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Abstract

Molecular interactions are wired in a fascinatingywesulting in complex behavior of bio-
logical systems. Theoretical modeling provides useful framework for understanding the
dynamics and the function of such networks. Theplerity of the biological systems calls
for conceptual tools that manage the combinatexalosion of the set of possible interac-
tions. A suitable conceptual tool to attack comtiels compositionality, already success-
fully used in the process algebra field to modehpater systems. We rely on the BlenX
programming language, originated by the beta-bsgeocess calculus, to specify and si-
mulate high-level descriptions of biological cinsuiGillespie’s stochastic simulation algo-
rithm applied for BlenX simulations requires thecdeposition of phenomenological func-
tions into basic elementary reactions. Systematgaaking of complex reaction mechan-
isms into BlenX templates is shown. The estimatlerivation of missing parameters and
the challenges emerging from compositional moddbing in stochastic process algebras
are discussed. A biological example on circadiaclcis presented as a case study of mod-

eling.
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INTRODUCTION

1. Introduction

1.1 The Context

Life is difficult in all sense. Systems biology easch focuses on understanding how organ-
isms carry out their function, resulting in a saicially orchestrated system that is self-
sustained, reproductive and responds to both iatenmd external changes. Like everything
else, biological systems can also “go wrong”. Thewgng knowledge of the underlying
mechanisms contributes to novelties in applicatiohealthcare and medical biotechnology
and brings biological - and biology related - reskdo the front to help understanding liv-

ing organisms.

Biological systems are extremely complex structygegorming several crucial properties
of life. The concept of cells, as tlienctional units of life was established by the mid-
nineteenth century - by Matthias Jakob Schleideh®meodor Schwann [1] - and each day
an enormous amount of new biological data is predustill we are far from a detailed un-
derstanding how an organism, a population or evegildunctions. The physiological prop-
erties of a biological system can be observed bpws microscopy techniques, the infor-
mation coding DNA can be sequenced and the moledoeractions might be also de-
tected, yet our knowledge about the mechanismsridesg the observed behavior is in-
complete. Theoretical models can assist molecutdodists to find a better understanding
of cell physiology by revealing the dynamical bebawf the system and also by investigat-

ing complex interactions of regulatory molecules.

The pioneers of a novel field - called systemsdygl[2-4] - were able to proof that there is
a need of a comprehensive system-level approadtandle complexity in biological re-

search. This multidisciplinary field originates rinanolecular biology [5], the science of cu-
rious biologists asking the questiafvhat is in the black box of cell3he discoveries of the

20" century explored the basic molecular componente®tell that made manipulation of
the elements and behavior of cells and organismasilple. Even before opening this imagi-
nary box, theoreticians were able to describe biologicateys by the help of simple mod-
els, proposing a different - abstract - approachadle biological questions. Later the ge-

nome revolution resulted in much more details ofdgical elements and led to a boom also
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in the field of informatics. Application of compugehad a large effect on molecular biology
research as bioinformatics emerged [6]. Its maial gas the creation and maintenance of
databases, algorithms, computational and statiggécaniques to store biological informa-
tion. After exploring several molecular details abparts of the system, scientists still had
to face the problem of complexity. In order to urstiend how biological systems achieve
their tasks, molecular biologists moved from manggdhe collected data towards the ques-
tion: How does the box actually functioBinformatics gave birth to computational biolo-
gy [7], concentrating on asking biological quessiahat could be solved with novel compu-
tational techniques. Finally, biology, physics, qaiter science, systems theory and mathe-
matics have joined to propel a research that pesvtdols for the analysis of biological stu-

dies in a systematic way; this is what we sgitems biology

It is no more a question that in order to really dut how enormously large networks oper-
ate adequate computational models and tools ahdyhigquired to address biological prob-
lems. With them, it is possible to analyze, simeilainderstand and make predictions of a
complex system. | would like to emphasize that geatly | believe the real strength of
computational modeling is not replacing wet biolptpther is providing a tool to evaluate
the behavior of the system, to understand the lmasthanisms driving them, to identify the
key components and form experimentally testabldiptiens. None the laboratory work nor
the theoretical effort can be substituted by thentThe main contribution of computation-
al biology to biological research is to developaaitpms for modeling. Several computa-
tional modeling approaches exist [8], such as &igitscrete models (e.g. Boolean), agent-
based models, continuous models (e.g. determimsistochastic ordinary differential equa-
tions (ODESs)) or discrete Monte Carlo simulatioagy( process algebras, Petri nets). Vari-
ous tools support the work of theoretical modeligg. COPASI [9], JigCell [10], XPPAUT
[11], VCell [12], SBML [13], BioAmbient [14], BIOCAM [15] and others). The chosen
model and the applied software depend on our extamiviedge about the system and on

the knowledge we would like to gain from investiggtit.

Stochastic approaches are becoming more and merastoated as novel experimental
techniques - such as quantitative flow cytometr§] [And fluorescence microscopy [17] -
provide single level measurements of cell physiplayhile the average behavior of a cell
population has been described by continuous magleliproaches (e.g. with Ordinary Dif-
ferential Equations, ODES) [18] from a long timangte cells are analyzed in a stochastic

2



1.2

INTRODUCTION

framework as fluctuations may have a significaf¢afon the physiology of the cell [19].
The influence of noise also in gene expressionsagaal transduction processes have been
shown to be important by both theoretical and expantal approaches [20-22].

Process algebras were introduced in early 1980dilmer [23], as specification languages
for concurrent processes, hamely of computationtties executing their tasks in parallel
and able to synchronize over certain kinds of @&, Some examples of concurrent com-
puting systems include communication networkstraiific controllers, and industrial plant
control systems. The abstraction provided by pmedgebras was shown to be successful
in modeling several scenarios from life scienceg. (eiology, including transcriptional cir-
cuits, metabolic pathways and signal transductietwarks) [24]. A biology oriented pro-
gramming language (BlenX) [25] inspired by procesdculi (specifically Beta-binders
[26]) is one of the progressive stochastic modehpgroaches. Beta Workbench (BWB)
[27] defines and implements the BlenX programmiagguage and has been designed for
biology from the beginning. As the field of exedul@abiology [28] and algorithmic systems
biology [29] gather ground in computational biologevelopment of conceptual tools that
manage the combinatorial explosion of the set akjibe interactions and that attack com-
plexity through compositionality is becoming morelanore important.

The Problem

Systematic approach for biological research requareidea of an inferential model, a con-
sidered wiring diagram describing a system of &sidind unanswered crucial questions.
Additionally, adequate computational tools and @usi students are also important in the re-
search process. During my university studies, égginner “systems biologist”, | had to

face several problems that aroused my interestnmpaitational work.

The most difficult problem | had was how to cho&®en an enormous number of modeling
tools that support biological questions. Decisiares hard to take, thus | simply started with
the classical methods in order to address thecomerectivity of oscillatory systems (name-
ly the cell cycle [30] and the circadian rhythm4])3 The classical tool for analyzing such
crucial biological systems was definitely the appas of ordinary different equations

(ODEs) [32]. Due to the fact that early experimétgahniques have provided an opportuni-
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ty to investigate only a population of cells, resbars turned to deterministic approaches to
describe the behavior of an average phenotypen$tence the growth of a culture of cells).
Ordinary differential equations illustrate dynamiocesses with a set of equations for the
change of continuous variables, usually the comagah of molecules. Based on the known
or hypothesized molecular interactions in a systeng, could write biochemical reactions
that describe the kinetics of the network. The kmaspect concerning the rate equations
for elementary reactions (reactions that proceleasigh only one transition state) is gener-
ally defined by the law of mass action kineticsitisig that the rate of an elementary reac-
tion step is proportional to the product of the @amtrations of the participating molecules.
There are also non-elementary functions that haes lempirically developed [33]. These
abstractions simplify the system leading to a desmen the required computational power
for calculation. Furthermore, modelers often tusnthese phenomenological functions to
describe the observed behavior of a system witknatving all its details, such as multi-
step reactions are often assumed to happen aathe time in cooperative reaction schemes
[34].

After becoming familiar with the chosen biologisgistem, one should actually start to real-
ize - in the classical way - equations or - in catagonal modeling - the lines of codes.
There are two approaches in modeling concerningoitstruction [7]: (1) building the sys-
tem up starting from its basic elements (calledatsom-up approach) or (2) constructing
the network based on our observation of the bicklgsystem without the complete know-
ledge of the details (referred to as top-down)eBgion of a model is even trickier in some
cases. Initiatives for generalizing different laagas in one tool have been proposed to be a

solution for model composition (e.g. SBML [35]) bustill remains under development.

The concept of connecting meaningful parts of desgysinto a larger model where their
meaning remains still is called compositionalityisl a principle of languages. Words con-
stitute sentences where the meaning of the congipression is determined by the mean-
ings of the subparts and the rules used to comthiem. Process calculi tools [36] offer
compositionality and formal description of intefiaos, communications and synchroniza-
tions between concurrent elements of a system. baaokodularity in ODE systems - com-
posed of equations that are denotational - makais tise to become more and more com-
plicated with the increasing size of the model.céss calculi tools provide the introduction

of an interaction simply by adding or changing gk rule instead of modifying a large

4
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number of equations or lines of the code. Ruleslmencoded and the computer can ex-
ecute them. Process calculus is a novel, promegipgoach also to model noise in biologi-
cal systems with the integration of stochasticiy. joining the Centre for Computational
and Systems Biology in Trento (Italy), | have stdrto work on a particular process calcu-
lus language, BlenX [25]. In computational biologlgvelopment of conceptual tools that
manage the possible interactions and complexityutin compositionality is a crucial task.
The BlenX programming language has been specijichbkigned for biology from the be-

ginning, thus it provides a formal stochastic framoek for modeling biological systems.

The current version of the BlenX language applidiespie’s stochastic simulation algo-
rithm (SSA) [37] to follow the time evolution of éhsystem. The assumptions of the algo-
rithm require rate equations to be elementary r@astthat are defined by the law of mass
action kinetics. However, there are several nomelgary functions in biology that apply
assumptions for describing an observed propertth@freaction [38]. The frequent use of
these nonlinear terms, such as Michaelis-Menteatiis or the Hill function, creates a gap
between classical - deterministic - models andstbehastic simulations implemented with-
in the BlenX framework making composition of exigtimodels difficult within the tool.
The need of a bridge linking different modeling eggzhes has been recognized previously
and few initiatives have already been proposechercomputational field [39-43], although
the studies mentioned ahead paid less attentitretproblem that arises in stochastic simu-
lations applying Gillespie’s stochastic simulatialgorithm [37]. Gillespie’s method as-
sumes the exponential distribution of random vaeskdescribing the occurrence of the
elementary reaction steps. Complex rate functiansat satisfy this assumption and how-
ever the application of nonlinear reaction ratealligwed in BlenX, they require the proof

and the verification of their use in all modelirege studies.

The size and complexity of many biological systeemuilts in a difficult process of model-
ing. Exploring principles and frequently occurrisgbmodules - often referred to as motifs
[33,44,45] - is a well-known approach to contribtdea higher level understanding of com-
plex networks. Modularity and compositionality (itke possibility of defining the whole
system starting from the definition of its subcomeots) are key features of process calculi
languages. Those offer an easier way of systenhatiodeling, although one also might
find difficulties of presenting a real systematiaywof model composition within those pro-

gramming languages. For instance, the shift froendlassical methods towards computa-
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tional models is asking for the import of previausdels and their implementation into an
e.g. stochastic framework, such as the BlenX laggudhe current version of the BlenX
language requires core computational knowledgataaadhot an intuitive tool for theoretical
biologists. Furthermore, listing the frequently disales takes long time if the user is asked
to build his model from the bottom each time. BleisXasking for a higher level program
design for the modeling process in order to beabietfor building BlenX models from the
bottom-up in an easier way or for composing exgstimodels for investigating larger net-
works. Exploring principles and frequently occugisubmodules is a well-known approach
to contribute to a sophisticated way of encodinggpems. The BlenX language is suitable
to describe biological systems in an exact way wldmentary reaction steps and execute
the code with Gillespie’s stochastic simulationcaidhm however the complex terms often
used in ODE systems create a gap between thesdingodpproaches. We present a solu-

tion for these problems, summarized in the subsdqrepter.

The Solution Presented in This Thesis

Systematic “unpacking” of complex reaction mecharsigdescription of the complex rate
functions with intermediate steps) into BlenX teaipbk is shown in this study. We have
chosen frequently used and biologically relevantitmohat offer specific properties to the
models in deterministic approaches. They had bapfemented into the BlenX language as
computational templates. To study the stochastects in nonlinear biochemical reactions,
we should first describe the complex rate functioith elementary steps. Decomposition of
the motifs into single reactions is shown. Thesensadules offer a systematic modeling
framework though the compositional behavior of Blein this thesis a novel modular ap-
proach to process calculus is presented. Adaptafiansoftware engineering style structur-
ing techniques is shown as predefined computatiemaplates are coded and present a bio-
logically relevant library of important motifs prioing a higher level compositionality of
the BlenX language.

Additional to the proposed solutions for the conifiams of the computational models in
BlenX, we also dealt with queries in biological tgyss and tested the computational tem-
plates presented in this work. Furthermore, thiofohg biological questions were also ap-

proached from the modeling perspective. Recenlig, dircadian clocks [31] have been
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shown to gate cell cycle transitions [30]. The bemical interactions [46] interconnecting
these two oscillatory systems lead to the questioat properties could arise from this rela-
tionship and what the importance of clocks couldibeell cycle regulation. The daily
rhythms have been presented to be influenced bgimgnradiation treatment exploiting
novel insights into cell cycle related circadiamdtions. In order to explore these queries,
we built models and investigated the systems meeticmhead [47,48]. Our approach re-
veals hypothesis of experimentally observed bemlsvand provides a detailed analysis of
them, and compositional modeling with the propoBkshX extension is also presented as a

feature for analysing complex regulatory networks.

The goal of this thesis is to realize a library sisting of predefined, biologically relevant
submodules. The library offers a higher level cosifpanality with the BlenX language al-
lowing the use of biologically relevant modulesbinilding highly complex models. It is a
novel design methodology for computational systdn@dogy providing extensions and

merge of models that are available in various moddtameworks.

The Structure of the Thesis

The thesis starts with an overview of the reseéiedtd in Chapter 2 (State of the Art), fo-
cusing on the process calculi languages developediblogy. After introducing the con-
cept of compositionality in Chapter 2.5, we presena BlenX language in Chapter 2.6.
From Chapter 2.7 to 2.10 the reader is introduoetthé problems appearing on the field of
stochastic simulation of complex reaction ratesthHa Chapters from 2.11 to 2.13 we
present the basics for the biological systems ofimierest. Chapter 3 deals with the prob-
lem in details, to which the solution is proposedChapter 4. Results are shown in Chapter
5, introducing and explaining the properties arel rigalization of the templates within the
BlenX language that is important in modeling statizabiological circuits. Finally, the the-
sis ends with the Conclusion session summariziagitvelties of the work.
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2 State of the Art

2.1 Systems Biology: an interdisciplinary approach

Systems biology is a relatively new discipline @flbgical sciences that focuses on under-
standing complex systems by studying them as aeM3pl Researchers have realized that
finding the elements (e.g. molecules) of biologisgétems and knowing their properties
will not let us understand how their intertwinecagons give rise to their function unless
we analyze them as a complex network. But instéaxhly looking at a complicated picture
and trying to guess, scientists turn into a mogghsticated analysis. They switch on their
computers and build models to gain more informadod produce interesting predictions
that might be tested experimentally. Through thiemwof theoretical and experimental biol-
ogy, we hope to find novel results that may alseehan impact on healthcare or drug dis-
covery. Quantitative modeling requires the contitiu of an interdisciplinary field includ-
ing biologists, mathematicians, physicists, engisead computer scientists. The cycle of
systems biology research is the following: (1) sheuld propose a question based on pre-
vious experimental results. Thus, we collect treces of the puzzle we would like to play
with (2) the next step is the model building practsat is based on our previous knowledge
(3) then analysis of the model (4) and we answestions or make predictions (5) test the
hypothesis, thus we gain additional knowledge ef skistem (6) and refine the model and

start the cycle again.

In these days, enormous amount of tools are attesalthough it was not always like that.
Even before digital computers became availableréieal models were solved and simu-
lated on analog machines [49,50]. The problemia@bbical self-organization - how steady
state systems can create structures, oscillatiothsvaves - was always a challenge. One of
the first theoretical examples of complex beha@orerging in a biological system of was
proposed by Max Delbrick in the 40s [51]. His cqotagf bistability (the possibility of be-
ing in either one of two different states under shene conditions) was used to explain dif-
ferentiation: how cells of identical genotypes (ttueled genetic sequence) grown in iden-
tical environments can result in different phenetydthe physical manifestation). Later
Jacque Monod, Francois Jacob [52], Rene Thomasdbd]others [54-57] formalized the
requirements for positive and negative feedbackdamnd their findings have shown the re-
11
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lation between the feedback structure of a systedrtlae biological phenomena of homeos-
tasis and differentiation [58]. In the 50s, onetled first mathematical models of the field
brought Nobel Prize to Alan Lloyd Hodgkin and Andr&ielding Huxley [59]. They car-
ried out a series of measurements and used comméixematical models to propose how
impulses are formed along the axon of neuronat.citllwas a breaking result as the mole-
cular details of that system was unknown that tme they were able to publish novel find-
ings thanks to their unique approach. They becdmepioneers of systems biology and
brought the focus on the potential power in thecaktiology. At the same time, Turing
started to study the phenomena so called symmetgking [60]. Others showed how non-
linearly interacting chemical processes develop mer behavior, such as oscillations
[61,62]. Chemical oscillators of the mixture of saneactants became the first and classical
example of non-equilibrium thermodynamics [63] dine tools developed to analyze chem-
ical reactions (in the field of theoretical physichemistry) appeared to be helpful in bio-
logical research as well. In the following yeargn® Noble developed the first computer
model of the heart pacemaker [64]; and from thes,6@e can find several fascinating dis-
coveries of some of the rules that determine tiseed physiology of cells [65]. The large
amount of data produced after the birth of funcaiayenomics was asking for both data sto-
rage and the comprehension of the role of bioldgmmalecules. Thus, informatics has kept
up with these requirements and as a result, bioimdtcs and computational modeling have

emerged [5].

The increasing number of details led to more comglaetic models which gave way ad-

vanced computational methods (first for ODES) absitraction of complex reactions (e.g.
enzyme kinetics) as well. Several crucial qualfatproperties of biological systems have
been explained by dynamical systems theory andrdetistic approaches [8,66]. However,

other simulation formalisms have been also develppeay. Petri nets [67,68], transforma-
tional grammars [69] and process algebras [70]initrative to reduce the size of the possi-
ble states of a system is based on logical modelittyBoolean algebras [71-75]. The birth
of novel computer science approaches brought ramaltic techniques into systems biolo-
gy. For instance, model checking has evolved frestirig safety requirements in hardware
or software systems to check and verify if a biatagmodel matches some specific condi-
tions [76,77].As novel experimental techniques have been deve)dpe need of modeling

few numbers of molecules or a single cell behatwoned up. Stochastic models describe
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events occurring probabilistically. Randomnessresent and the states of components are
expressed by probabilistic distributions rathentbg unique values.

Biological systems are composed of molecules adtirghemical reactions and they create
a complex network resulting in proper physiologiftaiction. These well-orchestrated cir-
cuits describe common regulatory modules [78]. Thaiction cannot be easily predicted
by studying the properties of the isolated comptseRather we try to understand their de-
sign principles as a whole. Modular approachesrenatable tools to reveal the task of bio-
logical structures. Computational systems biology contribute into this work. In the sub-
sequent, an introduction into computer scienceiieddormalisms is presented. These me-
thods have been successfully used to model biadbgistems and reveal novel insights in

future systems biology research as well.

Computational systems biology

Ordinary differential equations (ODES) are the mestespread and classical formalisms to
model dynamical systems in science. They repreasemathematical description of bio-

chemical reactions with rate equations. ODEs araulsited through numerical integration

methods. They are mainly applied to describe paymadynamics within a deterministic

framework, however stochastic extensions are alssse. When stochastic effects are im-
portant, other computational structures, such asirnaous-time Markov chains (CTMCs)

[37], are also available for modeling biologicatsms [73-75].

We distinguish computational and mathematical modekause their basic concepts differ.
Computational models function as executable algst and not just simply solvable equa-
tions. The comparison of the two points of view baen recently summarized in [28] and
in [29]. Execution means that we can predict tlosvfbof control between molecules and
reactions making novel analytic techniques avaddblg. model checking, analysis of the
causality relation among the events, etc.), whikES describe only the outcome of the sys-

tem through its evolution over time.

Abstractions of computer science entered the bélslystems biology with a class of formal

languages that enable elegant and precise deearigtibiological interactions. Hereinafter,
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the reader will be introduced to the various corapahal tools used in the field. The list is
enormous, thus only the, let's say, most popul&sare mentioned in this study.

Computer science formalisms in systems biology

Abstract computer languages often form a classeokrplized approaches towards model-
ing larger biological systems with ignoring theitdils. These initiatives allow only the
study of common properties of networks but sufiemT limited predictive power. The
models created within these computational framewanie usually top-down systems pro-

viding abstractions for uncovered biological intgi@ns.

Directed graphsare one of the modeling concepts that are widegduor gene regulatory
networks characterizing the system through its etgm (called as vertices or nodes) and
with a set of ordered pairs (arcs, directed edgearrows). Although graphs are simple re-
presentations of biological systems, they are afdpior predict unrevealed paths between
elements and a variety of clustering algorithmsehlbgen used to group together the com-
ponents with similar temporal expression pattemosiging high degree of organization and

the better understand of genetic networks [51,79].

Bayesian networkf80] describe the structure of a system by a tiaeacyclic graph. It is a
probabilistic graphical model that encodes the Markssumption. The Bayesian network
approach applies statistical analysis for invesiigastochastic aspects and noisy measure-
ments. It represents a set of random variablestlagid conditional dependences. They are
used when incomplete knowledge is available abogtstystem. The simple and intuitive
representation of such models might be restridwvalynamical systems. Generalizations -
like dynamical Bayesian networks - have been atesgnted with which feedback relations

can be modeled [81].

Boolean network$82] are further examples of the formalisms appiygeneralization and

simplification in order to reduce complexity of lmgical systems. These discrete dynamical
networks consist of Boolean variables whose statkeiermined by other variables and they
can exist in two states: active (on, 1) or inac(o#, 0). Interactions between elements are

represented by Boolean functions. One particulae tf Boolean networks, tleellular au-
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tomatg is a popular approach to model Boolean variabesse state is determined by its
spatial neighbors. It can be applied for GenetigoAthms (GA) whose rules have given
rise to sophisticated emergent computational gjiiese[83]. In simple cases, the attractors
and their basins of attraction in the state spaeeaculated by hand, but for larger systems
computer programs are applied. The reduction approéthe Boolean networks employs
strong simplifying assumptions on the structure dyraamics of a biological system, thus it
allows also large regulatory networks to be analyirean efficient way. For instance, in-
termediate steps are neglected. Also, transiti@ie/den the activation states of the ele-
ments are assumed to occur synchronously. Thusijrcgroperties of the system may not
be predicted with this tool and there might beatitans in which these abstractions are not
appropriate and other methods are requiGsheralized logical methd®4-86] is an exten-
sion of Boolean networks. Their formalisms are eglg@nt, however the general logical me-
thod allows variables to have more than two valras that transitions between states may

occur asynchronously.

Basic Petri net$67,68,87] are directed bipartite graphs useddfscribing distributed sys-
tems. In the 1960s, Petri Nets have been develtgenodeling systems in a formal way.
They have an exact mathematical definition of thetecution semantics and a well-
equipped mathematical theory for process analjgsles represent either places (signified
by bars) or transitions (signified by circles). &ited arcs represent the trajectories. They
run from a place to a transition or vice versa, ener between places or between transi-
tions. Basic Petri nets have been also applieddimdical modeling [88-93]. Places may
contain a nonnegative integer number of tokensnditians can fire whenever there is a to-
ken at the start of all input arcs; when it fireg;onsumes these tokens, and places tokens at
the end of all output arcs. Transitions can alsedpgpped with rates, giving rise to stochas-
tic Petri nets (SPN) [68] or colors (Coloured Palets (CPNs)) [94] providing higher levels
of abstraction by allowing tokens be marked. Thegesof Petri nets is intuitive, but except

some special initiatives [95-97] they lack moduiari

Rules can be abstract representations of one oe meactions, thus rule-based languages
are also specialized to biological modeling. Fatance BioNetGen[98] is a language de-
signed for generating a biochemical network oftao§eeactions or a basic Petri net from an

abstract, rule-based description.
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In contrast to BioNetGerBiochemical Abstract MachinBlIOCHAM [15] is a software en-

vironment that makes compartmentalization availablé the implementation of the type in-
ference tool provides an analytic method for bioctwal models through the mathematical
formalization of abstractions of the systems. ktasnposed of rules containing variables for
modification site states, for atomic species naarad for complexes. Furthermore, it is a
language compatible with other initiatives (SBMlr)dait is equipped with several simula-
tors (Boolean, differential and stochastic). Thel iafers kinetic parameters from temporal

logic constraints.

Realizing the need for modular rule-based moddi@aipniques and supportive toolsttle
b employs a notion of rules [99] at a similar leeélabstraction to those of BioNetGen but

in a modular way.

Process algebras are abstract calculi originalgptecify and formally reason about concur-
rent computer systems. In the last decades thisdioapproach have been used extensively
providing an additional representation of complggtems and have been also applied for
biological modeling. In the following section, amtrioduction into the evolution of process

calculi is presented.

Process algebras

The theory of simultaneously executed and intemgctiomputations, called concurrency
theory, is an active field of computer science. 8@ramples include communication net-
works, air traffic controllers, and industrial ptasontrol systems. Process calculi languages
are members of a family of computational approaaneated to model concurrent systems
in a formal way, permitting also the use of algabtaws to manipulate process descrip-
tions. They provide a high-level representationndéractions, communications, and syn-
chronizations between processes. Their programstiugture uses parallel composition of
communicating sequential processes that can beuedemore efficiently on multiple core
units. A variety of process calculi languages oage from Robert Milner's Calculus of
Communicating Systems (CCS) [23] and Sir CharlesoAy Richard Hoare’s Communicat-
ing Sequential Processes (CSP) [100]. Thereindfteit] present the common properties of

process calculi languages and some representdtilie approach.
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In a process calculus abstraction processes aymgla key role in a rules-driven descrip-
tion [101]. They are often symbolized as entitegents, boxes or others, depending on the
specific language and their collection definesdpgtem. Entities execute computations pa-
rallel and they interact through channels. Theyehav internal state and the interaction ca-
pabilities of the processes are defined by namesa Pesult of a communication, the states
of the computational units or the affinity of thémteraction might change. Primitives are
combined by some operators (prefix, parallel contjmws choice, restriction, relabeling and
the null agent). These syntax-driven rules areraatwally implemented providing novel
insights into applications for modeling. In contr&s classical methods (ODES) which are
denotational, process algebra descriptions offfarmal way to execute complex systems

through their operational semantics.

In the 1990s several stochastic extensions have &@erged for various process algebras
when random variables were added into the systeracterizing the duration of the com-
putations (actions). In most cases, these randarables are exponentially distributed and
rates of actions are introduced for quantifying th@dels. The systems equipped with a sto-
chastic semantics are associated with a contintioes-Markov Chain (CTMC) [102]
where the system remains in the current statedimesrandom amount of time and then step
to a different state. The future states of the gsseadepend only upon the present state, giv-

ing rise to the Markov property.

Pi-calculus[103] (continuous [104] or stochastic [105]) evalieom Milner's CCS and al-
lows complementary actions to occur and also naassipg is possible, thus the communi-
cating processes can exchange names over chaesel8ng in novel interaction capabili-

ties. This extension enables modeling of mobilétiest

CCS, the pi-calculus, and all the calculi deriveahf them provide a well-understood for-
mal mathematical theory and a number of associtel$ for verification and analysis;

however, previously they lacked biological repreagans. The application of pi-calculus in
the field of biology began in the $@entury, with the work of Aviv Regev, Ehud Shapiro
and Corrado Priami [70]. The abstraction of proesssommunicating and acting parallel
has brought novel insights into the applicatiorihia field of biology as wellBiochemical

pi-calculus[24] inherited the process algebra descriptiom glystem, thus biological enti-
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ties are abstracted as processes that interacigthichannels defined by channel names and
co-names. Reactions are represented as actiongciMes are present as computations.
Various application of biochemical pi-calculus hde=n shown (BIOSPI [24], SPIM [106],
etc). In their approach proteins are mobile proegsthe ‘messages’ that molecules ex-
change affect their behavior and the sites of tiéeps are named as communication chan-
nels. Proteins send and receive messages andrppotgein interactions occur. The system
is governed by rules and proteins can also formptexes. Derivation of the pi-calculus is
still a minimalist (using small collection of pritiies and operators) rule-based language

but being appropriate for modeling living system.

Several other process calculi have been proposewt| biological system®erformance
Evaluation Process Algebra (PEPH)07] is also a formal language designed for comeu
programming and later has fruitfully been applied fodeling biological systems. PEPA
(or more likely its extension, Bio-PEPA [43]) allewthe users to quantitatively model and
analyze large pathways. Several techniques capieed within PEPA, for instance it can
be combined with the probabilistic model checketFNR[108]. It has been mostly used for
describing, simulating and analyzing signaling patys [109].CCS-Ris a variant of CCS
with the extension for managing reversibility iroloigy. Reactions are presented as binary

synchronized communications, similar to pi-calculus

Kappa-calculug110] has a language specialized in encoding pretihat are modeled by
an identification name and by two multisets of doreaThe first set of domains is visible,
while the other contains hidden domains. The twsidarimitives of the language are com-

plexation and activation representing protein @téons occurring in cells.

Certain initiatives within the process calculi fecon modeling biological structures, com-
partements or membranes. For instam@ieAmbientd14] have been evolved from Mobile
Ambients [111] and provide abstractions for biot@jicompartments. Ambients can be or-
ganized in hierarchical way and entities interacbtigh communications in the bound plac-
es. This calculus is a suitable tool for represgntocalization (the movement) and com-
partmentalization of moleculeBrane Calculiis another representative for a computational
abstraction inspired by biology and applied for mloty biological systems [112]. It focus-
es on biological membranes, which are both contsiaed active entities. Brane Calculi

primitives provide properties for membranes suclmasge, split, shift or action. Directed
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actions of membranes are present in ProjectivedB@adculus [113], as an extension of its
progenitor.

Beta-binderd114] are extensions of pi-calculus and their audion is based on the idea of
representing bio-processes as boxes equipped igth (beta-binders). Beta-binders intro-
duced the concept of compatibility [116] meaningtthpon communication the types of the
interfaces have to be compatible, but actions andctions are not required to match pre-
cisely to fire. In addition, they are enriched wstbecific events, such as split or join of box-
es and hiding or unhiding or exposing binders. dclsastic extension of Beta-binders for
quantitative experiments has been presented in].[BI&nX[117] is a progeny of Beta-

binders where Beta Workbench [27] provides a ndefdanistic kernel of such models.

The BlenX programming language is described inildeta Chapter 2.6.

Biological systems’ properties Beta-binders represgation
Entities (MRNA, DNA, proteins, etc.) Boxes
Interaction capabilities (protein domain) Binders
Complex formation and dissociation Binding creationl deletion
Interactions (modifications) Communications
Dynamics State change

Table 1: Representation of biological systems with Beta-bisd

2.5 Compositionality, a challenge in systems biology

“Anything that deserves to be called a languagetnesostain meaningful expressions built

up from other meaningful expressions.” by Zoltam@er Szab$118].

The opportunity of the construction of a systenntstg from the definition of submodules
is called compositionality and it is a common pmyef languages in general. Program-
ming languages are combined of basic primitivesn@asitional modeling was originally
implemented as a framework for constructing adexjdatzice models with the composition
of physical devices (Device Modeling Environmentb [119]) that emerged from the

principles of a compositional modeling language (GN1L20]. Several initiatives have al-
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ready investigated the question of biological medal a systematic way. Computational
approaches have already focused on the definitiamommon motifs in different research
fields providing novel insights into methods thaayrenhance the difficult, error-prone and
time-consuming process of model composition. Aigmsals approach the problem from a
different point of view and they add novel meaniaghe original question into the model-
building process. In the following section, thedeais introduced to the methods and re-

search directions emerged on the field of companati biology concerning compositionali-

ty.

One of the solutions to ease the modeling processproposed by Falkenhainer and Forbus
[119], namely the authors suggested a creationcotlaction - a library - of physical model
fragments. A few computational tools using cladsaggroaches (e.g. ODES) - thus non-
process algebra-based approaches - have alreadgdi@braries of frequently used motifs
in the field of biology (e.g. COPASI [9]). Thesberaries contain abstract biochemical reac-
tions applying several assumptions. Concentratmgignaling networks, Saez-Rodriguez
defined submodules for creating modularization dase network theory within the tool
ProMoT [121]. In [122], the authors developed a methadili@ design of genetic circuits
with composable parts. Each part is modeled indigatty by the ordinary differential equ-
ations (ODE) formalism and integrated into thewafe ProMoT (Process Modeling Tool).
They realized a ‘drag and drop’ tool for geneticgits. FurthermoreSBMLsqueezdil23]
facilitates modeling via automated equation gemanatovertaking the highly error-prone
process of manual assign of kinetic equations éobiblogical systems. This approach pro-
vides an automatic derivation of the kinetic equadi starting from the stoichiometric rela-
tion between the reagents visualized on a diag@BMLsqueezer helps to simplify the
modeling process and it applies complex rate fonstiwithin the deterministic framework

with compound mathematical terms.

Compositionality is mainly discussed as one of kbg features of process calculus tools
that enable the composition of processes througlt lpsimitives of the language. A suita-
ble conceptual tool to attack complexity has alyelhden successfully used in the process
algebra field to model biological systems as anass model-construction from elementary
reactions with the basic operators by Blossey.qg#8]. The authors presented an approach
for constructiig dynamic models for the simulatiohgene regulatory networks from simple

computational elements, called “gene gates”. Tigases define an input/output relationship
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corresponding to binding states and the modulafitshe approach creates another level of
description for biological systems. The propertiéeach gate are defined by a set of ab-
stract kinetic reactions (e.g. through Boolean eggions) that reduce the complexity of a
model. Michael Pedersen’s definition of minimalvito in Petri nets can be also applied as
an example for modular rule-based modeling appraadhe Petri net-based Calculus of
Biochemical Systems (CBS) [124]. Being able to yaut analyses in a compositional way
allows much larger models to be handled efficiertlgwever, the methods described above
disregard the crucial nonlinear behavior origingtirom complex reaction schemes in bio-

logical systems.

One remarkable research direction of model-comiposiays behind the idea of the transla-
tion of a modeling approach to another. The need¢dmposing different languages within
one framework and the combination of different reathtical representations (ODE,
CTMC, etc...) is a crucial property for systematiodeling of large biological networks.
Bortolussi and Policriti [125] defined a syntaghiocedure that translates programs written
in stochastic Concurrent Constraint ProgrammindC@Linto a set of Ordinary Differential
Equations (ODEs), and viceversa. Jane Hillstonandorkers established similar connec-
tion between the ODEs and process calculus appesdd6,127] . Furthermore, they [128]
have focused on generating an aggregated CTMCamgoositional way, tackling with the
state space explosion and with the implementatfiamcefficient algorithm that recognizes
symmetries and avoids unnecessary computationriitle PEPA Workbench. Their publi-
cation demonstrates how compositionality may bdagtqul to reduce the state space of the
CTMC in the PEPA framework. The methods mentiornteehd all focus on language trans-
lation, but they disregard the problem of implenranthe frequently used complex mathe-

matical expressions of deterministic models.

Hybrid methods have been proposed to solve the rimgebility between different ap-

proaches. Bockmayr’s hybrid concurrent constrarogmmming is an example of a highly
expressive, compositional language with a well+tedi semantics [129]. A proposal for
connect classical approaches and rule-based laagues been also shown in Biochemical
Abstract Machines (BIOCHAM) [15]. This tool achievesimulations and it queries the
model in temporal logic. Biochemical systems déxadiby differential equations are han-
dled in a hybrid framework using time discretizatimethods, and it is combined with Boo-

lean models. The language is able to represent-malecular complexes and localization
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of proteins (compartments where species are). bitiad, Hermanns and Herzog con-
structed large Generalized Stochastic Petri NeSP(& by hierarchical composition of
smaller components in real hardware and softwastesys inspired by process algebraic
operators [130]. The Bionet [131] tool is a novepeoach for biological pathway modeling
based on hybrid intelligent systems (fuzzy logieyral nets, genetic algorithms, and statis-
tical analysis) for the computational exploratidmew drug targets.

The need of a bridge linking different modeling eggches has been recognized previously
and as it was mentioned, few initiatives have alyelaeen proposed on the field [39-43].
However, the studies described above paid lesstiatteto the specific problem of the pres-
ence of nonlinear functions within stochastic medélhe direct use of complex rate func-
tions has been implemented currently into the Bléan{uage (in Chapter 2.10.1) requiring
proof and verification of their use in all modelingse studies. In order to solve the problem
of the presence of non-elementary reactions tleaassumed to be elementary in Gillespie’s
stochastic simulation algorithm, systematic unpagkbf often used nonlinear terms into
single-step reactions are shown in this thesisll€iges arise from the disappearing nonli-
near behavior upon the decomposition of some coutplens often used in biological mod-
eling [132]. This thesis will focus on an improvamef compositionality in the BlenX lan-
guage by definition of frequently used submodulgsst, the evolution and the description

of the process calculus language BlenX are shown.

The BlenX programming language for biology

BlenX (Biology encoding language) [117] is a stochagtimgramming language for model-

ing biological systems in a formal way. It was imeg by Beta-binders [114] and it has

been designed for biology from the beginning. ferd a high-level description of interac-

tions, communications, and synchronizations betweetecules or processes. BlenX also
offers an opportunity to define algebraic laws asdother process calculi, it provides a
formal specifications of concurrent systems (thdéemdes of a biological system) executing
their tasks in parallel and able to synchronizehvaach other. BlenX models define the
possible properties of the various elements ofetieoded systems. Calculi contain syntax-
driven rules, the so-called operational semantidl] that can be automatically imple-

mented in the Beta Workbench framework (BWB [27]).
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a:A b:B ... 227

Internal Program

[P]

BOX

Figure 1: Graphical notation for abstract biological entitie®BlenX.

BlenX allows the user to createoxesto represent biological species. Boxes have well-
defined interaction sites (calldminderg and internal structurdoéhavio). The box shown
on Figure 1 is defined by its internal procd3sand types\, B,..., Z. The types discriminate
among possible and prohibited interactions basecborpatibility [116].

The declaration for boxes containing the rules émaiode the entity is

let Box : bproc = #(a:0,A), #(b:0,B),..., #(z:0,ZP[];

The behavior of a biological system is given by tindered sequence of actions and reac-
tions (complementary actions or simply coactiohs) the program can perform leading to
the biochemical interactions between the elemehtsions for instance can occur when
binders “sense” signals (receive an input) and @gage signals (send an output) and the in-
ternal structure codifies for the mechanism thetgforms an input signal into the change of
the box (e.g. activationufhide or exposg deactivation lfide) or changing the type of a
binder ¢€h)). To denote such a chain of events, dlo#on prefix operatois used, which is
written as an infix dotg!().P). Signals are sent over a channel naaéal) or waiting for a
reply over a channel namdx(b?). Operators in Table 2 (e.g. sequentializatiorrafbel
composition, name declaration, recursion, bangdeadilock operator) are made up to com-
pose elementary actions over distributed chanretsallel composition (denoted by the in-
fix operator “|”, as irP | Q) allows the description of processes that mayimdependently
in parallel. The proced® + Q behaves either @ or asQ and the selection of one process
discards the other forever. To represent a sitnatidere the process is unable to perform
action or co-action, theil (deadlock) operator is used. Replication oper@gp) is a typi-
cal operator of process calculi that ensures thegss sends a signal each time it is needed,
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allowing infinite behaviors to happen. Events sfyestatements to be executed with a rate
and/or when some conditions are satisfied. Boxesahle to born (when mewbox is syn-

thesized) and to die (when a boxdeletal) as biological entities. Boxes are merged ot spli
upon different conditionsjdin and split events). They can also form complexes through

their binders and dissociate depending on the efdtee overall system.

parallel composition of processes P|Q
choice P+Q
sequentialization of interactions a().P

specification of which channels to use for sendingd receiving data  b?().Porb!().P

recursion or process replication rep P

deadlock Nil

Table 2: Basic operators of process calculus languages.

Following the BlenX metaphor, we look at genesteqres, and other biological entities (de-
pending on the level of abstraction) as indepengdestesses that can communicate and in-
teract with each other. These interactions betwwkercommunicating entities give raise to
the complex network of biochemical reactions takphgce inside an organism. The effect
of an interaction between the components can chdmgg&uture behavior of the whole sys-
tem. Simulations of BlenX are based on Gillespstgchastic algorithm [117]. In addition
to model execution, various other methods have peaposed to analyze pi-calculus mod-
els (e.g. causality and concurrency analysis [b83hodel checking [76]). In the following,
the BlenX's features supporting the modeling preces biological systems are summa-

rized.

2.6.1 Complexes

The boxes of BlenX are able to form (or break dowarnplexes through their binders. The
typed interfaces represent their interaction cdjpigisi The boxes bind over their interfaces
with certain sorts enabling specific reactions ¢ouw (through the creation of a link that on-
ly they can use) (Figure 2). The affinities of bénsl to form complexes are declared in a

separate file in the following way:
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(A1,A2, rate (k),rate (1), rate (m;))

whereAl andA2 are two binder types that are capable to form dexes. The first ratek]

is referred to as the association rate, the se(lynsl the dissociation rate and the third one
(m) is the rate of communication firing upon bindifigaus, bindings between interfaces en-
able processes to communicate and actions to ¢Seation 2.6.2). For instance, biological
systems often form intermediates (e.g. enzyme-gatestomplexes) which allow a catalytic

step to occur during the substrate is turned irgooduct.

a:Al b:B1l - - -z:71 a:AZb:BZ---z:ZZ

Internal Program Internal Program
[P] [a]
BOX1 ' BOX2

Figure 2: Graphical representation of boxes forming compex&inding of BOX1 and BOX2 might occur
through their binders namedwith the typeAl andA2, respectively.

2.6.2 Communications

Processes can perform actions when the primbi)eP sends a signal - enclosing the
processP - through the interfaceb(B1), while, a box with a primitivéa()?.Q waits for a
signal on the bindeib(B2. When communication happens, the two boxes sypmite each
other and execute the sequential process in thigrnal behavior (Figure 3). Thus, boxes
can execute an action theirselves and for examyitle the primitivechange they transform

theirselves into the products.

In the previous section (Section 2.6.1) biochemieakttions were introduced through com-
plex formations and the following modifications. \WMever, the expressive power of BlenX
also enables communications to happen without fdrhimks. If the ratek andl (used in
Section 2.6.1) are both zero, ahas a value greater than zero, then binding abahdimg

are not contemplated for the pair of types andhitvees exposing them can communicate
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without the need of first creating a link. The bsxedeed can use an intra-communication

without creating an intermediate complex.

Intra-communications occur on perfectly symmetnput/output pairs that share the same
subject, while inter-communication can occur betweemitives that have different sub-

jects provided that their binder identifiers arengatible. This new concept of communica-
tion is a special extension of the language for elind biological systems where interac-

tions occur based on their affinity and moleculas eact with several reactants in the same

context.
o EaEE e EEEaEa s e .
a:Alb:B1 - - -z:71 a:A2b:é2---Z:ZZ
rep b!().P b?().Q
h
BOX1 BOX2
a:Alb:B1 - - -2:21 a:A2b:B2 - - -2:22
rep b!().P Q
BOX1 Box}
Figure 3: An example for a communication-driven reactiomlanX.
2.6.3 Events

BlenX offers an abstract description of biochemiesctions through events. Events pro-
vide a solution for modeling non-elementary stepsvall. They encode rewriting rules that

substitute a set of boxes with another set of hokies abstraction of events allows the users
to define reactions without specifying complex fatrman or details - intermediate steps - of
the complex reaction. For instance, complex foramatf the boxes can be modeled as the

substitution of the two components into a third be@presenting their dimejo{n event in
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Table 3). Thesplit event provides dissociation of the complex inte #ingle elements or
even into modified molecules. In the later caseudtiratep reaction is described by an ab-
stract single step. Synthesis and degradationedbtixes fewanddeleteevents, respective-
ly) can be also coded with events. The use of aveah be combined with real complex

formation rules and with communications.

Box1 f) Box2 + Box3 when(Box1::rate(k)) split(Box2,Box3);
Box1 + Box2 f, Box3 when(Box1,Box2::rate(k)) join(Box3);
X Box when(Box::rate(k)) new(1);
Box X when(Box::rate(k)) delete(1);

Table 3: Representation of events in BlenX.

2.6.4 Conditions
The execution of primitives may depend on speaénditions. In this case, processes are
fired by checking the state of the box. Conditiallew the definition of general rules valid
for a biological entity. For instance, the statettod molecule specified by the type of the
binders can lead to the execution of an action.
The condition
pproc = if (not (a, bound ) ) then b?().nil ehdi
will let the binderb receive signals if the binderis not bound to another box. Thes rules-

driven and component-based descriptions of biokdgietworks offer a novel computation-

al systems biology approach that differs from tlassical, equation based modeling tools.

2.6.5 Conditional events
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In order to allow the user to perturb the systeroubgh events, conditional events are im-
plemented in the language. For instance, event®eavritten in a time dependent way, e.g.

accounting for an event &oxdeletion at the time point 100 such as

when ( Box : time = 100.0 : inf ) delete (1) ;

Compositionality with BlenX

Compositionality is a key feature of process algdbpols. As the size of the revealed inte-
raction network increases, the modelers wish to tive discovered interconnected subsys-
tems together, there is an urgent call for a fraorewthat supports extension of models in a
cumulative manner. Introduction of rule-based arat@ss algebra modeling was a depar-
ture from classical dynamical approaches, suchrdisary differential equations (ODES).
ODEs require the explicit report of all interactotimat occur in time, while rules-driven ap-
proaches can be used to generate biochemicalaeactf we would like to extend the reac-
tion scheme with a novel role of an element in @ehalescribed through ordinary differen-
tial equations, we do not only need to add new &gjs, but we also have to modify the ex-
isting ones. While process calculi models rely ardeling with the concept of compaositio-

nality.

BlenX inherited the basic properties of processuglsuch as the key primitive that distin-
guish the process calculi from sequential modelsashputation. Parallel composition of
processes (see the detailed description ahead)sntakepositionality a crucial feature of
biological modeling in BlenX. Parallel compositiohtwo processeP andQ are written as

P | Qand it allows computation iR andQ to proceed simultaneously and independently,
and it also allows interactions to occur. Model pagition and extension are proposed to be
easier with BlenX than with classical modeling noeth. However, there are several initia-
tives that improve the compositionality of ODE syss based on some building blocks (e.g.
the collection of reactions in COPASI [9]), whilleet current representation of BlenX lan-
guage remains a tool for only experts in the coepsitience field with programming skills.
Compositionality on the other hand means that aaihecah be built and analyzed by divid-
ing it into smaller submodels that are easier tdewstand. It is a crucial property and

enables the construction of large systems. Conipnality focuses on the basic operations
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and complex behavior that the model can perforns. $urely the key issue needed for sys-
tematic biological modeling to become effectiveallbows to fix the building bricks of sys-
tems and to enlarge models by composition withargd changes in the description of the

subsystems that are already available.

Pre-defined modules and the collection of freqyentied complex reaction schemes pro-
vided in ODE systems ease modeling within the datastic framework, but cannot be ap-
plied under the stochastic simulations of BlenXtlasre is no direct translation of ODE
models and the stochastic simulations applied inBB&ke often found to be inappropriate
for complex reaction schemes (discussed in Ch&)terhus, there is a need for a solution
of a tool that inherits the properties of extendaiocess calculus approaches and provides
building bricks that makes the modeling process amalysis of the system more effective.
In the subsequent, | present the stochastic simalalgorithm used for BlenX models and
after that | point out the problems we have to de#h compositional modeling within the

currently available BlenX language.

Stochastic simulations with BlenX

To analyze the system after the model building @secwe follow its dynamics over time
starting from a set of initial conditions. The deteistic modeling approach regards the
time evolution of chemical reactions as a contirsjquredictable process that is governed
by a set of coupled reaction-rate equations, a#erned to as the system’s kinetic descrip-
tion. Several experimental studies showed the itapoe of noise in biological systems
[19-22,134] bringing stochastic simulation techmgunto the focus of theoretical biology.
The stochastic approach to chemical kinetics was flescribed by Delbrick in the '40s
[51] and Novick and Weiner [135] showed that at lilve inducer concentrations used in
their experiments the population of cells consestsentially of individual bacteria that are
either making enzyme at full rate or not makingtitll. The basic assumptions of stochastic
reactions are that a chemical reaction occurs wiver(or more) molecules of the right type
collide in an appropriate way, and that these sioltis in a system of molecules in thermal
equilibrium are random [37]. Noise in biology isualy represented by assuming that the
time evolution of the system is a random-walk psscehich is governed by a single diffe-

rential-difference equation called the chemical telasquation (CME). Monte Carlo proce-
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dure is used to numerically simulate the time etvofuof a given species. The most famous
method to simulate a set of chemical reactionkasstochastic simulation algorithm (SSA)
of Gillespie [37]. The BlenX framework also applié® method presented in the following

section.

Gillespie’s stochastic simulation algorithm

In the ‘70s, Gillespie published an exact solutiorgenerate the stochastic time-evolution
of a biochemical system as a random-walk procegs [Bprobably became the most popu-
lar computational method for stochastic simulationsystems biology. Gillespie developed
a variant of Monte Carlo simulations assuming thatsystem is well-stirred and molecules
are randomly distributed. In this way, the produeadct numerical calculation within the
framework of the stochastic formulation is a refaly simple digital computer algorithm
that correctly accounts for the inherent fluctuasi@and correlations that are necessarily ig-
nored in the deterministic formulation. It descelibe transition of a system from one state
to another through changes of the probability ohdpen a certain state. BlenX refers to an

efficient variant of the stochastic Gillespie’s @lighm for simulations [27].

In Gillespie’s approximation, the reactants of ystem §,, S, ..., §) are randomly distri-
buted in a fix well-stirred volumeVj and they collide in a random manner, assuming tha
molecules are in thermal equilibrium. Initial quiéies of the reactants are defined)agt),
Xo(t)... X, (t) att=0. Not every collision results in a reaction. Depagdon the state of the
molecules, the collisions form a stochastic Markmecess characterized by “collision
probabilities per unit time”. The theory assumest thonreactive molecule collisions occur
much more frequently than successful ones. The idaémeactions are described by stoi-
chiometric equations. Suppose that the speciegatitevia m reaction channelsRy,
R.,...,Rn) and that these reactions occur with individualpensities ¢, ¢,...,Gy). The aver-
age probability of a molecular paiXi(andXy) that will react according to a reacti&in
the next infinitesimal time intervat, (t+dt) equals ta; - dt; whereg is the stochastic reac-
tion rate constant (or basal rate). To define witennext reaction occurs and which reac-
tion will occur, Gillespie calculated a combinasdriunctionh; that specify the number of
all possible reactant combinations for reacti®nThe probability that afR reaction will
occur in the intervalt( t+dt), given that the system is in the staXg, (..., %) at timet is
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h; - ¢; - dt = a; - dt (g is denoted with propensity value). To numericaliyulate the sto-
chastic time evolution of a biochemical system|&Spie presented an exact solution, called
exact stochastic simulation. The reaction probgbdensity function R(T,j)) provides the
probability that, given the stat|(. . .,X;) at timet, the next reactionRj) in V will occur in

the infinitesimal time intervalt(t +dT) and the analytical expression now comes to the se
of random pairs whose probability distribution egua P (T, m) = a,, - e"%"), The calcu-
lation assumes that reactions are elementary §tepsdve one or two reactants), thus there
IS no reaction occurring in the time intervalt¢T).

P(T,m) = {am ceCaD f0<T <owandm =1, M}
0 otherwise
where
Am = hy O
and

The stochastic simulation algorithm generates taom numbers{, ry) that defines the

pairs of T andj according to the probability density function:

1 1
T = (a—o) -In (T_1)

and
j-1 J
Zal <71y-Qg SZal
i=1 i=1

Note that in every state of the system the timéanéonext occurrence of reacti&nis a ran-
dom variable following a negative exponential dimition. The validity of this fundamental
hypothesis of Gillespie has been queried by Ivarav[@36] with a simple mathematical
argument on complex reactions including multipleneéntary reactions. Meaning that even
if time to the next occurrence of each elementagction follows a negative exponential
distribution, the time to the occurrence of thetedus reaction will not have exponential dis-
tribution that Gillespie’s SSA assumes. This prabkmerges in bio-inspired process calcu-

li that are equipped only with exponential disttibns. Note that there has been a proposal
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for BlenX including the use of general distributoimvestigated in special biological cases
[137], although other solutions are still needeat #tmable compositional modeling of com-

plex reactions in a sophisticated way.

Initialize the number of molecules (#) in the system, reaction
constants (¢;), and the initial values for the entities (X;). Set #=0.

v

Calculate a=h;c; for each reaction j
and a,=)a;

v

Generate random numbers r, r,
»  Determine the next reaction to occur so that 24 <ryasya;
Take T=(1/a,) In(1/r))

v

Increase the time step by the randomly generated time T.
t=t+T
Update the molecule count based on the reaction that occurred.

v

Iterate until
-the number of reactants is zero
- the simulation time has been exceeded.

Figure 4: Gillespie’s stochastic simulation algorithm.

2.10 Reaction rates in BlenX

In biochemical reaction kinetics, the rate of ectem - the speed at which the concentration
of reactants or products change - is defined bya¥veof mass action kinetics assuming that
the system is homogeneous and chemical reacties odtelementary reactions (that pro-

ceed through only one transition state) are propuat to the concentrations of the reac-

tants.

k
An example for a chemical equation is: A->C
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whereA is the reactant ard is the product, whil& defines the reaction rate constant.

The deterministic, kinetic description of the réactcharacterized by the velocity of prod-

uct formation is

dC—kT A
— = k() [4]

wherek(T) is the reaction rate constant that changes wehdmperature and\] stays for
the concentration of molecul@s The units of the rate coefficient depend on tlubag or-
der of the specific reaction. In this first ordeample (where one reactant is converted into
a product) the rate constant’s unit equalflfome]. In case of a second order reaction (e.qg.

whenA + B - () it equals td(1/(numbers of molecules per unit volume) per jjmsmit.

Reaction rate constants are crucial propertiesiafhiemical systems as they quantify the
speed of each reaction. Rate constants could beumeghin some cases but it is often a
missing property of biological models. The paramsetsf the system are mostly derived
from measurements or estimated through computatipa@meter inference algorithms.
Several methods have been introduced to assigreliff computational approachd2E{l
[138], SBML-PET[139], KInfer [140], etc).

In case of reaction rates having exponential dstion and when the model has finite num-
ber of states, the BlenX program gives rise to @atinaous-time Markov chain (CTMC)
[37]. Evolution of the model is generated by Mo@&lo sampling methods and the transi-
tion between states is labeled with the stochaséction rate. Intrinsic noise in the model is
implemented by the usage of random numbers. Invilaig, BlenX models are executed
through Gillespie’s stochastic simulation algorit{8SA) in which rate constants are de-
fined as specific probability rate constants. Imegal, when the molecules of the system
collide in an appropriate way, the SSA calculates ¢ccurrence of reactions in thermal
equilibrium that take place in a random manner.sTlm a stochastic framework, a reaction
probability density function (reaction probabilper time unit) is used to compute the prob-
ability of an action to occur that depends on tieglgastic rate constants and the number of
molecules present in the system (Section 2.9).elach reaction channBjj the propensity

function is defined as
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Am = hy - Cm

such that, is also called as thectual rateandhy, is the number of distinct reactant combi-
nations for reactioRR,, andc, is a constant (callellase rat¢ depending on physical proper-

ties of the reactants. The way of computing the lmoations and the actual stochastic rate
varies with the type of the reactions. The stocbastte constants usually can be derived
from the widely used (and measured) determinigtie constants through a conversion fac-
tor [37]. From the practical point of view, thismeersion is straightforward and depends
only on one factor, although from the theoreticainp of view the difference between the

two constants is much more complicated (discuss¢ai)).

The conversion of the deterministic reaction raés stochastic ones is implemented in two
steps. First, the concentrations of the determinsststem are translated into molecule num-

bers through a scalar constanthat depends on the volume of the syst¥in (
a=1/(N,-V)

where N, is Avogadro’s number, a scaling factor between nosmopic and microscopic

systems expressing the number of elementary enige mole of substance. It has the value
6.022 - 1023mol 1

Transformation from concentrations into the nundfanolecules is carried out as

c c
N:nNA:CVNA:m:E
A

wherec is concentration with the molar concentration wailedmolarity (mol/liter) andN

is the number of molecules with the unit of ‘nunittkat we will denote with a number sign

(#).
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_ o stochastic reaction
_ order of reaction rates (deterministic)
reaction ) _ rates
reaction (concentration unit/time) unit _
(#/time) unit
k k
- A zero /a
(concentration unit/time) #/time
. k- [A] k- |A|
A->B first 1
(1/time) - [concentration unit] ( - ) - |#|
time
k-[A]-|B
[A] - [B] k-a-|A|-|B]
A+ B - C | second (1/(time - concentration unit))
(1/(time - #)) - |#
- [concentration unit)?

Table 4: Conversion of deterministic reaction rate constanto stochastic reaction rate constantss in-

versely proportional to the volumé

In the stochastic interpretation we have to noé ith case of multimerization, the stochastic
probability of a reaction to occur differs not omtya conversion factor from the determinis-
tic case. Thus, if the reactidt has a schemé&; + A, + ... + A, — C with onlyn num-
ber of a single reactant forming complexes, thetrea rate in the stochastic case is de-
scribed via a combinatorial function instead of @tmlication:

.n-(n—l)

k
2

This makes the term describing the reaction inderministic framework different from

the stochastic one.

In addition to the rate constants described byntlags action kinetic law, we find several
other popular characteristic of experimentally otssd phenomena. These reaction schemes
rely on approximations and they are defined byraglex mathematical term. The introduc-
tion into nonlinear rate equations is presentethefollowing section, while detailed de-

scription of some concrete examples are shown (et€hapter 5).
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2.10.1 Rates of non-elementary reactions

In case of reactions that occur in a single stgm{entary), experimental measurements re-
veal a simple linear relation between the reactantsthe reaction rate. However, biological
systems are much more complex than that. Thereseveral biochemical mechanisms
where researchers have observed multi-step reaatithre nonlinear response of the rates to
changes in the concentration of reactants. We egntlgeat most biologically observable
reactions are not elementary. In fact, most reasttake place by a complicated set of steps.
Thus, the kinetics of the reaction - and the rate 1 may not simply depend on one rate

constant, and may not have a simple order.

A famous example of such behavior was the obsenvdliat the reaction rates of some en-
zyme catalyzed reactions can be described withtiaaden curve. Michaelis and Menten

approximated the velocity of these enzymatic reacichemes with a nonlinear function
named after them [141]. Their assumptions becaméatmdmark of a simple way for mod-

eling enzymatic reactions and the use of their @gdpration also ease the determination of
the arising constants from measured data. Furthermost biological reactions are driven
by enzymes, so this description can be used toleanzymatic reactions in a biological

regulatory network.

Some enzymes provide a sigmoidal response curveaiimy cooperative binding of sub-
strates to the active sites. This behavior is commanultimeric enzymes with several inte-
racting active sites. The first very famous exanwées the binding of oxygen ligands onto
haemoglobin in a cooperative manner altering tfi@igf of the other active sites for sub-
strate molecules. The Hill equation is appliedrfardeling these reaction schemes assuming

simultaneous binding of the ligands [142].

Besides the reactions mentioned above enormousadfypechemical scenarios exist. For
instance, certain hypotheses were built upon teeragtions of earlier works, such as inter-
connected enzymatic reactions or different inhapitimechanisms (concerning multi-
substrate reactions, inhibition and activation naei$ms, allostery, ligand and receptor in-

teractions, scaffold proteins, etc) [143,144]. Nioghr reactions may lead to more complex
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behaviors playing crucial roles in biological syste[38]. Positive feedback provides net-
works (e.g. signaling cascades) the potential fstability and relaxation oscillations. On
the other hand, negative feedback can bring abdaptation and robustness to parameter

variations within the feedback loop [145].

The current expressive power of BlenX allows tharahterization of elementary reactions
and also permits complex reactions to occur imglsistep vieevents(Section 2.6.3). The
nonlinear terms are characterized and coded byseeduring the model-building process.
Interconnected regulatory loops and nonlinear r@aderms together might give rise to
more complex behavior, such as oscillators [38]e ©hthe crucial cyclic systems in euka-
ryotic cells (with real nucleus) is the recurringision of cells. It is a fundamental sequence
of events that cells must proceed to keep reproduand is controlled by a complex mole-
cular machinery containing intricate molecular nagbms. One of the early success stories
of mathematical biology includes cell cycle regulat[18]. Through the description and
analysis of the network, theoreticians predictecesd dynamical properties and unknown
components of the system that were later experafignterified. Moreover, lately these
computational and theoretical approaches got mack raore incorporated in the main
stream cell cycle research. In order to follow khier discussion about this biological sys-

tem, an introduction into the cell division cyctegiven in the subsequent section.

2.11 The cell division cycle

Cells perform a sequence of coordinated eventer(exd to as ‘cell cycle’) that result in

self-reproduction [30]. The major processes ofdék cycle are quite much the same in all
eukaryotic cells (with real nucleus). During theseents a cell must properly replicate its
hereditary material (DNA) in the S-phase and sdpaif@e two copies into two daughter
nuclei during mitosis (M-phase). Cells need to tmlle all their other components (pro-
teins, ribosomes, RNAs, phospholipid bilayers, obgllrates, metabolic machinery, etc.)
during a cycle and usually the doubling time of tyeoplasm takes longer; hence temporal
gaps (G1 and G2) are inserted in the cell divisigole between S-phase and M-phase in

order to keep the size of the two daughter cetislar to that of the mother.
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The major events (DNA replication and division) drghtly regulated and events are
checked at several points. These ‘surveillance ar@sms’ are calle@¢heckpointg146].

With the assist of a sophisticated network of iat#ive molecules, cells regulate and moni-
tor the progress through the cell cycle. They cheek earlier event has been properly ex-
ecuted before proceeding to the subsequent stepgbdte cells are in G1-phase with unrep-
licated chromosomes and start the cell divisiorlecipy monitoring the internal and external
conditions if they are favorable for a round of mge Cells must grow to a critical size be-
fore they can commit to chromosome replication divikion to guarantee the balance be-
tween the cell growth and the DNA cycle. When thterinal and external conditions are fa-
vorable, cells make the decision to start a rourthiecell cycle. They prepare the materials

to get ready to the crucial events of cell cycléwtine correct timing. G1-phase can be sepa
rated into two functionally different parts. Thetitier between early and late G1-phase is
called therestriction pointin higher organisms [147] @TARTIin yeasts [148]. At this point

a cell commits itself to the whole process. Thesden is irreversible; once DNA-synthesis
begins, it goes to completion and eventually tHevad finish it even if conditions are get-
ting worse in the meantime. Irreversibility is eresiby interconnected regulatory feedback
loops building up a complex machinery of interagtentities [149]. During the process of
DNA replication sister chromatids are produced and ‘glued’ tagretly specific proteins,
called cohesins [150]. Accuracy of S-phase eventsucial for producing healthy and via-
ble daughter cells, thus the synthesis is permfnehécked and repair mechanisms guard
the correct DNA replication. G2-phase is inserte@nsure that DNA replication is properly
finished and cells have grown to an appropriate sigfore mitosis. G2/M transition can
happen only after these requirements are matcheeht& duringmitosis are critical for
proper distribution of DNA between the two daughtells [151]. Mitosis has several sub-
phases: during prophase, replicated chromosometenea into compact structures, in me-
taphase these condensed chromosomes are aligried oenter of the cell with the help of
mitotic spindles. When all chromosomes are aligried, so called=INISH transition (or
meta-anaphase transition) is induced: the cohesibashold the two sister chromatids to-
gether, are destroyed allowing the chromosomestpulled to the opposite poles of the
cell. After distributing the DNA content in telopte the daughter nuclei form and eventual-
ly the two daughter cells separate during cytokses
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Figure 5: The cell cycle phases (G1, S, G2 and M) and thelgi@énts (START, G2/M, FINISH).

2.11.1 Molecular mechanisms of the cell cycle control

The proper order of cell cycle events is controlbgda complex regulatory network of inte-

racting macromolecules that control the cell cytcensitions. Systematic analysis of cell

cycle mutants in the 70s by Lee Hartwell [152] &=dil Nurse [153] led to the discovery of

the key regulator of the cell cycle (CDK) that weik a complex with a cyclically appear-

ing molecule (cyclin), what was discovered by Timnt[154]. These three researchers re-
ceived the Nobel Prize in 2001 for their breaktigiowesults in understanding cell cycle

regulation. After their discoveries, several celtle regulators and their functions have
been identified that helped us to better understhrdcrucial regulatory steps of the cell

cycle.

By now we know that active CDK proteins are bounmdhieir regulatory cyclin partner that
helps substrate recognition. CDK/cyclin complexasate events of the cell cycle by phos-
phorylating specific protein targets. They are famental kinases and are regulated by (1)
controlling the availability of cyclins, (2) covalemodification of the complex by inhibitors
and activators (3) and the CDK subunit is inhibibgdphosphoryation and CDK might be
sequestered to a stoichiometric inhibitor (CKI, foyclin-dependent Kinase Inhibitor) as
well. CDK molecules are constantly present in egcdisus their level is not controlling

their activity.
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CYCLIN AVAILABILITY
transcnptlon Cyclin mRNA tmns]atlon
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STOICHIOMETRIC INHIBITION

Figure 6: Control mechanisms of the core cell cycle compantiet CDK/cyclin complex on different levels:
availability of the regulatory partner (cyclin) @DK is modified through transcriptional or trangaal con-
trol (TF = transcription factors enhancing mRNA #asis of the gene encoding cyclin); the phosplagioh
state of the CDK/cyclin complex is regulated thrioutifferent kinases (e.g. Weel) and phosphatasestoi-
chiometric inhibitor (CKI) also inactivates the Claclin complex. The figure is adapted from [155].

The logic of cell division cycle is conserved ih @likaryotic cells: interconnected feedback
loops ensure the order and the irreversibilitynaf tycle. In G1-phase, CDK activity is low
due to the missing cyclin partners (e.g. D-, E-,aAdd B-type cyclins), most of which are
inhibited and rapidly degraded during this periéd.the transition from G1- to S-phase
(called START in yeast or restriction point in hggheukaryotes), cells make a decision of
whether start a round of cell cycle or not. In erlemake the best choice, cells sense both
external (e.g. the presence of growth factors ¢rients) and internal (e.g. the size is large
enough, mitosis is properly finished) conditionsieTG1 cyclins (Cyclin D) are bound to
CDKs (CDK4 and CDK®6) and initiate the phosphorgatiand, with it, the inactivation of
the retinoblastoma protein (Rb). Rb’s main rol¢éoisnhibit the transcription factor E2F of
certain cyclin moldecules (Cyclin E and Cyclin Ahese cyclins combine with a Cdk2 and
help the total inactivation of Rb. Thus, there gositive feedback loop in the regulation of
transition from G1 to S-phase, with Cyclin E andcl@y A inhibiting the inhibitor (Rb) of
their transcriptional activator (E2F). CDK/Cyclin @annot be fully active after Cyclin A is
transcribed, since the CDK inhibitor (CKI) protéieeps this complex inactive as long as
CKIl is not phosphorylated and degraded. This phogpéition also depends on CDK/cyclin
complexes, adding a second positive feedback lodlpet system. When CDK/Cyclin A gets
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fully active, it phosphorylates the proteins thegulate the unwinding of chromosomal ‘ori-
gins of replication’ (specific nucleotide sequenaglere DNA replication can start) and in-
duces DNA replication. After passing proper DNAlregttion, cells continue to grow in G2-
phase and they check if the DNA is properly comead intact. Cells also detect when they
reach a critical size before to proceed. The G2@ndition and entry into mitosis is trig-
gered by the activity of CDK in combination withtipe cyclins. In G2-phase, the CDK
molecule is phosphorylated (thus inactivated) byrdmibitory kinase, called Weel. At the
G2/M transition, a phosphatase (Cdc25) removeplinsphate group from the inactivated
CDK/Cyclin B complex, resulting in an increase ihetactivity of CDK/Cyclin B.
CDK/Cyclin B feeds back and phosphorylates both Wkiease and Cdc25 phosphatase.
This modification inactivates the inhibitory kinaf&/eel) and activates the phosphatase
(Cdc25) providing two positive feedback regulatiomaking the increase in CDK/Cyclin B
activity real sharp at the G2/M transition. Theaguanism between Weel and MPF is de-
fined as a ‘double-negative feedback’ between wWaednzymes as a sum providing a posi-
tive autocatalytic effect on CDK activity. The pibge and double-negative feedbacks act
synergistically to create a bistable system witb tyualitatively different states: a G2 state
(inactive CDK/Cyclin B) and an M-phase (active C@itlin B). Problems in DNA repli-
cation or DNA damage can delay the G2/M transitignkeeping Cdc25 inactive and/or
Weel active. This ensures that CDK/Cyclin B aggivatays low because of the inhibitory
phosphorylation by Weel. This control mechanisnp$iéb avoid the segregation of dam-
aged chromosomes during mitosis. If DNA is intaatl aeplicated, CDK/Cyclin B activity
turns on its positive feedback loops and the higldyve form initiates mitosis. During mi-
tosis, the separation of sister chromatids happemaswell-organized way. All sister chro-
matids have to be segregated at the same timeotd amy daughter cells to receive more or
less chromosomes than the other. The cohesin metgdhat hold the chromatids together,
can be destroyed only after all chromosomes arpeply attached to the mitotic spindles
that will pull them apart. At FINISH, a group ofgteins make up the anaphase-promoting
complex (APC), which with a partner (Cdhl and Cdd2@éips to induce both cohesin and
Cyclin B degradation. All Cyclin B is destroyed the end of the cell cycle, resulting drop
in CDK activity that triggers the separation of dater nuclei and induces the division of
the daughter cells (cytokinesis) that brings tHis deck to G1-phase.
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Figure 7: Regulatory feedback loops controlling the celligion cycle. Arrows represent activation, |- are in
hibitory effects.

2.11.2 Modeling the events of the cell cycle

The cell cycle, being a periodic process, was éitlberest of mathematical modeling rather
from the beginning. Even before the molecular ratgus of the cell cycle were known, ma-

thematical models of the system had been alreaclyulated. As the molecular details of

the underlying regulatory network were revealeddei® became more and more sophisti-
cated. Indeed cell cycle has been one of the prorgeexamples of systems biology ap-

proaches, where experiments and mathematical nmgdedive guided each other. Thanks to
these efforts now we are able to better underdiamdlynamics of the cell cycle regulation

and to explain how the oscillations appear in défe cell types and what roles positive and
negative feedbacks play in cell cycle regulatioiffdbent modeling methods were used to

attack these questions at different levels of cexip}l. Abstract logical models of the skele-

ton network, differential equations of the reguigtmodules and stochastic models of some
key control points all attacked cell cycle as apamtant biological example.

From the 1960’s we can find mathematical models riiely explain some key aspects of
cell cycle regulation from phenomenological obsgors on cell size and cell cycle time
distributions. The discovery of chemical oscillat§BZ reactions) and the classical studies
of non-equilibrium thermodynamics [156] provokeddespread interest in the 1970’s and
gave huge contributions to research on theorephgsical chemistry and to mathematical
biology. Researchers investigated biological ostlls, from calcium oscillations to circa-
dian clocks, including the oscillations that drisel division cycle [157]. As some data on

the key regulator of cell cycle (CDK) were found Kyrse and others (see above), theoreti-
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cians started to create models to understand hewCBbK/cyclin complex can regulate cell

cycle events. Further experiments on yeasts anddggs produced a molecular description
of the proposed protein interaction network, insgirfurther mathematical analysis. The
success story of joint work of theoreticians angdezinentalists created a great interest for

systems biology research.

The earliest efforts on the mammalian systems weenvestigations of some particular
modules of cell cycle. For instance, the DNA damaaggilation in G2-phase of mammalian
cells was tackled in details by Aguda, by model@ag2, Weel, Cdc25 and the DNA dam-
age signal transduction pathway [158]. The regutabf the restriction point at the G1/S
transition was also modeled by various groups [I5%, The existence of this ‘point of no
return’ in G1l-phase has been first described ir4185 the point, where mammalian cells
decide whether they enter cell cycle or halt imoanthnt GO state [161]. A quantitative ex-
perimental characterization of this phenomenon e#sed out by Zetterberg and Larsson
[147], providing great data for mathematical maalgliNovak and Tyson modeled these
experimentally tested physiological responses [16B¢ir model relies on their earlier work
on yeast cell cycle [162], which was extended witleractions describing the effects of re-
tinoblastoma protein on global cell growth and be synthesis of early/G1 cyclins (Cyclin
A, E and D). Malfunction of the regulation of thestriction point might lead to cancer, so
understanding this system by mathematical modetiryvery active field. Toettcher et al.
[163] extended previous models by Csikasz-Nagy.¢184] with DNA damage checkpoint
mechanisms and the apoptotic pathway to get tharsoost realistic mammalian cell cycle

model.

There are also further simplified approaches testigate mammalian cell cycles, when a
few key events are spelled out in more detailstieitrest of the cell cycle is greatly simpli-
fied. For instance, Pfeuty et al. [165] modeled tale determination by a simplified de-
scription of mammalian G1-phase. Different pathweggulating G1 arrest, growth, divi-
sion and apoptosis were linked to each other aadar attractor states (GO arrest, G1 ar-
rest, S-phase and cell death) were simulated ierdodrecapitulate the simple rules that un-
derlie the connection between input signals anidstates.

Noise can notably affect biological systems. WHiletuations in the average behavior of a

cell population can be described by deterministiFOmodels, the answer changes a lot on
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single cell level [19-21]. Stochastic modeling aggwhes are getting more and more popular
because they provide opportunity to analyze singlks and find relevant results in co-
operation with novel experimental techniques, saglguantitative flow cytometry [17] and
fluorescence microscopy [166]. Researchers have akeady using stochastic simulation
techniques for modeling cell division cycle regidat Modification of deterministic sys-
tems is a popular way for introducing noise into E3D Langevin-type equations have al-
ready led to novel results [163,167]. The needthrdise of the exact stochastic simulation
algorithm was shown for smaller systems [168], thet complexity of nonlinear multistep
reactions makes the manipulation of large moddfgdit. This is one of the goals of this
thesis, to overcome this barrier

Simplification by logical modeling has been promb$® overcome the problem of complex-
ity. Logical modeling has a long tradition in bigipand recently some applications to cell
cycle research also appeared [74]. These modelbamed on Boolean algebra, where the
activity of each component is represented by tvatest ON and OFF, providing a method
which is computationally less expensive. Behavibeg originate from the topology of the
system have be nicely investigated in [75,169] cdRdy, Davidich and Bornholdt worked
out how to convert ODE models to Boolean to pronuateversion between modeling for-
malism [73], while Faure and Thieffry compared #teucture of currently existing logical
cell cycle models [74]. An advantage of logical ralsdis that they reduce the size of the
possible state space, thus they permit the useré sanalysis methods that work only for

smaller systems.

Some other modeling concepts expanded from compaience towards biological systems
and cell cycle modeling. Rule-based techniques][&Rd process algebras [92] were built
to handle combinatorial complexity caused by compéemation and various protein mod-

ifications.

In the next section we move to another interestisgllatory system which has been in the

focus of theoretical studies from the beginning.
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2.12 The daily rhythm of living organisms

Additionally to the cyclic event of reproductiorgrowth and division - occurring in all eu-
karyotes (organisms with real cell nucleus), theranother important biological oscillator
that has been attracted the attention of a largebeu of scientists working on different
fields from mathematicians, physicians, engineatslaologists to computer scientists. The
daily recurrence of activity and rest is a commoopprty in everyone’s life. Early experi-
ments revealed the existence of an endogenous okmglating several periodic patterns
occurring every 24 hours. The name of the bioldgittzck is derived from latin ‘dies’ (day)
and ‘circa’ (about). Circadian rhythms are obsereadm cyanobacteria to humans
[171,172] and their importance is well recognizé&sban human physiology. Misregulation
in circadian rhythms may lead to different condissuch as depression, familial advanced
sleep phase syndrome (FASPS), delayed sleep pyradmsie (DSPS), or insomnia, which
largely impact our society [173]. Increasing numberesearch focuses on studying these
systems as recent findings indicate higher incgleftcancer in clock defective individuals
[174,175] and chronic jet-lag is associated witljhler mortality rate in aged mice as well as
faster growth of tumor [176,177] .

Circadian rhythms originate from individual cellgugped with a molecular oscillator. In
mammals, the pacemaker of circadian rhythms residdse head, more specifically in the
hypothalamic suprachiasmatic nucleus (SCN) [17&weler, it is generally accepted that
most cells (not just SCN neurons) have a circathachinery; thus, there are numerous pe-
ripheral oscillators (e.g. liver, muscle, lung, aaen other parts of the brain) ticking the
time for crucial biological functions, such as gleeake cycles, hormone secretion, blood
pressure, mental performance or our mood [17%3olstant ffee-run) conditions these cell
autonomous clocks sustain a rhythm about 24h ambimal conditions, the periodic pat-
tern of environmental cues (e.g. light-dark or temapure cycles) synchronize the clocks.
The period is relatively invariant (e.g. over temgtere), although it is able to phase-shift
upon a stimulus from external cues (light, tempertor even ionizing radiation). This
property allows organisms to adapt efficiently lbe external environment. For example, a
person traveling east to Europe from the U.S. exlperience a jet-lag in the process to
adapt advanced phase. Even a brief pulse of ligiyt cause phase advances or delays de-

pending on the timing and influence of the pulsg0]1
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INPUT
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Figure 8: Hyerarchy between different molecular clocks intéirey with each other. Rhythmic input signals
(light-dark cycles, temperature cycles, etc) entthe endogenous molecular system (SCN, large dodig-
ure) to the environmental cues. The core clock afrmals (SCN) influence the peripheral clocks (livier
broblasts, etc). Several phyisiology propertiefofeldaily pattern (output); for instance, blood gsere, sleep-
wake cycles, mental performance, mood, hormonal lev

The experimental research of the circadian clockbeen started in 1729, when the French
astronomer DeMairan discovered that leaf movemienpdants show a 24h rhythmicity in
constant darkness [181]. It took more decades pooap the existence of an internal and ac-
tively regulated biological clock in plants [182jchanother hundred years in animals [183].
It is believed that a complex hierarchy exists laetwdifferent (peripheral and SCN) clocks
interacting with each other, although the one ef ‘thnysteries” of circadian rhythms that
people were interested in first was understandiegniechanism of a self-sustain, entraina-
ble and robust oscillatory system (Figure 8). To ourrent knowledge, at the molecular
level, the rhythms of the circadian clock are coltéd by a negative feedback loop that is
interconnected with several other positive and tegdoops [171,184-186]. The molecular
bases of this self-sustained system have beenleehvedth the finding of the period (per)
gene in fruit fly Drosophila melanogastgin 1971 [187] and the frequency (frg) gene in a
mold (Neurospora cras9ain 1973 [188]. The pieces of the clock’s mechantsave been
described one by one [171]. Most of the genes @ngqatoteins involved in the mechanism

of circadian rhythms have been found simply byesairgg techniques.

Researchers have found that however the elemetite afrcadian clock are not necessarely
sequence homologs in different organisms, they piaar role and the logic of the clock

is conserved from bacteria to human. The natur@nadscillation is based on the idea of a
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system that moves away from equilibrium beforerretg. To achieve this, the product of a
molecular process (negative elements) feeds basloto down the rate of the product for-
mation. This negative feedback loop is moved awamfequilibrium with the help of delay

mechanisms or additional (positive) feedback lodgse molecular mechanism underlying

the daily cycles are described in the subsequergteh

2.12.1 The mammalian circadian clock

Figure 9 shows a schematic circadian oscillatoyimgl on a simple transcriptional-
translational feedback loop (TTL). The core reguatioop consists of specific transcrip-
tion factors (positive elements) activating the tegsis of several genes. This clock con-
trolled transcription factor is a heterodimer of BML and CLOCK proteins in mammalian
cells. They form the active complex via their sfiecprotein-protein-binding (PAS) do-
mains. Then the BMAL1/CLOCK dimer binds to the paisr region, onto the domains
called E boxes, of certain genes. Among these nighlly expressed coding sequences, we
find some negative regulator of the clock. In manmamasystems, to our current knowledge,
there are three period (Perl, Per2 and Per3) amdalivyptochrome (Cryl and Cry2) genes
within the core negative feedback regulatory lobgicadian rhythms. The functional dif-
ferences among these elements are still uncleanekter, we know that after their tran-
scripts (MRNA of Pers and Crys) are translateds thenerate clock proteins (PERs and
CRYs) they all bear a negative role in the feeddaok. PERs and CRYs in complex block
the clock gene’s activation, thus downregulatert&in transcription, closing a negative

feedback loop.

However, our knowledge about the complete reguiadiocircadian clock still remains par-
tial, we are aware of several additional controlp® of the clock. It is evident that the tran-
scriptional-translational loop (TTL) presented abdw not enough to generate a long - 24h -
pattern, therefore post-transcriptional and paatglational modifications of circadian com-
ponents occur, resulting in a more complex, butisblsystem. The large number of feed-

back regulations is crucial for the intact functmfithe clock [189].
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Figure 9: TTL negative feedback loop generating oscillationsircadian clocks.

One of the regulatory loops interconnected to tive aegative feedback loop is an inhibito-
ry branch that the BMAL1/CLOCK heterodimers generdarough the activation of the so-
called orphan nuclear receptor gene RevaH1I®90]. The REVERB protein, in response,
represses Bmall transcription by acting through-Bé&/ROR response elements in its
promoter. Moreover, the PER/CRY complex enhancaiseatly Bmall expression by bind-
ing to BMAL1/CLOCK and thereby reducing the tramgtion of the Rev-Erb gene. Re-
sults reported by Sato et al. [191] show that thedactivator RORA acts coordinately with
REV-ERB a and that they compete on the same promoter eledrambg the rhythm in
Bmall transcription. This finding defines anotheedback loop in mammals. In additional
to the orchestrated control of the expression aélckranscription factors, post-translational
modifications are also present. Recent evidencetdd a clock based entirely on post-
translational modifications in cyanobacteria [198¢veral reports [193] indicated that the
joint activity of kinases and phosphatases (e.gsein kinase 2 (CK2), casein kinase 1
(CK1), protein phosphatase 2A (PP2A) and proteimsphatase 1 (PP1)) regulate the phos-
phorylation and/or stability and/or the nucleansjaort of the negative elements (PERs and
CRYs). These relatively slow processes appear taribeal for creating a sufficiently long
delay to support a 24 h rhythm. Besides phosphoyl&vents, other protein modifications
(acetylation, deacetylation, ubiquitination, etckor within the clock. Recent findings of a
complex picture showed that mouse CLOCK has histwstyltransferase (HAT) activity
that is required for rhythmic expression of corackland output genes [194], however it al-
SO acetylates its partner, BMAL1 [195]. BMAL1 isatetylated rhythmically by SIRT
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[196] and it is also rhythmically SUMOylated on aglily conserved lysine residue in a
CLOCK-dependent manner [197].

The mammalian circadian clocks’ dynamical propsrtiesuch as the endogenous oscilla-
tions with an approximately 24h period, the entrent to external environmental changes,
temperature compensation and synchronization ofipheilclocks - require systematic re-
search. How the regulatory feedback loops aredaterected ensuring a robust rhythm and
an interactive, entrainable system at the sameisraa attractive query asked by modelers.
Furthermore, the way how a biological system iniclgdbiochemical reactions is able to
compensate the changes of the temperature stihinsna mystery. The picture is incom-
plete and its detailed research appears to be tamgoas our endogenous self-sustained

clock regulates a large number of physiologicatfioms contributing to a healthy life.

2.12.2 Thein silico clock: modeling the circadian rhythms

Several studies of mathematical modeling and systapproaches helped further under-
standing of the circadian rhythms in various orgars. Biological clocks were always ex-
cellent models for theoretical work [198]. Untikcently, little was known about the under-
lying mechanisms of clock. Without this knowledgesearchers performed modeling with a
top-down approach, such as the early attempts ¢éqular biology. They simulated and fit
the model to the properties (phenotypes) they obsem experiments. In order to gain
knowledge about the system, environmental stineuf.(light or temperature or later DNA
damaging drugs as well) were used to perturb thmekeeping machinery. Therefore, the
first models were lacking the description of intgians between molecular components, on-
ly the underlying principles of the clock have bekustrated with the help of theoretical
work (e.g. Aschoff's rule [199]). Early predictiongere achieved with theories borrowed
from physics, for instance using Van der Pol equestiderived for an electrical oscillator
serving for modeling the response of human cirecadsillations to light [200]. A morning
oscillator model, proposed by Daan and Pittendr[@01], contains two variables
representing the phases of oscillators. Kronauaddel had physiological interpretation of
light's effect on the human circadian pacemaked, Barbély’s two process model - for the
regulation of alertness and sleep-wake dynamiegl-ahso a great impact on the field [198].

There exist several abstract models including antielay with feedback, or some other de-

49



STATE OF THE ART

tails without completeness [202,203]. Vilar andaghors presented a study of a simple
circadian model resistant to noise revealing aiptesscenario of a robust oscillation driven
only by two elements [204]. Brian C. Goodwin’s distor [205], which connects three
components into a negative feedback loop, is lstdhdly incorporated into kinetic models
of biological rhythms after four decades (e.g. [ROArthur Winfree had an approach to de-
scribe circadian clocks as limit cycles [207] aredgdredicted that a critical pulse, given at
just the right phase and with just the right sttangvould collapse this limit cycle and the
system would become arrhythmic. This prediction hasn verified experimentally later
[208].

After finding some molecules of the circadian clootore detailed models have been built
that governed by a set of kinetic equations [208kse models are considered as bottom-up
approach as biochemical reactions are describdxopyysical laws (e.g. mass action kinet-
ics). The first circadian model following this appch was done by Albert Goldbeter [209].
He showed how 24h oscillations could be generaiteglg by a transcription/translation-
phosphorylation feedback loop involving the PERt@iro(a negative element of the clock).
He used standard expressions for transcriptionl-{tfilction), translation (linear relation),
and phosphorylation (Michaelis-Menten kineticsyl&scribe the system. As more molecular

details have been identified, more refined modaistheen developed [210-217].

Beyond using differential equations - both deterstio and stochastic [218] - the non-
classical techniques (process algebra, rule-baged, have also been introduced to model
the circadian clock [219,220]. They exploit a siifipdl - and abstract - picture of the known

regulations and care less about the details.

2.13 The interconnected cell cycle and circadian rhythm

The cell cycle is a series of fundamental actiogiadp able to respond to changes in the en-
vironment. Various effects (stress, light, temp@mt etc.) can influence the progression
through cell division cycles as well as severalgriexternal signaling molecules and meta-
bolites could also affect cell proliferation. Celtsorder to carry out a proper function are
interlocked with several other pathways. The harous progress of the cell cycle and the

circadian rhythms is necessary for the well-beih@rganisms as malfunctions in the cell
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cycle and/or clock can lead to tumorigenesis [1Z5]2Earlier studies from the late 1950s
to the 1980s indicate that cell divisions in Euglefietrahymena, and Gonyaulax occur only
at particular times of the circadian cycle [222 R23ated cell division cycle is also ob-
served in some cyanobacteria, with average doultimgs less than 24h [224]. The first
molecular link between the cell division cycle @hd circadian clock was found by Matsuo
and his colleagues [225]. A cell cycle regulatoredl, is directly regulated by clock com-
ponents via Weel’'s E-box elements in mammaliars.c&lhe Weel protein is known to
phosphorylate the CDK/Cyclin B complex in cell ay@nd inhibits the cells’ entry into mi-
tosis. Intrigued by these results, recently, sdvgn@ups presented coupled theoretical mod-
els of the mammalian cell cycle and circadian cltdalough this transcriptional link. Lau-
rence Calzone and Sylvain Soliman have investigdeeffects of interconnected circadian
and cell cycle model systems [170]. They focusethensynchronization of the two oscilla-
tors within the parameter space and they identifiredconditions of the entrainment. Alti-
nok et al. [226] used an automaton model for thlecgele to assess the toxicity of various
circadian patterns of anticancer drug delivery. §agng of cell cycle events by a circadian
clock model was analyzed in details by Kang ef2i7] with a systems biology approach.
Furthermore, we also showed crucial propertiesngyifom interconnected cell cycle and
circadian oscillations and with our detailed mode& proposed novel insights in the size

control of mammalian cells [47] (see details in Qiea5.8.1).

Biological model systems assess several assumpiwosgh the complex rate functions
describing multi-step reactions, making the examsif the model including noise difficult.
Both circadian and cell cycle contain transcripéibregulation where low number of mole-
cules is present and enzymatic reactions wherargggns cannot be applied throughout
the whole simulation time. By joining the Centre @omputational and Systems Biology in
Trento, | focused on improving compositionality pnocess algebra tools, particularly in
BlenX. At the same time, biological questions aesland we also concentrated on analyz-
ing an additional molecular connection link betwelea circadian clock and the cell cycle
under a deterministic framework [48]. Recently,awel link has been found that the phase
of the circadian clock oNeurospora crassf28] and Rat-1 fibroblasts (a type of mamma-
lian cells) [229] is shifted upon DNA damage caubgdonizing radiation or radiomimetic
drugs. Experiments revealed that a checkpoint kifBRD-4 inNeurosporaand CHK2 in

mammals), bearing crucial role in cell cycle regjola, phosphorylates and targets the core
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clock protein’s (FRQ irNeurosporaand PER2 in mammals) degradation. This conditional
link creates a bidirectional interaction betweea ¢kl cycle and the circadian clock.
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THE PROBLEM IN DETAILS

3 The Problem in Details

After the numerous important discoveries were fowrith the help of theoretical biology

models, we still have a lot to work on. The increggpower of the newest experimental
techniqgues will enable us to model a single calhsl even a single molecule’s behavior,
which will require computational tools that can dienthese problems. Better and better
measurements on RNA and protein levels providersoos amount of data that should be
fitted by future models. As the models grow, theall get more specialized by simulating

specific cell types, while others will get even dder by connecting several networks (e.g.
cell cycle, metabolic cycle, circadian clock, etogether. This later goal of interlinked sys-
tems is greatly accelerated by the collection @aaddardization of computational methods.
Still we need some improvement in modeling formrmals simulation techniques and model

analysis to achieve the knowledge of the wholeupécof life.

BlenX allows a rule-based process calculi modetmeghod that contributes to systems bi-
ology research. A BlenX program is made of an atiodeclaration file for the user-
defined constants and functions, a binder definifite that associates unique identifiers to
binders of entities used by the program and a pradile that contains the program struc-
ture. “Boxes” represent the interacting biologieatities (proteins, genes, etc.) and contain
an internal program (or internal behavior) desagbtheir possible activities and a set of
typed interfaces describing their interaction cédlgeds. Sequential and parallel composition
of processes; definition of events and actions ipevhe backbone of a BlenX model.
Composition of possible conditions leading to remnd that might occur is the first chal-
lenge that the modelers should deal with. A keyvative aspect of BlenX is the ability to
model the biochemical reactions between compongniply by listing their affinity and
without the need of programming all the possibteractions. The BlenX framework allows
the user to build systems by fixing each reactibthe network (also called as bottom-up
approach) or gives opportunity to handle abstrastias well (such as a top-down ap-
proach). After specifying the system, the BlenXgveon is executed with the Gillespie sto-
chastic simulation algorithm (SSA) [37]. The rean8 occurring in the system are defined
by rate dependent functions that are crucial fer ibaction propensities of the stochastic
model. Rate functions are associated to actionsesadts of boxes, and those rates can be

determined by the mass action kinetic law.
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One crucial point of biological models built upomtimematical formalisms is the additional
presence of the complex mathematical functions (dighaelis-Menten kinetics [141], Hill
function [142], etc.) that have been empiricallweleped through several assumptions in
order to provide an abstraction due to the lacknoflel parameters. These abstractions sim-
plify the system leading to a decrease in the requcomputational power for calculation.
Furthermore, modelers often turn to these phenotogival functions to describe the ob-
served behavior of a system without knowing alldigsails, such as multi-step reactions are
often assumed to happen at the same time in cdoeraaction schemes [34]. Experimen-
tal measurements are becoming more and more sigphest. Data on elementary steps are
asking for a technique which describes single reastin a modular manner and they re-
quire tools that are able to transform abstracthaeisms into elementary ones. BlenX is
one of the promising computational languages witkadure of compositionality for model-
ing biological systems. Complex rate functionseasveral problems in stochastic process

algebra approaches.

Among the current research problems arising inggscalculi, one crucial point is the ex-
pressivity of the calculus and the challenge toroup the compositionality offered by
process-theoretic tools in biology. Compositioryai# believed to be one key advantage of
formal languages. The capability of easily composextiels lies within the tool, although

there have been only a few research on bringiolp#er to perfection [230,231].

During the stochastic process algebra compositfobialogical models the nonlinear de-
scription of biological phenomena raises the folluyyproblems: (1) complex rate functions
are not appropriate for the guidance of stoch&illespie method assuming only elementa-
ry steps in the system. (2) Interpretation of nugdir terms is currently available in the
BlenX framework although it highly limits its comg@tionality. The hidden elements of
these functions might be necessary to be exprdesdte extension of the model. (3) As-
sumptions of the complex terms are often foundeanaccurate in a larger system. Thus,
conversion of nonlinear terms to elementary stéfgndeads to the disappearance of crucial
nonlinear behavior of the large system. (4) Curretgrpretation of BlenX models requires
computer science knowledge from the users. Furtbexnwe need some biologically im-

portant test cases to investiage these problemghandethod we propose in this work.
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3.1 The Gillespie method and nonlinear functions

Molecules undergo random collisions resulting iscdéte biochemical interactions. The
BlenX framework applies Gillespie’s exact algorithimnsimulate chemical or biochemical
systems of reactions in a stochastic manner (dgclism Chapter 2.9). One limitation of the
algorithm is that it considers only elementary teans, while biological models often deal
with nonlinear terms in the deterministic framewdxonlinearity is known to serve oscilla-
tions in several periodic biological systems [3Bhuultsistability in others [145], giving an
important role for these mathematical formulasimpte models. The problem of complex
rate functions as stochastic rate constants haadirdiscussed by several authors [136,232-
234]. Following the assumptions of Gillespie’s hipsis, we specify that each reaction
time is a random variable following a negative engattial distribution with rate equal to
the value of the propensity function that cannoapplied in case of nonlinear reaction rates

in the system. Most models ignore the inquiry & Walidity of this assumption.

Previous work concerning the use of general kinkies in process algebras and formal
methods was presented in [39,235]. Within the Blenaénework, generally distributed

reaction times have been also implemented rec§k®ly]. It provides choices of the reac-
tion time distribution for the stochastic simulatialgorithm of Gillespie. In this way, ab-

stracted rate laws can be handled stochasticadlly léads to a better quantitative tool for
matching wet-lab experiments and in-silico resuitss aggregation and level of abstraction
lay above the elementary reactions. Another imtato approach complex reactions with
simple abstractions in BlenX has been studied [2BB¢ idea taken from the application of
web-service transactions have been used to extentbtl with the representation of mul-
tiple-reactant multiple-product reactions with etartary reactions as if it were atomic.
Atomicity is summarized as all or nothing, reducthg model but it may lose nonlinearity
as a property of the biological model. A novel aygmh is needed within the BlenX lan-

guage for a systematic and proper way of model asitipn.

3.2 Compositionality with complex rate functions
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THE PROBLEM IN DETAILS

Living organisms are governed by several complestesys of interactions among genes,
proteins and other molecules. These systems coetff@ctors (activators/enhancers or inhi-
bitors/repressors) of the reactions whose commtiaicaesults in different regulatory loops

(feedback and feed-forward loops). Interconnectibthese structures may lead to oscilla-
tions, acceleration, pulse generation or bistahihat are frequently seen features of biolog-
ical systems [38,145,236,237]. Theoretical modeldress general concepts of dynamical
systems and find principle design of networks #rat crucial in particular behaviors (mul-

tistability, hysteresis, oscillations, irreversity) etc.) [38].

Compositionality is a crucial feature of a compuatadl language and it signifies the possi-
bility of defining a large system starting from ttefinition of its subcomponents. Systems
biology calls for modeling languages that can bit g in a systematic way. Several bio-
logical models are proposed each day making cortipoaslity to be one of the most impor-
tant key features of process algebra. Composiitynahs been addressed as an issue of
model-construction from elementary reactions whk basic operators [238,239], as the
translation of one approach to another [125], oth&s combination of different types of
models (ODEs with process algebras, Boolean, hyodels) [42,240], but the composi-
tionality of complex rate functions has attracteds| attention. When a model has to fulfill
several assumptions applied in phenomenologicalutesdthe freedom of compositionality
is reduced. The hidden parts of the modules mayacoimportant linkage between the
networks that are chosen to be merged togethech&ttic computational modeling is ask-
ing for a tool that supports network compositiommadequate and user-friendly way.

Nonlinearity in biology and in computational models

Biological systems are highly nonlinear with nhumeranteracting molecules. In order to
represent a nonlinear behavior of these netwoksptex mathematical functions are used
to describe the response of a system to a pantisigaal. Mathematical models are usually
composed of variables (molecules, signals, etc) @gretators (algebraic laws, functions,
rules, conditions, etc.). If all the operators é@ihiinearity, the mathematical model is de-
fined as linear. This is often the case in assumelegientary reactions described by mass
action kinetics where the rate of a reaction igpprtional to the activity of the reagents. For

more complex schemes, such as enzyme kineticgipnotodifications, transport mechan-

57



THE PROBLEM IN DETAILS

isms, etc., there are well-defined complex formutaslescribe the observed physiological
output. These simplifying equations are often usgdnodelers. For instance, the assump-
tion of the Michaelis-Menten kinetics [141] makessdription of enzymatic reactions sim-
ple and computation of the term requires less debhithe system. The Goldbeter-Koshland
switch [241] and the Hill-function [142] providegsnoidal signal-response curves that are
highly sensitive to changes in signals around tineshold level giving rise to an ultrasensi-
tive property. Sigmoid responses are used to genewitch-like (binary) decisions [134]
and have been shown to be able to filter out noisgelay responses of the system [242].
Furthermore, nonlinearity originating from ultraséivity can create oscillations in combi-

nation with negative feedback loops [243].

Several authors have reinvestigated the applicatidhe approximations of complex reac-
tion schemes in different scenarios. In case ofi@&ter-Koshland’s switch Bluthgen et al.
[244] have shown that high enzyme concentration roadify the response of the MAPK
cascade [243] and make oscillations disappear uhése conditions. Ciliberto et al. [132]
have analyzed the total quasi-steady-state assumgitithe same reaction scheme in details
and proposed a novel approximation of the scenahigh is found to be more appropriate
for metabolic networks than the assumptions ofahginal kinetics. Additionally, Berg et
al. [245] have pointed out the differences betwemtroscopic and average behavior ana-
lyzing the effect of noise on an ultrasensitivetays Under the stochastic framework the
approach of complex and simplified reaction termglgng assumptions may not be a good
solution for modeling biological systems.

When non-elementary reactions occur and compourttiemeatical formulas are used in
modeling, the direct translation of mathematicaii® into the stochastic context is a well-
liked approach. Usage of these general functionsdtzulating the rate of a reaction is also
possible in BlenX [117,246]. However, these implatagons have been pointed out by
several authors to be incompatible for some ca%8§,232,233,247-249], thus modelers
have to pay particular attention to the assumptibag apply. Stochastic modeling of com-
plex functions is only an approximation and assuomgthave to be handled globally. Thus
the BlenX framework calls for a semi-automatic noektlof describing these complex rate

functions with intermediate steps (we refer as ampacking” mechanism) not only owing
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to ease the compositional programming processtdoptovide a correct (and generalized)
way of stochastic simulations.

3.4 A programming language for computational systems lmlogy

One of the goals of Beta Workbench (BWB) that hasnbset to target is a design of a pro-
gramming language that facilitates and engineersnbdel-building process of biological
systems at different level of abstractions [250&r&X inherited the properties of BWB that
has been developed for modeling, analyzing andlaiing biological networks. The usage
of the language - at this stage - requires compmgdience knowledge that biologist might
lack. Furthermore, the large variety of proces®lalg primitives provides different repre-
sentation of the same biological schema but witlerdie efficiency of compositionality. Ex-
tension of nonlinear models is currently not stnéigrward in BlenX (as it is also challeng-
ing in other approaches) and depending on the sgimre of a reaction with the process al-
gebra language, creates a problem in composittgnali
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4 The Proposed Approach

Men always search for common patterns that arelsitopunderstand and that might help
them to comprehend complex features. Mathematicpimgsicists and also biologists have
tried to find order in “chaos”. As systems biolagyone of the research fields concentrating
on understanding life and how biological system=fion; the common motifs of molecular
networks are in the heart of focus of interest [&fveral essential biological network struc-
tures have been published in biology [33,44,5623, and in computer science
[39,239,251] as well. These repetitive regulatoajtgrns carry special and general proper-
ties that are crucial for the proper function af thverall biological system.

Templates are constructs representing basic stas;tmotifs. Templates are applied in pro-
gramming as re-usable codes that allow the pastiffefent parameters without changing
the structure of the template. The concept of padtand modular programming originates
from an idea of an architect, Christopher Alexan@dro had a great impact in the research
of programming languages and software design [Z5@prehensive biological models are
difficult to be constructed reaction by reactiomyg it is worth realizing general building
blocks that can serve the initiative of systematmdeling process. Process calculi - there-
fore also BlenX - provide a programming environm#rat could support systematic and
formal composition of large models, although thedelers do not profit from this property
as the current model building method is difficultdase of larger systems. We have to start
the composition from the very “bottom” (with thedoa primitives) that is time-consuming
and contains many repetitive and error-prone stitps. believed that the modeling tech-
nique of BlenX should support an additional, higlestel composition than what is availa-
ble now. By creating and using pre-defined templatored in a library, computational
models might be easier composed and the usersaeeaapable of profiting from the com-
positionality feature of process calculi tools otagger scale. The collection of biological
functions has already existed in non-process-asgebased modeling tools (e.g. COPASI
[9]), but it is still a missing feature of BlenX.eRlization of different templates leads to in-
teresting and unsolved problems of computer sciehdibrary of modules should influence
the program design in a positive manner as inhalftelds affected by computer technolo-
gy. With a motif library, biologists and modelersutd pass the current limitations of
BlenX.
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Nonlinearity might be challenging to code in thereat BlenX representation. Stochastic
solutions require elementary steps, while unpackigcomplex mathematical terms may
lead to disappearance of nonlinear behavior (dgsdign Chapter 3). In stochastic simula-
tors - such as Beta Workbench (BWB) - decompositibmathematical terms into the un-
derlying elementary reactions (with BlenX primitss@ctions events complex formation
etc.)) seems to be important, although usuallg at straightforward. If the specific reac-
tion schemes reproducing nonlinear properties ¢gggioidal curves, switches, etc.) are
available, users can build models in BlenX in aperand adequate way, by choosing the
particular motif from the library.

Our study has to represent a method with which amitipnality is carried out in a farsee-
ing way. For instance, a single protein might ggrtite in many reaction systems, thus de-
finition of a module that can be easily composdd mlarger model is not straightforward.
These terms have to be extendable for later ugeeriztng on the level of abstraction (that
is defined by our knowledge), the desired behas@wr be achieved in different ways thanks
to the rich opportunity of the language. We presmmtanalysis for compositionality in
BlenX starting from the basic primitives to the linigvel, complex templates. The possibili-
ty of using different basic BlenX primitives gives freedom of abstraction, although the
users need to bear computational skills. Basedheprtedefined structural requirements and
frequency of basic motifs, elements of library tenselected. These building blocks would
improve the modeling process with BlenX as modetees able to reuse frequently found
biological structures and compose large modelsli®gian of these templates requires both
biological and computer science approach. Motifsusdh be biologically relevant and com-
putationally effective at the same time. The pre@goapproach may open novel questions

and provide guidance on future improvement of cositpmality.

Properties of the library elements are further stigated in this work. Stepping towards
complexity, higher level submodels are also comgoBeally, we focus on presenting in-
teresting biological case studies and questiortsatteaanswered with computational model-
ing approaches. Possible research directions dinignparameters for these motifs are also
shown, but | would like to emphasize that paramegtimation is out of the scope of this

work. The development of the library is presentetemafter.
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5 Results

5.1 The basic primitives

Model composition is the first challenge that thedslers should deal with. A key innova-
tive aspect of process calculi tools is the abtiitynodel the reactions between components
simply by listing their affinities. The BlenX fram@rk allows the user to build systems by
specifying each reaction of the network (also chie bottom-up approach) or gives an op-
portunity to handle abstractions as well (such tpadown approach).

Molecules are represented by interactive boxesdtetble to synthesize, to degrade or to
react with each other. Basic BlenX primitives appigss action kinetics which describes
elementary steps with one or more chemical speessing in a single step and with a sin-

gle transition state. The simplest scenario inlxocical reactions is when a molecud is

synthesized with a constant rakg (

when(A::rate(k)) new(1);

Degradation with a raté&) of the entity ) is also described with an event:

when(A::rate(k)) delete(1);

Ais modified with a specific reaction ratg (esulting in a moleculeBj:

when(A::rate(k)) split(B,Nil);

whereNil represents an empty box that degrade with anitefrate.

Activation of a synthesis by a sign&) €an also occur in a linear way

when(S::rate(k)) split(S,A);
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where the amount of the effect®) does not change during the reaction.

Furthermore, boxes are also able to form complekebange their internal behavior. In the
sequential sections, we would like to introducehbiglevel of compositionality that mod-

ules are collected into a template library for eeus

The Michaelis-Menten formula for enzymatic reactiors: a hyperbolic response curve

Most of the biochemical reactions require catalytizlecules (enzymes) which increase the
rate of a particular reaction. In enzymatic reawiocthe molecules at the beginning of the
process are called substrat8s and the enzyme&) selectively convert them into products
(P). The kinetic description of such systems was esged by L. Michaelis and M.L. Men-
ten [141]. The derived equation of their resulefdrred to as Michaelis-Menten kinetics) is

widely used in biological modeling.

The scheme of a one-substrate-one-product reagtitihnone active site) is

kq,k> k3
E+S«—ES—>E+P

The catalytic step is supposed to be irreversihtk the rates of the reactions are given by

the law of mass action. Reaction rates are sumethiiz Table 5.

Association rate of the enzyme-substrate complex k- [E]-[S]
Dissociation rate of the enzyme-substrate complex k, - [ES]
Production rate of P ks - [ES]

Table 5 Steps of the enzymatic reactidq, k, andk; are the rate constants of the reacti¢is; [S] and[ES]

represent the concentration of the enzyme, thetrmtbsand the enzyme-substrate complex, respegtivel

As enzymes are specific to their substrates andiibbaelis-Menten term assumes that the
formation of the enzyme-substrate complEg(is relatively fast, the equilibrium is reached

rapidly and the production & becomes the rate-limiting step in the overall etystThere-
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fore theEScomplex is stable, meaning that the change afateentration approaches zero
(referred to as quasi-steady-state assumption (QSBAother important assumption is that
the concentration of the substrate highly excebdsone of the enzymgS] >> [Etot]).
When a critical substrate concentration is reactielenzyme is saturated and an additional
amount of substrate will not influence the veloaitythe reaction; it is already maximal
(Vmay. If the last reaction is assumed to be irrevéesdnd all the previously mentioned

statements are valid, the rate of the substrat®wear to product can be estimated as

K, + [S]
where
Vmax = K3 * [Etot]
kst k;
m — k1
and

[Etoc] = [E] + [ES]

The Michaelis-Menten equation provides a complés fanction assuming a single reaction

step:

E+SSE+P

with the reaction rate described previously:

[S]
Km +[S]

UV = VUnmax '
The Michaelis-Menten rate law is often found toabgood approximation to describe en-
zymatic reactions. Furthermore, it by-passes tlodlpm of rarely available rate constants
as the key parametenrg(x andK,) of a Michaelis-Menten reaction might be easilyede
mined from measured data through linear grapheatasentations (e.g. Lineweaver—Burk
plot, Hanes—Woolf plot, Eadie—Hofstee diagram) [2&3by nonlinear regression methods
[254].
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In the next subsection, we provide a brief desiompof how to code enzymatic reactions in
BlenX with elementary steps and we give a hint howgearch for unknown parameters in

the Michaelis-Menten module.

1 The Michaelis-Menten reaction scheme

The use of Gillespie's stochastic algorithm requekementary steps instead of complex rate
functions in a model (discussed in 1.2 The Proldession). Decomposition of the Michae-

lis-Menten rate law into elementary reactions megdl to crucial changes in a larger sys-
tem's global behavior as nonlinearity may disappleassumptions are inconsistent about
enzyme-substrate complexes [132,168]. Compositionatiel building should carefully

handle the enzyme molecules hidden in the quaadgtstate assumption (QSSA).

X: S x: P
I communication I
(kpk:) 1===71 (k) |~~~
S reversebind:'n S change P - P
x!().ch(s,P).nil nil

e:E

E - (infinite) decomposition
rep e?().nil -

Figure 10: BlenX representation of the Michaelis-Menten kiogti

The Michaelis-Menten module can be implementedheasio the BlenX language as the
binding of the substrate and the enzyme is destidsecomplex formation through specific
binding sites of the boxes representing proteins.FHgure 10, the typeS andE are com-
patible and equipped with complexation and decorgtien rates. After complex-
formation,S andE communicate and the internal behavior of the satestoox is changed
into the behavior of the product (thk(x,P)action modifies the type of the bindemto P).
The new product has binding affinity no more to #reyme, thus an abrupt dissociation

(“decomplexation” with infinite reaction rate coast) occurs to release the enzyime

The possible reactions of the system are descabéle followings:
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let P : bproc = #(s:0,P) [ nil |;
let S : bproc = #(5:0,S) [ s!().ch(s,P).nil |;
let E1 : bproc = #(e1:0,E1) [ rep e1?().nil |;

Complex formation, dissociation rates and the gttatate are provided through the types

identifying the molecules in the reaction:

{S,PE1} %% { (SE1rate(k11) rate(k11r)rate(k21)), (P,E1,0,inf,0) }

5.2.2 Finding parameters for the Michaelis-Menten module

Decomposition of the nonlinear term into elementagctions calls for the definition of rate
constants of each step. Enzyme catalysis is tledimiting reaction, thus the maximum ve-
locity of product formation (also called as turngvie given by the amount of available en-
zymes in the system and the particular rate cohstwe would like to implement the
complex term defined by the Michaelis-Menten forairito a stochastic process calculus
framework in order to carry out compositionalitytvn e.g. BlenX, the parameter of the

last reactionkj) is easily obtained from the knowraxand the total enzyme concentration:

vmax
k3 =

 [Etor]

The dissociation rate constant of tB8complex k) is the following:

ky=—>—k
2 Km 3

and obtained from the Michealis-Menten constanis Bupposed to be low as tB& com-

plex is assumed to be stable. The rate constarttkeatversible complex formatiok; (@and

ko) can be chosen among several combinations byiegdinat the association rate is larger

than the dissociation rate of tB&complex. Furthermore, we know that the catalytigp ss

the rate limiting, thuk; is chosen to be much larger thign In this simple example, our

choice determines the time of the simulation, thalsies of the rate constants have to be
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carefully selected. In isolated systems we canesdalvn the constants easily in order to
speed up the simulation. However the rates of ¢versible complex formation cannot be

limiting in a larger model.

The proper rate constants describing our compourahaélis-Menten module have been
selected by taking the minimum amount of subswlaténg the reaction and setting the ini-

tial (total) concentration of enzyme $,/0.1. As a consequence, we get

Umax
ki =k.-1000 =——-1000
te [Etoc]

and
ky =Ky ki — k3

Note that the selection of feasible parameters heast to a positive value &; and the to-
tal concentration of the enzyme has to be glodallyer than the substrate with a large ex-
tent. Different approaches may be available tares® the parameters of this module in a
larger system. For instance, deterministic simoieican give us a guess of the minimum
values of the substrate concentration during theuksition or more sophisticated methods
may be also available for determination of the mggparameters from experimental mea-
surements [140]. Optimization of the execution tawith a rate of complex formation that is
fast enough is necessary, thus equilibrium is reaatapidly but the simulations remain

computationally cheap.

5.2.3 Simulation results

The complex term of the Michaelis-Menten kinetihi@ndled as a single step within Gilles-
pie’s stochastic simulation algorithm. The timelod next occurrence of each reaction is as-
sumed to follow negative exponential distributidhe approximation of this abstraction has
been shown to be good enough if the assumptiongedpp the Michaelis-Menten term are
valid [232]. Namely, if the amount of substrate swlles excess the number of enzymes in
the system and the enzymes are quickly saturateldenysubstrates, the reaction exists in a
quasi-steady state. The authors claim that theoappation of the Michaelis-Menten reac-
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tion reduce model complexity and are found to ber@griate in stochastic models upon va-
lid assumption, although in case the assumptiossriteed ahead are not valid, decomposi-
tion of the module leads to disappearance of neatity. When the exact measurements for
the parameters of the modeled system is unknowmdmnlinearity is observed or hypothe-
sized, decomposition of the complex rate equatsorequired to provide the properties as-
sumed for the module. Thus, we decided to analyealifferent solutions for the decompo-
sition process in BlenX and we compared two staahasodels, one with the complex rate

function and another with an exact solution of Miehaelis-Menten kinetics.

To model molecular fluctuations, a probabilisticdebof the biochemical dynamics is ex-
ecuted where the number of the reactants of edementary step introduces noise into the
system. This property might modify the result of $imulation as stochasticity becomes a
crucial behavior of the biological system. We beti¢hat the BlenX language should offer
an alternative solution for complex reaction schemvéhin a stochastic framework provid-

ing a compositional tool for modeling biologicaksyms.

First, we converted the concentrations of the datastic system into molecule numbers
through a transformation on the parameters usisgatar constantt defined asl/(Ny -
107%- V), whereN, is the Avogadro number andis the volume of the modeled system
(discussed in details in 2.10 session (Reactiogsrat BlenX)). The number of molecules
influence the noise, thus during the simulationsets the level of stochasticity depending
on the size (volume) of the system. Then we sefrtbéels to different initial conditions for
the substrate and run 200 simulations for eachalsitThe rates of product formation have
been derived from the simulation results and tivadges are plotted over the initial amount
of substrate molecules. It provides a saturatiorveewof the Michaelis-Menten kinetics
(Figure 11).
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Rate of reaction and .
_ Rate of reaction and
" standard deviation .
Initial amount of Substrate [#] . . standard deviation
with the exact solution . .
with the complex reaction
(elementary steps)

30 5.630 + 1.873 4.455+2.130
60 10.450 + 3.125 8.410 £ 2.648
120 17.395 +3.502 13.895 +3.503
180 22.010+4.783 19.850 + 3.645
240 27.170 + 4,966 24,520+ 5.011
300 30.490 + 4.960 27.460 £ 5.077
360 31.575+5.219 30.790 + 5.552
420 34,980 £ 5.105 33.875 £ 6.445
480 36.880 £ 6.132 35.410+6.516
540 39.360 £ 5.873 36.795 + 6.422
600 41.035+6.491 38.405 +6.191
1200 47.985 £ 5.990 46.510 £ 6.415
3000 53.865 + 7.075 53.725+7.473
6000 57.845 £ 8.212 56.405 + 7.227

Table 6: Average value of the rate of reaction and thedateshdeviation of 200 stochastic simulations.

Calculation of the parameters in this case is basetthe assumptions shown previously.

is set to300# (# refers to the unit of number of molecules) ang is 60#/min The total en-

zyme amount|E) is set to60# molecules and the Michaelis-Menten constants défn

and the ratio ok; to k. The chosen parameters should also satisfy thermgdon that the

value ofk; (dm3/(min - mol)) is much larger than the value lof(1/min). This condition

may be suited by different rateslqfandk,, although these options only influence the speed

of the reaction (and our simulation), but doesatatnge the result (data not shown).

Parameter Parameter Parameter
names values units

k1 200 a 1/(min #)
k2 99 1/min

ks 1 1/min

Km 0.50 #

Vimax 0.1a #/min

E 0.1a #

Table 7: Parameters for the Michaelis-Menten modutéas set to 0.00167 during the simulations shown on

Figure 11.
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Figure 11: Simulation results of the stochastic BlenX modetHe deterministic saturation curve well (A). On
(B), at low amount of initial substrate moleculée toriginal assumptions of Michaelis and Mentenndb
match and the exact solution diverges from the dexnfunction. This is a property of both the detanistic
and the stochastic case. Each point is an averalge wf 200 run with am=0.00167 defining the level of
noise in the system. Standard deviations are suineagin Table 6.

We compared the deterministic and the stochastinulations’ results executed with the
“unpacked” and the complex modules with a paramstérshown in Table 7. The module
built up from a complex reaction and the one widmentary reactions shows us a good ac-
cordance with each other and also with the detestierscheme (Figure 11). Simulation re-
sults of the BlenX model fits the deterministicwsation curve well, although when the

original assumptions of Michaelis and Menten do matich, the exact solution diverges
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from the complex function as it has been shown iptesly by other. [232]. When the en-
zyme is in excess tihe substrate, the solution of the unpacked matfer dyreatly from the
packed version as the assumption made for the QSS®t mae valid for the syster
(Figure 11 and Figur&?2). This is one limitdon of the compound function; however, it

also a limitation of th&eterministic smulations.

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Product (#)

o 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time (min)

Figure 12: Simulation for different numberf initial substrates: 1a-S&=304# 2a-<: S=60# 3a-c:S=600# Av-
erage number of product is plotted for each tineg.st-3a: stochastic unpacked versi (black lines) shown
with standard deviatiofgrey lines from the mean. 148 complex rate functions wilK;=300%#, V;;,,,=60#/min
where standard deviation is plotte«-3c: comparison of the average of tingpacked (dashed) and comp
(solid) stochastic sintation resultsexecuted with BlenXa = 0.00167

Arkin and Rao assume[232] that the reactions are isolated and the amounhnyree is
fixed - but in complex netwiks this assumption seems to be wdakzyme concentratic
has to be much less than the substrate concentiatid in e.g. oscillatory systems thdb-
strate amount changeser time. In those cases, the minimum value ofstiiestrate has
provide the base ohé calculatio. Simulation runs wh complex rate functions may of
an initial guess for aappropriate enzyme val that satisfies thassumptions made 1 un-

packed nonlinear terms.
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We would like to emphasize that decomposition ef Michaelis-Menten kinetics is not al-
ways necessary, but in a compositional modelingénaiork it has to be available (as a part
of a library). Assumptions have to be checked dythre execution and the decomposition
might be especially useful for further extensiortred model. For instance, when an inhibi-
tor of the enzyme is present or two substrateb®@fame enzyme are introduced, details of
the complex reactions have to be elucidated. Hidtkgails of the assumptions might be-
come a limitation of the currently available trasrsfiation of the deterministic models into
the stochastic framework. Furthermore, we are awhtkat the quasi-steady state assump-
tion of enzymatic reactions in complex models migatviolated. In those cases appropriate
decomposition of the reaction into elementary stegsucial. Parameter check or parameter
estimation is possible within the CoSBi Lab platidi255], thus assumptions of the approx-

imation or the algorithm can be monitored during thns.

In this section, we provided a description of aptate for enzyme kinetics in BlenX with a
parameter search based on basic mathematical usiduhplementation of the template-
library into the CoSBi Lab platform [256] might antatize the method of parameter esti-
mation as it contains inference tools (Kinfer [4@)e only presented a hint of how para-
meters might be achieved.

Hill kinetics of cooperativity

Cooperativity is a phenomenon displayed by enzyanesreceptors that have multiple bind-
ing sites and their affinities are modified upoe thinding of a ligand. The classical exam-
ple for such a behavior is the increased affinfth@moglobin's four binding sites for oxy-
gen when the first oxygen molecule binds [142]. @ativity frequently occurs in biologi-
cal systems, most transcription factors are alsoposed of several repeated protein sub-
units. Often, full activity of these regulatory cplexes is only reached when multiple sub-
units can bind to the target. Hill function prowsda useful phenomenological equation ap-
proximating this cooperative process. In biologicaddels, Hill sigmoidal response curves
are commonly used to substitute multiple reactimps with one term. The intermediate
complexes are hidden in the Hill equation makirgdktails of the system unavailable. This
Is a convenient way to handle unclear scenaridsadlogy, although the average of a nonli-

near function (e.g. Hill function) is generally fudito differ from the function of the aver-
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age [249]. The proparsag: of these mathematical functionslargermodels is crucial. The
Hill equation assumes thn molecules of an entity (e.g. ligand) bind to a &udf(e.g re-
ceptor) simultaneouslji42] and intermediate states do not occur. This is philgi posi-
ble only if thenumber of ligands is equal to n=1), but in most cases this approxima is

far from reality.

The Hill equation assumeimultaneous binding oX molecules tor, thus the raction is of

ten described as

kf kb
Y +nX «—YX,

wherek; is the rate consnt of the forward reaction ang is of the backward. At eqii-

brium, the ratio of bound to total receptors isegioy the Hill equatic

o Bound  YX, X"
HIW™ "Total ~ Y +YX,, X"4"

where the dissociation constantJ = ky/k; andn provides the number of ligands. The p-
ness of the transition of the sigmoidal curveends on the number of ligancn) andJ
provides the number of ligandt which half of the receptor¥) are boun Figure 13

Fan(X) 1 7
os 4  fF . n=2
=:-n=3
—n=4
0 |
50 5000

X

Figure 13: Analytic calculation of theHill function for different Hill coefficients n=2,3,4). WherF; (X) is
0.5,J equals to 600#.
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Gene expression is known to be a particularly cempind noisy task [19-21]. Transcrip-
tional regulation is often characterized by a sightdill function, where nonlinearity arises
from the assumption that the transcription factmmfs multimers before binding to the
DNA (shown in Figure 14). This property createsadmupt switch from one state (where
transcription is “off”) to another state (wherersaription is “on”). The detailed mechanism
behind the observed behavior is still unclear, thete are several hypothesis and models
available [34,257,258]. Although it is difficult tohoose one particular model scenario
[259], we decided to investigate a simplified modEpositive cooperativity that captures
the requirements of containing only elementarytteas but still maintaining the sigmoidal

property of the module.

5.3.1 Decomposition of the module - transcriptional regudtion case

Transcriptional factors (abbreviated BBs) often form multimers when binding to DNA
and inducing transcription [260,261]. This coopertffect creats sigmoidal response of
the system to the change of the active transcnptiéactor amount. Such coooperativity
widely occurs and the Hill equation is a good agpration of the underlying mechanisms,
although it assumes simultaneous binding of thet®Rke promoter region that is far from
the realistic picture. As intermediate states appeang the reaction, sequential binding of
the transcription factor to the promoter has beamsiclered for this study. The following
scheme (on Figure 14) approximates the Hill functwehen the intermediate staf€FQ)
does not accumulate and positive cooperativity resgnt. Several other interactions are

plausible [34], but are not investigated in thisdst for the sake of simplicity.
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tf:TF tf:TF
TF Join, split TF

tf‘Z:TFZ

© (ki k 4)
Jofri; split TF2

| M
GTFZ ( kJJIS ) M

G TF2 isplit VaVaAY

Figure 14: Transcriptional regulation: Sequential binding @niscriptional factorsTFs) occurs then a ho-
modimer [F2) sits onto the promoter of a ger®) (and transcription results in messenger RNARKNA).
Reactions are described through mass action kinefih rate constants, ko, ks, ks andkps

gtf2 GTF2 -
I

BlenX offers a formal and efficient definition adip and split events of boxes as complex
formation and complex dissociation occur in biot@jisystems. Transcription factoid5)
form multimers (in this exampl&F2) through ajoin event, enhancing the affinity of its
binding onto the gene's promoter regi@).(Dissociation of the complexes occurs through

split events:

when(TF, TF::rate(k1)) join(TF2);
when(TF2::rate(k2)) split(TF, TF);
when(TF2,G::rate(k3)) join(GTF2)
when(GTF2::rate(k4)) split(G, TF2);

Positive cooperativity results in a low dissociatmonstant of th&TF2 trimer. The joined
complex is able to transcribe mMRNAdS) of the gene through a split event that creltes
boxes with the release of the active trimer.

when(GTF2::rate(kms)) split(GTF2,M);

Binding processes are assumed to be reversiblendglary reactions of the system are

summarized irmable 8 The model contains the followirmpxes
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let G : bproc = #(3:0,G) [ nil |;

let TF : bproc = #(tf, TF) [ nil |;

let TF2 : bproc = #(tf2,TF2) [ nil |;

let GTF2 : bproc = #(gtf2,GTF2) [ nil |;

let M : bproc = #(m:0,M) [nil |;
Description Reactions Rate constants Units
Homodimerization off Fs 2TF - TF2 ki 1/(min#)
Dissociation ofTF2 TF2 - 2TF ko 1/min
Formation of an active complex TF2+ G — GTF2 ks 1/(min#)
Dissociation of the active complexGTF2 - TF2 + G K4 1/min
Synthesis of thenRNA GTF2 ->TF2+ M Kins 1/min
Degradation of thenRNA M - Kind 1/min

Table 8: Reactions for Hill kinetics for the requirementatfleast 2 ligands (TFs).

Sigmoidal curves are often measured in experimamatgiding specific Hill constants (such
asn, J) to the Hill function. The Hill curve describingge a transcriptional regulation
scheme is not the proper way to apply stochastrulzdions. Elementary steps of the se-
quential binding scheme contains four rate constéat k, ks, ki) that have to be deter-
mined from the constantsandJ. Derivation of the missing parameters is calcadtem
the mass action kinetics describing the systemeilibrium the intermediate complexes

are assumed to be stable, thus

TF2 k,
TFZ I,
and
GTF2 ks
G-TF2 k,
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As the total amount of gene promoters do not cha@g&-GTF2leads to the term

GTF2 TF?

Gtot M 2
o kl-k3+TF

that is identical to a Hill function

Bound B xn
Total X"+ 0

Note thatn=2 andj? = (k, - k4)/(k; - k3). The rate of transcription & is

TF?

kms w = kms . GTFZ . Gtot

whereG IS a constant equals to 1# in this example.

The Hill coefficient () and the dissociation constadj (letermine only the relation of the

four rate constants/{ = (k, - k,)/(k, - k3)), but different values may satisfy the same

reaction scheme. We analyzed several choicds,dt,, ks, ks suiting the constraint de-

scribed above, and we compare the results thrdughesponse coefficienR) of the sig-

moidal curve [241]. The response coefficient hasnbshown to allow us to measure the

steepness of the transition of sigmoidal resporsmgs) as in a Goldbeter-Koshland zero-

order ultrasensitive switch (see below). TReoefficient is defined asp9So.1, the ratio of

the signal (substrate) amount required to give 8@%aration relative to the amount required

to give 10% saturation [257]. In our example, tbenplex function is defined as the dissoc-

lation constantJ) is equal to 600# and the Hill coefficiem s 2. The reaction rate in this

case equals to

TF?
6002 4+ TF?

and the value of the response coefficiRrtguals to 9.
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5.3.2 Simulation results

We chose eight different sets of parameters (T@psatisfying the relation

]2 = (ky * ka)/(kq - k3)

and run with each set for long time. We measuredithe average value of the bound form
(GTF2 in case of a few initial amounts ©Fs and calculated the response coeffici@t (
and the actual Hill coefficiennl) for each set of parameters [241]. The derivet ddiffi-

cient equals to

n' =log81/logR

The derived dissociation constamd) (is calculated from the simulation points. Thetroo
mean square error of the fit to the simulation ltessand the simulation point's error to the

theoretical Hill function curve are also shown iable 9.

If we compare the results of the complex functiowl éhe unpacked module, we see that
when the assumption fét; >> K is valid, the decomposed module gives a gooa fihe
theoretical Hill curve (Figure 15). Our results egrwith the observation of [34] that for
simple sequential binding schemes the only conditinder which the Hill coefficient does
accurately estimate the number of binding sitewhen marked positive cooperativity is
present. Furthermore, our analysis points towdnal, the larger the difference between the
dissociation constants; andKy, the better the fit (e.g. compare set 1 to se¥\®.also see
that the derived Hill coefficient is not necessagfiual to the number of binding sites on the

gene.
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Figure 15: The best fits (set 1,2,3,4) satisfy the assumptibpositive cooperativity akK1l >> K2 and pro-
vides a good fit to # theoretical complex functic Data points are calculated thetime average of the GTF2
value of thesimulation resultat a given amount ofF with different parameter sets (see above). Salives
show the analytic calculation of the Hill functiovith J=600# andh=2. All the plots are on a logarithmx-
axis.

Biological systems respond to signals in a dynawag, althoug the underlying mecin-
isms depend on single molecules that are expremseéccoordinated in a stochastic w
Recently, single cell measurements led to key tgm$ how independently fluctuati
elements can be orchestrated in a -organized manner. Cat al [262] found that tran-
scription of molecules happen in a b-like manner, creating probabilistic transcriptin-
itiations that generate downstream transcriptiamtifermore, the systemems to be con-
trolled by frequency modulation instead of change$ranscriptio-factor concentrations.
This is an elegant explanation for the large vgrietthe levels of expression or the can-
tration of transcription factors resulting in apaular response mechanism. Our simulat
results also show behavior coincident to frequemoglulation theor [259,262] where we
see dense bursts of ac! transcription factorsGTF2) that results bur-like transcription
giving similar downstream results that occu a concentration dependent transcriptior
deterministic modelsHigure 16). The rates of complex formations provide a freqyeof
transcription that determines the abundancthe mRNA (M). The different parameter s¢
define how often the active compleGTF2) is present. This transcription is random, ¢
was discussed previously ICai et al. [262]Furthermore, our findingare in accordance
with a recent publication investigating moleculaise of tanscriptional event within tr
cell cycle regulation network. Csiki-Nagy and Mura [2633howed that few steps of ga-

81



RESULTS
tion and senescence of mMRNA are enough to giveod gmatch for both the measured half-
lives and variability of cell cycle-statistics. Tiheesult suggests that the complex process of
transcription can be more accurately approximatethblti-step linear processes. Our anal-
ysis shows accordance to previous publications asd provides guidance to parameter
search. The parameter set 2 - that assumes lasgacation constant for thEF dimeriza-
tion step K; >> K3) - provides better fit to the Hill function thahet simulations with the
parameter set 8. When the number of initial trapton factor is small (100#), the frequent
bursts of GTF2 activation give similar response than the comptik function assuming
sigmoid reaction. The proper rhythm of stocha&itF2 activity peaks is able to increase
the amount oM in the expected and less noisy manner. In caseegbarameter set 8, the
transcription is more frequently “switched off” andnnot provide the same amount of tran-
script (M) as one approximated complex Hill term do. Asribenber of transcription factors
is increased (Figure 16 D and H), we see that ffleeteof frequent bursts becomes less im-
portant as the regularly activat€d’ F2 cannot compensate the lack of a continuously @ctiv

complex.
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Error Error
of the fit of the fit
k ke ks | Ra=hofla | Ke=kks ]:m " 4 of the estimated K of the theoretica

Hill function Hill function
units | 1/(min#) | 1/min | 1/(min#) | 1/min # # # - # - - -
set0 - - - - - - 1/a 2 600 0 9 0
setl la 10 100G 100 10 0.1 1/a 1.67| 729 0.007511 13.89  0.066913
set2 la 100 | 100Qx 10 100 0.01 1/a 1.95| 612 0.001737 9.52 0.008401
set3 10a 1000 | 100x 1 100 0.01 1l/a 1.95| 612 0.002859 9.52 0.600704
set4 | 100 1000 10a 1 100 0.01 1l/a 1.68| 731 0.009201 13.68 0.709089
set5 10a 1 100 1000 0.1 10 1l/a 1.05| 12418 0.002033 65.71  0.600837
set6 la 1 10a 1000 0.01 100 1l/a 1 | 124191 0.000234 81.00 0.709229
set7 | 100Q0x 100 1la 10 0.1 10 1/a 1.06| 12248 0.001434 63.16 0.600704
set8 | 1000x 10 1la 100 0.01 100 1/a 1.03| 110937 0.000255 71.27 0.709089

Table 9: Multiple simulation results on the module of thdl Hinetics. Set 0 refers to the deterministic wemnsof the complex Hill function. Set 1-set 8 aiffedent sets of pa-

rameters for the “unpacked” module.
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Figure 16: Simulation results of the unpacked Hill functidrhe frequency of5TF2 activation defines the
speed of the reaction. (A-D): Simulation results thee parameter set 2 and with different valuehaf tFs
(A:TF=100#, B:TF=500#, C:TF=1000#, D:TF=5000%#).(E-H): Stochastic simulations for the paremset 8
(E:TF=100#, F.-TF=500#, G:TF=1000#, H:TF=5000#). Note that the time scale of the two columiiffers.
In case of set 2 bursts are more frequent thameircase of set 8.

In order to present more in details simulationh& thosen two parameter sets (set 2 and 8)

are shown on Figure 17. When the amount Bf(signal) is low, effective transcription -
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producing sufficient amount of mMRNAs - occurs driscriptional bursts are more frequent.
As the level of initial signal is increased, thanscription machinery is mostly active (with
a GTF2value equals to 1). When there are higher amounadecules in the system, the

frequency of bursts becomes lower.

GTF2 [#] M [#]
1.2 A 6,000 C
1
0.8 4,000
0.6
0.4 2,000
0.2
0 0 — =
0 5 10 15 0 5 10 15
1.2 B 6,000 D
1M N "”"Tﬂ
0.8 4,000
0.6
0.4 2,000
0.2
0 - 0
0 5 10 15 0 5 10 15
Time [min]

Figure 17: Simulation: withTF=1000#; set8 (A, C) and set2 (B, D) response diffSet8 cannot provide a re-
sponse that follows the behavior of a compound tditiction with particular assumptions. The frequené
bursts is not sufficient enough for describing slgathesis of M in the desired manner.

The module presented above states for a reprementdtthe complex Hill term described
by elementary steps and modeling the transcriptioa gene explicitly. It can be easily

dragged and dropped into a larger model as itagvaHater.

The Goldbeter-Koshland switch

In the 1980s, Albert Goldbeter and Daniel E. Kostlantroduced an elegant description of
interacting oppozing enzymes acting on a substiiaé¢ switches between two forms

(representing a kinase-phospatase pair woring dingdand removing phosphate groups or
a GTPase, GAP pair addig or removing GTP’s) praygdin ‘ultrasensitive’ behavior to the

system [241]. Biological systems must respond itaugdt rapidly and this often happens by

phosphorylation events (e.g. metabolic pathwayke #erms “ultrasensitivityhave been
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defined to indicate cases in which the sensitiigtgreater or less than that to be expected
from the standard hyperbolic, Michaelis-Menten oese. In these cases "turning on or off"
the activity of the elements of a pathway respdadtsto relatively small changes in effec-

tors’ concentrations.

The scheme of cooperative binding is one way teoegges the sensitivity of a system (dis-
cussed in the 5.3 session (Hill kinetics)). Howevtbere are other modes to generate sig-
moidal response. An enzyme may be present at rharedne step in a pathway (like in the
glycogen cascade [264]). Furthermore, in covalendification schemes (like phosphoryla-
tion [265]) when one or more of the converter enggroperate in the "zero-order" region,
ultrasensitivity is observed. In this case, theyemz activity is saturated with respect to the
protein substrate and the velocity of the reacisomdependent of changes in the substrate
guantity. A nonlinear function describing a reactijoresented ahead is referred to as the
Goldbeter-Koshland switch [241] and it has beermshto be able to generate sensitivity

equivalent to cooperative enzymes with high Hikfwients [266].

5.4.1 The Goldbeter-Koshland module, as a composition stly

The Goldbeter-Koshland function is our first exaenpf a higher composition in this study,
as - roughly speaking - two Michaelis-Menten tertgdabuilt together can serve as one
Goldbeter-Koshland motif. By defining a template ifateracting enzymes (the scenario de-
scribed above) we end up with another possible wwaynplement non-linearity into our
BlenX model that behaves with a sigmoidal respobsecontains only elementary steps. It
is a commonly used building block of biological Ipatiys - such as protein cascades -, thus

it is worth to store this template in our library.

Imagine a protein with two forms: active)(and inactive Rnog (it is @ common motif that
frequently occurs in biological systems). If theiation and inactivation are carried out by
two different enzymes resulting in covalent modifions (e.g. phosphorylation or dephos-
phorylation) the system can be described by twahisielis-Menten-type of enzymatic reac-
tions (Figure 18). If the same assumptions aredva$ for the Michaelis-Menten term -
when the enzyme$( andE,) are saturated by the substratts(dPn,.g - and our simula-
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tion stays at the zero order regime, the respohtfeecsystem will provide an ultrasensitive
switch even to slight changes.

— @
Figure 18: Schematic wiring diagram of covalent modificatidnPothrough the enzymds; andE,, acting on

P in an opposite way.

The steady-state behavior of this module is exprbssathematically as a nonlinear func-

tion:

_ kl 'El : (Ptotal _Pmod)_kz 'EZ 'Pmod
]1 + (Ptotal - Pmod) ]2 + Pmod

whereJ; andJ; are the Michaelis-Menten constants of the enzyowatctions.

Golbeter and Koshland proposed a mathematicaioekdtip for steady state solution of the

system in the zero-order regime:

Pmodstst ( ]1 ]2
—ROCSES = G ky - Ey ky - Eyy——, )=
Ptotal ! v 2 Ptotal Ptotal

J2
2-ki-E;-
! 1 Ptotal

B+\/BZ_4‘(k2'E2_k1'E1)'k1'E1']_2

P total

where

h g 42
total total

B:kz'Ez_kl'E1+

'kl'El
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The Goldbeter-Koshland function takes values betvizzand 1 (for the fraction of modified
and unmodified proteins) and has a sigmoidal bemavihe smaller parameteds and J,
provide the steeper the function. The switch isagknsitive only in the zero order regime,
although [267] showed that the sigmoidal resporfsth® function is restored also in the
first order regime if we introduce an additionabperative mechanism of the phosphoryla-
tion reaction. In this study we do not touch these

0.5

Response

1 10 100 1000
Signal

Figure 19: Schematic representation of a Goldbeter-Koshldindsensitive switch. In our example tsignal
represents the enzymds; Or E;) modifying the substrates, changing thesponsdthe amount oP or Py,,J).

5.4.2 Elementary steps of a Goldbeter-Koshland module

The Goldbeter-Koshland module is composed of twahdelis-Menten reaction® is
modified byE; through a complex formation stéweq the modified form oP is recovered
through binding tdE,. Depending on the initial amounts of the molecutee system can
exist in two states: (1) eith&is active (formP) due to the presence Bf or (2) Pnoglevel
is higher than the amount Bf

Due to the variety of BlenX expressions, there @arthan one solution to achieve the same
reaction networks. This flexibility of the programnde makes modeling a creative job. Al-
though the current programming method in BlenX as=sithat users have programming
skills and they construct models in the most berafivay. The users might have to think in
advance to the subsequent use - possible extensfdhe model. The efficiency of compo-
sition differs in the variety of solutions providirand easier or more difficult way of com-

positionality in the future.
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Figure 20: Reversible enzyme modification is described witnetntary steps. Enzyme-substrate complexes
(E2:PmogandEs:P) are present during the reaction.

In the followings, we will show possible procesgeddira modules for the same Goldbeter-
Koshland behavior exploiting the expressive powdBlenX and proposing an optimal so-

lution for compositional modeling.

5.4.3 A simple solution for the decomposition of the Goldeter-Koshland switch

Probably the most intuitive way - for biologistef-modeling the interconnected enzymatic
reactions with BlenX is the use of events, espbcialsomeone approaches the problem
starting from the description of the biochemicalat®ons that present in the system. Events
represent rules that are able to perform the dubisth of boxes with other boxes. All the
possible complexes in the system are defined attpl@t the beginning through the join
and split operations. Their use is essential inefind the dynamics of networks in which

the use of the communication primitives are naiitite.

89



RESULTS

e2: EZH p:Pmod
e2: EZ[]' ______ p:Pmod e2pm:E2Pm SPIit £ p
o 2 mod
oin
\ e2:E2 P
split [] i
E2

el:ElI Ip:P
eL:EIf """ 77 I°:P elp: E1P split LE J [ p ]
join i
(e]) ()2 (er) T
\ el:El Ip:Pmod
split

L) (Puod

Figure 21: BlenX representation of enzymatic reactions throegknts. The substrates are prone to form
complexes with the enzyme.

In case of a description of the switch with evetits,definitions of the proteirP}, the mod-
ified protein Pmog and the active enzymels;(andE;) do not include internal processes and

communication actions:

let P : bproc = #(p:0,P) [nil |;
let Pmod : bproc = #(p:0,Pmod) [ nil |;
let ET : bproc = #(e1:0,E1) [nil |;
let E2 : bproc = #(e2:0,E2) [ nil |;

We also define the “intermediate” complexes explidn the model similar to the classical

approach of modeling:

let E1_P: bproc = #(elp:0,E1P) [ nil |;
let E2_Pmod : bproc = #(e2pm:0,E2Pm)  [nil |;

Chemical reactions, in this example, represensride complex formation and dissociation
of enzymes and substrates by introducing the ensuhstrate complexes. This solution is
the most intuitive explanation of biochemical réaa$ and probably the closest to the clas-

sical modeling methods, making translation and amsitpn of deterministic solutions into
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the process calculus framework. The type of evgais) substitutes the box of the enzyme
(E1 or E2) and the substratd®(or Pmod with one box, the enzyme-substrate complex
(E1_PorE2_Pmoqg:

when (E1,P:rate(el_1)) join  (E1_P);
when (Pmod,E2::rate(e2_1)) join  (E2_Pmod);

The other eventsplit) create the opposite, it substitute one dekx (PandE2_Pmod with
the enzyme and the substrate:

when (E1_P::rate(el_2)) split  (E1,P);
when (E2_Pmod::rate(e2_2)) split  (E2,Pmod);

or the enzyme and the product of the reaction:

when (E1_P::rate(el_3)) split  (E1,Pmod);
when (E2_Pmod.::rate(e2_3)) split  (E2,P);

We tested three different sets of parameters fesipte ratios among the stochastic rate
constants of the elementary steps. All three caatsfy the assumption of the saturated en-
zymes that are present in the system with less ruwfomolecules than the substrates. Ini-
tial conditions are set for analyzing the revetgibof the ultrasensitive switch. No hystere-

sis is seen as expected (Figure 22). The sigmosdalonse coefficients can be also calcu-

lated as
_ 81(K; +0.1)(K; + 0.1)
(K, +0.9)(K, + 0.9)
where K, = ]1/ and K. =]2/
1 Ptotal 2 Ptotal

R = 2.02 for all cases which corresponds to a Hill functiwith a coefficient equals to
n=6.25.
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rate constants units setl set 2 set 3
el_1 1/(min - #) 1-a 1-a 1-a
el 2 1/min 0.045 0.05 0.005
el 3 1/min 0.005 0.05 0.045
e2_1 1/(min - #) 1-a 1-a 1-a
e2_2 1/min 0.045 0.05 0.005
e2_3 1/min 0.005 0.05 0.045

J1 # 0.05/«a 0.05/«a 0.05/«a

]2 # 0.05/«a 0.05/«a 0.05/«a

Table 10: Parameter sets used for the simulations satistyiagsoldbeter-Koshland assumptioads a con-
version factor for the stochastic rate constamts((00167).
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Figure 22: Stochastic simulations started with different alitonditions and analyzing the steady state of the
system P, andP are steady state values of the model calculated the time average after reaching equili-
brium). E1 value is 30#. (A and D): Parameter sgBland E): Parameter set 2. (C and F): ParanseteB.
Squares sign for the runs with initial conditid®s0#, Pmod=600#. Crosses indicate the steady state values of
the runs with initial conditiorP=600# andPmod=0#. We see no hysteresis. Data points are calcufeden

time averages of the steady state values of mel§iphulations. A single run of these cases are stowFig-

ure 23.

Although in all cases the system tends to reacboaial state, the time evolution of the reac-
tion strongly depends on the parameters. The Gditeshland function assumes rapid
equilibrium similar to the Michaelis-Menten relatioHowever, when the assumptions of
the Michaelis-Menten are valid (the conditieet 2 >> el 3ande2 2 >> e2 3apply) the
runs do not satisfy the behavior of a Goldbeteri{arsd switch (Figure 23). The parameter
set 2 and 3 matches the solution of the complexftatction better than the parameter set 1.
In the first set, the transient behavior lasts latgch brings the system outside of the zero-
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order regime where the change of the amount oktimyme-substrate complex cannot be
neglected. Although the value of the Michaelis-M#ntonstants are low and the substrate
of each reaction saturates the enzyme, we sedhthatte limiting step in the second and
third cases is the dissociation of the complexeadtof the catalytic step (in the parameter
set 1). We see that the Michaelis-Menten assumptmight be incorrect for non-isolated
systems, such as the Goldbeter-Koshland switcls, ithplementation of a reusable module
makes the check of assumptions available and caid avisinterpretation of changes aris-
ing from composition of a larger model built uptre assumptions of the Michaelis-Menten

kinetics of enzymatic reactions.

A B C
P [#] 600 600 600

MWMMWW

Pmod [#]
400 400 400
200 200 /‘J"‘J 200
o 0 o 5 — e
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5,000 10,000 15,000 0 2,000 4,000
Time [min]

Figure 23: Time evolution of the reaction scheme. (A-C): siatigns with the parameter set 1. (D-F): simula-
tions with the parameter set 2. (G-1): sample satiohs with the parameter set 3. (A,D,G): initiglue of
E,=6#; (B,E,H):E,=30#; (C,F,I):E;=100#; (A-I): initial amount ofP=600# (red curve) anB,,,&=0# (black
curve).

On Figure 23 simulation results of different partéenesets shows the expected variance in
the level of noise depending on the initial numbkethe enzymé=2. If we take a look at the
signal-response curves on Figure 22 and then tor&ig3, we notice that at smaller or at
larger number oE2 the noise is reduced compared to B#values closer to the inflexion

point of the sigmoidal curve (Figure 23 B, E, H).
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Compositionality can be carried out easily in ttése as all the elementary steps and com-
plexes are present in the module from the beginrimgs another module can be intercon-
nected even through the intermediate complexes.edewy the definition of the initial val-
ues for the enzyme-substrate complexes is a crsigpl By default they are assumed to be
zero as the complex reaction term assuming Mickiddénten kinetics does not include the
initial (and later) steady state values, thus wek llne knowledge about the intermediate
species when we want to transform this nonlineaction into elementary steps. As Gold-
beter-Koshland’s switch states that the systemm isquilibrium during the ultrasensitive
change, initial amounts for the intermediate comgdeshould be chosen to be equal to their
steady state values. Calculation of those statedeamplemented into the tool as an auto-
matic feature. BlenX can propose initial valuestlud intermediate complexes assuming
equilibrium for a given initial set of the modelfohed by the user. Calculations are based

on:

|ES|st.se. = 213 |Elinit * 1S linit

|E|init = |E|totar — |ES|st.st.

ISlinit = IS1totar — |ES|st.st.

In the subsequent Chapter we show another solftioancoding the Goldbeter-Koshland

motif.

5.4.4 Conditions driven simulations for the Goldbeter-Kosland study

BlenX allows a novel and more elegant way to desigmogram through coding the proba-
ble reactions with conditions. These conditionsc&hthe state of the boxes’ interfaces, al-

lowing the change of their internal behavior depegan their actual configurations.

In case of a Goldebeter-Koshland switch enzymessabdtrates form complexes. With the
conditions it is possible to guard reactions thoolgacking the state of the boxes if they are

available for binding and firing the action of clgarg their behavior.
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Figure 24: Representation of the conditions driven executibtine reaction.

The following rules define the state of the molesulboxes).

(1) If the binder ‘p’ belongs to the bdX(the type of the binder is equivalent of ‘R_P’dan

if it is ‘bound’ (it forms a complex with anotheratecule), change the type of its binders (to
‘R_Pmod’) resulting in a transition to the b8¥.q because the binder types and the box’s
internal behavior define the actual identity of thex. Then check sequentially if the binder
‘P’ belongs to the bo¥q (its type is ‘R_Pmod’) and if this ‘p’ binder ioshbound. If the
conditions are both met, the program fires the meatess ¢roc_check?, stepping onto

the second sequence of conditions (2).

let proc_P_Pmod :
pproc = if ((p,bound) and (p,R_P)) then ch(rate(el_3),s,Pmod).ch(p,R_Pmod).proc_checkl
endif;

let proc_check1 :
pproc = if ((not (p,bound)) and (p,R_Pmod)) then x?().nil endif;

(2) If the binder ‘p’ belongs to the bdRmog (the type of the binder is equivalent of
‘R_Pmod’) and it is bound (it forms a complex wéhother molecule), change the type of
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its binders (to ‘R_P’) resulting in a transitionttee box ‘P’. After this, sequentially check if
the binder ‘p’ belongs to the bdX(its type is ‘R_P’) and if this ‘p’ binder is nbbund. By
stepping back into the first condition (1), we assilne persistent check of the states of the

molecules.

let proc_check? :
pproc = if ((not (p,bound)) and (p,R_P)) then x?().nil endif;

let proc_Pmod_P :
pproc = if ((p,bound) and (p,R_Pmod)) then ch(rate(e2_3),s,P).ch(p,R_P).proc_check2 en-

dif;

let choice :
pproc = if ((p,bound) and (p,R_P)) then ch(rate(el_3),s,Pmod).ch(p,R_Pmod).proc_checkl
endif + if ((p,bound) and (p,R_Pmod)) then ch(rate(e2_3),s,P).ch(p,R_P).proc_check2 endif;

The binding affinities are specified in a sepafdéeand describe all the possible roles of a

molecule in a particular system:

{ R_Pmod, R_P, Pmod, P, E1, E2 } % %
{ (R_P,EI1, rate(el_1), rate(e1_2), 0), (R_Pmod,E1, 0, inf, 0),
(R_Pmod,E2, rate(e2_1), rate(e2_2), 0), (R_P,E2, 0, inf, 0) }

The binders and the internal behavior of the b@esset as the followings.

let P : bproc = #(p:0,R_P), #(s:0,P)
[ choice | rep x!().choice |;
let Pmod : bproc = #(p:0,R_Pmod), #(s:0,Pmod)
[ choice | rep x!().choice |;
let E1 : bproc = #(e1:0,E1) [ nil |;
let E2 : bproc = #(e2:0,E2) [ nil |;
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Please note that in this example two different bracare specified fd? andPy04 Extension
of this module that does not modify the currentecotithe reactants might be carried out by
simply introducing additional species into the moded by implementing the additional
rules and the novel internal properties specifyirggnew reactions. However, one should be
careful with the extension of this module as chaingihe described boxes may lead to an
error execution of the conditional processes. Asnwdify the boxes, the conditions have to
be updated as well. In this simple case boxesdamtified by their internal behavior being
equal (in case of the forms) realized with the help of tlehoiceoperator. Thus, the rules
provide a structure where only binder types shtyeld¢hanged in order to transform one box
to another. When we would like to extend the modwlecomposing into another system,
similar structure of conditions and choice opematmive to be implemented. However, it is
also automatically doable. To reduce the size efmtlodel, the presented template is appro-
priate and compositionality can be carried out witi'he enzyme-substrate complexes are
automatically emerging properties of the systemneef by the rules. We do not need to
specify initial conditions for those species. ltingportant to observe that compositionality
of BlenX is improved by the implementation of préded modules as rule-driven policies
have to be fixed from the beginning and templatescautches for modeling. These solu-
tions can be used in several additional situations.

5.4.5 A compact solution with conditions

The same module can be realized by using only amiebof P and ofPneg It provides a
shorter code and faster simulations than the pusvaase. The logic of the module is the
same; conditions are defined for describing thesies states of the boxes. Reactants have
only one binder specifying their activity and thisry primitive interface will changes due
to complex formation and communications througtt #agle binder. Further compositio-
nality may be more difficult as the box code itsiaty and binding capacity in the same
type of one binder which can be much more comm@atan real biological systems. It re-
duces our choice of modifying either of the funosaf the molecule. Changes in the affini-
ty of binding will automatically modify the previsuwondition, creating unambiguous code

for the system.

let proc_check1 : pproc = if ((not (p,bound)) and (p,Pmod)) then x?().nil endif;
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let proc_check?2 : pproc = if ((not (p,bound)) and (p,P)) then x?().nil endif;

let choice :
pproc = if ((p,bound) and (p,P)) then ch(rate(el_3),p,Pmod).proc_checkl endif + if
((p,bound) and (p,Pmod)) then ch(rate(e2_3),p,P).proc_check? endif;

let Pmod : bproc = #(p:0,Pmod) [ choice | rep x!().choice |;
let P: bproc = #(p:0,P) [ choice | rep x!().choice ];
let E1 : bproc = #(e1:0,E1) [nil |;
let E2 : bproc = #(e2:0,E2) [nil |;

5.4.6 Different binders implemented for different functions

In the sequential, two binders are signed to twiemdint functions: one is responsible for
the activity of the proteif® and the other is for the activity of the prot&g.¢ Hiding and
showing the binders define the actual identityhef box if it iSP or Pmog

let proc_Pmod_P :
pproc = if (not (p1,bound)) then ch(pl,Pmod_ACTIVE).hide(p1).x!().nil endif;

let proc_P_Pmod:
pproc = if (not (p2,bound)) then ch(p2,P_ACTIVE).hide(p2).x!().nil endif;

let choice :
pproc = if (p2,bound) then unhide(rate(el_3),p1).ch(p2,NOT).proc_P_Pmod endif + if
(p1,bound) then unhide(rate(e2_3),p2).ch(p1,NOT).proc_Pmod_P endif;

let Pmod : bproc = #(p1,Pmod_ACTIVE), #h(p2,P_ACTIVE)
[ choice | rep x?().choice J;

let P : bproc = #h(p1,Pmod_ACTIVE), #(p2,P_ACTIVE)
[ choice | rep x?().choice ;

let E1 : bproc = #(e1:0,E1) [ nil |;
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let E2 : bproc = #(e2:0,E2) [ nil |;

{ Pmod_ACTIVE, P_ACTIVE, E1, E2, NOT } % %
{ (Pmod_ACTIVE,E2, rate(e2_1), rate(e2_2), 0), (NOT,E2, 0, inf, 0),
(P_ACTIVE,E1, rate(el_1), rate(e1_2), 0), (NOT,EL, 0, inf, 0) }

We can assign additional binders for further fumtsi of the molecules. We have to pay at-
tention to the symmetry of the proteins, meanirgt ihwe change the properties of one
box, we should change the other one to ensurertigggm denote for the appropriate box
after an action fired. We can also define the fsstates of the molecule referring to dif-
ferent interfaces and internal behaviors and teansfese temporary boxes as we wish.

However, it leads to a larger program with slowerations.

5.4.7 Realization of the Goldbeter-Koshland module throug§ communications

A communication process triggers the change opthader’s type, resulting in the conver-
sion of the molecule froBnoqto P,

let proc_Pmod_P : pproc = p?().ch(p,P).p_rep!();

Communication process that triggers change of iheeln’'s type (P> Pmod)

let proc_P_Pmod_P : pproc = p?().ch(p,Pmod).proc_Pmod_P;

The molecules are represented as

let Pmod :bproc = #(p:0,Pmod) [ rep p_rep?().proc_P_Pmod_P | proc_Pmod_P ];
letP:  bproc=#(p:0,P) [rep p_rep?().proc_P_Pmod_P | proc_P_Pmod_P |;
let E1: bproc = #(el:0,E1) [repell().nil];

let E2:  bproc = #(e2:0,E2) [rep e2!().nil |;

{Pmod, P, E1, E2}% %

{ (P, E1, rate(el_1), rate(el_2), rate(e1_3)), (Pmod, E1, 0, inf, 0),
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(Pmod, E2, rate(e2_1), rate(e2_2), rate(e2_3)), (P, E2, 0, inf, 0) }

This solution is composable in parallel to anothgstem automatically if we ensure the
symmetry that was mentioned previously. The probtérasing only one binder raises the
same question of differences between binding sitelsactive sites. Our choice will depend
on the level of abstraction we would like to ap@uring the model building process, with
the availability of different representation of imple module, we can realize the case that
fits most our idea or simply substitute with a eifint solution if further extension of the

model requires it.

5.4.8 Comparison of the different solutions

In order to choose between the possible interpoetmiof the same module, comparison is

carried out in this session.

The different size of the modules results in ddfartime for the simulations. To test the
speed of the solutions of the program with our enirsimulator (Beta Workbench Simula-
tor), we measured the time of each run. This apptio passes three text files (input) to the
compiler; and translates these files into a runtney@esentation; and simulates the algo-

rithm through a stochastic simulator engine.

After measuring the time with a timer for 25 rure vesult that the usage of simple events is
the fastest (in Chapter 5.4.3). Every solution ftes the same dynamics for the system, but
with different abstractions and different time f@imulation. Realization of the template
with events offers an easy way of compositiondhtgase we are interested in introducing
novel links through the complexes explicitly encode the algorithm. However, the initial
conditions are required to be calculated for eactulstion, thus we wil have to compare
the required simulation and calculation time afteplementation of the template into the

tool.
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Paragraph number 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7
minimum time [s] 0.468 3.65 2.73 4.212 4.773
maximum time [s] 0.717 4.461 3.88 4.929 6.271
average User Time [s] 0.58176 3.87156 3.09244 8679 5.41216

5.5

Table 11: The average simulation time of the previously entésd BlenX templates. Initial values are
Pmod=0#; E1=11976#;E2=1198#;P=2994#. Times are shown in the unit of seconds.2s have been
measured in each case.

The positive feedback loop

The previous example presents a scenario when lhmmadule can create an abrupt switch
between two states: (1) low amountffind high amount dPmeq OF (2) lower amount of
Pmod @and higher amount @. In this case, the system responds fast to chamgewitching
between these two states, although this module miadsave a “memory”. Not like hystere-
sis which is a phenomenon that has history-deperedand the transitions between the two
steady states are discontinuous. The system’saéictivthreshold differs from the deactiva-
tion threshold (Figure 25). In other words, thesef$ of the input to the system are expe-
rienced with a certain delay in time. Time delag isort of memory as protein synthesis rate
at the present time depends on protein concentratrer some time in the past. Hysteresis
is a well-described property in thermodynamics #@nd also observed in biological net-

works.

» low P, high P,,., (OFF)

Response

high P, low P,,.4 (ON)

v

Signal

Figure 25: Hysteresis curve.
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Bistability in biological systems has been defimsdhe property when the same system can
be in either of two alternative stable steady statader identical chemical conditions
[134,268,269]. It is an important biological netka@tructure that was first found in the lac-
tose utilization pathway of bacteria [135] and rebeit was also synthetically engineered
in a gene regulatory system [270]. Positive feellaaw bistability are common themes in
theories of cellular memory [57], differentiatioR7[1] and in the study of programmed cell
death (apoptosis) [272]. The importance of hysiereand bistable - systems in biology re-
fers to switch behavior in a dynamical system angatrreversible changes of different
states (e.g. cell cycle states [273]). It was psgploby Novak and Tyson that bistable
switches are created by positive feedback loopslwmg two activation or two inhibitor
steps within the cell cycle regulatory network asll\f274]. Their prediction that the irre-
versibility of cell cycle transitions is based ortraverse around a hysteresis loop was also
confirmed experimentally by two different group§g$2276]. The two main type of positive

feedback loops are shown in the following.

5.5.1 Positive feedback generated by mutual antagonism

By coupling two Goldbeter-Koshland switches, weaabtanother interesting behavior ob-
served in biological systems, called mutual antegonWhen two components inhibit each
other, they result in a so called “double-negativéiius a positive - feedback loop. One ex-
ample for such case may be the interaction betvisenenzymes reducing their activity

through phosphorylation events. These mutual itdibiprovide a switch response of the

system that can toggle between two states.

In our example we refer to two opposing proteinXasndY. They are able to bind together
then they modify and inactivate each other (Figz8® In protein interaction networks this
enzymatic reaction often ends with different phasplation states (here we refer X& of

X andYP of Y). We adopted an example from [168] where the inacéf is degraded, while
the YP can be dephosphorylated (activated) through aitiadal enzyme A).

One classical example for such systems is fourtdamresearch of the regulation of cell di-

vision cycle. Toggle switches are extremely imparfaatures because cells make decisions

102



RESULTS
between two sequential phases. When cells comnseparate their previously replicated
hereditary material (in mitosis), the activity okay regulatory kinase complex (MPF also
referred to as CDK/Cyclin B) is required to be “sshied on”. The transition occurs only at
a proper time because before that point the regyldtinase complex (CDK/Cyclin B) is
inactivated through its phosphorylation by the prokinase Weel. In addition to this nega-
tive effect, CDK/Cyclin B also inhibits Weel. Thusthe activity of CDK/Cyclin B is in-
creased, it is able to overtake the negative effee¥eel and can switch on itself indirectly.
This double-negative relation results in a posifeedback on Cyclin B, creating a bistable

toggle switch property.

:.: — P .m
T L-- Signal

ol
4

Figure 26: Positive feedback generated by mutual antagonismnd Y are two inhibitors modifying each
other through enzymatic reactions.

Ciliberto et al [132] showed that in protein intetian networks, the assumptions for the two
Goldbeter-Koshland modules tend to be invalid wtery are coupled into a larger system.
The improper application of such a complex reacssheme without valid assumptions
may lead to the loss of bistability if we unpack tGoldbeter-Koshland functions into ele-
mentary reactions. Bistability is restored by allogvone inactive form to possess some ac-
tivity and phosphorylate its substrate (see beldw}lhe subsequent section we present the

BlenX template encoding a mutual inhibition meclkamin a formal way.

5.5.1.1 The BlenX template encoding mutual antagonism

The motif of a double-negative feedback regulatforealized in BlenX through several ac-
tivation and inactivation steps that are fired awjieg on the state of the boxes. As process
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calculi tools provide the opportunity to define gead conditions that might be used for mo-
lecules with similar behavior, model-constructieneiasy and the size of the BlenX model

stays relatively small.

First, we define the possible interactive siteshef molecules. As the module contains pro-
teins with dual roles performing as enzymes or sates, they all have two binders
representing the activity (ENZ meaning enzyme &gdiand the binding site (SUB refer-
ring to as substrate). All the SUB and ENZ sites esgist in two forms: active (available) or
inactive (hidden). The conditions representingvatton and inactivation steps are shown in
the following paragraph. We would like to ensurattivhen the site which is waiting for
modification is bound to its enzyme, the box canpossess other (enzymatic) activity.
Thus, the interface of the box is changed dependimgs condition and the enzymatic site

is hidden from any reaction:

let inactivate_ENZ : pproc = (if (substrate, bound) then hide(enzyme).nil endif );
let inactivate_SUB : pproc = ( if (enzyme, bound) then hide(substrate).nil endif );

Furthermore, we would like to ensure that when dhbstrate site of the box dissociates
from the enzyme, the catalytic activity of the hexestored through the reactivation of the

enzymatic site:

let activate_ ENZ :

pproc = (if (not(substrate, bound)) then unhide(enzyme).rec_enzyme!().nil endif );
let activate_SUB :

pproc = (if (not(enzyme, bound)) then unhide(substrate).rec_substrate!().nil endif );

These are all general properties (conditions) ofdgical systems and they can be easily
composed into a larger model in BlenX. They ensheeexclusion of the presence of mul-
timers that may not be realistic in a biologicadteyn where the binding-induced conforma-
tional change of the enzyme can modify its regulagites. These rules also reduce the

complexity of the model system and the number gbfiide but unnecessary states.
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To retain the bistability in the module, we assuhm the inactive YYP) enzyme is also
able to change the behavior of the molecGl&owever, its activity is much lower than the
activeY [132]. We included a third binding site firthat participates in the reaction trig-
gered byYP. Activation of the binder responsible for enzyroadctivity E€nzymg occurs
when the box exists as a single molecule and rtddss representing the substrate affinity
(substrateand substrate_YPXare not occupied. The conditions describing tbvation

and inactivation of the moleculare:

let activate. ENZ_X :
pproc = (if (not(substrate, bound) and not(substrate_YPX, bound)) then un-
hide(enzyme).rec_ENZ!().nil endif);

let activate_SUB_X :
pproc = (if (not(enzyme, bound) and not(substrate_YPX, bound)) then un-
hide(substrate).rec_SUB!().nil endif);

let activate._ SUB_X_YP:
pproc = (if (not(enzyme, bound) and not(substrate, bound)) then un-
hide(substrate_YPX).rec_ENZ_X!().nil endif);

let inactivate. ENZ_X :
pproc = (if ((substrate, bound) or (substrate_YPX, bound)) then hide(enzyme).nil endif);

let inactivate._ SUB_X :
pproc = (if ((enzyme, bound) or (substrate_YPX, bound)) then hide(substrate).nil endif);

let inactivate_SUB_X_YP :
pproc = (if ((enzyme, bound) or (substrate, bound)) then hide(substrate_YPX).nil endif );

The variables are characterized by their binditgssi one representing their enzymatic ac-
tivity and one waiting for communications - anditheternal course of actions executed as
parallel processes. One possible sequence ofstmwivn on Figure 27. In case of the box
X, an additional communication site has been definedder to restore bistability:
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let X :  bproc = #(substrate:0,X_sub), #(enzyme:0,X_enz), #(substrate_YPX:0,X)
[ inactivate_ ENZ_X | activate_ ENZ_X |

rep rec_ENZ?().(inactivate_ENZ_X | activate_ENZ_X) |
inactivate_SUB_X | activate_SUB_X |
rep rec_SUB?().(inactivate_SUB_X | activate_SUB_X) |
activate_SUB_X_YP | activate_SUB_X_YP |
rep rec_ENZ_X7?().(inactivate_SUB_X_YP | activate_SUB_X_YP )|
rep enzyme?().nil |
substrate!().ch(substrate, YX).nil |
substrate_YPX!().ch(substrate_YPX, YPX).nil Ik

substrate_YPX : X —— substrate_YPX : X

[ internal
process |

[ internal
process |

enzyme : X_enz enzyme : X_enz

substrate : YX substrate : YX

——— substrate_YPX : X substrate_YPX : X

[ internal
process |

[ internal
process |

X_YX
enzyme : X_enz enzyme : X_enz

Figure 27: A possible sequence of reactions of the KoWhen the binder with the typé sub(red highlight)

creates a link with a molecule, the two other bisd#f X become unavailable (hidden, white bars). A change

of the binder’s type occurs and dissociation ofrémgulatory molecule from the modified binder fite con-
dition of unhiding the binders.

The other species in the module are encoded withasilogic, but with only two binders:

let Y:  bproc = #(substrate:0,Y_sub), #(enzyme:0,Y_enz)
[ inactivate_ENZ | activate_ENZ |
rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) |
inactivate_SUB | activate_SUB |
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rep rec_substrate?().(inactivate_SUB | activate_SUB ) |
rep enzyme?().nil |

substrate!().ch(substrate, XY).nil I

let XP: bproc = #(substrate:0,XP_sub), #(enzyme:0,XP_enz)
[ inactivate_ENZ | activate_ ENZ |
rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) |
inactivate_SUB | activate_SUB |
rep rec_substrate?().(inactivate_SUB | activate_SUB ) |
rep enzyme?().nil |

substrate!().ch(substrate, XP).nil Ik

let YP: bproc = #(substrate:0,YP_sub), #(enzyme:0,YP_enz)
[ inactivate_ENZ | activate_ENZ |
rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) |
inactivate_SUB | activate_SUB |
rep rec_substrate?().(inactivate_SUB | activate_SUB ) |
rep enzyme?().nil |

substrate!().ch(substrate, AYP).nil Ik

Intermediate complexes are also present in the moHdeir definition is necessary to assign
further functions to the modified forms of the nmlées within a larger system. We show an
example of a temporary box which originates frgrand which immediately turns to the -
the modified form ofY (YP) that is inactive and degraded in this example (gader finds

the entire template with additional boxes in Appr):

let Y_XY: bproc = #(substrate:0,XY), #(enzyme:0,Y_enz)
[ inactivate_ENZ | activate_ ENZ |
rep rec_enzyme?().(inactivate_ENZ | activate_ENZ ) |
inactivate_SUB | activate_SUB |
rep rec_substrate?().(inactivate_SUB | activate_SUB ) |

rep enzyme?().nil I;
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The boxS (signal) modifie€2, while A is an unspecified enzyme reactivating the inactive
(YP):
let S : bproc = #(5:0,S) [rep s?().nil |;
let A : bproc = #(a:0,A) [rep a?().nil |;

The catalytic steps of each reaction are definesutfh BlenX events such as:
when(Y_XY::inf) split(YP,Nil);

Synthesis and degradation of tkemolecule are included for the further analysistred
model:

when(S::rate(k1)) split(S,X);

when(X::rate(k2p)) delete(1);

Types represent the interaction capabilities ofotwees and are listed in Appendix A.

Note that the way of composition can be automaiexra binders may be added and the
list of conditions can be extended as well. Eaclhemde that is able to perform as an en-
zyme or as a substrate can be described the samema&ing composition of these ele-
ments easy. Listing the properties of the companemdkes compositionality a feature of
process calculus based programming languages @esign biology and the general de-

scription of the enzymes acting similarly reduce $ize of a larger model during extension.

The general description of an enzyme performing ak a substrate is supported with the
following conditions:
let inactivate_ENZ :
pproc = ( if (substrate, bound) then hide(enzyme).nil endif );
let inactivate_SUB :
pproc = ( if (enzyme, bound) then hide(substrate).nil endif );
let activate_ ENZ :
pproc = (if (not(substrate, bound)) then unhide(enzyme).rec_enzyme!().nil endif );
let activate_SUB :
pproc = (if (not(enzyme, bound)) then unhide(substrate).rec_substrate!().nil endif );

108



RESULTS
Binders can be added easily and processes camiymsed parallel. We see that this prop-
erty of the pi-calculus processes enable the reptagon of molecules with several inde-
pendent functional domains. If the molecleontainsn independent binding or phospho-
rylation sites, each state of the molecule reflélaésset of activities in which the site can
participate. In contrast, with the ODE approach rtiredeler would be required to write ki-
netic equations for all modification states of Xiglhgrow exponentially with the number
of independent sites. While the number of reactioesded to describ¢ in BlenX grows
linearly with the number of sites. Furthermore, BlenX framework as a member of
process algebra initiatives, allows the formatibhe&teromers resulting in a larger and more
complex picture of the system that would be redlize a difficult way with ODEs. If
needed, with the help of conditions we can exchisdeoccurrence of certain bindings, thus
we can limit our network depending on our modeljogl. Realization of the templates and
the code of general rules assigned to common bahavibiological systems easen the
modeling process and provide a more systematicoféyilding biological networks in si-

lico.

In the subsequent we show the analysis of this heoglnd how it behaves in a stochastic

environment.

5.5.1.2 Computational simulations for the mutual antagonismmodule

Bifurcation analysis is one of the leading techesjfor analyzing classical modeling tools,
ODEs. The system’s properties can be presented glesgant way by showing how it re-

sponds to the increase or decrease of a key sign#ilis particular antagonistic module a
bistable region is present where the same systahlésto perform in two distinguishable

states depending on the initial conditions. In scaite model the global properties should
not vary, thus after running stochastic simulatiauith the same parameter set but with dif-
ferent initial conditions, we have to be able te aebistable region if nonlinearity remained

in our BlenX module. The parameters used in theargde have been adapted from [168].

In more details, to plot a bifurcation diagram, et®nged the synthesis ratekafby chang-

ing the value of the signafy and then we measured the time-average ahd P, after
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they had reached the steady state during the dioni&Ve can clearly see the region of bis-
tability on Figure 28, in accordance with the expental measurements (Figure 29).

Xsteadystate 2000
[#]

1600
1200
800
400
0
0 500 1000 1500 2000
S [#]

Figure 28: Two distinguishable stable steady states are &istability characterizes the system between the
S values of 1000# and 1600#. Steady state valuesacelated as the time average of the moleculer aft
reaching steady state=0.00167.
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Figure 29: Experimental measurements of existence of bistylmil cell cycle regulation by Pomerening et ai7¢].

One question we might ask is that when we implenaemtutual inhibition module into a
stochastic model, how noise would affect our simaiaresults. In order to investigate the
influence of stochasticity in our BlenX module, vezluced the number of molecules play-
ing role in this isolated system (by reducing tladue of thea conversion factor). When it
includes only a small number of enzymes, the lartgrnal noise arising from the stochastic
simulations is able to disrupt bistability (Figu38). We cannot see the hysteretic property
on the diagram of Figure 30.
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Figure 30: Steady state values of X over S with large noisdtial conditions areX=6#, Y=6#, YP=0#, A=6#
for black triangular; an&X=0#, Y=0%#, YP=6#, A=6# for grey squares. Steady state values are asddcfrom
time averages of the simulations=0.167.

It has been shown by [168] that the unpacked versfothe module containing only ele-
mentary steps shorten the range of the bistableeegteuer et al. [167] showed how noise
is able to trigger oscillations in a cell cycle nesbdn our example we observed that shorten-
ing the range of the multistate regime by unpackimgcomplex reaction terms may lead to
the fusion of the bifurcation points in stochastimulations. Vanishing multistability is a
crucial consequence of highly stochastic systemss modelers should pay attention to it.
Even if the deterministic module is able to behasean irreversible switch due to its hyste-
retic property, noise may influence this behaveading to different results from the deter-
ministic module including several complex rate fiiwres. Stochasticity may trigger the sys-
tem to bounce from one to the other state and biable size of the bistable region is not
large enough. On Figure 31 we see that within te&ble region noise influence the prop-
erties of the system. The increase of noise leadssappearance of the hysteretic behavior
and decrease the robustness of the switch. In gleoglts tend to overcome this phenome-
non in real systems by increasing the number oemudés present in this regulatory mod-

ule.
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Figure 31: Time evolution of the bistable system depends erathount of noisex is varied in order to mod-
ify the number of molecules present in the mod{#eB) a=0.167, (C-D)a=0.0167, (E-F)a=0.00167. (A) in-
itial X andY equal 600#, (CX andY equal 60#, (EX andY equal 6#, (B,D,FX andY equal 0#. The amount
of signal § equals to 13#, 130# and 1300%# respectively.

Besides the positive feedback regulation emergiog fa double inhibitory relation cells al-

so perform mutual active regulation (Figure 32)tHa following section we show a BlenX

realization of this type of positive feedback.
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Figure 32: Positive feedback regulations. The diagram onlaftehand side represents a mutual antagonism
(or double-negative feedback loop) and the othehemight represents mutual activation.

5.5.2 Positive feedback loop generated by mutual activaih mechanisms

Positive feedback regulation may occur when twoyeres mutually inactivate or activate
each other. The realization of the mutual activatiodule can be composed of two Gold-
beter-Koshland functions as in the previous examples regulatory motif is important

when both enzymes are inactive at the initial skegell cycle we can think about the ex-
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ample when CDK/Cyclin B (named and referred to &C8 in the subsequent) and its
phosphatase (CDC25P), are both inactive beforesmit®uring G2-phase CYCB is inhi-
bited by a kinase (WEE1), while CDC25 is inactivedo another enzyme. Cells in order to
enter mitosis need to increase the amount of a@W€B (CYCB form). Slight increase in
the CYCB level triggers activation of the CDC25 ppbatase which in response removes
the inhibitory phosphate group from CYCBP. The mio@eased amount of active CYCB
form increases the active CDC25P creating an alni@bge in the level of both proteins
(Figure 33). This double activation switch cellsoimmitosis due to the sudden increase in

CYCB activity.

—»%®

‘
u
L}
1
\
—

Figure 33: Wiring diagram of a mutual activation mechanism.

Enzymatic reactions are described in three steggedon the enzyme-substrate reversible
complex formation and a catalytic step. Each imttang enzyme-substrate pair performs a
Goldbeter-Koshland module. The rules guiding theleh@re similar to the ones used in the
mutual antagonism system. Conditions are activaéing inactivating the binders of the

boxes.

let activate_ ENZ :
pproc = (if (not(substrate, bound)) then unhide(enzyme).rec_ENZ!().nil endif );
let activate_SUB :
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pproc = (if (not(enzyme, bound)) then unhide(substrate).rec_SUB!().nil endif );
let inactivate_ENZ :
pproc = ( if (substrate, bound) then hide(enzyme).nil endif );
let inactivate_ SUB :

pproc = (if (enzyme, bound) then hide(substrate).nil endif );

CYCB acts as a substrate of the inhibitory kina&&E1) and also as an enzyme activating
its partner, CDC25P:
let CYCB : bproc = #(substrate:0,CYCB_sub),
#(enzyme:0,CYCB_enz_CDC(C25)
[ inactivate_ENZ | activate_ENZ |
rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) |
inactivate_SUB | activate_SUB |
rep rec_SUB?().(inactivate_SUB | activate_SUB ) |
rep enzyme?().nil |

substrate!().ch(substrate, CYCB_sub_mod).nil Ik

In this module WEE1 kinase has no affinity to otrearctions than inhibiting CYCB.
let WEET : bproc = #(enzyme:0,WEE1_enz)

[ rep enzyme?().nil |;

CDC25 has an inactive form assigned as CDC25 armactwve form called CDC25P. The
active CDC25 can function both as an enzyme anthstate. The inactive form (CDC25)
has no enzymatic activity.
let CDC25 : bproc = #(substrate:0,CDC25_sub)
[ substrate!().ch(substrate, CDC25_sub_mod).nil |,
let CDC25P : bproc = #(enzyme:0,CDC25P_enz), #(substrate:0,CDC25P_sub)
[ inactivate_ENZ | activate_ENZ |
rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) |
inactivate_SUB | activate_SUB |
rep rec_SUB?().(inactivate_SUB | activate_SUB ) |
rep enzyme?().nil |
substrate!().ch(substrate, CDC25P_sub_mod).nil Ik
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An undefined enzyme keeps CDC25 inactive.
let ENZYMET : bproc = #(enzyme:0,ENZYME]1_enz)

[ rep enzyme?().nil J;

A signal is introduced that increases the amourthefenzyme CYCB to trigger the switch
after CYCB reaches an activity level that can atev\CDC25:

let SIGNAL :  bproc = #(s:0,S) [nil |;

when(SIGNAL::rate(s)) split(SIGNAL,CYCB);

Degradation of CYCB and CYCBP equilibriates thgmthesis:

when(CYCB::rate(deg)) delete(1);

Temporal species are defined to assign additiamadtions for the modified boxes and their
binders (Appendix A). The molecular links are definn the binder definition file (Appen-

dix A). Binders are associated to each other tmmainzymatic reactions to happen.

parameters and unitg parameter valuep parametetisuanits| parameter values
k1 [1/(min- #)] 1« ml [1/(min - #)] 0.05 -«

klr [1/min] 0.1 mlr [1/min] 0.01

k2 [1/min] 0.5 m2 [1/min] 0.5
[1[1/(min-#)] 001« nl [1/(min - #)] 01 -«a

[1r [1/min] 0.01 nlr [1/min] 0.05

[2 [1/min] 0.05 n2 [1/min] 0.05

s [1/min] 0.1

deg [1/min] 0.01

Table 12: Reaction rate constant values used in simulatioRigure 34. Initial values are ENZYME1=100#,
CDC25=200#, CYCBP=500#, WEE1=100#, SIGNAL=50#, CY-CI®DC25P=0%#.

Simulation result of the module shows the dynanhithe system (Figure 34). When CYCB
level increases CDC25 turns into an active formsThange amplifies the effect of CYCB

as CDC25P is able to restore its activity.
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Figure 34: Simulation of the mutual activation module. Thergase of CYCB switch CDC25 (inactive from)
into CDC25P (active form). Active CDC25P activa@¥$CBP resulting in CYCBa=0.0167.

This module can be used in various scenarios wihaplifecation of a signal is realized
through enzymatic reactions with mutual activatietation among the elements of the
module. In biology it plays major role in developme processes [277] or in apoptosis
[272,278].

In the next session, we show a compositional cagly $or modeling the G2/M transition
of the cell cycle. The example contains intercotegenutual antagonism and mutual acti-

vation.

An example: G2/M transition during cell cycle

Alternation of the cell cycle phases is tightly tretied through the interaction of a large set
of regulatory proteins. Activity of the cyclin-depdent kinases (CDKSs) is responsible for
most basic cell cycle processes and its role isiarin cell cycle progression [279]. One
method for change the activity of CDK is to modify phosphorylation state. The G2/M
transition is one of the key irreversible switchiescell division cycle triggered by active
CDK in combination with a cycling subunit (Cyclin).BDuring the G2-phase of the cell
cycle, CDK activity is kept low with inhibitory plsphorylation events that are carried out
by the Weel kinase. As the activity of CDK/Cycliniigreases in time, it activates its hel-
per phosphatase Cdc25 which in return removestiibiiory phosphate groups from CDK.

The sudden increase of CDK activity triggers inaation of Weel kinase by its phosphory-
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lation. The active CDK generates mitotic eventg.(ehromosome condensation, nuclear
envelope breakdown, chromatid segregation, asseoflhytotic spindle).

| > enzyme
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Figure 35: Wiring diagram of the G2/M transition module

The sequence of these events is realized througitaddeedback regulations. The antago-
nistic relation of CDK/Cyclin B (CYCB) and the We@WVEE1) kinase can be modeled as a
double-negative feedback relation. The mutual attw of the CDK/Cyclin B and the
Cdc25 (CDC25), together with the positive feedbladp described ahead act synergistical-
ly and provide an abrupt increase in the activitfCBK making the G2/M transition an ir-
reversible, switch-like event. Let us show how pineviously presented template can be ex-
tended in order to model the cell cycle transifimm the G2-phase into the M-phase.

5.6.1 Composition of the G2/M transition with BlenX

Each elementary step of the module might be codete BlenX framework starting from
basic primitives. We go further and show a morgai¢ way of using BlenX templates for

modeling a complex motif including a mutual inhibit module extended with a positive
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feedback regulation. It is an example for a higkegel composition of the predefined tem-

plates.

The mutual antagonistic relation between CDK/Cyd@iifreferred to as CYCB) and Weel
is modeled as described in Chapter 5.5.1.1 andxtenaed it with a mutual activation
module of the interaction of CYCB and CDC25 (Chapt&.2).

The general conditions that regulate the activitgestain binders are defined the same way
as in the mutual inhibitor and mutual activationdules:
let activate_ ENZ :
pproc = (if (not(substrate, bound)) then unhide(enzyme).rec_ENZ!().nil endif );
let activate_SUB :
pproc = (if (not(enzyme, bound)) then unhide(substrate).rec_SUB!().nil endif );
let inactivate_ ENZ :
pproc = ( if (substrate, bound) then hide(enzyme).nil endif );
let inactivate_SUB :
pproc = ( if (enzyme, bound) then hide(substrate).nil endif );

In this model there are three binders featured ditferent functions of the CYCB mole-
cule. One of them represents the bindig site ofGNEB (for its inhibitor kinase WEE1 or
its activator phosphatase CDC25), while the other binders are responsible for the enzy-
matic activity of CYCB acting on WEE1 and CDC25epeéndently. If we compare, we see
that the CYCB protein does not have the same sibstole as in the mutual inhibition
module, but possesses an enzymatic activity cigatioonnection into the positive limb of
the motif. In the code the processes and conditielaged to the previous unnecessary role
of the box have been erased and novel rules hauedsided parallel to the already existing
module. Note that in case of this composed modwedo not need to apply the assump-
tions that we did in Chapter 5.5.1.1. In that medir order to restore bistability in the mu-
tual antagonism module, the inactive enzyme hasnamal enzymatic activity. In case of
this larger module, complexity of the system solihes problem arising from disappearing
nonlinearity in elementary steps. Interconnectestifi@ck loops can increase robustness of

the system and restore nonlinear dynamics in ttasgle.
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In the following, we highlight the parallel comptsh of the elements of the system. The
black color stays for the mutual inhibition, whilee blue text shows the extensions emerg-

ing from the mutual activation module.

let activate. ENZ_CYCB :
pproc = (if (not(substrate, bound)
and not(enzyme_CYCBCDC25, bound))
then unhide(enzyme).rec_ENZ!().nil endif);

let activate_ SUB_CYCB :
pproc = (if (not(enzyme, bound)
and not(enzyme_ CYCBCDC25, bound))
then unhide(substrate).rec_SUB!().nil endif);

let activate. ENZ_CYCB_CDC?25 :
pproc = (if (not(enzyme, bound)
and not(substrate, bound))

then unhide(enzyme_CYCBCDC25).rec_ENZ_CDC25!().nil endif);

let inactivate. ENZ_CYCB :
pproc = (if ((substrate, bound)
or (enzyme_CYCBCDC25, bound))
then hide(enzyme).nil endif );

let inactivate._ SUB_CYCB :
pproc = (if ((enzyme, bound)
or (enzyme_ CYCBCDC25, bound))
then hide(substrate).nil endif );

let inactivate. ENZ_CYCB_CDC25 :
pproc = (if ((enzyme, bound)

or (substrate, bound))
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then hide(enzyme_ CYCBCDC25).nil endif );

We assign three different functions into CYCB. dtsaas an inhibitory enzyme of its ‘ene-
my’ (the WEE1 kinase); and CYCB acts also as arymezactivating CDC25 and last, it is
a substrate of other enzymatic reactions triggese@DC25P in this example. Three bind-

ers are present for these roles.

let CYCB : bproc = #(enzyme:0,CYCB_enz),
#(substrate:0,CYCB_sub),
#(enzyme_ CYCBCDC25:0,CYCB_enz_CDC25)
[ inactivate_ENZ_CYCB | activate_ ENZ_CYCB |
rep rec_ENZ?().(inactivate_ENZ_CYCB | activate_ ENZ_CYCB ) |
inactivate_SUB_CYCB | activate_SUB_CYCB |
rep rec_SUB?().(inactivate_SUB_CYCB | activate_SUB_CYCB ) |
inactivate_ENZ_CYCB_CDC25 | activate_ENZ_CYCB_CDC25 |
rep rec_ENZ_CDC25?().(inactivate_ENZ_CYCB_CDC25 |
activate_ENZ_CYCB_CDC25 ) |
rep enzyme?().nil |
substrate!().ch(substrate, CYCB_sub_mod).nil |
rep enzyme_ CYCBCDC257().nil 1

let CYCBP : bproc = #(substrate:0,CYCBP_sub)
[ substrate!().ch(substrate, CYCBP_sub_mod).nil |,

let WEET : bproc = #(enzyme:0,WEE1_enz),
#(substrate:0,WEE1_sub)
[ inactivate_ENZ | activate_ENZ |
rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) |
inactivate_SUB | activate_SUB |
rep rec_SUB?().(inactivate_SUB | activate_SUB ) |
rep enzyme?().nil |

substrate!().ch(substrate, WEE1_sub_mod).nil 1
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let WEETP : bproc = #(substrate:0,WEE1P_sub)
[ substrate!().ch(substrate, WEE1P_sub_mod).nil  |;

let CDC25 : bproc = #(substrate:0,CDC25_sub)
[ substrate!().ch(substrate, CDC25_sub_mod).nil  |;

let CDC25P : bproc = #(enzyme:0,CDC25P_enz), #(substrate:0,CDC25P_sub)
[ inactivate_ENZ | activate_ENZ |
rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) |
inactivate_SUB | activate_SUB |
rep rec_SUB?().(inactivate_SUB | activate_SUB ) |
rep enzyme?().nil |

substrate!().ch(substrate, CDC25P_sub_mod).nil Ik

let ENZYMET : bproc = #(enzyme:0,ENZYME1_enz)

[ rep enzyme?().nil |;

let ENZYME? : bproc = #(enzyme:0,ENZYME?2_enz)

[ rep enzyme?().nil J;

Binders are specified as:
{ WEE1_enz, WEE1_sub, WEE1_sub_mod,
CYCB_enz, CYCB_sub, CYCB_sub_mod, CYCB_enz_CDC25,
CDC25P_enz, CDC25P_sub, CDC25P_sub_mod,
ENZYMEI1 enz,
ENZYME?_enz,
CDC25_sub, CDC25_sub_mod,
WEE1P_sub, WEE1P_sub_mod,
CYCBP_sub, CYCBP_sub_mod } % %
{ (CYCB_enz_CDC25, CDC25_sub, rate(al), rate(alr), rate(a2)),
(CYCB_enz_CDC25, CDC25_sub_mod, 0, inf, 0),
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(CYCB_enz, WEE1_sub, rate(b1), rate(b1r), rate(b2)),
(CYCB_enz, WEE1_sub_mod, 0, inf, 0),
(ENZYME1_enz, CDC25P_sub, rate(c1), rate(clr), rate(c2)),
(ENZYMEI1_enz, CDC25P_sub_mod, 0, inf, 0),
(CDC25P_enz, CDC25P_sub,rate(d1), rate(d1r), rate(d2) ),
(CDC25P_enz, CYCBP_sub_mod, 0, inf, 0 ),
(WEE1_enz, CYCB_sub, rate(el), rate(elr),rate(e2)),
(WEE1_enz, CYCB_sub_mod, 0, inf, 0),
(ENZYME?2_enz, WEE1P_sub, rate(fl), rate(flr) ,rate(f2) ),
(ENZYME?2?_enz, WEE1P_sub_mod, 0, inf,0) }

Temporal species are the events assigned to treedeéined in Appendix A.

We run stochastic simulations with the parametesisewn in Table 13.

association rate | dissociation rate| catalytic

constants constants step
units: units: units:
[dm3 /(# - min)] [1/min] [1/min]
CycB (enzyme) : Cdcb
al 0.2a alr 0.02 a2 4
(substrate)
CycB (enzyme) : Weell bl
5a blr 10.6 b2 0.4
(substrate)
El (enzyme) : Cdc25p cl
0.1la clr 0.1 c2 20
(substrate)

Cdc25P (enzyme) : | d1
CycB (substrate)

0.0009a dir 0.005 d2| 0.085

Weel (enzyme) : CycB
el Ola elr 0.05 e2l 0.05
(substrate)

E2 (enzyme) :
WeelP (substrate)

Table 13: Parameter set for the simulation of G2/M tranasitibhe values of the rate constants are taken from
[132] and converted into stochastic rates througbreversion facton=0.0167.

f1 0la fir 0.01 f2 2
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We compared the simulation results with the deteistic exact solution of the module. The

stochastic template fits well the solution of thetesministic case even with larger noise
present in the system (Figure 36). The usage aedconnecting the predefined templates
are easy in this way. Parallel composition of psses and extension of binders and rules

can be automatized within a software tool.

CDC25P 12000 4 A 1200 + D
[#] 8000 - 800 |
4000 - 400 ‘
0 0
0 50 100 150 0 50 100 150
WEE] 1200 - B 120 + E
[#] 800 - 80 -
400 - 40 -
0 \ . 0 et ‘ .
0 50 100 150 0 50 100 150
CYCB ™ C| [*= F
[ #] 1200 - 120 -
800 - 80
400 - a0 -
0 y ; , 0 : : :
0 50 100 150 0 50 100 150

Figure 36: Stochastic simulation of the G2/M module is plotieded, while the deterministic exact solution
is signed by black lines. (A-C) time curves of adabwith highera (a=0.000167) representing less noise. (D-
F) time cirves with larger noise€0.00167).

Perspectives

On the line of the work presented here, much madgical motifs could be implemented
into the template library in the future. One ingtieg example might be the composition of
negative feedback regulations that provide a moreptex representation of biological os-
cillators. Negative feedback is often used to $itsbdynamic systems as it is able to per-
form adaptation (such a way as incoherent feeddawoops) [280,281]. Furthermore, it

has been shown having role in noise-reduction mptex systems. We decided to investi-
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gate one particular case during this work, whenogder behavior arise due to a negative
feedback loop including a time delay or other iobemected feedback regulations.

Automatic use of the templates is possible thaokbe basic structure of the language with
rules-driven reactions and parallel compositionhef processes. Realization and implemen-
tation into a higher-level interface (such as CoB&h [255]) is a matter of software devel-
opment and out of scope of this work. The librarggented here gives an opportunity for
realization of a user-friendly, high-level procesdculus modeling tool for biology on top

of the BlenX language and Gillespie’s SSA algorithm

5.8 A circadian clock study

Circadian clocks [181] ensure the daily rhythmse¥eral biological functions. This endo-

genous system is based on a negative feedbackplodpicing a time delayed downregula-

tion of transcriptional events. In addition to thell-studied, but still unclear, features of the
molecular clock (such as entrainment, robust @tmihs and temperature compensation),
recently, a novel molecular link has been discavérg Matsuo and co-workers [225]. They

found that circadian rhythms regulate the dailyregpion of a certain cell cycle component
(Weel kinase) being instrumental in the irreveesiBR/M transition, inhibiting cell’'s entry

into mitosis depending on the time of the day.

A systematic approach to such a biological netwody lead us to unexpected discoveries
and verification or contradiction of hypothesesveasll. In the subsequent, our results
achieved by modeling this 24h oscillatory systeif48,282] will be presented.

5.8.1 Modeling cell division cycles gated by the circadiaclock

After the first molecular evidence for the couplibgtween circadian and cell cycles has
been revealed [225], we decided to investigatentportance of this connection with a sys-
tematic approach. We adapted Bela Novak and Jdlysan’s deterministic cell cycle mod-
el [160] that focuses on the regulation of therretsdbn point of mammalian cells. However,
their model lacks the detailed representation ef @2/M transition (see description in
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Chapter 5.6), thus we exploited its extension &itmutual antagonistic switch control me-

chanism.
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Figure 37: The G2/M transition of the cell cycle is gated b ttircadian clock through the time-dependent
transcription of the Weel gene. Every 24h BMAL1/GLIOtranscription factor dimer triggers the expressi

of Weel. Weel protein inhibits (dashed |-- line) $ignal of the entry into mitosis (the CDK/CycBncalled
Cdc2/CycB in mammals). On the other hand, the CBc@bosphatase activates the Cdc2/CycB (dashed ar-
row). The intertwined two positive feedback loopsere the precise and irreversible G2/M transitibthe
cycle.

The first molecular link between these two cycliogesses resides in the direct regulation
of the Weel kinase by the core clock transcripfiactors, BMAL1 and CLOCK (also
called CIk) in mammals. The importance and theceftd this interconnected oscillatory
system is unclear, thus among others [170,226]alse decided to analyze the systems

through computational modeling [47].

During our work, the modeling purpose was not tdrads a comprehensive mammalian
circadian rhythm model. For the sake of simplicisg had a minimal oscillator that gene-
rates an endogenous cycle enforcing a periodiaenfie on the cell cycle. Hence, we built a
simplified version of a 4-variable mammalian cirieadclock model that consists of tran-
scription factors (BMAL1 and CLOCK), clock messadesPer or mCry mRNA), clock
proteins (PER or CRY), and a dimer complex of clpobteins (Figure 38). For the simplic-
ity of the model and because we lack the functialiférences between the core clock pro-
teins, we assume that PER and CRY are the sam&spéberefore, PER/PER represents
combinations of PER/PER, PER/CRY, and CRY/CRY dsndihe crucial structure of a
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negative feedback regulation originates from a staptional-translational control loop
(TTCL) consisting of the transcription factors BMAland CLOCK that form heterodimers
(BMAL1/CLOCK) and triggers transcription of the eoclock genes (Per and Cry). After
translation and complex formation, the activateacklproteins (PER/PER) downregulate
their own transcription through binding into the BML/CLOCK complex and closing the
negative feedback loop of the system. Furthermiareur model we assume that the PER
dimers (CP2) are more stable than the single pretevhich introduces an additional auto-
catalytic positive feedback into the model [283pisTsimplified circadian clock system has
been connected to the mammalian cell cycle netwatkanalyzed within the deterministic

and stochastic framework [47].
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Figure 38: Simplified circadian clock model.

Simulations show robust endogenous oscillationk wiperiod of 24 h (Figure 39).

N2 N
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Figure 39: Deterministic simulation results of minimal circadirhythm model. Blue curve indicates the total
concentration of clock proteins (present in the CP2 and IC forms); red curve shows the concentratf
active transcription factors (TF) and the greerveuwstates for the messenger molecule (M) in theainod
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For stochastic simulations, we first introducedseanto the cell cycle regulatory equations
by rewriting the cell cycle model as Langevin-typguations with multiplicative noise
[167,284]:

©ox = AL 4w 2D

wherefi[ . . . ] means the original deterministic equatii(t) is Gaussian white noise with
0 mean and unit variance, abid is the noise amplitude. For simplicity, we kept tiase
amplitude constant (0.005) for all variables. Thisnber was set by matching the coeffi-
cient of variation (CV) of simulated uncoupled cejicle length (at mass doubling time
(MDT) = 24 h) to experimentally observed CV = 1028%]. As a first assumption, we did
not introduce stochasticity in the circadian cloc&dule because its sensitivity to noise may
not reflect a truly robust clock mechanism, beimgoaerly simplified version of a clock

model.
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Figure 40: Simplified wiring diagram for the coupled cell ég@nd circadian clock.

As we vary the mass doubling time (MDT) of the agltle, stochastic simulations reveal

quantized cell cycles when the activity of Weelnituenced by clock components (Figure
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41 and Figure 42). The quantized cell cycles disapjn the absence of coupling or when

the strength of this link is reduced.
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Figure 41: Clock-influenced cell cycle results in uneven disttion of cell cycle time. (A), (B), and (C)
represent cell cycle simulations with strong coupliate and the mass doubling time (MDT) at 16thh2and
28 h, respectively. Clock-regulated Weel (bluelitesn variations in sizes and cell cycle timesiiiterent
MDTs. The black line represents cell mass, whidwgrexponentially and divides by a factor of 2.I5laxge
deviations are not observed with weak coupling 8Td 16 h, 20 h, and 28 h (D-F). The middle panetss
a robust 24-h endogenous period>#tot (purple) and transcription factorK; green) at various MDTSs.
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Figure 42 Histogram of cell cycle time distribution at ¥fdrent mass doubling times (MDTS). Thewxis
represents number of cells going through cell @ivisvith a particular cell cycle time. Strong cangl re-
sults in multimodal distribution of cell cycle tim€A—C), while weak coupling results in normal disttion
(D—-F) at indicated MDTs (16 h, 20 h, and 28 h).eFHikousand cell cycles are analyzed for each yloitch
is calculated from 100 simulation runs with 50 amngive cell cycles.
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Quantized cell cycle distributions in mammalianicélave been measured experimentally
by Robert Klevecz (Figure 43) and Nagoshi et @86]2Our simulation reveals the biologi-

cal mechanism underlying this experimentally obsdrphenomenon [47].
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Figure 43: Quantized cell cycle distribution of mammalianl eellture measured experimentally by Klevecz
[287].

More intriguingly, our simulations indicate thaethircadian clock triggers critical size con-
trol in the mammalian cell cycle (Figure 44). Ggton the cell cycle progress via Weel en-
forces size control when the MDT (mass doublingedinis quite different from the circadian

period which is 24h in mammalian cells. No size toainis observed in the absence of

coupling.
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Figure 44: Analysis of critical mass control. (A, B) Growttofn cell birth to division (magyg is plotted as a
function of birth mass (mass0) for multiple simidas at different mass doubling times (MDTs). Dpténts
are color coded and clustered according to pagiddDTs. Cell size control is reflected when thisra nega-
tive correlation (slope of about —1) between maaad mass0. Strong coupling results in strict sizetrol
when cell masses are either large or small butppau@nt correlation at intermediate cell masses \(#gak
coupling (B) shows no clear size control. About ZBfwlation runs are calculated at different MDFsr
clear representation, not all data points are diga on panels (A) and (B), and the legends fdn pahels are
inserted on panel (B). (C, D) Slopes of linear esgion lines from (A, B) are plotted as a functafrthe
MDT. Strong coupling results in strict mass con{gbpe about —1) when the MDTs are either muchiteho
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or longer than 24 h, but size control is not obsdrwhen the MDT is close to 24 h (C). Weak coupihgws
no apparent mass control (D). (E, F) Similar resate shown with linear growth rate. Unique slopeegres-
sion lines of mags vs. mass0 plots are observed with strong cougg function of MDT (E), as seen with
exponential growth rate (C). The MDT is calculatesin the average cell cycle time of 50 cycles.

The issue of size control in the mammalian systerdebatable, whereas it is well estab-
lished in yeast. It is possible that the size arir more readily observed in cell lines that

contain circadian rhythms, since not all cell typase a circadian clock.

Following the ideas presented ahead [47] we tréatslthe ODEs describing the coupled
system of the cell cycle and the circadian rhythto BlenX [288]. The main difference be-
tween the previous stochastic model and the BlemXis that the current, translated model
is fully stochastic and discrete. The ODE modebkprgs noise only in the cell cycle part but
not in the circadian clock. Furthermore, the ststiodly of the model originates from addi-
tional noise terms described by Langevin’s equatiwhile in case of the BlenX model, Gil-
lespie’s stochastic simulation algorithm is implenseal into both the cell cycle and the cir-
cadian oscillator. The expression power of BlenX baen extended previously with the de-
finition of rate functions through the process odls events. Namely, BlenX let the user to
specify a rate function that is used in place ef@illespie method to compute the propensi-
ty function. We translated the biochemical reaidescribing the system in ODEs into the
BlenX framework with the help of these functionegsChapter 2.10). Analysis of the simu-
lations using a method based on the Fourier arsatysifirmed our simulation results [288]
that multimodial distribution occur when circadiatock gates the cell division cycle

through Weel transcription.

As a further step, we extended the circadian rhythodel and fit it to experimental mea-
surements. We added the transcription and degoedafiBMAL1 mRNA and refined the
model by adding different direct feedbacks (a pesita negative and a combination of
them) from the translated BMALL on the transcriptaf its mRNA.
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Figure 45: Modified circadian clock model based on the resaoft Sato et al. [191] and Preitner et al. [190].
Our simplified model has been extended with thelmsgis and degradation of the messenger of thedrign
tion factor BMAL1/CLOCK and the positive (blue dasharrow) and negative (green dashed |-- sign)feed
back regulation of the BMAL1/CLOCK protein complex.

We tried to infer reaction rates from the experitakédata using Kinfer [140], a tool for es-
timating rate constants of biochemical network ntedé/e concluded that revision or ex-
tension of our model is necessary in order to pexrimental models quantitatively. Al-

though, we see that such a small regulatory sydtsuribing circadian clock could propose

possible answers for our questions raised abouyiledwscillators.

We went further and compared our simple model detailed regulatory network proposed
by Leloup and Goldbeter [211]. The author's mod®itains additional regulatory loops to
our simplified version of clock. Among other diféerces, they implemented the
BMAL1/CLOCK driven inhibition of the Bmall/Clock nssenger. However, their system
lacks a positive feedback loop that we proposqurésent due to the dimer formation of the
PER proteins resulting in a more stable form ofrtteen clock negative element. By analyz-

ing both models, we found this positive limb impartin a different context.
In the following session our investigation on thiee of DNA-damaging agents on the cir-

cadian clock and how this simple model can matckxqerimentally observed and surpris-

ing phenomenon will be presented.

131



RESULTS

5.8.2 Analysis of DNA damage-induced phase advances in@dian rhythms

Since the early discoveries of circadian clock-gjatell cycles in lower eukaryotes [222],
numerous molecular findings that connect the oglecand circadian clock are now being
addressed [175,225]. In addition to the cell dosscycles found to be gated by the circa-
dian clock, ionizing radiation (IR) treatments cawlls to undergo a DNA damage re-
sponse, which leads to phase shifts (mostly adwradso in circadian rhythms. DNA dam-
age-induced activation of the cell cycle regulatdhk2 kinase, results in phosphorylation
and destruction of a circadian clock component,(FER1 inMus musculur FRQ in
Neurospora cras94228,229].

One of the identifying properties of circadian tnyis is the ability to phase shift upon a
stimulus from external cues. This property allowgamisms to adapt efficiently to the ex-
ternal environment. For example, a person travedisgf to Europe from the U.S. will expe-
rience a jet-lag in the process to adapt advanbede It is intuitive to assume that a phase
shifting agent will create both phase advances @gldys depending on the timing and
strength of the pulse by uniformly affecting moliecupathways in the circadian system
[289]. It has been observed that 2h treatmentsapflRibroblasts with the drug called dex-
amethasone (Dex) result in large advances and si€laype 0 resetting of the phase), possi-
bly by inducing transcription of both Perl and Pgehes [229,290]. This Dex-dependent
phase response curve (PRC) is also observed NItH&T3-Bmall-Luc-1 cells [286]. If the
Dex-dependent induction of Per transcripts caus#h phase advances and delays, we
would also predict that DNA damage-dependent phagdtion and degradation of PERs
by Chk2 [228,291] would result in similar PRCs. Beicfindings indicate that this intuition
is wrong [228,229]. Upon experiencing DNA damadme tell cycle machinery influences
the circadian clock in such a way that creates gradantly phase advances in Rat-1 fi-
broblasts and mice, as well asNlrurospora crassdn order to address the criteria of such
behavior, we employed computational modeling tousate different phase response curves

(PRCs) resulting from Dex and IR treatments [48].
Phase response curves (PRCSs) illustrate the netdtijp between the timing and the effect of

a treatment designed to affect the circadian ctotk population level (Figure 46). A PRC

is a graph showing, by convention, the time of $bbject's endogenous day (along the x-
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axis) and the amount of the phase shift that ocapmn the stimulus (along the y-axis).

Phase advances are plotted as positive values phulee delays take negative numbers.
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Figure 46: Measurement of the phase response curves. On (€3dian cycles of clock components are
shown with (dashed lines) and without (solid linpBase-shifting agents given at a circadian timén4this
example (red arrow). Value of the phase shift cawgao the original phase (solid lines) in a lgieriod is
signed ad\. (B) shows a phase response curve with the tintkeeofreatment on the x-axis (4h in this example)
and the hours of advances (positive values) olyddleegative values) on the y-axis.

Dexamethasone (Dex) is known to synchronize cissadnythms in cell cultures and may
generate both phase advances and delays (Figue& #@ndside). On the other hand, ioniz-
ing radiation treatment leads to unique phase resggwith minimum delays of the circa-

dian clock (Figure 47 right handside).
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Figure 47: Phase response curves of mammalian circadian<lggén dexamethasone (left side figure) and
upon ionizing radiation treatment (on the righejidNote the different shape of the curves witjdasdvances
and delays in the left case and mostly advancakeoright side figure. Both plots are taken fronblmhed ar-
ticles of the experimental work done by Izumo e{290] and Oklejewicz et al. [229].
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We explored a simple mammalian circadian clock rhden our previous work [47] to in-
vestigate whether we can simulate different PRGmfthe Dex and IR treatment experi-
ments. Based on the experimental data, we addefbltbe/ing in our previous model: 1)
Dex increases the transcripts of PER but not BMAaid 2) Chk2 phosphorylates PERs
and facilitates their degradation upon DNA damdggure 48).
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Figure 48: Graphical representation of the circadian modelieg in this study. The effect of Dex and Chk2
has been investigated. Our simulations proposeRE& proteins in the inactive complex are not aéfedy
the Chk2 kinase (red cross).

Our simulations [48] show that the Dex-dependentdase of Per messages creates both
Type 0 (as shown in the experiment, strong regetifithe phase) and Type 1 PRCs (weak
resetting of the phase) depending on the strengihcéntration) of the Dex treatments
(Figure 49). It is, however, not trivial to simwdaa PRC with mostly phase advances repro-
ducing the phenotype from the IR treatment expenisieNe can achieve this phenomenon
if Chk2 prematurely degrades PERs that are not ddaanBMAL1/CLK to advance the
clock, while allowing continued repression of BMAICLK by not degrading the PERSs that
are in a complex with BMAL1/CLK (Figure 48).
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Figure 49: In silico Dex and IR treated experiments. (A) 8fq@ulses of Dex generate Type 0 PRC (filled
circles; strong resetting of the circadian clockhie new phase which does not depend on the olskephehe-
reas weak pulses of Dex generates Type 1 PRC (ldimoles; weak resetting of the phase where the new
phase changes as a function of the old phase)ldRje advances and delays are observed when Cl& is
sumed to affect all forms of PERs including the ptar with BMAL1/CLK (orange squares). Chk2-
dependent phase advances and minimum delays efrti@lian clock are observed only if Chk2 doesafet
fect the PERs that are in complex with BMAL1/CLKdrcircles). (C) DNA damage-induced Chk2 activation
causes phase advances of circadian clock. Soéd liepresent endogenous profiles of PER and BMALK/C
Dashed lines indicate PER (red - CPtotal) and BMALLK (blue - TF) in response to a 2 h IR treatmaint
simulation hour 4 and dots represent the resulés ttfe same 2 hr treatment at hour 16 (hour Gesponds to
the peak of PER monomers (CP)).
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We based our conclusions on the analysis of a gietbimodel and also on the investiga-
tion of a more comprehensive model proposed byugeland Goldbeter [211,215]. Com-
parison of their model and our simple circadiarcklseystem is presented in the subsequent

session.

5.8.3 An autocatalytic positive feedback mechanism as orwf the criteria

Theoretically, a time-delayed negative feedbackufficient to create robust oscillations.
However, biological systems contain both negating positive feedbacks in their wiring
networks. Positive feedback mechanisms are eskémtigroper eukaryotic cell divisions
[292] whereas their roles in circadian rhythms rengdusive. Recently, Tsai and colleagues
indicated that a general function of positive festks in different networks is to create tun-
able robustness in the system [293]. After progpsirmolecular mechanism that accounts
for Chk2-dependent PRC in circadian rhythms (in @@&a0), we also tried to answer if the
positive feedback mechanism is necessary for tserebd PRC.

The autocatalytic positive feedback mechanism éenntiodel arises from different stabilities

between PER monomers vs. PER complexes. Based lesuter data from Drosophila sys-

tem [294-296], we assume that PER monomers are sumeeptible to degradation than
PER in complexes (i.e. PER/PER, PER/CRY, etc.)s Tneates autocatalytic PER dynam-
ics as PER stabilizes itself by forming complexies date, this is the only circadian rhythm

model that employs an essential positive feedbaeg&hanism that is necessary to maintain
a robust oscillator [283]. Hence, we wondered wéethe incorporated essential positive
feedback is required (or disposable) in simulathmgunique PRCs upon DNA damage.

In order to test our hypothesis, we removed theaaialysis in the model by assuming no
stability differences between PER monomers and ¢exep. Then, we re-parameterized the
system to rescue oscillations. Note that we hadseoa Hill-coefficient = 4 for highly coop-
erative negative feedback in order to rescue @si@hs in our four-variable model in the
absence of the autocatalytic positive feedback rkr@sm. To our surprise, we were not able
to generate the unique PRC with predominantly phdsances upon DNA damage even by
assuming differential phosphorylation and degradatf PER monomers vs. PER com-
plexes with BMAL1/CLK.
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We wondered whether above conclusions from our leimppdel can be generalized to a
more comprehensive model with distinct wiring netkvoHence, we tested Leloup and
Goldbeter's mammalian model [211,215]. They used &ets of parameters in order to in-
vestigate possible functions of multiple feedbamiqls in the circadian system. For our pur-
poses, we concentrated to parameter sets 1 andl3 parameter set 1, robust oscillations
of their model can arise from two different timdaded negative feedback loops: PER-
driven and PER/CRY-independent BMAL1/CLK-driven atige feedback loops. For this
parameter set, they can generate an oscillatodbas®@MAL1/CLK-driven negative feed-
back loop in the absence of the PER-driven negd¢igdback loop. In the parameter set 3,
they disabled the BMAL1/CLK-driven negative feedkalmop making the system a
PER/CRY-dependent single negative feedback osmill&¥e did not explore parameter sets
2 and 4 because PER is not required for oscillatiarparameter sets 2 and 4. The wiring
network of Leloup and Goldbeter's model is sigrafdy different from our model which
consists of an intertwined dynamics between annéiséeautocatalytic positive feedback

and time-delayed negative feedback [186,283].

We incorporated Chk2-induced degradation of PERemdés that are not bound to
BMAL1/CLK in the Leloup and Goldbeter's model. Theme tested Chk-2-dependent dif-
ferential degradation of PER as in our simple mo@eir simulations indicate that we see
both TYPE 1 and TYPE 0 PRC depending on the streafjChk2, but we do not observe
asymmetric PRCs with mostly advances (Table 14g¢s&hesults show that the differential
effect of Chk2-dependent degradation of PER congslds not enough to create the ob-
served DNA-damage induced PRCs with the innatengiiof the Leloup and Goldbeter’'s

model.

Our next step was to introduce an autocatalytigtipesfeedback mechanism in the Leloup
and Goldbeter's model and investigate its roleaproducing the asymmetric PRC upon
DNA-damage. First, we added an autocatalytic pasiteedback in the parameter set 1 of
Leloup and Goldbeter's model in a similar way asum simple model. PER complexes are
assumed to be more stable than PER monomers. Tsuquise, we were not able to gener-
ate the PRCs with predominantly phase advances difterential degradations of PER

complexes by Chk2 even with an added autocatapadsitive feedback mechanism. We
wondered whether this was due to the PER indepénBIBtAL1/CLK-driven negative
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feedback loop which is built in the parameter seHénce, we tested the parameter set3
which consists of the PER-driven single negativedbBack. Interestingly, we were able to
simulate the observed asymmetric PRC with predontiypyghase advances as we have ob-
served in our simple model only when both the aattgtic positive feedback and the dif-
ferential effect of Chk2 on PERs were implementethe absence of BMAL1/CLK-driven
negative feedback loop. This suggests that thestsean important dynamical relationship

between negative feedback loops and an autocatplysitive feedback mechanism.

. . Maximum Maximum | Ratio of maximum L
MODEL Clrcgdlan Changed Chk2 advance delay advance and max- Positive
period parameters | value ; feedback
(h) (h) imum delay
Simple model 24.0 : 02 | 527 -1.49 3.54 Yes
Simple model,
positive feedback re- 26.8 manym 0.05 8.89 -11.56 0.77 No
moved
Leloup and Goldbeter
Setl 24.0 - 1 1.24 -2.18 0.57 No
Leloup and Goldbeter
Set 3 23.9 - 1 3.94 -3.55 1.11 No
Leloup and Goldbeter K
Setl 25.2 Od"§[2] 1 1.69 -2.39 0.71 Yes
with positive feedback
Leloup and Goldbeter K
Set 3 20.8 0“"3*:[2] 1 10.66 -4.32 2.47 Yes
with positive feedback
M- Parameter set (without positive feedback):
Rate constants (h’ ) Kms = 0.5, Kmg = 0.045, Keps = 10, Kkepg = 0.0001, ko = 100, kg = 0.001, Kpog = 0.0001, Kicq

= O 001, kica =

4, kpp = 1.97, kpo = 1.97. Dimensionless constants: TF =

1,3,=0.05,J=0.4,n=4.

I We introduced a new rate constant kanp as the nonspecific degradation rate constant of nonphosphory-
lated PER proteins in the cytosol (Pc in their model).

Table 14: Detailed results of the positive feedback necgssitlysis

In the conditions that we have tested, we discal/grat we can only simulate the Chk2-

dependent PRC with predominantly phase advancea ®Wh&2 only affects PERSs that are
not bound to BMAL1/CLK in the presence of an autabaic positive feedback mechan-
ism. Both conditions are required for proper sirtiates. Our study is the only in silico ex-
periment to indicate the necessity of an autocatapositive feedback mechanism in simu-
lating specific phenotype in the circadian system.
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The presented scheme is an example of a simphfiedel of biological rhythms where the
assumptions applied in the complex nonlinearityngehave important roles in producing
oscillatory cycles. Conversion of the model intocktastic simulations requires the decom-
position of complex rate functions into elementaegctions. Goldbeter and Leloup pro-
posed an analysis for a stochastic versionDfasophilacircadian model. Their model sys-
tem is based on the assumption of Michaelis-Mektratics for most of the reactions. A
highly nonlinear Hill term is also present with @ltdoefficient equal to 4. The authors de-

composed the reactions into elementary steps by. han

We decided to apply a systematic way to decompaseiccadian model that accounts for
several hypotheses corresponding to biologicalhrngt During the compositional study,
assumptions have to stay valid for the whole mafdele would like to match the global
properties of the system, provided by nonlineacfiams in the original model. The proteins
present in the clock have multiple roles [297],stlitbhe possibility of choosing between
complex rate functions or elementary reactionsaiomg the required elements (e.g. an en-
zyme) of the reaction explicitly provides a morextble use of the BlenX language for later
extension of the model. Compositionality remainsiraportant and helpful advantage of

BlenX in a template based, modular environment.

5.8.4 A circadian clock model built up from BlenX templates

We have shown (see Chapter 5.8.3) that our sireglifircadian clock model possesses a
crucial role for a positive feedback presentechagystem. In order to investigate a stochas-
tic version of this model, we decided to transfeg system including nonlinear complex
reaction terms with the use of our novel templ#teaty. The circadian clock presented
above is a simplified picture where non-elementstgps create robust behavior. If we
would like to have a realistic model where assuamsiare not used to model complex reac-
tion schemes, we rely on single step mechanisnes BlénX templates presented ahead suit

this need.

The system is divided into the following modules) {ranscriptional regulation following
Hill kinetics (2) translation mechanism (assumedfdbow mass action kinetics in this

study) (3) homodimerization of clock proteins (QR) formation of an inactive complex
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providing a negative effect inside the loop (5) fehare three degradation terms catalytical-
ly activated by enzymes (following the Michaelis+Men assumptions) and the system also
contains linear (so called background) degradatidhe elements. This network composed
of the reactions presented above (Figure 50) i tith complex rate functions and pro-

vides a 24h periodic oscillator.
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Figure 50: Circadian clock model as a composition of trangiial (1), translational (2), reverse complex
formation (3, 4) and the enzyme catalyzed degradatiodules (5). The highlighted parts are descrived
multi-step reactions assumed to follow Hill functiand Michaelis-Menten kinetics.

We chose the number of enzymes having role in yaes to be less than the correspond-
ing substrates, making the assumptions of Michdéé&aten kinetics valid. The parameters
originating from the complex functions are alsoledaip to be fast enough. Thus the reac-
tions assumed to be in equilibrium do not limit #ystem and provide accordance with the
original assumptions. The products of the enzymeadactions are degraded immediately
(with an infinite rate) after their production inder to serve the catalyzed degradation

scheme in the system.

Following the template-definition, we simply mertjee modules and insert the boxes (en-
zymes and intermediates) of the novel entities.alge replace the events corresponding to
the complex functions for the ones from the “unmat’kmodules. This method can be easily
automatized as it does not require the modificatibthe reactions that are independent of

the substituted complex functions and the functicalsulating the rate of complex reac-
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tions does not involve binders. The el internal behavior of the boxes can be easilgl-
lelized with the original ones. The compositiomaddules isshown inFigure 52. Addition-
al boxesencoding the originally indefined enzymes (U1, WU3) acting in the Michael-
Menten modules are listed as well as the tempdyaxgs waiting for degradation after 1
catalytic steCPU1_D, CP2U2_D, ICU3_I. The gene and the dimers for the transcon
module are also shown on Figure 53.b. Several stepsot modified (Figure 53.9). Interr

processes are added parallel to the original b

Simulation of the “unpacke system (Figure 51 1b and 2blows larger noise than t

original (Figure 511a and 2¢, but still produces regular oscillations.
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Figure 51: Simulation results for the stochastic model contgircomplex rate functions -2b) and for the
“unpacked” versions (2a) in case of a conversion faca=0.000167 (1a-b) and=0.0000167 (2-b). The to-
tal amount of CP in the system is plotted as solidves; dashed curves represent the messenger IiNg

dotted points demonstrate the ftranscription factors (TF) in the model.
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let CP : bproc = #(cp,CP) [ nil ];

let CP2 : bproc = #(cp2,CP2) [ nil ];

let IC : bproc = #(ic,IC) [ nil ];

let TF : bproc = #(tf,TF) [ nil ];

let M : bproc = #(m,M) [ nil ];

let CP : bproc = #(cp,CP) [ep!().ch(cp,CPUL_D).nil];
let CP2 : bproc = #(cp2,CP2) [cp2!().ch(cp2,CP2U2_D).nil];
let IC : bproc = #(ic,IC) [ic!().ch(ic,ICU3_D).nil];
let TF : bproc = #(tf,TF) [ nil J;

let M : bproc = #(m,M) [ nil ];

let U1 : bproc = #(ul,U1) [ rep ul?().nil ];

let U2 : bproc = #(u2,U2) [ rep u2?().nil ];

let U3 : bproc = #(u3,U3) [ rep u3?().nil J;

let CPU1_D : bproc = #(cp,CPU1_D) [ nil ];

let CP2U2_D : bproc = #(cp2,CP2U2_D) [ nil ];

let ICU3_D : bproc = #(ic,ICU3_D) [ nil ];

let G : bproc = #(g,G) [ nil ];

let TF2 : bproc = #(t2f,TF2) [ nil ];

let GTF2 : bproc = #(gtf2,GTF2) [ nil ];

synthesis of M
when(M: : TRANSCRIPTION) new(1);
where
let TRANSCRIPTION :

function = (kms*pow(|TF|,n))/(pow(3,n) + pow(|TF|,n));

synthesis of M
when(TF,TF::rate(k1)) join(TF2);
when(TF2::rate(k2))
when(TF2,G: :rate(k3)) join(GTF2);
when(GTF2::rate(k4)) split(G,TF2);
when(GTF2: : TRANSCRIPTION) split(GTF2,M);
where

let TRANSCRIPTION :

split(TF,TF);

function = kms*|GTF2];

let
let
let

IC_DEG :

degradations of CF, CP2 and IC through Michaelis-Menten kinetics
when(CP::CP_DEG) delete(1);

when(CP2::CP2_DEG) delete(1);

when(IC::IC_DEG) split(Nil,TF);

where

CP_DEG :
CP2_DEG :

function = kp1*|CP|/(Kml+|CP|);
function = kp2*|CP2|/(Km2+|CP2|);
function = kp3*|IC|/(Km3+|IC]|);

degradations of CP, CP2 and IC through Michaelis-Menten kinetics
when(CPU1_D::inf) delete(1);

when(CP2U2_D::inf) delete(1);

when(ICU3_D::inf) split(Nil,TF);

(u1,cP,rate(kpll),rate(kplir),rate(kpl2)),
(ui,cPui_p,@,inf,0),
(U2,CP2,rate(kp21),rate(kp2ir),rate(kp22}),
(U2,CP2U2_D,0,inf,0),
(U3,IC,rate(kp31),rate(kp3ir),rate(kp32)),
(U3,ICU3_D,®,inf,@)

degradation of M

when(M: :rate(kmd)) delete(1);
translation of M into CP
when(M: :rate(km2)) split(M,CP);
homodimerization of CP and dissociation of CP2
when(CP,CP::rate(ka)) join(CP2);
when(CP2::rate(kd)) split(CP,CP);
inactive complex formation and dissociation
when(CP2,TF: :rate(kica)) join(IC);
when(IC::rate(kicd)) split(CP2,TF);
degradation terms of CP, CP2 and IC

when(CP: :rate(kcpd)) delete(1);
when(CP2::rate(kcp2d)) delete(1);
when(IC::rate(kcp3d)) split(Nil,TF);

RESULTS

(b)

(d)

(e)

(9)

Figure 52: BlenX source code. The boxes of the original madelshown in (awhile the “unpackec version
is in (b). Composition of (a) and (b) is a strafghtvard job by parallelizaon. Events of the original model ¢
in (c), (e), (g), while (d)(f), (g) contains the unpack version of the model. Note that there is no chang
(9). The substituited modules are tlighted (bold font) in the texifThe model and the parameters are p-

pendix B.

142



5.9

RESULTS

We note that the stochastic simulation resultswfunpacked circadian model containing
only elementary reaction steps show larger noise ttne one with the complex terms.
However, this is not necessary the case in allegyst There are several scenarios when
adding multiple reaction steps decrease the noisieei overall network [263]. In our model
stochastic fluctuations may be reduced by incrgatie number of molecules within the
model. This can be inefficient and difficult to liea in case of certain oscillators where the
amplitude of the cycles can bring the number oftigsedown even if the peaks are large
enough. Another solution could be to reduce nasso(in our circadian clock model) to ex-
tend the model with further regulatory modules,hsas negative feedbacks. We know that
the molecular network of daily rhythms include savadditional negative feedback loops,
thus we think that interconnected negative feedlb@sfs also possess crucial roles in cir-
cadian clocks. In order to build a more realistiocd®l based on our simple and predictive
system, we can compose larger models with the dfefpedefined biological network mo-

tifs that ease the model building process in future

It has been shown in several works [238] that writbcess calculus based languages dynam-
ic models can be constructed and existing contiaunadels can be transferred into the sto-
chastic framework providing additional predictionisthe biological system results to the
existing models [92]. Herein we have to remindriseder that generally distributed reaction
times have been also implemented into the BlenXdéaork recently [137]. The use of this
extension fits well the idea of a template basedleting framework as, depending on the
question the user asked, biological models mightlmaracterized through complex rate
laws and handled by generalized distributions mktiwhile templates (including only ele-
mentary steps) offer a straightforward, flexibledamore precise way of compositional

modeling in BlenX making additional extension oé ttnodel easy.

Experimental perspectives

The joint effort of experimental work and modeliagproaches has been already provided
interesting findings for biology [3]. To verify oyredictions about the interconnected cir-
cadian and cell cycles (presented in this thedising my PhD intern period | had the op-

portunity to visit Chris Hong'’s laboratory at theniMersity of Cincinnati, Ohio (USA) and
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RESULTS
to realize experiments. We chose an experimentalehgystem, thé&leurospora crass#
investigate the regulation of daily rhythms.

Neurospora crass# a type of filamentus fungi (bread mold). It heeen a popular model
organism for circadian clock studies from the bagig because it is easy to grow and un-
der constant conditions it shows apparent conahatianding pattern every 22h as an output
of its endogenous clock. Additionally, the entiengme ofNeurospora crasshas been se-
quenced in 2003 [298]. Genetical manipulation @f tihganisms is simple enough to study
molecular genetics in a straightforward way. Indual mutants are stored in a Neurospora
database [299]. With the thousands of mutant sttdescan be ordered and with the sever-
al convenient technigues that are available fodyshg this model organism, we could start
to set up experiments. The levels of conservatimsen/ed among the eukaryoticcadian
oscillators highlight the importance of usihgpurosporaas a model system for circadian
clocks.

Analogous to the daily oscillator @frosophila melanogasteand mammals, the frequency
(frg) and white collar (wc) genes have been presktd encode componenents of the mole-
cular feedback loop essential for the circadiarthimycity in Neurospora(see detailed re-
view by [300]) They show similarity to the period (per) and Bmégmall) genes’ func-
tions in mammals, respectively. Transcription of i activated by a WC complex (WCC)
composed of the WC-1 [301] and WC-2 [302] protditveo PER-ARNT-SIM (PAS) do-
main-containingranscription factors). Aftethe FRQ protein is synthesized, it dimerizes
with itself andforms the FFC complex with FRH (an FRQ-interactiRigA helicase) [303].

In the nucleus, FFC inhibithe activity of WCC, resulting in a decrease in fn@NA le-
vels. Post-translational modifications of FRQ péayimportant role in the circadian system.
When FRQ is synthesized, it is progressively phosgatedby several kinases (CKI and
CKII (casein kinases), CAMK-1 (a calcium/calmodutiapendent kinase)) and dephospho-
rylated by phosphatas@BP2A (protein phosphatase 2), PP1, PP4) [304]."W\HRQ be-
comes hyperphosphorylated, FWD-1 (an F box/WD-$@aé containing protein) binds to it
and a SCF-type ubiquitin ligasmmplex ubiquitinates FRQ resulting in its degrauat
[305].
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We decided to follow the expression of the circadibock and the cell cycle components in
different strains. We designed a vector for achigeeetic modification of thdleurospora
genome, making measurement with the customizeihsanailable. The designed DNA
fragments were combined in yeast (with natural tyeasmologous recombination [306]) and
a highly-efficient Cyclosporin A-resistance baseshg insertion method [307] was used to
implement the designed constructs into Neurosporagenome. The inserted sequences
contain the promoter region of the gene we wisfollow. The coding sequence of the luci-
ferase enzyme [308] has been fused to the prommationed above (Figure 53). Lucife-
rase possesses enzymatic activity and with a biokesosence reaction occurring with luci-
ferin it provides light that we can detect with igithl camera (Figure 54). The luciferase
gene is transcribed when the upstream fused prorabtee gene we would like to follow is
activated. With a sensitive camera equipped withbD&Ensor we can detect the expression

profile of different genes real time with the heljpgthis method.

| '
—— Promoter luciferase —_—

Figure 53: Schematic representation of a promoter-fused duasfe construct. When RNA polymerase is
bound to the promoter region of a specific geneiféuase is transcribed. In a luciferin-media, déta of the
induced expression is possible that provides usimtion about the transcription pattern of theegbhaving
the same promoter region.

Neurospora cells were grown in equipements calied tubes (hollow glass tubes about 40
cm long and 16 mm in diameter, bent up at both emasder to hold an agar growth me-
dium). Cultures were inoculated onto agar medigaioimg luciferin (a substrate of the en-
zymatic reaction induced by luciferase) where theyw across the surface at constant rate
(Figure 55). Following inoculation and growth foday in constant light, the position of the
growth front was marked and the culture was transfieto constant darkness (LD transfer).
This sets the clock running from CT 12 and dailtgras of the banding could be captured

with a camera.

Figure 54: Luminescent Neurospora strains grown in race tudasding pattern of conidiation is visible
every 22h.
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Schematic View of a Race Tube

pr side view
_Point of one circadian cycle (21.5 hr)
inoculation g
“e ok top view
24 hours of growth  conidial bands 5¢cm

Figure 55: Schematic view of a race tube. The source offitjise is http://www.fgsc.net.

We know that PRD-4 (a checkpoint kinase in Neurospand FRQ physically interact, and
that PRD-4 phosphorylates FRQ to reset the circadiack. Furthermore, other links be-
tween the two systems have been shown in othenisiga. However, ilNeurosporawe
lack the detailed knowledge of the cell cycle tisatvell-characterized in yeasts and other
model organisms. We followed the growth of the ntigcand the expression of several cell
cycle and circadian clock mutants in different gexa¢ backgrounds. We made this in real-
time. Our preliminary results identify uncoveredcadian clock regulated cell cycle ele-
ments inNeurosporaunpublished data) and in the future we plan t@stigate our predic-
tions carried out by theoretical work and we wishuhderstand the role of circadian clock
in a DNA damage induced cell cycle pathway morethvthe help of sophisticated experi-
mental methods we will be able to extend our comarial model with additional regulato-

ry motifs and loops and investigate them undepehststic framework, such as BlenX.
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Conclusions

Biological systems are complex, thus novel systenaiproaches try to handle them on a
modular manner [78]. A molecular network is oftepresented as a composition of repeti-
tive motifs that hold crucial behavior contributibg global properties. Several tools, e.g.
[309,310] ensure a user-friendly interface for midesuch networks sometimes with the
help of a graphical interface [311]. BlenX is orfetloe novel process calculus initiatives
that support modularity by allowing biological sssts to be composed from their compo-
nents providing novel insights into systematic miode In this programming language de-
signed for algorithmic systems biology, the affestof molecules defining their present in
reactions are coded in a formal way. However, tineéenit modeling process with BlenX
lacks biologically relevant modules abailable teea modularity on a larger scale. Compo-
sitionality supports that programs are built aaasembly of relatively independent compu-
tational units. In order to exploit the composiaity of BlenX, we defined re-usable and
biologically relevant program templates that suppowdeling of complex reaction mechan-
isms often applied for kinetic description of bigical networks. These modules enable the
combination of several modeling methods and may pitevide the programming bases for
a user-friendly graphical approach. The main cbatron of this thesis to systems biology
is to have produced reusable and validated quadtifiodules and demonstrated their value

in designing biological models within the BlenX tarage.

Model composition may begin at different stagese modeler can build up the system from
the bottom starting from the basic elements anahipivies of the BlenX language. In order
to fasten this process up, we provide the followllow of the use of pre-defined templates:

1) The desired modules can be chosen from the Blionaty.
2) Parameters of the whole model are asked fromgbe

a) Users can define the whole set of parametatghiy wish to use

b) Or users can define the known parameters

c) Or users can ask for estimation of the parammdt®em the software. This can be
achieved by different algorithms or tools or cancb&ulated in some cases from determi-

nistic simulations as we suggested in the Rese#isign.
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3) The program checks the parameters if they gat&f assumptions of the particular tem-

plates.

4) If the assumptions are valid than the user ke@sf he wants to insert the complex ma-
thematical term based on the approximations othbkery. These formulas are also availa-
ble in the template library and are easily compos#hin the process calculus framework

of BlenX.

5) If the assumptions cannot be verified, the wsar choose from the unpacked modules

containing only elementary steps always satisfilespie’s stochastic algorithm.

The method presented above might include additisotutions for modeling nonlinear
functions, for instance the usage of a generigilligion is a promising initiative proposed
by Mura et al. [137].

There is another case when modeling has to delltihat problem of compositionality when
we want to extend a network with novel links andchiemical reactions. The switch be-
tween the complex terms and the unpacked modutesded by the tool and stored in a
template library bring a solution also to the pesblof the model extension. Their structure
and realization enable hidden enzymes and compbkexbe present and explored within a

novel biological system.

In a relevant case study, we investigated the &fieicthe circadian clock on cell cycle regu-
lation in a deterministic and two different stod@aspproaches (Langevin-type and SSA).
Based on our computational analysis, we reporilinases quantized cell cycles when the
transcription of a cell cycle regulator, Weel, tiosgly influenced by the circadian clock.

This occurs from a “mode-lock” phenomenon that meavarious periodic repetitions of

cell division cycles with different mass doublingnés. Strong circadian clock regulation on
Weeltranscription triggers cell size control at diffetenass doubling times (MDTSs). Cell

size control is observed during specific rangeMbITs farther from the cycle of the circa-

dian clock. When the circadian clock induces 24hogéc perturbations, it forces the cell

cycle out of homeostasis from its division time.r@uwdel shows qualitatively similar be-

haviors that have been observed in experimentsdipeR R Klevecz [287].

Furthermore, our in silico experiments revealed twolecular criteria that accounts for

another interesting clock phenomenon, that DNA dgarshifts circadian clocks in a specif-
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ic manner. The predominant present of phase adsaridbe daily rhythm upon DNA dam-
age requires 1) the existence of an autocatalyisitige feedback mechanism in addition to
the time-delayed negative feedback loop in thelkckystem, and 2) Chk2 dependent phos-
phorylation and degradation of PERs that are nahtiddo BMAL1/CLOCK. We confirmed
our hypothesis with investigating another circadidwck model published by Leloup and
Goldbeter [211].

Templates of the Michaelis-Menten and the Hill fiime have been applied for the G2/M
transition and for the circadian clock study andhpositionality has been carried out with
the help of the process calculus origin of the Bléemguage. Our current collection includ-
ing addition modules which are our proposals fodelimg is shown in Appendix A. Im-
plementation of the template library into the Co®&Bb framework - together with a para-
meter estimation toolkit or with the general distitions - results in a user-friendly and effi-
cient tool for systematic modeling stochastic bgital systems.

Comparison of different structures and differeniels of abstraction may contribute to un-
derstand biological systems more. Noise has a langact in the overall system and also it
has been discussed that the effect of noise orategy circuits, feedback systems is impor-
tant in the overall picture [312]. Analysis of theodules and motifs with different structures
or different effect of noise (complex functionsedementary steps in case of low number of
molecules) may lead to novel insights in the fialdth BlenX as a proposed framework

where analysis can be carried out easily with #le bf compositionality may open the in-

terest of biologists. Breaking a system down infeva reaction steps to be examined, while
abstract the rest of the network in a different waguld lead to specific analysis of the bio-

logical system. Similar to the idea of synthetiolbgy [313] as an in vivo research line in-

cluding artificial biological circuits, we approadiological systems with an in silico com-

position of regulatory motifs. The use of a temgllbrary in the model building process

improves the current degree of compositionality aadens the systematic modeling with
BlenX.
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APPENDIX A

Appendix A: Template library for BlenX

a) Enzyme catalytic reaction (Michaelis-Menten kinetis)
program file:

[steps=...,delta= ... ]
<< BASERATE:inf, CHANGE:inf>>

kkkkkkkkkkkkkkk 1 kkkkkkkkkkkkkkhkkkk
I species

/Il PRODUCT:
let P : bproc = #(s:0,P) [ nil ;

/Il SUBSTRATE:
let S : bproc = #(s:0,S) [ s!().ch(s,P).nil ];

/Il ENZYME:
let E1 : bproc = #(e1:0,E1) [ rep €1?().nil ;

///******'k******** Inltlal kkkkkkhkkkkkkkkkkkk

run...E1l|l...S]||...P
type file:
{S,P,E1}

%%{ (S,E1l,rate(kl),rate(klr),rate(k2)),
(P,E1,0,inf,0)}
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b) transcription module (Hill function)

program file:

[steps=...,delta=...]
<< BASERATE:inf, CHANGE:inf >>

Himii.............. TRANSCRIPTION .....ccceveee. L
S N T
/Il gene:
let G : bproc = #(g:0,G) [ nil ];
/Il transcription factor:
let TF : bproc = #(tf, TF) [ nil ];
/Il TF dimer:

let TF2 . bproc = #(t12f, TF2) [ nil];
Il G-TF-TF trimer:

let GTF2  : bproc = #(gtf2,GTF2) [nil];
/Il transcript (messenger RNA):

let M - bproc = #(m:0,M) [ nil ];

// kkkkkkkkkkkkkkk reactlo ns *kkkkkkkkkkkkkkk

/l/dimerization:
when(TF, TF::rate(k1)) join(TF2);
///[decomplexation:
when(TF2::rate(k2)) split(TF, TF);
/I['trimerization":
when(TF2,G::rate(k3)) join(GTF2);
/l/[decomplexation:
when(GTF2::rate(k4)) split(G, TF2);
/lltranscriptional activation:
when(GTF2::rate(kms)) split(GTF2,M);
I/l degradation of messenger:
when(M::rate(kmd)) delete(1);
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///******'k******** Inltlal kkkkkkkkhkkkkkkkkkk

run ... M| ... TF||1G|| 0GTF2| 0 TF2

type file:

{G, TF, TF2, GTF2, M } %% {}

Goldbeter-Koshland ultrasensitive switch
program file:
[steps=...,delta= ... ]

<< BASERATE:inf, HIDE:inf, UNHIDE:inf, CHANGE:inf >

kkkkkkkkkkkkkkk 1 kkkkkkkkkkkkkkkkkk
I species

/lltwo forms of the protein:

let P : bproc = #(p:0,P) [ nil];

let Pmod : bproc = #(p:0,Pmod) [ nil];
/llenzymes:

let E1 : bproc = #(e1:0,E1) [ nil ];

let E2 : bproc = #(e2:0,E2) [ nil ];
/llintermediate complexes:

letE1 P : bproc = #(e1p:0,E1P) [ nil ];

let E2_Pmod : bproc = #(e2pm:0,E2Pm) [nil ];

///******'k******** reaCtIO ns kkkkkkkkkkkkkkkk

when (E1,P:rate(el_1)) join(E1_P);
when (E1_P:rate(el_2)) split(E1,P);
when (E1_P:rate(el_3)) split(E1,Pmod);

when (Pmod,E2::rate(e2_1)) join(E2_Pmod);
when (E2_Pmod::rate(e2_2)) split(E2,Pmod);
when (E2_Pmod:rrate(e2_3)) split(E2,P);
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d)

///******'k******** Inltlal kkkkkkhkkkkkkkkkkkk

run...Pmod|| ... E1]||...E2]|| ... P

type file:

{P, E1, E2, Pmod, E1P, E2Pm }
%6%{}

Mutual antagonism

program file:

[steps=...,delta= ... ]

<< BASERATE:inf, HIDE:inf, UNHIDE:inf, CHANGE:

// kkkkkkkkkkkkkkk p rocesses *kkkkkkkkkkkkkkk

let inactivate ENZ :

pproc = ( if (substrate, bound) then hide(enzyme).n

);

let inactivate_ SUB :
pproc = ( if (enzyme, bound) then hide(substrate).n

);

let activate_ENZ :
pproc = (if (not(substrate, bound)) then un-
hide(enzyme).rec_enzyme!().nil endif );

let activate_ SUB : pproc = (if (not(enzyme, bound))
hide(substrate).rec_substrate!().nil endif );

let activate_ ENZ X :
pproc = (if (not(substrate, bound) and not(substrat
bound)) then unhide(enzyme).rec_ENZ!().nil endif);
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inf >>

il endif

il endif

then un-

e YPX,



let activate_SUB_X:

pproc = (if (not(enzyme, bound) and not(substrate_Y
bound)) then unhide(substrate).rec_SUB!().nil endif
let activate_ ENZ_X_YP :

pproc = (if (not(enzyme, bound) and not(substrate,
then unhide(substrate_YPX).rec_ENZ_X!().nil endif);

let inactivate_ ENZ_X :
pproc = ( if ((substrate, bound) or (substrate YPX,

then hide(enzyme).nil endif );

let inactivate_ SUB_X :
pproc = ( if ((enzyme, bound) or (substrate_YPX, bo
hide(substrate).nil endif );

let inactivate. ENZ_X_YP :
pproc = ( if ((enzyme, bound) or (substrate, bound)
hide(substrate_YPX).nil endif );

///******'k******** S pe cles kkkkkkkkkkkkkkhkkhkk

/Il SIGNAL
let S : bproc = #(s:0,S) [rep s?().nil ];
/Il enzyme
let A : bproc = #(a:0,A) [rep a?().nil];

X
let X : bproc = #(substrate:0,X_sub),
#(enzyme:0,X_enz),
#(substrate  YPX:0,X)
[ inactivate_ ENZ_ X | activate ENZ_X |
rep rec_ENZ?().(inactivate_ ENZ_X | activate ENZ_X
inactivate_ SUB_X | activate_ SUB_X |
rep rec_SUB?().(inactivate_ SUB_X | activate_SUB_X
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PX,

bound))

bound))

und)) then

) then

)

)



inactivate_ENZ_X_YP | activate_ ENZ_X_YP |
rep rec_ENZ_X?().(inactivate_ENZ_X_YP |
activate_ ENZ_X_YP) |

rep enzyme?().nil |

substrate!().ch(substrate, YX).nil |

substrate_ YPX!().ch(substrate_YPX, YPX).nil ];

Y
let Y : bproc = #(substrate:0,Y_sub),
#(enzyme:0,Y_enz)
[ inactivate_ENZ | activate_ENZ |
rep rec_enzyme?().(inactivate_ENZ | activate_ ENZ
inactivate_SUB | activate_SUB |
rep rec_substrate?().(inactivate_SUB | activate_S
rep enzyme?().nil |
substrate!().ch(substrate, XY).nil ];

Il XP
let XP : bproc = #(substrate:0,XP_sub),
#(enzyme:0,XP_enz)
[ inactivate_ENZ | activate_ENZ |
rep rec_enzyme?().(inactivate_ENZ | activate_ ENZ
inactivate_SUB | activate_SUB |
rep rec_substrate?().(inactivate_SUB | activate_S
rep enzyme?().nil |
substrate!().ch(substrate, XP).nil ];

IYP
let YP : bproc = #(substrate:0,YP_sub),
#(enzyme:0,YP_enz)
[ inactivate_ENZ | activate_ENZ |
rep rec_enzyme?().(inactivate_ENZ | activate_ ENZ
inactivate_SUB | activate_SUB |

rep rec_substrate?().(inactivate_SUB | activate_SU
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)

UB) |

)

UB) |

)

B) I



rep enzyme?().nil |

substrate!().ch(substrate, AYP).nil |;

I/l temporary species
let X_YX:bproc = #(substrate:0,YX),
#(enzyme:0,X_enz),
#(substrate_ YPX:0,X)
[ inactivate_ENZ_ X | activate ENZ_X |
rep rec_ENZ?().(inactivate_ENZ_X | activate ENZ_X
inactivate_ SUB_X | activate_ SUB_X |
rep rec_SUB?().(inactivate_ SUB_X | activate_SUB_X
inactivate_ ENZ_X_YP | activate_ ENZ_X_ YP |
rep rec_ENZ_X?().(inactivate_ ENZ_X_YP |
activate_ ENZ_X_YP) |
rep enzyme?().nil |

substrate_ YPX!().ch(substrate_YPX, YPX).nil ];

let Y_XY :bproc = #(substrate:0,XY),
#(enzyme:0,Y_enz)
[ inactivate_ENZ | activate_ENZ |

rep rec_enzyme?().(inactivate_ENZ | activate_ ENZ
inactivate_SUB | activate_SUB |

rep rec_substrate?().(inactivate_SUB | activate_S
rep enzyme?().nil ;

let YP_AYP : bproc = #(substrate:0,AYP),

#(enzyme:0,YP_enz)
[ inactivate_ENZ | activate_ENZ |

rep rec_enzyme?().(inactivate_ENZ | activate_ ENZ
inactivate_SUB | activate_SUB |

rep rec_substrate?().(inactivate_SUB | activate_S
rep enzyme?().nil |;

let X_YPX: bproc = #(substrate:0,X_sub),
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#(enzyme:0,X_enz),
#(substrate_YPX:0,YPX)
[ inactivate_ENZ_X | activate_ ENZ_X |

rep rec_ENZ?().(inactivate_ENZ_X | activate_ ENZ_X )|
inactivate_SUB_X | activate_ SUB_X |
rep rec_SUB?().(inactivate_ SUB_X | activate_SUB_X )|

inactivate_ ENZ_X_YP | activate ENZ_X_ YP |
rep rec_ENZ_X?().(inactivate_ENZ_X_YP |
activate_ ENZ_X_YP) |
rep enzyme?().nil |
substrate!().ch(substrate, YX).nil ];

[[rirrkrkkkRk ragCiONS Frk Rk kk
when(Y_XY::inf) split(YP,Nil);
when(X_YX::inf) delete(1);
when(YP_AYP::inf) split(Y,Nil);
when(X_YPX::inf) delete(1);
when(S::rate(kl1)) split(S,X);
when(X::rate(k2p)) delete(1);

///******'k******** Inltlal kkkkkkhkkhkkkkkkkkkk

Mun S XL Yl oo YP [ ... Al ... YP_AYP Il ... Y_XY
Il ... X_YX]| ... X_YPX

type file:

{S, A, X_sub, X_enz, X, Y_sub, Y_enz, XP_enz, XP_su b, YP_sub,
YP_enz, YX, XY, AYP, YPX, XP }
%%
{
(X_sub, Y_enz, rate(k2f), rate(k2r), rate(k2)),
(YX, Y_enz, 0, inf, 0),
(YP_sub, A, rate(k3f), rate(k3r), rate(k3)),
(AYP, A, 0, inf, 0),
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(X_enz, Y_sub, rate(k4f), rate(k4r), rate(k4)),
(X_enz, XY, 0, inf, 0),

(YP_enz, X, rate(k5f), rate(k5r), rate(k5)),
(YP_enz, YPX, 0, inf, 0)

e) Mutual activation

[ steps=..., delta=... ]
<< BASERATE:inf, HIDE:inf, UNHIDE:inf, CHANGE: inf >>

let activate_ ENZ :
pproc = (if (not(substrate, bound)) then un-
hide(enzyme).rec_ENZ!().nil endif );

let activate_SUB :
pproc = (if (not(enzyme, bound)) then un-
hide(substrate).rec_SUB!().nil endif );

let inactivate_ ENZ :
pproc = ( if (substrate, bound) then hide(enzyme).n il endif

);

let inactivate_ SUB :
pproc = ( if (enzyme, bound) then hide(substrate).n il endif

);

let CYCB : bproc = #(substrate:0,CYCB_sub),
#(enzyme:0,CYCB_enz_CDC25)
[ inactivate_ENZ | activate_ ENZ |
rep rec_ENZ?().(inactivate_ ENZ | activate_ ENZ) |
inactivate_SUB | activate_SUB |
rep rec_SUB?().(inactivate_SUB | activate_ SUB ) |

rep enzyme?().nil |
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substrate!().ch(substrate, CYCB_sub_mod).nil I;

let CYCB_TEMP : bproc = #(substrate:0,CYCB_sub_mod ),
#(enzyme:0,CYCB_enz_CDC25)
[ inactivate_ENZ | activate ENZ |
rep rec_ENZ?().(inactivate_ ENZ | activate_ ENZ) |
inactivate_SUB | activate_SUB |
rep rec_SUB?().(inactivate_SUB | activate_ SUB ) |

rep enzyme?().nil I;

let CYCBP : bproc = #(substrate:0,CYCBP_sub)
[ substrate!().ch(substrate, CYCBP_sub_mod).nil ] ;

let CYCBP_TEMP : bproc = #(substrate:0,CYCBP_sub_mo d)
[ nil J;

let WEEL1 : bproc = #(enzyme:0,WEE1_enz)
[ rep enzyme?().nil |;

let CDC25 : bproc = #(substrate:0,CDC25_sub)
[ substrate!().ch(substrate, CDC25_sub_mod).nil I;

let CDC25_TEMP : bproc = #(substrate:0,CDC25 sub_mo d)
[nil];

let CDC25P : bproc = #(enzyme:0,CDC25P_enz),
#(substrate:0,CDC25P_sub)
[ inactivate_ENZ | activate_ENZ |
rep rec_ENZ?().(inactivate_ENZ | activate_ENZ ) |
inactivate_SUB | activate_SUB |
rep rec_SUB?().(inactivate_SUB | activate_SUB ) |

rep enzyme?().nil |
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substrate!().ch(substrate, CDC25P_sub_mod).nil

let CDC25P_TEMP : bproc = #(enzyme:0,CDC25P_enz),

APPENDIX A

#(substrate:0,CDC25P_sub_mod)

[ inactivate_ENZ | activate_ ENZ |

rep rec_ENZ?().(inactivate_ ENZ | activate_ ENZ) |

inactivate_SUB | activate_SUB |

rep rec_SUB?().(inactivate_SUB | activate_ SUB ) |

rep enzyme?().nil

let ENZYMEL : bproc = #(enzyme:0,ENZYME1_enz)

[ rep enzyme?().nil ];

let SIGNAL : bproc = #(s:0,S) [ nil ];

when(CYCB_TEMP::inf) split(CYCBP, Nil);
when(CDC25P_TEMP::inf) split(CDC25,Nil);
when(CYCBP_TEMP::inf) split(CYCB,Nil);
when(CDC25_TEMP::inf) split(CDC25P,Nil);
when(SIGNAL::rate(s)) split(SIGNAL,CYCB);
when(CYCB::rate(deg)) delete(1);

type file:

{CYCB_sub, CYCB_sub_mod, CYCB_enz_CDC25,
CDC25P_enz, CDC25P_sub, CDC25P_sub_mod,
ENZYME1_enz,

CDC25_sub, CDC25 sub_maod,
CYCBP_sub, CYCBP_sub_mod }

%%

{(CYCB_enz_CDC25, CDC25_sub, rate(kl), rate(k1r),
(CYCB_enz_CDC25, CDC25 sub_mod, 0, inf, 0),
(ENZYME1_enz, CDC25P_sub, rate(I1), rate(l1r), rat
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(ENZYMEL1_enz, CDC25P_sub_mod, 0, inf, 0),

(CDC25P_enz, CDC25P_sub,rate(m1l), rate(m1r), rate( mz2) ),
(CDC25P_enz, CYCBP_sub_mod, 0, inf, 0),

(WEE1_enz, CYCB_sub, rate(nl), rate(nlr),rate(n2)),

(WEE1_enz, CYCB_sub_mod, 0, inf, 0) }

G2/M transition

let activate_ ENZ :
pproc = (if (not(substrate, bound)) then un-
hide(enzyme).rec_ENZ!().nil endif );

let activate_SUB :
pproc = (if (not(enzyme, bound)) then un-
hide(substrate).rec_SUB!().nil endif );

let inactivate_ ENZ :
pproc = ( if (substrate, bound) then hide(enzyme).n il
endif );

let inactivate_ SUB :
pproc = ( if (enzyme, bound) then hide(substrate).n il
endif);

let activate_ ENZ_CYCB :
pproc = (if (not(substrate, bound) and
not(enzyme_CYCBCDC25, bound))
then unhide(enzyme).rec_ENZ!().nil endif);

let activate_ SUB_CYCB :
pproc = (if (not(enzyme, bound) and
not(enzyme_ CYCBCDC25, bound))
then unhide(substrate).rec_SUB!().nil endif);
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let activate_ ENZ_CYCB_CDC25 :

pproc = (if (not(enzyme, bound) and

not(substrate, bound))

then unhide(enzyme_CYCBCDC25).rec_ENZ_CDC25!().nil
dif);

let inactivate ENZ_CYCB :
pproc = ( if ((substrate, bound) or (enzyme_CYCBCDC
bound))

then hide(enzyme).nil endif );

let inactivate_ SUB_CYCB :

pproc = ( if ((enzyme, bound) or (enzyme_ CYCBCDC25
bound))

then hide(substrate).nil endif );

let inactivate ENZ_CYCB_CDC25:
pproc = ( if ((enzyme, bound) or (substrate, bound)
then hide(enzyme_ CYCBCDC25).nil endif );

let CYCB : bproc =  #(enzyme:0,CYCB_enz),
#(substrate:0,CYCB_sub),
#(enzyme_ CYCBCDC25:0,CYCB_enz_CDC25)
[ inactivate_ENZ_CYCB | activate ENZ_CYCB |
rep rec_ENZ?().(inactivate_ENZ_CYCB |
activate_ENZ_CYCB) |
inactivate_SUB_CYCB | activate_ SUB_CYCB |
rep rec_SUB?().(inactivate_ SUB_CYCB |
activate_SUB_CYCB) |
inactivate_ENZ_CYCB_CDC25 | activate_ ENZ_CYCB_CDC
rep rec_ENZ_CDC257().(inactivate_ ENZ_CYCB_CDC25 |
activate_ ENZ _CYCB_CDC25) |
rep enzyme?().nil |
substrate!().ch(substrate, CYCB_sub_mod).nil |
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rep enzyme_ CYCBCDC257?().nil 1;

let CYCB_TEMP : bproc =  #(enzyme:0,CYCB_enz),
#(substrate:0,CYCB_sub_mod),
#(enzyme_ CYCBCDC25:0,CYCB_enz_CDC25)
[ inactivate_ ENZ_CYCB | activate_ ENZ_CYCB |
rep rec_ENZ?().(inactivate_ ENZ_CYCB |
activate_ ENZ _CYCB) |
inactivate_SUB_CYCB | activate_ SUB_CYCB |
rep rec_SUB?().(inactivate_ SUB_CYCB |
activate_SUB_CYCB) |
inactivate_ ENZ_CYCB_CDC25 |
activate_ ENZ_CYCB_CDC25 |
rep rec_ENZ_CDC257().(inactivate_ ENZ_CYCB_CDC25 |
activate_ ENZ_CYCB_CDC25) |
rep enzyme?().nil |
rep enzyme_ CYCBCDC25?().nil I;

let CYCBP : bproc = #(substrate:0,CYCBP_sub)
[ substrate!().ch(substrate, CYCBP_sub_mod).nil |;

let CYCBP_TEMP : bproc = #(substrate:0,CYCBP_sub_mo d)
[nil];

let WEEL : bproc = #(enzyme:0,WEE1_enz), #(sub-
strate:0,WEE1_sub)
[ inactivate_ENZ | activate_ENZ |
rep rec_ENZ?().(inactivate_ENZ | activate_ ENZ ) |
inactivate_SUB | activate_SUB |
rep rec_SUB?().(inactivate_SUB | activate_SUB ) |
rep enzyme?().nil |
substrate!().ch(substrate, WEE1_sub_maod).nil ];

let WEE1 TEMP : bproc=  #(enzyme:0,WEE1l_enz),
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#(substrate:0,WEE1_ sub_mod)
[ inactivate_ENZ | activate_ENZ |
rep rec_ENZ?().(inactivate_ENZ | activate_ ENZ ) |
inactivate_SUB | activate_SUB |
rep rec_SUB?().(inactivate_SUB | activate_SUB ) |

rep enzyme?().nil I;

let WEE1P : bproc = #(substrate:0,WEE1P_sub)
[ substrate!().ch(substrate, WEE1P_sub_maod).nil ]

let WEE1P_TEMP : bproc = #(substrate:0,WEE1P_sub_mo
[ nil ];

let CDC25 : bproc = #(substrate:0,CDC25_sub)
[ substrate!().ch(substrate, CDC25 sub_mod).nil ]

let CDC25_TEMP : bproc = #(substrate:0,CDC25_sub_mo
[ nil J;

let CDC25P : bproc = #(enzyme:0,CDC25P_enz),
#(substrate:0,CDC25P_sub)
[ inactivate_ENZ | activate_ENZ |

rep rec_ENZ?().(inactivate_ENZ | activate_ ENZ) |
inactivate_SUB | activate_SUB |

rep rec_SUB?().(inactivate_SUB | activate_SUB ) |
rep enzyme?().nil |
substrate!().ch(substrate, CDC25P_sub_mod).nil
I;

let CDC25P_TEMP : bproc = #(enzyme:0,CDC25P_enz),
#(substrate:0,CDC25P_sub_mod)
[ inactivate_ENZ | activate ENZ |
rep rec_ENZ?().(inactivate_ENZ | activate ENZ) |
inactivate_SUB | activate_SUB |
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rep rec_SUB?().(inactivate_SUB | activate_SUB ) |
rep enzyme?().nil I;

let ENZYMEL : bproc = #(enzyme:0,ENZYME1_enz)
[ rep enzyme?().nil ];

let ENZYMEZ2 : bproc = #(enzyme:0,ENZYMEZ2_enz)

[ rep enzyme?().nil ];

when(WEE1_TEMP::inf) split(WEE1P, Nil);
when(CYCB_TEMP::inf) split(CYCBP, Nil);
when(CDC25P_TEMP::inf) split(CDC25,Nil);
when(CYCBP_TEMP::inf) split(CYCB,Nil);
when(WEE1P_TEMP::inf) splittWEEZL,Nil);
when(CDC25_TEMP::inf) split(CDC25P,Nil);

///*************** Inltlal kkkkkkkkkkkkkkkkkk

run ... CYCB || ... CYCBP || ... CDC25P || ... CDC25 || ... W EEL]| ...
WEE1P || ... ENZYMEL || ... ENZYME2

type file:

{WEE1_enz, WEE1_sub, WEE1 sub_mod,
CYCB_enz, CYCB_sub, CYCB_sub_mod, CYCB_enz_CDC25,
CDC25P_enz, CDC25P_sub, CDC25P_sub_mod,
ENZYME1_enz, ENZYMEZ2_enz,
CDC25_sub, CDC25 sub_mod,
WEE1P_sub, WEE1P_sub_mod,
CYCBP_sub, CYCBP_sub_mod } %%

{(CYCB_enz_CDC25, CDC25_sub, rate(al), rate(alr), rate(a2)),
(CYCB_enz_CDC25, CDC25 sub_mod, 0, inf, 0),
(CYCB_enz, WEE1_sub, rate(bl), rate(blr), rate(b2) ),
(CYCB_enz, WEE1 sub_mod, 0, inf, 0),
(ENZYME1_enz, CDC25P_sub, rate(cl), rate(clr), rat e(c2)),
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(ENZYMEL_enz, CDC25P_sub_mod, 0, inf, 0),
(CDC25P_enz, CDC25P_sub,rate(dl), rate(d1r), rate(
(CDC25P_enz, CYCBP_sub_mod, 0, inf, 0),
(WEE1_enz, CYCB_sub, rate(el), rate(elr),rate(e2))
(WEE1_enz, CYCB_sub_mod, 0, inf, 0),
(ENZYME2_enz, WEE1P_sub, rate(f1), rate(flr) ,rate
(ENZYME2_enz, WEE1P_sub_mod, 0, inf ,0)
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Appendix B: The circadian clock model

program file:
[ steps = 7200, delta = 0.1 ]
<< BASERATE:inf, CHANGE:inf >>

/Il SUBSTRATE (CP)
let CP : bproc = #(cp:0,CP)
[ cp!().ch(cp,CPUL1_DEG).nil |,

/Il SUBSTRATE (CP2)
let CP2: bproc = #(cp2:0,CP2)
[ cp2!().ch(cp2,CP2U2_DEG).nil ];

/Il SUBSTRATE (IC)
let IC : bproc = #(ic:0,IC)
[ic!().ch(ic,ICU3_DEG).nil ];

/Il ENZYME
letUl:  bproc =#(ul:0,Ul)
[ rep ul?().nil ];

/Il ENZYME
let U2 :  bproc = #(u2:0,U2)
[ rep u2?().nil ];

/Il ENZYME

let U3:  bproc = #(u3:0,U3)
[ rep u3?().nil ];
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/Il PRODUCT
let CPU1_DEG: bproc = #(cp:0,CPU1l_DEG)
[nil];

/Il PRODUCT
let CP2U2_DEG : bproc = #(cp2:0,CP2U2_DEG)
[ nil J;

/Il PRODUCT
let ICU3_DEG : bproc = #(ic:0,ICU3_DEG)
[ nil J;

Hir.............. TRANSCRIPTION MODULE

kkkkkkkkkkkkkkk 1 kkkkkkkkkkkkkkkkkk
I species

/Il gene
let G : bproc = #(g:0,G) [ nil ];

/I transcription factor /// BMAL1/CLK
let TF - bproc = #(tf, TF) [nil ];

/Il G-TF dimer
let TF2 . bproc = #(t2f, TF2) [ nil];

Il G-TE-TF trimer
let GTF2  : bproc = #(gtf2,GTF2) [nil];

/Il messenger RNA
let M : bproc = #(m:0,M) [ nil ];

// kkkkkkkkkkkkkkk reactlo ns *kkkkkkkkkkkkkkk

/lldimerization
when(TF, TF::rate(k1)) join(TF2);
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/l/decomplexation
when(TF2::rate(k2)) split(TF, TF);
/I['trimerization’
when(TF2,G::rate(k3)) join(GTF2);
/l/decomplexation
when(GTF2::rate(k4)) split(G, TF2);
/Il transcriptional activation
when(GTF2::TRANSCRIPTION) split(GTF2,M);
/Il degradation of messenger
when(M::rate(kmd)) delete(1);

Hi.............. TRANSLATION ...............
when(M::rate(km2)) split(M,CP);

Hi.............. HOMODIMERIZATION ..........
when(CP,CP::rate(ka)) join(CP2);
when(CP2::rate(kd)) split(CP,CP);

mi.............. COMPLEX FORMATION .........
when(CP2,TF::rate(kica)) join(IC);
when(IC::rate(kicd)) split(CP2,TF);

Hiiii.............. DEGRADATIONS ..............
when(CP::rate(kcpd)) delete(1);
when(CP2::rate(kcp2d)) delete(1);
when(IC::rate(kcp3d)) split(Nil, TF);

I Michaelis Menten kinetics for degradation
N N T
when(CPU1_DEG::inf) delete(1);
when(CP2U2_DEG::inf) delete(1);
when(ICU3_DEG::inf) split(Nil, TF);

196

APPENDIX B

terms:



1111 nitial
run 96300 M || 600 CP || 3400 CP2 || 21700 TF || 2
|

1G||0TF2||0GTF2||

60 U1 || 240 U2 || 26830 U3

function file:
let alfa : const = 0.00000167;

let kms2 : const = 1,

let k1 : const = 10*alfa;

let k2 : const = 100;

let k3 : const = 10000*alfa;
let k4 : const = 90;

let kms : const = 1/alfa;

let kmd : const = 0.1,

let km2 : const = 0.5;

let ka_c : const = 100;

let ka : const = ka_c*alfa;

let kd : const = 0.01;

let kica_c : const = 20;

let kica : const = kica_c*alfa;
let kicd : const = 0.01;

let kepd : const = 0.0525;
let kep2d : const = 0.000525;
let kep3d : const = 0.000525;

let kp11 : const = 10000000*alfa;
let kp11lr : const = 1530;
let kp12 : const = 1000;

let kp21 : const = 100000*alfa;
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let kp21r : const = 47.5;
let kp22 : const = 2.5;

let kp31 : const = 100*alfa;
let kp31r : const = 0.027678571,
let kp32 : const = 0.022321429;

let TRANSCRIPTION : function = kms*kms2*|GTF2|;

II[**** complex reaction terms for Michaelis-Menten
/lNlet U1 : const = 0.0001/alfa;

/lNlet U2 : const = 0.0004/alfa;

/lNlet U3 : const = 0.0448/alfa;

/lllet CP_DEG : function =
kp12*U1*|CP|/(((kpllr+kp12)/kp11)+|CP));

/lllet CP2_DEG : function =
kp22*U2*|CP2|/(((kp21r+kp22)/kp21)+|CP2));

/lllet IC_DEG : function =
kp32*U3*|IC|/(((kp31r+kp32)/kp31)+|ICJ);

I[[**** parameters and complex reaction terms for H
tion:

/lllet n : const = 2;

/lllet J : const = 0.3/alfa;

/llet TRANSCRIPTION : function = (kms*pow(|TF|,n))
+ pow(|TF|,n));

type file:

{ CPU1_DEG, CP2U2_DEG, ICU3_DEG, U1, CP, U2, CP2, U
TF, TF2, GTF2, M }

%%

{

(U1,CP,rate(kpll),rate(kpllr),rate(kpl2)),
(U1,CPUL1_DEG,0,inf,0),
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(U2,CP2, rate(kp21),rate(kp21r),rate(kp22)),
(U2,CP2U2_DEG,0,inf,0),
(U3,IC rate(kp31),rate(kp31r),rate(kp32)),
(U3,ICU3_DEG,0,inf,0)
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