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Introduction

Thermal expansion is a critical parameter and a basic physical property in many sci-

entific and technological applications [1]. Although most materials exhibit positive

thermal expansion, some materials have negative thermal expansion in some tempera-

ture interval. Negative and low thermal expansion materials have important potential

uses in many applications; e.g. electronic devices, dental applications, substrates for

high-precision optical devices.

NTE phenomenon is generally considered to be unusual and limited to certain types of

structures. The most familiar example of negative thermal expansion is given by wa-

ter. Liquid water exhibits an increase in density when heated between 273K and 277K

whilst the hexagonal form of ice has a NTE coefficient around 45K [2]. It is known

since long time that many tetrahedrally bonded semiconductors with the diamond-

zincblende structure exhibit NTE in restricted low-temperature intervals [3], the NTE

strength and interval increasing with the bond ionicity; CuCl exhibits the strongest

NTE (®min ∼ −8 × 10−6K−1). NTE in zincblende crystals has been attributed to

the presence of low-frequency transverse vibrational modes with negative Grüneisen

parameter, whose effect is dominant in a limited temperature interval [4].

The interest towards NTE has been renewed in the last decade [1, 5, 6] by the dis-

covery of some materials with framework structures exhibiting strong NTE over large

temperature intervals, such as ZrW2O8, which contracts from 0.3 to 1500K [7]. NTE

in framework structures has been attributed to the influence of strong vibrations per-

pendicular to some interatomic bonds and can often be connected to the low-frequency

rigid unit modes (RUM), that cause a rotations of the basic polyhedral units [8]. The
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Introduction

attention of the applied research on NTE has focussed on the search for new compos-

ite materials with specifically tailored thermal expansion properties to meet specific

thermal expansion requirements [1, 5].

The recent discoveries have also renewed the interest for a deeper basic understanding

of the mechanisms at the origin of NTE. According to a widely accepted phenomeno-

logical model, the observed macroscopic expansion is the net result of a competition

between a positive bond stretching contribution due to the anharmonicity of the effec-

tive pair potential and a negative contribution due to tension effects [6]. When tension

effects prevail over bond stretching, solid contract upon the heating.

EXAFS spectroscopy is particularly suited to study the thermal properties of se-

lected atomic species, owing to its selectivity of atomic species, insensitivity to long

range order and sensitivity to correlation of atomic motion [9–11]. Recently, new per-

spectives for getting a deeper insight on the local origin of NTE have been obtained

from the progresses in EXAFS analysis and interpretation ( [12] and references therein),

that led to the possibility of accurately measuring (a) the thermal expansion of the

nearest neighbors bond distance and (b) the perpendicular mean square relative dis-

placement (MSRD) and the anisotropy of relative vibrations.

The EXAFS studies recently performed on several crystals with different structures

(diamond-zincblende, cuprite and delafossite) suggested that within each family of iso-

structural compounds a correlation can be established between NTE properties and

several quantities measured by EXAFS: bond thermal expansion, parallel and per-

pendicular mean square relative displacements, anisotropy of relative displacements

and correlation of vibrational motion. The analysis of the common features shared by

these different crystal structures, and their relation to NTE properties suggested an

interpretation within the framework of the phenomenological model based on the com-

petition between stretching and tension effects [13]. For all studied crystals, the bond

thermal expansion measured by EXAFS was larger than the lattice expansion mea-

sured by diffraction and also different from the thermal expansion solely determined

by the asymmetry of the effective pair potential [14]. Recently, Path Integral Monte

Carlo (PIMC) calculations for copper have confirmed that the bond thermal expansion
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depends not only on the asymmetry but also on a rigid shift of the distance distribution.

The origin of NTE is quite intuitive for crystal where linear links (A-B-A) are

present and anisotropic thermal factors are found by diffraction for the central atom

B; vibrations perpendicular to the A-B-A direction are more intense than parallel vi-

brations. In cuprite and delafossite structures, EXAFS measurement have revealed

that the anisotropy of the relative displacement of atom B is much stronger than the

anisotropy of the absolute displacements measured by diffraction. The perpendicular

to parallel MSRDs anisotropy is larger for crystals with stronger NTE. In the diamond-

zincblende crystals the situation is more complex in view of the non-linear character

of the (A-B-A) links and of the coordination of each atom to four nearest-neighbors

atoms. Also the atomic thermal ellipsoids measured by Bragg diffraction in zincblende

crystals are isotropic for symmetry reasons. The recent EXAFS results on Ge and

CuCl have shown that a correlation can be established between NTE properties and

several quantities measured by EXAFS.

To gain a deeper insight on the local origin of NTE in zincblende crystals and con-

firm the suggested correlation, EXAFS measurements have been performed on CdTe,

which has NTE properties intermediate between Ge and CuCl. In this work an ac-

curate evaluation of the bond thermal expansion, parallel and perpendicular MSRDs

and distribution asymmetry of the first shell of CdTe has been made, obtaining a good

agreement between two different procedures of the data analysis (i) ratio method (ii)

FEFF6-FEFFIT method. The values of the relevant parameters of CdTe were found

intermediate between the corresponding values previously found for Ge and CuCl.

A critical comparison of EXAFS and Bragg diffraction results; thermal expansion,

thermal factors and correlation of atomic vibration, for the iso-structural crystals Ge,

CdTe and CuCl has been performed. The correlation between several quantities mea-

sured by EXAFS and NTE properties is confirmed.

The work consists of five chapters, organized as follows:
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∙ Chapter 1 contain a general introduction to the phenomenon of negative thermal

expansion (NTE) in crystals both from the thermodynamics and the microscopic

points of view.

∙ Chapter 2 is devoted to a review of the EXAFS technique and of its capabilities

to study the local dynamics of materials. The differences between EXAFS and

XRD concerning interatomic distances and thermal factors are explained as well

as the relation between EXAFS cumulants and force constants of one-dimensional

effective pair potential.

∙ Chapter 3 is dedicated to negative thermal expansion in tetrahedrally bonded

crystals. The attention is focused on the elastic properties of zincblende structure

and on their dependence on bond ionicity. The Valence force field model is

introduced.

∙ Chapter 4 presents our EXAFS study of CdTe: measurements procedures, data

analysis by the ratio method for the 1st shell and by non-linear fitting procedure

for the first three shells. Bond thermal expansion, MSRDs and asymmetry of

distance distributions are presented and compared with both theoretical models

and Bragg diffraction results

∙ Chapter 5 is dedicated to a comprehensive discussion and a critical comparison of

the CdTe results with the previously studied crystals, Ge and CuCl. Asystematic

study is done of the correlation of the different quantities measured by EXAFS

and Bragg diffraction with the NTE properties of the three crystals. At last, a

comparison between the effective force constants measured by EXAFS and the

force constants of the VFF model is performed as a function of the ionicity.

4



Chapter 1

Negative Thermal Expansion

(NTE)

1.1 Introduction

Thermal expansion is a critical parameter and a relevant property for a wide variety

of technological applications as micro mechanics, electronic devices, biomedical mate-

rials and others [15]. Most of the materials expand when heated and exhibit positive

thermal expansion (PTE), i.e. the volume is increased (density decreases) but in fact

there are some materials that exhibit Negative Thermal Expansion (NTE) and con-

tract in some particular temperature range. In spite of decades of experimental and

theoretical studies [3,15] of the NTE phenomenon, only recently has particular atten-

tion been focused on this phenomenon and the materials which exhibit NTE over large

temperature ranges [1,4]. The interest for these materials is related to the possibility of

obtaining composite materials with a specific coefficient of thermal expansion, positive

or negative or zero in some specific temperature range.

The NTE phenomenon is found more often in solids. In all solid materials the

atomic vibrations contribute to the heat capacity and thermal expansion. The con-

traction of solids on heating seems anomalous and against the common idea that

atoms need more room as the vibrational amplitude increases. The popular explana-
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tion for thermal expansion is based on the model of anharmonic pair potentials between

atoms [16] as shown in Fig. (1.1). When the atoms vibrate along a line connecting the

pair, the asymmetry in the potential causes an increase in the mean distance between

the atoms as the temperature increases. This gives the interpretation of the most im-

portant mechanism for positive thermal expansion, and correctly indicates that atomic

vibrations give rise to thermal expansion only because of anharmonicity.

One can see that this model strictly applies only to isolated diatomic molecules;

the asymmetry of the interaction potential energy induces positive thermal expansion

in two-atomic molecules. But in many atomic system like crystals, where potential is

defined in a many-dimensional configuration space, the situation is more complex and

thermal expansion can also be negative.

The weakness of this model that considers only the component of relative vibrational

motion directed along the line joining the atoms, so it cannot account for negative

thermal expansion. There are also components of relative motion perpendicular to

this line that tend to decrease the distance between the mean positions of the two

atoms, and so to contract the solid.

In addition, non-vibrational (electronic, nuclear etc) contributions to the thermo-

dynamic properties can also cause spectacular effects, particularly at low temperatures

where the vibrational contributions are small.

Negative thermal expansion is usually found in materials with relatively open structure,

where coordination numbers N are small. These open structures offer sufficient free

room for perpendicular vibrations and then for the tension effects, which lead to NTE

when these vibrations predominate, as will be discussed below (see sec. 1.4). There-

fore, NTE is not found in close packed (N = 12) and body centered cubic (N = 8)

structures and it is very weak and rarely observed among the alkali halides with rock

salt structure (N = 6) [6, 17] while a considerable NTE can occur in tetrahedrally co-

ordinate structures (N = 4) and in crystals where some atoms show low coordination

(e.g. N=2), like in framework structures.
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Figure 1.1. Interatomic potential: when the temperature increases, the asymmetry due to the

anharmonicity causes an increase in the mean value of the bond length (crosses) and give rise to

positive thermal expansion.

It is known since long time that NTE affects several simple crystals with diamond

and zincblende structures like Si, Ge or CuCl in restricted low temperature inter-

vals [3]. According to a commonly accepted phenomenological model, the macroscopic

expansion is the result of a competition between a positive contribution due to bond

stretching effect and negative contribution due to tension effects [6]; when the tension

effects prevail over the bond stretching effect, the solid contracts. In zincblende struc-

ture the tension effect prevails only at low temperatures and is progressively overcome

by the stretching effect when temperature increased [18], the strength and temperature

interval of NTE depending on their ionicity (see details in Chapter 3).

In the last decade, the discovery of some framework structures that undergo NTE

over extended temperature intervals as ZrW2O8 [7], and Zn(CN)2 [1] has renewed

the interest for NTE from both the fundamental and the technological points of

view [1, 5, 6].Materials exhibiting strong NTE are generally characterized by frame-

work structures [19] made up by networks of corner-sharing polyhedral units [13, 20],

the best example of large isotropic NTE material was found in the cubic zirconium

7
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tungstate ZrW2O8 which contracts from 0.3 to 1500 K [7]. NTE has been attributed

to the effect of low-frequency rigid unit modes (RUM), that cause rigid rotations of

the basic polyhedral units [4, 12].

The discovery of strong NTE materials has also renewed the interest for a deeper basic

understanding of the mechanisms at the origin of NTE [6,8, 13].

A simple example of framework structure is the cuprite structure shared by Ag2O and

Cu2O [21], which exhibit NTE in large temperature interval and can be considered as a

bridging between the diamond-zincblende structures and the more complex framework

structures such as ZrW2O8. The cuprite structure is made up by two interpenetrating

lattices, one fcc of metal atoms, ”Ag” or ”Cu” and one bcc of ”O” atoms, each metal

atom is linearly coordinated to two ”O” atoms, while each ”O” atom is tetrahedrally

coordinate to four metal atoms.

A comparison between different crystals exhibiting NTE is shown in Fig. (1.2). In

Fig. (1.2), two characteristics can be evidenced (a) the great majority of framework

structures exhibit NTE within the full temperature interval, Ag2O has this behavior,

indicating that the tension effect always prevails on the stretching effect over the whole

temperature range. (b) Cu2O has the same behavior of zincblende CuCl, the tension ef-

fect prevailing only in a limited low-temperature interval, but low-temperature NTE is

stronger in CuCl which has a tetrahedral structure (polyhedral rigid units not present).

This indicates that a clear connection between the role of polyhedral RUMs and NTE

cannot be established for all the framework structures [8,22] but a deeper understand-

ing of NTE could be obtained by a comparative study of framework and zincblende

structures.

A common feature of all NTE materials, independent of the presence of polyhedral

RUMs, seems to be the influence of strong vibrations perpendicular to the some inter-

atomic bonds, which can be connected to the tension effect.

The applied research on NTE is focused on the search of new substances, the op-

timization of synthesis procedures and the production of composite materials with

specific thermal expansion coefficient tailored to meet specific thermal expansion re-

quirements [1, 5, 20].
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Figure 1.2. Relative thermal expansion for some crystals with different structures. The data for

CuCl is taken from reference, Cu2O [20], Ag2O [20],ZrW2O8 [7],Zn(CN)2 [23].

The expansion of materials may be isotropic or anisotropic. In isotropic expansion,

the material expands by the same extent in any direction upon heating and this form

characterizes the isotropic materials like cubic crystals. In the anisotropic expansion,

the extent of expansion is dependent on the particular direction of the material where

the measurement is taken.

The macroscopic thermal expansion is measured by conventional techniques such as

dilatometry and Bragg diffraction that are sensitive only to the lattice thermal expan-

sion. In the last years, the possibility of obtaining complementary information on the

local structure and dynamics from correlation-sensitive probes, such as EXAFS [24]

and diffuse scattering [25], has been experimentally demonstrated. EXAFS can give

information on the local dynamical behavior of crystals opening new perspectives for

understanding the origin of NTE (see section 1.5). A recent and updated review of

NTE in a wide range of simple and complex systems can be found in Ref. [6] (and

references therein). In this work, we will restrict ourselves to study the NTE due to

vibrational effects on simple tetrahedrally bonded crystals.
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1.2 Thermodynamic relations

The extent of thermal expansion is measured by the volumetric thermal expansion

coefficient ¯ defined as:

¯ =
1

V

(
∂V

∂T

)

P

= −1

½

(
∂½

∂T

)

P

(1.1)

where ½ is the sample density. The corresponding definition for the coefficient of linear

thermal expansion is given by:

®L =
1

L

(
∂L

∂T

)

P

(1.2)

The practical definitions of ¯ and ®L are often given:

¯ =
1

V0

(
∂V

∂T

)

P

®L =
1

L0

(
∂L

∂T

)

P

(1.3)

where V0 and L0 are the room temperature values of V and L.

When the expansion is isotropic, ¯ = 3®L. However not all materials expand isotrop-

ically, in non-cubic materials the thermal stresses and elasticity are both anisotropic

and thermal expansion is related to them. In most cases, the materials expand when

heated, i.e. V increases (½ decreases) or L increases as the T increases with the result

that thermal expansion coefficients ¯ or ® are positive.

However, some materials contract when heated, in such cases the thermal expansion

coefficients ¯ or ®L are negative (®L may be negative in one direction or more direc-

tions).

There are alternative forms of the thermodynamical relations for defining the thermal

expansion coefficient of the materials as follow.

Thermal Expansion and Gibbs free energy

It is known that changing the temperature must change the internal pressure and that

dimensions will change to minimize the Gibbs free energy G, where G = F (T, V )+PV ,

F is the Helmholtz energy U − TS, and S is the entropy of the system. Since dG =

10



1.2 Thermodynamic relations

−SdT +V dP , the volumetric expansion coefficient is given by the second derivative of

G as [6]:

¯ =

(
∂ lnV

∂T

)

P

=
1

V

∂2G

∂P∂T
(1.4)

In a Cubic or isotropic system, the volume V at temperature T under an applied

pressure P0 is the one that gives the minimum of the Gibbs energy G = F (T, V ) +

P0V . Fig. (1.3) shows isothermal plots of the free energy G versus V at two different

temperatures T and T+±T for (a) Positive and (b) Negative thermal expansion. When

the temperature increases the system will change its volume to minimize G, in the PTE

the change of the volume is positive and hence the system expands but for NTE the

volume change is negative and the system contracts.

In Fig. (1.3), one can see that the positive or negative expansion also depends

on the ”direction” of increasing entropy. For P = P0= Constant, dG = −S(V, T )dT .

The relation of the volume dependence of the entropy can be obtained, exploiting the

Maxwell relationship:
(
∂V

∂T

)

P

= −
(
∂S

∂P

)

T

, (1.5)

so that the volumetric thermal expansion is written as:

¯ = − 1

V

(
∂S

∂P

)

T

= ÂT

(
∂S

∂V

)

T

(1.6)

where ÂT is the isothermal compressibility −(∂V/∂P )T/V = −(1/KT ), KT is the

isothermal bulk modulus. The compressibility is always positive, then the sign of

(∂S/∂V ) determines the sign of the expansion coefficient,¯. Normally, the entropy

becomes smaller when increasing pressure say decreasing volume, then ¯ is positive.

However, negative ¯ indicates that the entropy increases under increasing the pressure

i.e. with decrease in volume.

In Non-cubic systems, a similar treatment can be done by considering the variation of

all independent strain coefficient to find the minimum of G [6].
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Figure 1.3. Isothermal plots of the Gibss free energy versus volume at constant pressure. (a) for

positive thermal expansion and (b) for negative thermal expansion. Figures from ref. [6]
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1.3 Quasi-Harmonic Approximation

Grüneisen function

Another important thermodynamic relation related to the thermal expansion can be

considered using Maxwell relations or equivalently the chain rule:

(
∂V

∂T

)

P

= −
(
∂V

∂P

)

T

(
∂P

∂T

)

V

(1.7)

Then, we can express ¯ in Eq. (1.1) as:

¯ = ÂT

(
∂P

∂T

)

V

= ÂT

(
∂P

∂U

)

V

.

(
∂U

∂T

)

V

(1.8)

where, U is the internal energy. In Eq. (1.8), the thermal expansion appears as the

elastic response to the thermal stress (∂P/∂T )V . Thermal stress coefficient can be

expressed as the product of two factors: (i) the heat capacity CV = (∂U/∂T )V and (ii)

the thermodynamic Grüneisen function, °(T, V ) = (∂P/∂(U/V ))V .

Finally, the volumetric thermal expansion coefficient ¯ can be express as:

¯ = ÂT (CV /V )

(
∂P

∂(U/V )

)

V

= ÂT (CV /V )° (1.9)

The Grüneisen function ° is dimensionless, ÂT and CV are both always positive, so °

determines the sign of the expansion,¯ positive or negative. Experimentally, °(T, V )

is usually determined at atmospheric or zero pressure from the measurements of ¯, ÂS

and CP by means of the expression ¯V/ÂSCP = ¯V/ÂTCv .

The plot of ° against T is often used to display the results of expansion measurements,

which have different type behavior for different solids (see Fig. 1.4). It is particularly

useful at low temperatures, where both ¯ and CV can change by many orders of mag-

nitude while ° usually remains of order unity.

1.3 Quasi-Harmonic Approximation

There are different contributions to thermal expansion, here we are interested only

on the vibrational contribution and neglect the electronic, magnetic and other con-

tributions which are not appreciable over a wide range of temperature. In all solids

13



Chapter 1. Negative Thermal Expansion (NTE)

Figure 1.4. The Grüneisen °(T ) versus reduced temperature, T/µ0 (µ0 the Debye temperature)

for crystal of Zincblende structure. The figure is taken from ref. [17].

the atomic vibrations contribute to the heat capacity and thermal expansion. The

vibrations are governed by the potential energy Á of the crystal. This potential energy

can be expressed as a Taylor expansion in the displacements of atoms from their mean

positions [17]:

Á = Á0 + Á1 + Á2 + Á3 + Á4 + . . . (1.10)

where Án is the term of order ”n” in the displacements. In the limit of small amplitudes,

the vibrations are harmonic and atomic motion can be expressed as a superposition of

a set of independent ”normal modes” of vibration, each behaving as a linear harmonic

oscillator. From Eq.(1.10), the harmonic approximation is considered by neglecting all

terms beyond the second order in the displacement [6, 17] and the series would termi-

nate at Á2. The atomic displacement are then symmetric at the equilibrum positions

of atoms and the symmetry indicates that there is no thermal expansion. A perfectly

harmonic crystal would have frequencies independent of the volume.

The real solids are never purely harmonic and even at the lowest temperatures there

14



1.3 Quasi-Harmonic Approximation

is always some departure from harmonic behavior: ”anharmonic effects” are responsi-

ble for thermal expansion. When the anharmonicity is weak (vibrational amplitudes

are small at low temperatures), anharmonic effects can be calculated by perturbation

theory; to the first order the anharmonic potential has two effects [17]: (i) interaction

between different normal modes of vibration, (ii) volume dependence of the normal

frequencies. The second effect affects the thermodynamic properties giving rise to

thermal pressure and hence to thermal expansion. The lowest order terms determining

the thermal expansion and related properties are given correctly by the quasi-harmonic

approximation which takes into account the dependence of harmonic frequencies on the

volume and neglect all other anharmonic effects. Therefore Eq. (1.10) is again limited

to the second term Á2 but now the frequencies are volume-dependent.

In quasi Harmonic approximation, the different normal modes are independent

of each other and contribute separately to the thermodynamic properties as simple

harmonic oscillators. Then the lattice vibrational free energy Fvib, entropy Svib and heat

capacity Cvib are sums of separate contributions fj, sj and cj from different independent

vibrational modes of frequency !j(V ) and are given as:

∙ vibrational contribution to the Helmholtz free energy

Fvib =
∑
j

[
1

2
ℏ!j + kT ln(1− e−ℏ!j/kT )

]
(1.11)

where !j is the angular frequency 2¼ºj of normal mode j and the first term

represents the zero-point energy.

∙ vibrational contribution to the entropy

Svib =
∑
j

sj =
∑
j

s(ℏ!j/kT ) (1.12)

∙ vibrational contribution to the heat capacity

Cvib =
∑
j

cj =
∑
j

c(ℏ !j/kT ) (1.13)

where cj is the contribution of mode j to CV and depends only on ℏ !j/kT
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Chapter 1. Negative Thermal Expansion (NTE)

∙ the volume derivatives of the mode frequencies !j are conveniently described by

dimensionless mode Grüneisen parameters °j, defined by [6]:

°j = −d ln!j

d lnV
= −V

∂ ln!j

∂V
= kT

∂ ln!j

∂P
(1.14)

The values of Grünesien parameters °j can be determined by spectroscopic mea-

surements under pressure, which relates thermal expansion to the volume de-

pendence of spectroscopic frequencies or other characteristic energies. Different

vibrations may have different frequencies and different Grünesien parameters,

then the thermal pressure coefficient can be rewritten as:
(
∂P

∂T

)

V

=
1

V

∑
j

cj°j (1.15)

From Eqs. (1.14) and (1.15), the total vibrational Grüneisen function becomes

the average of the °j weighted by the cj:

° =
∑
j

cj°j/
∑
j

cj (1.16)

Then the vibrational contribution to volumetric expansion coefficient ¯ is given

by [6, 17]:

¯vib =
ÂT

V
°vibCvib =

ÂT

V

∑
j

°jcj (1.17)

where the summation as usual is taken over all normal modes. The thermal expansion

will be positive or negative depending upon wether positive or negative °j predomi-

nate in the weighted average of Eq. (1.16). If the frequency !j(V ) of a certain mode

decreases with increasing the pressure (or decreasing the volume), then Grünesien pa-

rameter °j becomes negative (Eq.1.14) and through Eq.(1.17) will contribute negatively

to the thermal expansion.

1.4 Vibrational mechanisms in thermal expansion

The vibrations of solids of N atoms are governed by the potential energy which is

a 3N-dimensional function of the atomic displacements. The effective pair potentials
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1.4 Vibrational mechanisms in thermal expansion

between neighboring atoms are often dominant and have formed the basis for much

theoretical work. This pairwise interatomic potential is anharmonic (Fig. 1.1) and is

responsible of the thermal expansion. A widespread phenomenological explanation for

thermal expansion assumes central forces between pairs of interacting atoms.

1.4.1 Central force mechanisms

The central force between a pair of atoms fluctuates as a consequence of the atomic vi-

brations and elastic response of the crystal is to restore the mean interatomic distance

to its equilibrium value. Corresponding to the pairwise interatomic potential, there

are two main vibrational mechanisms contributing with opposite effect to thermal ex-

pansion [6] so that the expansion coefficient ¯ will be positive or negative depending

upon which effect is larger.

(a) The Bond-stretching effect

The bond stretching mechanism is responsible for the Positive thermal expansion ac-

cording to two forms of explanation [18]:

(i) Bond stretching mechanism is due to the asymmetry of the effective pair potential

when the atoms vibrate along a line connecting the pair as shown in Fig. (1.5). The

asymmetry of the potential energy causes the mean interatomic distance to increase

with increasing the amplitude of vibrations. We can relate the stretching mechanism

to the Grüneisen parameter °i; of a mode j with a component of relative motion along

the line joining the two atoms (bond direction). Increasing the volume causes the

interatomic bond to lengthen (bond-stretching), so that the force constant affecting

the vibrations decreases (weaken the bond) and lowers the mode frequency !i, so con-

tributing positively to °i and to the thermal expansion.

(ii) Another explanation of the stretching mechanism can be equivalently obtained

from thermal pressure by considering the term (∂P/∂T )V . The repulsive or attractive
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Figure 1.5. The bond stretching effect is due to the asymmetry of pair potential which results

in a net repulsive force between the two atoms A and B, this contribute positively to the thermal

expansion.
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1.4 Vibrational mechanisms in thermal expansion

force between atoms correspond to distances between atoms r smaller or larger than

the equilibrium value r0, respectively. At constant volume, the distance r0 between

the atomic mean positions remains fixed; when the atoms vibrate the average force

between them will be a net repulsive force, i.e. the magnitude of the repulsion between

atoms (r < r0) is greater than that of the attraction (r > r0) (Fig. 1.5). This repulsive

force leads to positive thermal pressure and increases with temperature contributing

positively to (∂P/∂T )V ) and then to thermal expansion.

(b) The tension effect

In solids there are also components of relative motion perpendicular (transverse) to

the line joining two atoms, these give rise to a second mechanism (Tension effect, also

anharmonic) pulling the atoms towards each other and tending to decrease the dis-

tance between the average positions of two atoms (Fig. 1.6) and so to contract the

solid. The tension mechanism is the earliest vibrational model giving negative thermal

expansion [6, 26].

For vibrations with components of relative displacement perpendicular to the bond

direction, the mean interatomic distance ⟨r⟩ (true bond length) is greater than the

distance between the mean atomic positions RC (apparent bond length). It can be ex-

plained in term of Grüneisen parameter °i, corresponding to vibrations perpendicular

to the line of atomic centers. An increase in volume increases tension in the bonds;

then the restoring force for transverse motion is enhanced, raising the frequency and

so contributing negatively to °i and to thermal expansion.

Equivalently, the tension mechanism can be explained by considering the term (∂P/∂T )V .

The mean bond length is the time average of the distance between atoms. At constant

volume, the distance between mean atomic positions remains fixed, the relative mo-

tion transverse to the bond increases the time averaged distance between the atoms,

producing net attractive force and hence contributing negatively to (∂P/∂T )V and to

thermal expansion.

A further mechanism becomes operative when the relative vibration of two atoms

is neither purely along nor purely perpendicular to the bond direction, then stretch-

19



Chapter 1. Negative Thermal Expansion (NTE)

A
m

p
litu

d
e o

f v
ibb

ra
tio

n� � �� � ��������	� ����
� ���
Figure 1.6. The tension effect: a net attractive force between two atoms A and B is produced

from their relative vibrations perpendicular to the bond direction and contribute negatively to

thermal expansion.

ing and tension effects contribute simultaneously to the thermal expansion. From the

average over a vibrational period, there is a net torque on the atom pair that tends

to rotate the bond direction away from the direction of the relative motion [6]. This

mechanism is much less important than the above mechanisms because different vibra-

tions try to rotate the bond in different directions and their effects largely cancel. This

effect is completely canceled when the bond directions are determined by the crystal

symmetry, as in many cubic crystals.

The two different mechanisms (a) and (b), are always important in the interpreta-

tion of the crystal vibrations, then central forces play a major role in all crystals. In

most crystal vibrations, the displacements have components both along and perpen-

dicular to the line joining neighboring atoms and therefore the two mechanisms occur

simultaneously with opposite effects. Usually the bond stretching effect is the largest

and thermal expansion is positive. However, when the vibrational modes have large

components of relative displacement transverse to bond direction, then the tension

effect can predominate and gives rise to negative expansion. These components are

generally of low frequency and hence they are low energy transverse acoustic modes.

These modes are preferentially excited at low temperatures and are supported by low
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1.4 Vibrational mechanisms in thermal expansion

shear moduli of the material [27], in contrast, most modes favoring the stretching mech-

anism are not excited until higher temperature. As a consequence °vib often decreases

at low temperature corresponding to the fact that the low frequency transverse ”acous-

tic modes” predominate and are connected to tension effect and give rise to negative

thermal expansion.

On the other hand, at high temperature the high energy longitudinal modes are

excited and then the stretching effect predominates and hence suppress the NTE [6,28].

The tension effect responsible for NTE is particularly marked for crystals of open

structure (the coordination number is small) and with relatively low shear moduli [27].

1.4.2 Non-Central force mechanism

The above considerations can be directly applied when central forces between nearest

neighboring atoms (two-body) are dominant. But in the systems with open structures,

additional contributions are required for stability, provided by short range non-central

forces or by interactions between further neighbors. These non-central forces reduce

the tension effect, they resist the vibrations transverse to bond directions.

Therefore, Negative expansion will be favored when such forces are small, even though

they are large enough to stabilize the open structure. However, the open structure

materials with pronounced NTE are expected to have weak non-central forces and to

be close to structural instability [6, 10, 29].

Tetrahedral crystals are stabilized by non-central forces. Relating to the Phillips

ionicity factor fi [30, 31], which is unity when the bonding is purely ionic and zero

when it is purely covalent. CuCl is strongly ionic with fi = 0.75 and hence dominated

by the central force mechanism, i.e. small non-central forces, where thermal expansion

is strongly negative at low temperatures.

In contrast, Ge has fi = 0, with strong stabilizing non-central forces. Then, Negative

expansion at low temperatures is reduced and the expansion appears to be positive at

nearly all temperatures [32,33] (for more details see Chapter 3).
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1.5 EXAFS studies of the NTE

From a microscopic point of view, the vibrational origin of NTE has been proposed

on the basis of simple central force mechanisms [6]. In two-atomic system, the anhar-

monicity of the pair potential induces positive thermal expansion, via a bond-stretching

effect. As we have just seen, geometrical tension effects connected to vibrational mo-

tion perpendicular to the bond direction, induce a negative contribution to the thermal

expansion, which can in some cases overcome the positive bond-stretching contribu-

tion and give rise to NTE. Tension effects can be claimed as origin of NTE in many

systems and the deeper quantitative understanding of the microscopic mechanism of

NTE requires the availability of accurate experimental information concerning the lo-

cal behavior around the atoms.

Conventional techniques such as macroscopic dilatometry and Bragg diffraction

are sensitive only to the lattice thermal expansion and cannot disentangle the bond

stretching from the tension effects. From a microscopic point of view, one is interested

in the expansion of the distances between neighboring atoms (nearest-neighbors, next-

nearest-neighbors,etc), which will be for short indicated as ”bond expansion”. From a

local perspective, the bond expansion can be distinguished as (i) ”true” bond expansion

is the variation of the average distances between instantaneous positions ⟨∣r2−r1∣⟩, (ii)
”apparent” bond expansion is the variation of the distance between average positions

of two atoms ∣⟨r2⟩− ⟨r1⟩∣. Bragg diffraction measures the ”apparent” bond expansion,

which is directly connected to the macroscopic expansion.

The measurement of the true expansion of selected bonds and its comparison with

the corresponding ”apparent” expansion is crucial for understanding the origin of NTE.

Actually, the difference between ”true” and ”apparent” expansions is mainly due to

perpendicular vibrations and thus connected to the tension effect. An estimation of

the true expansion from Bragg diffraction experiments can be done only in indirect

and very approximate way e.g. through the ”riding model”. The inadequacy of the

riding model has been discussed in Ref. [34]. A direct measurement of the true bond
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1.5 EXAFS studies of the NTE

expansion is now possible, thanks to investigation tools like total scattering [25] and

EXAFS, which rely on the properties of last-generation synchrotron radiation and on

refined data analysis procedures.

The analysis of diffuse scattering gives the same sensitivity to correlation as EXAFS

analysis; the main strength and limitation of EXAFS technique are related to its se-

lectivity of atomic species and sensitivity to short range order, respectively.

Important advances have been made in the use of EXAFS for thermal expansion

studies [35,36] related to; the high accuracy temperature dependent EXAFS measure-

ments and to the approaches which are used in the data analysis. EXAFS (a) directly

measures the average value of the instantaneous distance between neighboring atoms

and its thermal expansion, ” true bond expansion”. (b) gives directly the mean square

relative displacement along the direction of the bond (parallel MSRD).

The average distance ⟨r⟩ measured by EXAFS is larger than the distance Rc be-

tween the average positions measured by diffraction because of the vibrations perpen-

dicular to the bond. Correspondingly larger is also the thermal expansion measured by

EXAFS. From the difference between the expansions ±⟨r⟩ and ±Rc measured by EX-

AFS and diffraction, respectively, one can get information on the relative vibrations in

the plane perpendicular to the bond (Perpendicular MSRD). Therefore, EXAFS can

give original information, complementary to Bragg diffraction, on the local mechanisms

responsible for NTE.

The accuracy and reliability of the bond thermal expansions and of both parallel

and perpendicular MSRDs, obtainable from EXAFS has been checked by measuring

high-quality spectra of simple model systems, such as Cu [24] and Ge [36], analyzing

them by the cumulant expansion approach and comparing the results with theoretical

calculations [37]. From the MSRDs measured by EXAFS (a) the anisotropy of the

relative vibration i.e. parallel to perpendicular MSRDs can be calculated and con-

nected to the tension effect giving rise to NTE. (b) From the comparison with the

MSDs measured by diffraction, one can give original information on the relative phase
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of vibration of the atoms.

To evaluate the potential of EXAFS for NTE studies, several crystals with differ-

ent structures (diamond-zincblende, cuprite and delafossite) and affected by different

NTE properties have been investigated [14, 22, 34, 36, 38]. To evaluate strengths and

limitations of EXAFS for quantitative studies of NTE materials, it is convenient now

to focus the attention on crystals of relatively simple structure and lattice dynamical

properties, such as tetrahedrally bonded semiconductor with the diamond-zincblende

structure.

Recently, from EXAFS studies on Ge and CuCl crystals, the results suggested the

existence of a well defined correlation between the NTE properties and some quanti-

ties measured by EXAFS. To confirm this correlation and looking for its quantitative

assessment, EXAFS studies have been performed on the CdTe, whose NTE properties

are intermediate between them.
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Chapter 2

EXAFS and Thermal properties

X-ray Absorption Fine Structure (XAFS) is a powerful technique for studying the lo-

cal properties (structural, thermal and electronic) of materials in chemistry, physics,

biology and other fields. During the last two decades, the use of XAFS has become

firmly established as a practical and powerful analytical technique for structure deter-

mination.

2.1 EXAFS technique

EXAFS (Extended X-ray Absorption Fine Structure) is based on studying the absorp-

tion of x-ray photons by the material under study as a function of photon energy.

The observed EXAFS signal is the modulation of the X-ray absorption coefficient as a

function of X-ray energy.

From the discovery of EXAFS phenomenon in 1920s until 1970s, the basic mechanism

had been understood but the quantitative theory as well as comprehensive rate anal-

ysis of EXAFS measurements was lacking. Thanks to the availability of synchrotron

sources [39] and the development of a suitable interpretation scheme, become it possible

to exploit XAFS signal to get information on both the local geometric and electronic

structure of matter.
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Chapter 2. EXAFS and Thermal properties

EXAFS provides information on the nearest coordination shells to the absorbing

atom and hence the Short-Range order theory is the suitable theory for EXAFS inter-

pretation [40]. EXAFS is particularly suited to study the thermal properties within a

few coordination shells of a selected atomic species by performing temperature depen-

dent its measurement.

2.1.1 Introduction

In the interaction of the x-rays with matter, several different physical processes can

occur at a microscopic level as shown in Fig. (2.1). For energies below 1 MeV the

two basic interactions are photoelectric absorption and x-ray scattering which have

a different cross section which depends on the photon energy. In the photoelectric

absorption process (Fig. 2.1); an X-ray photon is absorbed by core electron leading to

either the excitation or ionization of the atom, according to weather the photon energy

is lower or larger than the electron binding energy, respectively. In X-ray scattering

process; the path of the X-ray photon is deflected after scattering by an electron,

which can be either coherent (i.e. the elastic Thomson scattering) or incoherent (i.e.

the inelastic Compton scattering).

Actually, these two processes represent the origin of a lot of experimental techniques.

Here we are interested in the photoelectric absorption process which is the origin of the

X-ray Absorption Fine Structure (XAFS) technique. In the X-ray absorption process

we are concerned with the absorption coefficient ¹(E) which gives the probability that

X-rays will be absorbed when passing through a sample of thickness x according to

Beer’s law:

I = I0 e
−¹(E)x (2.1)

where I0 and I are the incident and transmitted X-ray intensity through the sample,

respectively. I will be decreased by an amount that is determined by the absorption

characteristics of the sample, the I0 intensity is proportional to the number of X-ray

photons.

At most X-ray energies, the absorption coefficient ¹(E) is a smooth function of energy
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Figure 2.1. The photoelectric process(Left): The interaction of X-rays with matter and the

corresponding partial cross sections of the different processes can be occur during the interac-

tion(Right).

(Fig. 2.1) with a value given by [41,42]:

¹(E) ≈ ½Z4

AE3
(2.2)

where ½ is the sample density, E the X-ray energy , Z the atomic number and A the

atomic mass. The strong dependence of ¹(E) on the atomic number Z and E (Fig.

2.3) is a fundamental property of x-rays that makes x-ray absorption useful in medical

and other imaging technique.

Following the absorption event, the atom is left in an excited state with an empty

electronic level (a core hole), this excited state will eventually decay (De-excitation

process) typically within a few femtoseconds. The excited core hole will relax back to

a ground state of the atom; a higher level core electron drops into the core hole and a

fluorescence x-ray or Auger electron is emitted as shown in Fig. (2.2).

In both cases the probability of emission (X-ray or electron) is directly proportional

to the absorption probability and occurs at discrete energies that are characteristic of

the absorbing atom,and can be used to identify the absorbing atom.
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Figure 2.2. competing decay processes following the presence of the core hole: Radiative tran-

sition, X-ray fluorescence (up) and non radiative transition, Auger effect Decay (down) of the

excited state.

2.1.2 XAFS: X-ray Absorption Fine Structure

XAFS is the modulation of the X-ray absorption coefficient at energies near and above

an X-ray absorption edge. XAFS measures the energy dependence of ¹ at and above

the binding energy of core-electron of a given atomic species.

Absorption edge

The X-ray absorption spectrum exhibits a generally smooth decreasing intensity to

higher energy, increasing the energy of the incident X-ray photons leads to a pro-

gressive monotonic decrease in the X-ray absorption coefficient ¹ [43]. The smooth

behavior of the photo-electric coefficient is interrupted by sharp discontinuities called

X-ray absorption edges (Fig. 2.3, left). The absorption edge is originated when the

X-ray photon energy is high enough to extract an electron from a deeper core level to

the continuum.

There are different absorption edges for each element corresponding to which energy

level the electrons were extracted from: K, L1, L2, L3 and M1-edges corresponds to the

extraction of an electron from the energy levels 1s, 2s, 2p1/2,2p3/2 and 3s respectively

as shown in Fig. (2.3, right).
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Figure 2.3. X-ray absorption edges corresponding to different core energy level.

The energy of an absorption edge depends on the binding energy of the corresponding

core energy level. Since the binding energies grow monotonically with the atomic

number Z [41, 42] (Fig. 2.4), every edge energy corresponds to a well defined atomic

species. Every atomic species has one K edge (highest energy absorption edges), whose

energy grows with the atomic number Z, from 13.6 eV for hydrogen to 115.606 keV for

Uranium.

At the absorption edge Eedge the kinetic energy of the electron Ek is defined to be

equal to E0 often referred to as the zero-point energy or ”inner potential”. For any

energy above this, the photoelectron kinetic energy is given by:

Ek = ℎº − Ebinding (2.3)

Fine Structure

Above an absorption edge, the X-ray absorption coefficient exhibits some fine oscilla-

tions is called X-ray Absorption Fine Structure XAFS [43, 44]. Therefore, in XAFS

measurements we are concerned to measure the intensity of ¹ as a function of energy

near and above the absorption edges. The range of the XAFS region depends on the

material under investigation, and is strongly influenced by the presence of atoms sur-

rounding the absorber atom. For isolated atoms (i.e noble gases, metallic vapors),
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Figure 2.4. Left: The absorption cross section ¹/½ for several elements over the x-ray energy

range of 1 to 100 keV. Right: Binding energy of electrons in some core levels as a function of the

atomic number Z.

XAFS region is limited to a few eV around the edge, while for the molecular gases and

condensed systems, XAFS region can extend up to 1000 eV above the edge. In this

case, the fine structure is indeed ”defined” by the atoms which surround the atomic

species being excited.

The XAFS region is generally regarded as the total of two subregions as shown in

Fig. (2.5):

∙ X-ray Absorption Near Edge structure (XANES), typically within 30-50 eV above

the absorption edge, which contains information on the local electronic and geo-

metric structure [44,45].

∙ Extend X-ray Absorption Fine Structure (EXAFS), which approximately starts

after the XANES region and extends up to typically 1000 eV. EXAFS region

carries information on the local geometric structure surrounding a given atomic

species.

Actually the limits of the energy ranges of the EXAFS and XANES regions are not

so well defined, and depends on the case under study. XANES is strongly sensitive to

chemical valence and coordination chemistry of the absorbing atom, while EXAFS is
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Figure 2.5. The XANES and EXAFS regions are schematically illustrated at the Ge K-edge.

used to determined the distances, coordination number and species of the neighbors of

the absorbing atom.

2.1.3 The EXAFS mechanism

A simple phenomenological picture is often used to describe the origin of EXAFS as

shown in Fig. (2.7). When an X-ray photon of sufficiently high energy is absorbed

by an atom, a core electron (photoelectron) is ejected from the atom, and the atom

becomes ionized (ionization process). The outgoing photo-electron is described by a

wave function approximated by a spherical wave.

If the absorber atom is isolated, the ¹(E) has a sharp step at the core level binding

energy and features a smooth function above this absorption edge as shown in Fig.

(2.6). For a cluster of atoms, the absorbing atom is surrounded by neighboring atoms,

the outgoing photoelectron spherical wave will be backscattered by the surrounding

atoms, giving rise to an incoming spherical wave. In this case, the x-ray absorption

coefficient of the sample will depends on the superposition of these outgoing and in-

coming waves of the photoelectron (Fig. 2.7).
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������ ��
Figure 2.6. X-ray absorption by a free atom and the corresponding absorption spectrum if the

absorber atom is isolated

The phase relationship between outgoing and incoming waves depends on photo-

electron wavelength and interatomic distance between absorber and backscatter atom.

The EXAFS oscillations as a function of the photoelectron wavelength may be inter-

preted as due to the interference between outgoing and incoming waves. The interfer-

ence phenomenon can indeed monitor the local structure around the absorber atom.

Actually, the interpretation of EXAFS requires a full quantum mechanical treat-

ment based on the time dependent perturbation theory, which is related to the de-

scription of the time sequence of events: photon absorption, photoelectron emission,

backscattering and interference. The theory describes the absorption coefficient as a

transition between two quantum state; the initial core state Ãi and the photoelectron

final state Ãf , which in turn is a superposition of the outgoing and incoming spherical

waves.

The back-scattered photoelectron experiences a phase change producing an interfer-

ence phenomenon. Therefore, the absorption coefficient exhibits producing fine struc-

ture because the final wave state function is modulated due to the interference pattern
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2.1 EXAFS technique

��
Figure 2.7. Absorption of cluster of atoms, superposition of the emitted and backscattered

photoelectron waves. the absorption increase and decrease according to the constructive and

destructive interference respectively.

and can be defined by the equation:

¹(E) = ¹0(E)[1 + Â(E)]

where Â(E) forms the oscillatory part of the total absorption coefficient above the

absorption edge. The EXAFS function is defined as:

Â(E) =
¹(E)− ¹0(E)

Δ¹0(E)
(2.4)

where ¹(E) is the measured absorption coefficient and ¹0(E) is the atomic absorption

coefficient. The experimental determination of ¹0 is difficult, and hence it is usually

reproduced by a smooth polynomial function as shown in Fig. (2.8). The division by

the edge step Δ¹0 corresponds to obtaining the oscillations normalized only to one

absorption event. Science the oscillatory part is created by the interference between

the outgoing and backscattered waves, therefore Â(E) contains information about local

structure around the absorber atom.

EXAFS oscillations depend strongly on the surrounding atoms of the absorber

atom. The frequency of these oscillations depends on the distances between absorber

and backscatter atoms (i.e the interatomic distance, R). Their amplitude depends on

the number of backscattered atoms (i.e. Coordination number, N). According to these

considerations some peculiarities characterize EXAFS as follow:

33



Chapter 2. EXAFS and Thermal properties

Figure 2.8. Absorption coefficient and edge jumb.

∙ the selectivity of atomic species, achieved by tuning the x-ray energy to the

corresponding absorption edge.

∙ Sensitivity to Short-Range Order(SRO) around the absorber atom due to both

the spherical nature of the photoelectron wave and short mean free path of the

photoelectron.

∙ Insensitivity to Long-Range Order(LRO).

From these peculiarities, we can realize that EXAFS and X-ray diffraction techniques

gives different information but complete each other.

2.2 EXAFS equation

Let us consider only ideal systems composed by atoms frozen at their equilibrium po-

sitions [46], the effect of thermal disorder will be introduced later. The oscillation

part in the X-ray absorption coefficient of a material contains information on the local

structure around the absorber atom and we need to extract this information. Several
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authors have given derivations for the EXAFS theory [40,47–49]. We will give a short

introduction to the EXAFS equation, more detailed derivation can be found in Ref. [46].

The EXAFS function Â(k) can be estimated in the frame of first-order time depen-

dent perturbation theory assuming some approximations [50]:

∙ one-electron approximation: only one core electron changes its state, the remain-

ing N-1 electrons (passive electrons) simply relax their orbital around the core

hole. Passive electron effects are anyway considered in our formalism by taking

into account the effect of their relaxation in the presence of the core hole, and

the inelastic interaction between the excited electron and the others.

∙ Dipole approximation: only the electronic transitions that satisfy the selection

rule ΔL = ±1 are allowed. the dipole approximation is only valid when the wave

length of the photoelectron is much larger than the size of the absorbing atom.

∙ Single Scattering (SS) approximation: the multiple scattering (MS) contributions

are neglected, and only the single backscattering events from the neighboring

atoms are considered. In EXAFS region the MS events are less important but

sometimes are not negligible. In the 1 st-shell there is only SS contribution, so

the signal can be safely analyzed within the SS approximation, where MS paths

corresponds to longer effective distance.

∙ Plane wave approximation; The curvature of the spherical wave impinging on the

scattering atom is neglected (small atom approximation)

EXAFS oscillation is due to the coherent superposition of the outgoing and incom-

ing spherical waves of only one photoelectron as shown in Fig. (2.9). The absorption

coefficient ¹ is proportional to the transition probability per unit time of the photo-

electron event and from Fermi’s Golden Rule (2.5), the absorption coefficient is given

by:

¹ =
4¼2e2!NA

c
∣⟨i ∣ˆ́.r̄∣ f⟩∣2 ½(Ef ) (2.5)

Where ! is X-ray frequency, NA the atomic density, ½(Ef ) is the density of final

electronic state and ⟨i ∣ˆ́.r̄∣ f⟩ is the matrix element for the transition from the initial
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Figure 2.9. Schematic illustration of the EXAFS mechanism showing the interference between

the incoming and outgoing photoelectron spherical waves.

state ∣i⟩ of energy Ei to the final state ∣f⟩ of energy Ef = Ei + ℏ! [51]. EXAFS

oscillations are entirely described by the matrix element ∣⟨i ∣ˆ́.r̄∣ f⟩∣2 in which:

∙ ⟨i∣: the initial-state describes core electron (is not influenced by the neighboring

atom).

∙ ∣f⟩: the final-state describes the photoelectron (influenced by the neighboring

atom)

In the EXAFS region the final density of electron states ½(Ef ) is constant, then Eq.

(2.5) can be written as:

¹ = C ∣⟨i∣ˆ́.r̄∣f⟩∣2 (2.6)

where C is a constant. If the absorber atom is isolated (see Fig. 2.6), the final state

of the photoelectron can be described by an undisturbed outgoing spherical wave and

the absorption coefficient is given by:

¹0 = C ∣⟨i∣ˆ́.r̄∣f0⟩∣2 (2.7)

where ¹0(E) is called atomic absorption coefficient and decreases monotonically as a

function of the photon energy ℏ!.

If the absorber atom is not isolated (see Fig.2.9 ), the outgoing photoelectron spherical

36



2.2 EXAFS equation

waves back-scattered by the surrounding atoms induce weak perturbation ±f (photo-

electron energy is much larger than the electron-atom interaction) to the final state

∣f⟩ = ∣f0⟩+ ∣±f⟩ and the absorption coefficient becomes:

¹ = C ∣⟨i ∣ˆ́.r̄∣ f0 + ±f⟩∣2 (2.8)

Phenomenologically the perturbation ±f corresponds to an incoming spherical wave

(backscattered photoelectron waves) which modifies the superposition integral of the

final state ⟨f ∣ with the initial state ⟨i∣ in the matrix element in Eq. (2.8) with respect

to equation (2.7).

By expanding the absorption coefficient in Eq. (2.8) and neglecting the second order

terms in ±f , we obtain:

¹ = C [∣⟨i ∣ˆ́.r̄∣ f0⟩∣2 + 2Re⟨i∣ˆ́.r̄∣f0⟩⟨i∣ˆ́.r̄∣±f⟩∗] (2.9)

The EXAFS function is generally expressed as a function of the photoelectron wave

number k rather than the energy and given by:

Â(k) =
¹− ¹0

¹0

(2.10)

where the photoelectron wave vector k is given by:

k =

√
2m

ℏ2
(E − Eb) (2.11)

By inserting the absorption coefficients, Eqs. (2.7) and (2.9) in EXAFS function (2.10)

we obtain:

Â(k) = 2Re

(⟨i∣ˆ́. r̄∣±f⟩∗
⟨i∣ˆ́. r̄∣f0⟩

)
(2.12)

It is important to understand the perturbation ±f developed along the photoelectron

path in order to calculate EXAFS Eq. (2.12).

Two-atomic system

The simpler system consists of two atoms, the absorber (A) and the backscatter (B) and

RB is the vector joining the two atomic positions. The photoelectron potential between

absorber and backscatter atom is generally treated within the muffin tin approximation,

according to which the space is divided into three regions:

37



Chapter 2. EXAFS and Thermal properties

0ff

� � �
e

e i
ikr

kR
fif

2
0� BkR2�

�� e
e i

B

XRik

B

kri

XR

e
kf

kR
fif

B )()(

0 ),(
2� �

� e
BkRi

BkR

kf
fif

)22(

20
2

),(� ��
Figure 2.10. Schematic representation of the scattering process of the photoelectron wave leaves

the absorbing atom A and back-scattered by the surrounding atom B.

∙ I : spherically symetric potential centered on atom A.

∙ II : spherically symetric potential centered on atom B.

∙ III : constant inner potential, connected to the potentials of regions I and II.

We can build up a simple model of EXAFS for two atoms as in Fig. (2.9) to

define the perturbation ±f developed along the photoelectron path. We describe the

outgoing photoelectron wave function traveling as a spherical wave (eikr/kr) a distance

RB to the neighboring atom (B), then scattering from the atom (B), and traveling as a

spherical wave a distance RB back to the absorbing atom (A) as shown in Fig. (2.10).

According to the scattering theory in plane wave approximation; the scattering process

can be described by the partial wave expansion of the plane wave, one can express ±f

as:

∣±f⟩ = i ∣f0⟩ ∣f(k, ¼)∣
2kR2

B

ei(2kRB+Ψ+2±) (2.13)

where
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2.2 EXAFS equation

Figure 2.11. The phase shift and backscattering amplitude as a function of wave vector, k for

some selected elements.

∙ ∣f(k, ¼)∣ is the complex back-scattering amplitude given by neighboring atom,

where expressed as a function of the partial wave phase shifts ±l as:

∣f(k, ¼)∣ = (1/k)
∞∑

l=0

(−1)l (2l + 1) ei±l sin±l

∙ Ψ(k, ¼) is the phase shift of the backscattered photoelectron wave caused by the

scattering atom.

∙ 2±(k) is the further phase shift due to the potential of the absorbing atom. the

factor 2 is due to the fact that the photoelectron interacts twice with this potential

.

Substituting Eq. (2.13) into Eq.(2.12), one obtains the expression for the EXAFS

signal as:

Â(k) =
1

kR2
B

∣f(k, ¼)∣ sin[2kRB + Á(k)] (2.14)

With Á(k) = Ψ + 2±, where f(k) and Á(k) are the amplitude and phase shift given

by the backscattered photoelectron and called the backscattering amplitude and phase

shift, respectively. f(k) and Á(k) are scattering properties of the neighboring atom

which depend on Z as shown in Fig. (2.11). This makes EXAFS sensitive to the

atomic species of the neighboring atom.
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Basically, the EXAFS signal (Eq. 2.14) has a sinusoidal behavior with frequency

2RB proportional to the interatomic distance. The phase of this wave is perturbed by

the phase shift Á(k), while the amplitude is modulated by ∣f(k, ¼)∣. The single electron
approximation [44] is one of the important approximation in Eq. (2.14), within this

approximation the inelastic effects due to many body excitations are negligible.

2.2.1 Many body effects

Referring to the many body interactions, EXAFS Eq. (2.14) should be corrected to

take into account the inelastic effects. There are two types of inelastic effects, Intrinsic

and Extrinsic within and outside the absorber atom, respectively.

∙ Intrinsic inelastic effect:

In Eq. (2.14) we did not account for the multiple excitations within the absorber atom

itself. This effect gives rise to an inelastic part in the X-ray absorption coefficient. The

multiple excitations necessarily modify the energy of the photoelectron, and therefore

modify the interference conditions between the outgoing and the incoming waves. The

net effect is a reduction of the coherent EXAFS signal with respect to elastic excita-

tions. The fraction of total absorption giving rise to elastic excitations is measured by

the superposition factor S2
0 = ∣⟨iN−1∣fN−1⟩∣2 and its value is generally between 0.7 and

0.9 [44] (S2
0 = 1 when we neglect the multiple excitation effect).

∙ Extrinsic inelastic effects:

The EXAFS Eq. (2.14) was derived assuming that the outgoing photoelectron went

out as a spherical wave (eikr/kr). However, we neglect the fact that the photoelectron

can also scatter inelastically and may not be able to come back to the absorbing atom.

In order to participate to the EXAFS signal, the photoelectron has to scatter from the

neighboring atom and return to the absorbing atom elastically (i.e. at the same energy)

as the outgoing photoelectron. In addition, the photoelectron has to come back to the

absorbing atom before the excited state decays (i.e., before the core-hole is filled). To
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2.2 EXAFS equation

Figure 2.12. The photoelectron mean free path ¸(k) for EXAFS, which includes both the inelastic

scattering of the photoelectron and the effect of the finite lifetime of the core-hole.

account for both extrinsic inelastic effects and core-hole lifetime, the spherical wave

is damped by factor e−2r/¸, where ¸(k) is the photoelectron Mean Free Path (MFP),

that measures how far it typically travels before scattering inelastically and/or before

the core-hole is filled.

Therefore, EXAFS Eq. (2.14) with taking into account the inelastic effect is given as:

Â(k) =
S2
0

kR2
B

e−2RB/¸ ∣f(k, ¼)∣ sin[2kRB + Á(k)] (2.15)

In Eq. (2.15), the mean free path ¸(k) depends on the k range as shown in Fig. (2.12),

and progressively reduces the amplitude of EXAFS oscillations when RB increases.

From Fig. (2.12), ¸(k) for EXAFS is less than 25Å and together with the presence

of the term R−2
B , it contributes to make EXAFS insensitive to long range order. This

reason explains why EXAFS technique is described as a local structure probe, not able

to see much further few Angstroms from the absorbing atom, i.e. sensitive only to

short range order .
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Many-atomic system

Crystals or poly atomic molecules constitute a ”many-atomic” system. Within the

single scattering approximation the generalization of Eq. (2.15) is immediate: EXAFS

function can be built up as the sum of many-atomic contributions and R is the vector

position of the surrounding atoms with respect to absorber atom. For a given shell,

EXAFS Eq. (2.15) becomes:

Â(k) =
NS2

0

kR2
e−2R/¸ ∣f(k, ¼)∣ sin[2kR + Á(k)] (2.16)

In real systems, there are many coordination shells at different distances and composed

of different atom types. Therefore, EXAFS is a sum of the contributions from each

coordination shell and given by:

Â(k) =
S2
0

k

∑
j

Nj

R2
j

e−2Rj/¸ ∣fj(k, ¼)∣ sin[2kRj + Áj(k)] (2.17)

where j represents the individual coordination shell, each one containing Nj atoms

approximately at the same distance Rj from the absorber atom.

2.2.2 Thermal disorder effects

EXAFS Eq. (2.17) has been obtained considering the atoms frozen at their eqilibrum

positions and completely neglecting the thermal and structural disorder. But every

real physical system is affected by thermal disorder, due to the thermal motion of

atoms, whose amplitude increases with temperature and is not negligible even at zero

degree.

The period of the atomic vibrations (≃ 10−12) is much larger than the photoelectron

time of flight (10−16 ÷ 10−15s), thus an EXAFS spectrum, resulting from the contribu-

tions of a large number of photoelectrons, samples a distribution ½(r) of instantaneous

interatomic distance r for each coordination shell spread out by the thermal disorder.

This disorder reduces the EXAFS intensity. In harmonic approximation, it is taken

into account by a factor (e−2k2¾2
) (Debye-Waller factor), where ¾2 corresponds to the

variance of the distance distribution. When static disorder is also present, the disorder
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2.2 EXAFS equation

¾2 is the sum of static(¾2
s) and thermal (¾2

t ) contributions.

Taking into account all theses effects, the EXAFS Eq. (2.16) can be written as:

Â(k) =
NS2

0

kR2
e−2R/¸ e−2k2¾2 ∣f(k, ¼)∣ sin[2kR + Á(k)] (2.18)

In EXAFS Eq. (2.18) for a single coordination shell; having accurate values for the

scattering amplitude f(k, ¼), ¸(k), S2
0 and phase-shifts Á(k) ( we can extract the fol-

lowing structural parameter:

∙ R: Average interatomic distance

∙ N: Coordination number

∙ ¾2 : Debye-Waller factor

It is important to mention that Eq. (2.18) is a valid approximation only for weak

disorder, where the distribution of distances can be assumed to be Gaussian. For the

strong disorder, Eq.(2.18) fails to model EXAFS spectra, and more parameters are

needed to account for the deviation from the Gaussian approximation.

Let us now introduce the effect of thermal disorder beyond the Harmonic ap-

proximation [46] considering only coordination shells containing one atomic species:

Due to thermal (and possibly structural) disorder, the distance between absorber and

backscatter atoms varies according to a probability distribution ½(r). The EXAFS

signal can be expressed for one coordination shell as [44]:

Âj(k) = (S2
0/k) Nj ∣fj(¼, k)∣ Im

[
eiÁi

∫ ∞

0

½(r)
e−2r/¸

r2
e2ikrdr

]
(2.19)

Eq. (2.19) can be extended also to multiple scattering paths, on the basis of the

approach developed by Rehr and co-workers and implemented in the FEFF code [52].

The distribution ½(r) is commonly referred to as real distribution but the integration

in equation (2.19) is the Fourier transform an effective distribution P (r) [9]:

P (r, ¸) = ½(r)
e−2r/¸

r2
(2.20)
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P (r, ¸) is the distribution probed by EXAFS and differs from the real distribution due

to the progressive attenuation of the photoelectron spherical wave and to the limited

mean free path.

The fundamental problem of EXAFS analysis is to recover the distribution P (r, ¸)

and hence ½(r) from the experimental spectrum Â(k). No exact solution can be given

to this problem, because every experimental spectrum does not corresponds to full

characteristic function but has a finite extension within the kmin and kmax values.

Particularly, for kmin ≤ 2÷ 3 Å−1 the EXAFS signal generally cannot be utilized, due

to:

∙ (i) difficulty in determining the atomic absorption coefficient ¹0 in the vicinity

of the edge.

∙ (ii) effects of the core-hole lifetime on the low-energy electrons.

∙ (iii) influence of multiple scattering processes.

An approximate solution consists in hypothesizing a physically sound distribution

and in fitting its parameters to the experimental EXAFS spectrum [53]. An alternative

approach is based on the cumulant method [9,10], which is currently used for systems

characterized by not too high levels of disorder.

2.2.3 Cumulant expansion of EXAFS

The integral in Eq. (2.19) is the Fourier transform of the effective distribution P (r, ¸)

or, in the probability terminology, is its characteristic function [54]. This characteristic

function is a complex function of a complex variable; its full knowledge is equivalent

to the knowledge of the distribution P (r, ¸).

A characteristic function can be expand as the exponent of a Mac Laurin series around

k = 0 given as: ∫ ∞

0

P (r, ¸) exp2ikr dr = exp

[
+∞∑
n=0

(2ik)nCn

n!

]
(2.21)
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Where the expansion coefficients Cn are called cumulants. The convergence interval

of the cumulant series in Eq. (2.21) depends on the peculiarities of the distribution

P (r, ¸). The cumulants Cn are directly related with the moments of the effective distri-

bution. At low temperatures, materials are characterized by limited thermal disorder,

and the harmonic approximation is sound [16].

The lowest order cumulants have a simple interpretation: C0 depends on the normal-

ization of the distribution, C1 is the mean value of the distribution, C2 is the variance,

C3 measures the distribution asymmetry and C4 measures the flatness of the distribu-

tion.

In the harmonic approximation, the distribution is gaussian and the cumulants Cn

are zero for n > 2. As the temperature increases, the anharmonic effects becomes

important, the distribution will deviate from a Gaussian shape and the higher or-

der cumulants become important. By inserting Eq. (2.21) into Eq. (2.19), EXAFS

equation as a function of cumulants [9, 44] is given by:

Âj(k) = (S2
0/k)Nj∣fj(k, ¼)∣ exp

[
C0 − 2k2C2 +

2

3
k4C4 − ...

]
sin

[
2kC1 − 4

3
k3C3 + ...+ Ái

]

(2.22)

Phase and amplitude of the EXAFS signal are determined by the odd and even cu-

mulants, respectively. The power of this expansion is the possibility that the odd and

even cumulants be studied separately, if phase and amplitude of the EXAFS signal can

be disentangled.

The effective distribution is not normalized to one; the normalization factor can be

approximated by the relation eC0 = e−2C1/¸/C2
1 .

In Eq. (2.22), contains the cumulants Cn of the effective distribution P (r, ¸), while

one is interested in the cumulants C∗
n of the real distribution ½(r). The connection

between the cumulants of the effective and real distribution has been developed [10]

and the expression for the first cumulants has been derived by Freund et al. [55] and

given by:

C∗
1
∼= C1 +

2C2

C1

(
1 +

C1

¸

)
(2.23)
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The difference between the first cumulants C1 and C∗
1 cannot be neglected and now is

commonly taken into account in the data analysis for accurate works.

An approximate general relation connecting the cumulants of the real and effective

distribution has been derived by M. Vaccari [38, 56], and given by:

C∗
n ∼ Cn + 2Cn+1

(
1

C1

+
1

¸

)
n = 1, 2, 3 (2.24)

The first cumulant of the effective distribution is systematically smaller than the first

cumulant of the real distribution, as a consequence of the spherical nature of the

photoelectron wave and its limited mean free path [55] and this difference can not be

neglected. The relative values with respect to a reference at very low temperature of

the cumulants were also given by [38,56]:

±C∗
n ∼ ±Cn + 2±Cn+1

(
1

R
+

1

¸

)
n = 1, 2, 3 (2.25)

The differences between the second and higher order cumulants of the two distributions

is generally neglected but in some cases can be important. According to the initial

moments of real distribution, the cumulants can be interpreted in term of properties

of this distribution [9, 10]

∙ C∗
1 = ⟨r⟩

First cumulant is the mean value of the distribution

∙ C∗
2 = ⟨ (r − ⟨r⟩ )2⟩

Second cumulant is the variance of the distribution

∙ C∗
3 = ⟨ (r − ⟨r⟩ )3⟩

Third cumulant measures the distribution asymmetry

∙ C∗
4 = ⟨ (r − ⟨r⟩ )4⟩ - 3 ¹2

2, where ¹2 = C∗
2 (variance)

Fourth cumulant measures the flatness of the distribution with respect to gaussian

one

In Gaussian distribution, the Cumulants Cn are zero for n > 2.
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2.3 EXAFS and local dynamics

To better understand the meaning of EXAFS cumulants C∗
n of the real distribution of

distances ½(r, T ), it is useful to investigate their relations with the dynamical proper-

ties of the crystals and how to obtain from EXAFS original information on vibrational

dynamics and thermal properties.

For systems affected by disorder of only thermal origin, the cumulants can be connected

to the local dynamical behavior of the system, i.e to atomic relative displacements both

parallel and perpendicular to the interatomic bond.

Let us consider two atoms (absorber and backscatter) of a crystal and Rc be the

equilibrium distance between the mean positions of the two atoms. Let r be the instan-

taneous inter-atomic distance and the interaction between the two atoms is described

by an effective potential Veff (r), with the minimum at r = Rc. In the classical ap-

proximation, the distribution ½(r) connected to an effective pair potential Veff [10]

by:

½(r, T ) = e−¯Veff (r)

[∫
e−¯Veff (r) dr

]−1

(2.26)

Let, u1 and u2 be the instantaneous thermal displacements of these two atoms from

their equilibrium positions as shown in Fig. (2.13, Left) An EXAFS photoelectron

samples the modulus of the instantaneous interatomic distance r between absorber

and backscatter atoms as given by:

r ≡ ∣r∣ = ∣Rc +Δu∣ =
√

(Rc +Δu)2 = Rc

√
1 + 2Rc.

Δu

Rc

+
(Δu)2

R2
c

(2.27)

where Δu = u1 − u0 the relative thermal displacement and can be decomposed into

the projections of the relative displacement parallel to the bond direction and in the

perpendicular plane respectively, as in Fig. (2.13, Right):

Δu2 = Δu2
∥ +Δu2

⊥ (2.28)

where Δu∥ = R̂c. Δu and Δu⊥ = (Δu−Δu∥)1/2. By decomposing the projections of

the relative displacements into Eq. (2.27), an analytical relation for r is given by [57]:

r = Rc +Δu∥ +
Δu2

⊥
2Rc

− Δu∥(Δu⊥)2

2R2
c

+ . . . (2.29)
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Figure 2.13. The thermal ellipsoids of the absorber and backscatter atom. Left: thermal

displacements of two atoms from their equilibrium positions. Right: The projections of the

relative displacement parallel and perpendicular to the bond direction.

This approximate relation for r has been obtained through Taylor expansion, which

considered the small relative displacements with respect to the interatomic distance

x = ∣Δu∣ /Rc ≪ 1.

The effective pair potential Veff (r) between absorber and backscatter atom can be

expressed as a function of the displacement x = r − Rc along the bond direction. In

this case, Veff (r) can be expanded as a power series with respect to x and given as:

Veff (x) ≃ 1

2
k0x

2 + k3x
3 + k4x

4... (2.30)

Here k0 is the second order (harmonic) force constant, while k3, k4, ... are higher order

(anharmonic) force constant. In the harmonic approximation, Eq. (2.30) will expand

only to the second order term.

2.3.1 Cumulants and lattice dynamics

As we know, the first three cumulants C∗
i represent average value, variance and asym-

metry of the EXAFS one dimensional distribution of distances ½(r). We will separately

consider the harmonic approximation and the effect of anharmonicity. In the harmonic
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2.3 EXAFS and local dynamics

approximation the distribution of distances has a gaussian shape and it is given by:

½(r) ∼= 1

¾
√
2¼

e−(r−Rc)2/2¾2

(2.31)

An approximate expression of the first cumulants can be obtained through equation

(2.29) which connects the local dynamics of the system i.e. to atomic relative displace-

ments both parallel and perpendicular to the interatomic bond.

First cumulant C∗
1

The first EXAFS cumulant C∗
1 = ⟨r⟩ is the average value of the instantaneous distance

expressed by Eq. (2.29). In harmonic approximation ⟨Δu∥⟩ and ⟨Δu∥(Δu⊥)2⟩ are zero
and one can see that [10,58]:

C∗
1 = ⟨r⟩ ∼= Rc +

⟨Δu2
⊥⟩

2Rc

+ . . . (2.32)

Rc is the distance between the centers of thermal ellipsoids and coincides with the

crystallographic distance. The last term in Eq. (2.32) depends on the Mean Square

Relative Displacement, MSRD perpendicular to the bond direction. It is always pos-

itive, then the first cumulant C∗
1 is larger than the crystallographic distance Rc and

the difference grows with temperature. The term ⟨Δu2
⊥⟩ can be evaluated by inverting

Eq. (2.32) if Rc is known from other techniques [36,38].

Second Cumulant C∗
2

The second EXAFS cumulant is the variance ¾2 of the distribution ½(r), i.e. MSRD

of absorber and backscatter atoms:

C∗
2 = ⟨(r − ⟨r⟩)2⟩ (2.33)

In harmonic approximation, substituting Eqs. (2.29) and (2.32) into (2.33) we obtained

an approximate expression given by [59]:

C∗
2
∼= ⟨Δu2

∥⟩ −
⟨Δu2

∥Δu2
⊥⟩

R2
c

+
[⟨Δu4

⊥⟩ − ⟨Δu2
⊥⟩]2

4R2
c

+ . . . (2.34)
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Chapter 2. EXAFS and Thermal properties

where the first term is the parallel MSRD and the third term is the variance of the

distribution of ⟨Δu2
⊥⟩. It is customary to truncate equation (2.34) at the first order

term [59]:

C∗
2
∼= ⟨Δu2

∥⟩ (2.35)

The second EXAFS cumulant contains information about the thermal displacement

parallel to the bond direction, taking into account the correlation of atomic motion.

Third cumulant C∗
3

The EXAFS third cumulant C∗
3 measures the asymmetry of the distribution of distance

½(r) and depends on the 3rd order force constant k3 of the effective pair potential

Veff (r) (see Eq. 2.30). It corresponds to the third central moment, C∗
3 = ⟨(r − ⟨r⟩)3⟩

and according to the Eq. (2.29):

C∗
3 = ⟨Δu3

∥⟩+ (3/2Rc)[⟨Δu2
∥Δu2

⊥⟩ − ⟨Δu2
∥⟩⟨Δu2

⊥⟩⟩] + . . . (2.36)

The lowest order term ⟨Δu3
∥⟩ in Eq. (2.36) corresponds to the parallel mean cubic

relative displacement and in harmonic approximation it would be zero [60].

In the case of isotropy, ⟨Δu2
⊥⟩ = 2⟨Δu2

∥⟩ = 2¾2. The second term in Eq. (2.36) is

nonzero also for a harmonic crystal potential [60]; the third cumulant is then always dif-

ferent from zero, Therefore, the one dimensional distribution ½(r) is never gaussian [38].

However it has been demonstrated that the main contribution to the experimen-

tal third cumulant comes from the crystal anharmonicity, and the contribution of the

vibrations perpendicular to the bond is negligible [10]. The knowledge of the third

cumulant is important to obtain the useful information on the anharmonicity of the

effective potential.
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Figure 2.14. The interatomic distances between absorber and backscatter atom according to;

Left: Diffraction, Right: EXAFS.

2.4 EXAFS versus Bragg diffraction

The difference between Bragg scattering and EXAFS is due to the different sensitivity

of these two techniques to the correlation of atomic vibrations so that different infor-

mation becomes available from the analysis of EXAFS spectra and Bragg diffraction

patterns. A direct comparison between EXAFS and XRD measurements not only gives

information about the correlation of atomic motion [61, 62] but also allows to obtain

fundamental inputs to understand the connection between the bond length thermal

expansion and macroscopic thermal expansion.

2.4.1 Interatomic distances

Let consider a pair of neighboring atoms (a) and (b) in a crystal and Rc be the distance

between its equilibrium positions as shown in Fig. (2.14). Bragg diffraction is sensitive

to the three- dimensional distributions of instantaneous positions ra and rb of the two

atoms, and measures the distance between average positions, Rc = ∣⟨rb⟩ − ⟨ra⟩∣ (Fig.
2.14, Right).

The temperature variation of the distance ±Rc measures the macroscopic thermal

expansion. EXAFS samples the one-dimensional distribution of distances and mea-

sures the average distance between instantaneous positions (see Fig. 2.14, Left),

⟨r⟩ = ⟨∣rb − ra∣⟩. The distances Rc and ⟨r⟩ are in principle different: this difference of
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Chapter 2. EXAFS and Thermal properties

geometrical origin [58] is mainly due to the effect of relative vibrations perpendicular

to the direction of the a− b bond. From a local perspective, recently Rc and ⟨r⟩ have
been distinguished as ”apparent” and ”true” bond length, respectively [6].

Therefore, the thermal expansions measured by EXAFS and Bragg diffraction have

a different physical meaning, they can be experimentally distinguished by accurate

temperature dependent EXAFS and XRD measurements leading to the evaluation of

the perpendicular mean square relative displacement (MSRD).

2.4.2 Thermal factors

Due to the different sensitivity of EXAFS and XRD to the correlation of atomic vibra-

tions, Bragg diffraction thermal factors monitor the absolute movement of the atoms,

while EXAFS is sensitive to the relative displacements. This difference allows one to

evaluate the degree of correlation both parallel and perpendicular to the bond direc-

tion.

From Bragg diffraction refinement patterns one can get the displacement parameters

Uij of each atom, and the mean square displacements (MSD) can be calculated from

these displacement parameters along selected directions. In our studies we are inter-

ested in the MSDs parallel and perpendicular to a given bond direction, U i
∥ and U i

⊥,

respectively, where i = a, b is a label for the absorber and backscatter atoms. EXAFS is

sensitive to the relative displacements of atom b with respect to atom a (Δu = ub−ua).

Beni at al. [59] recognized long ago the sensitivity of EXAFS to the relative atomic

motion along the bond direction: EXAFS Debye-waller factor directly gives informa-

tion on the parallel mean square relative displacement (MSRD∥) between absorber and

back-scatter atoms. The possibility of obtaining from EXAFS the mean square rela-

tive displacement perpendicular to the interatomic bond (MSRD⊥) was only recently

exploited by Dalba et al. [36] and Fornasini et al [24].
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2.4 EXAFS versus Bragg diffraction

Parallel MSRD ⟨u2
∥⟩

The parallel MSRD is directly measured by EXAFS as the variance of the distribution

of interatomic distances, ¾2 [10, 59] and given by the equation.

⟨Δu2
∥⟩ = ⟨(R.ua)

2⟩+ ⟨(R.ub)
2⟩ − 2⟨(R.ua)((R.ub)⟩ (2.37)

In Eq. (2.37), the first two terms are corresponds to the uncorrelated MSDs measured

by diffraction along the bond direction,Ua
∥ = ⟨(R.ua)

2⟩ and U b
∥ = ⟨(R.ub)

2⟩, respectively
and given by:

⟨Δu2
∥⟩ = ⟨u2

b∥⟩+ ⟨u2
a∥⟩ − 2⟨ub∥ua∥⟩ (2.38)

The third term in Eq. (2.38) is the parallel Displacement Correlation Function (DCF)

[59], which depends on the correlation of atomic motion. The stronger correlation, the

larger the DCF and the smaller C∗
2 . The correlation term decreases with increasing

the distance and vanishes after long distances.

Perpendicular MSRD ⟨u2
⊥⟩

The perpendicular MSRD ⟨Δu2
⊥⟩ is the projection of the total MSRD in a plane normal

to the bond direction. It establishes the connection between the distances measured by

EXAFS and by Bragg scattering. To a good approximation [57, 58], ⟨u2
⊥⟩ is obtained

from comparison of EXAFS and Crystallographic distances as in equation

⟨r⟩ = Rc +
⟨Δu2

⊥⟩
2Rc

(2.39)

To the extent that ⟨Δu2
⊥⟩ increase with temperature, the thermal expansion measured

by EXAFS is larger than the crystallographic thermal expansion measured by Bragg

diffraction. Eq. (2.39) was known since long time [58], but only recently the difference

between the nearest-neighbor distances measured by EXAFS and by diffraction has

been experimentally detected in several systems, such as AgI [35], Ge [36], CuCl [38]

and copper [24].

From the independent measurements of ⟨r⟩ and Rc, the perpendicular MSRD ⟨Δu2
⊥⟩

can be obtained by inversion of Eq. (2.39) [24,36]. Since ⟨Δu2
⊥⟩ is the projection of the
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Chapter 2. EXAFS and Thermal properties

relative displacement within a perpendicular plane, it should be divided by two before

comparing with the MSDs Ua
⊥ + U b

⊥ measured by Bragg scattering [22], the residual

difference being due to correlation in perpendicular direction as in Eq. (2.40):

⟨Δu2
⊥⟩ = ⟨u2

b⊥⟩+ ⟨u2
a⊥⟩ − 2⟨ub⊥ua⊥⟩ (2.40)

In some cases of high crystal symmetry, the thermal vibrations are isotropic around

the equilibrium positions and the thermal ellipsoids reduce to spheres [63]. Therefore

the parallel and perpendicular MSDs are given by [38,56]:

⟨u2
i∥⟩ =

1

3
⟨u2

i ⟩ (2.41)

⟨u2
i⊥⟩ =

2

3
⟨u2

i ⟩ (2.42)

This difference is due to the different projections: the parallel MSD is projection along

the bond direction while perpendicular MSD is on a plane normal to the bond [58].

Hence the MSRD⊥ should be compared with twice the sum of the thermal factors of

the atoms measured by diffraction.

The sensitivity to correlation is peculiar of EXAFS. As a consequence of long range

averaging in diffraction experiments, the effect of short range correlations is dispersed

into thermal diffuse scattering and the Debye-Waller factor measures only the uncor-

related MSD. Therefore, no complete information on correlation can be obtained from

Bragg scattering.

One can show that the minimum and maximum possible values for parallel and per-

pendicular MSRDs can be calculated from the uncorrelated MSDs [22] corresponding

to the relations:

(√
⟨u2

b∥⟩ −
√

⟨u2
a∥⟩

)2

≤ ⟨Δu2
∥⟩ ≤

(√
⟨u2

b∥⟩+
√

⟨u2
a∥⟩

)2

(2.43)

(√
⟨u2

b⊥⟩ −
√

⟨u2
a⊥⟩

)2

≤ ⟨Δu2
⊥⟩

2
≤

(√
⟨u2

b⊥⟩+
√

⟨u2
a⊥⟩

)2

(2.44)

According to Eqs. (2.44, 2.44), the correlation between the vibrations of the two atoms

in a certain direction can then be inferred. If the MSRD approaches the lower limit,
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2.4 EXAFS versus Bragg diffraction

the two atoms oscillate completely in phase or highly correlated in this direction and

vice versa if the MSRD tends to the upper limit, the two atoms vibrate out of phase

or anti-correlated.

2.4.3 Anisotropy of vibrations

In EXAFS, the relation between ⟨Δu2
∥⟩ and ⟨Δu2

⊥⟩ depends on the peculiar vibrational

properties of the crystal. The ratio ° = ⟨Δu2
⊥⟩/⟨Δu2

∥⟩ measures the anisotropy of the

relative vibration and it is 2 for the ideal isotropic relative vibrations crystal [64] . In

the diffraction, the anisotropy ° is measured by the ratio U⊥/U∥ for the MSDs.

Actually, relative atomic vibrations can never be a priori considered perfectly

isotropic. As a consequence, the anisotropy ° is generally temperature dependent

and its values can be much higher than two for some crystals. It is customary to refer

to their asymptotic values for T → ∞ [22,36,38].

The direct evaluation of these values can be difficult when the results are available

only at low temperatures. At last, no a priori relations can be established between the

shapes of absolute Bragg ellipsoids and that of relative EXAFS ellipsoids. The ther-

mal factors of diffraction and that of EXAFS can have in addition, different anisotropy

properties. EXAFS ellipsoids are generally anisotropic (° > 2) also when Bragg ellip-

soid are spherical: as a matter of fact in CuCl the MSDs are isotropic for symmetry

reasons, while the MSRDs are significantly anisotropic [38].

The temperature dependence of the MSDs measured by diffraction can be described

with reasonable accuracy by an Einstein model by:

U =
ℏ

2m!
cotℎ

(
¯ℏ!
2

)
(2.45)

where m is the atomic mass and ! = 2¼º is the frequency of oscillation of each

atom around its equilibrium position. The temperature dependence of the MSRDs

measured by EXAFS can be described by correlated Einstein models, corresponding

to Eq. (2.45), where 2m is substituted by 2¹ for parallel MSRD and ¹ for perpendicular
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Chapter 2. EXAFS and Thermal properties

MSRD (¹ is the reduced mass of absorber and backscatter atoms) [65].

For isotropic vibrations the frequencies are equal for parallel and perpendicular MSRDs

and/or MSDs. Besides, the Einstein frequencies best-fitting the EXAFS MSRDs and

diffraction MSDs are generally different. For the parallel and perpendicular MSRD, !∥

and !⊥ the frequencies of relative oscillation of absorber and backscatter atoms can be

connected to effective bond-stretching and bond-bending force constants, respectively

as given by:

·∥ = ¹!2
∥ (2.46)

·⊥ = ¹!2
⊥ (2.47)

The asymptotic value of the anisotropy ° can be obtained in more effective way

from the ratio of the parallel and perpendicular force constants of the best-fitting

Einstein models to the temperatures dependence of parallel and perpendicular MSRD

as in equation:

» =
⟨Δu2

⊥⟩
2⟨Δu2

∥⟩
=

·∥
·⊥

(2.48)

For perfectly isotropy, » = 1.

2.5 Phenomenological models for EXAFS MSRDs

For parallel MSRD, the correlated Debye and Einstein models were developed quite

early by Beni et al. [59] and Sevillano et al [66]. These models, specifically tailored to

account for correlation, were obtained as phenomenological modifications of the famil-

iar Debye and Einstein models used for specific heats and diffraction MSD. In addition

to the original Debye model [16], the correlated Debye model assumes a further spher-

ical approximation of the square moduli of eigenvectors [59,65,66] and applies only to

cubic crystals with one atom per primitive cell (cubic Bravais crystals).

The Einstein model for specific heats approximates the phonon spectrum with a

single frequency !E [16]. The correlated Einstein model [66] is generally cast into

the different framework of the one-dimensional model of EXAFS, where it considers
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2.5 Phenomenological models for EXAFS MSRDs

the pair of absorber and backscatter atoms as an independent harmonic oscillator [61]

with frequency !E. Anharmonic corrections and improvements to the original corre-

lated Einstein model were successively proposed [67,68].

The lattice dynamics of a crystal in harmonic approximation is described in terms of

normal modes (q, ¸) and general expressions of the parallel and perpendicular MSRDs

in term of eigenfrequencies !(q, ¸) and eigenvectors wi(¸, q) of the dynamical matrix

are given as [56,60]:

MSRD∥ =
1

N

∑

q,¸

⟨∣Q(q, ¸, t)∣2⟩
∣∣∣
(
w2(q, ¸) e

iq.Rc

√
M2

− w1(q, ¸)√
M1

)
. R̂c

∣∣∣
2

(2.49)

MSRD⊥ =
1

N

∑

q,¸

⟨∣Q(q, ¸, t)∣2⟩ ×
[∥∥∥w2(¸, q) e

(iq.Rc)

√
M2

− w1(q, ¸)√
M1

∥∥∥
2

−
∣∣∣w2(¸, q) e

(iq.Rc)

√
M2

− w1(q, ¸)√
M1

. R̂c

∣∣∣
2
]

(2.50)

where M1 and M2 are the masses of the absorbing and backscattering atoms, respec-

tively and N is the total number of unit cells. wk(q, ¸) is the three-dimensional eigen-

vectors referred to the k atom in the primitive cell and gives the direction of atomic

motion. Q(q, ¸, t) is the normal coordinate of mode (q, ¸), its average value depends

on average energy ⟨E⟩ and frequency ! as:

⟨∣Q(q, ¸, t)∣2⟩ = ⟨E(q, ¸)⟩
!2(q, ¸)

=
ℏ

2!(q, ¸)
cotℎ

ℏ!(q, ¸)
2kBT

(2.51)

In the case of monatomic crystals with one atom per primitive cell, N is the total

number of atoms and all the atoms have the same mass and same eigenvectors, the

above equations becomes [59]:

MSRD∥ =
1

NM

∑

q,¸

⟨∣Q(q, ¸, t)∣2⟩
∣∣∣w(q, ¸). R̂c

∣∣∣
2∣∣∣ eiq.Rc − 1

∣∣∣
2

(2.52)

MSRD⊥ =
1

NM

∑

q,¸

⟨∣Q(q, ¸, t)∣2⟩
[∥∥∥w(q, ¸)

∥∥∥
2

−
∣∣∣w(q, ¸). R̂c

∣∣∣
2
] ∣∣∣ eiq.Rc − 1

∣∣∣
2

(2.53)
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2.5.1 Correlated-Einstein model

The Einstein model was developed to describe the temperature dependence of the

heat capacity of the MSDs measured by diffraction, and considers each atom as an

independent harmonic oscillator. In contrast, the correlated Einstein model is suited

to account for the correlation effects on the MSRDs measured by EXAFS and assumes

each pair of atom (absorber and backscatter atoms) to be an independent oscillator;

the frequency of relative vibrations !E =
√

k0/¹ depends on the force constant k0 of

the bond between the two atoms and on the reduced mass ¹ of atomic pair. Einstein

model consists of approximating the phonon spectrum with a single Einstein frequency

!E [16]:

!(¸, q) = !E ¸ = 1, 2, ..., 3N (2.54)

where N is the number of atoms in the unit cell and the maximum number of modes

including acoustic and optic ones is 3N.

The Einstein model thus substitutes the phonon density of states ½(!) with delta

function centered at !E and given by:

½ein(!) = ±(! − !E) (2.55)

According to this approximation and with Eqs. (2.49, 2.50), one can obtain the

expression for the parallel and perpendicular MSRDs [56,65,69]:

MSRDein
∥ =

ℏ
2¹!∥

cotℎ

(
¯ℏ!∥
2

)
(2.56)

MSRDein
⊥ =

ℏ
¹!⊥

cotℎ

(
¯ℏ!⊥
2

)
(2.57)

The absolute values of MSRD∥(T ) and MSRD⊥(T ) can be obtained from the ex-

perimental temperature dependence of their relative values by fitting the following

expressions [69] to experimental data:

±MSRD∥(T ) =
ℏ

2¹!∥
cotℎ

(
¯ℏ!⊥
2

)
− a∥ (2.58)

±MSRDein
⊥ =

ℏ
¹!⊥

cotℎ

(
¯ℏ!⊥
2

)
− a⊥ (2.59)
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where the zero-point values a∥ or a⊥ and the Einstein frequencies !∥ or !⊥ are the the

only fitting parameters. Therefore the absolute values of the parallel and perpendicular

MSRDs are obtained as [69]:

MSRD∥(T ) = ±MSRD∥(T ) + a∥ (2.60)

MSRD⊥(T ) = ±MSRD⊥(T ) + a⊥ (2.61)

The error deriving from this procedure should be taken into account to improve the

accuracy of the MSRDs. Recently and for the first time the error owing to Einstein-fit

model on absolute values of the EXAFS MSRDs has been estimated as a function of

the standard deviation of the density of vibrational states [69]. In perfect Einstein

crystal, where the DOS is a ± function and the DOS standard deviation is zero, the

Einstein-fit error is zero.

One important application of this model is to recover the absolute values of the

MSRD from the relative values of the MSRD determined through the analysis based

on the ratio method. The success of the Einstein equation for the parallel MSRD

has been related to its phenomenological interpretation which consider the absorber

and backscatter atomic pair as an independent Einstein oscillator with frequency !E

related to a local effective bond-stretching force constant k = ¹!E [61, 65] Einstein

frequency has two meaning:

∙ an effective vibrational frequency of the interatomic bond

∙ a constant which roughly represents the centroid of the distribution of normal

mode frequencies.

2.5.2 Correlated-Debye model

As a peculiar application of the original Debye model [16], the correlated Debye model

considers the atomic pairs as harmonic oscillators with different frequency, and linearly

approximates the phonon spectrum:

!(¸, q) = ºs q ¸ = 1, 2, 3 (2.62)
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where ºs is the sound velocity in the crystal. A further spherical approximation is

assumed for the eigenvectors [59, 66] in the CD model, and the first Brillouin zone is

replaced by a sphere of radius qD (Debye wave vector) containing the same number of

wavevectors, N.

qD = (6¼2N/V )1/3 (2.63)

where V is the total volume of the crystal. According to this approximations, CD model

becomes best suitable for the acoustic branches and fails to model the optic branches

which is independent of the phonon wave vector q [28]. The CD model applies only

to cubic crystals with one atom per primitive cell (monatomic Bravis crystal) and

characterized by a phonon (acoustic) density of state [56]:

½deb ∝ !2/!3
D (2.64)

where !D is the characteristic Debye frequency and is related to the Debye temperature

µD; !D = µD kB/ℏ, where kB the Boltzman’s constant and ℏ Planck’s constant divided

by 2¼.

Then, according to these approximations and Eqs. (2.49, 2.50), the parallel and per-

pendicular MSRDs expression can be obtained [65,66]:

MSRDdeb
∥ =

3ℏ
M

∫ !D

0

d!
!

!3
D

cotℎ(¯ℏ!/2)×
[
1− sin(!Rc/ºs)

(!Rc/ºs)

]
(2.65)

MSRDdeb
⊥ =

6ℏ
M

∫ !D

0

d!
!

!3
D

cotℎ(¯ℏ!/2)×
[
1− sin(!Rc/ºs)

(!Rc/ºs)

]
(2.66)

The situation for EXAFS is more complex than that for specific heats and diffrac-

tion; the general harmonic expressions of MSRDs Eqs. (2.49, 2.50), contains the cor-

relation term and then the product of eigenvectors referred to different atoms within

the primitive cell, for which a physically sound spherical average cannot be defined.

Therefore the correlated Debye model for EXAFS MSRDs applies to the monatomic

”Bravais” crystal and should not be extended to non-Bravais crystals [61].

The analytical expression for the perpendicular MSRD for Debye and/or Einstein

model corresponds to the expression for the parallel MSRD apart from a factor 2 [65],

this related to the fact that the perpendicular MSRD is a projection of relative atomic
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2.6 EXAFS and Anharmonic potential

motion onto a plane, while the parallel MSRD is a projection along the bond direction.

There is no a prior reason why for a given pair of atoms, the temperature dependence of

parallel and perpendicular MSRDs should be best-fitted by the same Debye/Einstein

frequency (or temperature).

2.6 EXAFS and Anharmonic potential

Anharmonic effective pair potential Veff can be expressed as a function of the displace-

ment as in Eq. (2.30), where third order force constant k3, is a measure of the asym-

metry of distribution due to anharmonicity [14,67]: Veff (x) ≃ 1
2
·0x

2+·3x
3+·4x

4 . . . .

It is well established that Veff (r) does not represent the true local interaction potential

between absorber and backscatter atoms in the crystal. Then the introduction of an ef-

fective potential has been justified on the grounds that its shape seems to be insensitive

to thermal changes [24]. Anyway, the position of the Veff (r) shifts with temperature

and its asymmetry cannot reproduce the macroscopic thermal expansion [24].

In many atomic systems, the distribution of distances ½(r) has been related to

a one-dimensional effective potential Veff (r) [59, 68, 70] and classically defined as in

equation (2.26) and can be inverted to obtain Veff :

Veff (r) = (−1/¯) ln ½(r) + const. (2.67)

In a quantum treatment the relation between ½(r) and Veff is given by:

½(r) = Z−1⟨r ∣ e−¯Heff (r,p) ∣ r⟩ (2.68)

whereHeff is the effective hamiltonian, connected to the effective potential byHeff (r, p) =

p2/(2¹)+Veff (r). Eq. (2.68) cannot be inverted as equation (2.26), therefore from EX-

AFS experiment Veff (r) can be obtained only at sufficiently high temperatures when

is safely in classical regime [71]. Anyway, the minimum of the potential corresponds

to the maximum of the distribution in quantum regime.
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The connection between EXAFS cumulants and force constant of the interaction po-

tential has been investigated for a two-atomic system leading to parameterized expres-

sions of the cumulants as a function of the force constant of the one-dimensional bare

interaction potential [67,72]. For many atomic systems, EXAFS cumulants can be con-

nected by the same analytical expressions to the force constants of a one-dimensional

effective pair potential.

The relationship between EXAFS cumulants and effective potential on one side and

physical properties of many-atomic systems on the other, is still a matter of debate. In

particular with reference to the very meaning of the effective potential [53,73] and its

possible dependence on temperature [35,74]. The interest toward this subject has been

enhanced by recent temperature dependent EXAFS studies, which have questioned the

equivalence of the first and third cumulants for measuring the thermal expansion of

interatomic bonds [24,36].

2.6.1 Classical approximation

The cumulants of effective distributions can be related in the classical approximation,

to the lowest order force constants of the effective potential Veff (x) [29,75,76] which can

be written in terms of the anharmonic pair potential parameters and the temperature

[77] through the equations:

±C1(T ) = −3·3

·2
0

kBT − . . . (2.69)

C2(T ) = (
kB
·0

)T + . . . (2.70)

C3(T ) = −6·3

·3
0

(kBT )
2 − . . . (2.71)

C4(T ) =
12

·4
0

(
9·2

3

·0

− 2·4)(kBT )
3) + . . . (2.72)

According to the first order of classical approximation, ±C1 and C2 increase linearly

with temperature but C3 and C4 are proportional to the square and cube of the tem-

perature,respectively. The fitting to this behavior can be considered as a check of the
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2.6 EXAFS and Anharmonic potential

consistency of results obtained from EXAFS experiments.

By using theses expressions for the cumulants, the parameters of the anharmonic pair

potential can be obtained through temperature dependent EXAFS data. Stern et

al. [77] have obtained some expressions for several macroscopic characteristics of solids

(the linear expansion coefficient, the Grüneisen parameter, Debye temperature, the

bulk modulus) in terms of pair potential parameters.

2.6.2 Quantum treatments

Quantitive relations between EXAFS cumulants and force constants have been firstly

proposed by Frenkel and Rehr [67] and extended by Yokoyama [72] using CE model

and perturbation theory. EXAFS cumulants to the first order are given by [67]:

±C1 = −3·3¾
2
0

·0

1 + z

1− z
= −3·3

·0

C2 (2.73)

C2 = ¾2
0

1 + z

1− z
=
ℏ!
2·0

1 + z

1− z
(2.74)

C3 = −2·3¾
4
0

·0

z2 + 10z + 1

(1− z)2
+ . . . (2.75)

C4 = −12·4¾
8
0

ℏ!
z3 + 9z2 + 9z + 1

(1− z)3
−− . . . (2.76)

where z ≡ exp−¯ℏ! = exp−µE/T and µE = ℏ!/kB is the Einstein temperature. ¾2
0 =

ℏ/2¹! and ! =
√

·0/¹

According to these expressions, the behavior of the cumulants at high-temperature

(HT) and low-temperature (LT) have been determined [67], they are shown in table

(2.1). In the HT limit (T → ∞) z ∼= 1 − (ℏ!/kBT ) but at LT limit (T → 0), z → 0

and we can neglect z2 and the higher powers.

In table (2.1, HT), the formula at high temperature agree with the classical ap-

proach. These results are valid only to first order in ·3 and simply to the first term in

high-temperature series expansion [44,67,75].

At high temperature the classical approach can work well but cannot be valid at low

temperature due to zero point vibration [78]. The low-temperature formula in table
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Chapter 2. EXAFS and Thermal properties

Table 2.1. Approximate formulas for the cumulants at low-temperature (LT: T → 0) and

high-temperature (HT: T → ∞) limits.

LT (T → 0) HT (T → ∞)

±C1 - 3·3

2·2
0
ℏ!(1 + 2z) - 3·3

·2
0
kBT

C2
ℏ!
2·0

(1 + 2z) 1
·0
kBT

C3 - ·3

2·3
0
(ℏ!)2(1 + 12z) - 6·3

·3
0
(kBT )

2

(2.1, LT), can account for the zero point contributions which derived with the quan-

tum treatment. Hung et al. [68] has been developed quantum treatment by considering

anharmonic CE model to account for anharmonicity of the EXAFS cumulants.

The correlated Einstein model is local and should be a reasonable approximation when

correlations are short range. The above relations derived by Frenkel and Rehr [67] of

EXAFS cumulants using correlated Einestein model and first order thermodynamics

perturbation theory and their discussion is based on a local vibration picture and in-

cludes near-neighbor correlations.

2.6.3 Thermal expansion

The true bond thermal expansion is measured by the temperature variation of the

EXAFS first cumulant. For a two atomic system, the thermal expansion measured by

the first cumulant is solely due to the asymmetry of the interaction potential and is

often considered equivalent to the joint knowledge of the second and third cumulant.

This is however highly questionable for many atomic systems, where it amounts to

attributing thermal expansion solely to the asymmetry of the effective pair potential

and can be independently obtained by the quantity a = −3(·3/·0)C
∗
2 , where ·0 and

·3 are the second and third order force constants, respectively [67]. ·0 and ·3 can be
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2.6 EXAFS and Anharmonic potential

obtained by fitting suitable models to the temperature dependence of the second and

third EXAFS cumulant. One of the theoretical models according to the perturbative

quantum approach of Refs. [67,72] can be used to fitting the temperature dependence

of the third cumulant.

There is no a prior relationship between thermal expansion and third cumulant,

so that in general the quantity a cannot be considered as a measure of thermal ex-

pansion. The connection between the crystal potential and one-dimensional EXAFS

distribution of distances and its effective potential is far from trivial. The EXAFS

effective potential for a crystal is in principle temperature dependent, both in position

and shape. It was experimentally established that the thermal expansion due to the

asymmetry of the potential corresponding to the quantity ”a” does not correspond to

(is much weaker) the true bond expansion measured by the first EXAFS cumulant for

Copper [24], Ge [36] and CuCl [38].
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Chapter 3

NTE in Tetrahedrally bonded

crystals

3.1 Introduction

The crystals of zincblende structure consist of two interpenetrating fcc lattices of dif-

ferent atoms, each atom is tetrahedrally coordinated to four atoms of the other species

as shown in Fig. (3.1). The diamond structure can be consider as a particular case

of zincblende where all atoms are equal. The materials of open structure with low

coordination number, including many important semiconductors have attracted much

experimental and theoretical attention. Their vibrational and associated thermal prop-

erties show interesting features, including a low frequency transverse acoustic branch

which is important at low temperatures and leads in many cases to negative values of

the expansion coefficient.

For a material at a given temperature, many different vibration modes are excited

but not all contribute to NTE. At low temperature, the low frequency transverse vi-

brational modes are preferentially excited and they have negative values of Grüneisen

parameter °i, then several materials exhibit NTE when such modes predominate. The

importance of low-energy transverse acoustic (TA) modes at Brillouin zone-boundary

was early recognized from the pressure dependence of phonon frequencies [79]. Black-

man (1957) was the first one who pointed out that the open structure crystals would
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Chapter 3. NTE in Tetrahedrally bonded crystals

Figure 3.1. The conventional fcc unit cell of zincblende crystals.

favor ”guitar-string”- like TA modes which soften under pressure and could lead to

NTE if such modes are sufficiently weighted [80].

Another simple picture has been given by Barron (1957): due to thermal vibrations

an atom becomes displaced from its equilibrium position, it exerts an attractive force

on those neighboring atoms which are in directions perpendicular to the displacement,

thus tending to contract the crystal [81].

Lattice dynamical properties were successively calculated through empirical mod-

els [82] and ab initio density functional theories [83, 84]. The interest in studying the

Negative Thermal expansion in diamond crystals (Si and Ge) dates back since the

early 1960s [85–87]. Theoretical calculations have reproduced low temperature expan-

sion coefficient of Si and shown that the TA (X) and TA (L) modes have polarizations

associated with pure bending motion, the bonds between atoms are either undisturbed

or distorted only by atomic motion perpendicular to the bonds [32].

In zincblende structure, the recent ab initio calculations [88] on CuCl show that the

frequency of the transverse acoustic (TA) mode at zone boundary points (X and L)

decreases with decreasing volume or increasing pressure, thus indicating a negative

Grüneisen parameter for these modes and consequently contributing to NTE.
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1
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Figure 3.2. Calculated phonon-dispersion curves along the high symmetry directions and phonon

density of state (DOS) for CdTe compared with the experimental inelastic neutron-scattering data

(Circles), the figure is taken from Ref. [93]

The structural, elastic and thermodynamic properties of CdTe have been investi-

gated by molecular-dynamics (MD) simulation [89]. Recently, ab initio calculations

have been performed to investigate elastic, electronic and lattice dynamics properties

of CdTe [90]. The calculated lattice parameters, elastic constants and phonon disper-

sions are in good agreement with available experimental and theoretical results [90].

The phonon density of states and specific heats of CdTe were calculated used the adi-

abatic bond-charge model [91] and compared with both the experimental data [92]

and the results of other models which give a good description of its lattice dynamics.

The phonon dispersion relation of CdTe has been calculated [93] along high symmetry

directions of the first Brillouin zone (see Fig. 3.2): Γ → X ≡ [», 0, 0], K → Γ ≡ [», », 0]

and Γ → L ≡ [», », »]. The calculated data are in excellent agrement with the experi-

mental data measured using neutron inelastic scattering [92] as shown in Fig. (3.2).

3.2 Elastic properties of Zincblende structure

The elastic constants give important information concerning the nature of the forces

operating in the solids, in particular they provide information on the stability and
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Chapter 3. NTE in Tetrahedrally bonded crystals

stiffness of materials. There are different ways of treating elasticity and of defining

elastic coefficients. For treating elasticity and defining the elastic constant we will be

concerned with the ”stress-strain” coefficients. Elastic behavior is described in terms

of stress (force per unit area) and strain (relative change of dimensions) and defined

either by compliance (response of a material to applied stress), or its reciprocal stiffness

(the bulk modulus) which describes its resistance to applied strain. The bulk modulus

BT = −V (∂P/∂V )T describes the resistance to volume change under a hydrostatic

pressure. The generalization of this concept leads to the definition of the linear elastic

constant tensor (stiffnesses), defined by:

cT®¯,°± =

(
∂¾®¯

∂´°±

)

´́,T

(3.1)

where ¾®¯ denotes the Cauchy stress tensor and ´°± is the Lagrange finite-strain tensor.

The subscript ´́ means that all other strain coordinates are kept constant. Then, the

stiffness describes how each stress coordinate changes when only one strain coordinate

is changed. Normally the stress and strain tensors are symmetric, ¾®¯ = ¾¯® = ¾¸ and

´°± = ´±° = ´¹ and have only six independent elements. The positive and negative

diagonal elements of ¾®¯ indicate a tension or a compression along the given direction,

respectively. Off-diagonal elements and also differences between the diagonal elements

indicates shear stress. For a solid under hydrostatic pressure ”P”, all the off-diagonal

elements vanish and ¾®¯ = −P±®¯, where ±®¯ is equal to unity when ® = ¯ and zero

when they are different.

The number of independent coefficients of the elastic tensor depends upon sym-

metry. If the stress is isotropic, c¸,¹ = c¹,¸, reducing the number of independent

coefficients to 21. The crystal symmetry further reduces this number, the cubic crys-

tals have only three elastic constants: c11 = cxx,xx, c12 = cxx,yy, c44 = cyz,yz. In isotropic

materials where all directions are equivalent the elastic constants, c11 = c22 = c33, etc,

c44 = (c11 − c12)/2 and other stiffnesses, such as c14, c15 and c45 are zero. The experi-

mental elastic constants of zincblende material have been obtained at room tempera-

ture [94] and table (3.8) shows the elastic constants of Ge, CdTe and CuCl.
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3.2 Elastic properties of Zincblende structure

Table 3.1. Experimental bond length, elastic constants (1010N/m2), bulk and shear moduli for

Ge, CdTe and CuCl crystals [94].

Crystal r(Å) C0 c11 c12 c44 Bs Cs.

Ge 4.63 6.4 12.89 4.83 6.71 7.5 4

CdTe 5.30 3.72 5.35 3.68 1.99 4.2 0.8

CuCl 4.42 7.68 2.72 1.87 1.57 2.2 0.4

For cubic crystals, the knowledge of elastic constants c11, c12 and c44 makes it pos-

sible to determine the bulk and shear modulus. The bulk modulus (Bs) and the shear

modulus (Cs) both are true stifnesses and are given respectively by the relations:

Bs =
(c11 + 2c12)

3
(3.2)

Cs =
(c11 − c12)

2
(3.3)

The elastic properties of a material are basically determined by the interactions of elec-

trons. Dimensional analysis thus suggests that the elastic constants should be of the

order of magnitude ”e2/r4”, where ”e” is the electronic charge and ”r” is the distance

between nearest neighbor atoms [94]. This principle has been applied to the zincblende

crystals by defining an elastic constant C0 ≡ e2/r4. Then an instructive comparison

and the regularities of the elastic properties on more quantitative basis are developed

by considering the reduced elastic constants which are defined as, c∗11 = c11/C0, etc.,

where C0 is the normalization modulus. Thus the reduced bulk and shear moduli are

B∗ = Bs/C0 and C∗
s = Cs/C0, respectively.

This choice of the normalization to the elastic properties of the crystals is suggested

by the fact that all forces in the crystal are basically electrostatic in origin. considering

all crystals have the same symmetry, the same number of valence electrons per atom

pair and thus similar bonding; then the dependence of the elastic moduli on the bond

length is largely removed. Therefore, the regularities in the reduced elastic moduli
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.

Figure 3.3. The reduced Bulk modulus and shear moduli of the tetrahedra semiconductors as a

function of the bond ionicity fi, the figure is taken from Ref. [94].

should be directly correlated with the character of the bond (see Fig. 3.3). In table 3.8

shows that the reduced bulk and shear moduli B∗ and C∗
s are decreases as the ionicity

increases from Ge to CuCl but do not show a systematic variation.

Fig. (3.3), shows the reduced bulk and shear moduli as a function of the bond

ionicity and reflect strong variation between the different rows of the Periodic table.

The semiconductor compounds formed from elements of the group III and V of the

periodic table (such as GaAs) have properties very similar to the group IV elements

(e.g. Ge). Going from the group IV elements to the III-V compounds, the bonding

becomes partly ionic. The ionicity increases the Coulomb interaction between the ions

and also the energy of the fundamental gap in the electronic band structure, then it

causes significant changes in the semiconductor properties. The ionicity becomes more

even larger and more important in the II-VI compounds such as CdTe which have band

gaps larger than 1 eV but the I-VII compounds (e.g. CuCl) tend to have even larger

band gaps (> 3eV ) as a result of their higher ionicity [95].

The regularities in the elastic properties of the diamond and zincblende crystals

have been explained in terms of the bond ionicity, fi. The scale of the bond ionicity
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3.2 Elastic properties of Zincblende structure

Figure 3.4. The calculated pressure-dependence of elastic constants and bulk modulus for CdTe,

the figure is taken from Ref. [90].

is defined by Phillips and Van Vechten for heteropolar crystals and demonstrates that

the ionicity correlates well with the crystal structure and only crystals with fi less than

a critical value are stable in tetrahedrally coordinate structure [30, 31]. The reduced

shear moduli in Fig. (3.3) is decrease as the bond ionicity increases, so that their

values should decrease and tend to zero in the ionic limit fi → 1. CuCl is the only

compound found in the ZB structure have ionicity very near to the critical value and

show a great disagreement with the trend in Fig. (3.3).

At low temperature, the low energy transverse acoustic modes are excited and

supported by the low shear moduli of the materials, i.e. less rigidity. Recently, the

pressure dependence of the elastic constants of CdTe has been determined up to 3

GPa. It was found that both c11 and c12 increase monotonically with pressure whereas

the slope for c44 is slightly smaller as shown in Fig. (3.4).
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Chapter 3. NTE in Tetrahedrally bonded crystals

Figure 3.5. schematic representation of the bond length and angles between neighboring atoms

of cubic ZB structure considered to belong to the unit cell containing atoms 1 and 2 and atypical

angle µ114.

3.2.1 Valence-Force Field model (VFF)

In open structure crystals, short range (non-central) forces extend to further neighbors

and play an important role in their stabilization. The most useful phenomenologi-

cal description of the short-range forces in tetrahedrally coordinated crystals is the

Valence force field (VFF) approach [96]. By resolving all interatomic forces into bond-

stretching (®) and bond-bending (¯) forces, the VFF approach takes into account the

interactions between neighboring bond lengths and bond angles as shown in Fig. (3.5).

There are two primary advantages of the VFF model; (i) the model is automatically

rotationally invariant and all the distortion energies are described in terms of bond

lengths and angles. (ii) In crystals where atom pair bonds play a major role, the VFF

is the most natural description of interatomic forces.

The VFF model for diamond-structure crystals, simplified by omitting the less im-
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3.2 Elastic properties of Zincblende structure

portant forces and the distortion energy of each unit cell, is given by [94]:

U =
1

2

4∑
i=1

kr(Δri)
2+

2∑
s=1

[
1

2

∑
i,j>i

ks
µ(rΔµsij)

2 +
∑

i,j ∕=i

krµ́(Δrsi )(rΔµśij) +
∑
i,j>i

ks
rr(Δrsi )(Δrsj)

]

(3.4)

where kr and kµ are the bond length and angles, respectively. The force constants ks
µ,

etc. are different for two atoms in the unit cell (s=1, 2). The bonds about each atom are

denoted by i, j = 1, . . . , 4, r is the equilibrium bond length, Δrsi is the scalar change in

length of bond i about atom s and Δµsij is the change in angle formed by bonds i and j

about s as shown in Fig. (3.5). Taking in this case the force constants for two atoms in

the unit cell always enter the relevant quantities in the form k = k1+k2 and deal with

a smaller set of independent constants, kr, kµ = 1
2
(k1

µ + k2
µ), etc.. Assuming the rigid

point ions with charges ±Z∗ for Coulomb energy which interact via coulomb potential

±Z∗e2/²R where R is the separation and ² is the electronic dielectric constant. for

the stability of the crystal, it must also include the effect of the linear repulsive term

in addition to the purely Coulomb forces, then there must be a linear bond-stretching

term in addition to Eq. (3.4):

U =
4∑

i=1

frΔri + second− orderterms (3.5)

where fr = −1
4
®MZ∗2e2/²r2 the condition that the crystal be in equilibrium and also

proportional to Z∗2/², then it is conveniently included with the Coulomb terms. The

contribution of the coulomb forces to the elastic constants has been given by Black-

man [27]. Therefore, the expressions for the elastic constants have been derived by

directly expanding Eq. (3.4) and using Blackman and Eq. (3.5), the results are de-

pending on kr, kµ, etc. [94].

The formulas for the elastic constants can be further simplified through an approx-

imation suggested by Keating [97]. The expansion of the VFF energy U in Eq. (3.6)

is written as a function of scalar variations products of bond vectors Δ(rsi .r
s
j), where

rsi and rsj are bond vectors about atom s and is given by:

U =
1

2
®

(
3

4r2

) 4∑
i=1

[Δ(r1i .r
1
i )]

2 +
1

2

2∑
s=1

¯s

(
3

4r2

)∑
i,j>i

[Δ(rsi .r
s
j)]

2 (3.6)
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where ”®” and ”¯” are bond-stretching and bond-bending force constants, respec-

tively and different for the two atoms (s=1, 2) in the primitive unit cell. In terms of

changes in bond length and angles, Keating’s approximation is connected to the VFF

by considering:

kr = 3® + ¯/2, kµ = 2¯/3, krr =
1

12
¯, krµ́ = (3

√
2)−1¯. (3.7)

Then the elastic constants according to Keating’s approximation of the VFF model in

tetrahedral structure are defined as [94]:

c11 + 2c12 = (
√
3/4r)(3® + ¯)− 0.355SC0 (3.8)

c11 − c12 = (
√
3/r)¯ + 0.053SC0 (3.9)

c44 = (
√
3/4r)(® + ¯)− 0.136SC0 − C³2 (3.10)

where C0 is the normalization modulus, S the effective charge parameter and ³ is the

internal strain parameter defined by Kleinman and given by [98]:

³ = C−1[(
√
3/4r)(®− ¯)− 0.294SC0, (3.11)

C = (
√
3/4r)(®− ¯)− 0.266SC0 (3.12)

From the experimental data of the elastic constants of the diamond and zincblende

crystals, the short range force parameters for Keating’s approximation ® and ¯ can be

derived [94]. Table 3.2 shows the calculated short range force parameters ® and ¯ from

the obtained elastic constants of the ZB crystals. In table (3.2), the calculated values of

® and ¯ decrease with increasing the bond ionicity. From Eq. (3.8), the reduced shear

moduli should decrease as the ionicity increases because they are primarily determined

by ¯, whose value should decrease and tend to zero in the ionic limit fi → 1 as shown

in Fig. (3.3).

The behavior of the elastic constants is best understood by examining the derived

parameters of the ”central” force ® and ”non-central” force ¯ as a function of fi. Fig.

(3.6) shows the values of ¯/® as a function of the bond ionicity and represents the

ratio of the noncentral to the central force constants, ¯/® = 0 for fi → 1. Then the

primary trends in the elastic constants are described quantitatively by [28]:

¯/® = 0.3(1− fi) (3.13)
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Table 3.2. The calculated values of the bond-stretching (®) and bond-bending (¯) forces pa-

rameters for Keating’s approximation of the VFF model and phillips ionicity (fi), the values are

taken from Ref. [94].

Crystal ® [N/m] ¯ [N/m] ¯/® fi

Ge 38.67 11.35 0.294 0

CdTe 29.02 2.43 0.084 0.675

CuCl 12.60 1.00 0.079 0.746

Figure 3.6. The ratio of non-central to central force constants ¯/® as a function of the bond

ionicity fi, the figure is taken from Ref. [28]
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This is the simplest possible form having the required result ¯ = 0 for fi = 1. This

result provides a simple picture of the experimental force constants as a function of the

bond ionicity and tetrahedrally bonded structure are then expected to have weak non-

central forces ¯. The dimensionless ratio ¯/® measures the importance of the covalent

bond in determining the stability of the tetrahedral structure: its value decreases with

increasing the bond ionicity [30].

3.3 NTE in zincblende structure

A simple phenomenological interpretation of NTE in zincblende and diamond struc-

tures was formulated since long ago by considering the [11̄0] polarizations of the [110]

transverse acoustic modes [99]. These modes correspond to planes of atoms moving as

a unit perpendicular to the direction of all nearest neighbor bonds which are not in

the plane. Fig. (3.7), shows a schematic illustration of how the transverse vibrations

can propagate along chains with a quite open space normal to the bond direction of

propagation from three-dimensional model of the structure. Unless the bonds have

strong angular rigidity, this vibrations will have relatively low frequency and could

soften under pressure, that is decrease in frequency like a relaxed guitar string [3,100].

Therefore, these low frequency TAmodes are the most likely to have negative Grüneisen

parameters, leading to NTE if such modes are sufficiently weighted. This conclusion

was supported also by old central force models [27].

The measurements of ultrasonic wave velocity for the [110] TA modes with [11̄0]

polarizations and corresponding to the shear elastic modulus (Cs = 1
2
(c11 − c12)) of

the diamond and zincblende crystals, show that the pressure derivative dvi/dP of the

velocity is negative for many of these crystals in a limited temperature interval. The

most negative compound being the CuCl, where the bonds are most ionic and therefore

less rigid. The weighting of this soft mode at low temperatures leads to the negative

expansion and then to the crystal contraction as in Si, Ge, CdTe and CuCl.

The negative expansion is more marked and extends to higher temperatures for
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���� �
Figure 3.7. schematic illustration of the ”chains” of atoms in the [110] direction in the cubic

lattice along which the lowest-frequency TA acoustic waves are propagated.

crystals in which the charge separation is large and there is more ionic character.

According to the Phillips ionicity factor [30], CuCl is the most ionic tetrahedrally

bonded system and has the largest NTE coefficient (®min ∼ −9 × 10−6K−1) [18] and

NTE extended up to 100K as shown in Fig. (3.8). Conversely in the diamond structure

there is no charge separation and covalent bonding is very strong and expansion is

positive nearly at all temperatures, Ge [36] has negative expansion extending from

15K to 40K and has very weak NTE ®min ∼ −0.07× 10−6K−1.

Diamond and zincblende structures have NTE only in a restricted temperature

interval but at high temperatures show positive expansion. For many of them the

thermal expansion coefficient is small because of their low limiting Grüneisen function

°(T → ∞) (see Fig. 1.4) and low compressibility. It is worth noting that, NTE is not

observed in crystals were the ionicity is larger than in CuCl, inducing the change from

zincblende structure to the rock salt structure [30].

In zincblende structure, the values of Grüneisen parameter, °j is positive at high

temperatures as contrasted with negative value at very low temperatures (see Fig. 1.4).

In the weighting of the °j, if the relatively highly weighted vibrations have a negative
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Figure 3.8. Thermal expansion coefficient for selected tetrahedrally bonded crystals.

contribution to form the average value of Grüneisen function °; then an overall con-

tribution can be negative and give rise to negative expansion.

In conclusion, in tetrahedrally bonded cubic semiconductors, the NTE is isotropic

and limited to a low-temperature interval, its extent increases with the bond ionicity

from Ge were it is weak to CuCl the strongest (Fig. 3.8) [18]. In the compounds,

the negative contribution to thermal expansion is overcome by the positive contribu-

tion when temperature increases and has been attributed to low-frequency transverse

acoustic modes with negative Grüneisen parameter whose effect is dominant in a lim-

ited temperature interval.

3.4 EXAFS studies of NTE zincblende crystals

EXAFS is a powerful probe for studying the local behavior of NTE materials. Bragg

diffraction can give only partial information on the local behavior and EXAFS is par-
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ticularly suited for complementing this information. EXAFS is sensitive to correlation

of atomic vibrations and can give unique insights on the local thermal behavior of ma-

terials. The same sensitivity to correlation and similar information can in principle be

obtained from the analysis of the diffuse scattering. The main strength and limitation

of EXAFS are the selectivity of atomic species and insensitivity to long-range order,

respectively.

In the last years, the possibility of obtaining complementary information on local

structure and dynamics on the diamond and zincblende crystals from EXAFS has

been experimentally demonstrated. New perspectives for getting deeper insights on

local origin of NTE have been recently opened by the progresses in EXAFS analysis

and interpretation related to the possibility of accurately measuring:

∙ the thermal expansion of the nearest-neighbors bond distance (true-bond expan-

sion)

∙ the perpendicular mean square relative displacement (MSRD)

The relative perpendicular vibrations measured by EXAFS are related to the tension

mechanism and to the transverse acoustic modes which are considered responsible for

NTE in Zincblende structure. EXAFS results are consistent with phenomenological

models of NTE based on the competition between stretching and tension effects. The

ratio of perpendicular to parallel MSRDs measures the anisotropy of relative atomic

vibrations which can be connected to NTE.

It is convenient to focus the attention on crystals of relatively simple structure

such as diamond-zincblende tetrahedrally bonded crystals, to evaluate the strength

and limitations of EXAFS for quantitive studies of NTE. The NTE in the diamond

and zincblende crystals is observed at low temperature and NTE is quite weak in Ge

and strongest in CuCl (see Fig. 3.8). Recent EXAFS studies on Ge [36] and CuCl [38]

have shown that in both crystals:

(i) The nearest neighbor bond expansion is always positive, the stronger is the NTE

measured by Bragg diffraction, the larger is the positive thermal expansion (PTE)
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measured by EXAFS. This differences between bond PTE and lattice NTE is due to

the effect of perpendicular vibration.

(ii) The relative atomic vibrations measured by EXAFS are anisotropic. Anisotropy

of Ge and CuCl is temperature dependent, its asymptotic values are 6 and 11, re-

spectively. CuCl has larger anisotropy related to the the presence of intense motion

perpendicular to a given bond and connected to the tension effect that give rise to the

stronger NTE. Therefore, the tension effect giving rise to NTE can be correlated to

the anisotropy of the mean square relative displacements.

The obtained results for Ge and CuCl suggested the existence of a correlation be-

tween the NTE properties and anisotropy of relative vibrations measured by EXAFS.

To confirm this correlation and search for its quantitative assessment, EXAFS mea-

surements on CdTe whose NTE properties are intermediate between those of Ge and

CuCl, have been performed. In this work, we will present the analysis of EXAFS spec-

tra of CdTe and compare the results with the obtained results on the other zincblende

crystals, Ge and CuCl.
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EXAFS OF CdTe

4.1 EXAFS Experiment and data reduction

EXAFS measurements have been done at the beamline BM29 of ESRF (European

Synchrotron Radiation Facility) in Grenoble, France [101] at the Cd K-edge in CdTe.

4.1.1 Sample preparation

The structural purity of the sample had been checked before performing EXAFS mea-

surements. Cadmium Telluride powders, 99.999 % pure (from Alfa Aesar) had been

structurally tested by X-ray diffraction using an X’Pert PRO diffractometer at the

physics department of Trento, with CuK® target at room temperature, see Fig. (4.1).

A homogeneous sample was prepared by dispersing the CdTe powder in methyl al-

cohol within an ultrasonic mixer and letting the suspension to precipitate slowly on

polytetrafluoroethylene membranes (see Fig. 4.2). To optimize the signal to noise ratio

of the EXAFS signal, about 50 mg/cm2 of CdTe were deposited to have an edge jump,

¹x ≃ 1 at Cd K-edge, where ¹ is the linear absorption coefficient and x is the sample

thickness. The sample was loaded and carefully fixed in a sample holder, the holder was

inserted in the evacuated measurement chamber. The sample holder was attached to an

arm connected to a step motor to control the vertical position of the sample, while its

horizontal position was controlled by moving of the chamber itself in front of the beam.
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Figure 4.1. Powder X-ray diffraction spectrum of CdTe (space group F3m) at room temperature

and Cu K® as a target.
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Figure 4.2. The setup for preparing homogeneous films of CdTe from the suspensions of the fine

powder in methyl alcohol.

4.1.2 EXAFS Measurements

The beamline BM29 is the general purpose X-ray absorption spectroscopy (XAS) beam

line at the ESRF [101]. It originates from bending magnet and can cover a very large

operational energy range, from 4 keV to 74 keV; the energy resolution is typically a

factor of 3 to 5 better than the intrinsic spectral broadening at any K or L absorption
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edge. A signal to noise ratio above 7.0×104 can be achieved for well prepared samples

and high beam stability.

The monochromator is a double silicon crystal of fixed exit type, different reflecting

faces are available, Si(111), Si(220), Si(311) and Si(511), depending on the requirements

for x-ray flux and energy. Frequently the monochromator is accompanied by one or

more X-ray mirrors, these mirrors are based on the phenomenon of total reflection and

their aims are to reject the harmonics and to collimate and focalized the beam.

EXAFS measurements on CdTe have been performed with synchrotron radiation in

transmission mode in the beamline BM29 [101] as shown in Fig. (4.3). The electron

energy and the average current of the storage ring were 6 GeV and 190 mA, respec-

tively.

The X-ray beam was monochromatized by two parallel silicon crystals with flat (311)

Figure 4.3. Schematic representation of a typical X-ray absorption experiment in a transmission

mode

reflecting faces. Harmonic influence was reduced by the reflection from two Pt-coated

mirrors. The energy of the incident x-rays was scanned in the range 26400 - 28230 eV,

with ΔE step varying from 0.5 eV in the near-edge region (Cd K-edge at 26711 eV)

to 5 eV at the end of the spectra, in order to obtain a uniform Δk = 0.025Å step in

the EXAFS region.

The size of the beam incident on the sample was about 4× 2 mm2. The incoming and

outgoing photon fluxes were measured by two ionization chambers filled with krypton

gas; at pressures of 140 and 500 mbar, respectively.
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The temperature dependent EXAFS measurements on CdTe were done from 19 K

to 300 K. The sample temperature was varied at steps from 25 K at low temperature

(below 150 K) to 50 K up to room temperature. To thermalize the sample, a liquid

helium cryostat was utilized where the sample itself was immersed in ”He” gas atmo-

sphere. The temperature control was achieved through an electric heater controlled by

a feedback loop. The thermal stabilization was guaranteed within 1 K, where two or

three spectra were collected at each temperature to allow an evaluation of the experi-

mental uncertainty.

4.1.3 EXAFS data reduction procedure

The output results of measurements are the incident and transmitted X-ray beam

intensities I0 and I, respectively. The X-ray absorption coefficient ¹x = ln (I0/I) is

shown in Fig. (4.4, continuous line).

4.1.4 Extraction of EXAFS signal

The extraction of the EXAFS signals Â(k) from the experimental spectra x¹(E) of

the CdTe at different temperature was performed according to well established pro-

cedure [38, 71] using the EXTRA code [102]. A strait line best fitting the pre-edge

signal in the energy range from 26450 to 26550 eV (see Fig. 4.4, dashed line) was

preliminarily subtracted from the whole EXAFS spectra. This region is essentially a

global background for the XAFS spectrum of the K-edge of cadmium.

After the ”pre-edge removal”, the edges of all experimental spectra have been

aligned to have the same energy grid, in order to obtain reliable values of the in-

teratomic distances. The alignment procedure was done by best-fitting the edge region

of all EXAFS spectra at different temperatures to the edge region of reference spec-

trum, at 19K within 0.1 eV, in order to obtain a resolution better than 0.001 Å in

distance variations.
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Figure 4.4. X-ray absorption spectrum at Cd K-edge of CdTe measured at 19K (line) and pre-edg

linear fit(dashed line). In the inset the absorption coefficient (continuous line) is plotted with the

smooth background ¹0 (dotted line)as a function of the photoelectron wave vector k.

The second step is to convert the coordinates from the energy space E to the wave

number space k as shown in Eq. (4.1). The evaluation of core electron binding energy

Eb is very important, its uncertainty introduces a phase shift of the EXAFS signal

and consequently an error on the analysis of interatomic distance. Here k has been

experimentally determined as

k =

√
2m

ℏ2
(ℏ! − Es) (4.1)

where k = 0.51233
√

(ℏ! − Es) for a wave number measured in Å −1 and energies in

eV. The values of k have been calculated with respect to an energy origin Es set at the

maximum of the first derivative of a spectrum chosen as a reference (Es = 26719.82 at

19K as a reference). The edges of all other spectra have been aligned to within 0.1 eV
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with respect to the reference, in order to guarantee a resolution better than 0.001 Å

in the evaluation of relative distances.

To evaluate ¹0 we search for a curve that can average the oscillations present on

the X-ray absorption coefficient by a polynomial function; an inaccurate evaluation

gives rise to spurious peaks in Fourier transform at low distances. By a trial and error

procedure, ¹0 was best evaluated by a spline of three polynomial functions of 3rd, 3rd

and 6tℎ degrees in the k ranges (2-10), (10-15) and (15-23) Å −1, respectively as shown

in Fig. (4.4 (dashed line in the inset curve)). After the evaluation of ¹0 we have to

normalize the x-ray absorption coefficient to get the normalized EXAFS signal (Fig.

4.5) as given by equation

Â(k) =
¹− ¹1

¹0

(4.2)

where ¹1 is a Victoreen-type function with absolute values normalized to the absorption

jump of the spectra. We considered ¹1 decreasing according to the theory (see Fig.

4.5, inset curve).

The EXAFS signals kÂ(k) of CdTe at different temperatures are illustrated in Fig.
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Figure 4.5. Normalized EXAFS oscillation k2 Â(k). In the inset the edge jump of the spectra =

1.3.

(4.6). The effect of temperature is clear, the intensity of the EXAFS signal decreases

as the temperature increases.
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Figure 4.6. k Â(k) signals at k-edge of Cd at some selected temperatures.

4.2 Fourier Transform

4.2.1 The direct Fourier transform(k to r)

The contributions of each coordination shell have been isolated through the direct

Fourier transform equation (4.3) of the Â(k) from the reciprocal (k) to the real (r)

space.

F (r) =

∫ kmax

kmin

[knÂ(k)]W (k) exp(2ikr)dk (4.3)

where W(k) is a window function whose purpose is to reduce the spurious oscillations

induced by the finite k range of the transform. The limits kmin and kmax are chosen

in order to eliminate the low-k region (where the extraction of ¹0 is not so accurate

and MS effects are strong) and the high-k region (where the signal to noise ratio is

not sufficiently high). The weighting by the factor kn is to balance the low and high

k-regions of EXAFS signal. It is necessary that all EXAFS spectra are treated exactly
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with the same filtering procedure.

In all the analysis we used k2 as a weighting factor, 10% damped Gaussian window

function and kmin - kmax of 2 − 20 Å−1. In Eq. (4.3), F(r) is a complex function and

therefore it is composed of a real part [Re] F(r) and an imaginary part [Im] F(r) such

that the modulus ∣F (r)∣ is:

∣F (r)∣ =
√

[ReF (r)]2 + [ImF (r)]2] (4.4)

Fig. (4.7) shows the modulus and the imaginary part of the Fourier transform F(r) of

EXAFS signal of CdTe at selected temperatures. The contribution from the first three

coordination shells of back scattering atoms around the absorbing atom is clear in the

modulus F.T. (Fig. 4.7) where the first-shell peak is well isolated at all temperatures.

It is important to mention that the distance r in the F.T. does not correspond to the

real distance because of the presence of the phase shift Á(k) in the phase equation of

the EXAFS signal which shifts the peaks position in the modulus of F.T. to lower val-

ues by about 0.2÷ 0.3 Å. The crystallographic values of the first three shells are listed

in table 4.1. In the Modulus Fourier transform the 1st shell peak is weakly affected by

increasing the temperature but the 2nd and 3rd shells peak strongly decrease when the

temperature increases (Fig. 4.7).

If we consider only the SS contribution from the outer shells, the 2nd (Cd-Cd)

and 3rd (Cd-Te) shells exhibit strong thermal disorder, equivalent to a strong uncorre-

lated thermal motion, while the first (Cd-Te) shell displays a weak thermal disorder,

equivalent to a strongly correlated thermal motion.

4.2.2 Back Fourier transform (r to k)

For further analysis of each coordination shell, the contribution of a shell to the whole

experimental EXAFS signal can be singled out by inverse (back) Fourier transform

with window W
′
(k) as in Eq. (4.5). In order to do that the coordination shell must

be well isolated in the direct Fourier transform (see Fig. 4.7).

Âs(k) = (2/¼)

∫ rmax

rmin

[F (r)W
′
(k)kn exp(−2ikr)dr (4.5)
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Figure 4.7. Modulus (continuous line) and imaginary part (dashed line) of the Fourier transform

of EXAFS signal at Cd k-edge EXAFS of CdTe at selected temperatures.

The back Fourier transform for a given shell Âs(k) is a complex function and has real

part Âs(k) and imaginary part Im Âs(k). The real part corresponds to EXAFS signal

91



Chapter 4. EXAFS OF CdTe

Table 4.1. Crystallographic parameters of the first three coordination shells of the CdTe as

calculated from the Rietveld refinement of the XRD patterns measured at RT.Lattice parameter

a= 6.480 Å [103]

Shell N r [Å] r[Å] [103]

1st 4 2.8 2.806

2nd 12 4.58 4.582

3rd 12 5.37 5.373

can be written as:

ReÂs(k) = Âs(k) = As(k) sin(Ás(k)) (4.6)

where As(k) and Ás(k) are the amplitude and phase relative to this coordination shell.

From the real and imaginary parts resulting from the back fourier we can calculate the

backscattering amplitude and phase shift of this coordination shell as illustrated in the

following equations:

As(k) =
√

[ReÂs(k)]2 + [ImÂs(k)]2 (4.7)

Ás(k) = arctan[ReÂs(k)/ImÂs(k)] (4.8)

Therefore the procedure of complex Fourier transform allows us to separately calculate

the amplitude and phase of the filtered signal. The backscattering amplitude and

phase shift of the first coordination shell in the CdTe was extracted experimentally by

means of back fourier transform. The first shell contribution was singled out by using

back fourier transform in the range of r from 1.5 to 3.3Å and 20% Hanning window.

Fig. (4.8), shows the isolated EXAFS signal of the first coordination shell at selected

temperatures.

4.3 Quantative Analysis procedures

Two different procedures were considered for the EXAFS data analysis on CdTe in

order to obtain quantitative information.
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Figure 4.8. The filtered EXAFS signal of the first coordination shell at selected temperature of

CdTe.

The first procedure (phenomenological) consisted of the separate analysis of phase

and amplitude of the filtered signal through the ratio method [9,24] taking the lowest

temperature spectra as reference for scattering amplitudes, phase shifts and inelastic
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terms. The analysis of ratio method have been performed using the computer package

EXTRA [102].

The second procedure (Theoretical) is based on the non-linear best fit of theoretical

spectra (the backscattering amplitudes, phase shifts and inelastic terms were calculated

by FEFF6 code [52])to the experimental spectra using Artemis graphical interface of

FEFFIT [104].

Once the physical parameters ∣fi(k, ¼)∣, Ái, S
2
0 and ¸ in EXAFS equation (2.22) are

known, so the EXAFS signal Âs(k) of a given shell can be analyzed to obtain the sought

structural parameters: coordination number Ns, average position and MSRD of the

distribution of distances, C1 and C2, respectively and possibly higher order cumulants.

There is also the possibility of analyzing contemporarily more shells where taking into

account the importance of the multiple scattering effect and its contribution in the

outer shell analysis (see Fig. 4.9).

4.3.1 ratio method

The ratio method [24] is suitable only for the well isolated first shell (see Fig. 4.9),

where there is only Single scattering contribution and Multiple scattering effects are

absent. It consists of a separate analysis of phase and amplitude of the filtered EXAFS

signal taking the lowest temperature spectra as a reference for the physical parameters.

The main advantage of this method is the lack of theoretical inputs, since the physical

parameters supposed to be identical in both samples are canceled. Amplitude and

phase obtained through Eqns. (4.7, 4.8) for a given coordination shell can be expressed

as a function of cumulants according the equations:

A(k) = (S2
0/k)N ∣f(k, ¼)∣ eC0−2k2C2+2k4C4/3 (4.9)

Á(k) = 2kC1 − (4k3C3)/3 + ... (4.10)
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Phase analysis

By considering EXAFS signal at lowest temperature is a reference and at any other

temperature is the sample which identified by the labels (r) and (s), respectively. If

the phase shifts are the same [Ás(k) = Ár(k)], they are eliminated in the difference

between the total phases:

△Á = Ás(k)− Ár(k) = 2k±C1 − 4k3±C3/3 + . . . (4.11)

where ±C1 = Cs
1 − Cr

1 , ±C3 = Cs
3 − Cr

3 , ...

By plotting △Á/2k versus k2 (see Fig. 4.10, Right panel); the intercept gives ±C1

and the slope is proportional to ±C3, where any deviations from linearity is due to

neglecting the influence of higher order odd cumulants.
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Amplitude analysis

If the parameters ∣f(k, ¼)∣, S2
0 and ¸ of sample and reference are the same, so they are

eliminated in the ratio between sample and reference amplitudes.

ln[As(k)/Ar(k)] = ln(N s/N r) + (Cs
0 − Cr

0)− 2k2±C2 + 2k4±C4/3− . . . (4.12)

where ±C2 = Cs
2 − Cr

2 , ±C4 = Cs
4 − Cr

4 , .....

In our case the ratio of the coordination numbers N s/N r = 1. By plotting

ln(As/Ar) versus k2 (see Fig. 4.10, Left panel), the slope is proportional to ±C2 and

also any deviations from linearity is due to neglecting the influence of higher order even

cumulants. The ratio method results gives directly the relative values (±Cn = Cn(T ) -

Cn(Tref )) of the cumulants of the effective distributions [9, 38].

Separate analysis of phases and amplitudes of the filtered signals of the CdTe first

shell at different temperature has been performed taking the 19K spectra as a refer-

ence. The phase differences and logarithms of Amplitude ratios are plotted against k2

as shown in Fig. (4.10). At each temperature, different plots of phase differences and

logarithmics of amplitude ratios were obtained from different pairs of data files. For

each set of spectra at each temperature, the fitting range was chosen as the k-range

were the different plots were in agreement. The curves in Fig. (4.10) show a deviation

from the expected regular behavior at lower and higher k-values; this is probably due

to spurious effect of Fourier filtering.

From ratio method; the relative values of the first four EXAFS cumulants, (±Ci(T )−
Ci(19K), i = 1, 2, 3, 4) of CdTe have been obtained and shown in Fig.(4.11). The

uncertainties expressed as standard deviations of the means by averaging the results

for different spectra measured at the same temperature with two different references

taken at 19K.
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Figure 4.10. The separate analysis by the ratio method at selected temperatures (the reference

temperature is taken at 19K).Left panel: logarithms of amplitude ratios plotted against k2. Right

panel:phase differences(divided by 2k) plotted against k2.

Effective and Real distribution

The ratio method gives directly the relative values of the cumulants of the effective

distribution of distances, ±Cn. The relation between the effective P (r, ¸) and the real

distribution ½ (r, ¸) is given by [9]:

P (r, ¸) = ½(r) e−2r/¸/r2 (4.13)

One disadvantage of the ratio method is related to the difficulty of taking into account

the dependence of the mean free path ¸ on wave vector k, which introduces an uncer-

tainty in the evaluation of cumulants of real distribution. In this case, ¸ was taken to

be 9± 3Å and the error was propagated to the final values of the different cumulants

of the real distribution.

The difference between real and effective distributions as shown in Eq. (4.13), is

physically due to the progressive attenuation of the photoelectron spherical wave with

distance: the low-r part of the real distribution has a higher weight than the high-r
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part.

Different analytical and numerical procedures have been proposed for connecting the

parameters of the real and effective distributions, limited to the first cumulant [9, 38]

or extended to higher order cumulants [10]. Particularly simple approximate analytical

expression have been worked out in Ref. [56] to evaluate the cumulants ±C∗
i of the real

distribution ½(r):

±C∗
i = ±Ci + 2±Ci+1

(
1

R
+

1

¸

)
, n = 1, 2, 3, ... (4.14)

The results obtained from the ratio method ±Ci of the effective distribution were then

corrected for the effects of the limited mean free path and the spherical nature of the

photoelectron wave. The relative values of the real distribution, ±C∗
i were obtained

assuming ¸ = 9± 3Å. In Fig. (4.11), the obtained relative values of the the first four

cumulants of the real distribution (±C∗
i ) are represented together with relative values

of the effective distribution ±Ci.

The relevance of first cumulant correction, where the first cumulant of the effective

distribution is smaller than the real distribution, is well known in literature and is

clearly evident in Fig. (4.11). The difference between the second and higher order

cumulants of the two distributions is instead quite small.

4.3.2 FEFF6-FEFFIT method

The input file for the FEFF6 [52] code was the set of atomic coordinates of the ZB

structure. The code computed the EXAFS signal as the sum of all paths that con-

tribute in a cluster of atoms and given by Eq. (4.15). Table (4.2) shows the scattering

paths for CdTe within the third shell distance as calculated by FEFF6 code and Fig.

(4.12) shows the schematic illustration of the scattering paths in CdTe zincblende

structure and related to the same arrangement of the path index inside the table.

The backscattering amplitudes and phases of single and multiple scattering paths
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circles)and of the real distribution ±C∗
i (black circles).
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Chapter 4. EXAFS OF CdTe

Table 4.2. The Scattering paths for CdTe calculated by FEFF6 code [52], where for every path,

the table contains: a path index,the number of equivalent paths (degeneracy), an approximate

half-path length R, % importance factor with respect to the first shell SS path, the total number

of legs and a path description.

path index degeneracy r [Å] % importance nlegs comment

1 4 2.80 100.00 2 SS 1st shell

2 12 4.58 61.09 2 SS 2nd shell

3 12 5.09 2.96 3 Triangular (MS)

4 24 5.09 12.37 3 Triangular (MS)

5 12 5.37 37.78 2 SS 3nd shell

were calculated using the FEFF6 code [50, 105] where each path is expressed by an

effective EXAFS ÂΓ(k) equation as (4.16):

Âtℎ(k) =

allpatℎs∑
Γ

ÂΓ(k) (4.15)

ÂΓ(k) =
NΓS

2
0F

eff
Γ (k)

kr2Γ
sin(2krΓ − 4

3
k3C3 + Áeff

Γ (k))e−2k2¾2
Γ+

2
3
k4C4 (4.16)

A non-linear fit of theoretical spectra calculated by FEFF6 to experimental spectra

has been made using the FEFFIT code and its graphical interface Artemis [104]. For

each path imported from the FEFF6 calculation there is a set of structural parame-

ters, S2
0 , ±r, ¾

2 and possibly E0, C3, or C4, whose values are optimized by a non-linear

fitting routine. The maximum number M of independent parameters obtainable from

the data must be consistent with the range of the EXAFS signal through the Nyquist

theorem [106] as in Eq. (4.17).

M =
2ΔkΔr

¼
+ 2 (4.17)

where Δk = kmax − kmin and Δr = rmax − rmin, are the intervals of the direct and

inverse Fourier transforms, respectively. The theoretical method is applicable to both
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4.3 Quantative Analysis procedures

Figure 4.12. Schematic illustration of the CdTe scattering paths calculated from FEFF6 code,

represents the first three SS paths and two multiple scattering paths (triangular paths) as relevant

to table 4.2. Black and gray circles represent the Cd and Te atoms, respectively.

single and multiple scattering contributions to EXAFS signal.

It is reasonable to use the same S2
0 and E0 (the difference between experimental and

theoretical edge energy values) parameters for each path in FEFF calculation, to reduce

the number of the free parameters and define the relations between the other variables.

The first step in the analysis is to examine the experimental data with the indi-

vidual paths as computed by FEFF6 (see table 4.2) to notice the contribution of the

paths to the experimental spectrum. The first shell has only contribution from the

first Single scattering path (Cd-Te), for the second (Cd-Cd) and third (Cd-Te) shell;

single and multiple scattering paths contributions should be taken into account.

The first shell was fitted in the r-space between 1.6Å ÷ 3.2Å and the best fit be-

tween the theoretical and experimental spectra is shown in Fig. (4.13). In the fitting

procedure, there is a mismatch of the value of edge energy E0 between theoretical and

experimental energy scales; therefore in the first fitting trials the values of E0 and S2
0

were left as free parameters and the average values were calculated (E0 = 3.4 eV and

S2
0 = 1) and maintained fixed in the further analysis.

The number of the free parameters were reduced to the first four cumulants, ±r, ¾2,

C3 and C4 which parameterize the first-shell distribution of distances. The uncertainty

of the results was estimated by a least squares minimization and comparing different
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Figure 4.13. Modulus and imaginary part of EXAFS Fourier transform in the 1st shell region

at selected temperatures: experimental data (continuous line) and best fitting FEFF6 simulated

signal (dash-bolded line)
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4.4 First Shell EXAFS Cumulants

files at the same temperature. This method takes into account the k-dependence of

the mean free path ¸ and gives directly the absolute values of the cumulants of the

real distribution.

The fitting procedure was applied at all temperatures from 19K to 300K and gave

the first four cumulants of the real distribution of distances. For a comparison with

the results obtained from ratio method, the relative values of cumulants have been

calculated by taking the lowest temperature as a reference (see Fig 4.14). Fig. (4.14)

shows that, the relative values of the cumulants of the real distribution from FEFF6-

FEFFIT (full circles) were all relatively agreed with the results obtained from ratio

method (open circles).

There are a disagreements between two methods in the comparison of the absolute

values of the second cumulant, as shown in Fig. (4.15). The accuracy of the results

depends on using suitable model in the simulation code and the possible of presence of a

systematic errors in phases and amplitudes calculated by FEFF6 simulation code [104]

should be kept in mind. For single temperature measurements, these errors should be

summed to the other statistical and experiential sources of the uncertainty.

4.4 First Shell EXAFS Cumulants

Accurate relative values of the EXAFS cumulants were obtained for the first shell

with a good agreement between the phenomenological (ratio-method) and Theoretical

(FEFF6-FEFFIT method) procedures of data analysis (see Fig. 4.14). The relative

values of the first four EXAFS cumulants of the real distribution, ±C∗
i as obtained from

ratio method are listed in table (4.3).

Fig. (4.14) shows that, the errors in the relative values of the cumulants have been

obtained from the FEFF6 code were much larger than in the ratio method. This is

related to the presence of systematic errors in the FEFF6 code calculation and the dif-

ficulties in controlling the way of the calculation and decreasing the errors during the

simulation. The possibility of choosing the fitting range in the amplitude and phase
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circles) through the Einstein model(dotted line) and from a best fit to FEFF6 simulation (full

circles).

analysis in the ratio method (see Fig. 4.10) makes it the best way in giving more

accurate values of cumulants rather than the FEFF6 code.

4.4.1 First Shell: Thermal expansion

As it was pointed out in Chapter 2, the average distance measured by EXAFS first

cumulant, C∗
1 = ⟨r⟩ = ⟨∣r2 − r1∣⟩ is larger than the crystallographic distance between

average positions measured by diffraction Rc = ∣⟨r2 − r1⟩∣ due to thermal vibrations

perpendicular to interatomic bond [58].

⟨r⟩ = Rc +
⟨Δu2

⊥⟩
2Rc

+ . . . (4.18)

Therefore, the thermal expansion measured by EXAFS is larger than the expansion

measured by diffraction. The temperature dependent EXAFS first cumulant ±C∗
1 di-
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Table 4.3. Temperature dependence of the first four, C∗
i of the first coordination shell of CdTe

as obtained through the ratio method analysis.

T [K] ±C∗
1 [10

−3Å] ±C∗
2 [10

−3Å2] ±C∗
3 [10−4Å3] ±C∗

4 [10−6Å3]

19 0.01 ± 0.35 0.007± 0.01 0.002± 0.01 0.13 ± 0.01

25 0.37 ± 0.06 0.09± 0.03 0.02 ± 0.002 0.78 ± 0.4

50 0.81 ± 0.06 0.19± 0.01 0.03 ± 0.008 0.83 ± 0.01

75 1.52 ± 0.08 0.47± 0.01 0.08 ± 0.003 0.95 ± 0.2

100 1.99 ± 0.2 0.89± 0.02 0.11 ± 0.02 1.7 ± 0.2

125 3.05 ± 0.12 1.2± 0.006 0.23 ± 0.01 0.61 ± 0.01

150 4.27 ± 0.16 1.8± 0.003 0.38 ± 0.02 2.6 ± 0.5

200 6.78 ± 0.12 2.9± 0.02 0.73 ± 0.03 7.5 ± 0.5

250 8.62 ± 0.13 3.9± 0.03 1.09 ± 0.03 5.7 ± 0.4

300 11.8 ± 0.29 5.2± 0.13 1.67 ± 0.01 14.6 ± 2.1

rectly measures the ”true” bond thermal expansion and compared with the ”apparent”

bond expansion ±Rc measured by Bragg diffraction as shown in Fig. (4.16).

The values of the ±C∗
1 of the real distribution have been obtained assuming a pho-

toelectron mean free path ¸ = 9± 3 [101] as shown in Fig. (4.16). The EXAFS bond

expansion is positive over the entire temperature range while ±Rc shows a negative

thermal expansion (NTE) in the range from 0 to 70 K, also the positive expansion

above 100K from diffraction is weaker than positive expansion measured by EXAFS.

This behavior of the positive expansion of the 1st shell average distance and macro-

scopic NTE from diffraction has been found in many other systems like Ge [36],

CuCl [38], Cuprites Ag2O and Cu2O [22] and delafossites CuScO2 and CuLaO2 [12].
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Figure 4.16. EXAFS thermal expansion from ratio method (full circles) is compared to the

crystallographic expansion from Bragg diffraction (continuous line)

4.4.2 First Shell: Mean Square Relative Displacements

To a good approximation, EXAFS second cumulant C∗
2 directly measures the MSRD

of pairs of atoms parallel to the bond direction (MSRD∥) [24]:

C∗
2 ≡ ⟨Δu2

∥⟩ = MSRD∥ (4.19)

The temperature dependence of the parallel MSRD ⟨Δu2
∥⟩ is directly given by the

relative values of the second cumulant ±C∗
2 . The temperature dependence of the per-

pendicular MSRD, is calculated from the difference ±C∗
1 - ±Rc (see Eq. 4.18) [24]. The

absolute values of both parallel and perpendicular MSRDs are generally obtained by

fitting a phenomenological correlated Einstein [66] or Debye [59] model to the slope of

their experimental relative values. (see sec.2.5).

It would be physically sound to compare the ⟨Δu2
⊥⟩ with the ⟨Δu2

∥⟩, taking into

account the fact that the perpendicular MSRD is a projection of relative motion onto a

plane, while the parallel MSRD is a projection along the bond direction [65]. Fig. (4.17)
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Figure 4.17. Temperature dependence of the Parallel MSRD ⟨Δu2∥⟩ and of the halved perpen-

dicular MSRD ⟨Δu2⊥⟩ (full circles) and the dotted lines are the best fitting Einstein models.

shows the fitting of the correlated Einstein model (dotted lines) to the parallel and

perpendicular MSRDs (full circles) of CdTe first shell, where a good correspondence of

the model to their relative values of the temperature dependence is found. Therefore,

the the MSRD∥ and MSRD⊥ absolute values of CdTe first shell were estimated and

the corresponding Einstein frequencies were º∥ ∼= 3.92 THz and º⊥ ∼= 1.92 THz,

respectively.

From Einstein frequencies of the parallel and Perpendicular MSRDs, the effective

force constants k∥ and k⊥, respectively, can be calculated by Eq. (4.20), and directly

compared as shown in table (5.5) (more details in chapter 5).

k = 4¼2º2¹ (4.20)

where ¹ is the reduced mass. The k∥ and k⊥ values can be considered as a measure

of the effective resistance against stretching and bending of the bond respectively, be-

tween two nearest-neighbor atoms embedded in a crystal. The effective k∥ and k⊥ force

constant values of Cd-Te were about 3.76 and 0.9 (eV/Å2), respectively.
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Figure 4.18. The temperature dependent the ratio between perpendicular and parallel MSRDs

of CdTe where measure the anisotropy of the relative vibrations.

The large difference between ⟨Δu2
⊥⟩ and ⟨Δu2

∥⟩ is a clear indication of the anisotropy

of relative vibrations. From the ratio of the perpendicular to parallel MSRDs we can

calculate the anisotropy of the relative vibration, ⟨Δu2
⊥⟩ / 2⟨Δu2

∥⟩. for a perfectly

isotropic relative vibrations; the perpendicular MSRD should be exactly twice the par-

allel MSRD. The ratio are generally temperature dependent as shown in Fig. (5.5), it

is customary to refer to their asymptotic values for T → ∞ [22, 36,38].

The asymptotic values can be obtained from the ratio of the effective force constant

as in Eq. (5.5):

» = k∥/k⊥ (4.21)

The asymptotic value of anisotropy is more effective especially when the results are

available only at low temperatures and/or the Einstein frequencies are high for a perfect

isotropy [12], » = 1. The anisotropy asymptotic value of the CdTe was about 4.17

(eV/Å3).
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4.4.3 First Shell: MSRDs and MSDs

The parallel MSRD, ⟨Δu2
∥⟩ and perpendicular MSRD, ⟨Δu2

⊥⟩/2 measured by EXAFS

can be compared with the sum of the un-correlated parallel and perpendicular MSDs,

U∥ and U⊥, respectively of absorber and backscatter atoms from the refinement of

Bragg diffraction patterns.

X-ray vibrational studies on (100) oriented CdTe crystals as a function of the tem-

perature have been done by Horning et. al [107]. The temperature dependence its

integrated intensities have been determined between 8K and 360K and analyzed with

Debye model. From accurate temperature dependent diffraction measurements the

MSDs values of Cd and Te atoms have been evaluated [107].

Due to cubic symmetry of CdTe lattice, atomic vibrations around equilibrium po-

sitions MSDs are isotropic: therefore, according to Eqs. (2.42, 2.42), the parallel and

perpendicular MSD in any direction for both Cd and Te atom are given by:

⟨u2
∥⟩ = ⟨u2

any⟩, (4.22)

⟨u2
⊥⟩ = 2⟨u2

any⟩ (4.23)

The difference between the MSRDs measured by EXAFS and the sum of uncorrelated

MSDs obtained from diffraction (Fig. 4.19) allows to evaluate the degree of correlation

of atomic motion both parallel and perpendicular to the bond direction. Fig. (4.19)

shows that, the parallel correlation between Cd-Te atomic pairs is larger than its per-

pendicular correlation.

The parallel and perpendicular MSRDs can be decomposed into the sum of two

un-correlated MSDs and displacement correlation function (DCF) as in Eqs. (2.44,

2.44). From the uncorrelated MSDs measured by diffraction, the lower ⟨Δu2⟩low and

upper ⟨Δu2⟩upp bounds according to the Eqs. (4.25, 4.25) are corresponding to relative

displacements of the two atoms perfectly in phase and perfectly in opposite of phase

motion, respectively [22,58]:
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Figure 4.19. The comparison of the Parallel and perpendicular MSRD and the sum of uncorrelated

MSDs [107] parallel to bond and perpendicular to bond for the Cd-Te atomic pair.

⟨Δu2⟩low = ⟨u2
1⟩+ ⟨u2

2⟩ − 2
√

⟨u2
1⟩⟨u2

2⟩, (4.24)

⟨Δu2⟩upp = ⟨u2
1⟩+ ⟨u2

2⟩+ 2
√

⟨u2
1⟩⟨u2

2⟩ (4.25)

The upper and lower bounds have been calculated from the absolute uncorrelated

MSDs [107] of the Cd(1) and Te(2) atoms for CdTe at different temperatures and

compared with both parallel and perpendicular MSRDs as shown in Fig. (4.20). Both

parallel ⟨Δu2
∥⟩ and perpendicular ⟨Δu2

⊥⟩ MSRDs of CdTe do not exceed the lower

and upper bounds, i.e. there are a phase relationship between the two atoms. Fig.

(4.20) shows that, the MSRD∥ is slightly larger than the lower bound but MSRD⊥

is larger than lower bound. This means that, the relative motion of Cd and Te atoms

is characterized by a strong positive correlation (two atoms move in-phase) along the

bond direction than their perpendicular motion.
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Figure 4.20. The calculated upper(full square) and lower (open square) bounds of the Cd(1)

and Te(2) atoms for CdTe from the absolute uncorrelated MSDs [107]and compared with both

parallel and perpendicular MSRDs at different temperatures.
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3
.

4.4.4 First Shell: Asymmetry of the distance distribution

The EXAFS third cumulant C∗
3 measures the asymmetry of the distribution of dis-

tances. The absolute values C∗
3 have been evaluated by fitting the temperature depen-

dence of the relative values, ±C3 to the classical approximation or quantum treatment

approach [67, 72] as shown in Fig. (4.21). The third order one-dimensional force con-

stant ∣k3∣ = 2.05 eV/ Å3 evaluated from the best fitting of the quantum approach is

a measure of the anharmonicity of the effective pair potential. From the second and

third cumulants, the deviation from the gaussian shape of the real distribution at high

temperature can be evaluated according to the relation; C∗
3/(C

∗
2)

3/2 where measure the

distribution asymmetry.

For a reliable determination of the C∗
1 and then bond thermal expansion, by tak-

ing into account in the data analysis the asymmetry of the distribution of interatomic

distances through the third cumulant, C∗
3 parameter. The thermal expansion due to

asymmetry of the one-dimensional EXAFS effective potential Veff according to the
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Figure 4.22. Thermal expansion from the asymmetry of Veff [67, 72](open circles) is compared

to the true bond expansion of the average interatomic distance measured by EXAFS (full circles)

and to the crystallographic expansion (continuous line)

first order term in the quantum treatment (see sec. 2.6.2) is given by [67]:

a = −3(·3)

·0

C∗
2 (4.26)

where ·0 = ·∥ = ¹!2 the seconde order force constant [108]. Fig. (4.22) shows that,

the thermal expansion obtained from ±a is different from the crystallographic thermal

expansion, ±Rc as well as EXAFS first cumulant, ±C∗
1 .

The thermal expansion according to the first order term in the classical approximation

(see sec. 2.6.1), has been evaluated from the third cumulant by the relation ±C∗
1 =

C∗
3/2C

∗
2 . Fig. (4.23) shows the thermal expansion calculated by the classical and

quantum approaches, where the difference between two approaches become lower and

behaves classically at higher temperature.

The comparison between the relative values of the thermal expansion obtained

from EXAFS first cumulant ±C∗
1 and relative values evaluated from the classical and

quantum approaches have been shown in Fig. (4.24). In Fig. (4.23), its clear that

the relative values of the thermal expansion obtained from the third cumulant by two
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Figure 4.23. The thermal expansion calculated from the third cumulant on the classical approxi-

mation, C∗
3/2C

∗
2 (full circles) and quantum treatment, −3·3

·0
C0
2 (open circles) at the lowest order

terms

different approaches do not agree with the relative value of the thermal expansion of

the first cumulant ±C∗
1 .

We can concluded that, there is no a priori relation between thermal expansion

and third cumulant, so that the thermal expansion measured by different approaches

from third cumulant cannot be considered as a measure of thermal expansion, while

the true bond thermal expansion is still measured by the temperature variation of the

EXAFS first cumulant. The one-dimensional EXAFS effective potential is in principle

a temperature dependent in both position and shape.

Then, the thermal expansion (first cumulant) is consider as a joint effect of asymmetry

(third cumulant) and shift of the effective potential, where the potential shift is related

to vibrations perpendicular to the bond [10].
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4.5 Outer Shell Analysis

In the 2nd and 3rd shells analysis, it is important to take into account both single and

multiple scattering contributions to EXAFS signal as clear in Fig. (4.9). EXAFS signal

in Fig. (4.7) shown that, the signal to noise ratio at high temperatures becomes large,

then the Fourier transform from the outer shells is much low. The multiple scattering

is effect strongly in the phase analysis (first and third cumulants) than Amplitude

analysis (Second cumulant).

4.5.1 FEFF6-FEFFIT method

The 2nd and 3rd shell analysis have been done using FEFF6-FEFFIT code [52, 104],

where allows to take into account the multiple scattering contributions to obtained the

best fit of the calculated EXAFS signal to the experimental data. All scattering paths

calculated by FEFF6 within the two shells were described in table (4.2). To define
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several free parameters in the fitting procedure of the FEFF6 code were prevented to

obtain a stable fit of the calculated signal. Then to obtain the best fit and stable

results, the free parameters should be reduced as much as possible.

The 2nd and 3rd shells were fitted in the r-space between 3.5 Å to 5.7 Å as shown

in Fig. (4.25). The fitting procedure was performed such as for the first shell, the

average values of E0 and S2
0 were calculated 4.5 eV and 1 respectively, in a first trial

analysis and maintained fixed in a further analysis. The important scattering paths

calculated by FEFF6 code within the two shells were included in the fitting procedure.

For Single scattering paths of 2nd and 3rd shells, the second cumulants were considered

as free parameters. The second cumulant of (nonlinear) MS paths were constrained to

a Debye model with µD = 170K, where µD is the average value of x-ray and specific

heat Debye temperature. The thermal expansion of all SS and MS paths in the outer

shells was described by a unique fitting coefficient parameter ALPHA.

From the best fitting of the calculated EXAFS ”physical parameters” to the ex-

perimental data, the parallel MSRD of 2nd and 3rd shells have been directly obtained

from the second cumulant. According to the discussion in sec. (4.3.2), of the first shell,

the absolute values of FEFF6-FEFFIT are not significant with an accuracy sufficient

and not reliable enough for the aim of this work, then the relative values were then

considered as shown in Fig. (4.27).

4.5.2 Ratio method

In the ratio method, it is possible to perform the amplitude analysis of the 2nd and

3rd shell but it is difficult to perform the phase analysis due to the importance of the

multiple contribution and the difficulty to choice the suitable fitting interval. The

amplitude analysis have been performed for the second and third shell using 19K

spectra as a reference, the relative values of the second cumulant, ±C2 have been

obtained as in Fig. (4.27). The relative errors have been evaluated by averaging the

different measurements at the same temperature. The parallel MSRD of 2nd and 3rd

shells are shown in Fig. (4.26), where the absolute values have been obtained by fitting
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Figure 4.25. Modulus and imaginary part of Fourier transform of EXAFS signal (continuous

lines) and best fitting signals(dash-bolded lines)of the outer shells at some selected temperatures

on CdTe.
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4.5 Outer Shell Analysis

Table 4.4. Einestien [66] frequencies and the values of the effective force constants k∥ of the

first three shells of the CdTe from ratio method.

Shell frequency(THZ) k∥(eV/Å
2
)

First 3.92 3.76

Second 1.93 0.91

Third 1.77 0.77
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Figure 4.26. The parallel MSRD for the First three coordination shells of CdTe given by ratio

method and the best fitting Einstein models (dotted lines) as given by ratio method.

Einstein model [66] and compared with the absolute values of the first shell. Table

(4.4), summarizes the best-fitting Einstein frequencies of three coordination shells of

CdTe.

The relative values of the second cumulant, ±C2 of the 2
nd and 3rd shells were evaluated

with a good agreement between the ratio method and FEFF6-FEFFIT method as

shown in Fig. (4.27).

The correlation of atomic motion parallel to the bond direction can be calculated

for the outer shells according to Eq. (4.23). The MSRD∥ obtained from EXAFS of

the 2nd and 3rd shells were compared with the MSDs measured by diffraction of Cd

119



Chapter 4. EXAFS OF CdTe

0 50 100 150 200 250 300

0.000

0.005

0.010

0.015

0.020

0.025

0.000

0.005

0.010

0.015

0.020

0.025

0.030

  

T(K)

CdTe - Second shell

C* 2 
 (

Å2 )

 

 

 

 EXTRA
ARTIMES

CdTe - Third shell

Figure 4.27. The relative values of the second cumulant obtained from the FEFF6-FEFFIT and

ratio method of the 2nd and 3rd shells of CdTe.
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Figure 4.28. Parallel MSRDs of the 2nd and 3rd shells as given from FEFF6-FEFFIT of CdTe

and the comparison with the sum of uncorrelated parallel MSDs [107] of the Cd+Te and Cd+Cd

atomic pairs (stars).

and Te atoms [107] and shown in Fig. (4.28). The second shell MSRD∥ is significantly

lower than the sum of the uncorrelated MSDCd+Cd, i.e characterized by high degree

of correlation of parallel relative motion (see Fig. 4.28).

The third shell, MSRD∥ slightly lower than the value of MSDCd+Te, i.e the parallel

relative motion are partially correlated but less than the correlation of the second shell,

where the degree of correlation governing the atomic motion and decreases rapidly with

increasing the distance between the absorber-backscatter pair.

The average thermal expansion of the second and third shell distances obtained

through the nonlinear best fit (FEFF6-FFEFFIT) procedure is positive as shown in

Fig. (4.29) and considerably lower than the 1st shell bond expansion (Fig. 4.16).

we should take into account that the ALPHA parameter has not a physical meaning,

science it does not account for possible difference between the local expansion of the

second and third shell. In the fitting procedure, the third cumulant was not included

and the ALPHA parameter was generally increased with temperature, which is highly

correlated with E0 parameter.
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Figure 4.29. The average thermal expansion obtained from the FEFF6-FEFFIT analysis of the

outer shells(full circles) and compared to the crystallographic expansion(line)

The same conclusion have been obtained in the case of outer shell of CuCl [38] and

also for Cu [24], which a reliable information on outer shells could be obtained only

concerning the second cumulants.

In the outer shell analysis after a large number of trials and inserting more fitting

parameters: third cumulants or different expansions for each shell was led to pro-

hibitively large correlations between the parameters and spoiled the results of any

reasonable meaning.
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Discussion

In this final chapter, a critical comparison of the EXAFS results for Ge, CdTe and

CuCl zincblende crystals is done. The values of the relevant parameters measured by

EXAFS for CdTe are intermediate between the corresponding values previously found

for Ge and CuCl. A correlation can be established between NTE properties and several

quantities measured by EXAFS; Bond thermal expansions, parallel and perpendicular

MSRDs and anisotropy of relative atomic vibrations. The effective force constants

obtained from EXAFS results of CdTe are also compared with the short range force

constants of the Valence Force Field, VFF model.

5.1 Comparison EXAFS-XRD: Thermal Expansion

From the comparative study of EXAFS and Bragg diffraction results, original infor-

mation can be obtained on the origin of negative thermal expansion of the crystals.

Diffraction is sensitive to long range order and provides information on average ther-

mal parameters, while EXAFS is sensitive to the local order, and provides information

about local thermal properties. Recently, the difference between the thermal expan-

sions of the interatomic distances measured by EXAFS and by Bragg diffraction has

been experimentally detected. This difference is due to the effect of the relative vibra-

tions in the plane perpendicular to the bond direction and can be connected to the
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tension effect, responsible for NTE.

5.1.1 EXAFS first cumulant and crystallographic expansion

Let us focus here on the nearest-neighbor bond distance of Ge, CdTe and CuCl crys-

tals, where the strength and temperature interval of NTE increases with increasing

bond ionicity. For a simple crystal structure like zincblende, the expansion of the dis-

tance between average positions of any atomic pairs is proportional to the expansion of

the lattice parameter measured by Bragg diffraction. EXAFS measures the true bond

thermal expansion from the temperature variation of the first cumulant, ±C∗
1 , while

diffraction measures the crystallographic expansion ±Rc (see sec. 2.4).

Fig. (5.1) shows the nearest neighbor thermal expansion measured by Bragg diffrac-

tion (continuous line) and by EXAFS (full circles) in Ge [36], CdTe and CuCl [38].

The coefficient of thermal expansion, ® = (dRc/dT )/Rc measured by Bragg diffrac-

tion is strongly temperature dependent. While the bond thermal expansion coefficient,

®Bond = (dC∗
1/dT )/C

∗
1 measured by EXAFS is monotone and its average value can be

well defined (see table 5.1).

CuCl exhibits the strongest NTE; the distance between average positions of nearest

neighbor atoms undergoes negative expansion up to 100K (®low ≃ −0.8 × 10−5K−1)

and positive expansion above 100K (®max ≃ 1× 10−5K−1), while the average distance

measured by the first EXAFS cumulant undergoes a positive and stronger expansion

at all temperatures (®bond ≃ 4.3× 10−5K−1).

We assume here that the linear coefficient of lattice thermal expansion at low tem-

peratures, ®low measured by Bragg diffraction is a measure of the strength of NTE;

its absolute value increases when going from Ge to CdTe to CuCl as shown in table

(5.1). The coefficient of bond thermal expansion measured by EXAFS ®Bond is always

positive; its average value increases when the NTE strength increases. Therefore, the

stronger is the lattice NTE measured by diffraction, the stronger is the bond PTE
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Figure 5.1. First shell bond thermal expansion from EXAFS (full circles) compared to the

crystallographic expansion from Bragg diffraction (continuous line)for Ge, CdTe and CuCl crystals.
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Table 5.1. Crystallographic linear thermal expansion coefficient at low temperature” ®low”,

average coefficient of bond thermal expansion from EXAFS” ®Bond”, third order force constant

k3, third cumulant C∗
3 at 0K and skewness parameter ¯ = C∗

3/(C
∗
2 )

3/2 for the first shell of Ge,

CdTe and CuCl crystals.

®low ®Bond k3 C∗
3 ¯ = C∗

3/(C
∗
2)

3/2

(10−6K−1) (10−6K−1) eV/(Å
3
) (10−5K−1Å

3
) at 300 K

Ge [36] -0.05 8 -4.8 0.3 0.15

CdTe -3 18 -2.05 0.44 0.25

CuCl [38] -8 43 -1.2 2.9 0.61

measured by EXAFS. The difference ®Bond − ®low increases with increasing the bond

ionicity from Ge to CdTe to CuCl (see Fig. 5.1).

5.1.2 EXAFS third cumulant

EXAFS third cumulant, C∗
3 measures the distribution asymmetry and is directly con-

nected to the anharmonicity of the one-dimensional effective pair potential. Its pres-

ence in EXAFS analysis is necessary to obtain accurate values of distances and mean

square relative displacements. Fig. (5.2) shows the temperature dependence of the

EXAFS third cumulant of the first shell of Ge, CdTe and CuCl.

According to a perturbative quantum approach [67, 72], the 3rd cumulant can be

expressed to first order as:

C∗
3 =

k3(ℎºE)
2

2k3
0

z2 + 10z + 1

(1− z)2
(5.1)

where ºE and k0 are the Einstein frequency and effective bond stretching force con-

stant, determined from the second cumulant (see table 5.3) and z = exp(−ℎºE/kBT ).

Fig. (5.2), shows that the third cumulant of Ge, CdTe and CuCl are in agreement

with the behavior of the one-dimensional quantum model of Eq. (5.1).
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In the classical approximation to first order (see sec. 2.6.1), the third cumulant

depends quadratically on temperature, the classical approximation can be adequate

at high temperature but it fails at low temperature due to the presence of zero point

vibrations of quantum origin. The quantum treatment (see sec. 2.6.2) accounts for the

zero point contributions, the nonzero absolute values of C∗
3 at 0K are about 0.3 , 0.44

and 2.9 (×10−5Å
3
) for Ge [36], CdTe and CuCl [38], respectively. The good agreement

with the quantum model represents a self-consistency test of the data analysis and

suggests that the shape of the effective pair potential is insensitive to temperature; a

similar result was found for copper [24].

From the best fit with the one-dimensional quantum model, the third order effective

force constant, k3 of Ge, CdTe and CuCl have been obtained and are listed in table

5.1. The 3rd cumulant depends on the anharmonicity of the effective pair potential,

while the zero-point value of C∗
3 increases, the magnitude of k3 decreases from Ge to

CdTe to CuCl as shown in table (5.1). The increase of ®Bond and the decrease of ®low

are accompanied by the decrease of ∣k3∣; i.e. looser bond.

Actually, the potential anharmonicity jointly effects the 2nd and 3rd cumulants.

A direct evaluation of its effect can be obtained by considering the asymmetry of the

distribution of distances. The asymmetry of distribution (deviation of the real distribu-

tion from the gaussian shape) is measured by the skewness parameter ¯ = C∗
3/(C

∗
2)

3/2.

The values of ¯ at 300K are listed in table. (5.1). The asymmetry parameter, say the

asymmetry of the first shell distribution increases from Ge to CdTe to CuCl.

A numerical evaluation of the asymmetry parameter of the real distribution and its

comparison with the experimental values for germanium [10] suggested that the main

contribution to the experimental third cumulant comes from the crystal anharmonicity,

and the contribution of the vibrations perpendicular to the bond is negligible.

128



5.1 Comparison EXAFS-XRD: Thermal Expansion

5.1.3 Thermal expansion from potential anharmonicity

Once k3 is known, the net thermal expansion due solely to the asymmetry of the

effective pair potential can be calculated, according to Frenkel and Rehr quantity

a = −3k3C
∗
2/k0 [67]. The relative values ±a = a(T )−a(T = 19K) have been compared

in Fig. (4.22) with the crystallographic expansion, ±Rc and with the expansion of

the 1st EXAFS cumulant, ±C∗
1 . For CdTe in Fig. (4.22), ±a and the crystallographic

thermal expansion clearly disagree and both are weaker than the true bond expan-

sion measured by ±C∗
1 . Similar results have been obtained for copper [37] as well as

for Ge [36] and CuCl [38]. Then, crystallographic thermal expansion, ±Rc cannot in

general be obtained from the asymmetry of the effective potential and it seems that

there is no way for obtaining the crystallographic expansion directly from an EXAFS

experiment.

The difference between thermal expansions measured by the first and the third

cumulants has been explained in terms of a rigid shift of the effective pair poten-

tial [35, 109, 110]. In two-atomic molecules, the thermal expansion is solely due to

anharmonicity of the pair potential, i.e to the asymmetry of the distribution and can

be evaluated equivalently from ±C∗
1 or from the second and third cumulants through

the quantity ±a. For a crystal, the effective EXAFS pair potential depends on the

statistically averaged behavior of all atoms in the crystal and can in principle be tem-

perature dependent both in position and shape [74]. While no relevant variations of

shape have been experimentally detected up to now, while a shift of the minimum po-

sition has been observed for all investigated systems. The bond thermal expansion can

thus depend on the shift of the minimum of the effective pair potential, corresponding

to a shift of the maximum of the distribution of distances.

The temperature dependence of the first shell parameters determined experimen-

tally (average distance, parallel and perpendicular MSRDs, third cumulant) for copper

have been satisfactorily reproduced by path-integral Monte Carlo (PIMC) calcula-

tions [14] performed with a many-body potential. The agreement between PIMC and

EXAFS confirmed that, the bond thermal expansion cannot be solely obtained from
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the asymmetry of the effective potential through the third cumulant. The inadequacy

of the one-dimensional model plays a role in this failure, the local mechanism of bond

thermal expansion being more complicated, and not simply explainable in terms of the

anharmonicity of the EXAFS effective potential.

In conclusion, the bond thermal expansion (first cumulant) is a joint affect of asym-

metry (third cumulant) and shift of the effective potential. A relevant contribution to

the potential shift is related to vibrations perpendicular to the bonds [10]. EXAFS

PTE which directly reflects the effect of bond stretching, is also connected with the

positive shift of the minimum of the effective potential, which in turn is connected to

the perpendicular MSRDs.

5.1.4 Thermal expansion of outer shells

The average thermal expansions of the second and third shell distances obtained

through the nonlinear FEEF-fit procedure for CdTe (see Fig. 4.29) and CuCl [38]

were found to be positive, although their values are lower than the values measured

for the nearest neighbors distance. However, the ALPHA parameter measures the av-

erage thermal expansion of the outer shells in the FEFFIT code has a limited physical

meaning; it does not account for possible differences between the local expansions of

the second and third shell; besides the third cumulants were not included in the fitting

procedure.

Recently, the PIMC calculations for the outer shells of copper [37] shown that, the

the contribution due to asymmetry is much weaker than for the first shell and the

expansion is nearly completely accounted for by the shift of the maximum of distribu-

tion. The neglect of the third cumulant should not be a source of large error in the

evaluation of thermal expansion even for the outer shells of CdTe.
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Table 5.2. Comparison of three crystal with the diamond-zincblende structure. 2nd order effective

force constants k∥, k⊥ and anisotropy parameter »

k∥ k⊥ » = k∥/k⊥

eV/(Å
2
) eV/(Å

2
)

Ge [36] 8.05 2.89 2.94

CdTe 3.8 0.9 4.17

CuCl [38] 1.4 0.26 5.38

5.2 Comparison EXAFS - XRD: Thermal Factors

Bragg diffraction measures the average of the square of the absolute displacements of

single atoms (MSDs). EXAFS measures the average square of the relative displace-

ment of a couple of atoms (MSRDs). The parallel and perpendicular MSRDs have

been obtained from the EXAFS second cumulant and from the difference ±C∗
1 − ±Rc,

respectively. Fig. (5.3) shows, the temperature dependence of both parallel and per-

pendicular MSRDs, ⟨Δu2
∥⟩ and ⟨Δu2

⊥⟩/2, respectively and the best fitting Einstein

model of Ge, CdTe and CuCl. In Fig. (5.3), both ⟨Δu2
∥⟩ and ⟨Δu2

⊥⟩/2 as well as their

difference ⟨Δu2
⊥⟩/2− ⟨Δu2

∥⟩, increase going from Ge to CdTe to CuCl. The difference

between the parallel and perpendicular MSRDs is an indication of the anisotropy of

relative vibrations.

The Einstein frequencies º best fitting the parallel and perpendicular MSRDs can

be connected to effective force constants k∥ and k⊥, respectively. Table (5.2) shows the

calculated values of k∥ and k⊥ of Ge, CdTe and CuCl. Their values can be considered

as a measure of the effective resistance against stretching and bending, respectively, of

the bond between two nearest neighbors atoms embedded in a crystal.

The parallel MSRDs of the first three coordination shells of Ge [36], CdTe and

CuCl [38] are compared in Fig. (5.4). The CdTe behavior is again intermediate be-

tween Ge and CuCl. In CuCl, the values of MSRD∥ of the three coordination shells are
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Table 5.3. The Einstein frequencies, º∥ (THz) and the parallel effective force constant, k∥ of the

first three coordination shells of Ge [111], CdTe and CuCl [38]

Einestien frequencies k∥(eV/Å
2
)

Shell Ge CdTe CuCl Ge CdTe CuCl

First 7.5 3.92 3.93 8.06 3.76 1.44

Second 3.9 1.93 1.66 2.18 0.86 0.36

Third 3.48 1.77 1.77 1.73 0.77 0.29

higher than in Ge and CdTe, i.e. CuCl is characterized by a much stronger thermal

disorder than Ge and CdTe.

The Einstein frequencies º∥ of the first three coordination shells are listed in table

(5.3), allows us to compare the effective stiffness of bond extended up to the third

shell corresponding to the force constant k∥ = 4¼2º2
∥¹ (¹ is the reduced mass). The

calculated values of k∥ of the first three coordination shells of Ge, CdTe and CuCl

are listed in table (5.3). For each crystal, k∥ decreases with increasing the interatomic

distance from the first to third shell, also decreases in going from Ge to CdTe to CuCl.

However the frequencies of CuCl and CdTe are comparable, while k∥ smaller for CuCl

than CdTe due to the difference of their atomic mass. k∥ depends on the reduced mass;

where CuCl is lighter than the CdTe.

5.2.1 Anisotropy: MSRDs - MSDs

The anisotropy of thermal factors can be relevant to the explanation of NTE, since it

can be connected to the extent of vibrations perpendicular to the bond. Anisotropy

of relative vibrations can be measured by the ratio ⟨Δu2
⊥⟩/2⟨Δu2

∥⟩ for the MSRDs of

EXAFS and by the ratio U⊥/U∥ for the absolute atomic vibrations, MSDs of diffrac-

tion. These ratios are generally temperature dependent. It is worth to notice that
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and the best fitting Einstein model (dot line).
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thermal factors of EXAFS and diffraction have different anisotropy properties. In the

delafossite and cuprite structures NTE has been connected to the anisotropy of the

thermal factors of central atoms in linear A-B-A links measured by diffraction.

Some crystals with the delafossite structure, e.g. CuMO2 (M= Al, Sc, In, La) un-

dergo NTE along the c-axis in a non-negligible temperature interval [112]. The linear

O-Cu-O links are parallel to the c-axis; according to diffraction, the NTE along c axis

is due to the contraction of the distance between Cu and O average positions, and is

accompanied by the anisotropy of the Cu thermal ellipsoids, the amplitude of vibration

being stronger in the plane perpendicular to the c-axis.

A linear O-M-O link is also present in the crystals of Cuprite structure, M2O (M=

Ag, Cu), where each M atom is linearly coordinated to two O atoms, while each O

atom is tetrahedrally coordinated to four M atoms. The NTE of the cuprite framework

structure is related to the vibrations of M atoms perpendicular to the O-M-O links.

Disk-shaped thermal ellipsoids for the central M atoms of O-M-O links in cuprites have

been measured by diffraction [22].

The anisotropy of relative vibrations seems to be more relevant than the anisotropy of

absolute vibrations. In delafossites, the MSRD anisotropy of the Cu-O pairs is larger

in CuScO2 than in CuLaO2, say in the system affected by the larger NTE, while the

anisotropy of the Cu ellipsoid is larger in CuLaO2 than in CuScO2 [34]. In cuprites,

the anisotropy of the relative M-O vibrations measured by the MSRD is much larger

than the anisotropy of the absolute motion of metal atoms [18].

In the diamond-zincblende systems, the MSDs from diffraction are isotropic for

symmetry reasons. The ratio between MSRDs is thus particularly useful for studying

NTE in the diamond-zincblende crystals. In Fig. (5.3) clear that Ge, CdTe and CuCl

have perpendicular MSRDs (⟨Δu2
⊥⟩/2) significantly larger than the parallel MSRDs

(⟨Δu2
∥⟩) reflecting a strong perpendicular to parallel anisotropy of relative vibrations.

Fig. (5.5), shows the comparison of the ratio between perpendicular and parallel

MSRDs (° = ⟨Δu2
⊥⟩/⟨Δu2

∥⟩) of Ge [36], CdTe and CuCl [38]. The high temperature

135



Chapter 5. Discussion

0 100 200 3002

4

6

8

10

12

 

 

 =
 M

S
R

D
 / 

M
S

R
D

||

T (K)

CuCl CdTe

Ge

Figure 5.5. Temperature dependence of the ratio ° = ⟨Δu2⊥⟩/⟨Δu2∥⟩ between perpendicular to

parallel MSRDs of Ge [36], CdTe and CuCl [38]. for perfect isotropy the ratio should be ° = 2.

value of ° increases from about 6 in Ge to about 11 in CuCl. The CdTe behavior is

intermediate between Ge and CuCl; the stronger lattice NTE is the larger difference

between perpendicular and parallel MSRDs, i.e. larger anisotropy.

A temperature independent measure of the anisotropy is given by the ratio » =

k∥/k⊥ (see sec. 2.4.3). The anisotropy parameter » of Ge, CdTe and CuCl are listed

in table (5.2): again one can see that, the anisotropy increases going from Ge to CdTe

to CuCl.

By a comparison with the results previously found for Ge and CuCl (see Fig. 5.5),

the intermediate results obtained for CdTe confirm that the stronger NTE is accom-

panied by a larger anisotropy of relative atomic vibrations.

5.3 Correlation effects: EXAFS versus XRD

The fact that, the anisotropy of the MSRDs is more relevant for NTE than the

anisotropy of the MSDs related to the correlation between the atomic vibrations. The

136



5.3 Correlation effects: EXAFS versus XRD

0 50 100 150 200 250 300
0.000

0.005

0.010

0.015

0.020

T (K)  

 1st shell
 2nd shell
 3rd shell
 sum of MSD

||

M
S

R
D

||   
(1

0-2
 2 )

Figure 5.6. The parallel MSRDs of the first three coordination shells compared with the sum of

parallel MSDs of Ge [61].

type of correlation of atomic vibrations is important for a given interatomic bond to

show apparent NTE. Two atoms have full parallel correlation along a given direction,

if their vibrations are perfectly in phase. Similarly, if the atoms are vibrating perfectly

in opposite of phase then they have full antiparallel correlation. The MSRDs is small if

the atoms have parallel correlation, is large if the atoms have antiparallel correlation.

The extent of correlation of vibration can be evaluated by measuring how much the

MSRDs is smaller than the sum of the uncorrelated MSDs of the two atoms. EXAFS

parallel MSRDs of Ge, CdTe and CuCl have been compared with the sum of uncor-

related parallel MSDs measured by diffraction. Fig. (5.6) shows the parallel MSRD

of the first three coordination shells of Ge compared with twice the MSD (available

only at 300K) [61]. The degree of correlation is strong for the first shell, weaker for

the second and third shells. For the first shell of Ge there is considerable degree of

correlation also in the perpendicular direction.

Fig. (5.7) shows the parallel MSRDs of the first three coordination shells of CdTe

compared with the sum of parallel MSDs (Cd+Te, Cd+Cd), available in the full T
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Figure 5.7. The parallel MSRDs of the first three coordination shells compared with the sum of

parallel MSDs of CdTe.
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Figure 5.8. The parallel MSRDs of the first three coordination shells compared with the sum of

parallel MSDs of CuCl [38].
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range [107]. The relative vibrations parallel to the bond are strongly correlated for

the first shell less for the second shell and still less for the third shell. For the first

(Cd-Te) shell, relative vibrations have a considerable degree of correlation also in the

perpendicular direction as found in Ge. Cd and Te nearest neighbors are vibrating

strongly in-phase parallel to the bond direction and partially in-phase in the perpen-

dicular direction (see Fig. 4.20).

Fig. (5.8) shows the parallel MSRDs of the first three coordination shells of CuCl

compared with the sum of the parallel MSDs (Cu+Cl and Cu+Cu), available only

at 300K. The parallel relative motion of the first (Cu-Cl) and second (Cu-Cu) shell

atomic pairs is characterized by a quite strong correlation but third shell (Cu-Cl)

motion appears instead uncorrelated. For the first shell of CuCl it was found that, the

relative atomic motion is highly correlated along the bond direction but it is almost

un-correlated in the plane perpendicular to bond [38].

5.3.1 Connection: MSRDs - NTE properties

The phenomenological interpretation of NTE is based on the separation of bond

stretching and tension effects. The comparison of different crystals sharing the same

structure (Ge, CdTe and CuCl), shows that a correlation can be established between

NTE properties and some quantities measured by EXAFS, such as bond thermal ex-

pansion, perpendicular MSRD and anisotropy of relative vibrations. The positive bond

expansion is directly connected to the bond-stretching effect, while the perpendicular

MSRD can be connected to the tension effect, the responsible for NTE. An alternative

way of monitoring the tension effect is to consider the anisotropy of atomic vibrations.

The effective bond stretching and bond bending force constants, k∥ and k⊥ have

been calculated for the first shell of Ge, CdTe and CuCl and are compared in table. 5.2

with the corresponding quantities measured for other families of NTE crystals (cuprites

and delafossites structure). There are some general common features in these results;

the nearest neighbor bond thermal expansion from EXAFS is always positive. Within

each family of iso-structural compounds; (i) the stronger is the apparent NTE, the
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Table 5.4. Force constants k∥, k⊥ and anisotropy parameter » = k∥/k⊥ for selected crystals.

The last two lines list the thermal expansion coefficient at low temperature, ®low measured by

Bragg diffraction and average coefficient of bond thermal expansion from EXAFS, ®Bond.

Cu Ge CdTe CuCl Cu2O Ag2O CuScO2 CuLaO2

k∥ 3.2 8.05 3.76 1.4 11.6 5.9 15.5 24.2

k⊥ 2.72 2.9 0.9 0.3 2.9 0.5 2.6 1

» 1.17 2.9 4.17 4.7 4.0 11.8 6.0 24.2

®low(10
−6K−1) - -0.05 -3 -8 -2.4 -10.4 -2.3 -5.5

®bond(10
−6K−1) - 8 18 43 7.5 35 9 16

larger is the positive bond expansion accompanied by stronger anisotropy » of relative

vibration. (ii) a stronger bond PTE, the stronger lattice NTE are accompanied by a

smaller value of k∥ corresponding to looser bond, and a smaller value of k⊥ suggest-

ing direct correlation between perpendicular MSRD and tension effects responsible of

NTE.

The fact that stronger negative lattice expansions measured by diffraction are ac-

companied by stronger positive bond expansions for all studied crystals can at first

sight appear puzzling. It is however reasonable that the stretching and tension effects

are in some way positively correlated. The increase of the NTE strength corresponds

to larger perpendicular vibrations and stronger perpendicular to parallel anisotropy,

accompanied by a loosing and a position shift of the effective potential that favors the

positive bond expansion. Otherwise, stated when the anisotropy of relative vibrations

increases, the tension effect giving rise to NTE increases; in relatively open structures

like diamond-zincblende crystals more room is also at disposal to the nearest-neighbors

bond for expanding under the influence of the stretching effect.

The availability of accurate lattice dynamics calculations, including eigenvectors of

the dynamical matrix and anharmonicity effects is necessary for a sound interpreta-

tion of experimental data. Unfortunately the theoretical results available up to now

140



5.3 Correlation effects: EXAFS versus XRD

are quite scare, due to the lack of interest in calculating eigenvectors of the dynamical

matrix and the intrinsic difficulties encountered when going beyond the harmonic ap-

proximation.

The balance between the effects of stretching and tension mechanisms giving rise

to the balance between positive and negative expansion depends on the frequency dis-

tribution of normal modes as well as on their eigenvectors and grüneisen parameter.

The Einstein frequencies of the EXAFS MSRDs can be compared with the calculated

dispersion curves and phonon density of states (DOS) of Ge [113], CdTe [90] and

CuCl [88]. The calculated phonon DOS of Ge, CdTe and CuCl as shown in Fig. (5.9)

are characterized by three well-separated groups of frequencies [91]: transverse acous-

tic (TA) modes, longitudinal acoustic (LA) modes and optical modes. For the studied

crystals, the EXAFS Einstein frequencies do not correspond to definite peaks in the

phonon DOS. The comparison between EXAFS MSRDs and calculated DOS, suggests

anyway that the low-energy TA modes play a more determined role for perpendicular

relative motion than the LA and optical modes.

The low-temperature NTE effect is particularly marked for crystals of open struc-

ture with relatively small shear moduli; actually, small shear moduli correspond to

low frequencies for the transverse acoustic modes, which are the only ones excited at

low temperatures. Transverse acoustic modes have been often associated with NTE

in zincblende structures; ab initio calculations performed in the framework of the

quasi-harmonic approximation (QHA) have shown that in CuCl the TA mode at zone

boundary points (X and L) have a negative grüneisen parameter and therefore con-

tribute to NTE. A negative grüneisen parameter for TA modes at the zone boundary

was found also in diamond crystals from pressure dependence of the phonon frequen-

cies [79,114].
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��

����
Figure 5.9. The calculated dispersion curves and phonon density of states (DOS) of Ge [113],

CdTe [90] and CuCl [88].
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5.4 Comparison: EXAFS - VFF model

The Valence force field (VFF) model, developed to represent the short-range inter-

actions in tetrahedrally coordinated crystals (see sec. 3.2.1), is particularly suitable

for a comparison with EXAFS results. In the VFF model all interatomic forces are

resolved into bond-stretching and bond-bending forces. The force constants kr and

kµ of the VFF model considered here have been obtained from the expansion of VFF

energy using Keating approximation [97]. The kr and kµ have been calculated from

the Keating parameters ® and ¯ as in Ref. [97]:

kr = 3® +
1

2
¯ (5.2)

kµ = 2¯/3 (5.3)

The Keating parameters ® and ¯ had been deduced experimentally from the bond

lengths and elastic constants [94] (see sec. 3.2.1). Let us now try to connect the short

range valence force constants kr and kµ with the effective force constants obtained

from EXAFS MSRDs. It is clear since the beginning that the comparison between

the stretching force constants k∥ and kr is much more justified than the comparison

between the perpendicular and bending force constants k⊥ and kµ, respectively.

Actually (Fig. 5.10), kµ measures the stiffness of the angle µ between two adjacent

bonds, while k⊥ measures the resistance against bending of a single bond. For better

understanding the correlation between these force constants, the values of k∥, k⊥ from

EXAFS and kr, kµ from VFF model for Ge, CdTe and CuCl are anyway compared in

table (5.5).

5.4.1 Bond Stretching

The bond stretching force constants k∥ and kr from EXAFS and VFF model, respec-

tively, are listed in table (5.5) for Ge, CdTe and CuCl and shown in Fig. (5.11) as a

function of ionicity. There is a reasonable agreement between k∥ and kr values for the

different systems, as well as a good agreement in the trend as a function of the bond

ionicity: both the force constants decreases in going from Ge to CdTe to CuCl. The

ratio k∥/kr, listed in table (5.5) is about 1 for Ge and decreases with the ionicity to
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Figure 5.10. Schematic illustration of the bond length and bond angles of the VFF model and

EXAFS thermal relative elliposid.

Table 5.5. Comparison of parallel and perpendicular effective force constants, k∥, k⊥ from

EXAFS and short range forces kr and kµ of VFF-model for Ge, CdTe and CuCl crystals.

k∥ kr k∥/kr k⊥ kµ k⊥/kµ k∥ (2nd shell)

eV/(Å
2
) eV/(Å

2
) eV/(Å

2
) eV/(Å

2
) eV/(Å

2
)

Ge 8.05 7.6 1.06 2.89 0.47 6.1 2.18

CdTe 3.8 5.52 0.69 0.9 0.1 9 0.86

CuCl 1.4 2.39 0.6 0.26 0.04 6 0.36
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Figure 5.11. Comparison of the effective bond-stretching force constant, k∥ from EXAFS and

short range valence force constant kr from VFF model of Ge, CdTe and CuCl as a function of

bond ionicity.

about 0.6 for CuCl.

5.4.2 Bond Bending

The force constants k⊥ and kµ from EXAFS and VFF model, respectively, are listed

in table (5.5) and shown in Fig. (5.12) as a function of bond ionicity. As expected kµ,

referring to the variation of the angle between the bonds, is different from k⊥, referring

to the oscillations of a single bond (see Fig. 5.10). The kµ values are much smaller

than k⊥, however one can observe that both force constants decreases with increasing

the bond ionicity, and that their ratio k⊥/kµ (see table 5.5) is restricted between the

value 6 for Ge and CuCl and 9 for CdTe.

The comparison between the anisotropy of relative atomic motion » = k∥/k⊥ and

the short-range forces ratio kr/kµ for Ge, CdTe and CuCl is made in Fig. (5.13).

The calculated values of anisotropy from EXAFS and from VFF model increase with

increasing the bond ionicity from Ge to CuCl. According to the higher values of kµ (see

Fig. 5.12), the VFF anisotropy is much larger than anisotropy of relative vibration

from EXAFS. The ratio between the anisotropy parameters of EXAFS and VFF is

about 6 for Ge, 13 for CdTe and 11 for CuCl.
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Figure 5.12. Comparison of the force constants, k⊥ from EXAFS and kµ from VFF-model of Ge,

CdTe and CuCl as a function of bond ionicity.
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and CuCl as a function of bond ionicity.
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Figure 5.14. Comparison between effective bond-stretching force constants, k∥ of the available

EXAFS (Ge-Ge, Cd-Cd and Cu-Cu) and kµ of VFF-model for Ge, CdTe and CuCl as a function

of bond ionicity.

It seems reasonable to compare the bending force constant of the VFF model, kµ

with the effective bond stretching force constant k∥ of the EXAFS second shell (see

Fig. 5.10). The available data allow us to perform a correct comparison only for ger-

manium. Actually we have no data on the (Te-Te) pairs in CdTe and (Cl-Cl) pairs in

CuCl. We decided anyway to use the available data of the pairs (Cd-Cd) and (Cu-Cu)

in CdTe and CuCl, respectively. The substitution of Cd for Te can be justified by

the small difference of masse between Cd and Te, while the substitution of Cu for Cl

appears more problematic due to the large difference in their atomic masses.

The available data of k∥ of EXAFS 2nd shell of Ge-Ge, Cd-Cd and Cu-Cu are about

2.18, 0.86 and 0.36 eV/(Å
2
), respectively and are compared with kµ in Fig. (5.14).

There is still a non-negligible difference and the ratio between k∥/kµ is about 4.6 for

Ge, 8.49 for CdTe and 8.64 for CuCl.

5.4.3 General comments

The difficulty in evaluating the error bars particularly for k⊥ of EXAFS and kr, kµ of

VFF model limits the quantitative reliability of the comparison between EXAFS and
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VFF force constants. Besides, one should always consider the basic difference between

the effective EXAFS pair potentials and the bare interaction potentials. In principle,

the effective EXASF pair potential depends on the statistically averaged behavior of

all atoms in the crystal.

Recently, by taking into account only the nearest-neighbors interactions in copper and

Nickel, it has been shown that the effective stretching pair potential is significantly

stronger and less asymmetric than single-bond potential [115]. However, Zincblende

crystals with open structure (low coordination number) can offer more free room for

the nearest neighbors bond to expand or contract under the influence of the stretching

or bending effects, respectively. This Fact could qualitatively explain the agreement

between kr and first shell k∥.

The stretching and bending force constants from EXAFS and VFF model are dif-

ferent and this can be related to the difference between effective pair potential and bare

interaction potential. Therefore, EXAFS can give unique insight on the interpretation

of the local origin of NTE within the phenomenological models of NTE based on the

competition between stretching and tension effects.
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EXAFS is a very appealing tool for studying the local origin of NTE, thanks to the pos-

sibility of directly and accurately measuring the true expansion of selected interatomic

bonds as well as the perpendicular MSRD and the anisotropy of relative vibrations.

EXAFS gives original information complementary to Bragg diffraction on the local

mechanisms responsible for NTE.

In order to better understand the local origin of NTE in diamond-zincblende struc-

ture, EXAFS spectra at the K-edge of Cd in CdTe have been studied as a function of

temperature, from 19 to 300K. The main results of the quantitative EXAFS analysis

of CdTe are:

∙ Thermal expansion measured by EXAFS at all measured temperatures is positive

and larger than the expansion measured by Bragg diffraction, due to the effect

of perpendicular MSRD.

∙ The effective bond stretching and bending force constants have been calcu-

lated from the best fitting Einstein frequencies to the parallel and perpendicular

MSRDs, respectively. The anisotropy of the relative vibrations calculated from

the ratio of perpendicular to parallel MSRDs.

∙ The absolute values of third cumulant have been determined by fitting exper-

imental data to a one-dimensional quantum perturbative model. The thermal

expansion due solely to the asymmetry of the effective pair potential has been

evaluated and is in disagree with both the EXAFS and crystallographic thermal

expansions. This failure evidences the inadequacy of one-dimensional models for
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interpreting EXAFS results in the case of a three-dimensional crystals.

∙ The relative vibrations parallel to the bond are strongly correlated for the first

shell (Cd-Te), less for the second shell (Cd-Cd) and still less for the third shell

(Cd-Te).

∙ The average thermal expansion of the second and third shell is positive and

increases with temperature.

A critical comparison between the present results for CdTe and the results previ-

ously obtained for Ge and CuCl has been performed and can be summarized as follow:

∙ The expansion ±C∗
1 of the average distance measured by EXAFS, say the true

nearest neighbor bond expansion is always positive and increases with increasing

the bond ionicity.

∙ The thermal expansion ±C∗
1 measured by EXAFS is larger than the crystallo-

graphic expansion ±Rc, the difference increases from Ge to CuCl due to the effect

of perpendicular MSRD; the stronger is the negative crystallographic expansion,

the larger is the positive EXAFS expansion.

∙ The bond thermal expansion, ±C∗
1 is a joint effect of asymmetry (third cumulant)

and shift of the effective potential. A relevant contribution to the potential shift

is related to vibrations perpendicular to the bond.

∙ The increase of the bond ionicity in going from Ge to CdTe to CuCl, accompanied

by the increase of the bond PTE and by the increase of the lattice NTE strength

can be correlated to the following observations:

– A reduction k∥, corresponding to a looser bond. The bond PTE measured

by EXAFS is connected to the bond stretching effect.

– The large difference ±C∗
1 − ±Rc, due to the increasing influence of the trans-

verse acoustic modes with a negative Grünesein parameter, reflects on the

perpendicular MSRD and is measured by the reduction of k⊥. The perpen-

dicular MSRD can be connected to the tension effect.
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– EXAFS PTE, which directly reflects the effect of bond stretching, is also

connected with the positive shift of the minimum of the effective potential,

which in turn is connected to the perpendicular MSRDs.

– Increasing the anisotropy ratio k⊥/k∥. The strength of NTE is correlated

to anisotropy of relative atomic vibrations.

– The asymmetry of the distribution of distances ¯ increases.

∙ The difference between force constants of the effective EXAFS pair potentials

and single bare pair potentials of VFF model seems limited only to the bending

forces. The similarity for the stretching forces could be related to the relatively

open structure of the zincblende crystals.
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