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Abstra
tIn the framework of the ele
tromagneti
 approa
hes based on learning-by-example(LBE) te
hniques, this thesis fo
uses on the development of a strategy for the so-lution of 
omplex problems by means of support ve
tor ma
hine (SVM). Theproposed instan
e-based 
lassi�
ation method 
ompared to more traditional opti-mization te
hniques solves the arising quadrati
 optimization problem with 
on-straints in a simple and reliable way leveraging on the Statisti
al Learning Theorywhi
h permits the design of optimal 
lassi�ers with a solid theoreti
al framework.A set of input/output relations representing the training dataset permits to avoidthe a-priori knowledge about the system. By exploiting the generalization 
apabil-ities, the robustness against noise and the real-time performan
e, this te
hniquehas been proven to be suitable for more than one real-world appli
ation. Theinvestigated problems are addressed by integrating the measured ele
tromagneti
�eld with a suitably de�ned 
lassi�er that is aimed at de�ning a real-time re
on-stru
tion of the observed domain. For ea
h appli
ation �eld a set of numeri
alresults have been reported in order to assess the e�e
tiveness and �exibility of theproposed approa
h. The real-time 
apabilities as well as the feasibility when deal-ing with real data have been also veri�ed by means of an experimental setup forthe passive tra
king of non-
ooperative targets moving throughout the investigatedarea.KeywordsLearning by example (LBE), support ve
tor ma
hine (SVM), buried obje
t de-te
tion, breast 
an
er imaging, dire
tion of arrival (DOA) estimation, passivelo
alization and tra
king.
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Stru
ture of the Thesis
The thesis is stru
tured in 
hapters a

ording to the organization detailed inthe following.The �rst 
hapter deals with an introdu
tion to the thesis, fo
using on themain motivations and on the subje
t of this work as well as a presentation of thestate-of-the-art te
hniques dealing with the solution of ele
tromagneti
 problemsby means of learning-by-example strategies.Chapter 2 presents the theoreti
al ba
kground of the SVM-based 
lassi�er,fo
using on the de�nition of the de
ision fun
tion as well as on the evaluation ofthe a-postertiori probability.In Chapter 3 the proposed method is integrated with an iterative multi-s
alingapproa
h for the dete
tion of three-dimensional buried obje
t. The �exibility ande�e
tiveness of su
h an approa
h are pointed out in the numeri
al validation forboth single and multiple obje
ts.The 
ustomization of the approa
h for the early breast 
an
er imaging prob-lem is des
ribed and assessed in Chapter 4 as an alternative te
hnique lookingfor real-time pro
essing. Preliminar results are presented in 
ase of noiseless andnoisy data.Chapter 5 deals with the presentation of the dire
tion of arrival estimationproblem. The SVM-based approa
h has been used to estimate the DOA of ea
hele
tromagneti
 wave impinging on a planar antenna array.

xv



LIST OF FIGURESThe passive dete
tion and tra
king of non-
ooperative moving targets is pre-sented in Chapter 6. The presented results show the e�e
tiveness and the real-time 
apabilities of the proposed approa
h when dealing with real data a
quiredin time-varying s
enarios.Con
lusions and further developments are presented in Chapter 7.
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Chapter 1Introdu
tion and State-of-the-ArtIn this 
hapter, a brief overview on the te
hniques presented in the state-of-the-art and regarding the solution of 
omplex ele
tromagneti
 problems by means oflearning-by-example methodologies is presented. A

ordingly, the motivation ofthe thesis is pointed out.

1



The learning methodology has been inspired by theory of statisti
al learningleading up to solutions with ni
e mathemati
al properties and ex
ellent perfor-man
e. Ma
hine learning has largely been applied to a variety of a
tual problemsbut less attention has been devoted in the �eld of ele
tromagneti
s. When 
losedform solutions do not exist, learning by example approa
hes represent an alter-native way to solve the problem at hand. By training an SVM [1℄ the solution
an be online predi
ted. To this end, when the appli
ation requires real-timeperforman
e, the use of a mathemati
al tool that 
an be trained o�-line andthen easily implemented in embedded devi
es is suggested. These properties andalso other 
hara
teristi
s make SVM good 
andidate to solve optimization prob-lems in ele
tromagneti
 areas, su
h as inverse s
attering problems. Due to theirinherent nonlinear nature and ill-posedness, the solution to inverse problems isvery 
omplex. State of the art algorithms re
ast the original problem into anoptimization one, whi
h is su

essively solved by means of iterative minimizationte
hniques [2, 3℄. Unfortunately, su
h pro
edures often make the re
onstru
tionpro
ess unsuitable for real-time appli
ations. Great attention has been devotedto alternative methodology based on neural networks (NNs), both multilayerper
eptron (MLP) [4℄ and radial basis fun
tion (RBF) [5℄ approa
hes have beenproposed. However, even if they show low 
omputational 
omplexity, NN-basedapproa
hes su�er from typi
al training dependent problems like over�tting re-sulting in an inability to 
orre
tly estimate the output in presen
e of input datawhi
h do not belong to the original training set. On the 
ontrary, SVMs allowthe 
ontrol of the approximating fun
tion and its generalization a

ura
y. Morein detail, the arising optimization problem is aimed at �nding the best tradeo�between the learning 
apabilities from training data and the model 
omplexity.Sin
e the model 
omplexity has a straightforward 
onsequen
e on the general-ization a

ura
y [6℄, this leads to the determination of models that outperformstandard NNs. In [37℄, a SVM-based te
hnique has been adopted for the lo-
alization of a two-dimensional 
ylindri
al geometry with 
ir
ular 
ross-se
tion.The lo
alization problem has been re
ast in a regression one where the unknowns(i.e., the position as well as the geometri
 and diele
tri
 
hara
teristi
s of thetarget) are dire
tly evaluated from the data (i.e., the values of the s
attered�eld) by approximating the data-unknowns relation through an o�-line data �t-ting pro
ess (training phase). This approa
h turns out to be e�e
tive for thedete
tion of few obje
t sin
e some di�
ulties o

ur when dealing with a largenumber of unknowns. In order to over
ome this drawba
k, Massa et al. [38℄proposed a 
lassi�
ation approa
h, instead of a regression one, that moves fromthe dete
tion of a single obje
t to the de�nition of an a-posteriori probability ofpresen
e of obje
ts in a two-dimensional s
enario. In order to de�ne the risk-map, during the test phase, the domain under investigation will be partitionedin a two-dimensional latti
e in order to 
lassify a �nite number of 
ells. Thepredi
tion model tests the unknown input data and returns the estimation ofthe 
ell states, that 
an be empty (i.e., if any s
atterer belongs to the 
ell) or2



CHAPTER 1. INTRODUCTION AND STATE-OF-THE-ARTo

upied. Unlike standard approa
hes that only 
lassify the input pattern, theproposed output de�nes the a posteriori probability that the obje
t belongs toa parti
ular region of the domain. In this sense, the 
omputational time savingprovided by this methodology justi�es some limitations like the estimation of theobje
ts presen
e or absen
e instead of the 
omplex diele
tri
 properties. Start-ing from this theoreti
al ba
kground, the proposed approa
h is aimed at solving
omplex problems starting from the �eld of three-dimensional inverse s
atteringproblems, the real-time dire
tion �nding of signals impinging on a planar arrayof ele
tromagneti
 sensors, up to the passive lo
alization and tra
king of tar-gets moving throughout an area monitored by a wireless sensor network (WSN)ar
hite
ture.

3





Chapter 2SVM-based MethodologyThis 
hapter presents the theoreti
al ba
kground of the proposed probabilisti
approa
h for the de�nition of the risk map of obje
t presen
e and position inthe investigated domain. Starting from the measurement of an ele
tromagneti
quantity related to the 
onsidered appli
ation, the probability of o

urren
e oftargets is determined through a suitably de�ned 
lassi�er based on a SupportVe
tor Ma
hine (SVM). The proposed SVM-based 
lassi�
ation approa
h is for-mulated as a two-step pro
edure
• Step 1: determining a de
ision fun
tion Φ̂ that 
orre
tly 
lassi�es an inputpattern (ΓE , m) (not-ne
essarily belonging to the training set);
• Step 2: mapping the de
ision fun
tion Φ̂ {(ΓE , m)} into an a-posterioriprobability Pr {χ = 1 |ΓE

}.The details of the pro
edure are mathemati
ally formulated in the followingse
tions.

5



2.1. DEFINITION OF THE DECISION FUNCTION2.1 De�nition of the De
ision Fun
tionAt this step, the status χm of ea
h 
ell of the latti
e has to be determined. Math-emati
ally, su
h a problem formulates in the de�nition of a suitable dis
riminantfun
tion Φ̂ separating the two 
lasses, whi
h are labeled as χ = +1 and χ = −1.Sin
e these 
lasses are non-linearly separable, the de�nition of a non-linear (interms of the original data ΓE) dis
riminant fun
tion is usually required as wellas the solution of an optimization problem where multiple optima (also lo
aloptima) are present. As a matter of fa
t, su
h a solution is implemented whenArti�
ial Neural Networks (ANN) are 
onsidered (see [84℄ and the referen
es
ited therein).Unlike ANN, SVM de�nes a linear de
ision fun
tion 
orresponding to a hyper-plane that maximizes the separating margin between the 
lasses and it requiresthe solution of an optimization problem where only one minimum there exists.More in detail, the linear data-�tting is not 
arried out in the original inputspa
e ℜ{ΓE}, but in a higher dimensional spa
e ℵ{ϕ (ΓE)
} (
alled feature spa
e)where the original examples are mapped through a non-linear operator(1)1, ϕ (•).The nonlinear SVM 
lassi�er so obtained is de�ned as

Φ̂
(
ϕ (ΓE , m)

)
= w · ϕ (ΓE, m) + b m = 1, ...,M (2.1)where w and b are the parameters of Φ̂ to be determined during the trainingphase. The hyperplane so-de�ned 
auses the largest separation between thede
ision fun
tion values for the �margin� training examples from the two 
lasses.Mathemati
ally, su
h a hyperplane 
an be found by minimizing the following
ost fun
tion

Ω (w) =
1

2
‖w‖2 (2.2)subje
t to the separability 
onstraints

w · ϕ
(
Γ
(n)
E , m

)
+ b ≥ +1 for χ

(n)
m = +1 m = 1, ...,M

w · ϕ
(
Γ
(n)
E , m

)
+ b ≤ −1 for χ

(n)
m = −1 n = 1, ..., N

(2.3)In this sense, SVM 
an be 
onsidered as a kind of regularized network, as indi-
ated in [8℄.However, sin
e the training data in the feature spa
e are generally non-
ompletelyseparable by a hyperplane, sla
k variables (denoted by ξ(n)(m)) are introdu
ed torelax the separability 
onstraints in (2.3) as follows
w · ϕ

(
Γ
(n)
E , m

)
+ b ≥ 1− ξ

(n)
(m)+ for χ

(n)
m = 1 m = 1, ...,M

w · ϕ
(
Γ
(n)
E , m

)
+ b ≤ ξ

(n)
(m)− − 1 for χ

(n)
m = −1 n = 1, ..., N

(2.4)1(1)Be
ause of the formulation of the problem at hand, it is easy to verify [Eq. (2.9)℄ thata
tually one does not need to know the ϕ (•) fun
tion, but only its dot produ
t in the featurespa
e a

ording to the so-
alled �kernel tri
k � [1℄.6



CHAPTER 2. SVM-BASED METHODOLOGYSu
h a pro
edure is justi�ed by the Cover's theorem, a key point in the SVMmethodology as indi
ated in [1℄ (p. 200).Thus, the 
ost fun
tion in (2.2) turns out to be
Ω (w) =

‖w‖2

2
+

C
∑M

m=1

{
N−

(m) +N+
(m)

}
M∑

m=1





N+
(m)∑

n=1

ξ
(n)
(m)+ +

N−

(m)∑

n=1

ξ
(n)
(m)−





(2.5)where N+
(m) and N−

(m) indi
ate the number of training patterns for whi
h χ(n)
m =

+1 and χ
(n)
m = −1, respe
tively. The user-de�ned hyperparameter C 
ontrolsthe trade-o� between the empiri
al risk (i.e., the training errors) and the model
omplexity [the �rst term in (2.6)℄ to avoid the over�tting. In that 
ase, thede
ision boundary too pre
isely 
orresponds to the training data. Thereby, themethod is unable to deal with data outside the training set [1℄ (Ch. 5 and Ch.7).Moreover, to in
lude a-priori knowledge about 
lass distributions [9℄, two weight-ing 
onstants 
an be de�ned λ+ = C∑M

m=1 N
+
(m)

and λ− = C∑M
m=1 N

−

(m)

[102℄, and Eq.(2.5) modi�es as follows
Ω (w) =

‖w‖2

2
+ λ+

M∑

m=1

N+
(m)∑

n=1

ξ
(n)
(m)+ + λ−

M∑

m=1

N−

(m)∑

n=1

ξ
(n)
(m)− (2.6)In order to minimize (2.6), it 
an be observed that a ne
essary 
ondition is that

w is a linear 
ombination of the mapped ve
tors ϕ(
Γ
(n)
E , m

)

w =
M∑

m=1

N∑

n=1

{
α(n)
m χ(n)

m ϕ
(
Γ
(n)
E , m

)} (2.7)where α(n)
m ≥ 0, n = 1, ..., N , m = 1, ...,M are Lagrange multipliers to be de-termined. Moreover, from the Karush-Khun-Tu
ker 
onditions at the optimality[11℄, b turns out to be expressed as follows

b =

∑M
m=1

∑Nsv

n=1

{
χ
(n)
m −

∑M
q=1

∑N
p=1

{
α
(p)
m ϕ

(
Γ
(n)
E , m

)
· ϕ

(
Γ
(p)
E , q

)}}

Nsv

(2.8)
Nsv being the number of patterns (Γ(n)

E , m
) for whi
h α(n)

m 6= 0 (
alled supportve
tors). Sin
e support ve
tors lie on the hyperplane for whi
h Eq. (2.4) issatis�ed with equality, they are taken into a

ount for the 
lassi�
ation whilethe others are negle
ted. Su
h an event re�e
ts the �sparsity� property of theSVM 
lassi�er allowing the use of few input patterns.7



2.2. MAPPING OF THE DECISION FUNCTION INTO THEA-POSTERIORI PROBABILITYSubstituting (2.7) and (2.8) in (2.1) yields
Φ̂
(
ϕ (ΓE) , m

)
=

∑M

p=1

∑N

n=1

{
α
(n)
m χ

(n)
m Θ

(
Γ
(n)
E ,ΓE , p, m

)}

+
∑M

m=1

∑Nsv
n=1

{
χ
(n)
m −

∑M
q=1

∑N
p=1

{
α
(p)
m Θ

(
Γ
(n)
E

,Γ
(p)
E

, p,m
)}}

Nsv

(2.9)where Θ(
Γ
(i)
E , Γ

(j)
E , p, m

)
= ϕ

(
Γ
(i)
E , p

)
·ϕ

(
Γ
(j)
E , m

) is a suitable kernel fun
tion[12℄. Then, the de
ision fun
tion is 
ompletely determined when the Lagrangemultipliers are 
omputed. Towards this end, the 
onstrained optimization prob-lem formulated in (2.6) and (2.4) is reformulated in a more pra
ti
al dual form.The solution of the dual problem, whi
h is equivalent to the solution of the primaloptimization problem (2.2)-(2.3), turns out to be
maxα {ΩDual (α)} =

maxα

{∑N
n=1

∑N
p=1

∑M
m=1

∑M
q=1

[
α
(n)
m α

(p)
q χ

(n)
m χ

(p)
q Θ

(
Γ
(n)
E

,Γ
(p)
E

, p,m
)]

2
−
∑N

n=1

∑M

m=1 α
(n)
m

}(2.10)subje
t to∑N
n=1

∑M
m=1 α

(n)
m χ

(n)
m = 0, α(n)

m ∈ [0, λ−] if χ(n)
m = −1 and α(n)

m ∈ [0, λ+]otherwise.Finally, sin
e ΩDual (α) is a 
onvex and quadrati
 fun
tion of the unknown param-eters α(n)
m , it is solved numeri
ally by means of a standard quadrati
 programmingte
hnique (e.g., the Platt's SMO algorithm for 
lassi�
ation [13℄(2)2). More indetail, the SMO algorithm breaks the large optimization problem at hand in aseries of smaller ones 
hara
terized by only two variables and solved throughan e�e
tive updating formula [13℄, thus indu
ing non-negligible 
omputationalsavings.2.2 Mapping of the De
ision Fun
tion into the A-Posteriori ProbabilityCon
erning standard 
lassi�
ation, the SVM 
lassi�er labels an input patterna

ording to the following rule [14℄

χm = sign
{
Φ̂
(
ϕ (ΓE , m)

)}
m = 1, ...,M (2.11)Unlike standard approa
hes, the proposed method is aimed at de�ning an a-posteriori probability. Consequently, some modi�
ations to the standard SVM-based 
lassi�
ation approa
h are needed. Towards this aim, a set of e�
ientsolutions has been proposed (see, for instan
e, [12℄,[15℄-[17℄) either based on2(2)An optimal implementation of the SMO algorithm is the �LibSVM � tool available athttp://www.kernel-ma
hines.org. 8



CHAPTER 2. SVM-BASED METHODOLOGYa dire
t training of the SVM with a logisti
 link fun
tion and a regularizedmaximum likelihood s
ore or based on a-posterior �tting probability pro
ess.The �rst 
lass of approa
hes usually leads to non-sparse kernel ma
hines andrequires a signi�
ant modi�
ation of the SVM stru
ture. In this paper, the a-posteriori probability �tting method [17℄ is adopted sin
e the use of a paramet-ri
 model allows a dire
t �tting of the a-posteriori probability Pr {χ = 1 |ΓE

}.More in detail, su
h a model approximates the a-posteriori probability througha sigmoid fun
tion
Pr {χm = 1 |(ΓE, m)} =

1

1 + exp
{
γΦ̂

(
ϕ (ΓE , m)

)
+ δ

} m = 1, ...,M(2.12)where γ and δ are unknown parameters to be determined.To estimate the optimal values for the parameters of the sigmoid fun
tion,a �tting pro
ess is performed. A subset of the input patterns of the train-ing set is 
hosen {(ΓE , m, χm; m = 1, ...,M)(s) ; s = 1, ..., S}, where Φ̂
(s)
m =

Φ̂
(
ϕ
(
Γ
(s)
E , m

)). Then, the following 
ost fun
tion is de�ned
Υ {γ, δ} =

=
∑S

s=1

∑M
m=1

{
χ
(s)
m +1
2

log

[
1

1+exp
(
γΦ̂

(s)
m +δ

)

]
+
(

1−χ
(s)
m

2

)
log

[
exp

(
γΦ̂

(s)
m +δ

)

1+exp
(
γΦ̂

(s)
m +δ

)

]}(2.13)and su

essively minimized to de�ne γ and δ a

ording to the numeri
al pro-
edure proposed in [18℄(3)3 to solve the problems (i.e., the use of a kind ofLevenberg-Marquardt method for un
onstrained optimization) of the implemen-tation of Platt's probabilisti
 outputs method pointed out in [17℄.Summarizing, the SVM optimization problem needs three su

essive steps: (I )determining the hyper-parameters array (model sele
tion), that is C and all theparameters that de�ne the kernel fun
tion (e.g., the Gaussian width σ2 whenGaussian kernels are used), by 
onsidering the �training dataset�; (II ) determin-ing the fun
tional parameters α and b starting from the �training dataset� andsolving the dual problem (2.10); (III ) determining the a-posteriori �tting param-eters γ and δ starting from a subset of the �training dataset� (validation phase);(4) testing the SVM on a di�erent dataset (test phase).
3(3)Available at http://www.
sie.ntu.edu.tw/~
jlin/libsvmtools/.9
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Chapter 3Three-dimensional Buried Obje
tDete
tionIn this 
hapter, a multi-resolution approa
h for the dete
tion of three-dimensionalburied obje
ts is proposed. The geometri
al features as size and position of sin-gle and multiple s
atterers are estimated starting from the ele
tromagneti
 �elddata. The methodology is based on a support ve
tor ma
hine 
lassi�er inte-grated with a iterative pro
edure that in
reases the dete
tion resolution only inthose regions where target obje
ts are supposed to be lo
ated. The de�nition ofa multi-resolution probability map of obje
ts presen
e that gives a simple and
omputationally e�e
tive estimation of the subsurfa
e environment is provided.The real-time dete
tion 
apabilities as well as the 
urrent limitations of the ap-proa
h, 
on
erned with both single and multiple obje
ts, are veri�ed by showingsele
ted numeri
al results.

11



3.1. INTRODUCTION3.1 Introdu
tionThe retrival of information from underground by means of noninvasive te
hniquesis of huge interest in many areas of s
ien
e and engineering su
h as geology, hy-drology and environmental engineering. A variety of methods, both two- andthree-dimensional, have been provided to re
onstru
t geometri
al and ele
tri
features of buried obje
ts from measures of s
attered �eld data 
olle
ted withdi�erent kind of sensors su
h as the most widely used magnetometers, ele
tro-magneti
 indu
tion (EMI) or ground penetrating radar (GPR) [19℄-[26℄. Depend-ing on the appli
ations, the re
eived signal 
an be studied both in time domainor frequen
y domain in order to pro�tably distinguish the obje
t signatures frompotential false dete
tions [27℄,[28℄. Whi
hever the methodology, the 
ommongoal 
an be brought ba
k in 
orre
tly lo
alize and 
hara
terize single or multi-ple targets in a fast and e�e
tive way. However, standard inversion algorithmsthat utilize numeri
al te
hniques for theoreti
al forward models, are a

uratebut more 
hallenging too [21℄,[29℄. Usually, these te
hniques fall in the 
lassof pixel-based inverse methods that estimate the unknown physi
al propertiesof the medium over a dense dis
retization of the domain requiring the solutionof large s
ale and ill-posed problems. Alternatively, geometri
 inverse methodsrequire lower 
omputational 
omplexity providing only geometri
al informationssu
h as position, shape and size of the targets [20, 25℄. However, they still rely ona

urate numeri
al or analyti
al models that tend to be time 
onsuming. In theframework of 
omputationally e�
ient approa
hes, ma
hine learning provides anumber of 
omputational algorithms for data analysis designed to dire
tly tunethemselves in response to a set of available data and to be easily implementedon hardware ar
hite
tures [30℄. In the s
ienti�
 literature, several solutions tosubsurfa
e problems have been proposed by applying learning-by-example te
h-niques as online pro
essing tools, for example to 
hara
terize geologi
 fa
ies [31℄or 
lassify buried enexploded ordnan
e [32℄-[35℄.In [59℄-[38℄, pro
edures based on support ve
tor ma
hine (SVM) [6, 1℄ that out-perform methods based on neural networks (NNs) [both multilayer per
eptron(MLP) and radial basis fun
tion (RBF)℄ have been shown. The subsurfa
e dete
-tion problem has been su

essfully re
ast both as a regression and a 
lassi�
ationproblem in order to identify single and multiple s
atterers. As pointed out in[38℄, the regression-based approa
hes are suitable in dealing with a limited num-ber of unknowns sin
e SVMs have been developed to solve one-output learningproblems. On the other hand, the 
lassi�
ation approa
h deals also with 
omplex
on�gurations of multiple s
atterers in two-dimensional s
enarios.In this work, an innovative multi-resolution pro
edure for real-time dete
tionof three-dimensional buried obje
ts is presented. The problem of obje
t dete
tionis solved by means of a suitable SVM-based 
lassi�er integrated with a multi steppro
ess [80℄ in order to in
rease the resolution of the re
ostru
tions and also tofurther de
rease the 
omputational time of the SVM test phase. More spe
i�
ally,12
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Figure 3.1: Three-dimensional geometry.a more pre
ise dete
tion is obtained by means of an iterative syntheti
 zoomingperformed on those spatial regions where the obje
ts are supposed to be lo
ateda

ording to the results obtained at the previous step. At the end of the onlineiterative pro
edure, a multi-resolutionmap with an high-order dete
tion a

ura
yis obtained. It has to be noti
ed that the SVM is trained only on
e starting froma �nite set of labeled feature ve
tors representing the training samples. Ea
hsample 
onne
ts the available a-priori information about the obje
t positionswith the 
orresponding measured data. On
e the learning pro
ess is 
ompleted,the test data related to obje
ts lo
ated in unknown positions are iteratively
lassi�ed a

ording to the o�ine generated de
ision fun
tion and the proposedmulti-resolution pro
edure.The remaining of the 
hapter is organized as follows. The mathemati
al for-mulation of the proposed pro
edure is des
ribed in detail Se
tion 3.2. Se
tion 3.3deals with an exhaustive numeri
al validation aimed at assessing the e�e
tivenessof the proposed te
hnique. Some �nal remarks are drawn in Se
tion 3.4.3.2 Mathemati
al FormulationLet us 
onsider a typi
al three-dimensional subsurfa
e s
enario as shown inFig. 3.1 The homogeneous lossy soil is 
hara
terized by known relative diele
-tri
 permittivity εΩr and by a 
ondu
tivity σΩ. The investigation domain Ω =
{0 ≤ x ≤ XΩ, 0 ≤ y ≤ YΩ, 0 ≤ z ≤ ZΩ} lies in the subsurfa
e region and has size
onstrained by the overall dimension of the planar array and by a maximum depth
ZΩ. A x-dire
ted dipole lo
ated in (xs, ys, zs), with xs = XΩ/2 and ys = YΩ/2,13



3.2. MATHEMATICAL FORMULATIONa
ts as ele
tromagneti
 sour
e illuminating the s
enario, while a planar array of
R isotropi
 probes gather the data at given positions (xr, yr, zr) , r = 1, ..., R.Let Evoid (x, y, z) be the �eld 
olle
ted in a referen
e 
on�guration, i.e. withoutobje
ts, and Efull (x, y, z) be the �eld measured in the perturbed s
enario. Thislatter 
on�guration is 
hara
terized by the presen
e of N s
attering regions Θnbelonging to Ω with arbitrary shapes, permittivity ε(n)r and 
ondu
tivity σ(n),
n = 1, ..., N . The relationship between Efull and Evoid 
an be mathemati
allyexpressed by the s
attering equation, i.e.
Efull (xr, yr, zr) = Evoid (xr, yr, zr) +

+k2
∫
Ω
E (x, y, z) ·G (xr, yr, zr)Υ

{
(x, y, z) |Θn,

(
ε
(n)
r , σ(n)

)}
dxdydz

(3.1)where E (x, y, z) is the ele
tri
 �eld inside Ω for the perturbed s
enario, G isthe Green's fun
tion of the inhomogeneous medium [100℄, and Υ is the diele
tri
pro�le de�ned as
Υ (x, y, z) =

{
ε
(n)
r − εΩr (x, y, z)− j σ

(n)−σΩ(x,y,z)
2πfǫ0

, if (x, y, z) ∈ Θn; n = 1, ..., N

0, otherwise. (3.2)Starting from the knowledge of the following di�erential quantity
Γ (xr, yr, zr) =

∣∣Efull (xr, yr, zr) · x̂
∣∣− |Evoid (xr, yr, zr) · x̂|

|Evoid (xr, yr, zr) · x̂|
; r = 1, ..., R (3.3)representing the normalized �eld 
ontribution s
attered by Θn, n = 1, ..., N inthe r−th measurement point, r = 1, ..., R along the x̂ dire
tion, the dete
tionproblem 
an be re
ast as the de�nition of a probability map of obje
ts presen
einside Ω. Toward this end, let us partition the investigation domain into a three-dimensional latti
e of C 
ubi
 
ells whose 
enter 
oordinates are (xc, yc, zc) , c =

1, ..., C and to whi
h a probability value of obje
t presen
e hc = Pr {χc = +1|Γ}
an be asso
iated, where χc = ±1 is the binary 
ell state, that is �o

upied� (i.e.,
χc = +1) if (xc, yc, zc) ∈ Θn, n = 1, ..., N , or �empty� (i.e., χc = −1), otherwise.Starting from the input data Γ, the problem 
an be tought as the retrieval of theprobability presen
e fun
tion

H (x, y, z) =
C∑

c=1

hc (xc, yc, zc) Jc (x, y, z) (3.4)expressed as a linear 
ombination of non-overlapping basis fun
tions Jc (x, y, z) =
1 if (x, y, z) belongs to the c-th 
ubi
 
ell, and Jc (x, y, z) = 0, otherwise.The spatial resolution of the unknown probability presen
e fun
tion is improvedby means of a three-dimensional multi-resolution (IMSA-3D) representation
H(m) (x, y, z) =

K(m)∑

k=0

C(k)∑

c(k)=1

h(m)
(
xc(k), yc(k), zc(k)

)
Jc(k) (x, y, z) m = 1, ...,Mopt(3.5)14
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m = 2 [with k = 0(
) and k = 1 (d)℄.
m being the index of the iterative pro
edure that stops at the optimal step Moptwhen the requirement on the resolution level k = 0, ..., K (m) is rea
hed. There-fore, for a given value of k, C (k) 
ells identify those regions of interest (RoIs)(as shown in Fig. 3.2) where the probability of presen
e h(m)

(
xc(k), yc(k), zc(k)

) ishigher.3.2.1 IMSA-3D SVM-based pro
edureIn order to evaluate the multi-resolution representation of the unknown probabil-ity presen
e fun
tion, the proposed IMSA-3D pro
edure is performed by meansof a SVM-based methodology detailed in the following.Training Phase. The learning pro
ess aims at de�ning the unknown inversemapping H(m) (x, y, z) = Ψ (Γ). Assuming the knowledge of a �nite set of T15



3.2. MATHEMATICAL FORMULATIONtraining s
enarios
{
[χp, (xp, yp, zp) ,Γ; p = 1, ..., P ](t) , t = 1, ..., T

}
. (3.6)

P being the number of training 
ells, the states χp, p = 1, ..., P are assigned as ana-priori information related to ea
h training 
on�guration. More in detail, for agiven t-th training example, a set of N s
atterers 
an reside into the investigationdomain produ
ing a known 
ombination of states χp, p = 1, ..., P . The instan
es
onstituting the training set are 
alled input-output pairs. The available mea-sured data are the input α(t)
p =

{
[(xp, yp, zp) ,Γ; p = 1, ..., P ](t) , t = 1, ..., T

} andthe asso
iated truth the output β(t)

p
=

{
χ
(t)
p ; p = 1, ..., P ; t = 1, ..., T

}. Startingfrom these known relations, the problem at hand turns out to be the de�nitionof the de
ision fun
tion Ψ (•) whi
h learns the mapping
Ψ : α(t)

p 7→ β(t)

p
; p = 1, ..., P ; t = 1, ..., T (3.7)in order to su

essively 
lassify the unseen input test data

αtest = {(xc, yc, zc) ,Γ; c = 1, ..., C} .A

ording to the statisti
al learning theory [6℄, let us de�ne the de
ision fun
tion
Ψ (αtest) = (w · φ (αtest)) + b (3.8)

φ (·) being the nonlinear operator mapping the input data into an higher dimen-sional spa
e, 
alled feature spa
e. Among all hyperplanes separating the positivetraining data α
(t)
p

∣∣∣
β(t)
p

=1
from the negative ones α(t)

p

∣∣∣
β(t)
p

=−1
there exists uniqueone yielding the maximum separating margin between the 
lasses. This optimalhyperplane is 
onstru
ted by solving an optimization problem, swit
hed to a La-grangian formulation [39℄, respe
t to w and b. The problem redu
es to �nd theoptimal solution through an expansion in terms of a subset of examples belong-ing to the training set, namely those examples whose Lagrange multipliers are

0 < ι
(t)
p < C(SVM), 
alled support ve
tors (SVs). The hyperparameter C(SVM)
ontrols the tradeo� between training error minimization and margin maximiza-tion. If ι(t)p = C(SVM) the 
orresponding SVs are 
alled bound support ve
tors(BSVs) whi
h lie inside the margin produ
ing non-negative sla
k variables [1℄. Inthis sense, the number of BSVs is an indi
ation of training errors amount. More-over, many sla
k variables with large values mean strongly overlapped 
lassesand hen
e limited generalization 
apabilites. Unfortunately, the C(SVM) hyper-parameter is unintuitive and has to be 
alibrated as well as the other kernelparameters (e.g.: the gaussian width γ for the RBF kernel fun
tion) during themodel sele
tion phase.Test phase - Step (m = 1). At �rst, the whole domain Ω is 
onsidered andthe multi-resolution pro
edure generates a 
oarse estimation of the probability16



CHAPTER 3. THREE-DIMENSIONAL BURIED OBJECT DETECTIONpresen
e fun
tion with resolution level initialized to k = 0. The probability values
h(m)

(
xc(k), yc(k), zc(k)

) are evaluated by mapping the unthresholded output of thede
ision fun
tion Ψ (αtest) into a parametri
 form of a sigmoid fun
tion
h(m)

(
xc(k), yc(k), zc(k)

)
=

1

1 + exp (ηΨ (αtest) + µ)
(3.9)

η and µ being parameters determined by solving the regularized maximum like-lihood problem as in [58℄ by means of a subset of the available training set.Test phase - Steps (m > 1) , (m < Mopt). These steps are aimed at in
reasingthe resolution of the latti
e, by whi
h the probability fun
tion is evaluated, onlyin those regions where the obje
ts are supposed to be lo
ated. The method isformulated as the following two-step pro
edure:A. RoIs Identi�
ation: starting from the probability evaluated at the previousstep m− 1, a s
aled representation of the probability fun
tion
U (m−1) (x, y, z) =

K(m−1)∑

k=0

C(k)∑

c(k)=1

u(m−1)
(
xc(k), yc(k), zc(k)

)
Jc(k) (x, y, z) (3.10)is determined by introdu
ing the normalized probability 
oe�
ients

u(m−1)
(
xc(k), yc(k), zc(k)

)
=
h(m−1)

(
xc(k), yc(k), zc(k)

)
− h

(m−1)
min

h
(m−1)
max − h

(m−1)
min

,
c(k) = 1, ..., C(k),
k = 0, ..., K(m)(3.11)where h(m−1)

min = mink=0,...,K(m)

{
minc(k)=1,...,C(k)

[
h(m−1)

(
xc(k), yc(k), zc(k)

)]} and
h
(m−1)
max = maxk=0,...,K(m)

{
maxc(k)=1,...,C(k)

[
h(m−1)

(
xc(k), yc(k), zc(k)

)]}. The RoIs
O

(m)
b b = 1, ..., B(m), where B(m) is the total number of regions at step m, areidenti�ed by thresholding the normalized probability fun
tion and nulling thevalues smaller than the user-de�ned probability threshold ǫth. Ea
h RoI has ano

upation volume V (m)

b , b = 1, ..., B(m) proportional to the number of adja
entbasis fun
tions Jc(k) whose probability u(m−1)
(
xc(k), yc(k), zc(k)

)
> ǫth.B. Multi-resolution probability evaluation: on
e the RoIs are identi�ed, theresolution level is in
reased (k ← k + 1) when (x, y, z) ∈ O

(m)
b , b = 1, ..., B(m)and a new set of C (k) =

∑B(m)
b=1 Cb (k) smaller 
ells is generated in order topartition the volume of ea
h RoI with a number of 
ells

Cb (k) =
V

(m)
b∑B(m)

b=1 V
(m)
b

C (k) , b = 1, ..., B (m) . (3.12)Therefore, the probability fun
tion (3.5) is updated by 
omputing the probability
oe�
ients h(m)
(
xc(k), yc(k), zc(k)

) in the new higher-resolution 
ells.Test phase - Step (m =Mopt). The iterative methodology repeats the stepsA (RoIs Identi�
ation) and B (Multi-resolution probability evaluation) until thetotal volume of the RoIs de
reases [∑B(m−1)
b=1 V

(m−1)
b −

∑B(m)
b=1 V

(m)
b > 0℄ or theRoIs number B(m) 
hanges [B(m)−B(m− 1) 6= 0℄.17



3.3. NUMERICAL RESULTS3.3 Numeri
al ResultsThe results of a sele
ted set of numeri
al examples are reported in order toassess the e�e
tiveness and reliability of the proposed approa
h when dealingwith three-dimensional realisti
 s
enarios. In Se
tion 3.3.1 the training of theSVM is des
ribed and some 
onsiderations about SVM parameter 
alibrationare pointed out. In Se
tion 3.3.2 the behavior of the multi-resolution (IMSA-3D) pro
edure is shown and the performan
e are also 
ompared with the single-step (BARE ) approa
h. The validation of the methodology with noisy datais also 
onsidered. Se
t. 3.3.3 investigates the potentialities and the 
urrentlimitations of the IMSA-3D in dete
ting multiple obje
ts. In order to verifythe reliability of the proposed methodology in 
orresponden
e with various andrealisti
 subsurfa
e 
on�gurations, more 
omplex s
enarios with smaller obje
tsand di�erent soil 
hara
teristi
s are 
osidered (Se
t. 3.3.4) .With referen
e to the problem geometry shown in Fig. 3.1, the homogeneoussubsurfa
e region with diele
tri
 parameters εΩr = 4.0 and σΩ = 4.0 × 10−3 [41℄and geometri
al size XΩ = 3.66 λ, YΩ = 3.66 λ, ZΩ = 0.64 λ is 
onsidered, λbeing the wavelenght at the working frequen
y f = 500MHz. A set of targetregions Θn, n = 1, ..., N with diele
tri
 
hara
teristi
s di�erent from those of theba
kground 
an assume whatever shape and position inside Ω. As a preliminary
on�guration, let us 
onsider three-dimensional target regions as �nite-lengthlossless 
ylinders of radius R(n)
obj = 0.19 λ, height H(n)

obj = 0.19 λ [42℄ and withrelative permittivity ε(n)r = 2.5, n = 1, ..., N [28℄[32℄. The 
onsidered domain isilluminated by a x-oriented short-dipole probe lo
ated in xs = ys = 1.83 λ at adistan
e zs = 0.11 λ above the air-soil interfa
e. At the same height is pla
ed aplanar array of R = 100 ideal re
eivers equally spa
ed and 
overing the whole
XΩ × YΩ upper horizontal surfa
e of Ω.3.3.1 SVM training and parameter sele
tionCon
erning the training sets, three di�erent data sets have been 
onsidered,ea
h one 
omposed by T = 300 s
enarios and 
hara
terized by a �xed numberof buried obje
ts. More spe
i�
ally, n = 1, ..., Nmax, where Nmax = 3 is themaximum number of obje
ts, training sets have been syntheti
ally generated.The positions of the obje
ts have been randomly 
hosen and mapped into thebinary 
lass indexes χ(t)

p determining the states (o

upied or empty) of the P =
100 training 
ells. The training phase is performed by adopting a RBF kernelfun
tion whose gaussian width γ has to be 
alibrated as well as the user-de�nedSVM hyperparameter C(SVM) in order to solve the model sele
tion issue. Inorder to point out the in�uen
e of the parameters 
alibration on the de
isionfun
tion generation, Fig. 3.3(a) shows the number of SVs

NSV =
SV s

T × C
× 100 (3.13)18
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3.3. NUMERICAL RESULTSas the per
entage of total training samples, and the number of BSVs [Fig. 3.3(b)℄
NBSV =

BSV s

SV s
× 100 (3.14)obtained during the grid sear
h over the 
ouple of parameters C(SVM) and γ. Inparti
ular, the training set generated with Nmax = 1 has been 
onsidered. Thesparseness of the SVM solution depends on the number of SVs, given that small

NSV leads to a stru
tural simpli�
ation of the 
lassi�er thanks to the removing ofthe irrelevant 
omponents. In this sense, limiting the number of SVs through theparameter sele
tion turns out to be a simple and e�e
tive solution to 
ontrol thegeneralization 
apabilities of the 
lassi�er. Besides the NSV as a generalizationperforman
e indi
ator, the number of BSVs is equivalent to the amount of train-ing errors. Sin
e the SVM-based algorithm has to tolerate a 
ertain fra
tion ofoutliers, the BSVs number represents those training samples that 
an 
ru
iallya�e
t the hyperplane. Nevertheless, the best separating fun
tion leads to theminimal number of training errors. As it 
an be seen in Fig. 3.3, in the rangeof 2−4 < γ < 22 and 26 < C(SVM) < 214 both the NSV and NBSV indi
ators aresmall. It means that the generated hyperplane 
orre
tly separates the positiveand negative training samples in this range of parameters. Starting from thisanalysis of SVs and BSVs, that gives a preliminary estimation of the best SVMparameters, the optimal values C(SVM) = 210 and γ = 20 have been 
hosen.3.3.2 Numeri
al validation of the IMSA-3D pro
edureThe �rst representative experiment deals with the dete
tion of a single-s
atterer(N = 1) in noiseless data 
ondition. A test set of T̄1 = 50 s
enarios randomly
hosen and not belonging to the training set has been 
onsidered. Fig. 3.4 showsthe probability maps obtained with the IMSA-3D approa
h for one example ofthe test set. The three orthogonal planes passing through the 
enter of the obje
tat (
x
(1)
obj = y

(1)
obj = 1.16λ, z

(1)
obj = −0.32λ

) show the probability evaluated duringthe multi-resolution pro
ess, from the �rst step [m = 1, Fig. 3.4(a)℄ until thestationary 
ondition is a
hieved at step m = 4 [Fig. 3.4(d)℄. At the initial step,the resolution level is set to k = 0 and the domain is partitioned into C (0) = 72
ubi
 
ells in order to evaluate a 
oarse estimation of the probability fun
tion.The following steps identify a single RoI O(m)
1 where the resolution improve from

△k = 0.61λ, k = 0 up to △3 = 7.64 × 10−2λ in the RoI O(4)
1 . In order toquantitatively evaluate the improved a

ura
y provided by the multi-resolutionpro
edure, let us de�ne the obje
t-lo
alization-error

υ(m)
n =

√(
x
(n)
obj − x̃

(m)
n

)2

+
(
y
(n)
obj − ỹ

(m)
n

)2

+
(
z
(n)
obj − z̃

(m)
n

)2 (3.15)20
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3.3. NUMERICAL RESULTSas the geometri
al distan
e between the a
tual bary
enter of the n-th obje
t(
x
(n)
obj , y

(n)
obj , z

(n)
obj

) and the estimated one (x̃(m)
n , ỹ

(m)
n , z̃

(m)
n

), where
x̃
(m)
n =

∑K(m)
k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))xc(k)
∑K(m)

k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))
,

ỹ
(m)
n =

∑K(m)
k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))yc(k)
∑K(m)

k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))

z̃
(m)
n =

∑K(m)
k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))zc(k)
∑K(m)

k=0

∑C(k)
c(k)=1

h(m)(xc(k),yc(k),zc(k))

, (3.16)are 
al
ulated as the normalized average of the test 
ell bary
enters at m-thstep weighted by the 
orresponding probabilities of presen
e h(m)
(
xc(k), yc(k), zc(k)

)
>

0. Let us also de�ne the volume-o

upation
ξ(m)
n =

κ̃
(m)
n

κn
(3.17)where

κ̃(m)
n =

4

3
π





∑K(m)
k=0

∑C(k)
c(k)=1

[
h(m)(xc(k),yc(k),zc(k))υ(m)

c(k)

maxc(k){h(m)(xc(k),yc(k),zc(k))}

]

∑K(m)
k=0

∑C(k)
c(k)=1

[
h(m)(xc(k),yc(k),zc(k))

maxc(k){h(m)(xc(k),yc(k),zc(k))}

]





3 (3.18)and κn is the a
tual volume of the 
onsidered n-th obje
t, an analiti
ally evalu-ated index that quantify the estimated volume in terms of probabilities, where
υ
(m)
c(k) =

√(
xc(k) − x̃

(m)
n

)2

+
(
yc(k) − ỹ

(m)
n

)2

+
(
zc(k) − z̃

(m)
n

)2

. (3.19)In su
h a 
ase, the values of the error �gures turn out to be equal to υ(1)1 = 0.16 λand ξ
(1)
1 = 21.03 at the �rst step and both de
rease down to υ

(4)
1 = 0.07 λand ξ

(4)
1 = 0.68, as shown in Fig. 3.5. The 
onsidered test 
on�guration ise�e
tively representative if 
ompared with the error statisti
s reported in Tab.3.1, 
al
ulated by 
onsidering the whole test set of T̄1 = 50 
on�gurations.In order to guarantee an high probability of dete
tion and a 
orrespondinglow probability of false alarm, the behavior of IMSA-3D approa
h has been alsoassessed in absen
e of obje
ts inside Ω. It has to be noti
ed that the free-obje
t
on�guration is not in
luded in the training set. As shown in Fig. 3.6, the SVM-based methodology did not dete
t any obje
t. The obtained probability mapshows very small and not fo
used values, thus 
on�rming the right identi�
ationof the free-obje
ts s
enario.The improved dete
tion 
apabilities of the multi-resolution strategy is furtherpointed out if 
ompared with the BARE approa
h (Fig. 3.7) applied on thesame test 
on�guration and with the same 
lassi�er (i.e. the same training set22
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1 and ξ(m)

n versus themulti-resolution steps for single buried obje
t (N = 1).
Method υ

(m)
1 [λ] ξ

(m)
1

min max mean min max meanIMSA
m = 1 4.68× 10−2 1.18 0.54 3.48 35.42 16.91
m = 2 2.99× 10−2 1.06 0.23 2.18 29.76 12.49
m = 3 2.32× 10−2 0.46 0.22 0.96 24.59 4.93
m = 4 2.21× 10−2 0.41 0.21 0.09 8.13 1.92BARE 9.76× 10−2 1.16 0.59 2.81 28.93 16.88Table 3.1: Single buried obje
t, N = 1 - Statisti
s of the performan
e indexes(obje
t-lo
alization-error υ and volume-o

upation ξ) for BARE and IMSA ap-proa
hes.
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Figure 3.6: IMSA-3D Pro
edure - Probability map obtained with IMSA-3D ap-proa
h in absen
e of buried obje
ts (N = 0).
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Figure 3.7: IMSA-3D vs BARE - Probability map determined by the BAREapproa
h for N = 1 buried obje
t.
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CHAPTER 3. THREE-DIMENSIONAL BURIED OBJECT DETECTIONand SVM hyperparameter settings). In order to 
ompare the results at the sameresolution level, the BARE solution has been obtained with the highest resolution
△BARE = △3 = 7.64 × 10−2λ applied to all the investigation domain instead ofto the single RoI O(m)

1 , m = 1, ...,Mopt. Besides the obje
t-lo
alization-error isslightly greater (υ(BARE)
1 = 0.21 λ), the volume-o

upation is signi�
antly larger(ξ(BARE)

1 = 22.48) as well as the number of de
ision fun
tion evaluations that isstri
tly related to the number of test 
ells (CBARE = 36864 vs ∑K=3
k=0 C (k) =

288). Even if the 
omputational load of a single SVM testing is very low, theBARE approa
h turns out to be more time 
onsuming, thus redu
ing the real-time 
apabilities of su
h a methodology.In order to point out the generalization 
apabilities of the proposed IMSA-3Dapproa
h in dealing with noisy data, a gaussian random noise with zero-meanand varian
e σ2 = Pnoise is added to the total �eld Efull (xr, yr, zr) and the noisydi�erential quantity Γ̂ (xr, yr, zr) is used to generate the test set. The averagederror �gures obtained with in
reasing noise amplitude have been evaluated andreported in Fig. 3.8. As it 
an be seen, both obje
t-lo
alization-error and volume-o

upation of the IMSA-3D approa
h are always smaller if 
ompared with theBARE results, thus 
on�rming a stable behavior of the methodology also innoisy 
onditions. As a representative result, the probability map of the single-obje
t 
on�guration obtained with the BARE and IMSA-3D approa
hes withnoisy data (Pnoise = 0.1 V/m) are shown in Fig. 3.9(a) and 3.9(b), respe
tively.Even if the IMSA-3D method points out a slightly greater obje
t-lo
alization-error (υ(4)1

∣∣∣
Pnoise=0.1

= 0.11 λ) if 
ompared with the noiseless test 
ase, the a
tualposition of the obje
t still resides into the high-probability region.3.3.3 Dete
tion of multiple obje
tsThis se
tion is aimed at 
on�rming the 
apabilities of the proposed approa
hin dete
ting multiple s
atterers. As expe
ted, these s
enarios are more 
omplexif 
ompared with the single-obje
t test 
ase and the SVM-based methodologyprovides higher obje
t-lo
alization-error values even if it is still able to lo
alizethe obje
ts with an a

eptable degree of a

ura
y. In Figure 3.10, the averagedobje
t-lo
alization-error [Fig. 3.10(a)℄ and volume-o

upation [Fig. 3.10(b)℄ ofBARE and IMSA-3D are 
ompared when dealing with n = 1, .., Nmax numberof obje
ts, where Nmax = 3 and with noisy data (Pnoise = 0.1 V/m). The bar
harts 
learly show the outperforming 
apabilities of the multi-resolution te
h-nique in lo
ating multiple s
atterers and pointing out an obje
t-lo
alization-erroralways smaller than one wavelength. Con
erning the volume-o

upation index,the optimal step of the IMSA-3D pro
edure overestimates the obje
t volumes ofthe most 
omplex s
enario (N = 3) with a maximum of meann

{
ξ
(3)
n

}
= 7.31respe
t to the widely greater volume overestimation obtained with the BAREapproa
h [meann

{
ξ
(BARE)
n

}
= 24.32℄. In order to better appre
iate the im-25
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(b)Figure 3.8: Numeri
al validation vs noise level - Obje
t-lo
alization-error (a)and volume-o

upation (b) determined by the BARE and IMSA-3D pro
eduresversus the additive noise amplitude PN .
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(b)Figure 3.9: Numeri
al validation vs noise level - Probability maps determined bythe BARE (a) and IMSA-3D (b) pro
edures with Noisy data [PN = 0.1 V/m℄.
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al validation vs number of obje
ts - Obje
t-lo
alization-error (a) and volume-o

upation (b) determined by the BARE and IMSA-3Dpro
edures versus the number of obje
ts n = 1, 2, 3 with noisy data [PN =
0.1 V/m℄.
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CHAPTER 3. THREE-DIMENSIONAL BURIED OBJECT DETECTION
(a) (b)
(
) (d)Figure 3.11: Numeri
al validation vs number of obje
ts - Probability maps de-termined by the IMSA-3D pro
edures for multiple obje
ts [N = 2 BARE (a),IMSA (b) and N = 3 BARE (
), IMSA (d)℄ with noisy data [PN = 0.1 V/m℄.proved resolution and dete
tion 
apabilities of the IMSA-3D approa
h in mul-tiple obje
t s
enarios, the maps obtained with the BARE and IMSA-3D ap-proa
hes with N = 2 s
atterers (x(1)obj = 3.23 λ, y(1)obj = 1.61 λ, z(1)obj = −0.39 λ),(x(2)obj = 1.69 λ, y(2)obj = 1.51 λ, z(2)obj = −0.33 λ) have been 
ompared [Fig. 3.11(a)and Fig. 3.11(b)℄. The IMSA-3D approa
h 
orre
tly identi�es two RoIs andestimates the obje
t positions with good pre
ision in obje
t-lo
alization-error(υ(2)1 = 0.41 λ and υ(2)2 = 0.19 λ) and a slightly overestimated volume-o

upation(ξ(2)1 = 3.03 and ξ(2)2 = 1.82). On the 
ontrary, the BARE approa
h estimatesonly one dilated high-probability region with a very high volume-o

upation[meann

{
ξ
(BARE)
n

}
= 29.23℄ whi
h 
ontains both the obje
ts. The enhan
ed
apabilities of the multi-resolution approa
h 
ompared with the single-resolutionmethod are 
on�rmed also when N = Nmax = 3 s
atterers are present. A rep-resentative result provided by the BARE and the IMSA-3D approa
hes dealingwith this more 
riti
al s
enario are shown in Fig. 3.11(
) and Fig. 3.11(d),respe
tively. As it 
an be observed, the IMSA-3D is still able to dete
t threeRoIs and to fairly estimate the obje
t positions, although the obje
t lo
atedin (x(3)obj = 2.40 λ, y(3)obj = 1.20 λ, z(3)obj = −0.18 λ) is dete
ted with a greaterobje
t-lo
alization-error υ(2)3 = 0.92 λ if 
ompared with the two remaining obje
ts[υ(2)1 = 0.52 λ,υ(2)2 = 0.41 λ℄. On
e again, the performan
e of the multi-resolutionpro
edure outperforms the single-step approa
h 
apabilities in dis
erning multi-ple obje
ts as 
learly pointed out by the very high volume-o

upation index ofthe single RoI identi�ed by the BARE approa
h [ξ(BARE)

1 = 28.74℄.29



3.3. NUMERICAL RESULTS

(a)
(b)Figure 3.12: Complex s
enario - Probability maps determined by the IMSA-3D[m = Mopt = 3℄ approa
h with small obje
ts (N = 2) buried in dry sandy soil(a) and dry 
lay soil (b).3.3.4 Complex s
enariosThe multiple obje
t dete
tion performan
e have been also tested with di�erentele
tri
 and geometri
al 
hara
teristi
s of the s
atterers and the ba
kground. Asan example, a more 
omplex s
enario with smaller obje
ts (R(n)

obj = 0.1 λ and
H

(n)
obj = 0.09 λ, n = 1, ..., N) is 
onsidered both for training and test dataset.Figure 3.12 shows the results provided by the IMSA-3D in 
orresponden
e oftwo di�erent ba
kground 
hara
teristi
s with multiple obje
ts (N = 2) and noisydata (Pnoise = 0.1 V/m). The �rst example [Fig. 3.12(a)℄ refers to a 
on�gurationwith small obje
ts buried into dry sandy soil (εΩr = 4.0 and σΩ = 4.0 × 10−3),while the se
ond [Fig. 3.12(b)℄ deals with the same obje
ts in a soil ba
kgroundwith an in
reased water 
ontent that 
auses an in
rease in relative permittivity(εΩr = 16.0) and in 
ondu
tivity (σΩ = 3.0 × 10−2) [43℄ . The 
omparison interms of obje
t-lo
alization-error points out a slightly worst dete
tion of smallerobje
ts in sandy soil. Nevertheless, there is not a signi�
ant 
hange in the errorstatisti
s with the 
onsidered soils and obje
ts, sin
e the average value of obje
t-lo
alization-error remains always lower than meann

{
υ
(2)
n

}
= 0.98 λ, n = 1, 2.30



CHAPTER 3. THREE-DIMENSIONAL BURIED OBJECT DETECTION3.4 Con
lusionsThe proposed method 
onsists of a multi-resolution approa
h for the real-timedete
tion of three-dimensional buried obje
ts. An SVM-based 
lassi�er has beensuitably trained with available labeled data in order to obtain a probabilitymap of single and multiple obje
ts presen
e. Starting from a 
oarse resolutionmap, the iterative pro
edure performs a syntheti
 zoom on those spatial regionswhere potential obje
ts are supposed to be lo
ated, thus in
reasing the dete
tionresolution only in the RoIs. The e�e
tiveness of the proposed methodology hasbeen preliminary assessed with di�erent subsurfa
e s
enarios, 
hara
terized bysingle and multiple obje
ts, both in noiseless and noisy 
onditions.The obtained results 
on�rm that the SVM-based methodology allows one toestimate the obje
ts presen
e in real-time and with a good degree of a

ura
yin terms of lo
alization error. The multi-resolution strategy dete
ts and lo
atessingle and multiple targets not belonging to the training set and also estimatesthe obje
ts size with outperforming pre
ision if 
ompared with the single-stepapproa
h.
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Chapter 4Early Breast Can
er ImagingMi
rowave imaging for breast 
an
er s
reening is an emerging te
hnique as avaluable alternative to standard X-ray mammography. Usually, the solutionto the nonlinear inverse problem is provided with iterative methods whi
h re-quire a forward solver exe
ution at ea
h iteration and parti
ular attention to
omputational e�
ien
y is fundamental. Re
ently, alternative te
hniques basedon learning-by-example methodologies have been applied to imaging problemslooking for real-time pro
essing. In this 
hapter, a multiresolution approa
h forreal-time dete
tion of breast 
an
er is presented. A SVM-based 
lassi�er is inte-grated in an iterative multistep strategy to obtain a probability map of presen
ewith enhan
ed spatial resolution where targets are supposed to be lo
ated. Thes
attering matrix measured at the output of a three-dimensional imaging systemrepresents the input data of the 
ustomized 
lassi�er. A sele
ted set of numeri
alresults is provided in order to assess the e�e
tiveness of the proposed approa
hdealing with both single and multiple in
lusions. The performan
e of the methodin 
ases of noisy data is also investigated.
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4.1. INTRODUCTION4.1 Introdu
tionBreast 
an
er dete
tion by means of mi
rowave imaging has been developedrapidly in the last years be
ause of the well-known limitations of the standards
reening X-ray mammography in terms of sensitivity and false positive dete
-tions [44℄. Among the advantages of mi
rowave imaging are the non-ionizing andlow-power radiation [45℄ as well as the absen
e of 
ompression that means pa-tient 
omfort as already proven during 
lini
al investigations [46℄. This imagingmodality is based on the 
ontrast between the 
onstitutive parameters of healthyand malignant breast tissues in the mi
rowave frequen
y range, the reason thatwhy the dete
tion with high a

ura
y of small tumors is possible [47℄. In mi-
rowave tomography, nonlinear inverse s
attering te
hniques based on Maxwell'sequations are often used [57, 60℄ and they are usually based on iterative algo-rithms in whi
h a full s
attering problem must be solved at ea
h iteration leadingto 
onsiderable 
omputational load [50℄, espe
ially when three-dimensional ge-ometries with large number of unknowns are 
onsidered. Alternatively, movingfrom deterministi
 to sto
hasti
 methods su
h as Parti
le Swarm Optimization(PSO) and Geneti
 Algorithms (GAs), the dete
tion problem is re
ast as anoptimization problem [51℄. However, even if these methodologies �nd globalminimum of a given 
ost fun
tion, the 
omputational load is still high.Nowadays, progress in ma
hine learning suggests the solution of medi
al imag-ing problems by means of Lerning-by-Example (LBE) methodologies [52℄-[54℄.These kind of 
lassi�
ation or regression-based algorithms are parti
ularly ap-propriate for a wide-range of real-time appli
ations thanks to their high-speedproperties and generalization 
apabilities. Given a learning task and a �niteset of training samples, the inverse problem 
an be re
ast as a 
onstrainedquadrati
 optimization problem whose optimal solution 
an be found avoidingthe ill-posedness and nonlinearity of the inverse s
attering problem.In this work, the inversion pro
ess is reformulated as a multiresolution 
las-si�
ation pro
edure based on a binary support ve
tor ma
hine (SVM) 
lassi�erintegrated in an iterative multistep strategy [59℄. A

ordingly, a multiresolutionprobability map of pathology presen
e is estimated with in
reased a

ura
y inthose high-probability spatial regions where the in
lusions are supposed to be lo-
ated. More spe
i�
ally, starting from the knowledge of a �nite-size training setwhere the pathology is randomly positioned, the �rst step is aimed at de�ning a
oarse probability map. The su

essive steps iteratively identify the areas withhighest probability values where the resolution level in
reases. Con
erning thetraining phase, it is performed only on
e after an ad-ho
 
alibration pro
edurethat �nds the best parameters in order to maximize the generalization 
apabili-ties of the optimal separating hyperplane. Numeri
al di�erential data have been
al
ulated starting from the elements of the s
attering matrix available at theoutput of the 
onsidered multiview imaging system.This 
hapter is organized as follows. The geometry and the 
hara
teristi
s of34



CHAPTER 4. EARLY BREAST CANCER IMAGING
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S12 (b)Figure 4.1: Three-dimensional model geometry (a) and top view of the multi-view measurement system (b).
the measurement system as well as the format of the simulated numeri
al dataare des
ribed in Se
tion 4.2. In Se
t. 4.3 the proposed multiresolution based ona SVM 
lassi�er is formulated. In order to show the e�e
tiveness and the 
urrentlimitations of the proposed approa
h, a sele
ted set of numeri
al results 
on
ernedwith the dete
tion of both single and multiple in
lusions is reported (Se
t. 4.4).The robustness and the generalization 
apabilities in presen
e of noisy data anddi�erent breast 
hara
teristi
s have been also tested. Finally, some 
on
lusionabout the innovative features of the approa
h are drawn in Se
t. 4.5.35



4.2. NUMERICAL MODEL4.2 Numeri
al ModelLet us 
onsider a three-dimensional imaging system as shown in Fig. 4.1(a). It
onsists of N monopole probes disposed in a 
ir
ular array of radius rt at knownpositions (xn, yn, zn) , n = 1, ..., N . The antennas are pla
ed in a tank �lled witha 
oupling liquid in order to minimize the re�e
tion from air-breast skin interfa
e[55℄. The 
omplex relative diele
tri
 properties of the 
oupling medium 
an beexpressed as
εcr = ε′r − jε

′′
r (4.1)

ε′r being the relative permittivity and ε′′r = σ
ε02πf

the out-of-phase loss fa
tor,where σ is the 
ondu
tivity, ε0 the free-spa
e permittivity and f the workingfrequen
y. The 
oupling liquid has diele
tri
 properties similar to those of thebreast, whi
h is modeled as a hemispheri
al domain Ωb, suspended on the topof the tank and with radius rb. Assuming a referen
e system with origin in the
entre of the hemisphere representing Ωb, a set of regions Υp ∈ Ωb, p = 1, ..., P
entered in (x, y, z)
(p)
Υ 
an reside into the imaging domain de�ning the diele
tri
pro�le of the breast

Π (x, y, z) =

{
ε
(p)
r − εΩb

r (x, y, z) , if (x, y, z) ∈ Υp; p = 1, ..., P
0, otherwise (4.2)with ε(p)r , p = 1, ..., P and εΩb

r being the 
omplex relative diele
tri
 
onstantof Υp, p = 1, ..., P and Ωb, respe
tively.Ea
h antenna a
ts as transmitter and re
eiver in order to perform a multiviewmeasurement of the total ele
tromagneti
 �eld
Etot (rrx|rtx) = Einc (rrx|rtx) +

+j2πfεΩb
r

∫
Ωb
G (rrx; r) · Π

{
r|Υp, ε

(p)
r

}
· E (r|rtx) · dr

(4.3)where rrx = (xrx, yrx, zrx) , rx = 1, ..., N |rx 6=tx and rtx = (xtx, ytx, ztx) , tx =
1, ..., N are the positions of the re
eiving and transmitting probes, respe
tively.
Einc (rrx|rtx) is the �eld measured in absen
e of regions Υp inside Ωb, G is theGreen's fun
tion of the inhomogeneous medium [100℄ and E (r|rtx) is the ele
tri
�eld inside Ωb in presen
e of s
attering regions Υp; p = 1, ..., P .Sin
e a realisti
 imaging system is simulated, let us suppose to measure the�eld in the form of s
attering parameters srx,tx, rx, tx = 1, ..., N at the ports ofthe re
eiving probes (also re�e
tion 
oe�
ients stx,tx, tx = 1, ..., N are available)[Fig. 1(b)℄. As formulated by Yu et al. in [57℄, the �elds Etot and Einc 
an berelated to the s-parameters as

stotrx,tx = C0ârx · Etot (rrx|rtx) (4.4)and
sincrx,tx = C0ârx · Einc (rrx|rtx) , (4.5)36



CHAPTER 4. EARLY BREAST CANCER IMAGINGtaking into a

ount the orientations [i.e., ârx℄ of the re
eiving antennas anda 
omplex 
alibration parameter C0.Hen
e, from the knowledge of the s
attering matri
es Stot ∈ C
N×N and

Sinc ∈ CN×N measured in presen
e and absen
e of the s
attering regions Υp; p =
1, ..., P , respe
tively, the following di�erential quantity

s∆rx,tx =
stotrx,tx − s

inc
rx,tx

sincrx,tx

rx, tx = 1, ..., N (4.6)represents the normalized 
ontribution s
attered by Υp; p = 1, ..., P . Theinverse s
attering problem 
an be tought as the retrieval of target positions
(x, y, z)

(p)
Υ on the basis of the known N(N−1)

2
elements

Γs =
{
s∆rx,tx; rx = 1, ..., N ; tx = 1, ..., N ; tx ≤ rx

}of the lower triangular part of S∆, sin
e the elements of the s
attering matrix
S∆ ∈ C

N×N are supposed to be s∆rx,tx = s∆tx,rx, rx, tx = 1, ..., N . It 
an be prof-itably solved by means of the learning-by-example methodology that estimatesthe unknown inverse mapping following the guidelines of the multi-step strategydetailed in the following.4.3 Multi-resolution SVM-based approa
hThe arising problem is that of determining a probability risk-map of Ωb startingfrom the knowledge of the measured data. Towards this end, a three-dimensionaldomain en
losing Ωb is partitioned in a uniform latti
e of C training 
ells whosebary
enters are (xc, yc, zc) , c = 1, ..., C. Ea
h 
ell 
an assume a binary state
αc ∈ {−1,+1} in order to re
ast the dete
tion problem in a binary 
lassi�
ationproblem whose 
lasses stand for presen
e [αc = +1℄ and absen
e [αc = −1℄of the target inside the 
ells. On
e the training of the SVM-based pro
edureis 
ompleted, unseen input test data Γs 
an be 
lassi�ed and the a-posterioriprobability Pm = Pr {αm = +1|Γs} , m = 1, ...,M is evaluated, M being thenumber of test 
ells that 
an di�er from the C training 
ells. The training phaseof the proposed method as well as the iterative pro
edure for the multi-resolutionrisk-map evaluation are detailed in the following se
tions.4.3.1 SVM Training phaseLet us 
onsider a supervised binary 
lassi�
ation problem. The training set
omposed by T samples xt ∈ RL, t = 1, ..., T , L = N(N−1)

2
+3 being the dimensionof the input features spa
e X , is asso
iated with output labels yt ∈ {−1,+1} , t =

1, ..., T and represented as
Ψ = {xt, yt; t = 1, ..., T} =

=
{
[(xc, yc, zc) ,Γs, αc; c = 1, ..., C](t) , t = 1, ..., T

}
.

(4.7)37



4.3. MULTI-RESOLUTION SVM-BASED APPROACHSin
e the measured data Γ(t)
s are highly linearly nonseparable as 
ommonlyhappens for real-world data, the input ve
tors are mapped with a kernel methodin a higher L′-dimensional spa
e X ′ (L′ > L) through the nonlinear fun
tion

ρ (•) in order to �nd the linear de
ision fun
tion
Φ [(xm, ym, zm) ,Γs] = w · ρ [(xm, ym, zm) ,Γs] + b, m = 1, ...,M (4.8)in the transformed spa
e X ′ able to 
orre
tly 
lassify the unseen test data

[(xm, ym, zm) ,Γs; m = 1, ...,M ]. The unknown weight ve
tor w ∈ RL′ and thethreshold b univo
ally de�ne the optimal hyperplane asso
iated with Φ (•) andare evaluated through the minimization of the 
ost fun
tion
Θ
(
w, ξ

)
=

1

2
‖w‖2 + ζ

T∑

t=1

C∑

c=1

ξ(t)c

t = 1, ..., T
c = 1, ..., C

(4.9)subje
t to the 
onstraints
α
(t)
c

(
w · ρ

[
(xc, yc, zc) ,Γ

(t)
s

]
+ b

)
≥ 1− ξ

(t)
c

ξ
(t)
c ≥ 0

(4.10)where the 
onstant ζ is a user-de�ned regularization parameter that 
ontrolsthe trade-o� between margin maximization and training errors minimization,regulated by the �rst and the se
ond terms of (4.9), respe
tively, ξ is the ve
tor ofsla
k variables used to relax the separation 
onstraint in (4.10) and thus allowingthe possibility of examples violating it. Making sla
k variables large enough, itis always possible to minimize the 
ost fun
tion in (4.9) but large values of
ξ
(t)
c are 
onsequen
es of strongly overlapped 
lasses and it is possible that thehyperplane will not generalize well [1℄. The minimization of the 
ost fun
tion isan optimization problem that 
an be reformulated through the Lagrangian
L
(
w, b, µ

)
=

1

2
‖w‖2 −

T∑

t=1

C∑

c=1

µ(t)
c

[
α(t)
c

(
w · ρ

[
(xc, yc, zc) ,Γ

(t)
s

]
+ b

)
− 1

](4.11)with lagrange multipliers ve
tor µ =
(
µ
(t)
c , c = 1, ..., C; t = 1, ..., T

) that 
anbe found by means of a dual form of the optimization problem
maxµ

{∑T
t=1

∑C
c=1 µ

(t)
c − 1

2

∑T
t=1

∑C
c=1

∑T
t′=1

∑C
c′=1 µ

(t)
c µ

(t′)
c′ α

(t)
c α

(t′)
c′

K
[
(xc, yc, zc) ,Γ

(t)
s ; (xc′ , yc′, zc′) ,Γ

(t′)
s

]} (4.12)under the 
onstraints
µ
(t)
c ≥ 0∑T

t=1

∑C
c=1 µ

(t)
c α

(t)
c = 0

.38
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K (·; ·) being the kernel fun
tion. The support ve
tors (SV s) are those exam-ples in the training set for whi
h 0 < µ

(t)
c ≤ ζ . In parti
ular, they 
an be splittedin normal support ve
tors (NSV s) [0 < µ

(t)
c < ζ ℄ and bounded support ve
tors(BSV s) [µ(t)

c = ζ ℄. In parti
ular, the BSV s are examples that lie in margin andrepresent the aformentioned training errors.On
e the training phase is terminated, the de
ision fun
tion 
an be expressedin terms of the test data in the original input spa
e
Φ [(xm, ym, zm) ,Γs] =

=
∑T̂

t=1

∑Ĉ(t)
c=1 µ

(t)
c α

(t)
c K

[
(xc, yc, zc) ,Γ

(t)
s ; (xm, ym, zm) ,Γs

]
+ b, m = 1, ...,Mwhere T̂ ≤ T and Ĉ ≤ C quantify the subset of data for whi
h 0 < µ

(t)
c ≤ ζ ,i.e., the sum of NSV s and BSV s.4.3.2 Multi-resolution Test PhaseThe test phase is aimed at the dete
tion of regions Υp; p = 1, ..., P startingfrom unseen test data [(xm, ym, zm) ,Γs] , m = 1, ...,M . A

ording to the Platt'sprobabilisti
 outputs for SVM [58℄, the output of the unthresholded de
isionfun
tion Φ ([(xm, ym, zm) ,Γs]) 
an be mapped in a sigmoid fun
tion in order tode�ne the probability

Pm =
1

1 + exp (aΦ [(xm, ym, zm) ,Γs] + d)
m = 1, ...,M (4.13)that the obje
t belongs to the m-th 
ell, a and d being parameters evaluateda

ording to the algorithm in [58℄. The approximation of the probability distri-bution

P (x, y, z) =
M∑

m=1

PmFm (x, y, z) (4.14)is the linear 
ombination of non-overlapping spatial basis-fun
tions
Fm (x, y, z) =

{
1 if (x, y, z) ∈ m− th cell

0 otherwise
(4.15)weighted by the probability values.In order to improve the a
hievable spatial resolution, the estimation of P (x, y, z)is evaluated exploiting the iterative pro
ess [59℄ aimed at de�ning a multiresolu-tion latti
e of test 
ells leading to the multiresolution representation

P(s) (x, y, z) =

R(s)∑

r=0

M(r)∑

m(r)=1

P
(s)
m(r)Fm(r) (x, y, z) ; s = 1, ..., S (4.16)where s = 1, ..., S is the step index of the iterative pro
edure that stops whenthe desired spatial resolution regulated by the resolution index r = 0, ..., R (s)39
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(b)Figure 4.2: IMSA Pro
edure - AoI dete
tion at s = 1 (a) and s = 2 (b) multi-resolution steps.
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CHAPTER 4. EARLY BREAST CANCER IMAGINGis a
hieved and R (s) = s − 1. At the r-th resolution level and s-th s
alingstep, m (r) = 1, ...,M (r) basis-fun
tions are generated, being r (s) = s − 1.Figure 2 pi
torially shows the generation of the so-
alled areas of interest (AoIs)
A

(s)
k , k = 1, ..., K (s), K (s) being the total AoIs at step s, at step s = 1 [Fig.4.2(a)℄ and step s = 2 [Fig. 4.2(b)℄. In order to better understand the de�nitionof the multiresolution probability fun
tion, the iterative 
lassi�
ation pro
edureis detailed for the �rst step s = 1 and higher steps s > 1.Step s = 1 - Coarse Dete
tion. At the �rst step the AoI A(1)

1 is equivalentto the whole three-dimensional domain that en
loses Ωb and the basis-fun
tionsde�ning the M (r) test 
ells are of the largest 
hara
teristi
 length s
ale [r = 0,Fig. 4.2(a)℄. This step provides a �rst and ina

urate estimation of the a-posteriori probability upon whi
h the su

essive steps aim at lo
ating the smalllenght s
ale AoIs.Step s > 1 - AoIs Identi�
ation. From the knowledge of the probabilitiesevaluated at the previous step s−1, the resolution of the latti
e is in
reased onlyin those 
ells where the probability of target presen
e is higher than a prede�nedthreshold ǫ. In order to obtained a suitable thresholded probability fun
tion, anormalized version is introdu
ed
P(s−1)

norm (x, y, z) =

R(s−1)∑

r=0

M(r)∑

m(r)=1

Q
(s−1)
m(r) Fm(r) (x, y, z) (4.17)where

Q
(s−1)
m(r) =

P
(s−1)
m(r) − P

(s−1)
min

P
(s−1)
max − P

(s−1)
min

,
m (r) = 1, ...,M (r)
r = 0, ..., R (s)

(4.18)
P

(s−1)
min and P (s−1)

max being the minimum and maximum probability values eval-uated until step s − 1, respe
tively. The normalized values Q(s−1)
m(r) ≥ ǫ are theprobabilities asso
iated to those 
ells 
onstituting the AoIs A(s)

k , k = 1, ..., K (s),the remaining Q(s−1)
m(r) < ǫ are nulled.Step s > 1 - Multiresolution dete
tion. The spatial resolution is enhan
edin the identi�ed AoIs A(s)

k , k = 1, ..., K (s) by in
reasing the resolution index(r ← r+1) and thus re�ning the probability fun
tion representation only whereneeded. To this end, (4.16) is updated by 
omputing the 
oe�
ients P (s)
m(r) onlyif (x, y, z)m(r) ∈ A

(s)
k , k = 1, ..., K (s). The iterative syntheti
 zooming is stoppedwhen the number of the AoIs do not 
hange between two 
onse
utive steps[K (s) = K (s− 1)℄ and the size 
hanges of the AoIs are smaller than the highestresolution level [∆Ωb
s < min

{
∆x

(s)
m(r),∆y

(s)
m(r),∆z

(s)
m(r)

}℄.41



4.4. NUMERICAL RESULTS4.4 Numeri
al ResultsThe presented numeri
al experiments deal with the three-dimensional tomo-graphi
 
on�guration as shown in Fig. 4.1. The imaging system 
onsists ofa 
ir
ular array 
omposed by N = 16 monopole antennas equally spa
ed ona rt = 0.27 λ radius 
ir
le, λ being the wavelength at the working frequen
y
f = 1.1GHz. The probes surround the hemispheri
al domain Ωb of radius rb =
0.18 λ simulating a Heterogeneously Dense breast with relative diele
tri
 
onstant
εbr = 17.72−j15.41. Spheri
al in
lusions of radius rp = 3.67×10−2 λ and ele
tri

hara
teristi
 εpr = 53.46 − j18.26 represent the regions Υp ∈ Ωb, p = 1, ..., P
entered in (x, y, z)

(p)
Υ . The breast as well as the probes are immersed in a 
ou-pling liquid (εcr = 23.43− j18.48) mimi
king the average 
onstitutive parametersof the breast.In the following se
tion the SVM training pro
edure and the parameter se-le
tion are des
ribed (Se
t. 4.4.1). Su

essively, the advantages and the 
urrentlimitations of the proposed approa
h when dealing with single in
lusion are an-alyzed (Se
t. 4.4.2). In su
h a framework, the performan
es in presen
e of bothnoisy data and di�erent breast 
hara
teristi
s are evaluated. Finally, the reli-ability of the proposed approa
h in 
orresponden
e with multiple in
lusions isveri�ed (Se
t. 4.4.3).4.4.1 Training Set and Model Sele
tionThe 
olle
tion of Tp = 100, p = 1, ..., P training 
on�gurations is obtained byrandomly varying the position of Υp, p = 1, ..., P inside Ωb, where P = 2 is themaximum number of 
onsidered regions. The imaging system 
olle
ts the data

Γ(t)
s , t = 1, ..., Tp for ea
h 
on�guration and the 
orresponding pathology posi-tions are mapped into the states αc, c = 1, ..., C, C = 108 being the number oftraining 
ells. Two independent SVMs has been trained for single target (P = 1)and multiple targets (P = 2) test 
ases. Be
ause of the good performan
es gen-erally a
hieved by nonlinear SVM with gaussian kernel, the 
onsidered examplesdeal with the kernel

K
[
(xc, yc, zc) ,Γ

(t)
s ; (xc′, yc′, zc′) ,Γ

(t′)
s

]
=

= exp

{
−γ

∥∥∥
[
(xc, yc, zc) ,Γ

(t)
s

]
−

[
(xc′, yc′, zc′) ,Γ

(t′)
s

]∥∥∥
2
} (4.19)where γ represents the width. In order to optimize the performan
es of theSVM-based methodology, the model sele
tion issue has to be solved throughthe determination of the best regularization parameter ζ and kernel parameter

γ. Frequently, the parameter sele
tion is done empiri
ally leading to suboptimalperforman
es of 
lassi�ers. In this work, a 
ause and e�e
t analysis of parametersin�uen
e on the de
ision fun
tion generation has been performed. In parti
ular,42
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Figure 4.3: SVM Parameter Calibration - Support ve
tor NNSV and boundedsuppor ve
tor NBSV analysis vs SVM Hyperparameters.
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4.4. NUMERICAL RESULTSthe number of support ve
tors NSV and bounded support ve
tors NBSV are 
on-sidered good indi
ators of SVM generalization 
apabilities sin
e small NSV leadsto a a stru
tural simpli�
ation of the de
ision fun
tion thanks to the removal ofthe redundant elements [6℄. Moreover, small NBSV means less training errors aspreviously explained in Se
t. 4.3.1. Therefore, the per
entage indexes
N%

SV =
NSV

(Tp × C)
× 100 (4.20)and

N%
BSV =

NBSV

NSV

× 100 (4.21)are evaluated versus the user-de�ned parameters ζ and γ as shown in Fig.4.3. As it 
an be seen, a range where both the indexes N%
SV and N%

BSV are lowexists leading to a simple de
ision fun
tion and with few training errors. Thereported results have been obtained with training parameters belonging to theaformentioned range. In parti
ular, they have been set to ζ = 100 and γ = 1.4.4.2 Single In
lusion - Numeri
al AssessmentThis se
tion deals with the dete
tion of a single in
lusion by means of the pro-posed multiresolution pro
edure (IMSA) 
ompared with the standard single res-olution probability estimation (BARE ). The performan
es have been evaluatedon a test set 
omposed by Ttest = 50 examples and are quanti�ed by 
omputingthe analyti
al indexes
ε(s)p =

√(
x
(p)
Υ − x̂

(s)
p

)2

+
(
y
(p)
Υ − ŷ

(s)
p

)2

+
(
z
(p)
Υ − ẑ

(s)
p

)2 (4.22)and
υ̃(s)p =

4

3
π





∑R(s)
r=0

∑M(r)
m(r)=1

[
Q

(s)
m(r)

ε
(s)
m(r)

maxm(r)

{
Q

(s)
m(r)

}

]

∑R(s)
r=0

∑M(r)
m(r)=1

[
Q

(s)
m(r)

maxm(r)

{
Q

(s)
m(r)

}

]





3

× υ−1
p (4.23)representing the lo
alization index and the in
lusion volume, respe
tively.The lo
alization index points out the geometri
al distan
e between the a
tualin
lusion positions (x, y, z)(p)Υ and the estimated 
oordinates

x̂
(s)
p =

∑R(s)
r=0

∑M(r)
m(r)=1

Q
(s)
m(r)

xm(r)
∑R(s)

r=0

∑M(r)
m(r)=1

Q
(s)
m(r)

,

ŷ
(s)
p =

∑R(s)
r=0

∑M(r)
m(r)=1

Q
(s)
m(r)

ym(r)
∑R(s)

r=0

∑M(r)
m(r)=1

Q
(s)
m(r)

,

ẑ
(s)
p =

∑R(s)
r=0

∑M(r)
m(r)=1

Q
(s)
m(r)

zm(r)
∑R(s)

r=0

∑M(r)
m(r)=1

Q
(s)
m(r)

(4.24)
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Figure 4.4: IMSA Pro
edure - Mean lo
alization error and volume estimation vsmulti-resolution steps (a) in 
omparison with BARE pro
edure (b).
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4.4. NUMERICAL RESULTSwhere the in
lusions are supposed to be lo
ated. The in
lusion volume indexestimates the physi
al volume of the re
ostru
tions normalized to the a
tualin
lusion volumes υp, p = 1, ..., P , whereas
ε
(s)
m(r) =

√(
xm(r) − x̂

(s)
p

)2

+
(
ym(r) − ŷ

(s)
p

)2

+
(
zm(r) − ẑ

(s)
p

)2

. (4.25)As a matter of fa
t, the behavior of the performan
e indexes points out thatthe IMSA strategy iteratively in
reases the dete
tion 
apabilities both in terms ofmean dete
tion a

ura
y (avg {ε(s)p

}) and mean volume estimation (avg{υ̃(s)p

})as shown in Fig. 4.4(a) and also that it outperforms the BARE approa
h[Fig. 4.4(b)℄. As a representative result, Fig. 4.5 graphi
ally shows the es-timated probability fun
tion of a test 
on�guration with in
lusion 
entered in
x
(1)
Υ = 2.18 × 10−4 λ , y(1)Υ = 1.34 × 10−2 λ, z(1)Υ = −2.81 × 10−2 λ. The targetre
onstru
tion is represented by the surfa
e that en
loses the values of the proba-bility fun
tion P(s−1)

norm (x, y, z) > εpr, where εpr = 0.5 is a user-de�ned probabilitythreshold. As it 
an be noti
ed, the spheri
al region Υ1 is 
orre
tly lo
alized withlo
alization index and in
lusion volume both de
resing from ε
(1)
1 = 3.28× 10−2 λand υ̃(1)1 = 17.69 to ε(3)1 = 1.95× 10−2 λ and υ̃(3)1 = 1.13, respe
tively.As a 
omparative result, the BARE approa
h has been applied to the sametest example and starting from the same training set. The resolution level hasbeen set to the highest a
hieved with the IMSA strategy, i.e., with dis
retization

∆x = ∆y = ∆z = ∆Ωb

3 over all the domain Ωb instead of only inside the AoI
A

(3)
1 . As it 
an be observed (Fig. 4.6), the volume of the re
ostru
tion is sig-ni�
antly wider [υ̃(bare)1 = 16.18℄ and also the lo
alization index is slightly worse[ε(bare)1 = 2.43 × 10−2 λ℄. Moreover, it should be pointed out the 
omputationalsave provided by the multiresolution approa
h that evaluates the de
ision fun
-tion twenty times less than the BARE method and results to be more e�e
tivein terms of real-time 
apabilities.4.4.2.1 Validation with Random Noise added to Syntheti
 DataIn order to test the robustness of the methodology in various and more realis-ti
 working 
onditions, also noisy measurements have been simulated by addinga Gaussian noise with an amplitude mimi
king a noise �oor of −100 dBm [60℄.The transmission power has been varied in the range 10 dBm ≤ Ptx ≤ 30 dBm tosimulate realisti
 �eld measurements with di�erent signal-to-noise ratio (SNR)that depends from the 
hosen sour
e power. The behavior of the error �guresversus Ptx is shown in Fig. 4.7 in order to further 
on�rm the dete
tion a
-
ura
y of the proposed IMSA approa
h in dealing with noisy data. It 
anbe noti
ed that the pathology is 
orre
tly lo
alized with small lo
alization in-dex avg

{
ε
(3)
1

∣∣∣
Ptx=15dBm

}
≤ 2.83 × 10−2 λ and well-estimated in
lusion volume46
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(a)

(b)

(
)Figure 4.5: IMSA Pro
edure - Pathology dete
tion obtained by IMSA pro
edureat s = 1 (a), s = 2 (b), s = 3 (
).
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Figure 4.6: IMSA vs BARE Dete
tion - Pathology dete
tion determined byBARE pro
edure.
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Figure 4.7: Validation vs random noise - Lo
alization error and volume estima-tion versus transmission power Ptx (−100 dBm noise �oor) .
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(a) (b)
(
) (d)Figure 4.8: Validation vs random noise - Pathology dete
tion determined byIMSA pro
edure with noisy data [Ptx = 30 dBm (a), Ptx = 25 dBm (b), Ptx =

15 dBm (
), Ptx = 10 dBm (d)℄.[avg{ υ̃(3)1

∣∣∣
Ptx=15dBm

}
≤ 1.11 when Ptx > 15 dBm, whereas for lower Ptx valuesthe a

ura
y de
reases showing maximum error values avg{ε(3)1

∣∣∣
Ptx=10dBm

}
=

5.93 × 10−2 λ and avg

{
υ̃
(3)
1

∣∣∣
Ptx=10dBm

}
= 1.36. Figure 4.8 shows, in a 
om-parative fashion, the in
lusion re
onstru
tions of a noisy test example obtainedwith di�erent power values ranging from Ptx = 30 dBm [Fig. 4.8(a)℄ down to

Ptx = 10 dBm [Fig. 4.8(d)℄. Even if the redu
tion in dete
tion a

ura
y is evi-dent, the methodology still identi�es the presen
e of the in
lusion with a

eptableerrors [ε(3)1

∣∣∣
Ptx=10dBm

= 5.24× 10−2 λ and υ̃
(3)
1

∣∣∣
Ptx=10dBm

= 1.09℄.4.4.2.2 Validation with Di�erent Breast PropertiesThe examples under test are 
on
erned with breast 
hara
teristi
s di�erent fromthose in the training set. The aim of this se
tion is to verify how the performan
esof a trained SVM 
hanges when dealing with test data that belong to di�erenttest 
ases. More spe
i�
ally, in addition to the Heterogeneously Dense (H) breastadopted for training data generation, let us 
onsider also Fatty (F ) [εFr = 9.06−
j6.90℄ and S
attered (S) [εSr = 14.16 − j12.57℄ breast models. The ele
tri
al
hara
teristi
s of the in
lusion are un
hanged [εpr = 53.46 − j18.26℄, leadingto di�erent 
ontrasts between pathology and surrounding mediums. As for the49
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Figure 4.9: Validation vs ele
tri
al properties of breast - Lo
alization error andvolume estimation versus breast 
omplex diele
tri
 
hara
teristi
s (F -H-S).already 
onsidered H-breast test 
ase, a test set 
omposed by Ttest = 50 exampleshas been generated both for F -breast and S-breast and the error �gures obtainedwith the IMSA methodology have been evaluated. Fig. 4.9 
ompares the meanlo
alization index and in
lusion volume of the three 
onsidered test 
ases (F ,
H , S) pointing out that the algorithm provides good re
onstru
tions even if the
hange in ele
tri
al 
hara
teristi
s 
auses an error in
rease of (△ε(3)1

)F

= 47%and (
△υ̃

(3)
1

)F

= 44% for the F -breast and of (△ε(3)1

)S

= 6% and (
△υ̃

(3)
1

)S

=

4% for the S-breast respe
t to the H-breast initial test 
ase.4.4.3 Multiple In
lusions - Performan
e analysisThis se
tion aims at assessing the e�e
tiveness of the proposed IMSA method-ology in dete
ting multiple in
lusions. The imaging system 
on�guration aswell as the 
hara
teristi
s of the the breast and the in
lusions are un
hangedrespe
t to the single-in
lusion test 
ase (with Heterogeneously Dense breast).Dealing with the dete
tion of two equal in
lusions, both in terms of ele
tri
and geometri
al 
hara
teristi
s, the training and test data sets have been gener-ated with the same number of regions (P = 2) and with the 
onstraint on therandomly-
hosen positions of the regions that 
annot be overlapped. The gener-ated data have been still blurred with random Gaussian noise, reprodu
ing thesame noise �oor (−100 dBm) as for the previous noisy test 
ases and a sour
epower Ptx = 20 dBm has been used. A representative test 
ase has been 
hosenamong the test set in order to show the probability maps estimated by the IMSAapproa
h at di�erent steps [Fig. 4.10(a)-(
)℄ together with that obtained withthe single-resolution BARE 
lassi�
ation pro
edure [Fig. 4.10(d)℄. In su
h a50
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(a) (b)
(
) (d)Figure 4.10: Multiple dete
tion - Pathology dete
tions determined by IMSA pro-
edure at s = 1 (a), s = 2 (b), s = 3 (
) and by BARE approa
h (d).
ase, the values of the error �gures turn out to be equal to ε(3)1 = 2.91× 10−2 λ,

ε
(3)
2 = 3.08×10−2 λ and υ̃(3)1 = 0.89, υ̃(3)2 = 1.68 when IMSA approa
h is applied,while the BARE method provides higher lo
alization index ε(bare)1 = 3.12×10−2 λ,
ε
(bare)
2 = 4.14 × 10−2 λ and in
lusion volume υ̃(bare)1 = 5.71, υ̃(bare)2 = 9.93. Asexpe
ted, the outperforming behavior of the IMSA approa
h in 
omparison withthe BARE pro
edure 
ame out for the single-in
lusion analysis is 
on�rmed alsofor the multiple in
lusions test 
ase. The multi-step 
lassi�
ation pro
ess 
or-re
tly identi�es the multiple AoIs and signi�
antly enhan
e the resolution wherethe probability is higher. As it 
an be observed, the IMSA strategy avoids the
lustering e�e
t produ
ed by the single-step resolution that is unable to identifytwo independent areas and estimates only one high-probability region. For 
om-pleteness, by 
onsidering the whole test set, the statisti
s of the error �gures aregiven in Tab. 4.1.4.5 Con
lusionsIn this 
hapter, a multiresolution approa
h for the dete
tion of breast 
an
erbased on a SVM 
lassi�er has been presented. On
e the training phase is 
om-pleted, the dete
tion of the pathology is real-time estimated through the gener-ation of a multiresolution probability map of presen
e. The spatial resolution isiteratively enhan
ed only in those regions where the probability is higher.51



4.5. CONCLUSIONS
Method AverageError F igures

ε
(s)
1 λ υ̃

(s)
1 ε

(s)
2 λ υ̃

(s)
2

IMSA
s = 1 3.89 15.41 4.59 16.33
s = 2 3.40 7.65 4.02 6.13

s = Sopt = 3 3.05 1.13 3.79 0.96
BARE 3.77 10.49 4.31 8.92Table 4.1: Multiple dete
tion - Averaged error �gures when applying IMSA andBARE with noisy data.The e�e
tiveness of the approa
h has been numeri
ally assessed showing asele
ted set of experiments dealing with single and multiple in
lusions. A 
om-parative analysis with the single resolution approa
h (BARE ) has been 
arriedout in order to underline the outperforming resolution a

ura
y provided by theIMSA multistep pro
edure.The generalization 
apabilities of the learning-by-example methodology hasbeen veri�ed by testing the SVM-based 
lassi�er with noisy data as well as withmeasured data related to di�erent breast 
hara
teristi
s respe
t to the trainingset.It has to be noti
ed that three-dimensional re
ostru
tion has been obtainedstarting from the measurement performed with �xed probe height. Usually, this
on�guration is typi
al for two-dimensional problem geometries sin
e a 2D planeat the same sour
e height is de�ned. As a matter of fa
t, the information en
losedin the measured s
attering matrix is su�
ient for the estimation of the pathologyposition in a 3D domain.
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Chapter 5Dire
tion of Arrival EstimationDealing with the proposed LBE approa
h, this 
hapter presents an innovativemulti-resolution approa
h for the real-time DOA estimation of multiple signalsimpinging on a planar array is presented. The method is based on a supportve
tor 
lassi�er and it exploits a multi-s
aling pro
edure to enhan
e the angularresolution of the dete
tion pro
ess in the regions of in
iden
e of the in
omingwaves. The data a
quired from the array sensors are iteratively pro
essed witha support ve
tor ma
hine (SVM) 
ustomized to the problem at hand. The �nalresult is the de�nition of a map of the probability that a signal impinges on theantenna from a �xed angular dire
tion. Sele
ted numeri
al results, 
on
ernedwith both single and multiple signals, are provided to assess potentialities and
urrent limitations of the proposed approa
h.
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5.1. INTRODUCTION5.1 Introdu
tionIn the last de
ades, the te
hnology of adaptive antenna arrays has been greatlyadvan
ed and applied to many mobile and wireless 
ommuni
ation systems [61℄[62℄.Within this framework, the antenna beam-forming plays an important role andthe estimation of the dire
tions of arrival (DOAs) of signals impinging on thearray is a 
ru
ial task in order to enhan
e the spatial diversity and 
onsequentlythe spe
tral e�
ien
y. As a matter of fa
t, su
h an information enables the gen-eration or steering of the radiation pattern with a maximum towards the desiredsignals and nulls along the dire
tions of interfering signals [63℄[64℄. The e�e
ts ofinterferen
es are mitigated and both the gain and the performan
e of the whole
ommuni
ation system are enhan
ed. For su
h reasons, the estimation of the
DOAs of unknown interfering and desired signals is of great interest and it isstill an open problem as 
on�rmed by the number of papers published on thistopi
.In the s
ienti�
 literature, several methods have been proposed for the dire
tion�nding of multiple signals impinging on an array of narrow band sensors. Amongthem, the most widely known and used are ESPRIT (Estimation of Signal Pa-rameters via Rotational Invarian
e Te
hnique) [65℄-[67℄ and MUSIC (MUltipleSIgnal Classi�
ation) [68℄[69℄. Other approa
hes based on the maximum likeli-hood (ML) DOA estimation have been proposed [70℄[71℄, as well.In the last years, great attention has been also paid to the use of learning-by-examples (LBE) te
hniques. LBE-based approa
hes are able to provide a goodtrade-o� between a

ura
y and 
onvergen
e, whi
h is mandatory for real timesystems where fast rea
tions are required. Furthermore, they satisfa
tory dealwith unknown 
on�gurations (i.e., di�erent from those �learned� during the train-ing pro
ess) thanks to their generalization 
apability. Within this framework, thebene�ts of using radial basis fun
tion neural networks (RBFNN) have been 
are-fully analyzed in [72℄. As a matter of fa
t, neural networks (NNs) are suitablein approximating non-linear fun
tions as those in DOAs estimation. Moreover,they 
an be easily implemented in analog 
ir
uits. An improved RBFNN-basedapproa
h has been presented by the same authors of [72℄ in [73℄ to address theproblem of tra
king an unknown number of multiple sour
es when no a-prioriinformation on the number of impinging signals is available. More spe
i�
ally,the region above the antenna has been partitioned into angular se
tors and ea
hse
tor �assigned� to a simplerNN , thus redu
ing with respe
t to [72℄ the problem
omplexity as well as the 
omputational burden of the learning phase. Towardsthis end, ea
h network has been trained to dete
t the subset of in
oming sig-nals that impinge on the 
orresponding angular se
tor. A

ordingly, only those
NNs of the regions where the signals have been dete
ted in the �rst stage of thepro
ess are a
tivated in the se
ond one to estimate the DOAs of the in
omingsignals.More re
ently, some te
hniques based on support ve
tor ma
hines (SVMs) [74℄56



CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATIONhave been analyzed to pro�tably exploit their solid mathemati
al foundation instatisti
al learning theory [6℄. The main advantages of those approa
hes lie intheir ability to deal with various and 
omplex ele
tromagneti
 problems [75℄[38℄,and, analogously to NNs, in an easy hardware implementation [76℄. As far asthe DOA estimation is 
on
erned, a support ve
tor regression (SV R) pro
edurehas been presented in [77℄ when dealing with linear arrays. In su
h a 
ase, a
SVM has been used to estimate the DOA of ea
h impinging ele
tromagneti
wave starting from a set of known input-output examples where the DOAs ofthe signals were uniformly distributed in the whole angular region above there
eiver. Despite the generalization 
apability of the SV R-based method, ana-priori information on the number of sour
es and pre-�xed angular separationsbetween the DOAs (as in [72℄) have been 
onsidered to in
rease the reliabilityof the estimation pro
edure. An extension of su
h a model has been presentedin [78℄ and experimentally validated in [79℄ su

essively.In this paper, an innovative pro
edure for real-time dire
tion �nding of signalsimpinging on a planar array of ele
tromagneti
 sensors is presented. The problemof theDOAs estimation is formulated as a two step pro
edure, where the �rst stepis aimed at determining the de
ision fun
tion that 
orre
tly 
lassi�es whateverinput pattern by means of a SVM-based approa
h. In the se
ond step, theoutput of the de
ision fun
tion is mapped into the a-posteriori probability thata signal impinges on the antenna from a �xed dire
tion. In order to in
reasethe a

ura
y of the estimation pro
ess and to redu
e the 
omputational burdena�e
ting other DOAs pro
edures, the proposed two-step strategy is nested intoan iterative multi-s
aling pro
ess [80℄. A

ordingly, the resolution a

ura
y isimproved only in those angular regions where the unknown sour
es are supposedto be lo
ated at the previous iteration. More spe
i�
ally, the algorithm �rstdetermines a 
oarse probability map of the DOAs starting from a training setwhere the in
oming signals are non-uniformly distributed along the elevationdire
tion, θ, and the azimuthal one, φ. Then, the SVM is used to 
lassify theinput test dataset at su

essive resolution levels by performing a kind of syntheti
zoom in the angular regions of interest (ARoIs) where a higher probability isdete
ted and 
onsidering the same training set, thus performed only on
e ando�-line. Con
erning the antenna ar
hite
ture and unlike [73℄ and [78℄, planararrays of sensors are 
onsidered sin
e linear arrays la
k the ability to s
an in
3D-spa
e and the estimation of both the elevation θ and the azimuth φ angles is
ru
ial and has many appli
ations in various �elds of engineering. For instan
e, a
omplete DOA information it is possible to improve the 
overage of transmissionin wireless 
ommuni
ations by avoiding interferen
es and enhan
ing the system
apa
ity [81℄. More spe
i�
ally, planar arrangements are very attra
tive in mobile
ommuni
ations with portable devi
es where the main beam must be s
annedin any dire
tion [82℄. Moreover, the number of impinging signals is unknown aswell as their dire
tions belonging to the whole angular range above the planarantenna system (i.e., θ ∈ [0 : 90o] and φ ∈ [0 : 360o]).57
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Figure 5.1: Planar array geometry.The 
hapter is organized as follows. The formulation of the iterative two-step multi-resolution DOA approa
h (in the following denoted by the a
ronym
IMSA−SVM) is des
ribed in Se
tion 5.2. In order to show the innovative fea-tures of the approa
h and to assess its e�e
tiveness, a sele
ted set of numeri
alresults 
on
erned with both single and multiple signals is reported and dis
ussed(Se
t. 5.3). Moreover, some 
omparisons with state-of-the-art te
hniques arealso reported. Finally, some 
on
lusions are drawn in Se
t. 5.4.5.2 Mathemati
al FormulationLet us 
onsider a planar array of M isotropi
 elements displa
ed on a regularand re
tangular grid with inter-element spa
ing d on the x − y plane. A set of
I ele
tromagneti
 waves impinge on the array from unknown angular dire
tions
(θi, φi), i = 1, ... , I, as sket
hed in Fig. 5.1. The signals, supposed to be narrow-band and 
entered at the 
arrier frequen
y f (λ being the 
orresponding free-spa
e wavelength), are generated by a set of ele
tromagneti
 sour
es pla
ed inthe far-�eld of the re
eiving antenna. The open-
ir
uit voltage at the output ofthe m-th sensor 
an be expressed as [78℄

vm =

I∑

i=1

{am (θi, φi) [Ei (xm, ym) · em]}+ gm, m = 1, ...,M (5.1)where am (θi, φi) = ej
2π
λ
sinθi(xmcosφi+ymsinφi), (xm, ym) being the lo
ation of the m-th sensor expressed in wavelength, and gm is the ba
kground random noise at the

m-th lo
ations. The noise samples are supposed to be statisti
ally independentand 
hara
terized by a random Gaussian distribution with zero mean value.58



CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATIONMoreover, Ei and em are the ele
tri
 �eld asso
iated to the i-th impinging waveand the e�e
tive length of the m-th array element.A

ording to the guidelines des
ribed in [63℄ and [64℄ about the 
ontrol of adap-tive/smart antennas, the solution of the DOAs estimation problem is based alsoin this work on the measurement of the total 
orrelation matrix, de�ned as
Φ = E {v · v∗} (5.2)where v = {vm; m = 1, ...,M} and the supers
ript ∗ stands for 
omplex 
onju-gation, at the output of the planar array sin
e it 
ontains su�
ient informationon the re
eived signals [73℄.From a statisti
al point of view, the problem at hand 
an be formulated as thede�nition of the probability map of the angular in
iden
e of the in
oming wavesstarting from the knowledge of the total 
orrelation matrix Φ. Towards this end,let us partition the angular region above the array into a two-dimensional latti
eofH = Hθ×Hφ 
ells, ea
h one 
orresponding to an angular se
tor of sides△θ and

△φ [Fig. 5.2(a)℄. The status χh of ea
h 
ell 
an be empty [χh = χ (θh, φh) = −1℄,if any signal impinges on the array from the angular region identi�ed by thesame 
ell, or o

upied [χh = χ (θh, φh) = 1℄, otherwise. A

ordingly, the origi-nal problem 
an be stated as follows: ��nd the a-posteriori probability fun
tion
Q (θ, φ) given a measured value of the total 
orrelation matrix Φ at the re
eiver �.Mathemati
ally, Q (θ, φ)
an be also expressed as the linear 
ombination of thenon-overlapping basis fun
tions Bh (θ, φ), h = 1, ..., H de�ned over the angularlatti
e

Q (θ, φ) =
H∑

h=1

q (θh, φh)Bh (θ, φ) (5.3)where the weighting 
oe�
ient q (θh, φh) is the probability value that a wave im-pinges on the array from the h-th angular se
tor [i.e., q (θh, φh) = Pr
{
χh = 1 ;

∣∣Φ
}℄and Bh (θ, φ) = 1 if (θ, φ) belongs to the h-th 
ell and Bh (θ, φ) = 0 otherwise.In order to improve the a
hievable angular resolution, a multi-resolution repre-sentation of the unknown fun
tion Q (θ, φ) is looked for [Fig. 5.2(b) - r = 1℄ byexploiting an iterative pro
ess analogously to [80℄. More spe
i�
ally, the proba-bility fun
tion is expressed at the s-th step of the iterative pro
edure as a twofoldsummation of shifted and dilated spatial basis fun
tions

Q(s) (θ, φ) =

R(s)∑

r=0

H(r)∑

h(r)=1

q(s)
(
θh(r), φh(r)

)
Bh(r) (θ, φ) ; s = 1, ..., Sopt (5.4)

r being the resolution index and R(s) = s − 1. The summation over r rangesfrom 0 [Fig. 5.2(a)℄, whi
h 
orresponds to the largest 
hara
teristi
 length s
ale,to R(s) [Fig. 5.2(b)℄, whi
h 
orresponds to the smallest angular basis-fun
tionsupport at the s-th s
aling step. For a given value of r, H (r) = H
(r)
θ ×H

(r)
φ is thenumber of non-overlapped basis fun
tions 
entered in the angular sub-domainrepresented at the r-th resolution. A

ordingly, the iterative DOA dete
tion59
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CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATIONpro
edure is aimed at lo
ating the terms of small length s
ale at those ARoIs[e.g., the yellow 
ells in Figs. 2(a)-2(b)℄ where the signals are supposed to impingewith higher probability.In order to pro�tably exploit the multiresolution representation of the a-posterioriprobability fun
tion (5.4) and solving the arising DOA problem, the followingmultistep 
lassi�
ation pro
ess is performed by means of a SVM-based te
h-nique. More in detail,
• Step 0 - SVM Training Phase. The SVM is trained on
e and o�-linestarting from the knowledge of a set of known examples (i.e, input/outputrelationships)

{[
Φ, (θn, φn) , χn = χ (θn, φn) ; n = 1, ..., N

](t)
; t = 1, ... , T

} (5.5)
alled training set, where T is the number of training data. The N sam-ples of ea
h training data are 
omposed by I (t) examples 
on
erned withangular positions (θi, φi), i = 1, ..., I (t), I(t) ≤ Imax where a signal im-pinges on the array [i.e., o

upied dire
tions - χ (θi, φi) = 1 ; i = 1, ..., I (t)℄,while the remaining F (t) = N − I (t) are related to empty dire
tions [i.e.,
χ (θf , φf) = −1 ; f = 1, ..., F (t)℄.Starting from the knowledge of the training set, the problem turns out tobe the de�nition of a suitable dis
riminant fun
tion ℑ̂

ℑ̂ : Φ→ [χ (θh, φh) ; h = 1, ..., H ] (5.6)that separates the two 
lasses χ (θ, φ) = 1 and χ (θ, φ) = −1 on the basis ofthe total 
orrelation matrix Φ measured at the output of the planar array.In order to approa
h the problem with a single 
lassi�er, the problem athand is reformulated as that of building the following single output fun
tion
ℑ̂ :

[
Φ, (θn, φn) ; n = 1, ... , N

]
→ χ (θh, φh) , h = 1, ..., H. (5.7)Towards this purpose and a

ording to the SVM theory [6℄, the followinglinear de
ision fun
tion is adopted

ℑ̂
{
ϕ
(
Φ, (θn, φn)

)}
= w · ϕ

(
Φ, (θn, φn)

)
+ b, n = 1, ..., N. (5.8)

ℑ̂ is determined in a spa
e (
alled �feature spa
e�) with a higher dimension-ality than the original input data spa
e and obtained through the non-linearoperator ϕ (·) [6℄. The unknown terms w and b, whi
h unequivo
ally de�nethe de
ision hyperplane ℑ̂, are the normal ve
tor and a bias, respe
tively.They are 
omputed during the Training Phase a

ording to the guidelinesdes
ribed in [38℄; 61



5.2. MATHEMATICAL FORMULATION
• Step 1 - Low-Order DOA Estimation (s = 1). At the �rst step, a 
oarseprobability map [Eq. (5.4) - s = 1℄ is determined by means of the SVM
lassi�er mapping the de
ision fun
tion ℑ̂ into the a-posteriori probabilityfun
tion.The unknown probability 
oe�
ients q(s) (θh, φh)

⌋
s=1

, h = 1, ..., H are ap-proximated with a sigmoid fun
tion [6℄ as follows
q(s) (θh, φh) =

1

1 + exp
[
γℑ̂

{
ϕ
(
Φ, (θh, φh)

)}
+ ν

] (5.9)where γ and ν are two parameters 
omputed a

ording to a �tting pro
ess[38℄ starting from a subset of the T training data of the Training Set ;
• Step 2 - IMSA− SVM Pro
ess (s ≥ 1).� Step 2.a - Angular Regions of Interest (ARoIs) Identi�
ation (s ←

s + 1). Starting from the probability map previously (i.e., at the
s− 1-th iteration) determined, su
h a step is aimed at identifying theangular se
tors D(s)

ℓ , ℓ = 1, ..., L(s) where the signals are supposed toimpinge in order to improve the resolution only in those regions andenhan
e the a

ura
y of the DOA estimation. Towards this end, �rstthe values of the fun
tion Q(s−1) (θ, φ) are s
aled, thus de�ning thefollowing new set of normalized probability 
oe�
ients
p(s−1)

(
θh(r), φh(r)

)
=
q(s−1)

(
θh(r), φh(r)

)

qM − qm
+

qm
qm − qM

,
h(r) = 1, ..., H(r)
r = 0, ..., R(s)

.(5.10)where qM = maxr=0,...,R(s)

{
maxh(r)=1,...,H(r)

[
q(s−1)

(
θh(r), φh(r)

)]} and
qm = minr=0,...,R(s)

{
minh(r)=1,...,H(r)

[
q(s−1)

(
θh(r), φh(r)

)]}. Su

essively,the new probability fun
tion
P (s−1) (θ, φ) =

∑R(s−1)
r=0

∑H(r)
h(r)=1 p

(s−1)
(
θh(r), φh(r)

)
Bh(r) (θ, φ)is thresholded by nulling the s
aled 
oe�
ients greater than a user-de�ned threshold η. Finally, the thresholded fun
tion

P
(s−1)
th (θ, φ) =

R(s−1)∑

r=0

H(r)∑

h(r)=1

pth
(
θh(r), φh(r)

)
Bh(r) (θ, φ) (5.11)where pth (θh(r), φh(r)

)
= p(s−1)

(
θh(r), φh(r)

) if p(s−1)
(
θh(r), φh(r)

)
> ηand pth (θh(r), φh(r)

)
= 0 otherwise, allows one to identify the ARoIs,

D
(s)
ℓ , ℓ = 1, ..., L(s) de�ned as those angular sub-domains where P (s−1)

th (θ, φ) 6=
0; 62



CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATION� Step 2.b - Multiresolution DOA Estimation. A syntheti
 zoom isperformed by re�ning the representation of the unknown fun
tion
Q(s) (θ, φ) and in
reasing the angular resolution (r ← r + 1) onlyin the ARoIs identi�ed at (Step 2.a). Therefore, the multiresolu-tion a-posteriori probability fun
tion (5.4) is updated (1)1 by setting
Q(s) (θ, φ) = P

(s−1)
th (θ, φ) and 
omputing the new highest resolution
oe�
ients, q(s) (θh(r), φh(r)

), when (θ, φ) ∈ D
(s)
ℓ , ℓ = 1, ..., L(s) as in(5.9);

• Step 3 - Termination Criterion (s = Sopt). The sequen
e of operationsof Step 2 is repeated until both the dimensions and the number of ARoIsbetween two 
onse
utive 
y
les are stationary [i.e., L(s) = L(s−1) and thevariations of the dimensions of the ARoIs are not greater than the highestangular resolution at the s-th step, △(s)
min = min

{
△θ

(s)
R(s), △φ

(s)
R(s)

}℄.5.3 Numeri
al Simulations and ResultsIn order to assess the e�e
tiveness and reliability of the proposed approa
h, anexhaustive set of numeri
al experiments has been performed and some sele
tedresults will be reported in the following for illustrative purposes. The remainingof this se
tion will �rstly (Se
t. 5.3.1) illustrate the behavior of the multi-s
alingpro
edure also in 
omparison with other state-of-the-art approa
hes for DOAestimation. The se
ond part (Se
t. 5.3.2) will be devoted to analyze the poten-tialities and 
urrent limitations of the IMSA − SVM approa
h when dealingwith various and 
hallenging ele
tromagneti
 s
enarios. In su
h a framework,some 
on�gurations in whi
h 
onventional state-of-the-art signal subspa
e-basedarray pro
essing te
hniques 
annot be applied are also dealt with in order topoint out the enhan
ed range of appli
ability of SVM approa
hes. Finally, auniform array of λ
2
-dipoles is 
onsidered (Se
t. 5.3.3) to verify the suitabilityand reliability of the proposed method in 
orresponden
e with a realisti
 arraymodelling.With referen
e to the geometry shown in Fig. 5.1, a square planar array of

M = 16 isotropi
 radiators spa
ed by d = λ
2
is 
onsidered. The power of theimpinging signals has been set to Pi = 30 dB, i = 1, ..., I above the level of theba
kground noise.Con
erning the training set, the following setup T = 400 and Imax = 4 has beenassumed and the SVM 
lassi�er has been trained on
e and o�-line on the samedata set whatever the test experiment. As regards to the T =

∑Imax

i=1 Ti trainingexamples, di�erent s
enarios have been 
onsidered, Ti = 100 being the number1 (1)It is worth noting that at the s-th step of the multi-s
aling pro
edure only the angularranges belonging to the ARoIs are pro
essed by the SVM 
lassi�er with a non-negligible savingof 
omputational resour
es. 63
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CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATIONof 
on�gurations with i signals. Moreover, the a
tual DOAs of the signals of thetraining data have been randomly 
hosen in a dis
rete grid of lo
ations (θn, φn),
n = 1, ..., N belonging to the the angular region above the antenna




θn = θ0 +
⌊
n−1√
N

⌋
∆θ

φn = φ0 +
⌈
n−1√
N

⌉
∆φ

, n = 1, ..., N (5.12)
⌊·⌋ and ⌈·⌉ being the �oor fun
tion and the 
eiling fun
tion, respe
tively. More-over, in order to fully assess the generalization properties of the SVM-basedapproa
h, the DOAs of the test examples are di�erent from those of the trainingdataset.5.3.1 Single Signal S
enario - Comparative AssessmentThe �rst experiment deals with the DoA dete
tion of a single signal and a testset of T (test)

1 = 100 examples related to the single-signal s
enario has been 
onsid-ered. An illustrative des
ription of the behavior of the proposed IMSA−SVMapproa
h is shown in Fig. 5.3 dealing with the �representative� (of the methodperforman
e on the whole test dataset) 
on�guration of a signal 
oming from
(θ1 = 53o, φ1 = 260o). At the �rst step (s = 1), the planar angular region D(1) ispartitioned into H(s) = 81 
ells (being ∆θ

(s)
(r) = 10o and ∆φ

(s)
(r) = 40o, r = 0, theangular steps along the elevation dire
tion, θ, and the azimuthal one, φ, respe
-tively) and a 
oarse DOA probability map is determined following the pro
eduredes
ribed in Se
t. ?? (Step 1 ). Then, the multi-s
aling pro
edure takes pla
e(s ≥ 2). The ARoIs are identi�ed and partitioned into H

(2)
R(s)

⌋
R(s)=s−1

= 81
ells with an angular resolution of ∆θ(2)(1) = 5o and ∆φ
(2)
(1) = 20o. For the sakeof spa
e, only the DOA probability map obtained at the end of the se
ond step(s = 2) is shown in Fig. 5.3(a). The pro
edure is then iterated until s = Sopt = 4[R(Sopt) = 3℄ with the �nal result reported in Fig. 5.3(b) 
hara
terized by anangular resolution in D(4)

1 equal to ∆θ
(4)
(3) = 1.25o and ∆φ

(4)
(3) = 5o. As it 
an beobserved (Fig. 5.3), the region with higher probability of in
iden
e turns out tobe 
loser and 
loser to the a
tual angular lo
ation of the signal when in
reasingthe step number. Quantitatively su
h an event 
an be analyti
ally quanti�ed by
omputing the values of the lo
ation index ς(s) (Fig. 5.2) and of the in
iden
earea ψ(s) de�ned as follows

ς(s) =
Φ(s)

max {Φ(s)}
× 100 (5.13)where

Φ(s) ,

√(
sinθcosφ− sinθ̂(s)cosφ̂(s)

)2
+

(
sinθsinφ− sinθ̂(s)sinφ̂(s)

)2
+

(
cosθ − cosθ̂(s)

)265



5.3. NUMERICAL SIMULATIONS AND RESULTSand
ψ(s) = π





∑R(s)
r=0

∑H(r)
h(r)=1

{
ς
(s)
h(r)

q(s)(θh(r),φh(r))
maxh(r){q(s)(θh(r),φh(r))}

}

∑R(s)
r=0

∑H(r)
h(r)=1

{
q(s)(θh(r),φh(r))

maxh(r){q(s)(θh(r),φh(r))}

}





2 (5.14)being ς(s)
h(r) =

[(
sinθh(r)cosφh(r) − sinθ̂

(s)cosφ̂(s)
)2

+
(
sinθh(r)sinφh(r) − sinθ̂

(s)sinφ̂(s)
)2

+

(
cosθh(r) − cosθ̂

(s)
)2
] 1

2 , (θ, φ) are the a
tual 
oordinates of the signal in
iden
epoint, whereas (θ̂, φ̂)
θ̂(s) =

∑R(s)
r=0

∑H(r)
h(r)=1{θh(r)q

(s)(θh(r),φh(r))}
∑R(s)

r=0

∑H(r)
h(r)=1{q(s)(θh(r),φh(r))}

φ̂(s) =

=
∑R(s)

r=0

∑H(r)
h(r)=1{φh(r)q

(s)(θh(r),φh(r))}
∑R(s)

r=0

∑H(r)
h(r)=1{q(s)(θh(r),φh(r))}

(5.15)identify the 
enter of the ℓ-th ARoI where the signal/signals is/are supposed toimpinge. As a matter of fa
t, the value of the lo
ation index redu
es from ς(1) =
13.17 down to ς(Sopt) = 2.53 (being ς(2) = 4.10 and ς(3) = 2.87). Analogously,
ψ(1) = 2.74, ψ(2) = 0.94, ψ(3) = 0.36, until ψ(Sopt) = 0.14. As regards to the wholeset of test examples, the statisti
s of the �
onvergen
e� values of the indexes (5.13)and (5.14) are given in the �rst blo
k of Tab. 5.2.In order to get an insight into the advantages of the proposed multi-resolutionapproa
h over the 
lassi�
ation single-step te
hniques, a bare DOA SVM-basedmethod has been 
onsidered and applied to the same test example. To fairly 
om-pare the two methods, the same training dataset has been used. Moreover, thesame angular resolution has been adopted in both 
ases. Towards this purpose,an angular latti
e 
hara
terized by a uniform grid whose 
ell side was equal tothe �nest dis
retization of the multi-resolution pro
edure (i.e., ∆θ = ∆θ

(4)
(3) and

∆φ = ∆φ
(4)
(3)), has been de�ned over the whole angular investigation domain ofthe single step SVM approa
h. As it 
an be observed [Fig. 5.4(a)℄, although thevalue of ς is quite 
lose to that of the IMSA strategy (i.e., ς⌋IMSA−SVM = 2.53vs. ς⌋SVM = 3.14), the extension of the in
iden
e area turns out to be signi�-
antly wider (ψ⌋IMSA−SVM = 0.14 vs. ψ⌋SVM = 2.79). On the other hand, it
annot be negle
ted that the CPU-time of the test phase of the bare pro
edureis approximately �fty times the one of the IMSA−SVM be
ause of the need toobtain a detailed map in the whole investigation area D(1)

1 instead of in a limited
ARoI, D(Sopt)

1 , only. As a matter of fa
t, the number of test points used by the
IMSA approa
h turns out to be widely redu
ed.For 
ompleteness, the results from other standard nonlinear 
lassi�
ation meth-ods, su
h as the multilayer per
eptron (MLP ) and the radial basis fun
tions(RBF ) neural network, have been analyzed, as well. More spe
i�
ally, the DOA66
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5.3. NUMERICAL SIMULATIONS AND RESULTS
Min Max Avg V ar
Single Signal (I = 1)

ς̂ 0.16 43.25 2.81 8.76

ψ̂ 0.02 9.14 0.25 1.35
Multiple Signals (I = 2)

ς̂ 0.31 58.47 4.51 8.56

ψ̂ 0.007 11.05 0.28 1.54
Multiple Signals (I = 3)

ς̂ 0.38 17.35 5.55 2.14

ψ̂ 0.009 0.37 0.15 0.34
Multiple Signals (I = 4)

ς̂ 0.47 70.72 17.29 13.58

ψ̂ 0.005 1.89 0.17 0.69Table 5.1: Statisti
s of the averaged performan
e indexes (ς̂ =
∑I

i=1 ς
(i) and

ψ̂ =
∑I

i=1 ψ
(i)) for di�erent signal 
on�gurations (I = 1, 2, 3, 4).probability maps obtained with the MLP -based and RBFNN-based 
lassi�ersare reported in Figs. 5.4(b) and 5.4(
), respe
tively. Whatever the method, thea
hieved estimate does not appear to be adequate and 
ertainly not 
omparableneither with that of the IMSA− SVM [Figs. 5.4(b)-5.4(
) vs. Fig. 5.3(b)℄ norwith that of the bare SVM [Figs. 5.4(b)-5.4(
) vs. Fig. 5.4(a)℄ as also 
on�rmedby the values of the lo
ation index: ς⌋RBF = 10.21 and ς⌋MLP = 25.91.The last analysis is 
on
erned with the 
omparison between the IMSA− SVMand those state-of-the-art methods for DOA estimation aimed at determiningthe angular in
iden
e of the signals, namely MUSIC, ESPRIT (i.e., two one-dimensional ESPRIT s independently-applied to the arrays followed by an align-ment pro
edure to asso
iate the estimated azimuth and elevation angle), 2D-unitary ESPRIT [67℄, and a support ve
tor regression-based (SV R) approa
h.Towards this end, the azimuthal dire
tion of the a
tual signal has been �xed to

φ = 260o, while the elevation angle has been varied in the range θ ∈ [20o ÷ 80o].Moreover, the SV R algorithm has been previously trained with a dataset 
om-posed by T = T1 = 100 examples 
on
erned with only one signal (I = 1). Themethods are then 
ompared by means of the resulting signal lo
ation error, ς.Be
ause of the planar array of isotropi
 elements and as expe
ted [83℄, the per-forman
es of the DOA te
hniques in θ elevation-estimation turn out to better athigh elevations (θ→ 0o) [Tab. II℄, while the φ azimuth-estimation is greatest atlow elevations (θ → 90o). Moreover, the values of the estimation indexes pointout that the IMSA − SVM (last 
olumn - Tab. 4.1) is able to obtain similar68
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DOA Method

θ1 ESPRIT 2DESPRIT MUSIC SV R IMSA− SVM (unif) IMSA− SVM

20o 0.16 0.08 0.34 1.21 0.75 0.52

40o 0.51 0.22 0.59 1.38 1.17 0.83

60o 0.51 0.27 0.68 1.64 1.52 2.22

80o 0.68 0.36 0.74 1.56 1.64 4.93

Table5.2:Singlesignals
enario,
I
=

1-Comparativeassessment.Valuesofthe
lo
ationindex

ςwhenapplying
I
M
S
A
−
D
O
A,

S
V
R,

M
U
S
I
C,and

E
S
P
R
I
T.
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Figure 5.5: Single signal s
enario, I = 1 - Uniform (red points) and non-uniform(green triangles) angular training sets.
results, in terms of angular resolution, than those provided by the SV R and ofthe same order in magnitude of MUSIC and ESPRIT s ex
ept for wider angles(θ ≥ 60o), even though these latter need more CPU-time (i.e., an optimized
IMSA − SVM implementation just needs few millise
onds on a PC equippedwith a 3.0GHz pro
essor and 2GHz of RAM). As regards to the growing of thelo
ation index around 60o, its mainly depends on the training set. As a matter offa
t, it 
an be avoided by modifying the o�-line training phase. For instan
e, the
hoi
e of a uniform angular distribution of the training samples (Fig. 5.5), in-stead of a non-uniform arrangement, allows one to obtain a behavior of ς almostinvariant to θ for medium-high elevations.In order to point out the generalization 
apabilities of the proposed approa
has well as its robustness to the model toleran
es [74℄[84℄, the e�e
t of the arrayfailure has been evaluated and the arising results 
ompared to those with 2D-unitary ESPRIT whi
h demonstrated several advantages overMUSIC and thestandard ESPRIT implementation. Towards this end, an in
reasing number ofarray elements has been swit
hed o�. Moreover, the a-priori information on thefailure of some array elements has not been exploited through the de�nition ofan ad-ho
 training set, but the same non-uniform set of input-output examples
on
erned with the unperturbed array stru
ture has been used. The results ofthe 
omparative assessment when (θ1 = 53o, φ1 = 260o) are reported in Fig. 5.6.70
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Figure 5.6: Single signal s
enario, I = 1 - Behavior of the lo
ation index versusthe number of failed array elements.5.3.2 Complex S
enarios - Performan
e AnalysisThe following experiments are aimed at assessing the e�e
tiveness of the IMSA−
SVM in dete
ting the DOAs of multiple signals.Dealing with the dete
tion of two di�erent in
iden
e points, the �rst example is
on
erned with test signals 
oming from (θ1 = 12o, φ1 = 165o) and (θ2 = 82o, φ2 = 165o),respe
tively. The probability maps estimated by the IMSA−SVM at di�erentsteps are shown in Fig. 7 together with those obtained with the single-step SVM
lassi�
ation pro
edure [Fig. 5.8(d)℄, the MLP -based approa
h [Fig. 5.8(e)℄,and the RBF te
hnique [Fig. 5.8(f )℄. As expe
ted and 
on�rming the out
omesfrom the study of the single-signal dete
tion, the multi-s
aling pro
ess allowsone to signi�
antly enhan
e the performan
es of the single-step 
lassi�
ation ap-proa
hes as pi
torially shown in Fig. 5.7 and quantitatively 
on�rmed by theindexes in Tab. 5.3. Moreover, it is worth noting that this 
on
lusion is not lim-ited to a parti
ular 
on�guration of in
iden
e angles, but it holds true whateverthe two-signals s
enario under test.In order to assess the stability of the proposed approa
h, a test set 
omposedby T (test)

2 = 100 examples has been 
onsidered. The results obtained with the
IMSA − SVM are summarized in Tab. 5.1 (se
ond blo
k). As expe
ted, themean values of the averaged performan
e indexes (ς̂I ,

∑I
i=1 ς

(i) and ψ̂I ,∑I

i=1 ψ
(i)) turn out to be very 
lose to those of the previous test example [i.e.,

avg (ς̂2) = 4.51, avg (ψ̂2

)
= 0.28 versus ς(Sopt)

1 = 4.55, ψ(Sopt)
1 = 0.23 and ς(Sopt)

2 =

3.90, ψ(Sopt)
2 = 0.25℄.The se
ond numeri
al experiment, 
on
erned with multiple in
iden
es, 
onsiders71



5.3. NUMERICAL SIMULATIONS AND RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

Q
(θ

,φ
)

0

30

60

90

120

150

180

210

240

270

300

330

0

30

60

90

I

I

1

2
(1)

1D

(a)
 0

 0.2

 0.4

 0.6

 0.8

 1

Q
(θ

,φ
)

0

30

60

90

120

150

180

210

240

270

300

330

0

30

60

90

I

I

1

2 (2)

1D

(2)

2D(b)
 0

 0.2

 0.4

 0.6

 0.8

 1

Q
(θ

,φ
)

0

30

60

90

120

150

180

210

240

270

300

330

0

30

60

90

I

I

1

2 (3)

1D

(3)

2D (
)Figure 5.7: Multiple signals s
enario, I = 2 - Probability maps obtained withdi�erent 
lassi�
ation approa
hes: IMSA − SVM [(a) s = 1, (b) s = 2, (
)
s = Sopt = 3℄, [∆θ = ∆θ

(3)
(2) = 2.5o and ∆φ = ∆φ
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(2) = 10o℄.72
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5.3. NUMERICAL SIMULATIONS AND RESULTS
Method DOA Indexes

ς1 ψ1 ς2 ψ2

IMSA− SVM
s = 1 8.91 2.33 10.27 3.08
s = 2 5.90 0.54 8.46 0.82

s = Sopt = 3 4.55 0.23 3.90 0.25
Bare SVM 6.04 0.67 16.78 3.78

MLP 17.54 0.27 30.53 2.21
RBF 17.19 0.28 27.77 0.99Table 5.3: Multiple signals s
enario, I = 2. Performan
e indexes when applying

IMSA−DOA, single-step SVM , multi layer per
eptron (MLP ) neural network,and radial basis fun
tion (RBF ) neural network.three-signals 
on�gurations. As regards to the results for a test set of T (test)
3 = 50three-signals examples, the values in the third blo
k of Tab. 5.1 indi
ate that theresolution a

ura
y of the proposed approa
h does not signi�
antly redu
e withrespe
t to the single-signal or two-signals s
enarios [avg (ς̂3) = 5.55, avg (ψ̂3

)
=

0.15 vs. avg (ς̂2) = 4.51, avg (ψ̂2

)
= 0.28 and ς̂1 = 2.81, ψ̂1 = 0.25℄. As anillustrative example, let us 
onsider the 
ase of a set of signals impinging onthe array from (θ1 = 8o, φ1 = 85o), (θ2 = 68o, φ2 = 95o), (θ3 = 55o, φ3 = 290o).Starting from the 
oarse map determined, three di�erent ARoIs are su

essivelyidenti�ed [Fig. 5.9(a)℄ and better resolved thus iteratively improving the DOAresolution a

ura
y as pointed out by the indexes in Tab. 5.4 where the valuesestimated by the other 
lassi�
ation approa
hes are reported [Fig. 5.9(b)℄, aswell. By 
omparing the distribution at the Sopt-th step of the IMSA and theone from the bare SVM , it is evident the improvement guaranteed by the multi-s
aling pro
ess both in resolving and properly lo
ating a number of ARoIs equalto the number of signals (I).In the third experiment, I = 4 (I = Imax) signals impinge on the planar array.Figure 5.10 shows the results provided by the IMSA− SVM and in 
orrespon-den
e with a set of representative examples. More in detail, the �rst example(Con�guration 1/1/1/1) refers to a 
on�guration where four separated signals 
anbe re
ognized [(θ1 = 35o, φ1 = 35o), (θ2 = 20o, φ2 = 115o), (θ3 = 70o, φ3 = 135o),

(θ4 = 80o, φ4 = 260o) - Figs. 5.10(a)-5.10(
)℄. The se
ond example [Fig. 5.11(d)℄deals with a two-
lusters setup [Con�guration 2/2 - (θ1 = 15o, φ1 = 75o), (θ2 = 25o, φ2 = 120o),
(θ3 = 75o, φ3 = 270o), (θ4 = 65o, φ4 = 300o)℄, while a single signal and a 
lusterof three-signals are present in the last example [Con�guration 1/3 - (θ1 = 15o, φ1 = 105o),
(θ2 = 80o, φ2 = 275o), (θ3 = 85o, φ3 = 300o), (θ4 = 75o, φ4 = 315o)℄. Whateverthe example, the multi-s
aling pro
ess is able to identify with an ever in
reasingresolution from s = 1 [Fig. 5.10(a)℄ up to s = Sopt = 3 [Fig. 5.10(
)℄ the ARoIs74
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DOA Indexes

Method ς1 ψ1 ς2 ψ2 ς3 ψ3

IMSA− SVM
s = 1 5.50 0.2 5.59 1.43 4.61 1.56
s = 2 4.15 0.06 5.42 0.74 4.43 0.55

s = Sopt = 3 4.24 0.009 5.19 0.33 3.10 0.14
Bare SVM 10.11 0.35 4.34 1.44 16.52 1.55

MLP 2.45 0.6 21.77 1.09 22.82 2.36
RBF 28.31 1.35 37.34 0.49 29.57 0.67Table 5.4: Multiple signals s
enario, I = 3 (Con�guration 1/1/1). Performan
eindexes when applying IMSA−DOA, single-step SVM , multi layer per
eptron(MLP ) neural network, and radial basis fun
tion (RBF ) neural network.

Method DOA Indexes

ς1 ψ1 ς2 ψ2 ς3 ψ3 ς4 ψ4

IMSA− SVM
s = 1 6.84 0.40 24.37 0.40 23.31 1.48 25.47 1.56
s = 2 5.85 0.31 28.01 0.31 16.96 0.91 8.08 0.68

s = Sopt = 3 3.44 0.16 29.33 0.16 12.31 0.21 7.42 0.24

Bare SVM 8.37 2.89 24.71 2.89 26.52 2.89 25.68 2.89

MLP 38.98 0.52 8.91 0.52 35.34 1.82 17.46 1.69

RBF 15.19 0.32 18.69 0.32 40.65 1.81 22.01 0.91Table 5.5: Multiple signals s
enario, I = 4 (Con�guration 1/1/1/1). Perfor-man
e indexes when applying IMSA − DOA, single-step SVM , multi layerper
eptron (MLP ) neural network, and radial basis fun
tion (RBF ) neural net-work.
75
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enario, I = 3 (Con�guration 1/1/1) - Probabilitymaps obtained with di�erent 
lassi�
ation approa
hes: (a) IMSA− SVM [s =
Sopt = 3℄ and (b) single-step SVM [∆θ = ∆θ
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CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATION
Method DOA Indexes

ς1 ψ1 ς2 ψ2 ς3 ψ3 ς4 ψ4

IMSA− SVM
s = 1 15.50 0.89 11.51 0.89 45.50 2.98 57.71 2.98
s = 2 12.78 0.39 10.65 0.39 10.80 0.72 24.12 0.72

s = Sopt = 3 12.91 0.16 10.55 0.16 4.71 0.26 17.01 0.26

Bare SVM 15.46 0.91 11.64 0.91 46.53 3.17 58.66 3.17

MLP 9.35 0.29 8.66 0.29 13.75 1.75 27.43 1.75

RBF 8.06 0.26 8.77 0.26 14.84 0.57 9.50 0.57Table 5.6: Multiple signals s
enario, I = 4 (Con�guration 2/2). Performan
eindexes when applying IMSA−DOA, single-step SVM , multi layer per
eptron(MLP ) neural network, and radial basis fun
tion (RBF ) neural network.to whi
h the in
iden
e dire
tions of the a
tual signals belong as pointed out bythe numeri
al indexes ψ(i), i = 1, ..., I in Tab. 5.5. On the other hand, it shouldbe noti
ed that the DOA estimation pro
ess tends to 
luster multiple regions-of-in
iden
e in a single ARoI when the angular separations among the signalsredu
e. Su
h an event takes pla
e also in 
orresponden
e with the �Con�gura-tion 2/2� [Fig. 5.11(d) - Tab. 5.6℄ where two ARoIs are identi�ed. It is evenmore evident in Fig. 5.11(e) (Tab. 5.7) where the angular in
iden
es of threesignals are dete
ted in only one ARoI. The �
lustering� e�e
t is quantitativelypointed out by the behavior of the averaged lo
alization index (Tab. 5.1 - fourthblo
k) when dealing with the 
omplete test set (T (test)
4 = 50) to whi
h previousexamples belong. As a matter of fa
t, there is a signi�
ant in
rease of the avg (ς̂)
ompared to the values of the same quantity when I = 1, 2, 3 [avg (ς̂4) = 17.29vs. avg (ς̂1) = 2.81, avg (ς̂2) = 4.51, avg (ς̂3) = 5.55℄, even though the value of

avg
(
ψ̂
) remains 
lose to those of other multiple-signals 
on�gurations sin
e theestimated ARoIs still 
arefully identify the a
tual in
iden
e areas.The fourth and �fth experiments deal with more 
riti
al test s
enarios sin
e theexamples under test are 
on
erned with a number of signals di�erent from thatin the training set (i.e., I 6= 1, 2, 3, 4). More spe
i�
ally, let us 
onsider theClustered Distribution of I = 18 signals with in
iden
e dire
tions indi
ated bythe white points in Fig. 5.12. It is worth noti
ing that su
h a 
on�gurationturns out to be not admissible (i.e., I = 18 estimates 
annot be obtained) forsignal subspa
e-based array pro
essing te
hniques as 2D-unitary ESPRIT whenthe planar array stru
ture at hand is used. As a matter of fa
t, the maximumnumber of sour
es 2D-unitary ESPRIT 
an handle is equal to [67℄

I2DESPRIT
max = min {U × (V − 1) ; V × (U − 1)} (5.16)being M = U × V . On the other hand, it should be 
onsidered that an high77



5.3. NUMERICAL SIMULATIONS AND RESULTS

 0

 0.2

 0.4

 0.6

 0.8

 1

Q
(θ

,φ
)

0

30

60

90

120

150

180

210

240

270

300

330

0

30

60

90

II

I

I

12

3

4

(a)
 0

 0.2

 0.4

 0.6

 0.8

 1

Q
(θ

,φ
)

0

30

60

90

120

150

180

210

240

270

300

330

0

30

60

90

I
I

I

I

2

3

1

4(b)
 0

 0.2

 0.4

 0.6

 0.8

 1

Q
(θ

,φ
)

0

30

60

90

120

150

180

210

240

270

300

330

0

30

60

90

II

I

I

12

4

3

(
)Figure 5.10: Multiple signals s
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5.3. NUMERICAL SIMULATIONS AND RESULTS
Method DOA Indexes

ς1 ψ1 ς2 ψ2 ς3 ψ3 ς4 ψ4

IMSA− SVM
s = 1 16.98 0.88 39.13 2.81 54.57 2.81 64.78 2.81
s = 2 16.51 0.62 6.04 1.70 22.43 1.70 35.70 1.70

s = Sopt = 3 8.13 0.59 6.18 1.46 11.84 1.46 28.89 1.46

Bare SVM 17.38 0.87 39.45 2.85 54.87 2.85 65.72 2.85

MLP 11.62 0.19 27.46 1.08 11.41 1.08 8.15 1.08

RBF 6.51 0.10 16.85 0.10 3.01 0.10 20.63 0.10Table 5.7: Multiple signals s
enario, I = 4 (Con�guration 1/3). Performan
eindexes when applying IMSA−DOA, single-step SVM , multi layer per
eptron(MLP ) neural network, and radial basis fun
tion (RBF ) neural network.
Method DOA Indexes

ς̂ ψ̂
IMSA− SVM 1.20 0.21
Bare SVM 2.82 1.94

MLP 13.78 1.66
RBF 13.62 1.21Table 5.8: Multiple signals s
enario, I = 18 (Clustered Distribution). Perfor-man
e indexes when applying IMSA − DOA, single-step SVM , multi layerper
eptron (MLP ) neural network, and radial basis fun
tion (RBF ) neural net-work.dimensional array pro
essing is enabled widening the size of the planar array (i.e.,the number of array sensors) at the expense of the 
omputational 
omplexitythat, unlike SVM-based methods, exponentially grows.Figure 5.12 
ompares the �
onvergen
e� (s = Sopt = 3) map provided by the

IMSA − SVM and the ones from other single-step 
lassi�ers. As it 
an beobserved, the multi-s
aling pro
ess is still able to 
arefully estimate the ARoIto whi
h the a
tual signals belong with a degree of a

ura
y higher than thatfrom the other te
hniques both in terms of lo
alization and area extension (Tab.5.8). Similar 
on
lusions hold true when dealing with the dete
tion of the signalsdistribution displayed in Fig. 5.13, although the dete
tion of the single signal onthe bottom of the region of analysis appears to be more 
riti
al probably be
auseof the absen
e of similar spatial 
on�gurations in the training set.Finally, the last experiment is 
on
erned with a s
enario where there are notsignals that impinge on the array and the noise level has been varied from the80
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enario (I = 18 - Clustered Distribution) - Proba-bility maps obtained with di�erent 
lassi�
ation approa
hes: (a) IMSA−SV M(s = Sopt = 3), (b) single-step SVM , (
) multi layer per
eptron (MLP ) neuralnetwork, and (d) radial basis fun
tion (RBF ) neural network [∆θ = ∆θ
(3)
(2) and

∆φ = ∆φ
(3)
(2)℄.
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Figure 5.13: Multiple signals s
enario (I = 18 - Sparse Distribution) - Probabilitymaps determined by the IMSA − SVM at the 
onvergen
e (s = Sopt = 2 -
∆θ

(2)
(1) = 5o and ∆φ

(2)
(1) = 20o).referen
e value used for the SVM training [Pn = 20 dB (Test Set) vs. Pn = 0 dB(Training Set)℄ thus further 
ompli
ating the test 
ase. As a matter of fa
t,neither the free-
ase example is present in the training set nor the same noiselevel has been �learned�. Nonetheless, the SVM-based 
lassi�er did not dete
tedthe presen
e of any signal thus de�ning a uniform distribution of probability [Fig.5.14(a)℄. Otherwise, the other methods give 
olor-maps with some �artifa
ts�[see Figs. 5.14(b)-5.14(
)℄ although 
hara
terized by very small values of theprobability of signal in
iden
e.5.3.3 Dipole Array AntennaIn the last experiment, a uniform array of λ

2
-dipoles is taken into a

ount withdipoles oriented along the x axis. Therefore, the e�e
tive length [82℄ of the arrayelement turns out to be

em =
λ

π

[
cos

(
π
2
sinθcosφ

)

1− sin2θcos2φ

]
[
(cosθcosφ) θ − (sinφ)φ

] (5.17)Moreover, the inter-element distan
e has been 
hosen equal to dx = 0.65λ and
dy = 0.5λ [85℄. Then, a subset of the experiments of the previous se
tions, butwith the dipole array, has been dealt with to evaluate the appli
ability of the
IMSA− SVM approa
h to non-ideal ele
tromagneti
 s
enarios, as well.In the �rst example (I = 1), the multi-s
aling pro
edure stops after Sopt = 4iterations and the �nal result is shown in Fig. 5.15. Likewise the 
ase with82
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Figure 5.15: Dipole Array, I = 1 - Probability map determined by the IMSA−
DOA [s = Sopt = 4℄.point-like sour
es, the estimations of both the lo
ation and the in
iden
e areaimprove at ea
h iteration starting from ς(1) = 43.19 and ψ(1) = 2.48 down to
ς(Sopt) = 2.96 and ψ(Sopt) = 0.06, where ς(2) = 12.65, ς(3) = 5.41 and ψ(2) = 0.75,
ψ(3) = 0.21. In this 
ase, the performan
e are 
omparable to that in Se
t.5.3.1. Di�erent 
on
lusions arise when pro
essing the data of the two-signals
enario [Fig. 5.16(a)℄. In su
h a 
ase, only the I1 (i.e., the signal with thelowest elevation θ) is dete
ted [Fig. 5.16(a)℄. Su
h an event does not dependon the DOA dete
tion method, but from the antenna array at hand. As amatter of fa
t, the radiation pattern of the array element is omnidire
tional inthe z − y plane (i.e., φ = 90o and φ = 270o) with a θ3dB angle of almost 80odegrees [82℄. Therefore, the gain of the dipole is lower along the dire
tion withhigher θs, being φ1 = φ2 = 165o. Otherwise, when the a
tual 
on�guration isdes
ribed by a set of signals 
oming from the dire
tions (θ1 = 30o, φ1 = 60o) and
(θ2 = 30o, φ2 = 300o), the IMSA− SVM method still gives a

urate estimates[Fig. 5.16(b)℄ although with non-ideal isotropi
 re
eiving sensors.5.4 Con
lusionsFrom the analysis 
arried out within this resear
h work and summarized in this
hapter, the following 
on
lusions 
an be drawn:
• the use of a 
lassi�er based on SVM allows one to estimate the DOAprobability map in real time;
• thanks to the SVM generalization 
apability, the IMSA − SVM be-haves properly when dealing with 
omplex ele
tromagneti
 s
enarios non-84
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5.4. CONCLUSIONSne
essarily belonging to the set of training examples;
• the SVM-based approa
h is able to estimate the DOAs of a number ofsour
es greater than the maximum allowed by 
onventional eigenvalue de-
omposition methods for a �xed planar array geometry;
• unlike 2−D subspa
e-based algorithms, the 
omputational 
omplexity doesnot in
rease with the size of the re
tangular array;
• the proposed LBE te
hnique adapts to element failure or other sour
e oferrors 
oming from the toleran
es in the array stru
ture that 
ause non-negligible performan
e degradation in 
onventional estimation te
hniqueswhi
h require highly 
alibrated antennas with identi
al radiation proper-ties;
• the a-priori knowledge (deterministi
 or statisti
al) on the array 
on�g-uration and radiation pattern 
hara
teristi
s 
an be easily and usefullyexploited by de�ning suitable IMSA− SVM training sets;
• the multi-s
aling pro
edure (IMSA) provides good results dealing withboth single-signal and multiple-signals 
on�gurations with an angular res-olution 
omparable to that of other state-of-the-art DOA algorithms;
• system 
omplexity, 
lassi�er ar
hite
ture, and 
omputational 
osts signi�-
antly redu
e with respe
t to the �bare� 
lassi�
ation.
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Chapter 6Real-Time Passive Lo
alization andTra
kingAn innovative strategy for passive lo
alization of trans
eiver-free obje
ts is pre-sented. The lo
alization is yielded by pro
essing the re
eived signal strengthdata measured in an infrastru
tured environment. The problem is reformulatedin terms of an inverse sour
e one, where the probability map of the presen
eof an equivalent sour
e modeling the moving target is looked for. Towards thisend, a 
ustomized 
lassi�
ation pro
edure based on a support ve
tor ma
hineis exploited. Sele
ted, but representative, experimental results are reported toassess the feasibility of the proposed approa
h and to show the potentialities andappli
ability of this passive and unsupervised te
hnique.
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6.1. INTRODUCTION6.1 Introdu
tionIn the re
ent years, there has been a wide and rapid di�usion of wireless sensornetworks (WSNs) [86℄ thanks to the availability of su
h low-power and perva-sive devi
es integrating on-board sensing, pro
essing, and radio frequen
y (RF )
ir
uitry for information transmission. Usually, short-range 
ommuni
ations areat hand sin
e the wireless nodes are generally densely distributed and 
hara
-terized by low power 
onsumption to ensure a long lifetime. Therefore, WSNshave been also pro�tably used for lo
ation and tra
king purposes. In su
h aframework, the main e�orts have been devoted to develop ad-ho
 systems basedon dedi
ated transponders/sensors [87℄ or assuming an �a
tive� target equippedwith a transmitting devi
e [88℄[89℄. Di�erent properties of the re
eived signal,su
h as the time of arrival (TOA) and the dire
tion of arrival (DOA), have beensu

essfully exploited to address the lo
alization problem [90℄[91℄. Other modal-ities to lo
ate a
tive targets are based on the evaluation of the re
eived signalstrength (RSS) [92℄[93℄[94℄[95℄. This is an easily measurable quantity that hasbeen also used to lo
alize the wireless nodes of the network through e�e
tivetriangulation strategies [93℄. Moreover, the distan
e between nodes has beenestimated thanks to simpli�ed radio propagation models. Although easier thana �passive� lo
alization te
hnique, the main drawba
k of these approa
hes is theneed of the target to be equipped with an ad-ho
 devi
e. Whether su
h a fa
t
an be 
onsidered negligible when tra
king either obje
ts or animals (althoughthe 
osts unavoidably in
rease), other problems arise when dealing with people(e.g., priva
y) and espe
ially with non-
ooperative subje
ts as for elderly people.Moreover, su
h wearable devi
es 
an undergo (
asual or voluntary) damages thuslimiting the reliability of the tra
king system.Other strategies 
on
erned with trans
eiver-free targets have been also presentedin the s
ienti�
 literature. State-of-the-art approa
hes are based on Dopplerradar systems able to estimate the distan
e between the target and the sensor[96℄. As a matter of fa
t, moving targets 
an be tra
ked through the analysisof the Doppler signature indu
ed by the obje
t motion [97℄. Unfortunately, thearising performan
e in real environments 
an be strongly in�uen
ed by non-negligible instabilities leading to several false alarms. Furthermore, slow-movingtargets [98℄ are not generally dete
ted.This paper is aimed at presenting an inversion pro
edure, preliminary validatedin [99℄, for the lo
alization and tra
king of passive obje
ts starting from themeasurements of the RSS indexes available at the nodes of a WSN . Sin
e thetransmission of information among the wireless nodes is allowed by RF signals,the arising ele
tromagneti
 radiations 
an be also pro�tably exploited to sensethe surrounding environment. Indeed, any target lying within the environmentintera
ts with the ele
tromagneti
 waves radiated by the nodes. Therefore, themeasurements of the perturbation e�e
ts on the other re
eiving nodes is dealtwith a suitable inversion strategy to determine the equivalent sour
e model-88
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(a)

(b)Figure 6.1: Equivalent Tra
king Problem - Sket
h of (a) the tra
king s
enarioand (b) the equivalent inverse problem.
ing the presen
e of the target/s
atterer generating the perturbation itself. Byvirtue of the fa
t that the number of nodes in a WSN 
an vary and the needto have a simple and �exible tra
king/lo
alization method allowing real-timeestimates, a learning-by-examples (LBE) strategy based on a Support Ve
torMa
hine (SVM) is used.The outline of the 
hapter is as follows. The mathemati
al issues 
on
ernedwith the proposed approa
h are detailed in Se
t. 6.2 where the SVM-basedmethod is des
ribed, as well. In Se
t. 6.3, representative results from a wideset of experiments dealing with the tra
king of single as well as multiple targetsin both outdoor and indoor WSN deployments are shown. Eventually, some
on
lusions are drawn (Se
t. 6.4). 89



6.2. MATHEMATICAL FORMULATION6.2 Mathemati
al FormulationLet us 
onsider the two-dimensional (2D) s
enario shown in Fig. 6.1(a). Theinvestigation domain D is inhomogeneous and 
onstituted by a set of obsta
lesand moving targets to be lo
alized/tra
ked all lying in free-spa
e. The knownhost s
enario (i.e., the target-free domain) is des
ribed by the obje
t fun
tion
τh (r) = εh (r)− 1 − j σh(r)

ωε0
where ω is the working angular frequen
y, r = (x, y)is the position ve
tor, εh and σh being the diele
tri
 permittivity and the 
on-du
tivity, respe
tively. Moreover, the target/s is/are identi�ed by the diele
tri
distribution τo (r), r ∈ Do. The area under test is infrastru
tured with a WSNand S nodes are deployed at rs, s = 1, ..., S spatial lo
ations. The s-th wirelessnode radiates an ele
tromagneti
 signal, ξincs (r) (1)1, and the �eld measured bythe other S− 1 nodes and arising from the intera
tions of the in
ident �eld withthe s
enario under test is given by

ξtots (rm) = ξincs (rm) +

∫

D

J (r′)G0 (r
′, rm) dr

′ (6.1)where G0 is the free-spa
e Green's fun
tion [100℄ and rm is the position of the
m-th (m = 1, ..., S − 1) re
eiving node. As a matter of fa
t, the �eld indu
ed in
D is equivalent to that radiated in free-spa
e by an equivalent 
urrent density
J (r) [101℄ modeling the presen
e of whatever dis
ontinuity of the free-spa
e (i.e.,both the obsta
les and the moving targets)

J (r) = τ (r) ξtot (r) , r ∈ D (6.2)where τ (r) = τo (r) if r ∈ Do and τ (r) = τh (r) if r ∈ Dh = D −Do, Do and Dhbeing the support of the targets and its 
omplementary area.Equation (6.1) 
an be reformulated in a di�erent fashion by de�ning a di�erentialequivalent 
urrent density Ĵ (r) radiating in the inhomogeneous host medium[100℄ [Fig. 6.1(b)℄. The radiated �eld 
an be then expressed as follows
ξtots (rm) = ξincs (rm) +

∫

D

τh (r
′) ξtots,u (r

′)G0 (r
′, rm) dr

′ +
∫

D0

Ĵ (r′)G1 (r
′, rm) dr

′ (6.3)where Ĵ (r) = τ̂ (r) ξtots,p (r) and τ̂ (r) = τ (r) − τh (r) is the di�erential obje
tfun
tion. In (6.3), the se
ond term on the right side is the �eld s
attered fromthe host medium without targets, ξtots,u being the ele
tri
 �eld related to ξincs in
orresponden
e with the target-free s
enario. Moreover, G1 is the inhomoge-neous Green's fun
tion for the target-free 
on�guration [100℄, whi
h satis�es the1 (1) The s
alar 
ase has been 
onsidered to simplify the notation. However, the extensionto the ve
torial 
ase is straightforward. 90



CHAPTER 6. REAL-TIME PASSIVE LOCALIZATION AND TRACKINGfollowing integral equation
G1 (r, r

′) = G0 (r, r
′) +

∫

D

τh (r
′)G0 (r, r”)G1 (r”, r

′) dr”. (6.4)Sin
e the host medium is a-priori known, Equation (6.3) 
an be rewritten as
ξtots (rm) = ξ̂incs (rm) +

∫

Do

Ĵ (r′)G1 (r
′, rm) dr

′ (6.5)where ξ̂incs (rm) is the �eld of the s
enario without targets and equivalent to an�in
ident� �eld on the targets.With the knowledge of G1 (i.e., the knowledge of the target-free s
enario) the s
at-tering problem turns out to be the retrieval of the di�erential sour
e Ĵ o

upyingthe target domain Do. The dete
tion of the target position and the de�nition ofthe target traje
tory in D 
an be then formulated as the de�nition of the sup-port of the di�erential equivalent sour
e, whi
h satis�es the inverse s
atteringequation (6.5), starting from the measurements of ξtot (rm), m = 1, ..., S − 1.This is possible in a WSN-infrastru
tured environment sin
e the nodes at handare simple and 
heap devi
es that give an indire
t estimate of the �eld valuethrough the RSS index. A

ordingly, the RSS is measured at the m-th nodewhen the s-th node is transmitting by 
onsidering both the target-free s
enario[ξincs (rm) knowledge℄ and the presen
e of targets within D [ξtots (rm) knowledge℄and the di�erential �eld ξsctm,s = ξtots (rm)−ξ̂
inc
s (rm) 
ould be used for the inversionpro
edure.However, it is worth to take into a

ount that the power radiated by the WSNnodes 
an vary due to several fa
tors (e.g., battery level of the WNS nodes,environmental 
onditions) thus �blurring� the data a
quisition and, 
onsequently,
ompli
ating the solution of the inverse problem at hand. To over
ome thisdrawba
k, the inversion is statisti
ally re
ast as the de�nition of the probabilitythat a target is lo
ated in a position of D starting from the knowledge of ξsctm,s,

s = 1, ..., S, m = 1, ..., S, m 6= s. The arising 
lassi�
ation problem is then solvedby means of a suitable SVM-based approa
h. More spe
i�
ally, the region Dwhere the targets are looked for is partitioned into a grid of C 
ells 
entered at rc,
c = 1, ..., C. Ea
h c-th 
ell is 
hara
terized by its state, χc, whi
h 
an be eitherempty (χc = −1) or o

upied (χc = 1) whether a target (i.e., the 
orrespondingdi�erential equivalent sour
e) is present or absent. Moreover, the probabilitythat a target belongs to the c-th 
ell, αc = Pr {χc = 1| (Γ, c)}, is given by

αc =
1

1 + exp
{
pH

[
ϕ (Γ, c)

]
+ q

} , c = 1, ..., C (6.6)where Γ =
{
ξsctm,s; s = 1, ..., S; m = 1, ..., S; m 6= n

}, and p, q are unknown pa-rameters to be determined [6℄. In (6.6), the fun
tion ϕ (·) is a non-linear mappingfrom the data of the original input spa
e, Γ, to a higher dimensional spa
e (
alledfeature spa
e) where the data are more easily separable through a simpler fun
-tion (i.e., the hyperplane H). 91



6.3. EXPERIMENTAL VALIDATIONThe hyperplane H is o�-line de�ned throughout the training phase by exploitingthe knowledge of a set of T known examples where both the input data (Γ,
t = 1, ..., T ) and the 
orresponding maps (χ

t
= {χc,t; c = 1, ..., C}, t = 1, ..., T )are available. Usually, a linear de
ision fun
tion is adopted

H
[
ϕ (Γ, c)

]
= w · ϕ (Γ, c) + b, c = 1, ..., C (6.7)

w and b being an unknown normal ve
tor and a bias 
oe�
ient, respe
tively.Thede
ision fun
tion parameters unequivo
ally de�ne the de
ision plane and are
omputed in the training phase by minimizing the following 
ost fun
tion
Ψ (w) =

‖w‖2

2
+

λ
∑T

t=1 C
(t)
+

T∑

t=1

C
(t)
+∑

i=1

η
(t)
c+ +

λ
∑T

t=1C
(t)
−

T∑

t=1

C
(t)
−∑

f=1

η
(t)
c− (6.8)subje
t to the separability 
onstraints

w · ϕ (Γ, c) + b ≥ 1− η
(t)
c+, c = 1, ..., C

w · ϕ (Γ, c) + b ≤ η
(t)
c− − 1, c = 1, ..., C

(6.9)where λ is a user-de�ned hyperparameter [102℄ that 
ontrols the trade-o� betweenthe training error and the model 
omplexity to avoid over�tting. Moreover, η(t)c+and η
(t)
c− are the so-
alled sla
k variables related to the mis
lassi�ed patterns.They are introdu
ed be
ause the training data are usually not 
ompletely sepa-rable in the feature spa
e by means of a linear hyperplane.The minimization of (6.8) is performed following the guidelines detailed in [38℄and also exploiting the so-
alled kernel tri
k method [6℄.6.3 Experimental ValidationThe feasibility and the e�e
tiveness of the proposed approa
h have been as-sessed through an extensive experimental validation 
arried out in both indoorand outdoor s
enarios (Fig. 6.2). The nodes have been pla
ed at �xed positions

rs = (xs, ys), s = 1, ..., S, on the perimeter of the investigation area D. In allexperiments, S = 6 Tmote Sky nodes have been used and the region D has beenassumed having the same size (−20λ ≤ x ≤ 20λ and −12λ ≤ y ≤ 12λ) whateverthe s
enario at hand, λ being the free-spa
e wavelength of the wireless signalstransmitted by the nodes (e.g., f = 2.4GHz). Although the same topology hasbeen adopted for outdoor as well as indoor situations, two di�erent trainings ofthe SVM-based approa
h have been performed sin
e the arising ele
tromagneti
phenomena signi�
antly di�er (e.g., the ele
tromagneti
 interferen
es). Other-wise, the 
alibration of training examples (T ), the separation hyperplane H (λ),and the dis
retization of the investigation area (C) has been performed onlyon
e, namely for the outdoor 
ase, sin
e the format of the data pro
essed by the
SVM does not 
hange. More in detail, the following setup has been 
onsidered:92
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j , yact
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(b)Figure 6.2: Problem Geometry - Plots of (a) the outdoor and (b) the indoorenvironments with WSN-based tra
king system.
93



6.3. EXPERIMENTAL VALIDATION
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Figure 6.3: Calibration - Lo
alization error as a fun
tion of the SVM 
ontrolparameters: T (λ = 100, C = 60), λ (T = 500, C = 60), and C (T = 500,
λ = 100).
T ∈ [100, 700] with step ∆T = 100, λ = 10i, i = {0, 1, 2, 3}, and C ∈ [15, 960]from a rough dis
retization with C = 5 × 3 
ells of dimension 4λ × 4λ to the�nest one having C = 40× 24 
ells of dimension λ× λ. These values have been
alibrated with referen
e to single-target experiments by evaluating the behaviorof the lo
alization error de�ned as

ρ =

√(
xactj − x

est
j

)2
+
(
yactj − y

est
j

)2

ρmax

(6.10)where ractj =
(
xactj , yactj

) and restj =
(
xestj , yestj

) are the a
tual and estimatedpositions of the target, ρmax being the maximum admissible lo
ation error. Asfor the test 
ase at hand, it turns out that ρmax =
√
X2

D + Y 2
D and restj has been
al
ulated from the probability map a

ording to the following relationships

xestj =

∑C
c=1 αcxc∑C
c=1 αc

yestj =

∑C
c=1 αcyc∑C

c=1 αc

. (6.11)Figure 6.3 gives the normalized values of the lo
ation indexes obtained for dif-ferent 
ombinations of the 
ontrol parameters. Ea
h plot refers to the variationof a 
ontrol parameter keeping 
onstant the others (T opt = 500, λopt = 100,
Copt = 60). 94
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(b)Figure 6.4: Single target lo
alization - Outdoor S
enario - Probability maps ofthe investigation region D obtained when the test data (a) belongs and (b) doesnot belong to the training data set.
As far as the SVM training phase is 
on
erned, the referen
e measurements havebeen �rst 
olle
ted in the target-free s
enarios [i.e., τ̂ (r) = 0⇒ ξsctm,s = 0, m, s =
1, ..., S, m 6= s℄. Su

essively, the sets of RSS measurements [i.e., RSSm,s (t),
m, s = 1, ..., S, m 6= s, t = 1, ..., T ℄ have been 
olle
ted with the target lo
atedat T di�erent positions, rj = (xj , yj), j = 1, .., T , randomly sele
ted within D to
over as uniformly as possible the whole area under test.As regards the SVM test step, both single (J = 1) and multiple (J = 2) targettra
king problems have been 
onsidered.95
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Pr {χ=+1 | Γ	}(b)Figure 6.5: Single target lo
alization - Indoor S
enario - Probability maps of theinvestigation region D obtained when the test data (a) belongs and (b) does notbelong to the training data set.6.3.1 Single target tra
kingThe �rst experiment deals with the outdoor tra
king of a single human beingmoving insideD. Figure 6.4 shows the probability map estimated when the targetis at ract1 = (−16λ, 8λ). The 
ir
le gives the a
tual position. Two di�erent 
aseshave been 
onsidered. More spe
i�
ally, Figure 6.4(a) shows the probability mapassuming that the same experiment has been taken into a

ount in the trainingphase. Di�erently, the map in Fig. 6.4(b) has been obtained the example notbelonging to the training data set. It is worth noting that the target is 
orre
tlylo
alized in both maps sin
e the 
enter of the target lies within the region withhigher probability. The same experiment has been su

essively 
onsidered for theindoor s
enario. The results of the SVM-based lo
alization pro
ess are shown in96
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EstimatedFigure 6.6: Single target tra
king - Outdoor S
enario - A
tual and estimatedtraje
tories.Fig. 6.5. As for the previous test, the results when the same example has beeneither 
onsidered [Fig. 6.5(a)℄ or not [Fig. 6.5(b)℄ in the training phase have beenreported. As expe
ted, the values of the lo
alization errors in
rease whatever thetraining be
ause of the 
omplexity of the ele
tromagneti
 intera
tions arisingfrom the presen
e of the walls (i.e., multiple re�e
tions) in indoor environments.Nevertheless, the region with high probability still 
ontains the a
tual positionof the target thus demonstrating a good degree of reliability of the approa
h alsoin this 
ase.Let us now 
onsider a single target moving outdoor inside D along the straightline shown in Fig. 6.6. The RSS values have been measured at 6 di�erent timeinstants, but it is worth to point out that the a
quisition time 
an be furthershortened to rea
h an almost real-time tra
king. The samples of the lo
alizationmaps and the estimated path are reported in Fig. 6.7 and Fig. 6.6, respe
tively.As it 
an be observed, there is a good mat
hing between the a
tual path and theestimated one assessing the e�e
tiveness of the approa
h in real-time pro
essing,as well. The same analysis has been 
arried out for the indoor 
ase. Althoughthe moving target is quite 
arefully lo
alized, the result in Figure 6.8 and thelo
ation indexes in Tab. 6.1 
on�rm the higher 
omplexity of tra
king the targetas 
ompared to the outdoor 
ase.6.3.2 Multiple target tra
kingIn order to deal with the tra
king of multiple targets, the SVM 
lassi�er has beentrained with a mixed data-set 
ontaining examples with one (T1 examples with97



6.3. EXPERIMENTAL VALIDATION
−20 20

12

0.0 1.0

−
12

x/λ

y/λ

Pr {χ=+1 | Γ	}

−20 20

12
0.0 1.0

−
12

x/λ

y/λ
Pr {χ=+1 | Γ	}(a) (b)

−20 20

12

0.0 1.0

−
12

x/λ

y/λ

Pr {χ=+1 | Γ	}

−20 20

12

0.0 1.0

−
12

x/λ

y/λ

Pr {χ=+1 | Γ	}(
) (d)
−20 20

12

0.0 1.0

−
12

x/λ

y/λ

Pr {χ=+1 | Γ	}

−20 20

12

0.0 1.0

−
12

x/λ

y/λ

Pr {χ=+1 | Γ	}(e) (f)Figure 6.7: Single target tra
king - Outdoor S
enario - S
reenshots of the prob-ability map of the investigation region D a
quired during the target motion.
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Outdoor Indoor

T ime Instant ρ ρ× ρmax [λ] ρ ρ× ρmax [λ]

1 0.071 3.32 0.209 9.76
2 0.070 3.30 0.131 6.09
3 0.060 2.78 0.115 5.38
4 0.057 2.67 0.048 2.23
5 0.045 2.09 0.089 4.15
6 0.074 3.46 0.140 6.53

AverageError : ρ 0.063 2.94 0.122 5.69Table 6.1: Single target tra
king - Lo
alization errors for the outdoor and theindoor s
enarios.
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Figure 6.8: Single target tra
king - Indoor S
enario - A
tual and estimated tra-je
tories.
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Single Target Multiple Target

j = 1 j = 1 j = 2

ρ ρ× ρmax [λ] ρ ρ× ρmax [λ] ρ ρ× ρmax [λ]

(a) 0.044 2.07 0.217 10.12 0.158 7.37
(b) 0.059 2.77 0.196 9.14 0.135 6.31
(c) 0.093 4.34 0.151 7.02 0.074 3.44
(d) 0.150 6.98 0.149 6.96 0.062 2.91
(e) 0.262 12.23 0.063 2.93 0.106 4.94
(f) 0.357 16.67 0.031 1.46 0.063 2.93Table 6.2: Multiple target lo
alization - Outdoor S
enario - Lo
alization errorsfor the single and multiple target 
ase.

J = 1) and two (T2 examples with J = 2) targets. Sin
e T = T1 + T2 exampleshave been used also for the single-target training, some experiments have been
arried out to analyze the dependen
e of the lo
alization on the per
entage oftraining samples from T1 and T2. The probability maps in Fig. 6.9 show that theposition of one target 
an be 
orre
tly lo
ated although a smaller set of single-target examples has been used for the training phase (i.e., T1 < T2). Vi
e versa,a larger number of example is needed for an e�e
tive lo
alization of the twotargets as pointed out by the maps in Fig. 6.10 and quanti�ed by the lo
ationindexes in Tab. 6.2. Su
h a behavior was expe
ted sin
e the number of di�erent
ombinations with two targets is higher if 
ompared to the single-target 
ase.Therefore, T1 = 150 and T2 = 350 examples have been su

essively used for thetraining phase of the following tra
king experiments.As representative examples, two di�erent situations with J = 2 have been dealtwith. In the former, one target (j = 1) is moving withinD while the other (j = 2)remains immobile in the same position. Instead, both targets are moving in these
ond example. The a
tual traje
tory and the estimated one are shown in Fig.6.11 and Fig. 6.12, respe
tively. Whatever the example at hand, a quite 
arefulindi
ation on the position and path followed by the targets has been obtainedas further 
on�rmed by the average values of the lo
alization errors (outdoor:
ρ1 = 0.070, ρ2 = 0.061 - indoor: ρ1 = 0.101, ρ2 = 0.070).6.4 Dis
ussionsThe lo
alization and tra
king of passive targets have been addressed by exploit-ing the RSS values available at the nodes of a WSN . The problem at hand hasbeen reformulated into an inverse sour
e one aimed at re
onstru
ting the supportof an equivalent sour
e generating a perturbation of the wireless links among the
WSN nodes equal to that due to the presen
e of targets within the monitored100
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alization - Outdoor S
enario (T1 ∈ [0, 500], T2 ∈
[0, 500], λ = 100, C = 60) - Probability maps of the investigation region D whenusing (a) 100%T1 and 0%T2, (b) 80%T1 and 20%T2, (
) 60%T1 and 40%T2, (d)
40%T1 and 60%T2, (e) 20%T1 and 80%T2, and (f ) 0%T1 and 100%T2 of samplesin the training phase.
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alization - Outdoor S
enario (T1 ∈ [0, 500], T2 ∈
[0, 500], λ = 100, C = 60) - Probability maps of the investigation region D whenusing (a) 100%T1 and 0%T2, (b) 80%T1 and 20%T2, (
) 60%T1 and 40%T2, (d)
40%T1 and 60%T2, (e) 20%T1 and 80%T2, and (f ) 0%T1 and 100%T2 of samplesin the training phase.
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Figure 6.11: Multiple targets tra
king - Outdoor S
enario - A
tual and estimatedtraje
tories.
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6.4. DISCUSSIONSarea. The inversion has been fa
ed with a learning-by-examples approa
h basedon a SVM 
lassi�er devoted to determine a map of the a-posteriori probabilitythat a di�erential equivalent sour
e is present within the investigation domain.Experimental results have assessed the e�e
tiveness and reliability of the pro-posed approa
h in dealing with the tra
king of single and multiple human beingsboth in indoor and outdoor environments.
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Chapter 7Con
lusions and FutureDevelopmentsIn this last se
tion, some 
on
lusions are drawn and further advan
es are envis-aged in order to address the possible developments of the proposed te
hnique.
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In this thesis, a 
lassi�
ation approa
h for real-time solution of 
omplex ele
-tromagneti
 problems has been proposed. A suitable SVM-based strategy hasbeen developed for determining the probability of presen
e and the position oftargets starting from the de�nition of a �risk map� of the 
onsidered domain.The e�e
tiveness of the approa
h has been assessed by 
onsidering di�erent ap-pli
ation �elds, starting from the buried obje
t dete
tion (Chapter 3) up to thepassive tra
king of targets moving throughout the monitored area (Chapter 6).The obtained results 
on�rmed the generalization 
apabilities of the method indete
ting and lo
ating multiple targets as well as in estimating the presen
e andthe dire
tion of arrival of interferen
es (Chapter 5).Con
erning the methodologi
al novelties of this work, the main 
ontribution is
on
erned with the following issues:
• the integration of a SVM-based 
lassi�er with an iterative multi-s
alingpro
edure to improve resolution a

ura
y;
• the reliability in dealing with real experiments and three-dimensional s
e-narios;
• the �exibility in the solution of time-varying s
enarios as for the onlinetra
king of moving targets;Future works, 
urrent under development, will be devoted to fully exploit thekey-features of the approa
h as well as to in
rease autonomy by enabling thesystem to adapt to 
hanging 
ir
umstan
es. In su
h a framework, the possibilityto move in an autononomi
 
ontext requires that the proposed approa
h will beable to adjust itself to allow high �exibility to dynami
 and unexpe
ted situa-tions. In
remental learning strategies will be investigated as an on-line methodto 
onstru
t the solution re
ursively.
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