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Abstract 

 

Molecular interactions are wired in a fascinating way resulting in complex behavior of bio-

logical systems. Theoretical modeling provides us a useful framework for understanding the 

dynamics and the function of such networks. The complexity of the biological systems calls 

for conceptual tools that manage the combinatorial explosion of the set of possible interac-

tions. A suitable conceptual tool to attack complexity is compositionality, already success-

fully used in the process algebra field to model computer systems. We rely on the BlenX 

programming language, originated by the beta-binders process calculus, to specify and si-

mulate high-level descriptions of biological circuits. Gillespie’s stochastic simulation algo-

rithm applied for BlenX simulations requires the decomposition of phenomenological func-

tions into basic elementary reactions. Systematic unpacking of complex reaction mechan-

isms into BlenX templates is shown. The estimation/derivation of missing parameters and 

the challenges emerging from compositional model building in stochastic process algebras 

are discussed. A biological example on circadian clock is presented as a case study of mod-

eling. 
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1. Introduction 

1.1 The Context 

 

Life is difficult in all sense. Systems biology research focuses on understanding how organ-

isms carry out their function, resulting in a sophistically orchestrated system that is self-

sustained, reproductive and responds to both internal and external changes. Like everything 

else, biological systems can also “go wrong”. The growing knowledge of the underlying 

mechanisms contributes to novelties in application in healthcare and medical biotechnology 

and brings biological - and biology related - research to the front to help understanding liv-

ing organisms. 

 

Biological systems are extremely complex structures performing several crucial properties 

of life. The concept of cells, as the functional units of life, was established by the mid-

nineteenth century - by Matthias Jakob Schleiden and Theodor Schwann [1] - and each day 

an enormous amount of new biological data is produced, still we are far from a detailed un-

derstanding how an organism, a population or even a cell functions. The physiological prop-

erties of a biological system can be observed by various microscopy techniques, the infor-

mation coding DNA can be sequenced and the molecular interactions might be also de-

tected, yet our knowledge about the mechanisms describing the observed behavior is in-

complete. Theoretical models can assist molecular biologists to find a better understanding 

of cell physiology by revealing the dynamical behavior of the system and also by investigat-

ing complex interactions of regulatory molecules.  

 

The pioneers of a novel field - called systems biology [2-4] - were able to proof that there is 

a need of a comprehensive system-level approach to handle complexity in biological re-

search. This multidisciplinary field originates from molecular biology [5], the science of cu-

rious biologists asking the question: What is in the black box of cells? The discoveries of the 

20th century explored the basic molecular components of the cell that made manipulation of 

the elements and behavior of cells and organisms possible. Even before opening this imagi-

nary box, theoreticians were able to describe biological systems by the help of simple mod-

els, proposing a different - abstract - approach to handle biological questions. Later the ge-

nome revolution resulted in much more details of biological elements and led to a boom also 
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in the field of informatics. Application of computers had a large effect on molecular biology 

research as bioinformatics emerged [6]. Its main goal was the creation and maintenance of 

databases, algorithms, computational and statistical techniques to store biological informa-

tion. After exploring several molecular details about parts of the system, scientists still had 

to face the problem of complexity. In order to understand how biological systems achieve 

their tasks, molecular biologists moved from managing the collected data towards the ques-

tion: How does the box actually function? Bioinformatics gave birth to computational biolo-

gy [7], concentrating on asking biological questions that could be solved with novel compu-

tational techniques. Finally, biology, physics, computer science, systems theory and mathe-

matics have joined to propel a research that provides tools for the analysis of biological stu-

dies in a systematic way; this is what we call systems biology. 

 

It is no more a question that in order to really dig out how enormously large networks oper-

ate adequate computational models and tools are highly required to address biological prob-

lems. With them, it is possible to analyze, simulate, understand and make predictions of a 

complex system. I would like to emphasize that personally I believe the real strength of 

computational modeling is not replacing wet biology, rather is providing a tool to evaluate 

the behavior of the system, to understand the basic mechanisms driving them, to identify the 

key components and form experimentally testable predictions. None the laboratory work nor 

the theoretical effort can be substituted by the other. The main contribution of computation-

al biology to biological research is to develop algorithms for modeling. Several computa-

tional modeling approaches exist [8], such as logical discrete models (e.g. Boolean), agent-

based models, continuous models (e.g. deterministic or stochastic ordinary differential equa-

tions (ODEs)) or discrete Monte Carlo simulations (e.g. process algebras, Petri nets). Vari-

ous tools support the work of theoretical modeling (e.g. COPASI [9], JigCell [10], XPPAUT 

[11], VCell [12], SBML [13], BioAmbient [14], BIOCHAM [15] and others). The chosen 

model and the applied software depend on our extant knowledge about the system and on 

the knowledge we would like to gain from investigating it. 

 

Stochastic approaches are becoming more and more sophisticated as novel experimental 

techniques - such as quantitative flow cytometry [16] and fluorescence microscopy [17] - 

provide single level measurements of cell physiology. While the average behavior of a cell 

population has been described by continuous modeling approaches (e.g. with Ordinary Dif-

ferential Equations, ODEs) [18] from a long time, single cells are analyzed in a stochastic 



INTRODUCTION 

3 
 

framework as fluctuations may have a significant effect on the physiology of the cell [19]. 

The influence of noise also in gene expression and signal transduction processes have been 

shown to be important by both theoretical and experimental approaches [20-22]. 

 

Process algebras were introduced in early 1980s by Milner [23], as specification languages 

for concurrent processes, namely of computational entities executing their tasks in parallel 

and able to synchronize over certain kinds of activities. Some examples of concurrent com-

puting systems include communication networks, air traffic controllers, and industrial plant 

control systems. The abstraction provided by process algebras was shown to be successful 

in modeling several scenarios from life sciences (e.g. biology, including transcriptional cir-

cuits, metabolic pathways and signal transduction networks) [24]. A biology oriented pro-

gramming language (BlenX) [25] inspired by process calculi (specifically Beta-binders 

[26]) is one of the progressive stochastic modeling approaches. Beta Workbench (BWB) 

[27] defines and implements the BlenX programming language and has been designed for 

biology from the beginning. As the field of executable biology [28] and algorithmic systems 

biology [29] gather ground in computational biology, development of conceptual tools that 

manage the combinatorial explosion of the set of possible interactions and that attack com-

plexity through compositionality is becoming more and more important. 

 

1.2 The Problem 

 

Systematic approach for biological research requires an idea of an inferential model, a con-

sidered wiring diagram describing a system of studies and unanswered crucial questions. 

Additionally, adequate computational tools and curious students are also important in the re-

search process. During my university studies, as a beginner “systems biologist”, I had to 

face several problems that aroused my interest in computational work.  

 

The most difficult problem I had was how to choose from an enormous number of modeling 

tools that support biological questions. Decisions are hard to take, thus I simply started with 

the classical methods in order to address the interconnectivity of oscillatory systems (name-

ly the cell cycle [30] and the circadian rhythms [31]). The classical tool for analyzing such 

crucial biological systems was definitely the apparatus of ordinary different equations 

(ODEs) [32]. Due to the fact that early experimental techniques have provided an opportuni-
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ty to investigate only a population of cells, researchers turned to deterministic approaches to 

describe the behavior of an average phenotype (for instance the growth of a culture of cells). 

Ordinary differential equations illustrate dynamic processes with a set of equations for the 

change of continuous variables, usually the concentration of molecules. Based on the known 

or hypothesized molecular interactions in a system, one could write biochemical reactions 

that describe the kinetics of the network. The kinetic aspect concerning the rate equations 

for elementary reactions (reactions that proceeds through only one transition state) is gener-

ally defined by the law of mass action kinetics; stating that the rate of an elementary reac-

tion step is proportional to the product of the concentrations of the participating molecules. 

There are also non-elementary functions that have been empirically developed [33]. These 

abstractions simplify the system leading to a decrease in the required computational power 

for calculation. Furthermore, modelers often turn to these phenomenological functions to 

describe the observed behavior of a system without knowing all its details, such as multi-

step reactions are often assumed to happen at the same time in cooperative reaction schemes 

[34].  

 

After becoming familiar with the chosen biological system, one should actually start to real-

ize - in the classical way - equations or - in computational modeling - the lines of codes. 

There are two approaches in modeling concerning its construction [7]: (1) building the sys-

tem up starting from its basic elements (called as bottom-up approach) or (2) constructing 

the network based on our observation of the biological system without the complete know-

ledge of the details (referred to as top-down). Extension of a model is even trickier in some 

cases. Initiatives for generalizing different languages in one tool have been proposed to be a 

solution for model composition (e.g. SBML [35]) but it still remains under development. 

 

The concept of connecting meaningful parts of a system into a larger model where their 

meaning remains still is called compositionality. It is a principle of languages. Words con-

stitute sentences where the meaning of the complex expression is determined by the mean-

ings of the subparts and the rules used to combine them. Process calculi tools [36] offer 

compositionality and formal description of interactions, communications and synchroniza-

tions between concurrent elements of a system. Lack of modularity in ODE systems - com-

posed of equations that are denotational - makes their use to become more and more com-

plicated with the increasing size of the model. Process calculi tools provide the introduction 

of an interaction simply by adding or changing a single rule instead of modifying a large 
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number of equations or lines of the code. Rules can be encoded and the computer can ex-

ecute them. Process calculus is a novel, promising approach also to model noise in biologi-

cal systems with the integration of stochasticity. By joining the Centre for Computational 

and Systems Biology in Trento (Italy), I have started to work on a particular process calcu-

lus language, BlenX [25]. In computational biology, development of conceptual tools that 

manage the possible interactions and complexity through compositionality is a crucial task. 

The BlenX programming language has been specifically designed for biology from the be-

ginning, thus it provides a formal stochastic framework for modeling biological systems. 

 

The current version of the BlenX language applies Gillespie’s stochastic simulation algo-

rithm (SSA) [37] to follow the time evolution of the system. The assumptions of the algo-

rithm require rate equations to be elementary reactions that are defined by the law of mass 

action kinetics. However, there are several non-elementary functions in biology that apply 

assumptions for describing an observed property of the reaction [38]. The frequent use of 

these nonlinear terms, such as Michaelis-Menten kinetics or the Hill function, creates a gap 

between classical - deterministic - models and the stochastic simulations implemented with-

in the BlenX framework making composition of existing models difficult within the tool. 

The need of a bridge linking different modeling approaches has been recognized previously 

and few initiatives have already been proposed on the computational field [39-43], although 

the studies mentioned ahead paid less attention to the problem that arises in stochastic simu-

lations applying Gillespie’s stochastic simulation algorithm [37]. Gillespie’s method as-

sumes the exponential distribution of random variables describing the occurrence of the 

elementary reaction steps. Complex rate functions do not satisfy this assumption and how-

ever the application of nonlinear reaction rates is allowed in BlenX, they require the proof 

and the verification of their use in all modeling case studies. 

 

The size and complexity of many biological systems results in a difficult process of model-

ing. Exploring principles and frequently occurring submodules - often referred to as motifs 

[33,44,45] - is a well-known approach to contribute to a higher level understanding of com-

plex networks. Modularity and compositionality (i.e. the possibility of defining the whole 

system starting from the definition of its subcomponents) are key features of process calculi 

languages. Those offer an easier way of systematical modeling, although one also might 

find difficulties of presenting a real systematic way of model composition within those pro-

gramming languages. For instance, the shift from the classical methods towards computa-
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tional models is asking for the import of previous models and their implementation into an 

e.g. stochastic framework, such as the BlenX language. The current version of the BlenX 

language requires core computational knowledge and it is not an intuitive tool for theoretical 

biologists. Furthermore, listing the frequently used rules takes long time if the user is asked 

to build his model from the bottom each time. BlenX is asking for a higher level program 

design for the modeling process in order to be suitable for building BlenX models from the 

bottom-up in an easier way or for composing existing models for investigating larger net-

works. Exploring principles and frequently occurring submodules is a well-known approach 

to contribute to a sophisticated way of encoding programs. The BlenX language is suitable 

to describe biological systems in an exact way with elementary reaction steps and execute 

the code with Gillespie’s stochastic simulation algorithm however the complex terms often 

used in ODE systems create a gap between these modeling approaches. We present a solu-

tion for these problems, summarized in the subsequent chapter. 

 

1.3 The Solution Presented in This Thesis 

 

Systematic “unpacking” of complex reaction mechanisms (description of the complex rate 

functions with intermediate steps) into BlenX templates is shown in this study. We have 

chosen frequently used and biologically relevant motifs that offer specific properties to the 

models in deterministic approaches. They had been implemented into the BlenX language as 

computational templates. To study the stochastic effects in nonlinear biochemical reactions, 

we should first describe the complex rate functions with elementary steps. Decomposition of 

the motifs into single reactions is shown. These submodules offer a systematic modeling 

framework though the compositional behavior of BlenX. In this thesis a novel modular ap-

proach to process calculus is presented. Adaptation of a software engineering style structur-

ing techniques is shown as predefined computational templates are coded and present a bio-

logically relevant library of important motifs providing a higher level compositionality of 

the BlenX language. 

 

Additional to the proposed solutions for the composition of the computational models in 

BlenX, we also dealt with queries in biological systems and tested the computational tem-

plates presented in this work. Furthermore, the following biological questions were also ap-

proached from the modeling perspective. Recently, the circadian clocks [31] have been 
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shown to gate cell cycle transitions [30]. The biochemical interactions [46] interconnecting 

these two oscillatory systems lead to the question what properties could arise from this rela-

tionship and what the importance of clocks could be in cell cycle regulation. The daily 

rhythms have been presented to be influenced by ionizing radiation treatment exploiting 

novel insights into cell cycle related circadian functions. In order to explore these queries, 

we built models and investigated the systems mentioned ahead [47,48]. Our approach re-

veals hypothesis of experimentally observed behaviors and provides a detailed analysis of 

them, and compositional modeling with the proposed BlenX extension is also presented as a 

feature for analysing complex regulatory networks. 

 

The goal of this thesis is to realize a library consisting of predefined, biologically relevant 

submodules. The library offers a higher level compositionality with the BlenX language al-

lowing the use of biologically relevant modules in building highly complex models. It is a 

novel design methodology for computational systems biology providing extensions and 

merge of models that are available in various modeling frameworks. 

 

1.4 The Structure of the Thesis 

 

The thesis starts with an overview of the research field in Chapter 2 (State of the Art), fo-

cusing on the process calculi languages developed for biology. After introducing the con-

cept of compositionality in Chapter 2.5, we present the BlenX language in Chapter 2.6. 

From Chapter 2.7 to 2.10 the reader is introduced to the problems appearing on the field of 

stochastic simulation of complex reaction rates. In the Chapters from 2.11 to 2.13 we 

present the basics for the biological systems of our interest. Chapter 3 deals with the prob-

lem in details, to which the solution is proposed in Chapter 4. Results are shown in Chapter 

5, introducing and explaining the properties and the realization of the templates within the 

BlenX language that is important in modeling stochastic biological circuits. Finally, the the-

sis ends with the Conclusion session summarizing the novelties of the work. 
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2 State of the Art 
 

2.1 Systems Biology: an interdisciplinary approach 

 

Systems biology is a relatively new discipline of biological sciences that focuses on under-

standing complex systems by studying them as a whole [3]. Researchers have realized that 

finding the elements (e.g. molecules) of biological systems and knowing their properties 

will not let us understand how their intertwined reactions give rise to their function unless 

we analyze them as a complex network. But instead of only looking at a complicated picture 

and trying to guess, scientists turn into a more sophisticated analysis. They switch on their 

computers and build models to gain more information and produce interesting predictions 

that might be tested experimentally. Through the union of theoretical and experimental biol-

ogy, we hope to find novel results that may also have an impact on healthcare or drug dis-

covery. Quantitative modeling requires the contribution of an interdisciplinary field includ-

ing biologists, mathematicians, physicists, engineers and computer scientists. The cycle of 

systems biology research is the following: (1) one should propose a question based on pre-

vious experimental results. Thus, we collect the pieces of the puzzle we would like to play 

with (2) the next step is the model building process that is based on our previous knowledge 

(3) then analysis of the model (4) and we answer questions or make predictions (5) test the 

hypothesis, thus we gain additional knowledge of the system (6) and refine the model and 

start the cycle again.  

 

In these days, enormous amount of tools are accessible, although it was not always like that. 

Even before digital computers became available, theoretical models were solved and simu-

lated on analog machines [49,50].  The problem of biological self-organization - how steady 

state systems can create structures, oscillations and waves - was always a challenge. One of 

the first theoretical examples of complex behavior emerging in a biological system of was 

proposed by Max Delbrück in the 40s [51]. His concept of bistability (the possibility of be-

ing in either one of two different states under the same conditions) was used to explain dif-

ferentiation: how cells of identical genotypes (the coded genetic sequence) grown in iden-

tical environments can result in different phenotypes (the physical manifestation). Later 

Jacque Monod, Francois Jacob [52], Rene Thomas [53] and others [54-57] formalized the 

requirements for positive and negative feedback loops and their findings have shown the re-
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lation between the feedback structure of a system and the biological phenomena of homeos-

tasis and differentiation [58]. In the 50s, one of the first mathematical models of the field 

brought Nobel Prize to Alan Lloyd Hodgkin and Andrew Fielding Huxley [59]. They car-

ried out a series of measurements and used complex mathematical models to propose how 

impulses are formed along the axon of neuronal cells. It was a breaking result as the mole-

cular details of that system was unknown that time and they were able to publish novel find-

ings thanks to their unique approach. They became the pioneers of systems biology and 

brought the focus on the potential power in theoretical biology. At the same time, Turing 

started to study the phenomena so called symmetry breaking [60]. Others showed how non-

linearly interacting chemical processes develop complex behavior, such as oscillations 

[61,62]. Chemical oscillators of the mixture of some reactants became the first and classical 

example of non-equilibrium thermodynamics [63] and the tools developed to analyze chem-

ical reactions (in the field of theoretical physical chemistry) appeared to be helpful in bio-

logical research as well. In the following years, Denis Noble developed the first computer 

model of the heart pacemaker [64]; and from the 60’s, we can find several fascinating dis-

coveries of some of the rules that determine the observed physiology of cells [65]. The large 

amount of data produced after the birth of functional genomics was asking for both data sto-

rage and the comprehension of the role of biological molecules. Thus, informatics has kept 

up with these requirements and as a result, bioinformatics and computational modeling have 

emerged [5]. 

 

The increasing number of details led to more complex kinetic models which gave way ad-

vanced computational methods (first for ODEs) and abstraction of complex reactions (e.g. 

enzyme kinetics) as well. Several crucial qualitative properties of biological systems have 

been explained by dynamical systems theory and deterministic approaches [8,66]. However, 

other simulation formalisms have been also developed, e.g. Petri nets [67,68], transforma-

tional grammars [69] and process algebras [70]. An initiative to reduce the size of the possi-

ble states of a system is based on logical modeling with Boolean algebras [71-75]. The birth 

of novel computer science approaches brought novel analytic techniques into systems biolo-

gy. For instance, model checking has evolved from testing safety requirements in hardware 

or software systems to check and verify if a biological model matches some specific condi-

tions [76,77]. As novel experimental techniques have been developed, the need of modeling 

few numbers of molecules or a single cell behavior turned up. Stochastic models describe 
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events occurring probabilistically. Randomness is present and the states of components are 

expressed by probabilistic distributions rather than by unique values. 

 

Biological systems are composed of molecules acting in chemical reactions and they create 

a complex network resulting in proper physiological function. These well-orchestrated cir-

cuits describe common regulatory modules [78]. Their function cannot be easily predicted 

by studying the properties of the isolated components. Rather we try to understand their de-

sign principles as a whole. Modular approaches are inevitable tools to reveal the task of bio-

logical structures. Computational systems biology can contribute into this work. In the sub-

sequent, an introduction into computer science inspired formalisms is presented. These me-

thods have been successfully used to model biological systems and reveal novel insights in 

future systems biology research as well. 

 

2.2 Computational systems biology 

 

Ordinary differential equations (ODEs) are the most widespread and classical formalisms to 

model dynamical systems in science. They represent a mathematical description of bio-

chemical reactions with rate equations. ODEs are simulated through numerical integration 

methods. They are mainly applied to describe population dynamics within a deterministic 

framework, however stochastic extensions are also in use. When stochastic effects are im-

portant, other computational structures, such as continuous-time Markov chains (CTMCs) 

[37], are also available for modeling biological systems [73-75]. 

 

We distinguish computational and mathematical models because their basic concepts differ. 

Computational models function as executable algorithms and not just simply solvable equa-

tions. The comparison of the two points of view has been recently summarized in [28] and 

in [29]. Execution means that we can predict the flow of control between molecules and 

reactions making novel analytic techniques available (e.g. model checking, analysis of the 

causality relation among the events, etc.), while ODEs describe only the outcome of the sys-

tem through its evolution over time. 

 

Abstractions of computer science entered the field of systems biology with a class of formal 

languages that enable elegant and precise description of biological interactions. Hereinafter, 
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the reader will be introduced to the various computational tools used in the field. The list is 

enormous, thus only the, let’s say, most popular ones are mentioned in this study. 

 

2.3 Computer science formalisms in systems biology 

 

Abstract computer languages often form a class of generalized approaches towards model-

ing larger biological systems with ignoring their details. These initiatives allow only the 

study of common properties of networks but suffer from limited predictive power. The 

models created within these computational frameworks are usually top-down systems pro-

viding abstractions for uncovered biological interactions. 

 

Directed graphs are one of the modeling concepts that are widely used for gene regulatory 

networks characterizing the system through its elements (called as vertices or nodes) and 

with a set of ordered pairs (arcs, directed edges, or arrows). Although graphs are simple re-

presentations of biological systems, they are applied for predict unrevealed paths between 

elements and a variety of clustering algorithms have been used to group together the com-

ponents with similar temporal expression patterns providing high degree of organization and 

the better understand of genetic networks [51,79]. 

 

Bayesian networks [80] describe the structure of a system by a directed acyclic graph. It is a 

probabilistic graphical model that encodes the Markov assumption. The Bayesian network 

approach applies statistical analysis for investigating stochastic aspects and noisy measure-

ments. It represents a set of random variables and their conditional dependences. They are 

used when incomplete knowledge is available about the system. The simple and intuitive 

representation of such models might be restrictive for dynamical systems. Generalizations - 

like dynamical Bayesian networks - have been also presented with which feedback relations 

can be modeled [81]. 

 

Boolean networks [82] are further examples of the formalisms applying generalization and 

simplification in order to reduce complexity of biological systems. These discrete dynamical 

networks consist of Boolean variables whose state is determined by other variables and they 

can exist in two states: active (on, 1) or inactive (off, 0). Interactions between elements are 

represented by Boolean functions. One particular type of Boolean networks, the cellular au-
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tomata, is a popular approach to model Boolean variables whose state is determined by its 

spatial neighbors. It can be applied for Genetic Algorithms (GA) whose rules have given 

rise to sophisticated emergent computational strategies [83]. In simple cases, the attractors 

and their basins of attraction in the state space are calculated by hand, but for larger systems 

computer programs are applied. The reduction approach of the Boolean networks employs 

strong simplifying assumptions on the structure and dynamics of a biological system, thus it 

allows also large regulatory networks to be analyzed in an efficient way. For instance, in-

termediate steps are neglected. Also, transitions between the activation states of the ele-

ments are assumed to occur synchronously. Thus, certain properties of the system may not 

be predicted with this tool and there might be situations in which these abstractions are not 

appropriate and other methods are required. Generalized logical method [84-86] is an exten-

sion of Boolean networks. Their formalisms are equivalent, however the general logical me-

thod allows variables to have more than two values and that transitions between states may 

occur asynchronously. 

 

Basic Petri nets [67,68,87] are directed bipartite graphs used for describing distributed sys-

tems. In the 1960s, Petri Nets have been developed for modeling systems in a formal way. 

They have an exact mathematical definition of their execution semantics and a well-

equipped mathematical theory for process analysis. Nodes represent either places (signified 

by bars) or transitions (signified by circles). Directed arcs represent the trajectories. They 

run from a place to a transition or vice versa, but never between places or between transi-

tions. Basic Petri nets have been also applied to biological modeling [88-93]. Places may 

contain a nonnegative integer number of tokens. Transitions can fire whenever there is a to-

ken at the start of all input arcs; when it fires, it consumes these tokens, and places tokens at 

the end of all output arcs. Transitions can also be equipped with rates, giving rise to stochas-

tic Petri nets (SPN) [68] or colors (Coloured Petri Nets (CPNs)) [94] providing higher levels 

of abstraction by allowing tokens be marked. The usage of Petri nets is intuitive, but except 

some special initiatives [95-97] they lack modularity. 

 

Rules can be abstract representations of one or more reactions, thus rule-based languages 

are also specialized to biological modeling. For instance, BioNetGen [98] is a language de-

signed for generating a biochemical network of a set of reactions or a basic Petri net from an 

abstract, rule-based description. 
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In contrast to BioNetGen, Biochemical Abstract Machine BIOCHAM [15] is a software en-

vironment that makes compartmentalization available and the implementation of the type in-

ference tool provides an analytic method for biochemical models through the mathematical 

formalization of abstractions of the systems. It is composed of rules containing variables for 

modification site states, for atomic species names and for complexes. Furthermore, it is a 

language compatible with other initiatives (SBML) and it is equipped with several simula-

tors (Boolean, differential and stochastic). The tool infers kinetic parameters from temporal 

logic constraints. 

 

Realizing the need for modular rule-based modeling techniques and supportive tools, Little 

b employs a notion of rules [99] at a similar level of abstraction to those of BioNetGen but 

in a modular way. 

 

Process algebras are abstract calculi originally to specify and formally reason about concur-

rent computer systems. In the last decades this formal approach have been used extensively 

providing an additional representation of complex systems and have been also applied for 

biological modeling. In the following section, an introduction into the evolution of process 

calculi is presented. 

 

2.4 Process algebras 

 

The theory of simultaneously executed and interacting computations, called concurrency 

theory, is an active field of computer science. Some examples include communication net-

works, air traffic controllers, and industrial plant control systems. Process calculi languages 

are members of a family of computational approaches created to model concurrent systems 

in a formal way, permitting also the use of algebraic laws to manipulate process descrip-

tions. They provide a high-level representation of interactions, communications, and syn-

chronizations between processes. Their programming structure uses parallel composition of 

communicating sequential processes that can be executed more efficiently on multiple core 

units. A variety of process calculi languages originate from Robert Milner’s Calculus of 

Communicating Systems (CCS) [23] and Sir Charles Antony Richard Hoare’s Communicat-

ing Sequential Processes (CSP) [100]. Thereinafter, I will present the common properties of 

process calculi languages and some representative of the approach. 
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In a process calculus abstraction processes are playing a key role in a rules-driven descrip-

tion [101]. They are often symbolized as entities, agents, boxes or others, depending on the 

specific language and their collection defines the system. Entities execute computations pa-

rallel and they interact through channels. They have an internal state and the interaction ca-

pabilities of the processes are defined by names. As a result of a communication, the states 

of the computational units or the affinity of their interaction might change. Primitives are 

combined by some operators (prefix, parallel composition, choice, restriction, relabeling and 

the null agent). These syntax-driven rules are automatically implemented providing novel 

insights into applications for modeling. In contrast to classical methods (ODEs) which are 

denotational, process algebra descriptions offer a formal way to execute complex systems 

through their operational semantics. 

 

In the 1990s several stochastic extensions have been emerged for various process algebras 

when random variables were added into the system characterizing the duration of the com-

putations (actions). In most cases, these random variables are exponentially distributed and 

rates of actions are introduced for quantifying the models. The systems equipped with a sto-

chastic semantics are associated with a continuous-time Markov Chain (CTMC) [102] 

where the system remains in the current state for some random amount of time and then step 

to a different state. The future states of the process depend only upon the present state, giv-

ing rise to the Markov property. 

 

Pi-calculus [103] (continuous [104] or stochastic [105]) evolved from Milner’s CCS and al-

lows complementary actions to occur and also name-passing is possible, thus the communi-

cating processes can exchange names over channels resulting in novel interaction capabili-

ties. This extension enables modeling of mobile entities. 

 

CCS, the pi-calculus, and all the calculi derived from them provide a well-understood for-

mal mathematical theory and a number of associated tools for verification and analysis; 

however, previously they lacked biological representations. The application of pi-calculus in 

the field of biology began in the 20th century, with the work of Aviv Regev, Ehud Shapiro 

and Corrado Priami [70]. The abstraction of processes communicating and acting parallel 

has brought novel insights into the application in the field of biology as well. Biochemical 

pi-calculus [24] inherited the process algebra description of a system, thus biological enti-
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ties are abstracted as processes that interact through channels defined by channel names and 

co-names. Reactions are represented as actions. Molecules are present as computations. 

Various application of biochemical pi-calculus have been shown (BIOSPI [24], SPIM [106], 

etc). In their approach proteins are mobile processes, the ‘messages’ that molecules ex-

change affect their behavior and the sites of the proteins are named as communication chan-

nels. Proteins send and receive messages and protein-protein interactions occur. The system 

is governed by rules and proteins can also form complexes. Derivation of the pi-calculus is 

still a minimalist (using small collection of primitives and operators) rule-based language 

but being appropriate for modeling living system. 

 

Several other process calculi have been proposed to model biological systems. Performance 

Evaluation Process Algebra (PEPA) [107] is also a formal language designed for concurrent 

programming and later has fruitfully been applied for modeling biological systems. PEPA 

(or more likely its extension, Bio-PEPA [43]) allows the users to quantitatively model and 

analyze large pathways. Several techniques can be applied within PEPA, for instance it can 

be combined with the probabilistic model checker PRISM [108]. It has been mostly used for 

describing, simulating and analyzing signaling pathways [109]. CCS-R is a variant of CCS 

with the extension for managing reversibility in biology. Reactions are presented as binary 

synchronized communications, similar to pi-calculus. 

 

Kappa-calculus [110] has a language specialized in encoding proteins that are modeled by 

an identification name and by two multisets of domains. The first set of domains is visible, 

while the other contains hidden domains. The two basic primitives of the language are com-

plexation and activation representing protein interactions occurring in cells. 

 

Certain initiatives within the process calculi focus on modeling biological structures, com-

partements or membranes. For instance, BioAmbients [14] have been evolved from Mobile 

Ambients [111] and provide abstractions for biological compartments. Ambients can be or-

ganized in hierarchical way and entities interact through communications in the bound plac-

es. This calculus is a suitable tool for representing localization (the movement) and com-

partmentalization of molecules. Brane Calculi is another representative for a computational 

abstraction inspired by biology and applied for modeling biological systems [112]. It focus-

es on biological membranes, which are both containers and active entities. Brane Calculi 

primitives provide properties for membranes such as merge, split, shift or action. Directed 
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actions of membranes are present in Projective Brane Calculus [113], as an extension of its 

progenitor. 

 

Beta-binders [114] are extensions of pi-calculus and their abstraction is based on the idea of 

representing bio-processes as boxes equipped with sites (beta-binders). Beta-binders intro-

duced the concept of compatibility [116] meaning that upon communication the types of the 

interfaces have to be compatible, but actions and co-actions are not required to match pre-

cisely to fire. In addition, they are enriched with specific events, such as split or join of box-

es and hiding or unhiding or exposing binders. A stochastic extension of Beta-binders for 

quantitative experiments has been presented in [115]. BlenX [117] is a progeny of Beta-

binders where Beta Workbench [27] provides a non-deterministic kernel of such models. 

The BlenX programming language is described in details in Chapter 2.6. 

 

Biological systems’ properties Beta-binders representation 

Entities (mRNA, DNA, proteins, etc.) Boxes 

Interaction capabilities (protein domain) Binders 

Complex formation and dissociation Binding creation and deletion 

Interactions (modifications) Communications 

Dynamics State change 

Table 1: Representation of biological systems with Beta-binders. 

 

2.5 Compositionality, a challenge in systems biology 

 

“Anything that deserves to be called a language must contain meaningful expressions built 

up from other meaningful expressions.” by Zoltán Gendler Szabó [118]. 

 

The opportunity of the construction of a system starting from the definition of submodules 

is called compositionality and it is a common property of languages in general. Program-

ming languages are combined of basic primitives. Compositional modeling was originally 

implemented as a framework for constructing adequate device models with the composition 

of physical devices (Device Modeling Environment, DME [119]) that emerged from the 

principles of a compositional modeling language (CML) [120]. Several initiatives have al-
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ready investigated the question of biological models in a systematic way. Computational 

approaches have already focused on the definition of common motifs in different research 

fields providing novel insights into methods that may enhance the difficult, error-prone and 

time-consuming process of model composition. All proposals approach the problem from a 

different point of view and they add novel meaning to the original question into the model-

building process. In the following section, the reader is introduced to the methods and re-

search directions emerged on the field of computational biology concerning compositionali-

ty. 

 

One of the solutions to ease the modeling process was proposed by Falkenhainer and Forbus 

[119], namely the authors suggested a creation of a collection - a library - of physical model 

fragments. A few computational tools using classical approaches (e.g. ODEs) - thus non-

process algebra-based approaches - have already defined libraries of frequently used motifs 

in the field of biology (e.g. COPASI [9]). These libraries contain abstract biochemical reac-

tions applying several assumptions. Concentrating on signaling networks, Saez-Rodriguez 

defined submodules for creating modularization based on network theory within the tool 

ProMoT [121]. In [122], the authors developed a method for the design of genetic circuits 

with composable parts. Each part is modeled independently by the ordinary differential equ-

ations (ODE) formalism and integrated into the software ProMoT (Process Modeling Tool). 

They realized a ‘drag and drop’ tool for genetic circuits. Furthermore, SBMLsqueezer [123] 

facilitates modeling via automated equation generation, overtaking the highly error-prone 

process of manual assign of kinetic equations to the biological systems. This approach pro-

vides an automatic derivation of the kinetic equations starting from the stoichiometric rela-

tion between the reagents visualized on a diagram. SBMLsqueezer helps to simplify the 

modeling process and it applies complex rate functions within the deterministic framework 

with compound mathematical terms. 

 

Compositionality is mainly discussed as one of the key features of process calculus tools 

that enable the composition of processes through basic primitives of the language. A suita-

ble conceptual tool to attack complexity has already been successfully used in the process 

algebra field to model biological systems as an issue of model-construction from elementary 

reactions with the basic operators by Blossey et al. [40]. The authors presented an approach 

for constructing dynamic models for the simulation of gene regulatory networks from simple 

computational elements, called “gene gates”. These gates define an input/output relationship 
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corresponding to binding states and the modularity of the approach creates another level of 

description for biological systems. The properties of each gate are defined by a set of ab-

stract kinetic reactions (e.g. through Boolean expressions) that reduce the complexity of a 

model. Michael Pedersen’s definition of minimal flows in Petri nets can be also applied as 

an example for modular rule-based modeling approach in the Petri net-based Calculus of 

Biochemical Systems (CBS) [124]. Being able to carry out analyses in a compositional way 

allows much larger models to be handled efficiently. However, the methods described above 

disregard the crucial nonlinear behavior originating from complex reaction schemes in bio-

logical systems. 

 

One remarkable research direction of model-composition lays behind the idea of the transla-

tion of a modeling approach to another. The need for composing different languages within 

one framework and the combination of different mathematical representations (ODE, 

CTMC, etc...) is a crucial property for systematic modeling of large biological networks. 

Bortolussi and Policriti [125] defined a syntactic procedure that translates programs written 

in stochastic Concurrent Constraint Programming (sCCP) into a set of Ordinary Differential 

Equations (ODEs), and viceversa. Jane Hillston and co-workers established similar connec-

tion between the ODEs and process calculus approaches [126,127] . Furthermore, they [128] 

have focused on generating an aggregated CTMC in a compositional way, tackling with the 

state space explosion and with the implementation of an efficient algorithm that recognizes 

symmetries and avoids unnecessary computation within the PEPA Workbench. Their publi-

cation demonstrates how compositionality may be exploited to reduce the state space of the 

CTMC in the PEPA framework. The methods mentioned ahead all focus on language trans-

lation, but they disregard the problem of implementing the frequently used complex mathe-

matical expressions of deterministic models. 

 

Hybrid methods have been proposed to solve the impermeability between different ap-

proaches. Bockmayr’s hybrid concurrent constraint programming is an example of a highly 

expressive, compositional language with a well-defined semantics [129]. A proposal for 

connect classical approaches and rule-based languages has been also shown in Biochemical 

Abstract Machines (BIOCHAM) [15]. This tool achieves simulations and it queries the 

model in temporal logic. Biochemical systems described by differential equations are han-

dled in a hybrid framework using time discretization methods, and it is combined with Boo-

lean models. The language is able to represent multi-molecular complexes and localization 
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of proteins (compartments where species are). In addition, Hermanns and Herzog con-

structed large Generalized Stochastic Petri Nets (GSPN) by hierarchical composition of 

smaller components in real hardware and software systems inspired by process algebraic 

operators [130]. The Bionet [131] tool is a novel approach for biological pathway modeling 

based on hybrid intelligent systems (fuzzy logic, neural nets, genetic algorithms, and statis-

tical analysis) for the computational exploration of new drug targets.  

 

The need of a bridge linking different modeling approaches has been recognized previously 

and as it was mentioned, few initiatives have already been proposed on the field [39-43]. 

However, the studies described above paid less attention to the specific problem of the pres-

ence of nonlinear functions within stochastic models. The direct use of complex rate func-

tions has been implemented currently into the BlenX language (in Chapter 2.10.1) requiring 

proof and verification of their use in all modeling case studies. In order to solve the problem 

of the presence of non-elementary reactions that are assumed to be elementary in Gillespie’s 

stochastic simulation algorithm, systematic unpacking of often used nonlinear terms into 

single-step reactions are shown in this thesis. Challenges arise from the disappearing nonli-

near behavior upon the decomposition of some complex terms often used in biological mod-

eling [132]. This thesis will focus on an improvement of compositionality in the BlenX lan-

guage by definition of frequently used submodules. First, the evolution and the description 

of the process calculus language BlenX are shown. 

 

2.6 The BlenX programming language for biology 

 

BlenX (Biology encoding language) [117] is a stochastic programming language for model-

ing biological systems in a formal way. It was inspired by Beta-binders [114] and it has 

been designed for biology from the beginning. It offers a high-level description of interac-

tions, communications, and synchronizations between molecules or processes. BlenX also 

offers an opportunity to define algebraic laws and as other process calculi, it provides a 

formal specifications of concurrent systems (the molecules of a biological system) executing 

their tasks in parallel and able to synchronize with each other. BlenX models define the 

possible properties of the various elements of the encoded systems. Calculi contain syntax-

driven rules, the so-called operational semantics [101] that can be automatically imple-

mented in the Beta Workbench framework (BWB [27]).  
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Figure 1: Graphical notation for abstract biological entities in BlenX. 

 

BlenX allows the user to create boxes to represent biological species. Boxes have well-

defined interaction sites (called binders) and internal structure (behavior). The box shown 

on Figure 1 is defined by its internal process, P, and types A, B,…, Z. The types discriminate 

among possible and prohibited interactions based on compatibility [116]. 

 

The declaration for boxes containing the rules that encode the entity is 

 

let Box :  bproc = #(a:0,A), #(b:0,B),…, #(z:0,Z) [ P ]; 

 

The behavior of a biological system is given by the ordered sequence of actions and reac-

tions (complementary actions or simply coactions) that the program can perform leading to 

the biochemical interactions between the elements. Actions for instance can occur when 

binders “sense” signals (receive an input) and propagate signals (send an output) and the in-

ternal structure codifies for the mechanism that transforms an input signal into the change of 

the box (e.g. activation (unhide or expose), deactivation (hide) or changing the type of a 

binder (ch)). To denote such a chain of events, the action prefix operator is used, which is 

written as an infix dot (a!().P). Signals are sent over a channel named a (a!) or waiting for a 

reply over a channel named b (b?). Operators in Table 2 (e.g. sequentialization, parallel 

composition, name declaration, recursion, bang and deadlock operator) are made up to com-

pose elementary actions over distributed channels.  Parallel composition (denoted by the in-

fix operator “|”, as in P | Q) allows the description of processes that may run independently 

in parallel. The process P + Q behaves either as P or as Q and the selection of one process 

discards the other forever. To represent a situation, where the process is unable to perform 

action or co-action, the nil (deadlock) operator is used. Replication operator (rep) is a typi-

cal operator of process calculi that ensures the process sends a signal each time it is needed, 
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allowing infinite behaviors to happen. Events specify statements to be executed with a rate 

and/or when some conditions are satisfied. Boxes are able to born (when a new box is syn-

thesized) and to die (when a box is deleted) as biological entities. Boxes are merged or split 

upon different conditions (join and split events). They can also form complexes through 

their binders and dissociate depending on the state of the overall system.  

 

parallel composition of processes P | Q 

choice P + Q 

sequentialization of interactions a().P 

specification of which channels to use for sending and receiving data b?().P or b!().P 

recursion or process replication rep P 

deadlock Nil 

Table 2: Basic operators of process calculus languages. 

 

Following the BlenX metaphor, we look at genes, proteins, and other biological entities (de-

pending on the level of abstraction) as independent processes that can communicate and in-

teract with each other. These interactions between the communicating entities give raise to 

the complex network of biochemical reactions taking place inside an organism. The effect 

of an interaction between the components can change the future behavior of the whole sys-

tem. Simulations of BlenX are based on Gillespie’s stochastic algorithm [117]. In addition 

to model execution, various other methods have been proposed to analyze pi-calculus mod-

els (e.g. causality and concurrency analysis [133] or model checking [76]). In the following, 

the BlenX’s features supporting the modeling process of biological systems are summa-

rized. 

 

2.6.1 Complexes 

 

The boxes of BlenX are able to form (or break down) complexes through their binders. The 

typed interfaces represent their interaction capabilities. The boxes bind over their interfaces 

with certain sorts enabling specific reactions to occur (through the creation of a link that on-

ly they can use) (Figure 2). The affinities of binders to form complexes are declared in a 

separate file in the following way: 
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( A1 , A2 ,  rate ( k ) , rate ( l ) , rate ( m ) ); 

 

where A1 and A2 are two binder types that are capable to form complexes. The first rate (k) 

is referred to as the association rate, the second (l) is the dissociation rate and the third one 

(m) is the rate of communication firing upon binding. Thus, bindings between interfaces en-

able processes to communicate and actions to occur (Section 2.6.2). For instance, biological 

systems often form intermediates (e.g. enzyme-substrate complexes) which allow a catalytic 

step to occur during the substrate is turned into a product. 

 

 
Figure 2: Graphical representation of boxes forming complexes. Binding of BOX1 and BOX2 might occur 
through their binders named a with the types A1 and A2, respectively. 

 

2.6.2 Communications 

 

Processes can perform actions when the primitive b()!.P sends a signal - enclosing the 

process P - through the interface (b,B1), while, a box with a primitive b()?.Q waits for a 

signal on the binder (b,B2). When communication happens, the two boxes synchronize each 

other and execute the sequential process in their internal behavior (Figure 3). Thus, boxes 

can execute an action theirselves and for example, with the primitive change, they transform 

theirselves into the products. 

 

In the previous section (Section 2.6.1) biochemical reactions were introduced through com-

plex formations and the following modifications. However, the expressive power of BlenX 

also enables communications to happen without formed links. If the rates k and l (used in 

Section 2.6.1) are both zero, but m has a value greater than zero, then binding and unbinding 

are not contemplated for the pair of types and the boxes exposing them can communicate 
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without the need of first creating a link. The boxes indeed can use an intra-communication 

without creating an intermediate complex. 

 

Intra-communications occur on perfectly symmetric input/output pairs that share the same 

subject, while inter-communication can occur between primitives that have different sub-

jects provided that their binder identifiers are compatible. This new concept of communica-

tion is a special extension of the language for modeling biological systems where interac-

tions occur based on their affinity and molecules can react with several reactants in the same 

context. 

 

 
Figure 3: An example for a communication-driven reaction in BlenX. 

 

2.6.3 Events 

 

BlenX offers an abstract description of biochemical reactions through events. Events pro-

vide a solution for modeling non-elementary steps as well. They encode rewriting rules that 

substitute a set of boxes with another set of boxes. The abstraction of events allows the users 

to define reactions without specifying complex formation or details - intermediate steps - of 

the complex reaction. For instance, complex formation of the boxes can be modeled as the 

substitution of the two components into a third box, representing their dimer (join event in 
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Table 3). The split event provides dissociation of the complex into the single elements or 

even into modified molecules. In the later case a multi-step reaction is described by an ab-

stract single step. Synthesis and degradation of the boxes (new and delete events, respective-

ly) can be also coded with events. The use of events can be combined with real complex 

formation rules and with communications. 

 

���1 �� ���2 + ���3 when(Box1::rate(k)) split(Box2,Box3); 

���1 + ���2 �� ���3 when(Box1,Box2::rate(k)) join(Box3); 

�� ��� when(Box::rate(k)) new(1); 

��� �� when(Box::rate(k)) delete(1); 

Table 3: Representation of events in BlenX. 

 

2.6.4 Conditions 

 

The execution of primitives may depend on specific conditions. In this case, processes are 

fired by checking the state of the box. Conditions allow the definition of general rules valid 

for a biological entity. For instance, the state of the molecule specified by the type of the 

binders can lead to the execution of an action. 

 

The condition 

 

pproc = if ( not ( a , bound ) ) then b?().nil endif ; 

 
will let the binder b receive signals if the binder a is not bound to another box. Thes rules-

driven and component-based descriptions of biological networks offer a novel computation-

al systems biology approach that differs from the classical, equation based modeling tools. 
 

2.6.5 Conditional events 
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In order to allow the user to perturb the system through events, conditional events are im-

plemented in the language. For instance, events can be written in a time dependent way, e.g. 

accounting for an event of Box deletion at the time point 100 such as 

 

when ( Box : time = 100.0 : inf ) delete ( 1 ) ; 

 

2.7 Compositionality with BlenX 

 

Compositionality is a key feature of process algebra tools. As the size of the revealed inte-

raction network increases, the modelers wish to link the discovered interconnected subsys-

tems together, there is an urgent call for a framework that supports extension of models in a 

cumulative manner. Introduction of rule-based and process algebra modeling was a depar-

ture from classical dynamical approaches, such as ordinary differential equations (ODEs). 

ODEs require the explicit report of all interactions that occur in time, while rules-driven ap-

proaches can be used to generate biochemical reactions. If we would like to extend the reac-

tion scheme with a novel role of an element in a model described through ordinary differen-

tial equations, we do not only need to add new equations, but we also have to modify the ex-

isting ones. While process calculi models rely on modeling with the concept of compositio-

nality. 

 

BlenX inherited the basic properties of process calculi, such as the key primitive that distin-

guish the process calculi from sequential models of computation. Parallel composition of 

processes (see the detailed description ahead) makes compositionality a crucial feature of 

biological modeling in BlenX. Parallel composition of two processes P and Q are written as 

P | Q and it allows computation in P and Q to proceed simultaneously and independently, 

and it also allows interactions to occur. Model composition and extension are proposed to be 

easier with BlenX than with classical modeling methods. However, there are several initia-

tives that improve the compositionality of ODE systems based on some building blocks (e.g. 

the collection of reactions in COPASI [9]), while the current representation of BlenX lan-

guage remains a tool for only experts in the computer science field with programming skills. 

Compositionality on the other hand means that a model can be built and analyzed by divid-

ing it into smaller submodels that are easier to understand. It is a crucial property and 

enables the construction of large systems. Compositionality focuses on the basic operations 
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and complex behavior that the model can perform. It is surely the key issue needed for sys-

tematic biological modeling to become effective. It allows to fix the building bricks of sys-

tems and to enlarge models by composition without large changes in the description of the 

subsystems that are already available. 

 

Pre-defined modules and the collection of frequently used complex reaction schemes pro-

vided in ODE systems ease modeling within the deterministic framework, but cannot be ap-

plied under the stochastic simulations of BlenX as there is no direct translation of ODE 

models and the stochastic simulations applied in BWB are often found to be inappropriate 

for complex reaction schemes (discussed in Chapter 3). Thus, there is a need for a solution 

of a tool that inherits the properties of extendable process calculus approaches and provides 

building bricks that makes the modeling process and analysis of the system more effective. 

In the subsequent, I present the stochastic simulation algorithm used for BlenX models and 

after that I point out the problems we have to deal with compositional modeling within the 

currently available BlenX language. 

 

2.8 Stochastic simulations with BlenX 

 

To analyze the system after the model building process, we follow its dynamics over time 

starting from a set of initial conditions. The deterministic modeling approach regards the 

time evolution of chemical reactions as a continuous, predictable process that is governed 

by a set of coupled reaction-rate equations, also referred to as the system’s kinetic descrip-

tion. Several experimental studies showed the importance of noise in biological systems 

[19-22,134] bringing stochastic simulation techniques into the focus of theoretical biology. 

The stochastic approach to chemical kinetics was first described by Delbrück in the ’40s 

[51] and Novick and Weiner [135] showed that at the low inducer concentrations used in 

their experiments the population of cells consists essentially of individual bacteria that are 

either making enzyme at full rate or not making it at all. The basic assumptions of stochastic 

reactions are that a chemical reaction occurs when two (or more) molecules of the right type 

collide in an appropriate way, and that these collisions in a system of molecules in thermal 

equilibrium are random [37]. Noise in biology is usually represented by assuming that the 

time evolution of the system is a random-walk process which is governed by a single diffe-

rential-difference equation called the chemical master equation (CME). Monte Carlo proce-
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dure is used to numerically simulate the time evolution of a given species. The most famous 

method to simulate a set of chemical reactions is the stochastic simulation algorithm (SSA) 

of Gillespie [37]. The BlenX framework also applies the method presented in the following 

section. 

 

2.9 Gillespie’s stochastic simulation algorithm 

 

In the ‘70s, Gillespie published an exact solution to generate the stochastic time-evolution 

of a biochemical system as a random-walk process [37]. It probably became the most popu-

lar computational method for stochastic simulations in systems biology. Gillespie developed 

a variant of Monte Carlo simulations assuming that the system is well-stirred and molecules 

are randomly distributed. In this way, the produced exact numerical calculation within the 

framework of the stochastic formulation is a relatively simple digital computer algorithm 

that correctly accounts for the inherent fluctuations and correlations that are necessarily ig-

nored in the deterministic formulation. It describes the transition of a system from one state 

to another through changes of the probability of being in a certain state. BlenX refers to an 

efficient variant of the stochastic Gillespie’s algorithm for simulations [27]. 

 

In Gillespie’s approximation, the reactants of the system (S1, S2, …, Sn) are randomly distri-

buted in a fix well-stirred volume (V) and they collide in a random manner, assuming that 

molecules are in thermal equilibrium. Initial quantities of the reactants are defined as X1(t), 

X2(t)… Xn(t) at t=0. Not every collision results in a reaction. Depending on the state of the 

molecules, the collisions form a stochastic Markov process characterized by “collision 

probabilities per unit time”. The theory assumes that nonreactive molecule collisions occur 

much more frequently than successful ones. The chemical reactions are described by stoi-

chiometric equations. Suppose that the species interact via m reaction channels (R1, 

R2,…,Rm) and that these reactions occur with individual propensities (c1, c2,…,cm). The aver-

age probability of a molecular pair (X1 and X2) that will react according to a reaction Rj in 

the next infinitesimal time interval (t, t+dt) equals to �� ∙ ��; where cj is the stochastic reac-

tion rate constant (or basal rate). To define when the next reaction occurs and which reac-

tion will occur, Gillespie calculated a combinatorial function hj that specify the number of 

all possible reactant combinations for reaction Rj. The probability that an Rj reaction will 

occur in the interval (t, t+dt), given that the system is in the state (X1, …, Xn) at time t is 
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ℎ� ∙ �� ∙ �� = �� ∙ �� (aj is denoted with propensity value). To numerically simulate the sto-

chastic time evolution of a biochemical system, Gillespie presented an exact solution, called 

exact stochastic simulation. The reaction probability density function (P(T,j)) provides the 

probability that, given the state (Xl,. . .,Xn) at time t, the next reaction (Rj) in V will occur in 

the infinitesimal time interval (t, t +dT) and the analytical expression now comes to the set 

of random pairs whose probability distribution equals to ���, �� = �� ∙ �������. The calcu-

lation assumes that reactions are elementary steps (involve one or two reactants), thus there 

is no reaction occurring in the time interval (t, t+T).  

���, �� = ��� ∙ �������  ! 0 ≤ � < ∞ �&� � = 1, … , (
0 ��ℎ�)* +� , 

where 

�� ≡ ℎ� ∙ �� 

and 

�. ≡ / �0 ≡ / ℎ0 ∙ �0
1

023

1

023
 

 

The stochastic simulation algorithm generates two random numbers (r1, r2) that defines the 

pairs of T and j according to the probability density function: 

 

� = � 1
�.

� ∙ ln � 1
)3

� 
and 

/ �0 < )6 ∙ �. ≤ / �0
�

023

��3

023
 

 

Note that in every state of the system the time to the next occurrence of reaction Rj is a ran-

dom variable following a negative exponential distribution. The validity of this fundamental 

hypothesis of Gillespie has been queried by Ivan Mura [136] with a simple mathematical 

argument on complex reactions including multiple elementary reactions. Meaning that even 

if time to the next occurrence of each elementary reaction follows a negative exponential 

distribution, the time to the occurrence of the abstract reaction will not have exponential dis-

tribution that Gillespie’s SSA assumes. This problem emerges in bio-inspired process calcu-

li that are equipped only with exponential distributions. Note that there has been a proposal 
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for BlenX including the use of general distributions investigated in special biological cases 

[137], although other solutions are still needed that enable compositional modeling of com-

plex reactions in a sophisticated way. 

 

 
Figure 4: Gillespie’s stochastic simulation algorithm. 

 

2.10 Reaction rates in BlenX 

 

In biochemical reaction kinetics, the rate of a reaction - the speed at which the concentration 

of reactants or products change - is defined by the law of mass action kinetics assuming that 

the system is homogeneous and chemical reaction rates of elementary reactions (that pro-

ceed through only one transition state) are proportional to the concentrations of the reac-

tants. 

 

An example for a chemical equation is:  7 �� 8 
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where A is the reactant and C is the product, while k defines the reaction rate constant. 

 

The deterministic, kinetic description of the reaction characterized by the velocity of prod-

uct formation is 

 

�8
�� = 9��� ∙ [7] 

 

where k(T) is the reaction rate constant that changes with the temperature and [A]  stays for 

the concentration of molecules A. The units of the rate coefficient depend on the global or-

der of the specific reaction. In this first order example (where one reactant is converted into 

a product) the rate constant’s unit equals to [1/time]. In case of a second order reaction (e.g. 

when 7 + � � 8) it equals to [(1/(numbers of molecules per unit volume) per time)]  unit. 

 

Reaction rate constants are crucial properties of biochemical systems as they quantify the 

speed of each reaction. Rate constants could be measured in some cases but it is often a 

missing property of biological models. The parameters of the system are mostly derived 

from measurements or estimated through computational parameter inference algorithms. 

Several methods have been introduced to assist different computational approaches (PET 

[138], SBML-PET [139], KInfer [140], etc). 

 

In case of reaction rates having exponential distribution and when the model has finite num-

ber of states, the BlenX program gives rise to a continuous-time Markov chain (CTMC) 

[37]. Evolution of the model is generated by Monte Carlo sampling methods and the transi-

tion between states is labeled with the stochastic reaction rate. Intrinsic noise in the model is 

implemented by the usage of random numbers. In this way, BlenX models are executed 

through Gillespie’s stochastic simulation algorithm (SSA) in which rate constants are de-

fined as specific probability rate constants. In general, when the molecules of the system 

collide in an appropriate way, the SSA calculates the occurrence of reactions in thermal 

equilibrium that take place in a random manner. Thus, in a stochastic framework, a reaction 

probability density function (reaction probability per time unit) is used to compute the prob-

ability of an action to occur that depends on the stochastic rate constants and the number of 

molecules present in the system (Section 2.9). For each reaction channel Rj the propensity 

function is defined as  
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�� ≡ ℎ� ∙ �� 

 

such that am is also called as the actual rate and hm is the number of distinct reactant combi-

nations for reaction Rm and cm is a constant (called base rate) depending on physical proper-

ties of the reactants. The way of computing the combinations and the actual stochastic rate 

varies with the type of the reactions. The stochastic rate constants usually can be derived 

from the widely used (and measured) deterministic rate constants through a conversion fac-

tor [37]. From the practical point of view, this conversion is straightforward and depends 

only on one factor, although from the theoretical point of view the difference between the 

two constants is much more complicated (discussed in [37]). 

 

The conversion of the deterministic reaction rates into stochastic ones is implemented in two 

steps. First, the concentrations of the deterministic system are translated into molecule num-

bers through a scalar constant α that depends on the volume of the system (V): 

 

< = 1/�>? ∙ @� 

 

where NA is Avogadro’s number, a scaling factor between macroscopic and microscopic 

systems expressing the number of elementary entities per mole of substance. It has the value 

 

6.022 ∙ 106C��D�3 

 

Transformation from concentrations into the number of molecules is carried out as 

 

> = & ∙ >? = � ∙ @ ∙ >? = �
1/�>? ∙ @� = �

< 

 

where c is concentration with the molar concentration unit called molarity (mol/liter) and N 

is the number of molecules with the unit of ‘number’ that we will denote with a number sign 

(#). 
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reaction 
order of  

reaction 

reaction rates (deterministic)  

�EFGEHGIJKILFG MGLI/ILNH�  unit 

stochastic reaction 

rates  

�#/ILNH� unit 

� 7 zero 
9 

���&��&�)�� �& P& �/� ��� 
9 <Q  

#/� �� 

7 � � first 
9 ∙ [7]  

�1/� ��� ∙ [��&��&�)�� �& P& �] 
9 ∙ |7| 

S 1
� ��T ∙ |#| 

7 + � � 8 second 

9 ∙ [7] ∙ [�]  
�1/�� �� ∙ ��&��&�)�� �& P& ���

∙ [��&��&�)�� �& P& �]6 

9 ∙ < ∙ |7| ∙ |�| 
�1/�� �� ∙ #�� ∙ |#|6 

 

Table 4: Conversion of deterministic reaction rate constants into stochastic reaction rate constants. α is in-

versely proportional to the volume V. 

 

In the stochastic interpretation we have to note that in case of multimerization, the stochastic 

probability of a reaction to occur differs not only in a conversion factor from the determinis-

tic case. Thus, if the reaction Rj has a scheme A3  + A6  +  … +  AV  � C with only n num-

ber of a single reactant forming complexes, the reaction rate in the stochastic case is de-

scribed via a combinatorial function instead of a multiplication:  

 

9 ∙ & ∙ �& − 1�
2  

 

This makes the term describing the reaction in the deterministic framework different from 

the stochastic one.  

 

In addition to the rate constants described by the mass action kinetic law, we find several 

other popular characteristic of experimentally observed phenomena. These reaction schemes 

rely on approximations and they are defined by a complex mathematical term. The introduc-

tion into nonlinear rate equations is presented in the following section, while detailed de-

scription of some concrete examples are shown later (in Chapter 5). 
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2.10.1 Rates of non-elementary reactions 

 

In case of reactions that occur in a single step (elementary), experimental measurements re-

veal a simple linear relation between the reactants and the reaction rate. However, biological 

systems are much more complex than that. There are several biochemical mechanisms 

where researchers have observed multi-step reaction or the nonlinear response of the rates to 

changes in the concentration of reactants. We can say that most biologically observable 

reactions are not elementary. In fact, most reactions take place by a complicated set of steps. 

Thus, the kinetics of the reaction - and the rate law - may not simply depend on one rate 

constant, and may not have a simple order. 

 

A famous example of such behavior was the observation that the reaction rates of some en-

zyme catalyzed reactions can be described with a saturation curve. Michaelis and Menten 

approximated the velocity of these enzymatic reaction schemes with a nonlinear function 

named after them [141]. Their assumptions became the landmark of a simple way for mod-

eling enzymatic reactions and the use of their approximation also ease the determination of 

the arising constants from measured data. Furthermore most biological reactions are driven 

by enzymes, so this description can be used to couple enzymatic reactions in a biological 

regulatory network. 

 

Some enzymes provide a sigmoidal response curve indicating cooperative binding of sub-

strates to the active sites. This behavior is common in multimeric enzymes with several inte-

racting active sites. The first very famous example was the binding of oxygen ligands onto 

haemoglobin in a cooperative manner altering the affinity of the other active sites for sub-

strate molecules. The Hill equation is applied for modeling these reaction schemes assuming 

simultaneous binding of the ligands [142]. 

 

Besides the reactions mentioned above enormous type of biochemical scenarios exist. For 

instance, certain hypotheses were built upon the assumptions of earlier works, such as inter-

connected enzymatic reactions or different inhibition mechanisms (concerning multi-

substrate reactions, inhibition and activation mechanisms, allostery, ligand and receptor in-

teractions, scaffold proteins, etc) [143,144]. Nonlinear reactions may lead to more complex 
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behaviors playing crucial roles in biological systems [38]. Positive feedback provides net-

works (e.g. signaling cascades) the potential for bistability and relaxation oscillations. On 

the other hand, negative feedback can bring about adaptation and robustness to parameter 

variations within the feedback loop [145]. 

 

The current expressive power of BlenX allows the characterization of elementary reactions 

and also permits complex reactions to occur in a single step via events (Section 2.6.3). The 

nonlinear terms are characterized and coded by the user during the model-building process. 

Interconnected regulatory loops and nonlinear reaction terms together might give rise to 

more complex behavior, such as oscillators [38]. One of the crucial cyclic systems in euka-

ryotic cells (with real nucleus) is the recurring division of cells. It is a fundamental sequence 

of events that cells must proceed to keep reproducing and is controlled by a complex mole-

cular machinery containing intricate molecular mechanisms. One of the early success stories 

of mathematical biology includes cell cycle regulation [18]. Through the description and 

analysis of the network, theoreticians predicted several dynamical properties and unknown 

components of the system that were later experimentally verified. Moreover, lately these 

computational and theoretical approaches got more and more incorporated in the main 

stream cell cycle research. In order to follow the later discussion about this biological sys-

tem, an introduction into the cell division cycle is given in the subsequent section. 

 

2.11 The cell division cycle 

 

Cells perform a sequence of coordinated events (referred to as ‘cell cycle’) that result in 

self-reproduction [30]. The major processes of the cell cycle are quite much the same in all 

eukaryotic cells (with real nucleus). During these events a cell must properly replicate its 

hereditary material (DNA) in the S-phase and separate the two copies into two daughter 

nuclei during mitosis (M-phase). Cells need to to double all their other components (pro-

teins, ribosomes, RNAs, phospholipid bilayers, carbohydrates, metabolic machinery, etc.) 

during a cycle and usually the doubling time of the cytoplasm takes longer; hence temporal 

gaps (G1 and G2) are inserted in the cell division cycle between S-phase and M-phase in 

order to keep the size of the two daughter cells similar to that of the mother.  
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The major events (DNA replication and division) are tightly regulated and events are 

checked at several points. These ‘surveillance mechanisms’ are called checkpoints [146]. 

With the assist of a sophisticated network of interactive molecules, cells regulate and moni-

tor the progress through the cell cycle. They check if an earlier event has been properly ex-

ecuted before proceeding to the subsequent step. Newborn cells are in G1-phase with unrep-

licated chromosomes and start the cell division cycle by monitoring the internal and external 

conditions if they are favorable for a round of events. Cells must grow to a critical size be-

fore they can commit to chromosome replication and division to guarantee the balance be-

tween the cell growth and the DNA cycle. When the internal and external conditions are fa-

vorable, cells make the decision to start a round of the cell cycle. They prepare the materials 

to get ready to the crucial events of cell cycle with the correct timing. G1-phase can be sepa-

rated into two functionally different parts. The frontier between early and late G1-phase is 

called the restriction point in higher organisms [147] or START in yeasts [148]. At this point 

a cell commits itself to the whole process. The decision is irreversible; once DNA-synthesis 

begins, it goes to completion and eventually the cell will finish it even if conditions are get-

ting worse in the meantime. Irreversibility is ensured by interconnected regulatory feedback 

loops building up a complex machinery of interacting entities [149]. During the process of 

DNA replication, sister chromatids are produced and ‘glued’ together by specific proteins, 

called cohesins [150]. Accuracy of S-phase events is crucial for producing healthy and via-

ble daughter cells, thus the synthesis is permanently checked and repair mechanisms guard 

the correct DNA replication. G2-phase is inserted to ensure that DNA replication is properly 

finished and cells have grown to an appropriate size before mitosis. G2/M transition can 

happen only after these requirements are matched. Events during mitosis are critical for 

proper distribution of DNA between the two daughter cells [151]. Mitosis has several sub-

phases: during prophase, replicated chromosomes condense into compact structures, in me-

taphase these condensed chromosomes are aligned on the center of the cell with the help of 

mitotic spindles. When all chromosomes are aligned, the so called FINISH transition (or 

meta-anaphase transition) is induced: the cohesions, that hold the two sister chromatids to-

gether, are destroyed allowing the chromosomes to be pulled to the opposite poles of the 

cell. After distributing the DNA content in telophase, the daughter nuclei form and eventual-

ly the two daughter cells separate during cytokinesis. 



STATE OF THE ART 

39 
 

 
Figure 5: The cell cycle phases (G1, S, G2 and M) and the checkpoints (START, G2/M, FINISH). 

 

2.11.1 Molecular mechanisms of the cell cycle control 

 

The proper order of cell cycle events is controlled by a complex regulatory network of inte-

racting macromolecules that control the cell cycle transitions. Systematic analysis of cell 

cycle mutants in the 70s by Lee Hartwell [152] and Paul Nurse [153] led to the discovery of 

the key regulator of the cell cycle (CDK) that works in a complex with a cyclically appear-

ing molecule (cyclin), what was discovered by Tim Hunt [154]. These three researchers re-

ceived the Nobel Prize in 2001 for their breakthrough results in understanding cell cycle 

regulation. After their discoveries, several cell cycle regulators and their functions have 

been identified that helped us to better understand the crucial regulatory steps of the cell 

cycle.  

 

By now we know that active CDK proteins are bound to their regulatory cyclin partner that 

helps substrate recognition. CDK/cyclin complexes initiate events of the cell cycle by phos-

phorylating specific protein targets. They are fundamental kinases and are regulated by (1) 

controlling the availability of cyclins, (2) covalent modification of the complex by inhibitors 

and activators (3) and the CDK subunit is inhibited by phosphoryation and CDK might be 

sequestered to a stoichiometric inhibitor (CKI, for Cyclin-dependent Kinase Inhibitor) as 

well. CDK molecules are constantly present in excess, thus their level is not controlling 

their activity. 



STATE OF THE ART 

40 
 

 

 
Figure 6: Control mechanisms of the core cell cycle component, the CDK/cyclin complex on different levels: 
availability of the regulatory partner (cyclin) of CDK is modified through transcriptional or translational con-
trol (TF = transcription factors enhancing mRNA synthesis of the gene encoding cyclin); the phosphorylation 
state of the CDK/cyclin complex is regulated through different kinases (e.g. Wee1) and phosphatases; the stoi-
chiometric inhibitor (CKI) also inactivates the CDK/cyclin complex. The figure is adapted from [155]. 

 

The logic of cell division cycle is conserved in all eukaryotic cells: interconnected feedback 

loops ensure the order and the irreversibility of the cycle. In G1-phase, CDK activity is low 

due to the missing cyclin partners (e.g. D-, E-, A- and B-type cyclins), most of which are 

inhibited and rapidly degraded during this period. At the transition from G1- to S-phase 

(called START in yeast or restriction point in higher eukaryotes), cells make a decision of 

whether start a round of cell cycle or not. In order to make the best choice, cells sense both 

external (e.g. the presence of growth factors or nutrients) and internal (e.g. the size is large 

enough, mitosis is properly finished) conditions. The G1 cyclins (Cyclin D) are bound to 

CDKs (CDK4 and CDK6) and initiate the phosphorylation and, with it, the inactivation of 

the retinoblastoma protein (Rb). Rb’s main role is to inhibit the transcription factor E2F of 

certain cyclin moldecules (Cyclin E and Cyclin A). These cyclins combine with a Cdk2 and 

help the total inactivation of Rb. Thus, there is a positive feedback loop in the regulation of 

transition from G1 to S-phase, with Cyclin E and Cyclin A inhibiting the inhibitor (Rb) of 

their transcriptional activator (E2F). CDK/Cyclin A cannot be fully active after Cyclin A is 

transcribed, since the CDK inhibitor (CKI) protein keeps this complex inactive as long as 

CKI is not phosphorylated and degraded. This phosphorylation also depends on CDK/cyclin 

complexes, adding a second positive feedback loop to the system. When CDK/Cyclin A gets 
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fully active, it phosphorylates the proteins that regulate the unwinding of chromosomal ‘ori-

gins of replication’ (specific nucleotide sequences, where DNA replication can start) and in-

duces DNA replication. After passing proper DNA replication, cells continue to grow in G2-

phase and they check if the DNA is properly copied and intact. Cells also detect when they 

reach a critical size before to proceed. The G2/M transition and entry into mitosis is trig-

gered by the activity of CDK in combination with B-type cyclins. In G2-phase, the CDK 

molecule is phosphorylated (thus inactivated) by an inhibitory kinase, called Wee1. At the 

G2/M transition, a phosphatase (Cdc25) removes the phosphate group from the inactivated 

CDK/Cyclin B complex, resulting in an increase in the activity of CDK/Cyclin B. 

CDK/Cyclin B feeds back and phosphorylates both Wee1 kinase and Cdc25 phosphatase. 

This modification inactivates the inhibitory kinase (Wee1) and activates the phosphatase 

(Cdc25) providing two positive feedback regulations making the increase in CDK/Cyclin B 

activity real sharp at the G2/M transition. The antagonism between Wee1 and MPF is de-

fined as a ‘double-negative feedback’ between the two enzymes as a sum providing a posi-

tive autocatalytic effect on CDK activity. The positive and double-negative feedbacks act 

synergistically to create a bistable system with two qualitatively different states: a G2 state 

(inactive CDK/Cyclin B) and an M-phase (active CDK/Cyclin B). Problems in DNA repli-

cation or DNA damage can delay the G2/M transition by keeping Cdc25 inactive and/or 

Wee1 active. This ensures that CDK/Cyclin B activity stays low because of the inhibitory 

phosphorylation by Wee1. This control mechanism helps to avoid the segregation of dam-

aged chromosomes during mitosis. If DNA is intact and replicated, CDK/Cyclin B activity 

turns on its positive feedback loops and the highly active form initiates mitosis. During mi-

tosis, the separation of sister chromatids happens in a well-organized way. All sister chro-

matids have to be segregated at the same time to avoid any daughter cells to receive more or 

less chromosomes than the other. The cohesin molecules, that hold the chromatids together, 

can be destroyed only after all chromosomes are properly attached to the mitotic spindles 

that will pull them apart. At FINISH, a group of proteins make up the anaphase-promoting 

complex (APC), which with a partner (Cdh1 and Cdc20) helps to induce both cohesin and 

Cyclin B degradation. All Cyclin B is destroyed by the end of the cell cycle, resulting drop 

in CDK activity that triggers the separation of daughter nuclei and induces the division of 

the daughter cells (cytokinesis) that brings the cells back to G1-phase. 
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Figure 7: Regulatory feedback loops controlling the cell division cycle. Arrows represent activation, |- are in-
hibitory effects. 

 

2.11.2 Modeling the events of the cell cycle 

 

The cell cycle, being a periodic process, was in the interest of mathematical modeling rather 

from the beginning. Even before the molecular regulators of the cell cycle were known, ma-

thematical models of the system had been already formulated. As the molecular details of 

the underlying regulatory network were revealed, models became more and more sophisti-

cated. Indeed cell cycle has been one of the pioneering examples of systems biology ap-

proaches, where experiments and mathematical modeling have guided each other. Thanks to 

these efforts now we are able to better understand the dynamics of the cell cycle regulation 

and to explain how the oscillations appear in different cell types and what roles positive and 

negative feedbacks play in cell cycle regulation. Different modeling methods were used to 

attack these questions at different levels of complexity. Abstract logical models of the skele-

ton network, differential equations of the regulatory modules and stochastic models of some 

key control points all attacked cell cycle as an important biological example. 

 

From the 1960’s we can find mathematical models that nicely explain some key aspects of 

cell cycle regulation from phenomenological observations on cell size and cell cycle time 

distributions. The discovery of chemical oscillators (BZ reactions) and the classical studies 

of non-equilibrium thermodynamics [156] provoked widespread interest in the 1970’s and 

gave huge contributions to research on theoretical physical chemistry and to mathematical 

biology. Researchers investigated biological oscillators, from calcium oscillations to circa-

dian clocks, including the oscillations that drive cell division cycle [157]. As some data on 

the key regulator of cell cycle (CDK) were found by Nurse and others (see above), theoreti-
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cians started to create models to understand how the CDK/cyclin complex can regulate cell 

cycle events. Further experiments on yeasts and frog eggs produced a molecular description 

of the proposed protein interaction network, inspiring further mathematical analysis. The 

success story of joint work of theoreticians and experimentalists created a great interest for 

systems biology research. 

 

The earliest efforts on the mammalian systems were the investigations of some particular 

modules of cell cycle. For instance, the DNA damage regulation in G2-phase of mammalian 

cells was tackled in details by Aguda, by modeling Cdc2, Wee1, Cdc25 and the DNA dam-

age signal transduction pathway [158]. The regulation of the restriction point at the G1/S 

transition was also modeled by various groups [159,160]. The existence of this ‘point of no 

return’ in G1-phase has been first described in 1974 as the point, where mammalian cells 

decide whether they enter cell cycle or halt in a dormant G0 state [161]. A quantitative ex-

perimental characterization of this phenomenon was carried out by Zetterberg and Larsson 

[147], providing great data for mathematical modeling. Novak and Tyson modeled these 

experimentally tested physiological responses [160]. Their model relies on their earlier work 

on yeast cell cycle [162], which was extended with interactions describing the effects of re-

tinoblastoma protein on global cell growth and on the synthesis of early/G1 cyclins (Cyclin 

A, E and D). Malfunction of the regulation of the restriction point might lead to cancer, so 

understanding this system by mathematical modeling is a very active field. Toettcher et al. 

[163] extended previous models by Csikasz-Nagy et al. [164] with DNA damage checkpoint 

mechanisms and the apoptotic pathway to get the so far most realistic mammalian cell cycle 

model. 

 

There are also further simplified approaches to investigate mammalian cell cycles, when a 

few key events are spelled out in more details, but the rest of the cell cycle is greatly simpli-

fied. For instance, Pfeuty et al. [165] modeled cell fate determination by a simplified de-

scription of mammalian G1-phase. Different pathways regulating G1 arrest, growth, divi-

sion and apoptosis were linked to each other and the four attractor states (G0 arrest, G1 ar-

rest, S-phase and cell death) were simulated in order to recapitulate the simple rules that un-

derlie the connection between input signals and cell states. 

 

Noise can notably affect biological systems. While fluctuations in the average behavior of a 

cell population can be described by deterministic ODE models, the answer changes a lot on 
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single cell level [19-21]. Stochastic modeling approaches are getting more and more popular 

because they provide opportunity to analyze single cells and find relevant results in co-

operation with novel experimental techniques, such as quantitative flow cytometry [17] and 

fluorescence microscopy [166]. Researchers have been already using stochastic simulation 

techniques for modeling cell division cycle regulation. Modification of deterministic sys-

tems is a popular way for introducing noise into ODEs. Langevin-type equations have al-

ready led to novel results [163,167]. The need and the use of the exact stochastic simulation 

algorithm was shown for smaller systems [168], but the complexity of nonlinear multistep 

reactions makes the manipulation of large models difficult. This is one of the goals of this 

thesis, to overcome this barrier  

 

Simplification by logical modeling has been proposed to overcome the problem of complex-

ity. Logical modeling has a long tradition in biology and recently some applications to cell 

cycle research also appeared [74]. These models are based on Boolean algebra, where the 

activity of each component is represented by two states: ON and OFF, providing a method 

which is computationally less expensive. Behaviors that originate from the topology of the 

system have be nicely investigated in [75,169] . Recently, Davidich and Bornholdt worked 

out how to convert ODE models to Boolean to promote conversion between modeling for-

malism [73], while Faure and Thieffry compared the structure of currently existing logical 

cell cycle models [74]. An advantage of logical models is that they reduce the size of the 

possible state space, thus they permit the use of some analysis methods that work only for 

smaller systems.  

 

Some other modeling concepts expanded from computer science towards biological systems 

and cell cycle modeling. Rule-based techniques [170] and process algebras [92] were built 

to handle combinatorial complexity caused by complex formation and various protein mod-

ifications. 

 

In the next section we move to another interesting oscillatory system which has been in the 

focus of theoretical studies from the beginning. 
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2.12 The daily rhythm of living organisms 

 

Additionally to the cyclic event of reproduction - growth and division - occurring in all eu-

karyotes (organisms with real cell nucleus), there is another important biological oscillator 

that has been attracted the attention of a large number of scientists working on different 

fields from mathematicians, physicians, engineers and biologists to computer scientists. The 

daily recurrence of activity and rest is a common property in everyone’s life. Early experi-

ments revealed the existence of an endogenous clock regulating several periodic patterns 

occurring every 24 hours. The name of the biological clock is derived from latin ‘dies’ (day) 

and ‘circa’ (about). Circadian rhythms are observed from cyanobacteria to humans 

[171,172] and their importance is well recognized also in human physiology. Misregulation 

in circadian rhythms may lead to different conditions such as depression, familial advanced 

sleep phase syndrome (FASPS), delayed sleep phase syndrome (DSPS), or insomnia, which 

largely impact our society [173]. Increasing number of research focuses on studying these 

systems as recent findings indicate higher incidents of cancer in clock defective individuals 

[174,175] and chronic jet-lag is associated with higher mortality rate in aged mice as well as 

faster growth of tumor [176,177] . 

 

Circadian rhythms originate from individual cells equipped with a molecular oscillator. In 

mammals, the pacemaker of circadian rhythms resides in the head, more specifically in the 

hypothalamic suprachiasmatic nucleus (SCN) [178]. However, it is generally accepted that 

most cells (not just SCN neurons) have a circadian machinery; thus, there are numerous pe-

ripheral oscillators (e.g. liver, muscle, lung, and even other parts of the brain) ticking the 

time for crucial biological functions, such as sleep-wake cycles, hormone secretion, blood 

pressure, mental performance or our mood [179]. In constant (free-run) conditions these cell 

autonomous clocks sustain a rhythm about 24h and in normal conditions, the periodic pat-

tern of environmental cues (e.g. light-dark or temperature cycles) synchronize the clocks. 

The period is relatively invariant (e.g. over temperature), although it is able to phase-shift 

upon a stimulus from external cues (light, temperature or even ionizing radiation). This 

property allows organisms to adapt efficiently to the external environment. For example, a 

person traveling east to Europe from the U.S. will experience a jet-lag in the process to 

adapt advanced phase. Even a brief pulse of light may cause phase advances or delays de-

pending on the timing and influence of the pulse [180]. 
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Figure 8: Hyerarchy between different molecular clocks interacting with each other. Rhythmic input signals 
(light-dark cycles, temperature cycles, etc) entrain the endogenous molecular system (SCN, large clock on fig-
ure) to the environmental cues. The core clock of mammals (SCN) influence the peripheral clocks (liver, fi-
broblasts, etc). Several phyisiology properties follow daily pattern (output); for instance, blood pressure, sleep-
wake cycles, mental performance, mood, hormonal level. 

 

The experimental research of the circadian clock has been started in 1729, when the French 

astronomer DeMairan discovered that leaf movements in plants show a 24h rhythmicity in 

constant darkness [181]. It took more decades to approve the existence of an internal and ac-

tively regulated biological clock in plants [182] and another hundred years in animals [183]. 

It is believed that a complex hierarchy exists between different (peripheral and SCN) clocks 

interacting with each other, although the one of the “mysteries” of circadian rhythms that 

people were interested in first was understanding the mechanism of a self-sustain, entraina-

ble and robust oscillatory system (Figure 8). To our current knowledge, at the molecular 

level, the rhythms of the circadian clock are controlled by a negative feedback loop that is 

interconnected with several other positive and negative loops [171,184-186]. The molecular 

bases of this self-sustained system have been revealed with the finding of the period (per) 

gene in fruit fly (Drosophila melanogaster) in 1971 [187] and the frequency (frq) gene in a 

mold (Neurospora crassa) in 1973 [188]. The pieces of the clock’s mechanism have been 

described one by one [171]. Most of the genes encoding proteins involved in the mechanism 

of circadian rhythms have been found simply by screening techniques.  

 

Researchers have found that however the elements of the circadian clock are not necessarely 

sequence homologs in different organisms, they play similar role and the logic of the clock 

is conserved from bacteria to human. The nature of an oscillation is based on the idea of a 
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system that moves away from equilibrium before returning. To achieve this, the product of a 

molecular process (negative elements) feeds back to slow down the rate of the product for-

mation. This negative feedback loop is moved away from equilibrium with the help of delay 

mechanisms or additional (positive) feedback loops. The molecular mechanism underlying 

the daily cycles are described in the subsequent chapter. 

 

2.12.1 The mammalian circadian clock 

 

Figure 9 shows a schematic circadian oscillator relying on a simple transcriptional-

translational feedback loop (TTL). The core regulatory loop consists of specific transcrip-

tion factors (positive elements) activating the synthesis of several genes. This clock con-

trolled transcription factor is a heterodimer of BMAL1 and CLOCK proteins in mammalian 

cells. They form the active complex via their specific protein-protein-binding (PAS) do-

mains. Then the BMAL1/CLOCK dimer binds to the promoter region, onto the domains 

called E boxes, of certain genes. Among these rhythmically expressed coding sequences, we 

find some negative regulator of the clock. In mammalian systems, to our current knowledge, 

there are three period (Per1, Per2 and Per3) and two chryptochrome (Cry1 and Cry2) genes 

within the core negative feedback regulatory loop of circadian rhythms. The functional dif-

ferences among these elements are still unclear. However, we know that after their tran-

scripts (mRNA of Pers and Crys) are translated, thus generate clock proteins (PERs and 

CRYs) they all bear a negative role in the feedback loop. PERs and CRYs in complex block 

the clock gene’s activation, thus downregulate their own transcription, closing a negative 

feedback loop. 

 

However, our knowledge about the complete regulation of circadian clock still remains par-

tial, we are aware of several additional control loops of the clock. It is evident that the tran-

scriptional-translational loop (TTL) presented above is not enough to generate a long - 24h - 

pattern, therefore post-transcriptional and post-translational modifications of circadian com-

ponents occur, resulting in a more complex, but robust system. The large number of feed-

back regulations is crucial for the intact function of the clock [189]. 
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Figure 9: TTL negative feedback loop generating oscillations in circadian clocks. 

 

One of the regulatory loops interconnected to the core negative feedback loop is an inhibito-

ry branch that the BMAL1/CLOCK heterodimers generate through the activation of the so-

called orphan nuclear receptor gene Rev-Erbα [190]. The REVERBα protein, in response, 

represses Bmal1 transcription by acting through Rev-Erb/ROR response elements in its 

promoter. Moreover, the PER/CRY complex enhances indirectly Bmal1 expression by bind-

ing to BMAL1/CLOCK and thereby reducing the transcription of the Rev-Erbα gene. Re-

sults reported by Sato et al. [191] show that the transactivator RORA acts coordinately with 

REV-ERB α and that they compete on the same promoter element driving the rhythm in 

Bmal1 transcription. This finding defines another feedback loop in mammals. In additional 

to the orchestrated control of the expression of clock transcription factors, post-translational 

modifications are also present. Recent evidence points to a clock based entirely on post-

translational modifications in cyanobacteria [192]. Several reports [193] indicated that the 

joint activity of kinases and phosphatases (e.g., casein kinase 2 (CK2), casein kinase 1 

(CK1), protein phosphatase 2A (PP2A) and protein phosphatase 1 (PP1)) regulate the phos-

phorylation and/or stability and/or the nuclear transport of the negative elements (PERs and 

CRYs). These relatively slow processes appear to be critical for creating a sufficiently long 

delay to support a 24 h rhythm. Besides phosphorylation events, other protein modifications 

(acetylation, deacetylation, ubiquitination, etc) occur within the clock. Recent findings of a 

complex picture showed that mouse CLOCK has histone acetyltransferase (HAT) activity 

that is required for rhythmic expression of core clock and output genes [194], however it al-

so acetylates its partner, BMAL1 [195]. BMAL1 is deacetylated rhythmically by SIRT 
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[196] and it is also rhythmically SUMOylated on a highly conserved lysine residue in a 

CLOCK-dependent manner [197]. 

 

The mammalian circadian clocks’ dynamical properties - such as the endogenous oscilla-

tions with an approximately 24h period, the entrainment to external environmental changes, 

temperature compensation and synchronization of multiple clocks - require systematic re-

search. How the regulatory feedback loops are interconnected ensuring a robust rhythm and 

an interactive, entrainable system at the same time is an attractive query asked by modelers. 

Furthermore, the way how a biological system including biochemical reactions is able to 

compensate the changes of the temperature still remains a mystery. The picture is incom-

plete and its detailed research appears to be important as our endogenous self-sustained 

clock regulates a large number of physiological functions contributing to a healthy life. 

 

2.12.2 The in silico clock: modeling the circadian rhythms 

 

Several studies of mathematical modeling and systems approaches helped further under-

standing of the circadian rhythms in various organisms. Biological clocks were always ex-

cellent models for theoretical work [198]. Until recently, little was known about the under-

lying mechanisms of clock. Without this knowledge, researchers performed modeling with a 

top-down approach, such as the early attempts of molecular biology. They simulated and fit 

the model to the properties (phenotypes) they observed in experiments. In order to gain 

knowledge about the system, environmental stimuli (e.g. light or temperature or later DNA 

damaging drugs as well) were used to perturb this timekeeping machinery. Therefore, the 

first models were lacking the description of interactions between molecular components, on-

ly the underlying principles of the clock have been illustrated with the help of theoretical 

work (e.g. Aschoff’s rule [199]). Early predictions were achieved with theories borrowed 

from physics, for instance using Van der Pol equations derived for an electrical oscillator 

serving for modeling the response of human circadian oscillations to light [200]. A morning 

oscillator model, proposed by Daan and Pittendrigh [201], contains two variables 

representing the phases of oscillators. Kronauer’s model had physiological interpretation of 

light’s effect on the human circadian pacemaker, and Borbély’s two process model - for the 

regulation of alertness and sleep-wake dynamics - had also a great impact on the field [198]. 

There exist several abstract models including only a delay with feedback, or some other de-
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tails without completeness [202,203]. Vilar and co-authors presented a study of a simple 

circadian model resistant to noise revealing a possible scenario of a robust oscillation driven 

only by two elements [204]. Brian C. Goodwin’s oscillator [205], which connects three 

components into a negative feedback loop, is still broadly incorporated into kinetic models 

of biological rhythms after four decades (e.g. [206]). Arthur Winfree had an approach to de-

scribe circadian clocks as limit cycles [207] and he predicted that a critical pulse, given at 

just the right phase and with just the right strength, would collapse this limit cycle and the 

system would become arrhythmic. This prediction has been verified experimentally later 

[208]. 

  

After finding some molecules of the circadian clock, more detailed models have been built 

that governed by a set of kinetic equations [209]. These models are considered as bottom-up 

approach as biochemical reactions are described by biophysical laws (e.g. mass action kinet-

ics). The first circadian model following this approach was done by Albert Goldbeter [209]. 

He showed how 24h oscillations could be generated simply by a transcription/translation-

phosphorylation feedback loop involving the PER protein (a negative element of the clock). 

He used standard expressions for transcription (Hill-function), translation (linear relation), 

and phosphorylation (Michaelis-Menten kinetics) to describe the system. As more molecular 

details have been identified, more refined models have been developed [210-217]. 

 

Beyond using differential equations - both deterministic and stochastic [218] - the non-

classical techniques (process algebra, rule-based, etc.) have also been introduced to model 

the circadian clock [219,220]. They exploit a simplified - and abstract - picture of the known 

regulations and care less about the details. 

 

2.13 The interconnected cell cycle and circadian rhythm 

 

The cell cycle is a series of fundamental actions being able to respond to changes in the en-

vironment. Various effects (stress, light, temperature, etc.) can influence the progression 

through cell division cycles as well as several drugs, external signaling molecules and meta-

bolites could also affect cell proliferation. Cells in order to carry out a proper function are 

interlocked with several other pathways. The harmonious progress of the cell cycle and the 

circadian rhythms is necessary for the well-being of organisms as malfunctions in the cell 
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cycle and/or clock can lead to tumorigenesis [175,221]. Earlier studies from the late 1950s 

to the 1980s indicate that cell divisions in Euglena, Tetrahymena, and Gonyaulax occur only 

at particular times of the circadian cycle [222,223]. Gated cell division cycle is also ob-

served in some cyanobacteria, with average doubling times less than 24h [224]. The first 

molecular link between the cell division cycle and the circadian clock was found by Matsuo 

and his colleagues [225]. A cell cycle regulator, Wee1, is directly regulated by clock com-

ponents via Wee1’s E-box elements in mammalian cells. The Wee1 protein is known to 

phosphorylate the CDK/Cyclin B complex in cell cycle and inhibits the cells’ entry into mi-

tosis. Intrigued by these results, recently, several groups presented coupled theoretical mod-

els of the mammalian cell cycle and circadian clock through this transcriptional link. Lau-

rence Calzone and Sylvain Soliman have investigated the effects of interconnected circadian 

and cell cycle model systems [170]. They focused on the synchronization of the two oscilla-

tors within the parameter space and they identified the conditions of the entrainment. Alti-

nok et al. [226] used an automaton model for the cell cycle to assess the toxicity of various 

circadian patterns of anticancer drug delivery. The gating of cell cycle events by a circadian 

clock model was analyzed in details by Kang et al. [227] with a systems biology approach. 

Furthermore, we also showed crucial properties arising from interconnected cell cycle and 

circadian oscillations and with our detailed model we proposed novel insights in the size 

control of mammalian cells [47] (see details in Chapter 5.8.1). 

 

Biological model systems assess several assumptions through the complex rate functions 

describing multi-step reactions, making the extension of the model including noise difficult. 

Both circadian and cell cycle contain transcriptional regulation where low number of mole-

cules is present and enzymatic reactions where assumptions cannot be applied throughout 

the whole simulation time. By joining the Centre for Computational and Systems Biology in 

Trento, I focused on improving compositionality in process algebra tools, particularly in 

BlenX. At the same time, biological questions aroused and we also concentrated on analyz-

ing an additional molecular connection link between the circadian clock and the cell cycle 

under a deterministic framework [48]. Recently, a novel link has been found that the phase 

of the circadian clock of Neurospora crassa [228] and Rat-1 fibroblasts (a type of mamma-

lian cells) [229] is shifted upon DNA damage caused by ionizing radiation or radiomimetic 

drugs. Experiments revealed that a checkpoint kinase (PRD-4 in Neurospora and CHK2 in 

mammals), bearing crucial role in cell cycle regulation, phosphorylates and targets the core 
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clock protein’s (FRQ in Neurospora and PER2 in mammals) degradation. This conditional 

link creates a bidirectional interaction between the cell cycle and the circadian clock. 
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3 The Problem in Details 
 

After the numerous important discoveries were found with the help of theoretical biology 

models, we still have a lot to work on. The increasing power of the newest experimental 

techniques will enable us to model a single cell’s and even a single molecule’s behavior, 

which will require computational tools that can handle these problems. Better and better 

measurements on RNA and protein levels provide enormous amount of data that should be 

fitted by future models. As the models grow, they will get more specialized by simulating 

specific cell types, while others will get even broader by connecting several networks (e.g. 

cell cycle, metabolic cycle, circadian clock, etc.) together. This later goal of interlinked sys-

tems is greatly accelerated by the collection and standardization of computational methods. 

Still we need some improvement in modeling formalisms, simulation techniques and model 

analysis to achieve the knowledge of the whole picture of life. 

 

BlenX allows a rule-based process calculi modeling method that contributes to systems bi-

ology research. A BlenX program is made of an optional declaration file for the user-

defined constants and functions, a binder definition file that associates unique identifiers to 

binders of entities used by the program and a program file that contains the program struc-

ture. “Boxes” represent the interacting biological entities (proteins, genes, etc.) and contain 

an internal program (or internal behavior) describing their possible activities and a set of 

typed interfaces describing their interaction capabilities. Sequential and parallel composition 

of processes; definition of events and actions provide the backbone of a BlenX model. 

Composition of possible conditions leading to reactions that might occur is the first chal-

lenge that the modelers should deal with. A key innovative aspect of BlenX is the ability to 

model the biochemical reactions between components simply by listing their affinity and 

without the need of programming all the possible interactions. The BlenX framework allows 

the user to build systems by fixing each reaction of the network (also called as bottom-up 

approach) or gives opportunity to handle abstractions as well (such as a top-down ap-

proach). After specifying the system, the BlenX program is executed with the Gillespie sto-

chastic simulation algorithm (SSA) [37]. The reactions occurring in the system are defined 

by rate dependent functions that are crucial for the reaction propensities of the stochastic 

model. Rate functions are associated to actions and events of boxes, and those rates can be 

determined by the mass action kinetic law. 
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One crucial point of biological models built upon mathematical formalisms is the additional 

presence of the complex mathematical functions (e.g. Michaelis-Menten kinetics [141], Hill 

function [142], etc.) that have been empirically developed through several assumptions in 

order to provide an abstraction due to the lack of model parameters. These abstractions sim-

plify the system leading to a decrease in the required computational power for calculation. 

Furthermore, modelers often turn to these phenomenological functions to describe the ob-

served behavior of a system without knowing all its details, such as multi-step reactions are 

often assumed to happen at the same time in cooperative reaction schemes [34]. Experimen-

tal measurements are becoming more and more sophisticated. Data on elementary steps are 

asking for a technique which describes single reactions in a modular manner and they re-

quire tools that are able to transform abstract mechanisms into elementary ones. BlenX is 

one of the promising computational languages with a feature of compositionality for model-

ing biological systems. Complex rate functions raise several problems in stochastic process 

algebra approaches. 

 

Among the current research problems arising in process calculi, one crucial point is the ex-

pressivity of the calculus and the challenge to improve the compositionality offered by 

process-theoretic tools in biology. Compositionality is believed to be one key advantage of 

formal languages. The capability of easily composed models lies within the tool, although 

there have been only a few research on bringing it closer to perfection [230,231]. 

 

During the stochastic process algebra composition of biological models the nonlinear de-

scription of biological phenomena raises the following problems: (1) complex rate functions 

are not appropriate for the guidance of stochastic Gillespie method assuming only elementa-

ry steps in the system. (2) Interpretation of nonlinear terms is currently available in the 

BlenX framework although it highly limits its compositionality. The hidden elements of 

these functions might be necessary to be expressed for the extension of the model. (3) As-

sumptions of the complex terms are often found to be inaccurate in a larger system. Thus, 

conversion of nonlinear terms to elementary steps often leads to the disappearance of crucial 

nonlinear behavior of the large system. (4) Current interpretation of BlenX models requires 

computer science knowledge from the users. Furthermore, we need some biologically im-

portant test cases to investiage these problems and the method we propose in this work. 
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3.1 The Gillespie method and nonlinear functions 

 

Molecules undergo random collisions resulting in discrete biochemical interactions. The 

BlenX framework applies Gillespie’s exact algorithm to simulate chemical or biochemical 

systems of reactions in a stochastic manner (discussed in Chapter 2.9). One limitation of the 

algorithm is that it considers only elementary reactions, while biological models often deal 

with nonlinear terms in the deterministic framework. Nonlinearity is known to serve oscilla-

tions in several periodic biological systems [38] or multsistability in others [145], giving an 

important role for these mathematical formulas in simple models. The problem of complex 

rate functions as stochastic rate constants has already discussed by several authors [136,232-

234]. Following the assumptions of Gillespie’s hypothesis, we specify that each reaction 

time is a random variable following a negative exponential distribution with rate equal to 

the value of the propensity function that cannot be applied in case of nonlinear reaction rates 

in the system. Most models ignore the inquiry of the validity of this assumption.  

 

Previous work concerning the use of general kinetic laws in process algebras and formal 

methods was presented in [39,235]. Within the BlenX framework, generally distributed 

reaction times have been also implemented recently [137]. It provides choices of the reac-

tion time distribution for the stochastic simulation algorithm of Gillespie. In this way, ab-

stracted rate laws can be handled stochastically that leads to a better quantitative tool for 

matching wet-lab experiments and in-silico results. This aggregation and level of abstraction 

lay above the elementary reactions. Another initiative to approach complex reactions with 

simple abstractions in BlenX has been studied [233]. The idea taken from the application of 

web-service transactions have been used to extend the tool with the representation of mul-

tiple-reactant multiple-product reactions with elementary reactions as if it were atomic. 

Atomicity is summarized as all or nothing, reducing the model but it may lose nonlinearity 

as a property of the biological model. A novel approach is needed within the BlenX lan-

guage for a systematic and proper way of model composition. 

 

3.2 Compositionality with complex rate functions 
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Living organisms are governed by several complex systems of interactions among genes, 

proteins and other molecules. These systems contain effectors (activators/enhancers or inhi-

bitors/repressors) of the reactions whose communication results in different regulatory loops 

(feedback and feed-forward loops). Interconnection of these structures may lead to oscilla-

tions, acceleration, pulse generation or bistability that are frequently seen features of biolog-

ical systems [38,145,236,237]. Theoretical models address general concepts of dynamical 

systems and find principle design of networks that are crucial in particular behaviors (mul-

tistability, hysteresis, oscillations, irreversibility, etc.) [38]. 

 

Compositionality is a crucial feature of a computational language and it signifies the possi-

bility of defining a large system starting from the definition of its subcomponents. Systems 

biology calls for modeling languages that can be built up in a systematic way. Several bio-

logical models are proposed each day making compositionality to be one of the most impor-

tant key features of process algebra. Compositionality has been addressed as an issue of 

model-construction from elementary reactions with the basic operators [238,239], as the 

translation of one approach to another [125], or as the combination of different types of 

models (ODEs with process algebras, Boolean, hybrid models) [42,240], but the composi-

tionality of complex rate functions has attracted less attention. When a model has to fulfill 

several assumptions applied in phenomenological modules, the freedom of compositionality 

is reduced. The hidden parts of the modules may contain important linkage between the 

networks that are chosen to be merged together. Stochastic computational modeling is ask-

ing for a tool that supports network composition in an adequate and user-friendly way. 

 

3.3 Nonlinearity in biology and in computational models 

 

Biological systems are highly nonlinear with numerous interacting molecules. In order to 

represent a nonlinear behavior of these networks, complex mathematical functions are used 

to describe the response of a system to a particular signal. Mathematical models are usually 

composed of variables (molecules, signals, etc) and operators (algebraic laws, functions, 

rules, conditions, etc.). If all the operators exhibit linearity, the mathematical model is de-

fined as linear. This is often the case in assuming elementary reactions described by mass 

action kinetics where the rate of a reaction is proportional to the activity of the reagents. For 

more complex schemes, such as enzyme kinetics, protein modifications, transport mechan-
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isms, etc., there are well-defined complex formulas to describe the observed physiological 

output. These simplifying equations are often used by modelers. For instance, the assump-

tion of the Michaelis-Menten kinetics [141] makes description of enzymatic reactions sim-

ple and computation of the term requires less details of the system. The Goldbeter-Koshland 

switch [241] and the Hill-function [142] provide sigmoidal signal-response curves that are 

highly sensitive to changes in signals around the threshold level giving rise to an ultrasensi-

tive property. Sigmoid responses are used to generate switch-like (binary) decisions [134] 

and have been shown to be able to filter out noise or delay responses of the system [242]. 

Furthermore, nonlinearity originating from ultrasensitivity can create oscillations in combi-

nation with negative feedback loops [243]. 

 

Several authors have reinvestigated the application of the approximations of complex reac-

tion schemes in different scenarios. In case of Goldbeter-Koshland’s switch Bluthgen et al. 

[244] have shown that high enzyme concentration can modify the response of the MAPK 

cascade [243] and make oscillations disappear under these conditions. Ciliberto et al. [132] 

have analyzed the total quasi-steady-state assumption of the same reaction scheme in details 

and proposed a novel approximation of the scenario which is found to be more appropriate 

for metabolic networks than the assumptions of the original kinetics. Additionally, Berg et 

al. [245] have pointed out the differences between macroscopic and average behavior ana-

lyzing the effect of noise on an ultrasensitive system. Under the stochastic framework the 

approach of complex and simplified reaction terms applying assumptions may not be a good 

solution for modeling biological systems.  

 

When non-elementary reactions occur and compound mathematical formulas are used in 

modeling, the direct translation of mathematical terms into the stochastic context is a well-

liked approach. Usage of these general functions for calculating the rate of a reaction is also 

possible in BlenX [117,246]. However, these implementations have been pointed out by 

several authors to be incompatible for some cases [136,232,233,247-249], thus modelers 

have to pay particular attention to the assumptions they apply. Stochastic modeling of com-

plex functions is only an approximation and assumptions have to be handled globally. Thus 

the BlenX framework calls for a semi-automatic method of describing these complex rate 

functions with intermediate steps (we refer as an “unpacking” mechanism) not only owing 
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to ease the compositional programming process, but to provide a correct (and generalized) 

way of stochastic simulations. 

 

3.4 A programming language for computational systems biology 

 

One of the goals of Beta Workbench (BWB) that has been set to target is a design of a pro-

gramming language that facilitates and engineers the model-building process of biological 

systems at different level of abstractions [250]. BlenX inherited the properties of BWB that 

has been developed for modeling, analyzing and simulating biological networks. The usage 

of the language - at this stage - requires computer science knowledge that biologist might 

lack. Furthermore, the large variety of process algebra primitives provides different repre-

sentation of the same biological schema but with diverse efficiency of compositionality. Ex-

tension of nonlinear models is currently not straightforward in BlenX (as it is also challeng-

ing in other approaches) and depending on the expression of a reaction with the process al-

gebra language, creates a problem in compositionality. 
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4 The Proposed Approach 
 

Men always search for common patterns that are simple to understand and that might help 

them to comprehend complex features. Mathematicians, physicists and also biologists have 

tried to find order in “chaos”. As systems biology is one of the research fields concentrating 

on understanding life and how biological systems function; the common motifs of molecular 

networks are in the heart of focus of interest [44]. Several essential biological network struc-

tures have been published in biology [33,44,56,145,236] and in computer science 

[39,239,251] as well. These repetitive regulatory patterns carry special and general proper-

ties that are crucial for the proper function of the overall biological system.  

 

Templates are constructs representing basic structures, motifs. Templates are applied in pro-

gramming as re-usable codes that allow the paste of different parameters without changing 

the structure of the template. The concept of patterns and modular programming originates 

from an idea of an architect, Christopher Alexander, who had a great impact in the research 

of programming languages and software design [252]. Comprehensive biological models are 

difficult to be constructed reaction by reaction, thus it is worth realizing general building 

blocks that can serve the initiative of systematic modeling process. Process calculi - there-

fore also BlenX - provide a programming environment that could support systematic and 

formal composition of large models, although the modelers do not profit from this property 

as the current model building method is difficult in case of larger systems. We have to start 

the composition from the very “bottom” (with the basic primitives) that is time-consuming 

and contains many repetitive and error-prone steps. It is believed that the modeling tech-

nique of BlenX should support an additional, higher level composition than what is availa-

ble now. By creating and using pre-defined templates stored in a library, computational 

models might be easier composed and the users are more capable of profiting from the com-

positionality feature of process calculi tools on a larger scale. The collection of biological 

functions has already existed in non-process-algebras based modeling tools (e.g. COPASI 

[9]), but it is still a missing feature of BlenX. Realization of different templates leads to in-

teresting and unsolved problems of computer science. A library of modules should influence 

the program design in a positive manner as in all the fields affected by computer technolo-

gy. With a motif library, biologists and modelers could pass the current limitations of 

BlenX. 
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Nonlinearity might be challenging to code in the current BlenX representation. Stochastic 

solutions require elementary steps, while unpacking the complex mathematical terms may 

lead to disappearance of nonlinear behavior (discussed in Chapter 3). In stochastic simula-

tors - such as Beta Workbench (BWB) - decomposition of mathematical terms into the un-

derlying elementary reactions (with BlenX primitives (actions, events, complex formation, 

etc.)) seems to be important, although usually it is not straightforward. If the specific reac-

tion schemes reproducing nonlinear properties (e.g sigmoidal curves, switches, etc.) are 

available, users can build models in BlenX in a simple and adequate way, by choosing the 

particular motif from the library. 

 

Our study has to represent a method with which compositionality is carried out in a farsee-

ing way. For instance, a single protein might participate in many reaction systems, thus de-

finition of a module that can be easily composed into a larger model is not straightforward. 

These terms have to be extendable for later use. Depending on the level of abstraction (that 

is defined by our knowledge), the desired behavior can be achieved in different ways thanks 

to the rich opportunity of the language. We present an analysis for compositionality in 

BlenX starting from the basic primitives to the high-level, complex templates. The possibili-

ty of using different basic BlenX primitives gives us freedom of abstraction, although the 

users need to bear computational skills. Based on the predefined structural requirements and 

frequency of basic motifs, elements of library can be selected. These building blocks would 

improve the modeling process with BlenX as modelers are able to reuse frequently found 

biological structures and compose large models. Realization of these templates requires both 

biological and computer science approach. Motifs should be biologically relevant and com-

putationally effective at the same time. The proposed approach may open novel questions 

and provide guidance on future improvement of compositionality. 

 

Properties of the library elements are further investigated in this work. Stepping towards 

complexity, higher level submodels are also composed. Finally, we focus on presenting in-

teresting biological case studies and questions that are answered with computational model-

ing approaches. Possible research directions in finding parameters for these motifs are also 

shown, but I would like to emphasize that parameter estimation is out of the scope of this 

work. The development of the library is presented hereinafter.  
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5 Results 
 

5.1 The basic primitives 

 

Model composition is the first challenge that the modelers should deal with. A key innova-

tive aspect of process calculi tools is the ability to model the reactions between components 

simply by listing their affinities. The BlenX framework allows the user to build systems by 

specifying each reaction of the network (also called as bottom-up approach) or gives an op-

portunity to handle abstractions as well (such as a top-down approach). 

 

Molecules are represented by interactive boxes that are able to synthesize, to degrade or to 

react with each other. Basic BlenX primitives apply mass action kinetics which describes 

elementary steps with one or more chemical species reacting in a single step and with a sin-

gle transition state. The simplest scenario in biochemical reactions is when a molecule (A) is 

synthesized with a constant rate (k): 

 

when(A::rate(k)) new(1); 

 

 

Degradation with a rate (k) of the entity (A) is also described with an event: 

 

when(A::rate(k)) delete(1); 

 

 

A is modified with a specific reaction rate (k) resulting in a molecule (B): 

 

when(A::rate(k)) split(B,Nil); 

 

where Nil represents an empty box that degrade with an infinite rate. 

 

Activation of a synthesis by a signal (S) can also occur in a linear way 

 

when(S::rate(k)) split(S,A); 
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where the amount of the effector (S) does not change during the reaction. 

 
Furthermore, boxes are also able to form complexes or change their internal behavior. In the 

sequential sections, we would like to introduce higher level of compositionality that mod-

ules are collected into a template library for reuse. 

 

5.2 The Michaelis-Menten formula for enzymatic reactions: a hyperbolic response curve 

 

Most of the biochemical reactions require catalytic molecules (enzymes) which increase the 

rate of a particular reaction. In enzymatic reactions, the molecules at the beginning of the 

process are called substrates (S), and the enzymes (E) selectively convert them into products 

(P). The kinetic description of such systems was expressed by L. Michaelis and M.L. Men-

ten [141]. The derived equation of their results (referred to as Michaelis-Menten kinetics) is 

widely used in biological modeling. 

 

The scheme of a one-substrate-one-product reaction (with one active site) is 

  

Y + Z �[,�\]̂ _ YZ ��̀ Y + � 

 

The catalytic step is supposed to be irreversible and the rates of the reactions are given by 

the law of mass action. Reaction rates are summarized in Table 5. 

  

Association rate of the enzyme-substrate complex ab ∙ [c] ∙ [d] 
Dissociation rate of the enzyme-substrate complex 96 ∙ [YZ] 
Production rate of P 9C ∙ [YZ] 
  

Table 5 Steps of the enzymatic reaction. k1, k2 and k3 are the rate constants of the reactions; [E] , [S]  and [ES] 

represent the concentration of the enzyme, the substrate and the enzyme-substrate complex, respectively. 

 

As enzymes are specific to their substrates and the Michaelis-Menten term assumes that the 

formation of the enzyme-substrate complex (ES) is relatively fast, the equilibrium is reached 

rapidly and the production of P becomes the rate-limiting step in the overall system. There-
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fore the ES complex is stable, meaning that the change of its concentration approaches zero 

(referred to as quasi-steady-state assumption (QSSA)). Another important assumption is that 

the concentration of the substrate highly exceeds the one of the enzyme ([S] >> [Etot] ). 

When a critical substrate concentration is reached, the enzyme is saturated and an additional 

amount of substrate will not influence the velocity of the reaction; it is already maximal 

(vmax). If the last reaction is assumed to be irreversible and all the previously mentioned 

statements are valid, the rate of the substrate turnover to product can be estimated as 

 

e = e��f ∙ [Z]
g� + [Z] 

where 

e��f = 9C ∙ [Yhih] 
 

g� = 9C + 96
93

 

and 

[Yhih] = [Y] + [YZ] 
 

 

The Michaelis-Menten equation provides a complex rate function assuming a single reaction 

step: 

Y + Z j� Y + � 

 

with the reaction rate described previously: 

e = e��f ∙ [Z]
g� + [Z] 

 

The Michaelis-Menten rate law is often found to be a good approximation to describe en-

zymatic reactions. Furthermore, it by-passes the problem of rarely available rate constants 

as the key parameters (vmax and Km) of a Michaelis-Menten reaction might be easily deter-

mined from measured data through linear graphical representations (e.g. Lineweaver–Burk 

plot, Hanes–Woolf plot, Eadie–Hofstee diagram) [253] or by nonlinear regression methods 

[254]. 
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In the next subsection, we provide a brief description of how to code enzymatic reactions in 

BlenX with elementary steps and we give a hint how to search for unknown parameters in 

the Michaelis-Menten module. 

 

5.2.1 The Michaelis-Menten reaction scheme 

 

The use of Gillespie's stochastic algorithm requires elementary steps instead of complex rate 

functions in a model (discussed in 1.2 The Problem session). Decomposition of the Michae-

lis-Menten rate law into elementary reactions may lead to crucial changes in a larger sys-

tem's global behavior as nonlinearity may disappear if assumptions are inconsistent about 

enzyme-substrate complexes [132,168]. Compositional model building should carefully 

handle the enzyme molecules hidden in the quasi-steady-state assumption (QSSA). 

 

 
Figure 10: BlenX representation of the Michaelis-Menten kinetics. 

 

The Michaelis-Menten module can be implemented easily into the BlenX language as the 

binding of the substrate and the enzyme is described as complex formation through specific 

binding sites of the boxes representing proteins. On Figure 10, the types S and E are com-

patible and equipped with complexation and decomplexation rates. After complex-

formation, S and E communicate and the internal behavior of the substrate box is changed 

into the behavior of the product (the ch(x,P) action modifies the type of the binder x into P). 

The new product has binding affinity no more to the enzyme, thus an abrupt dissociation 

(“decomplexation” with infinite reaction rate constant) occurs to release the enzyme E. 

 

The possible reactions of the system are described as the followings: 
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let P : bproc = #(s:0,P) [ nil ]; 

let S : bproc = #(s:0,S) [ s!().ch(s,P).nil ]; 

let E1 : bproc = #(e1:0,E1) [ rep e1?().nil ]; 

 

Complex formation, dissociation rates and the catalytic rate are provided through the types 

identifying the molecules in the reaction: 

 

{ S,P,E1 } %% {  (S,E1,rate(k11),rate(k11r),rate(k21)), (P,E1,0,inf,0) } 

 

5.2.2 Finding parameters for the Michaelis-Menten module 

 

Decomposition of the nonlinear term into elementary reactions calls for the definition of rate 

constants of each step. Enzyme catalysis is the rate limiting reaction, thus the maximum ve-

locity of product formation (also called as turnover) is given by the amount of available en-

zymes in the system and the particular rate constant. If we would like to implement the 

complex term defined by the Michaelis-Menten formula into a stochastic process calculus 

framework in order to carry out compositionality within e.g. BlenX, the parameter of the 

last reaction (k3) is easily obtained from the known vmax and the total enzyme concentration: 

 

9C = e��f
[Yhih] 

 

The dissociation rate constant of the ES complex (k2) is the following: 

 

96 = 93
g�

− 9C 

 

and obtained from the Michealis-Menten constant. It is supposed to be low as the ES com-

plex is assumed to be stable. The rate constants of the reversible complex formation (k1 and 

k2) can be chosen among several combinations by ensuring that the association rate is larger 

than the dissociation rate of the ES complex. Furthermore, we know that the catalytic step is 

the rate limiting, thus k1 is chosen to be much larger than k3. In this simple example, our 

choice determines the time of the simulation, thus values of the rate constants have to be 
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carefully selected. In isolated systems we can scale down the constants easily in order to 

speed up the simulation. However the rates of the reversible complex formation cannot be 

limiting in a larger model. 

 

The proper rate constants describing our compound Michaelis-Menten module have been 

selected by taking the minimum amount of substrate during the reaction and setting the ini-

tial (total) concentration of enzyme to Smin/0.1. As a consequence, we get 

 

93 = 9C ∙ 1000 = e��f
[Yhih] ∙ 1000 

 

and 

 

96 = g� ∙ 93 − 9C 

 

Note that the selection of feasible parameters must lead to a positive value of k2; and the to-

tal concentration of the enzyme has to be globally lower than the substrate with a large ex-

tent. Different approaches may be available to estimate the parameters of this module in a 

larger system. For instance, deterministic simulations can give us a guess of the minimum 

values of the substrate concentration during the simulation or more sophisticated methods 

may be also available for determination of the missing parameters from experimental mea-

surements [140]. Optimization of the execution time with a rate of complex formation that is 

fast enough is necessary, thus equilibrium is reached rapidly but the simulations remain 

computationally cheap. 

 

5.2.3 Simulation results 

 

The complex term of the Michaelis-Menten kinetic is handled as a single step within Gilles-

pie’s stochastic simulation algorithm. The time of the next occurrence of each reaction is as-

sumed to follow negative exponential distribution. The approximation of this abstraction has 

been shown to be good enough if the assumptions applied in the Michaelis-Menten term are 

valid [232]. Namely, if the amount of substrate molecules excess the number of enzymes in 

the system and the enzymes are quickly saturated by their substrates, the reaction exists in a 

quasi-steady state. The authors claim that the approximation of the Michaelis-Menten reac-
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tion reduce model complexity and are found to be appropriate in stochastic models upon va-

lid assumption, although in case the assumptions described ahead are not valid, decomposi-

tion of the module leads to disappearance of nonlinearity. When the exact measurements for 

the parameters of the modeled system is unknown, but nonlinearity is observed or hypothe-

sized, decomposition of the complex rate equation is required to provide the properties as-

sumed for the module. Thus, we decided to analyze the different solutions for the decompo-

sition process in BlenX and we compared two stochastic models, one with the complex rate 

function and another with an exact solution of the Michaelis-Menten kinetics. 

 

To model molecular fluctuations, a probabilistic model of the biochemical dynamics is ex-

ecuted where the number of the reactants of every elementary step introduces noise into the 

system. This property might modify the result of the simulation as stochasticity becomes a 

crucial behavior of the biological system. We believe that the BlenX language should offer 

an alternative solution for complex reaction schemes within a stochastic framework provid-

ing a compositional tool for modeling biological systems. 

 

First, we converted the concentrations of the deterministic system into molecule numbers 

through a transformation on the parameters using a scalar constant α defined as 1/�>? ∙
10�k ∙ @�, where NA is the Avogadro number and V is the volume of the modeled system 

(discussed in details in 2.10 session (Reaction rates in BlenX)). The number of molecules 

influence the noise, thus during the simulations α sets the level of stochasticity depending 

on the size (volume) of the system. Then we set the models to different initial conditions for 

the substrate and run 200 simulations for each initials. The rates of product formation have 

been derived from the simulation results and these values are plotted over the initial amount 

of substrate molecules. It provides a saturation curve of the Michaelis-Menten kinetics 

(Figure 11). 
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Initial amount of Substrate [#] 

Rate of reaction and  

standard deviation 

with the exact solution 

(elementary steps) 

Rate of reaction and  

standard deviation 

 with the complex reaction 

30 5.630 ± 1.873 4.455 ± 2.130 

60 10.450 ± 3.125 8.410 ± 2.648 

120 17.395 ± 3.502 13.895 ± 3.503 

180 22.010 ± 4.783 19.850 ± 3.645 

240 27.170 ± 4.966 24.520 ± 5.011 

300 30.490 ± 4.960 27.460 ± 5.077 

360 31.575 ± 5.219 30.790 ± 5.552 

420 34.980 ± 5.105 33.875 ± 6.445 

480 36.880 ± 6.132 35.410 ± 6.516 

540 39.360 ± 5.873 36.795 ± 6.422 

600 41.035 ± 6.491 38.405 ± 6.191 

1200 47.985 ± 5.990 46.510 ± 6.415 

3000 53.865 ± 7.075 53.725 ± 7.473 

6000 57.845 ± 8.212 56.405 ± 7.227 

Table 6: Average value of the rate of reaction and the standard deviation of 200 stochastic simulations. 

 

Calculation of the parameters in this case is based on the assumptions shown previously. Km 

is set to 300# (# refers to the unit of number of molecules) and vmax is 60#/min. The total en-

zyme amount (|Etot|) is set to 60# molecules and the Michaelis-Menten constants define k3 

and the ratio of k1 to k2. The chosen parameters should also satisfy the assumption that the 

value of k1 (��C/�� & ∙ ��D�� is much larger than the value of k2 (1/� &). This condition 

may be suited by different rates of k1 and k2, although these options only influence the speed 

of the reaction (and our simulation), but does not change the result (data not shown). 

 

Parameter 

names 

Parameter 

values 

Parameter 

units 

k1 200 α 1/�min #� 
k2 99 1/min 
k3 1 1/min 
Km 0.5 α # 
vmax 0.1 α #/min 
E 0.1 α # 

Table 7: Parameters for the Michaelis-Menten module. α is set to 0.00167 during the simulations shown on 

Figure 11. 
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Figure 11: Simulation results of the stochastic BlenX model fit the deterministic saturation curve well (A). On 
(B), at low amount of initial substrate molecules the original assumptions of Michaelis and Menten do not 
match and the exact solution diverges from the complex function. This is a property of both the deterministic 
and the stochastic case. Each point is an average value of 200 run with an α=0.00167 defining the level of 
noise in the system. Standard deviations are summarized in Table 6. 

 

We compared the deterministic and the stochastic simulations’ results executed with the 

“unpacked” and the complex modules with a parameter set shown in Table 7. The module 

built up from a complex reaction and the one with elementary reactions shows us a good ac-

cordance with each other and also with the deterministic scheme (Figure 11). Simulation re-

sults of the BlenX model fits the deterministic saturation curve well, although when the 

original assumptions of Michaelis and Menten do not match, the exact solution diverges 



from the complex function as it has been shown previously

zyme is in excess to the substrate, the solution of the unpacked model differ greatly from the 

packed version as the assumption made for the QSSA is not mo

(Figure 11 and Figure 12

also a limitation of the deterministic si
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from the complex function as it has been shown previously by others

the substrate, the solution of the unpacked model differ greatly from the 

packed version as the assumption made for the QSSA is not more valid for the system 

12). This is one limitation of the compound function; however, it is 

deterministic simulations. 

Simulation for different number of initial substrates: 1a-c: S=30#; 2a-c: 
erage number of product is plotted for each time step. 1-3a: stochastic unpacked versions

(grey lines) from the mean. 1-3b: complex rate functions with 
where standard deviation is plotted. 1-3c: comparison of the average of the unpacked (dashed) and complex 

lation results executed with BlenX. α = 0.00167. 

Arkin and Rao assumed [232] that the reactions are isolated and the amount of enzyme is 

but in complex networks this assumption seems to be weak. Enzyme concentration 

has to be much less than the substrate concentration and in e.g. oscillatory systems the su

over time. In those cases, the minimum value of the substrate has to 

he calculation. Simulation runs with complex rate functions may offer
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We would like to emphasize that decomposition of the Michaelis-Menten kinetics is not al-

ways necessary, but in a compositional modeling framework it has to be available (as a part 

of a library). Assumptions have to be checked during the execution and the decomposition 

might be especially useful for further extension of the model. For instance, when an inhibi-

tor of the enzyme is present or two substrates of the same enzyme are introduced, details of 

the complex reactions have to be elucidated. Hidden details of the assumptions might be-

come a limitation of the currently available transformation of the deterministic models into 

the stochastic framework. Furthermore, we are aware of that the quasi-steady state assump-

tion of enzymatic reactions in complex models might be violated. In those cases appropriate 

decomposition of the reaction into elementary steps is crucial. Parameter check or parameter 

estimation is possible within the CoSBi Lab platform [255], thus assumptions of the approx-

imation or the algorithm can be monitored during the runs. 

 

In this section, we provided a description of a template for enzyme kinetics in BlenX with a 

parameter search based on basic mathematical calculus. Implementation of the template-

library into the CoSBi Lab platform [256] might automatize the method of parameter esti-

mation as it contains inference tools (KInfer [140]). We only presented a hint of how para-

meters might be achieved. 

 

5.3 Hill kinetics of cooperativity 

 

Cooperativity is a phenomenon displayed by enzymes and receptors that have multiple bind-

ing sites and their affinities are modified upon the binding of a ligand. The classical exam-

ple for such a behavior is the increased affinity of hemoglobin's four binding sites for oxy-

gen when the first oxygen molecule binds [142]. Cooperativity frequently occurs in biologi-

cal systems, most transcription factors are also composed of several repeated protein sub-

units. Often, full activity of these regulatory complexes is only reached when multiple sub-

units can bind to the target. Hill function provides a useful phenomenological equation ap-

proximating this cooperative process. In biological models, Hill sigmoidal response curves 

are commonly used to substitute multiple reaction steps with one term. The intermediate 

complexes are hidden in the Hill equation making the details of the system unavailable. This 

is a convenient way to handle unclear scenarios in biology, although the average of a nonli-

near function (e.g. Hill function) is generally found to differ from the function of the aver-



age [249]. The proper usage

Hill equation assumes that 

ceptor) simultaneously [142]

ble only if the number of ligands is equal to 1 (

far from reality. 

 

The Hill equation assumes s

ten described as 

 

 

where kf is the rate consta

brium, the ratio of bound to total receptors is given by the Hill equation

 

 

where the dissociation constant is 

ness of the transition of the sigmoidal curve dep
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Figure 13: Analytic calculation of the 
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usage of these mathematical functions in larger 

Hill equation assumes that n molecules of an entity (e.g. ligand) bind to a scaffold (e.g.

[142] and intermediate states do not occur. This is physically poss

number of ligands is equal to 1 (n=1), but in most cases this approximation

equation assumes simultaneous binding of X molecules to Y, thus the re

v + &w �x,�y
]^_ vwz 

is the rate constant of the forward reaction and kb is of the backward. At equil

brium, the ratio of bound to total receptors is given by the Hill equation

{|0}} �
��P&�
����D

�
vwz

v � vwz
�

wz

wz � ~z 

e the dissociation constant is J = kb/kf and n provides the number of ligands. The stee

ness of the transition of the sigmoidal curve depends on the number of ligands (

provides the number of ligands at which half of the receptors (Y) are bound

Analytic calculation of the Hill function for different Hill coefficients (
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Gene expression is known to be a particularly complex and noisy task [19-21]. Transcrip-

tional regulation is often characterized by a sigmoid Hill function, where nonlinearity arises 

from the assumption that the transcription factor forms multimers before binding to the 

DNA (shown in Figure 14). This property creates an abrupt switch from one state (where 

transcription is “off”) to another state (where transcription is “on”). The detailed mechanism 

behind the observed behavior is still unclear, but there are several hypothesis and models 

available [34,257,258]. Although it is difficult to choose one particular model scenario 

[259], we decided to investigate a simplified model of positive cooperativity that captures 

the requirements of containing only elementary reactions but still maintaining the sigmoidal 

property of the module.  

 

5.3.1 Decomposition of the module - transcriptional regulation case 

 

Transcriptional factors (abbreviated as TFs) often form multimers when binding to DNA 

and inducing transcription [260,261]. This cooperative effect creats sigmoidal response of 

the system to the change of the active transcriptional factor amount. Such coooperativity 

widely occurs and the Hill equation is a good approximation of the underlying mechanisms, 

although it assumes simultaneous binding of the TFs to the promoter region that is far from 

the realistic picture. As intermediate states appear during the reaction, sequential binding of 

the transcription factor to the promoter has been considered for this study. The following 

scheme (on Figure 14) approximates the Hill function when the intermediate state (TF2) 

does not accumulate and positive cooperativity is present. Several other interactions are 

plausible [34], but are not investigated in this study for the sake of simplicity. 
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Figure 14: Transcriptional regulation: Sequential binding of transcriptional factors (TFs) occurs then a ho-
modimer (TF2) sits onto the promoter of a gene (G) and transcription results in messenger RNAs (mRNAs). 
Reactions are described through mass action kinetics with rate constants k1, k2, k3, k4 and kms. 

 

BlenX offers a formal and efficient definition of join and split events of boxes as complex 

formation and complex dissociation occur in biological systems. Transcription factors (TFs) 

form multimers (in this example TF2) through a join event, enhancing the affinity of its 

binding onto the gene's promoter region (G). Dissociation of the complexes occurs through 

split events: 

 

when(TF,TF::rate(k1)) join(TF2); 

when(TF2::rate(k2)) split(TF,TF); 

when(TF2,G::rate(k3)) join(GTF2) 

when(GTF2::rate(k4)) split(G,TF2); 

 

Positive cooperativity results in a low dissociation constant of the GTF2 trimer. The joined 

complex is able to transcribe mRNAs (Ms) of the gene through a split event that creates M 

boxes with the release of the active trimer.  

 

when(GTF2::rate(kms)) split(GTF2,M); 

 

Binding processes are assumed to be reversible. Elementary reactions of the system are 

summarized in Table 8. The model contains the following boxes: 

 



 
RESULTS 

78 
 

let G : bproc = #(g:0,G)   [ nil ]; 

let TF : bproc = #(tf,TF)  [ nil ]; 

let TF2 : bproc = #(tf2,TF2)  [ nil ]; 

let GTF2 : bproc = #(gtf2,GTF2) [ nil ]; 

let M : bproc = #(m:0,M)   [ nil ]; 

 

Description Reactions Rate constants Units 

Homodimerization of TFs 2�{ → �{2 k1 1/(min#) 

Dissociation of TF2 �{2 → 2�{ k2 1/min 

Formation of an active complex �{2 � � → ��{2 k3 1/(min#) 

Dissociation of the active complex ��{2 → �{2 � � k4 1/min 

Synthesis of the mRNA ��{2 → �{2 � ( kms 1/min 

Degradation of the mRNA ( → kmd 1/min 

Table 8: Reactions for Hill kinetics for the requirement of at least 2 ligands (TFs). 

 

Sigmoidal curves are often measured in experiments providing specific Hill constants (such 

as n, J) to the Hill function. The Hill curve describing e.g. a transcriptional regulation 

scheme is not the proper way to apply stochastic calculations. Elementary steps of the se-

quential binding scheme contains four rate constants (k1, k2, k3, k4) that have to be deter-

mined from the constants n and J. Derivation of the missing parameters is calculated from 

the mass action kinetics describing the system. At equilibrium the intermediate complexes 

are assumed to be stable, thus 

 

�{2
�{6 �

93

96
 

and 

��{2
� ∙ �{2

�
9C

9�
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As the total amount of gene promoters do not change, G=Gtot-GTF2 leads to the term 

 

��{2
�hih

�
�{6

96 ∙ 9�
93 ∙ 9C

� �{6
 

 

that is identical to a Hill function  

 

��P&�
����D

�
wz

wz � ~z 

 

Note that n=2 and ~6 � (96 ∙ 9�)/(93 ∙ 9C). The rate of transcription of M is 

 

9�� ∙
�{6

~6 � �{6 � 9�� ∙ ��{2 ∙ �hih 

 

where Gtot is a constant equals to 1# in this example. 

 

The Hill coefficient (n) and the dissociation constant (J) determine only the relation of the 

four rate constants (~6 � (96 ∙ 9�)/(93 ∙ 9C)), but different values may satisfy the same 

reaction scheme. We analyzed several choices of k1, k2, k3, k4 suiting the constraint de-

scribed above, and we compare the results through the response coefficient (R) of the sig-

moidal curve [241]. The response coefficient has been shown to allow us to measure the 

steepness of the transition of sigmoidal responses, such as in a Goldbeter-Koshland zero-

order ultrasensitive switch (see below). The R coefficient is defined as S0.9/S0.1, the ratio of 

the signal (substrate) amount required to give 90% saturation relative to the amount required 

to give 10% saturation [257]. In our example, the complex function is defined as the dissoc-

iation constant (J) is equal to 600# and the Hill coefficient (n) is 2. The reaction rate in this 

case equals to 

  

�{6

6006 � �{6 

 

and the value of the response coefficient R equals to 9. 
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5.3.2 Simulation results 

 

We chose eight different sets of parameters (Table 9) satisfying the relation 

 

~6 � (96 ∙ 9�)/(93 ∙ 9C) 

 

and run with each set for long time. We measured the time average value of the bound form 

(GTF2) in case of a few initial amounts of TFs and calculated the response coefficient (R) 

and the actual Hill coefficient (n') for each set of parameters [241]. The derived Hill coeffi-

cient equals to  

 

&� � log81/logR 

 

The derived dissociation constant (J') is calculated from the simulation points. The root 

mean square error of the fit to the simulation results and the simulation point's error to the 

theoretical Hill function curve are also shown in Table 9. 

 

If we compare the results of the complex function and the unpacked module, we see that 

when the assumption for K1 >> K 2 is valid, the decomposed module gives a good fit to the 

theoretical Hill curve (Figure 15). Our results agree with the observation of [34] that for 

simple sequential binding schemes the only condition under which the Hill coefficient does 

accurately estimate the number of binding sites is when marked positive cooperativity is 

present. Furthermore, our analysis points toward, that the larger the difference between the 

dissociation constants K1 and K2, the better the fit (e.g. compare set 1 to set 2). We also see 

that the derived Hill coefficient is not necessarily equal to the number of binding sites on the 

gene.  

 



Figure 15: The best fits (set 1,2,3,4) satisfy the assumption of positive cooperativity as 
vides a good fit to the theoretical complex function.
value of the simulation results 
show the analytic calculation of the Hill function with 
axis. 
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The best fits (set 1,2,3,4) satisfy the assumption of positive cooperativity as 
e theoretical complex function. Data points are calculated as the 

simulation results at a given amount of TF with different parameter sets (see above). Solid curves 
show the analytic calculation of the Hill function with J=600# and n=2. All the plots are on a logarithmic 

Biological systems respond to signals in a dynamic way, although the underlying mecha

isms depend on single molecules that are expressed and coordinated in a stochastic way. 

Recently, single cell measurements led to key hypothesis how independently fluctuating 

elements can be orchestrated in a well-organized manner. Cai et al 

scription of molecules happen in a burst-like manner, creating probabilistic transcription i

itiations that generate downstream transcription. Furthermore, the system se

trolled by frequency modulation instead of changes in transcription-

This is an elegant explanation for the large variety in the levels of expression or the conce

tration of transcription factors resulting in a particular response mechanism. Our simulation 

results also show behavior coincident to frequency modulation theory

see dense bursts of active transcription factors (GTF2) that results burst

giving similar downstream results that occur in a concentration dependent transcription in 

Figure 16). The rates of complex formations provide a frequency of 

transcription that determines the abundance of the mRNA (M). The different parameter sets 

define how often the active complex (GTF2) is present. This transcription is random, as it 

was discussed previously by Cai et al. [262]. Furthermore, our findings 

with a recent publication investigating molecular noise of transcriptional event within the 

cell cycle regulation network. Csikasz-Nagy and Mura [263] showed that few steps of gest
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tion and senescence of mRNA are enough to give a good match for both the measured half-

lives and variability of cell cycle-statistics. Their result suggests that the complex process of 

transcription can be more accurately approximated by multi-step linear processes. Our anal-

ysis shows accordance to previous publications and also provides guidance to parameter 

search. The parameter set 2 - that assumes larger dissociation constant for the TF dimeriza-

tion step (K1 >> K 2) - provides better fit to the Hill function than the simulations with the 

parameter set 8. When the number of initial transcription factor is small (100#), the frequent 

bursts of GTF2 activation give similar response than the complex Hill function assuming 

sigmoid reaction. The proper rhythm of stochastic GTF2 activity peaks is able to increase 

the amount of M in the expected and less noisy manner. In case of the parameter set 8, the 

transcription is more frequently “switched off” and cannot provide the same amount of tran-

script (M) as one approximated complex Hill term do. As the number of transcription factors 

is increased (Figure 16 D and H), we see that the effect of frequent bursts becomes less im-

portant as the regularly activated GTF2 cannot compensate the lack of a continuously active 

complex. 
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 k1 k2 k3 k4 K1�k2/k1 K2�k4/k3 J��K1∙K2
2  n’ J’ 

Error 

of the fit 

of the estimated 

Hill function 

R 

Error 

of the fit 

of the theoretical 

Hill function 

units 1/(min#) 1/min 1/(min#) 1/min # # # - # - - - 

set0 - - - - - - 1/α 2 600 0 9 0 

set1 1α 10 1000α 100 10 0.1 1/α 1.67 729 0.007511 13.89 0.066913 

set2 1α 100 1000α 10 100 0.01 1/α 1.95 612 0.001737 9.52 0.008401 

set3 10α 1000 100α 1 100 0.01 1/α 1.95 612 0.002859 9.52 0.600704 

set4 100α 1000 10α 1 100 0.01 1/α 1.68 731 0.009201 13.68 0.709089 

set5 10α 1 100α 1000 0.1 10 1/α 1.05 12418 0.002033 65.71 0.600837 

set6 1α 1 10α 1000 0.01 100 1/α 1 124191 0.000234 81.00 0.709229 

set7 1000α 100 1α 10 0.1 10 1/α 1.06 12248 0.001434 63.16 0.600704 

set8 1000α 10 1α 100 0.01 100 1/α 1.03 110937 0.000255 71.27 0.709089 

Table 9: Multiple simulation results on the module of the Hill kinetics. Set 0 refers to the deterministic version of the complex Hill function. Set 1-set 8 are different sets of pa-

rameters for the “unpacked” module.
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Figure 16: Simulation results of the unpacked Hill function. The frequency of GTF2 activation defines the 
speed of the reaction. (A-D): Simulation results for the parameter set 2 and with different value of the TFs 
(A:TF=100#, B: TF=500#, C: TF=1000#, D: TF=5000#).(E-H): Stochastic simulations for the parameter set 8 
(E:TF=100#, F: TF=500#, G: TF=1000#, H: TF=5000#). Note that the time scale of the two columns differs. 
In case of set 2 bursts are more frequent than in the case of set 8. 

 

In order to present more in details simulation of the chosen two parameter sets (set 2 and 8) 

are shown on Figure 17. When the amount of TF (signal) is low, effective transcription - 
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producing sufficient amount of mRNAs - occurs if transcriptional bursts are more frequent. 

As the level of initial signal is increased, the transcription machinery is mostly active (with 

a GTF2 value equals to 1). When there are higher amount of molecules in the system, the 

frequency of bursts becomes lower. 

 

 
Figure 17: Simulation: with TF=1000#; set8 (A, C) and set2 (B, D) response differs. Set8 cannot provide a re-
sponse that follows the behavior of a compound Hill function with particular assumptions. The frequency of 
bursts is not sufficient enough for describing the synthesis of M in the desired manner. 

 

The module presented above states for a representation of the complex Hill term described 

by elementary steps and modeling the transcription of a gene explicitly. It can be easily 

dragged and dropped into a larger model as it is shown later. 

 

5.4 The Goldbeter-Koshland switch 

 

In the 1980s, Albert Goldbeter and Daniel E. Koshland introduced an elegant description of 

interacting oppozing enzymes acting on a substrate that switches between two forms 

(representing a kinase-phospatase pair woring by adding and removing phosphate groups or 

a GTPase, GAP pair addig or removing GTP’s) providing an ‘ultrasensitive’ behavior to the 

system [241]. Biological systems must respond to stimuli rapidly and this often happens by 

phosphorylation events (e.g. metabolic pathways). The terms “ultrasensitivity” have been 
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defined to indicate cases in which the sensitivity is greater or less than that to be expected 

from the standard hyperbolic, Michaelis-Menten response. In these cases "turning on or off" 

the activity of the elements of a pathway responds fast to relatively small changes in effec-

tors’ concentrations. 

 

The scheme of cooperative binding is one way to increases the sensitivity of a system (dis-

cussed in the 5.3 session (Hill kinetics)). However, there are other modes to generate sig-

moidal response. An enzyme may be present at more than one step in a pathway (like in the 

glycogen cascade [264]). Furthermore, in covalent modification schemes (like phosphoryla-

tion [265]) when one or more of the converter enzymes operate in the "zero-order" region, 

ultrasensitivity is observed. In this case, the enzyme activity is saturated with respect to the 

protein substrate and the velocity of the reaction is independent of changes in the substrate 

quantity. A nonlinear function describing a reaction presented ahead is referred to as the 

Goldbeter-Koshland switch [241] and it has been shown to be able to generate sensitivity 

equivalent to cooperative enzymes with high Hill coefficients [266]. 

 

5.4.1 The Goldbeter-Koshland module, as a composition study 

 

The Goldbeter-Koshland function is our first example of a higher composition in this study, 

as - roughly speaking - two Michaelis-Menten templates built together can serve as one 

Goldbeter-Koshland motif. By defining a template for interacting enzymes (the scenario de-

scribed above) we end up with another possible way to implement non-linearity into our 

BlenX model that behaves with a sigmoidal response, but contains only elementary steps. It 

is a commonly used building block of biological pathways - such as protein cascades -, thus 

it is worth to store this template in our library. 

 

Imagine a protein with two forms: active (P) and inactive (Pmod) (it is a common motif that 

frequently occurs in biological systems). If the activation and inactivation are carried out by 

two different enzymes resulting in covalent modifications (e.g. phosphorylation or dephos-

phorylation) the system can be described by two, Michaelis-Menten-type of enzymatic reac-

tions (Figure 18). If the same assumptions are valid as for the Michaelis-Menten term - 

when the enzymes (E1 and E2) are saturated by the substrates (P and Pmod) - and our simula-
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tion stays at the zero order regime, the response of the system will provide an ultrasensitive 

switch even to slight changes. 

 

 
Figure 18: Schematic wiring diagram of covalent modification of P through the enzymes E1 and E2, acting on 
P in an opposite way. 

 
The steady-state behavior of this module is expressed mathematically as a nonlinear func-

tion: 

 

0 �
93 ∙ Y3 ∙ (�hih�} − ��i�)

~3 � (�hih�} − ��i�)
−

96 ∙ Y6 ∙ ��i�

~6 � ��i�
 

 

where J1 and J2 are the Michaelis-Menten constants of the enzymatic reactions. 

 

Golbeter and Koshland proposed a mathematical relationship for steady state solution of the 

system in the zero-order regime: 

 

��i�,�h.�h
�hih�}

= � S93 ∙ Y3, 96 ∙ Y6, ~3
�hih�}

, ~6
�hih�}

T = 

=
2 ∙ 93 ∙ Y3 ∙ ~6�hih�}

� + ��6 − 4�96 ∙ Y6 − 93 ∙ Y3� ∙ 93 ∙ Y3 ∙ ~6�hih�}

 

 

where 

� = 96 ∙ Y6 − 93 ∙ Y3 + ~3
�hih�}

∙ 96 ∙ Y6 + ~6
�hih�}

∙ 93 ∙ Y3 
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The Goldbeter-Koshland function takes values between 0 and 1 (for the fraction of modified 

and unmodified proteins) and has a sigmoidal behavior. The smaller parameters J1 and J2 

provide the steeper the function. The switch is ultrasensitive only in the zero order regime, 

although [267] showed that the sigmoidal response of the function is restored also in the 

first order regime if we introduce an additional cooperative mechanism of the phosphoryla-

tion reaction. In this study we do not touch that case. 

 

 
Figure 19: Schematic representation of a Goldbeter-Koshland ultrasensitive switch. In our example the signal 
represents the enzymes (E1 or E2) modifying the substrates, changing their response (the amount of P or Pmod).  

 

5.4.2 Elementary steps of a Goldbeter-Koshland module 

 

The Goldbeter-Koshland module is composed of two Michaelis-Menten reactions. P is 

modified by E1 through a complex formation step. Pmod, the modified form of P is recovered 

through binding to E2. Depending on the initial amounts of the molecules, the system can 

exist in two states: (1) either P is active (form P) due to the presence of E2 or (2) Pmod level 

is higher than the amount of P. 

 

Due to the variety of BlenX expressions, there is more than one solution to achieve the same 

reaction networks. This flexibility of the program-code makes modeling a creative job. Al-

though the current programming method in BlenX assumes that users have programming 

skills and they construct models in the most beneficial way. The users might have to think in 

advance to the subsequent use - possible extension - of the model. The efficiency of compo-

sition differs in the variety of solutions providing and easier or more difficult way of com-

positionality in the future. 
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Figure 20: Reversible enzyme modification is described with elementary steps. Enzyme-substrate complexes 
(E2:Pmod and E1:P) are present during the reaction. 

 

In the followings, we will show possible process algebra modules for the same Goldbeter-

Koshland behavior exploiting the expressive power of BlenX and proposing an optimal so-

lution for compositional modeling. 

 

5.4.3 A simple solution for the decomposition of the Goldbeter-Koshland switch 

 

Probably the most intuitive way - for biologists - of modeling the interconnected enzymatic 

reactions with BlenX is the use of events, especially if someone approaches the problem 

starting from the description of the biochemical reactions that present in the system. Events 

represent rules that are able to perform the substitution of boxes with other boxes. All the 

possible complexes in the system are defined explicitly at the beginning through the join 

and split operations. Their use is essential in modeling the dynamics of networks in which 

the use of the communication primitives are not intuitive. 

 



 
RESULTS 

90 
 

 
Figure 21: BlenX representation of enzymatic reactions through events. The substrates are prone to form 
complexes with the enzyme. 

 

In case of a description of the switch with events, the definitions of the protein (P), the mod-

ified protein (Pmod) and the active enzymes (E1 and E2) do not include internal processes and 

communication actions: 

 

let P :    bproc = #(p:0,P)   [ nil ]; 

let Pmod :   bproc = #(p:0,Pmod)  [ nil ]; 

let E1 :    bproc = #(e1:0,E1)   [ nil ]; 

let E2 :    bproc = #(e2:0,E2)   [ nil ]; 

 

We also define the “intermediate” complexes explicitly in the model similar to the classical 

approach of modeling: 

 

let E1_P :   bproc = #(e1p:0,E1P)  [ nil ]; 

let E2_Pmod :   bproc = #(e2pm:0,E2Pm)  [ nil ]; 

 

Chemical reactions, in this example, represent rules for complex formation and dissociation 

of enzymes and substrates by introducing the enzyme-substrate complexes. This solution is 

the most intuitive explanation of biochemical reactions and probably the closest to the clas-

sical modeling methods, making translation and composition of deterministic solutions into 
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the process calculus framework. The type of events (join) substitutes the box of the enzyme 

(E1 or E2) and the substrate (P or Pmod) with one box, the enzyme-substrate complex 

(E1_P or E2_Pmod): 

 

when (E1,P::rate(e1_1))   join (E1_P); 

when (Pmod,E2::rate(e2_1))  join (E2_Pmod); 

 

The other event (split) create the opposite, it substitute one box (E1_P and E2_Pmod) with 

the enzyme and the substrate: 

 

when (E1_P::rate(e1_2))   split (E1,P); 

when (E2_Pmod::rate(e2_2)) split (E2,Pmod); 

 

or the enzyme and the product of the reaction: 

 

when (E1_P::rate(e1_3))   split (E1,Pmod); 

when (E2_Pmod::rate(e2_3))  split (E2,P); 

 

We tested three different sets of parameters for possible ratios among the stochastic rate 

constants of the elementary steps. All three cases satisfy the assumption of the saturated en-

zymes that are present in the system with less number of molecules than the substrates. Ini-

tial conditions are set for analyzing the reversibility of the ultrasensitive switch. No hystere-

sis is seen as expected (Figure 22). The sigmoidal response coefficients can be also calcu-

lated as 

 

� �
81(g3 � 0.1)(g6 � 0.1)

(g3 � 0.9)(g6 � 0.9)
 

 

where   g3 � ~3
�hih�}

Q    and   g6 � ~6
�hih�}

Q  

 

R � 2.02 for all cases which corresponds to a Hill function with a coefficient equals to 

n�6.25. 
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rate constants units set 1 set 2 set 3 

e1_1 1/(min ∙ #) 1 ∙ α 1 ∙ α 1 ∙ α 

e1_2 1/min 0.045 0.05 0.005 

e1_3 1/min 0.005 0.05 0.045 

e2_1 1/(min ∙ #) 1 ∙ α 1 ∙ α 1 ∙ α 

e2_2 1/min 0.045 0.05 0.005 

e2_3 1/min 0.005 0.05 0.045 

J1 # 0.05/α 0.05/α 0.05/α 

J2 # 0.05/α 0.05/α 0.05/α 

Table 10: Parameter sets used for the simulations satisfying the Goldbeter-Koshland assumptions. α is a con-
version factor for the stochastic rate constants (α�0.00167). 

 

 
Figure 22: Stochastic simulations started with different initial conditions and analyzing the steady state of the 
system (Pmod and P are steady state values of the model calculated from the time average after reaching equili-
brium). E1 value is 30#. (A and D): Parameter set 1. (B and E): Parameter set 2. (C and F): Parameter set 3. 
Squares sign for the runs with initial conditions P=0#, Pmod=600#. Crosses indicate the steady state values of 
the runs with initial condition P=600# and Pmod=0#. We see no hysteresis. Data points are calculated from 
time averages of the steady state values of multiple simulations. A single run of these cases are shown on Fig-
ure 23. 

 

Although in all cases the system tends to reach an equal state, the time evolution of the reac-

tion strongly depends on the parameters. The Goldbeter-Koshland function assumes rapid 

equilibrium similar to the Michaelis-Menten relation. However, when the assumptions of 

the Michaelis-Menten are valid (the conditions e1_2 >> e1_3 and e2_2 >> e2_3 apply) the 

runs do not satisfy the behavior of a Goldbeter-Koshland switch (Figure 23). The parameter 

set 2 and 3 matches the solution of the complex rate function better than the parameter set 1. 

In the first set, the transient behavior lasts long which brings the system outside of the zero-
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order regime where the change of the amount of the enzyme-substrate complex cannot be 

neglected. Although the value of the Michaelis-Menten constants are low and the substrate 

of each reaction saturates the enzyme, we see that the rate limiting step in the second and 

third cases is the dissociation of the complex instead of the catalytic step (in the parameter 

set 1). We see that the Michaelis-Menten assumptions might be incorrect for non-isolated 

systems, such as the Goldbeter-Koshland switch, thus implementation of a reusable module 

makes the check of assumptions available and can avoid misinterpretation of changes aris-

ing from composition of a larger model built upon the assumptions of the Michaelis-Menten 

kinetics of enzymatic reactions. 

 

 
Figure 23: Time evolution of the reaction scheme. (A-C): simulations with the parameter set 1. (D-F): simula-
tions with the parameter set 2. (G-I): sample simulations with the parameter set 3. (A,D,G): initial value of 
E2=6#; (B,E,H): E2=30#; (C,F,I): E2=100#; (A-I): initial amount of P=600# (red curve) and Pmod=0# (black 
curve). 

 

On Figure 23 simulation results of different parameter sets shows the expected variance in 

the level of noise depending on the initial number of the enzyme E2. If we take a look at the 

signal-response curves on Figure 22 and then to Figure 23, we notice that at smaller or at 

larger number of E2 the noise is reduced compared to the E2 values closer to the inflexion 

point of the sigmoidal curve (Figure 23 B, E, H). 
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Compositionality can be carried out easily in this case as all the elementary steps and com-

plexes are present in the module from the beginning, thus another module can be intercon-

nected even through the intermediate complexes. However, the definition of the initial val-

ues for the enzyme-substrate complexes is a crucial step. By default they are assumed to be 

zero as the complex reaction term assuming Michaelis-Menten kinetics does not include the 

initial (and later) steady state values, thus we lack the knowledge about the intermediate 

species when we want to transform this nonlinear function into elementary steps. As Gold-

beter-Koshland’s switch states that the system is in equilibrium during the ultrasensitive 

change, initial amounts for the intermediate complexes should be chosen to be equal to their 

steady state values. Calculation of those states can be implemented into the tool as an auto-

matic feature. BlenX can propose initial values of the intermediate complexes assuming 

equilibrium for a given initial set of the model defined by the user. Calculations are based 

on: 

 

|YZ|�h.�h. �
�1

�2 � �3
∙ |Y|0z0h ∙ |Z|0z0h 

 

|Y|0z0h � |Y|hih�} − |YZ|�h.�h. 

 

|Z|0z0h � |Z|hih�} − |YZ|�h.�h. 

 

In the subsequent Chapter we show another solution for encoding the Goldbeter-Koshland 

motif. 

 

5.4.4 Conditions driven simulations for the Goldbeter-Koshland study 

 

BlenX allows a novel and more elegant way to design a program through coding the proba-

ble reactions with conditions. These conditions check the state of the boxes’ interfaces, al-

lowing the change of their internal behavior depending on their actual configurations. 

 

In case of a Goldebeter-Koshland switch enzymes and substrates form complexes. With the 

conditions it is possible to guard reactions though checking the state of the boxes if they are 

available for binding and firing the action of changing their behavior. 
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Figure 24: Representation of the conditions driven execution of the reaction. 

 

The following rules define the state of the molecules (boxes). 

 

(1) If the binder ‘p’ belongs to the box P (the type of the binder is equivalent of ‘R_P’) and 

if it is ‘bound’ (it forms a complex with another molecule), change the type of its binders (to 

‘R_Pmod’) resulting in a transition to the box Pmod because the binder types and the box’s 

internal behavior define the actual identity of the box. Then check sequentially if the binder 

‘p’ belongs to the box Pmod (its type is ‘R_Pmod’) and if this ‘p’ binder is not bound. If the 

conditions are both met, the program fires the next process (‘proc_check1’), stepping onto 

the second sequence of conditions (2). 

 

let proc_P_Pmod :  

pproc = if ((p,bound) and (p,R_P)) then ch(rate(e1_3),s,Pmod).ch(p,R_Pmod).proc_check1 

endif; 

 

let proc_check1 :  

pproc = if ((not (p,bound)) and (p,R_Pmod)) then x?().nil endif; 

 

(2)  If the binder ‘p’ belongs to the box Pmod (the type of the binder is equivalent of 

‘R_Pmod’) and it is bound (it forms a complex with another molecule), change the type of 
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its binders (to ‘R_P’) resulting in a transition to the box ‘P’. After this, sequentially check if 

the binder ‘p’ belongs to the box P (its type is ‘R_P’) and if this ‘p’ binder is not bound. By 

stepping back into the first condition (1), we assure the persistent check of the states of the 

molecules. 

 

let proc_check2 :  

pproc = if ((not (p,bound)) and (p,R_P)) then x?().nil endif; 

 

let proc_Pmod_P :  

pproc = if ((p,bound) and (p,R_Pmod)) then ch(rate(e2_3),s,P).ch(p,R_P).proc_check2 en-

dif; 

 

let choice :  

pproc = if ((p,bound) and (p,R_P)) then ch(rate(e1_3),s,Pmod).ch(p,R_Pmod).proc_check1 

endif + if ((p,bound) and (p,R_Pmod)) then ch(rate(e2_3),s,P).ch(p,R_P).proc_check2 endif; 

 

The binding affinities are specified in a separate file and describe all the possible roles of a 

molecule in a particular system: 

 

{ R_Pmod, R_P, Pmod, P, E1, E2 } %% 

{ (R_P,E1, rate(e1_1), rate(e1_2), 0), (R_Pmod,E1, 0, inf, 0), 

 (R_Pmod,E2, rate(e2_1), rate(e2_2), 0), (R_P,E2, 0, inf, 0) } 

 

The binders and the internal behavior of the boxes are set as the followings. 

 

let P :    bproc = #(p:0,R_P), #(s:0,P)    

     [ choice | rep x!().choice ]; 

let Pmod :   bproc = #(p:0,R_Pmod), #(s:0,Pmod)  

     [ choice | rep x!().choice ]; 

let E1 :   bproc = #(e1:0,E1)     [ nil ]; 

let E2 :   bproc = #(e2:0,E2)     [ nil ]; 
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Please note that in this example two different binders are specified for P and Pmod. Extension 

of this module that does not modify the current code of the reactants might be carried out by 

simply introducing additional species into the model and by implementing the additional 

rules and the novel internal properties specifying the new reactions. However, one should be 

careful with the extension of this module as change in the described boxes may lead to an 

error execution of the conditional processes. As we modify the boxes, the conditions have to 

be updated as well. In this simple case boxes are identified by their internal behavior being 

equal (in case of the P forms) realized with the help of the choice operator.  Thus, the rules 

provide a structure where only binder types should be changed in order to transform one box 

to another. When we would like to extend the module by composing into another system, 

similar structure of conditions and choice operators have to be implemented. However, it is 

also automatically doable. To reduce the size of the model, the presented template is appro-

priate and compositionality can be carried out with it. The enzyme-substrate complexes are 

automatically emerging properties of the system defined by the rules. We do not need to 

specify initial conditions for those species. It is important to observe that compositionality 

of BlenX is improved by the implementation of predefined modules as rule-driven policies 

have to be fixed from the beginning and templates are crutches for modeling. These solu-

tions can be used in several additional situations. 

 

5.4.5 A compact solution with conditions  

 

The same module can be realized by using only one binder of P and of Pmod. It provides a 

shorter code and faster simulations than the previous case. The logic of the module is the 

same; conditions are defined for describing the possible states of the boxes. Reactants have 

only one binder specifying their activity and this very primitive interface will changes due 

to complex formation and communications through that single binder. Further compositio-

nality may be more difficult as the box code its activity and binding capacity in the same 

type of one binder which can be much more complicated in real biological systems. It re-

duces our choice of modifying either of the functions of the molecule. Changes in the affini-

ty of binding will automatically modify the previous condition, creating unambiguous code 

for the system. 

 

let proc_check1 : pproc = if ((not (p,bound)) and (p,Pmod)) then x?().nil endif; 
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let proc_check2 : pproc = if ((not (p,bound)) and (p,P)) then x?().nil endif; 

 

let choice :  

pproc = if ((p,bound) and (p,P)) then ch(rate(e1_3),p,Pmod).proc_check1 endif + if 

((p,bound) and (p,Pmod)) then ch(rate(e2_3),p,P).proc_check2 endif; 

 

let Pmod : bproc = #(p:0,Pmod)   [ choice | rep x!().choice ]; 

let P :   bproc = #(p:0,P)   [ choice | rep x!().choice ]; 

let E1 :  bproc = #(e1:0,E1)    [ nil ]; 

let E2 :  bproc = #(e2:0,E2)   [ nil ]; 

 

5.4.6 Different binders implemented for different functions 

 

In the sequential, two binders are signed to two different functions: one is responsible for 

the activity of the protein P and the other is for the activity of the protein Pmod. Hiding and 

showing the binders define the actual identity of the box if it is P or Pmod. 

 

let proc_Pmod_P :  

pproc = if (not (p1,bound)) then ch(p1,Pmod_ACTIVE).hide(p1).x!().nil endif; 

 

let proc_P_Pmod:  

pproc = if (not (p2,bound)) then ch(p2,P_ACTIVE).hide(p2).x!().nil endif; 

 

let choice :  

pproc = if (p2,bound) then unhide(rate(e1_3),p1).ch(p2,NOT).proc_P_Pmod endif + if 

(p1,bound) then unhide(rate(e2_3),p2).ch(p1,NOT).proc_Pmod_P endif; 

 

let Pmod : bproc = #(p1,Pmod_ACTIVE), #h(p2,P_ACTIVE)  

   [ choice | rep x?().choice ]; 

let P :  bproc = #h(p1,Pmod_ACTIVE), #(p2,P_ACTIVE)  

   [ choice | rep x?().choice ]; 

let E1 : bproc = #(e1:0,E1)  [ nil ]; 
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let E2 : bproc = #(e2:0,E2)  [ nil ]; 

 

{ Pmod_ACTIVE, P_ACTIVE, E1, E2, NOT } %% 

{ (Pmod_ACTIVE,E2, rate(e2_1), rate(e2_2), 0), (NOT,E2, 0, inf, 0), 

 (P_ACTIVE,E1, rate(e1_1), rate(e1_2), 0), (NOT,E1, 0, inf, 0) } 

 

We can assign additional binders for further functions of the molecules. We have to pay at-

tention to the symmetry of the proteins, meaning that if we change the properties of one 

box, we should change the other one to ensure the program denote for the appropriate box 

after an action fired. We can also define the possible states of the molecule referring to dif-

ferent interfaces and internal behaviors and transfer these temporary boxes as we wish. 

However, it leads to a larger program with slower simulations. 

 

5.4.7 Realization of the Goldbeter-Koshland module through communications 

 

A communication process triggers the change of the p binder’s type, resulting in the conver-

sion of the molecule from Pmod to P, 

 

let proc_Pmod_P : pproc = p?().ch(p,P).p_rep!(); 

 

Communication process that triggers change of the binder’s type (P � Pmod) 

 

let proc_P_Pmod_P : pproc = p?().ch(p,Pmod).proc_Pmod_P; 

 

The molecules are represented as 

 

let Pmod :bproc = #(p:0,Pmod)  [ rep p_rep?().proc_P_Pmod_P | proc_Pmod_P ]; 

let P : bproc = #(p:0,P)  [ rep p_rep?().proc_P_Pmod_P | proc_P_Pmod_P ]; 

let E1 :  bproc = #(e1:0,E1)  [ rep e1!().nil ]; 

let E2 :  bproc = #(e2:0,E2)  [ rep e2!().nil ]; 

 

{Pmod, P, E1, E2}%% 

{ (P, E1, rate(e1_1), rate(e1_2), rate(e1_3)), (Pmod, E1, 0, inf, 0), 
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 (Pmod, E2, rate(e2_1), rate(e2_2), rate(e2_3)), (P, E2, 0, inf, 0) } 

 

This solution is composable in parallel to another system automatically if we ensure the 

symmetry that was mentioned previously. The problem of using only one binder raises the 

same question of differences between binding sites and active sites. Our choice will depend 

on the level of abstraction we would like to apply. During the model building process, with 

the availability of different representation of a simple module, we can realize the case that 

fits most our idea or simply substitute with a different solution if further extension of the 

model requires it. 

 

5.4.8 Comparison of the different solutions 

 

In order to choose between the possible interpretations of the same module, comparison is 

carried out in this session. 

 

The different size of the modules results in different time for the simulations. To test the 

speed of the solutions of the program with our current simulator (Beta Workbench Simula-

tor), we measured the time of each run. This application passes three text files (input) to the 

compiler; and translates these files into a runtime representation; and simulates the algo-

rithm through a stochastic simulator engine.  

 

After measuring the time with a timer for 25 run, we result that the usage of simple events is 

the fastest (in Chapter 5.4.3). Every solution provides the same dynamics for the system, but 

with different abstractions and different time for simulation. Realization of the template 

with events offers an easy way of compositionality in case we are interested in introducing 

novel links through the complexes explicitly encoded in the algorithm. However, the initial 

conditions are required to be calculated for each simulation, thus we wil have to compare 

the required simulation and calculation time after implementation of the template into the 

tool. 
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Paragraph number 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7 

minimum time [s] 0.468 3.65 2.73 4.212 4.773 

maximum time [s] 0.717 4.461 3.88 4.929 6.271 

average User Time [s] 0.58176 3.87156 3.09244 4.47936 5.41216 

Table 11: The average simulation time of the previously presented BlenX templates. Initial values are 
Pmod=0#; E1=11976#; E2=1198#; P=2994#. Times are shown in the unit of seconds. 25 runs have been 
measured in each case. 

 

5.5 The positive feedback loop  

 

The previous example presents a scenario when a small module can create an abrupt switch 

between two states: (1) low amount of P and high amount of Pmod or (2) lower amount of 

Pmod and higher amount of P. In this case, the system responds fast to changes by switching 

between these two states, although this module does not have a “memory”. Not like hystere-

sis which is a phenomenon that has history-dependence and the transitions between the two 

steady states are discontinuous. The system’s activation threshold differs from the deactiva-

tion threshold (Figure 25). In other words, the effects of the input to the system are expe-

rienced with a certain delay in time. Time delay is a sort of memory as protein synthesis rate 

at the present time depends on protein concentration over some time in the past. Hysteresis 

is a well-described property in thermodynamics and it is also observed in biological net-

works. 

 

 
Figure 25: Hysteresis curve. 
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Bistability in biological systems has been defined as the property when the same system can 

be in either of two alternative stable steady states under identical chemical conditions 

[134,268,269]. It is an important biological network structure that was first found in the lac-

tose utilization pathway of bacteria [135] and recently it was also synthetically engineered 

in a gene regulatory system [270]. Positive feedback and bistability are common themes in 

theories of cellular memory [57], differentiation [271] and in the study of programmed cell 

death (apoptosis) [272]. The importance of hysteretic - and bistable - systems in biology re-

fers to switch behavior in a dynamical system creating irreversible changes of different 

states (e.g. cell cycle states [273]). It was proposed by Novak and Tyson that bistable 

switches are created by positive feedback loops involving two activation or two inhibitor 

steps within the cell cycle regulatory network as well [274]. Their prediction that the irre-

versibility of cell cycle transitions is based on a traverse around a hysteresis loop was also 

confirmed experimentally by two different groups [275,276]. The two main type of positive 

feedback loops are shown in the following. 

 

5.5.1 Positive feedback generated by mutual antagonism 

 

By coupling two Goldbeter-Koshland switches, we obtain another interesting behavior ob-

served in biological systems, called mutual antagonism. When two components inhibit each 

other, they result in a so called “double-negative” - thus a positive - feedback loop. One ex-

ample for such case may be the interaction between two enzymes reducing their activity 

through phosphorylation events. These mutual inhibitors provide a switch response of the 

system that can toggle between two states.  

 

In our example we refer to two opposing proteins as X and Y. They are able to bind together 

then they modify and inactivate each other (Figure 26). In protein interaction networks this 

enzymatic reaction often ends with different phosphorylation states (here we refer to XP of 

X and YP of Y). We adopted an example from [168] where the inactive X is degraded, while 

the YP can be dephosphorylated (activated) through an additional enzyme (A). 

 

One classical example for such systems is found in the research of the regulation of cell di-

vision cycle. Toggle switches are extremely important features because cells make decisions 



 
RESULTS 

103 
 

between two sequential phases. When cells commit to separate their previously replicated 

hereditary material (in mitosis), the activity of a key regulatory kinase complex (MPF also 

referred to as CDK/Cyclin B) is required to be “switched on”. The transition occurs only at 

a proper time because before that point the regulatory kinase complex (CDK/Cyclin B) is 

inactivated through its phosphorylation by the protein kinase Wee1. In addition to this nega-

tive effect, CDK/Cyclin B also inhibits Wee1. Thus, if the activity of CDK/Cyclin B is in-

creased, it is able to overtake the negative effect of Wee1 and can switch on itself indirectly. 

This double-negative relation results in a positive feedback on Cyclin B, creating a bistable 

toggle switch property. 

 

 
Figure 26: Positive feedback generated by mutual antagonism. X and Y are two inhibitors modifying each 
other through enzymatic reactions. 

 

Ciliberto et al [132] showed that in protein interaction networks, the assumptions for the two 

Goldbeter-Koshland modules tend to be invalid when they are coupled into a larger system. 

The improper application of such a complex reaction scheme without valid assumptions 

may lead to the loss of bistability if we unpack the Goldbeter-Koshland functions into ele-

mentary reactions. Bistability is restored by allowing one inactive form to possess some ac-

tivity and phosphorylate its substrate (see below). In the subsequent section we present the 

BlenX template encoding a mutual inhibition mechanism in a formal way.  

 

5.5.1.1 The BlenX template encoding mutual antagonism 
 

The motif of a double-negative feedback regulation is realized in BlenX through several ac-

tivation and inactivation steps that are fired depending on the state of the boxes. As process 
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calculi tools provide the opportunity to define general conditions that might be used for mo-

lecules with similar behavior, model-construction is easy and the size of the BlenX model 

stays relatively small. 

 

First, we define the possible interactive sites of the molecules. As the module contains pro-

teins with dual roles performing as enzymes or substrates, they all have two binders 

representing the activity (ENZ meaning enzyme activity) and the binding site (SUB refer-

ring to as substrate). All the SUB and ENZ sites can exist in two forms: active (available) or 

inactive (hidden). The conditions representing activation and inactivation steps are shown in 

the following paragraph. We would like to ensure that when the site which is waiting for 

modification is bound to its enzyme, the box cannot possess other (enzymatic) activity. 

Thus, the interface of the box is changed depending on its condition and the enzymatic site 

is hidden from any reaction: 

 

let inactivate_ENZ : pproc = ( if (substrate, bound) then hide(enzyme).nil endif ); 

let inactivate_SUB : pproc = ( if (enzyme, bound) then hide(substrate).nil endif ); 

 

Furthermore, we would like to ensure that when the substrate site of the box dissociates 

from the enzyme, the catalytic activity of the box is restored through the reactivation of the 

enzymatic site: 

 

let activate_ENZ :  

pproc = (if (not(substrate, bound)) then unhide(enzyme).rec_enzyme!().nil endif ); 

let activate_SUB :  

pproc = (if (not(enzyme, bound)) then unhide(substrate).rec_substrate!().nil endif ); 

 

These are all general properties (conditions) of biological systems and they can be easily 

composed into a larger model in BlenX. They ensure the exclusion of the presence of mul-

timers that may not be realistic in a biological system where the binding-induced conforma-

tional change of the enzyme can modify its regulatory sites. These rules also reduce the 

complexity of the model system and the number of possible but unnecessary states. 
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To retain the bistability in the module, we assume that the inactive Y (YP) enzyme is also 

able to change the behavior of the molecule X; however, its activity is much lower than the 

active Y [132]. We included a third binding site for X that participates in the reaction trig-

gered by YP. Activation of the binder responsible for enzymatic activity (enzyme) occurs 

when the box exists as a single molecule and its binders representing the substrate affinity 

(substrate and substrate_YPX) are not occupied. The conditions describing the activation 

and inactivation of the molecule X are: 

 

let activate_ENZ_X :  

pproc = (if (not(substrate, bound) and not(substrate_YPX, bound)) then un-

hide(enzyme).rec_ENZ!().nil endif); 

 

let activate_SUB_X :  

pproc = (if (not(enzyme, bound) and not(substrate_YPX, bound)) then un-

hide(substrate).rec_SUB!().nil endif); 

 

let activate_SUB_X_YP :  

pproc = (if (not(enzyme, bound) and not(substrate, bound)) then un-

hide(substrate_YPX).rec_ENZ_X!().nil endif); 

 

let inactivate_ENZ_X :  

pproc = ( if ((substrate, bound) or (substrate_YPX, bound)) then hide(enzyme).nil endif); 

 

let inactivate_SUB_X :  

pproc = ( if ((enzyme, bound) or (substrate_YPX, bound)) then hide(substrate).nil endif); 

 

let inactivate_SUB_X_YP :  

pproc = ( if ((enzyme, bound) or (substrate, bound)) then hide(substrate_YPX).nil endif ); 

 

The variables are characterized by their binding sites - one representing their enzymatic ac-

tivity and one waiting for communications - and their internal course of actions executed as 

parallel processes. One possible sequence of step is shown on Figure 27. In case of the box 

X, an additional communication site has been defined in order to restore bistability: 
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let X :  bproc = #(substrate:0,X_sub), #(enzyme:0,X_enz), #(substrate_YPX:0,X) 

[  inactivate_ENZ_X  | activate_ENZ_X | 

rep rec_ENZ?().(inactivate_ENZ_X | activate_ENZ_X ) | 

inactivate_SUB_X | activate_SUB_X | 

rep rec_SUB?().(inactivate_SUB_X | activate_SUB_X ) | 

activate_SUB_X_YP | activate_SUB_X_YP | 

rep rec_ENZ_X?().(inactivate_SUB_X_YP | activate_SUB_X_YP )| 

rep enzyme?().nil | 

substrate!().ch(substrate, YX).nil | 

substrate_YPX!().ch(substrate_YPX, YPX).nil    ]; 

 

 
Figure 27: A possible sequence of reactions of the box X. When the binder with the type X_sub (red highlight) 
creates a link with a molecule, the two other binders of X become unavailable (hidden, white bars). A change 
of the binder’s type occurs and dissociation of the regulatory molecule from the modified binder fires the con-
dition of unhiding the binders. 

 

The other species in the module are encoded with similar logic, but with only two binders: 

 

let Y :  bproc = #(substrate:0,Y_sub), #(enzyme:0,Y_enz)  

[  inactivate_ENZ | activate_ENZ |  

rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) | 

inactivate_SUB | activate_SUB |  
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rep rec_substrate?().(inactivate_SUB | activate_SUB ) | 

    rep enzyme?().nil | 

    substrate!().ch(substrate, XY).nil     ]; 

 

let XP :  bproc = #(substrate:0,XP_sub), #(enzyme:0,XP_enz)  

[  inactivate_ENZ | activate_ENZ |  

rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) | 

    inactivate_SUB | activate_SUB |  

rep rec_substrate?().(inactivate_SUB | activate_SUB ) | 

rep enzyme?().nil | 

    substrate!().ch(substrate, XP).nil    ]; 

 

let YP :  bproc = #(substrate:0,YP_sub), #(enzyme:0,YP_enz)  

[  inactivate_ENZ | activate_ENZ |  

rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) | 

inactivate_SUB | activate_SUB |  

rep rec_substrate?().(inactivate_SUB | activate_SUB ) | 

rep enzyme?().nil | 

substrate!().ch(substrate, AYP).nil   ]; 

 

Intermediate complexes are also present in the model. Their definition is necessary to assign 

further functions to the modified forms of the molecules within a larger system. We show an 

example of a temporary box which originates from Y and which immediately turns to the - 

the modified form of Y (YP) that is inactive and degraded in this example (the reader finds 

the entire template with additional boxes in Appendix A): 

 

let Y_XY :  bproc = #(substrate:0,XY), #(enzyme:0,Y_enz)  

[  inactivate_ENZ | activate_ENZ |  

rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) | 

    inactivate_SUB | activate_SUB |  

rep rec_substrate?().(inactivate_SUB | activate_SUB ) | 

    rep enzyme?().nil   ];  
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The box S (signal) modifies E2, while A is an unspecified enzyme reactivating the inactive Y 

(YP): 

let S : bproc = #(s:0,S) [ rep s?().nil ]; 

let A : bproc = #(a:0,A) [ rep a?().nil ]; 

 

The catalytic steps of each reaction are defined through BlenX events such as: 

when(Y_XY::inf) split(YP,Nil); 

 

Synthesis and degradation of the X molecule are included for the further analysis of the 

model: 

when(S::rate(k1)) split(S,X); 

when(X::rate(k2p)) delete(1); 

 

Types represent the interaction capabilities of the boxes and are listed in Appendix A. 

 

Note that the way of composition can be automatic as extra binders may be added and the 

list of conditions can be extended as well. Each molecule that is able to perform as an en-

zyme or as a substrate can be described the same way, making composition of these ele-

ments easy. Listing the properties of the components makes compositionality a feature of 

process calculus based programming languages designed for biology and the general de-

scription of the enzymes acting similarly reduce the size of a larger model during extension.  

 

The general description of an enzyme performing also as a substrate is supported with the 

following conditions: 

let inactivate_ENZ :  

pproc = ( if (substrate, bound) then hide(enzyme).nil endif ); 

let inactivate_SUB :  

pproc = ( if (enzyme, bound) then hide(substrate).nil endif ); 

let activate_ENZ :  

pproc = (if (not(substrate, bound)) then unhide(enzyme).rec_enzyme!().nil endif ); 

let activate_SUB :  

pproc = (if (not(enzyme, bound)) then unhide(substrate).rec_substrate!().nil endif ); 
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Binders can be added easily and processes can be composed parallel. We see that this prop-

erty of the pi-calculus processes enable the representation of molecules with several inde-

pendent functional domains. If the molecule X contains n independent binding or phospho-

rylation sites, each state of the molecule reflects the set of activities in which the site can 

participate. In contrast, with the ODE approach the modeler would be required to write ki-

netic equations for all modification states of X which grow exponentially with the number 

of independent sites. While the number of reactions needed to describe X in BlenX grows 

linearly with the number of sites. Furthermore, the BlenX framework as a member of 

process algebra initiatives, allows the formation of heteromers resulting in a larger and more 

complex picture of the system that would be realized in a difficult way with ODEs. If 

needed, with the help of conditions we can exclude the occurrence of certain bindings, thus 

we can limit our network depending on our modeling goal. Realization of the templates and 

the code of general rules assigned to common behavior of biological systems easen the 

modeling process and provide a more systematic way of building biological networks in si-

lico. 

 

In the subsequent we show the analysis of this module and how it behaves in a stochastic 

environment. 

 

5.5.1.2 Computational simulations for the mutual antagonism module 
 

Bifurcation analysis is one of the leading techniques for analyzing classical modeling tools, 

ODEs. The system’s properties can be presented in an elegant way by showing how it re-

sponds to the increase or decrease of a key signal. In this particular antagonistic module a 

bistable region is present where the same system is able to perform in two distinguishable 

states depending on the initial conditions. In a discrete model the global properties should 

not vary, thus after running stochastic simulations with the same parameter set but with dif-

ferent initial conditions, we have to be able to see a bistable region if nonlinearity remained 

in our BlenX module. The parameters used in this example have been adapted from [168]. 

 

In more details, to plot a bifurcation diagram, we changed the synthesis rate of E2 by chang-

ing the value of the signal (S) and then we measured the time-average of P and Pmod after 
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they had reached the steady state during the simulation. We can clearly see the region of bis-

tability on Figure 28, in accordance with the experimental measurements (Figure 29). 

 

 
Figure 28: Two distinguishable stable steady states are seen. Bistability characterizes the system between the 
S values of 1000# and 1600#. Steady state values are calculated as the time average of the molecule after 
reaching steady state. α=0.00167. 

 

 
Figure 29: Experimental measurements of existence of bistability in cell cycle regulation by Pomerening et al. [276]. 

 

One question we might ask is that when we implement a mutual inhibition module into a 

stochastic model, how noise would affect our simulation results. In order to investigate the 

influence of stochasticity in our BlenX module, we reduced the number of molecules play-

ing role in this isolated system (by reducing the value of the α conversion factor). When it 

includes only a small number of enzymes, the large internal noise arising from the stochastic 

simulations is able to disrupt bistability (Figure 30). We cannot see the hysteretic property 

on the diagram of Figure 30.  
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Figure 30: Steady state values of X over S with large noise.  Initial conditions are X=6#, Y=6#, YP=0#, A=6# 
for black triangular; and X=0#, Y=0#, YP=6#, A=6# for grey squares. Steady state values are caluclated from 
time averages of the simulations. α=0.167. 

 

It has been shown by [168] that the unpacked version of the module containing only ele-

mentary steps shorten the range of the bistable regime. Steuer et al. [167] showed how noise 

is able to trigger oscillations in a cell cycle model. In our example we observed that shorten-

ing the range of the multistate regime by unpacking the complex reaction terms may lead to 

the fusion of the bifurcation points in stochastic simulations. Vanishing multistability is a 

crucial consequence of highly stochastic systems, thus modelers should pay attention to it. 

Even if the deterministic module is able to behave as an irreversible switch due to its hyste-

retic property, noise may influence this behavior leading to different results from the deter-

ministic module including several complex rate functions. Stochasticity may trigger the sys-

tem to bounce from one to the other state and back if the size of the bistable region is not 

large enough. On Figure 31 we see that within the bistable region noise influence the prop-

erties of the system. The increase of noise leads to disappearance of the hysteretic behavior 

and decrease the robustness of the switch. In general cells tend to overcome this phenome-

non in real systems by increasing the number of molecules present in this regulatory mod-

ule. 
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Figure 31: Time evolution of the bistable system depends on the amount of noise. α is varied in order to mod-
ify the number of molecules present in the module. (A-B) α=0.167, (C-D) α=0.0167, (E-F) α=0.00167. (A) in-
itial X and Y equal 600#, (C) X and Y equal 60#, (E) X and Y equal 6#, (B,D,F) X and Y equal 0#. The amount 
of signal (S) equals to 13#, 130# and 1300# respectively. 

 

Besides the positive feedback regulation emerging from a double inhibitory relation cells al-

so perform mutual active regulation (Figure 32). In the following section we show a BlenX 

realization of this type of positive feedback. 

 

 
Figure 32: Positive feedback regulations. The diagram on the left hand side represents a mutual antagonism 
(or double-negative feedback loop) and the other on the right represents mutual activation. 

 

5.5.2 Positive feedback loop generated by mutual activation mechanisms 

 

Positive feedback regulation may occur when two enzymes mutually inactivate or activate 

each other. The realization of the mutual activation module can be composed of two Gold-

beter-Koshland functions as in the previous example. This regulatory motif is important 

when both enzymes are inactive at the initial step. In cell cycle we can think about the ex-
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ample when CDK/Cyclin B (named and referred to as CYCB in the subsequent) and its 

phosphatase (CDC25P), are both inactive before mitosis. During G2-phase CYCB is inhi-

bited by a kinase (WEE1), while CDC25 is inactive due to another enzyme. Cells in order to 

enter mitosis need to increase the amount of active CYCB (CYCB form). Slight increase in 

the CYCB level triggers activation of the CDC25 phosphatase which in response removes 

the inhibitory phosphate group from CYCBP. The more increased amount of active CYCB 

form increases the active CDC25P creating an abrupt change in the level of both proteins 

(Figure 33). This double activation switch cells into mitosis due to the sudden increase in 

CYCB activity. 

 

 
Figure 33: Wiring diagram of a mutual activation mechanism. 

 

Enzymatic reactions are described in three steps, based on the enzyme-substrate reversible 

complex formation and a catalytic step. Each interacting enzyme-substrate pair performs a 

Goldbeter-Koshland module. The rules guiding the model are similar to the ones used in the 

mutual antagonism system. Conditions are activating and inactivating the binders of the 

boxes. 

 

let activate_ENZ :  

pproc = (if (not(substrate, bound)) then unhide(enzyme).rec_ENZ!().nil endif ); 

let activate_SUB :  
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pproc = (if (not(enzyme, bound)) then unhide(substrate).rec_SUB!().nil endif ); 

let inactivate_ENZ :  

pproc = ( if (substrate, bound) then hide(enzyme).nil endif ); 

let inactivate_SUB :  

pproc = ( if (enzyme, bound) then hide(substrate).nil endif ); 

 

CYCB acts as a substrate of the inhibitory kinase (WEE1) and also as an enzyme activating 

its partner, CDC25P: 

let CYCB : bproc =  #(substrate:0,CYCB_sub), 

#(enzyme:0,CYCB_enz_CDC25)  

 [   inactivate_ENZ | activate_ENZ |  

rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) | 

  inactivate_SUB | activate_SUB |  

rep rec_SUB?().(inactivate_SUB | activate_SUB ) | 

  rep enzyme?().nil | 

  substrate!().ch(substrate, CYCB_sub_mod).nil  ]; 

 

In this module WEE1 kinase has no affinity to other reactions than inhibiting CYCB. 

let WEE1 : bproc = #(enzyme:0,WEE1_enz) 

 [  rep enzyme?().nil ]; 

 

CDC25 has an inactive form assigned as CDC25 and an active form called CDC25P. The 

active CDC25 can function both as an enzyme and a substrate. The inactive form (CDC25) 

has no enzymatic activity. 

let CDC25 :  bproc = #(substrate:0,CDC25_sub)    

[  substrate!().ch(substrate, CDC25_sub_mod).nil  ]; 

let CDC25P : bproc = #(enzyme:0,CDC25P_enz), #(substrate:0,CDC25P_sub) 

 [  inactivate_ENZ | activate_ENZ |  

rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) | 

  inactivate_SUB | activate_SUB |  

rep rec_SUB?().(inactivate_SUB | activate_SUB ) | 

  rep enzyme?().nil | 

  substrate!().ch(substrate, CDC25P_sub_mod).nil    ]; 
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An undefined enzyme keeps CDC25 inactive. 

let ENZYME1 : bproc = #(enzyme:0,ENZYME1_enz)  

[ rep enzyme?().nil ]; 

 

A signal is introduced that increases the amount of the enzyme CYCB to trigger the switch 

after CYCB reaches an activity level that can activate CDC25: 

let SIGNAL :  bproc = #(s:0,S)  [ nil ]; 

when(SIGNAL::rate(s)) split(SIGNAL,CYCB); 

Degradation of CYCB and CYCBP equilibriates their synthesis: 

when(CYCB::rate(deg)) delete(1); 

 

Temporal species are defined to assign additional functions for the modified boxes and their 

binders (Appendix A). The molecular links are defined in the binder definition file (Appen-

dix A). Binders are associated to each other to allow enzymatic reactions to happen. 

 

parameters and units parameter values parameters and units parameter values 

91 [1/(� & ∙ #)] 1 ∙ <  �1 [1/(� & ∙ #)] 0.05 ∙ < 

91) [1/� &] 0.1 �1) [1/� &] 0.01 

92 [1/� &] 0.5 �2 [1/� &] 0.5 

D1 [1/(� & ∙ #)] 0.01 ∙ < &1 [1/(� & ∙ #)] 0.1 ∙ < 

D1) [1/� &] 0.01 &1) [1/� &] 0.05 

D2 [1/� &] 0.05 &2 [1/� &] 0.05 

+ [1/� &] 0.1   

��� [1/� &] 0.01   

Table 12: Reaction rate constant values used in simulation on Figure 34. Initial values are ENZYME1=100#, 
CDC25=200#, CYCBP=500#, WEE1=100#, SIGNAL=50#, CYCB=CDC25P=0#.  

 

Simulation result of the module shows the dynamic of the system (Figure 34). When CYCB 

level increases CDC25 turns into an active form. This change amplifies the effect of CYCB 

as CDC25P is able to restore its activity. 
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Figure 34: Simulation of the mutual activation module. The increase of CYCB switch CDC25 (inactive from) 
into CDC25P (active form). Active CDC25P activates CYCBP resulting in CYCB. α=0.0167. 

 

This module can be used in various scenarios when amplification of a signal is realized 

through enzymatic reactions with mutual activation relation among the elements of the 

module. In biology it plays major role in developmental processes [277] or in apoptosis 

[272,278]. 

 

In the next session, we show a compositional case study for modeling the G2/M transition 

of the cell cycle. The example contains interconnected mutual antagonism and mutual acti-

vation. 

 

5.6 An example: G2/M transition during cell cycle 

 

Alternation of the cell cycle phases is tightly controlled through the interaction of a large set 

of regulatory proteins. Activity of the cyclin-dependent kinases (CDKs) is responsible for 

most basic cell cycle processes and its role is crucial in cell cycle progression [279]. One 

method for change the activity of CDK is to modify its phosphorylation state. The G2/M 

transition is one of the key irreversible switches in cell division cycle triggered by active 

CDK in combination with a cycling subunit (Cyclin B). During the G2-phase of the cell 

cycle, CDK activity is kept low with inhibitory phosphorylation events that are carried out 

by the Wee1 kinase. As the activity of CDK/Cyclin B increases in time, it activates its hel-

per phosphatase Cdc25 which in return removes the inhibitory phosphate groups from CDK. 

The sudden increase of CDK activity triggers inactivation of Wee1 kinase by its phosphory-
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lation. The active CDK generates mitotic events (e.g. chromosome condensation, nuclear 

envelope breakdown, chromatid segregation, assembly of mitotic spindle). 

 

 
 

Figure 35: Wiring diagram of the G2/M transition module 

 

The sequence of these events is realized through several feedback regulations. The antago-

nistic relation of CDK/Cyclin B (CYCB) and the Wee1 (WEE1) kinase can be modeled as a 

double-negative feedback relation. The mutual activation of the CDK/Cyclin B and the 

Cdc25 (CDC25), together with the positive feedback loop described ahead act synergistical-

ly and provide an abrupt increase in the activity of CDK making the G2/M transition an ir-

reversible, switch-like event. Let us show how the previously presented template can be ex-

tended in order to model the cell cycle transition from the G2-phase into the M-phase.  

  

5.6.1 Composition of the G2/M transition with BlenX 

 

Each elementary step of the module might be coded in the BlenX framework starting from 

basic primitives. We go further and show a more elegant way of using BlenX templates for 

modeling a complex motif including a mutual inhibition module extended with a positive 
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feedback regulation. It is an example for a higher level composition of the predefined tem-

plates. 

 

The mutual antagonistic relation between CDK/Cyclin B (referred to as CYCB) and Wee1 

is modeled as described in Chapter 5.5.1.1 and we extended it with a mutual activation 

module of the interaction of CYCB and CDC25 (Chapter 5.5.2).  

 

The general conditions that regulate the activity of certain binders are defined the same way 

as in the mutual inhibitor and mutual activation modules: 

let activate_ENZ :  

pproc = (if (not(substrate, bound)) then unhide(enzyme).rec_ENZ!().nil endif ); 

let activate_SUB :  

pproc = (if (not(enzyme, bound)) then unhide(substrate).rec_SUB!().nil endif ); 

let inactivate_ENZ :  

pproc = ( if (substrate, bound) then hide(enzyme).nil endif ); 

let inactivate_SUB :  

pproc = ( if (enzyme, bound) then hide(substrate).nil endif ); 

 

In this model there are three binders featured with different functions of the CYCB mole-

cule. One of them represents the bindig site of the CYCB (for its inhibitor kinase WEE1 or 

its activator phosphatase CDC25), while the other two binders are responsible for the enzy-

matic activity of CYCB acting on WEE1 and CDC25 independently. If we compare, we see 

that the CYCB protein does not have the same substrate role as in the mutual inhibition 

module, but possesses an enzymatic activity creating a connection into the positive limb of 

the motif. In the code the processes and conditions related to the previous unnecessary role 

of the box have been erased and novel rules have been added parallel to the already existing 

module. Note that in case of this composed module, we do not need to apply the assump-

tions that we did in Chapter 5.5.1.1. In that module, in order to restore bistability in the mu-

tual antagonism module, the inactive enzyme has a minimal enzymatic activity. In case of 

this larger module, complexity of the system solves the problem arising from disappearing 

nonlinearity in elementary steps. Interconnected feedback loops can increase robustness of 

the system and restore nonlinear dynamics in this example. 

 



 
RESULTS 

119 
 

In the following, we highlight the parallel composition of the elements of the system. The 

black color stays for the mutual inhibition, while the blue text shows the extensions emerg-

ing from the mutual activation module. 

 

let activate_ENZ_CYCB :  

pproc = (if (not(substrate, bound)  

and not(enzyme_CYCBCDC25, bound))  

then unhide(enzyme).rec_ENZ!().nil endif); 

 

let activate_SUB_CYCB : 

 pproc = (if (not(enzyme, bound)  

and not(enzyme_ CYCBCDC25, bound))  

then unhide(substrate).rec_SUB!().nil endif); 

 

let activate_ENZ_CYCB_CDC25 :  

pproc = (if (not(enzyme, bound)  

and not(substrate, bound))  

then unhide(enzyme_CYCBCDC25).rec_ENZ_CDC25!().nil endif); 

 

let inactivate_ENZ_CYCB :  

pproc = ( if ((substrate, bound)  

or (enzyme_CYCBCDC25, bound)) 

then hide(enzyme).nil endif ); 

 

let inactivate_SUB_CYCB :  

pproc = ( if ((enzyme, bound)  

or (enzyme_ CYCBCDC25, bound))  

then hide(substrate).nil endif ); 

 

let inactivate_ENZ_CYCB_CDC25 :  

pproc = ( if ((enzyme, bound)  

or (substrate, bound))  
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then hide(enzyme_ CYCBCDC25).nil endif ); 

 

We assign three different functions into CYCB. It acts as an inhibitory enzyme of its ‘ene-

my’ (the WEE1 kinase); and CYCB acts also as an enzyme activating CDC25 and last, it is 

a substrate of other enzymatic reactions triggered by CDC25P in this example. Three bind-

ers are present for these roles. 

 

let CYCB : bproc =  #(enzyme:0,CYCB_enz),  

#(substrate:0,CYCB_sub),  

#(enzyme_ CYCBCDC25:0,CYCB_enz_CDC25)  

 [   inactivate_ENZ_CYCB | activate_ENZ_CYCB |  

rep rec_ENZ?().(inactivate_ENZ_CYCB | activate_ENZ_CYCB ) | 

  inactivate_SUB_CYCB | activate_SUB_CYCB |  

rep rec_SUB?().(inactivate_SUB_CYCB | activate_SUB_CYCB ) | 

  inactivate_ENZ_CYCB_CDC25 | activate_ENZ_CYCB_CDC25 |  

rep rec_ENZ_CDC25?().(inactivate_ENZ_CYCB_CDC25 |  

activate_ENZ_CYCB_CDC25 ) | 

  rep enzyme?().nil | 

  substrate!().ch(substrate, CYCB_sub_mod).nil | 

  rep enzyme_ CYCBCDC25?().nil    ]; 

 

let CYCBP : bproc = #(substrate:0,CYCBP_sub) 

[  substrate!().ch(substrate, CYCBP_sub_mod).nil  ]; 

 

let WEE1 : bproc = #(enzyme:0,WEE1_enz),  

#(substrate:0,WEE1_sub)  

 [  inactivate_ENZ | activate_ENZ |  

rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) | 

  inactivate_SUB | activate_SUB |  

rep rec_SUB?().(inactivate_SUB | activate_SUB ) | 

  rep enzyme?().nil | 

  substrate!().ch(substrate, WEE1_sub_mod).nil    ]; 
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let WEE1P : bproc =  #(substrate:0,WEE1P_sub) 

[  substrate!().ch(substrate, WEE1P_sub_mod).nil   ]; 

 

let CDC25 :  bproc = #(substrate:0,CDC25_sub)    

[  substrate!().ch(substrate, CDC25_sub_mod).nil  ]; 

 

let CDC25P : bproc = #(enzyme:0,CDC25P_enz), #(substrate:0,CDC25P_sub) 

 [  inactivate_ENZ | activate_ENZ |  

rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) | 

  inactivate_SUB | activate_SUB |  

rep rec_SUB?().(inactivate_SUB | activate_SUB ) | 

  rep enzyme?().nil | 

  substrate!().ch(substrate, CDC25P_sub_mod).nil    ]; 

 

let ENZYME1 : bproc = #(enzyme:0,ENZYME1_enz)  

[ rep enzyme?().nil ]; 

 

let ENZYME2 : bproc = #(enzyme:0,ENZYME2_enz)  

[ rep enzyme?().nil ]; 

 

Binders are specified as: 

{  WEE1_enz, WEE1_sub, WEE1_sub_mod, 

 CYCB_enz, CYCB_sub, CYCB_sub_mod, CYCB_enz_CDC25,  

 CDC25P_enz, CDC25P_sub, CDC25P_sub_mod, 

 ENZYME1_enz, 

 ENZYME2_enz, 

 CDC25_sub, CDC25_sub_mod, 

 WEE1P_sub, WEE1P_sub_mod, 

 CYCBP_sub, CYCBP_sub_mod   } %% 

{ (CYCB_enz_CDC25, CDC25_sub, rate(a1), rate(a1r), rate(a2)), 

 (CYCB_enz_CDC25, CDC25_sub_mod, 0, inf , 0 ), 
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 (CYCB_enz, WEE1_sub, rate(b1), rate(b1r), rate(b2)), 

 (CYCB_enz, WEE1_sub_mod, 0, inf , 0), 

 (ENZYME1_enz, CDC25P_sub, rate(c1), rate(c1r), rate(c2)), 

 (ENZYME1_enz, CDC25P_sub_mod, 0, inf , 0), 

 (CDC25P_enz, CDC25P_sub,rate(d1), rate(d1r), rate(d2) ), 

 (CDC25P_enz, CYCBP_sub_mod, 0, inf , 0 ), 

 (WEE1_enz, CYCB_sub, rate(e1), rate(e1r),rate(e2)), 

 (WEE1_enz, CYCB_sub_mod, 0, inf , 0), 

 (ENZYME2_enz, WEE1P_sub, rate(f1), rate(f1r) ,rate(f2) ), 

 (ENZYME2_enz, WEE1P_sub_mod, 0, inf ,0)   } 

 

Temporal species are the events assigned to them are defined in Appendix A. 

 

We run stochastic simulations with the parameter set shown in Table 13. 

 

 association rate 

constants 

units: 

[��C/(# ∙ � &)] 

dissociation rate 

constants 

units: 

[1/� &] 

catalytic 

step 

units: 

[1/� &] 

CycB (enzyme) : Cdc25 

(substrate) 
a1 0.2α a1r 0.02 a2 4 

CycB (enzyme) : Wee1 

(substrate) 

b1  

 
5 α b1r 10.6 b2 0.4 

E1 (enzyme) : Cdc25P 

(substrate) 

c1  

 
0.1 α c1r 0.1 c2 20 

Cdc25P (enzyme) : 

CycB (substrate) 

d1  

 
0.0009 α d1r 0.005 d2 0.085 

Wee1 (enzyme) : CycB 

(substrate) 
e1 0.1 α e1r 0.05 e2 0.05 

E2 (enzyme) :  

Wee1P (substrate) 
f1 0.1 α f1r 0.01 f2 2 

Table 13: Parameter set for the simulation of G2/M transition. The values of the rate constants are taken from 
[132] and converted into stochastic rates through a conversion factor α=0.0167. 
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We compared the simulation results with the deterministic exact solution of the module. The 

stochastic template fits well the solution of the deterministic case even with larger noise 

present in the system (Figure 36). The usage and interconnecting the predefined templates 

are easy in this way. Parallel composition of processes and extension of binders and rules 

can be automatized within a software tool. 

 

 
Figure 36: Stochastic simulation of the G2/M module is plotted in red, while the deterministic exact solution 
is signed by black lines. (A-C) time curves of a model with higher α (α=0.000167) representing less noise. (D-
F) time cirves with larger noise (α=0.00167). 

 

5.7 Perspectives 

 

On the line of the work presented here, much more biological motifs could be implemented 

into the template library in the future. One interesting example might be the composition of 

negative feedback regulations that provide a more complex representation of biological os-

cillators. Negative feedback is often used to stabilize dynamic systems as it is able to per-

form adaptation (such a way as incoherent feed-forward loops) [280,281]. Furthermore, it 

has been shown having role in noise-reduction in complex systems. We decided to investi-
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gate one particular case during this work, when periodic behavior arise due to a negative 

feedback loop including a time delay or other interconnected feedback regulations.  

 

Automatic use of the templates is possible thanks to the basic structure of the language with 

rules-driven reactions and parallel composition of the processes. Realization and implemen-

tation into a higher-level interface (such as CoSBi Lab [255]) is a matter of software devel-

opment and out of scope of this work. The library presented here gives an opportunity for 

realization of a user-friendly, high-level process calculus modeling tool for biology on top 

of the BlenX language and Gillespie’s SSA algorithm. 

 

5.8 A circadian clock study 

 

Circadian clocks [181] ensure the daily rhythms of several biological functions. This endo-

genous system is based on a negative feedback loop producing a time delayed downregula-

tion of transcriptional events. In addition to the well-studied, but still unclear, features of the 

molecular clock (such as entrainment, robust oscillations and temperature compensation), 

recently, a novel molecular link has been discovered by Matsuo and co-workers [225]. They 

found that circadian rhythms regulate the daily expression of a certain cell cycle component 

(Wee1 kinase) being instrumental in the irreversible G2/M transition, inhibiting cell’s entry 

into mitosis depending on the time of the day. 

 

A systematic approach to such a biological network may lead us to unexpected discoveries 

and verification or contradiction of hypotheses as well. In the subsequent, our results 

achieved by modeling this 24h oscillatory system [47,48,282] will be presented. 

 

5.8.1 Modeling cell division cycles gated by the circadian clock 

 

After the first molecular evidence for the coupling between circadian and cell cycles has 

been revealed [225], we decided to investigate the importance of this connection with a sys-

tematic approach. We adapted Bela Novak and John J Tyson’s deterministic cell cycle mod-

el [160] that focuses on the regulation of the restriction point of mammalian cells. However, 

their model lacks the detailed representation of the G2/M transition (see description in 
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Chapter 5.6), thus we exploited its extension with a mutual antagonistic switch control me-

chanism. 

 

 
Figure 37: The G2/M transition of the cell cycle is gated by the circadian clock through the time-dependent 
transcription of the Wee1 gene. Every 24h BMAL1/CLOCK transcription factor dimer triggers the expression 
of Wee1. Wee1 protein inhibits (dashed |-- line) the signal of the entry into mitosis (the CDK/Cyclin B called 
Cdc2/CycB in mammals). On the other hand, the Cdc25P phosphatase activates the Cdc2/CycB (dashed ar-
row). The intertwined two positive feedback loops ensure the precise and irreversible G2/M transition of the 
cycle. 

 

The first molecular link between these two cyclic processes resides in the direct regulation 

of the Wee1 kinase by the core clock transcription factors, BMAL1 and CLOCK (also 

called Clk) in mammals. The importance and the effect of this interconnected oscillatory 

system is unclear, thus among others [170,226], we also decided to analyze the systems 

through computational modeling [47]. 

 

During our work, the modeling purpose was not to address a comprehensive mammalian 

circadian rhythm model. For the sake of simplicity, we had a minimal oscillator that gene-

rates an endogenous cycle enforcing a periodic influence on the cell cycle. Hence, we built a 

simplified version of a 4-variable mammalian circadian clock model that consists of tran-

scription factors (BMAL1 and CLOCK), clock messages (mPer or mCry mRNA), clock 

proteins (PER or CRY), and a dimer complex of clock proteins (Figure 38). For the simplic-

ity of the model and because we lack the functional differences between the core clock pro-

teins, we assume that PER and CRY are the same species. Therefore, PER/PER represents 

combinations of PER/PER, PER/CRY, and CRY/CRY dimers. The crucial structure of a 
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negative feedback regulation originates from a transcriptional-translational control loop 

(TTCL) consisting of the transcription factors BMAL1 and CLOCK that form heterodimers 

(BMAL1/CLOCK) and triggers transcription of the core clock genes (Per and Cry). After 

translation and complex formation, the activated clock proteins (PER/PER) downregulate 

their own transcription through binding into the BMAL1/CLOCK complex and closing the 

negative feedback loop of the system. Furthermore, in our model we assume that the PER 

dimers (CP2) are more stable than the single proteins, which introduces an additional auto-

catalytic positive feedback into the model [283]. This simplified circadian clock system has 

been connected to the mammalian cell cycle network and analyzed within the deterministic 

and stochastic framework [47]. 

 

 
Figure 38: Simplified circadian clock model. 

 

Simulations show robust endogenous oscillations with a period of 24 h (Figure 39). 

 

 
Figure 39: Deterministic simulation results of minimal circadian rhythm model. Blue curve indicates the total 
concentration of clock proteins (present in the CP, CP2 and IC forms); red curve shows the concentration of 
active transcription factors (TF) and the green curve states for the messenger molecule (M) in the model.  
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For stochastic simulations, we first introduced noise into the cell cycle regulatory equations 

by rewriting the cell cycle model as Langevin-type equations with multiplicative noise 

[167,284]: 

 

�
��

�0 � !0[… ] � *0(�) ∙ �2 ∙ �0 ∙ �0 

 

where fi[ . . . ] means the original deterministic equation, wi(t) is Gaussian white noise with 

0 mean and unit variance, and Di is the noise amplitude. For simplicity, we kept the noise 

amplitude constant (0.005) for all variables. This number was set by matching the coeffi-

cient of variation (CV) of simulated uncoupled cell cycle length (at mass doubling time 

(MDT) = 24 h) to experimentally observed CV = 10% [285]. As a first assumption, we did 

not introduce stochasticity in the circadian clock module because its sensitivity to noise may 

not reflect a truly robust clock mechanism, being an overly simplified version of a clock 

model. 

 

 
Figure 40: Simplified wiring diagram for the coupled cell cycle and circadian clock.   

 

As we vary the mass doubling time (MDT) of the cell cycle, stochastic simulations reveal 

quantized cell cycles when the activity of Wee1 is influenced by clock components (Figure 
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41 and Figure 42). The quantized cell cycles disappear in the absence of coupling or when 

the strength of this link is reduced. 

 

 
Figure 41: Clock-influenced cell cycle results in uneven distribution of cell cycle time. (A), (B), and (C) 
represent cell cycle simulations with strong coupling rate and the mass doubling time (MDT) at 16 h, 20 h, and 
28 h, respectively. Clock-regulated Wee1 (blue) results in variations in sizes and cell cycle times at different 
MDTs. The black line represents cell mass, which grows exponentially and divides by a factor of 2. Such large 
deviations are not observed with weak coupling at MDTs 16 h, 20 h, and 28 h (D–F). The middle panels show 
a robust 24-h endogenous period of CPtot (purple) and transcription factor (TF; green) at various MDTs. 

 

 
Figure 42: Histogram of cell cycle time distribution at 3 different mass doubling times (MDTs). The y-axis 
represents number of cells going through cell division with a particular cell cycle time. Strong coupling re-
sults in multimodal distribution of cell cycle times (A–C), while weak coupling results in normal distribution 
(D–F) at indicated MDTs (16 h, 20 h, and 28 h). Five thousand cell cycles are analyzed for each plot, which 
is calculated from 100 simulation runs with 50 consecutive cell cycles. 
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Quantized cell cycle distributions in mammalian cells have been measured experimentally 

by Robert Klevecz (Figure 43) and Nagoshi et al. [286]. Our simulation reveals the biologi-

cal mechanism underlying this experimentally observed phenomenon [47]. 

 

 
Figure 43: Quantized cell cycle distribution of mammalian cell culture measured experimentally by Klevecz 
[287]. 

 

More intriguingly, our simulations indicate that the circadian clock triggers critical size con-

trol in the mammalian cell cycle (Figure 44). Gating on the cell cycle progress via Wee1 en-

forces size control when the MDT (mass doubling time) is quite different from the circadian 

period which is 24h in mammalian cells. No size control is observed in the absence of 

coupling.   

 
Figure 44: Analysis of critical mass control. (A, B) Growth from cell birth to division (mass∆) is plotted as a 
function of birth mass (mass0) for multiple simulations at different mass doubling times (MDTs). Data points 
are color coded and clustered according to particular MDTs. Cell size control is reflected when there is a nega-
tive correlation (slope of about –1) between mass∆ and mass0. Strong coupling results in strict size control 
when cell masses are either large or small but no apparent correlation at intermediate cell masses (A). Weak 
coupling (B) shows no clear size control. About 250 simulation runs are calculated at different MDTs. For 
clear representation, not all data points are displayed on panels (A) and (B), and the legends for both panels are 
inserted on panel (B). (C, D) Slopes of linear regression lines from (A, B) are plotted as a function of the 
MDT. Strong coupling results in strict mass control (slope about –1) when the MDTs are either much shorter 
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or longer than 24 h, but size control is not observed when the MDT is close to 24 h (C). Weak coupling shows 
no apparent mass control (D). (E, F) Similar results are shown with linear growth rate. Unique slope of regres-
sion lines of mass∆ vs. mass0 plots are observed with strong coupling as a function of MDT (E), as seen with 
exponential growth rate (C). The MDT is calculated from the average cell cycle time of 50 cycles. 

 

The issue of size control in the mammalian system is debatable, whereas it is well estab-

lished in yeast. It is possible that the size control is more readily observed in cell lines that 

contain circadian rhythms, since not all cell types have a circadian clock. 

 

Following the ideas presented ahead [47] we translated the ODEs describing the coupled 

system of the cell cycle and the circadian rhythm into BlenX [288]. The main difference be-

tween the previous stochastic model and the BlenX one is that the current, translated model 

is fully stochastic and discrete. The ODE model presents noise only in the cell cycle part but 

not in the circadian clock. Furthermore, the stochasticity of the model originates from addi-

tional noise terms described by Langevin’s equations while in case of the BlenX model, Gil-

lespie’s stochastic simulation algorithm is implemented into both the cell cycle and the cir-

cadian oscillator. The expression power of BlenX has been extended previously with the de-

finition of rate functions through the process calculus events. Namely, BlenX let the user to 

specify a rate function that is used in place of the Gillespie method to compute the propensi-

ty function. We translated the biochemical reactions describing the system in ODEs into the 

BlenX framework with the help of these functions (see Chapter 2.10). Analysis of the simu-

lations using a method based on the Fourier analysis confirmed our simulation results [288] 

that multimodial distribution occur when circadian clock gates the cell division cycle 

through Wee1 transcription. 

 

As a further step, we extended the circadian rhythm model and fit it to experimental mea-

surements. We added the transcription and degradation of BMAL1 mRNA and refined the 

model by adding different direct feedbacks (a positive, a negative and a combination of 

them) from the translated BMAL1 on the transcription of its mRNA. 
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Figure 45: Modified circadian clock model based on the results of Sato et al. [191] and Preitner et al. [190]. 
Our simplified model has been extended with the synthesis and degradation of the messenger of the transcrip-
tion factor BMAL1/CLOCK and the positive (blue dashed arrow) and negative (green dashed |-- sign) feed-
back regulation of the BMAL1/CLOCK protein complex. 

 

We tried to infer reaction rates from the experimental data using KInfer [140], a tool for es-

timating rate constants of biochemical network models. We concluded that revision or ex-

tension of our model is necessary in order to fit experimental models quantitatively. Al-

though, we see that such a small regulatory system describing circadian clock could propose 

possible answers for our questions raised about coupled oscillators.  

 

We went further and compared our simple model to a detailed regulatory network proposed 

by Leloup and Goldbeter [211]. The author’s model contains additional regulatory loops to 

our simplified version of clock. Among other differences, they implemented the 

BMAL1/CLOCK driven inhibition of the Bmal1/Clock messenger. However, their system 

lacks a positive feedback loop that we proposed to present due to the dimer formation of the 

PER proteins resulting in a more stable form of the main clock negative element. By analyz-

ing both models, we found this positive limb important in a different context.  

 

In the following session our investigation on the effect of DNA-damaging agents on the cir-

cadian clock and how this simple model can match an experimentally observed and surpris-

ing phenomenon will be presented. 
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5.8.2 Analysis of DNA damage-induced phase advances in circadian rhythms 

 

Since the early discoveries of circadian clock–gated cell cycles in lower eukaryotes [222], 

numerous molecular findings that connect the cell cycle and circadian clock are now being 

addressed [175,225]. In addition to the cell division cycles found to be gated by the circa-

dian clock, ionizing radiation (IR) treatments cause cells to undergo a DNA damage re-

sponse, which leads to phase shifts (mostly advances) also in circadian rhythms. DNA dam-

age-induced activation of the cell cycle regulator, Chk2 kinase, results in phosphorylation 

and destruction of a circadian clock component (i.e., PER1 in Mus musculus or FRQ in 

Neurospora crassa) [228,229]. 

 

One of the identifying properties of circadian rhythms is the ability to phase shift upon a 

stimulus from external cues. This property allows organisms to adapt efficiently to the ex-

ternal environment. For example, a person traveling east to Europe from the U.S. will expe-

rience a jet-lag in the process to adapt advanced phase. It is intuitive to assume that a phase 

shifting agent will create both phase advances and delays depending on the timing and 

strength of the pulse by uniformly affecting molecular pathways in the circadian system 

[289]. It has been observed that 2h treatments of Rat-1 fibroblasts with the drug called dex-

amethasone (Dex) result in large advances and delays (Type 0 resetting of the phase), possi-

bly by inducing transcription of both Per1 and Per2 genes [229,290]. This Dex-dependent 

phase response curve (PRC) is also observed in the NIH3T3-Bmal1-Luc-1 cells [286]. If the 

Dex-dependent induction of Per transcripts causes both phase advances and delays, we 

would also predict that DNA damage-dependent phosphorylation and degradation of PERs 

by Chk2 [228,291] would result in similar PRCs. Recent findings indicate that this intuition 

is wrong [228,229]. Upon experiencing DNA damage, the cell cycle machinery influences 

the circadian clock in such a way that creates predominantly phase advances in Rat-1 fi-

broblasts and mice, as well as in Neurospora crassa. In order to address the criteria of such 

behavior, we employed computational modeling to simulate different phase response curves 

(PRCs) resulting from Dex and IR treatments [48]. 

 

Phase response curves (PRCs) illustrate the relationship between the timing and the effect of 

a treatment designed to affect the circadian clock on a population level (Figure 46). A PRC 

is a graph showing, by convention, the time of the subject's endogenous day (along the x-
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axis) and the amount of the phase shift that occurs upon the stimulus (along the y-axis). 

Phase advances are plotted as positive values while phase delays take negative numbers. 

 

 
Figure 46: Measurement of the phase response curves. On (A) circadian cycles of clock components are 
shown with (dashed lines) and without (solid lines) phase-shifting agents given at a circadian time 4h in this 
example (red arrow). Value of the phase shift compared to the original phase (solid lines) in a later period is 
signed as ∆∆∆∆. (B) shows a phase response curve with the time of the treatment on the x-axis (4h in this example) 
and the hours of advances (positive values) or delays (negative values) on the y-axis. 

 

Dexamethasone (Dex) is known to synchronize circadian rhythms in cell cultures and may 

generate both phase advances and delays (Figure 47 left handside). On the other hand, ioniz-

ing radiation treatment leads to unique phase responses with minimum delays of the circa-

dian clock (Figure 47 right handside). 

 

 
Figure 47: Phase response curves of mammalian circadian clocks upon dexamethasone (left side figure) and 
upon ionizing radiation treatment (on the right side). Note the different shape of the curves with large advances 
and delays in the left case and mostly advances on the right side figure. Both plots are taken from published ar-
ticles of the experimental work done by Izumo et al. [290] and Oklejewicz et al. [229]. 
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We explored a simple mammalian circadian clock model from our previous work [47] to in-

vestigate whether we can simulate different PRCs from the Dex and IR treatment experi-

ments. Based on the experimental data, we added the following in our previous model: 1) 

Dex increases the transcripts of PER but not BMAL1, and 2) Chk2 phosphorylates PERs 

and facilitates their degradation upon DNA damage (Figure 48). 

 

 
Figure 48: Graphical representation of the circadian model applied in this study. The effect of Dex and Chk2 
has been investigated. Our simulations propose that PER proteins in the inactive complex are not affected by 
the Chk2 kinase (red cross). 

 

Our simulations [48] show that the Dex-dependent increase of Per messages creates both 

Type 0 (as shown in the experiment, strong resetting of the phase) and Type 1 PRCs (weak 

resetting of the phase) depending on the strength (concentration) of the Dex treatments 

(Figure 49). It is, however, not trivial to simulate a PRC with mostly phase advances repro-

ducing the phenotype from the IR treatment experiments. We can achieve this phenomenon 

if Chk2 prematurely degrades PERs that are not bound to BMAL1/CLK to advance the 

clock, while allowing continued repression of BMAL1/CLK by not degrading the PERs that 

are in a complex with BMAL1/CLK (Figure 48).  
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Figure 49: In silico Dex and IR treated experiments. (A) Strong pulses of Dex generate Type 0 PRC (filled 
circles; strong resetting of the circadian clock to the new phase which does not depend on the old phase) whe-
reas weak pulses of Dex generates Type 1 PRC (blank circles; weak resetting of the phase where the new 
phase changes as a function of the old phase). (B) Large advances and delays are observed when Chk2 is as-
sumed to affect all forms of PERs including the complex with BMAL1/CLK (orange squares). Chk2-
dependent phase advances and minimum delays of the circadian clock are observed only if Chk2 does not af-
fect the PERs that are in complex with BMAL1/CLK (red circles). (C) DNA damage-induced Chk2 activation 
causes phase advances of circadian clock. Solid lines represent endogenous profiles of PER and BMAL1/CLK. 
Dashed lines indicate PER (red - CPtotal) and BMAL1/CLK (blue - TF) in response to a 2 h IR treatment at 
simulation hour 4 and dots represent the results after the same 2 hr treatment at hour 16 (hour 0 corresponds to 
the peak of PER monomers (CP)). 
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We based our conclusions on the analysis of a simplified model and also on the investiga-

tion of a more comprehensive model proposed by Leloup and Goldbeter [211,215]. Com-

parison of their model and our simple circadian clock system is presented in the subsequent 

session. 

 

5.8.3 An autocatalytic positive feedback mechanism as one of the criteria 

 

Theoretically, a time-delayed negative feedback is sufficient to create robust oscillations. 

However, biological systems contain both negative and positive feedbacks in their wiring 

networks. Positive feedback mechanisms are essential for proper eukaryotic cell divisions 

[292] whereas their roles in circadian rhythms remain elusive. Recently, Tsai and colleagues 

indicated that a general function of positive feedbacks in different networks is to create tun-

able robustness in the system [293]. After proposing a molecular mechanism that accounts 

for Chk2-dependent PRC in circadian rhythms (in Chapter 0), we also tried to answer if the 

positive feedback mechanism is necessary for the observed PRC. 

 

The autocatalytic positive feedback mechanism in the model arises from different stabilities 

between PER monomers vs. PER complexes. Based on molecular data from Drosophila sys-

tem [294-296], we assume that PER monomers are more susceptible to degradation than 

PER in complexes (i.e. PER/PER, PER/CRY, etc.). This creates autocatalytic PER dynam-

ics as PER stabilizes itself by forming complexes. To date, this is the only circadian rhythm 

model that employs an essential positive feedback mechanism that is necessary to maintain 

a robust oscillator [283]. Hence, we wondered whether the incorporated essential positive 

feedback is required (or disposable) in simulating the unique PRCs upon DNA damage. 

 

In order to test our hypothesis, we removed the autocatalysis in the model by assuming no 

stability differences between PER monomers and complexes. Then, we re-parameterized the 

system to rescue oscillations. Note that we had to use a Hill-coefficient = 4 for highly coop-

erative negative feedback in order to rescue oscillations in our four-variable model in the 

absence of the autocatalytic positive feedback mechanism. To our surprise, we were not able 

to generate the unique PRC with predominantly phase advances upon DNA damage even by 

assuming differential phosphorylation and degradation of PER monomers vs. PER com-

plexes with BMAL1/CLK. 
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We wondered whether above conclusions from our simple model can be generalized to a 

more comprehensive model with distinct wiring network. Hence, we tested Leloup and 

Goldbeter’s mammalian model [211,215]. They used four sets of parameters in order to in-

vestigate possible functions of multiple feedback loops in the circadian system. For our pur-

poses, we concentrated to parameter sets 1 and 3. In the parameter set 1, robust oscillations 

of their model can arise from two different time-delayed negative feedback loops: PER-

driven and PER/CRY-independent BMAL1/CLK-driven negative feedback loops. For this 

parameter set, they can generate an oscillator based on BMAL1/CLK-driven negative feed-

back loop in the absence of the PER-driven negative feedback loop. In the parameter set 3, 

they disabled the BMAL1/CLK-driven negative feedback loop making the system a 

PER/CRY-dependent single negative feedback oscillator. We did not explore parameter sets 

2 and 4 because PER is not required for oscillations in parameter sets 2 and 4. The wiring 

network of Leloup and Goldbeter’s model is significantly different from our model which 

consists of an intertwined dynamics between an essential autocatalytic positive feedback 

and time-delayed negative feedback [186,283]. 

 

We incorporated Chk2-induced degradation of PER molecules that are not bound to 

BMAL1/CLK in the Leloup and Goldbeter’s model. Then, we tested Chk-2-dependent dif-

ferential degradation of PER as in our simple model. Our simulations indicate that we see 

both TYPE 1 and TYPE 0 PRC depending on the strength of Chk2, but we do not observe 

asymmetric PRCs with mostly advances (Table 14). These results show that the differential 

effect of Chk2-dependent degradation of PER complexes is not enough to create the ob-

served DNA-damage induced PRCs with the innate wiring of the Leloup and Goldbeter’s 

model. 

 

Our next step was to introduce an autocatalytic positive feedback mechanism in the Leloup 

and Goldbeter’s model and investigate its role in reproducing the asymmetric PRC upon 

DNA-damage. First, we added an autocatalytic positive feedback in the parameter set 1 of 

Leloup and Goldbeter’s model in a similar way as in our simple model. PER complexes are 

assumed to be more stable than PER monomers. To our surprise, we were not able to gener-

ate the PRCs with predominantly phase advances with differential degradations of PER 

complexes by Chk2 even with an added autocatalytic positive feedback mechanism. We 

wondered whether this was due to the PER independent BMAL1/CLK-driven negative 
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feedback loop which is built in the parameter set 1. Hence, we tested the parameter set3 

which consists of the PER-driven single negative feedback. Interestingly, we were able to 

simulate the observed asymmetric PRC with predominantly phase advances as we have ob-

served in our simple model only when both the autocatalytic positive feedback and the dif-

ferential effect of Chk2 on PERs were implemented in the absence of BMAL1/CLK-driven 

negative feedback loop. This suggests that there exists an important dynamical relationship 

between negative feedback loops and an autocatalytic positive feedback mechanism. 

 

MODEL Circadian 
period 

Changed 
parameters  

Chk2 
value 

Maximum 
advance 

(h) 

Maximum 
delay  

(h) 

Ratio of maximum 
advance and max-

imum delay 

Positive 
feedback 

Simple model 
 24.0 - 0.2 5.27 -1.49 3.54 Yes 

Simple model, 
positive feedback re-
moved 

26.8 many[1] 0.05 8.89 -11.56 0.77 No 

Leloup and Goldbeter 
Set1 24.0 - 1 1.24 -2.18 0.57 No 

Leloup and Goldbeter 
Set 3 23.9 - 1 3.94 -3.55 1.11 No 

Leloup and Goldbeter 
Set1 
with positive feedback 

25.2 
kdnp = 
0.3[2] 

1 1.69 -2.39 0.71 Yes 

Leloup and Goldbeter  
Set 3 
with positive feedback 

20.8 
kdnp = 
0.3[2] 1 10.66 -4.32 2.47 Yes 

[1]: Parameter set (without positive feedback): 
Rate constants (h-1): kms = 0.5, kmd = 0.045, kcps = 10, kcpd = 0.0001, ka = 100, kd = 0.001, kcp2d = 0.0001, kicd 

= 0.001, kica = 4, kp1 = 1.97, kp2 = 1.97. Dimensionless constants: TFtot = 1, Jp = 0.05, J = 0.4, n = 4. 
 [2]: We introduced a new rate constant kdnp as the nonspecific degradation rate constant of nonphosphory-
lated PER proteins in the cytosol (PC in their model). 

 
Table 14: Detailed results of the positive feedback necessity analysis 

 

In the conditions that we have tested, we discovered that we can only simulate the Chk2- 

dependent PRC with predominantly phase advances when Chk2 only affects PERs that are 

not bound to BMAL1/CLK in the presence of an autocatalytic positive feedback mechan-

ism. Both conditions are required for proper simulations. Our study is the only in silico ex-

periment to indicate the necessity of an autocatalytic positive feedback mechanism in simu-

lating specific phenotype in the circadian system. 
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The presented scheme is an example of a simplified model of biological rhythms where the 

assumptions applied in the complex nonlinearity terms have important roles in producing 

oscillatory cycles. Conversion of the model into stochastic simulations requires the decom-

position of complex rate functions into elementary reactions. Goldbeter and Leloup pro-

posed an analysis for a stochastic version of a Drosophila circadian model. Their model sys-

tem is based on the assumption of Michaelis-Menten kinetics for most of the reactions. A 

highly nonlinear Hill term is also present with a Hill coefficient equal to 4. The authors de-

composed the reactions into elementary steps by hand. 

 

We decided to apply a systematic way to decompose our circadian model that accounts for 

several hypotheses corresponding to biological rhythms. During the compositional study, 

assumptions have to stay valid for the whole model if we would like to match the global 

properties of the system, provided by nonlinear functions in the original model. The proteins 

present in the clock have multiple roles [297], thus the possibility of choosing between 

complex rate functions or elementary reactions containing the required elements (e.g. an en-

zyme) of the reaction explicitly provides a more flexible use of the BlenX language for later 

extension of the model. Compositionality remains an important and helpful advantage of 

BlenX in a template based, modular environment. 

 

5.8.4 A circadian clock model built up from BlenX templates 

 

We have shown (see Chapter 5.8.3) that our simplified circadian clock model possesses a 

crucial role for a positive feedback presented in the system. In order to investigate a stochas-

tic version of this model, we decided to transfer the system including nonlinear complex 

reaction terms with the use of our novel template library. The circadian clock presented 

above is a simplified picture where non-elementary steps create robust behavior. If we 

would like to have a realistic model where assumptions are not used to model complex reac-

tion schemes, we rely on single step mechanisms. The BlenX templates presented ahead suit 

this need. 

 

The system is divided into the following modules: (1) transcriptional regulation following 

Hill kinetics (2) translation mechanism (assumed to follow mass action kinetics in this 

study) (3) homodimerization of clock proteins (CP) (4) formation of an inactive complex 
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providing a negative effect inside the loop (5) There are three degradation terms catalytical-

ly activated by enzymes (following the Michaelis-Menten assumptions) and the system also 

contains linear (so called background) degradation of the elements. This network composed 

of the reactions presented above (Figure 50) is built with complex rate functions and pro-

vides a 24h periodic oscillator. 

 

 
Figure 50: Circadian clock model as a composition of transcriptional (1), translational (2), reverse complex 
formation (3, 4) and the enzyme catalyzed degradation modules (5). The highlighted parts are described as 
multi-step reactions assumed to follow Hill function and Michaelis-Menten kinetics. 

 

We chose the number of enzymes having role in the system to be less than the correspond-

ing substrates, making the assumptions of Michaelis-Menten kinetics valid. The parameters 

originating from the complex functions are also scaled up to be fast enough. Thus the reac-

tions assumed to be in equilibrium do not limit the system and provide accordance with the 

original assumptions. The products of the enzymatic reactions are degraded immediately 

(with an infinite rate) after their production in order to serve the catalyzed degradation 

scheme in the system. 

 

Following the template-definition, we simply merge the modules and insert the boxes (en-

zymes and intermediates) of the novel entities. We also replace the events corresponding to 

the complex functions for the ones from the “unpacked” modules. This method can be easily 

automatized as it does not require the modification of the reactions that are independent of 

the substituted complex functions and the functions calculating the rate of complex reac-



tions does not involve binders. The nov

lelized with the original ones. The composition of modules is 

al boxes encoding the originally indefined enzymes (U1, U2, 

Menten modules are listed as well as the temporary boxes waiting for degradation after the 

catalytic step (CPU1_D, CP2U2_D, ICU3_D)

module are also shown on Figure 53.b. Several steps are not modified (Figure 53.g). Internal 

processes are added parallel to the original boxes.

 

Simulation of the “unpacked”

original (Figure 51 1a and 2a)

 

Figure 51: Simulation results for the stochastic model containing complex rate functions (1

“unpacked” versions (1-2a) in case of a conversion factor 

tal amount of CP in the system is plotted as solid curves; dashed curves represent the messenger (M) while 

dotted points demonstrate the free 
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tions does not involve binders. The novel internal behavior of the boxes can be easily para

lelized with the original ones. The composition of modules is shown in 

encoding the originally indefined enzymes (U1, U2, U3) acting in the Michaelis

Menten modules are listed as well as the temporary boxes waiting for degradation after the 

(CPU1_D, CP2U2_D, ICU3_D). The gene and the dimers for the transcripti

module are also shown on Figure 53.b. Several steps are not modified (Figure 53.g). Internal 

processes are added parallel to the original boxes. 

Simulation of the “unpacked” system (Figure 51 1b and 2b) shows larger noise than the 

1a and 2a), but still produces regular oscillations. 

Simulation results for the stochastic model containing complex rate functions (1

2a) in case of a conversion factor α=0.000167 (1a-b) and α=0.0000167 (2a

tal amount of CP in the system is plotted as solid curves; dashed curves represent the messenger (M) while 

dotted points demonstrate the free transcription factors (TF) in the model. 
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el internal behavior of the boxes can be easily paral-

shown in Figure 52. Addition-

) acting in the Michaelis-

Menten modules are listed as well as the temporary boxes waiting for degradation after the 

The gene and the dimers for the transcription 

module are also shown on Figure 53.b. Several steps are not modified (Figure 53.g). Internal 

shows larger noise than the 

 
Simulation results for the stochastic model containing complex rate functions (1-2b) and for the 

=0.0000167 (2a-b). The to-

tal amount of CP in the system is plotted as solid curves; dashed curves represent the messenger (M) while 



Figure 52: BlenX source code. The boxes of the original model are shown in (a) 
is in (b). Composition of (a) and (b) is a straightforward job by parallelizati
in (c), (e), (g), while (d), (f), (g) contains the unpacked
(g). The substituited modules are high
pendix B. 
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BlenX source code. The boxes of the original model are shown in (a) while the “unpacked”
is in (b). Composition of (a) and (b) is a straightforward job by parallelization. Events of the original model are 

(f), (g) contains the unpacked version of the model. Note that there is no change in 
(g). The substituited modules are highlighted (bold font) in the text. The model and the parameters are in A
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while the “unpacked” version 

on. Events of the original model are 
version of the model. Note that there is no change in 

The model and the parameters are in Ap-
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We note that the stochastic simulation results of our unpacked circadian model containing 

only elementary reaction steps show larger noise than the one with the complex terms. 

However, this is not necessary the case in all systems. There are several scenarios when 

adding multiple reaction steps decrease the noise in the overall network [263]. In our model 

stochastic fluctuations may be reduced by increasing the number of molecules within the 

model. This can be inefficient and difficult to realize in case of certain oscillators where the 

amplitude of the cycles can bring the number of species down even if the peaks are large 

enough. Another solution could be to reduce noise (also in our circadian clock model) to ex-

tend the model with further regulatory modules, such as negative feedbacks. We know that 

the molecular network of daily rhythms include several additional negative feedback loops, 

thus we think that interconnected negative feedback loops also possess crucial roles in cir-

cadian clocks. In order to build a more realistic model based on our simple and predictive 

system, we can compose larger models with the help of predefined biological network mo-

tifs that ease the model building process in future. 

 

It has been shown in several works [238] that with process calculus based languages dynam-

ic models can be constructed and existing continuous models can be transferred into the sto-

chastic framework providing additional predictions of the biological system results to the 

existing models [92]. Herein we have to remind the reader that generally distributed reaction 

times have been also implemented into the BlenX framework recently [137]. The use of this 

extension fits well the idea of a template based modeling framework as, depending on the 

question the user asked, biological models might be characterized through complex rate 

laws and handled by generalized distributions of time; while templates (including only ele-

mentary steps) offer a straightforward, flexible and more precise way of compositional 

modeling in BlenX making additional extension of the model easy. 

 

5.9 Experimental perspectives 

 

The joint effort of experimental work and modeling approaches has been already provided 

interesting findings for biology [3]. To verify our predictions about the interconnected cir-

cadian and cell cycles (presented in this thesis), during my PhD intern period I had the op-

portunity to visit Chris Hong’s laboratory at the University of Cincinnati, Ohio (USA) and 
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to realize experiments. We chose an experimental model system, the Neurospora crassa to 

investigate the regulation of daily rhythms. 

 

Neurospora crassa is a type of filamentus fungi (bread mold). It has been a popular model 

organism for circadian clock studies from the beginning because it is easy to grow and un-

der constant conditions it shows apparent conidiation banding pattern every 22h as an output 

of its endogenous clock. Additionally, the entire genome of Neurospora crassa has been se-

quenced in 2003 [298]. Genetical manipulation of the organisms is simple enough to study 

molecular genetics in a straightforward way. Individual mutants are stored in a Neurospora 

database [299]. With the thousands of mutant stocks that can be ordered and with the sever-

al convenient techniques that are available for studying this model organism, we could start 

to set up experiments. The levels of conservation observed among the eukaryotic circadian 

oscillators highlight the importance of using Neurospora as a model system for circadian 

clocks. 

 

Analogous to the daily oscillator of Drosophila melanogaster and mammals, the frequency 

(frq) and white collar (wc) genes have been presented to encode componenents of the mole-

cular feedback loop essential for the circadian rhythmicity in Neurospora (see detailed re-

view by [300]). They show similarity to the period (per) and Bmal1 (Bmal1) genes’ func-

tions in mammals, respectively. Transcription of frq is activated by a WC complex (WCC) 

composed of the WC-1 [301] and WC-2 [302] proteins (two PER-ARNT-SIM (PAS) do-

main-containing transcription factors). After the FRQ protein is synthesized, it dimerizes 

with itself and forms the FFC complex with FRH (an FRQ-interacting RNA helicase) [303]. 

In the nucleus, FFC inhibits the activity of WCC, resulting in a decrease in frq mRNA le-

vels. Post-translational modifications of FRQ play an important role in the circadian system. 

When FRQ is synthesized, it is progressively phosphorylated by several kinases (CKI and 

CKII (casein kinases), CAMK-1 (a calcium/calmodulin-dependent kinase)) and dephospho-

rylated by phosphatases (PP2A (protein phosphatase 2), PP1, PP4) [304]. When FRQ be-

comes hyperphosphorylated, FWD-1 (an F box/WD-40 repeat-containing protein) binds to it 

and a SCF-type ubiquitin ligase complex ubiquitinates FRQ resulting in its degradation 

[305]. 

 

 



 
RESULTS 

145 
 

We decided to follow the expression of the circadian clock and the cell cycle components in 

different strains. We designed a vector for achieve genetic modification of the Neurospora 

genome, making measurement with the customized strain available. The designed DNA 

fragments were combined in yeast (with natural yeast homologous recombination [306]) and 

a highly-efficient Cyclosporin A-resistance based gene insertion method [307] was used to 

implement the designed constructs into the Neurospora genome. The inserted sequences 

contain the promoter region of the gene we wish to follow. The coding sequence of the luci-

ferase enzyme [308] has been fused to the promoter mentioned above (Figure 53). Lucife-

rase possesses enzymatic activity and with a bioluminescence reaction occurring with luci-

ferin it provides light that we can detect with a digital camera (Figure 54). The luciferase 

gene is transcribed when the upstream fused promoter of the gene we would like to follow is 

activated. With a sensitive camera equipped with CCD sensor we can detect the expression 

profile of different genes real time with the help of this method. 

 

 
Figure 53: Schematic representation of a promoter-fused luciferase construct. When RNA polymerase is 
bound to the promoter region of a specific gene, luciferase is transcribed. In a luciferin-media, detection of the 
induced expression is possible that provides us information about the transcription pattern of the gene having 
the same promoter region. 

 

Neurospora cells were grown in equipements called race tubes (hollow glass tubes about 40 

cm long and 16 mm in diameter, bent up at both ends in order to hold an agar growth me-

dium). Cultures were inoculated onto agar media containing luciferin (a substrate of the en-

zymatic reaction induced by luciferase) where they grow across the surface at constant rate 

(Figure 55). Following inoculation and growth for a day in constant light, the position of the 

growth front was marked and the culture was transferred to constant darkness (LD transfer). 

This sets the clock running from CT 12 and daily patterns of the banding could be captured 

with a camera. 

 

 
Figure 54: Luminescent Neurospora strains grown in race tubes. Banding pattern of conidiation is visible 
every 22h. 
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Figure 55: Schematic view of a race tube. The source of this figure is http://www.fgsc.net. 

 

We know that PRD-4 (a checkpoint kinase in Neurospora) and FRQ physically interact, and 

that PRD-4 phosphorylates FRQ to reset the circadian clock. Furthermore, other links be-

tween the two systems have been shown in other organisms. However, in Neurospora we 

lack the detailed knowledge of the cell cycle that is well-characterized in yeasts and other 

model organisms. We followed the growth of the mycelia and the expression of several cell 

cycle and circadian clock mutants in different genetical backgrounds. We made this in real-

time. Our preliminary results identify uncovered circadian clock regulated cell cycle ele-

ments in Neurospora (unpublished data) and in the future we plan to investigate our predic-

tions carried out by theoretical work and we wish to understand the role of circadian clock 

in a DNA damage induced cell cycle pathway more. With the help of sophisticated experi-

mental methods we will be able to extend our computational model with additional regulato-

ry motifs and loops and investigate them under a stochastic framework, such as BlenX. 
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Conclusions 

 

Biological systems are complex, thus novel systematic approaches try to handle them on a 

modular manner [78]. A molecular network is often represented as a composition of repeti-

tive motifs that hold crucial behavior contributing to global properties. Several tools, e.g. 

[309,310] ensure a user-friendly interface for modeling such networks sometimes with the 

help of a graphical interface [311]. BlenX is one of the novel process calculus initiatives 

that support modularity by allowing biological systems to be composed from their compo-

nents providing novel insights into systematic modeling. In this programming language de-

signed for algorithmic systems biology, the affinities of molecules defining their present in 

reactions are coded in a formal way. However, the current modeling process with BlenX 

lacks biologically relevant modules abailable to reveal modularity on a larger scale. Compo-

sitionality supports that programs are built as an assembly of relatively independent compu-

tational units. In order to exploit the compositionality of BlenX, we defined re-usable and 

biologically relevant program templates that support modeling of complex reaction mechan-

isms often applied for kinetic description of biological networks. These modules enable the 

combination of several modeling methods and may also provide the programming bases for 

a user-friendly graphical approach. The main contribution of this thesis to systems biology 

is to have produced reusable and validated quantified modules and demonstrated their value 

in designing biological models within the BlenX language. 

 

Model composition may begin at different stages. The modeler can build up the system from 

the bottom starting from the basic elements and primitives of the BlenX language. In order 

to fasten this process up, we provide the following flow of the use of pre-defined templates: 

 

1) The desired modules can be chosen from the BlenX library. 

2) Parameters of the whole model are asked from the user. 

 a) Users can define the whole set of parameters that they wish to use 

 b) Or users can define the known parameters 

 c) Or users can ask for estimation of the parameters from the software. This can be 

achieved by different algorithms or tools or can be calculated in some cases from determi-

nistic simulations as we suggested in the Results session. 
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3) The program checks the parameters if they satisfy the assumptions of the particular tem-

plates. 

4) If the assumptions are valid than the user is asked if he wants to insert the complex ma-

thematical term based on the approximations of the theory. These formulas are also availa-

ble in the template library and are easily composed within the process calculus framework 

of BlenX. 

5) If the assumptions cannot be verified, the user can choose from the unpacked modules 

containing only elementary steps always satisfying Gillespie’s stochastic algorithm. 

 

The method presented above might include additional solutions for modeling nonlinear 

functions, for instance the usage of a generic distribution is a promising initiative proposed 

by Mura et al. [137]. 

 

There is another case when modeling has to deal with the problem of compositionality when 

we want to extend a network with novel links and biochemical reactions. The switch be-

tween the complex terms and the unpacked modules provided by the tool and stored in a 

template library bring a solution also to the problem of the model extension. Their structure 

and realization enable hidden enzymes and complexes to be present and explored within a 

novel biological system. 

 

In a relevant case study, we investigated the effects of the circadian clock on cell cycle regu-

lation in a deterministic and two different stochastic approaches (Langevin-type and SSA). 

Based on our computational analysis, we report in all cases quantized cell cycles when the 

transcription of a cell cycle regulator, Wee1, is strongly influenced by the circadian clock. 

This occurs from a “mode-lock” phenomenon that creates various periodic repetitions of 

cell division cycles with different mass doubling times. Strong circadian clock regulation on 

Wee1 transcription triggers cell size control at different mass doubling times (MDTs). Cell 

size control is observed during specific ranges of MDTs farther from the cycle of the circa-

dian clock. When the circadian clock induces 24h periodic perturbations, it forces the cell 

cycle out of homeostasis from its division time. Our model shows qualitatively similar be-

haviors that have been observed in experiments by Robert R Klevecz [287]. 

 

Furthermore, our in silico experiments revealed two molecular criteria that accounts for 

another interesting clock phenomenon, that DNA damage shifts circadian clocks in a specif-
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ic manner. The predominant present of phase advances of the daily rhythm upon DNA dam-

age requires 1) the existence of an autocatalytic positive feedback mechanism in addition to 

the time-delayed negative feedback loop in the clock system, and 2) Chk2 dependent phos-

phorylation and degradation of PERs that are not bound to BMAL1/CLOCK. We confirmed 

our hypothesis with investigating another circadian clock model published by Leloup and 

Goldbeter [211]. 

 

Templates of the Michaelis-Menten and the Hill function have been applied for the G2/M 

transition and for the circadian clock study and compositionality has been carried out with 

the help of the process calculus origin of the BlenX language. Our current collection includ-

ing addition modules which are our proposals for modeling is shown in Appendix A. Im-

plementation of the template library into the CoSBi Lab framework - together with a para-

meter estimation toolkit or with the general distributions - results in a user-friendly and effi-

cient tool for systematic modeling stochastic biological systems. 

 

Comparison of different structures and different levels of abstraction may contribute to un-

derstand biological systems more. Noise has a large impact in the overall system and also it 

has been discussed that the effect of noise on regulatory circuits, feedback systems is impor-

tant in the overall picture [312]. Analysis of the modules and motifs with different structures 

or different effect of noise (complex functions or elementary steps in case of low number of 

molecules) may lead to novel insights in the field. With BlenX as a proposed framework 

where analysis can be carried out easily with the help of compositionality may open the in-

terest of biologists. Breaking a system down into a few reaction steps to be examined, while 

abstract the rest of the network in a different way, would lead to specific analysis of the bio-

logical system. Similar to the idea of synthetic biology [313] as an in vivo research line in-

cluding artificial biological circuits, we approach biological systems with an in silico com-

position of regulatory motifs. The use of a template library in the model building process 

improves the current degree of compositionality and easens the systematic modeling with 

BlenX. 
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Appendix A: Template library for BlenX 

 

a) Enzyme catalytic reaction (Michaelis-Menten kinetics) 

 

program file: 

 

[ steps = …, delta = … ] 

<<   BASERATE:inf,   CHANGE:inf >> 

 

///*************** species ****************** 

/// PRODUCT: 

let P : bproc = #(s:0,P) [ nil ]; 

 

/// SUBSTRATE: 

let S : bproc = #(s:0,S) [ s!().ch(s,P).nil ]; 

 

/// ENZYME: 

let E1 : bproc = #(e1:0,E1) [ rep e1?().nil ]; 

 

///*************** initial ****************** 

run … E1 || … S || … P 

 

type file: 

 

{ S,P,E1 } 

%%{  (S,E1,rate(k1),rate(k1r),rate(k2)), 

  (P,E1,0,inf,0)} 
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b) transcription module (Hill function) 

 

program file: 

 

[ steps = …, delta = … ] 

<< BASERATE:inf, CHANGE:inf >> 

 

////////.............. TRANSCRIPTION .............. ..... 

///*************** species ****************** 

   /// gene: 

let G   : bproc = #(g:0,G)  [ nil ]; 

   /// transcription factor: 

let TF   : bproc = #(tf,TF) [ nil ];  

   /// TF dimer: 

let TF2  : bproc = #(t2f,TF2) [ nil ]; 

   /// G-TF-TF trimer:  

let GTF2  : bproc = #(gtf2,GTF2) [ nil ]; 

   /// transcript (messenger RNA): 

let M   : bproc = #(m:0,M)  [ nil ]; 

 

///*************** reactions **************** 

  ///dimerization: 

when(TF,TF::rate(k1)) join(TF2); 

  ///decomplexation: 

when(TF2::rate(k2)) split(TF,TF); 

  ///'trimerization': 

when(TF2,G::rate(k3)) join(GTF2); 

  ///decomplexation: 

when(GTF2::rate(k4)) split(G,TF2); 

  ///transcriptional activation: 

when(GTF2::rate(kms)) split(GTF2,M); 

  /// degradation of messenger: 

when(M::rate(kmd)) delete(1); 
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///*************** initial ****************** 

run … M || … TF || 1 G ||  0 GTF2 || 0 TF2 

 

type file: 

 

{ G, TF, TF2, GTF2, M } %% {} 

 

c) Goldbeter-Koshland ultrasensitive switch 

 

program file: 

 

[ steps = …, delta = … ] 

<< BASERATE:inf, HIDE:inf, UNHIDE:inf, CHANGE:inf > > 

 

///*************** species ****************** 

  ///two forms of the protein: 

let P :    bproc = #(p:0,P)   [ nil ]; 

let Pmod :   bproc = #(p:0,Pmod)  [ nil ]; 

  ///enzymes: 

let E1 :    bproc = #(e1:0,E1)   [ nil ]; 

let E2 :    bproc = #(e2:0,E2)   [ nil ]; 

  ///intermediate complexes: 

let E1_P :   bproc = #(e1p:0,E1P)  [ nil ]; 

let E2_Pmod :   bproc = #(e2pm:0,E2Pm)  [ nil ]; 

 

///*************** reactions **************** 

when (E1,P::rate(e1_1))   join(E1_P); 

when (E1_P::rate(e1_2))   split(E1,P); 

when (E1_P::rate(e1_3))   split(E1,Pmod); 

when (Pmod,E2::rate(e2_1))  join(E2_Pmod); 

when (E2_Pmod::rate(e2_2)) split(E2,Pmod); 

when (E2_Pmod::rate(e2_3))  split(E2,P); 
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///*************** initial ****************** 

run … Pmod || … E1 || … E2 || … P 

 

type file: 

 

{ P, E1, E2, Pmod, E1P, E2Pm } 

%%{} 

 

d) Mutual antagonism 

 

program file: 

 

[ steps = …, delta = … ] 

<<   BASERATE:inf,  HIDE:inf,  UNHIDE:inf,  CHANGE: inf >> 

 

///*************** processes **************** 

let inactivate_ENZ :  

pproc = ( if (substrate, bound) then hide(enzyme).n il endif 

); 

 

let inactivate_SUB :  

pproc = ( if (enzyme, bound) then hide(substrate).n il endif 

); 

 

let activate_ENZ :  

pproc = (if (not(substrate, bound)) then un-

hide(enzyme).rec_enzyme!().nil endif ); 

 

let activate_SUB : pproc = (if (not(enzyme, bound))  then un-

hide(substrate).rec_substrate!().nil endif ); 

 

let activate_ENZ_X :  

pproc = (if (not(substrate, bound) and not(substrat e_YPX, 

bound)) then unhide(enzyme).rec_ENZ!().nil endif); 
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let activate_SUB_X :  

pproc = (if (not(enzyme, bound) and not(substrate_Y PX, 

bound)) then unhide(substrate).rec_SUB!().nil endif ); 

let activate_ENZ_X_YP :  

pproc = (if (not(enzyme, bound) and not(substrate, bound)) 

then unhide(substrate_YPX).rec_ENZ_X!().nil endif);  

 

let inactivate_ENZ_X :  

pproc = ( if ((substrate, bound) or (substrate_YPX,  bound)) 

then hide(enzyme).nil endif ); 

 

let inactivate_SUB_X :  

pproc = ( if ((enzyme, bound) or (substrate_YPX, bo und)) then 

hide(substrate).nil endif ); 

 

let inactivate_ENZ_X_YP :  

pproc = ( if ((enzyme, bound) or (substrate, bound) ) then 

hide(substrate_YPX).nil endif ); 

 

///*************** species ****************** 

/// SIGNAL 

let S : bproc = #(s:0,S) [ rep s?().nil ]; 

/// enzyme 

let A : bproc = #(a:0,A) [ rep a?().nil ]; 

 

/// X 

let X : bproc =  #(substrate:0,X_sub),  

    #(enzyme:0,X_enz),  

    #(substrate_YPX:0,X)  

 [  inactivate_ENZ_X | activate_ENZ_X |  

  rep rec_ENZ?().(inactivate_ENZ_X | activate_ENZ_X  ) | 

    inactivate_SUB_X | activate_SUB_X |  

  rep rec_SUB?().(inactivate_SUB_X | activate_SUB_X  ) | 
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  inactivate_ENZ_X_YP | activate_ENZ_X_YP |  

  rep rec_ENZ_X?().(inactivate_ENZ_X_YP |  

  activate_ENZ_X_YP ) | 

    rep enzyme?().nil | 

    substrate!().ch(substrate, YX).nil | 

    substrate_YPX!().ch(substrate_YPX, YPX).nil  ];  

 

/// Y 

let Y : bproc =  #(substrate:0,Y_sub),  

    #(enzyme:0,Y_enz)  

 [  inactivate_ENZ | activate_ENZ |  

  rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) | 

    inactivate_SUB | activate_SUB |  

  rep rec_substrate?().(inactivate_SUB | activate_S UB ) | 

    rep enzyme?().nil | 

    substrate!().ch(substrate, XY).nil ]; 

 

/// XP 

let XP : bproc =  #(substrate:0,XP_sub),  

    #(enzyme:0,XP_enz)  

 [  inactivate_ENZ | activate_ENZ |  

  rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) | 

    inactivate_SUB | activate_SUB |  

  rep rec_substrate?().(inactivate_SUB | activate_S UB ) | 

    rep enzyme?().nil | 

    substrate!().ch(substrate, XP).nil ]; 

 

/// YP 

let YP : bproc =  #(substrate:0,YP_sub),  

    #(enzyme:0,YP_enz)  

 [  inactivate_ENZ | activate_ENZ |  

  rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) | 

 inactivate_SUB | activate_SUB |  

 rep rec_substrate?().(inactivate_SUB | activate_SU B ) | 
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    rep enzyme?().nil | 

    substrate!().ch(substrate, AYP).nil ]; 

 

/// temporary species 

let X_YX : bproc =  #(substrate:0,YX),  

    #(enzyme:0,X_enz),  

    #(substrate_YPX:0,X)  

 [  inactivate_ENZ_X | activate_ENZ_X |  

  rep rec_ENZ?().(inactivate_ENZ_X | activate_ENZ_X  ) | 

    inactivate_SUB_X | activate_SUB_X |  

  rep rec_SUB?().(inactivate_SUB_X | activate_SUB_X  ) | 

    inactivate_ENZ_X_YP | activate_ENZ_X_YP |  

  rep rec_ENZ_X?().(inactivate_ENZ_X_YP |  

  activate_ENZ_X_YP ) | 

    rep enzyme?().nil | 

    substrate_YPX!().ch(substrate_YPX, YPX).nil  ];  

 

let Y_XY : bproc =  #(substrate:0,XY),  

    #(enzyme:0,Y_enz)  

 [  inactivate_ENZ | activate_ENZ |  

  rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) | 

    inactivate_SUB | activate_SUB |  

  rep rec_substrate?().(inactivate_SUB | activate_S UB ) | 

    rep enzyme?().nil ];  

 

let YP_AYP : bproc =  #(substrate:0,AYP),  

     #(enzyme:0,YP_enz)  

 [  inactivate_ENZ | activate_ENZ |  

  rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) | 

    inactivate_SUB | activate_SUB |  

  rep rec_substrate?().(inactivate_SUB | activate_S UB ) | 

    rep enzyme?().nil ]; 

 

let X_YPX : bproc =  #(substrate:0,X_sub),  
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     #(enzyme:0,X_enz),  

     #(substrate_YPX:0,YPX)  

 [  inactivate_ENZ_X | activate_ENZ_X |  

  rep rec_ENZ?().(inactivate_ENZ_X | activate_ENZ_X  ) | 

    inactivate_SUB_X | activate_SUB_X |  

  rep rec_SUB?().(inactivate_SUB_X | activate_SUB_X  ) | 

    inactivate_ENZ_X_YP | activate_ENZ_X_YP | 

  rep rec_ENZ_X?().(inactivate_ENZ_X_YP |  

  activate_ENZ_X_YP ) | 

    rep enzyme?().nil | 

    substrate!().ch(substrate, YX).nil ]; 

 

///*************** reactions **************** 

when(Y_XY::inf) split(YP,Nil); 

when(X_YX::inf) delete(1); 

when(YP_AYP::inf) split(Y,Nil); 

when(X_YPX::inf) delete(1); 

when(S::rate(k1)) split(S,X); 

when(X::rate(k2p)) delete(1); 

 

///*************** initial ****************** 

///run … S || … X || … Y || … YP || … A || … YP_AYP  || … Y_XY 

|| … X_YX || … X_YPX  

 

type file: 

 

{S, A, X_sub, X_enz, X, Y_sub, Y_enz, XP_enz, XP_su b, YP_sub, 

YP_enz, YX, XY, AYP, YPX, XP } 

%% 

{ 

 (X_sub, Y_enz, rate(k2f), rate(k2r), rate(k2)), 

 (YX, Y_enz, 0, inf, 0), 

 (YP_sub, A, rate(k3f), rate(k3r), rate(k3)), 

 (AYP, A, 0, inf, 0), 
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 (X_enz, Y_sub, rate(k4f), rate(k4r), rate(k4)), 

 (X_enz, XY, 0, inf, 0), 

 (YP_enz, X, rate(k5f), rate(k5r), rate(k5)), 

 (YP_enz, YPX, 0, inf, 0) 

} 

 

e) Mutual activation 

 

[ steps=…, delta=… ] 

<<   BASERATE:inf,  HIDE:inf,  UNHIDE:inf,  CHANGE: inf >> 

 

let activate_ENZ :  

pproc = (if (not(substrate, bound)) then un-

hide(enzyme).rec_ENZ!().nil endif ); 

 

let activate_SUB :  

pproc = (if (not(enzyme, bound)) then un-

hide(substrate).rec_SUB!().nil endif ); 

 

let inactivate_ENZ :  

pproc = ( if (substrate, bound) then hide(enzyme).n il endif 

); 

 

let inactivate_SUB :  

pproc = ( if (enzyme, bound) then hide(substrate).n il endif 

); 

 

let CYCB : bproc =  #(substrate:0,CYCB_sub), 

     #(enzyme:0,CYCB_enz_CDC25)  

 [   inactivate_ENZ | activate_ENZ |  

  rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) |  

  inactivate_SUB | activate_SUB |  

  rep rec_SUB?().(inactivate_SUB | activate_SUB ) |  

  rep enzyme?().nil | 
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  substrate!().ch(substrate, CYCB_sub_mod).nil  ]; 

 

 

let CYCB_TEMP : bproc =  #(substrate:0,CYCB_sub_mod ), 

      #(enzyme:0,CYCB_enz_CDC25)  

[   inactivate_ENZ | activate_ENZ |  

  rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) |  

  inactivate_SUB | activate_SUB |  

  rep rec_SUB?().(inactivate_SUB | activate_SUB ) |  

  rep enzyme?().nil     ]; 

 

let CYCBP : bproc = #(substrate:0,CYCBP_sub)   

  [ substrate!().ch(substrate, CYCBP_sub_mod).nil ] ; 

 

let CYCBP_TEMP : bproc = #(substrate:0,CYCBP_sub_mo d)  

  [ nil ]; 

 

let WEE1 : bproc = #(enzyme:0,WEE1_enz) 

  [ rep enzyme?().nil ]; 

 

let CDC25 :  bproc = #(substrate:0,CDC25_sub)    

  [ substrate!().ch(substrate, CDC25_sub_mod).nil  ]; 

 

let CDC25_TEMP : bproc = #(substrate:0,CDC25_sub_mo d)  

  [ nil ]; 

 

let CDC25P : bproc =  #(enzyme:0,CDC25P_enz), 

     #(substrate:0,CDC25P_sub) 

  [  inactivate_ENZ | activate_ENZ |  

   rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) | 

   inactivate_SUB | activate_SUB |  

   rep rec_SUB?().(inactivate_SUB | activate_SUB ) | 

   rep enzyme?().nil | 
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   substrate!().ch(substrate, CDC25P_sub_mod).nil  

  ]; 

 

let CDC25P_TEMP : bproc =   #(enzyme:0,CDC25P_enz),   

       #(substrate:0,CDC25P_sub_mod)  

[    inactivate_ENZ | activate_ENZ |  

  rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) |  

  inactivate_SUB | activate_SUB |  

  rep rec_SUB?().(inactivate_SUB | activate_SUB ) |  

  rep enzyme?().nil        ]; 

 

let ENZYME1 : bproc = #(enzyme:0,ENZYME1_enz)  

 [ rep enzyme?().nil ]; 

 

let SIGNAL :  bproc = #(s:0,S)  [ nil ]; 

 

when(CYCB_TEMP::inf) split(CYCBP, Nil); 

when(CDC25P_TEMP::inf) split(CDC25,Nil);  

when(CYCBP_TEMP::inf) split(CYCB,Nil); 

when(CDC25_TEMP::inf) split(CDC25P,Nil); 

when(SIGNAL::rate(s)) split(SIGNAL,CYCB); 

when(CYCB::rate(deg)) delete(1); 

 

type file: 

 

{ CYCB_sub, CYCB_sub_mod, CYCB_enz_CDC25,  

  CDC25P_enz, CDC25P_sub, CDC25P_sub_mod, 

 ENZYME1_enz, 

 CDC25_sub, CDC25_sub_mod, 

 CYCBP_sub, CYCBP_sub_mod   }  

%% 

{ (CYCB_enz_CDC25, CDC25_sub, rate(k1), rate(k1r), rate(k2)), 

 (CYCB_enz_CDC25, CDC25_sub_mod, 0, inf , 0 ), 

 (ENZYME1_enz, CDC25P_sub, rate(l1), rate(l1r), rat e(l2)), 
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 (ENZYME1_enz, CDC25P_sub_mod, 0, inf , 0), 

 (CDC25P_enz, CDC25P_sub,rate(m1), rate(m1r), rate( m2) ), 

 (CDC25P_enz, CYCBP_sub_mod, 0, inf , 0 ), 

(WEE1_enz, CYCB_sub, rate(n1), rate(n1r),rate(n2)),  

 (WEE1_enz, CYCB_sub_mod, 0, inf , 0) } 

 

f) G2/M transition 

 

let activate_ENZ :  

pproc = (if (not(substrate, bound)) then un-

hide(enzyme).rec_ENZ!().nil endif ); 

 

let activate_SUB :  

pproc = (if (not(enzyme, bound)) then un-

hide(substrate).rec_SUB!().nil endif ); 

 

let inactivate_ENZ :  

pproc = ( if (substrate, bound) then hide(enzyme).n il 

endif ); 

 

let inactivate_SUB :  

pproc = ( if (enzyme, bound) then hide(substrate).n il 

endif ); 

 

let activate_ENZ_CYCB :  

pproc = (if (not(substrate, bound) and  

not(enzyme_CYCBCDC25, bound))  

then unhide(enzyme).rec_ENZ!().nil endif); 

 

let activate_SUB_CYCB : 

pproc = (if (not(enzyme, bound) and  

not(enzyme_ CYCBCDC25, bound))  

then unhide(substrate).rec_SUB!().nil endif); 
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let activate_ENZ_CYCB_CDC25 :  

pproc = (if (not(enzyme, bound) and  

not(substrate, bound))  

then unhide(enzyme_CYCBCDC25).rec_ENZ_CDC25!().nil en-

dif); 

 

let inactivate_ENZ_CYCB :  

pproc = ( if ((substrate, bound) or (enzyme_CYCBCDC 25, 

bound)) 

 then hide(enzyme).nil endif ); 

 

let inactivate_SUB_CYCB :  

pproc = ( if ((enzyme, bound) or (enzyme_ CYCBCDC25 , 

bound))  

then hide(substrate).nil endif ); 

 

let inactivate_ENZ_CYCB_CDC25 :  

pproc = ( if ((enzyme, bound) or (substrate, bound) )  

then hide(enzyme_ CYCBCDC25).nil endif ); 

 

let CYCB : bproc =  #(enzyme:0,CYCB_enz),  

#(substrate:0,CYCB_sub),  

#(enzyme_ CYCBCDC25:0,CYCB_enz_CDC25) 

 [   inactivate_ENZ_CYCB | activate_ENZ_CYCB |  

rep rec_ENZ?().(inactivate_ENZ_CYCB |  

activate_ENZ_CYCB ) | 

  inactivate_SUB_CYCB | activate_SUB_CYCB |  

rep rec_SUB?().(inactivate_SUB_CYCB |  

activate_SUB_CYCB ) | 

  inactivate_ENZ_CYCB_CDC25 | activate_ENZ_CYCB_CDC 25 |  

rep rec_ENZ_CDC25?().(inactivate_ENZ_CYCB_CDC25 |  

activate_ENZ_CYCB_CDC25 ) | 

  rep enzyme?().nil | 

  substrate!().ch(substrate, CYCB_sub_mod).nil | 
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  rep enzyme_ CYCBCDC25?().nil    ]; 

 

let CYCB_TEMP : bproc =  #(enzyme:0,CYCB_enz),  

#(substrate:0,CYCB_sub_mod), 

#(enzyme_ CYCBCDC25:0,CYCB_enz_CDC25)  

[   inactivate_ENZ_CYCB | activate_ENZ_CYCB |  

rep rec_ENZ?().(inactivate_ENZ_CYCB |  

activate_ENZ_CYCB ) | 

   inactivate_SUB_CYCB | activate_SUB_CYCB |  

rep rec_SUB?().(inactivate_SUB_CYCB |  

activate_SUB_CYCB ) | 

   inactivate_ENZ_CYCB_CDC25 |  

activate_ENZ_CYCB_CDC25 |  

rep rec_ENZ_CDC25?().(inactivate_ENZ_CYCB_CDC25 |  

activate_ENZ_CYCB_CDC25 ) | 

   rep enzyme?().nil | 

   rep enzyme_ CYCBCDC25?().nil    ]; 

 

let CYCBP : bproc = #(substrate:0,CYCBP_sub)   

[ substrate!().ch(substrate, CYCBP_sub_mod).nil ]; 

 

let CYCBP_TEMP : bproc = #(substrate:0,CYCBP_sub_mo d)  

[ nil ]; 

 

let WEE1 : bproc = #(enzyme:0,WEE1_enz), #(sub-

strate:0,WEE1_sub)  

  [  inactivate_ENZ | activate_ENZ |  

rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) | 

   inactivate_SUB | activate_SUB |  

rep rec_SUB?().(inactivate_SUB | activate_SUB ) | 

   rep enzyme?().nil | 

   substrate!().ch(substrate, WEE1_sub_mod).nil  ];  

 

let WEE1_TEMP : bproc =  #(enzyme:0,WEE1_enz),  
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#(substrate:0,WEE1_sub_mod) 

  [  inactivate_ENZ | activate_ENZ |  

rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) | 

   inactivate_SUB | activate_SUB |  

rep rec_SUB?().(inactivate_SUB | activate_SUB ) | 

   rep enzyme?().nil       ]; 

 

let WEE1P :  bproc = #(substrate:0,WEE1P_sub)   

[ substrate!().ch(substrate, WEE1P_sub_mod).nil   ] ; 

 

let WEE1P_TEMP : bproc = #(substrate:0,WEE1P_sub_mo d)  

[ nil  ]; 

 

let CDC25 : bproc = #(substrate:0,CDC25_sub)    

[  substrate!().ch(substrate, CDC25_sub_mod).nil  ] ; 

 

let CDC25_TEMP : bproc = #(substrate:0,CDC25_sub_mo d)  

[ nil ]; 

 

let CDC25P : bproc = #(enzyme:0,CDC25P_enz),  

#(substrate:0,CDC25P_sub) 

  [  inactivate_ENZ | activate_ENZ |  

rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) | 

   inactivate_SUB | activate_SUB |  

rep rec_SUB?().(inactivate_SUB | activate_SUB ) | 

   rep enzyme?().nil | 

   substrate!().ch(substrate, CDC25P_sub_mod).nil 

   ]; 

 

let CDC25P_TEMP : bproc =  #(enzyme:0,CDC25P_enz),  

#(substrate:0,CDC25P_sub_mod)  

[    inactivate_ENZ | activate_ENZ |  

rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) | 

   inactivate_SUB | activate_SUB |  
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rep rec_SUB?().(inactivate_SUB | activate_SUB ) | 

   rep enzyme?().nil       ]; 

 

let ENZYME1 : bproc = #(enzyme:0,ENZYME1_enz)  

[ rep enzyme?().nil ]; 

 

let ENZYME2 : bproc = #(enzyme:0,ENZYME2_enz)  

[ rep enzyme?().nil ]; 

 

when(WEE1_TEMP::inf) split(WEE1P, Nil); 

when(CYCB_TEMP::inf) split(CYCBP, Nil); 

when(CDC25P_TEMP::inf) split(CDC25,Nil);  

when(CYCBP_TEMP::inf) split(CYCB,Nil); 

when(WEE1P_TEMP::inf) split(WEE1,Nil);  

when(CDC25_TEMP::inf) split(CDC25P,Nil); 

 

///*************** initial ****************** 

run … CYCB || … CYCBP || … CDC25P || … CDC25 || … W EE1 || … 

WEE1P || … ENZYME1 || … ENZYME2 

 

type file: 

 

{ WEE1_enz, WEE1_sub, WEE1_sub_mod, 

 CYCB_enz, CYCB_sub, CYCB_sub_mod, CYCB_enz_CDC25,  

 CDC25P_enz, CDC25P_sub, CDC25P_sub_mod, 

 ENZYME1_enz, ENZYME2_enz, 

 CDC25_sub, CDC25_sub_mod, 

 WEE1P_sub, WEE1P_sub_mod, 

 CYCBP_sub, CYCBP_sub_mod   } %% 

{ (CYCB_enz_CDC25, CDC25_sub, rate(a1), rate(a1r), rate(a2)), 

 (CYCB_enz_CDC25, CDC25_sub_mod, 0, inf , 0 ), 

 (CYCB_enz, WEE1_sub, rate(b1), rate(b1r), rate(b2) ), 

 (CYCB_enz, WEE1_sub_mod, 0, inf , 0), 

 (ENZYME1_enz, CDC25P_sub, rate(c1), rate(c1r), rat e(c2)), 
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 (ENZYME1_enz, CDC25P_sub_mod, 0, inf , 0), 

 (CDC25P_enz, CDC25P_sub,rate(d1), rate(d1r), rate( d2) ), 

 (CDC25P_enz, CYCBP_sub_mod, 0, inf , 0 ), 

 (WEE1_enz, CYCB_sub, rate(e1), rate(e1r),rate(e2)) , 

 (WEE1_enz, CYCB_sub_mod, 0, inf , 0), 

 (ENZYME2_enz, WEE1P_sub, rate(f1), rate(f1r) ,rate (f2) ), 

 (ENZYME2_enz, WEE1P_sub_mod, 0, inf ,0)   } 
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Appendix B: The circadian clock model 

 

program file: 

 

[ steps = 7200, delta = 0.1 ] 

 

<< BASERATE:inf, CHANGE:inf >> 

 

/// SUBSTRATE (CP) 

let CP :  bproc = #(cp:0,CP)    

[ cp!().ch(cp,CPU1_DEG).nil ];  

 

/// SUBSTRATE (CP2) 

let CP2 :  bproc = #(cp2:0,CP2)    

[ cp2!().ch(cp2,CP2U2_DEG).nil ]; 

 

 /// SUBSTRATE (IC) 

let IC :  bproc = #(ic:0,IC)    

[ ic!().ch(ic,ICU3_DEG).nil ]; 

 

  /// ENZYME 

let U1 :  bproc = #(u1:0,U1)    

[ rep u1?().nil ]; 

 

  /// ENZYME 

let U2 :  bproc = #(u2:0,U2)    

[ rep u2?().nil ]; 

 

  /// ENZYME 

let U3 :  bproc = #(u3:0,U3)    

[ rep u3?().nil ]; 
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   /// PRODUCT 

let CPU1_DEG :  bproc = #(cp:0,CPU1_DEG)   

[ nil ]; 

 

  /// PRODUCT 

let CP2U2_DEG : bproc = #(cp2:0,CP2U2_DEG)    

[ nil ];  

 

  /// PRODUCT 

let ICU3_DEG :  bproc = #(ic:0,ICU3_DEG)    

[ nil ];  

 

////////.............. TRANSCRIPTION MODULE 

................... 

///*************** species ****************** 

 

  /// gene  

let G   : bproc = #(g:0,G)  [ nil ]; 

 

  /// transcription factor /// BMAL1/CLK 

let TF   : bproc = #(tf,TF) [ nil ];  

 

  /// G-TF dimer 

let TF2  : bproc = #(t2f,TF2) [ nil ];  

 

  /// G-TF-TF trimer 

let GTF2  : bproc = #(gtf2,GTF2) [ nil ];  

 

  /// messenger RNA 

let M   : bproc = #(m:0,M)  [ nil ];  

 

///*************** reactions **************** 

  ///dimerization  

when(TF,TF::rate(k1)) join(TF2); 
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  ///decomplexation 

when(TF2::rate(k2)) split(TF,TF); 

  ///'trimerization' 

when(TF2,G::rate(k3)) join(GTF2); 

  ///decomplexation 

when(GTF2::rate(k4)) split(G,TF2); 

/// transcriptional activation 

when(GTF2::TRANSCRIPTION) split(GTF2,M);  

  /// degradation of messenger  

when(M::rate(kmd)) delete(1); 

 

 

/////////.............. TRANSLATION ............... .... 

when(M::rate(km2)) split(M,CP); 

 

/////////.............. HOMODIMERIZATION .......... ......... 

when(CP,CP::rate(ka)) join(CP2); 

when(CP2::rate(kd)) split(CP,CP); 

 

/////////.............. COMPLEX FORMATION ......... .......... 

when(CP2,TF::rate(kica)) join(IC); 

when(IC::rate(kicd)) split(CP2,TF); 

 

/////////.............. DEGRADATIONS .............. .....  

when(CP::rate(kcpd)) delete(1); 

when(CP2::rate(kcp2d)) delete(1); 

when(IC::rate(kcp3d)) split(Nil,TF); 

 

//////// Michaelis Menten kinetics for degradation terms: 

///*************** species ****************** 

when(CPU1_DEG::inf) delete(1); 

when(CP2U2_DEG::inf) delete(1); 

when(ICU3_DEG::inf) split(Nil,TF); 

 



 
APPENDIX B 

197 
 

//////* Initial 

run 96300 M || 600 CP ||  3400 CP2 || 21700 TF || 2 77700 IC 

|| 

1 G || 0 TF2 || 0 GTF2 || 

60 U1 || 240 U2 || 26830 U3 

 

function file: 

let alfa : const = 0.00000167; 

 

let kms2 : const = 1; 

let k1 : const = 10*alfa; 

let k2 : const = 100; 

let k3 : const = 10000*alfa; 

let k4 : const = 90; 

 

let kms : const = 1/alfa; 

let kmd : const = 0.1; 

let km2 : const = 0.5; 

let ka_c : const = 100; 

let ka : const = ka_c*alfa; 

let kd : const = 0.01; 

let kica_c : const = 20; 

let kica : const = kica_c*alfa; 

let kicd : const = 0.01; 

 

let kcpd : const = 0.0525; 

let kcp2d : const = 0.000525; 

let kcp3d : const = 0.000525; 

 

let kp11 : const = 10000000*alfa; 

let kp11r : const = 1530; 

let kp12 : const = 1000; 

 

let kp21 : const = 100000*alfa; 
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let kp21r : const = 47.5; 

let kp22 : const = 2.5; 

 

let kp31 : const = 100*alfa; 

let kp31r : const = 0.027678571; 

let kp32 : const = 0.022321429; 

 

let TRANSCRIPTION : function = kms*kms2*|GTF2|; 

 

///**** complex reaction terms for Michaelis-Menten  kinetics: 

///let U1 : const = 0.0001/alfa; 

///let U2 : const = 0.0004/alfa; 

///let U3 : const = 0.0448/alfa; 

///let CP_DEG : function = 

kp12*U1*|CP|/(((kp11r+kp12)/kp11)+|CP|); 

///let CP2_DEG : function = 

kp22*U2*|CP2|/(((kp21r+kp22)/kp21)+|CP2|); 

///let IC_DEG : function = 

kp32*U3*|IC|/(((kp31r+kp32)/kp31)+|IC|); 

 

///**** parameters and complex reaction terms for H ill func-

tion: 

///let n : const = 2; 

///let J : const = 0.3/alfa; 

///let TRANSCRIPTION : function = (kms*pow(|TF|,n)) /(pow(J,n) 

+ pow(|TF|,n)); 

 

type file: 

{ CPU1_DEG, CP2U2_DEG, ICU3_DEG, U1, CP, U2, CP2, U 3, IC, G, 

TF, TF2, GTF2, M } 

%% 

{ 

 (U1,CP,rate(kp11),rate(kp11r),rate(kp12)), 

 (U1,CPU1_DEG,0,inf,0), 
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 (U2,CP2,rate(kp21),rate(kp21r),rate(kp22)), 

 (U2,CP2U2_DEG,0,inf,0), 

 (U3,IC,rate(kp31),rate(kp31r),rate(kp32)), 

 (U3,ICU3_DEG,0,inf,0) 

} 


