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Abstract

In the framework of the electromagnetic approaches based on learning-by-example
(LBE) techniques, this thesis focuses on the development of a strategy for the so-
lution of complex problems by means of support vector machine (SVM). The
proposed instance-based classification method compared to more traditional opti-
mization techniques solves the arising quadratic optimization problem with con-
straints in a simple and reliable way leveraging on the Statistical Learning Theory
which permits the design of optimal classifiers with a solid theoretical framework.
A set of input/output relations representing the training dataset permits to avoid
the a-priori knowledge about the system. By exploiting the generalization capabil-
ities, the robustness against noise and the real-time performance, this technique
has been proven to be suitable for more than one real-world application. The
investigated problems are addressed by integrating the measured electromagnetic
field with a suitably defined classifier that is aimed at defining a real-time recon-
struction of the observed domain. For each application field a set of numerical
results have been reported in order to assess the effectiveness and flexibility of the
proposed approach. The real-time capabilities as well as the feasibility when deal-
ing with real data have been also verified by means of an experimental setup for
the passive tracking of non-cooperative targets moving throughout the investigated
area.
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Learning by example (LBE), support vector machine (SVM), buried object de-
tection, breast cancer imaging, direction of arrival (DOA) estimation, passive
localization and tracking.
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Structure of the Thesis

The thesis is structured in chapters according to the organization detailed in
the following.

The first chapter deals with an introduction to the thesis, focusing on the
main motivations and on the subject of this work as well as a presentation of the
state-of-the-art techniques dealing with the solution of electromagnetic problems
by means of learning-by-example strategies.

Chapter 2 presents the theoretical background of the SVM-based classifier,
focusing on the definition of the decision function as well as on the evaluation of
the a-postertiori probability.

In Chapter 3 the proposed method is integrated with an iterative multi-scaling
approach for the detection of three-dimensional buried object. The flexibility and
effectiveness of such an approach are pointed out in the numerical validation for
both single and multiple objects.

The customization of the approach for the early breast cancer imaging prob-
lem is described and assessed in Chapter 4 as an alternative technique looking
for real-time processing. Preliminar results are presented in case of noiseless and
noisy data.

Chapter 5 deals with the presentation of the direction of arrival estimation
problem. The SV M-based approach has been used to estimate the DO A of each
electromagnetic wave impinging on a planar antenna array.

XV



LIST OF FIGURES

The passive detection and tracking of non-cooperative moving targets is pre-
sented in Chapter 6. The presented results show the effectiveness and the real-
time capabilities of the proposed approach when dealing with real data acquired
in time-varying scenarios.

Conclusions and further developments are presented in Chapter 7.

XVi



Chapter 1

Introduction and State-of-the-Art

In this chapter, a brief overview on the techniques presented in the state-of-the-
art and regarding the solution of complex electromagnetic problems by means of
learning-by-example methodologies is presented. Accordingly, the motivation of
the thesis is pointed out.



The learning methodology has been inspired by theory of statistical learning
leading up to solutions with nice mathematical properties and excellent perfor-
mance. Machine learning has largely been applied to a variety of actual problems
but less attention has been devoted in the field of electromagnetics. When closed
form solutions do not exist, learning by example approaches represent an alter-
native way to solve the problem at hand. By training an SVM [1] the solution
can be online predicted. To this end, when the application requires real-time
performance, the use of a mathematical tool that can be trained off-line and
then easily implemented in embedded devices is suggested. These properties and
also other characteristics make SVM good candidate to solve optimization prob-
lems in electromagnetic areas, such as inverse scattering problems. Due to their
inherent nonlinear nature and ill-posedness, the solution to inverse problems is
very complex. State of the art algorithms recast the original problem into an
optimization one, which is successively solved by means of iterative minimization
techniques [2, 3]. Unfortunately, such procedures often make the reconstruction
process unsuitable for real-time applications. Great attention has been devoted
to alternative methodology based on neural networks (NNs), both multilayer
perceptron (MLP) [4] and radial basis function (RBF) [5] approaches have been
proposed. However, even if they show low computational complexity, NN-based
approaches suffer from typical training dependent problems like overfitting re-
sulting in an inability to correctly estimate the output in presence of input data
which do not belong to the original training set. On the contrary, SVMs allow
the control of the approximating function and its generalization accuracy. More
in detail, the arising optimization problem is aimed at finding the best tradeoff
between the learning capabilities from training data and the model complexity.
Since the model complexity has a straightforward consequence on the general-
ization accuracy [6], this leads to the determination of models that outperform
standard NNs. In [37], a SVM-based technique has been adopted for the lo-
calization of a two-dimensional cylindrical geometry with circular cross-section.
The localization problem has been recast in a regression one where the unknowns
(i.e., the position as well as the geometric and dielectric characteristics of the
target) are directly evaluated from the data (i.e., the values of the scattered
field) by approximating the data-unknowns relation through an off-line data fit-
ting process (training phase). This approach turns out to be effective for the
detection of few object since some difficulties occur when dealing with a large
number of unknowns. In order to overcome this drawback, Massa et al. [3§|
proposed a classification approach, instead of a regression one, that moves from
the detection of a single object to the definition of an a-posteriori probability of
presence of objects in a two-dimensional scenario. In order to define the risk-
map, during the test phase, the domain under investigation will be partitioned
in a two-dimensional lattice in order to classify a finite number of cells. The
prediction model tests the unknown input data and returns the estimation of
the cell states, that can be empty (i.e., if any scatterer belongs to the cell) or
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occupied. Unlike standard approaches that only classify the input pattern, the
proposed output defines the a posteriori probability that the object belongs to
a particular region of the domain. In this sense, the computational time saving
provided by this methodology justifies some limitations like the estimation of the
objects presence or absence instead of the complex dielectric properties. Start-
ing from this theoretical background, the proposed approach is aimed at solving
complex problems starting from the field of three-dimensional inverse scattering
problems, the real-time direction finding of signals impinging on a planar array
of electromagnetic sensors, up to the passive localization and tracking of tar-
gets moving throughout an area monitored by a wireless sensor network (WSN)
architecture.






Chapter 2
SVM-based Methodology

This chapter presents the theoretical background of the proposed probabilistic
approach for the definition of the risk map of object presence and position in
the investigated domain. Starting from the measurement of an electromagnetic
quantity related to the considered application, the probability of occurrence of
targets is determined through a suitably defined classifier based on a Support
Vector Machine (SVM). The proposed SVM-based classification approach is for-
mulated as a two-step procedure

e Step 1: determining a decision function d that correctly classifies an input
pattern (I'j;, m) (not-necessarily belonging to the training set);

e Step 2: mapping the decision function ® {(I', m)} into an a-posteriori
probability Pr {X =1|Cg }

The details of the procedure are mathematically formulated in the following
sections.



2.1. DEFINITION OF THE DECISION FUNCTION

2.1 Definition of the Decision Function

At this step, the status y,, of each cell of the lattice has to be determined. Math-
ematically, such a problem formulates in the definition of a suitable discriminant
function @ separating the two classes, which are labeled as Yy = +1 and xy = —1.
Since these classes are non-linearly separable, the definition of a non-linear (in
terms of the original data I') discriminant function is usually required as well
as the solution of an optimization problem where multiple optima (also local
optima) are present. As a matter of fact, such a solution is implemented when
Artificial Neural Networks (ANN) are considered (see [84] and the references
cited therein).

Unlike ANN, SVM defines a linear decision function corresponding to a hyper-
plane that maximizes the separating margin between the classes and it requires
the solution of an optimization problem where only one minimum there exists.
More in detail, the linear data-fitting is not carried out in the original input
space ® {L';;}, but in a higher dimensional space X {p (L)} (called feature space)
where the original examples are mapped through a non-linear operatortV!, ¢ (e).
The nonlinear SVM classifier so obtained is defined as B

A

P (p(Ly,m)=w-olzm)+b m=1,..,M (2.1)

where w and b are the parameters of ® to be determined during the training
phase. The hyperplane so-defined causes the largest separation between the
decision function values for the “margin” training examples from the two classes.
Mathematically, such a hyperplane can be found by minimizing the following

cost function .
0 (w) = 5 22)
subject to the separability constraints
w-y L m)+b>+1  for xW=+1 m=1,.,M
w-p Eg),m +b<-1 for xW=-1 n=1,.N (2:3)

In this sense, SVM can be considered as a kind of regularized network, as indi-
cated in [8].

However, since the training data in the feature space are generally non-completely
separable by a hyperplane, slack variables (denoted by f((:;))) are introduced to
relax the separability constraints in (2.3) as follows

w-p E(;),m +621—§((ZL))+ for Xﬁff)zl m=1,..M

(2.4)
w-p Eg),m +b§§((:;))_—1 for X,(g):—l n=1,..,N

'MW Because of the formulation of the problem at hand, it is easy to verify [Eq. (2.9)] that
actually one does not need to know the ¢ (e) function, but only its dot product in the feature
space according to the so-called “kernel trick” [1].

6



CHAPTER 2. SVM-BASED METHODOLOGY

Such a procedure is justified by the Cover’s theorem, a key point in the SVM
methodology as indicated in [1] (p. 200).
Thus, the cost function in (2.2) turns out to be

2 (m)
0 (w) = H%H + ¢ }Z ZS(” +Z€(” (2.5)

+
e { ) T Nom)

where N (m ) and N, (m) indicate the number of training patterns for which X,(ff) =

+1 and Xm = —1, respectively. The user-defined hyperparameter C' controls
the trade-off between the empirical risk (i.e., the training errors) and the model
complexity [the first term in (2.6)] to avoid the overfitting. In that case, the
decision boundary too precisely corresponds to the training data. Thereby, the
method is unable to deal with data outside the training set [1] (Ch. 5 and Ch.
7).

Moreover, to include a-priori knowledge about class distributions [9], two weight-

ing constants can be defined A\, = ﬁ and \_ = 27 [102], and Eq.
m=11"(m) m=1 ( )
(2.5) modifies as follows
Il @ L, EE
Qw) =S+ DD & +A D Y ¢ (2.6)
m=1 n=1 m=1 n=1

In order to minimize (2.6), it can be observed that a necessary condition is that

w is a linear combination of the mapped vectors ¢ <£§5"), m)

=33 ol (5, m) 27)

m=1 n=1

where ol >0,n=1,...N,m = 1,..., M are Lagrange multipliers to be de-
termined. Moreover, from the Karush-Khun-Tucker conditions at the optimality
[11], b turns out to be expressed as follows

S T i = DL S el (L) m) o (T8 0) } }
Ny

b= (2.8)

Ny, being the number of patterns (FSE), m) for which o # 0 (called support

vectors). Since support vectors lie on the hyperplane for which Eq. (2.4) is
satisfied with equality, they are taken into account for the classification while
the others are neglected. Such an event reflects the “sparsity” property of the
SVM classifier allowing the use of few input patterns.

7



2.2. MAPPING OF THE DECISION FUNCTION INTO THE
A-POSTERIORI PROBABILITY

Substituting (2.7) and (2.8) in (2.1) yields

# (2 (L) m) = 3,0 Tl {a'r'6 (52 By pom)

. S SN -, N Lo (), 0, pm) )} (2.9)
N

where © (E%), Eg), D, m) = (E%), p) P (Eg), m) is a suitable kernel function
[12]. Then, the decision function is completely determined when the Lagrange
multipliers are computed. Towards this end, the constrained optimization prob-
lem formulated in (2.6) and (2.4) is reformulated in a more practical dual form.
The solution of the dual problem, which is equivalent to the solution of the primal
optimization problem (2.2)-(2.3), turns out to be

maza {Qpua (@)} =
{Zn IZp 12% 12 |:0£ a((I X(n)X(p)@( (n) F(P) )]

2 - Zgzl 7]‘::1 o)
(2.10)
subject to S0 SM ol =0, ol € [0, A_] ity = —1and ol € [0, Ay]
otherwise.
Finally, since Qp,q (@) is a convex and quadratic function of the unknown param-
eters a,(g), it is solved numerically by means of a standard quadratic programming
technique (e.g., the Platt’s SMO algorithm for classification [13]®2). More in
detail, the SMO algorithm breaks the large optimization problem at hand in a
series of smaller ones characterized by only two variables and solved through
an effective updating formula [13], thus inducing non-negligible computational
savings.

maxy

2.2 Mapping of the Decision Function into the A-
Posterior: Probability

Concerning standard classification, the SVM classifier labels an input pattern
according to the following rule [14]

A

szsign{cb (¢ (Cg, m))} m=1,...M (2.11)

Unlike standard approaches, the proposed method is aimed at defining an a-
posteriori probability. Consequently, some modifications to the standard SVM-
based classification approach are needed. Towards this aim, a set of efficient
solutions has been proposed (see, for instance, [12],[15]-[17]) either based on

2(2) An optimal implementation of the SMO algorithm is the “LibSVM” tool available at
http:/ /www.kernel-machines.org.



CHAPTER 2. SVM-BASED METHODOLOGY

a direct training of the SVM with a logistic link function and a regularized
maximum likelihood score or based on a-posterior fitting probability process.
The first class of approaches usually leads to non-sparse kernel machines and
requires a significant modification of the SVM structure. In this paper, the a-
posteriori probability fitting method [17] is adopted since the use of a paramet-
ric model allows a direct fitting of the a-posterior: probability Pr { x=1[Lg }
More in detail, such a model approximates the a-posteriori probability through
a sigmoid function

Pr {xm = 1|(Typ, m)} = !

- m=1,..,.M
1+ exp{1® (0 (L, m)) + 0}

(2.12)
where v and ¢ are unknown parameters to be determined.
To estimate the optimal values for the parameters of the sigmoid function,
a fitting process is performed. A subset of the input patterns of the train-
ing set is chosen {(Lp, m, Xm; m = 1,...,M)(S); s=1,...,5}, where L) =
P (f (E(Ef), m)) Then, the following cost function is defined
T{v, 0} = (e
S M MO 1 (17X$)> exp (P +0
= 21 2amen { 7 19 [Hewp(v@i)-#é)} * 2 log 1+exp<“/<f>5fl)+6>
(2.13)
and successively minimized to define v and ¢ according to the numerical pro-
cedure proposed in [18]®)% to solve the problems (i.e., the use of a kind of
Levenberg-Marquardt method for unconstrained optimization) of the implemen-
tation of Platt’s probabilistic outputs method pointed out in [17].

Summarizing, the SVM optimization problem needs three successive steps: (I)
determining the hyper-parameters array (model selection), that is C' and all the
parameters that define the kernel function (e.g., the Gaussian width o® when
Gaussian kernels are used), by considering the “training dataset”; (II') determin-
ing the functional parameters o and b starting from the “training dataset” and
solving the dual problem (2.10); (IIT) determining the a-posteriori fitting param-
eters v and ¢ starting from a subset of the “training dataset” (validation phase);
(4) testing the SVM on a different dataset (test phase).

3(3) Available at http://www.csie.ntu.edu.tw/ ~cjlin/libsvmtools /.
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Chapter 3

Three-dimensional Buried Object
Detection

In this chapter, a multi-resolution approach for the detection of three-dimensional
buried objects is proposed. The geometrical features as size and position of sin-
gle and multiple scatterers are estimated starting from the electromagnetic field
data. The methodology is based on a support vector machine classifier inte-
grated with a iterative procedure that increases the detection resolution only in
those regions where target objects are supposed to be located. The definition of
a multi-resolution probability map of objects presence that gives a simple and
computationally effective estimation of the subsurface environment is provided.
The real-time detection capabilities as well as the current limitations of the ap-
proach, concerned with both single and multiple objects, are verified by showing
selected numerical results.

11



3.1. INTRODUCTION

3.1 Introduction

The retrival of information from underground by means of noninvasive techniques
is of huge interest in many areas of science and engineering such as geology, hy-
drology and environmental engineering. A variety of methods, both two- and
three-dimensional, have been provided to reconstruct geometrical and electric
features of buried objects from measures of scattered field data collected with
different kind of sensors such as the most widely used magnetometers, electro-
magnetic induction (EMI) or ground penetrating radar (GPR) [19]-[26]. Depend-
ing on the applications, the received signal can be studied both in time domain
or frequency domain in order to profitably distinguish the object signatures from
potential false detections [27],[28]. Whichever the methodology, the common
goal can be brought back in correctly localize and characterize single or multi-
ple targets in a fast and effective way. However, standard inversion algorithms
that utilize numerical techniques for theoretical forward models, are accurate
but more challenging too [21],[29]. Usually, these techniques fall in the class
of pixel-based inverse methods that estimate the unknown physical properties
of the medium over a dense discretization of the domain requiring the solution
of large scale and ill-posed problems. Alternatively, geometric inverse methods
require lower computational complexity providing only geometrical informations
such as position, shape and size of the targets [20, 25]. However, they still rely on
accurate numerical or analytical models that tend to be time consuming. In the
framework of computationally efficient approaches, machine learning provides a
number of computational algorithms for data analysis designed to directly tune
themselves in response to a set of available data and to be easily implemented
on hardware architectures [30]. In the scientific literature, several solutions to
subsurface problems have been proposed by applying learning-by-ezample tech-
niques as online processing tools, for example to characterize geologic facies 31|
or classify buried enexploded ordnance [32]-[35].

In [59]-[38], procedures based on support vector machine (SVM) [6, 1] that out-
perform methods based on neural networks (NNs) [both multilayer perceptron
(MLP) and radial basis function (RBF)| have been shown. The subsurface detec-
tion problem has been successfully recast both as a regression and a classification
problem in order to identify single and multiple scatterers. As pointed out in
[38], the regression-based approaches are suitable in dealing with a limited num-
ber of unknowns since SVMs have been developed to solve one-output learning
problems. On the other hand, the classification approach deals also with complex
configurations of multiple scatterers in two-dimensional scenarios.

In this work, an innovative multi-resolution procedure for real-time detection
of three-dimensional buried objects is presented. The problem of object detection
is solved by means of a suitable SVM-based classifier integrated with a multi step
process [80] in order to increase the resolution of the recostructions and also to
further decrease the computational time of the SVM test phase. More specifically,

12
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Figure 3.1: Three-dimensional geometry.

a more precise detection is obtained by means of an iterative synthetic zooming
performed on those spatial regions where the objects are supposed to be located
according to the results obtained at the previous step. At the end of the online
iterative procedure, a multi-resolution map with an high-order detection accuracy
is obtained. It has to be noticed that the SVM is trained only once starting from
a finite set of labeled feature vectors representing the training samples. Fach
sample connects the available a-priori information about the object positions
with the corresponding measured data. Once the learning process is completed,
the test data related to objects located in unknown positions are iteratively
classified according to the offline generated decision function and the proposed
multi-resolution procedure.

The remaining of the chapter is organized as follows. The mathematical for-
mulation of the proposed procedure is described in detail Section 3.2. Section 3.3
deals with an exhaustive numerical validation aimed at assessing the effectiveness
of the proposed technique. Some final remarks are drawn in Section 3.4.

3.2 Mathematical Formulation

Let us consider a typical three-dimensional subsurface scenario as shown in
Fig. 3.1 The homogeneous lossy soil is characterized by known relative dielec-
tric permittivity £ and by a conductivity ¢®. The investigation domain Q =
{0 <2< Xq,0<y <Yy, 0<z<Zg} lies in the subsurface region and has size
constrained by the overall dimension of the planar array and by a maximum depth
Zg. A z-directed dipole located in (x4, ys, 25), with 3 = Xo/2 and y, = Yq/2,

13



3.2. MATHEMATICAL FORMULATION

acts as electromagnetic source illuminating the scenario, while a planar array of
R isotropic probes gather the data at given positions (x,,y,,2.), r = 1,..., R.
Let E,,.; (z,y, z) be the field collected in a reference configuration, i.e. without
objects, and E,; (z,y, 2) be the field measured in the perturbed scenario. This
latter configuration is characterized by the presence of N scattering regions ©,
belonging to 2 with arbitrary shapes, permittivity 67(»") and conductivity o™,
n =1,...,N. The relationship between £, and £, can be mathematically

expressed by the scattering equation, i.e.
Efull ('rrv Yr, ZT) = Eoiq (:L’r, Yrs Zr) +
+k2 [ E (x,y,2) - G (2, yr, 2) T {(:c, Y, 2)|On, <e7(»"), a(")> } dxdydz

where E (z,y,z2) is the electric field inside Q for the perturbed scenario, G is
the Green’s function of the inhomogeneous medium [100], and Y is the dielectric
profile defined as

() _ 20 _ ;oW —0(ay.2) : o
T (.T,y,Z) _ { Er &, (I,y,z) J 27 feo s if (fL‘,y,Z) - @na n = ]_, ,N

(3.1)

0, otherwise.
(3.2)
Starting from the knowledge of the following differential quantity
E Lyy Yry 2 i - EvO’i Lyy Yr, 2 i
T (20,9, 2) = }—full( Y ) ‘ | a (T, y ) |; r=1,..R (3.3)

| Eoia (Trs Yry 2r) - L
representing the normalized field contribution scattered by ©,, n = 1,..., N in
the r—th measurement point, » = 1, ..., R along the Z direction, the detection
problem can be recast as the definition of a probability map of objects presence
inside Q2. Toward this end, let us partition the investigation domain into a three-
dimensional lattice of C' cubic cells whose center coordinates are (z., Ye, 2c) , ¢ =

., C and to which a probability value of object presence h, = Pr{x. = +1|L'}
can be associated, where y. = £1 is the binary cell state, that is “occupied” (i.e.,
Xe = +1) if (2e, Yo, 2c) € Op, n=1,..., N, or “empty” (i.e., x. = —1), otherwise.
Starting from the input data [, the problem can be tought as the retrieval of the
probability presence function

H(z,y,2) =Y he(@e, Yer 2) Je (2,9, 2) (3.4)

c=1

expressed as a linear combination of non-overlapping basis functions J. (z,y, z) =
1 if (z,y, z) belongs to the c-th cubic cell, and J. (x,y, z) = 0, otherwise.

The spatial resolution of the unknown probability presence function is improved
by means of a three-dimensional multi-resolution (IMSA-3D) representation

K(m) C(k)
H™ (9, 2 Z Z h(m ks Zek)) Jeey (2,4, 2) m=1, ..., Moy

k=0 ¢(k)=1
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Figure 3.2: Rols identification at step m = 1 [with £ = 0(a) and k =1 (b)] and
m =2 |with k =0(¢) and k =1 (d)].

m being the index of the iterative procedure that stops at the optimal step M,
when the requirement on the resolution level k = 0, ..., K (m) is reached. There-
fore, for a given value of k, C (k) cells identify those regions of interest (Rols)
(as shown in Fig. 3.2) where the probability of presence h("™ (%(k), Ye(k)s zc(k)) is
higher.

3.2.1 IMSA-3D SVM-based procedure

In order to evaluate the multi-resolution representation of the unknown probabil-
ity presence function, the proposed IMSA-3D procedure is performed by means
of a SVM-based methodology detailed in the following.

Training Phase. The learning process aims at defining the unknown inverse
mapping H™ (x,y,2) = ¥ ([). Assuming the knowledge of a finite set of T
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training scenarios

{[Xp, (Tpy Ups 2p) , Lsp =1, ..., P](t) Jt=1, ...,T} ) (3.6)

P being the number of training cells, the states x,, p = 1, ..., P are assigned as an
a-priori information related to each training configuration. More in detail, for a
given t-th training example, a set of IV scatterers can reside into the investigation
domain producing a known combination of states x,, p = 1, ..., P. The instances
constituting the training set are called input-output pairs. The available mea-

sured data are the input g},t) = {[(:L’p,yp, z),Lip=1,.. P](t) =1, .., T} and

the associated truth the output ﬁs) = {Xg); p=1,..P;t=1, ...,T}. Starting
from these known relations, the problem at hand turns out to be the definition
of the decision function U (e) which learns the mapping

< q ®). ,— A
U ay >—>§p cp=1,.,P;t=1,...T (3.7)
in order to successively classify the unseen input test data

gtest = {(.Tc,yc, ZC) 7£7 Cc= 17 ceey C} .

According to the statistical learning theory [6], let us define the decision function

U (Qypsr) = (W - @ (o)) +0 (3-8)

¢ (+) being the nonlinear operator mapping the input data into an higher dimen-
sional space, called feature space. Among all hyperplanes separating the positive
training data g},t) from the negative ones g},t)

ﬁét)zl éét):_l
one yielding the maximum separating margin between the classes. This optimal
hyperplane is constructed by solving an optimization problem, switched to a La-
grangian formulation [39], respect to w and b. The problem reduces to find the
optimal solution through an expansion in terms of a subset of examples belong-
ing to the training set, namely those examples whose Lagrange multipliers are
0 < LI(;t) < CBVM) " called support vectors (SVs). The hyperparameter C(5VM)
controls the tradeoff between training error minimization and margin maximiza-
tion. If /) = CSVM) the corresponding SVs are called bound support vectors
(BSVs) which lie inside the margin producing non-negative slack variables [1]. In
this sense, the number of BSVs is an indication of training errors amount. More-
over, many slack variables with large values mean strongly overlapped classes
and hence limited generalization capabilites. Unfortunately, the CSVM) hyper-
parameter is unintuitive and has to be calibrated as well as the other kernel
parameters (e.g.: the gaussian width ~ for the RBF kernel function) during the
model selection phase.
Test phase - Step (m =1). At first, the whole domain (2 is considered and
the multi-resolution procedure generates a coarse estimation of the probability

there exists unique
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presence function with resolution level initialized to k = 0. The probability values
h(m) (xc(k), Ye(k) zc(k)) are evaluated by mapping the unthresholded output of the
decision function ¥ () into a parametric form of a sigmoid function

1
1 + €Xp (77\1/ (atest) + lu)

1 and p being parameters determined by solving the regularized maximum like-
lihood problem as in [58] by means of a subset of the available training set.
Test phase - Steps (m > 1), (m < M,y). These steps are aimed at increasing
the resolution of the lattice, by which the probability function is evaluated, only
in those regions where the objects are supposed to be located. The method is
formulated as the following two-step procedure:

A. Rols Identification: starting from the probability evaluated at the previous
step m — 1, a scaled representation of the probability function

hm )(Sﬂc(k) Ye(k)s Ze(k)) = (3.9)

(m—1) C(k)
U™ (2,9, 2 Z Z WD Ty Yeliys Zety) Jey (29, 2)  (3.10)
k=0 c(k)=

is determined by introducing the normalized probability coefficients

R D (T ey, Yotk Zeh)) — h%ﬁl) c(k)

. — 1, O
m—1 o ) ) 9
u( ) (xc(k)a Ye(k)s Zc(k)) - h(m_l) _ h(m_l) ) E=0 . K(m

max min e ( )

(3.11)

where hgnm = MiNg—o,.. K (m) {mmc(k) _____ Ck) [h(m’l) (xc(k) Ye(k)s Zef )}} and

hies) = maxe,,... (m) {maxcn—1,..cw) [A™Y (o), Yerk)s Zeth) )}} The Rols

Ol()m) b=1,.., B(m), where B(m) is the total number of regions at step m, are

identified by thresholding the normalized probability function and nulling the

values smaller than the user-defined probability threshold ¢;,. Each Rol has an

occupation volume Vb(m), b=1,..., B(m) proportional to the number of adjacent
basis functions J,) whose probability u(™ =Y (2ewk), Ye(r), Ze(r)) > €th-

B. Multi-resolution probability evaluation: once the Rols are identified, the
resolution level is increased (k < k+ 1) when (z,y,2) € Oém), b=1,.. B(m)
and a new set of C' (k) = Zf:(’ln) Cy (k) smaller cells is generated in order to
partition the volume of each Rol with a number of cells

1

Vb (m)

B(m m
bz(l)%( )

Cy (k) = C(k), b=1,...B(m). (3.12)
Therefore, the probability function (3.5) is updated by computing the probability
coefficients h(™ (%(k), Ye(k)s zc(k)) in the new higher-resolution cells.

Test phase - Step (m = M,,;). The iterative methodology repeats the steps
A (Rols Identification) and B (Multi- resolution probability evaluation) until the
total volume of the Rols decreases [S220 1 v,m=1 — S B pm) 0 or the
Rols number B(m) changes [B(m) — B(m — 1) # 0]
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3.3 Numerical Results

The results of a selected set of numerical examples are reported in order to
assess the effectiveness and reliability of the proposed approach when dealing
with three-dimensional realistic scenarios. In Section 3.3.1 the training of the
SVM is described and some considerations about SVM parameter calibration
are pointed out. In Section 3.3.2 the behavior of the multi-resolution (IMSA-
3D) procedure is shown and the performance are also compared with the single-
step (BARE) approach. The validation of the methodology with noisy data
is also considered. Sect. 3.3.3 investigates the potentialities and the current
limitations of the IMSA-3D in detecting multiple objects. In order to verify
the reliability of the proposed methodology in correspondence with various and
realistic subsurface configurations, more complex scenarios with smaller objects
and different soil characteristics are cosidered (Sect. 3.3.4) .

With reference to the problem geometry shown in Fig. 3.1, the homogeneous
subsurface region with dielectric parameters ¢ = 4.0 and 0% = 4.0 x 1073 [41]
and geometrical size Xog = 3.66 \, Yo = 3.66 A\, Zg = 0.64 \ is considered, A
being the wavelenght at the working frequency f = 500 M Hz. A set of target
regions ©,,, n = 1, ..., N with dielectric characteristics different from those of the
background can assume whatever shape and position inside €2. As a preliminary
configuration, let us consider three-dimensional tar%et regions as finite-length
lossless cylinders of radius R(()Z]) = 0.19 A, height HOZ]? = 0.19\ [42] and with

(n

relative permittivity el = 2.5, n = 1,..., N [28][32]. The considered domain is
illuminated by a x-oriented short-dipole probe located in z;, = y, = 1.83 ) at a
distance z, = 0.11 A above the air-soil interface. At the same height is placed a
planar array of R = 100 ideal receivers equally spaced and covering the whole
Xq X Yo upper horizontal surface of €.

3.3.1 SVM training and parameter selection

Concerning the training sets, three different data sets have been considered,
each one composed by T" = 300 scenarios and characterized by a fixed number
of buried objects. More specifically, n = 1,..., Nyuz, Where N,,.. = 3 is the
maximum number of objects, training sets have been synthetically generated.
The positions of the objects have been randomly chosen and mapped into the
binary class indexes Xz()t) determining the states (occupied or empty) of the P =
100 training cells. The training phase is performed by adopting a RBF kernel
function whose gaussian width v has to be calibrated as well as the user-defined
SVM hyperparameter C'3VM) in order to solve the model selection issue. In
order to point out the influence of the parameters calibration on the decision
function generation, Fig. 3.3(a) shows the number of SVs

Ngy =

F X 100 (3.13)
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Figure 3.3: SVM training - Number of support vectors (SVs) (a) and bounded
support vectors (BSVs) (b) versus the SVM hyperparameters.
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as the percentage of total training samples, and the number of BSVs [Fig. 3.3(b)|

BSVs
SV's

NBSV = x 100 (3.14)

obtained during the grid search over the couple of parameters C°VM) and ~. In
particular, the training set generated with N,,,, = 1 has been considered. The
sparseness of the SVM solution depends on the number of SVs, given that small
Ngy leads to a structural simplification of the classifier thanks to the removing of
the irrelevant components. In this sense, limiting the number of SVs through the
parameter selection turns out to be a simple and effective solution to control the
generalization capabilities of the classifier. Besides the Ngy as a generalization
performance indicator, the number of BSVs is equivalent to the amount of train-
ing errors. Since the SVM-based algorithm has to tolerate a certain fraction of
outliers, the BSVs number represents those training samples that can crucially
affect the hyperplane. Nevertheless, the best separating function leads to the
minimal number of training errors. As it can be seen in Fig. 3.3, in the range
of 274 < v < 22 and 2% < C5VM) < 214 hoth the Ngy and Npgy indicators are
small. It means that the generated hyperplane correctly separates the positive
and negative training samples in this range of parameters. Starting from this
analysis of SVs and BSVs, that gives a preliminary estimation of the best SVM
parameters, the optimal values C(5V™) = 210 and v = 2° have been chosen.

3.3.2 Numerical validation of the IMSA-3D procedure

The first representative experiment deals with the detection of a single-scatterer
(N = 1) in noiseless data condition. A test set of T} = 50 scenarios randomly
chosen and not belonging to the training set has been considered. Fig. 3.4 shows
the probability maps obtained with the IMSA-3D approach for one example of
the test set. The three orthogonal planes passing through the center of the object

at (a:(% = ygg = 1.16, z((),l)z = —0.32)\> show the probability evaluated during

the multi-resolution process, from the first step [m = 1, Fig. 3.4(a)| until the
stationary condition is achieved at step m = 4 [Fig. 3.4(d)]. At the initial step,
the resolution level is set to &k = 0 and the domain is partitioned into C' (0) = 72
cubic cells in order to evaluate a coarse estimation of the probability function.
The following steps identify a single Rol OY”) where the resolution improve from
A = 061\, k = 0 up to Ay = 7.64 x 1072\ in the Rol 0. In order to
quantitatively evaluate the improved accuracy provided by the multi-resolution
procedure, let us define the object-localization-error

2 2 2
o = (el - #) (o) () ey
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UMxy.2) UP(xy.2)
1 1

(d)

Figure 3.4: IMSA-3D Procedure - Probability map determined by the IMSA
procedure at m =1 (a), m =2 (b), m =3 (c¢) and m = M,,; = 4 (d) for single
buried object (N = 1).
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as the geometrical distance between the actual barycenter of the n-th object
(xgzj),yézj) ,zéZ}) and the estimated one (a?slm),g],g ™) gm)), where

K( ) C(k)
:Z_(m) Z o Zc( — h(m) (xc(k)7yc(k)7zc(k))xc(k)
n - m
ZK( )Z k) 1 R(m )(Ic(k)yyc(k)vzc(k))
g(m) k 0 c(ky=1 1 c(k)Ye(k) Ze(k) ) Ye(k)
n - m [
Sele )Z ((kk)) PO (@) Wiy Zeh) )
1K (m) (i)
2§Lm) Z o Zc(k:) 1 h( )(xc(k)7yc(k)7zc(k))zc(k)
- K C(k
Z (m) Z 56)) 1 R(m) (Ic(k)vyc(k)vzc(k))

(3.16)

are calculated as the normalized average of the test cell barycenters at m-th
step weighted by the corresponding probabilities of presence h(") (a:c(k), Ye(k)s zc(k)) >
0. Let us also define the volume-occupation

~(m)

gm _ fn 347
Rn
where
3
c) h(m)(mc(kyyc(k)vzdk))y&z))
Zk 0 Z [

~ 4 c(k)=1" | max(x) { A (i) () ze

gm) — =4 0 LA™ (@e(r) ey 7o) } (3.18)

" 3 Ck R (24 (k) Yeh) e
Zk o Zc(&c) { ( (k)>Ye(k) (k))

maxe(k) {h(m) (l“c(k) WYe(k)rZe(k) ) }

and k, is the actual volume of the considered n-th object, an analitically evalu-
ated index that quantify the estimated volume in terms of probabilities, where

2 2 2
vl = \/ <$c<k> - fﬁm)) + (ycm - ?Jém)) + (zc(k) - 252“’) . (3.19)

In such a case, the values of the error figures turn out to be equal to U&l) =0.16 A

and 59) = 21.03 at the first step and both decrease down to v§4) = 0.07 XA
and §§4) = 0.68, as shown in Fig. 3.5. The considered test configuration is
effectively representative if compared with the error statistics reported in Tab.
3.1, calculated by considering the whole test set of Ty = 50 configurations.

In order to guarantee an high probability of detection and a corresponding
low probability of false alarm, the behavior of IMSA-3D approach has been also
assessed in absence of objects inside ). It has to be noticed that the free-object
configuration is not included in the training set. As shown in Fig. 3.6, the SVM-
based methodology did not detect any object. The obtained probability map
shows very small and not focused values, thus confirming the right identification
of the free-objects scenario.

The improved detection capabilities of the multi-resolution strategy is further
pointed out if compared with the BARE approach (Fig. 3.7) applied on the
same test configuration and with the same classifier (i.e. the same training set
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Figure 3.5: IMSA-3D Procedure - Performance indexes v\™ and £ versus the

multi-resolution steps for single buried object (N = 1).

‘ Method H U%m) (Al H ém) ‘

‘ H min ‘ max ‘ mean H min ‘ max ‘ mean ‘
IMSA
m=1] 468 x 1072 | 1.18 0.54 3.48 | 35.42 | 16.91
m=2|299x107%| 1.06 0.23 2.18 | 29.76 | 12.49
m=3] 2.32x1072 | 0.46 0.22 0.96 | 24.59 | 4.93
m=41221x1072| 0.41 0.21 0.09 | 8.13 1.92

| BARE [ 9.76 x 102 [ 1.16 | 0.59 [ 2.81 | 28.93 | 16.88 |

Table 3.1: Single buried object, N = 1 - Statistics of the performance indexes
(object-localization-error v and volume-occupation &) for BARE and IMSA ap-

proaches.

23



3.3. NUMERICAL RESULTS
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Figure 3.6: IMSA-3D Procedure - Probability map obtained with ITMSA-3D ap-
proach in absence of buried objects (N = 0).

Uxy,2)
1

3.6 0.0

A
XIA y

Figure 3.7: IMSA-3D vs BARE - Probability map determined by the BARE
approach for N = 1 buried object.
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and SVM hyperparameter settings). In order to compare the results at the same
resolution level, the BARF solution has been obtained with the highest resolution
Aparpe = N3 = 7.64 x 1072\ applied to all the investigation domain instead of

to the single Rol O§m), m = 1, ..., My,. Besides the object-localization-error is

slightly greater (v%BARE) = 0.21 \), the volume-occupation is significantly larger

(§§BARE) = 22.48) as well as the number of decision function evaluations that is
strictly related to the number of test cells (Cparp = 36864 vs Zf;o?’(?(k) =
288). Even if the computational load of a single SVM testing is very low, the
BARE approach turns out to be more time consuming, thus reducing the real-
time capabilities of such a methodology.

In order to point out the generalization capabilities of the proposed IMSA-3D
approach in dealing with noisy data, a gaussian random noise with zero-mean
and variance 02 = P,,;. is added to the total field E o (20,9, 2,) and the noisy

differential quantity f (@, Yr, 2r) is used to generate the test set. The averaged
error figures obtained with increasing noise amplitude have been evaluated and
reported in Fig. 3.8. As it can be seen, both object-localization-error and volume-
occupation of the IMSA-3D approach are always smaller if compared with the
BARE results, thus confirming a stable behavior of the methodology also in
noisy conditions. As a representative result, the probability map of the single-
object configuration obtained with the BARE and IMSA-3D approaches with
noisy data (Ppeise = 0.1V/m) are shown in Fig. 3.9(a) and 3.9(b), respectively.
Even if the IMSA-3D method points out a slightly greater object-localization-

error (v\Y = 0.11 \) if compared with the noiseless test case, the actual

position of tﬁ(gsgbj-ect still resides into the high-probability region.

3.3.3 Detection of multiple objects

This section is aimed at confirming the capabilities of the proposed approach
in detecting multiple scatterers. As expected, these scenarios are more complex
if compared with the single-object test case and the SVM-based methodology
provides higher object-localization-error values even if it is still able to localize
the objects with an acceptable degree of accuracy. In Figure 3.10, the averaged
object-localization-error [Fig. 38.10(a)| and volume-occupation [Fig. 3.10(b)| of
BARFE and IMSA-3D are compared when dealing with n = 1, .., N,,,, number
of objects, where Ny, = 3 and with noisy data (P,sse = 0.1V/m). The bar
charts clearly show the outperforming capabilities of the multi-resolution tech-
nique in locating multiple scatterers and pointing out an object-localization-error
always smaller than one wavelength. Concerning the volume-occupation index,
the optimal step of the IMSA-3D procedure overestimates the object volumes of

the most complex scenario (N = 3) with a maximum of meann{ 7(13)} = 7.31
respect to the widely greater volume overestimation obtained with the BARFE
approach [mean,, {&gBARE)} = 24.32]. In order to better appreciate the im-
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Figure 3.8: Numerical validation vs noise level - Object-localization-error (a)
and volume-occupation (b) determined by the BARE and IMSA-3D procedures
versus the additive noise amplitude Py.
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U(x,y,2)

yIA

yIA

(b)

Figure 3.9: Numerical validation vs noise level - Probability maps determined by
the BARE (a) and IMSA-3D (b) procedures with Noisy data [Py = 0.1 V/m)].
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Figure 3.10: Numerical validation vs number of objects - Object-localization-
error (a) and volume-occupation (b) determined by the BARE and IMSA-3D
procedures versus the number of objects n = 1,2,3 with noisy data [Py =
0.1V/ml].
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Figure 3.11: Numerical validation vs number of objects - Probability maps de-
termined by the IMSA-3D procedures for multiple objects [N = 2 BARE (a),
IMSA (b) and N = 3 BARE (c), IMSA (d)] with noisy data [Py = 0.1V/m)|.

proved resolution and detection capabilities of the IMSA-3D approach in mul-
tiple object scenarios, the maps obtained with the BARFE and IMSA-3D ap-
proaches with N = 2 scatterers (x(% = 3.23 ), y((ﬂljg = 1.61 ), zgllj; = —0.39\),

(xﬁg = 1.69 )\, yﬁ; = 1.51 ), z((j; = —0.33 \) have been compared |Fig. 3.11(a)
and Fig. 3.11(b)]. The IMSA-3D approach correctly identifies two Rols and
estimates the object positions with good precision in object-localization-error

(’U§2) =0.41 )\ and vf) = 0.19\) and a slightly overestimated volume-occupation

(€ = 3.03 and &2 = 1.82). On the contrary, the BARE approach estimates

only one dilated high-probability region with a very high wvolume-occupation

[meann{ SLBARE)} = 29.23] which contains both the objects. The enhanced

capabilities of the multi-resolution approach compared with the single-resolution
method are confirmed also when N = N,,,, = 3 scatterers are present. A rep-
resentative result provided by the BARE and the IMSA-3D approaches dealing
with this more critical scenario are shown in Fig. 3.11(c) and Fig. 3.11(d),
respectively. As it can be observed, the IMSA-3D is still able to detect three
Rols and to fairly estimate the object positions, although the object located

in (:L’SZ = 240\, ZUSE = 1.20 \, z((),?;; = —0.18 \) is detected with a greater
object-localization-error U§2) = 0.92 )\ if compared with the two remaining objects

[ = 0.52 1,0 = 0.41 A]. Once again, the performance of the multi-resolution
procedure outperforms the single-step approach capabilities in discerning multi-
ple objects as clearly pointed out by the very high volume-occupation index of
the single Rol identified by the BARE approach [éBARE) = 28.74].
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Figure 3.12: Complex scenario - Probability maps determined by the IMSA-3D
[m = M,,: = 3| approach with small objects (N = 2) buried in dry sandy soil
(a) and dry clay soil (b).

3.3.4 Complex scenarios

The multiple object detection performance have been also tested with different
electric and geometrical characteristics of the scatterers and the background. As

an example, a more complex scenario with smaller objects (R(()Z]) = 0.1\ and

HLSZJ) = 0.09\, n = 1,...,N) is considered both for training and test dataset.
Figure 3.12 shows the results provided by the IMSA-3D in correspondence of
two different background characteristics with multiple objects (N = 2) and noisy
data (Ppise = 0.1 V/m). The first example [Fig. 3.12(a )] refers to a configuration
with small objects buried into dry sandy soil (¢ = 4.0 and 0% = 4.0 x 1073),
while the second [Fig. 3.12(b)] deals with the same objects in a soil background
with an increased water content that causes an increase in relative permittivity
(e = 16.0) and in conductivity (0 = 3.0 x 1072) [43] . The comparison in
terms of object-localization-error points out a slightly worst detection of smaller
objects in sandy soil. Nevertheless, there is not a significant change in the error
statistics with the considered soils and objects, since the average value of object-

localization-error remains always lower than mean,, {v,(?)} =098\, n=1,2.
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3.4 Conclusions

The proposed method consists of a multi-resolution approach for the real-time
detection of three-dimensional buried objects. An SVM-based classifier has been
suitably trained with available labeled data in order to obtain a probability
map of single and multiple objects presence. Starting from a coarse resolution
map, the iterative procedure performs a synthetic zoom on those spatial regions
where potential objects are supposed to be located, thus increasing the detection
resolution only in the Rols. The effectiveness of the proposed methodology has
been preliminary assessed with different subsurface scenarios, characterized by
single and multiple objects, both in noiseless and noisy conditions.

The obtained results confirm that the SVM-based methodology allows one to
estimate the objects presence in real-time and with a good degree of accuracy
in terms of localization error. The multi-resolution strategy detects and locates
single and multiple targets not belonging to the training set and also estimates
the objects size with outperforming precision if compared with the single-step
approach.
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Chapter 4

Early Breast Cancer Imaging

Microwave imaging for breast cancer screening is an emerging technique as a
valuable alternative to standard X-ray mammography. Usually, the solution
to the nonlinear inverse problem is provided with iterative methods which re-
quire a forward solver execution at each iteration and particular attention to
computational efficiency is fundamental. Recently, alternative techniques based
on learning-by-example methodologies have been applied to imaging problems
looking for real-time processing. In this chapter, a multiresolution approach for
real-time detection of breast cancer is presented. A SVM-based classifier is inte-
grated in an iterative multistep strategy to obtain a probability map of presence
with enhanced spatial resolution where targets are supposed to be located. The
scattering matrix measured at the output of a three-dimensional imaging system
represents the input data of the customized classifier. A selected set of numerical
results is provided in order to assess the effectiveness of the proposed approach
dealing with both single and multiple inclusions. The performance of the method
in cases of noisy data is also investigated.
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4.1 Introduction

Breast cancer detection by means of microwave imaging has been developed
rapidly in the last years because of the well-known limitations of the standard
screening X-ray mammography in terms of sensitivity and false positive detec-
tions [44]. Among the advantages of microwave imaging are the non-ionizing and
low-power radiation [45] as well as the absence of compression that means pa-
tient comfort as already proven during clinical investigations [46]|. This imaging
modality is based on the contrast between the constitutive parameters of healthy
and malignant breast tissues in the microwave frequency range, the reason that
why the detection with high accuracy of small tumors is possible [47]. In mi-
crowave tomography, nonlinear inverse scattering techniques based on Maxwell’s
equations are often used [57, 60| and they are usually based on iterative algo-
rithms in which a full scattering problem must be solved at each iteration leading
to considerable computational load [50], especially when three-dimensional ge-
ometries with large number of unknowns are considered. Alternatively, moving
from deterministic to stochastic methods such as Particle Swarm Optimization
(PSO) and Genetic Algorithms (GAs), the detection problem is recast as an
optimization problem [51]. However, even if these methodologies find global
minimum of a given cost function, the computational load is still high.

Nowadays, progress in machine learning suggests the solution of medical imag-
ing problems by means of Lerning-by-Example (LBE) methodologies [52]-[54].
These kind of classification or regression-based algorithms are particularly ap-
propriate for a wide-range of real-time applications thanks to their high-speed
properties and generalization capabilities. Given a learning task and a finite
set of training samples, the inverse problem can be recast as a constrained
quadratic optimization problem whose optimal solution can be found avoiding
the ill-posedness and nonlinearity of the inverse scattering problem.

In this work, the inversion process is reformulated as a multiresolution clas-
sification procedure based on a binary support vector machine (SVM) classifier
integrated in an iterative multistep strategy [59]. Accordingly, a multiresolution
probability map of pathology presence is estimated with increased accuracy in
those high-probability spatial regions where the inclusions are supposed to be lo-
cated. More specifically, starting from the knowledge of a finite-size training set
where the pathology is randomly positioned, the first step is aimed at defining a
coarse probability map. The successive steps iteratively identify the areas with
highest probability values where the resolution level increases. Concerning the
training phase, it is performed only once after an ad-hoc calibration procedure
that finds the best parameters in order to maximize the generalization capabili-
ties of the optimal separating hyperplane. Numerical differential data have been
calculated starting from the elements of the scattering matrix available at the
output of the considered multiview imaging system.

This chapter is organized as follows. The geometry and the characteristics of
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Figure 4.1: Three-dimensional model geometry (a) and top view of the multi-
view measurement system (b).

the measurement system as well as the format of the simulated numerical data
are described in Section 4.2. In Sect. 4.3 the proposed multiresolution based on
a SVM classifier is formulated. In order to show the effectiveness and the current
limitations of the proposed approach, a selected set of numerical results concerned
with the detection of both single and multiple inclusions is reported (Sect. 4.4).
The robustness and the generalization capabilities in presence of noisy data and
different breast characteristics have been also tested. Finally, some conclusion
about the innovative features of the approach are drawn in Sect. 4.5.
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4.2 Numerical Model

Let us consider a three-dimensional imaging system as shown in Fig. 4.1(a). Tt
consists of N monopole probes disposed in a circular array of radius r; at known
positions (z,, Yn, z,), n = 1, ..., N. The antennas are placed in a tank filled with
a coupling liquid in order to minimize the reflection from air-breast skin interface
[55]. The complex relative dielectric properties of the coupling medium can be
expressed as

el =¢el — jel (4.1)

s T

e/ being the relative permittivity and & = oon] the out-of-phase loss factor,

where o is the conductivity, ¢y the free-space permittivity and f the working
frequency. The coupling liquid has dielectric properties similar to those of the
breast, which is modeled as a hemispherical domain €, suspended on the top
of the tank and with radius r,. Assuming a reference system with origin in the

centre of the hemisphere representing (2, a set of regions Y, € (%, p =1,..., P

centered in (z,y, z)%?) can reside into the imaging domain defining the dielectric

profile of the breast

() _Q . o
I (z,y,2) = { e —eglt(v,y,2), if(r,y,2)eY,p=1,...,P (1.2)

0, otherwise

with 57@), p=1,.., P and % being the complex relative dielectric constant
of T,, p=1,..., P and €, respectively.

Each antenna acts as transmitter and receiver in order to perform a multiview
measurement of the total electromagnetic field

Etot (trx|£taz> = Einc <£rm|£tx) + A
+i2mfe [, G (r,4ir) 11 {£|Tp, 59’)} - E(r|ry,) - dr (43)
where 1., = (Try, Yray Zra) , 7T = 1, ...,N|m¢m and r,, = (T, Ytu, 21z) , L =
1,..., N are the positions of the receiving and transmitting probes, respectively.
E;..(r,.|r,,) is the field measured in absence of regions T, inside €2, G is the
Green’s function of the inhomogeneous medium [100] and E (r|r,,) is the electric
field inside €2, in presence of scattering regions Y,; p =1, ..., P.

Since a realistic imaging system is simulated, let us suppose to measure the
field in the form of scattering parameters s, 1, 72, tx = 1, ..., N at the ports of
the receiving probes (also reflection coefficients sy 4., tx = 1,..., N are available)
[Fig. 1(b)]. As formulated by Yu et al. in [57], the fields E, , and E,,. can be

related to the s-parameters as

Sff;t,t:v = COd?"I ' Etot (trx|£taz> (44)
and '
S:fz“,:t:v = COd?"I ' Einc (trxlfta) ) (45)
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taking into account the orientations [i.e., G,,| of the receiving antennas and
a complex calibration parameter Cj.

Hence, from the knowledge of the scattering matrices S € CN*V and
S™¢ € CN*N measured in presence and absence of the scattering regions T,; p =
1,..., P, respectively, the following differential quantity

Stot _ olnc

A _ “rxix ra,te o
Srth = T ne ’I“l‘,tl‘ = 1, ceey N (46)
Sr:v,tz

represents the normalized contribution scattered by T,; p = 1,..., P. The
inverse scattering problem can be tought as the retrieval of target positions

(z,y, z)%?) on the basis of the known N(]g_l) elements

I, = {SA cre=1,...,N;te=1,..., N; txgrx}

rx,te)

of the lower triangular part of S2, since the elements of the scattering matrix
S € CV*N are supposed to be Stvte = Staras TT,tx =1, N. It can be prof-
itably solved by means of the learning-by-example methodology that estimates
the unknown inverse mapping following the guidelines of the multi-step strategy
detailed in the following.

4.3 Multi-resolution SVM-based approach

The arising problem is that of determining a probability risk-map of €2, starting
from the knowledge of the measured data. Towards this end, a three-dimensional
domain enclosing {2, is partitioned in a uniform lattice of C' training cells whose
barycenters are (x.,¥y., 2.), ¢ = 1,...,C. Each cell can assume a binary state
a, € {—1,41} in order to recast the detection problem in a binary classification
problem whose classes stand for presence [a. = +1| and absence o, = —1]
of the target inside the cells. Once the training of the SVM-based procedure
is completed, unseen input test data I', can be classified and the a-posteriori
probability P,, = Pr{a, = +1|L,}, m = 1,..., M is evaluated, M being the
number of test cells that can differ from the C' training cells. The training phase
of the proposed method as well as the iterative procedure for the multi-resolution
risk-map evaluation are detailed in the following sections.

4.3.1 SVM Training phase

Let us consider a supervised binary classification problem. The training set
composed by T'samplesz, € RF, t =1,...,T, L = W—H’) being the dimension
of the input features space X, is associated with output labels y, € {—1,+1}, t =

1,...,T and represented as
U=A{z,y;t=1,..,T}=
- {[(xcaycazc) aEsyac; C = 1, ,C](t) ,

~
I

1,...,T}. (4.7)
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Since the measured data Egt) are highly linearly nonseparable as commonly
happens for real-world data, the input vectors are mapped with a kernel method
in a higher L’-dimensional space X’ (L' > L) through the nonlinear function
p () in order to find the linear decision function

o [(xmayma Zm) 7£s] =w- B [(xmayma Zm) 7£s] + ba m = 1a ceey M (48)

in the transformed space X’ able to correctly classify the unseen test data
[(Zs Yms 2m) , Ly; m = 1,..., M]. The unknown weight vector w € R* and the
threshold b univocally define the optimal hyperplane associated with ® (e) and
are evaluated through the minimization of the cost function

0 (w,€) = 5 +CZZ€“ ﬁj g (4.9)

t=1 c=1

subject to the constraints

ol (- [(7e v 20) L) 48) 21— )

050 (4.10)

where the constant ( is a user-defined regularization parameter that controls
the trade-off between margin maximization and training errors minimization,
regulated by the first and the second terms of (4.9), respectively, ¢ is the vector of
slack variables used to relax the separation constraint in (4.10) and thus allowing
the possibility of examples violating it. Making slack variables large enough, it
is always possible to minimize the cost function in (4.9) but large values of

gﬁt) are consequences of strongly overlapped classes and it is possible that the
hyperplane will not generalize well [1]. The minimization of the cost function is
an optimization problem that can be reformulated through the Lagrangian

£l = Ll -S40 0 (wp [(er e 20) TO] +b) — 1]
t=1 c=1 (4.11)

with lagrange multipliers vector p = (ug), c=1,...,C;t=1,.., T) that can
be found by means of a dual form of the optimization problem

t t
max, { 0, S0, 0 =450 X0 i S0 n alal)

4.12
K |:<xcuy07 zC) 7£g)7 (.’L‘c/,yc/gzc’) 7£gt )] } ( )

under the constraints

T C 0 (t .
11 Dot He )O‘C) =0
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IC (+; ) being the kernel function. The support vectors (SV's) are those exam-
ples in the training set for which 0 < ,u < C In particular, they can be splitted
in normal support vectors (NSV's) [0 < nd < (] and bounded support vectors
(BSVs) [t = ¢]. In particular, the BSV's are examples that lie in margin and
represent the aformentioned training errors.

Once the training phase is terminated, the decision function can be expressed
in terms of the test data in the original input space

D [(Tms Yms 2m) , L] =
— Zt . ZCC—(tl ,ugt)a£ )]C [(xc, Yes Ze) ,Egt), (Tns Yms Zm) ,ES] +b, m=1,...M

where 7' < T and ' < C quantify the subset of data for which 0 < u < ¢,
i.e., the sum of NSV's and BSV's.

4.3.2 Multi-resolution Test Phase

The test phase is aimed at the detection of regions Y,; p = 1,..., P starting
from unseen test data [(,, Ym, 2m), L], m = 1,..., M. According to the Platt’s
probabilistic outputs for SVM [58], the output of the unthresholded decision
function @ ([(x, Ym, 2m) , L's]) can be mapped in a sigmoid function in order to
define the probability

1
1+ exXp (a o [(xm7 Ym, Zm) 7£s] + d)

= m=1,...M (4.13)
that the object belongs to the m-th cell, a and d being parameters evaluated
according to the algorithm in [58]. The approximation of the probability distri-
bution

(2,9, 2 ZP F, (z,y,2) (4.14)

is the linear combination of non—overlapplng spatial basis-functions

Foe.2) = {

Lif (z,y,2) € m — thcell

0 otherwise (4.15)

weighted by the probability values.

In order to improve the achievable spatial resolution, the estimation of P (x, y, 2)
is evaluated exploiting the iterative process [59] aimed at defining a multiresolu-
tion lattice of test cells leading to the multiresolution representation

(x,y, 2 Z Z Péf(r mer) (T,9,2); s=1,...,8 (4.16)

r=0 m(r)=1

where s = 1, ..., S is the step index of the iterative procedure that stops when
the desired spatial resolution regulated by the resolution index r = 0, ..., R (s)
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Figure 4.2: IMSA Procedure - Aol detection at s =1 (a) and s = 2 (b) multi-
resolution steps.
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is achieved and R(s) = s — 1. At the r-th resolution level and s-th scaling
step, m(r) = 1,..., M (r) basis-functions are generated, being r(s) = s — 1.
Figure 2 pictorially shows the generation of the so-called areas of interest (Aols)
A,(:), k=1,..,K(s), K(s) being the total Aols at step s, at step s = 1 [Fig.
4.2(a)] and step s = 2 [Fig. 4.2(b)|. In order to better understand the definition
of the multiresolution probability function, the iterative classification procedure
is detailed for the first step s = 1 and higher steps s > 1.

Step s = 1 - Coarse Detection. At the first step the Aol Agl) is equivalent
to the whole three-dimensional domain that encloses €2, and the basis-functions
defining the M (r) test cells are of the largest characteristic length scale [r = 0,
Fig. 4.2(a)|]. This step provides a first and inaccurate estimation of the a-
posteriori probability upon which the successive steps aim at locating the small
lenght scale Aols.

Step s > 1 - Aols Identification. From the knowledge of the probabilities
evaluated at the previous step s — 1, the resolution of the lattice is increased only
in those cells where the probability of target presence is higher than a predefined
threshold e. In order to obtained a suitable thresholded probability function, a
normalized version is introduced

R(s—1) (r)
7Dr(wrm .I‘ Y, 2 Z Z QSL(TUF ZL' y,z) (417)
r=0 m(r)

where
(s—=1)  ps-1)
Q(sq) _ Pm(r) Prin m(r)=1,..,M(r)
m(r) Péf;ml) . P(sfl)’ r=20,.., R (3)

min

(4.18)

Pr(rfml and Pl being the minimum and maximum probability values eval-

uated until step s — 1, respectively. The normalized values QS&;) > € are the

probabilities associated to those cells constituting the Aols A,(j), k=1,..K(s),
the remaining Q ) < ¢ are nulled.
Step s > 1 - Multzresolutwn detection. The spatial resolution is enhanced

in the identified Aols A,(f), k = 1,..., K (s) by increasing the resolution index
(r < r+1) and thus refining the probability function representation only where
needed. To this end, (4.16) is updated by computing the coefficients Pr(rf()r) only
if (z,y, z)m(r) € Al(f), k=1,.., K (s). The iterative synthetic zooming is stopped
when the number of the Aols do not change between two consecutive steps
[K (s) = K (s — 1)| and the size changes of the Aols are smaller than the highest
resolution level [A% < min {Ax Ay ,Azszr)}].

m(r)
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4.4 Numerical Results

The presented numerical experiments deal with the three-dimensional tomo-
graphic configuration as shown in Fig. 4.1. The imaging system consists of
a circular array composed by N = 16 monopole antennas equally spaced on
a r; = 0.27 X radius circle, A being the wavelength at the working frequency
f =1.1GHz. The probes surround the hemispherical domain €, of radius r, =
0.18 A simulating a Heterogeneously Dense breast with relative dielectric constant
eb = 17.72— j15.41. Spherical inclusions of radius 7, = 3.67 x 1072 X and electric
characteristic e? = 53.46 — j18.26 represent the regions Y, € %, p = 1,..., P
centered in (z,v, z)%’). The breast as well as the probes are immersed in a cou-
pling liquid (e¢ = 23.43 — j18.48) mimicking the average constitutive parameters
of the breast.

In the following section the SVM training procedure and the parameter se-
lection are described (Sect. 4.4.1). Successively, the advantages and the current
limitations of the proposed approach when dealing with single inclusion are an-
alyzed (Sect. 4.4.2). In such a framework, the performances in presence of both
noisy data and different breast characteristics are evaluated. Finally, the reli-
ability of the proposed approach in correspondence with multiple inclusions is
verified (Sect. 4.4.3).

4.4.1 Training Set and Model Selection

The collection of 7}, = 100, p = 1,..., P training configurations is obtained by
randomly varying the position of T, p = 1, ..., P inside €),, where P = 2 is the
maximum number of considered regions. The imaging system collects the data
L(f), t =1,..,T, for each configuration and the corresponding pathology posi-
tions are mapped into the states a,., ¢ = 1,...,C', C' = 108 being the number of
training cells. Two independent SVMs has been trained for single target (P = 1)
and multiple targets (P = 2) test cases. Because of the good performances gen-
erally achieved by nonlinear SVM with gaussian kernel, the considered examples
deal with the kernel

K |:(:L‘C’ Yer Zc) ’Egt)7 (:Ec’a Yers Zc/) 7£gtl):| -

= €Xp {_’Y H |:(xc> Ye, Zc) ’Egt)} - |:(xc’> Ye' Zc’) ,Egl)]

2} (4.19)

where v represents the width. In order to optimize the performances of the
SVM-based methodology, the model selection issue has to be solved through
the determination of the best regularization parameter ¢ and kernel parameter
v. Frequently, the parameter selection is done empirically leading to suboptimal
performances of classifiers. In this work, a cause and effect analysis of parameters
influence on the decision function generation has been performed. In particular,
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%
Npsy

Figure 4.3: SVM Parameter Calibration - Support vector Nygy and bounded
suppor vector Nggy analysis vs SVM Hyperparameters.
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the number of support vectors Ngy and bounded support vectors Nggy are con-
sidered good indicators of SVM generalization capabilities since small Ngy leads
to a a structural simplification of the decision function thanks to the removal of
the redundant elements [6]. Moreover, small Nggsy means less training errors as
previously explained in Sect. 4.3.1. Therefore, the percentage indexes

Nsy
N% 1 4.20
sV = (T % O) x 100 ( )
and
N
Npo, = ;:VV x 100 (4.21)

are evaluated versus the user-defined parameters ¢ and 7 as shown in Fig.
4.3. As it can be seen, a range where both the indexes N, and N7, are low
exists leading to a simple decision function and with few training errors. The
reported results have been obtained with training parameters belonging to the
aformentioned range. In particular, they have been set to ( = 100 and v = 1.

4.4.2 Single Inclusion - Numerical Assessment

This section deals with the detection of a single inclusion by means of the pro-
posed multiresolution procedure (IMSA) compared with the standard single res-
olution probability estimation (BARFE). The performances have been evaluated
on a test set composed by T;.,; = 50 examples and are quantified by computing
the analytical indexes

2 2 2
£l) = \/ (x%zp _ :&fﬁ) + <y§?> y<8>) + (zg” - 7:«},5)) (4.22)

() (s 3
R(S) M(T‘) Qm T am T
Zr:(] Zm(r):l |: o ((S)) :|
o) _ 4 mano { At x vl (4.23)
'Up = =T 'Up .

R(s er
Z()Zm(r l (r) ]

MaX (1) {Qin)m }
representing the localization indexr and the inclusion volume, respectively.
The localization index points out the geometrical distance between the actual

inclusion positions (z, ¥, z)%’) and the estimated coordinates

and

R(s) M (r)
:%(8) _ P Zm(r) 1 m(r)xm(r)

ZR(s) S 1Q$)r) )
R(s) M(r)
~(s) D= Z (r)= 1 T)ym(r)

Yp = R(s) ]M('r) ) ) (4-24)
%) %(" i 1( )
S s
2(8) P Zm(r) 1 m(r)zm(T)
P R( ) M (r) ( )
Z S Zm(:) 1 WSL(r)
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Figure 4.4: IMSA Procedure - Mean localization error and volume estimation vs
multi-resolution steps (@) in comparison with BARE procedure (b).
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where the inclusions are supposed to be located. The inclusion volume index
estimates the physical volume of the recostructions normalized to the actual
inclusion volumes v, p = 1, ..., P, whereas

2 2 2

As a matter of fact, the behavior of the performance indexes points out that

the IMSA strategy iteratively increases the detection capabilities both in terms of

mean detection accuracy (avg {5},‘9)}) and mean volume estimation (avg {171(,5) })

as shown in Fig. /./(a) and also that it outperforms the BARE approach
[Fig. 4.4(b)]. As a representative result, Fig. 4.5 graphically shows the es-
timated probability function of a test configuration with inclusion centered in
2 =218 x 1070 A, ) = 134 x 1072, 2{) = —2.81 x 1072\, The target
reconstruction is represented by the surface that encloses the values of the proba-
bility function Plorm (z,y,2) > ey, where €, = 0.5 is a user-defined probability
threshold. As it can be noticed, the spherical region Y is correctly localized with

localization index and inclusion volume both decresing from 551) =3.28 x 1072\

and 0" = 17.69 to £ = 1.95 x 1072\ and o{¥ = 1.13, respectively.

As a comparative result, the BARE approach has been applied to the same
test example and starting from the same training set. The resolution level has
been set to the highest achieved with the IMSA strategy, i.e., with discretization
Ar = Ay = Az = A?” over all the domain (2, instead of only inside the Aol

A§3). As it can be observed (Fig. 4.6), the volume of the recostruction is sig-

nificantly wider [\""® = 16.18] and also the localization indez is slightly worse

[6§bare) = 2.43 x 1072 \]. Moreover, it should be pointed out the computational
save provided by the multiresolution approach that evaluates the decision func-
tion twenty times less than the BARFE method and results to be more effective
in terms of real-time capabilities.

4.4.2.1 Validation with Random Noise added to Synthetic Data

In order to test the robustness of the methodology in various and more realis-
tic working conditions, also noisy measurements have been simulated by adding
a Gaussian noise with an amplitude mimicking a noise floor of —100dBm [60].
The transmission power has been varied in the range 10 dBm < P,, < 30dBm to
simulate realistic field measurements with different signal-to-noise ratio (SNR)
that depends from the chosen source power. The behavior of the error figures
versus P, is shown in Fig. 4.7 in order to further confirm the detection ac-
curacy of the proposed IMSA approach in dealing with noisy data. It can
be noticed that the pathology is correctly localized with small localization in-

dex avg {853) < 2.83 x 1072 )\ and well-estimated inclusion volume

Py,=15dBm
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Figure 4.5: IMSA Procedure - Pathology detection obtained by IMSA procedure
at s=1 (a),s=2 (b), s =3 (c).
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Figure 4.6: IMSA vs BARE Detection - Pathology detection determined by

BARFE procedure.
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Figure 4.7: Validation vs random noise - Localization error and volume estima-

tion versus transmission power Py, (—100dBm noise floor) .
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Figure 4.8: Validation vs random noise - Pathology detection determined by
IMSA procedure with noisy data [P, = 30dBm (a), P, = 25dBm (b), Py, =
15dBm (¢), P, = 10dBm (d)].

} < 1.11 when P,, > 15dBm, whereas for lower P,, values

o {1
Piz=15dBm
3)

the accuracy decreases showing maximum error values avg {8§

PtzzlodBm}

} = 1.36. Figure 4.8 shows, in a com-

5.93 x 1072\ and avg {6%3)

Piy=10dBm
parative fashion, the inclusion reconstructions of a noisy test example obtained

with different power values ranging from P, = 30dBm [Fig. 4.8(a)| down to
P,, = 10dBm |Fig. 4.8(d)]. Even if the reduction in detection accuracy is evi-
dent, the methodology still identifies the presence of the inclusion with acceptable

=524 x 102X and o = 1.09].
Piz=10dBm Piz=10dBm

3
errors [e\?

4.4.2.2 Validation with Different Breast Properties

The examples under test are concerned with breast characteristics different from
those in the training set. The aim of this section is to verify how the performances
of a trained SVM changes when dealing with test data that belong to different
test cases. More specifically, in addition to the Heterogeneously Dense (H) breast
adopted for training data generation, let us consider also Fatty (F) [¢f = 9.06 —
76.90] and Scattered (S) [e7 = 14.16 — j12.57] breast models. The electrical
characteristics of the inclusion are unchanged [e? = 53.46 — j18.26], leading
to different contrasts between pathology and surrounding mediums. As for the
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avev®] —

avgle”] A
avgvi)]

Figure 4.9: Validation vs electrical properties of breast - Localization error and
volume estimation versus breast complex dielectric characteristics (F-H-S).

already considered H-breast test case, a test set composed by Ti.; = 50 examples
has been generated both for F-breast and S-breast and the error figures obtained
with the IMSA methodology have been evaluated. Fig. 4.9 compares the mean
localization index and inclusion volume of the three considered test cases (F,
H, S) pointing out that the algorithm provides good reconstructions even if the

F
. . o g . 3
change in electrical characteristics causes an error increase of (Aeg )> = 47T%

-3\ _ 3\° _ ) _
and ( Ao, = 44% for the F-breast and of | Ae; = 6% and ( Aty =
4% for the S-breast respect to the H-breast initial test case.

4.4.3 Multiple Inclusions - Performance analysis

This section aims at assessing the effectiveness of the proposed IMSA method-
ology in detecting multiple inclusions. The imaging system configuration as
well as the characteristics of the the breast and the inclusions are unchanged
respect to the single-inclusion test case (with Heterogeneously Dense breast).
Dealing with the detection of two equal inclusions, both in terms of electric
and geometrical characteristics, the training and test data sets have been gener-
ated with the same number of regions (P = 2) and with the constraint on the
randomly-chosen positions of the regions that cannot be overlapped. The gener-
ated data have been still blurred with random Gaussian noise, reproducing the
same noise floor (—100dBm) as for the previous noisy test cases and a source
power P, = 20dBm has been used. A representative test case has been chosen
among the test set in order to show the probability maps estimated by the IMSA
approach at different steps [Fig. 4.10(a)-(c)] together with that obtained with
the single-resolution BARE classification procedure [Fig. 4.10(d)]. In such a
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w01~

Figure 4.10: Multiple detection - Pathology detections determined by IMSA pro-
cedure at s =1 (a), s=2 (b), s =3 (¢) and by BARE approach (d).

case, the values of the error figures turn out to be equal to 553) =291 x 1072\,
e =3.08x 1072\ and &Y = 0.89, ¥ = 1.68 when IMSA approach is applied,
while the BARE method provides higher localization index 5?‘"6) = 3.12x 1072\,
el — 414 x 1072\ and inclusion volume 0" = 571, 50" = 9.93. As
expected, the outperforming behavior of the IMSA approach in comparison with
the BARE procedure came out for the single-inclusion analysis is confirmed also
for the multiple inclusions test case. The multi-step classification process cor-
rectly identifies the multiple Aols and significantly enhance the resolution where
the probability is higher. As it can be observed, the IMSA strategy avoids the
clustering effect produced by the single-step resolution that is unable to identify
two independent areas and estimates only one high-probability region. For com-
pleteness, by considering the whole test set, the statistics of the error figures are
given in Tab. 4.1.

4.5 Conclusions

In this chapter, a multiresolution approach for the detection of breast cancer
based on a SVM classifier has been presented. Once the training phase is com-
pleted, the detection of the pathology is real-time estimated through the gener-
ation of a multiresolution probability map of presence. The spatial resolution is
iteratively enhanced only in those regions where the probability is higher.
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| Method | Awverage Error Figures |
SRS
IMSA
s=1 3.89 [ 1541 4.59 [16.33
s =2 3.40 | 7.65 || 4.02 | 6.13
s=Sp =3 | 3.06 | 1.13 | 3.79 | 0.96
| BARE | 3.77 [10.49] 4.31 | 8.92 |

Table 4.1: Multiple detection - Averaged error figures when applying IMSA and
BARE with noisy data.

The effectiveness of the approach has been numerically assessed showing a
selected set of experiments dealing with single and multiple inclusions. A com-
parative analysis with the single resolution approach (BARE) has been carried
out in order to underline the outperforming resolution accuracy provided by the
IMSA multistep procedure.

The generalization capabilities of the learning-by-example methodology has
been verified by testing the SVM-based classifier with noisy data as well as with
measured data related to different breast characteristics respect to the training
set.

It has to be noticed that three-dimensional recostruction has been obtained
starting from the measurement performed with fixed probe height. Usually, this
configuration is typical for two-dimensional problem geometries since a 2D plane
at the same source height is defined. As a matter of fact, the information enclosed
in the measured scattering matrix is sufficient for the estimation of the pathology
position in a 3D domain.
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Chapter 5

Direction of Arrival Estimation

Dealing with the proposed LBE approach, this chapter presents an innovative
multi-resolution approach for the real-time DOA estimation of multiple signals
impinging on a planar array is presented. The method is based on a support
vector classifier and it exploits a multi-scaling procedure to enhance the angular
resolution of the detection process in the regions of incidence of the incoming
waves. The data acquired from the array sensors are iteratively processed with
a support vector machine (SV M) customized to the problem at hand. The final
result is the definition of a map of the probability that a signal impinges on the
antenna from a fixed angular direction. Selected numerical results, concerned
with both single and multiple signals, are provided to assess potentialities and
current limitations of the proposed approach.
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5.1 Introduction

In the last decades, the technology of adaptive antenna arrays has been greatly
advanced and applied to many mobile and wireless communication systems [61][62].
Within this framework, the antenna beam-forming plays an important role and
the estimation of the directions of arrival (DOAs) of signals impinging on the
array is a crucial task in order to enhance the spatial diversity and consequently
the spectral efficiency. As a matter of fact, such an information enables the gen-
eration or steering of the radiation pattern with a maximum towards the desired
signals and nulls along the directions of interfering signals [63][64]. The effects of
interferences are mitigated and both the gain and the performance of the whole
communication system are enhanced. For such reasons, the estimation of the
DO As of unknown interfering and desired signals is of great interest and it is
still an open problem as confirmed by the number of papers published on this
topic.

In the scientific literature, several methods have been proposed for the direction
finding of multiple signals impinging on an array of narrow band sensors. Among
them, the most widely known and used are ESPRIT (Estimation of Signal Pa-
rameters via Rotational Invariance Technique) [65]-[67] and MUSIC (MUltiple
SIgnal Classification) [68]|69]. Other approaches based on the maximum likeli-
hood (ML) DOA estimation have been proposed [70][71], as well.

In the last years, great attention has been also paid to the use of learning-by-
examples (LBE) techniques. LBE-based approaches are able to provide a good
trade-off between accuracy and convergence, which is mandatory for real time
systems where fast reactions are required. Furthermore, they satisfactory deal
with unknown configurations (i.e., different from those “learned” during the train-
ing process) thanks to their generalization capability. Within this framework, the
benefits of using radial basis function neural networks (RBF N N) have been care-
fully analyzed in [72]. As a matter of fact, neural networks (NNs) are suitable
in approximating non-linear functions as those in DO As estimation. Moreover,
they can be easily implemented in analog circuits. An improved RBF' N N-based
approach has been presented by the same authors of [72] in [73| to address the
problem of tracking an unknown number of multiple sources when no a-priori
information on the number of impinging signals is available. More specifically,
the region above the antenna has been partitioned into angular sectors and each
sector “assigned” to a simpler NN, thus reducing with respect to [72] the problem
complexity as well as the computational burden of the learning phase. Towards
this end, each network has been trained to detect the subset of incoming sig-
nals that impinge on the corresponding angular sector. Accordingly, only those
N Ns of the regions where the signals have been detected in the first stage of the
process are activated in the second one to estimate the DO As of the incoming
signals.

More recently, some techniques based on support vector machines (SV Ms) [74]
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have been analyzed to profitably exploit their solid mathematical foundation in
statistical learning theory [6]. The main advantages of those approaches lie in
their ability to deal with various and complex electromagnetic problems [75][38],
and, analogously to NNs, in an easy hardware implementation [76]. As far as
the DO A estimation is concerned, a support vector regression (SV' R) procedure
has been presented in 77| when dealing with linear arrays. In such a case, a
SV M has been used to estimate the DOA of each impinging electromagnetic
wave starting from a set of known input-output examples where the DOAs of
the signals were uniformly distributed in the whole angular region above the
receiver. Despite the generalization capability of the SV R-based method, an
a-priori information on the number of sources and pre-fixed angular separations
between the DOAs (as in [72]) have been considered to increase the reliability
of the estimation procedure. An extension of such a model has been presented
in [78] and experimentally validated in [79] successively.

In this paper, an innovative procedure for real-time direction finding of signals
impinging on a planar array of electromagnetic sensors is presented. The problem
of the DO As estimation is formulated as a two step procedure, where the first step
is aimed at determining the decision function that correctly classifies whatever
input pattern by means of a SV M-based approach. In the second step, the
output of the decision function is mapped into the a-posteriori probability that
a signal impinges on the antenna from a fixed direction. In order to increase
the accuracy of the estimation process and to reduce the computational burden
affecting other DO As procedures, the proposed two-step strategy is nested into
an iterative multi-scaling process [80]. Accordingly, the resolution accuracy is
improved only in those angular regions where the unknown sources are supposed
to be located at the previous iteration. More specifically, the algorithm first
determines a coarse probability map of the DO As starting from a training set
where the incoming signals are non-uniformly distributed along the elevation
direction, 6, and the azimuthal one, ¢. Then, the SV M is used to classify the
input test dataset at successive resolution levels by performing a kind of synthetic
zoom in the angular regions of interest (ARols) where a higher probability is
detected and considering the same training set, thus performed only once and
off-line. Concerning the antenna architecture and unlike [73| and [78|, planar
arrays of sensors are considered since linear arrays lack the ability to scan in
3D-space and the estimation of both the elevation # and the azimuth ¢ angles is
crucial and has many applications in various fields of engineering. For instance, a
complete DO A information it is possible to improve the coverage of transmission
in wireless communications by avoiding interferences and enhancing the system
capacity [81]. More specifically, planar arrangements are very attractive in mobile
communications with portable devices where the main beam must be scanned
in any direction [82]. Moreover, the number of impinging signals is unknown as
well as their directions belonging to the whole angular range above the planar
antenna system (i.e., 6 € [0 : 90°] and ¢ € [0 : 3607]).
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Figure 5.1: Planar array geometry.

The chapter is organized as follows. The formulation of the iterative two-
step multi-resolution DOA approach (in the following denoted by the acronym
IMSA—SVM) is described in Section 5.2. In order to show the innovative fea-
tures of the approach and to assess its effectiveness, a selected set of numerical
results concerned with both single and multiple signals is reported and discussed
(Sect. 5.3). Moreover, some comparisons with state-of-the-art techniques are
also reported. Finally, some conclusions are drawn in Sect. 5.4.

5.2 Mathematical Formulation

Let us consider a planar array of M isotropic elements displaced on a regular
and rectangular grid with inter-element spacing d on the x — y plane. A set of
I electromagnetic waves impinge on the array from unknown angular directions
(0;, ¢i), i =1, ..., I, as sketched in Fig. 5.1. The signals, supposed to be narrow-
band and centered at the carrier frequency f (A being the corresponding free-
space wavelength), are generated by a set of electromagnetic sources placed in
the far-field of the receiving antenna. The open-circuit voltage at the output of

the m-th sensor can be expressed as 78]
I

Um = Y At (05,6) [E; @y ym) - €]} + s m =1, M (5.1)

i=1
where a,, (0;, ¢;) = el sinfi(meoséitymsing:) (3.4 Y heing the location of the m-
th sensor expressed in wavelength, and g,, is the background random noise at the
m-~th locations. The noise samples are supposed to be statistically independent
and characterized by a random Gaussian distribution with zero mean value.
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Moreover, E, and e,, are the electric field associated to the i-th impinging wave
and the effective length of the m-th array element.

According to the guidelines described in [63] and [64] about the control of adap-
tive/smart antennas, the solution of the DO As estimation problem is based also
in this work on the measurement of the total correlation matrix, defined as

¢ =E{v-uv'} (5.2)

where v = {v,,; m =1,..., M} and the superscript * stands for complex conju-
gation, at the output of the planar array since it contains sufficient information
on the received signals [73].

From a statistical point of view, the problem at hand can be formulated as the
definition of the probability map of the angular incidence of the incoming waves
starting from the knowledge of the total correlation matrix . Towards this end,
let us partition the angular region above the array into a two-dimensional lattice
of H = Hyx Hy cells, each one corresponding to an angular sector of sides A and
A¢ [Fig. 5.2(a)|. The status x;, of each cell can be empty [xn = x (0, on) = —1],
if any signal impinges on the array from the angular region identified by the
same cell, or occupied [xn, = x (0n,¢n) = 1], otherwise. Accordingly, the origi-
nal problem can be stated as follows: “find the a-posteriori probability function
Q (0, ¢) given a measured value of the total correlation matriz ® at the receiver”.
Mathematically, @ (6, ¢)can be also expressed as the linear combination of the
non-overlapping basis functions By, (6, ¢), h = 1,..., H defined over the angular
lattice

=" 4 (6. 6) B (6.9) (5.3)

where the weighting coefficient g (05, ¢5,) is the probability value that a wave im-
pinges on the array from the h-th angular sector [i.c., ¢ (05, ¢n) = Pr{xn = 1; @}]
and By, (0, ¢) = 1if (0, ¢) belongs to the h-th cell and By, (0, ¢) = 0 otherwise.

In order to improve the achievable angular resolution, a multi-resolution repre-
sentation of the unknown function @ (0, @) is looked for [Fig. 5.2(b) - r = 1] by
exploiting an iterative process analogously to [80]. More specifically, the proba-
bility function is expressed at the s-th step of the iterative procedure as a twofold

summation of shifted and dilated spatial basis functions
R(s) H(r)

QW (8,0) = Z " (Brrys nr) Briry (8,9) 55 =1, ., St (5.4)

r=0 h(r

r being the resolution index and R(s) = s — 1. The summation over r ranges
from 0 [Fig. 5.2(a)|, which corresponds to the largest characteristic length scale,
to R(s) |Fig. 5.2(b)|, which corresponds to the smallest angular basis-function
support at the s-th scaling step. For a given value of r, H (1) = H(gr) X Hg) is the
number of non-overlapped basis functions centered in the angular sub-domain
represented at the r-th resolution. Accordingly, the iterative DOA detection
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Figure 5.2: IMSA — DOA Procedure - Angular region partitioning and ARols
identification at the steps s =1 (a) and s = 2 (b).



CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATION

procedure is aimed at locating the terms of small length scale at those ARols
le.g., the yellow cells in Figs. 2(a)-2(b)| where the signals are supposed to impinge
with higher probability.

In order to profitably exploit the multiresolution representation of the a-posterior:
probability function (5.4) and solving the arising DOA problem, the following
multistep classification process is performed by means of a SV M-based tech-
nique. More in detail,

e Step 0 - SVM Training Phase. The SV M is trained once and off-line
starting from the knowledge of a set of known examples (i.e, input/output
relationships)

{@, (B ) s X = X O, 00)sm =1, N]W st =1, . ,T} (5.5)

called training set, where T is the number of training data. The N sam-
ples of each training data are composed by I (t) examples concerned with
angular positions (6;,¢;), i = 1,...,I(t), I(t) < Ipne where a signal im-
pinges on the array [i.e., occupied directions - x (0;,¢;) = 1;i=1,...,1(t)],
while the remaining F' (t) = N — I (t) are related to empty directions [i.e.,
X(ef’¢f) =-1;f= 1a7F(t)]

Starting from the knowledge of the training set, the problem turns out to
be the definition of a suitable discriminant function &

S @ =[x (Ohtn); h=1,.. H (5.6)

that separates the two classes x (6,¢) = 1 and x (0, ») = —1 on the basis of
the total correlation matrix & measured at the output of the planar array.
In order to approach the problem with a single classifier, the problem at
hand is reformulated as that of building the following single output function

S [@ (O dn)sn=1,...N| = x(On,¢n), h=1,.. H (5.7)

Towards this purpose and according to the SV M theory [6], the following
linear decision function is adopted

S{@ (@, (On b))} =w- 0 (. (0n,60)) +b, n=1,...N. (5.8)

S is determined in a space (called “feature space”) with a higher dimension-
ality than the original input data space and obtained through the non-linear
operator ¢ (-) [6]. The unknown terms w and b, which unequivocally define

the decision hyperplane @, are the normal vector and a bias, respectively.
They are computed during the Training Phase according to the guidelines
described in [38];
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e Step 1 - Low-Order DOA FEstimation (s = 1). At the first step, a coarse
probability map [Eq. (5.4) - s = 1] is determined by means of the SV M
classifier mapping the decision function < into the a-posteriori probability
function.

The unknown probability coefficients ¢(*) (6, gbh)J h=1,.. H are ap-

proximated with a sigmoid function [6] as follows

1
1+exp[’y\s{<p( Hh,¢h)}+y]

s=1’

¢ (On, on) = (5.9)

where v and v are two parameters computed according to a fitting process
[38] starting from a subset of the 7" training data of the Training Set;

e Step 2- IMSA — SVM Process (s > 1).

— Step 2.a - Angular Regions of Interest (ARols) Identification (s <
s + 1). Starting from the probability map previously (i.e., at the
s — 1-th iteration) determined, such a step is aimed at identifying the
angular sectors Dés), ¢=1,..., L(s) where the signals are supposed to
impinge in order to improve the resolution only in those regions and
enhance the accuracy of the DO A estimation. Towards this end, first
the values of the function Q=Y (0, ¢) are scaled, thus defining the
following new set of normalized probability coefficients

=D (O, Par)) h(r) = 1 H
(s=1) (g _ q h(r)> Ph(r) + 4m (T) IR ( )
P ( " )’(bh( )) qm — dm Qm_qM’ 7R<8)
(5.10)

r) 7¢h(r )]} and
Gm = Min,—o,.r(s) {Minaey=1, ) (4 (One)s dne )] }- Successively,
the new probability function

pt= (0,0) = Z Zh —1P (=0 (eh r)s Ph(r )Bh(r) (0, 9)

is thresholded by nulling the scaled coefficients greater than a user-
defined threshold 7. Finally, the thresholded function

where gy = max,—g,... Rg(s) {maﬂfh(r)=1 ..... H(r) [q(sfl) (eh(

Pth Z Z pen (On(r), Puir)) Bhiry (0, 0) (5.11)

r=0 h(r

where py, (Onir), Sniry) = 5 (Onys dnry) if D79 (Oniry, dnery) > 1
and py, (9/1(7»), gbh(r)) = 0 otherwise, allows one to identify the ARols,

Dés), ¢ =1,..., L(s) defined as those angular sub-domains where Pt(}ffl) 0,0) #
0;
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— Step 2.b - Multiresolution DOA FEstimation. A synthetic zoom is
performed by refining the representation of the unknown function
Q™ (0, $) and increasing the angular resolution (r < 7 + 1) only
in the ARols identified at (Step 2.a). Therefore, the multiresolu-
tion a-posteriori probability function (5.4) is updated (V' by setting
QY (0,0) = Pt(,f_l) (0, ¢) and computing the new highest resolution
coefficients, ¢(® (Hh(r), th(r)), when (6, ¢) € Dés), ¢=1,..,L(s) as in
(5.9);

e Step 3 - Termination Criterion (s = Syy). The sequence of operations
of Step 2 is repeated until both the dimensions and the number of ARols
between two consecutive cycles are stationary [i.e., L(s) = L(s—1) and the
variations of the dimensions of the ARols are not greater than the highest

angular resolution at the s-th step, AY) = min {AGS()S), A(bg()s)}].

min

5.3 Numerical Simulations and Results

In order to assess the effectiveness and reliability of the proposed approach, an
exhaustive set of numerical experiments has been performed and some selected
results will be reported in the following for illustrative purposes. The remaining
of this section will firstly (Sect. 5.3.1) illustrate the behavior of the multi-scaling
procedure also in comparison with other state-of-the-art approaches for DO A
estimation. The second part (Sect. 5.3.2) will be devoted to analyze the poten-
tialities and current limitations of the IMSA — SV M approach when dealing
with various and challenging electromagnetic scenarios. In such a framework,
some configurations in which conventional state-of-the-art signal subspace-based
array processing techniques cannot be applied are also dealt with in order to
point out the enhanced range of applicability of SV M approaches. Finally, a
uniform array of 3-dipoles is considered (Sect. 5.3.3) to verify the suitability
and reliability of the proposed method in correspondence with a realistic array
modelling.

With reference to the geometry shown in Fig. 5.1, a square planar array of
M = 16 isotropic radiators spaced by d = % is considered. The power of the
impinging signals has been set to P, = 30dB, ¢ = 1, ..., I above the level of the
background noise.

Concerning the training set, the following setup 7" = 400 and I,,,,, = 4 has been
assumed and the SV M classifier has been trained once and off-line on the same
data set whatever the test experiment. As regards to the T = Zi[gz T; training
examples, different scenarios have been considered, T; = 100 being the number

L (DTt is worth noting that at the s-th step of the multi-scaling procedure only the angular
ranges belonging to the ARols are processed by the SV M classifier with a non-negligible saving
of computational resources.
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Figure 5.3: Single signal scenario, I = 1 - Probability map determined by the
IMSA — DOA procedure at: (a) s =2, (b) s = Spp = 4.
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of configurations with ¢ signals. Moreover, the actual DO As of the signals of the
training data have been randomly chosen in a discrete grid of locations (6,,, ¢,),
n =1,..., N belonging to the the angular region above the antenna

6, =0+ |2=1| Ao
¢n:¢0+ o Agb’

5l

n=1,..,N (5.12)

sl

|-| and [-] being the floor function and the ceiling function, respectively. More-
over, in order to fully assess the generalization properties of the SV M-based
approach, the DO As of the test examples are different from those of the training
dataset.

5.3.1 Single Signal Scenario - Comparative Assessment

The first experiment deals with the DoA detection of a single signal and a test
set of Tl(teSt) = 100 examples related to the single-signal scenario has been consid-
ered. An illustrative description of the behavior of the proposed IMSA — SV M
approach is shown in Fig. 5.3 dealing with the “representative” (of the method
performance on the whole test dataset) configuration of a signal coming from
(6, = 53°, ¢1 = 260°). At the first step (s = 1), the planar angular region D" is
partitioned into H®) = 81 cells (being Aeéfi = 10° and Agbgi; = 40°, r = 0, the
angular steps along the elevation direction, #, and the azimuthal one, ¢, respec-
tively) and a coarse DOA probability map is determined following the procedure
described in Sect. ?? (Step 1). Then, the multi-scaling procedure takes place

(s > 2). The ARols are identified and partitioned into H}f()s)J “ = 81
R(s)=s—1

cells with an angular resolution of A@g; = 5% and Agbg; = 20°. For the sake
of space, only the DOA probability map obtained at the end of the second step
(s = 2) is shown in Fig. 5.3(a). The procedure is then iterated until s = S,,; = 4
[R(Sspt) = 3| with the final result reported in Fig. 5.3(b) characterized by an
angular resolution in D§4) equal to A@g; = 1.25° and Agbg; = 5% As it can be
observed (Fig. 5.3), the region with higher probability of incidence turns out to
be closer and closer to the actual angular location of the signal when increasing
the step number. Quantitatively such an event can be analytically quantified by
computing the values of the location inder <®) (Fig. 5.2) and of the incidence
area 1) defined as follows

)

()
max {®)}

x 100 (5.13)

where

) 2 [ (si — sinf®cosd® ) + (sinbsing — sind@sing® ) _ cosi®)”
8 = sinfcosp — sinb\s)cosp + ( sinfsing — sinf$)sing + (cosf — cosf
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and

() (s) 2
R(s) x—H(r) Sh(rm 4 (eh(r)v¢h(r))
ZT‘IO Zh(T)Zl {maxh(r){q(S)(eh(r),d)h(r))}
R(s) \mH(7) 0 (0n(r) Bn(r))
ZTZO Zh(?")il {maxh(r){q(s)<9h(r)7¢h(r))}

. N2 . N2
coSPp(ry — sme(s)cosgb(s)) +<sz’n9h(r)sm¢h(r) — sm0<8>sm¢>(s)> +

¢(S) =

(5.14)

being glgs)) = {(sm@h(r

~

N[

N2
<0039h(r) — cosﬁ(s)) } , (0, @) are the actual coordinates of the signal incidence

point, whereas <é, q§>

i) — Zr20 Zagh-a{0nna® (Onn @)} ) _
Sy i {a® (Oneydnir )
PO Zf(%)zl{%(r)q(s) (On(r)niry) }
S i {a® (Ony b )

(5.15)

identify the center of the (-th ARoI where the signal/signals is/are supposed to
impinge. As a matter of fact, the value of the location index reduces from ¢(!) =
13.17 down to ¢rt) = 253 (being ¢ = 4.10 and ¢® = 2.87). Analogously,
M =274, = 0.94, p® = 0.36, until p(5»t) = 0.14. As regards to the whole
set of test examples, the statistics of the “convergence” values of the indexes (5.13)
and (5.14) are given in the first block of Tab. 5.2.

In order to get an insight into the advantages of the proposed multi-resolution
approach over the classification single-step techniques, a bare DOA SV M-based
method has been considered and applied to the same test example. To fairly com-
pare the two methods, the same training dataset has been used. Moreover, the
same angular resolution has been adopted in both cases. Towards this purpose,
an angular lattice characterized by a uniform grid whose cell side was equal to
the finest discretization of the multi-resolution procedure (i.e., Af = AQS)) and

Ap = Agbgg), has been defined over the whole angular investigation domain of
the single step SV M approach. As it can be observed [Fig. 5.4(a)], although the
value of ¢ is quite close to that of the IMSA strategy (i.e., <| 1794 svar = 2-53
vS. Slgya = 3-14), the extension of the incidence area turns out to be signifi-
cantly wider (¢] ;54 gyn = 0.14 vs. ¥] g, = 2.79). On the other hand, it
cannot be neglected that the C PU-time of the test phase of the bare procedure
is approximately fifty times the one of the IMSA — SV M because of the need to
obtain a detailed map in the whole investigation area D%l) instead of in a limited
ARol, D%S"”t), only. As a matter of fact, the number of test points used by the
IMS A approach turns out to be widely reduced.

For completeness, the results from other standard nonlinear classification meth-
ods, such as the multilayer perceptron (M LP) and the radial basis functions
(RBF) neural network, have been analyzed, as well. More specifically, the DO A

66



CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATION

Q6.9

270

Q6.9

Q.9

Figure 5.4: Single signal scenario, I = 1 - Probability maps obtained with differ-
ent classification approaches: (a) singléa7step SV M, (b) multi layer perceptron
(M LP) neural network, and (¢) radial basis function (RBF') neural network
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| | Min| Max| Avg| Var |
| | Single Signal (I =1) |
0.16 | 43.25 | 2.81 | 8.76
0.02 | 9.14 | 0.25 | 1.35
| | Multiple Signals (I =2) |
[ 0.31 | 58.47 | 4.51 | 8.56 |
0.007 | 11.05 | 0.28 | 1.54
| | Multiple Signals (I = 3) |
[0.38 [ 17.35 | 555 | 2.14 |
0.009 | 0.37 | 0.15 | 0.34
| | Multiple Signals (I =4) |
< [ 047 [ 7072 17.29] 1358 |

v | 0.005| 1.89 | 0.17 | 0.69

‘@Jb

@) ‘-’\)

‘@Jb

Table 5.1: Statistics of the averaged performance indexes (¢ = Zle ¢ and
= ST 4 for different signal configurations (I =1, 2, 3, 4).

probability maps obtained with the M LP-based and RBF N N-based classifiers
are reported in Figs. 5.4(b) and 5.4(¢), respectively. Whatever the method, the
achieved estimate does not appear to be adequate and certainly not comparable
neither with that of the IMSA — SV M [Figs. 5.4(b)-5.4(¢) vs. Fig. 5.3(b)| nor
with that of the bare SV M [Figs. 5.4(b)-5.4(¢) vs. Fig. 5.4(a)| as also confirmed
by the values of the location index: <]z, =10.21 and <] ,,; » = 25.91.

The last analysis is concerned with the comparison between the IMSA — SV M
and those state-of-the-art methods for DOA estimation aimed at determining
the angular incidence of the signals, namely MUSIC, ESPRIT (i.e., two one-
dimensional 'SP RIT's independently-applied to the arrays followed by an align-
ment procedure to associate the estimated azimuth and elevation angle), 2D-
unitary ESPRIT |67], and a support vector regression-based (SV R) approach.
Towards this end, the azimuthal direction of the actual signal has been fixed to
¢ = 260°, while the elevation angle has been varied in the range 6 € [20° < 80°].
Moreover, the SV R algorithm has been previously trained with a dataset com-
posed by T'= Ty = 100 examples concerned with only one signal (I = 1). The
methods are then compared by means of the resulting signal location error, <.
Because of the planar array of isotropic elements and as expected [83], the per-
formances of the DO A techniques in 0 elevation-estimation turn out to better at
high elevations (# — 0°) [Tab. II], while the ¢ azimuth-estimation is greatest at
low elevations (0 — 90°). Moreover, the values of the estimation indexes point
out that the IMSA — SV M (last column - Tab. 4.1) is able to obtain similar
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0.52
0.83
2.22
4.93

0.75
1.17
1.52
1.64

1.21
1.38
1.64
1.56

DOA Method
| 6. | ESPRIT [ 2D ESPRIT | MUSIC | SVR [ IMSA — SVM®"™) [ IMSA— SV M |

0.34
0.59
0.68
0.74

0.08
0.22
0.27
0.36

0.16
0.51
0.51
0.68

20°
40°
60°
80°

Table 5.2: Single signal scenario, I =1 - Comparative assessment. Values of the

location index ¢ when applying IMSA — DOA, SVR, MUSIC, and ESPRIT.
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Figure 5.5: Single signal scenario, I =1 - Uniform (red points) and non-uniform
(green triangles) angular training sets.

results, in terms of angular resolution, than those provided by the SV R and of
the same order in magnitude of MUSIC and ESPRITSs except for wider angles
(0 > 60°), even though these latter need more C'PU-time (i.e., an optimized
IMSA — SV M implementation just needs few milliseconds on a PC' equipped
with a 3.0 GH z processor and 2 GH z of RAM). As regards to the growing of the
location index around 60°, its mainly depends on the training set. As a matter of
fact, it can be avoided by modifying the off-line training phase. For instance, the
choice of a uniform angular distribution of the training samples (Fig. 5.5), in-
stead of a non-uniform arrangement, allows one to obtain a behavior of ¢ almost
invariant to 6 for medium-high elevations.

In order to point out the generalization capabilities of the proposed approach
as well as its robustness to the model tolerances [74|[84], the effect of the array
failure has been evaluated and the arising results compared to those with 2D-
unitary ESPRIT which demonstrated several advantages over MU SIC and the
standard FSPRIT implementation. Towards this end, an increasing number of
array elements has been switched off. Moreover, the a-priori information on the
failure of some array elements has not been exploited through the definition of
an ad-hoc training set, but the same non-uniform set of input-output examples
concerned with the unperturbed array structure has been used. The results of
the comparative assessment when (0; = 53°, ¢; = 260°) are reported in Fig. 5.6.
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Figure 5.6: Single signal scenario, I = 1 - Behavior of the location index versus
the number of failed array elements.

5.3.2 Complex Scenarios - Performance Analysis

The following experiments are aimed at assessing the effectiveness of the IMSA—

SV M in detecting the DO As of multiple signals.

Dealing with the detection of two different incidence points, the first example is
concerned with test signals coming from (6; = 12°, ¢; = 165°) and (0 = 82°, ¢o = 165°),
respectively. The probability maps estimated by the IMSA — SV M at different

steps are shown in Fig. 7 together with those obtained with the single-step SV M
classification procedure [Fig. 5.8(d)|, the M LP-based approach [Fig. 5.8(e)],

and the RBF technique [Fig. 5.8(f)]. As expected and confirming the outcomes

from the study of the single-signal detection, the multi-scaling process allows

one to significantly enhance the performances of the single-step classification ap-
proaches as pictorially shown in Fig. 5.7 and quantitatively confirmed by the
indexes in Tab. 5.3. Moreover, it is worth noting that this conclusion is not lim-

ited to a particular configuration of incidence angles, but it holds true whatever

the two-signals scenario under test.

In order to assess the stability of the proposed approach, a test set composed

by T3 = 100 examples has been considered. The results obtained with the
IMSA — SV M are summarized in Tab. 5.1 (second block). As expected, the

mean values of the averaged performance indexes (¢ = 25:1 ¢® and zﬁ[ =

Zfil ¥»@) turn out to be very close to those of the previous test example [i.e.,
avg (&) = 4.51, avg (1ﬁ2> = 0.28 versus gl(s"”t) = 4.55, w%s"”t) = 0.23 and gés"”t) =

3.90, ¥ = 0.25].

The second numerical experiment, concerned with multiple incidences, considers
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Figure 5.7: Multiple signals scenario, I = 2 - Probability maps obtained with
different classification approaches: IMS§A — SVM [(a) s = 1, (b) s = 2, (c)
s = Sopt = 3|, [A0 = AB) = 2.5° and Ag = Agfy) = 10°].
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Figure 5.8: Multiple signals scenario, I = 2 - (d) single-step SV M, (e) multi
layer perceptron (M LP) neural network, and (f) radial basis function (RBF)

f)r
neural network [Af = Aﬁg)) = 2.5 and A¢ = A¢8; = 10°].
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| Method | DOA Indexes |
| L a [0 ] o [ 9]
IMSA - SVM
s=1 891 | 2.33] 10.27 | 3.08
s =2 590 [0.54 | 8.46 | 0.82
s=2S,,=3 | 455 [0.23] 3.90 [0.25

| Bare SVM ] 6.04 [0.67]16.78]3.78 |
| MLD [17.54]0.27 | 30.53 | 2.21 |
| RBF [17.19 [ 0.28 | 27.77 | 0.99 |

Table 5.3: Multiple signals scenario, I = 2. Performance indexes when applying
IMSA—DOA, single-step SV M, multi layer perceptron (M LP) neural network,
and radial basis function (RBF') neural network.

three-signals configurations. As regards to the results for a test set of Tg(mt) =50
three-signals examples, the values in the third block of Tab. 5.1 indicate that the
resolution accuracy of the proposed approach does not significantly reduce with

respect to the single-signal or two-signals scenarios [avg (¢3) = 5.55, avg <1/;3> =

0.15 vs. avg (&) = 4.51, avg <¢2) — 028 and & = 2.81, ¢, = 0.25]. As an
illustrative example, let us consider the case of a set of signals impinging on
the array from (0, = 8°, ¢; = 85°), (03 = 68°, ¢ = 95°), (03 = 55°, 3 = 290°).
Starting from the coarse map determined, three different ARols are successively
identified [Fig. 5.9(a)| and better resolved thus iteratively improving the DOA
resolution accuracy as pointed out by the indexes in Tab. 5.4 where the values
estimated by the other classification approaches are reported [Fig. 5.9(b)], as
well. By comparing the distribution at the S,,-th step of the IMSA and the
one from the bare SV M, it is evident the improvement guaranteed by the multi-
scaling process both in resolving and properly locating a number of ARols equal
to the number of signals (7).

In the third experiment, I = 4 (I = I,,,,) signals impinge on the planar array.
Figure 5.10 shows the results provided by the IMSA — SV M and in correspon-
dence with a set of representative examples. More in detail, the first example
(Configuration 1/1/1/1) refers to a configuration where four separated signals can
be recognized [(6; = 35°, ¢1 = 35°), (A = 20°, o = 115°), (63 = 70°, ¢p3 = 135°),
(0, = 80°, ¢4 = 260°) - Figs. 5.10(a)-5.10(c)|. The second example [Fig. 5.11(d)]
deals with a two-clusters setup |Configuration 2/2 - (60, = 15°, ¢1 = 75°), (02 = 25°, ¢ = 120°),
(05 = 75°, ¢35 = 270°), (0, = 65°, ¢4 = 300°)], while a single signal and a cluster
of three-signals are present in the last example [Configuration 1/3 - (0, = 15°, ¢; = 105°),
(0 = 80°, ¢po = 275°), (03 = 85°, ¢35 = 300°), (04 = 75°, ¢4 = 315°)]. Whatever
the example, the multi-scaling process is able to identify with an ever increasing
resolution from s =1 [Fig. 5.10(a)| up to s = S, = 3 |[Fig. 5.10(¢)| the ARoIs
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| | DOA Indexes |

| Method I a0 | 9 | @ | Y] < [ s3]
IMSA —SVM
s=1 5.00 | 0.2 5.09 | 1.43 | 4.61 | 1.56
§=2 4.15 | 0.06 || 5.42 [0.74 | 4.43 | 0.55
s = Sopt = 3 4.24 10.009 | 5.19 1 0.33 | 3.10 | 0.14

[ Bare SVM [ 10.11] 0.35 | 4.34 | 1.44] 16.52 | 1.55 ]
| MLP [2.45 | 0.6 2177|109 22.82]2.36
| RBF [28.31] 1.35 | 37.34]0.49 | 29.57 | 0.67 |

Table 5.4: Multiple signals scenario, I = 3 (Configuration 1/1/1). Performance
indexes when applying IMSA — DOA, single-step SV M, multi layer perceptron
(M LP) neural network, and radial basis function (RBF') neural network.

‘ Method H DOA Indexes ‘
| [ o [ ]l @ | b & [ ¢ o [ ¢]
IMSA—-SVM
s=1 6.84 | 0.40 | 24.37 | 0.40 || 23.31 | 1.48 || 25.47 | 1.56
5 =2 5.85 | 0.31 || 28.01 | 0.31 || 16.96 | 0.91 || 8.08 | 0.68
5= Sopt =3 3.44 1 0.16 || 29.33 | 0.16 || 12.31 | 0.21 || 7.42 | 0.24

Bare SVM || 8.37 [2.89 [ 24.71 [ 2.89 [| 26.52 | 2.89 || 25.68 | 2.89 |

MLP | 38.98 [ 0.52 [ 8.91 [0.52 [ 35.34 | 1.82 || 17.46 | 1.69 |

RBF | 15.19 [ 0.32 [| 18.69 [ 0.32 [| 40.65 | 1.81 [| 22.01 | 0.91 |

Table 5.5: Multiple signals scenario, I = 4 (Configuration 1/1/1/1). Perfor-
mance indexes when applying IMSA — DOA, single-step SV M, multi layer
perceptron (M LP) neural network, and radial basis function (RBF) neural net-
work.
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Figure 5.9: Multiple signals scenario, I = 3 (Configuration 1/1/1) - Probability
maps obtained with different classification approaches: (a) IMSA —SVM |s =

Sopt = 3] and () single-step SVM [Af = AG[y) and Ap = Ag(3)].
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‘ Method H DOA Indexes ‘
| [ o [ O] @ | do] & [ &[] o [ ¢
IMSA—SVM
s=1 15.50 | 0.89 || 11.51 | 0.89 || 45.50 | 2.98 || 57.71 | 2.98
5 =2 12.78 1 0.39 || 10.65 | 0.39 || 10.80 | 0.72 || 24.12 | 0.72
5= Sopt =3 12.91 1 0.16 || 10.55 | 0.16 || 4.71 | 0.26 || 17.01 | 0.26

| Bare SVM [ 1546 | 0.91 || 11.64 | 0.91 | 46.53 | 3.17 | 58.66 | 3.17 |
| MLP | 935 [0.29 ] 866 |0.29 [ 13.75 | 1.75 || 27.43 [ 1.75 |
| RBF | 8.06 [0.26 [ 877 [0.26 [ 14.84 | 0.57 || 9.50 | 0.57 |

Table 5.6: Multiple signals scenario, I = 4 (Configuration 2/2). Performance
indexes when applying IMSA — DOA, single-step SV M, multi layer perceptron
(M LP) neural network, and radial basis function (RBF') neural network.

to which the incidence directions of the actual signals belong as pointed out by
the numerical indexes ¢, i = 1,..., I in Tab. 5.5. On the other hand, it should
be noticed that the DOA estimation process tends to cluster multiple regions-
of-incidence in a single ARol when the angular separations among the signals
reduce. Such an event takes place also in correspondence with the “Configura-
tion 2/2" |Fig. 5.11(d) - Tab. 5.6] where two ARols are identified. It is even
more evident in Fig. 5.11(e) (Tab. 5.7) where the angular incidences of three
signals are detected in only one ARol. The “clustering” effect is quantitatively
pointed out by the behavior of the averaged localization index (Tab. 5.1 - fourth
block) when dealing with the complete test set (7°*” = 50) to which previous
examples belong. As a matter of fact, there is a significant increase of the avg (<)
compared to the values of the same quantity when I = 1, 2, 3 [avg ($4) = 17.29
vs. avg ($1) = 2.81, avg ($) = 4.51, avg (¢3) = 5.55], even though the value of

avg | ¢ | remains close to those of other multiple-signals configurations since the

estimated ARols still carefully identify the actual incidence areas.
The fourth and fifth experiments deal with more critical test scenarios since the
examples under test are concerned with a number of signals different from that
in the training set (i.e., I # 1,2, 3, 4). More specifically, let us consider the
Clustered Distribution of I = 18 signals with incidence directions indicated by
the white points in Fig. 5.12. It is worth noticing that such a configuration
turns out to be not admissible (i.e., I = 18 estimates cannot be obtained) for
signal subspace-based array processing techniques as 2D-unitary ESPRIT when
the planar array structure at hand is used. As a matter of fact, the maximum
number of sources 2D-unitary ESPRIT can handle is equal to [67]

ERESPRIT — min {U x (V —1); V x (U — 1)} (5.16)

max

being M = U x V. On the other hand, it should be considered that an high
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Figure 5.10: Multiple signals scenario, I = 4 - Probability maps obtained with
the IMSA — SVM. Configuration 1/]7/81/1: step (a) s =1, (b) s =2, and (¢)
S = Sopt = 3.
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Figure 5.11: Multiple signals scenario, I = 4 - Configuration 2/2: step s = Spp =
3 (d); Configuration 1/3: step s = Sppr = 3 (e).
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‘ Method H DOA Indexes ‘
| | a9 [ ] | do] & [ U] o [ ¢]
IMSA— SVM
s=1 16.98 | 0.88 || 39.13 | 2.81 || 54.57 | 2.81 || 64.78 | 2.81
s=2 16.51 | 0.62 || 6.04 | 1.70 || 22.43 | 1.70 || 35.70 | 1.70
s = Sopt =3 813 [ 0.59 | 6.18 | 1.46 || 11.84 | 1.46 || 28.89 | 1.46

| Bare SVM [ 17.38 [ 0.87 || 39.45 | 2.85 || 54.87 | 2.85 || 65.72 | 2.85 |
| MLP [ 11.62]0.19 [ 27.46 [ 1.08 [| 11.41 [ 1.08 || 8.15 | 1.08 |
| RBF | 6.51 [0.10 [[ 16.85 | 0.10 || 3.01 [ 0.10 | 20.63 | 0.10 |

Table 5.7: Multiple signals scenario, I = 4 (Configuration 1/3). Performance
indexes when applying IMSA — DOA, single-step SV M, multi layer perceptron
(M LP) neural network, and radial basis function (RBF) neural network.

| Method | DOA Indexes |

$ Y
IMSA —SVM 1.20 0.21
Bare SV M 2.82 1.94

| MLP [13.78] 1.66 |
| RBF [13.62] 121 |

Table 5.8: Multiple signals scenario, I = 18 (Clustered Distribution). Perfor-
mance indexes when applying IMSA — DOA, single-step SV M, multi layer
perceptron (M LP) neural network, and radial basis function (RBF') neural net-
work.

dimensional array processing is enabled widening the size of the planar array (i.e.,
the number of array sensors) at the expense of the computational complexity
that, unlike SV M-based methods, exponentially grows.

Figure 5.12 compares the “convergence” (s = S,,x = 3) map provided by the
IMSA — SV M and the ones from other single-step classifiers. As it can be
observed, the multi-scaling process is still able to carefully estimate the ARol
to which the actual signals belong with a degree of accuracy higher than that
from the other techniques both in terms of localization and area extension (Tab.
5.8). Similar conclusions hold true when dealing with the detection of the signals
distribution displayed in Fig. 5.13, although the detection of the single signal on
the bottom of the region of analysis appears to be more critical probably because
of the absence of similar spatial configurations in the training set.

Finally, the last experiment is concerned with a scenario where there are not
signals that impinge on the array and the noise level has been varied from the
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Figure 5.12: Multiple signals scenario (I = 18 - Clustered Distribution) - Proba-
bility maps obtained with different classification approaches: (a) IMSA— SV M
(s = Sopt = 3), () single-step SV M, (¢) multi layer perceptron (M LP) neural
network, and (d) radial basis function (RBF') neural network [Af = Aﬁg)) and

Aj = Agpy)l.
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Figure 5.13: Multiple signals scenario (I = 18 - Sparse Distribution) - Probability
maps determined by the IMSA — SVM at the convergence (s = S,r = 2 -

Af) = 5% and Ag(}) = 20°).

reference value used for the SV M training [P, = 20dB (Test Set) vs. P, = 0dB
(Training Set)| thus further complicating the test case. As a matter of fact,
neither the free-case example is present in the training set nor the same noise
level has been “learned”. Nonetheless, the SV M-based classifier did not detected
the presence of any signal thus defining a uniform distribution of probability |Fig.
5.14(a)]. Otherwise, the other methods give color-maps with some “artifacts”
[see Figs. 5.14(b)-5.14(c)| although characterized by very small values of the
probability of signal incidence.

5.3.3 Dipole Array Antenna

In the last experiment, a uniform array of %—dipoles is taken into account with
dipoles oriented along the x axis. Therefore, the effective length [82] of the array
element turns out to be

A [cos (gsz’nﬁcoaﬁ)

Em

7w | 1 — sin?6cos?¢

] [(cosbcosg) 8 — (sing) ¢| (5.17)

Moreover, the inter-element distance has been chosen equal to d, = 0.65\ and
d, = 0.5\ [85]. Then, a subset of the experiments of the previous sections, but
with the dipole array, has been dealt with to evaluate the applicability of the
IMSA — SV M approach to non-ideal electromagnetic scenarios, as well.

In the first example (/ = 1), the multi-scaling procedure stops after S,, = 4
iterations and the final result is shown in Fig. 5.15. Likewise the case with
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Figure 5.14: No-signals scenario [I = 0; P, = 20dB (Test Set) - P, = 0dB
(Training Set)] - Probability maps obtained with different classification ap-
proaches: (a) IMSA—SVM (s = S, = 1), (b) multi layer perceptron (M LP)
neural network, and (c) radial basis fufiétion (RBF) neural network.
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Figure 5.15: Dipole Array, I = 1 - Probability map determined by the IMSA —
DOA [S - Sopt - 4]

point-like sources, the estimations of both the location and the incidence area
improve at each iteration starting from ¢V = 43.19 and ¢ = 2.48 down to
¢Sort) = 2 96 and (5ort) = 0.06, where ¢ = 12.65, ¢©® = 5.41 and ¥® = 0.75,
3 = 0.21. In this case, the performance are comparable to that in Sect.
5.3.1. Different conclusions arise when processing the data of the two-signal
scenario [Fig. 5.16(a)]. In such a case, only the I; (i.e., the signal with the
lowest elevation 6) is detected |[Fig. 5.16(a)]. Such an event does not depend
on the DOA detection method, but from the antenna array at hand. As a
matter of fact, the radiation pattern of the array element is omnidirectional in
the z — y plane (i.e., ¢ = 90° and ¢ = 270°) with a 63,5 angle of almost 80°
degrees [82]. Therefore, the gain of the dipole is lower along the direction with
higher 6s, being ¢ = ¢ = 165°. Otherwise, when the actual configuration is
described by a set of signals coming from the directions (6; = 30°, ¢; = 60°) and
(0 = 30°, ¢ = 300°), the IMSA — SV M method still gives accurate estimates
[Fig. 5.16(b)] although with non-ideal isotropic receiving sensors.

5.4 Conclusions

From the analysis carried out within this research work and summarized in this
chapter, the following conclusions can be drawn:

e the use of a classifier based on SV M allows one to estimate the DOA
probability map in real time;

e thanks to the SV M generalization capability, the IMSA — SVM be-
haves properly when dealing with complex electromagnetic scenarios non-

84



CHAPTER 5. DIRECTION OF ARRIVAL ESTIMATION

0.8
0.6

Q.9

0.4
0.2

0.8
0.6

Q.9

0.4
0.2

270

(b)

Figure 5.16: Dipole Array, I = 2 - Probability map determined by the IMSA —
DOA when ((1) ]1 = (01 = 120, Qf)l = 1650), IQ = (02 = 820, ¢2 = 1650) [S =
Sopt = 3] and (b) I = (01 =30, ¢1 =60°), Iy = (02 =30, ¢ = 300°) [s =
Sopt - 3]
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CONCLUSIONS

necessarily belonging to the set of training examples;

the SV M-based approach is able to estimate the DOAs of a number of
sources greater than the maximum allowed by conventional eigenvalue de-
composition methods for a fixed planar array geometry;

unlike 2— D subspace-based algorithms, the computational complexity does
not increase with the size of the rectangular array;

the proposed LBE technique adapts to element failure or other source of
errors coming from the tolerances in the array structure that cause non-
negligible performance degradation in conventional estimation techniques
which require highly calibrated antennas with identical radiation proper-
ties;

the a-priori knowledge (deterministic or statistical) on the array config-
uration and radiation pattern characteristics can be easily and usefully
exploited by defining suitable IMSA — SV M training sets;

the multi-scaling procedure (IMSA) provides good results dealing with
both single-signal and multiple-signals configurations with an angular res-
olution comparable to that of other state-of-the-art DOA algorithms;

system complexity, classifier architecture, and computational costs signifi-
cantly reduce with respect to the “bare” classification.

86



Chapter 6

Real-Time Passive Localization and
Tracking

An innovative strategy for passive localization of transceiver-free objects is pre-
sented. The localization is yielded by processing the received signal strength
data measured in an infrastructured environment. The problem is reformulated
in terms of an inverse source one, where the probability map of the presence
of an equivalent source modeling the moving target is looked for. Towards this
end, a customized classification procedure based on a support vector machine
is exploited. Selected, but representative, experimental results are reported to
assess the feasibility of the proposed approach and to show the potentialities and
applicability of this passive and unsupervised technique.
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6.1 Introduction

In the recent years, there has been a wide and rapid diffusion of wireless sensor
networks (W.SNs) [86] thanks to the availability of such low-power and perva-
sive devices integrating on-board sensing, processing, and radio frequency (RF)
circuitry for information transmission. Usually, short-range communications are
at hand since the wireless nodes are generally densely distributed and charac-
terized by low power consumption to ensure a long lifetime. Therefore, W.SNs
have been also profitably used for location and tracking purposes. In such a
framework, the main efforts have been devoted to develop ad-hoc systems based
on dedicated transponders/sensors [87| or assuming an “active” target equipped
with a transmitting device [88]|[89]. Different properties of the received signal,
such as the time of arrival (TTOA) and the direction of arrival (DOA), have been
successfully exploited to address the localization problem [90][91]. Other modal-
ities to locate active targets are based on the evaluation of the received signal
strength (RSS) [92][93][94][95]. This is an easily measurable quantity that has
been also used to localize the wireless nodes of the network through effective
triangulation strategies [93]. Moreover, the distance between nodes has been
estimated thanks to simplified radio propagation models. Although easier than
a “passive” localization technique, the main drawback of these approaches is the
need of the target to be equipped with an ad-hoc device. Whether such a fact
can be considered negligible when tracking either objects or animals (although
the costs unavoidably increase), other problems arise when dealing with people
(e.g., privacy) and especially with non-cooperative subjects as for elderly people.
Moreover, such wearable devices can undergo (casual or voluntary) damages thus
limiting the reliability of the tracking system.

Other strategies concerned with transceiver-free targets have been also presented
in the scientific literature. State-of-the-art approaches are based on Doppler
radar systems able to estimate the distance between the target and the sensor
[96]. As a matter of fact, moving targets can be tracked through the analysis
of the Doppler signature induced by the object motion [97]. Unfortunately, the
arising performance in real environments can be strongly influenced by non-
negligible instabilities leading to several false alarms. Furthermore, slow-moving
targets [98] are not generally detected.

This paper is aimed at presenting an inversion procedure, preliminary validated
in [99], for the localization and tracking of passive objects starting from the
measurements of the RSS indexes available at the nodes of a W.SN. Since the
transmission of information among the wireless nodes is allowed by RF signals,
the arising electromagnetic radiations can be also profitably exploited to sense
the surrounding environment. Indeed, any target lying within the environment
interacts with the electromagnetic waves radiated by the nodes. Therefore, the
measurements of the perturbation effects on the other receiving nodes is dealt
with a suitable inversion strategy to determine the equivalent source model-
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Figure 6.1: FEquivalent Tracking Problem - Sketch of (a) the tracking scenario
and (b) the equivalent inverse problem.

ing the presence of the target/scatterer generating the perturbation itself. By
virtue of the fact that the number of nodes in a W.SN can vary and the need
to have a simple and flexible tracking/localization method allowing real-time
estimates, a learning-by-examples (LBE) strategy based on a Support Vector
Machine (SV M) is used.

The outline of the chapter is as follows. The mathematical issues concerned
with the proposed approach are detailed in Sect. 6.2 where the SV M-based
method is described, as well. In Sect. 6.3, representative results from a wide
set of experiments dealing with the tracking of single as well as multiple targets
in both outdoor and indoor W SN deployments are shown. FEventually, some
conclusions are drawn (Sect. 6.4).
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6.2 Mathematical Formulation

Let us consider the two-dimensional (2D) scenario shown in Fig. 6.1(a). The
investigation domain D is inhomogeneous and constituted by a set of obstacles
and moving targets to be localized/tracked all lying in free-space. The known
host scenario (i.e., the target-free domain) is described by the object function
T (r) =cep(r) —1— j”wh—e(? where w is the working angular frequency, r = (z,y)
is the position vector, €, and o, being the dielectric permittivity and the con-
ductivity, respectively. Moreover, the target/s is/are identified by the dielectric
distribution 7, (), r € D,. The area under test is infrastructured with a W.SN
and S nodes are deployed at r,, s = 1,...,S spatial locations. The s-th wireless
node radiates an electromagnetic signal, £7¢(r) (W1 and the field measured by
the other S — 1 nodes and arising from the interactions of the incident field with
the scenario under test is given by

E (1) = € (1) + / J (1) Go (r',1,,) dr’ (6.1)

D

where Gy is the free-space Green’s function [100] and r,, is the position of the
m-th (m =1,...,S — 1) receiving node. As a matter of fact, the field induced in
D is equivalent to that radiated in free-space by an equivalent current density
J (r) [101] modeling the presence of whatever discontinuity of the free-space (i.e.,
both the obstacles and the moving targets)

J(r)=71()" (1), reD (6.2)

where 7 (r) =7, (r) ifr € D, and 7 (r) =7, (r) if r € D, = D — D,,, D, and D),
being the support of the targets and its complementary area.

Equation (6.1) can be reformulated in a different fashion by defining a differential
equivalent current density J (r) radiating in the inhomogeneous host medium
[100] [Fig. 6.1(b)]. The radiated field can be then expressed as follows

€ (r) = € (r,) + / 7 () €9 (1) Go (¢ ) i+
D

/D J )G (rr,,) dr’ (6.3)

where J(r) = 7 (r) & (r) and 7 (r) = 7 (r) — 7 (r) is the differential object

function. In (6.3), the second term on the right side is the field scattered from
the host medium without targets, {9, being the electric field related to £i* in
correspondence with the target-free scenario. Moreover, G; is the inhomoge-

neous Green’s function for the target-free configuration [100|, which satisfies the

1 (1) The scalar case has been considered to simplify the notation. However, the extension
to the vectorial case is straightforward.
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following integral equation

G (r,1') = Go (r,1') + / 7 (') Go (r,r7) Gy (17, 1) drr”. (6.4)

D

Since the host medium is a-priori known, Equation (6.3) can be rewritten as

~

€90 (1) = €7 () + / J ()6 (1) i’ (6.5)

where £7¢ (1, ) is the field of the scenario without targets and equivalent to an
“incident” field on the targets.
With the knowledge of G; (i.e., the knowledge of the target-free scenario) the scat-
tering problem turns out to be the retrieval of the differential source J occupying
the target domain D,. The detection of the target position and the definition of
the target trajectory in D can be then formulated as the definition of the sup-
port of the differential equivalent source, which satisfies the inverse scattering
equation (6.5), starting from the measurements of £ (r,.), m = 1,...,5 — 1.
This is possible in a W S N-infrastructured environment since the nodes at hand
are simple and cheap devices that give an indirect estimate of the field value
through the RSS index. Accordingly, the RSS is measured at the m-th node
when the s-th node is transmitting by considering both the target-free scenario
[€in¢ (r,.) knowledge| and the presence of targets within D [£5f (r, ) knowledge]
and the differential field £, = £ (r,,,) —&me (r Y could be used for the inversion
procedure.
However, it is worth to take into account that the power radiated by the WSN
nodes can vary due to several factors (e.g., battery level of the W NS nodes,
environmental conditions) thus “blurring” the data acquisition and, consequently,
complicating the solution of the inverse problem at hand. To overcome this
drawback, the inversion is statistically recast as the definition of the probability
that a target is located in a position of D starting from the knowledge of f,iffs,
s=1,..,8 m=1,..,5,m+# s. The arising classification problem is then solved
by means of a suitable SV M-based approach. More specifically, the region D
where the targets are looked for is partitioned into a grid of C' cells centered at r_.,
c=1,...,C. Each c-th cell is characterized by its state, x., which can be either
empty (x. = —1) or occupied (x. = 1) whether a target (i.e., the corresponding
differential equivalent source) is present or absent. Moreover, the probability
that a target belongs to the c-th cell, a. = Pr{x. = 1| (L, ¢)}, is given by

1

c=1,..C (6.6)

e ™ 14 exp {p”H [g@,cﬂ —l—q}’

where [' = {f,ﬁffs; s=1,..,8m=1,...5 m# n}, and p, ¢ are unknown pa-
rameters to be determined [6]. In (6.6), the function ¢ (-) is a non-linear mapping
from the data of the original input space, I, to a higher dimensional space (called
feature space) where the data are more easily separable through a simpler func-

tion (i.e., the hyperplane H).
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The hyperplane H is off-line defined throughout the training phase by exploiting
the knowledge of a set of 7" known examples where both the input data (L,
t =1,...,T) and the corresponding maps (Xt ={xXer; c=1,...,C}H t=1,..,T)
are available. Usually, a linear decision function is adopted

HlpL, o) =w-oT,c)+b, c=1,..,C (6.7)

w and b being an unknown normal vector and a bias coefficient, respectively.The
decision function parameters unequivocally define the decision plane and are
computed in the training phase by minimizing the following cost function

r c® o®

T I o o FUSILSS o} o FON 1

Ztl t=1 i=1 Ztl—tlfl

subject to the separability constraints

(L,e)+b> l—ng, c=1,..,C

6.9
(£a0)+b§7h@—1a c=1,..,C ( )

(SIS
ASEIRS

where A is a user-defined hyperparameter [102] that controls the trade-off between

the training error and the model complexity to avoid overfitting. Moreover, 'r;ﬁ

and 7}9 are the so-called slack variables related to the misclassified patterns.
They are introduced because the training data are usually not completely sepa-
rable in the feature space by means of a linear hyperplane.

The minimization of (6.8) is performed following the guidelines detailed in [38|
and also exploiting the so-called kernel trick method [6].

6.3 Experimental Validation

The feasibility and the effectiveness of the proposed approach have been as-
sessed through an extensive experimental validation carried out in both indoor
and outdoor scenarios (Fig. 6.2). The nodes have been placed at fixed positions
ro = (zs5,9s), s = 1,..., 5, on the perimeter of the investigation area D. In all
experiments, S = 6 Tmote Sky nodes have been used and the region D has been
assumed having the same size (—20\ < 2 < 20\ and —12\ < y < 12)) whatever
the scenario at hand, A being the free-space wavelength of the wireless signals
transmitted by the nodes (e.g., f = 2.4GHz). Although the same topology has
been adopted for outdoor as well as indoor situations, two different trainings of
the SV M-based approach have been performed since the arising electromagnetic
phenomena significantly differ (e.g., the electromagnetic interferences). Other-
wise, the calibration of training examples (T'), the separation hyperplane H (),
and the discretization of the investigation area (C) has been performed only
once, namely for the outdoor case, since the format of the data processed by the
SV M does not change. More in detail, the following setup has been considered:
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(b)

Figure 6.2: Problem Geometry - Plots of (a) the outdoor and (b) the indoor
environments with W .SN-based tracking system.
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Figure 6.3: Calibration - Localization error as a function of the SV M control
parameters: 7' (A = 100, C' = 60), A\ (T" = 500, C' = 60), and C' (T = 500,
A = 100).

T € [100,700] with step AT = 100, A = 10%, i = {0,1,2,3}, and C € [15,960]
from a rough discretization with C' = 5 x 3 cells of dimension 4\ x 4\ to the
finest one having C' = 40 x 24 cells of dimension A x \. These values have been
calibrated with reference to single-target experiments by evaluating the behavior
of the localization error defined as
act est 2 act est 2
SV ) - ) 610

pmaa:

act __ act ,,act est __ est ,est :
where 7% = (xj Y ) and rf* = (xj  YS ) are the actual and estimated

positions of the target, p,... being the maximum admissible location error. As

for the test case at hand, it turns out that p,,.. = \/Xz% + Yl% and [j“ has been
calculated from the probability map according to the following relationships

C
x@st o Zc:l el
J C
Zc:l Qe

es ZCC’: &Cyc
yot = L1 Olle. (6.11)

Figure 6.3 gives the normalized values of the location indexes obtained for dif-
ferent combinations of the control parameters. Each plot refers to the variation
of a control parameter keeping constant the others (77" = 500, \°?* = 100,
Crt = 60).
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Figure 6.4: Single target localization - Outdoor Scenario - Probability maps of
the investigation region D obtained when the test data (a) belongs and (b) does
not belong to the training data set.

As far as the SV M training phase is concerned, the reference measurements have
been first collected in the target-free scenarios [i.e., 7 (r) = 0 = & = 0, m,s =
1,...,8, m # s|. Successively, the sets of RSS measurements [i.e., RSS,, s (t),
m,s =1,...58, m # s, t =1,..,T| have been collected with the target located
at T different positions, r; = (z;,y;), j = 1, .., T, randomly selected within D to

cover as uniformly as possible the whole area under test.

As regards the SV M test step, both single (J = 1) and multiple (J = 2) target
tracking problems have been considered.
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Figure 6.5: Single target localization - Indoor Scenario - Probability maps of the
investigation region D obtained when the test data (a) belongs and (b) does not
belong to the training data set.

6.3.1 Single target tracking

The first experiment deals with the outdoor tracking of a single human being
moving inside D. Figure 6.4 shows the probability map estimated when the target
is at r{“ = (—16A,8\). The circle gives the actual position. Two different cases
have been considered. More specifically, Figure 6.4(a) shows the probability map
assuming that the same experiment has been taken into account in the training
phase. Differently, the map in Fig. 6.4(b) has been obtained the example not
belonging to the training data set. It is worth noting that the target is correctly
localized in both maps since the center of the target lies within the region with
higher probability. The same experiment has been successively considered for the
indoor scenario. The results of the SV M-based localization process are shown in
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Figure 6.6: Single target tracking - Outdoor Scenario - Actual and estimated
trajectories.

Fig. 6.5. As for the previous test, the results when the same example has been
either considered [Fig. 6.5(a)] or not [Fig. 6.5(b)] in the training phase have been
reported. As expected, the values of the localization errors increase whatever the
training because of the complexity of the electromagnetic interactions arising
from the presence of the walls (i.e., multiple reflections) in indoor environments.
Nevertheless, the region with high probability still contains the actual position
of the target thus demonstrating a good degree of reliability of the approach also
in this case.

Let us now consider a single target moving outdoor inside D along the straight
line shown in Fig. 6.6. The RSS values have been measured at 6 different time
instants, but it is worth to point out that the acquisition time can be further
shortened to reach an almost real-time tracking. The samples of the localization
maps and the estimated path are reported in Fig. 6.7 and Fig. 6.6, respectively.
As it can be observed, there is a good matching between the actual path and the
estimated one assessing the effectiveness of the approach in real-time processing,
as well. The same analysis has been carried out for the indoor case. Although
the moving target is quite carefully localized, the result in Figure 6.8 and the
location indexes in Tab. 6.1 confirm the higher complexity of tracking the target
as compared to the outdoor case.

6.3.2 Multiple target tracking

In order to deal with the tracking of multiple targets, the SV M classifier has been
trained with a mixed data-set containing examples with one (77 examples with
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Figure 6.7: Single target tracking - Outdoor Scenario - Screenshots of the prob-
ability map of the investigation region D acquired during the target motion.
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Outdoor Indoor
Time Instant p | p X pinas [A] P | p X pinas [A]
1 0.071 3.32 0.209 9.76
2 0.070 3.30 0.131 6.09
3 0.060 2.78 0.115 5.38
4 0.057 2.67 0.048 2.23
5 0.045 2.09 0.089 4.15
6 0.074 3.46 0.140 6.53
‘ Average Error : p H 0.063 ‘ 2.94 H 0.122 ‘ 5.69 ‘

Table 6.1: Single target tracking - Localization errors for the outdoor and the
indoor scenarios.

y/A

-8
/ ’ Real —o—

‘ Estimgted "TAW

20 -16 -12 -8 -4 0 4 8 12 16 20

Figure 6.8: Single target tracking - Indoor Scenario - Actual and estimated tra-
jectories.
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Single Target Multiple T'arget
J=1 Jj=1 | J=2
L L2 [ Xtmae N 2 [ X pmae N ] p | pX Pimax [N |
(a) || 0.044 2.07 0.217 10.12 0.158 7.37
(b) || 0.059 2.77 0.196 9.14 0.135 6.31
(¢) || 0.093 4.34 0.151 7.02 0.074 3.44
(d) || 0.150 6.98 0.149 6.96 0.062 2.91
(e) || 0.262 12.23 0.063 2.93 0.106 4.94
(f) || 0.357 16.67 0.031 1.46 0.063 2.93

Table 6.2: Multiple target localization - Qutdoor Scenario - Localization errors
for the single and multiple target case.

J = 1) and two (T3 examples with J = 2) targets. Since T'= T} + T, examples
have been used also for the single-target training, some experiments have been
carried out to analyze the dependence of the localization on the percentage of
training samples from 77 and 7. The probability maps in Fig. 6.9 show that the
position of one target can be correctly located although a smaller set of single-
target examples has been used for the training phase (i.e., T} < Ts). Vice versa,
a larger number of example is needed for an effective localization of the two
targets as pointed out by the maps in Fig. 6.10 and quantified by the location
indexes in Tab. 6.2. Such a behavior was expected since the number of different
combinations with two targets is higher if compared to the single-target case.
Therefore, 77 = 150 and 75 = 350 examples have been successively used for the
training phase of the following tracking experiments.

As representative examples, two different situations with J = 2 have been dealt
with. In the former, one target (j = 1) is moving within D while the other (j = 2)
remains immobile in the same position. Instead, both targets are moving in the
second example. The actual trajectory and the estimated one are shown in Fig.
6.11 and Fig. 6.12, respectively. Whatever the example at hand, a quite careful
indication on the position and path followed by the targets has been obtained
as further confirmed by the average values of the localization errors (outdoor:
P, = 0.070, p, = 0.061 - indoor: p; = 0.101, p, = 0.070).

6.4 Discussions

The localization and tracking of passive targets have been addressed by exploit-
ing the RSS values available at the nodes of a W.SN. The problem at hand has
been reformulated into an inverse source one aimed at reconstructing the support
of an equivalent source generating a perturbation of the wireless links among the
W SN nodes equal to that due to the presence of targets within the monitored
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Figure 6.9: Single target localization - Outdoor Scenario (T € [0,500], Ty €
[0,500], A = 100, C' = 60) - Probability maps of the investigation region D when
using (a) 100%T; and 0%T3, (b) 80%T; and 20%Ts, (¢) 60%T; and 40%Ts, (d)
40%T; and 60%T5, (e) 20%T; and 80%T5, and (f) 0%T; and 100%Ts of samples
in the training phase.
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Figure 6.10: Multiple targets localization - Outdoor Scenario (Ty € [0,500], Ty €
[0,500], A = 100, C' = 60) - Probability maps of the investigation region D when
using (a) 100%T; and 0%T3, (b) 80%T; and 20%T, (¢) 60%T; and 40%Ts, (d)
40%T; and 60%T5, (e) 20%T, and 80%Ts, and (f) 0%T; and 100%T5 of samples
in the training phase.
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Figure 6.11: Multiple targets tracking - Outdoor Scenario - Actual and estimated
trajectories.
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Figure 6.12: Multiple targets tracking - Outdoor Scenario - Actual and estimated
trajectories.
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area. The inversion has been faced with a learning-by-examples approach based
on a SV M classifier devoted to determine a map of the a-posteriori probability
that a differential equivalent source is present within the investigation domain.
Experimental results have assessed the effectiveness and reliability of the pro-
posed approach in dealing with the tracking of single and multiple human beings
both in indoor and outdoor environments.

104



Chapter 7

Conclusions and Future
Developments

In this last section, some conclusions are drawn and further advances are envis-
aged in order to address the possible developments of the proposed technique.
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In this thesis, a classification approach for real-time solution of complex elec-
tromagnetic problems has been proposed. A suitable SVM-based strategy has
been developed for determining the probability of presence and the position of
targets starting from the definition of a “risk map” of the considered domain.
The effectiveness of the approach has been assessed by considering different ap-
plication fields, starting from the buried object detection (Chapter 3) up to the
passive tracking of targets moving throughout the monitored area (Chapter 6).
The obtained results confirmed the generalization capabilities of the method in
detecting and locating multiple targets as well as in estimating the presence and
the direction of arrival of interferences (Chapter 5).

Concerning the methodological novelties of this work, the main contribution is
concerned with the following issues:

e the integration of a SVM-based classifier with an iterative multi-scaling
procedure to improve resolution accuracy;

e the reliability in dealing with real experiments and three-dimensional sce-
narios;

e the flexibility in the solution of time-varying scenarios as for the online
tracking of moving targets;

Future works, current under development, will be devoted to fully exploit the
key-features of the approach as well as to increase autonomy by enabling the
system to adapt to changing circumstances. In such a framework, the possibility
to move in an autononomic context requires that the proposed approach will be
able to adjust itself to allow high flexibility to dynamic and unexpected situa-
tions. Incremental learning strategies will be investigated as an on-line method
to construct the solution recursively.
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