precisely, let the assignments be

represented by the set of J pairs (lj, nj), and let Oj represent the overlap

(in frames) between Ilj and Înj . We seek the unique ordered assignments

that maximize
∑J

j=1Oj. This task is equivalent to the problem of global

sequence alignment, a well-studied topic in bioinformatics. We use the

Needleman-Wunsch algorithm [75], with scores equal to Oj and zero gap

penalty. This algorithm solves global sequence alignment using dynamic

programming. Once the sequences are aligned, we compute the rate of

“correct detection” (matches [Il, În] with Mk(l) = M̂k(n)), “misses” (ele-

ments of I that do not have a match in Î ) and “false alarms” (sequences

of Î that do not have a match in I ).
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Classification Performances

Experimental tests were conducted with one of the two videos used as

training set (to learn the state conditional probabilities) and the other

one for testing the algorithm. As mentioned earlier, the videos contained

intervals with more than one person visible in the scene (Mothers). These

intervals cannot be correctly identified by our algorithm, which is only

trained on modes Min and Mout. We presents two sets of results. The first

set is computed after removing all intervals of type Mothers from the videos;

the second set includes intervals of type Mothers. The results of the first test

are shown in Tab. 4.2 in terms of Error rate, Missed detection rate, and

False alarm rate. It is seen that, although the error rate is negligible, some

missed detections and false alarms are reported. Upon visual analysis of the

data, it was ascertained that occurrences of missed detection were mostly

due to poor lighting condition. The rate of false alarms is negligible when

the algorithm is trained on Video 1 and tested on Video 2, but fairly high

(14%) when the training and test sets are reversed. The reason for this is

that, as observed earlier, Video 1 contains several visible moving shadows.

These shadows are sometimes incorrectly interpreted as additional people

in the scene by the algorithm when trained on Video 2, which did not have

moving shadows.

As expected, if intervals with mode Mothers are considered (Tab. 4.3),

the error rate grows dramatically. The algorithm, when presented with an

interval of mode Mothers, typically assigns one or more intervals of type

Min and Mout to it, resulting in errors and possibly false alarms. This also

explains why the rate of false alarms increases with respect to the previous

test. Note that introducing intervals of type Mothers also increases the

missed detection rate when the system is trained on Video 1.
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Table 4.2: Classification performances (Mothers intervals removed)

Training set Video 1 Video 2

Test set Video 2 Video 1

Error rate 0% 0%

Missed detection rate 3% 5%

False alarm rate 0% 14%

Table 4.3: Classification performances (Mothers intervals included)

Training set Video 1 Video 2

Test set Video 2 Video 1

Error rate 15% 14%

Missed detection rate 8% 5%

False alarm rate 15% 7%

FPGA implementation

In hardware, the previously described algorithm is carried out with the

following architecture [76]:

� an VIL-based image processing unit, that extracts the current system

state from the acquired image;

� two look up tables (LUTs), containing the transition probabilities P̌→nMk

(indicating a generic transition to state Sn); one LUT is for the first

order transition probability maps, containing the P (S1|SI ;Mk) prob-

abilities, and the other is for the second order transition probability

maps, from which we can get the values for P (Sn|Sn−2, Sn−1;Mk) and

P (SF |Sn−1, Sn;Mk); since Mnone intervals are all one segment long,

the LUT provides directly the total likelihood P
(l)
Mnone

;

� a three cell memory, that keeps track of the states of the last segments

for LUT addressing; this is a three cell memory because we are deal-

ing with a Markov process of the second order, therefore we need to

remember Sn, Sn−1, and Sn−2;
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Figure 4.9: Node FIFO memory. Fig. (a) shows its status in the middle of the processing

phase, while computing the path to node σn through a generic node σn−p. The pieces

of information about σn−p are read from the memory and provided to the multipliers to

calculate the cost of intervals and paths. Once multiplications are performed, the data

about σn−p are written back into the memory, with the values updated. Fig. (b) depicts

the last passage of the processing phase, when all previous nodes have been processed and

the newly generated one is written in the memory.
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Figure 4.10: Segment generation. This figure depicts the architecture of the VILs, the

three cell memory and the LUTs, the timer with the adder and the Tmax-comparator.

This portion of the processing unit monitors the system state through the VILs, and

when a state transition to Sn+1 occurs, the timer is sampled before being reset and the

previous state Sn is written into the three cell memory. This memory behaves as a shift

register, so that we keep track of the three previous states (Sn−2, Sn−1, Sn). These pieces

of information are used to address the LUTs to obtain the transition probabilities of the

first and of the second order, including the transition from the initial state SI and to

the final state SF . Note that, since Mnone intervals are only one-segment long (i.e., σn),

the LUTs provide directly the likelihood for Î
(n)
Mnone

. While processing the new segment,

at iteration p, the adder sums the timer sampled value with the cumulative duration of

previous segments σn−p, . . . , σn−1, which is stored in the node memory, to check if the

overall sequence σn−p, . . . , σn−1, σn fits within the Tmax-wide observation window. If this

is the case, then the process goes on; otherwise the σn−p node is dropped from the node

memory and the process starts over with the following element σn−p+1

.
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� a timer, that measures the duration tn of segments, and an associated

adder to calculate the total duration of intervals t(n−p)→n;

� a comparator, that determines if a group of contiguous segments is

longer than Tmax;

� a node First In, First Out (FIFO) memory, that keeps track of the

most recent nodes in the graph, i.e., the ones that lay within the

Tmax-wide observation window;

� two edge multipliers that calculate the likelihood of Min and Mout

intervals (no multiplier is required for Mnone intervals, since they all

are one segment long by definition);

� a second comparator, that, given a sequence of contiguous segments,

determines if they more likely represent either an Min interval or an

Mout one;

� a path multiplier that calculates the total cost of paths;

� a comparator that extract the path with the maximum cost;

� an edge FIFO memory, that stores the results of the process;

� registers and multiplexers, to store results and route signals;

� a control unit, split in several sub-units, that manages the whole pro-

cess.

Fig. 4.9, Fig. 4.10, Fig. 4.11 and Fig. 4.12 represent the block diagram for

the architecture.

Every time a state transition occurs, we insert the node σn+1 in the

graph and find the maximum cost path to it. Node insertion is carried out

by saving the VIL state in the three cell memory and the timer value into

a dedicated register before resetting them for the next acquisition. Then,
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in order to build the first edge, we extract the last node contained in the

node’s memory (let’s call it node σn−q). The node data is given by:

� the cumulative period of time t
(n−q)→(n−1)
acc including nodes from σn−q

up to node σn−1;

� the partial likelihoods P̃
(n−q)→(n−1)
Mk

= P (Si→j|Σi→j ⊂ Mm
k ) of the Mk

intervals that origin from the node itself and contain nodes up to σn−1;

� the cost of the maximum cost path from σI to the node σn−q itself.

The partial likelihoods are stored in the node memory in order to avoid

to perform the same calculations over and over again at every node in-

sertion. In fact, an interval that begins with segment σi and ends with

σi+j shares the same probabilities with another interval that origins on the

same segment but ends on σi+j+1. The way the node memory is organized

is depicted in Fig. 4.9(a).

The adder sums the value provided by the timer to the cumulative period

and the result t
(n−q)→n
acc is then compared with Tmax. If it is greater, then

the σn−q node is discarded from the node memory and the following node

(the σn−q+1) is read. Otherwise, the sequence of segments σn−q, . . . , σn

represents a valid interval and we have to compute its likelihood P
(n−q)→n
Mk

for each Mk. Therefore, we fetch the transition probabilities P̌→nMk
stored in

the LUTs using the content of the three cell memory for addressing. This

is shown in Fig. 4.10.

Then, we multiply the so obtained transition probabilities by the partial

cost P̃
(n−q)→(n−1)
Mk

to obtain the partial cost P̃
(n−q)→n
Mk

of the intervals that

include the segments from σn−q to σn. In the event that one further segment

is generated, we write back to the node memory the data about the σn−q

node, with the updated values for tacc and the partial likelihoods. To

obtain the total cost, P
(n−q)→n
Mk

, we need to add the final state SF to the
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Min and Mout intervals. This operation involves another data fetch from

the LUT and another multiplication. In the next step, the two intervals are

compared and only the most likely one hatI
(n−q)→n
Mmax

is kept into account.

The likelihood of the so achieved interval P
(n−q)→n
Mmax

is multiplied with the

cost of the path to σn−q by the interval multiplier to achieve the cost of

the path to σn+1. The result is temporarily stored in the last comparator’s

output register, along with the corresponding mode Mmax and the index

q. Fig. 4.11 describes the hardware architecture that carries out these

operations.

Then, the process starts over with a new node, the σn−q+1, thus gen-

erating a different path to node σn. Its cost P new path is compared with

the previous one P prev path and of the two, only the one with higher cost is

kept. Iteratively, all the nodes σn−p, with 0 < p ≤ q, that are contained

within the node memory are processed. One further interval is created,

consisting in the only σn segment. The last node involves slightly different

calculations, since the only one-segment-long interval allowed represents an

event of mode Mnone. Nevertheless, the partial likelihoods are calculated

anyway, since they need to be inserted in the node’s memory as part of the

new element.

At the end of the process, the path comparator provides the data

about the maximum cost path. Its cost is saved into the node memory

of Fig. 4.9(b) along with the partial likelihoods and the timer’s value as

a new element, while the mode and the source of the last interval in the

path (i.e., the data about the last edge) are saved into the edge memory

present in Fig. 4.12. Then the system waits for another segment.

When the timer exceeds Tmax the process is interrupted and the control

unit can extract the intervals that are more likely to have happened by

reading the data from the edge memory. Each element will contain the

mode associated to the edge and the pointer to the previous valid element
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M k (n−1)

Î1
...
În-2
În-1

(empty)

p(n-1)
pointer to the 

previous interval

În

Figure 4.12: Edge FIFO memory. After all the nodes contained the node memory have

been processed, the edge Î(n) maximizing the cost path to σn is written in the edge memory

(while the pieces of information associated to node σn (i.e., tn, P̃ n→n
Mk

for Mk = Min,Mout,

and P path to σn
) are written into the node memory as a new element). The Î(n) is described

by its mode Mk(n) and the pointer to its source node p(n). When the final segment σF is

inserted into the graph and the maximum cost path to is built, the edge memory is read

to extract the occurrences of Min and Mout that are more likely to have happened.

84



CHAPTER 4. IMPL. NODE ARCH. 4.3. POWER MEAS. & LIFETIME EST.

in the memory. This is like going back along the maximum cost path

jumping from the first segment of an interval to the one of the previous

interval.

This architecture, implemented on the Actel IGLOO FPGA, has been

tested with a clock running at 10 MHz. At such an operating frequency,

the system can safely acquire images at 30 fps. The whole implementation

occupies 5101 out of 13824 VersaTiles (36%). VersaTiles are Actel Igloo’s

basic elements which can be customized to generate the required function.

The implementation also uses 48 out of 235 I/O lines (20.43%).

4.3 Power Measurements and Lifetime Estimation

In the following, the power consumed by the system when executing the

people counting algorithm described in Sec. 4.2.1 is analyzed. We im-

plemented the prototype on a commercial development board mounting

several components in addition to the Actel M1-AGL600 FPGA: a 1 MB

SRAM, a 16 MB Flash memory, a crystal oscillator, a programmer, a USB

to RS-232 converter chip, expansion connectors, LEDs and switches. We

connected the camera to the board through one of the available connectors.

The node communicates to a host computer through a USB connection that

implements the RS-232 interface.

On the host PC’s side, we developed a program in Python using the

WxWidgets library to create the graphical user interface (GUI). A snap-

shot of the GUI is presented in Fig. 4.14. From the GUI we can set pa-

rameters such as integration time and frame rate, change the threshold for

the number of active pixels that switches the system from active to idle

mode and viceversa. Commands for starting and stopping the system can

be sent to the FPGA by means of simple buttons, along with controls for

selecting the frame to store in the sensor’s internal memory (let it be an
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(a) (b)

Figure 4.13: Pictures of the developed prototype node. The board integrates an Actel

Igloo M1-AGL-600 FPGA, a 1 MB SRAM, a 16 MB Flash memory, a crystal oscillator, a

programmer, a USB to RS-232 converter chip, expansion connectors, LEDs and switches.

The sensor is mounted on a daughter board and communicates with the FPGA through

an expansion connector. The board allows to measure the current drawn by the FPGA

core, its I/O banks and the imager separately.

empty frame if we want to see the acquired image, or a user selected frame

representing the background, or every acquired frame to detect moving

objects). The GUI allows to see the sensor output image and the result of

the people counting algorithm.

The development board allows for measurement of the current flowing

through the FPGA core, its I/O banks and the camera separately. We

omitted the contribution due to the wireless module, partly because the

energy required for transmission and reception varies significantly accord-

ing to the nodes positioning and the amount of data to transmit.

Measurements were carried out by forcing the system to run in one of the

configurations described in Sec. 3.3. When the node switches from Idle to

Active mode the system state needs to be continuously monitored. In our

implementation, the execution of this task is performed during the readout

process, thus it would not require a soft memory. Nevertheless, in order to
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Figure 4.14: Graphical User Interface running at the host PC’s side. This is a Python

program written with the WxWidgets library. It allows to control the prototype node

and see the output coming from the sensor. It also allows to see the result of the people

counting algorithm. The acquired image represents a computer mouse.

be able to monitor the behavior of the node, we programmed the FPGA

to transmit the whole acquired image to a host pc at every frame, thus

the soft memory has been finally implemented. We set the transmission

rate through the RS-232 interface to 256 Kbps. At this speed, the system

could not support acquisition rates higher than 10 fps, therefore the frame

rate had to be reduced. We do not expect a significant power consumption

increment at 30 fps, i.e., the frame rate which the algorithm has been

designed for. This is because the control unit in the FPGA enables the

HF clock for all the time needed for image transmission over the RS-232

interface, which takes much longer than the execution of the algorithm. In

this way, large portions of the FPGA are active for most of the time, thus

reducing the benefits of employing a flash-based FPGA.

We employed two Agilent 34411A digital multimeters to perform power

measurements. We set one of them to operate as an ammeter with range

10 mA and an integration time equal to 100 power line cycles, i.e., 2 s.

With these settings, the instrument measures the voltage drop on a shunt
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resistance of 2 Ω. We measured the voltage drop on the device with the

other multimeter, operating on a range of 10 V with an integration time

of 100 power line cycles, and characterized by an input resistance greater

than 10 GΩ. With this configuration the instruments’ normal mode noise

rejection is maximized, and their loading effects are negligible. Results are

shown in Tab. 4.4.

When the sensor is set to operate in Idle mode, the FPGA and the

sensor consume as little as 2.50 mW. In this case, the FPGA I/O banks

represent the major contributor to the overall power consumption (45%).

The measured power consumed by the sensor is much higher than the

nominal one declared in [10]; this is due to the presence of trimmers and

other components that are present on the board for debugging purposes.

In active mode, when the system state does not change and the only

feature extraction phase is performed, things change considerably, with

the node consuming 4.08 mW. The sensor almost doubles its contribution,

since it needs to drive the FPGA input pins to read out the image. The

FPGA core draws more than twice the current than in Idle mode, due to the

activation of the high frequency clock while receiving the image, performing

the extraction of the features from it and then transmitting it through the

RS-232 interface. We believe that major contribution is given by the FIFO

memory, which is activated for most of the frame period, i.e., both while

receiving the image from the sensor and while processing/transmitting it.

Nevertheless, the impact of such increase in current drawn is reduced by

the fact that the FPGA core is powered at 1.2 V, while the rest of the node

is powered at 3.3 V. Little change occurs for the FPGA I/O banks (just a

15% increase in current draw), which is somehow unexpected since image

transmission requires to drive the USB to RS-232 converter chip serial

input pins. A possible explanation lays in the fact that the image is binary

and most of the pixels are equal to ’0’, therefore the FPGA serial output
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Table 4.4: Supply voltage and current drain for our prototype node. The values related

to the video-sensor also comprise the consumption of other elements present on the same

board, such as trimmers and other resistors required for debugging.

V±∆V I±∆I

[V] [mA]

Video-sensor 3.28±0.02 0.26±0.01

FPGA core 1.22±0.01 0.44±0.02

FPGA I/O banks 3.28±0.02 0.34±0.02

Overall power PI 2.50± 0.14 mW

(a) Idle Mode

V±∆V I±∆I

[V] [mA]

Video-sensor 3.28±0.02 0.45±0.02

FPGA core 1.22±0.01 1.09±0.06

FPGA I/O banks 3.28±0.02 0.39±0.02

Overall power PA,FE 4.08± 0.23 mW

(b) Active Mode - Feature extraction only

V±∆V I±∆I

[V] [mA]

Video-sensor 3.28±0.02 0.45±0.02

FPGA core 1.22±0.01 1.15±0.06

FPGA I/O banks 3.28±0.02 0.41±0.02

Overall power PA,DM 4.22± 0.23 mW

(c) Feature Extraction and Decision Making
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Figure 4.15: Node lifetime vs. average event period. The dashed lines represent the

uncertainty interval in which the lifetime may range.

pins undergo to a few transitions from low-to-high voltage and viceversa.

This is an indirect advantage brought by the employed vision sensor.

When the system state changes and the decision making process is per-

formed, we expect things not to change dramatically, since this situation

simply involves the execution of the algorithm as described in 4.2.1, which

is performed in much less time with respect to image transmission. In

fact, power consumption raises only by 3% with respect to the previous

situation.

We estimated the node lifetime TLt assuming to power the node with two

batteries with a capacity C = 2200 mAh at a voltage V = 3.3 V. Results

are shown in Fig. 4.15, where the dashed lines represent the uncertainty

interval in which the lifetime may range. This follows from the uncertainty

in the measured values of current and voltage drop, according to the law
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of uncertainty propagation [77].

The results show that the efficient use of the low-power capabilities of

the system’s components results in a lifetime of a few months. This is

critical for video-surveillance applications, where the system should work

for a long time without the need to replace its power source. It should

be noted, however, that the lifetime depends on the rate of events to be

monitored and therefore is application-specific.
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Chapter 5

Conclusion

This thesis has dealt with the development of a camera-based WSN node

that consumes very little power. Unlike standard WSNs, in which the

stream of data generated by sensing elements such as temperature, pressure

and humidity sensors is limited to few bytes per second, WCNs have to

cope with a huge amount of data. For example, a low resolution, gray-

level camera, running at 10 fps, generates 10 KB of data per second. Each

node in the network needs to acquire such data, buffer it in a memory and

process it before communicating the result to the other nodes. Moreover,

these tasks need to be performed in the very short period of time set by

the frame rate. As a consequence, in the past, designers of WCN nodes

were forced to equip the nodes with computationally powerful devices in

order to meet the timing requirements, at the price of a considerable power

consumption. The WCN nodes proposed by researchers consume hundreds

of milliwatts, resulting in a network lifetime of few days.

In such a context, we have proposed a method to design an ultra-low-

power WCN node. First of all, we have clearly identified each logic element

of the node along with its requirements in terms of processing capabilities.

These elements are typically the imaging sensor, the control unit, the pro-

cessing unit and the transceiver. Then, for each logic element, we have
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proposed strategies that aim at limiting the impact of the main sources of

power consumption to increase the overall lifetime.

The use of standard imaging sensors represents the first source of power

consumption, dictating the employment of high performance memories and

processors. The key observation here is that standard sensors provide lots

of information, most of which is useless for the purposes of the network,

and thus the node wastes energy to acquire and buffer data which is then

filtered out during the processing phase. To overcome such a problem, we

have proposed the employment of CMOS vision sensors, i.e., image sensors

that pre-process the data directly on-chip, possibly at the same time as

light is integrated. In this way, we generate less data and we move a

significant portion of the image processing away from the processing unit.

In particular, we carry out those calculations that consist on iteratively

applying a certain function throughout the pixels of the image closer to

where the information is generated (i.e. in the silicon, in the proximity of

the photodiode detecting the incoming light), thus increasing the overall

efficiency. Another important feature that the sensor should have is the

ability to detect events autonomously, without providing the output image.

Thus, the node can operate at high frame rates consuming very little power,

since no image is processed outside the chip.

Another source of power consumption is typically represented by the

high frequency at which the clock runs within the node. Nevertheless, there

are several tasks that we can perform in a relaxed way. Thus, the system

energy budget would benefit from mechanisms that allow to dynamically

change the clock frequency, according to the complexity of the ongoing

tasks, or from architectures in which multiple clock domains are present.

In this framework, the control unit plays a major role. By enabling high

frequency clock domains only when intensive processing is required, circuits

within the node do not switch when not needed, thus achieving considerable
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energy saving.

The ability to discriminate situations in which an event of interest is

taking place in the scene, with respect to other situations in which there is

nothing to worry about, is crucial, too. Our design methodology requires to

understand what are the pieces of information contained within the images

that are really useful for the application at hand. The node is then trained

to identify such situations in a simple and fast way. Thanks to this ability,

the system does not run processing intensive algorithms on images that do

not represent anything of interest, reducing the power consumed in vain.

The development of power efficient algorithms is another important as-

pect that must be taken into account. The longer the execution time is,

the longer the high frequency clock domains are active. We have proposed

to structure the algorithm in two subsequent phases: in the first one, we

define the state of the system by extracting a set of features from the im-

ages; in the second phase, a decision is carried out on the basis of how the

system state has evolved over time. This second phase is performed only

when the state changes, therefore we can tune the consumption of power

by allowing the system state to assume a smaller or greater set of values.

Finally, with reference to the proposed architecture, we have developed

a power model which can be used to determine the maximum power ratings

that the node can exhibit in order to achieve a given lifetime. Such a model

is based on the expected frequency of the events that we want to detect

and on two power configurations. In one case, there is no ongoing event in

the scene and the monitoring activity is carried out only by the sensor; in

another case, an event is happening and the entire node takes part of the

processing activity.

According to the proposed design principles, we have developed a WCN

node prototype. Such a node integrates a custom, CMOS vision sensor

featuring ultra-low-power consumption, and a flash-based FPGA.
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As far as the sensor is concerned, it firstly acquires binary images identi-

fying the edges, i.e., the points of the scene characterized by high contrast.

Then, it generates the output by subtracting the acquired image with a

previous one stored in a memory internal to the chip itself. This enables

to perform background subtraction or motion detection. Two ways of out-

putting data are provided: the first one is somehow classic, in the sense

that the image is read out but compressed in an addressed-based encoding;

the second one consists on providing only the number of non-zero pixels

present in the output image. As an example, when setting the camera to

perform motion detection, the number of non-zero pixels represents a mea-

sure of the amount of motion present in the scene. By simply thresholding

this value to filter out noise, we get an indicator for the presence or absence

of interesting events. In the latter case, we do not need to read out the

image, thus avoiding to waste power computing empty images.

The FPGA, built in flash technology, exhibits ultra-low static power

consumption. On this PLD, we have implemented a ring oscillator, the

control unit, a memory for the image and the processing unit. Two clock

domains are present, both derived from the ring oscillator. One runs at a

low frequency, for control tasks, and the other runs at a high frequency for

processing intensive purposes. The control unit enables the high frequency

clock only in certain circumstances, i.e. when the sensor detects a possible

event of interest in the scene. In this case, the node operates in the so called

Active mode: the sensor reads out the image, the memory is enabled and

the processing unit executes the implemented algorithm. On the contrary,

when no event are detected in the monitored area, we are in the so called

Idle mode: the sensor stops outputting images and keeps monitoring the

scene on its own, while the power consuming elements present in the FPGA

are disabled.

In the developed prototype, the processing unit represents a people
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counter. We have conceived the system to be placed on top of a door, fac-

ing downwards, so that people are seen from above while walking through

the monitored area. The algorithm is based on two binary features, called

Virtual Inductive Loops, each representing a portion of the image that

activate when a moving object is detected within it. By concatenating

the two features we get the system state, and observing the way in which

such state evolves over time we are able to discriminate people entering

the scene from those walking in the opposite direction. This is performed

by means of probability maps generated in a training phase, which allow

to calculate the likelihood with which a given sequence of states represents

a person walking by. Given a long sequence of states, the algorithm com-

pares all the possible combinations of events that could have occurred and

finds the one that maximizes the overall likelihood. We have represent the

problem through a directed multigraph in which we look for the shortest

path from a source to a destination. The solution can be found by using a

modified version of Dijkstra’s dynamic programming algorithm, which we

have translated within the FPGA.

Finally, we have performed some experiments in order to prove the va-

lidity of our approach. We have measured the power consumed by the

node while operating in Idle and Active modes, achieving 2.50 mW and

4.22 mW respectively. In the end, we have reduced power consumption

by two orders of magnitude with respect to the other nodes present in the

literature. Moreover, by applying the developed power model, and assum-

ing the node powered with a couple of standard batteries with a capacity

of 2200 mAh at 3.3 V, we have estimated that its lifetime ranges from a

minimum of two months, up to over three months when the frequency of

events is very low.

The performed measurements have confirmed that our methodology al-

lows to develop very low-power WCN nodes. We have been able to obtain
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these results by reducing the amount of information at the sensor level.

Thus, we cannot expect it to provide as many details of the scene as a

standard imager would do. In principle, this could prevent the employ-

ment of our node for certain applications. Nevertheless, we can cope with

this limitation by using a network of heterogeneous nodes, integrating dif-

ferent kinds of sensors and exhibiting different power ratings. In such a

framework, ultra-low-power nodes would represent the backbone of the net-

work, since they would be the ones that monitor the scene continuously.

When an event of interest occurs, they wake up nodes having enough pro-

cessing capabilities to perform the desired task. In this way, the most

power consuming nodes process the images only when needed, while in the

other situations only the ultra-low-power nodes are active. This allows to

improve the energy efficiency of the entire network.
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