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Abstract

Thanks to their huge expressive capability, coupled with the widespread use of the Internet
and of affordable and high quality cameras and computers, digital multimedia represent
nowadays one of the principal means of communication. Besides the many benefits, the
wide proliferation of such contents has lead to problematic issues regarding their authen-
ticity and security. To cope with such problems, the scientific community has focused its
attention on digital forensic techniques.
The objective of this doctoral study is to actively contribute to this field of research,

developing efficient techniques to protect digital contents and verify their integrity.
Digital Watermarking has been initially proposed as a valuable instrument to prove con-
tent ownership, protect copyright and verify integrity, by imperceptibly embedding a mes-
sage into a documents. Such message can later be detected and used to disclose possible
copyrights violations or manipulations. For specific applications, such as copyright pro-
tection, the watermark is required to be as robust as possible, surviving possible attack a
malevolent user may be willing to apply. In light of this, we developed a novel watermark-
ing benchmarking tool able to evaluate the robustness of watermarking techniques under
the attack of multiple processing operators. On the other hand, for specific applications,
such as forensic and medical, the robustness requirement is overtaken by integrity preser-
vation. To cope with this aim, fragile watermarking has been developed, assuming that the
watermark is modified whenever a tampering occurs, thus its absence can be taken as ev-
idence of manipulation. Among this class of techniques, we developed a prediction-based
reversible watermarking algorithm, which allows a perfect recovery of both the original
content and the watermark.
More recently, passive forensics approaches, which work in absence of any watermark or
special hardware, have been proposed for authentication purposes. The basic idea is that
the manipulation of a digital media, if performed properly, may not leave any visual trace
of its occurrence, but it alters the statistics of the content. Without any prior knowledge
about the content, such alterations can be revealed and taken as evidence of forgery. We
focused our study on geometric-based forensic techniques both for images and videos au-
thentication. Firstly we proposed a method for authenticating text on signs and billboards,
based on the assumption that text on a planar surface is imaged under perspective projec-
tion, but it is unlikely to satisfy such geometric mapping when manipulated. Finally, we
proposed a novel geometric technique to detect physically implausible trajectories of ob-
jects in video sequences. This technique explicitly models the three-dimensional trajectory
of objects in free-flight and the corresponding two-dimensional projection into the image
plane. Deviations from this model provide evidence of manipulation.
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Chapter 1

Introduction

This chapter overviews the research field investigated in this doctoral study. In particular,
we describe active and passive digital forensic techniques, focusing on digital watermarking
and geometric-based forensic methods. The main objectives and the novel contributions
of this thesis are also presented. Finally, we describe the organization of this document.

”One picture is worth ten thousand words”

Chinese proverb

In today’s digital age, our daily life is permeated with digital multimedia content as
one of the principal means for communication. As a matter of fact, such information
can be created, stored, transmitted and processed in digital format in an extremely easy
way, thanks to the wide spread of low-cost cameras and computers and user-friendly
editing tools. Besides the economic and technical advantages, the digital information
revolution has led to problematic issues concerning multimedia security and reliability.
Therefore, it is more and more important to be able to automatically provide protection
to digital contents in order to guarantee their truthfulness and security. The scientific
community is very active in this field, coming up with sophisticated and accurate methods
for authentication and protection.

Digital watermarking has been firstly proposed as a valuable mean to cope with these
problems, by imperceptibly embedding a message into a documents. Such message can
later be detected and/or retrieved and used to disclose possible copyrights violations or
manipulations. This technology is said to be active, since it requires a known information
to be embedded onto the content at the time of recording ( or a person to embed it at
the time of sending) to make a forensic analysis possible. This may represent a limitation
to digital watermarking techniques, requiring a special equipped hardware or a post-
processing of the content. In 1993, the idea of a trustworthy camera had been proposed

1



1. INTRODUCTION

[49]. This special camera is provided with a watermarking system on-board, in order
to automatically embed a digital watermark on the image at the time of acquisition.
However, the realization of the trustworthy camera idea implied problematic issues, both
for the camera manufacturers and the conumers. Specifically, a common standard protocol
is required for all camera manufacturers and the consumers need to accept the reduced
image quality due to the embedding of a watermark. These issues limited the realization of
this special equipped device. Moreover, the Secure Digital Music Initiative (SDMI) fiasco
[27] pointed out serious worries for the security of digital watermarking. In particular, the
proposed audio watermarking system was rapidly hacked by a group of cryptography and
watermarking researchers form Princeton University, Xerox PARC and Rice University.

Given these limitations for active forensics techniques, the majority of contents avail-
able nowadays over the network is not protected, thus being subjected to unauthorized
use and manipulation. In such a scenario, where digital watermarks or signatures are
not available, passive (or blind) approaches have to be applied to protect and verify the
integrity of multimedia contents. The basic idea of passive forensics techniques is that
the alteration of a digital media, if performed properly, may not leave visual trace of its
occurrence, but it alters the underlying statistics of the content. An accurate analysis
can be carried out, without any prior knowledge about the content and alterations can
be taken as evidence of forgery or help in tracing back the history of the content.

In the following, we present the research field of active and passive forensics, where
this doctoral study took place.

1.1 Active Forensics

Active forensics techniques, such as digital watermarking, have been proposed as a valu-
able mean to prove the content ownership and authenticity and to track copyright vio-
lations [25, 38, 5]. Generally, a watermark (an imperceptible digital code) is embedded
into a multimedia content before its delivering/sharing. By verifying the presence of such
watermark, ownership protection and authentication may be demonstrated by comparing
the extracted watermark with the original inserted code. Although the main applica-
tion behind digital watermarking is copyright protection, this technology can be used
for different purposes, such as multimedia indexing, enrichment, broadcast monitoring,
fingerprinting, covert communication, quality assessment, error concealment, and oth-
ers. For general purposes, three main requirements must be satisfied when designing a
watermarking schemes:

• Robustness : the capacity to preserve the hidden data after processing.

• Imperceptibility : the fidelity of the watermarked data to the original one.

• Capacity : the amount of data that can be embedded.

It is important to find the right trade-off between such constraints, whose relative
importance strictly depends on the application scenario they are designed for. For some
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1.1. ACTIVE FORENSICS

applications, such as copyright and intellectual property protection, robustness is highly
desired and required. An illustrative example of such application is given by the case of
Cinema Industry vs Sprague and Caridi 1. Carmine Caridi, a member of the Academy of
Motion Picture Arts and Science and Oscar voter, was given with an exclusive and promo-
tional copy of a movie. Although not allowed, he provided Russel William Sprague with
such movie. Unfortunately for him, the given film had been previously watermarked and,
when copies of the movie were discovered to be illegally sold over the web, the presence of
the watermark guided the FBI through a forensic investigation about the responsible of
the crime. In particular, they were able to disclose that most of the movies were derived
form Motion Picture Academy screeners and the embedded watermark uniquely identified
Carmine Caridi as the owner of the original videos all the copies were originated from.

It becomes clear that, for such applications, the major constraint for a mark embed-
ded into a cover work is robustness against manipulations, including a great variety of
digital and analog processing operations, such as lossy compression, linear and non- linear
filtering, scaling, noise addition, etc. However it is well known that designing an efficient
watermarking algorithm is extremely challenging and the research is still in progress,
proposing a great variety of solutions [89]. Therefore, the role of performance evaluation
through the use of benchmarking frameworks has grown its importance to speed up the
research in the field of digital watermarking and stimulate a continuous improvement of
the existing techniques by identifying methods weaknesses and failings [101].

On the other hand, some applications, such as integrity proof and authentication, do
not require the embedded watermark to be robust. Fragile and semi-fragile watermarks
are assumed to be modified or even deleted after any tampering occurs to the content.
So they fails to be detectable after any attempts of modification of the content, thus
making any tamperings identifiable. The effectiveness of such watermarks are measured by
considering imperceptibility, payload capacity, and computational complexity. Robustness
is barely achieved due to the challenging integrity requirement. In this class of techniques,
reversible watermarking schemes have been designed and largely studied, especially for
medical, forensics, artwork, or military applications, which require the integrity of the
data to be preserved. Their peculiarity is the possibility to perfectly restore the original
host data after the detection or the extraction of the hidden data.

The major drawback of active forensics techniques is that they require a specific signa-
ture or watermark to be embedded at the time of recording or a person to embed it later
at the time of sending. This limits the application of such methods to special equipped
cameras or subsequent processing of the content. The need of such a-priori procedure
leads to the definition of such techniques as being active, in contrast to passive techniques
which work in absence of any watermark or special hardware.

1 http://news.bbc.co.uk/2/hi/entertainment/4037901.stm
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1. INTRODUCTION

1.2 Passive Forensics

Passive-blind techniques are regarded as the new direction in digital multimedia security
as they operate, in contrast of active forensics techniques, in absence of any any special
equipped device and do not require the knowledge of any prior information about the
content. The core assumption for this class of techniques is the assumption that original
non-forged content owns some inherent statistical pattern introduced by the generative
processing. Such patterns are always consistent in the un-forged content, but they are
very likely to be altered after some tampering processes. Although visually imperceptible,
such changes can be detecting by statistical analysis of the content itself, without the need
of any a-priori information. Thus they are said to be passive and blind.

Passive forensics techniques can be primarily divided in three categories [140].
Image source identification aims at establishing a link between an image and the device

it was generated from (i.e. camera, scanner or cell phone). The basic assumption is that
digital pictures taken by the same device are overlaid by a specific pattern, that is a
unique and intrinsic fingerprint of the acquisition device.

The second class of digital forensics techniques aims at discriminating between real
and computer generated images, based on the assumption that computer and imaging
technology are nowadays so sophisticated and accurate that the distinction between vir-
tual and real images is increasingly difficult to be done at simple visual inspection due
their high photorealism. This field of research has been intensively explored by the sci-
entific community especially for the legal issues related to it. In 1996 Child Pornography
Prevention Act (CPPA) included certain types of digital images in the law against child
pornography 2:

”2256(8) child pornography means any visual depiction, including any photograph,
film, video, picture, or computer or computer-generated image or picture, whether made
or produced by electronic, mechanical, or other means, of sexually explicit conduct, where:
(B) such visual depiction is, or appears to be, of a minor engaging in sexually explicit
conduct; (C) such visual depiction has been created, adapted, or modified to appear that
an identifiable minor is engaging in sexually explicit conduct.”.

In 2002 such law was struck down by the United States Supreme Court in the case Ashcroft
vs Free Speech Coalition 3, declaring the possession and distribution of synthetically gen-
erated images constitutionally prohibited. This ruling brought an immediate need for
algorithms able to automatically and reliably discriminate between natural and synthet-
ical images in order to prosecute abusers. Many techniques have been proposed in the
literature [140]. Generally, the goal is achieved via machine learning algorithms suitably
tuned to classify natural and artificial images, exploiting either statistical information
present in the natural images or the difference in the acquisition process of the two classes
of images.

2http://www.cs.dartmouth.edu/farid/ publications/cppa96.html.
3The US Supreme Court Ruling in Ashcroft vs. Free Speech Coalition, No. 00-795.

4



1.3. PROPOSED SOLUTIONS AND INNOVATION

The third class of passive forensics aims at uncovering tampering that possibly oc-
curred in the content. Generally, when an image is forged, no visual artifacts are intro-
duced in the digital image and it is hard to disclose the manipulation at simple visual
inspection. However, the underlying image statistics are heavily affected, thus allow-
ing forgery to be treacable. Plenty of techniques have been proposed in the literature,
revealing the increasing interest of the scientific community in the field.

Many of the techniques proposed in the literature are very promising and innovative
but they all have limitations. None of them offers by itself a definitive solution for tamper-
ing detection and authentication, but a general framework could be built to incorporate
several, if not all, techniques which address different issues in digital forensics. However,
the efforts of the scientific community are rapidly progressing and forensics technique will
continue to make it harder and time-consuming, although never impossible, to circumvent
such techniques and make a forgery undetectable.

1.3 Proposed Solutions and Innovation

In the doctoral study here presented two main areas of research are under investigation:
the former finds room in the field of digital watermarking, focusing on the robustness re-
quirement for such techniques, which, as previously stated in Section 1.1, strictly depends
on the application scenario we are working in. The latter area of research concentrates on
passive forensics techniques for digital multimedia authentication, in particular focusing
on geometric-based techniques, both for images and videos.

As far as digital watermarking is concerned, our study started by considering the fact
that in this field no general and standard solution has been reached so far, thus leading
to a multitude of developed techniques. This lack of standard is due to several factors,
among which the heterogeneity of requirements imposed by the application context.
For applications such as copyright protection and digital rights managements, the major
constraint for a mark embedded into a cover work is robustness against manipulations,
including a great variety of digital and analog processing operations. But robustness is
inversely proportional to imperceptibility, i.e. the more robust the watermark, the higher
the strength it has, the higher is its impact on the visual quality of the content. Thus
designing an efficient watermarking algorithm is extremely challenging and the research
is still in progress, proposing a great variety of solutions. As a consequence, the role
of performance evaluation through the use of benchmarking frameworks has achieved
more and more importance to speed up the research in the field of digital watermarking
and stimulate a continuous improvement of the existing techniques by identifying the
weaknesses of different methods.
On the other hand, some other applications, such as medical, forensics or military, require
preserving the integrity of the data. To this aim reversible watermarking schemes have
been largely studied. Their effectiveness is measured by considering imperceptibility,
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1. INTRODUCTION

payload capacity, and computational complexity, while robustness is barely achieved due
to the challenging integrity requirement.

Given such robustness requirements, during this doctoral research we contributed in
each application scenarios proposing the following approaches :

• Robustness evaluation benchmarking tool for image watermarking
We presented a novel and flexible benchmarking tool, based on genetic algorithms
(GA), to assess the robustness of any digital image watermarking system based
the perceptual quality of un-marked images. Such quality is optimized through a
stochastic approach, by finding the minimal degradation that needs to be introduced
in a marked image in order to remove the embedded watermark.
The major difference with the existing benchmarking tools lies in the possibility to
test the selected algorithm under a combination of attacks (not single), and evaluate
the relative performances in terms of perceptual degradation. Moreover, as far as
we know, our present contribution is the first systematic attempt to apply GA as a
benchmarking tool.

• High capacity reversible watermarking
We developed a new reversible image watermarking technique, which applies predic-
tion in the embedding procedure. It is based on the optimization of error prediction
schemes by mean of a similarity matching approach. Neighboring pixels of the to-be-
predicted value are combined and suitably weighted depending on their directional
distances, assigning to similar pixels a greater role in the computation. The algo-
rithm achieves high performances in terms of capacity, computational complexity
and quality of the watermarked image.
The proposed scheme outperforms some well-known state-of-the-art algorithms, both
in terms of capacity gain and computational complexity.

Actually, the most of the overwhelming amount of images and videos we are daily
dealing with do not contain a digital watermark, and it is likely to be like that for the
foreseeable future. In fact, not many cameras are equipped on-chip with watermarking
systems and the attitude of watermarking the content after the acquisition before pub-
lishing it is not common among average users. Therefore, in absence of standardization
of such techniques, there is a strong need of techniques able to assess the integrity and
authenticity of digital contents without any prior knowledge. Since a couple of decades,
the scientific community started to focus its attention on passive forensics, and so did we.
In particular, we primarily studied geometric-based techniques, which make use of mea-
surements of objects in the world and their positions relative to the camera. We investi-
gated both image and video authentication methods, exploiting knowledge of objects in
the world and of the process of image formation (projection into the image plane).
One of the advantages of geometric techniques over techniques based on low-level image
statistics is that the modeling and estimation of geometry is less sensitive to resolution
and compression that can easily confound statistical properties of images and video.

6



1.3. PROPOSED SOLUTIONS AND INNOVATION

Following, we briefly present our contribution in this field:

• Geometric-based Image Forensics
We implemented a new forensic technique for authenticating text in photographs.
Because it is relatively easy to digitally insert text into a photo in a visually com-
pelling manner, it can be difficult to manually determine if text is authentic. Our
forensic technique explicitly estimates the perspective projection of text onto a pla-
nar surface and detects deviations from this model. In particular, we have shown
that inauthentic text often violates the rules of perspective projection and can there-
fore be detected.
To the best of our knowledge, in the context of geometric-based forensic techniques,
this is a first approach dealing with detecting manipulated text.

• Geometric-based Video Forensics
We developed a forensic technique to detect physically implausible trajectory of ob-
jects in video sequences. It explicitly models the three-dimensional trajectory of
objects in free-flight and the two-dimensional imaging of the trajectory by a static
or moving camera. We have shown that the three-dimensional trajectory can be
directly and reliably estimated from a video sequence. Deviations from this model
provide evidence of manipulation. This forensic analysis makes minimal assump-
tions, requires limited user input, and is computationally efficient and effective also
on videos obtained from video-sharing websites.
Although addressed in the robotics and computer vision community, the analysis of
projectiles in video has not previously been considered in the forensic community.
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1. INTRODUCTION

1.4 Structure of the Thesis

The thesis is organized in 8 chapters describing the investigated research filed together
with the main objectives of this doctoral study.

Chapter 2 presents an overview on active forensics techniques (digital watermarking)
and their characteristics. In particular, the research area of benchmarking of digital
watermarking and reversible watermarking are deeply reviewed. In the following two
chapters our major contributions in these fields are reported.

Specifically, in Chapter 3 we describe our new benchmarking framework, developed
to assess the robustness of any watermarking systems. We outline the involved optimiza-
tion procedure introducing genetic algorithms, provide details of the implementation and
confirm the tool effectiveness with experimental results.

Chapter 4 presents in details the proposed reversible watermarking technique by de-
scribing the modified prediction algorithm, both embedding and detection phases and
under/overflow control procedure. Experimental results are reported to prove the effec-
tiveness of the algorithm.

Chapter 5 reviews passive forensic techniques and their principles, primarily focusing
on the issue of image forgeries detection. We introduce our major contributions in such
field, both for image and video authentication, which are described in the following two
chapters.

In particular, Chapter 6 shows our novel forensic tool for detecting if text in an image
obeys the rules of the expected perspective projection, deviations from which are used as
evidence of tampering. Experimental results are reported to demonstrate the effectiveness
of the approach.

In Chapter 7 we present our geometric forensic technique to authenticate projectiles
in video sequences. We briefly review the physics law of a trajectory and explain in detail
the mathematical foundations of the algorithm. Any detected forgeries are illustrated in
an intuitive and geometric fashion. The efficacy of this analysis is demonstrated on videos
of our own creation and on videos obtained from video-sharing websites.

Finally, Chapter 8 collects some concluding remarks and discusses the open issues
related to active and passive forensics.

8



Chapter 2

Active Forensics

This chapter presents a concise overview about digital watermarking, along with its charac-
teristics and applications. We then focus our attention on benchmarking tools to measure
robustness of digital watermarking schemes and on reversible techniques, research areas
which our main contributions are mainly concerned with.

In today’s digital age, with the advent of the Internet, the creation and delivery of
content in digital form results to be easy and affordable for everybody, even for non expert
users. In such a scenario a huge amount of digital contents is available and subjected to
transmission, reproduction and manipulation. Generally, the altered content is visually
identical to the original and thus it has become challenging to be identified just at visual
inspection, bringing up important issues regarding copyright and ownership protection
as well as integrity verification [107, 123]. Unfortunately the current copyright laws are
inadequate for dealing with digital data. This has led the scientific community to focus its
interest towards developing new protection and authentication mechanisms to cope with
such issues. Besides cryptography and steganography, a valuable effort in this direction
is based on digital watermarking [159].

Digital watermarking is referred to as the procedure of embedding some information
(watermark) into digital multimedia content (image, video or audio), possibly in an im-
perceptible way not to degrade the quality of the content. Such embedded information
can be extracted or detected at any later stage for different purposes, including ownership
proof, tamper detection and access control and the like [25, 38, 5].

Its origin and applications date back to ancient time, when first methodologies to
create secret communications were first applied. Hidden messages were written so that

9
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Figure 2.1: General watermarking scheme.

no one, but the sender and intended receiver, could even suspect the existence of the
message. A well known example of early steganography (from greek, ’steganos’ meaning
”covered or protected” and graphein meaning ”to write”) dates from the sixth century
BC, when Herodotus described in his book ”The Histories” how Histiaeus had tattooed
a message upon the shaved head of a slave. Once his hair had grown back, he sent him
to his son-in-law Aristagoras telling him to revolt.
First attempts of watermarks appeared in 1282 in Fabriano (Italy) in the production of
paper, which bore a visible watermark in order to trace its origin.
Starting from the 1990’s, thanks to the remarkable work by Cox et al [25], the digital
watermarking applies similar concepts to digital multimedia contents, including images,
audio or video files.

2.1 Digital Watermarking

According to a commonly accepted definition, a digital watermarking system can be
sketched as a communication channel composed by three elements: the transmitter, the
communication channel and the receiver [73]. They represent the watermark embedding
procedure, the transmission during which any processing operators could be applied to
the watermarked data and the watermark extraction (or detection phase), respectively
(Fig. 2.1).
Given a message m to be embedded and an embedding key ke, a watermark signal is

generated as:

w = f(m, ke) (2.1)

where f(·) is a function depending on several parameters, including owner id, image
dimensions, random values. In the so called informed watermarking the creation of the
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watermark could also depend on the original content I (cover object):

w = f(m, ke, I) (2.2)

The embedding step consists of inserting the so generated watermark w into the orig-
inal content I as following:

Iw = E(I, w) (2.3)

where Iw is the watermarked data and E represents the watermark insertion function.
Several embedding procedures have been explored in the literature. One first classification
can be done based on the working domain the embedding takes place, e.g spatial domain
[139], transformed domain such as Fourier domain [24] or Wavelet domain [176] ( for
further reading please refer to [25, 126, 106]).

The so watermarked content is now ready to be delivered over the communication
channel, where any kind of processing may happen to the content, producing an altered
version of it Ĩw. At any later time the detection phase can be performed to verify the
presence or integrity of the watermark:

m̄ = D(I, Ĩw, kd) (2.4)

where m̄ is the recovered message, D is the detection function and kd is the detection key.
When dealing with blind schemes, the original image is not needed at the detector:

m̄ = D(Ĩw, kd) (2.5)

Since it is unlikely to have the original content always available, blind techniques are
mostly adopted. Whenever the embedding key ke happens to be the same as the detection
key kd we deal with symmetric schemes. Otherwise, if the required keys are different the
method is defined asymmetric or public. These techniques are clearly more secure than
the symmetric ones but implies higher complexity.
To be precise, the detector could either be able to extract the watermark, recovering the
information it carries, or just act as a binary black-box which just verifies the presence of
the mark without reading it [25].

A watermark exhibits many significant characteristics [108]. On the outline, when
designing any digital watermarking, three main requirements must be taken into consid-
eration:

• Invisibility : the ability of the watermark not to visually alter the content. When
this requirement is reached, the original content I and the watermarked one Iw are
approximately indistinguishable. However, visible watermark are available under
the definition of logos.

• Robustness : the capability of the watermark to resist to attacks that may occur
over the communication channel. Robust watermarks are able to resist to even
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malicious attacks and they are adopted mainly in copyright protection applications.
On the other hand, fragile watermarks are likely to be altered even at the slightest
modification of the content, making them suitable for authentication and integrity
verification.

• Capacity : the effective payload that can be successfully embedded. In other words,
the number of bits the watermark encodes.

These requirements are inversely proportional with respect to each other. For example,
to provide a robust watermark a high strength has to be impressed to it to resist to
malicious attacks, but this would lead to a high degradation of the content, thus violating
the invisibility requirements.
It is therefore challenging to design a complete watermarking systems and the fulfillment
of these requirements strictly depends on the context of the entire system in which they are
to be applied. We can summarize the applications for digital watermarking as following
[25]:

• Copyright protection : the aim is to avoid unauthorized parties claiming content own-
ership. Such application requires the embedded information to be robust to possible
attacks the unauthorized party could perform to remove or forge the watermark.

• Fingerprinting : in scenarios where multimedia content is electronically distributed
over a network, the content owner would discourage unauthorized duplication and
distribution. This can be done by inserting a distinct watermark (or fingerprint) in
each copy of the data, thus making any violation traceable. Here the watermark
needs to be invisible so not to alter the quality of the provided content and must be
robust to deliberate attempts of forgery, removal or invalidation.

• Copy prevention control : in a closed system where special hardware is required to
copy and/or view the digital content, a digital watermark could be inserted by the
hardware itself to control and limit the the number of permitted copies. An example
of such a system is the Digital Versatile Disc (DVD).

• Authentication and tamper detection : the integrity of the data is particularly im-
portant to be preserved especially in application such as medical, news reporting
commercial transactions and legal purposes. Clearly a watermark used for authen-
tication purposes should not affect the quality of an image and must be fragile. In
particular, if the integrity must be preserved it is desirable that no processing occurs
to the content. Fragile watermark is likely to be destroyed by any minimal attack,
therefore its absence is evidence of alteration.

In this thesis, we started by focusing our attention on the robustness requirement,
trying to understand what this constraint implies. The majority of application contexts
requires a watermark to be robust against manipulations, including a great variety of
digital and analog processing operations. As a consequence, the role of performance
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evaluation through the use of benchmarking frameworks has achieved more and more
importance to speed up the research in the field of digital watermarking and stimulate a
continuous improvement of the existing techniques.

On the other hand, specific applications deal with sensitive imagery, such as mili-
tary and forensic investigation, recognition and medical diagnosis. As such, they can
not tolerate any alteration of the content. Fragile watermarking techniques have been
developed for such contexts, aiming at proofing authentication and verify integrity. Re-
versible watermarking belongs to this class of techniques. Its peculiarity is the possibility
to restore the original host data after the detection or the extraction of the hidden data.
Thus, we have lossless data hiding techniques, which allow a perfect host recovery or
near-lossless schemes which guarantee very high quality of the recovered data. Reversible
watermarking effectiveness is measured by considering imperceptibility, payload capac-
ity, and computational complexity. Robustness is barely achieved due to the challenging
integrity requirement.

Following, we review the state-of-the-art of the digital watermark benchmarking and
reversible watermarking, research areas where our innovative contributions take place.

2.2 Digital Watermark Benchmarking

When delivered over the communication channel the watermarked content may happen
to be altered or manipulated by mean of several processing operators, which, depending
on their nature, can be classified as malicious or non-malicious. The formers are common
processing operators, such as compression, resizing, cropping or filtering, which do not
aim at specifically removing the watermark but may alter the embedded information.
The latters are performed by malicious attackers, whose goal is to impair the watermark
in order to break the copyright or ownership of the content. According to [56] we can
classify such attacks as following:

• Simple attacks : all those basic processing operators available with common process-
ing tools, such as filtering, compression or resizing. These attacks are not ad-hoc,
since they aim at destroying the watermark impairing the whole content, without
any attempt to disclose and identify the embedded information.

• Synchronization attacks : all the geometric distortions, such as zooming, rotation,
shearing or cropping, belong to this category. They do not really aim at destroying
the mark, but at making the detection or extraction of the mark infeasible or even
impossible. In particular the watermark is still present in the image and could be
eventually still detected.

• Ambiguity attacks : attacks whose goal is to produce a fake watermark to confuse
the original one. One example is the inversion attack by Craver et al. [26].

• Removal attacks : operations which attempt to analyze the watermarked data, con-
secutively separate the embedded information from the host content. In such a way
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the un-marked content is available and usable. Examples are the collusion attack,
denoising operators or compression. In this class we have also attacks derived from
cryptography, as the brute force search of the embedding and/or detection key or
the oracle attack (small variation of the content are applied until the watermark is
not detectable anymore).

It is important to keep in mind that a malicious attacker may be willing to keep a high
quality of the un-watermarked content while removing the mark for future use.
Generally, such attacks could be performed in combination, in order to reach the goal.
However, robustness analysis under combination of attacks is a neglected issue, since no
theoretical formulation for such a scenario has been set so far. In general, benchmarking
tools are very important and useful for the evaluation of algorithm performances against
various attacks, identifying in this way also their weaknesses and failings [101]. As widely
known in cryptography, this analysis process can speed up the research in the field of
digital watermarking and promote a continuous improvement of the existing techniques.
Robustness analysis results important for developers to verify the robustness of their own
method with respect to existing algorithms, thus stimulating the research to look for better
and better solutions. On the other hand, from a users point of view, a benchmarking tool
is useful in order to select the most appropriate watermarking algorithm for the intended
application.

In the literature there are already several benchmarking tools, which standardize the
process of evaluating a watermarking system on a large set of single attacks [87].

• Stirmark [121] : It is a C/C++ software package which applies a number of attacks
(one at each time) to the given watermarked content and performs the detection
process to check the presence of the mark. The average percentage of the correctly
detected watermarks is used as a performance measure to compare different water-
marking techniques. It contains three major category of attacks: ( i) common signal
processing (do not change the size of the content); (ii) geometric transformations
(use of resampling algorithm), (iii) other special transformations [122].

A similar version of this software has been developed for audio contents [86]. It mod-
ifies the audio signal by mean of more than 35 available attacks. Their parametriza-
tion can be tuned to control the strength of the attacks. As in Stirmark for images,
a set of profiles are available, depending on the application scenario the technique
is intended for [36].

• Checkmark [119] and CertiMark [2] : they belong to the so-called ”second gen-
eration” of benchmarking tools [120]. These packages provide higher quality perfor-
mance assessment of the watermarking techniques under test. The novel features of
these benchmarking tools are the introduction of new types of attacks, the use of a
perceptual quality metric to measure the introduced degradation, the possibility to
distinguish between watermark detection and decoding, and finally an application
driven evaluation.
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• Optimark [144]: it is a benchmarking for image watermarking, which provides a
friendly graphical interface and it implements the same attacks as Stirmark, but
with the possibility to create different application-driven application of them. It
supports the execution of multiple trials using images (automatically calculating
the embedding strength that leads to the chosen image quality), attacks, keys, and
messages selected by the user. As output it provides a set of performance indices
and graphics characterizing robustness, payload, execution time, and breakdown
limits of the under-test-technique. The main drawback of Optimark is the lack of
possibility to expand the number of attacks. [145]

• Mesh Benchmark [161] : It s a benchmark for three-dimensional mesh watermark-
ing. Common attacks and perceptual distortions are integrated in the software and
the MRMS (Maximum Root Mean Square Error) is adopted to evaluate the quality
of the un-marked mesh.

2.2.1 Innovative Contribution

We developed an innovative and flexible benchmarking tool to assess the robustness level
of digital watermarking techniques, whose major difference with the existing approaches
is the possibility to test the selected algorithm under a combination of attacks. Moreover
we allow the evaluation of the relative performance to be in terms of visual degradation
perceived by the Human Visual System (HVS), by introducing a novel robustness metric.
In particular, given an application-driven set of image processing operators, it is possible
to evaluate the method performance under any combination of them, finding out the most
effective parametrization of such set of attacks that removes the watermark while ensuring
maximal perceived quality. This problem results to be non linear and multidimensional,
thus requiring a suitable optimization technique. We let Genetic Algorithms (GA) [52]
support the stochastic search of the parameters to be assigned to the chosen operators,
as well as the order they need to be applied in, while optimizing the Weightened Peak
Signal to Noise Ratio (WPSNR) [157], the metric used for the visual quality estimation.
Therefore, the recovered un-marked image turns out to be as close as possible to the
watermarked one.
Up to now, in the field of watermarking, the application of GA has been limited to the
embedding procedure, in particular for the selection of suitable parameters to achieve im-
perceptibility and robustness [182, 105, 65, 142, 17, 83, 143]. Recently, a robust stegano-
graphic system, based on GA, was introduced in [175]. In order to create stego-images
able to break the inspection of steganalytic systems, the authors employ GA to adjust
cover-image values and create the desired statistic features. Finally, in [141], GA are
exploited in the context of relational databases watermarking to optimize the decoding
threshold.
To the best of our knowledge, our present contribution is the first systematic attempt to
apply GA as a benchmarking tool.

Chapter 3 presents a detailed description of such benchmarking framework.
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2.3 Reversible Watermarking

Generally, it is desirable to keep a high visual quality of a watermarked content not to
impair its future use, while satisfying capacity and robustness requirement. In any case,
the watermarked content is somehow different from the original one, because embedding
extra information always introduces even a slight modification. Moreover, such embed-
ding is mostly an irreversible operation. In some particular application systems, this is
not acceptable: medical diagnosis, forensic investigations, art-work, or military require
preserving the integrity of the data. In particular, when dealing with sensitive imagery
the end-user cannot risk to get wrong information from a distorted data (e.g. a radiologist
analyzing a patient’s X-ray).
In such a context, reversible watermarking has been proposed, which allows, besides the
watermark extraction, also a perfect host recovery. Most of reversible techniques are
fragile and they can be exploited for authenticity verification, since the inserted mark is
supposed to disappear whenever any modifications to the host content occur. Therefore,
the major constraints for a reversible watermarking are imperceptibility, payload capacity
and computational complexity, while robustness is scarcely accomplished.

A pioneering work on reversible data hiding has been presented in [48] where Fridrich
et al. propose to compress data features to gain space for hiding the watermark in an
invertible way. Indeed, the lossless compressed original data as well as their location
information are then embedded with the watermark. Following a similar approach, Celik
et al. propose a generalized-LSB watermark embedding [16], while in [177] Xuan et al.
describe a method based on integer wavelet transform. More recently, Lee et al. present
a new proposal for LSB-substitution applied into an integer-to-integer wavelet transform
domain [88].

An important class of methods is based on difference expansion. The first proposal is
due to Tian, which exploits the redundancy among neighboring pixel values, and therefore
pixel differences, to embed the secret data [152]. This method is expanded and modified
in various ways and by different authors. For example, in [3] Alattar extends the pixel-
pair difference approach to vectors, therefore reducing the location map while increasing
the hiding capacity and the computational efficiency. Moreover, Lin et al. work on a
three-pixel block [95], Thodi et al. improve neighboring pixels redundancy exploitation
in [150], Kamstra et al. introduce sorting of expandable locations [74], and Hu et al.
propose to exploit expandable differences both in vertical and horizontal directions [63].

Another significant class of algorithms is based on histogram shifting. Ni et al. pro-
pose the basic technique in [115], where the secret data is embedded through histogram
modification. It exploits peak or zero points in the histogram to modify the pixel values
ranging from the peak point to the zero point. Hwang et al. [66] extend the above algo-
rithm, by using two zero points and one peak point of the histogram as triplet to embed
the data.
The above mentioned classes of techniques were improved, in the last few years, by ex-
ploiting prediction error techniques in the embedding procedure, generally adopted for
lossless compression. In particular, Thodi et al. propose a new technique combining
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histogram shifting and the Median Edge Detector (MED) predictor, thus resulting in a
higher embedding capacity [149]. In particular, the MED predictor allows to better use
the correlation inherent in the neighborhood of a pixel than the difference expansion.
Similarly, Hong et al. employ MED with histogram shifting for improving both capacity
and image quality [58]. On the other hand, Fallahpour designs a novel scheme based on
Gradient Adjusted Prediction (GAP) where prediction errors are first computed and then
modified for embedding the watermark [39]. In [84] Kuribayashi et al. apply difference
expansion of a generalized integer transform and the JPEG-LS predictor, achieving large
capacity with improved image quality. Tsai et al. apply predictive coding and histogram
shifting specifically for medical imaging [153]. Tseng et al. propose in [154] the use of var-
ious predictors according to embedding capacity given by the prediction error. Similarly,
a new method improving the overflow location map and its compressibility is presented
by Hu et al. in [64]. Finally, Sachnev et al. propose the sorting of prediction errors to
reduce the size of the location map enable by the use of a rhombus prediction scheme
[137].

2.3.1 Innovative Contribution

We implemented a high-capacity reversible watermarking framework to extend classical
prediction-based schemes, exploiting image redundancy and pixel local dependency, with
non-local similarity information. Instead of applying the prediction to evaluate the pixel
value from a single neighborhood, we expand the prediction to other neighborhoods inside
a region surrounding the to-be-predicted pixel in order to benefit from image content
redundancy.
In the literature the use of non-local information has been proposed for different purposes,
such as motion estimation [173], in-painting [174, 28], compression [129] and denoising
[104, 13]. To the best of our knowledge this is the first attempt to apply such a concept
to digital watermarking.
Experimental tests confirm that the proposed algorithm allows the complete recovery
of the original host signal, and achieves high embedding capacity still providing good
quality of the watermarked image. The effectiveness of the method is demonstrated also
with respect to some state-of-the-art algorithms, whose performances are outperformed.

Chapter 4 describes in details the proposed reversible framework.
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Chapter 3

GA-based Robustness Evaluation
Method for Digital Watermarking

This chapter presents a novel and flexible benchmarking tool based on genetic algorithms
(GA) and designed to assess the robustness of any digital image watermarking systems.
The main idea is to evaluate robustness in terms of perceptual quality, measured by
weighted peak signal-to-noise ratio. Through a stochastic approach, we optimize this qual-
ity metric, by finding the minimal degradation that needs to be introduced in a marked
image in order to remove the embedded watermark. Given a set of attacks, chosen accord-
ing to the considered application scenario, GA support the optimization of the parameters
to be assigned to each processing operation, in order to obtain an unmarked image with
perceptual quality as high as possible.
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3.1 Introduction

In the age of information technology, it has become easier and easier to access and redis-
tribute digital multimedia data. In this context, the scientific community started focusing
on the growing problems related to copyright management and ownership proof. Digital
watermarking techniques have been widely studied (see for instance [25, 38, 5], and the
references therein) as an effective instrument against piracy, improper use or illegal alter-
ation of contents [96]. Therefore, except for specific applications, the major constraint for
a mark embedded into a cover work is robustness against manipulations, including a great
variety of digital and analog processing operations, such as lossy compression, linear and
nonlinear filtering, scaling and noise addition. Therefore, an accurate robustness analy-
sis becomes important both for developers, to verify the robustness of the own method
with respect to existing algorithms, thus stimulating the research to look for better and
better solutions, and for an users point who can assess the robustness level and select
the most appropriate watermarking algorithm for the intended application. In light of
this, the role of benchmarking frameworks has become more and more important. In the
literature, there are already several benchmarking tools, which standardize the process of
evaluating a watermarking system on a large set of single attacks - Stirmark, CheckMark,
CertiMark and OptiMark (see Section 2.2).

In this work, we developed an innovative and flexible tool suitable to assess the ro-
bustness of digital watermarking techniques, by introducing a novel metric based on the
perceptual quality evaluation for unmarked images. A set of attacks is chosen depending
on the application the under-test algorithm is intended for (e.g., copyright or medical
applications). Then genetic algorithms (GA) perform the search of near-optimal param-
eters to be assigned to each image processing operator, as well as the order they need to
be applied in, to remove the watermark from the content while keeping the perceptual
quality of the resulting image as high as possible. The recovered unmarked image turns
out to be as close as possible to the watermarked one in terms of the perceived quality,
here measured by means of the weighted peak signal-to-noise ratio (WPSNR). We stress,
however, that other metrics could be adopted as well. The major difference with the ex-
isting benchmarking tools consists of the possibility to test the selected algorithm under a
combination of attacks, evaluating the relative performance in terms of visual degradation
perceived by the human visual system (HVS). We point out that the combination of more
attacks produces a gain of quality in the unmarked image com- pared to the degradation
introduced by one single image processing operator to remove the watermark. On the
other hand, taking into account the effect of more than one attack at one time makes
this problem nonlinear and multidimensional. Therefore, a suitable optimization tech-
nique as GA is needed to converge to a optimal or near-optimal solution. As far as we
know, our present contribution is indeed the first systematic attempt to apply GA as a
benchmarking tool.

20



3.2. THE PROPOSED APPROACH

3.2 The proposed approach

3.2.1 Robustness Evaluation

Visual quality degradation due to the watermark embedding and the removing process is
an important but often neglected issue to consider in order to design a fair watermark-
ing benchmark. Given a pattern of possible attacks, the aim of this work is to find a
near-optimal combination of them, which removes the mark minimizing the degradation
perceived by the HVS [30]. Hence, we need to define a proper quality metric.

In general, several metrics can be used to evaluate the artifacts but the most popular
one is the peak signal-to-noise ratio (PSNR) metric. The success of this measure is due to
its simplicity but it is well known that it is not suitable to measure the quality perceived
by Human Visual System (HSV) [170].

Since advanced watermarking techniques exploit the HVS, the use of the PSNR as a
quantitative metric for the distortion caused by a watermarking process might result in
a misleading quantitative distortion measurement. Recently, more and more research has
been carried on about distortion metrics adapted to the HVS [90]. In [157], a modified
version of PSNR, the so-called Weighted PSNR, is introduced: it takes into account that
HVS is less sensitive to changes in highly textured areas and introduces an additional
parameter, called the noise visibility function (NV F ), which is a texture masking function:

WPSNR = 10 log10

I2
peak

MSE × NVF2 , (3.1)

where Ipeak is the peak value of the input image I.
The NVF can be modeled as a Gaussian to estimate the local amount of texture in the

image. The value of NVF ranges from approximately zero for extremely textured areas,
and up to one for clear smooth areas of an image:

NVF = norm

(
1

1 + δ2
block

)
, (3.2)

where norm is a normalization function and δ2
block is the luminance variance of the 8 ×

8 block. The NVF is inversely proportional to the local image energy defined by the
local variance and identifies textured and edge areas where modifications are less visible.
Therefore, for images with no high textured areas, WPSNR is almost equivalent to PSNR.

The main idea of this contribution is to evaluate the robustness of a watermarking sys-
tem in terms of perceptual quality measured by WPSNR. Namely, fixed a set of admissible
image processing operators, the robustness of a method is quantified as:

R(q) =
Q

M(q)
, (3.3)

where Q is a fixed quality threshold, q is the perceptual quality of a watermarked image Iw

and M(q) is the maximal perceptual quality of the unmarked image obtained by applying
to Iw any combination of the selected attacks.
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Q > M(q) R(q) > 1 ROBUST

Q 6 M(q) R(q) 6 1 NOT ROBUST

Table 3.1: Robustness evaluation metric. Given Q, if the robustness index R(q) is greater than
1, then it is possible to remove the mark from the given image only degrading its maximal
perceptual quality M(q) under Q, thus the algorithm is said to be robust. If M(q) is greater
than the threshold Q (i.e., R(q) is less than 1) the watermark is said to be not robust.

Given Q, chosen dependently on the application scenario, and the value of M(q),
found according to the process later described in Section 3.2.3, the robustness index R(q)
is evaluated according to Equation 3.3. If R(q) is greater than 1, then it is possible to
remove the mark from the given image only degrading its maximal perceptual quality
M(q) under Q. As a consequence, the watermarking algorithm can be declared robust
since a large degradation needs to be introduced in the image to remove the mark. On the
other hand, the embedded watermark is not robust if M(q) assumes values higher than
the threshold Q (i.e., R(q) is less than 1). Such robustness assessment is summarized in
Table 3.1.

In this work, we attempt to maximize the function WPSNR, obtaining M(q). Since
we consider combinations of attacks, a suitable optimization technique is needed in order
to avoid brute force computation.

3.2.2 Genetic Algorithm

GA can be used to achieve an optimal or near-optimal solution in multidimensional non-
linear problems, such as the one to be handled in this context. GA are robust, stochastic
search methods modeled on the principles of natural selection and evolution [52]. GA
differ from conventional optimization techniques in that:

• they operate on a group (population) of trial solutions (individuals) in parallel: a
positive number (fitness) is assigned to each individual representing a measure of
goodness;

• they normally operate on a coding of the function parameters (chromosome) rather
than on the parameter themselves;

• they use stochastic operators (selection, crossover, and mutation) to explore the
solution domain.

Initially a set of individuals is encoded with chromosome-like bit strings to form an initial
population. The cardinality of the set of individuals is called population size [52]. At each
iteration, called generation, the genetic operators of crossover and mutation are applied
to selected chromosomes in order to generate new solutions belonging to the search space.
The optimization process terminates when a desired termination criterion is satisfied, for
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Figure 3.1: Individual (chromosome) definition by Genetic Algorithms. It encodes a possible
parametrization of the pre-selected attacks, together with the order they must be applied.

example, the maximum number of generations is reached, or the fitness value is below a
fixed threshold.

GA have been widely employed to solve nonlinear optimization problems dealing with
a large solution space. Although they are not guaranteed to find out the global optimum,
they are less likely to get locked into a local optimum compared to traditional optimization
techniques. Moreover, GA allow dealing with a larger searching space than conventional
techniques; as a consequence, they are more likely to find suitable solutions to highly
nonlinear and constrained problems. The efficiency and the computational complexity of
GA are heavily dependent on tuning parameters and can be calculated in terms of the
number νop of elementary operations required by the algorithms, as follows [52]:

νop = (PC + PM)PKmax, (3.4)

where PC and PM are the crossover and mutation probability, respectively, P is the
population size, and Kmax is the number of iterations.

In this specific application, an individual represents one possible pattern of parameters
to be assigned to the preselected attacks, plus the order in which they must be applied (see
Figure 3.1). Each attack can be parameterized by n values, according to its specification.
The image processing operators must be chosen before running the tool, according to the
considered application scenario and are applied to the marked image in order to remove
the embedded watermark. The evolution of the population leads to a fine tuning of the
parameterization of these attacks, such that they succeed to un-mark the image while
introducing a minimal degradation. Moreover, the GA support the optimization of the
order of the attacks reaching an optimal or near-optimal solution. In particular, we have
experimentally shown the influence of the applied order, since attacks parameterized in
the same way but applied with different order may produce a loss of quality of even more
than 1 dB.

3.2.3 Tool description

In the proposed tool, GA are applied in the detection procedure of the watermarking
scheme. An image previously watermarked by the algorithm to be tested and with per-
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ceived quality q is attacked with different combinations of selected image processing op-
erators, in order to remove the embedded mark. The aim is to find a near-optimal combi-
nation of attacks to apply in order to remove the watermark, while granting a perceptual
quality of the resulting image as high as possible. The algorithm robustness is then mea-
sured via Equation 3.3. The optimization process is performed by GA and WPSNR is
the fitness value to be maximized. We remark that the choice of this fitness function has
been done to measure perceptual quality of unmarked images, but the user may adopt
any other quality metric. In the following, we briefly depict the operations of the process
performed by GA and reported in Figure 3.2:

1. Randomly generate combinations of parameters to be applied to processing operators
and convert them into chromosomes. This way, an initial population is created.
The population size is typically set to 10 times the number of variables the algorithm
has to deal with (length of the chromosome). Therefore, it depends on the number
of values needed to parameterize each attack we want to perform in the robustness
evaluation process. In Section 3.3, we report the experimental analysis, where GA
deal with four variables; thus the population size is set to 40. In this work, where
the population size is not particularly large, we can reach a good efficiency of GA;
in fact, we have small population over a large search space with a consequent fast
convergence to optimal or near-optimal solution. Experimental results reported in
Section 3.3 show in detail the efficiency of GA in terms of computational time and
costs. Note that as the number of attacks to be performed increases, the population
dimension and correspondingly the execution time increase as well.

2. Apply each generated attack to the input image and evaluate the WPSNR of each
chromosome in the current population which removes the watermark, i.e. which
generates an unmarked image, and then create a new population by repeating the
following steps:

• pick as parents the chromosomes with the higher WPSNR, according to the
selection rule;

• form new children (new patterns of attacks) by applying to parents the stochas-
tic operator of crossover with probability PC ;

• mutate the position in the chromosome with probability PM .

In this work, widely used parameters for genetic operators have been selected (see
Section 3.3). Among all individuals of the current population which allow removing
the watermark, the one that provides an image with the higher WPSNR will survive
to the next generation. We set to zero the fitness value of those chromosomes which
do not succeed in removing the mark.

If in this step no solutions for the problem are found, i.e., none of the individuals
of the population succeeds in removing the watermark, another population is re-
initialized and the process is repeated until a termination criterion is met (number
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Figure 3.2: Block diagram of the proposed benchmark, involving all the genetic algorithm steps
taken to attempt removing the watermark.
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of generation exceeded). Consequently, the result of the test is that the analyzed
watermarking technique is robust to the selected attacks.

3. A new iteration with the just generated population is processed. This new population
provides new attacks parameters, their corresponding fitness values are evaluated,
and at every generation the individual with the highest fitness value is kept.

4. The process ends when a given number of generation is exceeded (termination crite-
ria). At that point a near-optimal combination of attacks removing the watermark
from the image has been discovered. This way, the lacks of the tested algorithm
with respect to the selected attacks are stressed out. At the end of the process, GA
return the maximized fitness value, i.e., the maximized WPSNR M(q). According
to Equation 3.3, it is possible to calculate the robustness index R(q) and assess the
global robustness performances of the watermarking technique.
In particular, given the quality threshold Q, M(q) 6 Q means that it is hard to
remove the watermark while keeping a high perceptual quality, hence, the water-
marking technique is declared to be robust. On the other hand, if M(q) > Q, our
robustness measure indicates a serious weakness of the scheme corresponding to high
quality of the unmarked image.

3.3 Results

3.3.1 Setup

In this section, we set up the robustness analysis of two perceptual-based watermarking
algorithms, the former presented by Barni et al. in [6] and the latter proposed by Li and
Cox in [93]. The main difference between them lies in the watermark recovery process,
allowing watermark detection in the first case and watermark decoding in the second one.

In order to assess the robustness of these algorithms, we take into account several
grayscale common images of size 512×512. The parameters for the embedding procedure
are carefully selected so that the resulting watermarked images present the same WPSNR.
They are then processed by the proposed GA-based tool which requires the selection of
attacks, as shown in Figure 3.2.

In this work, we take into consideration a combination of some (2 or 3) of the following
attacks, each of them parametrized by a single variable:

A. JPEG2000 compression, parameterized by the compression ratio CR ranging from 8
(no compression) down to 0.01 as a float number;

B. JPEG compression, parameterized by the quality factor QF ranging from 100 (no
compression) down to 20 as a float number;
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Population size ≈10 times number of variables

Creation function Uniform

Fitness scaling Proportional

Parents selection Roulette wheel

Crossover function Single point

Crossover probability 0.8

Elite count 1

Mutation function Uniform

Mutation rate 0.1

Stopping criteria 1000 iterations

Table 3.2: Genetic Algorithms parametrization used in the experimental session.

C. Additive white Gaussian noise (AWGN), parameterized by the noise power NP ex-
pressed in decibels, ranging from 0 to 40, and, for [93] parameterized in terms of
standard deviation δ, ranging from 0.1 to 2;

D. Resize, parameterized by the resize factor RES ranging from 1 down to 0.1;

E. Amplitude Scaling, parameterized by the scaling factor SF , ranging from 0.1 up to 3.

The choice of the attacks will depend on the application for which the investigated algo-
rithm is intended for. We selected largely used processing operations whose combination
represents a realistic scenario. Notice that the choice of both operator and parameter
ranges is fully arbitrary and application driven although it affects the computational cost
according to Equation 3.4.

Moreover, GA look also for the order the attacks are applied in, since there is no
theoretical reason why the attacks should be commutative and indeed we experimentally
notice the difference in the resulting image quality when the selected attacks are combined
with different orders.

In this work, GA parameters have been tuned according to standard settings [52],
as reported in Table 3.2. Genetic algorithms allow a stable convergence of the fitness
function. Figure 3.3 illustrates the fitness trend in the case of algorithm [6] and the
Baboon image with q = 59 dB (similar trends for all other simulations are not reported
here). All simulations are carried on an Intel Core 2 Quad CPU at 2.4 GHz, with 2-GB
Memory RAM.

GA tool available at : http://www.mathworks.com/access/helpdesk/help/toolbox/gads/
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Figure 3.3: Genetic algorithms allow a stable convergence of the fitness function. Shown is the
plot of the fitness function M(q) ( on the horizontal axis) versus the number of GA iterations
(on the vertical axis).

3.3.2 Analysis of Barni’s algorithm

This watermarking method works on wavelet domain and exploits perceptual masking in
order to embed the mark improving invisibility and robustness [6]. The main advantage of
this method with respect to existing algorithms operating in the discrete wavelet transform
(DWT) domain is that masking is accomplished pixel by pixel by taking into account the
texture and the luminance content of all image sub-bands. The mark w (a pseudorandom
sequence) is adaptively inserted into the DWT coefficients of the three largest detail sub-
bands, as follows:

Ĩw
θ = Iθ(i, j) + αwθ(i, j)xθ(i, j), (3.5)

where Iw
θ are the sub-band coefficients with θ ∈ {0, 1, 2}, α is the global parameter for

strength, wθ(i, j) is a weighting function considering the local sensitivity of the image to
noise, and xθ(i, j) is the mark to be embedded. To detect the presence of the watermark,
the correlation between the extracted DWT coefficients and the watermark is computed
by

ρ =
1

3MN

2∑

θ=0

M−1∑

i=0

N−1∑

j=0

Iw
θ (i, j)xθ(i, j), (3.6)

where 2M × 2N is the dimension of the host image, and compared to a threshold Tρ,
chosen dependently on the admitted false alarm probability [6].

In order to evaluate the robustness of this method and compute the value R(q) defined
in Equation 3.3, we apply the following steps:
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Quality parameters Attack parameters

q PSNRm α M(q) PSNRu CR NP RES Order

Lena Image

47 24.6 2.11 37.8 23.3 0.48 0 0.25 C-A-D

50 27.4 1.51 37.6 28.2 1.63 0 0.25 D-C-A

53 30.4 1.07 37.8 26.9 0.17 1 0.3 C-D-A

56 33.4 0.75 38.4 28.2 2.66 1 0.25 C-A-D

59 36.4 0.53 39.0 29.2 2.74 0 0.28 C-A-D

62 39.6 0.37 40.0 30.1 2.01 0 0.3 A-C-D

Baboon Image

47 24.3 1.57 32.5 19.4 4.3 1 0.25 C-A-D

50 27.3 1.11 32.9 20.2 4.02 0 0.26 C-A-D

53 30.4 0.78 34.4 21.0 4.14 0 0.3 A-C-D

56 33.4 0.55 34.8 21.4 3.93 0 0.31 C-A-D

59 36.4 0.39 36.5 21.9 3.86 0 0.35 D-A-C

62 39.3 0.27 37.8 22.3 3.75 0 0.38 A-C-D

Table 3.3: Robustness results of Barni’s algorithm under the combination of JPEG2000 com-
pression (CR), addition of WGN (NP) and resize attack (RES ), for different initial quality of
the watermarked image q. For each experiment, quality parameters, all measured in Db, are
shown. Starting from the first column: the quality of the watermarked image q and PSNRm,
measured with WPSNR and PSNR respectively, the strength α of the embedded watermark
and the quality of the un-marked image M(q) and PSNRu, measured with WPSNR and PSNR
respectively. The parameterizations of the selected attacks are reported, together with the order
they must be applied.

I. tune the embedding strength α in Equation 3.5 so that q =WPSNR(Iw);

II. select the detection threshold Tρ in such a way that the false positive probability is
less than a fixed value Pfa;

III. run the GA in order to determine M(q) and set R(q) = Q

M(q)
as in Equation 3.3.

In our simulations, the detection threshold is adaptively changed depending on the pa-
rameter α and imposing a probability of false alarm Pfa 6 10−6(refer to [6]).

In Table 3.3, experimental results for the Lena and Baboon images are reported. Both
are processed with the combination of three image processing operations A, C, and D
described in Section 3.3.1. For completeness sake, we report also the PSNR values for
both the marked images PSNR (PSNRm)and the unmarked ones PSNRu. The elapsed
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(a) (b) (c) (d)

Figure 3.4: Marked and Unmarked example images for Barni’s algorithm: in panel (a) Lena
image watermarked with q = 47 dB, while in panel (b) its unmarked version with M(q) = 37.8
dB. Baboon image watermarked with q = 47 dB is shown in panel (c) and in panel (d) this
image unwatermarked with M(q) = 32.53 dB.

time for obtaining such results is almost 55s per iteration. We underline the weakness
of the algorithm with respect to the resize operation, which plays the main role in the
watermark removal process. In particular, in the case of Lena, the resulting unmarked
image presents a high value of WPSNR; this highlights a robustness limitation of the
algorithm under test for this image.

On the other hand, this is no longer true for Baboon: indeed, it is worth noticing that
the behavior of the algorithm is image-dependent. In Figure 3.4, examples of the output
images (referring to Table 3.3) are shown. The difference is due to the intrinsic nature of
the watermarking algorithm. Being a perceptual method, its behavior varies depending
on the texture of the content it is dealing with.

To have a whole evaluation of the robustness of the method we are analyzing referring
to the single images, we calculate the robustness index R(q) according to Equation 3.3.
Averaging over different watermarks we get the plots reported in Figure 3.5 , where the
quality threshold is set to 40 and 35 dB. In the first case, the method results to be very
robust, since R(q) > 1 ∀q. In the second case, instead, the dependence of the behavior
on the image content is evident. For very highly textured images, such as Baboon, the
robustness of the method can be preserved using an embedding strength α > 0.5. On the
other hand, for the Lena image, the algorithm turns out to be not robust.

The plots in Figure 3.5 highlight the importance of the choice of the quality threshold
Q, which strictly depends on the application scenario and greatly influences the robustness
assessment. We stress that the user of the proposed tool can properly choose the signal
processing operations to give as input to the framework and the results presented here
are just an example of application.

As a proof of concept, we carried out simulations also on another image processing
operator that is more dangerous and subtle, such as geometric manipulation called shear-
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Figure 3.5: Performance plots for Barni’s algorithm, when setting the threshold to Q = 40 db
and Q = 35 dB, under the combination of JPEG2000 compression, addition of WGN and resize
attack. On the vertical axis is the robustness metric, which, when greater than 1, indicates a
good robustness of the algorithm.

ing. This has been done to verify the robustness of the algorithm also from a security
point of view. Together with JPEG2000 compression (A) we apply the following attacks:

F. Median Filter, parameterized by its window size (WS);

F. Shearing, parameterized by X and Y, representing respectively the geometric distortion
on the X and Y axis;

In Table 3.4 results are reported for Baboon and Boat images. We underline that
in the case of Baboon image all the attacks play a relevant role in the removal process,
while in case of Boat image the shearing attack does not influence the process. This could
be justified by analyzing the content of the images, which differs in texture. The PSNR
values remain pretty low, due to the nature of the embedding algorithm. We point out
that the combination of more attacks produces a gain of quality of the un-marked image
compared to the exploitation of one single image processing operator, as reported in Table
3.4. In both cases, the median filter can be considered the most effective attack, since
it introduces a lower degradation compared to the others, while shearing is devastating.
Figure 3.6 shows the good perceptual quality of the attacked Baboon and Boat images.
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Quality parameters Attack parameters

M(q) PSNRu CR WS X Y Order

Baboon Image

34.66 19.83 2.64 4 0.1 0 E-F-A

29.33 18.79 0.05 – – – –

34.36 19.83 – 4 – – –

18.68 11.81 – – 1 14 –

Boat Image

37.02 23.34 1.78 5 0 0 F-E-A

31.71 21.77 0.05 – – – –

36.75 23.34 – 4 – – –

20.12 13.65 – – 8 1 –

Table 3.4: Security analysis of Barni’s algorithm under the combination of JPEG2000 com-
pression (CR), median filtering (CRWS) and shearing (X,Y ) for different initial quality of the
watermarked image q. For each experiment, the quality of the un-marked image M(q) and
PSNRu, measured with WPSNR and PSNR respectively, are reported in dB. The parameteri-
zations of the selected attacks are reported, together with the order they must be applied. A
gain of quality of the un-marked image is achieved exploiting the combination of these attacks,
rather than using one single image processing operator.

(a) (b)

Figure 3.6: Successfully attacked and un-marked Baboon (a) and Boat (b) images referred to
Table 3.4.
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3.3.3 Analysis of Li’s algorithm

The algorithm presented in [93] by Li and Cox is an important enhancement of traditional
quantization index modulation (QIM) methods overcoming the sensitivity to volumetric
changes of QIM schemes by adaptively selecting the quantization step size according to
a modified version of Watsons model [171]. The authors first describe the need of dither
modulation (DM) to address the problem of poor fidelity in some areas of the cover object
in traditional QIM schemes due to the fixed quantization step size. DM, first proposed
by Chen and Wornell as an extension of the original QIM method [18], introduces a
pseudo-random dither signal reducing in such a way the perceptual artifacts caused by
quantization. The embedding function embeds the message bit mn by

yn(xn, mn) = Q(xn + d(n, mn), ∆) − d(n, mn), (3.7)

where

d(n, 1) =

{
d(n, 0) + ∆/2 if d(n,0) < 0
d(n, 0) + ∆/2 if d(n,0) > 0

(3.8)

and d(n, 0) is a pseudorandom signal with a uniform distribution over [−∆/2, ∆/2] and
L is the number of samples.

To improve fidelity, Watsons perceptual model is adopted to calculate a slack, that
is the maximal distortion allowed for each discrete cosine transform (DCT) coefficient.
A slack is then employed to adaptively adjust the quantization step size used in the
quantization process of the DCT coefficients.
Operating in the DCT domain, slacks calculated from Watsons model are multiplied by a
global constant G in order to get the final quantization step size for each DCT coefficient
(notice that G must be known in the decoding phase). Moreover, G is tuned to empirically
control the quality of the watermarked image. QIM schemes are generally weak with
respect to volumetric scaling. To address this problem, Watsons model has been modified
so that the quantization step size is scaled linearly with respect to scaling amplitude of
the volumetric attack. This way decoding can be correctly performed. Rational dither
modulation (RDM) is then introduced: in particular, the authors propose to calculate the
quantization step size for the current block using the slacks of previously watermarked
blocks. The final perceptually adaptive RDM method is referred to as rational dither
modulation modified Watson model (RDM-MW).

In the detection phase, two signals, namely Sr(n, 0) and Sr(n, 1), are calculated as
follows:

Sr(n, 0) = Q(rn + d(n, 0), ∆) − d(n, 0) (3.9)

Sr(n, 1) = Q(rn + d(n, 1), ∆) − d(n, 1) (3.10)

where rn is the received signal. The recovered bit is the closest in the Euclidean metric
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q G PSNRm WD DWR q G PSNRm WD DWR

Lena Image Baboon Image

47 1.149 23.28 63 8.5 47 0.886 25.08 45.9 9.51

53 0.574 29.27 32.02 14.24 53 0.443 31.09 23.01 15.52

59 0.284 35.36 16 20.33 59 0.218 37.22 11.46 21.65

65 0.136 41.17 8.15 26.67 65 0.104 43.56 5.81 27.99

71 0.053 49.47 4.48 34.45 71 0.041 51.06 3.29 35.49

Table 3.5: Embedding values for Li’s algorithm, for both Lena and Baboon image. Starting from
the first column, we report the quality of the un-marked image q, measured with WPSNR , the
embedding parameter G, the PSNR f the watermarked image PSNRm, the Watson Distance
(WD) and the Document to Watermark Ratio (DWR).

to the received signal r:

m̂n = argmin︸ ︷︷ ︸(rn − Sr(n, l))2 (3.11)

l ∈ (0, 1)

Since one message bit is spread into a sequence of N samples, the code rate is 1/N and
the detected message bit is determined by accumulating the two Euclidean distances for
N samples, as follows:

m̂n = argmin︸ ︷︷ ︸

nN∑

h=(n−1)N+1

(rh − Sr(h, l))2 (3.12)

l ∈ (0, 1)

with n = 1, 2, . . . , L/N . This watermarking method implies a decoding process, which is
evaluated in terms of bit-error rate (BER).
In this analysis context, we embed a message of length 8129 using a 1/31 rate repetition
code, following the reference paper [93], and the BER threshold is fixed to 0.2.
In order to compute the value R(q) defined in Equation 3.3, we proceed as follows:

I. tune the global constant G such that q =WPSNR(Iw);

II. fix a BER threshold TBER discriminating between watermarked and un-watermarked
images;

III. run the GA in order to determine M(q) and set R(q) = Q

M(q)
as in Equation 3.3.

Concerning point I, we selected G in order to have values of q and corresponding
PSNRm as reported in Table 3.5. The document-to-watermark ratio and the Watson
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(a) (b) (c)

Figure 3.7: Lena image, marked with Li’s algorithm: in panel (a) with q = 47 dB, in panel (b)
with q = 53 dB and in panel (c) with q = 65 dB.

distance of the marked image are also reported, following the setting choices in [93].
Figure 3.7 shows three images of Lena, watermarked in order to reach a quality of
q = 47, 53, 65 respectively, following embedding parameters of Table 3.5.

First we test the algorithm under the combination of attacks suggested in the reference
paper: JPEG compression (B), AWGN (C), and amplitude scaling (E). Results for the
Baboon and Lena images are reported in Table 3.6. The elapsed time for obtaining such
results is almost 100s per iteration. As underlined in the description of the algorithm, we
can notice a weakness with respect to JPEG compression. This attack is able to remove
the mark while introducing a minimal degradation in the resulting image. This is not
surprising considering QIM-based algorithms. Notwithstanding, these tests allow us to
demonstrate the effectiveness of the proposed tool.

Figure 3.8 plots the robustness index and underlines once again the weakness of the
algorithm, since R(q) < 1 ∀q. Notice the similar behavior of the algorithm for different
images.

A further experimental analysis is carried out in order to analyze the algorithm under
the effect of JPEG2000 compression (A) instead of classical JPEG. This attack has been
chosen because it is expected to become the new standard for image compression; it is,
therefore, interesting to examine the robustness of watermarking algorithms with respect
to this attack. The elapsed time for obtaining such results is about 120s per iteration.

In Table 3.7, the obtained results for the Baboon and Lena images are reported. It is
clear that as the quality of the marked image increases, it becomes easier and easier to
remove the mark, introducing little degradation in the image. It is worth stressing the
crucial role of JPEG2000 compression and AWGN in the watermark removing process,
while the amplitude scaling does not enter into play: indeed the algorithm has been
designed to be resistant to this last kind of attack.
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Quality parameters Attack parameters

q M(q) PSNRu QF δ SF Order

Lena Image

47 49.4 24.5 54 1 0.98 C-B-E

59 54.0 36.3 89 0.9 0.98 E-C-B

71 54.4 45.3 98 1 0.98 E-C-B

Baboon Image

47 51.4 25.8 64 1.2 0.98 E-B-C

59 55.2 37.6 91 1.3 0.98 B-E-C

71 55.4 47 98 0.1 0.99 B-C-E

Table 3.6: Robustness results of Li’s algorithm under the combination of JPEG compression
(QF ), addition of WGN ( δ) and amplitude scaling attack (SF ). Starting from the first column:
the quality of the watermarked image q and the quality of the un-marked image M(q) and
PSNRu, measured with WPSNR and PSNR respectively. The parameterizations of the selected
attacks are reported, together with the order they must be applied.
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Figure 3.8: Performance plots for Li’s algorithm, when setting a quality threshold Q = 40 db,
under the combination of JPEG compression, addition of WGN and amplitude scaling attack.
The robustness metric, R(q), reported on the vertical axis, indicates a weakness of the algorithm
to the selected attacks, since R(q) ≤ 1.
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Quality parameters Attack parameters

q M(q) PSNRu CR δ SF Order

Lena Image

47 37.6 22.9 0.17 1.2 0.97 E-C-A

53 42.1 28.3 0.31 2.0 0.97 A-C-E

59 45.6 33.1 0.48 2.5 0.97 C-A-E

65 49.8 38.1 0.85 0.8 0.98 A-C-E

71 53.2 43.4 3.87 2.2 0.98 C-A-E

Baboon Image

47 35.8 22.3 0.55 1.8 0.97 C-A-E

53 40.9 27.2 1.12 3.1 0.97 A-E-C

59 45.7 33 1.8 0.8 0.98 C-E-A

65 49.2 37.6 3.53 4.0 0.97 A-E-C

71 55.1 44.9 6.01 1.8 0.98 A-C-E

Table 3.7: Robustness results of Li’s algorithm under the combination of JPEG2000 compression
(CR), addition of WGN (NP ) and amplitude scaling attack (SF ). Starting from the first
column: the quality of the watermarked image q and the quality of the un-marked image M(q)
and PSNRu, measured with WPSNR and PSNR respectively. The parameterizations of the
selected attacks are reported, together with the order they must be applied.

We would like to underline, once again, the benefits of the search of the more suitable
order the attacks should be applied. Referring to Table 3.7, we can notice the difference
in the resulting bit error rate and in the maximum M(q) when different orders are applied
(see Table 3.8) to Baboon image watermarked with q = 47dB.

By computing the robustness index R(q) of Equation 3.3, we get the plot in Figure
3.9. By setting the quality threshold to 40 dB, we can assess the robustness of the under-
test-algorithm for values of the perceptual quality of the input image q lower than 53
dB (R(q) > 1 for q < 53). It means that the mark has to be embedded with a quite
high strength to be robust in this case. Once again, notice the uniform behavior of the
algorithm for different images. This highlights a big advantage of this algorithm: it seems
to be independent of the image content, thus allowing a wider application. In order to
verify this statement, we have repeated the last experiment over ten different standard
images (Baboon, Lena, Boat, Cameraman, Peppers, Barbara, Goldhill, Clown, Airplane,
Walkbridge). Results have been plot in Figure 3.10, where both mean and variance are
reported for different values of q and Q = 40dB. This provides clear evidence of the image
independency of the algorithm, since the variance of WPSNR is at most 5%.
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M(q) BER Order

35.78 0.21 A-C-E

35.78 0.208 A-E-C

35.83 0.222 C-A-E

35.61 0.191 C-E-A

35.62 0.191 E-C-A

35.63 0.193 E-A-C

Table 3.8: Performance comparison for Li’s algorithm, when the same set of attacks is applied
with different orders. results are reported in terms of BER and quality of the attacked image,
for Baboon image marked with q = 47 dB.
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Figure 3.9: Performance plots for Li’s algorithm, when setting a quality threshold Q = 40 db,
under the combination of JPEG compression, addition of WGN and amplitude scaling attack.
The robustness metric, R(q), reported on the vertical axis, indicates a robustness of the algorithm
to the selected attacks, since R(q) ≥ 1.
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Figure 3.10: Evidence of image independency. The mean and variance of the quality of the
un-marked images are reported for different values of q and setting Q = 40dB. This provides
clear evidence of the image independency of the algorithm, since the variance of WPSNR is at
most 5%.

Finally we analyze the algorithm avoiding compression. We apply the combination of
the two attacks: AWGN (C) and volumetric scaling (E). GA still looks for the order the
two operators need to be performed. In Table 3.9, results for the Baboon and Lena images
are reported. The elapsed time for obtaining such results is almost 85s per iteration.
We stress the fact that the quality of the unmarked images is in this case substantially
decreased, compared to previous experiments. This is mainly explained by the choice of
the selected image processing operators: in fact, the analyzed algorithm is designed to
resist against the chosen attacks. The significant degradation introduced to remove the
mark is shown in Figure 3.11. In Figure 3.12, the robustness index R(q) is plotted for
different values of the quality threshold Q. In particular, it is shown that robustness is
preserved even in the case of a low quality threshold (Q = 30 dB) and the combination
of both attacks, as expected from [93].
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3. GA-BASED ROBUSTNESS EVALUATION METHOD FOR DIGITAL WATERMARKING

Quality parameters Attack parameters

q M(q) PSNRu δ SF Order

Lena Image

47 12.7 6.6 3 2.97 C-E

53 13.2 7.1 3.4 2.54 E-C

59 14.6 8.6 4 0.26 E-C

65 20.2 13.9 4 0.59 C-E

71 52.6 42.7 2.6 0.98 C-E

Baboon Image

47 13.4 7.2 0.1 2.97 E-C

53 13.9 7.8 2.1 2.54 C-E

59 14.6 8.5 0.6 0.26 C-E

65 20.2 15.5 4 0.59 C-E

71 55.1 45.1 1.8 0.98 C-E

Table 3.9: Robustness results of Li’s algorithm under the combination of addition of WGN
(δ) and amplitude scaling attack (SF ). Starting from the first column: the quality of the
watermarked image q and the quality of the un-marked image M(q) and PSNRu, measured with
WPSNR and PSNR respectively. The parameterizations of the selected attacks are reported,
together with the order they must be applied.

(a) (b)

Figure 3.11: Un-watermarked images for Li’s algorithm under the attack of addition of WGN
and amplitude scaling attack : in panel (a) Baboon, marked with q = 47dB, and unmarked with
M(q) = 13.4dB. In panel (b) Lena, marked with q = 47dB, and unmarked with M(q) = 12.7dB.
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Figure 3.12: Performance plots for Li’s algorithm, when setting a quality threshold Q = 40db
and Q = 30dB under the combination of addition of WGN and amplitude scaling attack. The
robustness metric, R(q), reported on the vertical axis, indicates a robustness of the algorithm
to the selected attacks, since R(q) ≥ 1.

3.4 Discussion

We have presented an innovative benchmarking tool to evaluate the robustness of any
digital watermarking technique considering the quality of the unmarked images in terms
of perceived quality. Therefore, a new metric based on WPSNR is introduced. The goal is
to remove the watermark from a content while maximizing perceptual quality. So, given
a set of attacks, we look for a parameterization able to remove the watermark, optimizing
the WPSNR of the unmarked image. This nonlinear optimization problem is supported by
GA. The effectiveness of the present tool has been demonstrated by extensive simulations
pointing out the weaknesses of two well-known methods. We also point out that with
the proposed tool, it is possible to fairly compare two different watermarking algorithms
performing the same kind of watermark recovery (namely, either both detection or both
decoding).
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Chapter 4

Reversible Data Hiding Based On
Adaptive Prediction

In this chapter we present a new near lossless reversible watermarking algorithm using
adaptive prediction for embedding. The prediction is based on directional first-order dif-
ferences of pixel intensities within a suitably selected neighborhood. The proposed scheme
results to be computationally efficient and allows achieving high embedding capacity while
preserving a high image quality. Extensive experimental results demonstrate the effective-
ness of the proposed approach.
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4. REVERSIBLE DATA HIDING BASED ON ADAPTIVE PREDICTION

4.1 Introduction

As outlined in Chapter 2, generally, in digital watermarking, it is desirable to embed
as much information as possible (capacity), while guaranteeing the ability to preserve
the hidden data after processing (robustness), and the fidelity of the watermarked data
to the original one (imperceptibility). However, the relative importance of these factors
strictly depends on the application. Some applications, such as medical, forensics, art-
work, or military, require data integrity preservation, thus preferring imperceptibility over
robustness.

Reversible watermarking [25] relies on the ability to perfectly recover the original con-
tent after the extraction of the embedded data. More in detail, this class of techniques
allows a lossless or near-lossless restore of the host, while guaranteeing high quality of the
watermarked image. Their effectiveness is measured by considering imperceptibility, pay-
load capacity, and computational complexity. Robustness is barely achieved due to the
challenging integrity requirement. Many reversible watermarking algorithms have been
proposed in the literature over the past years. The main difference among them lies in the
particular technique adopted for achieving reversibility: data compression [48][16], differ-
ence expansion [152][63], histogram shifting [115], and pixel prediction [58][39]. Prediction
based methods have been originally introduced for compression since they guarantee re-
duced computational complexity with respect to the transform-domain based methods,
by reducing coding, inter pixel, or psycho-visual redundancy via prediction and coding of
the difference between the original and predicted pixel values [54].

In this work we proposed to extend prediction-based schemes, by designing a high-
capacity reversible watermarking algorithm based on adaptive pixel prediction. It com-
putes the to-be-predicted pixel by linearly combining its neighboring values. Different
weights are suitably assigned to all values and computed based on directional first or-
der differences between the predicted pixel and those in the surrounding area to adap-
tively exploit their similarity. Prediction errors are used to embed the watermark and a
histogram-shift based approach is employed to control under/overflows issues. The algo-
rithm is designed to achieve high embedding capacity while preserving high perceptual
quality.

4.2 The proposed approach

We introduce a method that adaptively applies prediction in both embedding and detec-
tion phases and allows a lossless recover of the image in the detection process. In order to
compute prediction errors used to embed the mark we present two methods: (i) by linearly
combining the to-be predicted pixel and its neighborhood, (ii) by taking into account also
some well known local predictors. Directional first order differences between the predicted
pixel and those in the surrounding area are exploited to compute weights to be assigned
to the values adaptively exploiting their similarity. We employ under/overflows control
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4.2. THE PROPOSED APPROACH

Figure 4.1: Neighborhood considered in the prediction.

based on a histogram shifting method to prevent values to exceed the range [0, 255].
Thus, the proposed algorithm consists of four main stages: prediction, embedding, un-
der/overflows control and detection.

4.2.1 Prediction

Let I be the host image with values Iij where i = 1, . . . , n and j = 1, . . . , m and Îij the

to-be-predicted pixel at position (i, j). In order to compute Îij , we exploit an adaptive
prediction. In particular, we consider pixel values within a region ΩNN

ij around it (see Fig.
4.1) by defining:

Vij = [Ii−N,j−N :j+N , . . . , Ii−1,j−N :j+N , Ii,j−N :j−1] . (4.1)

Therefore, the total number of elements used for prediction (i.e., the length of Vij) is:

LV = 2N(N + 1). (4.2)

It is worth noticing that ΩNN
ij does not include pixels coming after (in a scan-raster order)

the target pixel. In fact, to exactly retrieve the original data during the extraction phase,
not all the neighbors surrounding the to-be-predicted pixel can be used for estimating its
value since not available.

Once we have defined Vij , we evaluate Îij as a normalized linear combination of Vij

elements:

Îij =

∑LV

k=1 αij(k)Vij(k)
∑LV

k=1 αij(k)
(4.3)

where αij(k) are weights defined by introducing another region ΩTS
ij surrounding Iij. Such

neighboring pixels are exploited to evaluate the similarity in different directions and, thus,
adapting the weights αij(k) accordingly. First, directional differences are computed as
Euclidean distance between the pixel value Iij and all Vij elements:

gij(k) = |Iij − Vij(k)| (4.4)

45



4. REVERSIBLE DATA HIDING BASED ON ADAPTIVE PREDICTION

Figure 4.2: Pixel pairs involved in directional distances gts(k) evaluation when T = S = 1 and
k = 2N2 − 1.

where k = 1, . . . , LV . Then such distances are integrated over ΩTS
ij taking into considera-

tion different pairs of values depending on k:

Gij(k) =
∑

Its∈ΩTS
ij

gts(k). (4.5)

For sake of clarity, we report an example in Fig. 4.2 with T = S = 1 and k = 2N2 − 1.
Notice that the evaluation of Gij(k) in Equation (4.5) depends on T and S but also on
N . Such values can be suitably tuned to achieve maximum embedding capacity of the
algorithm (see Sec. 4.3). Finally, given Gij(k) and two constants c and h we define αij(k)
as:

αij(k) = c−
Gij (k)

h . (4.6)

Once the prediction process has been performed, the prediction error Eij can be com-
puted as the difference of the original and predicted value:

Eij = Iij − Îij . (4.7)

4.2.2 Improved Prediction

To further improve the prediction, besides the neighborhood we take into account also
two well know local predictors: Median Edge Detector (MED) [58] and Gradient Adjusted
Prediction (GAP) [39].
Median Edge Detector exploit three neighbors of the to-be predicted pixel, namely Ii,j−1,
Ii−1,j−1 and Ii−1,j for prediction, as shown in Fig. 4.3 straight line. MED uses raster scan
order and applies edge rule to evaluate the predicted pixel, accord- ing to the following
criteria:

Îij =





min(Ii−1,j , Ii,j−1) if Ii−1,j−1 > max(Ii−1,j , Ii,j−1)

max(Ii−1,j , Ii,j−1) if Ii−1,j−1 6 min(Ii−1,j , Ii,j−1)

Ii−1,j + Ii,j−1 − Ii − 1, j − 1 otherwise

(4.8)
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Îij

Ii−2,j Ii−2,j+1

Ii−1,j−1Ii−1,j Ii−1,j+1

Ii,j−2 Ii,j−1

Figure 4.3: Neighborhood considered for prediction by MED (straight line) and GAP (dashed
line).

Gradient Adjusted Prediction (GAP) considers seven neighbors of the to-be-predicted

pixel (see Fig. Fig. 4.3 dashed line ) and compute its prediction Îij as follows:

dh = |Ii−1,j − Ii−2,j| + |Ii,j−1 − Ii−1,j−1| + |Ii,j−1 − Ii+1,j−1|
dv = |Ii−1,j − Ii−1,j−1| + |Ii,j−1 − Ii,j−2| + |Ii+1,j−1 − Ii+1,j−2|
D = dv − dh

Ĩij = (Ii−1,j + Ii,j−1)/2 + (Ii+1,j−1 + Ii−1,j−1)/4

Îij =





Ii,j−1) if D < −80

(Ĩij + Ii,j−1)/2 if − 80 6 D < −32

(3Ĩij + Ii,j−1)/4 if − 32 6 D < −8

Ĩij if − 8 6 D < 8

(3Ĩij + Ii−1,j)/4 if 8 6 D < 32

(Ĩij + Ii−1,j)/2 if 32 6 D < 80

Ii−1,j) if D > 80

As can be noticed, the prediction schemes based on MED and GAP exploit only local
information obtained from a small neighborhood of the to-be-predicted pixel.

We add this two predictors to our vector Vij defined in Equation 4.1 built for prediction.
Thus, we define a new vector V ′

ij:

V ′

ij = [Vij, MED, GAP ] . (4.9)

where MED and GAP represent the predicted values in Equation 4.8 for MED and in
Equation 4.9 for GAP, respectively.
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The number of elements used for prediction is in this case:

L′

V = 2N2 + 2N + 2. (4.10)

For example, in case N = 1, we get L′

V = 6 and V ′

ij =
[Ii−1,j−1, Ii−1,j, Ii−1,j+1, Ii,j−1, MED, GAP ].

According to Equation (4.3) the vector V ′

ij is then used for prediction following the
procedure described in the Sec. 4.2.1.

4.2.3 Embedding

Here we present our embedding technique which exploits prediction errors. Each Eij ,
computed as in Equation (4.7), is controlled in the range [−Q, Q), with Q being an
integer greater than zero, and is modified according to:

Êij =





Eij + bzsign(Eij)Q if − Q ≤ Eij < Q

Eij + bzQ if Eij = 0

Eij + sign(Eij)Q otherwise

(4.11)

where b is the stream of binary entries bz to be embedded. Usually b represents the
watermark w to be inserted, but in some cases we may embed besides w an overhead
information to deal with under/overflow problems (see Sec. 4.2.4).

The overall embedding scheme is:

Iw
i,j = Îi,j + Êi,j (4.12)

where we denote the watermarked image as Iw.

4.2.4 Under/overflow control

During the embedding procedure some pixels may exceed the allowed intensity range [0,
255] leading to the so-called under/overflow problem. To prevent this, here we exploit
a histogram shifting based technique, which allows the histogram of the host content to
be narrowed. Thus, extreme values are modified and can be safely used for embedding.
In particular, given an image with intensity values in the range [0, 255], the histogram
shifting based process modifies the grayscale boundary pixels to be in the range [Q, 255-Q],
where Q is the parameter used in Equation (4.11).

Since the overall watermarking algorithm is designed to be reversible, the shift imposed
to prevent under/overflow must be traceable. To this end, an overhead information OI is
embedded together with the watermark as follows:

Tbit = [OI, w] (4.13)

where Tbit is the total embedded bitstream (b = Tbit in Equation (4.11)). The overhead
information is defined as in Fig. 4.4. L represents the size of the overhead, is represented
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L Q Left-side scan sequence Right-side scan sequence

Figure 4.4: Overhead information (OI).

Overflow control Underflow control

Original vale New value
Left-side scan

sequence
Original value New value

Left-side scan
sequence

255 253 10 0 2 10

254 253 01 1 2 01

253 253 00 2 2 00

Table 4.1: Example of overflow and underflow control when Q = 2.

with a fixed number of bits, and is included in the OI since required in the detection phase.
The right and left side scan sequences keep trace of the modified pixels for under/overflow
controls, respectively. In the case of overflow control, the host image is scanned in raster
order and whenever a pixel value is greater than 255-Q it is changed to 255-Q and the shift
amount is memorized in binary form in the left-side scan sequence. In the case the pixel
value equals 255-Q a zero is appended. A similar process is applied to control underflow
by defining the right side scan sequence. In Table 4.1 an example of such procedures is
presented, for Q = 2.

4.2.5 Detection

In order to have a reversible scheme, we need to fully recover both the watermark and the
original image. To this aim the detection procedure has to be symmetric to the embedding.
Given the watermarked image Iw, we reconstruct predicted values Îw

ij following the same
procedure described in Sec. 4.2.1. The prediction error can thus be computed as:

Ew
ij = Iw

ij − Îw
ij . (4.14)

Thus, we can reconstruct the bitstream b̄ as follows:

b̄z = 0 and Ēw
ij = Ew

ij if − Q ≤ Ew
ij < Q

b̄z = 1 and Ēw
ij = Ew

ij − sign(Ew
ij)Q

if − 2Q ≤ Ew
ij < −Q or Q ≤ Ew

ij < 2Q

Ēw
ij = Ew

ij − sign(Ew
ij)Q otherwise

where Ēw
ij is the suitably modified prediction error used to recover Ir by removing the

watermark from Iw:

Ir
ij = Îw

ij + Ēw
ij . (4.15)
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Prediction Improved Prediction

Tbit OI WPSNR Tbit OI WPSNR

Lena 60464 0 57.92 61688 0 5 8.44

Barbara 50822 0 58.12 51783 0 58.67

Boat 62341 0 56.78 62083 0 56.54

Goldhill 42553 0 57.43 43534 0 57.92

Baboon 19615 76 56.78 19688 76 56.6

Peppers 51451 251 57.48 50595 251 57.75

Zelda 60978 41 55.18 61832 41 55.51

Table 4.2: Results about capacity and perceived quality for both types of prediction with T =
N = S = 1.

Since the implemented scheme is reversible we have b̄ = w and Ir = I, if no under/overflow
control is needed. Otherwise, we first extract L (known length) and then identify OI in
order to invert the pixel shifts described in Sec. 4.2.4 and to extract the watermark w
from b̄ = Tbit (see Equation (4.13)).

4.3 Results

We describe here a set of experimental tests carried out on grayscale images of size [512×
512] pixels taken from the UWaterloo database to verify the efficiency and effectiveness
of the proposed method. First we consider the case when N = T = S = 1 which leads
to minimum computational cost. We set Q = 1 and run simulations for both types of
predictions (see Sec. 4.2.1 and 4.2.2). Results for 7 images are shown in Table 4.2, where
we report the embedded payload Tbit, the overhead information OI, the Weighted PSNR
(WPSNR), a modified version of the PSNR which takes into account the behavior of
the human visual system [158]. Notice that PSNR values strictly depend on the binary
sequence chosen as watermark and on average are 48.5±0.5 dB. It can be noticed that in
both cases we achieve high capacity while guaranteeing high quality of the watermarked
image. Results are slightly better employing the improved prediction.

In order to further improve performances, it is possible to optimize the parameteri-
zation of the algorithm, obviously increasing the computational complexity. We exploit
a brute force search for tuning parameters N , T and S and verify a significant increase
in capacity without affecting quality. The parameterization for the algorithm is suitably
tuned for each image since it depends on the image content. Also in this case we get
PSNR values of 48.5 ± 0.5 dB for all the images.

available at : http://links.uwaterloo.ca/Repository.html
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Prediction Improved Prediction

N T S Tbit OI WPSNR N T S Tbit OI WPSNR

Lena 2 1 3 61682 0 57.59 2 1 4 63492 0 58.11

Barbara 3 2 3 54366 0 57.24 3 2 3 56028 0 57.77

Boat 3 2 5 64826 0 56.25 3 2 4 65992 0 56.3

Goldhill 1 1 3 42995 0 57.53 2 1 4 44275 0 57.7

Baboon 1 2 1 19639 76 56.69 1 3 3 20172 76 56.77

Peppers 3 1 2 51931 251 56.7 2 2 1 52294 251 57.22

Zelda 1 1 3 62349 41 55.1 2 1 5 63077 41 55.25

Table 4.3: Results for improved prediction about capacity and perceived quality with optimized
parameters.

µ+ µ× µC µS Capacity Gain

[58] 2 0 4 0 16.4% - 54.5%

[39] 18 8 6 0 1.8% - 12.7%

Proposed 26 4 0 8 –

Table 4.4: Performances in terms of prediction computational complexity and capacity gain
percentage for the proposed method with N = T = S = 1 with respect to [58] and [39].

Finally, we analyze the performances of the proposed algorithm in comparison with
two well known reversible watermarking techniques, [58] and [39], employing MED and
GAP prediction respectively. Results for computational costs (number of additions µ+,
multiplications µ×, comparisons µC and shift operations µS) are reported in Table 4.4,
where the proposed adaptive prediction with N = T = S = 1 is compared with MED and
GAP prediction. In Table 4.4 we also show the range of capacity gain percentage computed
for the 7 images, comparing the proposed method with [58] and [39], respectively.

To fully compare the proposed method with MED and GAP, we compared the capacity
achievements over three different kinds of embedding: (a) right shifted embedding where
interval [0,1) is used for embedding, i.e., Eij ∈ [0, 1), (b) Q = 1 and (c) Q = 2 [39] .
In Table 4.5 results, in terms of capacity and PSNR, for MED, GAP and our improved
method are reported, testing all the three embedding methodologies. Of course, a higher
capacity can be achieved as the interval used for embedding increases, therefore slightly
loosing in quality. Note that in all cases and for all images we gain in capacity by exploiting
more sophisticated predictors, i.e., GAP outperforms MED and the proposed technique
outperforms GAP. In Fig. 4.5 we plot comparison results of Table 4.5 to visually enlighten
the outperforming of our algorithm over MED and GAP.
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Embedding (a) Embedding (b) Embedding (c)

[58] [39] Proposed [58] [39] Proposed [58] [39] Proposed

Lena
Payload 26293 28971 31714 46670 57949 63492 75640 108540 116026

PSNR 51.52 52.1 51.82 48.55 49.2 48.74 42.8 44.1 43.26

Barbara
Payload 20745 23816 27885 38098 47363 56028 62520 89296 104511

PSNR 51.5 51.9 51.83 48.47 49 48.71 42.68 43.7 43.17

Boat
Payload 25296 28941 33349 45530 56850 65992 74659 105900 118960

PSNR 51.55 52.1 51.1 48.54 49.2 48.8 42.8 44 43.32

Goldhill
Payload 18977 20837 22080 36036 41466 44275 62278 79110 83564

PSNR 51.54 52 51.7 48.45 48.9 48.57 42.67 43.5 42.92

Baboon
Payload 8882 9629 10038 16858 19277 20172 32712 37678 39561

PSNR 51.33 51.5 51.37 48.29 48.5 48.32 42.4 42.7 42.47

Peppers
Payload 18429 22841 25808 33294 45669 52294 55810 86373 97659

PSNR 51.47 51.9 51.74 48.43 49 48.64 42.63 43.6 43.08

Zelda
Payload 23909 28906 31432 44438 57908 63077 74508 110798 119711

PSNR 51.56 52.2 51.7 48.53 49.2 48.74 42.8 44.2 43.3

Table 4.5: Results comparison for three different embedding methodologies.

Figure 4.5: Performances comparison in terms of capacity among MED (white), GAP (gray)
and proposed predictor (black) for the three types of embedding (a), (b) and (c).
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4.4 Discussion

We have presented a new reversible watermarking technique, where embedding is based on
adaptive prediction errors. Neighboring pixels of the to-be-predicted value are combined
and suitably weighted depending on their directional distances, assigning to similar pixels
a greater role in the computation. The algorithm achieves high performances in terms of
capacity, complexity and quality of the watermarked image.
Future work would deal with the investigation of different prediction schemes and the
optimization of the similarity matching algorithm, in order to improve the performances
of the algorithm while keeping the computational complexity low.
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Chapter 5

Passive Digital Forensics

In this chapter we review existing tools for digital passive forensics, mostly focusing on
forgery detection. In contrast to statistical techniques, geometric forensic techniques are
largely insensitive to resolution, post-processing, compression and re-compression. As
such, we mainly carried on our research on geometric-based methods, analyzing the pro-
jection geometry of the image formation. Our contributions both on image and video
forgery detection are finally introduced.

Thanks to the wide spread of the Internet as a massive communication mean coupled
with the diffusion of low-cost and high-resolution cameras, we are nowadays overwhelmed
in our daily-life with digital multimedia contents, such as images and videos. They are
easily spread out via web-based content-sharing tools (social networks, Youtube, Picasa,
Flickr) and widely employed in several fields such as news, sport, information reporting,
scientific publication, politics campaigns and forensic courts.

From a traditional point of view, we assume a photograph or a video to be a trusty and
close representation of reality. But in today’s digital age, this assumption is undermined
by the simplicity of malleability and manipulation of digital multimedia content, due to the
wide spread of low-cost and high-performance computers, high-resolution digital cameras
and sophisticated photo-editing and computer graphics software tools (e.g. Photoshop).
Even a non-expert user can easily manipulate and alter multimedia contents, change the
information they represent, without leaving any obvious traces of the occurred tampering.
As a consequence, we can no longer take the fidelity and authenticity of images and
videos for granted, especially when we consider scenarios such as forensic and criminal
investigation, surveillance systems, medical imaging and journalism. Moreover, altered
multimedia data may influence people opinions and even alter their attitudes in response
to the represented event [136, 111].

Multimedia content fakery has a long history, probably starting right after Joseph
Nicephore Nipce produced the first known photograph in 1825.

All the following reported forged photographs are courtesy of the Dartmouth Image Science Group [42]
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(a) (b)

Figure 5.1: Circa 1864: the print (a) portraying General Ulysses S. Grant resulted to be a
composite of three other pictures (b), taken in different moments and settings.

(a) (b)

Figure 5.2: Circa 1942: the portrait (a) of Mussolini is the result of altering the original picture
by deleting the horse handler (b).

Some of the most notorious examples of early photographic tampering involved mil-
itary generals and politicians. Figure 5.1, taken circa in 1864, portrays General Ulysses
S. Grant in front of his troops at City Point, Virginia, during the American Civil War.
Researchers at the Library of Congress revealed that this print is a composite of three
separate pictures: the head is taken from another portrait of Grant, the horse and body
are those of Major General Alexander M. McCook and the background is taken from a
photograph of Confederate prisoners captured at the battle of Fisher’s Hill, VA.
Another example comes from the Second World War, when Mussolini altered one of his

portraits by removing the horse handler, pretending to look more heroic and valorous.
(see Figure 5.2).
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(a) (b)

Figure 5.3: 1989: the cover of a TV magazine picturing the American TV host Oprah Winfrey
(a) was created by splicing her head and Ann-Margret’s body (b).

At that time, a high degree of technical expertise and specialized equipment was
required to tamper a photograph. Nowadays, modern softwares have made the forgery
of photographs and, more recently, of videos, easier to be done and much harder to be
uncovered than ever before.

Starting from the 1980’s we witness a significant increase in image tampering, espe-
cially in magazine covers in order to appear more appealing and attractive to customers.
In Figure 5.3 the American television host Oprah Winfrey is pictured on the cover of the
magazine TV Guide. It was uncovered that this was created by splicing her head and
the body of Ann-Margret, without the permission of any of the two. The forgery was
discovered by the fashion designer of Ann-Margret, who recognized the dress.

In the 90’s magazines started to alter their covers also to alter people attitudes in
response to the represented event. A popular example is shown in Figure 5.4, where
Time magazine published a photograph of OJ Simpson, right after he was arrested for
murder. His image on the cover appeared to be be darker and menacing compared to the
original photograph, published by the magazine Newsweek. A couple of years later, the
Los Angeles Times published a digital composite of a British soldier in Basra, gesturing
to Iraqi civilians urging them to seek cover, shortly after the U.S. led invasion of Iraq (see
Figure 5.5). When the composite was uncovered by the editors, the photographer for the
newspaper was fired. He said he spliced the images in order to ”improve” the image.
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(a) (b)

Figure 5.4: 1994: the image of murderer OJ Simspon which appeared on the cover of the
magazine Time (a) was altered in brightness and color to make the subject look more menacing.
The original was published by the magazine Newsweek (b).

(a) (b)

Figure 5.5: 2003: the cover of the Los Angeles Times (a) picturing a soldier during the Iraq war
in front of civilians has been revealed to be a composite of two different pictures (b).
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Figure 5.6: July 2007: the investigating university committee revealed image results in a scientific
publication to be doctored and forced the authors to retract the paper.

Also the scientific community has been experiencing the ease of image manipulation
in journal publications. The impact of digital photography processing software in science
was addressed in an article in the journal Nature published in April 2005. It reported
that, in 1990, 2.5% of contentions examined by the U.S. Office of Research Integrity, which
monitors scientific misconduct, involved suspect scientific images. By 2001, the trend was
impressively increasing reaching nearly 26%.
One well-known episode happened in 2007, when Professor R. Michael Roberts and co-
authors from Missouri University published the paper ”Cdx2 Gene Expression and Tro-
phectoderm Lineage Specification in Mouse Embryos” on the journal Science pretending
to break through the conventional wisdom demonstrating that the first two cells of mouse
embryos possess markers that indicate from a very early stage whether they will grow into
a fetus or placenta. But the images in the paper (Figure 5.6) resulted to be doctored and
the authors had to retract the paper when the investigating university committee found
that Roberts and his post-doc deliberately altered images of the embryos. The latter
abruptly resigned his position and moved with no further information, while professor
Roberts behavior was judged by the committee as wrong, but ”since he addressed that in
the letter he sent to Science, we had no reason to suspect anything other than that he had
been tricked”.

Recently, we are literally overwhelmed by retouched images, especially in magazines
and advertisements. A well known case concerns the cosmetic industry Olay’s adver-
tisement shown in Figure 5.7. The ad read: ”Olay is my secret to brighter-looking eyes..
reduces the look of wrinkles and dark circles for brighter, younger-looking eyes”. It turned
out that the model Twiggy was heavily retouched in order to look younger, but this post-
production retouching was judged misleading for costumers by the Advertising Standards
Authority (ASA). It sentenced that the ad gave consumers a ”misleading impression of
the effect the product could achieve” and was therefore banned in the United Kingdom.
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(a) (b)

Figure 5.7: December 2009: The model in the magazine ad for an Olay beauty product commer-
cial (a) has been heavily retouched (b). The Advertising Standards Authority (ASA) banned it
because judged to be misleading.

(a) (b)

Figure 5.8: February 2011: a Spanish sport magazine pretended to give evidence of an offside
violation in the match between Athletic Bilbao and Barcelona with the picture (a), but a defender
was digitally removed from the original (b), thus no violation occurred.
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Figure 5.9: September 2007: for political reasons, Mikhail Delyagin has been removed from the
video sequence of a popular TV show, but the forgery was not accurate and the leg and hand
remained visible in some frames.

A very recent example of image fakery was registered in February 2011, when a Spanish
sport newspaper published an altered photo of the match between Athletic Bilbao and
Barcelona, pretending to demonstrate an offside violation (see Figure 5.8). However, the
original frame shows that a defender had been digitally deleted from the photo and thus
no violation occurred. The newspaper did apologize for this, claiming it was due to an
info-graphics error.

Even if it is clearly more difficult and time consuming to manipulate and forge a video
than tampering an image, the wide spread of video-sharing websites and the availability
of video processing softwares make this task easier nowadays. An example of malicious
tampering with video is shown in Figure 5.9. After Mikhail Delyagin criticized the Russian
Prime Minister Vladimir Putin, he was removed from a video sequence of the TV shows
”The people want to know”. But the leg and hand remained visible to the right of the
man holding the microphone.

As shown by all the presented examples, the growth in image and video tampering is
having a significant impact in our daily life and in our society. The reliability of digital
content cannot be taken for granted and has been seriously questioned. Does the content
truly represent a shot of reality? Where does this image come from? What is its history?
To answer such types of questions, passive digital forensics has recently attracted the
attention of the scientific community, as the increasing number of publications in this
field confirms. It is said to be passive, or blind, since it can operate where no prior
information about the content is available or no integrity protection mechanisms (e.g.
digital watermarking) have been previously applied.
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Passive digital forensics is tightly connected with many different science fields, such as
computer science, signal processing and criminal justice. As commonly accepted, we can
identify the following research areas of passive digital forensics [140]:

• Source identification : the aim is to identify the device which captured the con-
tent, by exploiting traces left by the different steps taken during the image acquisition
process. The basic idea comes from classical forensic science, where bullet analysis
is carried on based on the distinct markings introduced onto it when fired. Such
markings are distinctive and unique for every specific gun and can be therefore used
to link the fired bullet with the weapon which shot it. Similarly, when shooting an
image, a specific and unique fingerprint is introduced into the content, depending
on the device which took it. In particular, a noise-like pattern is overlaid onto the
image when captured, which may take the form of image artifacts, distortions or
statistical properties of the data. Such noise is invisible to the human eye, but it
can be analyzed to successfully contribute to identification.

A plethora of remarkable works has been presented in the literature for source iden-
tification, exploiting distortions introduced by lens distortion (aberration) [23] or
demosaicing artifacts [11, 15], while others rely on the sensor imperfections, such
as defective pixels [50], fixed pattern noise [35] and photo-response non-uniformity
noise (PRNU) [47, 20] . Similar concepts may be adapted to videos. For example,
dark current pixels can be exploited to link a video to the device that generated
it [85]. The photo-response non-uniformity can be used as a unique fingerprint to
identify the source camcoder [19, 109]. In [61] authors propose to analyze the cor-
relation of noise residual on a block level, computing it or each pair of temporally
adjacent blocks. Low-resolution issues related to the pattern noise are analyzed in
[155], successfully linking youtube videos to their source.

• Discrimination between synthetic and real images: the purpose is to dif-
ferentiate between real and computer generated images, given that the increasing
photorealism of imagery created by sophisticated 3D graphic tools make this task
challenging at only visual inspection [113]. This goal is mainly achieved via machine
learning algorithms suitably modified to classify natural and artificial images.

A first approach has been made by Lyu in [100], where higher order statistics of
wavelet transform coefficients are used to train a classifier and are shown to be ef-
fective in discriminating natural and computer generated images. After this, several
techniques have been developed, among which, physics-based [114] and features-
based methods [138]. Following the core idea of source identification techniques,
methods have been developed based on the assumption that the generative pro-
cess for computer graphics is substantially different from the process real images
are undertaken during acquisition. Therefore, techniques based on demosaicing and
chromatic aberration have been proposed [34], as long as pattern noise based ap-
proaches [29].
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• Forgery detection : the goal is to authenticate digital contents, including images
or videos, based on the assumption that forgeries may not leave any clue of their
occurrence but they alter the underlying statistics of the content [44, 103].

Several techniques have been proposed in the literature and we will review them
later in this chapter.

It is worth mentioning an emerging research areas in digital forensics, called Computer
forensics, whose principal goal is to recovery data from corrupted or physically damaged
devices for legal purposes [117]. It requires both hardware and software approaches, since
once the data has been recovered from the hardware it is necessary to re-organize it via
a software mean. Although included in the forensics area of research, computer forensics
substantially differ in the approach compared to the above mentioned classes: in [12]
similarities and differences are pointed out.

For more detailed literature on the forensic areas of research we address the reader to
[135, 31, 156, 140, 132] and the references therein. For a complete and constantly updated
on-line bibliography in the field, please refer to [41, 91].

5.1 Forgery detection

Following we review the state-of-the-art of forgery detection, following the classification
presented in [44]. In particular, forensic tools designed for image authentication and
forgery detection can be grouped into five categories: (i) Pixel-based, (ii) Format-based,
(iii) Camera-based, (iv) Physically-based, (v) Geometric-based. . We are undoubtedly
but involuntarily omitting some representative contributions in the field of forgery detec-
tion, but our aim is to give the reader a global overview of the research areas in order
to understand the motivations which lead us to develop our contributions, enlightening
their innovative aspects.

5.1.1 Pixel-based

The basic assumption of this class of techniques is that any form of manipulation, if
applied properly, is not visually detectable but alters specific statistics at a pixel level.
For example, in [7] statistical regularities in natural images that remain independent of
the image content are exploited to authenticate images.
Depending on the occurred forgery, pixel-level correlations can be analyzed.
Cloning (or ”copy and paste”) is probably one of the easiest form of forgeries, usually
performed in order to conceal an object in the scene by covering it with other parts of
the image itself [9]. Although visually challenging to be disclosed, such kind of tampering
can be detected by looking for statistically similar parts within the content. However, it
results computationally unaffordable to perform a brute search all over the image. To
reduce computational complexity and speed up the process, efficient algorithms have
been proposed, based on DCT transform [146], DWT transform [76], PCA analysis [124],
Fourier-Mellin transform [10] and features matching [118]. Similar concepts are applied
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to video duplication detection [165].
Resampling is a process required when resizing, rotating or stretching an image, opera-
tions that are likely to happen when creating a fake image. It introduces some specific
correlations in neighboring pixels, that can be analyzed as evidence of manipulation. All
produced work in such a direction show that interpolated signals and their derivatives
contain specific detectable periodic properties [102, 78, 94].
When creating a composite, two or more images are spliced together. Such operation has
been demonstrated to alter higher order Fourier statistics, alteration that can be used as
evidence of tampering [112]. Recently, in [162] the co-occurrence matrix of thresholded
edge image of image chroma is analyzed.
Removing a moving object by video inpainting generally introduces ghost shadow
artifacts, which can be accurately detected and their inconsistencies across the sequence
can be taken as evidence of tampering [178].

5.1.2 Format-based

This class of techniques aims at disclosing statistical correlations introduced by compres-
sion schemes. The JPEG compression is well known to be a lossy scheme, i.e. some
information is lost during the process. In particular, a quantization step taken on the
DCT coefficient is mainly responsible for such loss. The full quantization is based on a
table of 192 values, associated with each frequency on a 8 × 8 block-basis and may vary
depending on the quality setting. In [40] it has been demonstrated that such table can
be estimated and extracted from the content. Inconsistencies of it all over the image,
or video, can be taken as evidence of tampering [82, 21]. Moreover, it has been shown
that JPEG compressing the data twice, some specific artifacts are introduced in an image
[99, 128], as well as in a video [168]. Lately, also JPEG2000 traces have been studied as
proof of alteration [127] and also for double compression [179]. Block artifacts introduced
by a JPEG compression at the border of neighboring pixels are studied in [92] for forensics
purposes supposing that manipulations are likely to alter such artifacts. Assuming that,
when creating a composite, it is unlikely to match the same level of quantization of the
two spliced parts, [43] analyzes the quantization coefficients to prove tampering.
Although that traces of JPEG quantization are not necessarily proof of malicious tam-
pering, the class of technique above described represents an helpful mean to gather infor-
mation about the history of the content.

5.1.3 Camera-based

Similarly to source identification task, camera-based techniques for tampering detection
are based on the analysis of traces left by the various stages of the imaging process. These
artifacts are inherent to camera manufacturing processes and inconsistencies can be taken
as evidence of tampering.
Chromatic aberration is an artifact due to a spatial shift in the location where the light
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with different wavelength hits the sensor. In [68] local aberration is evaluated and incon-
sistencies of it with respect to the global image are taken as evidence of tampering.
Most of digital cameras are equipped with spherical lens which cause a radial distortions
on images. When two image are spliced together, it is unlikely to match such distortion
among spliced parts and such ireegularities may be taken as evidence of tampering [22].
Moreover, generally digital cameras are provided with a single sensor and color are cap-
tured with a color filter array (CFA). For each pixel, only one color sample is recorded and
the missing ones are obtained by interpolation. As a consequence, specific correlations
are introduced, which are unlikely to survive when tampering occurs [125].
Based on the linear relationship between the amount of light measured by the sensor
and the corresponding pixel values (camera response), in [62] a forensic tool for detecting
inconsistencies in such mapping is presented.
Correlations introduced by the camera or software algorithms for de-interlaced video can
be exploited for video authentication, by analyzing their inconsistencies across the se-
quence [164].

5.1.4 Physics-based

A recent research area in compositing detection considers inconsistencies in lighting. As
a matter of fact, even with the more sophisticated editing tools, it is difficult to match
the lighting effects on each part of the composite. Therefore, differences in lighting across
the entire image can be taken as evidence of forgery.
Pioneering contributions in this field have been proposed by Johnson et al. in [67], where
2-D surfaces normals are estimated to analyze light directions of different object in the
scene, whose consistency can be used as proof of compositing. Such idea has been further
expanded to 3-D models [72], exploiting light reflection in human eyes.
However, these work assume a simplified lighting mode, but a scene lighting can be
complex. Recently, it has been demonstrated that the 3D lighting environment can be
approximated with a low-dimensional model [71, 75] .

5.1.5 Geometric-based

Typically images may undergo a variety of post-processing and re-compression, which
may impair the effectiveness of traditional techniques for forgery detection. In contrast
to statistical techniques, geometric-based forensic techniques have been proposed, which
exploit measurements of objects in the world and their position relative to the camera
analyzing the projection geometry. Their major advantage over techniques based on low-
level image statistics is that the modeling and estimation of geometry is less sensitive to
resolution and compression that can easily confound the statistical analysis of images and
videos.
Several techniques have been proposed in the literature, each exploiting the principles of
image formation and projective geometry.
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In [70] the authors show how photo compositing can influence the position of the pro-
jection of the camera center into the image plane. The so-called principal point is one of
the internal parameters of the 3× 3 planar projective transformation H (called homogra-
phy) which relates world points x and image coordinates x̃ ( x̃ = Hx ). In particular, the
homography can be decomposed in camera’s intrinsic (focal length, principal point and
skew parameter) and extrinsic (camera motion) parameters. Under certain conditions, the
homography can be factored and the parameters estimated, including the principal point
[55]. The algorithm in [70] is based on the assumption that generally the principal point is
located near the center of the image and translations in the image plane correspond to an
equivalent shift of the principal point across the image. Exploiting the known geometry
of a pair of eyes, inconsistencies in the principal points across persons in an image are
used as evidence of tampering.
Similarly, Zhang et al. in [180] describe a technique for detecting image composites by
enforcing two geometrical constraints on the homography. The approach can detect fake
regions efficiently on a pair of images at the same scene, but requires two images corre-
lated with H (planar homography) or F (fundamental matrix) constraints.
When making composites, also the matching of shadow is a challenging task. The imaged
shadow can be modeled by a planar homography. By imposing geometric constraints on
it from a single image, it is possible to detect digital forgeries [181].

In a forensic setting it is very important to be able to retrieve objects measurements
when only a picture of them is available. In [160] the authors show that the camera matrix
and some available scene constraints can be used to retrieve geometrical constraints of
the scene (e.g. height of an object with respect to the reference plane).
Also rectification of planar surfaces under perspective projection can be used to the same
aim. In [69] the authors review several techniques for image rectification of planar surfaces.
The knowledge of polygons of known shape, two or more vanishing points, and two or
more coplanar circles allow the image to world transformation of the planar surface to be
computed. The removal of such projective distortion can be applied straightforwardly and
metric measurements can me made on the planar surface. Moreover, in the case of spliced
images, it is unlikely that all the parts obey the same rule of perspective projection. By
rectifying the entire image, inconsistencies can be revealed and the forgery detected.

A geometric-based approach has been proposed also for video authentication [167].
The technique is based on the fact that for re-projected videos the skew parameter, one
of the intrinsec parameters of the homography, may be non-zero, in contrast with the
expected parameter of an authentic video, which should be zero.

5.2 Innovative Contributions

As we have seen, statistical techniques for tampering detection may suffer from resolution,
post-processing, compression, and re-compression. Geometric-based techniques offer a
valid support being less sensitive to such issues.
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Based on this consideration, we developed a couple of innovative forensic techniques which
exploit the geometric principles of perspective projection:

• Geometric-based Image Forensics for detecting manipulation of text:
This forensic technique aims at detecting if text on signs or billboards has been
forged. Adding or changing text in an image is relatively an easy task, even in a
visually compelling way, so that the modification are hard to be detected at simple
visual inspection. This technique explicitly models the projection from the sign in
the world to the image to determine if this projection satisfies the expected planar
perspective mapping. It is indeed unlikely that inserted text precisely satisfy such
rule, therefore deviations from the model can be taken as evidence of tampering.
To the best of our knowledge, this is the first forensic approach to authenticate text
in images.
Chapter 6 presents a detailed description of such forensic framework.

• Geometric-based Video Forensics for ballistic motion authentication
Videos purportedly showing sensational basketball and soccer shots and death-
defying acrobatics have become popular on video sharing websites. Some are real,
but many are fake. We proposed a geometric-based forensic technique for authen-
ticating such videos determining if a projectile (e.g., a thrown ball) in a video is
authentic. This technique explicitly models the 3-D ballistic motion and 2-D pro-
jection of the trajectory of a projectile. Deviations from this model are used as
evidence of fakery.
The analysis of projectiles in video has not previously been considered in the
forensic community. It has, however, been addressed in the robotics and com-
puter vision communities. Most notably, in the development of ball-catching
robots [116, 134, 131] and in the analysis of sporting events (e.g., soccer, football,
basketball) [77, 130, 4, 97]. Unlike the approach we developed, these techniques
either require a stereo camera pair or require additional information about the scene
geometry.
A more closely related approach considers the estimation of a projectile’s trajectory
from a single camera [133]. That approach, however, requires a calibrated camera
and is only applicable when the camera is stationary. In contrast, the approach
described here does not require a calibrated camera and is applicable to a stationary
or moving camera (with unknown camera motion).
Our technique makes minimal assumptions about the nature of the projectile tra-
jectory and camera. The computational requirements are simple, intuitive, and
computationally efficient. Experimental tests on videos of our own creation and on
videos obtained from video sharing websites verify the efficacy of this analysis.
Chapter 7 presents a detailed description of the proposed video authentication tool.
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Chapter 6

Detecting Photo Manipulation on
Signs and Billboards

The manipulation of text on a sign or billboard is relatively easy to do in a way that is
perceptually convincing. When text is on a planar surface and imaged under perspective
projection, the text undergoes a specific distortion. When text is manipulated, it is unlikely
to precisely satisfy this geometric mapping. In this Chapter we describe a technique for
detecting if text in an image obeys the expected perspective projection, deviations from
which are used as evidence of tampering. Tests on forged images confirm the efficiency of
the proposed approach.
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Figure 6.1: Examples of signs and billboards.

6.1 Introduction

In our daily life we are overwhelmed by signs and billboards. They are everywhere and
some of them may appear funny and weird. In Figure 6.1 some examples of odd signs
are shown: one may hardly believe they are real, unless she saw them in person or took
the picture herself. Thus their authenticity is hard to be established at first glance, thus
requiring forensics tools able to determine if a text in a given image is authentic of it has
been inserted and manipulated.

Throughout photograph history [42], we have many examples of text manipulation in
photographs. In 2004 a controversial photo of a U.S. Marine posing with two Iraqi children
while purportedly holding an inappropriate sign was widely circulated on the Internet.
The Marine claimed that the image was manipulated, and that the sign originally read
“Welcome Marines”. The photo created a significant enough controversy that a military
inquiry was launched. The investigation, however, was inconclusive and the authenticity
of the image was never determined.

In April 2005 another well known doctored photograph appeared on the web, in which
text was altered in order to lead a different meaning (see Figure 6.2 (b) ). It shows the
British politicians Ed Matts, conservative candidate for Dorset South, and Ann Widde-
combe, conservative candidate for Maidstone and the Weald, holding a pair of signs that
together read ”controlled immigration – not chaos and inhumanity”. This picture ap-
peared as part of Matts’ election literature. The original photograph (see Figure 6.2 (a)),
however, shows the two politicians during a campaign to support asylum for a Malawian
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(a) (b)

Figure 6.2: A well known example of manipulated photograph, where text has been forged in
order to lead a different meaning. Shown in panel (a) the original image and in panel (b) a
doctored version created by manually distorting text onto a planar surface.

family in order to allow them to stay in Britain. Widdecombe declared she was ”happy
to be associated with either message”.

The adding or changing of text in an image is relatively easy to do in a way that is
perceptually convincing, thanks to the availability of powerful personal computers and
sophisticated photo-editing software. Figure 6.3 shows an example, of our creation, of
forged text, showing the steps usually, but somehow, simplified, taken to create a text
forgery. Given the original image intended to be forged (Figure 6.3 (a)), we first delete
the undesired text and we then replace it with another text string, roughly matching
color, font and size (Figure 6.3 (b)). In order to render the forgery visually compelling,
we need to apply to the text string on the planar plane a distortion that visually simulates
the regular perspective projection the image has been undergone (Figure 6.3 (c)). Such
operation can be made using popular image editing softwares. In particular, we used
image transformations available in Photoshop in order to create the presented forgery.
Although this image looks visually compelling, the introduced distortion does not satisfy
a proper perspective projection, but pretends to visually have the same impact. When
inserting text into an image, it is likely that the precise rules of perspective projection
will be violated, and these violations will not be perceptually obvious [45].

Following, we describe a new forensic technique for determining if typed text on a sign
or billboard obeys the rules of perspective projection. This method explicitly identifies
the projection of text on a planar surface and detects deviations from this model. We
consider the case when the font style of the text in question is known and when it is
unknown. In the context of geometric-based forensic techniques [70, 167, 180], this is a
first approach dealing with detecting manipulated text.
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(a) (b) (c)

Figure 6.3: The process performed to manipulate text in a photograph is shown. The text
that needs to be forged in the original image (panel (a)) is first deleted and then replaced with
another text string, roughly matching color, font and size (panel (b)). The final doctored photo
(panel (c)) is created by manually distorting the text onto the planar surface, pretending to
visually simulate a perspective projection, but indeed not following its rule.

6.2 The proposed approach

In this section we describe the forensics technique we developed, by firstly reminding some
basic concept about homography and how it can be evaluated.

With regard to notation, scalars are denoted with lower-case italic letters x, vectors
are denoted with lower-case bold-face letters x, and matrices are denoted with upper-case
bold-face letters H . Image coordinates are denoted as x̃, and world and coordinates are
denoted as x. Superscripts are used to denote the components of a vector x =

[
v1 v2 v3

]

or the rows of a matrix: hk is the kth row of matrix H .

6.2.1 Planar Homography

The process of image formation involves the projection of three-dimensional points (the
world) to two-dimensional points (the image). In general, this process can be described by
the central projection of points in space onto a plane. Specifically, this model is in accord
with a simple pinhole camera model, in which a ray of light from a 3D world point x passes
through the lens of a camera (centre of projection c) and produce an image on the point
x̃ by intersecting a specific plane in space, called image plane. The perspective mapping
between points in 3-D world coordinates to 2-D image coordinates can be expressed by the
projective imaging equation x̃ = Px, where the 3 × 4 matrix P embodies the projective
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transform, the vector x is a 3-D world point in homogeneous coordinates, and the vector
x̃ is a 2-D image point also in homogeneous coordinates.

We consider a special case of this geometric transform where all of the world points x
lie on a single plane and P reduces to a 3× 3 planar projective transform H, known as a
homography:

x̃ = Hx, (6.1)

where the world x and image points x̃ are represented by homogeneous coordinates.
Reformulating Eq. (6.1) as a cross product yields:




x̃1

x̃2

x̃3


 ×






h1 h2 h3

h4 h5 h6

h7 h8 h9







x1

x2

x3





 = 0. (6.2)

The homography H is defined up to a scale factor. Specifically, a multiplication by an
arbitrary non-zero scale factor does not alter the relation of Equation 6.2. Therefore,
we can say that the matrix H is homogenous, since as in the homogenous representation
of a point only the ratios of its elements are important. Given that we have eight ratios
amongst the nine elements of H, we can say that the homography has 8 degrees of freedom.

We briefly review Direct Linear Transformation algorithm for the estimation of the
planar homography H, Eq. (6.1), from known world and image coordinates [55].

Evaluation of the cross product, Equation 6.2 yields:



x̃2(h7x1 + h8x2 + h9x3) − x̃3(h4x1 + h5x2 + h6x3)
x̃3(h1x1 + h2x2 + h3x3) − x̃1(h7x1 + h8x2 + h9x3)
x̃1(h4x1 + h5x2 + h6x3) − x̃2(h1x1 + h2x2 + h3x3)


 = 0. (6.3)

This constraint is linear in the unknown elements of the homography hi. Re-ordering the
terms yields the following system of linear equations:




0 x̃3x1 −x̃2x1

0 x̃3x2 −x̃2x2

0 x̃3x3 −x̃2x3

−x̃3x1 0 x̃1x1

−x̃3x2 0 x̃1x2

−x̃3x3 0 x̃1x3

x̃2x1 −x̃1x1 0
x̃2x2 −x̃1x2 0
x̃2x3 −x̃1x3 0




T 


h1

h2

h3

h4

h5

h6

h7

h8

h9




= 0

Ah = 0. (6.4)

where A is a 3 × 9 matrix and h is a 9-vector containing the entries of the matrix H.
A matched set of points x̃ and x appear to provide three constraints on the eight

unknown elements of h (the homography is defined only up to an unknown scale factor,
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reducing the unknowns from nine to eight). The rows of the matrix A, however, are not
linearly independent. As such, this system provides two constraints in eight unknowns.
In order to solve for h, we require four or more points with known image, x̃, and (planar)
world, x, coordinates. From four or more points , standard least-squares techniques can
be applied, as described in [55]. Of course we seek for a solution that is non-zero, since
the obvious solution h = 0 is not of our interest. Since data are usually noisy, we attempt
to find an approximate solution, namely a vector h which minimizes a cost function. To
avoid the null solution, we can impose a constraint on the norm, such as h‖ = 1. Since the
homography H is defined up to a scale factor, the value imposed norm is not important.
We can minimize the the norm ‖Ah‖ = 0 under the constraint of ‖h‖ = 1. The solution
of such system is the minimal eigenvalue eigenvector of ATA.

With the Direct Linear Transformation algorithm it is possible to compute an ho-
mography, starting from correspondences between image x̃ and world x coordinates. For
images, many interest points, such as corners, blobs, edges or points, can be identified
and subsequently matched according to correlation matching algorithms.

Scale-invariant feature transform (SIFT) [98] is one of the most popular method to
extract features in images. The algorithm was initially proposed by Lowe in 1999 and
is now patented in the United States by the University of British Columbia. It extracts
highly distinctive image keypoint descriptors, which have the characteristic to be invariant
to certain amounts of image scale, rotation, affine distortion, noise, and illumination
differences. The image is firstly convoluted with Gaussian filters at different scales and the
difference of adjacent blurred images generates the Difference-of-Gaussian images. SIFT
keypoints correspond to local maxima or minima (extrema) of the difference-of-Gaussians
images in the scale-space. The position of all the interest points is accurately determined
by interpolating neighboring data. Low contrast keypoints and responses along edges
are removed, in order to make keypoints more robust for matching and recognition. An
orientation is assigned to each keypoint based on gradient orientation histogram. All the
properties of a keypoint are measured relative to this orientation, providing invariance
to rotation. In particular, the full feature descriptor is computed as a set of orientation
histograms on a 4×4 pixel neighborhoods, for a total of 128 elements. Keypoints are then
matched between two images using a variant of nearest neighbor matching on the feature
vectors. This association accounts for a geometric transformation between the images by
matching keypoints up to a planar homography.

The RANdom SAmple Consensus (RANSAC) algorithm [46] is subsequently used to
minimize the effect of mis-matched keypoints (outliers). RANSAC iteratively selects a
random subset of the input data. Assuming these data to be inliers, a parametric model
is fitted to them (usually an homography). All the rest of the data is then tested against
the reconstructed model.: those points which are in agreement with the model will be
considered inliers, while those which do not fit the model will be classified as outliers. The

The 3-D world and 2-D image coordinates should be translated so that their centroid is at the origin, and
scaled isotropically so that the average distance to the origin is

√
2. This normalization improves stability of the

homography estimation in the presence of noise [55].
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Figure 6.4: Shown in panels (a) and (c) is a text string in image coordinates, and shown in panels
(b) and (d) is the same string in world coordinates. The dots in panels (c) and (d) correspond
to a subset of the extracted coordinates used to estimate the image to world homography.

more inliers, the better will be the estimated model. Since it was initially estimated from
a random set of inliers, the model is re-estimated with all the hypothetical inliers. Finally
an error is calculated by estimating the total deviation of the inliers to the model.This
process is repeated iteratively until a maximum number of iteration is reached. The model
which will return the smallest error will be taken, successfully identifying the outliers.

In our case, the required world coordinates are determined by re-creating the text
in question with no distortion. We next consider the case when the font style is known
and when the font style is unknown. Since the homography is only estimated up to an
unknown scale factor, the font size is arbitrary.

6.2.2 Known Font

Shown in Figure 6.4(a) is the text string “ABC” after distortion by a planar homography,
as in Eq. (6.1). Assuming that the font style is known, this string in its world coordi-
nate system can easily be determined, as depicted in Figure 6.4(b). From this pair of
images, we automatically extract the image and world coordinates required for the planar
homography estimation, as described next.

Exploiting their sufficient invariance to affine distortion, we employ the SIFT opera-
tor [98], and RANSAC algorithm, to identify the coordinates of distinctive image keypoint
positions. Recall that the matching algorithm accounts for a geometric transformation
between the images by matching keypoints up to a planar homography.

Shown in Figure 6.4(c) and (d), for example, are a subset of the extracted keypoints
(dots) for the images shown in panels (a) and (b).
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6.2.3 Unknown Font

When the font of the text in question cannot be easily determined by visual inspection,
we adopt the following technique for automatically identifying the font style. We begin
by constructing the text in question in undistorted world coordinates with all available
font styles. Then, the SIFT operator is applied to each of these images, as described in
Section 6.2.2. The font style that returns the largest number of matched keypoints is
taken to be the correct font.

6.2.4 Photo Composite

Given an image of text that has undergone planar perspective projection (i.e., a homog-
raphy), we have described how to determine the required image and world coordinates,
and how to estimate the world to image homography. Except for degenerate cases, it is
always possible to calculate a homography regardless of the authenticity of the underlying
text. We will show, however, that when the text is inconsistent with a perspective planar
projection, the estimated homography yields a large reconstruction error.

Specifically, the inverse homography is applied to the keypoints in image coordinates
yielding rectified world coordinates:

xr = H−1x̃. (6.5)

It is unlikely in an inauthentic image to have the image coordinates precisely satisfy the
proper planar perspective distortion. In this case, the rectified image Ir is unlikely to
match the world image Iw. On the other hand, in the case of an authentic image, the
rectified image should be a good approximation of the world image. As such, we use the
root mean square (RMS) error between the world and rectified image as a measure of
authenticity:

e =
1

√
nxny

‖Iw − Ir‖, (6.6)

where nx and ny are the image dimensions and ‖ · ‖ denotes vector 2-norm. Note that
this error is computed on the underlying intensity image, as opposed to the extracted
keypoint coordinates.

Because a homography captures a broad range of distortions, we have found it more
effective to estimate the homography from several small subsets of the matched keypoints
and then compute the RMS error for each estimated homography. The average RMS error
is used as a measure of authenticity:

E =
1

N

N∑

i=1

ei, (6.7)
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Figure 6.5: Shown are (a) authentically projected text and (b) matched inauthentic text gener-
ated by isotropically scaling and affine transforming text to best match panel (a).

where N is the total number of subsets and ei is the RMS error, Eq. (6.6), for the ith

subset. Specifically, an error E above a specified threshold is taken to be evidence of
tampering.

6.3 Results

We describe a set of simulations to verify the efficacy of the proposed technique. A set of
authentic images were first created by generating images consisting of a text string with
six letters in one of 350 font styles. A planar homography, Eq. (6.1), was then applied by
considering physically plausible intrinsic and extrinsic camera parameters. Specifically,
with a fixed focal length (f=10), we let the principal point vary in [−0.5, 0.5], we allowed
a rotation up to 20 degrees. A matched inauthentic image was generated that approx-
imated the appearance of the authentic image, while not precisely satisfying a planar
homography, Figure 6.5. Specifically, the image in world coordinates was subjected to
a non-linear anisotropic scaling followed by a six parameter affine transformation con-
structed to optimally match (in the least-square sense) the authentic image. The result
was a perceptually convincing transformation.

We generated 500 such authentic and inauthentic images. Each image was 1200 × 900
pixels in size, and rendered as a 1-bit binary image. For each image, we assumed a known
font style, automatically extracted the image and world coordinates, estimated the world
to image homography, and computed the reconstruction error with N = 100, Eq. (6.7).

Shown in Figure 6.6(a) is the resulting ROC curve where the horizontal axis corre-
sponds to the RMS error, and the vertical axis to the classification accuracy. The solid
curve corresponds to the authentic images, and the dashed curve corresponds to the in-
authentic images. The intersection of these curves corresponds to an overall accuracy of
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95%. The detection accuracy and false alarm rate (incorrectly classifying an authentic
image as inauthentic) can be controlled by adjusting the RMS threshold. For example,
a false alarm rate of 2% yields a detection accuracy of 88% and a false alarm rate of 1%
yields a detection accuracy of 82%.

Shown in Figure 6.6(b) is the ROC curve for the case when the font style is unknown.
In this case, the intersection of the curves corresponds to an overall accuracy of 92%.
Note that the overall accuracy is similar, with a slight degradation due to some errors in
the font identification stage.
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Figure 6.6: Shown are ROC curves for classification with (a) known font style and (b) un-
known font style. The solid curve corresponds to the authentic images, and the dashed curve
corresponds to the inauthentic images.
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(a) Original photographs (b) Binary image

(c) Matched and rectified image.

Figure 6.7: Example of real tested image containing text. In panel (a) the original photograph is
shown. In order to identify the font via SIFT matching, the image is binarized (panel (b)). The
font style that returned the largest number of matched keypoints was taken to be the correct
font (panel (c)).

Following we analyzed real images. As a proof of concept, we tested at first images
of our creation containing simple text strings. Since we generated the text we can have
a ground truth also for the font identification step. Figure 6.7 shows an example of this
analysis. A photograph with a printed text reading ”Trento” was taken to be analyzed.
The image has been firstly made binary not to consider the background during SIFT
computation (panel (b)). The font style that returned the largest number of matched
keypoints was taken to be the correct one. Specifically, the original text was produced with
”Cambria” style and ”Cambria Math” font style was identified, among the large database.
Given the correct font style, we could compute the homography between the images and
rectify the original text. The reconstruction error, Eq. (6.7), for the text ”Trento” was
E = 0.75. Therefore such image could be correctly classified with a threshold of 1.5 ( i.e.,
an overall accuracy of 92%, the intersection of the ROC curves in Figure 6.6(b)).
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(a)

(b)

Figure 6.8: Shown in panel (a) is an authentic image, while in panel (b) a forged version is
depicted, where the text ”Washington” has been replaced with the string ”Boston”.

Finally, we analyzed real images, where text has been forged. Shown in Figure 6.8 is an
example our creation. In panel (a) the authentic image is represented, and shown in panel
(b) is the corresponding visually plausible fake. The reconstruction error, Eq. (6.7), for
the manually extracted strings “Washington” and “Boston” were E = 0.94 and E = 1.9,
respectively. These images are correctly classified with a threshold of 1.5 ( i.e., an overall
accuracy of 92%, the intersection of the ROC curves in Figure 6.6(b)). A second example
of tested image is shown in Figure 6.9. In the original image (panel (a)) the text ”Amore”
has been replaced with the string ”Hong Kong”, creating a visually compelling forgery
(panel (b)). For the these images, the evaluated reconstruction error for the strings
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(a)

(b)

Figure 6.9: Shown in panel (a) is an authentic image, while in panel (b) a forged version is
depicted, where the text ”Amore” has been replaced with the string ”Hong Kong”.

“Amore” and “Hong Kong” were E = 1.23 and E = 1.94, respectively. As before, by
imposing a threshold of 1.5, the photographs are correctly classified.
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Figure 6.10: Examples of tested images. In the red circle, the text string we extracted and
analyzed.

Figure 6.11: Shown are the tested images, plotted based on their reconstruction errorr. When
setting an RMS threshold of 1.5, based on the simulations, all the images are correctly classified.

To further validate this method, we tested a total of ten authentic images, obtaining
reconstruction errors in the range of 0.93 to 1.35, with a median of 1.05. In Figure 6.10
examples of the tested images are shown, where the red circle indicates the analyzed text.
Also for these images, by setting the threshold to 1.5, a correct classification could be
achieved, as can be seen in Figure 6.11.
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6.4 Discussion

We have presented a new forensic technique for authenticating text in photographs. Be-
cause it is relatively easy to digitally insert text into a photo in a visually compelling
manner, it can be difficult to manually determine if text is authentic. Our forensic tech-
nique explicitly estimates the perspective projection of text onto a planar surface. We
have shown that inauthentic text often violates the rules of perspective projection and
can therefore be detected.

This approach is semi-automatic, requiring only a user to manually select the text in
question. In the case when the text font style in question is unknown, this approach re-
quires a sufficiently large database of font styles from which the required world coordinates
are extracted.

A determined forger could circumvent this technique by applying the correct homog-
raphy to the inserted text [33]. This would, of course, require the forger to estimate
the correct homography from the image, which is outside of the expertise of the average
Photoshop user.
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Chapter 7

Exposing Digital Forgeries in
Ballistic Motion

In this chapter we describe a geometric technique to detect physically implausible trajecto-
ries of objects in video sequences. This technique explicitly models the three-dimensional
ballistic motion of objects in free-flight and the two-dimensional projection of the tra-
jectory into the image plane of a static or moving camera. Deviations from this model
provide evidence of manipulation. The technique assumes that the object’s trajectory is
substantially influenced only by gravity, that the image of the object’s center of mass can
be determined from the images, and requires that any camera motion can be estimated
from background elements. The computational requirements of the algorithm are modest,
and any detected inconsistencies can be illustrated in an intuitive, geometric fashion. We
demonstrate the efficacy of this analysis on videos of our own creation and on videos
obtained from video-sharing websites.
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7. EXPOSING DIGITAL FORGERIES IN BALLISTIC MOTION

7.1 Introduction

Increasingly sophisticated video editing and special effects software has made it possible
to create forged video sequences that appear to contain realistic dynamic motion. For
example, video sharing websites are littered with titles like “Seriously Amazing Best Beer
Pong Shots,” “Dude Perfect Amazing Basketball Shots,” and “Epic Pool Jump.” These
videos appear to show spectacular basketball shots, gravity-defying acrobatics, and the
bone-crushing results of daredevil leaps and jumps. Some of these videos are real, but
many are fake.

We describe a forensic technique that is tailored to determine if video of a purportedly
ballistic motion, such as a ball being thrown or a person jumping through the air, is
consistent with the geometry and physics of a free-falling projectile.
Posted videos are often of low-quality and typically have undergone a variety of post-
processing and re-compression. As such, statistical techniques that focus on double-
compression artifacts [163, 21, 169], interlaced and de-interlaced correlations [164], or
sensor noise patterns [110, 60, 59] are unlikely to apply. In addition, forensic techniques
based on detecting frame or region duplication [166, 8] will only apply when some form
of duplication was necessary to create the fake.

In contrast to these statistical techniques, we propose a geometric forensic technique
that is largely insensitive to resolution, post-processing, compression, and re-compression.
We begin by describing a plausible, albeit somewhat simplified, physical model for the
expected trajectory of a projectile motion, and a basic imaging model for a static or
moving camera. We then describe a technique to determine if the image of the trajectory
of a projectile motion is consistent with this physical model. Fig. 7.1 visually explains such
idea. An authentic (top) and fake video (bottom) are shown as a time-lapse composite.
The small red dots specify the tracked position of the ball, and the larger yellow dots and
solid lines denote the best fit model of a ballistic trajectory. Inconsistencies between the
two trajectories provides evidence of tampering.

Because a projectile’s motion is influenced by gravity, the vertical component of ac-
celeration is roughly constant (assuming no air resistance or other external forces). In
principle a human observer binocularly viewing a projectile could use this information
to estimate the absolute size and distance to the projectile [172]. In practice, however,
most observers do not consciously take advantage of this information [57]. These studies
suggest that if observers are not able to take advantage of such constraints in a three-
dimensional setting, then it is most likely that they will not be able to accurately reason
about the two-dimensional projection of a projectile. It follows that relying on the visual
system to authenticate a projectile’s motion becomes even more unlikely when the camera
moves along an arbitrary and unknown path.

The technique here proposed makes minimal assumptions about the nature of the
trajectory and camera, and requires only limited manual input. The core computational
requirements of the algorithm are modest, and the analysis can be presented as a simple,
intuitive geometric construction. We demonstrate the efficacy of this analysis on videos
of our own creation and several obtained from video-sharing websites.
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7.1. INTRODUCTION

Figure 7.1: An authentic (top) and fake video (bottom) each shown as a time-lapse composite.
The small red dots specify the tracked position of the ball, and the larger yellow dots and solid
lines denote the best fit model of a ballistic trajectory. A discrepancy between the model and
the ball’s actual positions in the lower image provides proof that the depicted motion is fake.
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7.2 The proposed approach

Our approach to exposing inauthentic motion relies on four explicit assumptions:

• The motion of the object in three-dimensional space is ballistic (i.e., only gravita-
tional acceleration) so that the trajectory of the object’s center of mass will describe
a simple parabola.

• The moving object is sufficiently well-known so that the location of its center of
mass can be estimated for each frame.

• The scene is imaged under linear perspective projection.

• Any movement or changes in the camera parameters during the sequence can be
computed from the scene background so that all frames can be placed into a common
coordinate system.

With regard to notation, scalars are denoted with lower-case italic letters s, vectors
are denoted with lower-case bold-face letters v, and matrices are denoted with upper-
case bold-face letters M. Image coordinates are denoted as p̃, and world and camera
coordinates are denoted as p. Superscripts are used to denote the components of a vector
v =

[
vx vy vz

]
or the rows of a matrix: mk is the kth row of matrix M. Subscripts are

most commonly used to denote position as a function of time, pt.

7.2.1 Trajectory Geometry

The center of mass of a projectile, in the absence of air resistance or any other external
forces, follows a ballistic trajectory that can be described in three dimensions with a
time-parametrized parabolic curve:

pt = p0 + vt + 1
2
at2 (7.1)

where t denotes time, p0 is the initial position, v is the initial velocity, and a is the
acceleration (due to gravity). In the absence of any other external forces, the path of
the projectile is planar. Assuming linear perspective projection under a pinhole camera
model, the image of a projectile’s trajectory, in homogeneous coordinates, is:

q̃t = Hpt, (7.2)

where H is a 3× 3 matrix embodying the planar perspective projection (i.e., a homogra-
phy).

Consider the special case where the optical axis of the camera is orthogonal to the
plane of motion, the focal length is unit length, and the principal point is the image
center. In this case, the z-component of the velocity is zero, and the x- and z-components
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of the acceleration are zero. The trajectory, Equation (7.1), then simplifies to:



px
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py
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pz
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 =
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0
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pz
0


 +



vx

vy

0


 t +

1

2




0

−g

0


 t2, (7.3)

where g is gravity and the world coordinate system is defined such that the z-axis is
the optical axis and the positive y-axis points upward. In addition, the world to image
transformation is simply q̃t = pt (i.e., H = I). In non-homogeneous coordinates, this
yields:

q̃x
t =

px
0 + vxt

pz
0

(7.4)

q̃y
t =

py
0 + vyt − 1

2
gt2

pz
0

. (7.5)

Note that in this special case the projectile’s path maps to a parabola in image coordinates,
which can be seen more clearly by rewriting the above equations as:
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0
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0

]
t2. (7.6)

Under an arbitrary homography, however, the image of a projectile will not necessarily
be a parabola. Specifically:

q̃t = Hpt =



h1 h2 h3

h4 h5 h6

h7 h8 h9


pt, (7.7)

In non-homogeneous image coordinates, the projectile takes the form:

q̃x
t =

h1 · pt

h3 · pt

=
h1 · (p0 + vt + 1

2
at2)

h3 · (p0 + vt + 1
2
at2)

(7.8)

q̃y
t =

h2 · pt

h3 · pt

=
h2 · (p0 + vt + 1

2
at2)

h3 · (p0 + vt + 1
2
at2)

, (7.9)

where · is inner product and hi is the ith row of the homography H. Note that these image
coordinates follow a rational parabola described by a ratio of second-order polynomials,
and cannot be expressed as a single second-order polynomial as in Equation (7.6).

Given a composite image from a still camera showing the path of an object, one could
test the authenticity of the motion by verifying that it can be fit by a rational parabola
using Equations (7.8) and (7.9). However that approach does not explicitly reveal the
direction of gravity, provide a trajectory in world space, or generalize to a moving camera.
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7.2.2 Projectile Estimation: Static Camera

In the previous section, the projectile was specified in a world coordinate system, Equa-
tion (7.1), and its projection was specified in an image coordinate system, Equation (7.2).
In the following sections, we will specify all coordinates with respect to a common three-
dimensional coordinate system in which the origin is the camera center, the image plane is
f units from the origin (the focal length), and the optical axis is orthogonal to the image
plane. With this notation, a projectile is specified as pt in Equation (7.1), its projection
is specified as a three-vector qt in which the z-component qz

t = f , and the camera center,
c, is the origin of the three-dimensional coordinate system. (See Fig. 7.2(a).)

For each moment in time t = 1 . . . n, define a line from the camera center, c, through
the image of the projectile’s center of mass, qt, as:

lt = c + st(qt − c), (7.10)

where st is a parametric variable for the line. If the projectile pt follows a parabolic
trajectory then there exists a value of the parametric variable at each moment in time
that satisfies:

pt = lt (7.11)

p0 + vt + 1
2
at2 = c + st(qt − c) (7.12)

for some values of st. Expanding in terms of the individual components yields:

px
0 + vxt + 1

2
axt2 = cx + st(q

x
t − cx) (7.13)

py
0 + vyt + 1

2
ayt2 = cy + st(q

y
t − cy) (7.14)

pz
0 + vzt + 1

2
azt2 = cz + st(q

z
t − cz) (7.15)

This system of equations is linear in terms of both the nine unknowns that specify the
object’s trajectory through space (p0, v, and a) and the n unknowns that specify the
object’s parametric location along the line from the camera (st). With a sufficient number
of frames (n ≥ 5) where the projectile’s position can be observed, it is possible to solve for
these unknowns by performing a least-squares fit to the data. However, in the absence of
noise, the linear system will always be rank deficient so that the least-squares solution is
not unique. This deficiency corresponds to a scale ambiguity in the solution: any solution
could be scaled about the origin and still satisfy the constraints, Fig. 7.2(a).

Before describing a robust solution that copes with both this ambiguity and noise, we
will first discuss the situation for a moving camera. Our solution treats both still and
moving cameras using the same framework.
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Figure 7.2: For a stationary camera (a), a ballistic trajectory will appear as a rational parabola
in the image plane (red dots). Lines from the center of projection c (black dot) through these
points qt on the image plane will intersect the object’s true parabolic trajectory through space pt

(yellow dots). A scale ambiguity appears because any slice through the generalized cone formed
by the lines would also produce a parabolic arc if that slice is parallel to the object’s true
parabolic trajectory. With a moving camera (b), the lines from the moving center of projection
ct (black points) through observed locations for the object do not form a cone, but they must
still intersect the object’s parabolic trajectory through space. In general, other slices through the
lines will not form parabolae unless the camera’s path is also a quadratic curve as shown in (c)
in which case any isoparametric slice through the lines will also produce a parabolic trajectory.
The scale ambiguity for a stationary camera is special case of the parametric ambiguity for a
camera on a quadratic path. For clarity, the image planes for each camera location in (b) and
(c) are not shown.
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7.2.3 Projectile Estimation: Moving Camera

In the previous section we described the estimation of a projectile that was being imaged
by a static camera. In that case, the projection of the projectile was a parabola subjected
to a planar homography. However, if the camera is not stationary, then the projection of
the projectile can take an arbitrary path in the image plane that results from combining
image coordinates from different local coordinate systems. If the camera motion can be
estimated, then these image coordinates can be described in a single common coordinate
system. The resulting estimation of projectile motion then becomes equivalent to the
static camera case with the difference being that the location of the camera center varies
over time. We will arbitrarily use the coordinate system of the initial frame in a sequence
as our common coordinate system.

Consider a camera undergoing a rigid-body transformation (rotation and translation)
with fixed intrinsic parameters (focal length, principal point, etc.). The image of a pro-
jectile’s trajectory can be expressed with respect to the common coordinate system as
Rtqt + tt, where qt is the image of the projectile in the camera’s local coordinate system,
and Rt and tt are respectively the 3× 3 rotation matrix and 3× 1 translation vector that
define the transformation between the local and common coordinate systems. The camera
center is expressed with respect to the common coordinate system as ct + tt, where ct is
the location of the camera center in the local coordinate system.

Given the rotation and translation that relates a camera at each time to the common
coordinate system, all coordinates can be expressed with respect to a single common
coordinate system. As in the static case, for each frame a line is defined from the camera
center, ct (now a function of time), through the center of mass of the projection of the
projectile into the image plane, qt, as:

lt = (ct + tt) + st(Rtqt − ct) (7.16)

where st is the parametric variable. Note the similarity to Equation (7.10), with the
exception that qt and ct undergo a coordinate transformation. If the projectile follows a
parabolic trajectory, pt, then there exists a value of the parametric variable st, at each
moment in time that satisfies:

pt = (ct + tt) + st(Rtqt − ct) (7.17)

or

px
0 + vxt + 1

2
axt2 = (cx

t + txt ) + st(r
1
t · qt − ct) (7.18)

py
0 + vyt + 1

2
ayt2 = (cy

t + tyt ) + st(r
2
t · qt − ct) (7.19)

pz
0 + vzt + 1

2
azt2 = (cz

t + tzt ) + st(r
3
t · qt − ct) (7.20)

where · is inner product and ri
t is the ith row of the rotation matrix Rt. Note that, as in the

previous section, this system of equations is linear in the unknown projectile parameters
(p0, v, a), and the parametric variables (st).

It is possible to contend with a varying focal length over time, but for notational simplicity we assume that
the focal length is fixed.
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As before, with a sufficient number of frames (n ≥ 5) where the projectile’s position
can be observed, it becomes possible to solve for these unknowns by performing a least-
squares fit to the data. However, unlike the situation with a still camera there is no
longer a necessary scale ambiguity. Because the camera now moves arbitrarily, scaling
the solution would also require scaling the camera path as well, but the scale of that path
will have been fixed when the camera’s motion was estimated.

Nevertheless, specific combinations of camera and projectile paths may still fail to
produce a fully determined system, Fig. 7.2(b)-(c). In particular, if the motion of the
camera center is also described by a parabola then any isoparametric interpolation between
the projectile’s true trajectory and the camera’s trajectory will also be a parabola. These
extra solutions correspond to uniform scaling of the vector of st values that would produce
the true trajectory. This ambiguity is the general case of the scale ambiguity that appears
for a static camera, and the static camera can be viewed as just a special case where the
camera motion follows the trivial parabola.

7.2.4 Camera Calibration

Before continuing, we briefly describe how to estimate the required camera transfor-
mations Rt and tt needed to relate each video frame to a common coordinate system.
Modern-day camera calibration techniques consist of three basic steps: (1) image features
(SIFT, corners, edges) are automatically detected in each video frame; (2) the features
are matched across video frames (cross-correlation, nearest neighbor, etc..); and (3) the
matched features are used to estimate the camera parameters: extrinsic (Rt, tt) and
intrinsic (focal length, principal point). A commonly used and effective optimization
technique for this last step is bundle adjustment [55]. This techniques optimizes the es-
timation of the projection parameters by minimizing the reprojection error, that is. the
geometric image distance between the homogenous detected and reprojected image points
for every view in which the 3D point appears.

Among the many available software tools for camera calibration, we employ Voodoo
Camera Tracker [151]. Within this software, we employ the SIFT operator [98] to extract
image features and the RANSAC algorithm for matching features (see Section 6.2.1).
Please refer to Section 6.2.1 for a brief description of SIFT keypoints and RANSAC
algorithm.

7.2.5 Size Constraints

Although the perspective projection of a parabola makes an ideal model for representing
the image of ballistic trajectory, the previously mentioned scale ambiguity can lead to
bad behavior when data are noisy or if the underlying motion is not actually ballistic.
In these cases, the solution may be skewed dramatically in the otherwise unconstrained
part of the solution space. This skew typically manifests as trajectories in planes that are
nearly parallel to the view lines with unreasonably high velocities and accelerations.
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To prevent these degenerate solutions, an optional constraint can be imposed based
on the variation in size of a projectile over time. With the assumption that the actual
projectile is of constant size, then its projected size in the image is inversely proportional
to the distance between the object and camera center as measured orthogonal to the image
plane. Accordingly, the additional constraints require that the trajectory’s distance to the
image plane vary based on measurements of the object’s size in the input images.

Consider a spherical projectile with diameter d at position (x1, y1, z1) relative to the
camera center with the z-axis being perpendicular to the image plane. The projected size
of this projectile will be d̃1 = fd/z1, where f is the camera focal length. As the projectile

moves to another position (x2, y2, z2), the projected size is d̃2 = fd/z2. The ratio of these

projections is d̃2/d̃1 = z1/z2. Note that this ratio does not depend on the focal length f
or diameter d.

For the static camera case, this basic constraint takes the form:

lz1 − cz

lzk − cz
=

d̃k

d̃1

, (7.21)

where cz is the z-component of the camera center c, d̃1 and d̃k are the measured sizes of
the projectile in the image at times t = 1 and t = k, and lz1 and lzk are the z-components
of l1 and lk as defined in Equation (7.10). This constraint expands to:

s1

[
qz
1 − cz

qz
k − cz

]
− sk

[
d̃k

d̃1

]
= 0. (7.22)

Note that this constraint is linear in the unknown parametric variables s1 and sk. These
linear constraints for all k = 2 . . . n can be included when solving for the trajectory
parameters. For the moving camera case, the constraint in Equation (7.22) takes the
form:

s1

[
r3
1 · q1 − c1

r3
k · qk − ck

]
− sk

[
d̃k

d̃1

]
= 0, (7.23)

where r3
k is the third row of the rotation matrix Rk.

7.2.6 Trajectory Estimation

The constraints from the proceeding sections can be assembled into a linear system of
equations. For both the static and moving camera cases, this system will have a similar
structure. This system can be over-constrained, either because the data cannot be fit by
a parabola or because of noise caused by small measurement errors. This system can also
be under-constrained due to a scale ambiguity, as previously described in Sections 7.2.2
and 7.2.3. The following least-squares solution contends with all of these cases.
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For the static camera case, the unknown parameters, p0, v, a, and st (t = 1 . . . n), are
gathered into a length n + 9 vector:

u = [px
0 vx ax py

0 vy ay pz
0 vz az s1 · · · sn]T . (7.24)

The constraints, Equations (7.13)-(7.15), are assembled into a linear system Mu = b
where:

M =




1 t1 t21 0 0 0 0 0 0 cx − qx
1 0 . . . 0

0 0 0 1 t1 t21 0 0 0 cy − qy
1 0 . . . 0

0 0 0 0 0 0 1 t1 t21 cz − qz
1 0 . . . 0

1 t2 t22 0 0 0 0 0 0 0 cx − qx
2 . . . 0

0 0 0 1 t2 t22 0 0 0 0 cy − qy
2 . . . 0

0 0 0 0 0 0 1 t2 t22 0 cz − qz
2 . . . 0

...
. . .

...
1 tn t2n 0 0 0 0 0 0 0 0 . . . cx − qx

n

0 0 0 1 tn t2n 0 0 0 0 0 . . . cy − qy
n

0 0 0 0 0 0 1 tn t2n 0 0 . . . cz − qz
n




and
b = [cx cy cz cx cy cz · · · cx cy cz]T .

For the moving camera case, Equations (7.18)-(7.20), the c − qt in the rows of M are
replaced with Rtct − qt), and b is replaced with:

b = [cx
1 +tx1 cy

1+ty1 cz
1+tz1 . . . cx

n+txn cy
n+tyn cz

n+tzn]
T .

If the optional size constraints from Section 7.2.5 are used, then M is extended by ap-
pending an additional n − 1 rows with a corresponding number of zeros appended to b.
For a static camera these rows have the form:




0 0 0 0 0 0 0 0 0
qz
1−cz

qz
2−cz − d̃2

d̃1
0 . . . 0

0 0 0 0 0 0 0 0 0
qz
1−cz

qz
3−cz 0 − d̃3

d̃1
. . . 0

...
. . .

...

0 0 0 0 0 0 0 0 0
qz
1−cz

qz
n−cz 0 0 . . . − d̃n

d̃1




.

For the moving camera case, the qt − c are correspondingly replaced with Rtqt − ct).
The least-squares solution to the system of constraints is given by u = M+b, where

M+ denotes pseudo-inverse computed as M+ = VS−1UT, where M = USV is the
singular-value decomposition of M.

Due to the possible scale ambiguity, this solution may not be unique. This occurs when
the smallest-magnitude singular value in S is zero. Due to small amounts of measurement
noise the smallest singular value may not be identically zero. We consider the smallest
singular value to be zero if it is less than 0.1 times the second-smallest singular value.

95



7. EXPOSING DIGITAL FORGERIES IN BALLISTIC MOTION

If there is no zero singular value then M+b is our final solution. Otherwise the
ambiguity is resolved by finding the solution where ‖a‖ = 9.8m/s2. Let u∗ be the column
of V corresponding to the zero singular value. The final solution is u = M+b+αu∗ where
α is selected by solving the quadratic equation:

∥∥∥[0 0 ax 0 0 ay 0 0 az 0 · · · 0]T · (M+b + αu∗)
∥∥∥

2

= 9.82 . (7.25)

In the case of a static camera, this quadratic constraint on the acceleration will give
us the scaling that corresponds to its size in the physical world. More importantly it also
avoids the trivial solution of u = 0 when b = 0.

In the case of a moving camera that follows a parabolic path, this method will produce
a parabolic path for the projectile that matches gravity, but it corresponds to the physical
path through space only if the path of the camera was estimated with the correct scale.
Even if the scale of the camera’s path were estimated incorrectly, the solution will still
correspond to a projectile path which produces the same image and that is scaled in a
way that allows consistent error comparison in meaningful units.

7.2.7 Forensics

The estimation of the projectile motion described in the previous two sections yields two
parametrizations of the projectile path. The first is the initial position, velocity and
acceleration (p0, v, a) as specified in Equation (7.1). The second is a non-parametric
representation specified by the variables st.

For authentic video of a ballistic projectile, these representations should be in agree-
ment, while an imperfectly faked projectile motion will yield inconsistencies in these
representations. For the static camera case, we quantify the error in these representations
as the average Euclidean distance between the pair of representations of the projectile
motion:

E =
1

n

n∑

t=1

‖pt − lt‖ (7.26)

=
1

n

n∑

t=1

‖(p0 + vt + 1
2
at2) − (c + st(qt − c))‖, (7.27)

where ‖ · ‖ denotes a vector 2-norm. Specifically, an error E above a specified threshold
is taken to be evidence of tampering. For the moving camera case, this error takes on a
similar form:

E =
1

n

n∑

t=1

‖(p0 + vt + 1
2
at2) − ((ct + tt) + st(Rtqt − ct))‖. (7.28)

This average error will be large when an overall path does not correspond to a ballistic
trajectory. For situations where only small parts of an otherwise correct motion have
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been altered, the maximum error may also be informative. Furthermore, as shown for
example in Figs. 7.6-7.23, a visual comparison can be made of the difference between the
parametric and non-parametric solutions.
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7.3 Results

We evaluate the efficacy of our forensic technique on authentic and fake videos of our
creation, and on several videos obtained from video-sharing websites such as YouTube.
In each example, the optional size constraint described in Section 7.2.5 was used. In order
to be able to directly compare the error metric, Equation (7.27) or (7.28), across differ-
ent videos, the size constraint is weighted to yield the same average absolute difference,
Equation (7.22). An iterative approach was taken to determine this weighting. On each
iteration the linear system is solved, and the weighting is decreased until the difference
reaches a specified threshold. Because the trajectory estimation is scaled so that the
acceleration term is 9.8m/s2, Equation (7.25), the resulting error metric is specified in
meters.

7.3.1 Tracking

The projection of a projectile’s center of mass qt on each video frame is estimated using
a combination of manual and automatic tracking. A user first manually selects the ap-
proximate center of mass of the projectile on each frame. A user also places a bounding
box around the projectile in the first frame, which is subsequently used as a template
to refine the initial manually selected projectile locations. The bounding box is selected
such that its center of mass corresponds to the projectile’s center of mass. For each
frame, the cross-correlation between the template and a small region around the user
selected location is computed. The final projectile location is the position that maximizes
the cross-correlation. The template is updated on each frame by automatically moving
the selected bounding box to the next frame. This contends with the possible changing
appearance and size of the projectile over time.

A specialized tracking algorithm is employed when the projectile is spherical (a bas-
ketball or soccer ball). Specifically, a circular Hough transform [37] is used to refine the
location of the initially selected projectile location. The technique is based on a voting
procedure carried out in the parameter space of the shape. A set of features points in
the image space (typically edges previously extracted with commonly used edge filter
detectors, such as Canny or Sobel) are transformed in a set of accumulated votes in the
parameter space. Local maxima in the accumulator array identify candidate objects, thus
defining circle position and radius.

7.3.2 Simulations

We simulated ballistic trajectories of a projectile with varying initial positions relative to
a fixed and stationary camera, varying velocities, small amounts of additive noise, and
varying planes of motion relative to the camera. These trajectories had known world and
image positions, so no tracking algorithm was required. In addition, the projectile was
simulated as a point, so the optional size constraint was not used.
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Figure 7.3: An authentic (yellow) and a visually plausible fake (blue) trajectories generated for
simulations.
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Figure 7.4: Shown is ROC curve for classification. The solid curve corresponds to the authentic
trajectories, and the dashed curve corresponds to the inauthentic paths.

Ten thousand random trajectories were generated from which the error, Equa-
tion (7.27), between the estimated parametric and non-parametric parametrizations
was computed. The mean error for the authentic ballistic trajectories is 0.0096 with a
standard deviation of 0.0039.

Non-ballistic, yet visually plausible, trajectories were created by sampling a path along
an ellipse. Ten thousand random trajectories were created. The mean error for the
elliptical trajectories is 0.0446 with a standard deviation of 0.0150. Shown in Fig. 7.3 are
two examples of simulated trajectories: in yellow an authentic projectile while in blue a
visually plausible fake trajectory.
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Fig µ (m) σ (m) max (m)

Authentic

7.6 0.014 0.011 0.044

7.7 0.029 0.021 0.093

7.8 0.010 0.009 0.033

7.9 0.038 0.029 0.121

Fake

7.10 0.151 0.093 0.382

7.11 0.307 0.114 0.750

7.12 0.175 0.077 0.420

7.13 0.357 0.34 1.872

Table 7.1: The error between the parametric and non-parametric parametrizations of the esti-
mated projectile trajectory for a static camera (Figs. 7.6-7.9 and 7.10-7.13), Equation (7.27).
Shown are the mean µ, standard deviation σ, and maximum error, specified in meters. The
mean and maximum error for the fake videos are consistently and significantly higher than for
the authentic videos.

Shown in Fig. 7.4 is the resulting ROC curve where the horizontal axis corresponds
to the reconstruction error, and the vertical axis to the classification accuracy. The solid
curve corresponds to the authentic trajectories, and the dashed curve corresponds to
the inauthentic paths. 99% of the parabolic trajectories have an error less than 0.02,
while 98% of the elliptical trajectories have an error greater than 0.02, revealing good
discrimination.

7.3.3 Static Camera

Images in Fig. 7.6-7.9 show results for four authentic videos. The examples in Fig. 7.6 and
Fig. 7.7 are of our recording, and the examples in Fig. 7.8 and 7.9 are from YouTube. The
images in panels (a) show four frames taken from each of the video sequences. Panel (b)
shows the two parametrizations of the estimated trajectory: the parametric trajectory
specified by initial position p0, velocity v, and acceleration a is denoted with filled yellow
dots and solid line, and locations along the non-parametric trajectory specified by the
variables st are denoted with open blue circles. The small black dot corresponds to the
camera center and the small red dots correspond to the projection of the projectile in each
video frame. Panel (c) shows the estimated parametric trajectory, denoted with filled
yellow dots, projected into the image plane, and the tracked position of the projectile
denoted with small red dots. In each example, the different parametrizations of the
projectile are in agreement, as would be expected for an authentic video. The mean
errors from Equation (7.27) for these three sequences are respectively 0.014m, 0.029m,
0.010m, and 0.038m, Table 7.1.

Note that in Fig. 7.6 the ball temporarily disappears from the field of view. Regardless,
we can still set up the linear system, skipping frames where the ball cannot be observed,
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Figure 7.5: Error metric for authentic (blue) and fake (red) videos from a static camera, where
the horizontal axis corresponds to the mean reconstruction error, and the vertical axis to the
maximum error. The diamond identifies the mean value over all the authentic (blue) and fake
videos (red).

because the time-coding of the video establishes a consistent time parametrization. Once
we have computed p0, v, and a, the full trajectory can then be estimated by extrapolating
the ball’s position during the time it is out of the field of view.

Images in Fig. 7.10-7.13 show results from four fake videos. The example in Fig. 7.10
is of our creation, the example inFig. 7.11 is from YouTube, and the examples in Fig.
7.12 and 7.13 are of a pendulum motion (a ball attached to a string). In each case, the
different parametrizations are not in agreement, revealing these videos to be fake, or in
the case of the pendulum motion, inconsistent with a ballistic motion. The mean errors
from Equation (7.27) for these four sequences are 0.151m, 0.307m, 0.175m and 0.357m,
Table 7.1. These errors are, on average, almost an order of magnitude larger than for the
authentic videos in Fig. 7.6-7.9.

A total of ten authentic and eight fake videos with static cameras were analyzed, a
subset of which are shown in Figs. 7.6-7.9 and 7.10-7.13. The mean error averaged over all
the authentic videos is 0.026m and the largest mean error for any of the authentic videos
is 0.038m. The mean error averaged over the fake videos is an order of magnitude larger
at 0.255m, and the smallest of the mean errors for any of the fake videos is 0.106m. These
errors show that authentic and fake videos are well separated in terms of the error metric
used to assess authenticity, Fig. 7.5. There is also a very clear qualitative distinction that
can be seen when comparing the trajectory visualizations in panels (c) of Figs. 7.6-7.9
and 7.10-7.13.
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(a) http: // www. youtube. com/ watch? v= z7NpkDCDYjg

(b) (c)

Figure 7.6: Authentic video from a static camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are in agreement, as expected
for an authentic video. Shown in panel (c) is the estimated parametric trajectory projected into
the image plane (filled yellow dots) and the tracked position of the projectile (small red dots).
These locations are in agreement, as expected for an authentic video.
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(a)http: // www. youtube.com/ watch? v= GbKA7t79Wds

(b) (c)

Figure 7.7: Authentic video from a static camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are in agreement, as expected
for an authentic video. Shown in panel (c) is the estimated parametric trajectory projected into
the image plane (filled yellow dots) and the tracked position of the projectile (small red dots).
These locations are in agreement, as expected for an authentic video.
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(a) http: // www. youtube. com/ watch? v= kDUHTioJi7A

(b) (c)

Figure 7.8: Authentic video from a static camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are in agreement, as expected
for an authentic video. Shown in panel (c) is the estimated parametric trajectory projected into
the image plane (filled yellow dots) and the tracked position of the projectile (small red dots).
These locations are in agreement, as expected for an authentic video.
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(a) http: // www. youtube.com/ watch? v= wpYM3NkMYMs

(b) (c)

Figure 7.9: Authentic video from a static camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are in agreement, as expected
for an authentic video. Shown in panel (c) is the estimated parametric trajectory projected into
the image plane (filled yellow dots) and the tracked position of the projectile (small red dots).
These locations are in agreement, as expected for an authentic video.
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(a) http: // www. youtube. com/ watch? v= RLJ7aNkIv7I

(b) (c)

Figure 7.10: Fake videos from a static camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are not in agreement, as
expected for a fake video. Shown in panel (c) is the estimated parametric trajectory projected
into the image plane (filled yellow dots) and the tracked position of the projectile (small red
dots). These locations are not in agreement, as expected for a fake video.
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(a) http: // www. youtube.com/ watch? v= WbaH52JI3So

(b) (c)

Figure 7.11: Fake videos from a static camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are not in agreement, as
expected for a fake video. Shown in panel (c) is the estimated parametric trajectory projected
into the image plane (filled yellow dots) and the tracked position of the projectile (small red
dots). These locations are not in agreement, as expected for a fake video.
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(a) http: // www. youtube. com/ watch? v= ucGLQ8wzxNM

(b) (c)

Figure 7.12: Fake videos from a static camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are not in agreement, as
expected for a fake video. Shown in panel (c) is the estimated parametric trajectory projected
into the image plane (filled yellow dots) and the tracked position of the projectile (small red
dots). These locations are not in agreement, as expected for a fake video.
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(a) http: // www. youtube. com/ watch?v= ChawQ_3CjbI

(b) (c)

Figure 7.13: Fake videos from a static camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are not in agreement, as
expected for a fake video. Shown in panel (c) is the estimated parametric trajectory projected
into the image plane (filled yellow dots) and the tracked position of the projectile (small red
dots). These locations are not in agreement, as expected for a fake video.
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Fig µ (m) σ (m) max (m)

Authentic

7.16 0.031 0.017 0.096

7.16 0.031 0.017 0.096

7.17 0.056 0.035 0.162

7.18 0.024 0.016 0.077

Fake

7.20 0.082 0.072 0.341

7.21 0.119 0.064 0.365

7.22 0.266 0.173 0.934

7.23 0.166 0.091 0.557

Table 7.2: The error between the parametric and non-parametric parametrizations of the esti-
mated projectile trajectory for a moving camera (Figs. 7.15-7.18 and 7.20-7.23), Equation (7.28).
Shown are the mean µ, standard deviation σ, and maximum error, specified in meters. The
mean and maximum error for the fake videos are consistently and significantly higher than for
the authentic videos.

7.3.4 Moving Camera

Images in Fig. 7.15-7.18 show results from authentic videos recorded with moving cameras.
The example in Fig. 7.15 and 7.16 are of our recording, and the example in Fig.7.17 and
7.18 are two parts of one video from YouTube. Panels (a) show four video frames from
each motion sequence. Shown in panel (b) are the two parametrizations of the estimated
trajectory: the parametric trajectory specified by initial position p0, velocity v, and
acceleration a is denoted with filled yellow dots and solid line, and the non-parametric
trajectory specified by the variables st is denoted with open blue circles. The small black
dot corresponds to the camera center and the small red dots correspond to the projection
of the projectile in each video frame. Shown in panel (c) is the estimated parametric
trajectory, denoted with filled yellow dots, projected into the image plane, and the tracked
position of the projectile denoted with small red dots. The underlying image in panel (c)
was constructed by compositing the video frames into a single composite. In each example
the different parametrizations of the projectile are in agreement, as would be expected
for an authentic video. The mean error, Equation (7.28), for these four sequences are
0.027m, 0.0315m, 0.056m, and 0.024m, Table 7.2. Moreover, in Fig. 7.19 the composition
of all the sequence represented in Fig. 7.17 and 7.18 is shown.

Images in Fig. 7.20-7.23 show results from four fake videos taken with moving cameras.
The example in Fig. 7.20 is of our creation, the example in Fig. 7.21 is from YouTube, and
the examples in Fig. 7.22 and 7.23 is of a pendulum motion (a ball attached to a string).
In each case, the different parametrizations are not in agreement, revealing these videos to
be fake, or in the case of the pendulum motion, inconsistent with a ballistic motion. The
error, Equation (7.27), for these four sequences are 0.082m, 0.119m, 0.266m and 0.161m,
Table 7.2. These errors are, on average, four times larger than for the authentic videos in
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Figure 7.14: Error metric for authentic (blue) and fake (red) videos from a moving camera,
where the horizontal axis corresponds to the mean reconstruction error, and the vertical axis
to the maximum error. The diamond identifies the mean over over all the authentic (blue) and
fake videos (red).

Fig. 7.15-7.18.
A total of eight authentic and eight fake videos with a moving camera were analyzed, a

subset of which are shown in Figs. 7.15-7.18 and 7.20-7.23. The mean error averaged over
the authentic videos is 0.035m and the largest mean error for any of the authentic videos
is 0.056m. The mean error for the fake videos is several times larger at 0.175m, and the
smallest of the mean errors for any of the fake videos is 0.077m. These errors show that
the authentic and fake videos are well separated in terms of the error metric used to assess
authenticity, Fig. 7.14. As with the static camera examples, there is also a very clear
qualitative distinction that can be seen when comparing the trajectory visualizations.
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(a) http: // www. youtube. com/ watch? v= 4n8B1jWjsq4

(b) (c)

Figure 7.15: Authentic video from a moving camera. Shown in panel (a) are four sample
video frames. Shown in panel (b) are the two parametrizations of the estimated trajectory:
the parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are in agreement, as expected
for an authentic video. Shown in panel (c) is the estimated parametric trajectory projected into
the image plane (filled yellow dots) and the tracked position of the projectile (small red dots).
These locations are in agreement, as expected for an authentic video.
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(a) http: // www. youtube.com/ watch? v= c85qoQ8K6hQ

(b) (c)

Figure 7.16: Authentic video from a moving camera. Shown in panel (a) are four sample
video frames. Shown in panel (b) are the two parametrizations of the estimated trajectory:
the parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are in agreement, as expected
for an authentic video. Shown in panel (c) is the estimated parametric trajectory projected into
the image plane (filled yellow dots) and the tracked position of the projectile (small red dots).
These locations are in agreement, as expected for an authentic video.
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(a)http: // www. youtube. com/ watch?v= 2JwbubAX-Aw

(b) (c)

Figure 7.17: Authentic video from a moving camera. Shown in panel (a) are four sample
video frames. Shown in panel (b) are the two parametrizations of the estimated trajectory:
the parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are in agreement, as expected
for an authentic video. Shown in panel (c) is the estimated parametric trajectory projected into
the image plane (filled yellow dots) and the tracked position of the projectile (small red dots).
These locations are in agreement, as expected for an authentic video.
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(a)http: // www. youtube.com/ watch? v= 2JwbubAX-Aw

(b) (c)

Figure 7.18: Authentic video from a moving camera. Shown in panel (a) are four sample
video frames. Shown in panel (b) are the two parametrizations of the estimated trajectory:
the parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are in agreement, as expected
for an authentic video. Shown in panel (c) is the estimated parametric trajectory projected into
the image plane (filled yellow dots) and the tracked position of the projectile (small red dots).
These locations are in agreement, as expected for an authentic video.
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(a) (b)

(c)

Figure 7.19: Composite of the video frames of fig 7.17 (a) and 7.18 (b) into a single panorama
(c).
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(a) http: // www. youtube.com/ watch? v= 3v93eqwwkV0

(b) (c)

Figure 7.20: Fake video from a moving camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are not in agreement, as
expected for a fake video. Shown in panel (c) is the estimated parametric trajectory projected
into the image plane (filled yellow dots) and the tracked position of the projectile (small red
dots). These locations are not in agreement, as expected for a fake video.
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(a) http: // www. youtube. com/ watch? v= EXPOfStElLA

(b) (c)

Figure 7.21: Fake video from a moving camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are not in agreement, as
expected for a fake video. Shown in panel (c) is the estimated parametric trajectory projected
into the image plane (filled yellow dots) and the tracked position of the projectile (small red
dots). These locations are not in agreement, as expected for a fake video.

118

http://www.youtube.com/watch?v=EXPOfStElLA


7.3. RESULTS

(a)http: // www. youtube.com/ watch? v= PumYuLlHDoc

(b) (c)

Figure 7.22: Fake video from a moving camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are not in agreement, as
expected for a fake video. Shown in panel (c) is the estimated parametric trajectory projected
into the image plane (filled yellow dots) and the tracked position of the projectile (small red
dots). These locations are not in agreement, as expected for a fake video.
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(a)http: // www. youtube. com/ watch?v= TaX0mRzBvIg

(b) (c)

Figure 7.23: Fake video from a moving camera. Shown in panel (a) are four sample video
frames. Shown in panel (b) are the two parametrizations of the estimated trajectory: the
parametric trajectory specified by p0, v, a (filled yellow dots and solid line), and the non-
parametric trajectory specified by the variables st (open blue circles). The small black dot
corresponds to the camera center and the small red dots correspond to the projection of the
projectile in each video frame. Note that the two parametrizations are not in agreement, as
expected for a fake video. Shown in panel (c) is the estimated parametric trajectory projected
into the image plane (filled yellow dots) and the tracked position of the projectile (small red
dots). These locations are not in agreement, as expected for a fake video.
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7.4 Discussion

We have described a geometric technique for detecting forged ballistic motion in video
sequences. This technique explicitly models the three-dimensional trajectory of objects
in free-flight and the two-dimensional imaging of the trajectory by a static or moving
camera. We have shown that the three-dimensional trajectory can be directly and reli-
ably estimated from a video sequence. Deviations from this model provide evidence of
manipulation. This forensic analysis makes minimal assumptions, requires limited user
input, and is computationally efficient. We have verified the efficacy of this technique in
large-scale simulations, and on numerous real-world examples.

Although somewhat narrowly applicable, this forensic tool adds to a growing set of
techniques for authenticating images and video. One of the advantages of geometric
techniques over techniques based on low-level image statistics is that the modeling and
estimation of geometry is less sensitive to resolution and compression that can easily
confound the statistical analysis of images and video.

As with any forensic technique, it is important to consider the ease with which counter-
measures can circumvent our forensic analysis of ballistic motion. Because our analysis
considers the three-dimensional trajectory of a projectile, a two-dimensional image-based
manipulation is unlikely to correctly generate a physically plausible three-dimensional tra-
jectory. This is made even more unlikely when the video is filmed with a moving camera,
since there is no frame of reference from which a forger can specify the overall trajec-
tory. A determined forger could, of course, compute a desired 3-D parabolic trajectory,
project it under the appropriate homography, and then alter a projectile’s path accord-
ingly. However, such a trajectory may not always exist for scenarios that a forger wishes
to depict. In particular constraints, such as tying on to an initial segment of motion or
connecting specific targets in a scene, can create situation where no physically possible
ballistic motion wold meet the forgers requirements. Furthermore, for a moving camera
the forger would have to first align all of the frames into a common coordinate system
and project edits back into the original video sequence. This counter-measure, while not
impossible, is currently outside of the capabilities of available video-editing software.

While we have focused only on ballistic motions, the basic framework presented here
could be applied to analyzing the motion of cars, planes, rockets, or other moving objects.
This would, of course, require more sophisticated models of motion to account for the
particular type of accelerations experienced by these objects.
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Chapter 8

Conclusions

The pervasive availability of the Internet, coupled with the development of affordable
and high quality technologies, such as digital cameras and computers, has lead digital
multimedia contents to be the primary source of visual information in several scenarios,
replacing traditional film-based media. The digitalization of such contents has brought
significant technical and economical benefits, but also problematic issues regarding their
authenticity due to the fact that sophisticated and user-friendly graphics editing softwares
have enabled forgers to easily manipulate digital images, or videos. Their trustworthiness
is thus notably reduced and their reliability as a true representation of reality cannot be
taken for granted, especially within those environment dealing with sensitive data, such
as forensic investigation, science, medical imagery and press photographs. The objective
of this thesis is the development of efficient techniques to cope with security issues related
to multimedia data.

Digital watermarking has been firstly proposed as a valuable mean to cope with these
problems, by imperceptibly embedding a message into a documents. Such message can
later be detected and/or retrieved and used to disclose possible copyrights violations or
manipulations. Since malevolent users may be willing to impair such methodology at-
tempting to remove the embedded information, generally watermarks are required to be
robust to resist to possible attacks, especially for specific application such as copyright
protection. In Chapter 3 we presented an innovative benchmarking tool designed to eval-
uate robustness performances of image watermarking techniques under any combination
of attacks, selected depending on the context requirements the method is designed for.
From a developers point of view, a benchmark allows verifying the robustness of the own
method with respect to existing algorithms, thus stimulating the research to look for
better and better solutions. On the other hand, from a users point of view, evaluating
performances of the plethora of watermarking techniques present in the literature is useful
in order to select the most appropriate one for the intended application.

123



8. CONCLUSIONS

Although the main application of digital watermarking is copyright protection, this tech-
nology can be used for different purposes, such as multimedia indexing, authentication,
fingerprinting, integrity verification, quality assessment and the like. In particular, ap-
plications dealing with sensitive imagery, such as medical, forensics or military, primarily
require preserving the integrity of the data, rather than satisfying the robustness require-
ment. To cope with this issue, reversible watermarking schemes have been investigated.
Their peculiarity is the possibility to restore the original host data after the detection
or the extraction of the hidden data. Chapter 4 described the novel reversible algorithm
we proposed. In particular, the presented technique extends existing prediction-based
schemes, by exploiting local dependency, with non-local similarity information. Experi-
mental results demonstrate that it successfully allow a complete recovery of the original
host signal and over-performs state-of-the art algorithms in terms of embedding capacity,
quality of the watermarked image and computational complexity.

The main limitation of digital watermarking is that it requires some information to be
embedded at the time of recording or a person to embed it at the time of sending. Up to
now, such processes are not standardized and the majority of contents available over the
network is not protected, thus being subjected to unauthorized use and manipulation.
In light of this, recently the scientific community started searching for new techniques
able to verify integrity of digital data in absence of any watermark or special hardware.
The solution has been found in passive forensics approaches. The basic idea is that the
manipulation of a digital media, if performed properly, may not leave visual trace of its
occurrence, but it alters the underlying statistics of the content. An accurate analysis can
be carried out, without any prior knowledge about the content and reveal such alterations
which can be taken as evidence of forgery. In this doctoral study we attempted to actively
contribute to the research in the field, proposing a couple of innovative and efficient
techniques for both image and video authentication. We focused our attention geometric-
based forensic techniques, which exploit the principles of projection geometry of image
formation. Such principles are very likely to be violated when creating a forgery, therefore
their analysis can lead to evidence of tampering.

Chapter 4 presented the details of our forensic approach to authenticate photographs
depicting text on sign and billboards. Because it is relatively easy to digitally insert
text into a photo in a visually compelling manner, it can be difficult to determine if
text is authentic just at visual inspection. Our forensic technique explicitly models the
projection from the sign in the world to the image and determines if this projection
satisfies the expected planar perspective mapping. We demonstrated that inauthentic
text often violates the rules of perspective projection and can therefore be detected.

As far as video authentication is concerned, in Chapter 7 we reported details of the
forensic technique we developed for determining if a projectile (e.g., a thrown ball) in a
video is authentic. We explicitly described a plausible physical model for the expected
trajectory of a projectile motion, and a basic imaging model for a static or moving camera.
We then explained a technique to determine if the image of the trajectory of a projectile
motion is consistent with this physical model.
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Given the growing number of digital content available over the network, thanks to
file sharing website and social networks, there is a constantly growing need for digital
forensics techniques, and many promising and innovative techniques have been proposed
so far to address authentication issues. However, together with all the efforts to disclose
photographic frauds, also new techniques to create better forgeries that cannot be de-
tected have been developed by determined forgers. In light of this, the trustworthiness of
digital forensics have been recently questioned [51]. Anti-forensics is a new brand science
which aims at identifying weaknesses in existing forensic techniques. To the best of our
knowledge, the first paper dealing in this research area has been published in 2008 [79].
The authors demonstrate how traces left by re-sampling operations can be made unde-
tectable by post-processing the content with a median filter. Little work has been done in
the field up to now, [80, 147, 148, 14], but it is to be hoped that research in this direction
will increase. As a matter of fact, even if someone may think that the development of
anti-forensics techniques undermines the security of multimedia data, such studies may
results very useful for researchers, pushing them towards improved techniques, able of
both overcoming disclosed drawbacks and/or detecting when an anti-forensic operation
has been used [53, 81].

Similarly to cryptography, multimedia content authentication, provided by both ac-
tive and passive forensics, is a ”cat-and-mouse” game, where advantage constantly shifts
between researchers and forgers. Anyway, it is important to keep playing this game in
order to increase the level of expertise required to violate and manipulate digital contents
in a way that cannot be detected and to develop better and better solutions.

A challenge in the future of image forensics will be its application to multimedia
opinion mining and bias analysis. In particular, the modification of a content may lead to
an critical impact of its meaning, maybe altering the opinion of the viewer relative to the
represented event. Understanding the perception of visual semantics could be important
also to understand the maliciousness of a forgery. The work proposed in [32] represents
the first step in this direction, proposing a theoretical framework to establish semantic
dependencies among group of images. The work in this field is still in its infancy but the
scientific community is recently focusing on this challenging issue [1].
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