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Abstract

This Ph.D. thesis presents a threefold revisitation and reformulation of the linear sampling

method (LSM) for the qualitative solution of inverse scattering problems (in the resonance

region and in time-harmonic regime):

1. from the viewpoint of its implementation (in a 3D setting), the LSM is recast in

appropriate Hilbert spaces, whereby the set of algebraic systems arising from an

angular discretization of the far-field equation (written for each sampling point of the

numerical grid covering the investigation domain and for each sampling polarization)

is replaced by a single functional equation. As a consequence, this ‘no-sampling’

LSM requires a single regularization procedure, thus resulting in an extremely fast

algorithm: complex 3D objects are visualized in around one minute without loss of

quality if compared to the traditional implementation;

2. from the viewpoint of its application (in a 2D setting), the LSM is coupled with the

reciprocity gap functional in such a way that the influence of scatterers outside the

array of receiving antennas is excluded and an inhomogeneous background inside

them can be allowed for: then, the resulting ‘no-sampling’ algorithm proves able to

detect tumoural masses inside numerical (but rather realistic) phantoms of the female

breast by inverting the data of an appropriate microwave scattering experiment;

3. from the viewpoint of its theoretical foundation, the LSM is physically interpreted

as a consequence of the principle of energy conservation (in a lossless background).

More precisely, it is shown that the far-field equation at the basis of the LSM (which

does not follow from physical laws) can be regarded as a constraint on the power

flux of the scattered wave in the far-field region: if the flow lines of the Poynting

vector carrying this flux verify some regularity properties (as suggested by numerical

simulations), the information contained in the far-field constraint is back-propagated

to each point of the background up to the near-field region, and the (approximate)

fulfilment of such constraint forces the L2-norm of any (approximate) solution of the

far-field equation to behave as a good indicator function for the unknown scatterer,

i.e., to be ‘small’ inside the scatterer itself and ‘large’ outside.
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Preface

This Ph.D. thesis presents a detailed report of my research activity during the last three

years, as a student of the International Doctoral School in Information and Communica-

tion Technology (ICT) at the Department of Information Engineering and Computer Sci-

ence, University of Trento. Referring to Chapter 1 for a short and introductory overview

of the topics treated in the thesis, here I would like to briefly explain some structural and

typographical criteria I tried to meet in writing it.

Each chapter (except the first and the last one) is essentially a revised and enlarged

version of one of the papers written by me, together with my advisors and/or colleagues,

and published in the period 2007-2010. Accordingly, the chapters are very different from

each other in many respects, and this might create more heterogeneity than is desirable

in a Ph.D. thesis if considered as whole. However, this heterogeneity never becomes con-

fusion or chaos, since there is a common theme underlying all chapters, i.e., the linear

sampling method (LSM), which is an algorithm for the qualitative solution of inverse

scattering problems. In fact, Chapter 2 presents an alternative implementation, named

‘no-sampling’, of the LSM. In Chapter 3 another qualitative method is formulated by

matching the LSM itself with the so-called ‘reciprocity gap functional’. Chapter 4 investi-

gates the open issue concerning the theoretical foundation of the LSM and tries to explain

why or how this method works. As a result, each one of these chapters is essentially self-

contained1, as the paper whence it has been drawn; on the other hand, all of them focus

on the LSM, although from very different perspectives. Summarizing, and if it did not

sound too pretentious, I could borrow a musical metaphor to say that this thesis can be

regarded as a set of variations on a theme: the latter is represented by the LSM, while

the variations correspond to Chapters 2-4.

As far as the logical and typographical structure of the thesis is concerned, I obviously

1This is also the reason why I maintained some differences in notations between Chapter 2, where

a vector notation is used (in a three-dimensional setting), and Chapters 3-4, where, in agreement with

most of the literature on the LSM, an ‘analytic’ or ‘scalar-wise’ notation is adopted (in a two-dimensional

setting): no confusion can arise from these two notational conventions.



x

adopted the proper template provided by the ICT doctoral school: however, I introduced

some changes whenever I deemed it necessary or useful. For example, I created a specific

chapter (i.e., the last one, no. 5) to collect all the figures and tables of the thesis. For

the sake of clarity, also this chapter is subdivided into sections: each of them contains the

figures and tables referred to in a specific section of Chapters 2-4 and has just the same

title (and, between square brackets, the same number) of such section. This choice avoids

fragmentation in the main text, allows a better displacement of figures and enables the

interested user to print them (possibly on a colour printer) as a separate folder to look at

while reading, in parallel, the main text itself.

Acronyms and symbols

Throughout the thesis, a few acronyms are used. For the reader’s convenience and for

possible reference, they are listed in the following:

CPU: central processing unit;

f.f.a.: for almost all;

FM: factorization method;

LSM: linear sampling method;

MRI: magnetic resonance imaging;

PC: personal computer;

RGF: reciprocity gap functional;

RGFM: reciprocity gap functional method;

TM: transverse magnetic;

2D: two-dimensional, two dimensions;

3D: three-dimensional, three dimensions.

Moreover, the black square, i.e., the symbol �, denotes the end of the proof of a theorem,

while the empty square, i.e., the symbol �, denotes the end of a remark.
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Chapter 1

Introduction

1.1 The context

Generally speaking, scattering is a physical phenomenon whereby a particle or a wave

travelling in a given background (e.g., free space) impinges upon an obstacle or an inho-

mogeneity. The present Ph.D. thesis deals with electromagnetic scattering: in this case,

an incident electromagnetic wave is scattered by a portion of a physical medium, which

can be either penetrable or impenetrable; however, most of the following considerations

equally hold for acoustic scattering. As a consequence of the principle of superposition,

the value of the total electromagnetic field at any point in physical space is equal to the

sum of the values of the incident and the scattered fields at the same point. Now, if the

incident field, as well as the geometric and physical properties of the background medium

and of the scatterer, are known, we can formulate the direct electromagnetic scattering

problem as that of determining the scattered field. Conversely, when the incident field

and the background are known, and the scattered field is measured at a certain number of

points suitably located in the space outside the target, the problem of retrieving as much

information as possible about the target itself is referred to as the inverse electromagnetic

scattering problem.

Owing to their ill-posedness (in the sense of Hadamard) and their non-linearity1, in-

verse scattering problems are hard to solve. The most significant drawback caused by

ill-posedness is the non-continuous dependence of the solution on the data: this means,

in particular, that a small variation of the data themselves (for example, their typical

perturbation due to the noise affecting the procedure of measurement) undergoes an

uncontrolled propagation during the computational process performed to determine the

1See e.g. [4, 13, 15, 20, 35, 48, 59, 89].
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solution, so that the latter proves meaningless, being overwhelmingly blurred by wild

oscillations. This ‘pathology’ can be cured by a suitable ‘therapy’, i.e., by the theory of

regularization, whose powerful tools, however, are better known and more effective when

applied to linear inverse problems. Unfortunately, several scattering problems of interest

(e.g., microwave tomography for breast cancer detection) are genuinely non-linear. The

mathematical efforts made during the last fifty years to face this additional difficulty have

given rise to three families of procedures (i.e., a), b), c) soon below): the first two can be

regarded as ‘traditional’, since they have been known for a long time, and are based on

a quantitative approach, in that their algorithms aim to compute the point values of the

electrical parameters of the scatterer; the third family is much more recent and is based

on a qualitative approach, in that its algorithms only aim to visualize the location and

shape of the unknown target.

a) Non-linear optimization algorithms [13, 48, 59]: they consist of an iterative pro-

cedure whereby, starting from an initial guess concerning the geometric and physical

properties of the scatterer, the solution searched for is progressively approached by in-

creasing the number of iterations. Although such techniques can produce very precise

reconstructions, they suffer from two major drawbacks: first, their computational burden

is often very heavy, so that their implementation requires a long time; second, the initial

guess must be quite accurate, i.e., close enough to the solution to be determined, but in

many applications (like medical imaging) this a priori information is in general unavail-

able. However, some recent advances have given rise to much faster and robust algorithms

[57].

b) Methods based on a weak scattering approximation [48, 56]: they consist in replacing

the original problem with an approximate linear version of it. Obviously, any approxi-

mation is physically realistic only if some conditions are satisfied: for example, Born

approximation is viable when the incident wavelength is larger than the maximum linear

dimension of the target and the latter is a penetrable scatterer whose physical properties

do not differ very much from those of the background. Another common approximation

is physical optics: it can be adopted when the incident wavelength is much smaller than

the minimum linear dimension of the target, which has to be impenetrable. Of course, a

necessary condition for any approximation to be made is the a priori knowledge (not al-

ways available) of the kind of scattering: this means knowing a priori whether the target

is penetrable or not and, if not, what conditions the total field verifies at its boundary.

However, such a priori knowledge is, in general, not sufficient: e.g., when trying to detect

a tumour in the breast, the penetrable nature of the scatterer can be assumed, but in

microwave tomography (as well as in many other applications) no linearizing approxima-



1.1 The context 3

tion can be realistically performed. This impossibility is strictly related to the significant

diffraction effects involved by the physical interaction between microwaves and biological

tissues: in breast fat, the wavelength of microwaves (at a frequency of around 5GHz)

is characterized by an order of magnitude equal to that of the linear dimensions of the

tumour to be detected (i.e., 1 cm), and it can be shown that in this physical situation,

referred to as resonance [48], multiple scattering inside the target cannot be neglected;

as a consequence, no term in the equation describing the scattering phenomenon can be

dropped or simplified by means of approximations.

c) Qualitative methods2 [35, 44, 69]: they have been conceived to overcome, to some

extent, the drawbacks affecting the previous two families of techniques. From a chrono-

logical viewpoint, the first qualitative method (1997) is the linear sampling method (LSM)

[47, 52], but since then other approaches adopting the same perspective have been pro-

posed. In general, the mathematical formulation and justification of each qualitative

method vary with the different physical conditions in which scattering phenomena may

occur, but its numerical implementation is largely independent of the material properties

of the target (that can be either penetrable or impenetrable, or even formed by different

connected components characterized by different values of permittivity and/or conduc-

tivity). This is a common feature of qualitative methods, since their core idea is to give

up determining the point values of the physical parameters of the scatterer, and to aim

at providing a visualization of its shape and location only, i.e., of its support. Such vi-

sualization is obtained by computing and plotting a suitable indicator function, whose

values are small inside the scatterer itself and large outside (or, equivalently and more

frequently, vice versa: some plots of this kind can be seen, e.g., in [4, 6]). Following

this approach, the original inverse scattering problem is actually given a new and weaker

formulation, since its solution is now characterized by a much lower information content.

The main advantage of this ‘reduced’ version of the problem is its genuine linearity: more

precisely, the computation of the indicator function is performed by numerically solving

an integral equation that, although ill-posed, is linear (and then allows using the stan-

dard techniques of regularization theory for linear problems) and does not derive from

approximations of any kind; the data acquired during the scattering experiment form the

discretized integral kernel of this equation. Of course, the indicator function (defined, in

principle, everywhere in physical space) can be plotted only if it is restricted to a finite

domain: as a consequence, the only (very weak) a priori knowledge needed is that the

scatterer is located inside a given bounded region. Moreover, by virtue of its linearity, the

2In this Ph.D. thesis, the expression ‘qualitative methods’ is a shorthand for ‘non-iterative qualitative

methods’. Level sets [84] can be considered as an example of iterative qualitative method.
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numerical procedure adopted to determine the indicator function requires short compu-

tational times: for example, the no-sampling implementation of the LSM [6, 7, 27] allows

visualizing 2D and 3D scatterers respectively in around 1 s and 90 s only.

Of course, qualitative methods are not necessarily alternative to the reconstruction

algorithms widely used for computing the point values of the refractive index of the

unknown scatterer. On the contrary, the fast visualization provided by a qualitative

method can be used (in case, after a post-processing procedure, as in [6]) to obtain an

accurate initialization for an optimization algorithm: examples of this ‘hybrid’ approach

can be found in [22, 23, 25, 28, 29].

The mathematical and computational efforts outlined at the previous points a)-c)

are motivated not only by the deep and difficult theoretical issues involved by inverse

scattering problems, but also by their great importance from the viewpoint of real-world

applications, such as:

• medical imaging: e.g., using microwaves to detect bone marrow cancer (leukaemia)

or breast cancer;

• subsurface imaging: e.g., mine removal, oil detection, archaeological investigations,

etc.;

• radar imaging: e.g., detecting the number, the shapes and the dimensions of some

moving objects, like airplanes, ships, etc.;

• non-destructive testing: e.g., detecting cracks inside objects, identifying dangerous

materials (like explosives) in luggage, etc.

Hence, any new and effective approach to inverse scattering, as well as any improve-

ment in the existing techniques or in their matching, can actually be of interest to a wide

and heterogeneous scientific community.

1.2 The problems

In the framework of qualitative methods, the present Ph.D. thesis faces three main prob-

lems:

1. increasing the computational effectiveness of the LSM for 3D problems;

2. optimizing the application of the reciprocity gap functional method (RGFM) [36, 44]

to the case of microwave tomography for breast cancer detection;
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3. investigating the theoretical foundation of the LSM.

More precisely, we can describe the previous three problems as follows:

1. in [7] a no-sampling formulation3 of the LSM is proposed, whereby the visualization

of the scatterer is obtained in a much shorter time than in the traditional imple-

mentation, without impairing its quality. In [6] this no-sampling visualization is

post-processed by means of an edge-detection algorithm in order to automatically

select the profile of the scatterer. However, both papers [6, 7] deal with 2D scatter-

ers: then, a generalization to the 3D case is desirable, all the more that the issue of

computational times is much more important in a 3D framework than in a 2D one;

2. the problem of detecting tumoural masses inside the female breast by using mi-

crowaves can be formulated as an inverse scattering one, with inhomogeneous back-

ground: this means that the scatterer searched for, i.e., the tumour, is located inside

a medium with non-constant electrical parameters. This medium is not only the

healthy breast, but, in principle, any other physical object that can influence the

3For the reader’s convenience, we briefly recall the essential features of the no-sampling approach

in a 2D setting. The traditional version of the LSM consists of selecting a computational grid Z of L

points zl ∈ R2 covering the region where the scatterer is located, and of solving, for each zl, a linear

algebraic system obtained as an angle-discretized version of a linear and ill-posed integral equation of

the first kind, called the far-field equation. The integral kernel of the latter is formed by the far-field

patterns scattered in all directions by the target when illuminated by a plane wave for each incidence

direction, while its right-hand side is the (analytically known) far-field pattern of the background Green’s

function, i.e., of the field radiated by the elementary source placed at the sampling point zl in the

absence of the scatterer. Then, the Tikhonov regularized solution of the discretized far-field equation

(with a zl-dependent regularization parameter, chosen by means of the generalized discrepancy principle)

has a (discretized) L2-norm that is small if zl is inside the scatterer, grows up when zl approaches its

boundary and remains even larger when zl is outside. Of course, this L2-norm can be directly used as an

indicator function, but often, for visualization purposes, other choices are preferred (e.g., the opposite of

its logarithm). Now, the key-idea of no-sampling consists in treating the L ill-conditioned and algebraic

systems solved by the method as a whole, i.e., as a unique and larger system in vector spaces of higher

dimensions; then, it is possible to realize that such an approach naturally allows an infinite thickening of

the sampling grid Z, which thus becomes, for instance, a rectangle T in R2. Of course, this requires that

the infinitely many algebraic systems that would arise from a ‘naive’ implementation of the procedure are

actually incorporated into a single functional equation, set in suitable L2(T )-based spaces. As a result,

the indicator function can now be analytically determined in all T by a single regularization procedure:

in particular, the regularization parameter is computed only once, by means of the usual generalized

discrepancy principle, but now recast in the L2(T )-based spaces. This allows a notable decrease in the

computational times: the visualization of 2D scatterers is performed by the no-sampling LSM in around

1 s only, and without loss of quality if compared to the traditional implementation.
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results of the scattering experiment (e.g., the pieces of furniture or the walls of the

room where the experimental set-up is placed). The LSM, originally formulated for

a homogeneous background [47, 52], can be adapted to allow for an inhomogeneous

one [36, 49, 50], provided that the Green’s function of the latter is known. Since,

in general, this knowledge is hardly available, another qualitative method has been

conceived in order to (partly) overcome this drawback, i.e., the RGFM [36, 44],

which allows neglecting all the physical bodies outside the spatial region T enclosed

by the receiving antennas. For the sake of simplicity, in the two papers [36, 44] the

background inside T is assumed to be homogeneous; however, the healthy female

breast is far from being so. Hence, a first task here is to explicitly formulate the

RGFM by taking into account the proper Green’s function (so far, in a 2D setting).

Moreover, independently of mammography applications, it is interesting to formu-

late a no-sampling approach to the RGFM, and to check whether it is so effective

as in the case of the LSM;

3. qualitative methods are based on equations that are artificially formulated, i.e.,

do not derive from physical laws. This lack of a physical foundation seems to be

responsible for at least one of the open problems [34, 35] concerning, in particular,

the LSM4. Indeed, the far-field equation at the basis of the method is known to

admit approximate solutions whose L2-norms behave as good indicator functions

for the support of the scatterer (i.e., functions bounded inside and arbitrarily large

outside the unknown object), but there is a priori no reason why computing the

L2-norm of a (Tikhonov) regularized solution of the far-field equation, as required

by the implementation of the LSM, should provide one of these indicator functions.

However, many numerical applications, in very different scattering conditions, show

that this is actually what happens5: the problem is then to explain why.

1.3 The solutions

The approaches pursued in this Ph.D. thesis to tackle the previous problems can be shortly

described as follows:

4The same problem also affects the RGFM, but we shall not address this issue in the present Ph.D.

thesis.
5This does not mean that for any fixed frequency and for any possible scatterer, the visualization

provided by the LSM is good, but for the moment this is a minor point: we shall briefly discuss such

issue in Subsection 4.2.2, p. 89.
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1. a fully no-sampling formulation of the LSM in the 3D case can be achieved by taking

into account that the far-field equation at the basis of the method is parameterized

not only over a set of sampling points, but also over a set of sampling polarizations

for the Green’s function of the background. Accordingly, the functional framework

conceived in [7] for the 2D case can be generalized to the 3D one, provided that

a) the sampling point is regarded as a variable in the investigation domain, as in

[7], and b) the sampling polarization is regarded as a variable in the unit sphere

of directions in R3. As regards the edge-detection problem, we do not pursue a

genuinely 3D approach, although this is certainly the first choice. The point is

that a three-step algorithm, whereby the edge-detection process is performed in a

2D setting, is much faster. As a first step, the indicator function provided by the

no-sampling implementation of the LSM is restricted to a plane in R3 containing

a slice of the scatterer6. Second, a 2D active-contour technique is applied to such

restriction: the result of this procedure is a plane curve. The third step consists

of computing the average value of the indicator function over this curve, and of

choosing such value as the threshold level C for the indicator function itself. As a

result, the C-level surface of the latter function can be plotted in R3 to visualize

the scatterer. The output of our investigation in this field has been published in the

papers [26, 27], which are the source for chapter 2 of the present Ph.D. thesis;

2. as regards the RGFM, its theoretical framework is rebuilt in order to take into

account, from the very beginning, the possible inhomogeneity of the background

enclosed by the receiving antennas. This inhomogeneity is encoded into an appro-

priate Green’s function, which must be known a priori : however, numerical simu-

lations show that the resulting algorithm is rather robust with respect to unknown

perturbations of the background. Moreover, this algorithm is formulated according

to the no-sampling approach conceived in [7]. The results of our investigation in

this field have been published in the paper [55], which is the source for chapter 3;

3. as regards the theoretical foundation of the LSM, we propose a physical interpre-

tation of the far-field equation in terms of electromagnetic energy conservation in a

lossless and homogeneous background. Specifically, we consider the conservation of

power flux along the flow strips of the Poynting vector associated with the scattered

field whose far-field pattern is one of the two terms in the far-field equation. The

6Of course, this requires some (rather weak) a priori information on the location of the scatterer;

should this information be unavailable, the only possibility would consist in adopting a genuinely 3D

approach.
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behaviour of these flow lines is numerically investigated and theoretically described

(but not predicted). Appropriate assumptions on the flow lines, based on the nu-

merical results, allow characterizing a set of approximate solutions of the far-field

equation that can be used to visualize the boundary of the scatterer in the frame-

work of the LSM. In particular, under the same assumptions, we can show that

Tikhonov regularized solutions belong to this set of approximate solutions for ap-

propriate choices of the regularization parameter. The results of our investigation

in this field have been published in the paper [9], which is the source for chapter 4.

1.4 Innovative aspects

The elements of innovation introduced by our approaches and methods can be shortly

described, point by point, as follows:

1. in the traditional implementation of the LSM, a computational grid of sampling

points covering the investigation domain needs to be chosen (cf. footnote no. 3

at p. 5): then, the problem arises of how to choose this grid, i.e., its thickness,

the geometry of its elementary cell (if any), etc. Moreover, in a 3D setting, for

each choice of the artificial polarization of the background Green’s function, an

a priori different visualization of the scatterer is obtained: accordingly, another

issue must be addressed, i.e., how to choose the polarizations and how to combine

the corresponding visualizations. Both problems are simply removed by our fully

no-sampling approach: no grid and no polarization need to be chosen, since the

Tikhonov regularized solution of the new functional far-field equation is analytically

known as a function of both the sampling point z ∈ R3 and the sampling polarization

in the unit sphere of directions in R3. In particular, the indicator function can be

analytically determined on the investigation domain as a continuous superposition

of the infinitely many indicator functions corresponding to all possible polarizations,

thus motivating the traditional heuristic procedure of choosing three independent

polarizations and somehow averaging the three corresponding indicator functions.

Moreover, on a commercial laptop with a 1.6GHz CPU, the determination of the

unique regularization parameter only takes around 2 s, while no more than 85 s are

spent for the edge-detection algorithm and the visualization procedure together: as

a result, our no-sampling approach can provide an almost automatic visualization

of the scatterer in around 90 s, thus turning out to be, as far as we know, the fastest

inversion algorithm for inverse scattering problems in the resonance region;
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2. for the first time, the RGFM is formulated taking into explicit account an inhomo-

geneous background and is implemented according to the no-sampling approach. As

a consequence, the method can be applied to the visualization of tumoural masses

inside the female breast by means of a very fast post-processing of microwave scatter-

ing data (the computational time for a single visualization is around 1 s only). Some

interesting features emerge from the preliminary simulations presented here: first,

as theoretically foreseen, the visualization is insensitive to the presence of scatterers

outside the array of receiving antennas; second, although the implementation of

the method requires the knowledge of the background Green’s function, the results

are rather robust with respect to unknown (but reasonably small) perturbations of

the background itself; third, the visualization can be considered satisfactory even

in absence of the coupling medium that is typically interposed between skin and

antennas [16, 17, 72, 78] in order to favour the penetration of the incident wave into

the breast;

3. the possibility of regarding the LSM as an indirect consequence of electromagnetic

energy conservation was never considered before. The resulting framework allows

establishing a link between the performance of the LSM and the behaviour of the

flow lines of the Poynting vector associated with the scattered field. This link is

formalized in terms of sufficient conditions: if the flow lines fulfil them, a good

performance of the LSM is ensured. However, insofar as the behaviour of the flow

lines is only numerically observed a posteriori and not theoretically predicted (by

relying on the knowledge of the physical and geometric properties of the scatterer),

our approach is incomplete: indeed, in this perspective, a mathematical justification

of the LSM could only be achieved by proving a priori that the flow lines of interest

behave in the proper way.

1.5 Structure of the thesis

The three points characterizing the previous sections also determine the structure of the

thesis. Then, Chapter 2 is devoted to a detailed description of the fully no-sampling

and 3D formulation of the LSM, post-processed by an edge-detection algorithm (based

on active contours) to automatically determine the profile of the unknown scatterer. In

Chapter 3 we formulate the RGFM in the case of an inhomogeneous background, we de-

scribe its no-sampling implementation and we investigate its application to breast cancer

detection. Chapter 4 is concerned with a physical interpretation of the LSM in terms of
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electromagnetic energy conservation in a lossless background. Finally, as claimed in the

Preface, all the figures and tables of the thesis have been collected in Chapter 5.



Chapter 2

A fully no-sampling 3D formulation

of the LSM

2.1 State of the art

The traditional implementation of the linear sampling method (LSM) has been recalled

(for the 2D case) in footnote no. 3, p. 5 of Chapter 1 and will not be repeated here:

for a detailed description of the LSM, we refer e.g. to [4, 7, 35, 52]. We only point out

that this implementation requires choosing a grid Z of sampling points zl ∈ R2 covering

the investigation domain T ⊂ R2 and then, for each zl, solving (typically, by Tikhonov

regularization) a linear system obtained as a discretized and noisy version of the far-field

equation: thus, in particular, the problem arises of how to choose the grid Z (i.e., number,

distance and geometry of the sampling points). Too coarse a grid, indeed, would impair

the visualization of the scatterer, while a too thick one would increase the computational

cost of the algorithm without improving the visualization itself.

This problem is removed by the so-called no-sampling approach, introduced in [4, 7],

whereby the zl-parametrized family of algebraic linear systems recalled above is replaced

by a single functional equation set in a direct sum of L2(T )-spaces, which is solved by

a unique Tikhonov regularization procedure: as a consequence, the indicator function,

whose plot visualizes the scatterer, turns out to be analytically known with respect to the

continuous spatial variable z ∈ T , and no grid needs to be chosen. As a by-product, the

computational time of the no-sampling LSM algorithm is very short, since the regular-

ization is performed only once: visualizations of 2D scatterers are obtained in around 1 s,

whereas the traditional implementation requires some minutes for providing an almost

identical result.
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Of course, for both sampling and no-sampling approaches, as well as for both 2D and

3D scatterers, a common issue is that of formulating a criterion to decide whether the

value of the indicator function at a certain point z ∈ T is large or small, i.e., whether

z is inside or outside the scatterer. The simplest (but very heuristic) approach consists

in choosing the threshold value by a trail-and-error procedure, i.e., until the ‘best visual

reconstruction’ is obtained: however, this is only possible when the a priori information

on the scatterer is rather detailed. Another possibility is to perform some preliminary

experiments with known reference scatterers and to choose for the indicator functions the

threshold values providing the best visualizations: then, these values are combined (e.g.,

somehow averaged, or tuned ‘by hand’) to obtain the cut-off value also for an unknown

scatterer (cf. e.g. [51]).

A less heuristic and more general approach consists of using an edge-detection algo-

rithm to post-process the visualization provided by the LSM. An example of this appli-

cation (for 2D scatterers) is given in [6]: here, the knowledge of the analytic expression

of the indicator function, made possible by the no-sampling implementation, enables a

direct application of an iterative algorithm, based on deformable models, to the indicator

function itself, rather than to the pixelized image obtained as a plot of the latter. The

result is an automatic identification of the profile of the unknown scatterer: we refer to

[4, 6] and references therein for details.

The next step is clearly to extend the no-sampling LSM, as well as its post-processing

by edge-detection techniques, to the case of 3D scatterers: in particular, reducing the

computational costs of the algorithms is even more important in a 3D than in a 2D

setting.

2.2 The problem

In order to address the 3D case (for an anisotropic electromagnetic inverse scattering

problem), two important critical issues must be accounted for. In the traditional imple-

mentation of the LSM for Maxwell’s equations, the regularized solution of the far-field

equation depends on both the sampling point and the sampling polarization of the Green’s

function of the background. Therefore, in principle, a different regularization parameter

should be selected not only for each point of a computational grid in a volume containing

the scatterer, but also for each vector in a set of polarizations. To avoid such increase of the

computational effort, heuristic procedures can be introduced, although in [45] it is pointed

out that the visualization depends on the choice of the polarization vector: in particular,

in [45, 46] it is observed that the best visualizations are obtained by combining (with the
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same weight) the three indicator functions computed for three independent polarizations.

The unifying approach followed in this chapter allows replacing the two-parameters family

of far-field equations with a single functional equation whose regularization occurs inde-

pendently of both the sampling point and the sampling polarization, thus removing any

problem in choosing the number and/or the distance of the sampling points, as well as

in selecting the sampling polarizations and combining the corresponding indicator func-

tions. The resulting algorithm provides visualizations of complex 3D objects from their

scattering data in a computational time that, as far as we know, is faster than any other

inverse scattering method working in the resonance region.

The second technical issue is concerned with the optimal selection of the scatterer

surface. In the LSM, a point on the boundary forces the norm of the regularized solution

of the far-field equation to grow up. As recalled above, in [6] (in a 2D setting) an edge-

detection technique is realized by means of deformable models in order to highlight the

contour of the scatterer. In principle, this technique could be extended to surfaces in 3D

but, although active contours are reasonably fast, active surfaces [41] require a notable

computational effort to converge to the boundary of the scatterer. The result of this

procedure would be that the time saved by using the no-sampling implementation would

be partly lost by the visualization process based on deformable volumes. Therefore in the

present chapter we prefer a different approach: the indicator function is restricted to an

appropriate plane in R3 and the points of the scatterer surface belonging to this plane1

are determined by applying a 2D deformable model, just as in [6]. Then we compute the

average value of the indicator function over this profile and the result is chosen as the

threshold value identifying the level surface (of the indicator function itself) that is used

to visualize the boundary of the scatterer. This method is easily adapted to the case

in which a non-connected scatterer consists of connected components characterized by

different physical parameters: it suffices to consider restrictions of the indicator function

to regions containing only one connected component and to select a different cut-off value

for each region.

The implementation of the no-sampling LSM presented in this chapter is significantly

more general than that described in [7] for the 2D case. In particular, here the far-field

equation is discretized in such a way that even situations with non-uniform placement

of the emitting/receiving antennas and/or with limited aperture data can be naturally

dealt with. Furthermore, an analytic computation of the generalized discrepancy function

is performed, which allows a fast and accurate computation of the optimal value of the

regularization parameter.

1Cf. footnote no. 6, p. 7.
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Summarizing, we present here a visualization method for 3D electromagnetic inverse

scattering where no sampling is performed over the volume points or the polarization

vectors and the profile of the scatterer is detected by means of an effective automatic

thresholding of an analytically known indicator function. The result is an extremely

fast algorithm: objects that are visualized in around half an hour by traditional linear

sampling on a PC equipped with a 1.6GHz processor and 1GB RAM, are visualized

with comparable accuracy by this fully no-sampling automatic procedure in around one

minute.

2.2.1 Plan of the following sections

The remainder of this chapter provides a detailed explanation of our approach to the

issues introduced above. More precisely, in Section 2.3 we shortly summarize some results

of [46], i.e., we introduce the far-field equation and recall the general theorem concerned

with its approximate solution. In Section 2.4 we first perform a rather general, zero-order

discretization of the far-field equation: the meshes arising from the discretization of the

incidence and the observation directions, although formed by latitude-longitude rectangles

on the unit sphere, do not need to be uniform or equal to each other; then, we describe

the traditional formulation of the LSM. Section 2.5 introduces the new formulation: with

respect to [7], the generalization consists not only in passing from a 2D to a 3D frame-

work and taking into account the sampling polarizations, but also in considering more

general discretization meshes. Section 2.6 exploits the computational tools provided by

[6] to perform some numerical examples illustrating the notable effectiveness of the new

approach. In Section 2.7 we propose an alternative, first-order discretization of the far-

field equation, based on triangular meshes: in this framework, we test our no-sampling

algorithm on a scattering experiment already considered in the previous section, as well

as on the visualization of the perfectly conducting teapot first considered in [46]. Finally,

Section 2.9 is an addendum where a technical result of importance in our implementation

of the LSM is proved.

2.3 The far-field equation

A very general electromagnetic inverse scattering problem [46, 48] is concerned with an

incident time-harmonic field E⃗i = E⃗i(x⃗), solution of

curl curl E⃗i(x⃗)− k2E⃗i(x⃗) = 0, x⃗ ∈ R3 \DJ⃗ , (2.1)
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where DJ⃗ is the support of the source current density J⃗ . This wave is scattered by

an inhomogeneous and possibly anisotropic target, whose support is represented, in a

Cartesian coordinate system, by a bounded domain D̄ ⊂ R3, such that D is an open

and Lipschitz domain of R3 with connected complement. The physical properties of the

scatterer are described by a 3× 3 symmetric matrix N = N(x⃗) (representing the possibly

anisotropic index of refraction), whose entries are bounded and complex-valued functions

defined in R3 and such that N is the identity matrix outside D̄. The relationship between

the scatterer and the total electric field E⃗ = E⃗(x⃗) is expressed by the equation

curl curl E⃗(x⃗)− k2N(x⃗) E⃗(x⃗) = 0, x⃗ ∈ R3 \DJ⃗ , (2.2)

where

E⃗(x⃗) = E⃗s(x⃗) + E⃗i(x⃗), x⃗ ∈ R3, (2.3)

and the scattered field E⃗s = E⃗s(x⃗) satisfies the Silver-Müller2 radiation condition

lim
|x⃗|→∞

(
curl E⃗s × x⃗− ik|x⃗|E⃗s

)
= 0 (2.4)

uniformly in x̂ = x⃗
|x⃗| .

In the following, we shall assume that the electric incident field is a plane wave prop-

agating along the direction d̂ and polarized along p⃗ ∈ R3 (p⃗ · d̂ = 0), i.e.,

E⃗i(x⃗) = p⃗ eikx⃗·d̂, x⃗ ∈ R3. (2.5)

The Stratton-Chu formula3 implies that the radiating solutions E⃗s to the scattering prob-

lem have the asymptotic behaviour4

E⃗s(x⃗) =
eikr

r

{
E⃗∞(x̂; d̂, p⃗) +O

(
1

r

)}
as r = |x⃗| → ∞, (2.6)

where the far-field pattern E⃗∞(·; d̂, p⃗) is defined on the unit sphere Ω := {x⃗ ∈ R3, |x⃗| = 1}.
It is worth noting that E⃗∞(·; d̂, p⃗) is a tangential vector field, i.e., it belongs to L2

t (Ω) :={
f⃗(·) ∈ [L2(Ω)]

3 | f⃗(x̂) · ν⃗(x̂) = 0 ∀ x̂ ∈ Ω
}
, where ν⃗(x̂) is the normal unit vector to Ω

in x̂ and f⃗(x̂) · ν⃗(x̂) is the usual scalar product in C3 between f⃗(x̂) and ν⃗(x̂). The set of

functions L2
t (Ω) is a Hilbert space with the scalar product defined by(
f⃗1(·) , f⃗2(·)

)
L2
t (Ω)

:=

∫
Ω

f⃗1(d̂) · f⃗2(d̂) ds(d̂) ∀ f⃗1(·), f⃗2(·) ∈ L2
t (Ω). (2.7)

2See e.g. [48], p. 160.
3See e.g. [48], p. 156.
4See e.g. [48], p. 164.
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Let us now introduce the far-field equation in the unknown g⃗z⃗,q⃗(·) for the 3D vector

case [46]: ∫
Ω

E⃗∞
(
x̂; d̂, g⃗z⃗,q⃗(d̂)

)
ds(d̂) = E⃗e,∞(x̂; z⃗, q⃗). (2.8)

Here z⃗ and q⃗ are respectively the sampling point in R3 and the sampling polarization;

E⃗∞
(
x̂; d̂, g⃗z⃗,q⃗(d̂)

)
denotes the far-field pattern of the field scattered by the target along

the direction x̂ when it is illuminated by a plane wave impinging from the direction d̂ and

polarized along g⃗z⃗,q⃗(d̂); the function g⃗z⃗,q⃗(·) is in L2
t (Ω) for each z⃗ ∈ R3 and q⃗ ∈ R3; finally,

E⃗e,∞(x̂; z⃗, q⃗) is the far-field pattern of an elementary dipole located in z⃗ and oriented along

q⃗:

E⃗e,∞(x̂; z⃗, q⃗) :=
ik

4π
(x̂× q⃗)× x̂ e−ikx̂·z⃗. (2.9)

We now observe that, owing to the linear dependence of the far-field patterns on the

polarizations (see, e.g., (2.9)) and to the linearity of the far-field equation (2.8), we can

assume |q⃗| = 1 without loss in generality; hence in the following we shall consider q⃗ = q̂ ∈
Ω. Then, if we introduce the far-field operator F : L2

t (Ω) → L2
t (Ω) defined by

[F g⃗(·)] (x̂) :=
∫
Ω

E⃗∞
(
x̂; d̂, g⃗(d̂)

)
ds(d̂), (2.10)

the far-field equation (2.8) can be written as

[F g⃗z⃗,q̂(·)] (x̂) = E⃗e,∞(x̂; z⃗, q̂). (2.11)

The LSM is based on the following general theorem [46].

Theorem 2.3.1. (General theorem) Let us assume that k is not a transmission eigen-

value and let F be the far-field operator (2.10); moreover, let q̂ be any element of Ω. Then

we have:

1) if z⃗ ∈ D, for every ϵ > 0 there exists a solution g⃗z⃗,q̂(·) ∈ L2
t (Ω) of the inequality∥∥∥[F g⃗z⃗,q̂(·)] (·)− E⃗e,∞(·; z⃗, q̂)

∥∥∥
L2
t (Ω)

< ϵ, (2.12)

such that, for all z∗ ∈ ∂D,

lim
z⃗→z∗

∥g⃗z⃗,q̂(·)∥L2
t (Ω) = ∞; (2.13)

2) if z⃗ ̸∈ D, for every ϵ > 0 and δ > 0 there exists a solution g⃗z⃗,q̂(·) ∈ L2
t (Ω) of the

inequality ∥∥∥[F g⃗z⃗,q̂(·)] (·)− E⃗e,∞(·; z⃗, q̂)
∥∥∥
L2
t (Ω)

< ϵ+ δ, (2.14)

such that, for all z∗ ∈ ∂D,

lim
δ→0

∥g⃗z⃗,q̂(·)∥L2
t (Ω) = ∞. (2.15)
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Analogous theorems hold for scattering problems formulated for conductors or par-

tially coated objects: in addition to [46], see [35] and references therein.

2.4 The discretization of the far-field equation and

the LSM

The aim of the present section is to perform an angular discretization of the far-field

equation that allows dealing with very general scattering situations, such as non-uniform

displacement of the emitting and receiving antennas and limited aperture data. The first

step towards such a discretization is to project the far-field patterns onto some particular

basis. A possible choice is the spherical basis {r̂(ŵ), θ̂(ŵ), φ̂(ŵ)} (with r̂(ŵ) = ŵ) intrinsic

to the generic direction ŵ. Since the far-field pattern E⃗∞(·; d̂, p⃗) belongs to L2
t (Ω), it has

no component along r̂(x̂) and we can write5

E⃗∞(x̂; d̂, p⃗) = Eθ
∞(x̂; d̂, p⃗) θ̂(x̂) + Eφ

∞(x̂; d̂, p⃗) φ̂(x̂), (2.16)

where Eθ
∞(x̂; d̂, p⃗) := E⃗∞(x̂; d̂, p⃗) · θ̂(x̂) and Eφ

∞(x̂; d̂, p⃗) := E⃗∞(x̂; d̂, p⃗) · φ̂(x̂). Moreover,

since p⃗ · d̂ = 0, then p⃗ can be decomposed as6

p⃗ = pθθ̂(d̂) + pφφ̂(d̂), (2.17)

where pθ := p⃗ · θ̂(d̂) and pφ := p⃗ · φ̂(d̂). Hence, exploiting the linearity of the far-field

pattern with respect to p⃗, it is possible to write

Eθ
∞(x̂; d̂, p⃗) = pθEθθ

∞(x̂; d̂) + pφEθφ
∞ (x̂; d̂), (2.18)

Eφ
∞(x̂; d̂, p⃗) = pθEφθ

∞ (x̂; d̂) + pφEφφ
∞ (x̂; d̂), (2.19)

where

Eθθ
∞(x̂; d̂) := Eθ

∞
(
x̂; d̂, θ̂(d̂)

)
, (2.20)

Eθφ
∞ (x̂; d̂) := Eθ

∞
(
x̂; d̂, φ̂(d̂)

)
, (2.21)

Eφθ
∞ (x̂; d̂) := Eφ

∞
(
x̂; d̂, θ̂(d̂)

)
, (2.22)

Eφφ
∞ (x̂; d̂) := Eφ

∞
(
x̂; d̂, φ̂(d̂)

)
. (2.23)

5It is worth noting that in decomposition (2.16) the spherical basis elements θ̂(x̂) and φ̂(x̂) can be

replaced by any pair of orthogonal unit vectors ξ̂1(x̂) and ξ̂2(x̂) spanning the tangent plane to Ω in x̂.
6As before, in decomposition (2.17) the spherical basis elements θ̂(d̂) and φ̂(d̂) can be replaced by any

pair of orthogonal unit vectors ξ̂1(d̂) and ξ̂2(d̂) spanning the tangent plane to Ω in d̂. All the computations

in the following can be trivially adapted to account for this more general choice.
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Analogously to (2.16), the far-field pattern E⃗e,∞(·; z⃗, q̂) ∈ L2
t (Ω), defined by (2.9), can be

written in terms of θ̂(x̂) and φ̂(x̂) as

E⃗e,∞(x̂; z⃗, q̂) = Eθ
e,∞(x̂; z⃗, q̂) θ̂(x̂) + Eφ

e,∞(x̂; z⃗, q̂) φ̂(x̂), (2.24)

where Eθ
e,∞(x̂; z⃗, q̂) := E⃗e,∞(x̂; z⃗, q̂) · θ̂(x̂) and Eφ

e,∞(x̂; z⃗, q̂) := E⃗e,∞(x̂; z⃗, q̂) · φ̂(x̂). As a

consequence, the vector equation (2.11) can be split into two scalar ones:

[F g⃗z⃗,q̂(·)] (x̂) · θ̂(x̂) = Eθ
e,∞(x̂; z⃗, q̂), (2.25)

[F g⃗z⃗,q̂(·)] (x̂) · φ̂(x̂) = Eφ
e,∞(x̂; z⃗, q̂), (2.26)

i.e., recalling definition (2.10) and decompositions (2.16), (2.18), (2.19),∫
Ω

[
gθz⃗,q̂(d̂)E

θθ
∞(x̂; d̂) + gφz⃗,q̂(d̂)E

θφ
∞ (x̂; d̂)

]
ds(d̂) = Eθ

e,∞(x̂; z⃗, q̂), (2.27)∫
Ω

[
gθz⃗,q̂(d̂)E

φθ
∞ (x̂; d̂) + gφz⃗,q̂(d̂)E

φφ
∞ (x̂; d̂)

]
ds(d̂) = Eφ

e,∞(x̂; z⃗, q̂). (2.28)

In real experiments, the far-field pattern is measured at large distances from the scat-

terer7 for Lx̂ = Tx̂Fx̂ observation directions and Ld̂ = Td̂Fd̂ incidence directions. The

observation directions are denoted as

x̂ℓx̂(i,j) =
(
sin θx̂i cosφ

x̂
j , sin θ

x̂
i sinφ

x̂
j , cos θ

x̂
i

)
∈ Ω, (2.29)

where, for all integers i = 0, . . . , Tx̂ − 1 and j = 0, . . . , Fx̂ − 1, we have put

ℓx̂(i, j) := iFx̂ + j, θx̂i ∈ (0, π), φx̂
j ∈ [0, 2π); (2.30)

analogously, the incidence directions are denoted as

d̂ℓd̂(i,j) =
(
sin θd̂i cosφ

d̂
j , sin θ

d̂
i sinφ

d̂
j , cos θ

d̂
i

)
∈ Ω, (2.31)

where, for all integers i = 0, . . . , Td̂ − 1 and j = 0, . . . , Fd̂ − 1, we have put

ℓd̂(i, j) := iFd̂ + j, θd̂i ∈ (0, π), φd̂
j ∈ [0, 2π). (2.32)

As a consequence, equations (2.27) and (2.28) can be discretized by requiring that, for

all ℓx̂ = 0, . . . , Lx̂ − 1,

L
d̂
−1∑

ℓd̂=0

[
gθz⃗,q̂
(
d̂ℓd̂
)
Eθθ

∞
(
x̂ℓx̂ ; d̂ℓd̂

)
+ gφz⃗,q̂

(
d̂ℓd̂
)
Eθφ

∞
(
x̂ℓx̂ ; d̂ℓd̂

)]
∆sℓd̂ = Eθ

e,∞(x̂ℓx̂ ; z⃗, q̂), (2.33)

Ld̂−1∑
ℓ
d̂
=0

[
gθz⃗,q̂
(
d̂ℓ

d̂

)
Eφθ

∞
(
x̂ℓx̂ ; d̂ℓd̂

)
+ gφz⃗,q̂

(
d̂ℓ

d̂

)
Eφφ

∞
(
x̂ℓx̂ ; d̂ℓd̂

)]
∆sℓ

d̂
= Eφ

e,∞(x̂ℓx̂ ; z⃗, q̂), (2.34)

7For an operative definition of ‘far-field region’, see e.g. [87], p. 24.



2.4 The discretization of the far-field equation and the LSM 19

where, for all i = 0, . . . , Td̂ − 1 and j = 0, . . . , Fd̂ − 1, we have defined

∆sℓd̂ := sin θd̂i∆θ
d̂
i∆φ

d̂
j > 0, (2.35)

with ∆θd̂i := θd̂i+1−θd̂i > 0 and ∆φd̂
j := φd̂

j+1−φd̂
j > 0. In particular, in the case of uniform

discretization we have ∆θd̂i = π/Td̂ and ∆φd̂
j = 2π/Fd̂.

Remark 2.4.1. According to equations (2.33) and (2.34), the integral (2.10) on the unit

sphere Ω is approximated, in the numerical implementation, by a zero-order discretization,

whereby the mesh on Ω is formed by (not necessarily equal) latitude-longitude rectangles8,

i.e., portions of sphere delimited by two lines of longitude and two lines of latitude.

Then, the value of the integrand function is regarded as constant on each one of these

rectangles and all the resulting contributions are summed, thus forming the left-hand side

of equations (2.33) and (2.34). In Section 2.7 we shall introduce an alternative approach,

whereby the far-field equation is discretized at the first order on a triangular mesh. �

Equations (2.33) and (2.34) can be written in a more compact form by using the

matrix notation, i.e.,

E∞∆Sd̂Gz⃗,q̂ = Ee,∞(z⃗, q̂), (2.36)

where we have defined ∆Sd̂ as the diagonal and positive-definite matrix of 2Ld̂ × 2Ld̂

elements

∆Sd̂ :=

(
∆sd̂ 0

0 ∆sd̂

)
, (2.37)

with ∆sd̂ := diag
(
∆sℓ

d̂

)
ℓ
d̂
=0,...,L

d̂
−1
; Gz⃗,q̂ as the column vector of length 2Ld̂

Gz⃗,q̂ :=

(
gθ
z⃗,q̂

gφ
z⃗,q̂

)
, (2.38)

with gθ
z⃗,q̂ :=

(
gθz⃗,q̂(d̂ℓd̂)

)
ℓd̂=0,...,Ld̂−1

, gφ
z⃗,q̂ :=

(
gφz⃗,q̂(d̂ℓd̂)

)
ℓd̂=0,...,Ld̂−1

; Ee,∞(z⃗, q̂) as the column

vector of length 2Lx̂

Ee,∞(z⃗, q̂) :=

(
Eθ

e,∞(z⃗, q̂)

Eφ
e,∞(z⃗, q̂)

)
, (2.39)

8They are not spherical rectangles: indeed, in general, spherical polygons are figures made of arcs

of great circles. Now, lines of longitude are great circles, but lines of latitude are not (except for the

equator). For small variations in latitude, i.e., with the notations used in (2.35), for small ∆θd̂i , the area

of a latitude-longitude rectangle is well approximated by the quantity ∆sℓd̂ defined in (2.35).
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with Eθ
e,∞(z⃗, q̂) :=

(
Eθ

e,∞(x̂ℓx̂ ; z⃗, q̂)
)
ℓx̂=0,...,Lx̂−1

, Eφ
e,∞(z⃗, q̂) :=

(
Eφ

e,∞(x̂ℓx̂ ; z⃗, q̂)
)
ℓx̂=0,...,Lx̂−1

;

finally, the 2Lx̂ × 2Ld̂ matrix E∞ is defined as

E∞ :=

(
Eθθ

∞ Eθφ
∞

Eφθ
∞ Eφφ

∞

)
, (2.40)

with

Eθθ
∞ :=

(
Eθθ

∞(x̂ℓx̂ ; d̂ℓd̂)
)
ℓx̂=0,...,Lx̂−1;ℓd̂=0,...,Ld̂−1

, (2.41)

Eθφ
∞ :=

(
Eθφ

∞ (x̂ℓx̂ ; d̂ℓd̂)
)
ℓx̂=0,...,Lx̂−1;ℓd̂=0,...,Ld̂−1

, (2.42)

Eφθ
∞ :=

(
Eφθ

∞ (x̂ℓx̂ ; d̂ℓd̂)
)
ℓx̂=0,...,Lx̂−1;ℓ

d̂
=0,...,L

d̂
−1
, (2.43)

Eφφ
∞ :=

(
Eφφ

∞ (x̂ℓx̂ ; d̂ℓd̂)
)
ℓx̂=0,...,Lx̂−1;ℓd̂=0,...,Ld̂−1

. (2.44)

Remark 2.4.2. The positive-definite matrix ∆Sd̂ given in (2.37) defines a (weighted)

scalar product (·, ·)L
d̂
in C2Ld̂ , obtained from a Ld̂−angular discretization of the scalar

product (2.7). If w1 and w2 are two column vectors in C2Ld̂ , we have

(w1,w2)Ld̂
:= wT

1 ∆Sd̂w2, (2.45)

where wT
1 denotes the transpose of w1 and w2 the complex conjugate of w2. The scalar

product (2.45) induces a norm, denoted by ∥ · ∥Ld̂
, in C2Ld̂ ; we shall write

(
C2Ld̂ , (·, ·)Ld̂

)
to denote the vector space C2L

d̂ endowed with the scalar product (·, ·)Ld̂
. In a completely

analogous way, we can consider the space
(
C2Lx̂ , (·, ·)Lx̂

)
, by simply replacing the weight

matrix (2.37) with its analogous ∆Sx̂, defined in terms of ∆sℓx̂ := sin θx̂i ∆θ
x̂
i ∆φ

x̂
j > 0. �

In real applications, the far-field patterns are blurred by the noise affecting the mea-

surement processes, so that only a noisy version EH
∞ of the far-field patterns is available,

i.e.,

EH
∞ := E∞ +H, (2.46)

where H is the noise matrix. Then, we can define the linear operator

Fh :
(
C2Ld̂ , (·, ·)Ld̂

)
→

(
C2Lx̂ , (·, ·)Lx̂

)
x 7→ EH

∞∆Sd̂ x;
(2.47)

h is used as a superscript to distinguish Fh from the corresponding noise-free version F
and also to denote the noise bound h ≥ ∥Fh−F∥, where ∥·∥ indicates the operator norm.

By virtue of (2.47), EH
∞∆Sd̂ =: Fh is the matrix representation of the linear operator Fh;
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moreover, remembering (2.36), we can now write the noisy and discretized version of the

far-field equation (2.8) in the form

FhGz⃗,q̂ = Ee,∞(z⃗, q̂). (2.48)

The ill-conditioning of equation (2.48) requires a regularization procedure; in particular,

Tikhonov regularization method [89] consists in determining

Gz⃗,q̂;α = argmin
G∈C2L

d̂

{∥∥FhG− Ee,∞(z⃗, q̂)
∥∥2
Lx̂

+ α ∥G∥2Ld̂

}
. (2.49)

Given (2.49), the optimal regularized solution is obtained by choosing for the regulariza-

tion parameter α the value α∗(z⃗, q̂) determined by the generalized discrepancy principle,

i.e., by finding the zero of the generalized discrepancy function ρ : (0,+∞) → R defined

as9

ρ(α) :=
∥∥FhGz⃗,q̂;α − Ee,∞(z⃗, q̂)

∥∥2
Lx̂

− h2 ∥Gz⃗,q̂;α∥2Ld̂
. (2.50)

An explicit form for this regularized solution can be determined by using the singu-

lar representation10 of the linear operator Fh, whose singular system is related to that

of the matrix Fh according to Theorem 2.9.1 in Section 2.9, p. 39. If we denote by

{σh
p ,u

h
p ,v

h
p}r

h−1
p=0 (where σh

0 ≥ σh
1 ≥ . . . ≥ σh

rh−1
and rh := rankFh) the singular system of

Fh and if α∗(z⃗, q̂) is the zero of the generalized discrepancy function (2.50), it turns out

that the optimal Tikhonov regularized solution of (2.48) is given by11

Gz⃗,q̂;α∗(z⃗,q̂) =
rh−1∑
p=0

σh
p

(σh
p )

2 + α∗(z⃗, q̂)

(
Ee,∞(z⃗, q̂),vh

p

)
Lx̂

uh
p . (2.51)

Then, inspired by Theorem 2.3.1, the LSM allows visualizing the scatterer profile by

performing the following steps:

• take a grid of points Z ⊂ R3 covering the scatterer and choose a sampling polariza-

tion q̂;

• for each grid point z⃗ ∈ Z, determine the optimal Tikhonov regularized solution

(2.51);

• for each grid point z⃗ ∈ Z, consider the quantity
∥∥Gz⃗,q̂;α∗(z⃗,q̂)

∥∥
Ld̂

or a suitable com-

bination of the analogous quantities obtained for different choices of q̂ [46];

9See e.g. chapter 1 of [89].
10For basic concepts and notations, see e.g. Subsection 1.5.1 at pp. 16-20 of [4].
11Cf. [4], p. 41 and p. 136.
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• visualize the profile of the scatterer as the set of grid points in which the previous

combination becomes mostly large or small, depending on the analytical form chosen

for the combination itself.

It is worth noting that
∥∥Gz⃗,q̂;α∗(z⃗,q̂)

∥∥2
Ld̂

can be explicitly computed, by using (2.51), as

∥∥Gz⃗,q̂;α∗(z⃗,q̂)

∥∥2
L
d̂

=
rh−1∑
p=0

(σh
p )

2[
(σh

p )
2 + α∗(z⃗, q̂)

]2 ∣∣∣(Ee,∞(z⃗, q̂),vh
p

)
Lx̂

∣∣∣2 . (2.52)

In this implementation the optimal regularization parameter α∗(z⃗, q̂) explicitly depends

on the grid point z⃗ and the prefixed q̂ and therefore it must be computed a number of

times equal to the product of the number of grid points times the number of polarizations

sampled in Ω.

Remark 2.4.3. The discretization introduced in this section is much more general than

that adopted for the 2D formulation in [7] and easily allows dealing with non-uniform

positions of emitters and receivers, as well as with the case of limited aperture data. In

fact, it suffices to consider θd̂i ∈
(
θ̄d̂1, θ̄

d̂
2

)
⊂ (0, π) for i = 0, . . . , Td̂ − 1; φd̂

j ∈
[
φ̄d̂
1, φ̄

d̂
2

)
⊂

[0, 2π) for j = 0, . . . , Fd̂ − 1; θx̂i ∈
(
θ̄x̂1 , θ̄

x̂
2

)
⊂ (0, π) for i = 0, . . . , Tx̂ − 1; φx̂

j ∈
[
φ̄x̂
1 , φ̄

x̂
2

)
⊂

[0, 2π) for j = 0, . . . , Fx̂ − 1. �

2.5 A no-sampling implementation of the LSM

The key-idea of no-sampling is to replace the discrete grid Z with a continuous one

T := [−c1, c1]× [−c2, c2]× [−c3, c3] ⊂ R3 and, furthermore, to replace a finite set of sam-

pled polarizations with the whole unit sphere Ω. This approach, whose purpose is to in-

crease the computational effectiveness and the automation degree of the traditional LSM,

amounts to regarding expression (2.52) as a sampled version of a function defined over

T×Ω. The critical issue in this process is that, while the dependence of
∥∥Gz⃗,q̂;α∗(z⃗,q̂)

∥∥2
Ld̂

on

z⃗ and q̂ is explicitly known for the term Ee,∞(z⃗, q̂) (see (2.9), (2.24), (2.39), (2.52)), this

is not true for the optimal value of the regularization parameter, since α∗(z⃗, q̂) can only

be computed numerically as the zero of the generalized discrepancy function (2.50). This

problem can be solved by setting the formulation of the method in a new mathematical

framework, which enables us to consider as a unique functional equation the infinitely

many algebraic linear systems

FhG(z⃗, q̂) = Ee,∞(z⃗, q̂) ∀z⃗ ∈ T, ∀q̂ ∈ Ω (2.53)



2.5 A no-sampling implementation of the LSM 23

that would arise from (2.48) if, with a ‘naive’ procedure, the unknown vector Gz⃗,q̂ were

simply regarded as an unknown function G(z⃗, q̂) of the continuous parameters z⃗ and q̂.

The new mathematical setting requires the introduction of two functional spaces.

Given the total number Ld̂ of incidence directions, let us consider the Hilbert space

[L2(B)]2Ld̂ :=
⊕2L

d̂
i=1 L

2(B), with B := T ×Ω, equipped with the (weighted) scalar product

(f(·),g(·))2,Ld̂
:=

Ld̂−1∑
ℓd̂=0

∆sℓd̂
(
fℓd̂(·), gℓd̂(·)

)
L2(B)+

Ld̂−1∑
ℓd̂=0

∆sℓd̂
(
fLd̂+ℓd̂

(·), gLd̂+ℓd̂
(·)
)
L2(B) (2.54)

for all f(·) := {ft(·)}
2Ld̂−1

t=0 , g(·) := {gt(·)}
2Ld̂−1

t=0 ∈ [L2(B)]2Ld̂ , where the weights ∆sℓd̂ are

defined in (2.35) and (·, ·)L2(B) denotes the usual scalar product in L2(B); moreover, we

shall denote by ∥ · ∥2,Ld̂
the induced norm, i.e.,

∥f(·)∥2,Ld̂
:=

√∫
B
∥f(z⃗, q̂)∥2Ld̂

dz⃗ ds(q̂) . (2.55)

In a completely analogous way we can define the Hilbert space [L2(B)]2Lx̂ , where Lx̂ is

the total number of observation directions.

We can now introduce the following linear operator, whose aim is that of enabling

the operator Fh, defined in (2.47), to act on 2Ld̂−uples of functions, rather than on

2Ld̂−uples of complex numbers.

Definition 2.5.1. The linear operator Fh : [L2(B)]2Ld̂ → [L2(B)]2Lx̂ is defined as

[
FhG(·)

]
(·) :=


2Ld̂−1∑
t=0

(Fh)stGt(·)


2Lx̂−1

s=0

, (2.56)

where G(·) := {Gt(·)}
2Ld̂−1

t=0 ∈ [L2(B)]2Ld̂, and (Fh)st are the elements of the matrix Fh.

Theorem 2.5.1. The following properties for the linear operator Fh hold:

i) it is continuous, but not compact;

ii) its kernel N (Fh) is given by12

N (Fh) =
{
G(·) ∈

[
L2(B)

]2Ld̂ | G(z⃗, q̂) ∈ N (Fh) f.a.a. (z⃗, q̂) ∈ B
}
; (2.57)

12In relation (2.57), the acronym ‘f.a.a.’ means ‘for almost all’.
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iii) if G(·) ∈ [L2(B)]2Ld̂ is such that G(z⃗, q̂) ∈ N (Fh)⊥ for almost all (z⃗, q̂) ∈ B, then
G(·) ∈ N (Fh)⊥, where the orthogonality must be intended with respect to the scalar

product of the corresponding vector space.

Proof. These properties can be proved in full analogy with Theorem 3.2 and Remark 3.3

in [7]. �

The non-compactness of Fh does not prevent us from using the singular representation

of the linear operator Fh. Hence, we obtain the following expression for Fh:

[
FhG(·)

]
(·) =


rh−1∑
p=0

σh
p v

h
p,s

(
G(·),uh

p

)
Ld̂


2Lx̂−1

s=0

∀G(·) ∈
[
L2(B)

]2Ld̂ , (2.58)

where vhp,s is the s-th component of vh
p and

(
G(·),uh

p

)
Ld̂

is defined as the element in L2(B)
such that (

G(·),uh
p

)
Ld̂

: B ∋ (z⃗, q̂) 7→
(
G(z⃗, q̂),uh

p

)
Ld̂

∈ C. (2.59)

If we denote by F the corresponding noise-free version of Fh, by using representation (2.58)

for Fh and the analogous one for F, we can easily prove that∥∥Fh − F
∥∥ =

∥∥Fh −F
∥∥ =

∣∣σh
0 − σ0

∣∣ ≤ h, (2.60)

where σ0 is the largest singular value of F : this means that the bounds on the levels of

noise affecting Fh and Fh are the same, i.e., equal to h.

We can now use the operator Fh to collect the infinitely many algebraic systems (2.53)

into the following single functional equation, written in [L2(B)]2Lx̂ for the unknownG(·) ∈
[L2(B)]2Ld̂ : [

FhG(·)
]
(·) = Ee,∞(·), (2.61)

where Ee,∞(·) is the element of [L2(B)]2Lx̂ obtained from Ee,∞(z⃗, q̂) by simply regarding

the sampling pair (z⃗, q̂) as a variable on B. It is now clear that the regularization of the

previous equation (2.61) requires a single-step procedure, thus providing a single value

α∗ for the regularization parameter, which is independent of both z⃗ and q̂ (however, in

general, α∗ may depend on the choice of the investigation domain T ). Then, the next

problem to be solved is how to compute the Tikhonov regularized solution of equation

(2.61): this task is accomplished by the following theorem, which shows that, for a generic

α, both the generalized and the regularized solutions of (2.61) are obtained from the

generalized and regularized solutions of (2.53) by simply regarding the sampling pair

(z⃗, q̂) as a variable on B.
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Theorem 2.5.2. The generalized and Tikhonov regularized solutions of equation (2.61)

are respectively given by

Gh†(·) =
rh−1∑
p=0

1

σh
p

(
Ee,∞(·),vh

p

)
Lx̂

uh
p (2.62)

and

Gα(·) =
rh−1∑
p=0

σh
p

(σh
p )

2 + α

(
Ee,∞(·),vh

p

)
Lx̂

uh
p . (2.63)

Proof. We prove the result for the generalized solution (the result for the Tikhonov

regularized solution can be shown in an analogous way13). Since the generalized solution

Gh†(z⃗, q̂) of equation (2.53) is its (unique) least-squares solution of minimum norm, then

for any G(·) ∈ [L2(B)]2Ld̂ and for almost all (z⃗, q̂) ∈ B it holds that∥∥∥FhGh†(z⃗, q̂)− Ee,∞(z⃗, q̂)
∥∥∥2
Lx̂

≤
∥∥FhG(z⃗, q̂)− Ee,∞(z⃗, q̂)

∥∥2
Lx̂
, (2.64)

and then∫
B

∥∥∥FhGh†(z⃗, q̂)− Ee,∞(z⃗, q̂)
∥∥∥2
Lx̂

dz⃗ ds(q̂) ≤
∫
B

∥∥FhG(z⃗, q̂)− Ee,∞(z⃗, q̂)
∥∥2
Lx̂
dz⃗ ds(q̂).

(2.65)

It is now useful to observe that, by virtue of definition (2.56), for any G(·) ∈ [L2(B)]2Ld̂

it holds that

FhG(z⃗, q̂) =
[
FhG(·)

]
(z⃗, q̂); (2.66)

as a consequence, we can rewrite the previous inequality (2.65) as∫
B

∥∥∥[FhGh†(·)
]
(z⃗, q̂)−Ee,∞(z⃗, q̂)

∥∥∥2
Lx̂

dz⃗ ds(q̂) ≤ (2.67)

≤
∫
B

∥∥[FhG(·)
]
(z⃗, q̂)− Ee,∞(z⃗, q̂)

∥∥2
Lx̂
dz⃗ ds(q̂),

having denoted by Gh†(·) the element of [L2(B)]2Ld̂ defined in (2.62) and simply obtained

from Gh†(z⃗, q̂) when the sampling pair (z⃗, q̂) is regarded as a variable on B. Recalling

definition (2.55) and considering its analogous for [L2(B)]2Lx̂ , we can rewrite inequality

(2.67) as ∥∥∥[FhGh†(·)
]
(·)− Ee,∞(·)

∥∥∥2
2,Lx̂

≤
∥∥[FhG(·)

]
(·)− Ee,∞(·)

∥∥2
2,Lx̂

, (2.68)

13See [4], pp. 151-153.
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whence we immediately get

Gh†(·) = argmin
∥∥[FhG(·)

]
(·)− Ee,∞(·)

∥∥2
2,Lx̂

, (2.69)

since inequality (2.68) holds for all G(·) in [L2(B)]2Ld̂ .

Relation (2.69) states that Gh†(·) is a least-squares solution of equation (2.61); to

show that its norm is minimum (and, consequently, that it is the generalized solution of

(2.61)), we recall that Gh†(z⃗, q̂) ∈ N (Fh)⊥ for all (z⃗, q̂) in B: then, by virtue of statement

iii) in Theorem 2.5.1, we find that Gh†(·) ∈ N (Fh)⊥. This concludes the proof. �

The final step is now to fix the optimal value of the regularization parameter α,

which, in expression (2.63), is still generic. This task can be accomplished by using the

generalized discrepancy principle in the new functional context, i.e., by finding the zero

of the new generalized discrepancy function

ρ(α) =
∥∥[FhGα(·)

]
(·)− Ee,∞(·)

∥∥2
2,Lx̂

− h2∥Gα(·)∥22,Ld̂
, (2.70)

which, by virtue of (2.55), (2.58) and (2.63), can be written as

ρ(α) =
rh−1∑
p=0

α2 − h2(σh
p )

2[
α+ (σh

p )
2
]2 ∫

B

∣∣∣(Ee,∞(z⃗, q̂) , vh
p

)
Lx̂

∣∣∣2 dz⃗ ds(q̂). (2.71)

Remembering that B = T ×Ω and exploiting the linearity of Ee,∞(z⃗, q̂) with respect to q̂

(see (2.9), (2.24), (2.39)), it follows that14∫
B

∣∣∣(Ee,∞(z⃗, q̂) , vh
p

)
Lx̂

∣∣∣2 dz⃗ ds(q̂) = 4π

3

3∑
j=1

∫
T

∣∣∣(Ee,∞(z⃗, êj) , v
h
p

)
Lx̂

∣∣∣2 dz⃗, (2.72)

where {êj : j = 1, 2, 3} is the canonical basis of R3. Now, taking into account the explicit

expression of Ee,∞(z⃗, q̂), as given by (2.9), (2.24) and (2.39), we can analytically compute

the integral on T appearing in equality (2.72). To this end, for any j ∈ {1, 2, 3} we

introduce the complex vector wj ∈ CLx̂ whose ℓx̂-th component, ∀ℓx̂ = 0, . . . , Lx̂ − 1, is

defined as

wj,ℓx̂ := vhp,ℓx̂∆sℓx̂ [(x̂ℓx̂ × êj)× x̂ℓx̂ ] · θ̂(x̂ℓx̂)+vhp,ℓx̂+Lx̂
∆sℓx̂ [(x̂ℓx̂ × êj)× x̂ℓx̂ ] · φ̂(x̂ℓx̂), (2.73)

where vhp,ℓx̂ is the ℓx̂-th component of the singular vector vh
p ∈ C2Lx̂ , ∆sℓx̂ is defined at the

end of Remark 2.4.2 and x̂ℓx̂ is given by (2.29); then, after some computations, we find∫
T

∣∣∣(Ee,∞(z⃗, êj) , v
h
p

)
Lx̂

∣∣∣2 dz⃗ = wT
j Swj, (2.74)

14For details concerning the following relations (2.72)-(2.76), see [20], pp. 104-107.
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where S is the square real matrix of Lx̂ × Lx̂ elements defined as

Sℓ1x̂ℓ
2
x̂
:=

k2

2π2

3∏
j=1

cj sinc

[
kcj
π

(
x̂ℓ1x̂ − x̂ℓ2x̂

)
· êj
]

∀ℓ1x̂, ℓ2x̂ = 0, . . . , Lx̂ − 1. (2.75)

We recall that in equality (2.75) the positive numbers cj are the half-lengths of the sides

of the parallelepiped T =
∏3

j=1[−cj, cj] representing our domain of investigation. Hence,

from equations (2.72) and (2.74) it follows that∫
B

∣∣∣(Ee,∞(z⃗, q̂) , vh
p

)
Lx̂

∣∣∣2 dz⃗ ds(q̂) = 4π

3

3∑
j=1

wT
j Swj. (2.76)

By inserting this result into (2.71), we obtain an explicit analytical expression for the

generalized discrepancy ρ(α) (differently from [7], where a discretized version for the

discrepancy is exploited). The analytical form for ρ(α) determined here allows a faster

computation of its zero α∗, as well as an a priori estimate of an interval where α∗ is to

be found (an information that can be useful when the solution is numerically computed).

Indeed, the integrals appearing in (2.71) are all non-negative: then (excluding the trivial

case of an identically zero ρ(α)), if α∗ > 0 verifies ρ(α∗) = 0, it is easy to realize that

there must exist two indices p1 and p2, with p2 ≥ p1, such that

(α∗)2 − h2
(
σh
p1

)2[
α∗ + (σh

p1
)2
]2 ≤ 0 ⇔ α∗ ≤ hσh

p1
and

(α∗)2 − h2
(
σh
p2

)2[
α∗ + (σh

p2
)2
]2 ≥ 0 ⇔ α∗ ≥ hσh

p2
, (2.77)

whence we have α∗ ∈
[
hσh

p2
, hσh

p1

]
. On the other hand, the inequalities σh

p2
≥ σh

rh−1
and

σh
p1

≤ σh
0 are clearly true: accordingly, we conclude that α∗ ∈ [hσh

rh−1
, hσh

0 ].

By using the value α∗ for the regularization parameter α in (2.63), we find the following

representation for the optimal regularized solution of the functional problem (2.61):

Gα∗(·) =
rh−1∑
p=0

σh
p

(σh
p )

2 + α∗

(
Ee,∞(·),vh

p

)
Lx̂

uh
p . (2.78)

The most general indicator function we can now consider is J (Ψ), where J : [0,+∞) → R
is any appropriate monotonic function and

Ψ(z⃗) :=

∫
Ω

∥Gα∗(z⃗, q̂)∥2Lx̂
ds(q̂) =

=
4π

3

3∑
j=1

rh−1∑
p=0

(σh
p )

2

[(σh
p )

2 + α∗]2

∣∣∣(Ee,∞(z⃗, êj),v
h
p

)
Lx̂

∣∣∣2 ∀z⃗ ∈ T. (2.79)
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The analytic form (2.79) of Ψ, which represents the core of the indicator function, justifies

the name ‘no-sampling’ for our approach: indeed, α∗ does not depend on the sampling pair

(z⃗, q̂), the term Ee,∞(z⃗, êj) is analytically known and the singular system {σh
p ,u

h
p ,v

h
p}r

h−1
p=0

of the operator Fh is determined from the far-field patterns that have been measured.

Moreover, as highlighted by (2.72) and (2.79), in our approach the three independent

polarizations êj naturally play an equally important role in forming the indicator function:

as a consequence, the heuristic procedure adopted in [46] to average the contributions of

the three polarizations êj is automatically incorporated in the new rigorous formalism.

Of course, Theorem 2.5.2 now inspires a new implementation of the LSM, whereby

the contour of the scatterer is detected by all points in which the indicator function J(Ψ)

becomes mostly large or small, depending on the choice of J .

2.6 Numerical applications

In this section we want to show that our no-sampling implementation yields visualizations

that are very similar to those obtained by means of the traditional approach based on a

sampling in the physical and polarization spaces, but in an extremely reduced amount

of time and in a completely automatic fashion. In general, the 3D visualization of the

scatterer is obtained by plotting the C–level surface of the indicator function J (Ψ), i.e.,

the surface described by the Cartesian equation

J [Ψ(z⃗)] = C, z⃗ ∈ T, (2.80)

where C ∈ [minz⃗∈T J [Ψ(z⃗)] , maxz⃗∈T J [Ψ(z⃗)] ] is set to obtain the optimal visualization.

Our aim is now to give a recipe to fix in an automatic way the C–level surface of J (Ψ).

An effective approach is the following three-step algorithm:

1. consider the 2D indicator function J(β), where β is the 2D map

β : R2 ∋ (u1, u2) 7→ Ψ [ξ(u1, u2)] ∈ R (2.81)

and ξ : R2 ∋ (u1, u2) 7→ (a11u1+a12u2+c1, a21u1+a22u2+c2, a31u1+a32u2+c3) ∈ R3

is the parametric equation of a plane in R3 containing a slice of the scatterer; such a

plane can be found by using the (rather weak) a priori information on the scatterer

suggesting where the scatterer is in the imaging volume15;

15Cf. footnote no. 6, p. 7.
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2. apply an active-contour technique to J(β) as in [6], i.e., among all (regular) plane

curves described by a parametric equation of the form γ : [0, 1] → R2, find a curve

γ⋆ minimizing the energy functional

E(γ) :=
∫ 1

0

{
1

2

[
w1(s)∥γ′(s)∥R2 + w2(s)∥γ′′(s)∥R2

]
+ Eext [γ(s)]

}
ds, (2.82)

where

Eext := −∥∇J(β)∥2R2 ; (2.83)

3. since active contours generate profiles that are close to level curves, the value of the

indicator function on one of these profiles is almost constant. Therefore we choose

C :=

∫ 1

0

J {Ψ [ξ(γ⋆(t))]} dt, (2.84)

i.e., the mean value of J (Ψ) evaluated over the points of ξ(γ⋆).

The computation of the active contour in step no. 2 is accomplished as in [6, 40]. The

external force in (2.83) can be determined by computing ∇J(β) numerically or analyt-

ically: in the former approach, starting from the knowledge of J(β) on a prefixed grid

of points, the gradient ∇J(β) is computed once for all on the same grid by means of

finite differences and used (with interpolation) to deform the contours obtained at each

iteration, while in the latter the knowledge of the analytical form of the indicator function

J (Ψ) allows computing the numerical value of ∇J(β) time by time on a finite number

of points exactly belonging to the contours obtained at each iteration. We tested both

procedures, but since the differences in the visualization quality are negligible, we shall

illustrate only the results obtained when ∇J(β) is computed by means of finite differ-

ences: indeed, the latter procedure turns out to be faster, owing to the analytical form of

∇J(β), which is now more complicated than in the genuine 2D case discussed in [6].

Remark 2.6.1. In principle, the previous three-step algorithm can be implemented even

for the traditional LSM: however, in this case the determination of C through (2.84)

would require a notably greater computational effort. Indeed, in general, the 3D grid

Z of sampling points z⃗ on which the indicator function J (Ψ) is computed has nothing

to do with the 2D grid G used to implement the active-contour technique on a plane

section of the scatterer: as a consequence, J (Ψ) should be computed also on G, then the

final contour resulting from the edge-detection technique should be either deformed by

interpolation and discretized on a proper number of points belonging to G itself, or even

discretized in an ad hoc set of points, on which J (Ψ) should be computed separately. If
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we now remember that in the traditional implementation of the LSM the regularization

procedure needs to be repeated for each sampling pair (z⃗, q̂), we can easily understand

that this approach is rather heavy from a computational viewpoint. �

We now present and discuss three numerical experiments: in each one of them, the

discretization described in Section 2.4 is adopted by using the same uniform 9×18 angular

mesh on the unit sphere for both the observation and the incidence directions: more

precisely, we choose the observation angles as

θx̂i =
π

Tx̂

(
i+

1

2

)
∀i = 0, . . . , Tx̂ − 1, with Tx̂ = 9, (2.85)

φx̂
j =

2π

Fx̂

j ∀j = 0, . . . , Fx̂ − 1, with Fx̂ = 18, (2.86)

and the incidence angles as

θd̂i =
π

Td̂

(
i+

1

2

)
∀i = 0, . . . , Td̂ − 1, with Td̂ = 9, (2.87)

φd̂
j =

2π

Fd̂

j ∀j = 0, . . . , Fd̂ − 1, with Fd̂ = 18. (2.88)

The far-field patterns forming the matrix E∞ defined in (2.40) are computed by using

a code based on the method of moments [81]; each entry of E∞ is then affected by 7%

Gaussian noise. The scatterers are all isotropic and located in vacuum: this means that

the index of refraction is given by [46]

N(x⃗) = n(x⃗)I, (2.89)

n(x⃗) =
1

ε0

[
ε0 εr(x⃗) + i

σ(x⃗)

ω

]
, (2.90)

where i =
√
−1, I is the 3×3 identity matrix, ε0 is the dielectric constant in vacuum, εr(x⃗)

and σ(x⃗) are the relative permittivity and the conductivity of the scatterer at the point x⃗,

and finally ω = 2πν is the angular frequency. All no-sampling visualizations are realized

by choosing J(t) = t−1 ∀t ∈ R+∪{0} and taking as domain of investigation a cube of side

3m, i.e., T = [−1.5, 1.5]3. In all numerical tests, the forward scattering problem has been

solved by using a method of moments code based on a stabilized biconjugated-gradient

fast Fourier transform [90]. The computation domain has been discretized into cubical

subdomains of side about λ/20, λ being the wavelength of the incident field in vacuum.

The first numerical example we consider is the visualization of the ‘U-shaped’ scatterer

in Figure 5.1(a): this object is characterized by constant εr = 1.8 and σ = 0.02 S/m.
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The frequency used to perform this experiment is ν = 300MHz, corresponding to a

wavelength λ = 1.0m in vacuum. In order to determine the threshold value C in equation

(2.80), we follow the previously described scheme. More precisely, if we refer R3 to the

usual Cartesian coordinate system (x1, x2, x3), as shown in Figure 5.1(a), we restrict the

indicator function J(Ψ) to the plane of Cartesian equation x2 = 0; an axial view of the 2D

map visualizing this restriction is represented in Figure 5.1(b). Then, the active-contour

technique is applied to the previous visualization map starting from a suitable initial guess

(the white circle in Figure 5.1(b)), and the converging profile (also shown in Figure 5.1(b)

as a black line) is used as the argument of the function J {Ψ[ξ(·)]} in equation (2.84). The

resulting estimate of C is inserted into equation (2.80) and the corresponding visualization

of the scatterer, represented in Figure 5.1(c), is obtained after 90.1 s of computational time

with a 1.6GHz CPU. In Figure 5.1(d) we show the visualization provided by the traditional

implementation of the LSM (as explained in [46]) after 1590.1 s of computational time: in

this case we have uniformly discretized the investigation domain T with a sampling grid

Z of 30× 30× 30 points and combined the three indicator functions corresponding to the

three independent polarizations ê1 = (1, 0, 0), ê2 = (0, 1, 0), ê3 = (0, 0, 1); different cut-off

values C have been used until the ‘best visual reconstruction’, shown in Figure 5.1(d),

has been obtained. The only difference with respect to [46] is that here, in order to make

a consistent comparison with our no-sampling indicator function J (Ψ) = 1/Ψ, we choose

Θ(z⃗) :=

[
1

3

3∑
j=1

∥∥Gz⃗,êj ;α∗(z⃗,êj)

∥∥2
Ld̂

]−1

∀z⃗ ∈ Z (2.91)

as sampled indicator function, instead of

Θ(z⃗) :=
1

3

3∑
j=1

∥∥Gz⃗,êj ;α∗(z⃗,êj)

∥∥−1

Ld̂

∀z⃗ ∈ Z, (2.92)

where
∥∥Gz⃗,êj ;α∗(z⃗,êj)

∥∥2
Ld̂

is given by (2.52) for each j ∈ {1, 2, 3}.
The following three considerations must be accounted for:

• all the input parameters in the active-contour algorithm are optimally fixed by

choosing them in the ranges that, according to the theory, assure the convergence

of the iteration [40];

• the visualization in Figure 5.1(c) provided by the no-sampling formulation coupled

with deformable models is less accurate than the visualization in Figure 5.1(d)

provided by linear sampling coupled with a heuristic choice of the threshold value C
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based on a visual comparison with the true scatterer (supposed known). However,

as many numerical tests proved, this difference in accuracy is not due to no-sampling

but to a non-optimal performance of the edge-detection technique employed: indeed,

applying heuristic thresholding to no-sampling would lead to visualizations that are

essentially identical to those provided by traditional linear sampling. As an example,

we show in Figure 5.2(b) the result obtained, in the no-sampling framework, by

choosing for C the best visual value: a comparison with Figure 5.2(a), which is

provided by the usual sampling algorithm and reproduces exactly Figure 5.1(d)

for the reader’s convenience, can hardly highlight any difference between the two

visualizations;

• in the overall computational time of the no-sampling implementation, most of the

time (around 80 s) is spent for the edge-detection procedure in Figure 5.1(b) and

for the visualization process, while the determination of the unique regularization

parameter only takes around 2 s. On the contrary, in the sampling formulation most

of the time is devoted to the construction of the indicator function.

The second test is concerned with the non-connected scatterer in Figure 5.3(a), char-

acterized by constant εr = 2.0 and σ = 0.0 S/m for both the U-forms and the sphere in

between. The frequency chosen for this experiment is ν = 286MHz, corresponding to a

wavelength λ = 1.05m in vacuum. The scatterer is first cut by the plane in R3 of Carte-

sian equation x2 = 0.9 and the usual deformable model is applied to the corresponding

visualization shown in Figure 5.3(b) together with the initial guess (white ellipse) and the

reconstructed profile (black contour). The cut-off value C is then computed by means

of equation (2.84) and the resulting surface (2.80) is plotted in Figure 5.3(c). In Figure

5.3(d) we show the result obtained by using the traditional LSM with the same choices

for the parameters and the indicator function and the same heuristic procedure for es-

timating C as in the previous numerical experiment. The computational times for both

visualizations are around the same ones as for the corresponding visualizations in Figure

5.1.

Finally, the third numerical experiment is performed by using the non-connected scat-

terer in Figure 5.4(a) at a frequency ν = 300MHz: the parallelepiped on the left is centred

at (−0.75, 0, 0) and characterized by constant εr = 2.1 and σ = 0.0 S/m, while that on

the right is centred at (0.75, 0, 0) and characterized by constant εr = 1.5 and σ = 0.0 S/m.

In this case we only adopt the no-sampling approach, but with three different strategies.

In the first strategy, the scatterer is cut by the plane x1 = −0.75 and the threshold C is

determined as usual to obtain the visualization in Figure 5.4(b). In the second strategy,
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we use the plane x1 = 0.75, which provides the visualization in Figure 5.4(c). Finally, if

we split the domain of investigation T into Ta := [−1.5, 0] × [−1.5, 1.5] × [−1.5, 1.5] and

Tb := [0, 1.5] × [−1.5, 1.5] × [−1.5, 1.5], intersect Ta with x1 = −0.75, Tb with x1 = 0.75

and use the two corresponding threshold values to visualize the two objects with different

εr, we obtain the visualization shown in Figure 5.4(d): this last procedure allows better

preserving the original size of the two objects in the non-connected scatterer.

Remark 2.6.2. We proved in Section 2.5 (cf. inequalities (2.77)) that the unique value

α∗ of the regularization parameter in the no-sampling implementation must lay in the

interval
[
hσh

rh−1
, hσh

0

]
. By elaborating the expression (2.50) of the discrepancy, as occurs

in the traditional implementation of the LSM, and by using the same arguments as in

(2.77), it is easy to prove that also each one of the many optimal values α∗(z⃗, q̂) of the

regularization parameter must belong to the same interval. However, in our experience,

for each numerical experiment, α∗ is always in the interval [α∗
min, α

∗
max], where α

∗
min and

α∗
max are respectively the minimum and the maximum optimal regularization parameters

obtained in the traditional implementation: in particular, as far as the examples in the

current section are concerned, these values are shown in Table 5.1. The fact that α∗ ∈
[α∗

min, α
∗
max] is reasonable, since α

∗ can be intuitively regarded as a sort of average of all

the values α∗(z⃗, q̂). �

2.7 First-order discretization

In general, the positions of the emitting antennas on the unit sphere may be chosen in

such a way that the rectangular mesh used in Section 2.4 to discretize the integral (2.10)

on the unit sphere (cf. Remark 2.4.1) is neither the easiest, nor the most convenient way of

ordering these positions. On the contrary, given a generic set of points on the unit sphere,

the simplest approach is to create a mesh of plane triangles, whose vertices are the points

themselves: this can be done automatically, by implementing a Delaunay-type algorithm

[66] for triangular mesh generation. Moreover, triangular meshes naturally inspire a first-

order discretization, whereby the integrand function on each triangle is approximated

linearly, rather than by a constant value. Let us focus on this point in detail.

Let A1, B1, C1 ∈ R3 be the three vertices of a triangle and let T1 ⊂ R3, with |T1| :=
mis(T1) > 0, be the plane and closed region delimited by its three sides A1B1, A1C1 and

B1C1. Moreover, let f : T1 → R be a continuous function: we are interested in determin-

ing a numerical approximation of the integral
∫
T1
fdσ by adopting a linear interpolation of

f over T1 and using only the values f(A1), f(B1), f(C1) that f takes on the three vertices
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A1, B1, C1. To this end, we observe that, since |T1| > 0, the two vectors
−−−→
C1A1 and

−−−→
C1B1

are linearly independent and span the plane containing T1. Then, by using a Cartesian co-

ordinate system (x1, x2, x3) in R3 and setting A1 =
(
xA1
1 , xA1

2 , xA1
3

)
, B1 =

(
xB1
1 , xB1

2 , xB1
3

)
,

C1 =
(
xC1
1 , xC1

2 , xC1
3

)
, we can describe the plane region T1 by means of the following para-

metric representation T̃1 : E1 → R3, with E1 := {(s, t) ∈ R2 : 0 ≤ s ≤ 1− t, 0 ≤ t ≤ 1}:

T̃1 :


x1(s, t) =

(
xA1
1 − xC1

1

)
s+

(
xB1
1 − xC1

1

)
t+ xC1

1

x2(s, t) =
(
xA1
2 − xC1

2

)
s+

(
xB1
2 − xC1

2

)
t+ xC1

2

x3(s, t) =
(
xA1
3 − xC1

3

)
s+

(
xB1
3 − xC1

3

)
t+ xC1

3

for (s, t) ∈ E1. (2.93)

Indeed, for a fixed value t0 ∈ [0, 1] of t, the map T̃1|t=t0 : [0, 1− t0] → R3 is the parametric

representation of a segment that is parallel to
−−−→
C1A1 and connects a point of

−−−→
C1B1 to a

point of
−−−→
A1B1, since

T̃1(0, t0) =
((
xB1
1 − xC1

1

)
t0 + xC1

1 ,
(
xB1
2 − xC1

2

)
t0 + xC1

2 ,
(
xB1
3 − xC1

3

)
t0 + xC1

3

)
∈
−−−→
C1B1,

(2.94)

and

T̃1(1−t0, t0) =
((
xB1
1 − xA1

1

)
t0 + xA1

1 ,
(
xB1
2 − xA1

2

)
t0 + xA1

2 ,
(
xB1
3 − xA1

3

)
t0 + xA1

3

)
∈
−−−→
A1B1.

(2.95)

Moreover, it is clear that as t0 varies in [0, 1], the point T̃1(0, t0) spans the whole segment
−−−→
C1B1: this suffices to conclude that T̃1 is a parametric representation of T1.

Now, let f1 : T1 → R be the linear function we want to use as a first-order approxima-

tion of f , in order to estimate
∫
T1
fdσ: since the parametric representation (2.93) of T1 is

also linear16, the composite function f̃1 := f1 ◦ T̃1 : E1 → R is linear too, i.e., of the form

f̃1(s, t) = a1s+ a2t+ a3. (2.96)

The three unknown coefficients a1, a2 and a3 can be easily determined by imposing that

f1 and f take the same values on the three vertices A1, B1 and C1, i.e.,

f1(A1) = f(A1), f1(B1) = f(B1), f1(C1) = f(C1). (2.97)

By noting that A1 = T̃1(1, 0), B1 = T̃1(0, 1) and C1 = T̃1(0, 0), conditions (2.97) can be

substituted into (2.96) to obtain

a1 + a3 = f(A1), a2 + a3 = f(B1), a3 = f(C1), (2.98)

16With a slight abuse of language, here we call ‘linear’ maps that are actually affine, owing to the

presence of a known term, such as a3 in (2.96).
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i.e.,

a1 = f(A1)− f(C1), a2 = f(B1)− f(C1), a3 = f(C1). (2.99)

Hence, according to our first-order approximation, we can write∫
T1

fdσ ≈
∫
T1

f1dσ =

∫
E1

f̃1(s, t)

∣∣∣∣∣∂T̃1∂s
(s, t) ∧ ∂T̃1

∂t
(s, t)

∣∣∣∣∣ ds dt = (2.100)

=

∫ 1

0

dt

∫ 1−t

0

(a1s+ a2t+ a3)
∣∣∣−−−→C1A1 ∧

−−−→
C1B1

∣∣∣ ds =
= 2|T1|

∫ 1

0

[
a1
s2

2
+ a2ts+ a3s

]1−t

s=0

dt =

= |T1|
a1 + a2 + 3a3

3
,

having observed that
∣∣∣−−−→C1A1 ∧

−−−→
C1B1

∣∣∣ is twice the area |T1| of the triangle T1. If we now

substitute relations (2.99) into (2.100), we find the desired result:∫
T1

fdσ ≈ |T1|
3

[f(A1) + f(B1) + f(C1)] . (2.101)

We can now make a further step and consider, more generally, a regular surface S

approximated by a triangular mesh formed by L triangles Tj, with j = 1, . . . , L. If we

denote by Aj, Bj and Cj the three vertices of the triangle Tj, we can easily generalize the

approach described above to find∫
S

fdσ ≈
L∑

j=1

∫
Tj

f j
1 =

L∑
j=1

|Tj|
3

[f(Aj) + f(Bj) + f(Cj)] . (2.102)

An alternative version of (2.102) can be obtained by summing over the vertices, rather

than over the triangles, as described in the following. First, we note that each point Aj,

Bj and Cj is, in general, a vertex of more than one triangle: e.g., it can hold A2 = B1,

C1 = B3, and so on. Then, the distinct vertices on the mesh are less than 3× L, say N .

In order to avoid repetitions, let us denote by P1, . . . , PN these distinct vertices and, for

each point Pn, let us define the index set

Jn := {j ∈ {1, . . . , L} : Pn ∈ Tj} ∀n = 1, . . . , N. (2.103)

The set Jn clearly identifies all the triangles having Pn as one of their vertices. Hence, if

we introduce the weights17

ωn :=
1

3

∑
j∈Jn

|Tj| ∀n = 1, . . . , N, (2.104)

17Cf. relation (50) p. 861 in [36].
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we can rearrange the sum in (2.102) as∫
S

fdσ ≈
N∑

n=1

ωnf(Pn). (2.105)

We now have all the ingredients to come back to the far-field equation (2.11) and its

first-order discretization. The integral on the left-hand side of (2.11) is made over the

unit sphere Ω, and the vertices of the triangular mesh approximating Ω are identified by

the incidence unit vectors d̂ℓd̂ , with ℓd̂ = 0, . . . , Ld̂ − 1. Notably, the sums in equations

(2.33) and (2.34), which follow from our previous zero-order discretization of the integral

on Ω in (2.11), are performed just on the incidence directions d̂ℓd̂ , in the same spirit as in

(2.105). Therefore, the new and first-order discretized far-field equation is obtained from

(2.33) and (2.34) by simply replacing the weights ∆sℓd̂ , defined in (2.35), with the new

ones ωℓ
d̂
, defined as in (2.104) (with the index n replaced by ℓd̂). The final result is then

Ld̂−1∑
ℓ
d̂
=0

[
gθz⃗,q̂
(
d̂ℓ

d̂

)
Eθθ

∞
(
x̂ℓx̂ ; d̂ℓd̂

)
+ gφz⃗,q̂

(
d̂ℓ

d̂

)
Eθφ

∞
(
x̂ℓx̂ ; d̂ℓd̂

)]
ωℓ

d̂
= Eθ

e,∞(x̂ℓx̂ ; z⃗, q̂), (2.106)

Ld̂−1∑
ℓd̂=0

[
gθz⃗,q̂
(
d̂ℓd̂
)
Eφθ

∞
(
x̂ℓx̂ ; d̂ℓd̂

)
+ gφz⃗,q̂

(
d̂ℓd̂
)
Eφφ

∞
(
x̂ℓx̂ ; d̂ℓd̂

)]
ωℓd̂

= Eφ
e,∞(x̂ℓx̂ ; z⃗, q̂). (2.107)

Hence, from an implementation viewpoint, the only difference between the zero-order

and the first-order discretization of the far-field equation consists in the weights defining

the scalar product on C2L
d̂ (cf. Remark 2.4.2): instead of ∆sℓd̂ , we now have ωℓd̂

. In

particular, this means that the computational times of the regularization procedure will

be the same in both cases.

As regards the scalar product on C2Lx̂ , it depends on how we order the observation

directions x̂ℓx̂ : we can either maintain the rectangular mesh of Section 2.4 and the corre-

sponding weights ∆sℓx̂ , or adopt a triangular mesh and use the new weights ωℓx̂ , defined

analogously to ωℓd̂
. Of course, different scalar products induce different norms (cf. e.g.

definition (2.55)), and this can in principle affect, for instance, the choice of the opti-

mal value α∗ of the regularization parameter, since the generalized discrepancy (2.70) is

defined in terms of such norms.

It is now interesting to test our no-sampling formulation of the LSM by using the

first-order discretized far-field equation given by (2.106), (2.107). As a first example, we

consider again the non-connected scatterer of Figure 5.3(a) (reproduced in Figure 5.5(a))

in the same physical conditions: however, the set of incidence directions, coincident with

the set of observation directions, is now chosen so to form a non-uniform triangular mesh
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with 146 vertices, shown in Figure 5.5(b). The visualization provided by the no-sampling

LSM, plotted in Figure 5.5(c), is obtained in less than 30 s by the same procedure described

in Section 2.6: in particular, only around 1 s is taken by the regularization algorithm, while

the remaining time is due to the edge-detection algorithm and the visualization process18.

No significant difference can be noticed between the two visualizations shown in Figure

5.3(c) and in Figure 5.5(c).

The second example is concerned with the visualization of the perfectly conducting

scatterer shown in Figure 5.6(a) and contained in a parallelepiped T = [−0.4, 0.4] ×
[−0.4, 0.4] × [−0.2, 0.4]. The direct far-field data, computed by using CESC solver19,

are just those used in [46]; moreover we corrupt each value by 7% Gaussian noise. The

wave number is k = 56m−1 and the 252 incidence/observation directions are uniformly

distributed on the unit sphere as shown in the triangular mesh of Figure 5.6(b). In or-

der to determine the threshold value C for the indicator function, we follow the scheme

described in Section 2.6. More precisely, referring R3 to the usual Cartesian coordi-

nate system (x1, x2, x3), we restrict the indicator function 1/Ψ to the plane of Cartesian

equation x3 = 0.05 and fix the value C by applying an active-contour technique to this

restricted visualization map. The corresponding C-level surface of 1/Ψ provides the visu-

alization of the scatterer, which is shown in Figure 5.6(c). The regularization algorithm

is performed in around 10 s, while the overall visualization procedure is completed in less

than 3 minutes.

2.8 Conclusions and hints for future developments

In the present chapter we have introduced a no-sampling version of the LSM for 3D

electromagnetic inverse scattering problems. According to this approach, the indicator

function is analytically known, which allows a fast and essentially automatic visualization

of the scatterers from the knowledge of their far-field patterns.

We can now make some comments and suggestions for future work.

1) About the post-processing of the LSM by edge-detection algorithms. It is certainly

18We cannot assure that the PC (a common laptop in any case) used for the two experiments of

this section is the same as that used for the simulations of the previous section, so any comparison in

computational times might be improper. However, it is worth noting that the regularization algorithm

is always very fast: around 2 s in Section 2.6, with 9 × 18 incidence/observation angles, and around 1 s

here, with 146 angles. The edge-detection and visualization procedure is rather faster in this experiment

(less than 30 s) than in the analogous experiment of Section 2.6 (around 80 s), but this may also depend

on a different thickness of the visualization grid.
19Prof. Houssem Haddar is gratefully acknowledged for having provided these data.
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possible to consider scatterers that are much more complex than those chosen here to

illustrate the advantages of the no-sampling formulation of the LSM: for example, we

could consider anisotropic, inhomogeneous and non-connected scatterers, with connected

components that are very close to each other (with respect to the wavelength λ) and,

consequently, hard to separate in the visualization. In these more difficult cases, the most

suitable approach for post-processing the indicator function is probably an iterative pro-

cedure based on level sets (see [84] and references therein): indeed, level sets can easily

detect non-connected objects starting from a connected initial guess, since their formu-

lation (unlike the active-contour technique used in this chapter) enables an automatic

splitting of the profiles obtained during the iterations; moreover, the final result provided

by such a procedure does not need to be a level surface of the indicator function, thus

allowing a further degree of freedom that can be useful to improve the visualization qual-

ity20. Implementing a level-set-based technique for a post-processing of the no-sampling

LSM is beyond the purposes of this chapter; however, we point out that, in principle, the

analytical knowledge of the indicator function can be very useful also for such a technique.

2) About the ‘hybridization’ of the LSM with reconstruction methods. In many applica-

tions, the information content provided by the mere visualization of the scatterer may be

too poor, and a pointwise reconstruction of its material parameters may be necessary or

desirable. In this case, an iterative reconstruction algorithm should be used: however, the

visualization of the scatterer, as obtained by post-processing the LSM via edge-detection

techniques, can be very useful to properly initialize the algorithm itself, thus reducing the

risk that the latter converges to false solutions. Examples of this ‘hybrid’ approach (in

the sense that a qualitative method is used to initialize a quantitative one) can be found

in [22, 23, 25, 28, 29]. Of course, the need for short computational times pertains not only

to the LSM and its post-processing, but also to the last step, i.e., the reconstruction pro-

cedure, which is typically the most expensive: anyway, some recent multiscale algorithms

[57] can provide their final output in short or reasonable computational times.

3) About the optimal number of emitters and receivers. For any qualitative method,

an interesting open issue is concerned with its optimal implementation, i.e., an implemen-

tation allowing the best visualization quality with the minimum amount of data. The

simplest possible explanation of this problem is the following. In the LSM, Ld̂ different

directions are chosen for the incident plane wave and, for each incidence direction, the

far-field pattern of the field scattered by the target is measured in Lx̂ different observation

20This can be important in cases where a level surface of the indicator function can hardly capture

all the information needed for a good visualization (e.g., strongly inhomogeneous and/or non-connected

scatterers: cf. the third numerical example of Section 2.6, soon before Remark 2.6.2).
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directions, so that the total number of measurements is S := Ld̂ × Lx̂. Of course, if S

is too small, no satisfactory visualization of the unknown scatterer can be achieved; on

the other hand, intuition suggests (and numerical experiments confirm) that increasing

S can improve the visualization quality only up to an optimal value So, above which no

further improvement is obtained. In principle, So depends at least on the maximum linear

dimension M of the scatterer, on the incident wavelength λ and on the intensity n of the

noise affecting the measurement procedures. If we consider that any S > So uselessly in-

creases both the duration of the process of data acquisition21 and the computational time

required by the regularization algorithm to invert the data themselves, it proves interest-

ing to find a criterion allowing an assessment of So in terms of an a priori knowledge or

estimate ofM , λ and n. To this end, a good starting point could consist in performing an

appropriate number of numerical simulations in various scattering conditions and trying

to link the So experimentally determined with the number N of degrees of freedom [30]

of a scattered field under the same scattering conditions: some examples of such an ap-

proach can be found in [37]. However, for any incident wave, N is the minimum number

of probes that are necessary to collect all the information transported by the scattered

field. On the other hand, the LSM, as well as any other qualitative method, only exploits

the information concerning the geometry of the scatterer, and neglects the information

about its physical properties. Then, in the framework of qualitative methods, it would be

very interesting to investigate the possibility of splitting these two kinds of information

and to distinguish between a ‘geometric’ and a ‘physical’ number of degrees of freedom:

of course, only the former should be related to the optimal number So of probes to be

used. In any case, reasoning in terms of N can provide an upper bound for So; moreover,

if the same scattering data are to be used at a later stage for a reconstruction algorithm,

the whole information content carried by the field needs to be collected, and then the

number of probes expressed in terms of N becomes optimal.

2.9 Addendum to Chapter 2

Let M and N be two positive integers; let the M ×M matrix ∆SM and the N × N

matrix ∆SN be diagonal and positive-definite; let the vector spaces CM and CN be

equipped with the scalar products (·, ·)∆SM
and (·, ·)∆SN

described by ∆SM and ∆SN

respectively, i.e.,

(x1,x2)∆SM
:= xT

1∆SMx2, (y1,y2)∆SN
:= yT

1 ∆SNy2, (2.108)

21This is a crucial issue for 3D real scattering experiments: see e.g. [60].
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where x1,x2 ∈ CM and y1,y2 ∈ CN are generic column vectors. Let the linear operator

T :
(
CM , (·, ·)∆SM

)
→
(
CN , (·, ·)∆SN

)
be represented by the N×M matrix T. We denote

by (Σ,U,V) the singular system of T , such that

TU = VΣ, T∗ V = UΣ, (2.109)

with the orthonormality properties

UT∆SMU = Ir, VT∆SNV = Ir, (2.110)

where Ir is the r× r identity matrix, r is the rank of T and T∗ is the matrix representing

the adjoint operator T ∗. Then the following theorem holds.

Theorem 2.9.1. Let
(
Σ̃, Ũ, Ṽ

)
be the singular system of the matrix

T̃ := (∆SN)
1
2 T (∆SM)−

1
2 . (2.111)

Then the triple (Σ,U,V) defined by

Σ := Σ̃, U := (∆SM)−
1
2 Ũ, V := (∆SN)

− 1
2 Ṽ (2.112)

is the singular system of the operator T .

Proof. The fact that
(
Σ̃, Ũ, Ṽ

)
is the singular system of the matrix T̃ defined in (2.111)

means that

T̃Ũ = ṼΣ̃, T̃
⊤
Ṽ = ŨΣ̃, (2.113)

with the orthonormality properties

ŨT Ũ = Ir, ṼT Ṽ = Ir. (2.114)

Now, by virtue of (2.111), (2.112), (2.113), we have

TU−VΣ = T (∆SM)−
1
2 Ũ− (∆SN)

− 1
2 ṼΣ̃ = (2.115)

= (∆SN)
− 1

2

[
(∆SN)

1
2 T (∆SM)−

1
2 Ũ− ṼΣ̃

]
=

= (∆SN)
− 1

2

[
T̃Ũ− ṼΣ̃

]
= 0,

so that the first of relations (2.109) is satisfied. Recalling now (2.108), we have:

(T∗y,x)∆SM
= (T∗y)T∆SMx = yT (T∗)T ∆SMx (2.116)
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and

(y,Tx)∆SN
= yT∆SN(Tx) = yT∆SNTx. (2.117)

By comparing (2.116) with (2.117), we find:

(T∗)T∆SM = ∆SNT ⇒ (T∗)T = ∆SNT∆S−1
M , (2.118)

and then

T∗ = ∆S−1
M T

T
∆SN . (2.119)

A computation analogous to (2.115) now shows that T∗V−UΣ = 0, i.e., also the second

of relations (2.109) is satisfied. Finally, the orthonormality properties (2.110) are imme-

diately proved by taking into account the analogous properties (2.114) and definitions

(2.112). �
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Chapter 3

The RGFM for breast cancer

detection

3.1 State of the art in breast cancer detection

Nowadays, the prospective existence of tumoural masses in the female breast is usually

investigated by means of X-ray mammography: this approach relies on the possibility

of detecting portions of biological tissues whose density1 is different from that of the

background surrounding them. Such imaging technique can be adopted for both diagnos-

tic purposes (i.e., to investigate the origin of dubious changes occurring in the patient’s

breast, like pain or lumps) and screening plans (i.e., to detect breast cancer before any

symptom is developed or any clinical sign is noticed).

However, the approach just outlined suffers from some drawbacks, which are among

the main reasons for the persistence of the disease itself. In particular:

(1) X-rays are ionizing radiations, which entails a degree of invasiveness potentially

harmful to the patient’s health and, consequently, limits the frequency of this kind

of check-up;

(2) producing X-rays for medical purposes requires physical devices that are rather

big, heavy and expensive, so they can be neither bought by all hospitals, nor eas-

ily transported: this hampers the spread of screening plans even in the European

Union2;

1See e.g. [15], p. 195.
2At the end of the year 2006, nationwide mammographic screening was available in eleven Member

States only: see e.g. the ‘European Parliament resolution on breast cancer in the enlarged European
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(3) the reliability of X-ray tests is limited by the fact that the density of the tumoural

masses in the female breast does not differ very much from that of the healthy tissue

surrounding them. Such a low physical contrast in density gives rise to possibly

faulty results, which can then be either false-positive [58] (i.e., the tumour does not

exist, but it is detected) or false-negative3 [67] (i.e., the tumour exists, but it is not

detected).

In the framework of the techniques currently available, a certain number of improved

and/or comparative approaches, also involving magnetic resonance imaging (MRI) for

high risk women, have been conceived in order to enable radiologists to detect breast

cancer more accurately and at an earlier stage. However, to this end, also some completely

different methods have been proposed: they belong to a family of alternative and, so

far, prototypal tomographies, like electrical impedance [19, 39], optical [12], ultrasound

[80] and microwave4 tomography [31, 32, 68, 85], whose common feature, unlike X-ray

tomography or nuclear magnetic resonance, is the non-linear link between the measured

data and the physical quantities to be reconstructed.

In particular, using microwaves [3] to detect breast cancer seems to be a promising

complementary technique to X-rays, for at least three reasons:

(1’) microwaves are negligibly invasive (i.e., essentially harmless);

(2’) producing and measuring low power microwaves for medical applications requires

physical devices that are relatively cheap, easily available and transportable;

(3’) microwaves can detect portions of biological tissues whose electrical parameters

(permittivity and conductivity, instead of density) are different from those of the

background and, in particular, the electrical contrast between the tumoural masses

and the healthy tissue surrounding them is much larger than the corresponding con-

trast in density[16]: hence, by using microwaves, the reliability of cancer detection

should even increase with respect to current standards.

All three previous points are necessary starting conditions to face the current chal-

lenges and trends concerning diagnostic and/or monitoring systems5, which should be

Union’, text adopted on Wednesday, 25th October 2006 in Strasbourg, available online at the web page

<www.europarl.europa.eu/sides/getDoc.do?type=TA&reference=P6-TA-2006-0449&language=EN>.
3This kind of error mainly occurs for younger (i.e., premenopausal) women: the interior part of their

breast is largely taken up by the milk ducts, whose density is the same as that of a solid tumoural mass.
4It is worth noting that the tomographic approach is not the only way to exploit microwaves for breast

cancer detection: also ultra-wide-band radar techniques have been studied [18, 64], but they are far from

the main focus of this Ph.D. thesis and then will not be considered here.
5Cf. the web page < http://ec.europa.eu/information society/activities/health/research/
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lightweight, portable, reliable and suited for easy and frequent home usage by the patient

him/herself or his/her informal carers (such as relatives or friends). As a second step, it

should be possible to link these user-friendly devices up to the Internet for a real-time

external and professional assistance (when needed), or to store the data collected by them

in a suitable electronic format: in such a way, the results of the domestic check-up could

be easily sent e.g. by e-mail to hospitals and/or (personal) physicians. It is worth pointing

out that, in general, the aim of this new generation of medical portable systems is not to

replace, but rather to flank, complement and support (in a different context of usage) the

current or future diagnostic devices that, owing to their costs, dimensions and complexity,

are or will be available in hospitals only. As far as microwave tomography is concerned,

at present it is impossible to be sure that a small and efficient portable tomograph will

be realized in the next future. In any case, even a bigger prototype would represent a

new kind of diagnostic and monitoring system that could be placed and used in hospitals

(or also in travelling medical vans, such as the tomograph constructed by Prof. Paul M.

Meaney and his staff6) to increase the effectiveness of the techniques currently adopted

for breast cancer detection, as well as the number of women kept under observation.

Summarizing, we can say that the state of the art for breast cancer detection, as well

as the current trends and challenges proposed by the European work programs concerning

healthcare, seem to indicate that making microwave tomography an effective diagnostic

technique would represent a significant medical achievement. Then, given the main focus

of the current Ph.D. thesis, it is interesting to see how qualitative methods can play an

important role in addressing such an issue. To this end, in the next section we consider a

specific microwave scattering problem and describe a processing technique of its data in

order to visualize tumoural masses inside the female breast.

3.2 The problem

Qualitative methods for inverse scattering problems have been usually formulated for

time-harmonic waves, i.e., for fixed-frequency fields, and we shall maintain this ‘historical’

choice7. More specifically, for a tomographic imaging of the breast, a fixed-frequency

fp7phs/index en.htm > in the Thematic Portal of Europe’s Information Society, whose home page is

< http://ec.europa.eu/information society/index en.htm >.
6Cf. the web page <http://www-nml.dartmouth.edu/biomedprg/MIS/ClinicalSystems Gen2.html>

in the web site of ‘The Microwave Imaging and Spectroscopy (MIS) group’, whose home page is

<http://www-nml.dartmouth.edu/biomedprg/MIS/Main.html>.
7However, it is worth noting that, insofar as the frequency is generic, a wise use of Fourier transform

also enables a multi-frequency approach [74]; moreover, a linear sampling method working directly in the
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microwave signal is transmitted from different positions and the diffracted field is collected

by different antennas surrounding the breast itself. Furthermore, it is intuitive that both

to reduce the dimensions of the experimental apparatus (i.e., the tomograph) and to

increase the information content of the data8, the scattered field should be measured as

close as possible to the breast: in other terms, near-field measurements of the scattered

field should be used as input data.

A first possibility is to consider the linear sampling method (LSM) in its near-field

formulation [36, 49, 50]. However, as a non-negligible drawback, this method requires the

knowledge of the Green’s function of the background, and the latter consists of all the

physical bodies that are different from the scatterer (i.e., the tumour) and can influence

the scattering experiment: these include not only the healthy tissues of the breast, but also

the objects, the walls and the people of the room where the measurements are performed.

An experimental device usually adopted to shield the breast from the multiple reflections

of external scatterers consists in immersing the breast itself and the emitting/receiving

antennas in an appropriate coupling medium (typically, saline [77], or glycerine-saline

mixtures [78], or corn syrup [16, 17]). Indeed, this medium should meet the following

requirements:

1. it should not be too lossy, so that the field radiated by the emitting antennas

actually reaches the breast, is diffracted by it and can be measured by the receivers

as a non-zero signal;

2. it should be ‘lossy enough to permit the assumption that all fields propagate to

infinity without reflection’9 from outer scatterers;

3. its electrical properties should be as similar as possible to those of the healthy breast,

in order to favour the penetration of the incident wave into the breast itself, i.e.,

to reduce the reflection across the interface between skin and surrounding medium

[16, 17, 72, 78].

When such a coupling medium is used, the simplest assumption that can be made to apply

the LSM is that the entire background consists of a homogeneous and infinite medium

having the same electrical properties of the coupling medium itself. In this case, however,

the visualization provided by the method would highlight any tissue (not only the tumour)

whose electrical properties differ from those of the background: then, the visualization

time domain (and then avoiding integral transforms) has been recently proposed in [38].
8Cf. e.g. [15], p. 211.
9Quoted from [76], p. 137.
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should be post-processed by a quantitative algorithm computing the point values of the

refractive index, in order to discriminate between healthy and cancerous tissues10. A more

refined possibility is to assume the (approximate) knowledge11 of the healthy breast: then,

the latter, together with the surrounding (and infinite) coupling medium, would form the

reference background and the LSM would only visualize the tumoural mass.

Of course, for numerical purposes, one can also consider idealized situations where the

breast is surrounded by free space: this is the approach pursued e.g. in [21, 24]. If there

is no object around the breast12, no shielding from exterior reflections is needed: in this

case, the only role of the coupling medium would be that of favouring the penetration of

the incident wave, as described at the previous point no. 3. Then, testing an inversion

method without using the coupling medium represents a ‘worst-case’ scenario: if the

reconstructions obtained in this way are satisfactory, in principle they should be even

more so when such medium is added.

According to point no. 2 above, the coupling medium physically cancels out or reduces

the influence of outer objects on the scattering experiment. However, such a physical

shielding can also be replaced by a ‘numerical’ one, i.e., overcome by an inversion method

whose performance is insensitive to the presence of outer scatterers. This alternative

possibility is offered by the reciprocity gap functional method (RGFM) [36, 44]: of course,

there is a price to be paid, i.e., the fact that both the electric and magnetic fields need

to be measured (while only the former or, less frequently, the latter is exploited in most

scattering experiments). In the present chapter, we want to explore the possibility of

using this method for breast cancer detection (in a 2D setting). Then, we shall use no

coupling medium13 and sometimes add an exterior scatterer in order to show that the

method is insensitive to it. Moreover, we want to extend the no-sampling approach,

already developed for the LSM, to the RGFM.

However, one of the hypotheses assumed to formulate the RGFM is that the incident

and the scattered fields are respectively emitted and measured inside a homogeneous

10It is worth recalling (cf. Section 2.8 of Chapter 2) that, in any case, the visualization provided by

the LSM (or by any other qualitative method), possibly post-processed by an edge-detection technique,

can always be used as initial guess for an iterative algorithm to compute the point values of the electrical

parameters inside the investigation domain: examples of this ‘hybrid’ approach can be found in [22, 23,

25, 28, 29].
11Obtained, for example, by a previous clinical MRI exam.
12For the moment, receiving antennas are considered as ideal probes, i.e., probes that measure the field

without modifying it. However, if necessary, it would not be difficult to include the antennas, whose

geometric and physical properties are known, into the background.
13Incidentally, we point out that using no coupling medium could help to simplify and downsize the

experimental apparatus, thus reducing its cost.
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background embedding the target: but the latter, in our application, is just the tumour,

then the background is inhomogeneous, being formed, to a first approximation, by fat

tissue, a thin layer of skin and the medium (free space) interposed between the patient’s

body and the emitting/receiving antennas14 (glands, ligaments or impurities could be

considered later, in more refined models of the breast, or also as one of the noise sources

perturbing the measurements). Then, we need to modify and generalize the RGFM with

respect to its original formulation, in order to allow for an inhomogeneous background.

Now, the standard RGFM does not require the knowledge of the Green’s function of

the (homogeneous) background medium and this is one of its attractive features. The

only possible way to adapt the RGFM to breast microwave tomography is probably to

introduce in its formulation the Green’s function of the inhomogeneous background15

surrounding the tumour, but this requires the knowledge of the physical and geometric

properties of the background itself. If (a model of) the latter is simple enough, the Green’s

function can be analytically determined, otherwise it can be numerically computed, but

in practice the problem is how to get such information on the background. We shall not

discuss this issue in detail; we only outline two approaches (not alternative to each other):

• as regards the electrical parameters of the breast, the patient could undergo (at

least in a screening plan) a preliminary MRI test providing detailed information on

the structural properties of her breast; then, this information could be used as a

landmark for several future tests performed by means of microwave tomography;

• as regards the geometric parameters of the breast, instead of letting the breast freely

dangle under the action of its own weight, it could be softly modelled by inserting it

into a cup of suitable dimension and material, i.e., into a sort of ‘tomographic bra’

smoothly enforcing a regular (essentially hemispherical) geometry.

Summarizing, in this chapter we generalize the RGFM introduced by [36, 44] in order

to visualize tumoural masses inside the female breast. The generalization consists in

taking explicitly into account the heterogeneity of the background medium16 enclosed by

the array of receiving antennas: in other terms, the information on the healthy breast is

encoded in the computation of the Green’s function. Moreover, the implementation of

the algorithm is realized by means of the no-sampling scheme already introduced for the

14When the RGFM is applied, the background outside the antennas is irrelevant.
15This possibility is explicitly suggested in [36].
16In particular, since skin and fat are lossy media, this approach gives rise to an interior transmission

problem involving complex wave numbers, which deserves a careful discussion.
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LSM, which allows a remarkable rapidity in the visualization process (2D maps of the

inner breast are obtained in around 1 s with a conventional PC).

3.2.1 Plan of the following sections

The remainder of this chapter is devoted to explaining in detail our approach to the issues

highlighted above. More precisely, Section 3.3 introduces some notations frequently used

throughout this chapter. In Section 3.4 we formulate the inverse scattering problem of

microwave tomography and we prove the general theorem at the basis of our visualization

method. Section 3.5 describes the visualization algorithm and its implementation. Section

3.6 contains some numerical applications with synthetic but realistic scattering data. Our

conclusions and hints for future work are presented in Section 3.7. Finally, Section 3.8 is

a kind of appendix where we prove some complementary theorems used throughout this

chapter: in particular, we discuss the properties of an interior transmission problem of

interest for the study of the RGF equation introduced in Section 3.4.

3.3 Notations

The 2D scattering problem modelling a microwave tomography experiment for breast

cancer detection is depicted in Fig. 5.7. We consider an idealized geometric model of the

breast, whereby its axial view consists of a disk representing the fatty tissue, surrounded

by a thin layer representing the skin. Embedded in the fat, the tumour takes up a spatial

region assumed to be a bounded Lipschitz domain D such that the open complement of

D is connected. In the space surrounding the breast, Γ and C denote two closed curves

which are the boundaries of the bounded Lipschitz domains Ω and V respectively, with

Ω̄ ⊂ V . In the acquisition step, the receiving antennas will be placed on Γ and the

emitting antennas will be placed on C. Since we work at a fixed (angular) frequency

ω, in the following we shall not indicate the dependence on ω for the various physical

quantities involved; we just observe that ω = k0c, where k0 and c are the wave number

and the speed of light in free space respectively. We recall that the electrical properties of

a generic medium are coded in the refractive index n(x), which is related to the electrical

permittivity ε(x) and conductivity σ(x) by the definition17

n(x) :=
1

ε0

[
ε(x) + i

σ(x)

ω

]
, (3.1)

17See e.g. [48], p. 251.



50 3 The RGFM for breast cancer detection

and to the wave number k(x) by the definition k2(x) := k20n(x).

In this 2D model of the breast, several different refractive indices and wave numbers can

be defined. First of all, in general, we shall use the subscripts 0, 1 and 2 applied to electrical

permittivity, electrical conductivity, refractive index and wave number to indicate their

constant value in free space (or coupling medium), fat and skin, respectively. In particular,

we shall assume σ0 = 0 and Im{nj} > 0 for j = 1, 2. Then, nΩ(x) and kΩ(x) will denote

the piecewise constant refractive index and wave number of the healthy medium contained

in Ω (with k2Ω = k20nΩ(x) for x ∈ Ω). Outside Ω, the background E := R2 \ Ω̄ is formed by

free space and several possible scatterers (e.g., walls, instrumentation) and is characterized

by refractive index nE(x) and wave number kE(x). Therefore, in the case of a healthy

breast, the refractive index and the wave number of the inhomogeneous medium in R2

are

nb(x) :=

{
nΩ(x) x ∈ Ω

nE(x) x ∈ E
and kb(x) :=

{
kΩ(x) x ∈ Ω

kE(x) x ∈ E.
(3.2)

On the other hand, if a tumour D is present inside the fat, the refractive index and wave

number of the medium in R2 are

ñb(x) :=

{
nD(x) x ∈ D

nb(x) x ∈ R2 \ D̄
and k̃b(x) :=

{
kD(x) x ∈ D

kb(x) x ∈ R2 \ D̄,
(3.3)

where nD(x) is the refractive index of the tumour and kD(x) is the corresponding wave

number. Finally, for reasons related to the following computations, two auxiliary refractive

indices and two auxiliary wave numbers are introduced, i.e.,

n(x) :=

{
nΩ(x) x ∈ Ω

1 x ∈ E
and k(x) :=

{
kΩ(x) x ∈ Ω

k0 x ∈ E,
(3.4)

and

ñ(x) :=

{
nD(x) x ∈ D

n(x) x ∈ R2 \ D̄
and k̃(x) :=

{
kD(x) x ∈ D

k(x) x ∈ R2 \ D̄.
(3.5)

Accordingly to these different wave numbers, for each y ∈ R2 different Green’s func-

tions can be defined. We denote by Gb(·, y) the Green’s function for the equation de-

scribing the wave propagation in the entirely healthy background: in other terms, Gb(·, y)
satisfies the equation ∆Gb(x, y)+k

2
b (x)Gb(x, y) = −δ(x−y) in R2. Here kb(x) is assumed

to be bounded everywhere and such that kb(x) = k0 for |x| > R with R large enough. The

Green’s function corresponding to k(x) is denoted by G(·, y) = Gy and, by superposition,

Gb(x, y) = G(x, y) + usb(x, y) ∀x, y ∈ R2, x ̸= y, (3.6)
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where usb(x, y) is the field scattered in x by the objects outside Ω when the pointlike source

is located in y and only the media inside Ω are included in the background. As we shall

see, one of the strengths of our visualization method is that the only Green’s function we

need to know in order to implement the algorithm is Gy. Finally, G̃b(x, y) is the Green’s

function corresponding to k̃b(x).

Throughout this chapter, we shall assume that all the propagation media are linear,

i.e., characterized in time-harmonic regime by constitutive relations of the form18

Di(x) =
3∑

k=1

εik(x)Ek(x), Bi(x) =
3∑

k=1

µik(x)Hk(x), i = 1, 2, 3, (3.7)

under the further hypothesis that the tensors εik(x) and µik(x) are symmetrical for each

x. Such assumptions are not restrictive, since the vast majority of natural media (even

inhomogeneous or anisotropic), and certainly those involved in a microwave tomography

of the breast, enjoy these properties. In this case, the reciprocity principle holds19: in our

framework, it can be stated as a symmetry property of the Green’s functions, i.e.,

G(x, y) = G(y, x), Gb(x, y) = Gb(y, x), G̃b(x, y) = G̃b(y, x), ∀x ̸= y. (3.8)

Finally, we introduce the notations for some functional spaces we shall use in the next

sections:

Hs
∆(D) := {u ∈ Hs(D) : ∆u ∈ L2(D)}, for s = 0, 1; (3.9)

Ks
1 := {u ∈ Hs(D) : ∆u+ k21u = 0 in D}, for s = 0, 1; (3.10)

Ks
D := {u ∈ Hs(D) : ∆u+ k2D(x)u = 0 in D}, for s = 0, 1. (3.11)

We can easily realize that the following inclusions hold:

K1
1 ⊂ K0

1 , K1
D ⊂ K0

D, Ks
1 ⊂ Hs

∆(D), Ks
D ⊂ Hs

∆(D), for s = 0, 1. (3.12)

Furthermore, the spaces Hs
∆(D), Ks

1 and Ks
D equipped with the norm defined as

∥u∥2Hs
∆(D) := ∥u∥2Hs(D) + ∥∆u∥2L2(D), for s = 0, 1, (3.13)

are Hilbert spaces (the completeness derives from using the graph norm20). Moreover,

it can be shown that for the spaces Ks
1 and Ks

D the Hs
∆(D)-norm is equivalent to the

Hs(D)-norm. Finally, following the same approach as that of Theorem 4.2 in [83], it can

be proved that K1
1 is dense in K0

1 with respect to the L2(D)-norm.

18In (3.7) we use standard letters to denote the electromagnetic field and its Cartesian components.
19See e.g. [70], pp. 308-309.
20See e.g. [54], p. 38.
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3.4 The inverse scattering problem: an analysis of

the RGF equation

Let us assume that kD ∈ L∞(D) and that there exists a positive real number cD such

that Im{nD(x)} ≥ cD > 0 for almost all (f.a.a.) x ∈ D. In the case of a TM-polarized

time-harmonic incident wave ui = ui(·, x0) chosen as the Green’s function Gb(·, x0) for

x0 ∈ R2 \ D̄, the spatial part u = u(·, x0) of the total electric field satisfies the forward

problem [44] 
∆u+ k̃2b (x)u = 0 in R2 \ {x0}
u = us + ui

lim
r→∞

√
r(∂ru

s − ik0u
s) = 0,

(3.14)

where ∂r :=
∂
∂r
. Problem (3.14) can be equivalently expressed in integral form by means

of the Lippmann-Schwinger equation: then, by following an approach analogous to that

of chapter 8 in [48], it can be shown that, for each x0 ∈ R2 \ D̄, there exists a unique

solution u = u(·, x0) ∈ H1
loc(R2 \ {x0}) of problem (3.14). We observe that this solution

is the Green’s function G̃b(·, x0): in particular, by virtue of (3.8), we have the reciprocity

property u(x, x0) = u(x0, x) for all x0 ∈ R2 \ D̄ and x ∈ R2 \ {x0}.
The inverse scattering problem considered in this chapter is that of inferring infor-

mation on k̃2b (x) and, in particular, on nD(x), from the knowledge of u(x, x0) (and its

normal derivative21 ∂νu(x, x0)) at different (discretized) x-locations, for a suitable num-

ber of emitting antennas placed at different x0-locations and sending the known fields

ui(·, x0). For theoretical purposes, we shall also consider the scattered field us(x, x0),

which is obtained from the total field u(x, x0) by remembering that us = u−ui, as stated

in the second relation of system (3.14). This inverse scattering problem is ill-posed in

the sense of Hadamard and, at microwave frequencies, it is highly non-linear22. We shall

address such problem by means of a qualitative approach, which will be able to visualize

the support D̄ of the tumour without providing any information on the point values of

nD(x).

21Here “normal” is to be understood with respect to the circle Γ = ∂Ω where receivers are placed.

We recall that ui, us and u respectively denote the non-zero component of the incident, scattered and

total electric fields, which are perpendicular to the slice of the breast under exam. As a consequence,

computations similar to those sketched at the beginning of Section 4.4, p. 95, show that the magnetic

field vector lies in the plane of the slice and that its tangential (with respect to Γ) component is directly

proportional to ∂νu.
22See e.g. [15], p. 214; [48], p. 105 and p. 140.
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For two functions u, v in H1
∆(Ω), the Reciprocity Gap Functional (RGF) is defined as

R(u, v) :=

∫
Γ

[u(x)∂νv(x)− v(x)∂νu(x)] ds(x), (3.15)

where ∂ν := ∂
∂ν
, ν being the unit normal vector to Γ = ∂Ω, directed into the exterior of

Ω. The visualization method utilized for the microwave tomography application in this

chapter is based on the analysis of the family of RGF equations (parameterized over the

sampling point z ∈ Ω) [44]

R (u(·, x0), sg) = R (u(·, x0), Gz) ∀x0 ∈ C, (3.16)

where the unknown is a function g ∈ H−1/2(C), Gz = G(·, z), sg is the single-layer

potential of density g

sg(x) :=

∫
C

G(x, y)g(y)ds(y), x ∈ R2 \ C, (3.17)

and, as above, u(·, x0) is the unique solution to problem (3.14) when the incident wave is

sent by a point x0 ∈ C; for future reference, we introduce the set U of all such solutions,

i.e.,

U := {u(·, x0) : x0 ∈ C}. (3.18)

In order to perform the analysis of the family of RGF equations (3.16), we need to

introduce the following three operators:

F : H− 1
2 (C) → L2(C), g

F7→ [x0 7→ R(u(·, x0), sg)] , (3.19)

H : H− 1
2 (C) → K0

1 , g
H7→ sg|D, (3.20)

P : K0
1 → L2(C), v

P7→
[
x0 7→

∫
D

[
k21 − k2D(x)

]
v(x)u(x, x0)dx

]
. (3.21)

The aim of this section is to study some relevant properties of these operators, accord-

ing to a plan consisting of the following main points:

Point 1: we show that F can be written as the product of −P and H (Theorem 3.4.1);

Point 2: we prove that H is injective with dense range (Theorem 3.4.2);

Point 3: we prove that P is injective with dense range (Theorem 3.4.6), which, together

with points 1 and 2, implies that F is injective with dense range (Corollary 3.4.7);

Point 4: we give an exact characterization of D via the range of P (Theorem 3.4.8);

Point 5: we prove the general theorem qualitatively characterizing D in terms of the

behaviour of approximate solutions to the family of RGF equations (Theorem 3.4.9): this

theorem will inspire the visualization algorithm described in the next section.
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We now discuss these five points in detail.

Point 1.

Theorem 3.4.1. The operator F is compact and can be factored as F = −PH.

Proof. From definitions (3.15) and (3.19), it easily follows that F is an integral operator

with regular kernel S : C×C → C defined as S(x0, y) := R(u(·, x0), G(·, y)). In particular,

the range of F is a subset of H1(C), which is compactly embedded23 in L2(C): this shows

the compactness of F .

As regards the factorization F = −PH, for any g ∈ H− 1
2 (C) let us define v ∈ H1

∆(Ω)

as v := sg|Ω. Then, from (3.17) and (3.19), we get

Fg(x0) = R(u(·, x0), sg) = R(u(·, x0), v) ∀x0 ∈ C, (3.22)

so that, remembering definition (3.15),

Fg(x0) =

∫
Γ

u(x, x0)∂νv(x)ds(x)−
∫
Γ

v(x)∂νxu(x, x0)ds(x) ∀x0 ∈ C. (3.23)

Since both u(·, x0)|Ω, v ∈ H1
∆(Ω) satisfy in Ω \ D̄ the equation

∆u+ k2(x)u = 0, (3.24)

applying the second Green’s identity in Ω \ D̄ to the right-hand side of (3.23) gives:

Fg(x0) =

∫
∂D

u(x, x0)∂νv(x)ds(x)−
∫
∂D

v(x)∂νxu(x, x0)ds(x) ∀x0 ∈ C. (3.25)

Then, if we observe that u(·, x0)|D ∈ K1
D and v|D ∈ K1

1 , we can still apply the second

Green’s identity in D and rewrite equality (3.25) as:

Fg(x0) = −
∫
D

[
k21 − k2D(x)

]
u(x, x0)v(x)dx ∀x0 ∈ C, (3.26)

i.e., by remembering definitions (3.20) (in particular, v|D = Hg) and (3.21),

Fg(x0) = −PHg(x0) ∀x0 ∈ C. (3.27)

This concludes the proof. �

Point 2.

23See e.g. [75], p. 87.
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Theorem 3.4.2. The operator H is injective and has a dense range with respect to the

L2(D)-norm.

Proof. We split the proof into three steps.

Step 1: H is injective. Suppose that g ∈ H− 1
2 (C) is such that Hg = 0. Then,

remembering definition (3.20), we have that sg = 0 in D. Moreover, since sg ∈ H1(V )

verifies equation (3.24) in V , we have sg = 0 in V by virtue of the unique continuation

principle24. Hence, also the trace on C = ∂V of sg is zero, i.e., SCg = 0, where SC :

H−1/2(C) → H1/2(C) such that g 7→ SCg := sg|C is the single-layer operator25 on C.

Since, as stated before, we assume that Im{nj} > 0 for j = 1, 2, it is possible to prove

(see Theorem 3.8.2 in Subsection 3.8.1) that SC is injective. Then, SCg = 0 implies g = 0.

Step 2: H̃ has a dense range. Let us introduce the auxiliary operator

H̃ : H− 1
2 (C) → H

1
2 (∂D), g

H̃7→ sg|∂D, (3.28)

and prove that it has a dense range: this amounts to proving that the transpose operator

tH̃ : H− 1
2 (∂D) → H

1
2 (C), f

tH̃7→
∫
∂D

G(x, y)f(y)ds(y), x ∈ C, (3.29)

is injective. We note that for all f ∈ H− 1
2 (D), tH̃f is the trace on C of the single-

layer potential of density f on ∂D (cf. definition (3.17)). Now, let us suppose that

f ∈ H− 1
2 (∂D) is such that tH̃f = 0: we want to prove that f = 0. To this end, let us

consider the single-layer potential v of density f on ∂D, i.e.,

v(x) :=

∫
∂D

G(x, y)f(y)ds(y), x ∈ R2 \ ∂D. (3.30)

Of course, v is a radiating solution of equation (3.24) in R2\D̄. Moreover, the assumption
tH̃f = 0 means that v vanishes identically on C = ∂V : hence, by virtue of Theorem

3.8.1 in Subsection 3.8.1, we have v = 0 in R2 \ V and then the unique continuation

principle ensures that v = 0 in R2 \ D̄. As a consequence, we get S∂Df = 0, where

S∂D : H−1/2(∂D) → H1/2(∂D) is the single-layer operator on ∂D. Analogously to the end

of the previous Step 1, we can now conclude that f = 0 by using the injectivity of S∂D.

Step 3: H has a dense range. We want to show that for any w ∈ K0
1 and ϵ > 0, there

exists g ∈ H−1/2(C) such that

∥Hg − w∥L2(D) < ϵ. (3.31)

24See e.g. [71], pp. 64-69.
25See e.g. [75], p. 203.
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To this end, we first recall that K1
1 is dense in K0

1 with respect to the L2(D)-norm: hence,

there exists v ∈ K1
1 such that

∥v − w∥L2(D) <
ϵ

2
. (3.32)

Then, we observe that the continuous dependence of the solution of a strongly elliptic

equation on the boundary data26 implies the existence of a constant α > 0 such that for

all ψ ∈ K1
1 it holds that

∥ψ∥H1(D) ≤ α ∥ψ|∂D∥H 1
2 (∂D)

. (3.33)

Now, remembering the previous Step No. 2, we can choose g ∈ H− 1
2 (C) such that∥∥∥H̃g − v|∂D

∥∥∥
H

1
2 (∂D)

<
ϵ

2α
. (3.34)

Moreover, since both Hg = sg|D ∈ H1(D) and v ∈ K1
1 (and consequently Hg − v) solve

equation ∆ψ + k21ψ = 0 in D, by virtue of inequalities (3.33) and (3.34) we have

∥Hg − v∥H1(D) ≤ α ∥(Hg − v) |∂D∥H 1
2 (∂D)

= α
∥∥∥H̃g − v|∂D

∥∥∥
H

1
2 (∂D)

<
ϵ

2
. (3.35)

Hence, by using the triangle inequality together with relations (3.32), (3.35) and remem-

bering that the L2(D)-norm is bounded by the H1(D)-norm, we obtain relation (3.31),

which concludes the proof. �

Point 3.

In order to establish the main result of this point 3, i.e., Theorem 3.4.6, we first need

to prove the following three lemmas.

Lemma 3.4.3. The set UD = {u|D : u ∈ U} is dense in K1
D with respect to the L2(D)-

norm.

Proof. Let v ∈ U⊥
D : this means that v ∈ K1

D is such that (u, v)L2(D) = 0 for all u ∈ UD,

i.e., ∫
D

u(x, x0)v̄(x)dx = 0 ∀x0 ∈ C. (3.36)

As already observed, for all x0 ∈ R2 \ D̄, in R2 \ {x0} it holds that u(·, x0) = G̃b(·, x0),
where G̃b(·, x0) is the Green’s function for the first equation in problem (3.14), which

takes into account the presence of the tumour. Now, let us define

w(x) :=

∫
D

G̃b(y, x)v̄(y)dy ∀x ∈ R2. (3.37)

26See e.g. [75], pp. 128-129.
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In particular, by virtue of the previous observation, we have

w(x) =

∫
D

u(y, x)v̄(y)dy ∀x ∈ R2 \ D̄ (3.38)

and, as a consequence of (3.36), w(x0) = 0 ∀x0 ∈ C. Moreover, w = w(x) is clearly

a radiating solution of ∆w + k̃2b (x)w = 0 in R2 \ D̄ and, as just stated, it vanishes on

C = ∂V ; hence, by applying Theorem 3.8.1 in Subsection 3.8.1, we have w = 0 in R2 \ V
and, by virtue of the unique continuation principle, w = 0 in R2 \ D̄: in particular, it

holds that w|∂D = 0, ∂νw|∂D = 0. Moreover, as a direct consequence of definition (3.37),

w verifies ∆w + k̃2b (x)w = −v̄ in D. From the latter equation, we immediately get∫
D

(∆w)(x)v(x)dx+

∫
D

k̃2b (x)w(x)v(x)dx = −∥v∥2L2(D) , (3.39)

i.e., by virtue of the second Green’s identity27,∫
D

(∆v)(x)w(x)dx−
∫
∂D

w(x)∂νv(x)ds(x)+ (3.40)

+

∫
∂D

v(x)∂νw(x)ds(x) +

∫
D

k̃2b (x)w(x)v(x)dx = −∥v∥2L2(D)

or, remembering that w|∂D = 0, ∂νw|∂D = 0,∫
D

[
∆v(x) + k̃2b (x)v(x)

]
w(x)dx = −∥v∥2L2(D) . (3.41)

But v ∈ K1
D, then, by virtue of definitions (3.2) and (3.11), the left-hand side of (3.41) is

zero: hence, we have ∥v∥2L2(D) = 0, i.e., v = 0. This concludes the proof. �

Lemma 3.4.4. The following operator:

M : H
1
2 (∂D) → L2(C), v

M7→
[
x0 7→

∫
∂D

v(x)∂νxu(x, x0)ds(x)

]
, (3.42)

with x0 ∈ C and u(·, x0) ∈ U , has a dense range.

Proof. It suffices to prove that the transpose operator

tM : L2(C) → H− 1
2 (∂D), φ

tM7→
[
x 7→

∫
C

φ(x0)∂νxu(x, x0)ds(x0)

]
(3.43)

(with x ∈ ∂D) is injective. Let φ ∈ L2(C) be such that tMφ = 0. For each x ∈ R2, we

can define the function v as

v(x) :=

∫
C

φ(x0)u(x, x0)ds(x0). (3.44)

27See e.g. [75], p. 118.
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Since u(·, x0) verifies (3.14), it follows that v satisfies ∆v+ k̃2b (x)v = 0 in R2\C; moreover,

according to (3.14), u = ui + us, where the incident field is ui(x, x0) := Gb(x, x0) and

us(x, x0) is the corresponding scattered field. Then, v can be regarded as the total field

v = vi + vs resulting from the sum of the incident field

vi(x) :=

∫
C

φ(x0)Gb(x, x0)ds(x0) ∀x ∈ R2, (3.45)

which is the single-layer potential of density φ and satisfies

∆v + k2b (x)v = 0 (3.46)

in R2 \ C, and the scattered field

vs(x) :=

∫
C

φ(x0)u
s(x, x0)ds(x0) ∀x ∈ R2, (3.47)

which verifies (3.46) in R2 \ D̄. Moreover, by virtue of (3.43) and (3.44), it holds that

∂νv = tMφ, but tMφ = 0 by assumption: then, it turns out that the function v given by

(3.44) is the unique solution of the following boundary value problem:{
∆v + k2D(x)v = 0 in D

∂νv = 0 on ∂D.
(3.48)

Hence v = 0 in D and by the unique continuation principle v = 0 in V , i.e., vs = −vi in V .

If we now define ṽs in R2 as ṽs(x) := vs(x) for x ∈ R2 \ D̄ and ṽs(x) := −vi(x) for x ∈ D̄,

we can easily see that ṽs is an entire radiating solution of (3.46). As a consequence28,

we have ṽs = 0 in R2, and then vi = 0 in V . In particular, the single-layer potential of

density φ is null on C, and since the single-layer operator is injective (see Theorem 3.8.2),

then φ = 0, tM is injective and M has a dense range. �

Lemma 3.4.5. For each f ∈ H
1
2 (∂D), the set Ef := {∂νu : u ∈ H1

∆(D) and u|∂D = f}
is dense in H− 1

2 (∂D).

Proof. We first observe that Ef is an affine space, i.e., Ef = E0+∂νuf , where uf ∈ H1
∆(D)

is the unique solution of the following boundary value problem:{
∆u = 0 in D

u = f on ∂D.
(3.49)

28See [48], p. 20: the motivation presented there for a constant k also holds in our case, provided that

the proper versions of the second Green’s identity and Green’s representation formula are used: see e.g.

[75], p. 118 and p. 237.
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Then, in order to prove that Ef is dense in H− 1
2 (∂D), it suffices to show this property

for E0. Indeed, let us assume that E0 is dense in H− 1
2 (∂D) and let v be any element of

H− 1
2 (∂D): then, v − ∂νuf ∈ H− 1

2 (∂D). Hence, for every ϵ > 0, there exists wϵ ∈ E0 such

that

∥wϵ − (v − ∂νuf )∥H− 1
2 (∂D)

= ∥v − (wϵ + ∂νuf )∥H− 1
2 (∂D)

< ϵ, (3.50)

i.e., we have found wϵ + ∂νuf ∈ Ef that approximates v ∈ H− 1
2 (∂D).

Now, in order to show that E0 is dense, it suffices to prove the density of the range of

the operator T defined as:

T : L2(D) → H− 1
2 (∂D), φ

T7→ ∂νuφ, (3.51)

where, for all φ ∈ L2(D), uφ ∈ H1
∆(D) is the unique solution of the boundary value

problem {
∆u = φ in D

u = 0 on ∂D.
(3.52)

We can prove the density of the range of T by proving that its transpose tT is injective:

to this end, we have to explicitly determine tT , defined by the condition∫
∂D

g(x)(Tφ)(x)ds(x) =

∫
D

(tTg)(x)φ(x)dx ∀g ∈ H
1
2 (∂D), ∀φ ∈ L2(D). (3.53)

Then, we now want to show that tT is given by

tT : H
1
2 (∂D) → L2(D), g

tT7→ wg, (3.54)

where wg ∈ H1
∆(D) is the unique solution of the following problem:{

∆w = 0 in D

w = g on ∂D.
(3.55)

Indeed, let φ ∈ L2(D) and g ∈ H
1
2 (D). Then, by taking into account the equations and

boundary conditions in (3.52), (3.55), as well as the expressions (3.51), (3.54) for T and
tT , and by using the second Green’s identity in D, we obtain:∫

∂D

g(x)(Tφ)(x)ds(x) =

∫
∂D

wg(x)∂νuφ(x)ds(x) =

∫
D

wg(x)φ(x)dx = (3.56)

=

∫
D

(tTg)(x)φ(x)dx ∀g ∈ H
1
2 (∂D), ∀φ ∈ L2(D),

so that condition (3.53) is verified, i.e., expression (3.54) for tT is correct. Now, let us

consider g ∈ H
1
2 (∂D) such that tTg = 0. Then, by uniqueness of the solution to the
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Laplace equation for a Dirichlet boundary condition on ∂D (i.e., problem (3.55), with

g = 0), we have that g = 0. Hence tT is injective and consequently T has a dense range.

This concludes the proof. �

The following theorem makes use of notations, concepts and results described in Sub-

section 3.8.2, which concerns an interior transmission problem. Accordingly, we shall

often highlight the dependence of the index of refraction on the generic wave number k

in free space.

Theorem 3.4.6. The operator P is bounded. Moreover, if k0 is not a transmission

eigenvalue of the following problem
∆v + k2n1(k)v = 0 in D

∆u+ k2nD(k)(x)u = 0 in D

(v − u) = 0 on ∂D

∂ν(v − u) = 0 on ∂D,

(3.57)

then the operator P is injective and has a dense range.

Proof. We split the proof into three steps.

Step 1: P is bounded. Let us denote by u(·, ·) the function obtained from u(·, x0) ∈ U

when x0 ∈ C is regarded as a variable: since u(·, x0) is singular only for x = x0, we

have that u(·, ·) ∈ L∞(D × C) ⊂ L2(D × C). Then, remembering definition (3.21), the

boundedness of kD ∈ L∞(D) and the Cauchy-Schwarz inequality, we have:

∥Pv∥2L2(C) =

∫
C

∣∣∣∣∫
D

[
k21 − k2D(x)

]
v(x)u(x, x0)dx

∣∣∣∣2 dx0 ≤ (3.58)

≤
∥∥k21 − k2D

∥∥2
L∞(D)

∥v∥2L2(D) ∥u∥
2
L2(D×C) .

We observe that since the L2(D)-norm is bounded by the H0
∆(D)-norm, the inequality in

(3.58) shows the boundedness of P whichever of the two norms is chosen for its domain

K0
1 .

Step 2: P is injective. Let v ∈ K0
1 be such that Pv = 0. Then, recalling definition

(3.21), we have: ∫
D

[
k21 − k2D(x)

]
u(x, x0)v(x)dx = 0 ∀x0 ∈ C. (3.59)

By Lemma 3.4.3, the set U = {u(·, x0) : x0 ∈ C} is dense in K1
D with respect to the

L2(D)-norm: from (3.59) and the continuity of the scalar product in L2, we then have∫
D

[
k21 − k2D(x)

]
u(x)v(x)dx = 0 ∀u ∈ K1

D. (3.60)
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For the same v ∈ K0
1 , consider now the unique solution w ∈ H1

∆(D) of{
∆w + k2D(x)w = [k21 − k2D(x)]v in D

w = 0 on ∂D.
(3.61)

Since u ∈ K1
D and w verifies the first of (3.61), by virtue of (3.60) we can show that

−
∫
D

∆u(x)w(x)dx+

∫
D

∆w(x)u(x)dx =

∫
D

[
k21 − k2D(x)

]
u(x)v(x)dx = 0 ∀u ∈ K1

D.

(3.62)

Then, the second Green’s identity in D, with w = 0 on ∂D by (3.61), yields∫
∂D

u(x)∂νw(x)ds(x) = 0 ∀u ∈ K1
D. (3.63)

We now observe that the following problem{
∆u+ k2D(x)u = 0 in D

u = f on ∂D
(3.64)

has a unique solution uf ∈ K1
D for each f ∈ H

1
2 (∂D). As a consequence, {u|∂D : u ∈

K1
D} = H

1
2 (∂D) and then, by virtue of (3.63), we get∫

∂D

f(x)∂νw(x)ds(x) = 0 ∀f ∈ H
1
2 (∂D), (3.65)

which proves that ∂νw = 0. Consider now the function u ∈ H0
∆(D) defined as u := w+ v.

Remembering that w is the solution of (3.61), ∂νw = 0 and v ∈ K0
1 , it is easy to realize

that v and u satisfy the homogeneous transmission problem (3.57) for k = k0. Since we

have supposed that k0 is not a transmission eigenvalue, this implies that u = v = 0; then

P is injective.

Step 3: P has a dense range. Let h ∈ L2(C) and ϵ > 0: by virtue of Lemma 3.4.4,

there exists f ∈ H
1
2 (∂D) such that

∥Mf − h∥L2(C) <
ϵ

2
. (3.66)

Moreover, the operator Q defined as

Q : H− 1
2 (∂D) → L2(C), v

Q7→
[
x0 7→

∫
∂D

v(x)u(x, x0)dx

]
(3.67)

(with u(·, x0) ∈ U) is easily seen to be bounded. By virtue of Lemma 3.4.5, there exists

a function q ∈ H1
∆(D) such that q|∂D = f and

∥∂νq∥H− 1
2 (∂D)

<
ϵ

2 ∥Q∥
. (3.68)
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Since we have supposed that k0 is not a transmission eigenvalue (see Subsection 3.8.2),

there exist ṽ, w̃ ∈ H0
∆(D) such that ṽ − w̃ ∈ H1

∆(D) and
∆ṽ + k20n1(k0)ṽ = 0 in D

∆w̃ + k20nD(k0)(x)w̃ = 0 in D

(ṽ − w̃) = q on ∂D

∂ν(ṽ − w̃) = ∂νq on ∂D.

(3.69)

Let ũ := ṽ− w̃. Then ũ ∈ H1
∆(D) and, as a simple consequence of the first two equations

in (3.69), we have

∆ũ+ k2D(x)ũ = −
[
k21 − k2D(x)

]
ṽ in D. (3.70)

Then, by using (3.70) and the second Green’s identity in D, easy computations show that

for all u ∈ K1
D it holds that∫

D

[
k21 − k2D(x)

]
u(x)ṽ(x)dx =

∫
∂D

ũ(x)∂νu(x)ds(x)−
∫
∂D

u(x)∂ν ũ(x)ds(x), (3.71)

i.e., remembering that ũ = ṽ − w̃, q|∂D = f and recalling the boundary conditions in

(3.69),∫
D

[
k21 − k2D(x)

]
u(x)ṽ(x)dx =

∫
∂D

f(x)∂νu(x)ds(x)−
∫
∂D

u(x)∂νq(x)ds(x). (3.72)

If we now remember definitions (3.21), (3.42) and (3.67), we can rewrite (3.72) as

(Pv)(x0) = (Mf)(x0)− (Q∂νq)(x0) ∀x0 ∈ C; (3.73)

then, by using the triangle inequality and recalling relations (3.66), (3.68), we get:

∥Pv − h∥L2(C) ≤ ∥Mf − h∥L2(C) + ∥Q∥ ∥∂νq∥L2(∂D) < ϵ, (3.74)

which shows that P has a dense range, since h is arbitrarily chosen in L2(C). �

Corollary 3.4.7. If k0 is not a transmission eigenvalue of problem (3.57), then the op-

erator F = −PH is injective and has a dense range.

Proof. The injectivity of F is obvious. As regards the denseness of its range, let us con-

sider any w ∈ L2(C): by using the triangle inequality, the linearity and the boundedness

of the operator P (see Theorem 3.4.6), and remembering that both P and H have a dense

range, it turns out that for each ϵ > 0 we can find g ∈ H− 1
2 (C) (and an auxiliary v ∈ K0

1)

such that the following chain of inequalities holds:

∥w − (−PHg)∥L2(C) ≤ ∥w − Pv∥L2(C) + ∥P (v +Hg)∥L2(C) < (3.75)

<
ϵ

2
+ ∥P∥ ∥v +Hg∥L2(D) <

ϵ

2
+ ∥P∥ ϵ

2∥P∥
= ϵ.
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This concludes the proof. �

Point 4.

In order to characterize the range of P , for each z ∈ Ω we introduce the function

Λz ∈ L2(C) defined as

Λz : C → C, x0
Λz7→ R(u(·, x0), Gz). (3.76)

Then the following theorem, again based on results in Subsection 3.8.2, holds.

Theorem 3.4.8. Suppose that k0 is not a transmission eigenvalue of problem (3.57).

Then, for all z ∈ Ω, Λz ∈ range(P ) if and only if z ∈ D.

Proof. 1) Let z ∈ D and let us consider a function β ∈ C∞(Ω) such that29 β = 0 in

a neighbourhood of z and β = 1 in a neighbourhood of ∂D: then βGz ∈ H1
∆(D). Since

k0 is not a transmission eigenvalue of problem (3.57), there exist (see Subsection 3.8.2)

ṽ, w̃ ∈ H0
∆(D) such that ṽ − w̃ ∈ H1

∆(D) and
∆ṽ + k20n1(k0)ṽ = 0 in D

∆w̃ + k20nD(k0)(x)w̃ = 0 in D

(ṽ − w̃) = βGz on ∂D

∂ν(ṽ − w̃) = ∂ν(βGz) on ∂D.

(3.77)

Since β = 1 in a neighbourhood of ∂D, the factor β can be omitted in the boundary

conditions of (3.77). Moreover, since z ∈ D, both Gz and u(·, x0) ∈ U are in H1
∆(Ω \ D̄)

and satisfy equation (3.24) in Ω \ D̄; hence, if we set ũ := ṽ − w̃, by applying the second

Green’s identity in Ω \ D̄ and remembering definition (3.21), as well as the boundary

conditions of (3.77), we get:

R(u(·, x0), Gz) = −
∫
∂D

Gz(x)∂νxu(x, x0)ds(x) +

∫
∂D

u(x, x0)∂νxGz(x)ds(x) = (3.78)

= −
∫
D

[
k21 − k2D(x)

]
u(x, x0)ṽ(x)dx = −(P ṽ)(x0) ∀x0 ∈ C,

i.e., recalling definition (3.76), Λz(x0) = [P (−ṽ)](x0) for all x0 ∈ C: this means that

Λz ∈ range(P ).

2) Let us now suppose that z ∈ Ω \ D̄ and, by contradiction, that Λz ∈ range(P ). By

definition (3.15) and recalling from (3.14) that u = us + ui with ui(·, x0) = Gb(·, x0), for

29See e.g. [75], p. 64.
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all x0 ∈ C we have

R(u(·, x0), Gz) =

∫
Γ

[u(x, x0)∂νxG(x, z)−G(x, z)∂νxu(x, x0)] ds(x) = (3.79)

=

∫
Γ

[us(x, x0)∂νxG(x, z)−G(x, z)∂νxu
s(x, x0)] ds(x)+

+

∫
Γ

[Gb(x, x0)∂νxG(x, z)−G(x, z)∂νxGb(x, x0)] ds(x).

We now observe that, for x ∈ Γ = ∂Ω and x0 ∈ C, Gb(·, x0) solves equation (3.24)

in Ω, while the Green’s function for (3.24) is just G(·, z): then, by applying Green’s

representation formula30 to Gb(·, x0), we find:

R(u(·, x0), Gz) =

∫
Γ

[us(x, x0)∂νxG(x, z)−G(x, z)∂νxu
s(x, x0)] ds(x)−Gb(x0, z). (3.80)

Now, for x0 ∈ R2 \ D̄, let us define

v(x0) :=

∫
Γ

[us(x, x0)∂νxG(x, z)−G(x, z)∂νxu
s(x, x0)] ds(x). (3.81)

By reciprocity, for all x ∈ Γ, us(x, ·) is a radiating solution of

∆u+ k2b (x0)u = 0 (3.82)

in R2 \ D̄ with respect to the variable x0; as a consequence, v too is a radiating solution

in R2 \ D̄ of the same equation. Moreover, by virtue of (3.80) and (3.81), it holds that:

R(u(·, x0), Gz) = v(x0)−Gb(x0, z) ∀x0 ∈ C. (3.83)

Since we have supposed that Λz ∈ range(P ), there exists w ∈ K0
1 such that

R(u(·, x0), Gz) =

∫
D

[
k21 − k2D(x)

]
w(x)u(x, x0)dx ∀x0 ∈ C. (3.84)

Now, let ṽ be the function defined for all x0 ∈ R2 \ D̄ as

ṽ(x0) :=

∫
D

[
k21 − k2D(x)

]
w(x)u(x, x0)dx. (3.85)

Then, by reciprocity, ṽ is a radiating solution of (3.82) in R2 \ D̄. Moreover, by (3.84)

and (3.85), we have

R(u(·, x0), Gz) = ṽ(x0) ∀x0 ∈ C. (3.86)

30See e.g. [75], integral representation (7.16) p. 226, or, equivalently, (7.24) p. 229.
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Now, from (3.83) and (3.86), it follows that ṽ and v − Gb(·, z) coincide on C. Moreover,

since ṽ and v−Gb(·, z) are radiating solutions of (3.82) in R2 \ V , by Theorem 3.8.1 they

coincide in R2 \ V . Then, by virtue of the unique continuation principle, they coincide

in R2 \ (D̄ ∪ {z}). Nonetheless, ṽ is regular in z whereas v − Gb(·, z) is not, which is a

contradiction. �

Point 5.

We can now carry out the last point of our workplan, by proving in the next theorem

the existence of approximate (in L2(C)) solutions of equation (3.16).

Theorem 3.4.9. Suppose that k0 is not a transmission eigenvalue of problem (3.57) and

let z ∈ Ω. Then:

a) if z ∈ D, for any given ϵ > 0 there exists a gϵz ∈ H− 1
2 (C) such that∥∥R(u(·, ·), sgϵz)−R(u(·, ·), Gz)
∥∥
L2(C)

< ϵ (3.87)

(where u(·, ·) is simply obtained by u(·, x0) ∈ U when x0 ∈ C is regarded as a

variable) and sgϵz converges in L2(D) as ϵ → 0; moreover, for any fixed ϵ > 0 and

for all z∗ ∈ ∂D, every gϵz ∈ H− 1
2 (C) verifying inequality (3.87) is such that

lim
z→z∗

∥∥sgϵz∥∥L2(D)
= ∞ and lim

z→z∗
∥gϵz∥H− 1

2 (C)
= ∞; (3.88)

b) if z ∈ Ω \ D̄, for any given ϵ > 0 there exists a gϵz ∈ H− 1
2 (C) such that∥∥R(u(·, ·), sgϵz)−R(u(·, ·), Gz)

∥∥
L2(C)

< ϵ; (3.89)

moreover, every gϵz ∈ H− 1
2 (C) verifying inequality (3.89) is such that

lim
ϵ→0

∥∥sgϵz∥∥L2(D)
= ∞ and lim

ϵ→0
∥gϵz∥H− 1

2 (C)
= ∞. (3.90)

Proof. a) Let z ∈ D: then, according to Theorem 3.4.8, Λz ∈ range(P ): in fact,

Λz = P (−ṽ), see (3.78). Since the range of H is dense in K0
1 with respect to the L2(D)-

norm (by Theorem 3.4.2) and ṽ ∈ K0
1 (see the first equation of (3.77)), for any given

ϵ′ > 0 there exists gϵ
′
z ∈ H− 1

2 (C) such that∥∥∥Hgϵ′z − ṽ
∥∥∥
L2(D)

< ϵ′. (3.91)

Hence, recalling the factorization F = −PH given by Theorem 3.4.1, the boundedness of

P and the equality Λz = P (−ṽ), we have∥∥∥Fgϵ′z − Λz

∥∥∥
L2(C)

=
∥∥∥−PHgϵ′z + P ṽ

∥∥∥
L2(C)

≤ ∥P∥
∥∥∥Hgϵ′z − ṽ

∥∥∥
L2(D)

(3.92)
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and then, by using (3.91), (3.92) and choosing ϵ′ = ϵ/∥P∥, we find

∥Fgϵz − Λz∥L2(C) < ϵ. (3.93)

If we now remember definitions (3.19) and (3.76), we immediately realize that (3.93) is

exactly thesis (3.87). The convergence of sgϵz in L2(D) as ϵ→ 0 immediately follows from

the definition (3.20) of H and inequality (3.91).

In order to prove limits (3.88), we first remember equality (3.78), i.e., Λz = P (−ṽ),
where (ṽ, w̃) is the solution of (3.77). Then, we define the function ũ as

ũ =

{
ṽ − w̃ in D

Gz in R2 \ D̄.
(3.94)

Since ṽ − w̃ = Gz and ∂ν(ṽ − w̃) = ∂νGz on ∂D, then ũ is in H1
loc(R2) and is the solution

of the following scattering problem: ∆u+ k̃2(x)u =
[
k̃2(x)− k2(x)

]
ṽ in R2

lim
r→∞

√
r(∂ru− ik0u) = 0;

(3.95)

we recall that k2(x) and k̃2(x) are defined in (3.4) and (3.5) respectively. Moreover, by

continuity of the solution with respect to initial data, for all R > 0 such that D is included

in the open ball of centre O and radius R, there exists a constant αR ∈ R∗
+ (which depends

on R and k̃(x)) such that for all h ∈ L2(D), the solution u of the scattering problem{
∆u+ k̃2u = h in R2

lim
r→∞

√
r(∂ru− ik0u) = 0

(3.96)

verifies ∥u∥H1(BR) ≤ αR ∥h∥L2(D). Then, coming back to problem (3.95), we can easily

deduce that

∥Gz∥H1(BR\D̄) ≤ αR ∥ṽ∥L2(D). (3.97)

Although the Green’s function Gz describes the inhomogeneous background in Ω, by

superposition (analogously to relation (3.6)) its singularity in z is only determined by

the Green’s function of the medium (in our case, the tumour) in which z is located: in

particular31, Gz /∈ H1(A) for anyA ⊂ R2 such that z ∈ Ā. Hence, from (3.97), we find that

lim
z→z∗

∥ṽ∥L2(D) = ∞ and consequently, by virtue of (3.91), lim
z→z∗

∥Hgϵz∥L2(D) = ∞, which,

remembering definition (3.20), is just the first limit in (3.88). Finally, the boundedness of

31See e.g. [35], p. 72.
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H (i.e., of the single layer potential32) implies that lim
z→z∗

∥gϵz∥H− 1
2 (C)

= ∞, i.e., the second

limit in (3.88).

b) Let z ∈ Ω \ D̄. Since P has a dense range and Λz ∈ range(P ) \ range(P ), we can

use Tikhonov regularization [89] to show that there exists a sequence {fz,p}∞p=1 ⊂ K0
1 such

that33

lim
p→∞

∥−Pfz,p − Λz∥L2(C) = 0 and lim
p→∞

∥fz,p∥L2(D) = ∞. (3.98)

In particular, the first limit in (3.98) implies that, for each ϵ > 0, there exists p̃ ≡ p̃(ϵ)

such that f ϵ
z := fz,p̃ ∈ K0

1 satisfies

∥−Pf ϵ
z − Λz∥L2(C) <

ϵ

2
. (3.99)

Moreover, since H has a dense range, for each ϵ > 0 there exists gϵz ∈ H− 1
2 (C) such that

∥Hgϵz − f ϵ
z∥L2(D) <

ϵ

2∥P∥
. (3.100)

Then, by using the triangle inequality, relations (3.99), (3.100) and recalling that F =

−PH, we get:

∥Fgϵz − Λz∥L2(C) = ∥PHgϵz + Λz∥L2(C) ≤ (3.101)

≤∥Pf ϵ
z − PHgϵz∥L2(C) + ∥Pf ϵ

z + Λz∥L2(C) <

<∥P∥ ϵ

2∥P∥
+
ϵ

2
= ϵ,

so that inequality (3.89) is verified. Now, let us assume, by contradiction, that there exists

a non-divergent sequence {fz,p}∞p=1 ⊂ K0
1 verifying the first limit in (3.98). Then, we can

extract from {fz,p}∞p=1 a subsequence {fz,q ≡ fz,p(q)}∞q=1 that is bounded in L2(D). Since

{fz,q}∞q=1 is bounded, we can in turn extract from it a subsequence {fz,r ≡ fz,q(r)}∞r=1 that

is weakly convergent to a certain element f∗
z ∈ K1

0 . The continuity of P then implies that

−Pfz,r weakly converges to −Pf ∗
z ; on the other hand, from the first limit in (3.98) we

know that −Pfz,r strongly converges to Λz in L2(C): as a consequence, we obtain that

−Pf ∗
z = Λz, i.e., Λz is in the range of P , in contradiction with Theorem 3.4.8. If we now

use this argument with a sequence of the kind {fz,p}∞p=1 := {sgz,p}∞p=1 (as made possible

by the density of the range of F = −PH, see Corollary 3.4.7), we can easily prove the

first limit in (3.90). Finally, as in the previous case a), the boundedness of the operator

H implies the second limit in (3.90). �
32See e.g. [75], p. 203.
33For details, see [4], p. 30 and p. 131.
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Remark 3.4.1. By using the denseness34 of L2(C) in H−1/2(C) and the boundedness

of the operator H, it is easy to realize that Theorem 3.4.9 holds unchanged when the

approximate solution gϵz is taken in L2(C) instead of H−1/2(C). �

3.5 The visualization algorithm

The goal of the present section is to show how breast tumours can be visualized by

using the RGF equation (3.16) as a tool to compute an indicator function (as suggested

by Theorem 3.4.9 and Remark 3.4.1). The traditional pointwise algorithm presented in

[36, 44] takes inspiration from blowing-up limits analogous to those in (3.88) and (3.90),

and consists in plotting, for each z belonging to a numerical grid covering the sampling

region Ω, a Tikhonov regularized solution of (3.16).

We first observe that in real experiments one needs to perform an angular discretiza-

tion involving the positions of both the antennas on C sending the incident waves and

the antennas on Γ measuring the total electric field and its normal derivative (i.e., the

tangential component of the total magnetic field35). For the sake of simplicity, we dis-

cretize the continuous parameters xΓ on Γ and yC on C with the same number N of

equispaced knots, choosing C and Γ as concentric circles of radii RC and RΓ respectively;

in particular, we now have Ω = {z ∈ R2 : |z| < RΓ}. Moreover, each of the pairs of

discretization points {(x0, y0), . . . , (xN−1, yN−1)} is assumed to belong to a radius of C,

i.e., the (pointlike) emitting and receiving antennas are in a radial symmetry (we notice

that relaxing these assumptions would not change the general scheme of the following

visualization algorithm, but would make the new formulation more complicated). The

discretized form of (3.16) can be written in a compact form by establishing the following

notations for each i, j = 0, . . . , N − 1 and for each z ∈ Ω:

Uij := u(xi, yj), Lij :=
∂G

∂ν(x)
(xi, yj), gj := g(yj), Gij := G(xi, yj), (3.102)

Vij :=
∂u

∂ν(x)
(xi, yj), li(z) :=

∂G

∂ν(x)
(xi, z), qi(z) := G(xi, z).

We now regard the quantities Uij, Lij, Gij, Vij as the entries of the square N×N matrices

U, L, G, V respectively, while we consider gj, li(z), qi(z) as the N components of the

column vectors g, l(z), q(z); finally, using the common matrix transposition and the rows

34See e.g. [75], p. 98.
35Cf. footnote no. 21, p. 52.
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× columns product, we set, for all z ∈ Ω,

∆s := diag(∆sj) ≡
2πRC

N
IN , D := UTL−VTG, b(z) := UTl(z)−VTq(z), (3.103)

where IN is the identity matrix of order N and 2πRC

N
is the (constant) discretization step

∆sj > 0 over C ∀j = 0, . . . , N − 1. With the previous notations, the discretized version

of (3.16) is the one-parameter family of linear systems in the (z-dependent) unknown

g = g(z)

D∆sg(z) = b(z) ∀z ∈ Ω. (3.104)

From now on, we shall denote by CN
∆s the vector space CN equipped with the∆s-weighted

scalar product, defined as (x,y)∆s,CN :=
∑N

j=1 xj ∆sj ȳj for all x,y ∈ CN ; this scalar

product naturally induces a norm denoted by ∥ · ∥∆s,CN . Then we shall regard the matrix

A := D∆s as the matrix representation of the linear operator A : CN
∆s → CN

∆s such that

A(x) = D∆sx for all x ∈ CN
∆s. We now point out that our simplified model for the

healthy breast allows an analytic knowledge of the matrices L and G, as well as of the

column vectors l(z) and q(z), but for the sake of brevity we shall omit these laborious

computations. In the case of more complex models for the healthy breast, L, G, l(z)

and q(z) can be determined numerically. On the other hand, the experimental data are

collected in the matrices U and V: then, in general, only their noisy versions Ũ and Ṽ

are known. As a consequence of definitions (3.103), both the matrix D and the column

vector b(z) should be replaced by their noisy versions Dh and bδ(z) in equation (3.104),

which then becomes

Ah g(z) = bδ(z) ∀z ∈ Ω, (3.105)

having denoted by Ah := Dh ∆s the matrix representation of the noisy version Ah of

the linear operator A. Here the subscripts h and δ refer to bounds on the noise level, as

specified in the following.

To implement the same no-sampling36 approach already developed for the LSM, we

replace (3.105) with the functional equation in [L2(Ω)]N :=
⊕N

i=1 L
2(Ω)

[Ahg(·)](·) = bδ(·), (3.106)

where the linear operator Ah : [L2(Ω)]N → [L2(Ω)]N is defined as

[Ahg(·)](·) :=

{
N−1∑
j=0

(Ah)ij gj(·)

}N−1

i=0

∀g(·) = {gj(·)}N−1
j=0 ∈ [L2(Ω)]N (3.107)

36See Chapter 2, or [7, 27].
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and (Ah)ij are the entries of the noisy matrix Ah previously introduced. Here, we are

regarding [L2(Ω)]N as a Hilbert space with the scalar product

(f(·),g(·))2,N :=

∫
Ω

(f(z),g(z))∆s,CN dz ∀f(·),g(·) ∈ [L2(Ω)]N , (3.108)

and the induced norm

∥f(·)∥2,N :=

√∫
Ω

∥f(z)∥2∆s,CN dz ∀f(·) ∈ [L2(Ω)]N . (3.109)

According to our discretization, if f(·) = {fi(·)}N−1
i=0 and g(·) = {gi(·)}N−1

i=0 , the scalar

product (3.108) can be equivalently defined as

(f(·),g(·))2,N :=
2πRC

N

N−1∑
i=0

(fi(·), gi(·))2 , (3.110)

where (·, ·)2 denotes the canonical scalar product in L2(Ω).

The Tikhonov regularized solution gα(·) of equation (3.106) can be explicitly computed

by using the singular representation of the linear operator Ah, whose singular system

{σh
p ;u

h
p ,v

h
p}r

h−1
p=0 is strictly related37 to that of the matrix Ah (rh is the rank of Ah). By

means of an argument analogous to the proof of Theorem 2.5.2, p. 25, we find

gα(·) =
rh−1∑
p=0

σh
p

(σh
p )

2 + α

⟨
bδ(·),vh

p

⟩
∆s,CN uh

p , (3.111)

where, for any f(·) ∈ [L2(Ω)]N and w ∈ CN
∆s, we have denoted by ⟨f(·),w⟩∆s,CN the

element of L2(Ω) defined as

⟨f(·),w⟩∆s,CN : Ω −→ C (3.112)

z 7−→ (f(z),w)∆s,CN f.a.a. z ∈ Ω.

The visualization method based on the analysis of the RGF equation is therefore:

1. compute (3.111) by using the singular system of Ah;

2. fix a value α∗ for the regularization parameter α by applying some optimality cri-

terion;

37See Section 2.9, p. 39.
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3. choose a suitable continuous monotonic function J : [0,∞) → R and plot the

indicator function Ψ(z) = J
(
∥gα∗(z)∥2∆s,CN

)
for z ∈ Ω, where

∥gα∗(z)∥2∆s,CN =
rh−1∑
p=0

(σh
p )

2

[(σh
p )

2 + α∗]2

∣∣∣(bδ(z),v
h
p

)
∆s,CN

∣∣∣2 . (3.113)

From now on this algorithm will be called ‘RGFM’ (in the present implementation we

have chosen J = − ln).

Item No. 2 is a critical step. It can be implemented by applying the generalized dis-

crepancy principle [89], i.e., by finding the zero α∗ of the generalized discrepancy function

ρ(α) := ∥[Ahgα(·)](·)− bδ(·)∥22,N − (δ + h∥gα(·)∥2,N)2 , (3.114)

where we assume that noise bounds δ, h are known, such that

∥bδ(·)− b(·)∥2,N ≤ δ, ∥Ah − A∥ ≤ h. (3.115)

In the second inequality of (3.115), A denotes the noise-free version of Ah and ∥ · ∥ the

operator norm: as in [7, 27], it is possible to prove that ∥Ah − A∥ = ∥Ah −A∥ =
∣∣σh

0 − σ0
∣∣,

where σ0 is the largest singular value of A. Taking into account definitions (3.109) and

(3.112), we can make the expression (3.114) of ρ(α) more explicit, i.e.,

ρ(α) =
rh−1∑
p=0

α2 − h2(σh
p )

2

[(σh
p )

2 + α]2

∫
Ω

dz
∣∣∣(bδ(z),v

h
p

)
∆s,CN

∣∣∣2 − δ2+ (3.116)

− 2δh

√√√√N−1∑
p=0

(σh
p )

2

[(σh
p )

2 + α]2

∫
Ω

dz
∣∣∣(bδ(z),vh

p

)
∆s,CN

∣∣∣2.
Remark 3.5.1. The regularization procedure for this no-sampling RGFM is more difficult

than the same procedure for the no-sampling LSM, since here we have two noisy terms,

i.e., that containing the operator and that on the right-hand side of equation (3.106): in

the case of the LSM, the right-hand side of the far-field equation is exactly known (i.e.,

δ = 0). �

3.6 Applications to data

The purpose of this section is to validate the RGF visualization algorithm described above

against synthetic near-fields in a microwave tomography experiment for breast cancer
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detection. The direct scattering data are computed by means of a standard method of

moments code [81]. A set of N = 16 emitting antennas are placed on a circle surrounding

the breast at a distance of 4.00·10−2m from the skin. The incident fields are TM-polarized

cylindrical waves at a fixed frequency of 1.00GHz. The total electric field and its normal

derivative on Γ are computed by the code, corrupted by 10% random Gaussian noise and

then collected by N = 16 receiving antennas placed in a radial symmetry with respect to

the emitters, on a circle Γ at a distance of 3.00 ·10−2 m from the skin. For all simulations,

the computational time of the RGFM is very short, i.e., around 1 s.

In order to perform our simulations, the values of the geometric and electrical parame-

ters characterizing the biological tissues (at a frequency of 1.00GHz) are chosen in agree-

ment with the realistic models given in [64], i.e., skin: εr = 4.09 ·101, σ = 9.00 ·10−1 S/m;

fat: εr = 1.00 · 101, σ = 1.50 · 10−1 S/m; tumour: εr = 5.39 · 101, σ = 7.00 · 10−1 S/m;

vein: εr = 5.00 · 101, σ = 1.70 · 10−1 S/m; gland: εr = 1.15 · 101, σ = 1.70 · 10−1 S/m. Our

simplified model of the healthy breast consists of a disk representing the fat tissue, sur-

rounded by a circular corona representing the skin: the radius of the disk is 4.00 · 10−2m

and the thickness of the skin layer is 2.00 · 10−3 m.

In the first numerical example, we place into the fat a circular tumour with a diameter

of 1.00 · 10−2 m: the corresponding phantom is represented in Fig. 5.8(a). Then, the

RGFM is applied to the direct scattering data computed for this phantom, thus providing

the visualization in Fig. 5.8(b).

The second simulation considers the same phantom as in Fig. 5.8, but now a square

scatterer (with εr = 2.00, σ = 1.50 S/m) is placed outside the breast, as represented in Fig.

5.9(a). The visualization provided by the RGFM is shown in Fig. 5.9(b): the algorithm

is robust with respect to the presence of outer scatterers, although their presence is not

encoded in the Green’s function used to implement it.

In the third example, two circular tumours having the same diameter of 1.50 · 10−2m

are placed at a distance of 3.16·10−2m between their centres, as illustrated in Fig. 5.10(a);

the corresponding RGF visualization is shown in Fig. 5.10(b).

In the fourth experiment, the more realistic phantom of Fig. 5.11(a) is considered.

Here the electrical parameters of the healthy fat are perturbed with components randomly

drawn from a uniform distribution within 10% around the unperturbed values; moreover,

six veins and one gland are placed into the breast. Two veins are in the imaging plane,

while the other four flow in the orthogonal direction; the gland is just along one of the two

veins (the vertical one, on the right) in the imaging plane. Of course, this perturbation is

not coded into the Green’s function, which then remains the same as in the previous cases.

Finally, a circular tumour with a diameter of 1.50 · 10−2 m is placed into this phantom.
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The application of the RGFM leads to the visualization of Fig. 5.11(b), where the tumour

is clearly visible, although the limited resolution of the procedure is pointed out by an

increase of its apparent diameter, as shown by a comparison with the visualization of Fig.

5.8(b).

As one could expect, the perturbation of the healthy background becomes increasingly

important as the size of the tumour diminishes. This effect is highlighted by the fifth

simulation, in which a circular tumour with a diameter of 1.00 · 10−2m is placed into

the same perturbed background as before: the phantom is shown in Fig. 5.12(a). In

the visualization provided by the RGFM and represented in Fig. 5.12(b), the tumour is

still detectable, but, mainly due to the veins in the imaging plane, its size tends to be

overestimated and an artefact appears on the right. Therefore, under these conditions, the

distinction between the tumour and the artefact can be obtained by means of a different

imaging modality providing some quantitative information on the different kinds of tissue.

Although, a priori, the RGFM can visualize a tumour only if G(·, y) is exactly known,

the previous simulations show that reliable visualizations can be obtained even with an

incomplete knowledge of G(·, y), i.e., when only the Green’s function corresponding to

fat, skin and free space is available.

3.7 Conclusions and hints for future developments

In this chapter we generalize the formulation and improve the implementation of a linear

qualitative method, based on the so-called ‘reciprocity gap functional’, for solving inverse

scattering problems that are, in general, genuinely non-linear, i.e., allow no realistic lin-

earizing approximation. Furthermore, we apply this approach for the first time to the

visualization of breast cancer in a microwave tomography setting. From the theoretical

viewpoint, the generalization consists of developing a formulation that takes into account

the possible heterogeneity of the background medium inside the array of receiving an-

tennas: in particular, if this background is lossy, an interior transmission problem with

complex wave numbers needs to be discussed, in order to show that transmission eigen-

values form a discrete set. Although our focus is on the inverse problem of microwave

tomography for breast cancer detection, other scattering situations (for penetrable tar-

gets) are easily incorporated in our framework by considering the proper Green’s function;

moreover, an analogous generalization could also be carried out in the case of impenetrable

scatterers. From the viewpoint of implementation, the improvement consists of adopting

a no-sampling approach, which provides very fast 2D visualizations of the breast: indeed,

the computational times of the RGFM are around 1 s.
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Of course, a weak point of the RGFM is that the physical and geometric properties

of the healthy breast should be known a priori. This prior knowledge could be available,

at least approximately, from previous clinical exams (e.g., MRI) of the same patient. In

any case, future research should be devoted to assessing the stability and reliability of

the RGFM with respect to uncertainties in the Green’s function describing the healthy

breast: in this context, our first results, as shown in Fig. 5.11 and Fig. 5.12, seem to

highlight a promising robustness of the RGFM.

The real impact of the RGFM-based imaging technique should be evaluated by com-

paring it with other existing inversion methods, both qualitative (such as the LSM for

near-field measurements, used for breast cancer detection in [21, 24]) and quantitative

(such as the algorithms proposed in [68] or in [85]): to this aim, it would be interesting to

perform a theoretical and operative analysis of the RGFM in order to assess the resolution

achievable and to estimate the optimal number of antennas surrounding the breast, i.e.,

the minimum number of measurements needed to collect all the retrievable information.

Since these issues were already discussed in Section 2.8 of Chapter 2 for the LSM, we

shall not repeat here our considerations.

Of course, for segmentation purposes, an important step is to extract, in an auto-

matic way and in short computational times, the profile of the tumoural masses from

the visualization map provided by the RGFM. Moreover, although in some applications

a fast visualization of the support of the tumour might be sufficient, a deeper analysis

is often desirable: then, knowing the pointwise electrical parameters of the (possibly)

cancerous tissue is an important information. To this end, it is necessary to use an

iterative algorithm, which needs to be properly initialized. An accurate initialization re-

quires the approximate knowledge of the geometric and physical properties of the tumour:

the geometric information can be obtained from the profile automatically determined by

post-processing the RGFM visualization, as just recalled, while a good initial guess for

the electrical parameters is given by the typical or average values (easily available in liter-

ature) characterizing the tumoural masses of the female breast. Again, we refer to Section

2.8 of Chapter 2 for a discussion of these post-processing and hybridization issues.

Finally, we point out that each step of the overall approach proposed here should

be tested against both simulated and real data. Then, a twofold effort is necessary:

developing an efficient software that can generate, invert and (post-)process the direct

scattering data, and constructing (or, at least, having at disposal) a reliable microwave

tomograph.
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3.8 Addenda to Chapter 3

3.8.1 Complementary theorems

In this subsection we want to prove two theorems previously used in the current chapter.

The first theorem is the generalization for k not constant of Theorem 2.12 in [48].

Theorem 3.8.1. Let W be an open and bounded Lipschitz domain such that R2 \W is

connected; let k ∈ L∞(R2 \W ) and R > 0 be such that k(x) = k0 ∈ R∗
+ = (0,+∞) for

|x| ≥ R. Moreover, let u be the unique solution of the following problem:
∆u+ k2(x)u = 0 in R2 \W
u = 0 on ∂W

lim
r→∞

√
r(∂ru− ik0u) = 0.

(3.117)

Then, it holds that u = 0 in R2 \W .

Proof. Let r ≥ R be such that the open ball Br with centre at the origin O and radius r

contains W . If we set Sr := ∂Br and we remember the first two equations in (3.117), as

well as the hypothesis k(x) = k0 for |x| ≥ R, then the first Green’s identity38 shows that∫
Sr

u(x)∂ν ū(x) ds(x) =

∫
Br\W

|∇u(x)|2 dx−
∫
Br\W

k20|u(x)|2 dx. (3.118)

Taking the imaginary part of each term in this equation, we get

Im

{∫
Sr

u(x)∂ν ū(x) ds(x)

}
= 0. (3.119)

Hence, by virtue of Theorem 2.12 in [48], we deduce that u = 0 in R2 \ B̄r and then the

unique continuation principle ensures that u = 0 in R2 \W . �

The second theorem links the injectivity of the single layer operator on the boundary

of a domain to the solvability of the Dirichlet problem.

Theorem 3.8.2. LetW be a bounded Lipschitz domain and letW ′ ⊂W be an open subset

of W ; if k ∈ L∞(W ) is such that Im {k2(x)} ≥ 0 f.a.a. x ∈ W and Im {k2(x)} ≥ c > 0

f.a.a. x ∈ W ′, then the single layer operator S∂W : H− 1
2 (∂W ) → H

1
2 (∂W ) is bijective.

Proof. Let φ ∈ H− 1
2 (∂W ) be such that S∂Wφ = 0 and let v be the single layer potential

of density φ, i.e.,

v(x) :=

∫
∂W

G(x, y)φ(y) ds(y) ∀x ∈ R2 \ ∂W. (3.120)

38See e.g. [75], p. 118.
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Then, in particular, v solves the following Dirichlet problem:{
∆v + k2(x)v = 0 in W

v = 0 on ∂W.
(3.121)

By using the first Green’s identity in W and remembering both the equation and the

boundary condition in (3.121), we get:

−
∫
W

|∇v(x)|2 dx+
∫
W

k2(x)|v(x)|2 dx = 0. (3.122)

By taking the imaginary part of each term in (3.122), we obtain∫
W

Im
{
k2(x)

}
|v(x)|2 dx = 0. (3.123)

By virtue of the hypotheses made on Im {k2(x)}, we find
∫
W ′ |v(x)|2 dx = 0: hence v = 0 in

W ′ and by the unique continuation principle v = 0 in W . Then, in particular, ∂νv
− = 0.

Moreover v is a solution of problem (3.117) and Theorem 3.8.1 ensures that v = 0 in

R2 \ W : then ∂νv
+ = 0. Now, according to the jump relations39 for the single layer

potentials, it holds that −φ = ∂νv
+ − ∂νv

−: hence φ = 0 and this shows the injectivity

of S∂W . Since S∂W is a Fredholm operator40 of index 0, it is also bijective. �

3.8.2 The interior transmission problem

In this subsection we discuss an interior transmission problem that plays an important

role in the framework of the current chapter.

Let D be an open bounded Lipschitz domain and let us consider the following interior

transmission problem: for all h ∈ H1
∆(D), find u, v ∈ H0

∆(D) such that u − v ∈ H1
∆(D)

and 
∆u+ k2n1(k)u = 0 in D

∆v + k2nD(k)(x)v = 0 in D

(u− v) = h on ∂D

∂ν(u− v) = ∂νh on ∂D,

(3.124)

where k ∈ R∗
+ = (0,+∞), n1 : R∗

+ → C is a complex-valued function of the real variable

k and nD : R∗
+ → L∞(D) is a function of the real variable k with values in the space

L∞(D). We now want to show that under some assumptions the problem (3.124) has a

unique solution.

39See e.g. [75], p. 203.
40See e.g. [75], p. 33 and p. 227.
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We first consider the homogeneous version of problem (3.124), i.e., the case in which

the function h is identically zero, and we want to show that this problem has only the

trivial solution, except for a discrete set of values for k. Then, if we call ‘set of transmission

eigenvalues’ the set of values of k such that the homogeneous transmission problem has

a non trivial solution, this means that the set of transmission eigenvalues is a discrete

subset of R∗
+.

Following the same steps as in [83], the following lemma for the homogeneous interior

transmission problem can be easily proved.

Lemma 3.8.3. Set m(k) := n1(k)− nD(k) for all k ∈ (0,∞); if k is such that m−1(k) ∈
L∞(D), then the homogeneous transmission problem has a non trivial solution if and only

if there exists a nontrivial function w ∈ H1
∆,0(D) such that

Fk(w,ψ) = 0 ∀ψ ∈ H1
∆,0(D), (3.125)

where H1
∆,0(D) is the Hilbert space (with respect to the norm given by (3.13)) defined as

H1
∆,0(D) := {u ∈ H1

∆(D) : u = ∂νu = 0 on ∂D}, (3.126)

and Fk is the bounded sesquilinear form defined on H1
∆,0(D) as

Fk(ϕ, ψ) :=

∫
D

m−1(k)(x)
[
∆+ k2n1(k)

]
ϕ(x)

[
∆+ k2nD(k)

]
ψ̄(x) dx = (3.127)

=
(
m−1(k)

[
∆+ k2n1(k)

]
ϕ,
[
∆+ k2n̄D(k)

]
ψ
)
0

∀ϕ, ψ ∈ H1
∆,0(D),

having denoted by (·, ·)0 the scalar product in L2(D).

Now, for all k ∈ R∗
+ such thatm−1(k) ∈ L∞(D), let us define the following sesquilinear

forms: ∀ϕ, ψ ∈ H1
∆,0(D),

F 0
k (ϕ, ψ) := (m−1(k)∆ϕ,∆ψ)0, F 1

k (ϕ, ψ) := k2(m−1(k)n1(k)ϕ,∆ψ)0, (3.128)

FD
k (ϕ, ψ) := k2(m−1(k)∆ϕ, n̄D(k)ψ)0, F 1D

k (ϕ, ψ) := k4(m−1(k)n1(k)ϕ, n̄D(k)ψ)0.

(3.129)

Then, for all k ∈ R∗
+ such that m−1(k) ∈ L∞(D), it obviously holds that

Fk = F 0
k + F 1

k + FD
k + F 1D

k . (3.130)

Moreover, it can be easily shown that the following sesquilinear form on H1
∆,0(D)

∀u, v ∈ H1
∆,0(D), (u, v)∆,0 := (∆u,∆v)0 (3.131)
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defines a scalar product on H1
∆,0(D) equivalent to the H1

∆ scalar product. Then, according

to the Lax-Milgram theorem, for all k ∈ R∗
+ such that m−1(k) ∈ L∞(D) we can intro-

duce the operators associated with the previous forms (3.127), (3.128), (3.129), i.e., the

operators in H1
∆,0(D) defined as

(Skϕ, ψ)∆,0 := Fk(ϕ, ψ), (S0
kϕ, ψ)∆,0 := F 0

k (ϕ, ψ), (S1
kϕ, ψ)∆,0 := F 1

k (ϕ, ψ), (3.132)

(SD
k ϕ, ψ)∆,0 := FD

k (ϕ, ψ), (S1D
k ϕ, ψ)∆,0 := F 1D

k (ϕ, ψ) ∀ϕ, ψ ∈ H1
∆,0(D). (3.133)

Then, we clearly have

Sk = S0
k + S1

k + SD
k + S1D

k . (3.134)

We now make the following assumptions (we shall shortly discuss their consistency with

physics in the final Remark 3.8.1):

1) n1 and nD are analytic functions of k on R∗
+: in this case we know that there exists

an open and connected set W ⊂ C containing R∗
+ such that n1 and nD can be

continued to analytic functions in W and for all such sets W the continuation is

unique;

2) among the previous sets W , there exists a set W̃ such that the set Sing(m) := {z ∈
W̃ : m−1(z) /∈ L∞(D)} is discrete;

3) there exists an open connected subset X of W̃ \ Sing(m) containing R∗
+ \ Sing(m)

such that, for all z ∈ X, either Re {m−1(z)} > cz > 0 on D, or Im {m−1(z)} >

cz > 0 on D, or Re {m−1(z)} < −cz < 0 on D, or Im {m−1(z)} < −cz < 0 on

D, where, for all z ∈ X, cz is a positive constant, depending on z and verifying

∥m−1(z)∥∞ = o
(
cz
z2

)
as z → 0;

4) n1 and nD are bounded when k ∈ R∗
+ goes to 0.

As in [83], by exploiting the previous decomposition (3.134), we can prove that Sk is a

Fredholm operator of index 0. Then, by using the analytic Fredholm theory, we can show

that Sk is non-singular except for a discrete set of values of k: this task is accomplished

by the following three theorems.

Theorem 3.8.4. Let z ∈ X: then the operators S1
z , S

D
z and S1D

z are compact.

Proof. For all ϕ ∈ H1
∆,0(D), from definitions (3.128), (3.129), (3.131), (3.132) and (3.133)
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we have:(
∆S1

zϕ,∆S
1
zϕ
)
0
= (S1

zϕ, S
1
zϕ)∆,0 = F 1

z (ϕ, S
1
zϕ) = z2

(
m−1(z)n1(z)ϕ,∆S

1
zϕ
)
0
,(

∆SD
z ϕ,∆S

D
z ϕ
)
0
=
(
SD
z ϕ, S

D
z ϕ
)
∆,0

= FD
z (ϕ, SD

z ϕ) = z2
(
m−1(z)∆ϕ, n̄D(z)S

D
z ϕ
)
0
,(

∆S1D
z ϕ,∆S1D

z ϕ
)
0
=
(
S1D
z ϕ, S1D

z ϕ
)
∆,0

= F 1D
z (ϕ, S1D

z ϕ) =

= z4
(
m−1(z)n1(z)ϕ, n̄D(z)S

1D
z ϕ

)
0
,

whence we respectively get, for all ϕ ∈ H1
∆,0(D),

∥S1
zϕ∥∆,0 ≤ |z|2 ∥m−1(z)∥∞ |n1(z)| ∥ϕ∥0, (3.135)

∥SD
z ϕ∥2∆,0 ≤ |z|2 ∥m−1(z)∥∞ ∥nD(z)∥∞ ∥ϕ∥∆,0 ∥SD

z ϕ∥0, (3.136)

∥S1D
z ϕ∥2∆,0 ≤ |z|4 ∥m−1(z)∥∞ ∥nD(z)∥∞ |n1(z)| ∥ϕ∥0 ∥S1D

z ϕ∥0. (3.137)

Since the injection H1
∆,0(D) ↪→ L2(D) is compact, inequalities (3.135), (3.136) and

(3.137) prove the compactness of S1
z , S

D
z and S1D

z respectively. �

Theorem 3.8.5. For all z ∈ X, the operator S0
z is non-singular.

Proof. For all ϕ ∈ H1
∆,0(D), by virtue of definitions (3.128) and (3.132) we have

(S0
zϕ, ϕ)∆,0 = F 0

z (ϕ, ϕ) = (m−1(z)∆ϕ,∆ϕ)0. (3.138)

Hence, by using the previous assumption No. 3 on m−1(z), we can deduce that either

±S0
k or ±iS0

k is positive and bounded from below, and then S0
k is non-singular. �

Theorem 3.8.6. The operator Sk is non-singular except for a discrete set of values of

k ∈ R∗
+.

Proof. Let η ∈ R∗
+ be such that ∥ϕ∥0 ≤ η∥ϕ∥∆,0 for all ϕ ∈ H1

∆,0(D). According to

assumptions 3 and 4, we can consider k ∈ (0, 1) \ Sing(m) such that

|n1(k)|
∥∥m−1(k)

∥∥
∞ ≤ ck

4η
, (3.139)

∥nD(k)∥∞
∥∥m−1(k)

∥∥
∞ ≤ ck

4η
, (3.140)

|n1(k)| ∥nD(k)∥∞
∥∥m−1(k)

∥∥
∞ ≤ ck

4η2
. (3.141)

Without loss of generality, replacing Sk by −Sk or ±iSk if needed, we can suppose

that Re {m−1(k)} > ck > 0. Then, by using inequalities (3.135), (3.136), (3.137), (3.139),

(3.140) and (3.141), for all ϕ ∈ H1
∆,0(D) we get Re {(Skϕ, ϕ)∆,0} ≥ ck

4
∥ϕ∥∆,0. Thus Sk

is positive and bounded below and then invertible. Hence, by using the analytic Riesz-

Fredholm theory, it turns out that Sz is non-singular except for a discrete subset of X:

as a consequence, Sk is non-singular except for a discrete set of values of k ∈ R∗
+. �
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Corollary 3.8.7. The set of transmission eigenvalues is a discrete subset of R∗
+.

Proof. It follows from Lemma 3.8.3 that the set of transmission eigenvalues in k ∈
R∗

+ \ Sing(m) is the set of k such that Sk is non injective. Now, by Theorem 3.8.4 and

Theorem 3.8.5, Sk is a Fredholm operator of index 0 for all k ∈ R∗
+ \ Sing(m), so that

k ∈ R∗
+\Sing(m) is a transmission eigenvalue if and only if Sk is singular, but by Theorem

3.8.6 this holds only for a discrete set. Finally, since we supposed that the set Sing(m)

is discrete, the transmission eigenvalues form a discrete subset of R∗
+. �

We can now state the main and last theorem of this section, which can be proved

analogously to Theorem 4.1 in [83].

Theorem 3.8.8. If k ∈ R∗
+ \ Sing(m) is not a transmission eigenvalue, then for all

h ∈ H1
∆(D) the inhomogeneous transmission problem (3.124) has a unique solution.

Remark 3.8.1. We now want to briefly discuss the consistency of the previous assump-

tions No. 1-4 with physics. To this end, we first observe that assumptions No. 2 and No.

3 are non-trivial only when nD(k) does depend on x ∈ D for some k ∈ R∗
+: indeed, it is

easy to prove that if nD(k) is constant on D and different from n1 for all k ∈ R∗
+, then

assumption No. 1 implies assumptions No. 2 and No. 3. Then, at least in the case of

constant nD(k), only assumptions No. 1 and No. 4 require a physical justification. The

latter is given by the model of Havriliak-Negami dielectric relaxation: according to this

model, the complex electrical permittivity ε̂ of a medium at an angular frequency ω is

given by41

ε̂ = ε∞ +
εs − ε∞

[1 + (−iωτ)α]β
, (3.142)

where ε∞ is the permittivity at high frequency, εs is the static or low frequency permittiv-

ity, τ is the characteristic relaxation time and α, β ∈ (0, 1]. In particular, model (3.142)

gives the Cole-Davidson model for α = 1, the Cole-Cole model for β = 1 and the Debye

model for α = β = 1. If we now observe that (cf. (3.1)) n(k) = ε̂/ε0, where the generic

wave number in free space is given by k = ω/c (with c = 1/
√
ε0µ0), we can easily realize

that assumptions No. 1 and No. 4 are verified.

A similar discussion can be carried out when nD is assumed to be piecewise constant

on D: in this case, however, assumption No. 3 does not hold in general as a consequence

of model (3.142), and has to be explicitly required. We shall not discuss more general

41See e.g. [53], or chapter 1 of [79]. However, in these two references the harmonic dependence on time

is assumed to be ruled by eiωt, while we follow the opposite sign convention, i.e., e−iωt: this explains the

mismatch in sign (±i) between [53, 79] and the formula (3.142).
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cases: our purpose is to show that assumptions No. 1-4 are far from being empty, since

they are satisfied for rather general classes of propagation media. �
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Chapter 4

The LSM explained by energy

conservation

In general, qualitative methods pose some problems from the viewpoint of their theoretical

foundation, since the equations at their basis are artificially formulated, i.e., do not follow

from physical laws. In particular, as far as the linear sampling method (LSM) is concerned,

a satisfactory understanding of the reason why it should work at all is still an open issue1.

This is due to a missing link between the general theorem inspiring the method and the

method itself. Indeed, the general theorem shows that, for each sampling point z in the

physical space, a far-field equation exists that admits approximate solutions whose L2-

norm is bounded when z is inside the scatterer, tends to blow up when z approaches

the boundary of the scatterer from inside and can be made arbitrarily large when z is

outside. On the other hand, there is no a priori guarantee that the regularized solution

of the far-field equation, as computed by the algorithm and exploited to characterize the

domain of the scatterer, should behave like one of those approximate solutions. However,

many numerical simulations, performed under very different scattering conditions and

with various noise levels, show that there is generally2 a good agreement between theory

and practice, i.e., that the computed regularized solution behaves as indicated by the

general theorem. Then, the main (and still open) issue is to explain such agreement.

However, owing to its very technical nature, this problem should be described more

precisely before reviewing the existing literature on it. Then, unlike the previous chapters,

the section entitled ‘State of the art’ will follow that entitled ‘The problem’: in the latter

(i.e., the next one), we are going to give a rather detailed account of the issue we want to

1See [10, 11, 34, 65] and also [35], p. 131, or [69], p. 168.
2See footnote no. 5 at p. 6.
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address. To fix ideas and notations, we shall focus on the 2D electromagnetic scattering

problem for a penetrable and isotropic cylinder, by assuming that the measurements are

taken in the far-field region of a lossless and homogeneous background. In any case, the

same theoretical problem affects the LSM in all scattering frameworks which it can be

formulated for.

4.1 The problem

We first consider the following direct scattering problem: a plane, electromagnetic and

time-harmonic wave, propagating in a homogeneous and non-conducting background

medium, is scattered by an inhomogeneity consisting of a penetrable, isotropic and in-

finitely long cylinder. The geometric and physical properties of the cylinder are invariant

with respect to translations along its axis: in particular, its cross section is the closure

of an open and C2-domain D ⊂ R2. The material properties of the cylinder and of the

background are described by the (normalized) refractive index3

n(x) :=
1

εB

[
ε(x) + i

σ(x)

ω

]
∀x ∈ R2, (4.1)

where i =
√
−1 and ω denotes the angular frequency of the wave; ε(x) and σ(x) are the

electrical permittivity and conductivity, respectively. We assume that ε(x) is uniform in

R2 \ D̄ and equal to the background value εB > 0, while σ = 0 in the same region. We

consider a non-magnetic scatterer, i.e., we require that the magnetic permeability is a

positive constant µB everywhere in R2.

Starting from the time-harmonic and rescaled Maxwell equations4

curlE − ikH = 0, curlH + ikn(x)E = 0 (4.2)

(where k is the wave number in the background), and assuming that the incident plane

wave is TM-polarized, i.e., the incident electric field is parallel to the axis of the cylinder,

the scattering problem under exam can be formulated in a 2D framework as follows5.

Let n(x) be such that n|D̄ ∈ C1(D̄) and let d̂ = d̂(θ) := (cos θ, sin θ) any incidence

direction: then, given the incident field ui(x, θ) := eikx·d̂, find the total field u = u(·, θ) ∈

3See [48], p. 251.
4See [48], p. 251.
5See [46] and [48], pp. 307-308.
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C2(R2 \ ∂D) ∩ C1(R2) such that
∆u(x) + k2 n(x)u(x) = 0 for x ∈ R2 \ ∂D (a)

u(x) = eikx·d̂ + us(x) for x ∈ R2 (b)

lim
r→∞

[√
r

(
∂us

∂r
− ikus

)]
= 0, (c)

(4.3)

where the limit in (4.3)(c), with r := |x|, expresses the Sommerfeld radiation condition,

holding uniformly in x̂ := x
|x| , for the scattered field us.

For each incidence direction d̂, there exists a unique solution6 to problem (4.3), and

the corresponding scattered field us = us(·, θ) has the following asymptotic behaviour

(which holds uniformly in all directions x̂):

us(x, θ) =
eikr√
r
u∞(φ, θ) +O

(
r−3/2

)
as r = |x| → ∞, (4.4)

where (r, φ) are the polar coordinates of the observation point x and the function u∞ =

u∞(·, θ) ∈ L2[0, 2π] is known as the far-field pattern of the scattered field us.

In this chapter we consider the qualitative problem of determining the support D̄ of

the scatterer under the assumption that the far-field pattern u∞(φ, θ) is known for all

observation and incidence angles φ, θ ∈ [0, 2π]. A procedure for its solution is provided

by the LSM.

Define the linear and compact far-field operator F : L2[0, 2π] → L2[0, 2π] correspond-

ing to the inhomogeneous scattering problem (4.3) as7

(Fg)(φ) :=

∫ 2π

0

u∞(φ, θ)g(θ)dθ ∀g ∈ L2[0, 2π]. (4.5)

The operator F is injective with a dense range if k2 is not a transmission eigenvalue8. By

the superposition principle9, Fg is the far-field pattern of the scattered field

usg(x) :=

∫ 2π

0

us(x, θ)g(θ)dθ ∀x ∈ R2 \D (4.6)

corresponding to the incident field ui given by the Herglotz wave function vg with kernel

g, i.e.,

ui(x) = vg(x) :=

∫ 2π

0

eikx·d̂(θ)g(θ)dθ for x ∈ R2. (4.7)

6See [48], pp. 307-308.
7See e.g. [35], p. 107.
8See e.g. [35], p. 108.
9See e.g. [48], p. 224.
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Next consider the outgoing scalar field

Φ(x, z) =
i

4
H

(1)
0 (k|x− z|) ∀x ̸= z, (4.8)

generated by a point source located at z ∈ R2, where H
(1)
0 (·) denotes the Hankel function

of the first kind and of order zero10. The corresponding far-field pattern is given by11

Φ∞(φ, z) =
eiπ/4√
8πk

e−ikx̂(φ)·z , with x̂(φ) := (cosφ, sinφ) ∀φ ∈ [0, 2π]. (4.9)

For each z ∈ R2, the far-field equation is defined as12

(Fgz)(φ) = Φ∞(φ, z). (4.10)

The LSM depends on what we shall call the general theorem13, concerning the existence

of ϵ-approximate solutions to the far-field equation and their qualitative behaviour.

Theorem 4.1.1. (General theorem) Let D ⊂ R2 be nonempty, open, bounded, with C2-

boundary ∂D, and such that R2\D̄ is connected; let n : R2 → C be given by (4.1) and such

that n|D̄ ∈ C(D̄); let k := ω
√
εBµB > 0 be such that k2 is not a transmission eigenvalue

and let F be the far-field operator (4.5) corresponding to the inhomogeneous scattering

problem (4.3). Then:

(i) if z ∈ D, it follows that for every ϵ > 0 there exists a solution gϵz ∈ L2[0, 2π] of the

inequality

∥Fgϵz − Φ∞(·, z)∥L2[0,2π] ≤ ϵ (4.11)

such that, for every z∗ ∈ ∂D,

lim
z→z∗

∥gϵz∥L2[0,2π] = ∞ (a) and lim
z→z∗

∥∥vgϵz∥∥H1(D)
= ∞, (b) (4.12)

where vgϵz is the Herglotz wave function with kernel gϵz;

(ii) if z /∈ D, it follows that for every ϵ > 0 and δ > 0 there exists a solution

gϵ,δz ∈ L2[0, 2π] of the inequality∥∥Fgϵ,δz − Φ∞(·, z)
∥∥
L2[0,2π]

≤ ϵ+ δ (4.13)

such that

lim
δ→0

∥∥gϵ,δz

∥∥
L2[0,2π]

= ∞ (a) and lim
δ→0

∥∥∥vgϵ,δz

∥∥∥
H1(D)

= ∞, (b) (4.14)

where vgϵ,δz
is the Herglotz wave function with kernel gϵ,δz .

10See e.g. [35], p. 49.
11See e.g. [35], p. 74.
12See e.g. [35], p. 125.
13See e.g. [35], p. 128.
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On the basis of Theorem 4.1.1, the algorithm14 of the LSM can be shortly described

as follows [52]. Consider a sampling grid that covers a region containing the scatterer.

For each point z of the grid, compute the Tikhonov regularized solution gαz of the (angle-

discretized) far-field equation (4.10) and fix the optimal value α∗(z) of the regularization

parameter α by means of Morozov’s generalized discrepancy principle [89]. Then, the

boundary of the scatterer is visualized as the set of grid points where the (discretized)

L2-norm of gα∗(z) := g
α∗(z)
z becomes mostly large.

Apart from noise and discretization issues, there is a logical gap between the content

of Theorem 4.1.1 and the LSM. Indeed, the proof of the former gives no evidence that the

approximate solutions gϵz and g
ϵ,δ
z are just (or can be chosen as) the Tikhonov regularized

solutions gα∗(z) of the far-field equation (for z ∈ D and z /∈ D respectively) exploited

by the latter. Nevertheless, several numerical simulations15, although performed in very

different scattering conditions and with various kinds of discretizations, noise levels (and

even regularization procedures, as in [88]), show a behaviour of
∥∥gα∗(z)

∥∥
L2[0,2π]

that is in

reasonable agreement with limits (4.12)(a) and (4.14)(a), i.e.,
∥∥gα∗(z)

∥∥
L2[0,2π]

tends to grow

up when z approaches the boundary from the inside of the scatterer and remains even

larger when z is outside D. The open issue is then to explain such agreement. The next

section is devoted to a discussion of some approaches proposed in the literature to tackle

this problem.

4.2 State of the art

The papers16 that try to explain why or how the LSM works can be divided into two

families:

1) a first set of papers [10, 11, 65] focuses on the restrictive17 case in which, in addition

to the LSM, also the factorization method18 (FM) can be applied. In this framework,

sophisticated tools of regularization theory play a major role;

2) a second set of papers [37, 86] uses physics-based arguments under restrictive hy-

potheses on the scattering conditions: in [37] the scatterer is assumed to be a dielectric

14The following description is concerned with the most popular implementation of the LSM. Of course,

different regularization procedures can be considered to solve the (angle-discretized) far-field equation

(4.10): see e.g. [88].
15See footnote no. 5 at p. 6.
16Of course, we are not considering [9] here, since this paper is the main source for the current chapter

and will be presented in the next sections.
17The FM is, so far, significantly less general than the LSM (see e.g. [33], p. 247, or chapter 7 of [35]).
18See [69] and references therein.
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target, while in [86] only perfectly electrical conducting objects (in the resonance regime)

are taken into account. Although a regularization procedure is clearly necessary to (ap-

proximately) solve the far-field equation in a stable way, regularization theory in itself is

not the core of these approaches.

In the following, we shall summarize and/or shortly discuss these papers: the result

of our analysis will be that the problem under investigation cannot be considered solved.

4.2.1 FM-based approaches

In general, when Tikhonov regularization is applied to an inverse problem, the regularized

solution may blow up only if the regularization parameter tends to zero. In particular, as

far as the far-field equation (4.10) is concerned, a vanishing regularization parameter α

is a necessary condition for ∥gαz ∥L2[0,2π] to blow up. Moreover, owing to the denseness of

the range of F and to the fact that, in general, Φ∞(·, z) does not belong to this range19,

the fact that α → 0+ is also a sufficient condition20 for ∥gαz ∥L2[0,2π] to blow up for almost

all z ∈ R2.

This is the reason why the approach proposed in [10] does not explain ‘why linear

sampling works’, even in the restrictive case where also the FM is applicable. Indeed,

Corollary 3.4 in [10] states that (with our notation21) 1) if z ∈ D, then ∥gαz ∥L2[0,2π]

blows up as α → 0+ and22 z approaches a point z∗ of the boundary ∂D; 2) if z /∈ D,

then ∥gαz ∥L2[0,2π] blows up as α → 0+. But actually, for almost all z ∈ R2, the limit

limα→0+ ∥gαz ∥L2[0,2π] = ∞ holds. Then, the typical behaviour of z 7→
∥∥gα∗(z)

∥∥
L2[0,2π]

as

an indicator function cannot be explained by simply considering that α∗(z) → 0+: at

least one should prove a complementary property, whereby a vanishing regularization

parameter is only enforced when z ∈ D approaches the boundary ∂D, or when z /∈ D.

(In fact, our approach will provide such enforcement, as we shall see in Section 4.8.)

An analogous criticism would apply if one tried to tackle this problem by considering,

for each z ∈ R2, a vanishing discrepancy ∥Fgαz − Φ∞(·, z)∥L2[0,2π] instead of a vanishing

19I.e., the far-field equation is almost never solvable: see [35], p. 126; [34], p. 419; [47], p. 386; [48], p.

315; cf. also [73].
20For details, see [4], p. 30 and p. 131.
21However, we point out that, according to [10], what we denote here by gαz is not necessarily the

Tikhonov regularized solution of the far-field equation (4.10), but rather, and more generally, any reg-

ularized solution computed by means of a regularization procedure belonging to a set of regularization

methods including Tikhonov regularization.
22In the statement of Corollary 3.4, nothing is said about the order (if any) in which the two limits

α → 0+ and z → z∗ are considered.
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regularization parameter23 α. Indeed, these two approaches are equivalent, as shown by

Theorem 4.10.1 in Subsection 4.10.1, p. 119.

However, some results in [10] are used in [11] to obtain a new version of the LSM

whose mathematical foundation can be considered satisfactory (of course, only in those

cases where also the FM is applicable). For our purposes, we can summarize the results

of [11] as follows: 1) the usual family24 of indicator functions z 7→ ∥gαz ∥L2[0,2π] is replaced

by z 7→
∣∣vgαz (z)∣∣, where gαz is the Tikhonov regularized solution of the far-field equation

(4.10) and vgαz is the Herglotz wave function of kernel gαz ; 2) the new indicator functions

verify good convergence/divergence properties25, i.e.,

lim
α→0+

∣∣vgαz (z)∣∣ <∞ for z ∈ D (a) and lim
α→0+

∣∣vgαz (z)∣∣ = ∞ for z /∈ D (b). (4.15)

In this perspective, the unavoidable gap between the continuous framework and the nu-

merical implementation of the new LSM-algorithm suggested by limits (4.15) can be

reasonably filled in by assuming that discretization effects are negligible and that, for

each z ∈ R2, the optimal value α∗(z) chosen for the regularization parameter α can be

considered ‘small’ (typically due to a ‘small’ level of the noise affecting the far-field op-

erator). However, it is worth noting that limits (4.15) do not explain the behaviour of

the usual indicator function z 7→
∥∥gα∗(z)

∥∥
L2[0,2π]

, which is the problem we want to address

here: they rather give rise to a rigorous, but alternative, version of the LSM.

The investigation proposed in [65] is too far from the context of this Ph.D. thesis to

be even sketched here. For our purposes, the best that can be said about [65] is that, in

the author’s words, the analysis provided there ‘may serve as a justification of the [linear

sampling] method for problems where the Factorization Method is known to work’26,

which suffices to consider such analysis less general than desirable.

Summarizing, this set of papers can at most justify the LSM when the FM is also

applicable, thus leaving unexplained the LSM itself in its full generality.

4.2.2 Physics-based approaches

The far-field equation (4.10) is neither a physical law, nor a consequence of physical laws:

this is suggested by its ‘artificial’ formulation and confirmed by the fact that, in general,

23Cf. e.g. the alternative version of part (ii) of Theorem 4.1.1 given in [69], p. 166.
24‘Family’ means that here we do not need to consider a specific choice rule α∗(z) for the regularization

parameter α.
25Actually, a weaker result than limit (4.15)(b) is proved in [11], i.e., the following one: for any z ∈ R2,

there exists a sequence {αn}∞n=0 such that limn→∞ αn = 0 and limn→∞
∣∣vgαn

z
(z)
∣∣ = ∞. However, this is

not so important in our discussion.
26Quoted from the abstract of [65].
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it admits no exact solution for any location of the sampling point z. However, the LSM,

which is strongly based on the far-field equation, can often provide reliable visualizations of

unknown scatterer, thus highlighting some kind of link between this artificial equation and

physics. Actually, nothing prevents from regarding the far-field equation as a condition,

or a constraint that is added to the physical laws (e.g., Maxwell’s equations) governing the

scattering experiment, whereby the (approximate) fulfilment of such constraint involves

the computation of a function whose L2-norm can serve as an indicator for the unknown

scatterer.

In this perspective, the interest of a physical interpretation of the far-field equation or

of the LSM is twofold: first, from a theoretical viewpoint, clarifying the undoubtable link

between the LSM and physics would certainly be a major achievement; second, and equally

important, a physical approach can be useful to understand the conditions under which

the LSM performs best. Indeed, an explanation of the LSM in the spirit of regularization

theory (as shortly outlined in the previous subsection) or, more generally, its explanation

in terms of a mere agreement between the approximate solutions gϵz and g
ϵ,δ
z exhibited by

Theorem 4.1.1 (for z ∈ D and z /∈ D respectively) with the Tikhonov regularized solutions

gα∗(z) of the far-field equation, can hardly explain why, in some typical situations, the

visualization provided by the LSM is not good: e.g., too close27 distinct objects tend to

be merged (see e.g. [43], or Figure 5.16(a), p. 142, in the following), concave objects

tend to be ‘convexified’ (see e.g. [37]), etc. These ‘pathologies’ highlight, in particular,

some limitations of the LSM in terms of the resolution achievable, but these limitations,

although reasonable, are not foreseen or explained by approaches such as the FM-based

ones recalled above.

A preliminary step towards a physical interpretation of the far-field equation (4.10)

is to observe (as already done soon below (4.5)) that its left-hand side Fgz is the far-

field pattern of the scattered field (4.6), corresponding to the incident field ui (4.7) given

by the Herglotz wave function vgz with kernel gz. Since the right-hand side Φ∞(·, z) of

(4.10) is the far-field pattern of the field radiated by an elementary source placed at the

sampling point z, it is clear that, in a physical perspective, the far-field equation can be

paraphrased as follows: for each z ∈ R2, try to illuminate the target by a continuous

superposition, weighted by gz, of plane waves (i.e., by the incident field (4.7)) in such

a way that the field scattered by the target is seen, at very large distances, as the field

radiated by a point source placed at z.

Of course, the previous paraphrase of the far-field equation does not suffice to under-

27With respect to the wavelength.
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stand why the LSM works, and a much deeper investigation is needed28. However, we can

make a further step if we remember that 1) by Rellich’s lemma29, imposing the equality

between the far-field patterns of two radiating fields amounts to imposing that the two

fields are equal everywhere outside the scatterer; 2) no solution of the Helmholtz equation

in an open C2-domain can be singular30. Accordingly, if we pull back the far-field equation

up to the near-field region, its impossibility for a sampling point z outside the scatterer

is obvious, since it would enforce a singularity of the scattered field usgz in z /∈ D; on the

other hand, its impossibility for z ∈ D seems of somewhat more technical nature and less

evident from a physical viewpoint. In other terms, the far-field equation seems to be en-

dowed with two different ‘degrees of impossibility’, or better, of ill-posedness, depending

on the fact that z is inside or outside D: a weak or mild ill-posedness for z ∈ D, and

a strong one for z /∈ D. This is in qualitative agreement with the well-known behaviour

of the Tikhonov-Morozov regularization parameter α∗(z) in the LSM algorithm [52, 65],

i.e., the values of α∗(z) are much larger for z inside than outside the scatterer. In other

terms, the far-field equation seems to express a physical condition or constraint that, in

the near-field region, can be at least approximately satisfied for z ∈ D, but not for z /∈ D.

Remark 4.2.1. However, the previous discussion is purely heuristic, since any argument

based on Rellich’s lemma, i.e., on a pull-back of the far-field equation, should be for-

mulated with great care. Indeed, the problem of recovering a radiating field from its

far-field pattern is ill-posed31: in particular, continuity fails. Now, when the far-field

equation (4.10) is approximately solved, e.g. via Tikhonov regularization, its left-hand

side Fgαz will be only approximately equal to Φ∞(·, z), and this does not imply any sim-

ilarity between the field usgαz , having Fg
α
z as its far-field pattern, and the field Φ(·, z) of

the elementary source placed at z. In general, a regularization method for the far-field

operator F (4.5) does not suffice to provide this kind of stability from the far-field to the

near-field region, which can only be ensured by a regularization method for the operator

28This is also the reason why we do not consider [2] fully pertinent to the problem we are dealing with.

Indeed, in [2] the induced current inside the (penetrable and 2D) scatterer is represented via a multipole

expansion, which corresponds to projecting the far-field equation onto a basis of multipole terms: then,

such equation amounts to requiring that only the monopole term contributes to the scattered field.

Although this equivalent reformulation (or ‘physical paraphrase’) of the far-field equation is interesting

in that it inspires a family of possible modifications of the LSM (with some preliminary improvements

with the respect to the standard LSM), the problem of understanding why the LSM works is not actually

faced in [2].
29See e.g. [48], p. 33.
30See e.g. [35], p. 53.
31See e.g. [48], pp. 36-37.
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mapping a radiating field into its far-field pattern32. However, this issue is ignored by the

two papers we are going to shortly comment on. �
From a chronological viewpoint, the first paper to address the problem of understand-

ing the LSM from a physical viewpoint was [86]: here, the scatterer is assumed to be a

2D perfect conductor and the investigation is based on an analysis of the surface current

induced on the boundary of the scatterer when illuminated by the incident field ui (4.7)

given by the Herglotz wave function vgαz with kernel gαz . Moreover, most of this analysis

is performed under the hypothesis that the time-harmonic field oscillates at an internal

resonance frequency for the scatterer under exam. Then, although we disagree with some

statements of [86], we do not need to discuss them: indeed, for our purposes, it suffices

to observe that the approach of [86] is proposed under very restrictive assumptions on

the material properties of the scatterer and on the frequencies of the fields, thus leaving

unsolved, in its generality, the problem of understanding why the LSM works.

Few years later, another paper [37] appeared, which proposed a physical interpreta-

tion of the LSM in terms of a focusing problem for the (radiating component of the33)

current induced inside a 2D and dielectric scatterer. Similarly to [86], we think that

some statements of [37] are ambiguous, or not properly justified, but for our purposes it

suffices to observe that, in any case, the approach pursued in [37] can at most work for

good dielectrics34, i.e., (almost) lossless scatterers: indeed, owing to the well-known ‘skin

effect’35, in general no (even approximate) focusing of the induced current inside a lossy

scatterer is possible. Again, the problem of understanding why the LSM works cannot be

solved in its generality by the approach of [37].

On the other hand, the far-field equation (4.10) is independent of the material proper-

ties of the scatterer: indeed, one of the attractive features of the LSM is that no a priori

information on the scatterer is needed (except that it is contained in the investigation

domain). This suggests that also a physical interpretation of the far-field equation should

require no assumption36 on the physical parameters of the scatterer.

32An interesting relation between these two kinds of regularization has been established in [10], for the

particular case of 3D acoustic scattering by a sound-soft obstacle.
33There seems to be some ambiguity on this point: according to Section II of [37], the far-field equation

enforces, in general, a focusing in the sampling point z of the radiating component of the induced current,

while in Section III only the (total) induced current is considered. This shift does not seem to be explicable

in terms of the Tikhonov regularization procedure introduced in Section III: indeed, according to the

authors, Tikhonov regularization avoids the existence of non-radiating primary sources, which a priori

does not imply an analogous property of the total induced current.
34For a definition of ‘good dielectric’, see e.g. [14], p. 80.
35See e.g. [14], p. 149.
36Of course, the usual hypotheses about D, n and k2 (or analogous ones in the case of perfectly
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4.3 Outline of our approach

The purpose of the present chapter is to conceive a physical interpretation of the far-field

equation that does not depend on the penetrable or impenetrable nature of the scatterer.

To this end, the principle of energy conservation, by virtue of its generality and simplicity,

appears as a promising tool for investigating how the LSM works. Indeed, outside the

scatterer, which can always be regarded as an equivalent source generating the scattered

field37, no sources are present38 and no dissipation is possible, since the background is

assumed to be lossless: then, the (time-averaged) power flux radiated by the scatterer

is preserved both globally (i.e., on all the surfaces or, for 2D problems, all the curves

surrounding the scatterer) and locally (i.e., along the flow tubes or, in 2D, the flow strips

of a field that, in the electromagnetic case39, is the Poynting vector).

More precisely, we shall split the problem of understanding why the LSM works into

three steps:

1) we analyze the properties of the (time-averaged) Poynting vector associated with the

field us,ϵz whose far-field pattern Fgϵz is the left-hand side of the far-field equation (4.10),

for one of its ϵ-approximate solutions gϵz such that ∥Fgϵz − Φ∞(·, z)∥ ≤ ϵ: this Poynting

vector carries electromagnetic power from the scatterer up to infinity along its flow strips

in the background medium. In particular, the far-field equation can be regarded as a

constraint on the power flux transported by these flow strips up to the far-field region;

2) we numerically investigate the behaviour of the flow lines of the Poynting vector

when the LSM is implemented and we interpret and formally describe such behaviour by

appropriate definitions of ‘regularity’, ‘ramification point’, ‘far-field width’, etc.;

3) we prove that if the flow lines verify the properties formalized by these definitions,

then energy conservation along a ‘regular’ flow strip from the boundary of the scatterer

up to infinity, as well as the constraint on power fluxes expressed by the far-field equation,

together imply that ∥gϵz∥L2[0,2π] behaves as a good indicator function for the target. This

result is then specified for the case where the approximate gϵz solution of the far-field

equation is chosen as the Tikhonov regularized solution gαz .

conducting scatterers) in the general theorem 4.1.1 at the basis of the LSM could be maintained.
37See e.g. [15], p. 215, or [14], p. 328.
38Of course, some primary sources will be located in the far-field region to illuminate the scatterer,

but insofar as the incident waves are taken as plane waves or, more generally, as entire solutions of the

Helmholtz equation (such as Herglotz wave functions), these sources are ignored by the mathematical

description, or idealization, of the scattering problem. In fact, the scattered field us verifies the Helmholtz

equation in R2 \ D̄, as shown by system (4.3).
39For other kinds of waves, e.g. for acoustic ones, the analogous of the Poynting vector field should be

considered: see Remark 4.4.2, p. 103, in the following.
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However, it is clear from point 2) above that our explanation of the LSM is based on

an a posteriori approach: i.e., the performance of the LSM is related to the behaviour

of the flow lines of the Poynting vector, but such behaviour is numerically observed (in

the particular scattering conditions considered here) and not theoretically predicted in

general. This is also the reason why, at the current stage of advancement, our approach

is incomplete and does not provide a mathematical justification of the LSM: to this end,

it would be necessary to deduce the geometric properties of these flow lines a priori, i.e.,

starting from the knowledge of the scattering conditions. Such an investigation could be

pursued by using sophisticated tools of topological dynamics40, which is however beyond

the purposes of this chapter. In any case, once the proper behaviour of the flow lines is

assumed, the validity of our approach and, in particular, the results outlined in points 1)

and 3) above are independent of the material properties of the scatterer.

In order to keep our investigation as simple as possible, we shall focus on the 2D

electromagnetic scattering problem for a penetrable and isotropic cylinder, by assuming

that the measurements are taken in the far-field region of a lossless and homogeneous

background, as already specified in Section 4.1. However, the physical properties of the

scatterer are irrelevant, and the key-ideas of our approach are still valid in different or

more general situations: for example, the 3D acoustic scattering problem41 (possibly with

aspect-limited measurements) has been addressed in [8], while the generalization to the

case of an inhomogeneous and/or lossy background (possibly with near-field measure-

ments) has been investigated in [5] for the 2D electromagnetic scattering problem.

4.3.1 Plan of the following sections

The remainder of this chapter is devoted to a detailed explanation of our energy-based

approach to the LSM. More precisely, Section 4.4 introduces the Poynting vector of the

scattered field and identifies some relevant features of its flow lines in the framework of

energy (i.e., time-averaged power) conservation, thus allowing a physical interpretation of

the far-field equation as a constraint on power fluxes. In Section 4.5 we perform a certain

number of numerical simulations in order to visualize the behaviour of the flow lines of

the Poynting vector when the sampling point is inside the scatterer or on its boundary. In

Section 4.6 we prove that such behaviour, together with energy conservation along the flow

strips and the energy constraint induced by the far-field equation, allows characterizing

40As a general reference, see e.g. [1]; for more specific results concerning the Poynting vector, see e.g.

[82].
41Cf. Remark 4.4.2, p. 103.
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the ϵ-approximate solutions of the far-field equation in a fashion that is in agreement with

the standard general theorem; in other terms, our main result is a new version of this

general theorem based on the physical principle of energy conservation. Section 4.7 adapts

the approach of Sections 4.5 and 4.6 to the case of a sampling point chosen outside the

scatterer. Section 4.8 specifies the previous results to Tikhonov regularized solutions and

compares the theoretical bounds on the discrepancy derived in Section 4.6 and 4.7 with

its numerical values, as computed in Section 4.5. Finally, our conclusions and suggestions

for future developments are proposed in Section 4.9.

4.4 The power flux of the scattered field and the far-

field equation

In our interpretation of the LSM, a crucial role is played by the time-averaged Poynting

vector Ss associated with a scattered field us. In order to compute this vector, we need

to restore, for a moment, a genuine 3D setting. If we refer R3 to an orthogonal Cartesian

coordinate system (x1, x2, x3) such that the x3-axis is parallel to the axis of the cylinder,

we can express the scattered electric field as Es(x) = (0, 0, us(x)). Then, from the first42

of eq.s (4.2), we find the corresponding magnetic field Hs(x) = 1
ik

(
∂us

∂x2
(x),−∂us

∂x1
(x), 0

)
.

We now recall that, according to the notations of Sec. 9.1 in [48], these are rescaled fields,

so that the actual complex spatial forms43 of the scattered electric and magnetic fields

are given by 1√
εB
Es and 1√

µB
Hs respectively. Then, remembering that k = ω

√
εBµB, we

can compute the time-averaged Poynting vector Ss associated with the scattered electro-

magnetic field
(

1√
εB
Es, 1√

µB
Hs
)
as44

Ss(x) =
1

2
Re

{
1

√
εB
Es(x)× 1

√
µB

H̄s(x)

}
= (4.16)

= Re

{
1

2ik
√
εBµB

(0, 0, us(x))×
(
∂ūs

∂x2
(x),−∂ū

s

∂x1
(x), 0

)}
=

= Re

{
1

2iω εBµB

(
us(x)

∂ūs

∂x1
(x), us(x)

∂ūs

∂x2
(x), 0

)}
.

42Of course, the Maxwell equations (4.2) are written for the total electromagnetic field; however, since

we assume that the incident field satisfies the first one everywhere, by linearity this is also true for the

scattered field.
43Obtained by factoring out the temporal dependence e−iωt, as in [48].
44See e.g. [14], p. 29: although in [14] the complex spatial forms of the fields are obtained by factoring

out the temporal dependence eiωt (i.e., with an opposite sign if compared to [48]), it is easy to realize

that the expression of the time-averaged Poynting vector is the same in both cases.
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In particular, Ss(x) is a vector with zero x3-component: then, we can come back to a 2D

framework and write

Ss(x) =
1

4iω εBµB

[ūs(x)∇us(x)− us(x)∇ūs(x)] . (4.17)

In general, the time-averaged Poynting vector is related to the mean flow (over a period) of

power per unit area: accordingly, its flux over a given surface evaluates the time-averaged

amount of power crossing that surface.

In our 2D framework, the flux of Ss(x) over any curve γ in R2 \D equals the average

power radiated through γ (per unit x3-length) by the scatterer, modelled as an equivalent

source of electromagnetic waves45. Moreover, we consider only simple and (almost every-

where) regular curves. Then, for any such γ, we define the power flux of the scattered field

us across γ as the power flux of the associated Poynting vector, namely

Fγ(u
s) :=

∫
γ

Ss(x) · ν(x) dl(x), (4.18)

where ν(x) denotes the unit normal to γ in x (chosen as outward when γ is closed) and

dl(x) indicates the standard measure defined on γ.

Since us satisfies the Helmholtz equation (with wave number k > 0) in R2 \ D̄, the

vector field Ss(x) is divergence free in R2 \ D̄: indeed, from (4.3)(a) and (4.17), we have

divSs(x) =
1

4iω εBµB

{
|∇us(x)|2 + ūs(x)∆us(x)− |∇us(x)|2 − us(x)∆ūs(x)

}
= (4.19)

=
1

4iω εBµB

{
ūs(x)

[
−k2us(x)

]
− us(x)

[
−k̄2ūs(x)

]}
=

=
1

4iω εBµB

{
−k2 |us(x)|2 + k2 |us(x)|2

}
= 0 ∀x ∈ R2 \ D̄.

Then, Gauss divergence theorem implies that

Fγ(u
s) = 0 (4.20)

for any closed curve in R2 \D not enclosing the scatterer (or any connected component

of it). Furthermore

Fγ1(u
s) = Fγ2(u

s) (4.21)

for any pair of closed curves γ1 and γ2 surrounding the whole scatterer.

In order to determine any of the integrals in (4.21), we introduce the circle ΩR :=

{x ∈ R2 : |x| = R} and compute the power flux at infinity of us as

F∞(us) := lim
R→∞

FΩR
(us). (4.22)

45Cf. footnote no. 37, p. 93.



4.4 The power flux of the scattered field and the far-field equation 97

We are now going to show, by means of the two following theorems, that this flux can be

written in terms of the far-field pattern as

F∞(us) =
k

2ω εBµB

∥u∞∥2L2[0,2π] . (4.23)

Theorem 4.4.1. Let R > 0 and BR := {x ∈ R2 : |x| < R}: then, any field us satisfying

the Helmholtz equation in R2\B̄R and the Sommerfeld radiation condition (4.3)(c) verifies

the asymptotic behaviour

ūs
∂us

∂r
(r, φ) =

ik

r
|u∞(φ)|2 + o

(
r−1
)

as r → ∞. (4.24)

Proof. The Sommerfeld radiation condition (4.3)(c) means nothing else than

lim
r→∞

(
√
r sup
φ∈[0,2π]

∣∣∣∣∂us∂r
(r, φ)− ikus(r, φ)

∣∣∣∣
)

= 0, (4.25)

which implies

sup
φ∈[0,2π]

∣∣∣∣∂us∂r
(r, φ)− ikus(r, φ)

∣∣∣∣ = o
(
r−1/2

)
as r → ∞. (4.26)

Moreover, the asymptotic behaviour (4.4), although concerning the particular case of a

scattered field corresponding to an incident plane wave, also holds for generic radiating

fields us satisfying the Helmholtz equation46, i.e.,

us(x) =
eikr√
r
u∞(φ) +O

(
r−3/2

)
as r → ∞, (4.27)

which can be rewritten as

sup
φ∈[0,2π]

∣∣∣∣us(r, φ)− eikr√
r
u∞(φ)

∣∣∣∣ = O
(
r−3/2

)
as r → ∞. (4.28)

Then, by (4.28) and the triangle inequality, we have

sup
φ∈[0,2π]

|us(r, φ)| ≤ sup
φ∈[0,2π]

∣∣∣∣us(r, φ)− eikr√
r
u∞(φ)

∣∣∣∣+ sup
φ∈[0,2π]

∣∣∣∣eikr√
r
u∞(φ)

∣∣∣∣ = (4.29)

= O(r−3/2) +O(r−1/2) = O(r−1/2) as r → ∞,

i.e.,

sup
φ∈[0,2π]

|us(r, φ)| = O(r−1/2) as r → ∞. (4.30)

46See e.g. [48], p. 67.
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Now, from (4.26) and (4.30), we find47

sup
φ∈[0,2π]

∣∣∣∣ūs(r, φ) [∂us∂r
(r, φ)− ikus(r, φ)

]∣∣∣∣ ≤ (4.31)

≤ sup
φ∈[0,2π]

|us(r, φ)| sup
φ∈[0,2π]

∣∣∣∣∂us∂r
(r, φ)− ikus(r, φ)

∣∣∣∣ =
= O

(
r−1/2

)
o
(
r−1/2

)
= o

(
r−1
)

as r → ∞,

i.e.,

sup
φ∈[0,2π]

∣∣∣∣ūs∂us∂r
(r, φ)− ik |us(r, φ)|2

∣∣∣∣ = o
(
r−1
)

as r → ∞. (4.32)

Hence, by virtue of the triangle inequality, we have

sup
φ∈[0,2π]

∣∣∣∣ūs∂us∂r
(r, φ)− ik

r
|u∞(φ)|2

∣∣∣∣ ≤ (4.33)

≤ sup
φ∈[0,2π]

∣∣∣∣ūs∂us∂r
(r, φ)− ik |us(r, φ)|2

∣∣∣∣+ sup
φ∈[0,2π]

∣∣∣∣ik |us(r, φ)|2 − ik

r
|u∞(φ)|2

∣∣∣∣ .
The former supremum on the right-hand side of inequality (4.33) is ruled by (4.32); as

regards the latter supremum, we have

sup
φ∈[0,2π]

∣∣∣∣ik |us(r, φ)|2 − ik

r
|u∞(φ)|2

∣∣∣∣ = k sup
φ∈[0,2π]

∣∣∣∣|us(r, φ)|2 − 1

r
|u∞(φ)|2

∣∣∣∣ . (4.34)

Simple algebraic computations yield∣∣∣∣|us(r, φ)|2 − 1

r
|u∞(φ)|2

∣∣∣∣ = ∣∣∣∣|us(r, φ)| − 1√
r
|u∞(φ)|

∣∣∣∣ (|us(r, φ)|+ 1√
r
|u∞(φ)|

)
≤

≤
∣∣∣∣us(r, φ)− eikr√

r
u∞(φ)

∣∣∣∣ (|us(r, φ)|+ 1√
r
|u∞(φ)|

)
. (4.35)

Hence, from (4.28), (4.30) and (4.35), we find48

sup
φ∈[0,2π]

∣∣∣∣|us(r, φ)|2 − 1

r
|u∞(φ)|2

∣∣∣∣ ≤ (4.36)

≤ sup
φ∈[0,2π]

∣∣∣∣us(r, φ)− eikr√
r
u∞(φ)

∣∣∣∣ sup
φ∈[0,2π]

(
|us(r, φ)|+ 1√

r
|u∞(φ)|

)
=

= O
(
r−3/2

) [
O
(
r−1/2

)
+O

(
r−1/2

)]
= O

(
r−3/2

)
O
(
r−1/2

)
= O

(
r−2
)
.

47Cf. Prop. 3.5 p. 375 of [62] for the last passage in (4.31).
48See also [62], p. 374-375, for the last line of passages.
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Summing up, from (4.32), (4.33) and (4.36), we obtain49

sup
φ∈[0,2π]

∣∣∣∣ūs∂us∂r
(r, φ)− ik

r
|u∞(φ)|2

∣∣∣∣ = o
(
r−1
)
, (4.37)

which is an equivalent restatement of thesis (4.24). �

Theorem 4.4.2. Under the same hypotheses of Theorem 4.4.1, the flux at infinity of us

is given by equality (4.23).

Proof. By virtue of relations (4.17) and (4.18), the flux of us across any curve γ is given

by

Fγ(u
s) =

1

4iω εBµB

∫
γ

[
ūs
∂us

∂ν
− us

∂ūs

∂ν

]
(x) dl(x). (4.38)

If γ is a circle ΩR of radius R, definition (4.38) becomes:

FΩR
(us) =

1

4iω εBµB

∫ 2π

0

[
ūs
∂us

∂ν
− us

∂ūs

∂ν

]
(R,φ)Rdφ. (4.39)

Then, remembering the definition (4.22) of flux at infinity, it is clear that proving equality

(4.23) amounts to proving that

lim
R→∞

1

4iω εBµB

∫ 2π

0

[
ūs
∂us

∂ν
− us

∂ūs

∂ν

]
(R,φ)Rdφ =

k

2ω εBµB

∫ 2π

0

|u∞(φ)|2dφ, (4.40)

or, equivalently,

lim
R→∞

∣∣∣∣ 1

4iω εBµB

∫ 2π

0

[
ūs
∂us

∂ν
− us

∂ūs

∂ν

]
(R,φ)Rdφ− k

2ω εBµB

∫ 2π

0

|u∞(φ)|2dφ
∣∣∣∣ = 0.

(4.41)

Now, simple computations yield∣∣∣∣ 1

4iω εBµB

∫ 2π

0

[
ūs
∂us

∂ν
− us

∂ūs

∂ν

]
(R,φ)Rdφ− k

2ω εBµB

∫ 2π

0

|u∞(φ)|2dφ
∣∣∣∣ = (4.42)

=

∣∣∣∣ 1

4iω εBµB

{∫ 2π

0

[
ūs
∂us

∂ν
(R,φ)− ik

R
|u∞(φ)|2

]
Rdφ+

−
∫ 2π

0

[
us
∂ūs

∂ν
(R,φ) +

ik

R
|u∞(φ)|2

]
Rdφ

}∣∣∣∣ ≤
≤ 1

4ω εBµB

{∫ 2π

0

sup
φ∈[0,2π]

∣∣∣∣ūs∂us∂ν
(R,φ)− ik

R
|u∞(φ)|2

∣∣∣∣Rdφ+
49Cf. the equation soon before (8.42) p. 231 in [48]: it is similar (but not analogous) to (4.24), and

written for the 3D case.
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+

∫ 2π

0

sup
φ∈[0,2π]

∣∣∣∣us∂ūs∂ν
(R,φ) +

ik

R
|u∞(φ)|2

∣∣∣∣Rdφ
}

=

=
2πR

4ω εBµB

{
sup

φ∈[0,2π]

∣∣∣∣ūs∂us∂ν
(R,φ)− ik

R
|u∞(φ)|2

∣∣∣∣+ sup
φ∈[0,2π]

∣∣∣∣us∂ūs∂ν
(R,φ) +

ik

R
|u∞(φ)|2

∣∣∣∣
}
.

Moreover, relation (4.37) or, equivalently, (4.24), can be more explicitly rewritten as

lim
r→∞

[
r sup
φ∈[0,2π]

∣∣∣∣ūs∂us∂r
(r, φ)− ik

r
|u∞(φ)|2

∣∣∣∣
]
= 0, (4.43)

or also as

lim
r→∞

[
r sup
φ∈[0,2π]

∣∣∣∣us∂ūs∂r
(r, φ) +

ik

r
|u∞(φ)|2

∣∣∣∣
]
= 0. (4.44)

The two previous limits (4.43) and (4.44) show that the last side in the chain of inequalities

(4.42) vanishes as R → ∞. This concludes the proof. �

Having proved equality (4.23), we now want to show that this relation, when applied to

specific scattered fields related to the far-field equation, 1) implies a technical consequence

very helpful for a new formulation of the general theorem; 2) suggests a conceptual remark

that naturally inspires a physical interpretation of the far-field equation, as well as a near-

field version of it.

To this end, we first observe that if gϵz ∈ L2[0, 2π] is such that ∥Fgϵz − Φ∞(·, z)∥L2[0,2π] ≤
ϵ and φ1, φ2 ∈ [0, 2π] are any two angles such that φ1 ≤ φ2, we have∣∣∣ ∥Fgϵz∥L2[φ1,φ2]

− ∥Φ∞(·, z)∥L2[φ1,φ2]

∣∣∣ ≤ ∥Fgϵz − Φ∞(·, z)∥L2[φ1,φ2]
≤ ϵ. (4.45)

Since, in general, the following implications hold:

a, b ≥ 0, |a− b| ≤ ϵ ⇒ a+b ≤ 2b+ϵ ⇒
∣∣a2 − b2

∣∣ = |a− b| (a+b) ≤ ϵ(2b+ϵ), (4.46)

setting a = ∥Fgϵz∥L2[φ1,φ2]
and b = ∥Φ∞(·, z)∥L2[φ1,φ2]

yields∣∣∣ ∥Fgϵz∥2L2[φ1,φ2]
− ∥Φ∞(·, z)∥2L2[φ1,φ2]

∣∣∣ ≤ ϵ′(φ1, φ2), (4.47)

where

ϵ′(φ1, φ2) := ϵ
(
2 ∥Φ∞(·, z)∥L2[φ1,φ2]

+ ϵ
)

(4.48)

does not depend on z, since ∥Φ∞(·, z)∥L2[φ1,φ2]
does not. Now, Fgϵz is the far-field pattern

of the scattered field

us,ϵz (x) :=

∫ 2π

0

us(x, θ)gϵz(θ)dθ ∀x ∈ R2 \D. (4.49)
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Therefore, a comparison between (4.23) and (4.47) implies that, for any observation inter-

val [φ1, φ2] in the far-field region, the flux of the scattered field us,ϵz can be made arbitrarily

close to the flux of the field radiated by a pointlike source placed at the sampling point

z ∈ R2. This result will play a crucial role in the proof of the new version of the general

theorem based on energy conservation arguments, which will be discussed in Section 4.6.

Equation (4.23) has also the important physical consequences described in the follow-

ing remark.

Remark 4.4.1. Let us consider the radiating field ws,ϵ
z (x) = us,ϵz (x) − Φ(x, z), having

ws,ϵ
z,∞ = Fgϵz − Φ∞(·, z) as its far-field pattern. Then, equations (4.21) and (4.23) applied

to ws,ϵ
z , together with inequality (4.11), imply

Fγ(w
s,ϵ
z ) = F∞(ws,ϵ

z ) =
k

2ω εBµB

∥∥ws,ϵ
z,∞
∥∥2
L2[0,2π]

≤ k ϵ2

2ω εBµB

, (4.50)

for any z ∈ R2 and any γ enclosing D ∪ {z}. This may be regarded as the physical

content of inequality (4.11) in the statement of the general theorem: the power flux of the

difference field us,ϵz (x) − Φ(x, z) across any closed curve is bounded according to (4.50).

More importantly, equation (4.50) naturally inspires the near-field equation

Fγ(w
s,ϵ
z ) = 0, (4.51)

which is characterized by a certain similarity50 with the integral equation at the basis

of the reciprocity gap functional method [44]. As in that case, also here information on

boundary values of both the field and its normal derivative are needed to qualitatively

solve the problem. But here the physical interpretation is much more natural. In fact,

it is known that, in L2, a small far-field pattern does not necessarily correspond to a

small scattered field51. Instead, equation (4.50) shows that a small flux at infinity of ws,ϵ
z

remains small also close to the scatterer. Therefore the far-field equation can be pulled

back to a near-field region, provided that the gap between its two sides is estimated in

terms of power fluxes instead of L2-norms. �

On the basis of equations (4.21) and (4.23), we have examined global conservation

properties of the (time-averaged) power flux and their connection with the far-field equa-

tion. In view of the further developments, we complete the discussion with an analysis of

how power is radiated along flow strips, possibly emanating from parts of the boundary

of the scatterer.
50However, we point out that the RGF equation (3.16), p. 53, is linear in the unknown g, while eq.

(4.51) is not.
51See e.g. [48], p. 37.
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We introduce the flow lines of the time-averaged Poynting vector Ss(x) by recalling

that they are defined as the solutions to the initial value problem
dx

dτ
(τ) = Ss(x(τ)) (a)

x(0) = x0, (b)
(4.52)

where x0 is a point in R2 \ D. Since us (and, consequently, Ss(x)) is real-analytic52

in R2 \ D̄, for each x0 ∈ R2 \ D̄ there exists a unique solution ζx0(τ) of the problem

(4.52), which will be called the flow line of the scattered field us starting from x0. We are

interested in considering the flow lines for τ ≥ 0. Henceforth, we assume that ζx0(τ) is

defined for every τ ≥ 0 and that there are no critical points53 x0 of Ss, such that the flow

line starting from x0 collapses into the point x0 itself. By definition (4.18), the average

power crossing a flow line is zero, thus showing that power is carried by the scattered

field along its flow strips : the latter are open, connected and (almost everywhere) regular

domains in R2 \D delimited by (infinite) flow lines, or by (semi-)finite portions of them

and by (one or) two transverse sections.

Now we can follow the power flux of us from the near-field to the far-field region

along its flow strips in the background medium. Accordingly, we consider a flow strip

E ⊂ R2 \ D delimited by two (different and semi-infinite) flow lines ζx0(τ) and ζx1(τ).

We require that ζx0(τ) and ζx1(τ) are indefinitely outgoing toward the far-field region

and that each of them approaches a definite direction at infinity: this is consistent with

the Silver-Müller radiation condition54, in that the radiating electric and magnetic fields

tend to be transverse in the far-field region, which implies that the corresponding Poynting

vector becomes radial. More precisely, we fix these requirements by means of the following

definition.

Definition 4.4.1. Let x0 ∈ R2 \D. A flow line ζx0(τ) is called ‘regular’ if:

(i) ζx0(τ) ∩D = ∅ ∀τ ≥ 0;

(ii) there exists R0 > 0 such that ∀R > R0 the flow line ζx0(τ) intersects ΩR in one

and only one point Px0(R) of polar coordinates (R,φ[Px0(R)]);

(iii) ∃ lim
R→∞

φ[Px0(R)] =: φ∞(x0).

Moreover, a flow strip E ⊂ R2 \ D of us is called ‘regular’ if it is bounded by two

different regular flow lines.

52See e.g. [35], p. 53.
53Cf. e.g. chapter 2 in [1].
54See e.g. [48], p. 160.
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We point out in particular that no critical point of the Poynting vector is allowed to

belong to a regular flow line. For an analysis of such points and their effects on the flow

lines, see e.g. [82]. For future purpose, we also give the following definition.

Definition 4.4.2. Let ζx0(τ) and ζx1(τ) be two regular flow lines with x0, x1 ∈ R2 \D; let

φ∞(x0) and φ∞(x1) be the corresponding asymptotic polar angles. Then, ψ∞(x0, x1) :=

|φ∞(x0) − φ∞(x1)| is called the ‘asymptotic angular width’ of the flow strip bounded by

ζx0(τ) and ζx1(τ).

We can now describe how energy conservation is realized along regular flow strips.

Indeed, let x0, x1 ∈ R2 \D, not belonging to the same flow line. Consider the flow lines

ζx0(τ), ζx1(τ) starting from x0, x1 respectively, and assume that they are regular. Next

choose x2 ∈ ζx0(τ) and x3 ∈ ζx1(τ) and draw two non-intersecting curves in R2 \ D, γ1

and γ2, connecting x0 to x1, and x2 to x3, respectively. Then, the closed curve γ resulting

from the union of γ1, γ2 and the arcs of the flow lines with endpoints x0, x2 and x1, x3 is

the boundary of a finite flow strip E ⊂ R2 \D with transverse sections γ1, γ2. According

to (4.20), the power flux across γ is zero. As a consequence, if the unit normals to both

γ1 and γ2 are oriented ‘towards infinity’, then Fγ1(u
s) = Fγ2(u

s): the last equation is the

‘local’ counterpart of (4.21).

Finally, if ζx0(τ) and ζx1(τ) are regular flow lines identifying a (semi-infinite) regular

flow strip with asymptotic angular width ψ∞(x0, x1), then a ‘local’ version of (4.21)-(4.23)

holds55 in the form

Fγ1(u
s) = Fγ2(u

s) =
k

2ω εBµB

∥u∞∥2L2[φ∞(x0),φ∞(x1)]
. (4.53)

In particular, equation (4.53) shows that the power flux of a scattered field through an

outwardly oriented arc is positive.

Remark 4.4.2. The analysis performed so far is easily adapted to the acoustic case [48].

In particular, the role of the time-averaged Poynting vector (4.17) is now played by the

vector [8]

Ss(x) =
1

4iω ρ0
[p̄s(x)∇ps(x)− ps(x)∇p̄s(x)] , (4.54)

where ρ0 is the constant equilibrium density of the background and ps(x) is the acoustic

scattered pressure field in the inviscid background fluid. �

55Cf. also Subsection 4.10.3, p. 125 (and, in particular, footnote no. 83 , p. 125), for further details.
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4.5 Behaviour of the flow lines

In the present section we consider some numerical simulations showing the behaviour of

the flow lines for sampling points inside the scatterer or on its boundary. The imple-

mentation of the LSM used for our simulations is the same as in [52]. Specifically, the

regularized solution gα(z)(z) ∈ CN of a noisy and discretized version 2π
N
Fhg(z) = Φ∞(z) of

the far-field equation is accomplished by means of Tikhonov method, where the regular-

ization parameter α(z) is fixed to an optimal value α∗(z) by the generalized discrepancy

principle. This regularized solution is used in (4.49) and in the associated Poynting vector

(4.17) to obtain a discretized version of us,ϵz and Ss,ϵ
z , respectively.

Our numerical simulations are performed by choosing a frequency ν = 1GHz, corre-

sponding to a wavelength λ = 0.30m in vacuum, which is the background medium (i.e.,

εB = ε0, σB = 0), and by using the same number N = 15 of incidence and observation

angles. The far-field patterns are computed by a 2D TM direct code based on the method

of moments [81], then are corrupted by 3% Gaussian noise and used as entries of the noisy

far-field matrix Fh. The investigation domain T is a square of minimum side 1.50m, i.e.,

5.00λ.

In the first numerical example we consider an ellipse centred at the origin, with semi-

axes of length a = 0.40λ and b = 0.20λ: this scatterer is characterized by constant

relative electrical permittivity εr = 2.0 and electrical conductivity σ = 0.20 S/m. In

this case, the LSM provides a satisfactory visualization, shown in Figure 5.13(a) together

with the actual profile (solid black line). For future purpose, in Figure 5.13(b) we plot the

point-values of the discretized discrepancy d(z) :=
∥∥2π

N
Fhgα∗(z)(z)−Φ∞(z)

∥∥
CN , which is

a numerical estimate of ϵ ≥ ∥Fgϵz − Φ∞(·, z)∥L2[0,2π].

Figure 5.14 shows the behaviour of the flow lines of us,ϵz for a sampling point placed

at the centre of the ellipse: more precisely, the arrows represent the unit vector Ŝs,ϵ
z

obtained by discretizing and normalizing56 the time-averaged Poynting vector field Ss,ϵ
z .

The behaviour of the flow lines is essentially radial with respect to z, in this resembling

the field generated by a point source located at z: in other terms, the scattered field us,ϵz

reproduces, at least qualitatively, the features of the fundamental solution Φ(·, z). Such

a radial behaviour of the flow lines with respect to z is maintained for any z inside the

scatterer or on its boundary, as shown e.g. in Figure 5.15 for z = (0.00λ, 0.20λ): in

particular, the flow lines are regular in the sense of Definition 4.4.1.

The second example is concerned with a case in which the visualization of the unknown

scatterer is unsatisfactory. We consider two penetrable ellipses with the same dimensions

56The normalization is performed in order to avoid scale effects impairing the visualization.
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as the previous one: the upper ellipse is centred at the point (0.00λ, 0.50λ) and char-

acterized by constant relative electrical permittivity εr,1 = 10 and electrical conductivity

σ1 = 0.38 S/m; the lower ellipse is centred at (0.00λ,−0.50λ) and its electrical param-

eters are εr,2 = 20 and σ2 = 0.50 S/m. Figure 5.16(a) shows the visualization provided

by the LSM, together with the true profile of the scatterer (solid black lines). In Figure

5.16(b) we plot the point-values of the discretized discrepancy d(z).

As in the previous case, for a sampling point z inside the scatterer, or on its boundary,

the behaviour of the flow lines of us,ϵz resembles that of Φ(·, z): see Figure 5.17 (for

z = (0.00λ, 0.50λ)), Figure 5.18 (for z = (0.00λ, 0.70λ)) and Figure 5.19 (for z =

(0.00λ, 0.30λ)). We point out that in the case of Figure 5.18 the flow lines starting from

a neighbourhood of z are regular in the sense of Definition 4.4.1; instead, this is not true

in the case of Figure 5.19, since these flow lines cannot reach the far-field region without

crossing the lower ellipse: notably, in this case the visualization provided by the LSM is

bad in the region around z.

From this first set of simulations, we can conclude that, if z ∈ D, the flow lines of

the scattered field (4.49) resemble those of the field Φ(·, z) radiated by a pointlike source

placed at z: this fact, as we shall see in the next section, suffices to explain the growing

of ∥gϵz∥L2[0,2π] as z approaches the boundary ∂D. A second set of simulations will be

performed in Section 4.7 to study the behaviour of the flow lines when z is outside D.

Remark 4.5.1. As anticipated in Sections 1.4 and 4.3, here we shall not try to justify,

from a mathematical viewpoint, the behaviour of the flow lines, as observed in numerical

simulations. However, the fact that, for z ∈ D, the (normalized) Poynting vector field

Ŝs,ϵ
z associated with the scattered field us,ϵz very closely resembles that of the pointlike

source placed at z is remarkable: then, we want to sketch a heuristic explanation for this

similarity, by assuming that the scattering conditions allow applying the FM.

To this end, we recall Remark 4.2.1, p. 91, where we pointed out that the problem of

recovering a radiating field from its far-field pattern is ill-posed. This issue motivates a

significant part of the investigation pursued by [10]57: here, it is shown in detail, for the

particular case of 3D acoustic scattering by a sound-soft obstacle, how and under what

(sufficient) conditions a regularization method R̃α for the far-field operator F naturally

yields a regularization method Rα := −HR̃α for the solution operator G of the direct

scattering problem (i.e., G maps the boundary values φ on ∂D into the far-field pattern

u∞ of the scattered field). In this case, for z ∈ D, the Tikhonov regularized solution

gαz = R̃αΦ∞(·, z) of the far-field equation (4.10) is such that not only Fgαz is ‘close’58 to

57See, in particular, Theorem 3.3 of [10].
58In this paragraph, ‘close’ is clearly intended, at any one time, with respect to an appropriate norm:
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Φ∞(·, z), but also the boundary values φα
z := RαΦ∞(·, z) of the scattered field usgαz having

Fgαz as its far-field pattern are ‘close’ to the boundary values59 of Φ(·, z) on ∂D. Then,

by virtue of the well-posedness of the direct scattering problem, the scattered field usgαz
will be ‘close’ to Φ(·, z) also in the near-field region, which suggests that the flow lines of

these two fields may have a similar behaviour60.

It is clear that such discussion should be made much more precise and, hopefully,

independent of any assumption on the applicability of the FM. �

4.6 A new version of the general theorem: z ∈ D

In the present section we shall provide a new version of the general theorem for the

LSM when the sampling point is inside the scatterer. This new version exploits the

considerations on the fluxes of the Poynting vector described in Section 4.4, as well as the

numerical behaviour of its flow lines shown in Section 4.5. In the next section, we shall

consider the case of z outside the scatterer.

According to the general theorem, for every ϵ > 0 there exists a solution gϵz of the

inequality (4.11) such that ∥gϵz∥L2[0,2π] → ∞ if z → z∗ ∈ ∂D. We prove that, under

appropriate assumptions on the flow lines, the norm of any approximate solution of the

far-field equation blows up for a non-vanishing (although small enough) bound ϵ on the

discrepancy.

Theorem 4.6.1. Under the same hypotheses of Theorem 4.1.1, consider a point z∗ ∈ ∂D

and a neighbourhood Uz∗ of z∗. If z ∈ Uz∗ ∩D and ϵ > 0, let gϵz ∈ L2[0, 2π] be such that

∥Fgϵz − Φ∞(·, z)∥L2[0,2π] ≤ ϵ. (4.55)

For each z ∈ Uz∗ ∩D, denote by Cz(z
∗) the circle of centre z∗ and radius r := |z−z∗|, and

by C̃z(z
∗) the intersection Cz(z

∗)∩(R2 \D). Suppose that Uz∗ is so small that C̃z(z
∗) is an

arc with endpoints y1z , y
2
z ∈ ∂D for each z ∈ Uz∗ ∩D. Moreover, assume that the flow lines

ζy1z (τ) and ζy2z (τ) of us,ϵz are regular and identify a regular flow strip with the asymptotic

angular width ψ∞(z) := |φ∞ (y1z)− φ∞ (y2z)|; finally, assume that limz→z∗ φ∞ (y1z) and

limz→z∗ φ∞ (y2z) exist finite and are different. Then, for any such gϵz ∈ L2[0, 2π],

lim
z→z∗

∥gϵz∥L2[0,2π] = ∞ (4.56)

we refer to [10] and Sec. 3.2 in [48] for details.
59See Corollary 3.4 of [10].
60However, it is worth pointing out that a priori such similarity might hold even if the two fields are

not ‘close’ to each other: in this sense, the mathematical justification of the behaviour of the flow lines,

as assumed by our approach, might not require the applicability of the FM.
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if ϵ is small enough.

Proof. We preliminarily note that the existence of gϵz ∈ L2[0, 2π] satisfying inequality

(4.55) follows from the denseness61 of the range of F .

Let z∗ ∈ ∂D. Since the boundary ∂D is C2, the condition that C̃z(z
∗) is an arc is

satisfied provided that |z − z∗| is small enough (see Figure 5.20).

Next we assume, by contradiction, that the limit (4.56) does not hold. Then, there

exist a constant K > 0 and a sequence {zn}∞n=0 ⊂ Uz∗ ∩D such that limn→∞ |zn − z∗| = 0

and ∥∥gϵzn∥∥L2[0,2π]
≤ K ∀n ∈ N. (4.57)

Now, let B1 := {x ∈ R2 | |x| < R1} be the open disk centred at the origin and with

radius R1 large enough, so that B1 ⊃ D̄, and set G := B1 \ D̄. To show the contradiction,

we need a common bound for the fields us,ϵzn (x) (defined as in (4.49)) for any x ∈ Ḡ and

n ∈ N, as well as for their partial derivatives.
The continuity in Ḡ of us(·, θ) for each θ ∈ [0, 2π] is obvious, while the continuity in

[0, 2π] of us(x, ·), uniformly with respect to x ∈ Ḡ, i.e., the property

lim
θ→θ0

max
x∈Ḡ

|us(x, θ)− us(x, θ0)| = 0 ∀θ0 ∈ [0, 2π], (4.58)

follows62 from the well-posedness of the direct scattering problem63 with respect to the

maximum norm in C(B̄1) and from the fact that

lim
θ→θ0

max
x∈B̄1

∣∣∣eikx·d̂(θ) − eikx·d̂(θ0)
∣∣∣ = 0 ∀θ0 ∈ [0, 2π]. (4.59)

It is possible to show64 that the two previous continuity properties imply that us is a

continuous function of both the variables x and θ, i.e., us ∈ C(A), where A := Ḡ× [0, 2π].

Since A is compact, we can define

M1 := max
(x,θ)∈A

|us(x, θ)| . (4.60)

As a consequence, by using the Cauchy-Schwarz inequality and comparing with (4.49)

and (4.57), we have

∣∣us,ϵzn (x)
∣∣ ≤ ∫ 2π

0

∣∣us(x, θ)gϵzn(θ)∣∣ dθ ≤M1

√
2π
∥∥gϵzn∥∥L2[0,2π]

≤
√
2πM1K =: Q1, (4.61)

61See e.g. [35], p. 108.
62A detailed explanation of this implication is given in Subsection 4.10.2, p. 121.
63See [48], p. 222 and pp. 307-308.
64For details, see again Subsection 4.10.2, p. 121.
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for all n ∈ N and for all x ∈ Ḡ.

By a similar procedure, we can bound the incident field ui,ϵzn(x) = vgϵzn for all n ∈ N
and for all x ∈ Ḡ:∣∣vgϵzn (x)∣∣ ≤ ∫ 2π

0

∣∣∣eikx·d̂(θ)gϵzn(θ)∣∣∣ dθ ≤ √
2π
∥∥gϵzn∥∥L2[0,2π]

≤
√
2πK. (4.62)

From (4.61) and (4.62), we find an upper bound for the total field uϵzn = ui,ϵzn + us,ϵzn , i.e.,∣∣uϵzn(x)∣∣ ≤ Q1 +
√
2πK ∀x ∈ Ḡ, ∀n ∈ N. (4.63)

To find a similar bound for the derivatives, we recall65 that the direct scattering

problem for an incident field ui(x) is equivalent to the Lippmann-Schwinger equation

u(x) = ui(x)− k2
∫
B

Φ(x, y)m(y)u(y)dy, x ∈ B̄, (4.64)

where m := 1 − n, and B := {x ∈ R2 : |x| < R} is any open disk such that B̄ ⊃ D̄; in

particular, by taking R > R1, we can assume that B ⊃ Ḡ. As a consequence of (4.64),

we find that

∂us,ϵzn

∂xi
(x) = −k2

∫
B

∂Φ

∂xi
(x, y)m(y)uϵzn(y)dy, x ∈ B ⊃ Ḡ, (4.65)

where the partial derivative with respect to xi (with i = 1, 2) can be brought inside the

integral because of the boundedness of m(y)uϵzn(y) [61]. If we denote by M an upper

bound for |m(y)|, from (4.63) and (4.65) we get∣∣∣∣∂us,ϵzn

∂xi
(x)

∣∣∣∣ ≤ k2M
(
Q1 +

√
2πK

)∫
B

∣∣∣∣ ∂Φ∂xi (x, y)
∣∣∣∣ dy ∀x ∈ Ḡ, ∀n ∈ N. (4.66)

By the same arguments used in [61], it is possible to show that the integral on the right-

hand side of (4.66) is a continuous function of x: then it takes its maximum value, say

M2, on Ḡ. As a consequence, we find an upper bound for the derivatives of the scattered

field, i.e., ∣∣∣∣∂us,ϵzn

∂xi
(x)

∣∣∣∣ ≤ k2M
(
Q1 +

√
2πK

)
M2 =: Q2 ∀x ∈ Ḡ, ∀n ∈ N. (4.67)

(If the scatterer is impenetrable, inequalities analogous to (4.61) and (4.67) can be proved

more easily, by exploiting the well-posedness of the direct problem: for details, see the

second part of Subsection 4.10.2, p. 123).

Now, let us evaluate the flux FC̃zn (z
∗)

(
us,ϵzn

)
as n→ ∞ in two ways:

65See [48], p. 216 and pp. 307-308.
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a) near the boundary ∂D, i.e., across C̃zn(z
∗). In view of (4.18), we have

FC̃zn (z
∗)

(
us,ϵzn

)
=

1

4iω εBµB

∫
C̃zn(z

∗)

[
ūs,ϵzn

∂us,ϵzn

∂ν
− us,ϵzn

∂ūs,ϵzn

∂ν

]
(x) dl(x). (4.68)

Then, by observing that C̃zn(z
∗) ⊂ Ḡ for n large enough, and by applying inequali-

ties (4.61), (4.67), we have∣∣∣FC̃zn (z
∗)

(
us,ϵzn

)∣∣∣ ≤ 1

2ω εBµB

∫
C̃zn (z

∗)

∣∣∣∣ūs,ϵzn (x)
∂us,ϵzn

∂ν
(x)

∣∣∣∣ dl(x) ≤ √
2

∣∣C̃zn(z
∗)
∣∣

2ω εBµB

Q1Q2,

(4.69)

where
∣∣C̃zn(z

∗)
∣∣ denotes the length of the arc C̃zn(z

∗). Since
∣∣C̃zn(z

∗)
∣∣→ 0 as n→ ∞

(i.e., as zn → z∗), we find that

lim
n→∞

∣∣∣FC̃zn(z
∗)

(
us,ϵzn

)∣∣∣ = 0; (4.70)

b) in the far-field region. To this end, we consider the regular flow strip delimited by

the two regular flow lines ζy1zn (τ) and ζy2zn (τ) of u
s,ϵ
zn , so that the power flux outgoing

from C̃zn(z
∗) is preserved along the flow strip itself up to infinity. Hence, recalling

(4.18), (4.22), (4.23), (4.47), following the notations introduced by Definition 4.4.1

and assuming (it is not restrictive) that φ∞
(
y1zn
)
≤ φ∞

(
y2zn
)
, we have66

FC̃zn (z
∗)

(
us,ϵzn

)
=

1

4iω εBµB

∫
C̃zn(z

∗)

[
ūs,ϵzn

∂us,ϵzn

∂ν
− us,ϵzn

∂ūs,ϵzn

∂ν

]
(x) dl(x) = (4.71)

=
1

4iω εBµB

lim
R→∞

∫ φ[P
y2zn

(R)]

φ[P
y1zn

(R)]

[
ūs,ϵzn

∂us,ϵzn

∂r
− us,ϵzn

∂ūs,ϵzn

∂r

]
(R,φ)Rdφ =

=
k

2ω εBµB

∥∥Fgϵzn∥∥2L2[φ∞(y1zn ),φ∞(y2zn)]
≥

≥ k

2ω εBµB

{
∥Φ∞(·, zn)∥2L2[φ∞(y1zn ),φ∞(y2zn )]

− ϵ′
[
φ∞
(
y1zn
)
, φ∞

(
y2zn
)]}

.

According to our assumptions, we have

lim
n→∞

φ∞
(
y1zn
)
=: φ1

∞ and lim
n→∞

φ∞
(
y2zn
)
=: φ2

∞; (4.72)

then, from the chain of inequalities (4.71), we easily get

lim inf
n→∞

FC̃zn(z
∗)

(
us,ϵzn

)
≥ k

2ω εBµB

[
∥Φ∞(·, z∗)∥2L2[φ1

∞,φ2
∞] − ϵ′

(
φ1
∞, φ

2
∞
)]
. (4.73)

66A detailed explanation of the passage from the second to the third line of relations (4.71) is given in

Subsection 4.10.3, p. 125.
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Since, by hypothesis,

ψ∞(z∗) :=
∣∣φ1

∞ − φ2
∞
∣∣ ̸= 0, (4.74)

the inequality ∥Φ∞(·, z∗)∥2L2[φ1
∞,φ2

∞] > 0 holds; hence, by taking ϵ small enough, we

can make ϵ′ (φ1
∞, φ

2
∞) small enough too, so that the right-hand side of (4.73) is

strictly positive, and a contradiction between (4.70) and (4.73) is obtained. More

precisely, according to definition (4.48), it suffices to take

0 < ϵ <
(√

2− 1
)
∥Φ∞(·, z∗)∥L2[φ1

∞,φ2
∞] =

(√
2− 1

)√ψ∞(z∗)

8πk
. (4.75)

This concludes the proof. �

Remark 4.6.1. An explicit computation of bound (4.75) requires the knowledge of the

asymptotic angular width ψ∞(z∗). Since numerical simulations show that, for z ∈ D, the

behaviour of the flow lines of us,ϵz is essentially radial with respect to z, we can identify

ψ∞(z∗) with the limit amplitude of the Euclidean angle y1zn ẑny
2
zn having its vertex at zn

and subtended by the arc C̃zn(z
∗) as n → ∞. Now, it is easily seen that y1zn ẑny

2
zn is an

angle at the circumference Czn(z
∗) whose corresponding angle at the centre tends to π as

n→ ∞, owing to the existence of the tangent t∗ in z∗ to the C2-boundary ∂D (see Figure

5.20). As a consequence, we find that ψ∞(z∗) = π/2, and then bound (4.75) becomes

0 < ϵ <
(√

2− 1
) 1

4
√
k
. (4.76)

We shall come back to this point later. �

Remark 4.6.2. Of course, Theorem 4.6.1 only identifies sufficient conditions ensuring

the validity of limit (4.56), which can then hold under weaker assumptions. The core of

the proof of this theorem consists of finding a contradiction with limit (4.70), for example

by showing that

lim inf
n→∞

FC̃zn (z
∗)

(
us,ϵzn

)
> 0. (4.77)

To this end, we could replace assumptions (4.72) and (4.74) with the following (and

weaker) one: for each sequence {zn}∞n=0 ⊂ D such that limn→∞ |zn − z∗| = 0, the asymp-

totic angular width ψ∞(zn) of the regular flow strip starting from C̃zn(z
∗) is such that

lim infn→∞ ψ∞(zn) > 0. �

4.7 A new version of the general theorem: z /∈ D

Let us first observe that, if x0 ∈ ∂D, uniqueness issues for the initial value problem (4.52)

may arise. Indeed, the scattered field us is real-analytic in R2\D̄ but is only in C1(R2\D)
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(or in C1,α(R2 \D), with 0 < α < 1, in the case of perfect conductors67). Accordingly, its

first derivatives are only in C0(R2 \D) (or in C0,α(R2 \D)), i.e., they are not necessarily

Lipschitz up to ∂D. Hence the field Ss defined in (4.17) is not necessarily Lipschitz up to

∂D: as a consequence, an initial point x0 taken on ∂D may be a ramification point , i.e., a

point whence several flow lines start. A clear example of this is provided by Figures 5.15

and 5.18. Indeed, as observed in Section 4.5, the radiality of flow lines is approximately

verified for sampling points z in D and even on ∂D: then, in the latter case, z is also a

ramification point.

A situation where no ramification point is allowed occurs when a penetrable scatterer

stands out from the background in a smooth way, i.e., when n is in C1(R2): indeed, in

this case68 us ∈ C2(R2). However, this smoothness property is seldom verified in practice;

moreover, numerical simulations show that the support of such a smooth scatterer is

significantly underestimated by the LSM, as expected. Hence, we shall not explicitly

investigate this situation in the following.

In the case of sampling points z chosen in regions outside the scatterer where the

visualization is good, ramification points on ∂D systematically show up in our numerical

experiments and the behaviour of the flow lines, in general, is far from being radial with

respect to z or any other point in the plane.

With reference to the same experiments of Section 4.5, in Figure 5.21 we consider a

sampling point z = (1.17λ, 0.70λ): notably, two ramification points (represented by red

square boxes) are detectable on the boundary of the scatterer.

In Figure 5.22 the sampling point is z = (0.70λ, 1.17λ): again, two ramification points

show up on the boundary ∂D. Finally, Figure 5.23 shows the behaviour of the flow lines for

a sampling point z placed at the origin of the investigation domain: except for the region

between the two ellipses, the field has a radial behaviour with respect to the sampling

point. However, we notice that no ramification point is detectable and the visualization

of the scatterer around z is bad.

The occurrence of ramification points is supported not only by numerics but also by

theory, since assuming their existence allows proving that ∥gϵz∥L2[0,2π] must blow up for

z /∈ D, and therefore provides a coherent theoretical framework whereby the numerical

simulations can be interpreted.

To this aim we introduce a definition describing the behaviour of the flow lines starting

from a ramification point and reaching the far-field region. Of course, this definition is

inspired by the radial behaviour of the flow lines of the Green’s function Φ(·, z) with

67See [48], p. 51 and pp. 64-67.
68See [48], pp. 212-222 and pp. 307-308.



112 4 The LSM explained by energy conservation

respect to the point source z and generalizes some of its relevant features by using the

concepts of regularity and asymptotic angular width introduced in Definitions 4.4.1 and

4.4.2.

Definition 4.7.1. A radiating solution u of the Helmholtz equation in R2 \ D̄ is said to

be ‘partially pseudo-radial’ with respect to a ramification point z0 ∈ ∂D if there exist at

least two regular flow lines ζ1z0(τ) and ζ2z0(τ) starting from z0 such that their asymptotic

polar angles φ1
∞(z0) and φ2

∞(z0) are different, i.e., φ1
∞(z0) ̸= φ2

∞(z0), and the flow strip

delimited by ζ1z0(τ) and ζ2z0(τ) is regular. If
{
ζ iz0(τ)

}
i∈I denotes the set of all such flow

lines and {φi
∞(z0)}i∈I is the set of their asymptotic polar angles, the quantity ψ∞(z0) :=

supi,j∈I |φi
∞(z0)−φj

∞(z0)| > 0 is called the ‘asymptotic angular width’ of the beam of flow

lines outgoing from z0.

Theorem 4.7.1. Under the same hypotheses of Theorem 4.1.1, consider a point z ∈
R2 \D. If ϵ is small enough, then there cannot exist gϵz ∈ L2[0, 2π] such that

∥Fgϵz − Φ∞(·, z)∥L2[0,2π] ≤ ϵ (4.78)

and the field us,ϵz is partially pseudo-radial with respect to some point z0 ∈ ∂D.

Proof. Let z /∈ D. Assume by contradiction that there exist ϵ > 0 and gϵz ∈ L2[0, 2π]

such that the inequality (4.78) holds and the field us,ϵz is partially pseudo-radial with

respect to a ramification point z0 ∈ ∂D. Let ψ∞(z0) > 0 be the asymptotic angular

width of the beam of flow lines outgoing from z0. According to Definition 4.7.1, we

can find two regular flow lines ζ1z0(τ), ζ
2
z0
(τ) of asymptotic polar angles φ1

∞(z0), φ
2
∞(z0)

respectively, such that the corresponding regular flow strip has asymptotic angular width

ψ̃∞(z0) := |φ1
∞(z0)−φ2

∞(z0)| > 0, which can be made arbitrarily close to (but not greater

than) ψ∞(z0).

Consider a family of circles Cn(z0) of centre z0 and radius rn, with limn→∞ rn = 0,

and let y1n := Cn(z0) ∩
{
ζ1z0(τ)

}
τ∈[0,+∞)

, y2n := Cn(z0) ∩
{
ζ2z0(τ)

}
τ∈[0,+∞)

. Finally, denote

by C̃n(z0) ⊂ R2 \ D the arc with end points y1n and y2n, resulting from the intersection

between the circle Cn(z0) and the flow strip identified by the flow lines ζ1z0(τ) and ζ
2
z0
(τ).

Following the procedure of the previous theorem, we evaluate the flux FC̃n(z0)
(us,ϵz ) as

n→ ∞ in two ways:

a) close to the point z0, across C̃n(z0):

FC̃n(z0)
(us,ϵz ) =

1

4iω εBµB

∫
C̃n(z0)

[
ūs,ϵz

∂us,ϵz

∂ν
− us,ϵz

∂ūs,ϵz

∂ν

]
(x) dl(x). (4.79)
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Then, by applying the mean-value theorem for integration, we have:∣∣∣FC̃n(z0)
(us,ϵz )

∣∣∣ ≤ 1

2ω εBµB

∫
C̃n(z0)

∣∣∣∣ūs,ϵz (x)
∂us,ϵz

∂ν
(x)

∣∣∣∣ dl(x) = (4.80)

=

∣∣C̃n(z0)
∣∣

2ω εBµB

|ūs,ϵz (x̃n)| ·
∣∣∣∣∂us,ϵz

∂ν
(x̃n)

∣∣∣∣ ,
where x̃n is an appropriate point of C̃n(z0). Since

lim
n→∞

∣∣C̃n(z0)
∣∣ = 0, lim

n→∞
|x̃n − z0| = 0, (4.81)

by the continuity of us,ϵz and
∂us,ϵz

∂ν
we have

lim
n→∞

|ūs,ϵz (x̃n)| = |ūs,ϵz (z0)| , lim
n→∞

∣∣∣∣∂us,ϵz

∂ν
(x̃n)

∣∣∣∣ = ∣∣∣∣∂us,ϵz

∂ν
(z0)

∣∣∣∣ . (4.82)

As a result, from (4.80) and (4.82), we find

lim
n→∞

∣∣∣FC̃n(z0)
(us,ϵz )

∣∣∣ = 0; (4.83)

b) in the far-field region. Following the proof of Theorem 4.6.1, we consider the regular

flow strip bounded by the flow lines ζ1z0(τ) and ζ
2
z0
(τ) of us,ϵz , outgoing from z0, and

track the power flux outgoing from C̃n(z0) up to the far-field region. As in the proof

of (4.71), we obtain, for each n ∈ N:

FC̃n(z0)
(us,ϵz ) =

1

4iω εBµB

∫
C̃n(z0)

[
ūs,ϵz

∂us,ϵz

∂ν
− us,ϵz

∂ūs,ϵz

∂ν

]
(x) dl(x) = (4.84)

=
1

4iω εBµB

lim
R→∞

∫ φ[P 2
z0

(R)]

φ[P 1
z0

(R)]

[
ūs,ϵz

∂us,ϵz

∂r
− us,ϵz

∂ūs,ϵz

∂r

]
(R,φ)Rdφ =

=
k

2ω εBµB

∥Fgϵz∥
2
L2[φ1

∞(z0),φ2
∞(z0)]

≥

≥ k

2ω εBµB

{
∥Φ∞(·, z)∥2L2[φ1

∞(z0),φ2
∞(z0)]

− ϵ′
[
φ1
∞(z0), φ

2
∞(z0)

]}
.

Since ψ̃∞(z0) = |φ1
∞(z0)− φ2

∞(z0)| > 0, we have ∥Φ∞(·, z)∥2L2[φ1
∞(z0),φ2

∞(z0)]
> 0; this

leads to a contradiction between (4.83) and (4.84) for ϵ such that

0 < ϵ <
(√

2− 1
)
∥Φ∞(·, z)∥L2[φ1

∞,φ2
∞] =

(√
2− 1

)√ ψ̃∞(z0)

8πk
. (4.85)

This concludes the proof. �
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Remark 4.7.1. Analogously to Remark 4.6.1, we note that an explicit computation of

bound (4.85) is only possible by knowing the asymptotic angular width ψ̃∞(z0). In our

framework, this knowledge can only be obtained a posteriori, by looking in each case at

the flow lines provided by the numerical simulations, as we shall do in the next section, in

order to compare bounds (4.75) and (4.85) with the values of the discrepancy. However,

as observed in Section 4.5, for sampling points z on ∂D the flow lines still have a radial

behaviour: then, bound (4.76) is even an underestimate of the maximum ϵ allowed by

(4.85) for such points, at least in those cases (like in Figures 5.15 and 5.18) where the

flow lines can reach the far-field region without intersecting the scatterer. �

Remark 4.7.2. The proof of Theorem 4.7.1 is developed by considering a single ram-

ification point z0, but it is easily adapted to account for two or more such points. For

example, if we assume the existence of two ramification points z0 and z′0, we can con-

sider two flow strips with asymptotic angular widths ψ̃∞(z0) = |φ1
∞(z0)− φ2

∞(z0)| and
ψ̃∞(z′0) = |φ′1

∞(z′0) − φ
′2
∞(z′0)|. Then, our argument still holds by considering two van-

ishing sequences {rn}∞n=0, {r′n}
∞
n=0 and two corresponding families of collapsing circles

Cn(z0), C
′
n(z

′
0). Accordingly, the integral on C̃n(z0) appearing in (4.79), (4.80) and

(4.84) should be replaced by an integral on C̃n(z0) ∪ C̃ ′
n(z

′
0), i.e., by the sum of two

integrals, each of which behaves as shown in the proof. As a result, in bound (4.85)

the norm of Φ∞(·, z) in L2[φ1
∞(z0), φ

2
∞(z0)] must be replaced by the norm of Φ∞(·, z) in

L2
(
[φ1

∞(z0), φ
2
∞(z0)] ∪ [φ

′1
∞(z′0), φ

′2
∞(z′0)]

)
. Accordingly, in the same (4.85), ψ̃∞(z0) should

be replaced by the total asymptotic angular width, defined as ψ̃T
∞ := ψ̃∞(z0) + ψ̃∞(z′0). �

From Theorem 4.7.1 two natural issues arise, which we want to address. First, the

statement of the theorem seems to be in contradiction with Figures 5.21 and 5.22, which

rather seem to support the existence of a gϵz ∈ L2[0, 2π] fulfilling the properties considered

in the statement itself69. This is apparently a paradox, since the theorem was formulated

just taking inspiration from these figures. However, we should not forget that the corre-

spondence between theory (i.e., continuous framework) and numerics (i.e., discrete and

noisy framework) is not exact. In particular, the non-existence (in the former context) of

a gϵz ∈ L2[0, 2π] with the required properties will reflect upon a comparatively large value

(in the latter one) of the CN -norm of the vector obtained from a discretization of gϵz itself.

More specifically, we should expect that ∥gα∗(z)(z)∥CN (cf. Section 4.5) is much larger for

z outside the scatterer than inside it (with a transition region across the boundary) and

that α∗(z) is much smaller outside than inside it, at least when the visualization provided

69We are going to verify, in the next section, that in the case of Figures 5.21 and 5.22 the value of ϵ is

small enough, in the sense of bound (4.85) and Remark 4.7.2, as required by Theorem 4.7.1.
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by the LSM is good. This is what actually happens, as we are going to see in the next

section.

A second issue arises from an apparent self-contradiction in the statement of Theorem

4.7.1: the non-existence of gϵz ∈ L2[0, 2π] with the required properties is established

under the assumption of pseudo-radiality for the field us,ϵz ; but the non-existence of such

gϵz ∈ L2[0, 2π] seems to imply the non-existence of the corresponding field us,ϵz (and,

consequently, of its flow lines). Accordingly, the requirement of pseudo-radiality is made

about a field that does not apparently exist. This difficulty can be overcome by observing

that the condition gϵz ∈ L2[0, 2π] is not necessary for the existence of the field us,ϵz , as

given by (4.49).

To this purpose, we point out that the far-field operator F , given by (4.5), can be

certainly regarded as defined on a space larger than L2[0, 2π]: indeed, for each φ ∈ [0, 2π],

the far-field pattern u∞(φ, ·) is real-analytic70 on the interval (0, 2π), and then u∞(φ, ·) ∈
C∞(0, 2π). As a consequence, F can be easily defined, e.g., on the space of distribu-

tions having compact support, i.e.71, E∗(0, 2π) := {g ∈ D∗(0, 2π) : supp g ⊂⊂ (0, 2π)},
provided that the integral on the right-hand side of (4.5) is interpreted in the pairing

sense, i.e., ⟨g, u∞(φ, ·)⟩. Analogous remarks can be made for the expression (4.7) of the

superposed incident field ui = vg. This implies that, for any g ∈ E∗(0, 2π), Fg is actually

the far-field pattern of a scattered field, which, by superposition, is given by the integral

(4.49) in the pairing sense.

For example, the numerical/experimental set-up itself, involving a finite number N of

incidence angles {θ0, . . . , θN−1}, suggests enlarging the space to which g belongs in such

a way that also g of the form

g(θ) =
N−1∑
i=0

ci δ(θ − θi) ∈ E∗(0, 2π) (4.86)

(where, for each i = 0, . . . , N − 1, ci ∈ C and δ(· − θi) denotes the Dirac delta in

R concentrated at θi ∈ (0, 2π)) can be considered as a candidate to be an approximate

solution of the far-field equation (4.10): indeed, the form (4.86) for g is the only possibility

for constructing an incident field vg that is formally expressed by relation (4.7) but actually

consists of a finite superposition of N plane waves with weights ci.

Summarizing, the non-existence of a gϵz ∈ L2[0, 2π] endowed with the properties re-

quired by Theorem 4.7.1 does not prevent us from considering the field us,ϵz and its flow

lines.

70See e.g. [48], p. 35.
71See e.g. [75], pp. 65-67.



116 4 The LSM explained by energy conservation

A final comment is in order: so far we have only dealt with the full-view configuration

of probes. Then, we conclude this section by sketching the extension of our approach

to the aspect-limited case. Let Γi,Γo ⊂ [0, 2π] be the sets of incidence and observation

angles θ, φ respectively (for brevity, we consider Γo independent of θ). An ϵ-approximate

solution of the modified far-field equation72 is a function gϵz ∈ L2(Γi) such that∥∥∥∥∫
Γi

u∞(·, θ)gϵz(θ)dθ − Φ∞(·, z)
∥∥∥∥
L2(Γo)

≤ ϵ. (4.87)

In any case, the corresponding field us,ϵz (x) :=
∫
Γi
us(x, θ)gϵz(θ)dθ and its flow lines are

defined for all x ∈ R2 \D; moreover, its far-field pattern, defined for φ ∈ [0, 2π], satisfies

condition (4.87) at least for φ ∈ Γo, and even in a larger set Γ′
o ⊃ Γo if the left-hand side

of (4.87) is strictly smaller than ϵ. Now, if Γ′
o = [0, 2π], the situation is analogous to the

full-view case; otherwise, Theorems 4.6.1 and 4.7.1 ensure that ∥gϵz∥L2(Γi) blows up for

each z approaching z∗ ∈ ∂D (or placed in R2 \D), such that the flow lines starting from a

neighbourhood of z∗ (or from a ramification point z0) reach, under the usual assumptions,

the far-field region inside Γ′
o with a non-vanishing asymptotic angular width. Again, this

is in qualitative agreement with numerical simulations, which show [42, 43, 44] that, when

the emitters and receivers are placed in the same region, the scatterer is, in general, best

visualized in its illuminated part.

4.8 Tikhonov regularization and numerical validation

Theorems 4.6.1 and 4.7.1 deal with generic ϵ-approximate solutions gϵz of the far-field

equation. However, it is of interest to focus on Tikhonov regularized solutions, from

both the theoretical and the numerical viewpoint, since they play a major role in the

implementation of the LSM.

First of all, we observe that Theorem 4.6.1 does not state that ∥gϵz∥L2[0,2π] is bounded

for z ∈ D: rather, the existence of gϵz ∈ L2[0, 2π], ensured by the denseness of the range

of F , is a starting point of our argument. However, when Tikhonov regularized solutions

gα∗(z) of the far-field equation are considered, the boundedness of ∥gα∗(z)∥L2[0,2π] for z ∈ D

simply follows from the fact that α∗(z) > 0. What Theorem 4.6.1 can establish is that, in

spite of regularization, appropriate conditions on the flow lines as well as bound (4.75),

which reads

∥Fgα∗(z) − Φ∞(·, z)∥L2[0,2π] <
(√

2− 1
) 1

4
√
k

if z ∈ D (4.88)

72See e.g. [35], p. 79.
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in consequence of (4.76), force the norm ∥gα∗(z)∥L2[0,2π] to blow up when z tends to a point

z∗ ∈ ∂D, i.e., α∗(z) must vanish as z → z∗. In other terms, inequality (4.88) suggests a

criterion for choosing the regularization parameter α∗(z) for z ∈ D in such a way that

gα∗(z) behaves as one of the approximate solutions of the far-field equation satisfying the

condition described by limit (4.12)(a) of Theorem 4.1.1.

By a similar argument, Theorem 4.7.1 shows that, if z /∈ D, the partial pseudo-radiality

of us,ϵz with asymptotic angular width ψ̃∞(z0) and bound (4.85), i.e.,

∥Fgα∗(z) − Φ∞(·, z)∥L2[0,2π] <
(√

2− 1
)√ ψ̃∞(z0)

8πk
if z /∈ D, (4.89)

cannot be simultaneously verified for a positive α∗(z). Accordingly, taking α∗(z) → 0

makes ∥gα∗(z)∥L2[0,2π] blow up, which corresponds to limit (4.14)(a) of Theorem 4.1.1.

Up to discretization and noise issues not explicitly addressed here, this behaviour of

α∗(z) is in qualitative agreement with numerical simulations, which show, as well known

[52, 65], that the values of α∗(z) are generally much smaller for z outside than for z inside

the scatterer.

Moreover, although discretization and noise prevent an exact correspondence between

numerical simulations and theoretical results, it is anyway interesting to compare, as a

check of internal consistency for our framework, the theoretical bounds on ϵ, as given by

(4.75) (i.e., (4.76)) and (4.85), with the values of the discretized discrepancy d(z) (plotted

in Figures 5.13(b) and 5.16(b)) at the sampling points z considered in the simulations of

Sections 4.5 and 4.7. This comparison is non-trivial since, on the one hand, the physical

interpretation formalized by Theorems 4.6.1 and 4.7.1 can be applied only if d(z) ≤ ϵ

and, on the other hand, the values of d(z) are fixed by using the generalized discrepancy

principle, while the bounds on ϵ are estimated in a completely different way, i.e., on the

basis of the (total) asymptotic angular width of the flow lines.

For both the scattering experiments considered in Sections 4.5 and 4.7, the wave

number k is the same, i.e., k = 2π
λ

= 2.09 · 10m−1. As a consequence, bound (4.76) for

z → z∗ ∈ ∂D reads ϵ < 2.3 · 10−2. Figures 5.13(b) and 5.16(b), which plot the values

of d(z) for each z in the investigation domain, clearly show that, for both numerical

experiments, d(z) < 2.3 · 10−2 for any z inside D and even on ∂D. However, while in

the first experiment also the assumptions on the flow lines required by Theorem 4.6.1 are

verified (see Figure 5.15), in the second one this only happens for a sampling point placed

as in Figure 5.18, but not as in Figure 5.19: coherently with our approach, in the latter

case the sampling point is placed in a region where the visualization of the scatterer is

bad.
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Let us now turn to the case of a sampling point external to the scatterer. For the

single ellipse, the behaviour of the flow lines is shown in Figure 5.21. If we refer the square

investigation domain T to the usual polar coordinates (r, φ), from Figure 5.21 we can see

that the asymptotic angular width ψ̃∞(z0) of the beam of flow lines outgoing from the

left-upper ramification point z0 is approximately given by |φ1
∞(z0) − φ2

∞(z0)| ≈ π, since

φ1
∞(z0) ≈ 0 and φ2

∞(z0) ≈ π. For the right-lower ramification point z′0, the asymptotic

angular width ψ̃∞(z′0) can be estimated from φ1
∞(z′0) ≈ 5π/4 and φ2

∞(z′0) ≈ 2π, i.e.,

ψ̃∞(z′0) ≈ 3π/4. As a result, the total asymptotic angular width (see Remark 4.7.2) is

ψ̃T
∞ ≈ 7π/4 and then bound (4.85) becomes ϵ < 4.2 · 10−2. This bound is approximately

fulfilled by the value of the discrepancy d(z) = 4.4 · 10−2 at the sampling point z chosen

for Figure 5.21.

In the experiment with two ellipses, only the visualization of Figure 5.22 is worth dis-

cussing for the case of an external sampling point z: indeed, in Figure 5.23 no ramification

point appears and the visualization around z is bad. For the upper ramification point z0

of Figure 5.22, we can estimate φ1
∞(z0) ≈ π/4 and φ2

∞(z0) ≈ π, and then ψ̃∞(z0) ≈ 3π/4;

for the right-lower ramification point z′0, Figure 5.22 suggests the values φ1
∞(z′0) ≈ 3π/2

and φ2
∞(z′0) ≈ 2π, i.e., ψ̃∞(z′0) ≈ π/2. Accordingly, the total asymptotic angular width is

ψ̃T
∞ ≈ 5π/4 and then bound (4.85) reads ϵ < 3.6 · 10−2, which is fulfilled by the value of

the discrepancy d(z) = 3.3 · 10−2 at the sampling point of Figure 5.22.

Finally, it is interesting to observe that the maximum value of the theoretical bound

on ϵ is obtained from relation (4.85) for a total asymptotic angular width ψ̃T
∞ = 2π,

which corresponds to ϵ < 4.5 ·10−2: notably, this bound approximately coincides with the

maximum values taken by the discrepancy d(z), as plotted in Figures 5.13(b) and 5.16(b).

Remark 4.8.1. At the beginning of this section we saw that α∗(z) → 0 as z → z∗ ∈ ∂D

from the inside of D, and we recalled that such a behaviour of α∗(z) is in agreement with

the results of numerical simulations [52, 65]. Hence, having in mind Theorem 4.10.1, one

might expect an analogous behaviour of the (discretized) discrepancy d(z); on the other

hand, the plots of d(z) shown in Figures 5.13(b) and 5.16(b) contradict such expectation,

since they rather seem to highlight a slight increase (and certainly no decrease) of d(z) as

z approaches the boundary ∂D from inside. However, Theorem 4.10.1 simply states that,

for each fixed z ∈ R2, the discrepancy β(α; z) is a vanishing function of α as α → 0+,

whence it does not follow that β [α∗(z); z] is a vanishing function of z as z → z∗ ∈ ∂D.

Since d(z) is a numerical estimate of β [α∗(z); z], we conclude that no expectation on d(z)

as z → z∗ is a priori suggested73 by Theorem 4.10.1. �
73The case of a fixed z /∈ D is different: here, taking a vanishing α∗(z) implies that the discrepancy also
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4.9 Conclusions and hints for future developments

In this chapter we discuss a physical interpretation of the LSM based on energy conserva-

tion arguments. Our analysis considers the flow lines of the time-averaged Poynting vector

field associated with the radiating field us,ϵz , defined in terms of approximate solutions of

the far-field equation as specified in (4.49). Our main theoretical result is that when the

flow lines satisfy certain regularity properties (suggested by numerical simulations), then

conservation of energy along the flow strips forces the approximate (and, in particular,

Tikhonov regularized) solutions of the far-field equation to behave like indicator functions

for the boundary of the scatterer. Moreover, numerical simulations confirm that, when a

bad performance of the LSM occurs, the assumptions on the flow lines are not fulfilled,

as is to be expected.

Possible future developments of our approach concern both theoretical and numerical

issues. For example, it would be interesting to perform an a priori analysis of the flow

lines of the Poynting vector from the viewpoint of topological dynamics, by assuming that

the physical and geometric properties of the scatterer and the background are known:

this would be a necessary step for making our physical interpretation a mathematical

justification of the LSM.

Other issues deserving investigation are concerned with extending or adapting our

physical interpretation to different or more general scattering conditions (cf. e.g. [5, 8]),

as well as to other qualitative methods, like the factorization method74 [69] and the

reciprocity gap functional method [36, 44].

4.10 Addenda to Chapter 4

4.10.1 A technical result about the discrepancy

In the following theorem, we prove that when Tikhonov regularization is applied to the

far-field equation (4.10), considering a vanishing regularization parameter amounts to

considering a vanishing discrepancy.

vanishes by the same Theorem 4.10.1. However, as already pointed out, in the numerical implementation

of the LSM we always find positive values of α∗(z) and, accordingly, positive values of d(z): then, what

the current remark points out is that the well-known behaviour of α∗(z) (‘large’ inside D and ‘small’

outside D) does not imply an analogous behaviour of d(z).
74In [8] this method is briefly considered from our perspective.
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Theorem 4.10.1. For each z ∈ R2, let gαz be the Tikhonov regularized solution of the

far-field equation (4.10) and β(α; z) := ∥Fgαz − Φ∞(·, z)∥L2[0,2π] the corresponding discrep-

ancy. Then, under the hypotheses of Theorem 4.1.1, the limit

lim
α→0+

β(α; z) = 0 ∀z ∈ R2 (4.90)

holds. Moreover, for any fixed z ∈ R2, let α(ϵ) > 0 be such that

β[α(ϵ); z] ≤ ϵ ∀ϵ > 0; (4.91)

then, the limit

lim
ϵ→0+

α(ϵ) = 0 (4.92)

holds.

Proof. Under the hypotheses of Theorem 4.1.1, the range of the far-field operator F

is dense75 in L2[0, 2π]. Then, the incompatibility measure76 of the (noise-free) far-field

equation (4.10) is zero, i.e.,

µ[F,Φ∞(·, z)] := inf
g∈L2[0,2π]

∥Fg − Φ∞(·, z)∥L2[0,2π] = 0. (4.93)

Hence, limit (4.90) immediately follows from the well-known property77

lim
α→0+

β(α; z) = µ[F,Φ∞(·, z)]. (4.94)

Assume now that, for every ϵ > 0, α(ϵ) > 0 verifies condition (4.91): this assumption is

clearly non-empty by virtue of limit (4.90). Since the far-field operator F is compact78,

we can consider its singular system79 {σp, up, vp}∞p=0. The latter is non-finite owing to the

density of the range of F in L2[0, 2π]: in particular, the set {vp}∞p=0 is an orthonormal

basis of L2[0, 2π].

We can now write the explicit expression80 of β[α(ϵ); z] in terms of the singular system

75See e.g. [35], p. 108.
76See [89], p. 10.
77See [89], p. 19.
78See [35], pp. 124-125.
79For basic concepts and notations, see e.g. Subsection 1.5.1 at pp. 16-20 of [4].
80Cf. [4], p. 41 and p. 136.
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of F as

β[α(ϵ); z] = ∥Fgαz − Φ∞(·, z)∥L2[0,2π] = (4.95)

=

∥∥∥∥∥
∞∑
p=0

σ2
p

σ2
p + α(ϵ)

(Φ∞(·, z), vp)L2[0,2π] vp −
∞∑
p=0

(Φ∞(·, z), vp)L2[0,2π] vp

∥∥∥∥∥
L2[0,2π]

=

=

∥∥∥∥∥
∞∑
p=0

−α(ϵ)
σ2
p + α(ϵ)

(Φ∞(·, z), vp)L2[0,2π] vp

∥∥∥∥∥
L2[0,2π]

≤ ϵ,

whence thesis (4.92) immediately follows, since Φ∞(·, z) ̸= 0. �

4.10.2 Continuity properties of scattered fields

Case 1. Penetrable scatterers

In this subsection, we want to justify in detail some statements made in the initial part

of the proof of Theorem 4.6.1, i.e., from assumption (4.57) to definition (4.60). With the

same notations used there, let us introduce the function f : B̄1 × [0, 2π] → C defined as

f(x, θ) := eikx·d̂(θ). This function is clearly continuous on the compact set E := B̄1×[0, 2π],

then81 f is uniformly continuous on E. Accordingly, given ϵ > 0, it is possible to find

δ > 0, depending only on ϵ, such that

|f(x′, θ′)− f(x, θ)| < ϵ ∀(x′, θ′), (x, θ) ∈ E : ∥(x′, θ′)− (x, θ)∥R3 < δ. (4.96)

In particular, relation (4.96) implies that

|f(x, θ′)− f(x, θ)| < ϵ ∀(x, θ′), (x, θ) ∈ E : ∥(x, θ′)− (x, θ)∥R3 < δ, (4.97)

and then

max
x∈B̄1

|f(x, θ′)− f(x, θ)| < ϵ ∀θ′, θ ∈ [0, 2π] : |θ′ − θ| < δ, (4.98)

whence

lim
θ′→θ

max
x∈B̄1

|f(x, θ′)− f(x, θ)| = 0 ∀θ ∈ [0, 2π], (4.99)

i.e., by replacing (θ′, θ) with (θ, θ0) and remembering the definition of f ,

lim
θ→θ0

max
x∈B̄1

∣∣∣eikx·d̂(θ) − eikx·d̂(θ0)
∣∣∣ = 0 ∀θ0 ∈ [0, 2π], (4.100)

81See e.g. [63], p. 155.
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which is limit (4.59) in the proof of Theorem 4.6.1. By virtue of Theorem 8.7 at p. 222 in

[48], which states the well-posedness of the direct scattering problem with respect to the

maximum norm in C(B̄1), we find that the total field u(x, θ) = us(x, θ) + eikx·d̂(θ) verifies

lim
θ→θ0

max
x∈B̄1

|u(x, θ)− u(x, θ0)| = 0 ∀θ0 ∈ [0, 2π]. (4.101)

Moreover, since us(x, θ) = u(x, θ)− eikx·d̂(θ), by the triangle inequality we have

|us(x, θ)− us(x, θ0)| ≤ |u(x, θ)− u(x, θ0)|+
∣∣∣eikx·d̂(θ) − eikx·d̂(θ0)

∣∣∣ ∀x ∈ B̄1, ∀θ, θ0 ∈ [0, 2π],

(4.102)

whence it follows that ∀θ, θ0 ∈ [0, 2π] the inequality

max
x∈B̄1

|us(x, θ)− us(x, θ0)| ≤ max
x∈B̄1

|u(x, θ)− u(x, θ0)|+max
x∈B̄1

∣∣∣eikx·d̂(θ) − eikx·d̂(θ0)
∣∣∣ (4.103)

holds. Now, from limits (4.100), (4.101) and relation (4.103), we find

lim
θ→θ0

max
x∈B̄1

|us(x, θ)− us(x, θ0)| = 0 ∀θ0 ∈ [0, 2π], (4.104)

which implies limit (4.58) in the proof of Theorem 4.6.1, since Ḡ ⊂ B̄1.

We still need to prove the continuity in A = Ḡ × [0, 2π] of us as a function of both

the variables x and θ. More precisely, we need to prove that, given any (x0, θ0) ∈ A, for

every ϵ > 0 there exists δ(ϵ, x0, θ0) > 0 such that

|us(x, θ)− us(x0, θ0)| < ϵ ∀(x, θ) ∈ A : ∥(x, θ)− (x0, θ0)∥R3 < δ(ϵ, x0, θ0). (4.105)

To this end, we note that, by the triangle inequality, we have

|us(x, θ)− us(x0, θ0)| ≤ |us(x, θ)− us(x, θ0)|+|us(x, θ0)− us(x0, θ0)| ∀(x, θ), (x0, θ0) ∈ A.

(4.106)

Now, by virtue of (4.104), there exists δ1(ϵ, θ0) > 0 such that

|us(x, θ)− us(x, θ0)| <
ϵ

2
∀x ∈ Ḡ, ∀θ : |θ − θ0| < δ1(ϵ, θ0). (4.107)

Moreover, us(·, θ0) is (uniformly) continuous on the compact set Ḡ: then, there exists

δ2(ϵ, θ0) > 0 such that82

|us(x, θ0)− us(x0, θ0)| <
ϵ

2
∀x ∈ Ḡ : ∥x− x0∥R2 < δ2(ϵ, θ0). (4.108)

82Exploiting the uniform continuity of us(·, θ0) on Ḡ is not necessary: its mere continuity is sufficient,

since no problem arises from the possible dependence of δ2(ϵ, θ0) on x0.
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Taking into account (4.106), (4.107) and (4.108), we have

|us(x, θ)− us(x0, θ0)| < ϵ ∀(x, θ) ∈ A : ∥x− x0∥R2 < δ2(ϵ, θ0) ∧ |θ − θ0| < δ1(ϵ, θ0).

(4.109)

Let us define δ̃(ϵ, θ0) := min {δ1(ϵ, θ0), δ2(ϵ, θ0)}: from (4.109) we get

|us(x, θ)− us(x0, θ0)| < ϵ ∀(x, θ) ∈ A : ∥x− x0∥R2 < δ̃(ϵ, θ0) ∧ |θ − θ0| < δ̃(ϵ, θ0),

(4.110)

which implies

|us(x, θ)− us(x0, θ0)| < ϵ ∀(x, θ) ∈ A : ∥x− x0∥2R2 + |θ − θ0|2 < δ̃2(ϵ, θ0). (4.111)

If we now remember that

∥(x, θ)− (x0, θ0)∥R3 =
[
∥x− x0∥2R2 + |θ − θ0|2

]1/2
, (4.112)

we can rewrite (4.111) as

|us(x, θ)− us(x0, θ0)| < ϵ ∀(x, θ) ∈ A : ∥(x, θ)− (x0, θ0)∥R3 < δ̃(ϵ, θ0). (4.113)

Relation (4.113) now shows that condition (4.105) is fulfilled with δ(ϵ, x0, θ0) := δ̃(ϵ, θ0).

Case 2. Impenetrable scatterers

We now want to adapt the proof of Theorem 4.6.1 to the case of impenetrable scatterers:

to this end, it suffices to prove inequalities analogous to (4.61) and (4.67). As we are going

to see, this can be made by exploiting the well-posedness of the direct scattering problem:

indeed, in this case the solution operator is bounded from C1,α(∂D) into C1,α(R2 \D), as

shown in [48], p. 51.

Similarly to the previous case 1, let f : ∂D × [0, 2π] → C (with ∂D ⊂ R2) be defined

as f(x, θ) := eikx·d̂(θ). Let us denote by ∂if and ∂ijf (where i, j = 1, 2) the first and

second partial derivatives of f with respect to xi, xj. It is clear that f , ∂if and ∂ijf are

continuous on the compact set A′ := ∂D × [0, 2π], and then uniformly continuous on A′

itself. Accordingly, given ϵ > 0, it is possible to find δ > 0, δi > 0 and δij > 0 depending

only on ϵ, such that, for all i, j = 1, 2, it holds that

|f(x′, θ′)− f(x, θ)| < ϵ ∀(x′, θ′), (x, θ) ∈ A′ : ∥(x′, θ′)− (x, θ)∥R3 < δ, (4.114)

|∂if(x′, θ′)− ∂if(x, θ)| < ϵ ∀(x′, θ′), (x, θ) ∈ A′ : ∥(x′, θ′)− (x, θ)∥R3 < δi, (4.115)

|∂ijf(x′, θ′)− ∂ijf(x, θ)| < ϵ ∀(x′, θ′), (x, θ) ∈ A′ : ∥(x′, θ′)− (x, θ)∥R3 < δij. (4.116)
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In particular, by taking δm := min
i,j=1,2

{δ, δi, δij}, relations (4.114), (4.115) and (4.116) imply

that

|f(x, θ′)− f(x, θ)| < ϵ ∀(x, θ′), (x, θ) ∈ A′ : ∥(x, θ′)− (x, θ)∥R3 < δm, (4.117)

|∂if(x, θ′)− ∂if(x, θ)| < ϵ ∀(x, θ′), (x, θ) ∈ A′ : ∥(x, θ′)− (x, θ)∥R3 < δm, (4.118)

|∂ijf(x, θ′)− ∂ijf(x, θ)| < ϵ ∀(x, θ′), (x, θ) ∈ A′ : ∥(x, θ′)− (x, θ)∥R3 < δm. (4.119)

Hence, if we define the C2-norm of a C2 function g : X → C, where X ⊂ R2, as

∥g∥∞,2,X := sup
x∈X

|g(x)|+
2∑

i=1

sup
x∈X

|∂ig(x)|+
2∑

i,j=1

sup
x∈X

|∂ijg(x)|, (4.120)

from (4.117), (4.118) and (4.119) we find that

∥f(x, θ′)− f(x, θ)∥∞,2,∂D < 7ϵ ∀θ′, θ ∈ [0, 2π] : |θ′ − θ| < δm, (4.121)

whence

lim
θ′→θ

∥f(x, θ′)− f(x, θ)∥∞,2,∂D = 0 ∀θ ∈ [0, 2π], (4.122)

i.e., by replacing (θ′, θ) with (θ, θ0) and remembering the definition of f ,

lim
θ→θ0

∥∥∥eikx·d̂(θ) − eikx·d̂(θ0)
∥∥∥
∞,2,∂D

= 0 ∀θ0 ∈ [0, 2π]. (4.123)

Of course, the C2-norm is stronger than the C1,α-norm: then (4.123) implies (with the

notations of [48], p. 40)

lim
θ→θ0

∥∥∥eikx·d̂(θ) − eikx·d̂(θ0)
∥∥∥
1,α,∂D

= 0 ∀θ0 ∈ [0, 2π]. (4.124)

Accordingly, Theorem 3.11 at p. 51 in [48] allows concluding that

lim
θ→θ0

∥us(·, θ)− us(·, θ0)∥1,α,R2\D = 0 ∀θ0 ∈ [0, 2π]. (4.125)

In particular, if Ḡ ⊂ R2 \D is the compact set defined at the previous case 1, we have

lim
θ→θ0

max
x∈Ḡ

|us(·, θ)− us(·, θ0)| = 0 ∀θ0 ∈ [0, 2π], (4.126)

lim
θ→θ0

max
x∈Ḡ

|∂ius(·, θ)− ∂iu
s(·, θ0)| = 0 ∀θ0 ∈ [0, 2π], ∀i ∈ {1, 2}. (4.127)

By means of the same argument used for passing from (4.104) to (4.113), we can prove

that us and ∂iu
s (for i = 1, 2) are continuous on A = Ḡ × [0, 2π]: hence, there exist

M1,M2 ≥ 0 such that

|us(x, θ)| ≤M1, |∂ius(x, θ)| ≤M2 ∀(x, θ) ∈ A, ∀i ∈ {1, 2}. (4.128)
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If we now remember the definition (4.49) of us,ϵz and the assumption (4.57) on the bound-

edness of
∥∥gϵzn∥∥L2[0,2π]

, we can apply the Cauchy-Schwarz inequality and Lebesgue’s dom-

inated convergence theorem to obtain, ∀x ∈ Ḡ and ∀n ∈ N,∣∣us,ϵzn (x)
∣∣ ≤ ∫ 2π

0

∣∣us(x, θ)gϵzn(θ)∣∣ dθ ≤M1

√
2π
∥∥gϵzn∥∥L2[0,2π]

≤
√
2πM1K =: Q1 (4.129)

and ∣∣∣∣∂us,ϵzn

∂xi
(x)

∣∣∣∣ ≤ ∫ 2π

0

∣∣∣∣∂us(x, θ)∂xi
gϵzn(θ)

∣∣∣∣ dθ ≤M2

√
2π
∥∥gϵzn∥∥L2[0,2π]

≤
√
2πM2K =: Q2,

(4.130)

which correspond exactly to inequalities (4.61) and (4.67) in the proof of Theorem 4.6.1.

The remainder of the proof itself can be left unchanged.

4.10.3 A technical detail concerning relations (4.71)

A justification of the passage from the second to the third line of relations (4.71) is

similar to (but more difficult than) the proof of Theorem 4.4.2. Indeed, in the latter the

integration domain is [0, 2π], i.e., independent of R, while now the integration domain is

the interval
[
φ[Py1zn

(R)], φ[Py2zn
(R)]

]
and then depends on83 R.

Let us remember that, by assumption, the following two limits hold:

lim
R→∞

φ[Py1zn
(R)] = φ∞(y1zn), lim

R→∞
φ[Py2zn

(R)] = φ∞(y2zn). (4.131)

Hence, if we define the two functions

h1n(R) := φ[Py1zn
(R)]− φ∞(y1zn), h2n(R) := φ[Py2zn

(R)]− φ∞(y2zn), (4.132)

we have

lim
R→∞

h1n(R) = 0 = lim
R→∞

h2n(R). (4.133)

We now define, as a shorthand notation, the function

f s,ϵ
n (R,φ) :=

1

4iω εBµB

[
ūs,ϵzn

∂us,ϵzn

∂r
− us,ϵzn

∂ūs,ϵzn

∂r

]
(R,φ). (4.134)

Then, we want to prove that

lim
R→∞

∣∣∣∣∣
∫ φ[P

y2zn
(R)]

φ[P
y1zn

(R)]

f s,ϵ
n (R,φ)Rdφ− k

2ω εBµB

∥∥Fgϵzn∥∥2L2[φ∞(y1zn ),φ∞(y2zn )]

∣∣∣∣∣ = 0. (4.135)

83A completely analogous problem arises about the second equality in (4.53), p. 103, and the same

procedure proposed here to justify (4.71) also applies to (4.53).
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To this end, we observe that, by remembering definitions (4.132), we can write∣∣∣∣∣
∫ φ[P

y2zn
(R)]

φ[P
y1zn

(R)]

f s,ϵ
n (R,φ)Rdφ− k

2ω εBµB

∥∥Fgϵzn∥∥2L2[φ∞(y1zn ),φ∞(y2zn)]

∣∣∣∣∣ = (4.136)

=

∣∣∣∣∣
∫ φ∞(y2zn )+h2

n(R)

φ∞(y1zn )+h1
n(R)

f s,ϵ
n (R,φ)Rdφ− k

2ω εBµB

∫ φ∞(y2zn )

φ∞(y1zn )

∣∣Fgϵzn(φ)∣∣2
R

Rdφ

∣∣∣∣∣ .
Of course, it holds that∫ φ∞(y2zn )+h2

n(R)

φ∞(y1zn )+h1
n(R)

f s,ϵ
n (R,φ)Rdφ = (4.137)∫ φ∞(y1zn )

φ∞(y1zn )+h1
n(R)

f s,ϵ
n (R,φ)Rdφ+

∫ φ∞(y2zn )

φ∞(y1zn)

f s,ϵ
n (R,φ)Rdφ+

∫ φ∞(y2zn )+h2
n(R)

φ∞(y2zn )

f s,ϵ
n (R,φ)Rdφ.

Then, by inserting (4.137) into (4.136) and using the triangle inequality, we find∣∣∣∣∣
∫ φ[P

y2zn
(R)]

φ[P
y1zn

(R)]

f s,ϵ
n (R,φ)Rdφ− k

2ω εBµB

∥∥Fgϵzn∥∥2L2[φ∞(y1zn),φ∞(y2zn )]

∣∣∣∣∣ ≤ (4.138)

≤

∣∣∣∣∣
∫ φ∞(y2zn )

φ∞(y1zn )

f s,ϵ
n (R,φ)Rdφ− k

2ω εBµB

∫ φ∞(y2zn )

φ∞(y1zn )

∣∣Fgϵzn(φ)∣∣2
R

Rdφ

∣∣∣∣∣+
+

∣∣∣∣∣
∫ φ∞(y1zn)

φ∞(y1zn )+h1
n(R)

f s,ϵ
n (R,φ)Rdφ+

∫ φ∞(y2zn)+h2
n(R)

φ∞(y2zn )

f s,ϵ
n (R,φ)Rdφ

∣∣∣∣∣ .
Now, the two integrals in the second line of (4.138) involve the same integration do-

main
[
φ∞(y1zn), φ∞(y2zn)

]
, which is independent of R: accordingly, we can apply to them

the same arguments presented in the proof of Theorem 4.4.2 (with [0, 2π] replaced by[
φ∞(y1zn), φ∞(y2zn)

]
) and conclude that the term in the second line of (4.138) vanishes as

R → ∞.

Then, in order to show that limit (4.135) holds, i.e., that the right-hand side of (4.136)

tends to zero as R → ∞, it suffices to prove that the contribution in the third line of

(4.138) vanishes as R → ∞. Actually, it suffices to prove that

lim
R→∞

∣∣∣∣∣
∫ φ∞(y1zn )

φ∞(y1zn )+h1
n(R)

[
ūs,ϵzn

∂us,ϵzn

∂r

]
(R,φ)Rdφ

∣∣∣∣∣ = 0, (4.139)

and

lim
R→∞

∣∣∣∣∣
∫ φ∞(y1zn )

φ∞(y1zn )+h1
n(R)

[
us,ϵzn

∂ūs,ϵzn

∂r

]
(R,φ)Rdφ

∣∣∣∣∣ = 0, (4.140)

since the remaining terms can be treated in the same way.
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In order to prove limit (4.139), we first observe that

lim
R→∞

∣∣∣∣∣
∫ φ∞(y1zn )

φ∞(y1zn)+h1
n(R)

ik

R

∣∣Fgϵzn(φ)∣∣2Rdφ
∣∣∣∣∣ = 0, (4.141)

since the integrand is bounded (and independent of R), while, by limits (4.133), the

measure of the integration domain vanishes for R → ∞. Moreover, from (4.43) and other

trivial properties, we have∣∣∣∣∣
∫ φ∞(y1zn )

φ∞(y1zn)+h1
n(R)

[
ūs,ϵzn

∂us,ϵzn

∂r

]
(R,φ)Rdφ−

∫ φ∞(y1zn )

φ∞(y1zn)+h1
n(R)

ik

R

∣∣Fgϵzn(φ)∣∣2Rdφ
∣∣∣∣∣ ≤ (4.142)

≤

∣∣∣∣∣
∫ φ∞(y1zn)

φ∞(y1zn )+h1
n(R)

sup
φ∈[0,2π]

∣∣∣∣ūs,ϵzn

∂us,ϵzn

∂r
(R,φ)− ik

R

∣∣Fgϵzn(φ)∣∣2∣∣∣∣Rdφ
∣∣∣∣∣ =

= R sup
φ∈[0,2π]

∣∣∣∣ūs,ϵzn

∂us,ϵzn

∂r
(R,φ)− ik

R

∣∣Fgϵzn(φ)∣∣2∣∣∣∣ ∣∣h1n(R)∣∣→ 0 as R → ∞.

Finally, from the triangle inequality, we obtain∣∣∣∣∣
∫ φ∞(y1zn)

φ∞(y1zn )+h1
n(R)

[
ūs,ϵzn

∂us,ϵzn

∂r

]
(R,φ)Rdφ

∣∣∣∣∣ ≤ (4.143)

≤

∣∣∣∣∣
∫ φ∞(y1zn )

φ∞(y1zn )+h1
n(R)

[
ūs,ϵzn

∂us,ϵzn

∂r

]
(R,φ)Rdφ−

∫ φ∞(y1zn )

φ∞(y1zn )+h1
n(R)

ik

R

∣∣Fgϵzn(φ)∣∣2Rdφ
∣∣∣∣∣+

+

∣∣∣∣∣
∫ φ∞(y1zn )

φ∞(y1zn)+h1
n(R)

ik

R

∣∣Fgϵzn(φ)∣∣2Rdφ
∣∣∣∣∣ .

By virtue of (4.141), (4.142) and (4.143), limit (4.139) follows. As regards limit (4.140),

it suffices to adapt the previous argument by using relation (4.44) instead of (4.43). This

concludes the proof.
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Chapter 5

Figures and tables

As anticipated in the Preface, this chapter collects all the figures and tables of the thesis,

according to the following criterion: each section contains the figures and tables referred

to in a specific section of Chapters 2-4 and has just the same title (and, between square

brackets, the same number) of such section.
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5.1 [2.6] Numerical applications
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Figure 5.1: Visualization performance of the 3D no-sampling LSM: (a) the scatterer; (b) application

of active contours to the restriction of the indicator function to the plane of Cartesian equation x2 = 0

(white line: initialization; black line: final profile); (c) visualization provided by the no-sampling LSM in

around 90 s of CPU time (the threshold value for the surface equation is computed by using (2.84)); (d)

visualization provided by the traditional LSM in around 1600 s of CPU time (the threshold value for the

surface equation is obtained by means of a heuristic trial-and-error procedure).
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(a) (b)

Figure 5.2: Comparison between the traditional and the no-sampling LSM for the scatterer shown

in Figure 5.1(a): (a) visualization provided by the traditional LSM; (b) visualization provided by the

no-sampling LSM. In both cases the threshold value for the surface equation is obtained by means of a

heuristic trial-and-error procedure. The difference between the two visualizations is negligible.
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Figure 5.3: Visualization performance of the 3D no-sampling LSM: (a) the scatterer; (b) application of

active contours to the restriction of the indicator function to the plane of Cartesian equation x2 = 0.9

(white line: initialization; black line: final profile); (c) visualization provided by the no-sampling LSM in

around 90 s of CPU time (the threshold value for the surface equation is computed by using (2.84)); (d)

visualization provided by the traditional LSM in around 1600 s of CPU time (the threshold value for the

surface equation is obtained by means of a heuristic trial-and-error procedure).
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(a) (b)

(c) (d)

Figure 5.4: Visualization of two objects with different permittivity by means of the no-sampling LSM:

(a) the two scattering objects; (b) visualization obtained by using a unique threshold value C = C1

computed as in (2.84) by cutting the non-connected scatterer with the plane x1 = −0.75; (c) visualization

obtained by using a unique threshold value C = C2 computed as in (2.84) by cutting the non-connected

scatterer with the plane x1 = 0.75; (d) visualization obtained by using the two different threshold values

C1 and C2 for the two objects. In each case, the visualization time is around 90 s of CPU time.

Figure 5.1 Figure 5.3 Figure 5.4

Traditional [5.3 · 10−6, 4.4 · 10−5] [9.3 · 10−8, 2.8 · 10−7] [1.7 · 10−7, 5.2 · 10−6]

No-sampling 7.2 · 10−6 9.3 · 10−8 2.8 · 10−7

Table 5.1: Values of the regularization parameter α provided by the generalized discrepancy principle

in the traditional and the no-sampling LSM for the three previous experiments. First row: interval

[α∗
min, α

∗
max] defined by the minimum and maximum values of α for all sampling points in the traditional

implementation. Second row: the unique value α∗ of α in the no-sampling implementation.
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5.2 [2.7] First-order discretization

(a)

(b)

(c)

Figure 5.5: Visualization performance of the 3D no-sampling LSM: (a) the scatterer; (b) non-uniform

triangular mesh formed on the unit sphere by the 144 views chosen to implement a first-order discretization

of the far-field equation; (c) no-sampling LSM visualization of the scatterer.
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(a)

(b)

(c)

Figure 5.6: Visualization performance of the 3D no-sampling LSM: (a) exact geometry of the scat-

terer (perfectly conducting teapot); (b) uniform triangular mesh formed on the unit sphere by the 252

views chosen to implement a first-order discretization of the far-field equation; (c) no-sampling LSM

visualization of the teapot.
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5.3 [3.3] Notations

skin

fat

breast

tumor

emitters

receivers

Figure 5.7: Scheme of the 2D microwave tomography experiment for breast cancer detection.

5.4 [3.6] Applications to data

(a) (b)

Figure 5.8: (a) Phantom of the breast: a circular tumour, centred at (−2.00,−1.00) · 10−2 m and with

a diameter of 1.00 · 10−2 m, is placed in the fat tissue. (b) Visualization provided by the RGFM.
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(a) (b)

Figure 5.9: (a) Phantom of the breast: a circular tumour, centred at (−2.00,−1.00) · 10−2 m and with

a diameter of 1.00 ·10−2 m, is placed in the fat tissue; a square scatterer, centred at (−8.20, 8.20) ·10−2 m

and with a side of 2.75 · 10−2 m is put outside the breast. (b) Visualization provided by the RGFM.

(a) (b)

Figure 5.10: (a) Phantom of the breast: two circular tumours, with the same diameter of 1.50 · 10−2 m,

are placed in the fat tissue: one is centred at (−2.00,−1.00) · 10−2 m, the other in (1.00, 0.00) · 10−2 m.

(b) Visualization provided by the RGFM.
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(a) (b)

Figure 5.11: (a) Phantom of the breast: the healthy fat is perturbed with components randomly drawn

from a uniform distribution within 10% around the unperturbed values; moreover, six veins and one

gland are added inside the fat tissue. A circular tumour, centred at (−2.00,−1.00) · 10−2 m and with a

diameter of 1.50 · 10−2 m is also placed in the breast. (b) Visualization provided by the RGFM.

(a) (b)

Figure 5.12: (a) Phantom of the breast: the healthy fat is perturbed with components randomly drawn

from a uniform distribution within 10% around the unperturbed values; moreover, six veins and one

gland are added inside the fat tissue. A circular tumour, centred at (−2.00,−1.00) · 10−2 m and with a

diameter of 1.00 · 10−2 m is also placed in the breast. (b) Visualization provided by the RGFM.
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Figure 5.13: Implementation of the LSM: (a) visualization of an elliptic scatterer with, superimposed,

its true profile (solid black line); (b) values of the discretized discrepancy d(z).



140 5 Figures and tables

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x/λ

y/
λ

Figure 5.14: Behaviour of the unit vector field Ŝs,ϵ
z for a sampling point z (represented by a red bullet)

placed at the centre of the ellipse.
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Figure 5.15: Behaviour of the unit vector field Ŝs,ϵ
z for a sampling point z (represented by a red bullet)

placed at the top of the ellipse.
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Figure 5.16: Implementation of the LSM: (a) visualization of a double-elliptic scatterer with, superim-

posed, its true profile (solid black lines); (b) values of the discretized discrepancy d(z).
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Figure 5.17: Behaviour of the unit vector field Ŝs,ϵ
z for a sampling point z (represented by a red bullet)

placed at the centre of the upper ellipse.
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Figure 5.18: Behaviour of the unit vector field Ŝs,ϵ
z for a sampling point z (represented by a red bullet)

placed at the top of the upper ellipse.
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Figure 5.19: Behaviour of the unit vector field Ŝs,ϵ
z for a sampling point z (represented by a red bullet)

placed at the bottom of the upper ellipse.
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5.6 [4.6] A new version of the general theorem: z ∈ D
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Figure 5.20: Geometric construction considered in the proof of Theorem 4.6.1, for a point zn ∈ D

approaching z∗ ∈ ∂D.
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Figure 5.21: Behaviour of the unit vector field Ŝs,ϵ
z for a sampling point z (represented by a red bullet)

placed outside the scatterer. Two ramification points (square boxes) are detectable.
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Figure 5.22: Behaviour of the unit vector field Ŝs,ϵ
z for a sampling point z (represented by a red bullet)

placed outside the scatterer. Two ramification points (square boxes) are detectable.
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Figure 5.23: Behaviour of the unit vector field Ŝs,ϵ
z for a sampling point z (represented by a red bullet)

placed outside the scatterer.
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73, 2003.

[74] D. R. Luke and R. Potthast. The point source method for inverse scattering in the

time domain. Math. Meth. Appl. Sci., 29:1501–1521, 2006.

[75] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge

University Press, Cambridge, 2000.

[76] P. M. Meaney and Q. Fang. Microwave imaging: A model-based approach. In K. D.

Paulsen, P. M. Meaney, and L. C. Gilman, editors, Alternative Breast Imaging, The

Kluwer International Series in Engineering and Computer Science, pages 127–153.

Springer Science + Business Media, Inc., Boston, 2005.

[77] P. M. Meaney, M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen. A clinical

prototype for active microwave imaging of the breast. IEEE Trans. Microwave Theory

Tech., 48(11):1841–1853, 2000.

[78] P. M. Meaney, S. A. Pendergrass, M. W. Fanning, D. Li, and K. D. Paulsen. Impor-

tance of using a reduced contrast coupling medium in 2d microwave breast imaging.

J. of Electromagn. Waves and Appl., 17(2):333–355, 2003.

[79] A. Moliton. Applied Electromagnetism and Materials. Springer, New York, 2007.



158 BIBLIOGRAPHY
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