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Chapter 1   
 

Towards A Sustainable Future 
 

 

 
This chapter addresses the question on why it is necessary to focus towards 

alternative or renewable energy and challenges related to environmental conservation. The 

first section is dedicated to consider the large volumes of carbon dioxide in the atmosphere 

created by the increased human activity. Later section specifies the significance of 

alternative or renewable energy in near future and lists its possible resources. The 

following sections illustrate advantages and different ways to harvest solar energy. The 

importance of solar powered hydrogen generation for power generation by means of fuel 

cell is also revealed. A section is also devoted to efficient solar concentrator to utilize most 

part of solar spectrum. The chapter is ended with the outline of the thesis with short 

introduction on each chapter. 
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1.1   Reasons to change Current energy system 

 
Humanity can prevent catastrophic climate change if we act now and adopt policies 

that reduce energy usage.�The frequent utilization of fossil fuels is affecting globe such as 

climate change, world energy conflicts and energy source shortages which have threatened 

world stability� What is needed now is a transformation of the entire global energy system. 

No one benefits from the release of greenhouse gas emissions, but developed and 

developing nations alike will benefit in numerous ways from the transition to an energy-

efficient and renewable world. The following negative effects make us to think about 

transformation of current global energy system. 

 

1.1.1 Decrease in fossil fuel reserves. 

 

Fossil fuels play a crucial role in the world energy market. The discovery of fossils 

for energy purpose has turned the wheel of revolution in the history of mankind. Man’s fuel 

needs, since the olden times, have been met through the use of fossil fuels. Fossil fuels, as 

the name suggests, were formed from the organic remains of prehistoric plants and animals. 

They are responsible for much of the world’s electric power and total energy demands. 

Since 1900, the world’s consumption of fossil fuels has nearly doubled every 20 years (Fig. 

1a). It is obvious that current use of fossil fuels in various sectors for heat and power 

generation (including hydrogen production from them) continues threatening global 

stability and sustainability. These are locally, regionally, and globally more evident than 

before. This concern is even further compounded by increasing world population, rapid 

technological development, increasing energy requirements, etc (Fig. 1b). Although in the 

past fossil fuels were prime in meeting the energy needs. However�� the current global 

picture does not allow utilizing fossil fuels indefinitely as the principal energy sources due 

to the rapid increase of world energy demand and energy consumption. So, there is an 

urgent need to switch to sustainable energy, such as such as solar, wind, and energy carriers 

such as hydrogen, etc 

http://www.buzzle.com/articles/fossils/
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Figure 1 (a) Energy obtainable from fossil fuels as a function of time.(b) Total amount of 

energy consumption data. The figures are adopted from [1] 

 
 

Fig 1(a) 

Fig 1(b) 
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Figure 2: Illustration of possible global problems from increasing use of fossil fuels and 

the consequent need for hydrogen energy systems. The key drivers are shown at the top. 

The first option (shown on the left) follows a path of increasing use of renewable and 

sustainable energy, while the second option (right) allows for increasing use of fossil fuels 

and the problems related to that path. The figure is adopted from [2]  

 

 

Solar  
Energy 
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1.1.2. Global climate change: global warming  

The earth has gone through many natural climatic cycles during its long history. 

The scary part is that we are causing changes at an unbelievable rate, much faster than 

normal. The burning of fossil fuels such as gasoline, coal, oil, natural gas in combustion 

reactions fuels releases greenhouse gases like COx, SOx , NOx , etc at a life-threatening rate 

and they cause air pollution to the atmosphere (Fig 3). Gas, particulate matter and dust 

clouds in the atmosphere absorb a significant portion of the solar radiation directed at the 

Earth and cause a decrease in the oxygen available for the living things and originating 

global warming (Fig 3). Global Warming, Greenhouse Effect, Climate Change etc. are 

occurring right now! Most scientists believe that the warming of the climate will lead to 

more extreme weather patterns [3] such as:  

a) More hurricanes and drought 

• Longer spells of dry heat or intense rain; 

• Scientists have pointed out that Northern Europe could be severely affected with 

colder weather if climate change continues, as the arctic begins to melt and fresher 

water move to south. It would effectively cut off the Gulf Stream that brings 

warmth from the Gulf of Mexico.  

• In South Asia, the Himalayan glaciers could retreat causing water scarcity in the 

long run. 

b) Super-storms 

 The world’s oceans are approaching 270C or warmer during the summer. This 

increases the odds of major storms. When water reaches such temperatures, more of it 

evaporates priming hurricane or cyclone formation. Once born, a hurricane needs only 

warm water to build and maintain its strength and intensity. Furthermore, “as emissions of 

greenhouse gases continue to trap more and more of the sun’s energy, that energy has to be 

dissipated, resulting in stronger storms, more intense precipitation and higher winds.” 

 

http://panda.org/news_facts/newsroom/news.cfm?uNewsId=2003&uLangId=1
http://www.earthaction.org/en/archive/99-01-cich/nowhere.html
http://www.guardian.co.uk/Distribution/Redirect_Artifact/0%2C4678%2C0-156668%2C00.html
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c) Rising Sea Levels 

Water expands when heated, and sea levels are expected to rise due to climate 

change. Rising sea levels will also result as the polar caps begin to melt. Rising sea levels is 

already affecting many small islands. Rising sea levels will impact many coastlines, and a 

large mass of humanity lives near the coasts or by major rivers.  

d) Increasing ocean acidification 

Scientists are finding that oceans have been able to absorb some of the excess CO2 

released by human activity. This helped the planet to cool more than it otherwise could 

have been if these gases remained in the atmosphere. However, the additional CO2 being 

absorbed is also resulting in the acidification of the oceans (when CO2 reacts with water it 

produces a weak acid called carbonic acid, changing the sea water chemistry).This change 

is also occurring rapidly and some marine life may not have the chance to adapt. Some 

marine creatures are growing thinner shells or skeletons, for example. Some of these 

creatures play a crucial role in the food chain, and in ecosystem biodiversity. 

e) Failing Agricultural Output; Increase in World Hunger 

Drought and desertification are starting to spread and intensify in some parts of the 

world. Failing agriculture in the future was predicted. Since longtime scientists, who 

looked at projections of global warming’s impact on the average temperatures during the 

growing season, fear that rising temperatures will have a significant impact upon crop 

yields, most noticeably in the tropics and sub tropics. While warm weather can often be 

good for some crops, hotter than average temperatures for the entire season is often not 

good for plants. This would affect at least half the world’s population that either live in the 

region or rely on food coming from that region. 

             The evidence that humans are causing global warming is strong, but the question of 

what to do about remains controversial. Economics, sociology, and politics are all 

important factors in planning for the future. Even if we stop emitting greenhouse gases 

(GHGs) today, the Earth would still warm by another degree Fahrenheit or so. But what we 

do from today forward makes a big difference.  

http://www.planetark.org/dailynewsstory.cfm?newsid=2428&newsdate=05-Nov-1998
http://www.sciencemag.org/cgi/content/summary/323/5911/193
http://www.sciencemag.org/cgi/content/summary/323/5911/193
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Figure 3: Above graph shows the monthly average concentration of CO2 in the 

atmosphere. The concentration of CO2 in the atmosphere is increasing at an accelerating 

rate from decade to decade. The graph is collected from ref [4]  
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1.1.3 Conflicts and wars due to fluctuations of energy prices, economic recessions, 

decrease of living standards and increase of unrest among countries. 

 

There is clearly a problem of worldwide energy dependence. Oil, which nowadays 

constitutes around 33% of primary world energy is produced in a small number of 

countries organized around OPEC (Organization of the Petroleum Exporting Countries), 

characterized by political instability in their international relationships, at least from the 

western point of view. For this reason, the price of petroleum is subject to important 

fluctuations due to economic and political reasons. In the last few years, which have been 

dominated by the consequences of the Iraq war and the instability in Iran–USA 

relationships, the price of petroleum has increased to $75/Brent bbl (1-May-2006), an 

unprecedented and excessive price for the developed countries that also restricts the 

progress of developing countries which depend on oil for their energy supply.  

 The decrease of available fossil fuel reserves and increased fuel costs since the 

mid- to late-1900s has led to variations in lifestyles and standards of life. These effects 

have in some regions decreased living standards of entire societies. Problems are often 

attributed to decreases of fossil fuel energy reserves, and therefore the transition to a 

sustainable energy should be encouraged. 

 

1.2  Renewable energy: The future. 

 

Most of the energy we use today comes from fossil fuels-coal, oil, and natural gas. 

These fuels are being consumed more rapidly than they are replaced [5]. This means that 

someday we could run out of these fuels. In recent years the production and use of 

renewable fuels has grown more quickly to attain cleaner and less polluting environment. A 

number of State and Federal Government incentives, and also most of the developed 

countries have started investing in renewable energy. Sun, wind, and water are perfect 

energy sources depending on where we are. They are non-polluting, renewable and 

efficient. The use of renewable energy sources not only helps to reduce global carbon 

dioxide emissions but also add some much-needed flexibility to the energy resource by 

decreasing our dependence on limited reserves of fossil fuels. Essentially, these renewable 
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energy sources create their own energy. The object is to capture and harness their 

mechanical power and convert it to electricity in the most efficient and productive manner 

possible. There are more than enough renewable energy sources to supply all of the world's 

energy needs forever; however, the challenge is to develop the capability to efficiently and 

economically capture, store and use the energy when needed. 

The use of renewable fuels is expected to continue to grow over the next 30 years, 

although we will still rely on non-renewable fuels to meet most of our energy needs. 

However, one day much of the energy we use may come from renewable sources as 

scientists find better ways to develop renewable energy [6].  

1.3 Renewable sources    

A natural resource is a renewable resource that can be replenished at a rate equal to 

or greater than its rate of depletion; for example, solar, wind, geothermal and biomass 

resources. Renewable resources are now  a focal point of the environmental movement, 

both politically and economically. Energy obtained from renewable resources puts much 

less strain on the limited supply of fossil fuels (non-renewable resources). The problem 

with using renewable resources on a large scale is a cost problem and in most cases, more 

research is needed to make their use cost efficient. 

There are many forms of renewable energy. Most of these renewable energies depend 

in one or another way on sunlight. Wind and hydroelectric power are the direct result of 

differential heating of the Earth's surface which leads to air moving (wind). Solar energy is 

the direct conversion of sunlight using panels or collectors. Biomass energy is stored 

sunlight contained in plants. Other renewable energies that do not depend on sunlight are 

geothermal energy, which is a result of radioactive decay in the crust combined with the 

original heat of accreting the Earth, and tidal energy, which is a conversion of gravitational 

energy [7].  

Solar : This form of energy relies on the nuclear fusion power from the core of the Sun. 

This energy can be collected and converted in a few different ways. The range is from solar 

water heating with solar collectors or attic cooling with solar attic fans for domestic use to 
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the complex technologies of direct conversion of sunlight to electrical energy using mirrors 

and boilers or photovoltaic cells. Unfortunately these are currently insufficient to fully 

power our modern society.  

Wind Power : The movement of the atmosphere is driven by differences of temperature 

at the Earth's surface due to varying sunlight on the Earth's surface. Wind energy can be 

used to pump water or generate electricity, but requires extensive areal coverage to produce 

significant amounts of energy.  

Hydroelectric energy: This form uses the gravitational potential of elevated water that 

was lifted from the oceans. It is not strictly speaking renewable since all reservoirs 

eventually fill up and require very expensive excavation to become useful again. At this 

time, most of the available locations for hydroelectric dams are already used in the 

developed world.  

Biomass: This is the term for energy from plants. Energy in this form is very commonly 

used throughout the world. Unfortunately the most popular is the burning of trees for 

cooking and warmth. This process releases copious amounts of carbon dioxide gases into 

the atmosphere and is a major contributor to unhealthy air in many areas. Some of the more 

modern forms of biomass energy are methane generation and production of alcohol for 

automobile fuel and fueling electric power plants.  

Geothermal power: Energy left over from the original accretion of the planet and 

augmented by heat from radioactive decay seeps out slowly everywhere, everyday. In 

certain areas the geothermal gradient (increase in temperature with depth) is high enough to 

generate electricity. This possibility is limited to a few locations on Earth and many 

technical problems exist that limit its utility. Another form of geothermal energy is Earth 

energy, a result of the heat storage in the Earth's surface. Soil everywhere tends to stay at a 

relatively constant temperature, the yearly average, and can be used with heat pumps to 

heat a building in winter and cool a building in summer. This form of energy can lessen the 

need for other power to maintain comfortable temperatures in buildings, but cannot be used 

to produce electricity.  
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Other forms of energy: Energy from tides, the oceans, and hot hydrogen fusion are 

other forms that can be used to generate electricity. Each of these suffers from one or 

another significant drawback and cannot be relied upon at this time to solve the upcoming 

energy crunch. 

1.4   Solar Energy:     

Solar energy, without which there would be no life on Earth, is emitted by the sun 

in the form of radiation. Although solar energy is stronger on the equator than it is at the 

North or South Pole, it is available everywhere during the day [8]. The Earth receives an 

incredible supply of solar energy. The sun, an average star, is a fusion reactor that has been 

burning over 4 billion years. It provides enough energy to the earth in one hour to supply 

the world's energy need for one year. In one day, it provides more energy than our current 

population would consume in 27 years. In fact, "The amount of solar radiation striking the 

earth over a three-day period is equivalent to the energy stored in all fossil energy sources." 

This energy can be converted into other forms of energy, such as heat and electricity [6]. 

 Present and Future Advantages of Solar Energy  

Solar energy enjoys many environmental and economic advantages over other 

forms of energy currently used [9]. These include:  

• Environmentally Friendly  

o Non-polluting: Solar electricity generation produces no emissions while the 

current alternative, fossil fuel combustion, releases more than a pound of 

carbon dioxide emissions for every kilowatt hour.  

o Non-consumptive: The suns radiation is a limitless resource that can be 

collected without the environmentally destructive processes of mining or 

pipelines.  

• Economically Beneficial  

o By 2027, PV will be the most cost-effective solution (even without any 

government subsidies or advantages from its environmental cleanliness) in 

whole world.  
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o Immediate and permanent savings: Properly financed systems will provide 

consumers with cheaper electricity from the day of installation.  

o Technological advancements: Improvements in solar technologies offer 

reduced costs and greater efficiency.  

• Easily Accessible  

o Security: The price of solar electricity does not fluctuate with politics or 

supply speculation; there will never be a shortage that will cause solar 

electricity to become unaffordable.  

o Already distributed: There are no expensive transportation costs for solar 

electricity because the sun is available everywhere.  

o Leapfrogging: Solar electricity will allow sun-rich developing nations to 

leapfrog as they are doing with wireless telecommunications to new energy 

architecture without having to install expensive land-based grids.  

Using the sun's energy is no longer wishful thinking from idealists of environmental 

sustainability; it is the solution to the world's approaching energy crisis and an economic 

inevitability. We are rapidly moving toward a dramatic and dominant role for solar energy - 

a trend that should be encouraged by both policy makers and capital markets because, in 

the end, it benefits everyone.  

Disadvantages of solar energy that research activity may solve: 

• The initial cost is the main disadvantage of installing a solar energy system, largely 

because of the high cost of the semi-conducting materials used in manufacturing.  

• The cost of solar energy is also high compared to non-renewable utility-supplied 

electricity. As energy shortages are becoming more common, solar energy is 

becoming more price-competitive.  

• Solar panels require quite a large area for installation to achieve a good level of 

efficiency.  

• The efficiency of the system also relies on the location of the sun, although this 

problem can be overcome with the installation of certain components.  

• The production of solar energy is influenced by the presence of clouds or pollution 

in the air.  
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• Similarly, no solar energy will be produced during night time although a battery 

backup system and/or net metering will solve this problem.  

• As far as solar powered cars go - their slower speed might not appeal to everyone 

caught up in today's rat race. 

1.5 Solar powered  Hydrogen Generation: Towards renewable energy 

future 

 

Hydrogen is acclaimed to be an energy carrier of the future. It can be used indeed as a 

media to store energy. Currently, it is mainly produced by fossil fuels, which release 

greenhouse gases and other climate-changing emissions. Thermo chemical cycles, such as 

hybrid-sulphur cycle, metal oxide based cycle and electrolysis of water are the most 

promising processes for environmentally benign hydrogen production for the future. It can 

be produced using solar energy in different ways namely; using solar electricity and solar 

thermal energy. The solar electricity can be used in electrolysers to dissociate the distilled 

water into hydrogen and oxygen. The thermal energy can be utilized in (1) low temperature 

and (2) high temperature applications. The idea of using solar energy is to protect 

environment from the unwanted greenhouse gas emissions. 

 

Classification of solar hydrogen production 

 

Hydrogen production using solar energy can be mainly classified into four types. 

(1) photovoltaic (2) solar thermal energy (3) photo electrolysis, and (4) biophotolysis. 

The thermal energy from solar energy can be utilized in two ways; low temperature 

and high temperature applications. Photovoltaic, photo electrolysis and bio photolysis are 

considered as low temperature application whereas solar thermolysis, solar thermo 

chemical cycles, solar gasification, solar reforming and solar cracking are high temperature 

applications of concentrated solar thermal energy. Concentrating solar energy can also be 

utilized to produce steam and then using the power of steam electricity can be produced. 

The produced electricity can be utilized to produce hydrogen via electrolysis. Four major 

ways in which solar energy can be utilized to produce hydrogen are given in Fig. 4 
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Figure 4: Solar hydrogen production  

 

Solar photovoltaic based electrolysis 

 

In the beginning of 70s the PV panels were utilized to produce hydrogen by 

electrolysis of water using the electricity produced by the photovoltaic cells [10-13]. The 

electrolysis of water can be carried out by a current generated from the photovoltaic cells. 

An extensive research in this area is necessary as the hydrogen produced by this technology 

is not cost effective. The electrolysis of distilled water using electricity produced by the PV 

panel takes place in electrolyzer unit and produces hydrogen and oxygen as the end product 

(Fig 5). One advantage with PV technology is that it does not emit greenhouse gases during 

the operation. The efficiency of modern photo converters (i.e. photovoltaic’s) and 

electrolysers’ is about 20% and 80% respectively. [14] 
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Figure 5: Schematic diagram of photovoltaic hydrogen production system 
 
 
Solar photo-electrolysis 

Another method to convert sunlight into hydrogen is by photo-electrolysis of water 

that uses photo-electrochemical light collecting systems (PEC-photo-electrochemical cell) 

to power the electrolysis of water. Fig. 6 shows a schematic of a single PEC proposed by 

Fujishima and Honda [15]. When exposed to sunlight, a semiconductor photo-electrode 

anode or cathode), submerged in an aqueous electrolyte may generates sufficient voltage to 

split water molecules [16]. The device does not require a separate power generator and 

electrolyzer. The maximum theoretical efficiency is about 35%.  However, the solar-to-

hydrogen conversion efficiency of the materials has not yet met requirements for practical 

use due to the limitation of usable solar spectrum.  

 

 
Figure 6: Schematic diagram of solar photo-electrolysis 
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Solar photo-biological hydrogen production 

 

Photo-biological hydrogen production uses the processes same as plant and algal 

photosynthesis, for hydrogen production. The biological hydrogen production can be 

classified into: 

(1) Light dependent,  and  

(2) Light independent process.  

First processes, that is light dependent process, includes direct or indirect bio-

photolysis and photo-fermentation whereas the second one, light independent process 

includes dark fermentation [17]. Plant and algal photosynthesis results in the splitting of 

water into oxygen and a reducing agent strong enough to reduce CO2 or protons in to 

carbohydrates or hydrogen  respectively. One advantage of biological processes is to be 

catalyzed by microorganisms in an aqueous environment at ambient temperature and 

pressure [10]. Biological methods for solar hydrogen production have not yet been 

developed for commercial use, except for the laboratory stage and small (<10m2) out door 

demonstration scale systems [18]. This technology is still under development because of 

relatively low efficiency of photosynthesis as trees and agricultural crops convert sunlight 

at efficiencies less than 1% [19]. 

 

Concentrated solar thermal energy based hydrogen production 

 

 Various thermo-chemical methods are used for solar hydrogen production. Since 

all these methods involve endothermic reactions, they make use of thermal energy of 

concentrated solar radiation [21]. 

 

Solar thermolysis 

 

The single-step thermal dissociation of water is known as water thermolysis and is 

represented by: 

                                      hν + 222 2
1

OHOH +→  
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This reaction requires 1) a high temperature at above 2500 K to have a reasonable 

degree of dissociation, 2) an efficient technique for separating H2 and O2 to avoid ending 

up with an explosive mixture. Very high temperature required by the process posses severe 

material problems and can lead to significant re-radiation from the reactor, thereby 

lowering the absorption efficiency [21]. 

 

Solar thermo-chemical cycles 

ey do not have the H2/O2 separation problem and further allow operating at 

relatively moderate upper temperatures (1200 K) [21] . An efficient 2-step thermo-

chemical cycle using metal oxide redox reactions is represented by [22, 23] 

1st step (solar): 

22
O

y
xMOM yx +→  

2nd step (non-solar): 

      22 yHOMOyHxM yx +→+  

  Where M denotes a metal and MxOy the corresponding metal oxide. The first, 

endothermic step is the solar thermal dissociation of the metal oxide to the metal or the 

lower valence metal oxide. The second, non-solar, exothermic step is the hydrolysis of the 

metal to form H2 and the corresponding metal oxide. The net reaction is (H2O = H2 + 

0.5O2), but since H2 and O2 are formed in different steps, the need for high temperature gas 

separation is thereby eliminated [20]. 

 

Concentrated solar thermal based electrolysis 

The thermal energy coming from concentrating solar radiations (Fig. 7) can be 

applied to heat a specific fluid (phase change materials, molten salt mixtures [24]) at mid or 

high temperature, and then using that fluid to produce steams and consequently electricity. 

The phase change materials or molten salt mixtures can store thermal energy at about 

5000C. These plants are known as thermodynamic solar plants. The electricity produced by 

these plants can be utilized for hydrogen production via electrolysis. In this route, the 

concentrated thermal energy can directly be used to produce steam and then using some 

steam turbine/engine the thermal energy can be converted to mechanical energy (rotary 
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motion) and then by coupling an electrical generator to it, electricity can be produced. 

Thermal energy can also be stored in molten salt mixtures that can be utilized to produce 

steam for off sunshine periods. 

 

 
Figure 7: Schematic diagram of solar gasification/reforming 

 

1.6 Different ways to harvest solar energy. 

Harnessing solar energy involves both the direct use of the radiated heat as well as 

its conversion to electricity in the most efficient way possible. There are three categories 

that define solar energy technology:  

1. Passive solar collection begins with the design of the buildings that includes optimal 

location, windows facing south, walls that absorb heat and light, and plenty of 

insulation. The heat or light that is collected is used in its original form of heat or light 

such as in a greenhouse.  



23 

2. Active solar collection implies converting solar energy to a more usable form of heat 

or electricity. Thermal applications include heat collection and heat-driven 

mechanisms, such as converting water to steam to power a steam engine that generates 

electricity. Electric processes use photovoltaic cells that create a moving electric 

charge that produces a direct electric current.  

3. Finally, a third distinction in solar energy is related to the degree of concentration of 

the suns energy. Concentrating systems engage mirrors and lenses to direct the sunlight 

to the area of collection. In some systems, parabolic trough-shaped structures of 

photovoltaic cells can even be powered to follow the motion of the sun to increased 

electricity generation [25].  

1.7 Solar Power concentrator: Efficient way to utilize more solar energy 

 

Concentrating Solar Power: 

 

Concentrating solar power (CSP) technologies use mirrors to reflect and 

concentrate sunlight onto receivers that collect the solar energy and convert it to heat. This 

thermal energy can then be used to produce electricity via a steam turbine or heat engine 

driving a generator. 

One way to classify concentrating solar power technologies is by how the various 

systems collect solar energy.  

The following are three basic CSP technology systems: 

a) Linear Concentrator Systems  

b) Dish/Engine Systems  

c) Power Tower Systems 

a) Linear Concentrator Systems 

Linear CSP collectors capture the sun's energy with large mirrors that reflect and 

focus the sunlight onto a linear receiver tube. The receiver contains a fluid that is heated by 

the sunlight and then used to create superheated steam that spins a turbine that drives a 
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generator to produce electricity. Alternatively, steam can be generated directly in the solar 

field, eliminating the need for costly heat exchangers. 

Linear concentrating collector fields consist of a large number of collectors in 

parallel rows that are typically aligned in a north-south orientation to maximize both annual 

and summertime energy collection. With a single-axis sun-tracking system, this 

configuration enables the mirrors to track the sun from east to west during the day, 

ensuring that the sun reflects continuously onto the receiver tubes. 

Parabolic Trough Systems 

The predominant CSP systems are linear concentrators using parabolic trough 

collectors (Fig.8). In such a system, the receiver tube is positioned along the focal line of 

each parabola-shaped reflector. The tube is fixed to the mirror structure and the heated 

fluid—either a heat-transfer fluid or water/steam—flows through and out of the field of 

solar mirrors where it is used to create steam (or, for the case of a water/steam receiver, it is 

sent directly to the turbine). 

Currently, the largest individual trough systems generate 80 megawatts of 

electricity. However, individual systems being developed will generate 250 megawatts. In 

addition, individual systems can be collocated in power parks. This capacity would be 

constrained only by transmission capacity and availability of contiguous land area. Trough 

designs can incorporate thermal storage. In such systems, the collector field is oversized to 

heat a storage system during the day that can be used in the evening or during cloudy 

weather to generate additional steam to produce electricity. Parabolic trough plants can also 

be designed as hybrids, meaning that they use fossil fuel to supplement the solar output 

during periods of low solar radiation. In such a design, a natural-gas-fired heater or gas-

steam boiler/re-heater is used. In the future, troughs may be integrated with existing or new 

combined-cycle natural-gas- and coal-fired plants. 



25 

 

Figure 8: A linear concentrator power plant using parabolic trough collectors. 

Linear Fresnel Reflector Systems 

A second linear concentrator technology is the linear Fresnel reflector system 

(Fig.9). Flat or slightly curved mirrors mounted on trackers on the ground are configured to 

reflect sunlight onto a receiver tube fixed in space above these mirrors. A small parabolic 

mirror is sometimes added atop the receiver to further focus the sunlight. 

 

 Figure 9: A linear Fresnel reflector power plant. 

b) Dish/Engine Systems 

The dish/engine system is a concentrating solar power (CSP) technology (Fig.10) 

that produces relatively small amounts of electricity compared to other CSP technologies 
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typically in the range of 3 to 25 kilowatts. A parabolic dish of mirrors directs and 

concentrates sunlight onto a central engine that produces electricity. The two major parts of 

the system are the solar concentrator and the power conversion unit. 

 
Figure 10: A dish/engine power plant. 

Solar Concentrator 

The solar concentrator, or dish, gathers the solar energy coming directly from the 

sun. The resulting beam of concentrated sunlight is reflected onto a thermal receiver that 

collects the solar heat. The dish is mounted on a structure that tracks the sun continuously 

throughout the day to reflect the highest percentage of sunlight possible onto the thermal 

receiver. 

Power Conversion Unit 

The power conversion unit includes the thermal receiver and the engine/generator. 

The thermal receiver is the interface between the dish and the engine/generator. It absorbs 

the concentrated beams of solar energy, converts them to heat, and transfers the heat to the 

engine/generator. A thermal receiver can be a bank of tubes with a cooling fluid—usually 

hydrogen or helium—that typically is the heat-transfer medium and also the working fluid 

for an engine. Alternate thermal receivers are heat pipes, where the boiling and condensing 

of an intermediate fluid transfers the heat to the engine. 

The engine/generator system is the subsystem that takes the heat from the thermal receiver 

and uses it to produce electricity. Currently, the most common type of heat engine used in 

dish/engine systems is the Sterling engine. A Sterling engine uses the heated fluid to move 
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pistons and create mechanical power. The mechanical work, in the form of the rotation of 

the engine's crankshaft, drives a generator and produces electrical power. 

c) Power Tower Systems 

In this CSP technology, numerous large, flat, sun-tracking mirrors, known as 

heliostats, focus sunlight onto a receiver at the top of a tower (Fig.11). A heat-transfer fluid 

heated in the receiver is used to generate steam, which, in turn, is used in a conventional 

turbine generator to produce electricity. Some power towers use water/steam as the heat-

transfer fluid. Other advanced designs are experimenting with molten nitrate salt because of 

its superior heat-transfer and energy-storage capabilities. Individual commercial plants can 

be sized to produce up to 200 megawatts of electricity. 

 

Figure 11: A power tower plant. 

Power towers also offer good longer-term prospects because of the high solar-to-

electrical conversion efficiency. Additionally, costs will likely drop as the technology 

matures [26].  

1.8 Outline of Thesis :  

 

 All warning signs connected to the energy crisis, climate change, and water 

shortage force us to think about solution to utilize energy which comes from natural 
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resources. Therefore, the principal aim of this thesis, is to use renewable energy such as 

solar energy through collecting it with solar sensitive thin films. The body of thesis consists 

on four chapters including the present chapter 1. Chapter 2 presents the results on TiO2 

thin film photocatalyst for hydrogen production using water splitting. This chapter also 

briefly describes the backgrounds of the study, literature review, the objectives of the 

study, and the future works. Chapter 3 reports the synthesis and analysis of solar absorber 

in form of copper oxide thin film for water heating system using solar concentrator. This 

chapter also summarises the development of AR coating for the same system. Chapter 4 is 

devoted to the multilayered solar absorber thin film for high temperature application. 
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Chapter 2  

Solar sensitive TiO2 thin film for 

hydrogen production by photocatalytic 

water splitting 

 
  

This chapter presents a brief description of the Photo-electrolysis and development 

of solar sensitive thin films to split water molecules into hydrogen and oxygen. The chapter 

is divided into six sections. The first section introduces the basic mechanism of Photo-

electrolysis and suitable photocatalyst for this kind of application. The section also 

introduces the essential parameters required by the semiconductor photo-electrode for 

efficient water splitting. By reading many literatures we found that TiO2 is one of the most 

suitable candidate for water splitting application. Thus the second section shows the results 

on the synthesis of solar sensitive TiO2 thin film photocatalyst by physics and chemical 

methods. The third section elucidates development of solar active Cr- or Fe-doped TiO2 

thin film to improve visible light absorption for water splitting. Improved photo-induced 

charge separation is achieved by deposition of efficient multilayer film for Cr- and V-

doped TiO2 film for water dissociation as reported in fourth and fifth section respectively. 

The sixth section describes the results on the implantation of ions such as Ar+, N+ in TiO2 

thin film in order to extend absorption in visible range of solar spectrum. 
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2.1 Introduction 
 

Hydrogen is acclaimed to be an energy carrier of the future. It can be used as a 

media to store energy (example, metal hydrates). Currently, it is mainly produced by fossil 

fuels such as methane (CH4), propane, coal and petroleum and biomass. Its "extraction" 

from certain compounds (e.g. methane and/or water) requires the use of energy from fossil 

fuel sources which release greenhouse gases (GHG) to the atmosphere. However, during 

usage, hydrogen burns very cleanly releasing very little GHGs emission to the atmosphere.  

             This problem of release of green house gases by use of fossil fuels to generate 

hydrogen could be solved by using electrolysis process. Water electrolysis decomposes 

H2O into hydrogen and oxygen gas. Electrolytes dissolve and dissociate into cations and 

anions that carry the current; such processes can occur in an electrolysis cell, which 

consists of two electrodes, cathode and anode, where reduction and oxidation reactions 

simultaneously take place forming H2 (at the cathode) and O2 (at the anode). The 

fundamental problem in hydrogen production by water electrolysis is that today the 

electricity used to drive the process is primarily generated by the burning of fossil fuels [1]. 

The solution for this problem can be resolved by using photo-electrolysis.  

Photo-electrolysis is generally carried out in cells having similar configuration as 

electrolysis cells with at least one of the two electrodes comprised of a semiconductor 

material. Upon exposure to sunlight the semiconductor electrode, called photo-electrode, 

immersed in an aqueous electrolyte solution generates, in an ideal case, enough electrical 

energy to drive the oxygen and hydrogen evolution reactions respectively at the interfaces 

of anode and cathode within the electrolyte. A necessary condition for such a spontaneous 

water splitting process upon illumination is that the semiconductor conduction band edge 

should lie at a position more negative (NHE as reference) relative to the reduction potential 

of water while the valence band edge should be more positive as compared to the oxidation 

potential. Photo-electrolysis integrates solar energy absorption and water electrolysis into a 

single photo-electrode. This method does not require a separate power generator. 
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2.1.1 Mechanism of hydrogen production in photo-electrochemical cell 

 

The solar photo-electrochemical process is one of the most attractive methods for 

conversion of solar to chemical energy fuel( hydrogen) by means of water splitting. There 

are three possible ways to configure the electrodes in such systems: (1) Photo-anode made 

of n-type semiconductor and cathode made of metal. (2) Photo-anode made of n-type 

semiconductor and cathode made of p-type semiconductor. (3) Photocathode made of p-

type semiconductor and anode made of metal. The simplest photo-electrochemical cell 

designed for such purpose consists of a semiconductor photo-electrode, or photo-anode and 

a metal counter electrode, or cathode, immersed in an electrolyte solution. With light 

incident upon the photo-anode, the photo-anode absorbs part of the light generating 

electron-hole pair which is then used for water splitting [1]. 

 Photo-electrolysis of water involves several processes within a photo-anode, and at 

the photo-anode-electrolyte interface [2]. These are:  

 

(1) Absorption of light with energy exceeding the band gap.  

 

(2) Excitation of electrons from the valance band to the conduction band leaving holes 

behind in the valance band; that is to say, photo-generation of charge carriers 

(electron-hole pairs) due to light induced intrinsic ionization of the photo-anode. 

 
•− +→ hehv 222                                                       (2.1) 

 

        where h is Planck’s constant and ν  is the frequency of light. 

 

(3) Charge separation and migration, at the same time; electrons passing through the  

      photo-anode to the back-side electrical contact, and holes to the interface between the  

      photo-anode and electrolyte. 
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 (4) Oxidation of water at the photo-anode by holes. 

                        

2)()(2 2
1

22 OHOHh aqaq +→+ +•
(gas)                                       (2.2) 

 (5) The transport of H+ ions from the photo-anode to the cathode through the electrolyte. 

 

 (6) The transport of electrons from photo-anode to cathode through the external circuit,  

       leading to the reduction  of H+ ions in to hydrogen gas at the cathode . 

 

)(222 gasHeH →+ −+            (2.3) 

 

             The overall reaction of the photo-electrochemical cell (PEC),  

)(2)(2)(2 2
1

2 gasgasliquid HOOHhv +→+                   (2.4) 

 
 This reaction takes place when the energy of the photon absorbed by the photo-

anode is equal to or larger than the threshold energy Et, 

 

Et =  
AN

G
2

0∆
                                            (2.5) 

 

   Where 0G∆ is standard free enthalpy (per mol) of reaction (2.4) = 237 kJ/mol and  

            NA is Avagadro’s number = 6.022 X 1023 mol-1  

 

Then we obtain 

 

E = hν  = 1.23 eV                                    (2.6) 

 

According to equation (2.6), electrochemical decomposition of water is possible 

when the electromotive force of the cell (EMF) is equal to or greater than 1.23 V .But 

sustained electrolysis generally requires �1.5 V to overcome the impedance of the PEC. 
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Ideally, a photo-electrochemical cell should operate with no external bias so as to 

maximize efficiency and ease of construction. But practically it requires external bias to 

operate the splitting of water.  

A common photoelectrolysis structure is that of a semiconductor photoanode and 

metal cathode, the band diagrams of which are illustrated in Fig. 1 together with that of 

electrolyte redox couples [1]. 

 In Fig.1(a) there is no contact between the semiconductor anode and metal cathode 
 
 
 

 
Figure 1(a):  No contact and no chemical potential equilibrium. 

 

As seen in Fig.1(b) contact between the two electrodes (no illumination) results in 

charge transfer from the semiconductor anode having a lower work function to the metal 

cathode having a higher work function until the work functions of both electrodes 

equilibrate. The result of this charge transfer is band bending by energy EB. The energy 

levels of Fig.1(b) are not favorable for water decomposition since the H+/H2 energy level is 

located above the cathode Fermi level.  
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                                     Figure 1(b): galvanic contact in dark. 
 

 

Under illumination, Fig. 1(c), both the photo-anode surface potential and the 

(H+/H2) water reduction potential are each lowered, but the (H+/H2) water reduction 

potential still remains above the cathode Fermi level. 

 

 
Figure 1(c):  Energy diagram of PEC components after galvanic contact between anode    
                   and  cathode 
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Anodic bias is thus needed to elevate the Fermi level of cathode above the water 

reduction potential, see Fig.1(d), making the water splitting process feasible. This applied 

bias provides overvoltage at the metal cathode necessary to sustain the current flow, and 

increases the semiconductor band bending to maintain the required electric field. 

 

 
Figure 1(d):  Effect of light on energy diagram of PEC with externally applied bias 
 
 
 
2.1.2 Semiconductor photo-anode 
 
             The development of solar-hydrogen technology requires new photo-sensitive 

materials to be used as photo-electrodes for electrochemical devices converting solar 

energy into chemical energy. The photo-electrodes should be made of polycrystalline 

materials rather than single crystals (due to cost). The photo-sensitivity of polycrystalline 

materials must be approached using the influence of the local properties of interfaces, such 

as external surfaces and grain boundaries. Consequently, success in the development of 

novel photo-sensitive materials will be determined by progress in the science and 

engineering of materials interfaces. Specifically, more research is necessary to better 

understanding of the effects of interfacial properties, such as defect disorder, electronic 

structure, and related semi-conducting properties, on photo-electrochemical properties. 

 
Semi-conducting oxides appear the most promising materials for photo-electrodes 

due to the fact that their properties may be modified by making changes in stoichiometry 
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and related semi-conducting properties [3]. Moreover, these materials are economically 

promising because their processing technologies are relatively simple.  

 

 

Energetic and redox potentials of semiconductors 

 

Semiconductor can absorb light with energy higher than certain energy threshold 

that is determined by band gaps (Eg) of semiconductors. Once photons are absorbed, 

photoelectrons and photo-holes are formed. The photo-generated electrons and holes 

quickly relax to the bottom of the conduction band and top of the valence band respectively 

by dissipating their kinetic energy. These electrons and holes can be use to drive redox 

reaction. Thermodynamically the energy level of conduction band edge (Ecs)  measures the 

reduction strength  of electron in the semiconductor, whereas valence band edge is a 

measure of oxidation power of holes in the semiconductor [4].Figure2 shows band edge 

energy levels of common semiconductors that are in contact with aqueous medium of pH 

2.0 [5] 

 

Different semiconductor possess different band energies. The higher the valence 

band edge potential, the higher the oxidizing power is. Small band gap semiconductors 

have a larger absorption spectrum. However, small band gap semiconductors normally do 

not have high valence band potential. In addition, many semiconductors, having small band 

gap suffer serious chemical corrosion and photo corrosion when used as photocatalyst [6].  
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        Figure 2: Band edge energy levels of common semiconductors that are in contact  

          with aqueous medium of pH 2.0 

 

  

Semiconductors suitable to serve as photo-anodes for solar water photo-electrolysis 

must have the following general properties [1]: (a) Chemical stability both under 

illumination and dark. (b) A band gap of approximately 2.0 eV to absorb maximum solar 

radiation. (c) Absence of charge recombination centers to prevent recombination of the 

photo-generated charge carriers. (d) Moderate conductivity. (e) Suitable band edge 

positioning with respect to the H+/H2 reduction potential and O2/OH��oxidation potential. 

There are many semiconductors which possess one of the above properties such as 

WO3 which is active in the visible wavelength range of the solar spectrum, but it is less 

stable in acidic medium. Fe2O3 has a smaller band gap and absorbs in the visible range, but 

it is also not very stable in acidic solutions. GaP (Eg = 2:23 eV) [66], and GaAs (Eg = 1:4 

eV) are not stable in aqueous environments and exhibit indeed significant corrosion in 

water. Compounds such as CdTe or InP also have appropriate band gaps for efficient solar 

energy absorption, but these materials either corrode or become inert when used as 

photoelectrodes in aqueous solution[7]. The most promising oxide materials such as TiO2 



40 

and CaTiO3 and SrTiO3 are resistant to corrosion and photo-corrosion in aqueous 

environment.  

 

             Unlike other materials, TiO2 exhibits outstanding resistance to corrosion and 

photo-corrosion in aqueous environments. TiO2 is one of the most promising candidates for 

a commercial photo-electrode for photo-electrochemical cell (PEC) for production of solar-

hydrogen, due to the following reasons: 

• Good chemical/photochemical stability and high oxidation power (E=3.1eV Vs 

Standard Hydrogen Electrode (SHE). 

• The properties of TiO2 can be widely altered by varying the defect chemistry and 

related electronic structure through change of the oxygen nonstoichiometry .[3,7-

10] 

• TiO2 exhibits outstanding resistance to corrosion and photocorrosion in aqueous 

environments.[11] 

•  TiO2 is reactive with both light and water [12] 

•  TiO2 is substantially less expensive than other photosensitive materials and so it 

may also be a candidate to replace silicon in photovoltaic (PV) cells if its 

photosensitivity can be increased sufficiently.  

• TiO2 with enhanced photosensitivity has many supplementary applications that are 

environmentally friendly.[13] 

• TiO2 is abundant. 

 

Presently, the energy conversion efficiency from solar to hydrogen by TiO2 photocatalytic 

water-splitting is still low, mainly due to the following reasons: 

 

(1) Recombination of photo-generated electron/hole pairs:  

 

Fig. 3 shows a schematic of the photoexcitation of a semiconductor solid particle by 

exposure to radiation with energy above the bandgap energy [14]. An exciton, produced by 

the absorption of a photon is shown by the star symbol. This is followed by charge 

separation – the production of an electron–hole pair. Charge transport to the particle 
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surface by processes C and D lead respectively to desirable reduction and oxidation 

reactions at the surface. Processes A and B represent electron–hole pair recombination 

processes at the surface and in the bulk, respectively. 
 

 
 
Figure 3: Schematic photoexcitation in a semiconductor particle followed by later events    
                [14]. 
 

Fig. 4 shows a schematic energetic picture of surface or bulk electron trap states. 

These states exist in crystalline and colloidal TiO2 where surface oxygen vacancy defects 

and defects in the crystalline lattice provide new localized energy states not available in the 

perfect crystal. In addition, since the perfect surface represents an abrupt discontinuity from 

the lattice, it too provides a high density of energy states in the surface region. These 

energy states differ in their energy from the energy bands present in the perfect solid and 

can act as traps for electrons, enhancing the recombination process and producing shorter 

hole lifetimes, which is detrimental to the efficiency of surface photochemistry driven by 

hole production. 
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Figure 4: Surface and bulk electron carrier trapping leading to an enhanced charge 

carrier recombination rate and shorter hole lifetimes [14]. 

 
(2) Fast backward reaction:  

            Decomposition of water into hydrogen and oxygen is an energy increasing process, 

thus backward reaction (recombination of hydrogen and oxygen into water) easily 

proceeds. In the pioneering work of Fujishima and Honda [15], UV lightirradiation of a 

TiO2 photoelectrode in aqueous solution led to the production of H2 and O2 on a Pt 

electrode and TiO2 photoelectrode, respectively. The reaction yields were, however, rather 

low, due in part to the recombination of the liberated gases at the surface of the Pt particles 

[16]. 

 (3) Inability to utilize visible light:  

              The visible light absorption ability of the photo-electrode has a critical impact on 

the energy conversion of photons [17,18]. The band gap, Eg, is an important quantity for 

materials that are candidates for photo-electrodes. Indeed only the photons of energy 

equal to or larger than that of the band gap may be absorbed and used for conversion. The 

band gap of TiO2 is about 3.2 eV and only UV  light can be utilized for hydrogen 

production. Since the UV light only accounts for about 4% of the solar radiation energy 
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while the visible light contributes about 50%,  the inability to utilize visible light limits 

the efficiency of solar photocatalytic hydrogen production. 

 

  The above mentioned problems can be solved using following solutions 

 

A) The rapid recombination of photo-generated CB electrons and VB holes can be reduced 

by adding electron donors which react irreversibly with the photo-generated VB holes thus 

enhance the photocatalytic electron/hole separation. Since electron donors are consumed in 

photocatalytic reaction, continual addition of electron donors is required to sustain 

hydrogen production. 

             Organic compounds (hydrocarbons) are widely used as electron donors for 

photocatalytic hydrogen production as they can be oxidized by VB holes. The remaining 

strong reducing CB electrons can reduce protons to hydrogen molecules. 

Ethylenediaminetetraacetic acid (EDTA), methanol, ethanol, lactic acid and formaldehyde 

have been tested and proved to be efficient to enhance hydrogen production [19–26]. Nada 

et al. [25] carried out a qualitative investigation to study the effects of different electron 

donors on hydrogen production. It should be noted that the decomposition of these 

hydrocarbons could also contribute to a higher hydrogen yield since hydrogen is one of 

their decomposed products. 

B)  Fast backward reaction of hydrogen and oxygen can be prevented by separating 

evolution of hydrogen and oxygen. Matsumura et al.[27] have reported that the separate 

evolution of H2 and O2 could be achieved by combining two photocatalytic reactions on 

suspended TiO2 powders using a two-compartment cell equipped with platinum electrodes 

and a cation-exchange membrane. Recently, Anpo et al. succeeded in the preparation of 

visible light-responsive TiO2 thin films by RF-magnetron sputtering (RF-MS) method for 

the separate evolution of H2 and O2 from water under visible light irradiation [28-36].The 

backward reaction can also be suppressed by addition of carbonate salts. Sayama et al. [37–

43] reported that addition of carbonate salts could significantly enhance hydrogen and 

oxygen production stoichiometrically. Addition of Na2CO3 was found to be efficient for 

enhancement of hydrogen and oxygen production using Pt loaded TiO2 (Pt-TiO2) [37]. 

However the production of hydrogen and oxygen was enhanced very significantly. The 

addition of too much carbonate salt or iodide anion beyond optimum level could reduce the 
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beneficial effects since these species adsorbed onto the catalyst surface could decrease light 

harvesting [39]. 

C)  Transition metal ion doping and rare earth metal ion doping have been extensively 

 investigated for enhancing the TiO2 photocatalytic activities under visible light irradiation 

[44–59]. Choi et al. [44]carried out a systematic investigation to study the photoreactivity 

of 21 metal ions into TiO2. It was found that doping with metal ions could expand the 

photo-response of TiO2 into visible spectrum. As metal ions are incorporated into the TiO2 

lattice, impurity energy levels in the band gap of TiO2 are formed, as indicated below: 
−+++ +→+ cb

nn eMhM )1(ν         (1) 

 
++−+ +→+ vb

nn hMhM )1(ν          (2) 

                                   where Mn+ represent the metal ion dopant. 

Furthermore, there exists an optimum concentration of doping metal ion, above which the 

photocatalytic activity decreases due to the increase in recombination. Among the 21 metal 

ions studied, Fe, Mo, Ru, Os, Re, V, and Rh ions can increase photocatalytic activity, while 

Co and Al ions cause detrimental effects [44]. The different effects of metal ions result 

from their abilities to trap and transfer electrons/holes. For example, Cu and Fe ions can 

trap not only electrons but also holes, and the impurity energy levels introduced are near to 

CB as well as to VB edges of TiO2. Therefore, doping with either Cu or Fe ions could be 

recommended for enhancement of photocatalytic activity [44,45,53,55,56]. 

A qualitative analysis in investigating the effects of doping transition metal ions 

(Cr,Mn, Fe, Co, Ni, and Cu) on photocatalytic activity of TiO2 was carried out by Wu et 

al.[52]. As Cu, Mn and Fe ions can trap both electrons and holes, doping with these metal 

ions may work better than doping with Cr, Co and Ni ions, as the latter metal ions can only 

trap one type of charge carrier. 

 Extensive research on metal ion doping method for enhancement of TiO2 

photocatalytic activities has been carried out especially for water/air cleaning applications. 

Organic compounds adsorbed by the photo-catalysts are decomposed mainly by the VB 

holes and radicals induced by holes. Therefore, the mechanism involved in transferring 

these photo-generated holes to the interface is of paramount importance. On the other hand, 

for photocatalytic hydrogen production, the transfer of CB electrons to the interface and 
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their energy are the most important factors that affect the hydrogen production rate. Hence, 

the results based on water/air cleaning applications cannot be directly applied to hydrogen 

production. Besides, the TiO2 photocatalytic effect is very sensitive to the metal ion doping 

methods, doping content and depth. Therefore, a systematic, comparative investigation is 

needed in order to characterize photocatalytic hydrogen production enhanced by metal ion 

doping. 

 

2.1.3 Brief Overview of Titanium Dioxide   

 

 Physical and Chemical Properties of TiO2 

 

Titanium dioxide, a natural oxide of titanium, exists in three different polymorphs: 

anatase, rutile, and brookite. TiO2 has been widely studied in the past few decades due to its 

remarkable electric, magnetic, and catalytic activities [60] . The crystal structure data of the 

three different polymorphs phases of TiO2 are summarized in table 1. Figure 5 represents 

the crystal structures of the three different phases of TiO2 [60]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1: The crystal structure data of Titanium dioxide 
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Figure 5: Crystal structures of titanium dioxide. (a) Rutile (b) Anatase and (c) Brookite 
 

 

Rutile is the most extensively studied phase of titanium dioxide and contains six 

atoms per unit cell. Anatase contains twelve atoms per unit cell. In both phases, for a 

perfect crystal, every Ti atom is attached to six O atoms[60]. Since the flat-band potential 

of rutile is faintly more positive than that of the Standard Hydrogen  Electrode(SHE) and 

the flat-band potential of anatase is more negative to SHE, the reduction of water molecules 

to hydrogen by photo-excited conduction band electrons takes place more easily on anatase 

polymorphs than on rutile. On the other hand, O2 evolution occurs at similar rates both on 

anatase and rutile since the potential of the photo-generated holes is above the potential of 

oxygen evolution. These two characteristics make anatase the only crystalline titania phase 

where photo-dissociation of water molecules can take place without an external applied 

voltage. In addition, the enhanced photo-activity of anatase with respective to rutile is 

attributed to the larger band gap of the former (3.2 eV versus 3.0 eV) which helps in 
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increasing the surface redox potentials and prolonging the electron/hole lifetime [61]. 

Furthermore, Tang et al. reported that anatase thin film has a wider optical absorption edge 

than rutile resulting in higher photoconductivity threshold energy [62]. The value of the 

absorption edge of anatase is equal to 387 nm and that for rutile is equal to 418 nm [63] . 

 

2.1.4 Other application of TiO2 

  The produced TiO2 films are applicable not only for photo-electochemical solar-

hydrogen production but also they could be efficient for following applications 

   
• Decontamination of water from bacteria, viruses and organic 

    compounds [64,65]. 

• Self-cleaning building materials [64]. 

• Paving materials leading to reduction of air pollution [66]. 

• Antiseptic paints and coatings [64]. 

• Chemical gas sensors [67]. 

• Skin and stomach anticancer treatments [65]. 

• Antifogging mirror and glass coatings [66]. 

• Generation of PV electricity [68]. 

• Purification of air [64]. 
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2.2 Physically and chemically prepared TiO2 thin film for 

Hydrogen production. 

 
TiO2 electrode preparation and characterization are of paramount importance for 

success of the present study since the photocatalytic activities of these electrodes depend on 

the crystalline structure of TiO2 and control synthesis technique. Thus this chapter is 

devoted to this important topic which deals with the synthesis of photo-catalyst in the form 

of thin films for hydrogen production from water splitting. TiO2 can be synthesized by 

several different methods including metal organic chemical vapor deposition (MOCVD) 

[1], sol–gel [2], electrophoretic deposition [3], reactive RF sputtering [4], and pulsed laser 

deposition (PLD) [5]. In the present work, TiO2 thin films are synthesized by using Vapor 

Phase Deposition (VPD) such as RF magnetron sputtering and spin coating technique in 

order to study the difference between physical and chemical deposited samples. 

 

2.2.1 Experimental methods 

 

Material and chemicals: 

 

  Indium Tin Oxide (ITO) (99.99%) target purchased from supplier named as “Thin 

films materials process solutions” and TiO2 (99.99%) targets commercially supplied by 

“Goodfellow” Cambridge Ltd. Titanium butoxide [Ti(OC4H9)4], Ethanol (C2H5OH ) and 

Nitric Acid (HNO3) were used as received. These chemicals were of analytical grade and 

purchased from “Sigma Aldrich”. All solutions were prepared using high purity deionized 

water. 

 

Synthesis of ITO conducting thin film photocatalyst by using RF magnetron sputtering: 

To measure photocatalytic activity, TiO2 films were deposited on the conducting 

indium tin oxide (ITO) layer because ITO has two chief properties, namely electrical 

conductivity and optical transparency. A high electrical conductivity facilitated the 

separation of photogenerated electrons and holes, preserving the photocurrents of the 

electrodes. ITO layer was deposited on the glass slide by magnetron sputtering using RF 
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power of 100W and working Ar gas pressure of 0.8 Pa. Pre-sputtering of the ITO target 

was also conducted in order to remove the surface contamination. The sample and target 

distance was kept constant at 5 cm for all the samples. 

 

Synthesis of TiO2 thin film by using RF magnetron sputtering: 

 For sputter deposition, TiO2 disc (99.99%) and  pure Ar (99.99%) were used as 

sputtering target and working gas, respectively. High vacuum (HV) with base pressure 

<3 × 10−5 Pa and working Ar pressure of 0.8 Pa were used for the deposition. Before 

sample deposition, the TiO2 target was pre-sputtered for 20 min in order to remove any 

surface contamination. TiO2 target was sputtered on both glass and Si (100) substrates at 

room temperature using RF power of 150 W. The sample and target distance was kept 

constant at 5 cm for all the samples. After deposition, no post annealing was performed. 

 

             A sputter deposited photocatalytic ITO/TiO2 composite films were deposited in-

situ in the same chamber. 

 

Synthesis of TiO2 thin film t by Sol-gel method: 

 

              In sol–gel method, TiO2 thin film was deposited by spin coating. TiO2 sol was 

prepared by hydrolysis reaction of titanium butoxide [Ti(OC4H9)4] as precursor and nitric 

acid as catalyst. The molar composition of Ti(OC4H9)4/H2O/C2H5OH/HNO3 for sol were 

1:0.5:20:0.1. Ti (OC4H9)4 was mixed with ethanol (half the amount) and constantly stirred 

for 1 h at room temperature. Further mixture of water, ethanol (remaining half) and HNO3 

was added drop wise under a vigorous stirring to the above mixture for 1 h. The resultant 

solution was stirred for further 1 h at room temperature to increase homogeneity before 

spin coating. TiO2 sol was spun for 40 sec at 3000 rpm on glass and Si (100) substrate to 

obtain TiO2 thin film which was further baked at 125 °C for 1 h. Obtained samples were 

thermally treated in static air at 500 °C for 2 h with a heating rate of 1 °C min−1. The flow 

chart of sample preparation is shown in Fig 1. 
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Figure 1: Schematic diagram of preparation process of TiO2 sol by sol–gel method. 
 

 The structural characterization of photocatalyst films produced by sputtering was 

carried out using X-ray diffraction (XRD) technique (Cu Ka radiation, l = 1.5414A°) in 

Bragg–Brentano (θ-2θ) configuration. However, TiO2 films synthesized by sol–gel method 

were structurally characterized by Fourier Transform Infrared Spectroscopy (FTIR) 

because of the low thickness achieved. FTIR measurements were carried out in 

transmission mode at normal incidence in the spectral range between 4000 and 400 cm-1 

using a Bruker (Equinox 55) spectrometer at room temperature. Optical measurements in 

the Ultraviolet (UV) and visible range were performed in a Bruker IFS66 spectrometer 

equipped with a reflection and transmission unit with near normal incidence of the 

incoming beam. The wavelength range of 250–750 nm was used to obtain the absorbance 

spectra. The sample deposited on the glass slide was used for this measurement. The 

surface morphology of the TiO2 samples was detected by using scanning electron 

microscope (SEM-FEG, JSM-7001F, JEOL) and atomic composition was analyzed by 

energy dispersive spectroscopy (EDS, INCA PentaFET-x3) attached to SEM.  

 

               Photocatalytic activities of the TiO2 films were tested by producing hydrogen 

from water splitting. Two photo-electrochemical cells were developed having TiO2 as 
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photo-anode, Pt mesh as cathode, and aqueous electrolytes. The first photocell was formed 

with both electrodes in contact with the same electrolyte in form of distilled water solution. 

In order to have chemical bias, two different electrolytes of different pH in two chambers 

were used in the second cell. The TiO2 photo-anode was in contact with the solution of 

NaOH (1M), while the cathode was immersed in solution of H2SO4 (1 M). Salt bridge 

containing 1M of NaCl was used to provide the path for the ion conduction between two 

solutions. Photo-anode was exposed to light by using 250W tungsten halogen lamp and 

open-circuit photo-voltage was measured during successive light-off and light-on regimes. 

Reactor is made of borosilicate glass, thus no UV filter was used and reactant water 

solution acts as filter for the IR irradiation. Oxygen from the reaction chamber was 

completely removed by purging the chamber with pure Ar gas (99.9%) for 1 h before 

measurement. The separate evolution of H2 originated by the water splitting on the cathode 

side was measured online as function of time by gas chromatographer (GC, Agilent 

MIRCOGC-3000A). Hydrogen evolution was measured in both ON/OFF light regime. 

 

2.2.2. Results and Discussion 

 

A. X-Ray Diffraction: 

 

Figure 2 shows the XRD spectra of the TiO2 film on amorphous glass synthesized by 

sputter deposition. The peaks observed in the spectra of TiO2 thin film are mainly due to 

the anatase phase while some weak additional reflexes of rutile phase could be identified in 

form of broad peak. The crystal size Dhkl of 6 and 45 nm was calculated by Debye–Scherrer 

equation (2.7) from most intense (110) and (101) peaks of rutile and anatase phase 

respectively.  

                                               Dhkl  =  
Bθβ

λ
cos

9.0
         (2.7) 

Where λ is the wavelength of the x-rays, β  is the full width half maxima (FWHM) in 

radians. θB is the position of the maximum diffraction. 
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Figure 2: XRD pattern of TiO2 film deposited on amorphous glass slide by RF magnetron  

                Sputtering 

 

This means that rutile phase is almost amorphous with very finely dispersed grains 

while, on the contrary, anatase phase is in crystallized form. However, anatase phase is 

most favourable for the photocatalytic reaction [6]. TiO2 films synthesized by sol–gel 

method were structurally characterized by FTIR due to the low thickness achieved. 

 

B. Fourier Transform Infrared Spectroscopy (FTIR): 

Essentially, we see no distinct peaks in IR spectra (Fig. 3) for the as deposited TiO2 

thin film (note that in FTIR spectra, the TiO2 vibrations are normally observed in the range 

between 800 and 350 cm-1) but, after heat-treatment at 500 0C, there is formation of a 

broad peak centred at 433 cm-1 which corresponds to the vibration of the TiO2 units of the 

anatase phase [7]. No indication of rutile phase formation was observed and so, our sol–gel 

deposited TiO2 films posses only anatase phase with low crystalline degree.  
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Figure 3:  FTIR spectra of TiO2 film deposited on amorphous glass slide by sol–gel    

                 method. 

 
 

C. Scanning Electron Microscopy (SEM) 

 

Surface morphology, observed by SEM, of the TiO2 films deposited by both the 

methods was quite flat, smooth and without major defects. SEM cross-section micrographs 

of TiO2 thin films are reported in Fig. 4. Sol–gel prepared films (Fig. 4a) are quite compact 

with thickness of about 135 nm which is confirmed by the profilometry measurement. On 

the contrary, typical dense columnar structure is observed in TiO2 film deposited by 

sputtering (Fig. 4b) with average diameter of around 30–50 nm. 
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Figure 4: Cross-section SEM micrographs of TiO2 films deposited by (a) sol–gel method 

and (b) RF magnetron sputtering technique 

 

 

D. UV-Visible spectroscopy  

 

Transmission spectra of the TiO2 thin films deposited by sputtering and sol–gel on 

glass substrate are presented in Fig. 5 in the UV–visible range (250–600 nm). The 

absorbance edge of TiO2 film deposited by sputtering is at the higher wavelength (~388 

nm) as compared to the sol–gel derived film (~370 nm). 

Band gap is obtained by fitting the absorption edge of UV–Visible spectra by using 

the following equation [8]: 

 

ω
ω ν

h

h )(
lnln 0

gE
CTT

−
−=    (2.8) 

 
Where Eg is the band gap, C is a constant, and T0 is the transmission of the 

substrate. Depending on the type of transition, ν  assumes different values: for direct, 

allowed (forbidden) transitions ν  = 1/2 (ν  = 3/2) and for indirect, allowed (forbidden) 

transitions ν  = 2 (ν  = 3). For our nano crystalline or amorphous films ν  = 2 is used, 

according to Ref. [9]. Near the absorption edge, T0 and C are approximately constant and 

fitting the absorption edge with Eq. (2.8) gives Eg for the TiO2 samples. The energy band 



61 

gap of 3.4 eV is obtained for the chemically prepared samples which is higher than the 

theoretical value for the anatase (Eg = 3.2 eV) and rutile (Eg = 3.0 eV) phase of TiO2 [10]. 

Note that these values are obtained in the single or proper crystallized samples while, in the 

present case, higher band gap is due to the low crystallization degree as observed in the IR 

spectra. Similar high values are reported for the nano crystallized TiO2 film [11,12] and 

powder [13,14]. In case of sputter-deposited TiO2 a band gap of 3.21 eV is obtained, 

signalling the presence of a well crystallized anatase phase. Absorption edge also contains 

shoulder which is fitted thus obtaining the value of 2.85 eV indicating the presence of 

defect energy levels in the band gap. Interference fringes are observed in the visible range 

for the sputter-deposited TiO2 suggesting thickness uniformity in the film. This effect is 

absent in sol–gel deposited films because of their low and non-uniform thickness achieved 

by spin coating [15]. 

 

 

 
Figure 5: UV–Vis transmission spectra of TiO2 films deposited by sol–gel method and  
                 RF magnetron sputtering technique. 
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E. Hydrogen Measurement  

 

  To split water using TiO2 as photo-anode it is necessary to attain a voltage value of 

1.23 V in the photo-electrochemical cell. Thus the open-circuit voltage (Voc) was measured 

in ON/ OFF light regime for the first cell in which both cathode (Pt mesh) and photo-anode 

(TiO2 thin film deposited on conducting ITO layer) were immersed into the single 

electrolyte in form of distilled water. Table 1 shows the Voc measured for the TiO2 films 

deposited by sputtering and sol–gel method on ITO of different thickness to study the 

effect of the conducting layer. 

 

 
 

As seen from the table, Voc is less than 0.2 V in light OFF regime for all the TiO2 

films while it increases to about ~0.7 V in light ON regime. However, in case of sputter 

deposited TiO2 film, Voc shows maximum value when placed on thinner ITO films (30 and 

50 nm) as compared to thicker ones (150 and 250 nm). This can be explained in terms of 

resistance offered by the electrical contact layer which is one of the key factor for loss of 

absorbed photon energy [16]. Since the conductivity is inversely proportional to the 

thickness of ITO film, thus by depositing TiO2 on thinner ITO will help to obtain better 

electrical contact which in turn reduces the absorbed photon energy losses thus favouring 

better photo-voltage. Thickness of ITO film can be further decreased to enhance the photo-

voltage value but this will result on the incomplete coverage of the substrate. Reverse 

behaviour is observed for the sol–gel deposited TiO2 film which showed increase in the Voc 

by increasing the ITO thickness up to certain value. To better understand this behaviour, 
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elemental composition line scan was conducted by EDS along the cross-section of the sol–

gel deposited films, before and after heat treatment at 5000C.  

 

Two distinct layers of tin and titanium, from ITO and TiO2 layer respectively, can 

be clearly visualized for the as deposited film (Fig. 6). Heat-treatment at 5000C causes the 

diffusion of titanium atoms into ITO layer up to depth of 120–150 nm. In case of the thin 

ITO layer (50 and 150 nm), there would be a full mixing of Ti with ITO that will change 

the peculiar properties of ITO thus explain the lower Voc values. For thicker ITO film (250 

and 350 nm) the Ti atoms would have only partially diffused into the ITO film thus 

preserving its properties. The above result shows that conductivity of the electrical contact 

layer is an important factor to be considered to acquire better photo-voltage. Another fact to 

be possibly considered is that conductance of annealed TiO2 film is often low and depends 

on annealing condition. Hence in future activity, electrochemical pre-treatment process will 

be considered for sol–gel derived film before annealing to modify carrier density and 

increase surface area as reported by Hepel et al. [17]. Nevertheless, the voltage attained by 

the first cell (0.7 V) is not enough for water decomposition (1.23 V). 
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Figure 6: Composition analysis along the cross-section of the sol–gel deposited TiO2 thin  

                films (a) before and (b) after heat-treatment at 5000C. 

 

In the second cell as shown in Fig. 7, chemical bias with high pH difference ( ∆ pH 

= 14) was applied to reach the required voltage for the water splitting. TiO2 photo-anode 

and Pt cathode were immersed into basic and acidic solution respectively ( ∆ pH = 14), to 

provide electrical driving force for electron transfer from TiO2 to Pt side. As observed 

earlier, sputter deposited TiO2 film acts as a better photocatalyst when deposited on low 

thickness (50 nm) ITO film (denoted as sample A hence after). On the contrary, the sol–gel 

deposited TiO2 film showed enhanced performance with thicker (on the order of 350 nm) 

ITO film (denoted as sample B hence after).  The open-circuit voltage characteristics of 

samples A and B, as function of time during the light ON/OFF regime are reported in Figs. 

8 and 9, respectively, for chemically biased cell. 
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Figure 7: The photo-electrochemical cell 

 
Figure 8: Open-circuit photo-voltage (Voc) measured during the light ON and OFF                

regime as function of time for the sample A using photo-electrochemical cell                 

containing two electrolytes of different pH. 
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Figure 9: Open-circuit photo-voltage (Voc) measured during the light ON and OFF  

                 regime as function of time for the sample B using photo-electrochemical cell  

                 containing two electrolytes of different pH. 

 

In the initial light OFF interval, the Voc value measured across samples A and B is 

about 0.7 V which decreases with time up to ~0.65 V and ~0.3 V respectively. Exposure to 

light results in the increase of photo-voltage to the level of about ~1.4 V for both samples 

and this voltage value is achieved in 30 s. These results indicate that by using the present 

photo-electrochemical cell with TiO2 photocatalyst, the required voltage for the water 

decomposition (1.23 V) is attained. The photo-voltage (~1.4 V) remains almost constant for 

period of 60 min in the ON light regime as shown in figures. The light OFF regime causes 

the voltage to drop to about the same initial values but the sample A takes about twice the 

time (40 min) as compared to sample B (20 min). Re-exposure of light again leads to the 

increase in the photo-voltage to previous level. After 45 days, similar results are obtained 

in light ON/OFF regime by using same samples thus proving the stability of our samples 

for photocatalytic activity. 

  Photocatalytic activity of the TiO2 films produced by sputtering and sol–gel has 

been tested by measuring H2 generated by water splitting. 
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Figure 10: Hydrogen evolution as a function of time measured through water splitting by                  

using magnetron sputter and sol–gel deposited TiO2 photo-anode films in                 

photo-electrochemical cell containing two electrolytes of different pH. The red 

line in the figure demonstrates the linear trend of the experimental points. 
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Figure 11: Spectral photon flux for tungsten halogen lamp. 
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Fig. 10 shows the H2 evolution as function of time by irradiating the TiO2 films 

with the light (250W tungsten halogen lamp) which contains mostly visible light with small 

portion of UV light (0.5%) as shown in Fig.11. Photocatalytic H2 evolution increases 

linearly with the exposure time and even after 20 and 21 h the H2 production rate (obtained 

with linear fitting of the experimental data points having R2 = 0.999) is constant for sputter 

and sol–gel deposited TiO2 films respectively. The H2 evolution completely stopped after 

termination of the light irradiation thus showing that H2 is produced only photo 

catalytically. The constant rate production observed in the present case is simply due to the 

employ of TiO2 photocatalyst in form of thin film in a system where the H2 and O2 evolve 

separately. Thus the present protocol provides a better option than the Pt-loaded TiO2 

powder where H2 production rate decreases with time because of the back-reaction with O2 

produced in the same chamber. By adding redox mediator like Na2CO3, NaI, and NaOH in 

the solution to stop the back reaction in the Pt-loaded TiO2 powder, the H2 production rate 

does not remain constant along the time [18,19]. The H2 generation rate was measured to 

be 12.5± 0.1 and 4.3 ± 0.1 µmole/h for the sputter (sample A) and sol–gel (sample B) 

deposited TiO2 films, respectively. During the measurement, the same surface area (13.75 

cm2) was exposed to the light for both films. Lower production rate observed for sample B 

is also connected to the absorption band which extends towards the lower wavelength as 

compared to the sample A. However in sample A, along with the band gap of 3.2 eV of the 

anatase phase, there are also the energy levels in the band gap contributed by either rutile 

phase or stoichiometric defects leading to greater absorption of the visible light. Defects are 

produced by the sputter deposition process during which energetic ions, at low Ar gas 

deposition pressure, create oxygen vacancies in the deposited film. Another possible proof 

for the role of the oxygen vacancies can be obtained on the basis of morphological 

variation observed in sputter and sol–gel deposited films. During sputter deposition, a 

proper columnar structure perpendicular to the substrate is observed by SEM. In agreement 

with the experimental evidence reported by Matsuoka et al. [26], in this kind of columnar 

crystals the surface is covered with a stoichiometric TiO2 phase (O/Ti = 2.00) while 

moving inside the bulk and near the interface with the substrate, the oxygen concentration 

slightly decreases (O/ Ti = 1.93). On the contrary, in sol–gel-synthesized film a compact 

and uniform film is formed throughout. The oxygen vacancies created in film during 

sputtering process produce the impurity energy levels into the band gap leading to the 
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higher visible light absorption. Similar results have been reported by Kitano et al. [33] who 

showed the increase in the light absorbance by decreasing the deposition gas pressure. The 

recombination of the photo-generated electron–hole pairs is one of the important factors in 

the efficient solar energy conversion. However in present ITO/TiO2 stack film, conduction 

band edge of ITO (~-4.5 eV) is at lower energy level than that of TiO2 (~-4.0 eV) thus 

creating favourable situation for later to inject electrons [46]. In addition, external chemical 

bias would create downward band bending of the conduction and valence bands at the 

interface between the TiO2 film and ITO substrate [47]. Hence, photo-excited electrons in 

the conduction band of TiO2 can effortlessly flow to the conduction band of ITO leaving 

back the holes in the valence band of former, thus efficiently separating the photo-

generated charges. Similar behaviour is visualized for WO3/TiO2 bi-layers semiconductor 

photo-anodes where the conduction band electron from TiO2 as an external film were 

driven to the internal WO3 film due to the lower level of conduction band edge in WO3 

[48]. The holes on TiO2 surface then oxidize the water molecule to produce O2 gas while 

electrons collected on Pt, transferred by ITO, reduce the H+ ions to evolve H2 gas. 

 

2.2.3 Conclusion: 

 

                   We reported hereby on hydrogen production by water splitting in photo-

electrochemical cells prepared by using photo-anodes made by two different kinds of TiO2: 

one deposited by RF sputtering and the other one by sol–gel method. Depositions were 

performed on electrical conducting ITO whose electrical properties play vital role to reduce 

the photon energy loss. The photo-anodes have been characterized by several techniques to 

infer on their optical and compositional properties. The observed differences in hydrogen 

production have been attributed to the peculiarities in absorption properties of the two TiO2 

films that in the case of sputter-deposited films are more prone to absorb radiation also 

because of the produced defects during the deposition process. 
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2.3 Visible light active Cr-Fe doped TiO2 thin film for water  

           splitting. 

 
The last section (2.2) compares the physical and chemical methods to synthesize 

TiO2 thin film and development of photochemical cell was also mentioned. This section 

elucidates the improvement of TiO2 thin film to absorb visible part of solar light by 

modification of its optical properties. The most popular dopants for modification of the 

optical and photo-electrochemical properties of TiO2 are transition metals such as Cr, Fe, 

Ni, V, Mn, and Cu. Choi et al. [5] carried out a systematic investigation of the 

photocatalytic activity of TiO2 doped with 21 different metal ions. It was found that doping 

with metal ions may extend the photo-response of TiO2 into the visible spectrum by 

introducing additional energy levels in the band gap of TiO2. Among this transition metals 

we selected two transition metals, namely Cr and Fe, for doping TiO2 to make it sensitive 

to visible light and to split water efficiently in hydrogen and oxygen. Investigations of the 

doping methods, dopant concentration, charge transfer from metal dopants to TiO2, and 

type of dopants were carried out in an attempt to enhance photocatalytic activity. 

 

2.3.1 Experiment 

 

Material and chemicals: 

 

 Indium Tin Oxide (ITO) (99.99%) bought from supplier “Thin Films materials 

process solutions” and TiO2 (99.99%) targets was commercially supplied by “Goodfellow 

Cambridge Ltd.”. Metal pieces of Chromium and iron acquire from “Balzers coating 

materials” and “Cerac coating materials” respectively. Titanium butoxide 

[Ti(OC4H9)4],Ethanol (C2H5OH ) and Nitric Acid (HNO3) were used as received. To doped 

TiO2 film chemical salts such as Cr(NO3)3 or Fe(NO3)3 used as source of Cr and Fe metal 

respectively. These chemicals were of analytical grade and purchased from “Sigma 

Aldrich”. All solutions were prepared using high purity deionized water. 
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Synthesis of ITO conducting thin film by using RF magnetron sputtering: 

 

 To measure photocatalytic activity, TiO2 films were deposited on the conducting 

indium tin oxide (ITO) layer because ITO has two chief properties, namely electrical 

conductivity and optical transparency. A high electrical conductivity facilitated the 

separation of photogenerated electrons and holes, preserving the photocurrents of the 

electrodes.  ITO layer was deposited on the glass slide by magnetron sputtering by using 

RF power of 100W and working Ar gas pressure of 0.8 Pa. Pre-sputtering of the ITO target 

was also conducted in order to remove the surface contamination. The sample and target 

distance was kept constant at 5 cm for all the samples.  

      

Synthesis of metal doped TiO2 solar sensitive thin film photocatalyst by using RF 

magnetron sputtering: 

 

 Metal-doped TiO2 films were synthesized by partially covering the TiO2 target 

surface with small Cr- or Fe metal discs. The number of discs on the TiO2 target was varied 

in order to obtain metal-doped films of several different atomic concentrations of Cr or Fe, 

up to a maximum value of 5 at.%. High vacuum (HV) with base pressure < 3 x10-5 Pa and 

working Ar pressure of 0.8 Pa were used in the deposition chamber. Before film deposition, 

the TiO2 target was pre-sputtered for 20 min in order to remove any surface contamination. 

The TiO2 films were sputter-deposited on both glass and Si (100) substrates at room 

temperature using RF power of 150 W. The sample-target distance was kept constant at 

6cm for deposition of all the samples. After deposition, no post annealing was performed. 

 

The molar compositions of [Ti(OC4H9)4]/H2O/C2H5OH/HNO3/Cr(NO3)3 or 

Fe(NO3)3 for sol were: 1:0.5:20:0.1:x. Here, x was set at several different molar values, 

namely: 0.03, 0.06, 0.158, and 0.260, to obtain metal at.% values of: 0.5, 1, 2, and 5, 

respectively, in the final metal-doped TiO2 films. The mixture of Ti (OC4H9)4, ethanol (half 

the amount), and metal salts was vigorously stirred for 1 h at room temperature. Another 

mixture of water, ethanol (remaining half), and HNO3 was added drop wise to the original 

mixture under vigorous stirring for 1 h. The resultant solution was stirred for an additional 
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1 h at room temperature to increase its homogeneity before spin coating. Metal-dopedTiO2 

sol was spun for 40 s at 3000 rpm on both glass and Si (100) substrates to obtain thin films 

which were further baked at 125 0C for 1 h. The samples thus obtained were thermally 

treated in static air at 500 0C for 2 h. The heating rate was about 10C min-1. Flowchart of 

experimental procedure is shown in Fig.1. 

 

 
 

Figure 1: Schematic diagram of preparation process of metal doped TiO2 sol by sol–gel                  
                method. 

 

 The structural characterization of the sputter-deposited TiO2 films was carried out 

by an X-ray diffraction (XRD) technique (Cu Ka radiation, λ= 1.5414A°) in Bragg–

Brentano (θ - 2 θ) configuration. Fourier Transform Infrared Spectroscopy (FTIR) was 

used to determine the phase of the TiO2 films because the thickness of the sol–gel films 

was too thin to be analyzed with our XRD set-up. The measurements were conducted in 

absorbance mode at normal incidence within the spectral range of 4000–400 cm-1 using a 

Bruker (Equinox 55) spectrometer at room temperature. Optical measurements in the 

Ultraviolet (UV) and visible range were performed using a Bruker IFS66 spectrometer 

equipped with reflection and transmission units while the incoming beam was incident near 

to the surface normal. To obtain the absorbance spectra of samples deposited on glass 

slides, the measurements were performed in the wavelength range between 250 nm and 750 

nm. The surface morphology of the TiO2 samples was analyzed by means of a scanning 

water 

Titanium Butoxide + Ethanol Cr(NO3)3 or Fe(NO3)3  
Vigorous stirring for 1 hr at RT 

Ethanol + + Nitric Acid 

TiO2 solution 
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 vigorous stirring for 1 hr at RT. 

Resultant TiO2 sol 
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electron microscope (SEM, JEOL) equipped with Energy Dispersive Spectroscopy (EDS) 

which permitted compositional studies of the films. 

 

To measure their photocatalytic activity, metal doped TiO2 thin films were 

deposited on a conducting indium tin oxide (ITO) layer.  The performance of metal-doped 

TiO2 films in photocatalytic water-splitting was tested by measuring both photo-current and 

hydrogen production rates. The photo-electrochemical cell used TiO2 as the photo-anode, 

Pt mesh as the cathode, and aqueous electrolytes. In order to establish a chemical bias we 

used two chambers containing electrolytes with different pH values. The TiO2 photo-anode 

was kept in contact with an NaOH (1 M) solution, while the cathode was immersed in a 

H2SO4 (1 M) solution. A salt bridge containing NaCl (1 M) was used to provide a path for 

ion conduction between the two chambers. The photo-anode was exposed to visible light 

from a 250-W tungsten halogen lamp to measure open-circuit photo-voltage and closed-

circuit photo-current. The reactor for water-splitting tests was prepared with borosilicate 

glass that acts as a UV filter, while the reactant water solution is a filter for IR radiation. 

Oxygen from the reaction chamber was completely removed by purging the chamber with 

pure Ar gas (99.9%) for 1 h before performing measurements. The evolution of H2 

originated by the water-splitting process at the cathode was measured on-line, as a function 

of time, by using a gas chromatographer (GC, Agilent MIRCOGC- 3000A). Finally, the 

hydrogen evolution was measured in both light-ON and light-OFF regimes. 

 

2.3.2 Results and discussion 

 
A.  X-Ray Diffraction: 
 

The Cr- and Fe-doped TiO2 films were greenish and reddish in color, respectively. 

Fig. 2 shows the XRD spectra of the metal-doped-TiO2 films deposited by RF-magnetron 

sputtering on amorphous glass. The peaks of pure TiO2 are mainly due to the anatase phase 

while some weak additional reflexes are attributed to the rutile phase. The crystal grain size 

of the rutile and anatase phase is about 6 nm and 45 nm, respectively, as calculated by 

using the Debye–Scherrer equation. This means that the rutile phase is almost amorphous 

with very finely dispersed grains while, on the other hand, the anatase phase is in nano 
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crystalline form and just this phase is most suitable for the photocatalytic reaction [2]. The 

TiO2 films doped with low concentrations of Cr (0.8 and 1.2 at.%) and Fe (0.4 and 1.1 

at.%) exhibit peaks which are similar to that of the un-doped films. However, when TiO2 is 

doped with 3.8 at.% of Cr, the rutile phase, with crystal grain size of about 30 nm, prevails 

over the anatase phase. The reflexes of the rutile phase are now shifted to lower 2θ values, 

as compared to those of pure TiO2 film. This indicates a slight increase in the spacing value 

between the lattice planes which might be caused due to insertion of Cr in the lattice. A 

complete amorphization of the TiO2 films is observed at high dopant concentration of both 

Cr (5.2 at.%) and Fe (4.9 at.%), while metal oxides (Fe2O3 or Cr2O3) formation is not 

detected by XRD. Cr3+ and Fe3+ metal ions have an effective diameter comparable to that 

of Ti4+ ions. Thus, during sputter deposition, the metal ions emitted from the target with 

kinetic energy of some 10 eV might be able to replace the Ti4+ ions in the lattice of TiO2 

without changing the crystal structure, at least for low doping concentration. However, high 

metal acceptor dopant concentration (on the order of 4 at.%) causes the formation of 

oxygen vacancies whose mobility may account for anatase to rutile phase transformation 

[3] in the TiO2 film. If the concentration of these metal ions exceeds the solubility limit, the 

TiO2 cannot crystallize in any particular phase [4]. 
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Figure 2: XRD spectra of (a) Cr- and (b) Fe-doped TiO2 thin films with different  
                dopants concentration deposited by RF-magnetron sputtering. 
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B. Fourier Transform Infrared Spectroscopy (FTIR) 

 

The IR spectra (Fig. 3) of pure TiO2 films prepared by sol–gel method show one 

distinct peak at ~433 cm-1 which is attributed to the vibration of the TiO2 units in anatase 

phase [5]. The same peak, with more broadening, also appears in low concentration (0.5–1 

at.%) Cr- (Fig. 3a) or Fe- (Fig. 3b) doped TiO2 films. This proves that after metal doping at 

low concentration, the TiO2 anatase phase still exists, but having a low crystalline degree. 

The vibration peak of the anatase phase disappears in Cr-doped (2 at.%) TiO2 film, while it 

appears very broadened in the case of Fe-doped films with similar concentration. However, 

by increasing the dopant concentration up to 5 at.% for both the metal ions doping, the 

anatase phase related vibration peak disappears while a new peak at ~490 cm-1 emerges. 

This band has been assigned to the Ti–O–Ti stretching vibration in the rutile phase [5]. 

Thermal annealing at 5000C of sol–gel-TiO2, doped with Cr or Fe at concentration similar 

to 5 at.%, causes phase transformation from anatase to rutile. As explained above, doping 

TiO2 with acceptor impurities like chromium or iron, causes oxygen vacancies formation 

favoring the rearrangement of Ti4+ and O2- ions in the lattice and finally the anatase to 

rutile phase transformation [3]. 
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Figure 3: FTIR spectra of (a) Cr- and (b) Fe-doped TiO2 thin films with different dopants  

               concentration deposited by sol–gel technique. 
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C. Scanning Electron Microscopy (SEM): 

 

 

 

 Figure 4: SEM images of (a) Cr- and (c) Fe-doped TiO2 films prepared by sol–   

                           gel method, and (b) Cr- and (d) Fe-doped TiO2 films prepared by RF- 

                          magnetron sputtering.  

 
As observed by SEM, the surface morphology of the metal doped TiO2 films, 

deposited by both methods, appears quite flat, smooth, and without major defects. In Fig. 4 

we report SEM cross-section micrographs of the metal doped TiO2 thin films 

(concentration similar to 1 at.%) deposited by both methods. The sol–gel-TiO2 films, doped 

with Cr or Fe, result quite compact as observed in Fig. 4a and Fig4c. 

 

A dense columnar structure is typically observed in Cr-doped TiO2 film deposited 

by sputtering (Fig. 4b). On the other hand, Fe-doped TiO2 film produced by sputtering 

shows a compact structure rather than a columnar one (Fig. 4d). In addition, SEM images 

obtained in back scattering mode, show uniform distribution of metal ions in the TiO2 film. 

This feature is also confirmed, in the sampled volume, by compositional line scan using 
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EDS. The dopant concentration uniformity is clearly connected to the adopted co-

deposition procedure. 

 

D. UV-Visible Spectroscopy: 

 

The optical properties of the pure and metal-doped TiO2 were studied by measuring 

the absorption spectra ranging from UV (250 nm) to visible (750 nm) wavelengths. The 

results are presented in Figs. 5 and 6 for TiO2 samples doped with Cr and Fe, respectively. 

The figures clearly show a shift in the absorption band edge towards longer wavelength 

when increasing the metal concentration in the TiO2 film. This shift is more prominent for 

the sputter-deposited films. The band gap value is obtained by fitting the absorption edge of 

UV– Visible spectra by using the following equation [6]: 

ω
ω ν

h

h )(
lnln 0

gE
CTT

−
−=   (2.9) 

 

 where Eg is the band gap, C is a constant, and T0 is the optical transmission of the 

substrate. Depending on the type of transition, n assumes different values: for direct, 

allowed (forbidden) transitions n = 1/2 (n = 3/2) and for indirect, allowed (forbidden) 

transitions n = 2 (n = 3). We used n = 2 for the present nano crystalline or amorphous films 

according to Ref. [7]. Near the absorption edge, T0 and C are approximately constant and 

the Eg value of all the TiO2 samples is obtained (see Table 1) by fitting the absorption edge 

with Eq. (2.9). 
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Figure 5: UV–Visible absorption spectra of TiO2 doped with different concentrations of  

                Cr by  using sol–gel and sputtering techniques. 
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Figure 6: UV-Visible absorption spectra of TiO2 doped with different concentrations of  

                Fe by using sol–gel and sputtering techniques. 

 

Eg = 3.4 eV is obtained for pure sol–gel samples: this value is greater than the 

theoretical value of both anatase (Eg = 3.2 eV) and rutile (Eg = 3.0 eV) phase of TiO2 [24]. 

However, note that the literature values [8] are related to single crystal or proper 

crystallized samples, while our IR spectra indicate a low crystallization degree for the 
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present films. High values, similar to ours, are reported for nano crystallized TiO2 film [9] 

and powder [10]. There is no much change in the TiO2 electronic band gap after chemical 

doping with Cr at low concentration (0.5 at.%). On the other hand, doping with 1, 2, and 5 

at.% of Cr causes a slight narrowing of the band gap and the lower value of 3.2 eV is 

observed at the highest concentration (5 at.%). This narrowing might be due to the 

formation of the rutile phase which is here detected by the FTIR analysis. Indeed, the 

theoretical band gap of the rutile phase is lower than that of the anatase phase [8]. The 

absorption edge of the Cr-doped samples also possesses a shoulder: its value, after fitting, 

lies in the range between 2.5 and 2.2 eV. This suggests the presence of new electronic 

energy levels, within the energy band gap, which are related to the presence of Cr ions into 

TiO2. On the contrary, chemical doping of TiO2 with Fe (0.5, 1, and 2 at.%) does not show 

any formation of defect energy levels. However, when the Fe dopant concentration is of 5 

at.%, a slight narrowing of the band gap (3.2 eV) is observed after heat treatment because 

of the rutile phase formation. 

 

 
 

In the case of sputter-deposited pure TiO2 films a band gap of 3.21 eV is obtained: 

it signals the presence of a well crystallized anatase phase. The absorption edge now 

contains a shoulder which was fitted with an energy value of 2.85 eV (Table 1) signalling 

the presence of a new electronic energy level in the band gap. This energy level could be 

connected to the stoichiometric defects produced by the sputter deposition process where 

energetic ions at low Ar gas deposition pressure, create oxygen vacancies in the deposited 

film [11]. Non-stoichiometric TiO2 plays a significant role in enhancement of 
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photocatalytic activity. Sputter-deposited TiO2 film showed indeed higher photocatalytic 

activity as compared to sol–gel synthesized TiO2 [11]. 

 

In case of metal-doped TiO2 films produced by sputtering, we note a red shift of the 

absorption edge irrespective of the metal (Cr or Fe) dopant used. In 5.2 at.% Cr-doped 

TiO2, a relevant narrowing of the band gap, from 3.2 eV (pure TiO2) to 2.2 eV, is observed. 

On the other hand, the decrement in the energy band gap value of Fe-doped TiO2 is not as 

pronounced as in case of the Cr-doped TiO2. In any case, a band gap value of 2.8 eV is 

measured in 4.9 at.% Fe-doped TiO2. Finally, no shoulder is observed in the absorption 

edge of the Fe- or Cr doped TiO2 films synthesized by sputtering. The results shown above 

definitely prove that we were able to sensitize TiO2 in visible light range by doping with 

metal ions. We also infer that the metal doping of TiO2 by sputtering is able to narrow the 

band gap while the chemical metal doping only forms impurity energy levels into the band 

gap. To explain these finds, we’re going to stress some considerations on the two 

deposition techniques adopted. During sputter deposition, Cr or Fe ions may have enough 

energy to displace the Ti ions from their lattice positions thus creating lattice vacancies 

where the impurity metal ions get incorporated into the TiO2 films. This incorporation 

leads to the transfer of 3d electrons from Fe3+ or Cr3+ to the conduction band of TiO2 thus 

causing the narrowing of the band gap [12]. In sol–gel method, the metal-doped TiO2 sol is 

deposited on substrate by spinning where the involved kinetic energy is not sufficient to 

induce lattice atomic relocation. Here the metal-dopant ions could only form aggregate 

oxides. The formation of impurity energy levels within the band gap is due to these metal 

oxides [13]. In conclusion, the substitution of Ti with metal ions in the TiO2 lattice is 

essential to shrink the TiO2 band gap. 

 

The above explanation was experimentally proved by Anpo et al. [15]. The authors 

conducted Extended X-ray Absorption Fine Structure (EXAFS) measurements on Cr-doped 

TiO2 produced by ion implantation (physical procedure) and chemical impregnated 

method. The analysis of EXAFS spectra indicates that, in ion-implanted TiO2, isolated Cr 

ions substitute Ti in the lattice position. On the other hand, the chemically Cr doped TiO2 

contains a mixture of aggregated Cr-oxides having tetrahedral and octahedral coordination 

similar to CrO3 and Cr2O3, respectively. In addition, the results obtained by Anpo et al. [15] 
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show that the metal-doped TiO2 synthesized through the physical method is much more 

efficient to absorb visible light than the chemically doped TiO2. Considering the above 

results, we performed the photocatalytic activity measurements only with sputter-deposited 

metal-doped films. 

 

E. Open Circuit Photo-voltage and photocurrent measurement: 

 

Metal-doped TiO2 (about 1000 nm thick) was deposited on an ITO layer (50 nm), 

previously deposited on glass substrate, and the obtained bi-layer was used as photocatalyst 

for water splitting experiments. This ITO/TiO2 stack film is able to partially limit the 

recombination of photo-generated holes and electrons (h+ and e-) because the conduction 

band edge of ITO (~-4.5 eV) is at an energy value lower than that of TiO2 ( ~- 4.0 eV) thus 

making favourable the electrons injection for the latter into the former. In addition, the 

external chemical bias applied to the photo-electrochemical cell creates a downward band 

bending of both conduction and valence band near the interface between TiO2 and ITO film 

substrate [30]. Hence the photo-generated electrons in the conduction band of TiO2 can 

effortlessly flow to the conduction band of ITO leaving back the holes in the valence band 

of the former: this process finally separates the photo-generated charges. 

 

 To split water using TiO2 as photo-anode, a voltage value of 1.23 V in the photo-

electrochemical cell is required [2]. Thus the open-circuit photo-voltage, (Voc), was 

measured in light- ON and light-OFF regimes in photo-electrochemical cell by using Cr- or 

Fe-doped TiO2 films as photo-electrode: results are reported in Table 2.  

 

In the initial light-OFF regime, the Voc value measured across all the TiO2 samples 

is about 0.7 V and it is due to the chemical bias (details on the adopted procedure are 

reported in our previous paper [27]). In light-ON regime the photo-voltage value increases 

to about ~1.4 V for pure TiO2 samples. This voltage value is achieved in 30 s and remains 

constant for longer period of time.  
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However, none of the metal-doped TiO2 samples was able to reach the minimum 

photo-voltage value (1.23 eV) required for water-splitting. We suppose two possible 

reasons for the metal-doped TiO2 inability to produce the appropriate photo-voltage value: 

1) Recombination of the photo-generated charges on defects associated to the metal ions,  

     and/or 

2) Battery effect caused under chemical bias [4] by the metal ions which may be leached  

    out in the aqueous medium from the surface of the metal-doped TiO2. 

 

 To overcome the problem of battery effect, one more layer of non-conducting pure 

TiO2, about 1000 nm thick, was deposited on metal-doped TiO2 layer. The photo-induced 

voltage and current were measured in light-ON regime in photo-electrochemical cell with 

open- and closed-circuit, respectively. The open-circuit photo-voltage value was measured 

around 1.4 V: this means that the additional TiO2 top layer was really able to remove the 

battery effect. However, the problem of recombination centres formed by the dopant metal 

ions still remains: this is proved by the very low photo-current values measured in the light-

ON regime. As seen in Table 3, the value of photo-current is negligible for all the metal-

doped TiO2 samples as compared to the pure TiO2 films. This clearly shows that doping 

TiO2 with metal ions has two effects: 1) titania is sensitized to the visible light range, 2) 
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recombination centres are formed where the photo-generated electrons and holes 

recombine by limiting the photocatalytic activity. 

 
 

 The concentration of metal-dopant ions plays a very important role in 

photocatalytic activity. Ideally, metal ions, at low concentration, act as trapping centres for 

photo-generated electron (e-) and/or hole (h+) within the titania band gap thus increasing 

the recombination time of e_/h+ pairs. 

Electron trap:  

+
−−+ →+ )1(n

cb
n MeM       (2.10) 

  

Hole trap:  

++++ →+ )1(n
vb

n MhM                                  (2.11) 

 

 These initially trapped charges may then migrate, before recombination, towards 

the interface of the semiconductor where further redox reaction occurs, thus increasing the 

photocatalytic activity. However, a high concentration of metal ions leads to the     

recombination of the photo-generated e- and h+ accordingly to the following equations: 
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      Recombination trap : 

 

++− →+
+ n

vb
n MhM )1(

                                    (2.12) 

+−+ →+ n
cb

n MeM )1(
                                        (2.13) 

 

There exists an optimum concentration value of metal dopant ions at which the 

maximum amount of e- and/or h+ are trapped without recombination; above this amount the 

photocatalytic activity decreases because of the increasing recombination rate. Choi et al. 

[5] investigated 21 different metal-dopant ions in TiO2 used for photocatalytic degradation 

of chemicals. The authors found that the dopant concentration value is a key factor in 

photocatalytic activity. In addition, a well-defined concentration of Fe3+ in TiO2 is required 

to gain good photocatalytic activity for water-splitting in aqueous methanol under visible 

light irradiation [7]. 

 

In photocatalytic reaction, with low concentration of dopant ions, charge transfer 

process is as important as charge trapping. In TiO2 powders, the trapped electrons and 

holes must be transferred to the TiO2 surface where photocatalytic reaction takes place. 

Therefore, in TiO2 powders, metal ions should be injected near the surface to have the best 

conditions for the charge transfer. In case of doping at the major depth below the surface, 

metal ions likely behave as recombination centres since electron/hole transfer is more 

difficult. Peng et al. [31] found that the Be dopant ions near the TiO2 powders surface are 

efficient for charge carrier transfer, while dopant ions at major depth led to poor 

performance in photocatalytic activity. A similar finding was reported in Ref. [5]. 

 

In our photo-electrochemical cells the TiO2 photocatalyst is used in form of thin 

film photo-anode and photo-generated electrons take part in hydrogen generation through 

H+ neutralization at the cathode. Thus, before recombination, photo-electrons must be 

transferred fromTiO2 photocatalyst to the Pt electrode, via ITO. To favour the role of the 

photo-electrons, they must be efficiently transferred from TiO2 to the ITO. 
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According to our previous considerations, in order to reduce the recombination rate 

of electrons and holes and to improve the efficiency of the hydrogen production, two 

samples of thin Cr- or Fe-doped TiO2 layer of about 200 nm were deposited on the surface 

of ITO. The concentration of Fe or Cr was kept low (about 1 at.%) in the metal-doped TiO2 

layer. One more layer of pure TiO2 of about 800 nm was deposited on the top of metal-

doped thin TiO2 layer to remove the battery effect as well. Henceforth these Cr- and Fe-

doped TiO2 samples are designated as sample A and B, respectively. The open-circuit 

voltage and the closed-circuit current were measured with these samples in light-ON 

regime by using our photo-electrochemical cell. A photo-voltage value of about 1.45 V is 

measured with both samples A and B: such a value is greater than the required photo-

voltage value (1.23 V) to split water. A significant enhancement in the photo-current is also 

observed with these thin samples as compared to previous thick metal-doped TiO2 samples. 

 

 In Cr-doped samples the photo-current is increased from 3 to 150 µA with same Cr 

concentration (about 1 at.%) but with thinner layer (about 200 nm) over ITO. Among all 

samples, Fe doped TiO2 thin films showed the highest photo-current value, 350 µA, better 

than that of pure TiO2 samples (290 µA). 

 

F: Hydrogen measurement 

 

 The photocatalytic activity of the three ITO/TiO2 stacks (pure TiO2, sample A, and 

sample B) was tested by measuring the amount of H2 generated by water-splitting.  
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 Figure 7: Hydrogen evolution, as a function of time, from water-splitting by using      

                 sputter-deposited, pure and Cr- or Fe-doped TiO2 photo-anode films in  

                 photo-electrochemical cell containing two electrolytes of different pH (see  

                 procedure in Ref. [11]). 

 

  Fig. 7 shows the H2 evolution, as function of time, from water-splitting by 

irradiating the TiO2 films with light (250W tungsten halogen lamp) which contains mostly 

visible light and includes a very small portion of UV light (0.5%). The amount of the 

photo-catalytically produced H2 increases linearly with the exposure time. The H2 

production completely stops after termination of light irradiation: this proves that H2 is 

produced photo-catalytically only. The constant production rate observed in the present 

case is simply due to the employ of TiO2 photocatalyst in form of thin film in an apparatus 

[27] where H2 and O2 evolve separately. During the measurement, the same amount of 

surface area (13.75 cm2) is exposed to the light for all the three films. The H2 generation 

rate was measured to be 5.3 ± 0.1, 15.5 ± 0.1, and 12.5 ± 0.1 µmol/h for sample A, sample 

B, and pure TiO2 film, respectively. As expected, the H2 production rate is higher with Fe-

doped TiO2 than both pure and Cr-doped TiO2. The photocatalytic activity not only 
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depends on the concentration of the dopants but it is also affected by type of metal used for 

the doping. A qualitative analysis on the effects of transition metal ions (Cr, Mn, Fe, Co, 

Ni, and Cu) on photocatalytic activity of TiO2 was carried out for photocatalytic oxidation 

of acetic acid [4]. The results showed that Cu, Mn, and Fe ions can trap both electrons and 

holes thus avoiding their recombination: thus, doping TiO2 with these metal ions may 

contribute to a better activity than doping with Cr, Co, and Ni ions. Indeed, the latter metal 

ions can only trap one type of charge carrier. In Fe-doped TiO2, the electrons trapped by 

Fe3+ could readily transit to sideward Ti4+ due to the similar energy level of Fe2+/Fe3+ and 

Ti3+/Ti4+ thus improving the separation of photo-generated electron– hole pairs [32]. This 

was experimentally proved by Murakami et al. [33] using photo-acoustic spectroscopy to 

measure the amount of electrons injected from the metal into TiO2 as function of time 

under visible light irradiation. The rate of electron injection from Fe3+ ions to TiO2 is far 

better than that from Cr3+ ions. This result has clear connections with the photocatalytic 

activity of our samples even if Cr-doped TiO2 absorbs more visible light than Fe-doped 

TiO2. Thus, the difference observed in H2 production rate between Cr- and Fe doped TiO2 

is easily understood in the framework of literature results. 

 

 Let us now summarize the mechanisms involved in photocatalytic activity of our 

samples. In sputter-deposited pure TiO2, as previously noted [27], oxygen vacancies 

created in film by the energetic target ions during deposition in pure Ar gas pressure are 

mainly responsible for creating defect energy levels, in the band gap, which enhance the 

visible light absorption. The higher H2 production rate obtained with Fe doped TiO2, as 

compared to pure TiO2, is connected to the shift of the absorbance band towards higher 

wavelength. In addition, although Cr-doped TiO2 better absorbs visible light than all the 

other samples, it however forms recombination sites that reduce the photocatalytic activity. 
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2.3.4 Conclusion 

 

RF-magnetron sputtering and sol–gel methods were used to synthesize Cr- and Fe-

doped TiO2 thin films to study the hydrogen generation by photocatalytic water-splitting 

under visible light irradiation in photo-electrochemical cells which eliminate back-reaction 

effects. UV–Visible spectra show that the sputter-metal-doped-TiO2 films are much more 

efficient than the chemically prepared samples to induce red shift of the absorption edge for 

absorbing visible light. In addition, we proved that dopant atoms must be located, at low 

concentration, near the ITO–TiO2 interface to avoid the formation of recombination centres 

for photo-generated electron–hole pairs. H2 production rate is higher with Fe-doped TiO2 

(15.5 µmol/h) than with Cr-doped TiO2 (5.3 µmol/h) because Fe ions trap both electrons 

and holes thus avoiding recombination. On the other hand, Cr can only trap one type of 

charge carrier. 
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2.4 Efficient solar sensitized multilayer Cr doped TiO2 thin 

film for water splitting 
 

The last section showed how doping TiO2 with transition metals like Cr and Fe 

leads to better absorption in visible light. The TiO2 doped with Fe shows higher hydrogen 

production rate than Cr doped TiO2 because Fe ions trap both electrons and holes which 

help to reduce recombination rate while Cr ions trap only one type of charge carrier. By 

increasing the Cr concentration creates major narrowing of band-gap of TiO2 but at the 

same time forms a recombination center for the charge carriers to recombine. From this 

consideration, it becomes important to solve the problem of recombination for this metal 

doped TiO2. The best way to suppress the recombination processes is to produce specific 

charge states to favour electrons and holes trapping while having appropriate spatial 

separation. This can be achieved by using coupled semiconductor layers having appropriate 

electron energy levels where the edge of the conduction band of the first semiconductor is 

lower than that of the second one. If the semiconductor layers are not much thick, then the 

photo-generated electrons in one layer are easily injected into the second one [1]. In 

addition, a thin space charge layer of a few tens of nanometres is formed near the interface 

of the semiconductors to make their Fermi level equal [2]. The junction electric field is 

built up in this space charge layer of the electrode and is able to provide the driving force to 

the photo-generated electrons to move from one semiconductor to another thus favouring 

the electron-hole separation. Therefore, the development of a number of interfaces in the 

photo-electrode creates an ideal scenario to reduce the recombination rate. Many TiO2-

based coupled systems such as CdS/TiO2 [3], WO3/TiO2 [4], SnO2/TiO2 [5,6], SiO2/TiO2 

[7] etc., have been used in the past as photo-catalysts. But none was reported using 

transition metal -doped-TiO2 in the coupled system where the recombination rates are 

much higher. 

The aim of the present work is to enhance the visible light absorption efficiency of 

TiO2 films by doping with Cr metal, using co-sputtering deposition technique, and by also 

depositing ITO/TiO2 multilayer to reduce the recombination rates. The photocatalytic 

efficiency of the multilayer-based TiO2 photo-electrode was tested by measuring hydrogen 

production through water spitting in photo-electrochemical cell. 
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2.4.1 Experiment  

 

Material and chemicals: 

 

 Indium Tin Oxide (ITO) (99.99%) bought from supplier “Thin Films materials 

process solutions” and TiO2 (99.99%) target was commercially supplied by “Goodfellow 

Cambridge Ltd.”. Metal pieces of Chromium acquire from “Balzers coating materials”. 
 

Synthesis of Cr doped TiO2 Multilayer films 

 

Un-doped and Cr-doped-TiO2 thin films were synthesized by RF-magnetron 

sputtering using TiO2 disc (purity equal to 99.99%) and Ar gas (purity equal to 99.99%) as 

sputtering target and working gas, respectively. Cr-doped TiO2 films were synthesized by 

partially covering the TiO2 target surface with small Cr-metal discs. The number of discs 

on the TiO2 target was varied in order to obtain Cr-doped films of three different atomic 

concentrations. High vacuum (HV) with base pressure <3 X10-5 Pa and working Ar 

pressure of 0.8 Pa were used in the deposition chamber. Before film deposition, the TiO2 

target was pre-sputtered for 20 min in order to remove any surface contamination. The 

TiO2 films were sputter-deposited on both glass and Si (100) substrates at room 

temperature using RF power of 150 W. The sample-target distance was kept constant at 5.5 

cm for deposition of all the samples. After deposition, no post annealing was performed.  

 

 To test photocatalytic activity, TiO2 thin films were deposited on a conducting 

indium tin oxide (ITO) layer. The ITO layer, of about 80 nm, was deposited on the glass 

slide using magnetron sputtering with RF power of 100 W and working Ar gas pressure of 

0.8 Pa. Pre-sputtering of the ITO target was also conducted to remove possible surface 

contamination. Multilayer coating was prepared by sequential in-situ sputtering, firstly of 

the ITO layer and then of Cr-doped TiO2: this forms a single bi-layer. Similarly, several 

numbers of bi-layers (3-, 4-, 5-, 6- and 7-bilayers) were deposited in order to study the 

efficiency of the adopted multilayer structure to reduce the recombination process of holes 
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and electrons. The total thickness of Cr-doped TiO2 was kept constant, about 750 nm, in all 

the multilayer films by controlling the sputtering deposition time. Thus, as the bi-layers 

number increases, the thickness of the Cr-doped TiO2 decreases in each bi-layer to 

maintain constant the total thickness of TiO2 in all films. The thickness of ITO (~80 nm) 

was kept constant in all the multilayer films irrespective of number of bi-layers. The top 

surface of all the films was always covered with pure TiO2 of ~100 nm to protect the metal 

ions from leaching out in the electrolyte. 

 

The structural characterization of the sputter-deposited TiO2 films was carried out 

by X-ray diffraction (XRD) technique (Cu Ka radiation, λ= 1.5414 A°) in Bragg-Brentano 

(q-2q) configuration. Surface electronic states of the photo-catalysts were established by 

using X-ray photoelectron spectroscopy (XPS). X-ray photoelectrons spectra were acquired 

using a SCIENTA ESCA200 instrument equipped with a monochromatic Al Ka 

(1486.6eV) X-Ray source and a hemispherical analyzer. No electrical charge compensation 

was required to perform XPS analysis. Optical measurements in the Ultraviolet (UV) and 

visible range were performed using a Bruker IFS66 spectrometer equipped with reflection 

and transmission units while the incoming beam was incident near to the surface normal. 

The measurements were performed in the wavelength range between 250 nm and 750 nm 

to obtain the absorbance spectra of samples deposited on glass slides. The surface 

morphology of the TiO2 samples was analyzed by means of a scanning electron 

microscope (SEM, JEOL) equipped with Energy Dispersive Spectroscopy (EDS) which 

permitted compositional studies of the films.  

 

  The performance of multilayer-Cr-doped TiO2 films in photocatalytic water-

splitting was tested by measuring both photocurrent and hydrogen production rates in 

photo-electrochemical cell which consists of TiO2 as photo-anode, Pt mesh as cathode, and 

aqueous electrolytes. In order to establish a chemical bias we used two chambers 

containing electrolytes with different pH values. The TiO2 photo-anode was kept in contact 

with a NaOH (1 M) solution, while the cathode was immersed in a H2SO4 (1 M) solution. 

A salt bridge containing NaCl (1 M) was used to provide a path for ion conduction between 

the two chambers. The photo-anode was exposed to visible light, generated by a 250-W 

tungsten halogen lamp, to measure both open-circuit photo-voltage and closed-circuit 



100 

photocurrent. The reactor for water-splitting tests was prepared with borosilicate glass that 

acts as a UV filter, while the reactant water solution is a filter for IR radiation. Oxygen 

from the reaction chamber was completely removed by purging the chamber with pure Ar 

gas (99.9%) for 1 h before performing measurements. The evolution of H2 originated by 

the water-splitting process at the cathode was measured on-line, as a function of time, by 

using a gas chromatographer (GC, Agilent MIRCOGC-3000A). Finally, the hydrogen 

evolution was measured in both ON- and OFF- light regimes. 

 

2.4.2 Results and discussion 

 

A. X-Ray Diffraction: 

 

As observed by SEM, the surface morphology of the Cr-doped TiO2 films appears 

quite flat, smooth, and without major defects, while the cross-section of the Cr-doped films 

showed a dense columnar structure (Fig. 4 of section 2.3.2)[8]. In addition, SEM images 

obtained in back scattering mode, show uniform distribution of Cr-ions in the TiO2 film 

(figure not shown). The dopant concentration uniformity is clearly connected to the 

adopted co-deposition procedure. This feature was also confirmed, in the sampled volume, 

by compositional line scan using EDS. The Cr concentration of about 2 ± 0.2, 5.5 ± 0.2, 

and 9 ± 0.3 at.% was obtained in three different TiO2 films as confirmed by EDS. Fig. 1 

shows the XRD spectra of the Cr-doped-TiO2 films, of several concentrations, deposited by 

RF-magnetron sputtering on amorphous glass.  

The XRD peaks of pure TiO2 are mainly due to the anatase phase while some weak 

additional reflexes are attributed to the rutile phase. The crystal grain sizes of the rutile and 

anatase phase are about 6 nm and 45 nm, respectively, as calculated by using the Debyee- 

Scherrer equation. This means that the rutile phase is almost amorphous with very finely 

dispersed grains while, on the other hand, the anatase phase is in nano crystalline form. 
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Figure 1:  XRD spectra of un-doped and Cr-doped TiO2 films deposited by RF- 
                  magnetron sputtering with different dopants concentration. 
 

 

The peaks due to rutile phase, with crystal grain size of about 35 nm, prevail over 

the anatase phase for TiO2 films doped with low concentrations of Cr (~2 at.%). The 

reflexes of the rutile phase are now shifted to lower 2θ values, as compared to those of pure 

TiO2 film. This indicates a slight increase in the spacing value between the lattice planes 

which might be caused by the insertion of Cr in the lattice. Complete transformation from 

anatase to rutile phase is observed in XRD pattern for higher concentration of Cr-doped 

TiO2 (5.5 and 9 at. %) films. The peaks due to Cr oxides (Cr2O3 or CrO) formation were 

not detected by XRD. Cr3+ metal ions have an effective diameter comparable to that of Ti4+ 

ions thus, during deposition, the metal ions sputtered from the target with kinetic energy of 

some 10 eVs might be able to replace the Ti4+ ions in the lattice of TiO2 without major 

variation in the crystal structure, at least for low doping concentration. However, high 

metal-acceptor dopant concentration causes the formation of oxygen vacancies whose 

mobility may account for the rearrangement of Ti+4 and O2- ions in the lattice and finally 

favouring the anatase to rutile phase transformation [9] in the TiO2 film. 
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B. X-ray Photo-electron Spectroscopy: 

 
Figure 2: X-ray photoelectrons spectra of (a) Ti2p and (b) Cr2p levels for pure                 

TiO2 and Cr-doped TiO2 (9 at.%) 

Figs. 2a and b show the XPS spectra of Ti2p and Cr2p electronic levels, 

respectively, for pure TiO2 and Cr-doped TiO2 (9 at.%). For pure TiO2, two peaks appear 

at 459.1 and 464.7 eV that corresponds to Ti4+2p3/2 and Ti4+2p1/2 electronic levels, 

respectively. 

For Cr-doped TiO2, the Ti2p peaks position shows slight shifts of about 0.3 eV 

towards higher energy side. This indicates that Cr3+ ions are incorporated into TiO2 lattice 

thus influencing the local chemical state of Ti4+ ions. To achieve local charge balance in 

the TiO2 lattice, some of the Ti ions may acquire higher oxidation state by releasing 

electrons, a process that explains the XPS peak shift for Cr-doped TiO2. The XPS spectra 
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of Cr2p (Fig. 2b) show two peaks at 576.7 and 586.5 eV that are assigned to 2p3/2 and 

2p1/2 of Cr3+ species, respectively. This indicates that Cr atoms are incorporated into TiO2 

lattice in form of Cr3+ ion 

 

C. UV-Visible Spectroscopy 

 

 
Figure 3: UV-VIS absorption spectra of un-doped and Cr doped TiO2 films deposited by  

                 RF-magnetron sputtering with different dopants concentration. 

 

The optical properties of the pure and Cr-doped TiO2 were studied by measuring the 

absorption spectra ranging from UV (250 nm) to visible (750 nm) wavelengths and 

presented in Fig. 3. The figures clearly show a shift in the absorption band edge towards 

longer wavelengths when increasing the Cr concentration in the TiO2 film.  

The band gap value is obtained by using the following equation [10]: 

 

γνανα )(0 gEhh −=               (2.14) 
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where Eg is the optical band gap, hν is the photon energy, α0 is a constant which does not 

depend on hν, and α is the absorption coefficient which is obtained from the measured 

absorbance (A) and thickness (t) of the TiO2 film through the relation: α = A/t. Depending 

on the type of transition, g assumes different values: for direct, allowed (forbidden) 

transitions γ  = 1/2 (γ  = 3/2) and for indirect, allowed (forbidden) transitions γ = 2 (γ = 3). 

We used γ  = 2 for the present nano crystalline or amorphous films according to Ref. [11]. 

Using Tauc plot (Fig. 4), i.e. ( ναh )1/2 versus ( h ν ), the band gap energies were deduced 

by extrapolating the linear region of the plot to intersect the photon energy axis: the 

obtained values are reported in Table 1. 

 

 
 

For sputter-deposited pure TiO2 films a band gap of 3.25 eV is obtained: it signals 

the presence of a well-crystallized anatase phase. In case of Cr-doped TiO2 films, by 

increasing the Cr concentration a red shift of the absorption edge is noticed. In 9 at.% Cr-

doped TiO2, a relevant lowering of the photon-absorbed energy from ~3.2 eV (pure TiO2) 

to ~2.1 eV, is observed. During sputter deposition, Cr3+ ions may have enough energy to 

displace the Ti4+ ions from their lattice positions thus creating lattice vacancies where the 

impurity metal ions get incorporated into the TiO2 films. This incorporation leads to 

formation of new energy levels, due to Cr3+, at ~1 eV above the valence band of the TiO2 

[12]. When excited with visible light 3d-electrons are transferred from Cr3+ to the 

conduction band of TiO2: this explains the observed increased absorption [12]. In addition, 

a characteristic bend of the linear part in the experimental plot can be recognized (Fig. 4) 

whose extrapolation establishes the doping energy level in the band gap [10]. This feature 

is mainly observed in TiO2 doped with low Cr concentration (2 at.%) showing energy level 
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at 2.85 eV (Table 1). However at high Cr concentration, the density of the doping energy 

level causes the definite narrowing of the band gap as shown in the UV-visible spectra. 

These results definitely prove that we were able to sensitize TiO2 in visible light range by 

doping with Cr3+ ions. 

 

 
Figure 4:  Tauc plot of undoped and Cr-doped TiO2 films deposited by RF-magnetron  

                 sputtering with different dopants concentration. 

 

As seen from the above results, Cr-doped TiO2 with 9 at.%, shows the maximum 

lowering of the photon-absorbed energy and thus we preferred to perform the 

photocatalytic activity measurements only with these doped-films by making comparison 

with un-doped TiO2. Henceforth, 9 at.% Cr-doped TiO2 film will be designated as Cr9-

doped TiO2 film. 

 

D. Open circuit Voltage-Current Measurement: 

 

             Cr9-doped TiO2 film (about 750 nm thick) was deposited on an ITO layer (80 nm), 

previously deposited on glass substrate, and the obtained bi-layer was covered with thin 
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layer of pure TiO2 to protect the film from possible corrosion induced by contact with the 

electrolyte. This single bi-layer film was used as photocatalyst for water-splitting 

experiments. The ITO/ TiO2 stack film is able to partially limit the recombination of photo-

generated holes and electrons (h+ and e-) because the conduction band edge of ITO (~-4.5 

eV) is at an energy value lower than that of TiO2 (~-4.0 eV) thus making favourable for the 

electrons injection from the later into the former. 

 

            The open-circuit photo-voltage (Voc) was first measured in light-ON regime in 

photo-electrochemical cell by using Cr9-doped and un-doped TiO2 films as photo-

electrode. Both these films show a photo-voltage value of about 1.45 V which is greater 

than the required voltage (1.23 V) to break the water molecule. However, the photocurrent 

measured using Cr9- doped TiO2 (~14 µA) is negligible as compared to pure TiO2 films 

(~290 µA). This is mainly due to recombination of the photo-generated charges on defects 

associated to the Cr3+ ions. High concentration of metal ions leads to the recombination of 

the photo-generated e-and h+ accordingly to the following equations: 

 

Recombination centre: 
++

→+ +− n
vb

n MhM )1(
                  (2.15) 

 
+−+ →+ n

cb
n MeM )1(

               (2.16) 
This means that doping TiO2 with 9 at.% of Cr has two effects:1) titania is 

sensitized to the visible light range, and 2) recombination centres are formed where the 

photo-generated electrons and holes recombine by limiting the photocatalytic activity. 

To avoid the recombination problem we may lower the concentration of Cr in the 

TiO2 film. But this will cause lower absorption of the visible light. In addition, the low 

concentration of Cr in TiO2 is unable to completely solve the problem of recombination as 

reported in our previous work [8]. A simple and efficient route to suppress the 

recombination of charge carriers is by immediately removing the photoelectron from the 

generation site before it recombines with the holes through radiative or non-radiative 

processes. This fast separation can be achieved through the use of coupled semiconductors 

with appropriate conduction energy levels. For instance, as mentioned previously, in the 

ITO/TiO2 coupled system, the conduction band edge of ITO (~-4.5 eV) is at an energy 
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value lower than that of TiO2 (~-4.0 eV) thus making favourable for the electrons injection 

from the later into the former. Once the photoelectron from TiO2 is injected in ITO, it has a 

very low probability of back transfer and, as a result, electrons and holes are definitely 

separated. However, to be efficient, ITO should be located near the electron generation site 

to provide the driving force for the photoelectron transfer. 

Having this in mind, we have deposited multilayer films with different numbers (3-, 

4-, 5-, 6- and 7-bilayers) of ITO/Cr9-doped TiO2 bi-layers and finally covering with thin 

layer of pureTiO2 (100 nm) the surface layer that will be in contact with the electrolyte. The 

bottom portion of the overall multilayer is also in contact with the electrolyte through the 

pure TiO2 (100 nm) layer (while the corresponding top portion is electrically connected to 

cathode of the photo-electrochemical cell). The total thickness of Cr9-doped TiO2 was kept 

constant, about 750 nm, in all the multilayer films by decreasing the thickness of each Cr9-

doped TiO2 layer when increasing the number of the bi-layers. The thickness of ITO (~80 

nm) was kept constant in all the multilayer films irrespective of number of bi-layers. In our 

previous work [13], the effect of conducting ITO layer on photocatalytic activity was 

studied by varying the thickness of the ITO films and we found that ITO layers having 

thickness in the range of 50-100 nm offer the best conditions to have low losses of 

absorbed photon energy thus favouring better photo-voltage. 

In Fig. 5 we present the cross-section SEM images, in back scattering mode, of 

multilayer films with 1-, 3-, 4-, 5-, 6- and 7- bi-layers of ITO/Cr9-doped TiO2. 

The white layer of ITO can be easily distinguished from the dark layer of Cr9-

doped TiO2 and for this reason both the periodicity and continuity of the layers are clearly 

visible. The images clearly show that along with the increase of bilayers number, the 

thickness of single Cr9-doped TiO2 layer decreases (see Fig. 6). 
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Figure 5:  SEM Images, in back scattering mode, of ITO/Cr9-doped TiO2 multilayer  

                 films: (a) single bilayer, (b) 3-bilayers, (c) 4- bilayers, (d) 5-bilayers, (e) 6- 

                 bilayers, and (f) 7-bilayers. 

 

Here we want to note that ITO deposited on the top of TiO2 layer does not affect the 

amount of photons reaching the TiO2 layer because ITO is a transparent conducting oxide 

with a direct band gap in the range of 3.9-4.2 eV which is significantly higher than the 

absorption edge of Cr9-doped TiO2 layer (2.1 eV). This feature was experimentally 

confirmed by measuring the absorbance of the Cr9-doped TiO2 -ITO bi-layers, with ITO on 

top, in the UV-Visible range: the spectra showed similar red shift in the band edge as that 

observed with single layer. 
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Figure. 6: Photocurrent and thickness of each Cr9-doped TiO2 layer as a function of  

                 number of bilayers. 

 

To check the photocatalytic activity of the multilayer films we measured photo-

voltage and photocurrent for light-ON regime in photo-electrochemical cell by using 

ITO/Cr9-dopedTiO2 multilayer films as photo-anode. Each ITO layer in the multilayer 

films is directly connected to the platinum cathode and so as soon as the electrons are 

injected from the Cr9- doped TiO2 layers into the ITO layers, they are immediately 

transferred to the cathode. The photo-voltage measured on all the multilayer films (about 

1.4-1.5 V) is greater than that required to split the water molecule. The measured 

photocurrent as a function of number of bi-layers is reported in Fig. 6. As the number of 

ITO/Cr9-doped TiO2 bi-layers increases the photocurrent increases and reaches the 

maximum value with 6-bilayers (572 µA). However, with 7-bilayers the photocurrent 

decreases to the value of 160 µA. The photocurrent value measured with 6-bilayers Cr9-

doped TiO2 film (572 µA) is about two times higher than that obtained with pure TiO2 (290 

µA) with same total thickness of TiO2. 

When semiconductors having different energy bands are brought in contact with 

each other, a band bending occurs near the interface to make Fermi level equal on both 

sides. This band bending generates an interface space charge layer, having thickness of 

several tens of nanometer, where a large electric field is developed. When photoelectrons 
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are generated in this interface region (or very near) they are instantaneously pushed out to 

the adjacent semiconductor due to the driving force provided by the electric field and the 

electron-hole separation is definitely obtained, a process well known in p-n semiconductor 

junctions. In the present ITO/TiO2 system, the interface region presents electrical features 

that are similar to previously described p-n junction thus providing an efficient route for the 

e—- h+ separation. Hence by adopting a multilayer structure, we are able to produce many 

interfaces of ITO/TiO2 which establish fast transport channels along with efficient e-h 

separation. 

 

Now let’s understand in detail the mechanism of the electron flow in the multilayer 

films and how the number of bi-layers affects the generation of the photocurrent. Our 

results show that the photocurrent obtained with single bilayer of ITO/Cr9-doped TiO2 is 

very low. In this single bi-layer film there is only one interface of ITO/Cr9-doped TiO2 at 

the bottom with the thick layer of Cr9-doped TiO2 (750 nm) over it. Most of the 

photoelectrons are generated in the bulk of the doped-TiO2 where they have to travel some 

distance within the TiO2 itself before entering the space charge region of the interface to 

feel the driving field for final injection into ITO. In Cr9-doped TiO2 the probability of e--h+ 

recombination is much higher because of the presence of recombination sites associated to 

the Cr3+ ions. By depositing 3-bilayers film the photocurrent increases significantly from 

14 µA (for single bi-layer film) to 145 µA. In this film, the previous Cr9-doped TiO2 layer 

having thickness of 750 nm was divided into three layers of 250 nm by introducing two 

more ITO layers. The resulting film now contains five ITO/TiO2 interfaces where space 

charge layer is formed and the decreased thickness of the Cr9-doped TiO2 layers assures 

that the photo-generated electrons have to travel a short distance into TiO2 (the unshielded 

region) before being injected into the ITO layer where recombination is definitely hindered. 

Another relevant point to be considered is that in single bi-layer film the photoelectrons, 

generated in the Cr9-doped TiO2 layer, to avoid recombination have to move only along 

one direction towards the ITO layer placed at the bottom of the layered structure. On the 

contrary, in 3-bilayers film the Cr9-doped TiO2 layer is sandwiched between the two ITO 

layers and so the photoelectrons can move along either of two directions to avoid 

recombination. All these reasons favour the increment of the photocurrent in the 3-bilayers 

film. 
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 In addition we observe that by increasing the bi-layers number there is an almost 

linear increment in the photocurrent, mainly attributed to the better conditions for charge 

separation and transport with reduced number of recombination processes: here we have to 

further underline the key role of number of ITO/TiO2 interfaces. The measured 

photocurrent reaches the maximum value (572 µA) with 6-bilayers film; the measured 

photocurrent is significantly higher than that measured with single bi-layer film (14 µA). 

For 6-bilayers film, the thickness of Cr9-doped TiO2 layer (125 nm) in each bi-layer may 

be lower than the total thickness of the space charge layer of the pertinent interface. Thus 

photoelectrons generated in the Cr9- doped TiO2 are already in space charge region where 

the electric field provides them the driving force to instantaneously inject into the ITO 

layers: this means that the 6-bilayers film creates the best conditions for charge separation. 

In addition, this film is able to absorb more visible light than pure TiO2 due to the band 

narrowing caused by Cr3+ energy levels, hence generating higher amount of photoelectrons. 

With 7-bilayers film the photocurrent decreases (Fig. 6); we suggest this might be due to 

the poor crystallinity of very thin films of TiO2 (92 nm). Takahashi et al. [14] showed 

indeed that with sol-gel deposited TiO2 film the photocurrent increases by decreasing the 

TiO2 layer thickness and reaches maximum value at particular thickness. Below this 

thickness the photocurrent decreases drastically and, as indicated by the authors, this is 

attributed to the low crystallinity achieved with thinner films. Nasr et al. [1] also reported a 

similar trend in the photocurrent as a function of TiO2 thickness but they did not explain 

the reason behind the reduced photocurrent with thinnerTiO2 layers. For the moment with 

our XRD setup it is difficult to acquire the spectra of such a thin layer of TiO2. However, 

we will address this open problem with dedicated experiments in the future. 

The reduced probability in charge recombination processes observed with 

multilayer films can be further analyzed by studying the photocurrent kinetics curve. Fig. 

7A shows the schematic diagram of photocurrent transient curve. 
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Figure 7: (A) Schematic representation of the photocurrent transient curve. Normalized  

                 plot of current-time dependence for: (B) pure TiO2, (C) single bi-layer, and    

                 (D) 6-bilayers of ITO/Cr9-doped TiO2 multilayer film. 

 
The initial anodic photocurrent spike is denoted by I(i). This current signals the 

separation of the electron-hole pairs by movement of holes towards the semiconductor 

surface where they are trapped or reduced by the species in the electrolyte, while the 

electrons are transported to the back contact. After I (i) has been attained, then a continuous 

decrease of the photocurrent with time is observed until a steady-state photocurrent, I(st), is 

reached. The photocurrent decay indicates that charge recombination processes are 

occurring. The holes reaching the semiconductor surface may, instead of capturing 

electrons from the electrolyte, accumulate at the surface and recombine with electrons from 

the conduction band, i.e. the decay is determined by the rate at which minority carriers 

trapped at surface states capture majority carriers [15].  
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The photocurrent transient can be defined by the following kinetic equation [16]: 

 

)exp(
τ
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D −=                                    (2.17) 

Where D is defined as 
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Here, τ is the transient time constant, I(t) is the current at time t, I(in) is the current 

at t = 0, and I(st) the stationary current. Figs. 7B, C, and D illustrate the ln D vs. time plot 

for pure TiO2 film, single bi-layer, and 6-bilayers of ITO/Cr9-doped TiO2 films 

respectively. The slope of this plot provides τ which is related to the time for charge 

recombination processes in the films. The measured τ for Cr9-doped TiO2 with single bi-

layer film is about five times smaller than that for the un-doped TiO2. 

 

 Specifically, the photocurrent decays within a few seconds in Cr-doped TiO2 is due 

to recombination of the photo-generated charges on defects associated to the Cr3+ ions. On 

the contrary, with 6-bilayers the transient time constant is about the same as for undoped 

TiO2 film where there are no defect sites. This again proves that by introducing space 

charge regions in form of ITO/TiO2 interfaces and by decreasing the thickness of TiO2 

layer favours charge separation, and recombination processes are suppressed even if 

recombination sites such as Cr3+ are still present. 

 

                 After optimizing the thickness of the Cr-doped TiO2 in them multilayer films, it 

is necessary to study the effect of the number of bi-layers on the photocurrent. Thus we 

deposited different number of ITO/TiO2 bi-layers by keeping constant the thickness of Cr9-

doped TiO2 and ITO layers (125 and 80 nm respectively). The photo-voltage and 

photocurrent measured in light-ON regime with these multilayer films are reported in Table 

2.  
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All the multilayer films were able to produce photo-voltage greater than 1.3 V 

irrespectively on the number of bi-layers. On the contrary, the photocurrent increases with 

the number of bi-layers and reaches an early constant value for the highest number of bi-

layers (6 and 7). A saturation effect is clearly expected on physical basis but what is 

important here is that the photocurrent value depends not only on thickness but also on the 

number of bi-layers, i.e. on the ability of the multilayer structure to efficiently avoid 

charges recombination. Here, another important point is that with 7-bilayers there is not a 

dramatic decrease of the photocurrent as observed in Fig. 6. This supports the point that the 

low crystallinity achieved with very thin films is deleterious to photocurrent generation. 

 

E. Hydrogen Measurement:  

 

The photocatalytic activity of the 6-ITO/Cr9-doped TiO2 bi-layers was finally 

tested by measuring the amount of H2 generated by water-splitting in photo-

electrochemical cell and compared to pure TiO2. Fig. 8 shows the H2 evolution, as function 

of time, from water-splitting by irradiating the multilayer and pure TiO2 films with light 

(250 W tungsten halogen lamp) which contains mostly visible light and includes a very 

small portion of UV light (1%).  
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Figure 8: Hydrogen evolution, as a function of time, from water-splitting by using  

               sputter-deposited pure TiO2 and 6-bilayers of ITO/Cr9-doped TiO2 multilayer  

              film in photo-electrochemical cell containing two electrolytes of different pH  

             (see procedure in Ref. [13]). 

 

                 The amount of the photo-catalytically produced H2 increases linearly with the 

exposure time. The H2 production completely stops after termination of light irradiation: 

this proves that H2 is only produced photo-catalytically. The constant production rate 

observed in the present case is simply due to the employ of TiO2 photocatalyst in form of 

thin film in an apparatus [28] where H2 and O2 evolve separately. During the measurement, 

the same amount of surface area (13.75 cm2) is exposed to the light for both the films. The 

H2 generation rate was measured to be 24.4 ± 0.1 µmol/h for 6-bi-layers based Cr9- doped 

TiO2 multilayer film and is about two times higher than that measured with pure TiO2 film 

(12.5 ± 0.1 µmol/h). The greater H2 generation rate with Cr9-doped TiO2 multilayer film is 

definitely attributed to an increased absorption of visible light, larger than pure TiO2, and to 

reduced charge recombination processes because of the number of space charge ITO/TiO2 

interfaces in multilayer films. However, a comment must be included now to explain the 

hydrogen production results. Indeed, while the photo-generated electrons are easily 
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collected by the established electrical contact to produce the measured photocurrent, the 

positive holes that are produced inside the Cr-doped TiO2 layers sandwiched by the ITO 

films, may arrive at the TiO2 irradiated surface that is in contact with water. We suspect 

that holes migrate through the bottom deposited TiO2 layer towards the irradiated front 

surface where H2O molecules get oxidized. This holes mobility is a new aspect, regarding 

the photo-electrochemical cells, that should be further investigated. 

 

 Therefore the above results prove that: 

1. There is an enhanced visible light absorption in Cr-doped TiO2 because of the      

formation of wide Cr3+ energy levels into the band gap; 

2. There is a better photo-generated charge separation by introducing space charge layers      

in form of ITO/TiO2
 interfaces; 

3. Holes mobility towards the irradiated surface layer is a relevant new process that should 

be further investigated. 

 

 2.4.3 Conclusions 

 

TiO2 doped with Cr ions (9 at.%) shows an increase in the optical absorption 

efficiency and photons with energy as low as 2.1 eV are absorbed as compared to the lower 

limit of 3.2 eV for undoped TiO2. However, in photo-electrochemical cell, negligible 

photocurrent is measured with ITO/Cr-doped-TiO2 (9 at.%) single bilayer, a problem that 

we attribute to the increased recombination rate of the photo-generated charges. To reduce 

the charge recombination rate we prepared multilayer films with different numbers of 

ITO/Cr-doped-TiO2 (9 at. %) bilayers (namely, 3-, 4-, 5-, 6- and 7-bilayers) by keeping the 

total thickness of TiO2 constant. The reduced thickness of the Cr-doped TiO2 film, 

deposited on ITO, significantly contributes to reduce the charge recombination rates. This 

is because the generated photoelectrons, travelling into TiO2 film of limited thickness, 

rapidly enter the space charge interface of the ITO/TiO2 films from where they are 

instantaneously injected into the ITO layer and then removed towards the cathode of the 

photo-electrochemical cell: here H+ reduction occurs. When the multilayer film is exposed 

to visible light, we observe that the photocurrent increases as function of the number of 
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bilayers. The maximum value of the photocurrent is obtained with 6-bilayers of ITO/Cr-

doped-TiO2. The enhanced photocurrent is attributed to both higher absorption of visible 

light by Cr-doped-TiO2 and to the number of space charge ITO/TiO2 interfaces in 

multilayer films. With six bilayers, the H2 production rate obtained through water-splitting 

is about 24.4 µmol/h, a value about two times higher than that of pure TiO2 (12.5 µmol/h). 
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2.5 Efficient Hydrogen production using vanadium-doped TiO2 thin 

film  

            In last section we successfully structured multilayer stacks of ITO/Cr doped TiO2 

film by which we have resolved the problem of visible light absorption and recombination 

of e- and h+. To check and to be confident about this multilayer concept we doped TiO2 

with another transition metal dopant in the form of Vanadium ions which are more efficient 

to absorb visible light by forming impurity levels in mid-gap state. 

Hence the aim of the present work is to enhance the visible light absorption 

efficiency of TiO2 films by doping with vanadium metal, using co-sputtering deposition 

technique, and by also depositing ITO/TiO2 multilayer to reduce the recombination rates. 

The photocatalytic efficiency of the multilayer-based TiO2 photo-electrode was tested by 

measuring hydrogen production through water spitting in photo-electrochemical cell. 

 

2.5.1 Experiment  

 

    Material and chemicals: 

 

 Indium Tin Oxide (ITO) (99.99%) bought from “Thin Films materials process 

solutions” and TiO2 (99.99%) target was commercially supplied by “Goodfellow 

Cambridge Ltd.”. Metal pieces of Vanadium acquire from “Balzers coating materials”. 

 

Synthesis of V- doped TiO2 Multilayer films 

 

Undoped and V-doped-TiO2 thin films were synthesized by RF-magnetron 

sputtering.  Pure TiO2 disc (purity equal to 99.99%) and Ar gas (purity equal to 99.99%) 

were used as sputtering target and working gas for the deposition, respectively. Before 

deposition high vacuum with base pressure of <3 x 10-5 Pa was attained, while during 

deposition Ar pressure of 0.8 Pa was maintained in the chamber. V-doped TiO2 films were 

synthesized by partially covering the TiO2 target surface with small V-metal pellets. The 

number of pellets on the TiO2 target was varied in order to obtain V-doped films of four 

different atomic concentrations. Before film deposition, the TiO2 target was pre-sputtered 
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for 20 min in order to remove any surface contamination. The TiO2 films were sputter-

deposited on both glass and Si (100) substrates at room temperature using RF power of 150 

W. The sample-target distance was kept constant at 5.5 cm for deposition of all the 

samples. After deposition, no post annealing was performed. 

TiO2 thin films were deposited on a conducting indium tin oxide (ITO) layer which 

provides electrical back contact to test photocatalytic activity. The ITO layer, of about 80 

nm, was deposited on the glass slide before the deposition of TiO2 film using magnetron 

sputtering with RF power of 100 W and working Ar gas pressure of 0.8 Pa. Pre-sputtering 

of the ITO target was also conducted to remove possible surface contamination. Multilayer 

coating was prepared by sequential in-situ sputtering, firstly of the ITO layer and then of 

V-doped TiO2: this forms a single bilayer. Similarly, several numbers of bi-layers (2-, 3-, 

4-, 5-, 6- and 7-bilayers) were deposited in order to study the efficiency of the adopted 

multilayer structure to reduce the recombination process of holes and electrons. The total 

thickness of V-doped TiO2 was kept constant, about 750 nm, in all the multilayer films by 

controlling the sputtering deposition time. Thus, as the bilayer number increases, the 

thickness of the V-doped TiO2 decreases in each bilayer to sustain total thickness of all 

TiO2 films constant. The thickness of ITO (~80 nm) was kept constant in all the multilayer 

films irrespective of number of bi-layers. The top surface of all the films was always 

covered with pure TiO2 of ~100 nm to protect the metal ions from leaching out in the 

electrolyte. 

The structural characterization of the multilayered V-doped TiO2 films was carried 

out by X-ray diffraction (XRD) technique (Cu Ka radiation, λ = 1.5414 A° ) in Bragg-

Brentano (θ-2θ) configuration. Surface electronic states of the photocatalyst were 

established by using X-ray photoelectron spectroscopy (XPS). X-ray photoelectrons spectra 

were acquired using a SCIENTA ESCA200 instrument equipped with a monochromatic Al 

Ka (1486.6eV) X-Ray source and a hemispherical analyzer. No electrical charge 

compensation was required to perform XPS analysis. Optical measurements in the 

Ultraviolet (UV) and visible range were performed using a Bruker IFS66 spectrometer 

equipped with reflection and transmission units with near normal incidence of the incoming 

beam. The wavelength range between 250 nm and 750 nm was used to obtain the 

absorbance spectra of samples deposited on glass slides. The surface morphology of the 

TiO2 samples was characterized  by means of a scanning electron microscope (SEM-
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FEG,JSM-7001F, JEOL) and atomic composition was analysed by  Energy Dispersive 

Spectroscopy (EDS,INCA PentaFET-x3) attached to SEM. 

Photocatlytic activity of multilayer-V-doped TiO2 films was tested by measuring 

both photo-current and hydrogen production rates by water-splitting. Photo-electrochemical 

cell constructed with TiO2 as photo-anode, Pt mesh as cathode, and aqueous electrolytes 

was employed to measure photocatalytic activity. In order to establish a chemical bias we 

used two chambers containing electrolytes with different pH values. The TiO2 photo-anode 

was kept in contact with a NaOH (1 M) solution, while the cathode was immersed in a 

H2SO4 (1 M) solution. A salt bridge containing NaCl (1 M) was used to provide a path for 

ion conduction between the two solutions. The photo-anode was exposed to visible light, 

generated by a 250 W tungsten halogen lamp, to measure both open-circuit photo-voltage 

and closed-circuit photocurrent. Reactor is made up of borosilicate glass, thus no UV filter 

was used and reactant water soulution acts as filter for IR radiation. Oxygen from the 

reaction chamber was completely removed by purging the chamber with pure Ar gas 

(99.9%) for 1 h before performing measurements. The separate evolution of H2 originated 

by the water-splitting process at the cathode was measured on-line, as a function of time, 

by using a gas chromatographer (GC, Agilent MIRCOGC-3000A). Finally, the hydrogen 

evolution was measured in both ON- and OFF- light regimes. 

 

2.5.2 Results and discussion 

 

A. Scanning Electron morphology (SEM): 

 

A surface morphology, as observed by SEM, of V-doped TiO2 films appears quite flat, 

smooth, and without major defects, while the cross-section of the V-doped films showed a 

typical dense columnar structure [1]. The uniform distribution of V-metal in the TiO2 film 

was confirmed, in the sampled volume, by compositional line scan using EDS. The dopant 

concentration uniformity is clearly connected to the adopted co-deposition procedure.  The 

V concentration of about 2 ± 0.2, 4 ±  0.3, 5 ± 0.4 and 6 ±  0.4 at.% was obtained in four 

different TiO2 films as confirmed by EDS. 
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B. X-Ray Diffraction: 

 

Fig 1 shows the XRD spectra of V-doped TiO2 film of different concentration synthesized 

on amorphous glass by sputter deposition. 
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Figure 1:  XRD spectra of un-doped and V-doped TiO2 films deposited by RF- 

                  magnetron sputtering with different dopants concentration. 

 

The crystal grain sizes of the anatase and rutile phase for all the samples are 

calculated by the Debyee-Scherrer equation from peak A(101) at 25.2o and R(110) at 27.5o 

respectively, and summarized in Table 1. The intensity ratio of anatase (101) to rutile (110) 

peak is also reported in Table 1. The peaks observed in the spectra of undoped TiO2 thin 

film are mainly due to the anatase phase while some additional reflexes of rutile phase 

could be identified in the form of broad peak. Crystal size (table 1) suggests that rutile 
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phase for pure TiO2 is almost amorphous with very finely dispersed grain, while anatase 

phase is in nano crystallized form. By increasing the doping concentration of vanadium, the 

amount of anatase diffraction peak is gradually decreasing and peak corresponding to rutile 

increasing. The TiO2 doped with high concentration of vanadium (~5 and ~6 at.%) is 

exhibits peak of rutile  phase prevailing over the anatase phase. The reflexes of the rutile 

phase are now shifted to lower 2θ values, as compared to those of pure TiO2 film. This 

indicates a slight increase in the spacing value between the lattice planes which might be 

caused by the insertion of V in the lattice. No characteristic peaks due to vanadium oxides 

(V2O5 or VO2) were detected in XRD pattern. These results indicate that V ions are 

incorporated in the TiO2 lattice which at high metal-acceptor dopant concentration causes 

the formation of oxygen vacancies whose mobility may account for the rearrangement of 

Ti4+ and O2- ions in the lattice and finally favoring the anatase to rutile phase 

transformation [2]. 

 

C. X-ray Photo-electron Spectroscopy: 

 

XPS spectrum is carried out to confirm the concentrations and to determine 

chemical states of V in the samples. Figs. 2a and 2b shows the XPS spectra of Ti2p and 

V2p electronic levels, respectively, for pure TiO2 and V-doped TiO2 (~6 at.%). For pure 

TiO2, two peaks Ti 2p3/2 and Ti 2p1/2 appear at 459.35and 465.09 eV that corresponds to 

chemical states of Ti in the samples having +4 valence. For V-doped TiO2, the Ti2p peaks 

position shows slight shifts of about 0.35 eV towards higher energy side. This indicates that 

V ions are incorporated into TiO2 lattice thus influencing the local chemical state of Ti4+ 

ions. To achieve local charge balance in the TiO2 lattice, some of the Ti ions may acquire 

higher oxidation state by releasing electrons, a process that explains the XPS peak shift for 

V-doped TiO2. XPS spectrum of V2p3/2 level was deconvoluted into two peaks having 

binding energy values of 517.3 and 516.2 eV attributed to V5+ and V4+ states of vanadium 

respectively [3,4].This indicates that V species exist in the lattice of TiO2 in the form of 

V5+ and V4+ with higher content of V5+ ions as indicated by the area under the peak in XPS 

spectrum (Fig. 2b).  
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Figure 2: X-ray photoelectrons spectra of (a) Ti2p and (b) V2p levels for pure  TiO2 and V-

doped TiO2 (6 at.%) 
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D. UV-Visible Spectroscopy: 
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Figure 3: UV-VIS absorption spectra of un-doped and V doped TiO2 films deposited by  

                 RF-magnetron sputtering with different dopants concentration. 
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Figure 4:  Tauc plot of undoped and V-doped TiO2 films deposited by RF-magnetron 

sputtering with different dopants concentration. 



127 

 

The optical properties of the pure and V-doped TiO2 were studied by measuring the 

absorption spectra ranging from UV (250 nm) to visible (750 nm) wavelengths and 

presented in Fig. 3. Using Tauc plot (Fig. 4), i.e. (αhυ)1/2 versus (hυ), the band gap energies 

were deduced by extrapolating the linear region of the plot to intersect the photon energy 

axis: the obtained values are  reported in Table 1. 

 

V 

concentration 

in TiO2 film 

(at. %) 

Crystal size  

(nm) 

Intensity ratio 

of 

Anatase/Rutile  

TiO2 

optical 

band-gap 

values 

(eV) 

Doping energy 

level values  

(eV) 

 Anatase 

(101) 

Rutile 

(110) 

   

Pure TiO2 45 6 1.14 3.25 ± 0.1 

 

----- 

2 at. % 39 12 1.12 3.17 ± 0.1 

 

2.96 ± 0.1 

 

4 at. % 35 11 1.01 3.10 ± 0.1 

 

2.83 ± 0.1 

 

5 at. % 37 12 0.91 3.05 ± 0.1 

 

2.75 ± 0.1 

6 at. % 39 10 0.81 

 

2.85 ± 0.1 2.50 ± 0.1 

Table 1: Crystal size and intensity ratio of anatase and rutile phase obtained from A(101) 

and R(110) peak, TiO2 optical band-gap and doping energy level values for 

undoped and V-doped TiO2 films deposited by RF-magnetron sputtering with 

several V concentration.  
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The figures clearly show a slight shift in the absorption band edge towards longer 

wavelengths when increasing the V concentration in the TiO2 film. Most importantly a 

tailing of the absorption band is observed that indicates the existence of additional energy 

levels in the band gap. This can be assigned to the charge-transfer transition from the d 

orbital of V5+ and V4+ to the conduction band of TiO2. For V–TiO2, V5+ and V4+ ions are 

incorporated in the TiO2 lattice which forms three isolated impurity energy levels located 

just below the bottom of the TiO2 conduction band (CB). Because of these impurity energy 

levels in the band gap, the electrons in the valence band can be excited to the impurity 

energy levels and then subsequently excited to the CB by absorption of visible light. So 

these impurity energy levels are beneficial for extending the absorption spectrum 

wavelength towards the visible-light region [5]. 

As seen from the above results, V-doped TiO2 with 6 at.%, shows the maximum 

lowering of the photon-absorbed energy with impurity energy level in visible range. Thus 

we preferred to perform the photocatalytic activity measurements only with this V-doped-

film by making comparison with undoped TiO2. Henceforth, 6 at.% V-doped TiO2 film will 

be assigned as V6-doped TiO2 film. 

 

E. Open circuit Voltage-Current Measurement: 

 

V6-doped TiO2 film (about 750 nm thick) was deposited on an ITO layer (80 nm), 

previously deposited on glass substrate, and the obtained bilayer was covered with thin 

layer of pure TiO2 (100nm) to protect the film from possible corrosion induced by contact 

with the electrolyte. This single bilayer film was used as photocatalyst for water-splitting 

experiments. To make comparison, the undoped TiO2 film with total thickness of 850 nm 

was similarly deposited on an ITO layer (80 nm). Reason behind the use of ITO layer is 

that it provides the necessary electrical path for the photo-generated electron from TiO2 to 

Pt electrode.  In addition, most importantly the  ITO/TiO2 stack film is able to partially 

limit the recombination of photo-generated holes and electrons (h+ and  e-) because the 

conduction band edge of ITO (~ -4.5 eV) is at an energy value lower than that of TiO2 (~ -

4.0 eV) thus making favorable for electrons injection from the later into the former.  

The photo-induced voltage and current are measured for undoped and V6-doped 

TiO2 in light ON-regime in photoelectrochemical cell with open- and closed-circuit 
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configuration, respectively. The open-circuit photo-voltage value was more than ~1.4 V for 

both these TiO2 samples which is greater than the required voltage (1.23 V) to break the 

water molecule. However, the photo-current measured using V6-doped TiO2 (~53 µA) is 

negligible as compared to pure TiO2 films (~290 µA) measured in the light-ON regime. 

This is mainly due to recombination of the photo-generated charges on defects associated 

to the dopant V5+/V4+ ions.  

A simple and efficient route to suppress the recombination of charge carriers is by 

immediately removing the photo-electron from the generation site before it recombines 

with the holes through radiative or non-radiative processes. This fast separation can be 

achieved through the use of coupled semiconductors with appropriate conduction energy 

levels.  For instance, as mentioned previously, in the ITO/TiO2 coupled system, the 

conduction band edge of ITO (~ -4.5 eV) is at an energy value lower than that of TiO2 (~ -

4.0 eV) thus making favorable electrons injection from the later into the former. Once the 

photoelectron from TiO2 is injected in ITO, it has a very low probability of back transfer 

and, as a result, electrons and holes are definitely separated. However, to be efficient, ITO 

should be located near the electron generation site to provide the driving force for the 

photoelectron transfer.  

Having this in mind, we have deposited multilayer films with different numbers (2-, 

3-, 4-, 5-, 6- and 7-bilayers) of ITO/V6-doped TiO2 bilayers and finally covering with thin 

layer of pure TiO2 (100 nm) the surface layer that will be in contact with the electrolyte. 

The bottom portion of the overall multilayer is also in contact with the electrolyte through 

the pure   TiO2 (100 nm) layer (while the corresponding top portion is electrically 

connected to cathode of the photo-electrochemical cell). The total thickness of V6-doped 

TiO2 was kept constant (750 nm) in all the multilayer films by decreasing the thickness of 

each V6-doped TiO2 layer when increasing the number of the bilayers. The thickness of 

ITO (~80 nm) was kept constant in all the multilayer films irrespective of number of 

bilayers. 

In Figure 5 we present the cross-section SEM image, in back scattering mode, of single 

multilayer film with 6-bilayers of ITO/V6-doped TiO2. 
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Figure 5: SEM Images, in back scattering mode, of multilayer film with 6-bilayers of 

ITO/V6-doped TiO2 

The white layer of ITO can be easily distinguished from the dark layer of V6-doped 

TiO2 and for this reason both the periodicity and continuity of the layers are clearly visible. 

The figure 6 shows the thickness of single V6-TiO2 layer, measured through cross-section 

SEM images, as a function of number if bilayers. The figure confirms that as the number of 

bilayers increases, the thickness of single V6-doped TiO2 layer decreases. 

Here we want to note that ITO deposited on the top of TiO2 layer does not affect the 

amount of photons reaching the TiO2 layer because ITO is a transparent conducting oxide 

with a direct band gap in the range of 3.9 to 4.2 eV which is significantly higher than the 

absorption edge of V6-doped TiO2 layer. This feature was experimentally confirmed by 

measuring the absorbance of the V6-doped TiO2 -ITO bilayers, with ITO on top, in the UV-

Visible range: the spectra showed similar red shift in the band edge as that observed with 

single layer. 



131 

0 1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

600

700

800

900

1000

0

100

200

300

400

500

600

700

800

900

1000

T
h
ic
kn
es
s 
o
f 
V
-T
iO

2 l
ay
er
s 
(n
m
)

Number of Bilayers

P
ho
to
cu
rr
en
t (

µµ µµA
)

 

 

 Photocurrent
Thickness of V doped TiO

2
 layers

 
Figure 6: Photocurrent and thickness of each V6-doped TiO2 layer as a function of number 

of bilayers.  

To check the photo-catalytic activity of the multilayer films we measured photo-

voltage and photo-current for light-ON regime in photo-electrochemical cell by using 

ITO/V6-doped TiO2 multilayer films as photo-anode. Each ITO layer in the multilayer 

films is directly connected to the platinum cathode and so as soon as the electrons are 

injected from the V6-doped TiO2 layers into the ITO layers, they are immediately 

transferred to the cathode. The photo-voltage measured on all the multilayer films (about 

1.4 to 1.5 V) is greater than that required to split the water molecule. The measured photo-

current as a function of number of bilayers is reported in Figure 6. As the number of 

ITO/V6-doped TiO2 bilayers increases the photo-current increases and reaches the 

maximum value with 6-bilayers (~800 µA). However, with 7-bilayers the photocurrent 

decreases to the value of ~280 µA. The photo-current value measured with 6-bilayers V6-

doped TiO2 film (~800 µA) is about 2.75 times higher than that obtained with pure TiO2 

(~290 µA) with same total thickness of TiO2.  These results are consistent with that 

reported in our previous work for ITO/Cr-doped TiO2 multilayer films where similarly 

photo-current increases with number of bilayers and reaches maximum for 6-bilayers film.  
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This can be explained on the basis that when semiconductors having different 

energy bands are brought in contact with each other, on both sides a band bending occurs 

near the interface to make Fermi level equal. This band bending generates an interface 

space charge layer, having thickness of several tens of nanometer, where a large electric 

field is developed. When photo-electrons are generated in this interface region (or very 

near) they are instantaneously pushed out to the adjacent semiconductor due to the driving 

force provided by the electric field and the electron-hole separation is definitely obtained, a 

process well known in p-n semiconductor junctions. In the present ITO/TiO2 system, the 

interface region presents electrical features that provide an efficient route for the e-h 

separation. Hence, by adopting a multilayer structure, we are able to produce many 

interfaces of ITO/TiO2 which establish fast transport channels along with efficient e-h 

separation.   

Now let’s understand in detail the mechanism of the electron flow in the multilayer 

films and how the number of bilayers affects the generation of the photo-current. 

Schematic of the mechanism is demonstrated in figure 7.  

    

Figure 7: Schematic representation of the mechanism involving the electrons flow in the 

(a) single-Bilayer film and (b) multilayer film with 4-bilayers of ITO/V-doped 

TiO2. 

Our results show that the photo-current obtained with single bilayer of ITO/V6-

doped TiO2 is very low. In this single bilayer film there is only one interface of ITO/ V6-

doped TiO2 at the bottom with the thick layer of V6-doped TiO2 (750 nm) over it (Fig. 7a).  

Most of the photo-electrons are generated in the bulk of the doped-TiO2 where they have to 

travel some distance within the TiO2 itself before entering the space-charge region of the 

(a) (b) 
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interface to feel the driving field for final injection into ITO. In V6-doped TiO2 the 

probability of e-h recombination is much higher because of the presence of recombination 

sites associated to the V5+/V4+ ions. By depositing 4-bilayers film the photocurrent 

increases significantly from ~53 µA (for single bilayer film) to ~456 µA. In this film, the 

previous V6-doped TiO2 layer having thickness of 750 nm was divided into four layers of 

~185 nm by introducing three more ITO layers. The resulting film now contains seven 

ITO/TiO2 interfaces where space charge layer is formed and the decreased thickness of the 

V6-doped TiO2 layers assures that the photo-generated electrons have to travel a short 

distance into TiO2 (the unshielded region) before being  injected into the ITO layer where 

recombination is definitely hindered (Fig. 7b). Another relevant point to be considered is 

that in single bilayer film the photo-electrons, generated in the V6-doped TiO2 layer, have 

to move only along one direction towards the ITO layer placed at the bottom of the layered 

structure. On the contrary, in multilayer film each V6-doped TiO2 layer is sandwiched 

between the two ITO layers and so the photo-electrons can move along either of two 

directions to avoid recombination (Fig. 7b). All these reasons favor the increment of the 

photo-current in the 3-bilayers film.  

In addition we observe that by increasing the bilayers number there is an almost 

linear increment in the photo-current, mainly attributed to the better conditions for charge 

separation and transport with reduced number of recombination processes: here we have to 

further underline the key role of number of ITO/TiO2 interfaces. The measured photo-

current reaches the maximum value (~800 µA) with 6-bilayers film; the measured 

photocurrent is one order of magnitude higher than that measured with single bilayer film 

(~53 µA). For 6-bilayers film, the thickness of V6-doped TiO2 layer (125 nm) in each 

bilayer may be lower than the total thickness of the space charge layer of the pertinent 

interface. Thus photoelectrons generated in the V6-doped TiO2 are already in space charge 

region where the electric field provides them the driving force to instantaneously inject into 

the ITO layers: this means that the 6-bilayers film creates the best conditions for charge 

separation. In addition, this film is able to absorb more visible light than pure TiO2 due to 

the impurity energy levels by V5+/V4+, hence generating higher amount of photoelectrons. 

With 7-bilayers film the photo-current decreases (Fig. 6); we suggest this might be due to 

the poor crystallinity of very thin films of TiO2 (92 nm). Takahashi et al. [6] and Nasr et al. 
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[7] showed the increase in photo-current by decreasing the TiO2 layer thickness and 

reaches maximum value at particular thickness. Below this thickness the photo-current 

decreases drastically and, as indicated by the authors, this is attributed to the low 

crystallinity achieved with thinner films. For the moment with our XRD setup it is difficult 

to acquire the spectra of such a thin layer of TiO2. However, we will address this open 

problem with dedicated experiments in the future.   

The reduced probability in charge recombination processes observed with 

multilayer films can be further analyzed by studying the photo-current kinetics curve. Fig. 

8A shows the schematic diagram of photo-current transient curve. 
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Figure 8: (A) Schematic representation of the photocurrent transient curve. Normalized 

plot of current-time dependence for:  (B) pure TiO2, (C) single bilayer, and (D) 

6-bilayers of ITO/V6-doped TiO2 multilayer film. 

The initial anodic photocurrent spike is denoted by I(i). This current signals the 

separation of the electron-hole pairs by movement of holes towards the semiconductor 

surface where they are trapped or reduced by the species in the electrolyte, while the 

electrons are transported to the back contact. After I(i) has been attained, then  a continuous 
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decrease of the photocurrent with time is observed until a steady-state photocurrent, I(st),  

is reached. The photocurrent decay indicates that charge recombination processes are 

occurring. The holes reaching the semiconductor surface may, instead of capturing 

electrons from the electrolyte, accumulate at the surface and recombine with electrons from 

the conduction band, i.e. the decay is determined by the rate at which minority carriers 

trapped at surface states capture majority carriers [8]. The photocurrent transient can be 

defined by the following kinetic equation [9]:  

        (2.19) 

Where D is defined as  

         (2.20) 

    

Here,  τ is the transient time constant, I(t) is the current at time t, I(in) is the current at t = 

0, and I(st) the stationary current. Figs. 8B, C, and D illustrate the ln D vs. time plot for 

pure TiO2 film, single bilayer, and 6-bilayers of ITO/V6-doped TiO2 films respectively. 

The slope of this plot provides τ which is related to the time for charge recombination 

processes in the films. The measured τ  for V6-doped TiO2 with single bilayer film is about 

three times lower than that for the undoped TiO2. Specifically, the photocurrent decays 

within a few seconds in V-doped TiO2 is due to recombination of the photo-generated 

charges on defects associated to the V5+/V4+ ions. On the contrary, with 6-bilayers the 

transient time constant is about two times greater than that for undoped TiO2 film where 

there are no defect sites. This again proves that by introducing space charge regions in form 

of ITO/TiO2 interfaces and by decreasing the thickness of TiO2 layer favors charge 

separation and recombination processes are suppressed even if recombination sites such as 

V5+/V4+ are still present.   

 After optimizing the thickness of the V-doped TiO2 in the multilayer films, it is 

necessary to study the effect of the number of bilayers on the photocurrent. Thus we 

deposited different number of ITO/TiO2 bilayers by keeping constant the thickness of V6-

doped TiO2 and ITO layers (125 and 80 nm respectively). The photo-voltage and photo-

current measured in light ON regime with these multilayer films are reported in table 2.  
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Number of ITO/TiO2 

Bilayers 

Photo-voltage 

(V) 

Photo-current 

(µA) 

                  1 1.446 230 

2 1.458 390 

4 1.403 467 

6 1.460 586 

7 1.394 548 

 

Table 2: Photo-voltage and photo-current measured for different numbers of ITO/TiO2 

bilayers by keeping constant the thickness of each single bilayer.   

 

All the multilayer films were able to produce photo-voltage greater than 1.4 V 

irrespectively on the number of bilayers. On the contrary, the photo-current increases with 

the number of bilayers and reaches a nearly constant value for the highest number of 

bilayers (6 and 7). A saturation effect is clearly expected on physical basis but what is 

important here is that the photo-current value depends not only on thickness but also on the 

number of bilayers, i.e.  on the ability of the multilayer structure to efficiently avoid 

charges recombination. Here, another important point is that with 7 bilayers there is not a 

dramatic decrease of the photocurrent as observed in Fig. 6. This supports the point that the 

low crystallinity achieved with very thin films is deleterious to photocurrent generation. 

 

F. Hydrogen Measurement:  

 

The photo-catalytic activity of the V-doped TiO2 multilayer films was finally tested 

by measuring the amount of H2 generated by water-splitting in photo-electrochemical cell. 

Fig. 9 shows the H2 evolution, as function of time, from water-splitting by irradiating 

multilayer films with single, 4- and 6- bilayer of ITO/V6-doped TiO2 with light (250 W 

tungsten halogen lamp) which contains mostly visible light and includes a very small 

portion of UV light (1 %).  
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Figure 9: Hydrogen evolution, as a function of time, from water-splitting in photo-

electrochemical cell containing two electrolytes of different pH by using photo-

anode as sputter-deposited multilayer films with single, 4- and 6-bilayers of 

ITO/V6-doped TiO2 (see procedure in ref. [10]).  

 

The amount of the photo-catalytically produced H2 increases linearly with the 

exposure time. The H2 production completely stops after termination of light irradiation: 

this proves that H2 is only produced photocatalytically. The constant production rate 

observed in the present case is simply due to the employ of TiO2 photo-catalyst in form of 

thin film in an apparatus [10] where H2 and O2 evolve separately. During the measurement, 

the same amount of surface area (13.75 cm2) is exposed to the light for both the films. As 

the number of bilayers increase the H2 generation rate increases for multilayer films 

showing the same trend as that obtained for the photocurrent values, and maximum rate is 

obtained with 6-bilayers. The obtained high generation rate is again due to better photo-

generated charge separation by introducing space charge layers in form of ITO/TiO2 

interfaces. The H2 generation rate was measured to be 31.2 ± 0.1 µmole/h for 6-bilayers 
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based V6-doped TiO2 multilayer film and is about 2.5 times higher than that measured with 

pure TiO2 film (12.5 ± 0.1 µmole/h) (as reported in ref [10]). The greater H2 generation rate 

with V6-doped TiO2 multilayer film is definitely attributed to the visible light absorption 

which is higher than pure TiO2 and to reduced charge recombination processes.  However, 

a comment must be included now to explain the hydrogen production results. Indeed, while 

the photo-generated electrons are easily collected by the established electrical contact to 

produce the measured photo-current, the positive holes that are produced inside the V-

doped TiO2 layers sandwiched by the ITO films, may arrive at the TiO2 irradiated surface 

that is in contact with water. We suggest that holes migrate through the bottom deposited 

TiO2 layer towards the irradiated surface were the H2O molecules are get oxidized.  

 

2.5.3 Conclusions: 

 

TiO2 doped with V ions (~6 at.%)  shows an increase in the optical absorption 

efficiency due to the formation of impurity energy levels in the band gap. However, in 

photo-electrochemical cell, negligible photocurrent is measured with ITO/V-doped-TiO2 (6 

at.%) single bilayer, a problem that we attribute to the increased recombination rate of the 

photo-generated charges. To reduce the charge recombination rate we prepared multilayer 

films with different numbers of ITO/V6-doped-TiO2 bilayers (namely, 2-, 3-, 4-, 5-, 6- and 

7-bilayers) by keeping the total thickness of TiO2 constant. The reduced thickness of the V-

doped TiO2 film, deposited on ITO, significantly contributes to reduce the charge 

recombination rates. This is because the generated photoelectrons, traveling into TiO2 film 

of limited thickness, rapidly enter the space charge interface of the ITO-TiO2 films from 

where they are instantaneously injected into the ITO layer and then removed towards the 

cathode of the photo-electrochemical cell: here, H+ reduction occurs. When the multilayer 

film is exposed to visible light, we observe that the photocurrent increases as function of 

the number of bilayers.   The maximum value of the photocurrent is obtained with 6-

bilayers of ITO/V6-doped-TiO2.  The enhanced photocurrent is attributed to both higher 

absorption of visible light by V-doped-TiO2 and to the number of space-charge ITO/TiO2 

interfaces in multilayer films. With six bilayers, the H2 production rate obtained through 

water splitting is about 31.2 µmole/h. 
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2.6 Low energy ion-beam modification of TiO2 
photocatalyst thin film for visible light  absorption 

 
 

This study attempt to verify effects of incorporation of anions in TiO2 and chemical 

composition, structure, and optical properties of anions doped TiO2 film. A variety of 

elements such as N, S, P, F and B have been adopted in past literature to dope in TiO2 [1-

5]. Nakamura et.al [6] proved that, N-implantation causes the activation of TiO2 to 550 nm 

wavelength by the formation of TiO2− xNx and mixing the electron orbital’s of N and O. 

Previous research showed that oxygen vacancies (TiO2−x) created by ion implantation can 

be more sensitive beyond 400 nm wavelength than TiO2 [6]. Thus, doping using ion 

implantation is a crucial technique to change microstructure as well as the chemical 

structure of TiO2 to enhance the visible light absorbance. In the present study, anatase TiO2 

thin films have been synthesized using sol–gel method. Ion implantation was used to 

introduce Ar+ or N+ ions into the TiO2 thin film in order to improve the sensitivity in the 

visible light region. Ar+ ions implanted TiO2 clearly showed the increase of visible light 

absorption, with the implantation dose, in the full visible absorption range, while N+ 

implantation caused the absorption edge to shift to the low energy value. The obtained 

results are discussed in terms of variation in the band gap of TiO2 thin film caused by 

defect formation during implantation. 

 

2.6.1 Experiment 
 

Material and chemicals: 

 

Titanium butoxide [Ti(OC4H9)4],Ethanol (C2H5OH ) and Nitric Acid (HNO3) were 

used as received. These chemicals were of analytical grade and purchased from Sigma 

Aldrich. All solutions were prepared using high purity deionized water. 

 

Synthesis of Ar + and N+ ions doped TiO2 films 

 

 TiO2 thin films were synthesized by sol–gel method using titanium butoxide 

[Ti(OC4H9)4] as the starting material. Ti(OC4H9)4 was mixed with ethanol under constant 
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stirring for 1 h at room temperature. Further a mixture of water, ethanol and HNO3 was 

added drop-wise under a vigorous stirring to the above solution. The resultant solution was 

stirred for 1 h at room temperature to increase homogeneity before spin coating. The molar 

ratio of Ti(OC4H9)4:ethanol:H2O:HNO3 for sol was 1:20:0.5:0.1. TiO2 sol was spun for 40 s 

at 3000 rpm on glass and Si (100) substrate to obtain TiO2 thin film which was further 

baked at 125 °C for 1 h. Obtained samples were thermally treated in static air at 500 °C for 

2 h with a slow heating rate of 1 °C min−1 (referred as untreated henceforth).  

 

 Ion implantation was carried out by using an ion-beam apparatus described in Ref. 

[7]. Ar+ and N+ ions with energy of 30 keV were used for irradiating the TiO2 sample in 

vacuum (10−4 Pa) with different doses ranging from 1×1016 to 2×1017 ions/cm2, at room 

temperature. The ion beam was swept in order to cover an area of 5×5 cm2 to establish 

uniform implanted surface area in the film. The ion current density was kept constant in the 

range of 1–3 µA cm−2. 

 

 Fourier Transform Infrared spectroscopy (FT-IR) measurements were carried out 

in transmission mode at normal incidence in the spectral range between 4000 and 400 cm−1 

using a Bruker (Equinox 55) spectrometer at room temperature. Optical measurement in the 

Ultraviolet (UV) and visible range was performed using a Bruker IFS66 spectrometer 

equipped with a reflection and transmission unit with near normal incidence of the 

incoming beam. The wavelength range of 250 nm to 750 nm was used to obtain the 

absorbance spectra. The sample deposited on glass slide was used for this measurement. 

The surface morphology of the TiO2 samples was observed using scanning electron 

microscope (FEG-SEM JSM 7001F, JEOL) 

 

2.6.2 Results and discussion 

 

A. Fourier Transform Infra-red Spectroscopy: 

 

 TiO2 films synthesized by sol–gel method were structurally characterized by FT-IR 

due to the low thickness (150 nm) achieved. Fig.1 presents the IR spectra of the TiO2 films 
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prepared by sol–gel after heat treatment and implantation with Ar+ or N+ ions at different 

doses. Essentially, we see no distinct peaks in the as deposited sample, but after heat 

treatment at 500 °C a peak at 433 cm−1 is observed, which corresponds to the vibration of 

the TiO2 units in anatase phase [8-10]. This anatase phase still remains even after 

bombardment with Ar+ or N+ ions with some broadening of the peak. The broadening may 

be due to the formation of nano cystalline structure caused by the damage produced by the 

ion implantation [9]. No indication of rutile phase formation was observed and thus it 

shows that the implanted TiO2 films posses only anatase phase with low crystalline degree. 

 

Figure 1: FT-IR spectra of untreated TiO2 film and implanted films with Ar+ and N+ 
ions at various doses. 
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B. Scanning Electron Microscopy (SEM) 

 
Figure 2: SEM images of: (a) untreated TiO2 film and Ar+ ion implanted at different  

                 doses (b) 1×1016 (c) 5×1016 and (d) 1×1017 ions/cm2. 

 

The SEM images of untreated, Ar+ and N+ ion implanted TiO2 at different doses are 

reported in Figs. 2 and 3 respectively. The surface morphology (Fig. 2a) of untreated TiO2 

film appears to be very smooth and flat. Ar+ implantation at low ion dose of 1016 ions/cm2, 

does not cause any significant variation on the surface (Fig. 2b) of the film. However, TiO2 

film implanted at higher Ar+ doses showed the formation of voids of about 50 nm with 

quite irregular surface caused by radiation damage (Fig. 2c and d). This evolution of 

surface texture can be advantageous in terms of an increased effective surface area for 

surface reactions such as photo-catalysis. 



144 

 
Figure 3: SEM images of: (a) untreated TiO2 film and N+ ion implanted at different    

                doses (b) 1×1016 (c) 5×1016 and (d) 1×1017 ions/cm2 

 

 N+ ions implanted TiO2 film showed similar evolution of morphology (Fig. 3) but 

at higher doses the surface was more flat with less density of voids than that for Ar+ ion 

implantation. 

 

C. UV-Visible Spectroscopy: 

 

Fig. 4 shows the UV–Visible spectra over the wavelength range of 300–750 nm for 

TiO2 films implanted with 30 keV Ar+ or N+ ions with different doses. The spectra clearly 

show the increase in absorption of visible light with implantation dose for both kinds of 

ions. However, N+-implanted TiO2 also showed a shift of absorbance edge. The band gaps 

were obtained by fitting the absorption edge of UV–Visible spectra by using the following 

equation [11]: 
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where Eg is the band gap, C is a constant, and T0 is the transmission of the substrate. 

Depending on the type of transition, ν assumes different values: for direct, allowed 

(forbidden) transitions ν=1/2 (ν=3/2) and for indirect, allowed (forbidden) transitions ν=2 

(ν=3). For our nano crystalline or amorphous films ν=2 is used, according to Ref. [12]. 

Near the absorption edge, T0 and C are approximately constant and fitting the absorption 

edge with Eq. (2.19) gives Eg for the TiO2 samples. 

 

To better understand the UV–Visible spectra, the value of absorbance at 650 nm 

(visible light range) and of band gap as function of dose is, plotted in Fig. 5 for both Ar+ 

and N+ implantations. The figure shows very low absorption of visible light for the 

untreated samples with a band gap around 3.2 eV indicating the formation of anatase phase. 

Ar+ implantation causes activation of TiO2 to absorb visible light and the absorption 

increases with implantation dose till the highest dose where there is a small decrease in 

absorption. It was also found that the band gap remains at around 3.2 eV for all the Ar+ 

implantation doses: this means that there are no structural changes caused by implantation, 

as confirmed by the previous FT-IR results.  
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Figure 4: UV–Vis spectra of untreated TiO2 film and implanted films with Ar+ and N+  
                 ions at various doses 

 

N+-implanted samples show minor increase in the absorbance in visible range at 

lower dose, but it increases at higher dose (Fig. 5a). However, the most significant change 

observed in N+-implanted samples is related to the decrease in the band gap as a function of 

ion dose. The minimum value of the band gap corresponds to 2.78 eV (visible range of 

wavelength of 445 nm) and is obtained with the highest implantation dose of 2×1017 

ions/cm2. Since rutile phase has lower band-gap value (3.0 eV) than anatase phase, the 

possible narrowing of the band gap could be due to the rutile phase formation by 
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implantation. But this speculation is not consistent with the absence of a peak at 495 

cm−1[8] attributed to rutile phase in FT-IR spectra (Fig. 1). 

 
Figure 5:  (a) Absorption of implanted TiO2 films at wavelength of 650 nm (visible  

                  range) as function of ion dose. (b) Variation of energy band gap of implanted  

                  TiO film as function of ion dose. 
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D: Depth distribution of vacancies: 

 

 The optical trend obtained in the TiO2 films after implantation was further 

understood by simulating the experimental condition usingSRIM-2008 program. Fig. 6 

shows the depth distribution of vacancies caused by Ar+ and N+ ions in the TiO2 film. 

 

 
Figure 6: Depth distribution of vacancies formed in TiO2 films after Ar+ and     

                 N+ implantations. 

 

The average number of vacancies formed by heavier Ar+ ions is around 4 times 

higher than that of N+ ions as calculated by area under the curves. Thus it shows that a 

single Ar+ ion can create 4 times higher oxygen vacancies as compared to N+. However Ar 

is chemically inert element so that it could only cause displacement damage leading to the 

oxygen vacancies in TiO2 lattice and thus the formation of TiO2−x. Experiments reported 

previously show that oxygen vacancies in un-doped TiO2 introduce defect states in the 

band gap at energy of about 0.8 to 1.18 eV below the conduction band; these are assigned 

to Ti3+ 3d [13] states on the basis of EPR experiments [14]. This means that the Ar+ 

implantation caused the formation of defect energy levels, corresponding to the oxygen 

vacancy, in the band gap which participates in the visible light absorption. The amount of 

oxygen vacancies created by N+ implantation at low dose was not enough to form the 
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defect energy level in band gap for the visible light absorption. However visible light 

absorption increases at higher dose of 2×1017 ions/cm2 by the formation of defect level. In 

Ref. [1,15] it was numerically proved that if N+-ions substitute for the oxygen in the TiO2 

lattice, the corresponding N 2p states are located above the valence band edge. By 

increasing the concentration of nitrogen causes the mixing of N 2p states with O 2p states 

which reduces the band gap. This assures the photocatalytic activation in the visible light 

region. The interstitial accumulation of N does not activate the TiO2 in the visible region. 

The formation of N-bonding in TiO2 depends on implantation energy; with low energy 

(few 100 eV) nitrogen is located interstitially because the energy is not enough to break the 

Ti–O bonds [16]. N+ ions with moderate energy (a few keV) are able to break the bonds 

and substitute the oxygen atoms in the TiO2 lattice in order to decrease the band gap [17]. 

Thus red shift in the band gap and visible light absorption in our TiO2 samples by N+ 

implantation is due to the substitution filling of nitrogen in place of oxygen. Further studies 

are underway to investigate the above effect in terms of elemental electronic interaction. 

 

2.6.3 Conclusion  

 

TiO2 thin films were synthesized by the sol–gel method with subsequent annealing 

at 500 °C, yielding the anatase phase. Ar+ or N+ ion implantation of energy 30 keV was 

adopted to vary the energy band gap of TiO2 film in order to absorb visible light. The 

original anatase phase was not changed by implantation. Increase in full visible absorption 

range was observed for both kinds of ion implanted-TiO2 films which further increased 

with the ion dose while N+ ion implantation also caused the shift of the absorption edge 

from UV to visible light range. N+ implanted TiO2 showed narrowing of band gap from 3.2 

eV for untreated anatase TiO2 to 2.78 eV for dose of 1×1017 ions/cm−2. Ar+ and N+ 

implantations create oxygen vacancies related defect energy levels in the band gap. In case 

of N+ implantation, nitrogen also substitutionally replaces the oxygen atoms thus forming 

an energy level just above the valence band which further interacts with O 2p states 

resulting in the narrowing of band gap. 
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Chapter 3 

 

Development of a Solar 

Concentrator based water heating 

system 

 

 
This Chapter reports results on development of solar absorber for water heating 

system using concentrated solar power. We divided chapter into seven sections. The first 

section gives introduction of different water heating techniques. The second section 

describes the design of water heating system used in present work. The third section is 

devoted to the experimental details and method to form efficient solar absorber. In this 

work we also developed Anti-Reflecting coatings which increases efficiency of water 

heating system. The details of this are included in section four. The efficiency of water 

heating system and its comparison with commercial systems are elucidated in fifth and 

sixth section, respectively. The last section summarizes the results of the presented work. 
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3.1 Introduction:  

 

Using the sun’s energy to heat water is not a new idea. More than one hundred 

years ago, black painted water tanks were used as simple solar water heaters in a number of 

countries. Solar water heating (SWH) technology has greatly improved during the past 

century. Today there are more than 30 million m2 of solar collectors installed around the 

globe. Hundreds of thousands of modern solar water heaters, such as the one shown in Fig. 

1, are in use in countries such as China, India, Germany, Japan, Australia and Greece [1].  

 

 
 

Figure 1: Evacuated Tube Solar Collector in Tibet, China. 
 
  In addition to the energy cost savings on water heating, there are several other 

benefits derived from using the sun’s energy to heat water. Most solar water heaters come 

with an additional water tank, which feeds the conventional hot water tank. Users benefit 

from the larger hot water storage capacity and from the reduced likelihood of running out 

of hot water. Some solar water heaters do not require electricity to operate. For these 

systems, hot water supply is secure from power outages, as long as there is sufficient 

sunlight to operate the system. Solar water heating systems can also be used to directly heat 

swimming pool water, with the added benefit of extending the swimming season for 

outdoor pool applications. 
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 In past three decades, solar water heaters with flat plate collectors (FPC) have been 

widely installed in residential and office buildings for water heating [2]. Flat plate 

collectors work on the basis of copper pipes running through a glass covered collector, 

often connected to a water storage tank on the roof. These panels are easy to install with 

low cost hence they are most preferred water-heating systems for residential purpose: 

bathing, cooking, cleaning, swimming pool heating etc. However, large collector area is 

necessary to reach useful temperature of the water but at the same time it causes higher 

heat losses through this large surface area to decrease the overall system efficiency. This is 

the reason why flat plate collector is not adopted for the room or floor heating purpose in 

winter where water with high temperature (70-80 degree) is required. The problem related 

to FPC can be solved by using evacuated tube solar collectors, which consist of glass tubes 

with a layer of heat absorbent coating inside them. The tubes encasing the water pipes are 

kept in vacuum to greatly reduce heat loss. However, the cost of such a system is generally 

unacceptable. The system seems to be delicate because glass tubes could break easily in a 

hail storm or from falling branches and in winter by formation of ice in the tubes. 

Here we suggest a better solution by using concentrated solar radiation in the small 

absorber area to achieve high efficiency. Exposed area smaller than that of FPC would 

decrease the heat loss and hot water for room heating can be achieved by either increasing 

the concentrated power or changing the water flow. In the current project we developed the 

water-heating system to be used under concentrated solar radiation and measured the 

overall efficiency of the system to compare with the flat plate collector or evacuated tube 

collector.  

 

3.2 Design of water heating system: 

  

Fig. 2 shows the schematic diagram of the heat exchanger system. The system is 

composed of two chambers with stainless steel body. To reduce the heat loss by 

conduction, vacuum was maintained between the inner chamber and outer chamber. The 

water flows through the inner chamber where solar radiation is concentrated through quartz 

window. Solar light absorber in form of circular copper plate is placed inside the water to 

reduce the convective heat loss by the wind which cannot be avoided in FPC. At the same 
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time the temperature of the copper absorber is maintained by the water flow so that the heat 

loss due to radiation is also minimized. Radiative heat loss is usually caused by IR light 

emission from the surface of the object. But in present design since copper absorber is 

placed in the water, copper emits IR light that is readily absorbed by the water. The water 

flows through the helix behind the copper target before reaching the outlet to ensure the 

heat transfer from copper to water.  

 

 

 

 

 

Figure 2: Schematic diagram of heat exchanger system for water heating by                

concentrated solar radiation. 

 

3.3  Synthesis of Solar  Absorber material: copper oxide: 

 

In our present design for water heating system a copper target is used to collect all 

the concentrated solar radiation and then transfer heat to the surrounding water. Since 
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copper surface is shiny and reflects incident light thus it is necessary to have an absorber 

layer on surface of copper target which absorbs almost completely the radiation incident on 

it. This layer must be of black color for the total absorption.  

One of the options to obtain black color layer [3] is by coating the surface of the 

copper with black high temperature paints which has absorbance of 98 %. However, this 

kind of coating is highly unstable and does not possess corrosion resistance properties in 

the aqueous medium. Another alternative is to deposit the black colored thin film of 

materials (few microns) like graphite, DLC, AlN, SiC etc. on copper substrate with 

physical vapour deposition (PVD). In this case certain issues like adhesion and incomplete 

coverage of the surface has to be solved. In addition it requires sophisticated techniques to 

deposit the film which in turn increases the cost of the product. The film deposited by PVD 

is usually flat and shiny which does not provide the texture effects for enhance absorption. 

To obtain irregular surface it is necessary to optimize the deposition condition which is 

time consuming and this may also lead to deteriorate the adhesion properties.  

Another simplest way is to convert the copper target surface itself to black color 

oxide. Since this copper oxide layer is part of the target surface then the problem of 

adhesion and incomplete coverage of coating are automatically solved. The copper oxide 

can be produced by simple chemical conversion method in which by just immersing the 

copper substrate in the chemical, with proper composition, for certain period of time will 

lead to the chemical oxidation. Important advantage with this technique is that by just 

changing the precursor composition and exposure time will lead to the formation of range 

of textures on the surface. These include geometrically roughened surfaces and coatings 

with microcrystalline metal particle gradients or artificially produced optical constant 

gradients formed through changes in the composition of the oxide coatings.  

In the present work copper oxide layer is formed on copper substrate by chemical 

oxidation treatment using alkaline solution of K2S2O8 [4]. Optical and morphological 

properties are measured and presented in this chapter.  
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3.3.1 Experimental:  

 

Synthesis of textured copper oxide:  

Before chemical treatment of copper substrate to form oxide, it is necessary to 

polish and clean the surface of the copper. Firstly, a copper substrate was well polished 

with different grade silicon carbide papers and then with diamond paste to achieve mirror 

like surface. The polished copper was further cleaned and degreased with a systematic 

procedure: (1) dipping in Rodaclean supra (5 %) for 2-3 mins at 60 0C, (2) subsequently 

immersing in NGL solution (special solution used to degrease the copper substrate) for 5-

10 mins at 70 0C and (3) finally inserting in 1% HCL solution for 10 mins at 40 0C to 

remove thin surface oxide. Cleaned copper samples were washed with distilled water 

followed by drying in air.  

Black copper surface was prepared by chemical oxidation of a copper substrate in 

an alkaline bath. The cleaned copper substrate was immersed into a sealed glass container 

containing alkaline solution (0.1 M NaOH) of K2S2O8 and left still at 70 0C for 16 hrs. The 

pH of solution was kept at 13. Such oxidation of copper normally proceeds through the 

precipitation of copper oxide salt on the surface, which then decomposes to produce copper 

oxide film. After reaction sample was washed with distilled water and dried in air. A black 

film was obtained, which covered uniformly on the copper substrate.  

 

Characterization of copper oxide: 

 

The capability of copper oxide to absorb the solar light was tested by measuring 

percentage reflectance in the range of solar wavelength due to opaque nature of the 

samples. Optical measurements in the Ultraviolet (UV), visible and near infrared range 

were performed in a Bruker IFS66 spectrometer in a reflection mode with different incident 

angle of the incoming beam. Measurements have been performed in the wavelength range 

between 300 nm to 1200 nm to obtain the reflectance spectra. Highly reflecting Gold 

mirror was used as the reference sample. The surface morphology of the copper oxide 

samples was observed by using scanning electron microscope (SEM, JEOL) equipped with 

Energy Dispersive Spectroscopy (EDS) which permitted compositional studies of the 

samples.  
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3.3.2 Results and Discussion:  

 

In Fig. 3 the measured percentage reflectance (R), at incidence angle of 15o, is 

presented for polished pure copper and copper oxide synthesized by chemical conversion 

process. Polished copper showed a high reflectance between 50 to 60 % for complete 

wavelength range while after formation of black copper oxide decrease of the reflectance is 

observed up to almost zero percent for the same wavelengths. Since the copper oxide 

samples are opaque thus all the light which falls on black copper oxide is completely 

absorbed. 
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Figure 3: Percentage reflectance spectra, at incidence angle of 15o, of pure polished                

copper and copper oxide.  

 

The plots of percentage reflectance and absorbance (obtained at incidence angle of 

15o) are reported in Fig. 4 which helps to better understand the absorption nature of the 



159 

copper oxide. The figure clearly shows that black copper oxide can absorb about 99.8 % of 

visible light (400 to 800 nm) while in near IR region the absorbance varies from 99 to 99.6 

%. Thus we were able to form the layer of black copper oxide which can almost completely 

absorb solar radiation.  
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Figure 4: Percentage reflectance and absorbance spectra, at incidence angle of 15o, of                

black copper oxide.  

 

With our solar concentrator the incident angle of the radiation falling on the copper 

target will vary from normal to 45 degree. Thus the percentage absorption at different angle 

of incidence of incoming beam in the visible range (300 nm to 800 nm) was measured and 

reported in Fig. 5. The absorbance decreases by very marginal amount as the angle of 

incidence increases. However, the solar spectrum (Fig.6) contains maximum amount of 

photons in the visible range from 350 to 700 nm. In this range the copper oxide samples 

demonstrated the decrement in percent absorbance from 99.8 % to 99 % with highest angle 
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of incidence. Thus it proves that black copper oxide is able to totally absorb the incident 

radiation even at different angle of incidence. 
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Figure 5: Percentage absorbance spectra at different angle of incidence of black copper 

oxide 

.  

Figure 6: Full wavelength range of solar spectrum   
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Fig. 7(A) and Fig. 7(B) presents the digital photos of copper substrate before and 

after formation of copper oxide by chemical conversion method, respectively. The 

reflection of the digital camera is clearly observed, while taking the photo, on the surface of 

the polish copper substrate (Fig. 7A) indicating the mirror like surface with high 

reflectance (Fig. 3). However the chemical oxidation treatment of the copper substrate 

causes the formation of total black color copper oxide (Fig. 7B). SEM images of the copper 

substrate before and after formation of copper oxide are reported in Fig. 7(C) and Fig. 7(D) 

respectively. Polished copper substrate seems to be quite flat and smooth with some small 

pit marks (Fig. 7C).  Fig 7D reveals the formation of porous black copper oxide film with 

high surface to volume ratio. The copper oxide surface is formed of nano-petals like 

structures with a thickness of around 5-10 nm. These petals grow with their surface 

perpendicular to Cu substrate and intermesh with each other to form continuous porous 

film. Thus immersing a piece of copper substrate into hot NaOH solutions leads to the 

formation of 3D structure on its surface. 

 
Figure 7: Digital photographs of copper substrate (A) before and (B) after formation of                 

copper oxide. SEM images of copper substrate (C) before and (D) after 

formation of copper oxide. 
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The SEM images at different magnification of copper oxide surface texture are 

reported in Fig. 8. At low magnification 2D nanosheets with quite uniform distribution is 

observed. However at high magnification one can clearly see the nano-petal like structure 

where at some places these 2D nano-petals self-assemble into 3D flowerlike architectures. 

Significant importance of such kind of surface is given by the gaps between nano-petals 

which vary from 1-2 microns to 50-100 nm. This particular feature is able to cause the 

surface texture effect for higher absorption where surface irregularities, such as grooves 

and pores with dimensions comparable or larger than the wavelength of the incident 

radiation, simply increase the solar absorptance by multiple reflections [5]. In the present 

case, for the visible wavelengths, which are smaller compared to the actual gaps between 

the nano-petals, the surface looks rough and radiation may be trapped through multiple 

forward reflections and partial absorptions in the micro-cavities.  

The above results shows that the complete absorption of the incident radiation is 

due to the combined effect of black colored nature of copper oxide and the texturing effect 

on the surface which arises by the formation 3D structure with the cavities in the range of 

incident wavelengths.  

EDS spectra (Fig. 9) obtained from the surface of the copper oxide shows presence 

of some impurities (Si, C, and Ca) in addition with copper and oxygen. The atomic 

percentage of each element is summarized in Table 1. The atomic percentage of copper and 

oxygen showed nearly similar values indicating the formation of CuO phase which is 

confirmed by structural characterization. Silicon and carbon are present in the copper 

substrate while the presence of calcium was really surprising because none of the chemical 

used during the cleaning or oxidation treatment contains calcium. However the amount of 

calcium is quite low to affect the absorption properties of the copper oxide. This calcium is 

present in form of loose particles on the surface (Fig.10) which can be removed by proper 

rinsing or cleaning in distilled water. An XRD spectrum presented in Fig. 11 clearly shows 

the intense peak of Cu substrate in addition with low intensity peaks of CuO phase. Single 

peak of CaCO3 is also observed in the spectra indicating the presence of CaCO3 particles 

on the surface of the copper oxide 
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(A) (B)

(C) (D)

Figure 8: SEM micrographs of copper oxide surface at different magnification (A)10,000 

X, (B) 25,000 X (C) 30,000 X and (D) 50,000 X. 

 

 

 
Figure 9: Elemental composition plot of the copper oxide surface obtained by EDS  

                 measurement. 
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Table 1: Elemental atomic composition of copper oxide surface, obtained by EDS  

              measurement. 

 

 
Figure 10: SEM micrographs of copper oxide surface with calcium particle. 

 

Since the copper target with copper oxide on the surface will be fixed in the hot 

water surrounding for our water heating system, thus it is necessary to check the long 

duration thermal stability and corrosion resistance in hot water. To check these properties 

copper oxide samples are kept still in the water at 85 oC for about 140 hours (Fig.12).  

Indeed, no significant visual changes were observed as compared to as-treated samples and 

the film was well attached to the surface.  

Elements At % 

Cu 43.09 

O 44.87 

Ca 1.01 

Si 1.34 

C 9.69 
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Figure 11: XRD spectra of the copper oxide samples synthesized by chemical conversion  

                   Method 
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Figure 12: Thermal stability of CuO at 850C 
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3.4 Synthesis of multilayer antireflection coatings 

            

In our present design for water heating system a quartz window is used through 

which the solar radiation enters the systems. Thus in order to acquire high power 

conversion efficiency it is necessary for quartz window to transmit the entire solar radiation 

incident on it without much loss due to the reflection on the surface. In general quartz 

window is able to transmit 90-91 % of the solar radiation while 1-2 % is absorbed and 7-8 

% is reflected from the surface. Thus to have nearly complete transmittance of the solar 

radiation it is obligatory to decrease both absorbance and reflectance of the quartz 

substrate. Since absorption of light is the intrinsic characteristic of the material, it is 

difficult to reduce it. Reflectance of the material can be decreased by depositing anti-

reflecting coating on the surface of the quartz window. Anti-reflective or antireflection 

(AR) coatings are a type of optical coating applied to the surface of lenses and other optical 

devices to reduce reflection. This will improve the efficiency of the system since less light 

will be lost. Many AR coatings are made of transparent thin film multilayer structures[6] 

with alternating layers of contrasting refractive index. Layer thicknesses are chosen to 

produce destructive interference in the beams reflected from the interfaces, and 

constructive interference in the corresponding transmitted beams. Single-layer and multi-

layer AR coating is used to reduce the reflectance in single specific wavelength and broad-

band wavelength range respectively. 

In present work we have developed the single-layer and multi-layer AR coating in 

order to reduce the percentage reflectance of the quartz window in the visible range. Low 

reflective index material like MgF2 is deposited by e-beam technique to obtain single-layer 

AR coating. While Al2O3 and ZrO2, deposited by RF-magnetron sputtering, with MgF2 are 

used to develop multi-layer AR coating. 

 

3.4.1 Experimental:  

 

Electron-beam deposition (EBD) and RF-magnetron sputter deposition were used to 

synthesize single and multilayer AR-coating respectively. Single layer in form of MgF2 

was deposited by e-beam evaporation on polished and cleaned quartz substrate. Prior to 
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deposition the chamber was pumped to a base pressure of 10-6 mbar. MgF2 film was 

deposited with the rate of 2-3 nm/min and the final thickness was kept around 100 nm. 

Materials like ZrO2 and Al2O3 were used for the multilayer AR-coating. Thin films of both 

these materials were deposited by RF-magnetron sputtering using pure ZrO2 (99.9%) and 

Al2O3 (99.9%) as the target. High vacuum (HV) with base pressure < 3 x 10-5 Pa was 

achieved before deposition while the working Ar pressure of 1 Pa was used for the 

deposition. Before sample deposition, both oxide targets were pre-sputtered for 20 mins in 

order to remove any surface contamination. ZrO2 and Al2O3 targets were sputtered on both 

quartz and Si (100) substrates at room temperature using RF power of 150 W and 200 W 

respectively. The sample and target distance was kept constant at 6 cm for all the samples.  

Two-layer AR-coating was obtained by first depositing Al2O3 thin film by sputtering and 

then transferring to the EBD chamber for MgF2 thin film deposition on top of Al2O3 layer. 

Three-layer AR-coating was synthesized by depositing Al2O3 thin film with ZrO2 thin film 

on top by sputtering and then depositing MgF2 thin film by EBD. Additional layer of MgF2 

was first deposited on the substrate, by EBD, before depositing above mentioned three 

layers stacks (Al2O3/ZrO2/MgF2) to achieve four-layer AR-coating. The thickness of each 

layer of the multilayer coating was selected after a proper calculation to achieve broad band 

antireflection.  

The efficiency of different AR-coatings was tested by measuring percentage 

reflectance in the range of solar light wavelength. Optical measurements in the Ultraviolet 

(UV) and visible range were performed in a Bruker IFS66 spectrometer in a reflection 

mode with incidence angle of 15 degree for incoming beam. Measurements have been 

performed in the wavelength range between 300 nm to 800 nm to obtain the reflectance 

spectra. The surface morphology of the samples was analyzed by using scanning electron 

microscope (SEM, JEOL) equipped with Energy Dispersive Spectroscopy (EDS) which 

permitted compositional studies of the samples.  
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3.4.2 Results and discussion:  

 

When light travels from one media to another it get reflected from the surface 

depending upon the reflective index (n) of both the medium. In the more complicated 

scenario of multiple reflections, say with light travelling through a glass window, light is 

reflected both when going from air to glass and at the other side of the window when going 

from glass back to air. The size of the loss is the same in both cases. Light also may bounce 

from one surface to another multiple times, being partially reflected and partially 

transmitted each time it does so. In all, the combined reflection coefficient is given by 

2R/(1+R). For glass in air, this is about 7.7%. This reflection can be reduced by depositing 

thin film on the glass or quartz substrate having a reflective index given by [2]. 

 

                               (3.1) 

 

Where no is the reflective index of air and ns is the reflective index of the substrate. By 

substituting no as 1 for air and in our case ns is 1.47 as for quartz substrate. The value of n1 

is calculated as 1.21. However, there is no naturally occurring transparent material having 

the reflective index of 1.21 so MgF2 which have the closest n value of about 1.38 is used as 

the anti-reflecting coating for quartz substrate.  

The thickness of the single layer AR coating must be λ/4, where λ is the wavelength 

to be transmitted and this coating is called quarter-wave coating which produces anti-

reflection by interference effect. For this type of coating the incident beam when reflected 

from the second interface of the thin AR-film, will travel exactly half its own wavelength 

further than the beam reflected from the first surface. If the intensities of the two beams are 

exactly equal, they will destructively interfere and cancel each other since they are exactly 

out of phase. Therefore, there is no reflection from the surface, and almost all the energy of 

the beam must be in the transmitted ray. Practically the light is refracted in the medium 

thus the wavelength of the light is reduced inside the film and so the thickness of the AR 

coating practically is calculated as λ/n14. In solar spectrum maximum amount of photons 

lies in visible range with the peak position at around 550 nm hence the AR coating is 
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developed for the visible range. The thickness of single layer MgF2 based AR coating is 

calculated about 100 nm for the wavelength of 550 nm.  

 

 
Figure 13: (a) Cross-section and (b) surface SEM micrographs of single-layer (MgF2)  

                   AR coating. 

 . 

400 450 500 550 600 650 700 750 800
3

4

5

6

7

8

9

10

11

R=7.4% at 550nm 

R=4.1% at 550nm 

R=6.1% at 550nm 

  

 

 Wavelength (nm)

R
ef
le
ct
an
ce
 (
%
)

 Quartz
 Single sided MgF

2
 100nm

 Double sided MgF
2
 100nm

 
Figure 14: Reflectance spectra of single-layer (MgF2) AR coating on quartz substrate. 



170 

  

MgF2 thin film was deposited by e-beam deposition technique on quartz substrate 

with thickness of around 100 nm as confirmed by cross-section SEM image (Fig.13a). The 

cross-section image (Fig.13a) of the MgF2 film shows that it is quite compact and dense 

while the top view (Fig.13b) of the film shows that surface is smooth and flat without any 

major defects. Figure 14 reports the reflectance spectra in the visible light range of the bare 

quartz substrate and with MgF2 AR coating. The percentage reflectance of about 7.5 % is 

observed at wavelength of 550 nm for quartz substrate and this value is consistent with the 

theoretical value obtained after reflection from both the side of the quartz substrate. 

Percentage reflectance decreases to value of about 6.1 % at 550 nm by depositing MgF2 

AR layer on the single side which further decreases to the lower value of 4.1 % for the 

double sided AR coating. This shows that it is necessary to coat the quartz substrate on 

both the sides to decrease the reflection. However the reduction in reflectance value with 

single layer MgF2 coating is not sufficient for our purpose.  

 

The two-layer quarter/quarter AR coating is used as an alternative to the single-

layer coating. It is developed because of the lack of available materials with the indexes of 

refraction needed to improve the performance of single-layer coatings. The basic problem 

associated with single-layer antireflection coatings is that the refractive index (RI) of the 

coating material is generally higher than required, resulting in too strong a reflection from 

the first surface which cannot be completely canceled through destructive interference with 

the weaker reflection from the substrate’s top or second surface. In a two-layer coating, the 

first reflection is canceled through destructive interference with two weaker out-of-phase 

reflections from underlying surfaces. A quarter/quarter coating consists of two layers, both 

of which have an optical thickness of a quarter wave at the wavelength of interest. The 

outer layer is made of a low-refractive-index material, and the inner layer is made of a 

high-refractive-index material (compared to the substrate). Thus the beam reflected from 

the high RI material below will have the intensity to form destructive interference with the 

reflected beam from top surface.  
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Figure 15: (a) Cross-section and (b) surface SEM micrographs of two-layer Al2O3/MgF2  

                  AR coating. 

 

Alumina (Al2O3) with the refractive index of 1.62 is selected to deposit below MgF2 

layer for quarter/quarter double layer AR coating. The alumina layer thickness of around 

85 nm is calculated by equation λ/4n for wavelength of 550 nm. Sputter deposited alumina 

seems to be compact and dense as observed by the cross-section SEM image (Fig. 15a) of 

the two-layer. The surface of MgF2, synthesized by e-beam deposition, is flat and smooth 

similar to that of single-layer AR coating (Fig. 15b). Figure 16 reports the reflectance 

spectra in the visible light range of the bare quartz substrate and with two-layer 

(Al2O3/MgF2) AR coating. Percentage reflectance decreases to a value of about 4.2 % at 

550 nm after depositing Al2O3/MgF2 AR stack layers on the single side of the quartz which 

further decreases to the lower value of about 1.3 % for the double sided AR coating. At 500 

nm the percentage reflectance of two-layer AR coating is about 0.3 %. This shows that 

double-layer AR coating is able to reduce the reflectance of quartz substrate much 

efficiently as compared to single-layer. However two-layer AR coating is useful for the 

near monochromatic applications because it shows minimum reflectance at the designed 

wavelength such as 500-550 nm. But for our purpose we need the AR coatings which have 

the low reflectance in broad-band range of visible light.    
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Figure 16: Reflectance spectra of two-layer (Al2O3/MgF2) AR coating on quartz    

                 substrate. 

 

Broad-band AR coating is synthesized in form of three or four-layer thin film on a 

quartz substrate. For three layer coating we have sandwiched high RI material like ZrO2 

(2.14) in between two low RI materials like Al2O3 (1.63) in the bottom near to substrate 

and MgF2 (1.38) as the top layer. Thickness of the ZrO2 layer is kept one-half of the 

wavelength (λ/2n) of interest (550 nm) while the thickness of Al2O3 and MgF2 is kept about 

one-quarter of the wavelength (λ/4n). Al2O3 and ZrO2 is deposited in-situ by sputtering 

while e-beam evaporator is used to deposit MgF2. Since it was difficult to obtain a cross-

section image of three-layer AR coating thus EDS is used to view three layers by 

compositional line scan along the cross-section as reported in Figure 17. The figure clearly 

shows the existence of ZrO2 layer in between Al2O3 and MgF2. Figure 18 reports the 

reflectance spectra in the visible light range of the bare quartz substrate and with three-

layer (Al2O3/ZrO2/MgF2) AR coating. By coating three-layers on single side of quartz 
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causes the percentage reflectance to decrease in broad-band range of visible light spectrum 

with a value of about 3.1 % at 550 nm. Surprisingly, on both side coating of these layers 

does not cause the further decrease in the reflectance value as observed in single and two-

layer AR coating. In addition there is disappearance of broad-band antireflection effect by 

double-side coating. However, even single side three-layer coating is not able to provide 

the antireflection effect in complete visible light spectrum that is 400-750 nm. The three-

layer coating show a cutoff wavelength near 500 nm below which the reflection increases 

drastically to a very high value (Fig. 18). Thus light in range of 350-500 nm is largely 

reflected and does not transmit. Thus four-layer AR coating is further developed for broad-

band antireflection.  

 
Figure 17: Composition analysis along the cross-section of the three-layer     

(Al2O3/ZrO2/MgF2) AR coating.  

 

For four-layer coating an additional layer of MgF2, with thickness of one-quarter 

wavelength (λ/4n), is first deposited on the quartz substrate before depositing the above 

mentioned three-layer stack film of Al2O3/ZrO2/MgF2. The thickness of each layer is kept 

same as that for three layer coating. Four-layer coating is clearly visualized in cross-section 

SEM image as shown in Fig. 19. All the layers are compact and dense similar to single and 

two-layer AR coating. Figure 20 reports the reflectance spectra in the visible light range of 

the bare quartz substrate and with four-layer (MgF2/Al2O3/ZrO2/MgF2) AR coating. By 

coating four-layers on single side of quartz causes the percentage reflectance to decrease in 

complete broad-band range of visible light spectrum (400-750 nm) with a value of about 

3.9 % at 550 nm. Percentage reflectance decreases further by double sided four-layer AR 
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coating to a value of 0.8 % in complete broad-band range of visible light spectrum. 
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Figure 18: Reflectance spectra of three-layer (Al2O3/ZrO2/MgF2) AR coating on quartz    

                 substrate. 

 

The reflectance spectra are normally obtained with respect to some standard mirror 

with high reflectance, but in the present case due to unavailability of standard mirror we 

have used some normal mirror which was not as good as the standard mirror. Thus the peak 

observed in the reflectance spectra (Fig. 20) at 450 nm is due to the effect caused by local 

mirror used for the baseline. But for the moment we have observed that four-layer coating 

of MgF2/Al2O3/ZrO2/MgF2 is efficient to provide antireflection effect in the broad-band 

visible light range with the reflectance value below 1 %. Comparison of all the different 

AR coating developed in the present work is reported in figure 21. Thus the quartz window 

which will be used for the water heating system is coated with four-layer AR coating.  
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Figure 19: Cross-section SEM micrographs of four-layer (MgF2/Al2O3/ZrO2/MgF2) AR  

                  coating. 
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Figure 20: Reflectance spectra of four-layer (MgF2/Al2O3/ZrO2/MgF2) AR coating on                   

quartz substrate. 
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Figure 21: Reflectance spectra of all the different AR coating deposited on double-sided  

                  quartz substrate. 

   

3.5 Efficiency of water-heating system: 

 

  Fig. 22a and 22b represent heat exchanger system with arrangement for 

thermocouple connected to black code and real time measurement setup with three mirrors 

concentrating solar radiation into the heat exchanger for water heating, respectively.  

 

 



177 

 
(a) 

 
        (b) 

Figure 22: (a) Heat exchanger system with arrangement for thermocouple connected to     

                  black code. (b) Photograph of real time measurement setup with three mirrors  

                 concentrating solar radiation into the heat exchanger for water heating.  
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 ASHRAE 93 standard efficiency testing methodology was used to calculate 

efficiency for this system which is given by: 

 

Where Output power is given by: 

O/P = ä x Cp x ∆T 

Where   ä = water flow rate (g/sec) 

  Cp = specific heat of water = 4.18 J/g oC 

  ∆T = Temperature difference (oC) 

Temperature difference (∆T) of water between inlet and outlet was accurately 

measured online through computer by using K type thermocouple with swazlock 

connection as shown in Figure 4a. Water flow rate (ä) was measured manually as well as 

by flow meter. Both the parameters (∆T and ä) were used to calculate output power which 

is summarized in Table 1. The calibrated Pyranometer instrument was used to measure 

global radiation of the sun which was further multiplied with the area of the mirror to 

obtain input power. Overall system efficiency with i/p and o/p power at different water 

flow rate is summarized in table 1. The data in the table shows that system is more efficient 

in converting the solar power at low water flow rates as compared to that at high flow rate 

(1.87 L/min). This is well understood by the fact that at high flow rate the heat loss due to 

the conduction is much higher as compared to that at low rates. The overall system 

efficiency ranges from 65-67 %. However the efficiency value of the system is also 

calculated by considering only direct radiation from the sun. This value was obtained by 

subtracting the measured diffuse radiation from the total global radiation. The overall 

system efficiency is calculated around 75 % by considering only direct radiation. To 

calculate the heat exchanger efficiency we have considered only 92 % of the input power 

because the total reflectivity of the mirror is about this value. It shows the heat exchanger 

efficiency is quite high at around 83 %.  The maximum temperature of the water reached 

by our system is around 72 oC with the flow rate of about 30 L/hour: sufficient for the room 

or floor heating for residential house as well as for office buildings.  
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Table 1: Performance data of solar concentrator based water heating system 

 

3.6 Comparison with flat plate and vacuum tube collectors: 

 

Now let’s make a comparison of our solar concentrator based water heating system 

with the flat plate or vacuum tube collector available in the market. To do this we have 

acquired a published data on efficiency of flat plate and vacuum tube collector from the 

Switzerland based institute Solartechnik Prufung Forschung (SPF) [2] (this institute is 

involved in measuring the efficiency of the solar water heating system and on providing the 

performance certificate to the manufacturing companies). They have measured collector 

efficiency based on the absorber area (AA) as well as on the collector gross area (AG). 

Absorber area is the maximum projected area of an absorber and Gross area is the 

maximum projected area of a complete solar collector module, exclusive of integral means 

of mounting and connecting fluid conduits. The efficiency values of the different collectors 

are shown in table 2 which is directly copied from the published article [7] by the SPF 

institute. This article also quotes that “To get information about the quality of the 

components used in the collector (such as absorber, cover etc.) the efficiency ηA, based on 

the absorber area is more powerful. However, for the design of a solar energy system it 

might be more convenient if η is based on the collectors gross area (i.e. ηG)”. Thus to 

make comparison with our data on efficiency we have to consider their efficiency value 

calculated from the gross area (i.e. ηG). The ηG value for the temperature difference of 50 

Flow 

rate 

(L/min) 

Temp 

Differenc

e (oC) 

o/p 

power 

(watts) 

Radio

meter 

(mV) 

Power 

density 

(W/m2) 

i/p 

power 

(watts) 

Overall 

system 

efficiency 

(%) 

Overall 

system 

efficiency 

direct (%) 

Heat 

exchanger 

efficiency 

(%) 

1.875 11.7 1524.95 10 990.09 2524.7 60.39 68.63 74.60 

1.2 19.9 1659.97 9.8 970.29 2474.2 67.09 76.45 83.09 

0.888 26.7 1648.13 9.7 960.39 2449.0 67.29 76.79 83.47 

0.695 32.4 1565.30 9.6 950.49 2423.7 64.58 74.69 81.19 

0.455 49.5 1565.61 9.5 940.59 2398.5 65.27 75.62 82.19 
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K does not exceed above 50 % for all the collectors while our system overall efficiency for 

the same ∆T is 65 %, far better than the collectors available in the market. Also make a 

note that the values indicated in the table 2 are for the best collectors they have measured. 

In conclusion we have developed heat exchanger for water heating through solar 

concentrator with the best solar energy conversion efficiency.  

 
Table 2: Summary of the collector test results published by SPF institute.  

 

3.8 Conclusion: 

 

             Heat exchanger for water heating using solar concentrated radiation was designed, 

built, and tested in the present work. Black textured copper oxide as an absorber layer was 

successfully synthesized on copper substrate by chemical conversion method. This copper 

oxide absorber layer showed total absorbance (99.8 % to 99 %) of solar radiation at 

different angle of incidence. The high absorbance property acquired by oxide layer is 

mainly attributed to its black color and surface textured effect obtained by adopted 

chemical treatment. This layer also showed long term thermal stability in the hot water 

surrounding with no significance change in solar absorption. The multilayer AR coating 

was developed for quartz window to have complete transmittance of incident concentrated 

solar radiation. By depositing 4 layers AR coating in form of MgF2/Al2O3/ZrO2/MgF2 on 

both side of quartz window showed significant reduction in reflectance from 7.4 % (for 

bare quartz) to 0.82 % (for multilayer coating) for the broad-band visible light range. The 

combination of good solar absorber (CuO) and AR coating (multilayer film) leads to 

excellent efficiency of designed water heating system which is far better than commercially 

available flat plate or vacuum tube collector. 
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Chapter 4 

 

Solar absorber for high temperature 

application 

 

 
This chapter presents development of spectral selective solar absorber for high 

temperature application (700-800°C). Here we select the cermet combination in the form of 

Ni/AlxN(1-x)/AlN metal-dielectric composite multilayer coating as a solar absorber. The 

chapter is divided into four sections. The first section introduces the various solar absorbers 

which can be used for high temperature applications. The second section gives details on 

experimental method and deposition conditions used for the synthesis of cermet multilayer. 

The third section describes characterization of the cermet coating. The last section 

concludes that developed cermet film shows a high solar absorbance and low IR thermal 

emittance even after heat treatment of composite coating  at 7000C. 
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4.1 Introduction 
 
 

Among the present renewable energy resources, solar energy is considered to be an 

infinite and easy to handle energy which is available anywhere on the earth. Furthermore, 

energy obtained from sun is CO2 free. Concentrating solar power (CSP) systems can utilize 

the full solar system to convert sunlight to thermal electric power by using solar absorber. 

One such example is the parabolic dish/Stirling engine systems which converts the thermal 

energy of solar radiation to mechanical energy and then to electrical energy. Dish/Stirling 

systems use a mirror array to reflect and concentrate incoming direct normal insolation to a 

receiver, which transfer sheat to the working medium to achieve the temperatures required 

to efficiently convert heat to work [1]. Of all solar technologies, dish/engine systems have 

demonstrated the highest solar-to-electric conversion efficiency (29.4%) [2], and therefore 

have the potential to become one of the less expensive sources of renewable energy. 

Dish/Stirling receiver design involves dealing with non-uniform and highly concentrated 

solar flux at high temperatures (700-800°C) and, therefore, presents a variety of technical 

challenges. 

The solar energy is commonly absorbed by a close-to-black surface with a strong 

absorption spectrum covering the whole range from the UV to the infrared (IR) with 

similar efficiency, as in the case of copper oxide mentioned in the previous chapter. 

However, for the CSP system the heat loss, caused by the reemission of thermal IR rays, 

reduces the heat transfer from the absorbing surface to a suitable transport medium, such as 

water or working gas. A solar selective absorber must capture the largest possible amount 

of solar energy, at the same time minimizing losses by thermal radiation emission. Ideally, 

these materials should be perfect absorbers over the solar spectrum and perfect reflectors in 

the thermal infrared (IR). The latter is in order to avoid heat losses due to the emission of 

radiation from the surface according to Kirchhoff’s law. A low reflectance (ρ ≈ 0) at 

wavelengths (λ) ≤ 3µm and a high reflectance (ρ ≈ 1) at λ≥ 3µm characterize spectrally 

selective surfaces [3], as shown in Figure 1. For practical reasons, a selective absorber can be 

considered good if its total emissivity ≤ε  0.20 and absorbance ≥α  0.90. This goal is 

extremely difficult to achieve with a homogeneous material [4]. While composite media, 
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materials with a rough or porous surface, and multilayered films are the practical candidate 

for selective material [5–7]. 

 
 

            Figure 1: Spectral performance of an ideal selective solar absorber. 

 

              The search for selective solar absorbers has to consider a number of aspects. Firstly, 

the ‘spectral’ properties have to be optimized, i.e., the materials should possess a high 

absorbance, but should be essentially IR-inactive at high operating temperature. Secondly, 

the material has to be stable against heat, water, exposure to heat-transfer solvents, and 

corrosive environments. Thirdly, the components of these materials have to be nontoxic, 

must be sufficiently cheap, and easy to produce. Among the selective composite materials, 

cermets are the best to fulfill all these mentioned criteria’s with high thermal stability, 

which makes them particularly suitable for high-temperature applications in photo-thermal 

solar energy conversion. Cermets for solar applications usually consist of nanometre-sized 

metal particles (1–20 nm) embedded in a ceramic binder. This material is deposited over a 

metallic substrate and may be covered with anti-reflection coatings to enhance their solar 

absorptance. Also, it has been found that grading the concentration of the metal particles 

from more dilute near to the front end of the cermet to more dense near to the substrate 

improves the response. In particular, a system with two cermet layers of different constant 

concentrations provides the best results [4]. The selectivity of cermets is a tandem effect: 

the cermet itself absorbs radiation strongly in the region before the cutoff and is almost 
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transparent in the IR. Meanwhile, the metallic substrate provides high IR reflectance and 

contributes a small portion of the absorption in the ultraviolet (UV) and visible regions. 

Various transition metals—particularly those formed from the refractory metals of 

groups IVA, VA, and VIA and their binary and ternary compounds—have been suggested 

for high-temperature applications because of their high melting point and chemical 

inertness [5]. These materials also have a high degree of spectral selectivity, high hardness, 

and improved wear, corrosion, and oxidation resistance [6,7]. Large number of cermet solar 

selective coatings, such as black chrome, Ni�Al2O3, SS-C, Al-AlN, Mo-Al2O3 etc. [8-10], 

have been studied which were expected to absorb almost all short wavelength solar 

radiation and restrain the IR radiation in the wavelength above 2.5µm [11]. Al-AlN seems 

to be the best choice as the solar selective cermet layer not only due to its high melting 

point and chemical inertness but also the ease to produce this material with low cost. Al-

AlN cermet films is deposited by DC reactive sputtering in a gas mixture of argon and 

nitrogen, and by just varying the N2 gas pressure during deposition the amount of Al can be 

conveniently altered in the AlN matrix. This provides big advantage to deposit multilayer 

film with gradation from surface to substrate in a single step. As reported in literature, the 

graded cermet multilayer film of Al-AlN deposited by sputtering showed solar absorptance 

of 0.92 and thermal emittance of 0.06-0.1.These values vary by only small amount when 

using Al-AlN cermets film at elevated temperatures (700-800 oC) in vacuum and air, thus 

showing the thermal stability.  

 

In the present work, we developed Al-AlN based multilayer cermet films by RF 

magnetron sputtering. The 3 or 4 layers film with grading of metal content was synthesized 

by varying N2 flow during deposition. The optical properties before and after heat 

treatment at 700 oC has also been studied.  

 
 
Characteristics of Selective Surfaces  
 
The performance of a candidate solar absorber can be characterized by its solar absorptance 

and thermal emittance. They as defined as follows:[12] 
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Where R(λ) is reflectance at wavelength λ. G(λ) is intensity of solar radiation with air mass 

1.5.  For instance solar radiance G(λ) can be restricted to range between 0.3-2.5µm. 
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Where β (T,λ) is intensity of black body radiation at operating temperature T of the 

material which is also restricted to a finite region with limits depending on the value of T. 
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=f  is called figure of merit which indicate good spectral selectivity; however the figure 

of merit is not always well suited to estimate solar thermal power conversion efficiency of 
optical absorber. 
 

4.2 Experimental Method: 

 

The selective solar absorber multilayer films were synthesized by RF magnetron 

sputtering. Cermet material in form of Ni/AlxN(1-x)/AlN metal-dielectric composite coating 

was adopted as solar absorber for concentrated radiation. We used stainless steel (SS) as a 

substrate due to its high stability at elevated temperature and strong corrosion resistance 

properties. The role of Ni in this combination is to reflect IR radiation above 2500 nm 

range to provide low emittance value. In addition, Ni is quite stable at elevated 

temperatures with high melting point and diffusion rate of Ni in SS substrate at high 

temperature is also very low.  AlxN(1-x) act as a absorber layer for UV and visible range of 
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solar spectrum whereas transparent AlN as the top layer works as anti-reflecting coating to 

enhance their solar absorptance. 

 

Synthesis of Ni film: 

 

            For the Ni film deposition, pure Ni (99%) disc and Ar (99.99%) gas were used as 

sputtering target and working gas respectively. Before film deposition, the Ni target was 

pre-sputtered for 10 min in order to remove any surface contamination. Ni film was 

deposited on glass, Si (100) and SS substrates at room temperature using RF power of 150 

W and Ar pressure of 0.8 Pa. Set of Ni samples were deposited by varying time (Table 1 

shows variation in thickness at different time) to achieve thickness between 100 to 125 nm. 

The sample and target distance was kept constant at 7.5 cm for all the samples. 

 

 The thickness was measured through cross-section SEM images of the films. Ni 

thickness of 117 nm (Fig. 2) was selected as the bottom layer because thicker Ni layer 

might lead to rapid increase in thermal emittance.  

                     
 

Table 1: Ni thickness, obtained by cross-.           Figure 2: Cross-section SEM image of Ni 
Section SEM as a function of sputtering time                       sputtered for 2 mins  
              . 
  
Synthesis of AlxN(1-x) black film: 

 

For black AlxN(1-x) film, we used Al (99%) disc as the sputtering target and pure Ar 

and N2 (99.99%) as working gases. Before sample deposition the Al target was pre-

Sputtering 
Time 

Thickness of Ni 
film (nm) 

1 hr 2830 

20 mins 980 

10 mins 469 

2.5 mins 140 

2 mins 117 
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sputtered for 30 min in order to remove any surface contamination. During pre-sputtering 

the gas mixture of Ar and N2 with pressure of 1Pa was used, in which Ar flow of 28 sccm 

and N2 flow of 9 sccm was maintained. Nitrogen gas was introduced during pre-sputtering 

in order to convert target surface from metallic shiny to black. AlxN(1-x) film was deposited 

on glass, Si (100) and SS substrates at room temperature using RF power of 150 W. The 

sample and target distance was kept constant at 7.5 cm for all the samples. AlxN(1-x)  films 

were deposited with different values of x by varying the N2 gas flow rate during the 

deposition. By EDS we analyzed the amount of Al and N as a function of N2 flow rate in 

the AlN film and summarized in Table 2. From this measured data, nitrogen flow rate of 3, 

5 and  7 sccm  was selected to deposit multilayer film with graded layer having Al atomic 

content of 75% , 60% and 55% in AlxN(1-x) film.  

 

N2 flow rate 
(sccm) 

N concentration  
(at%) 

Al concentration 
(at%) 

1 1.4 98.6 
1.5 11 89 
2 13.7 86.3 
3 24.3 75.7 
4 34.7 65.3 
5 41 59 
6 41.3 58.7 
7 45 55 

14 55 45 
  Table 2: Atomic concentration of Al and N in AlN film deposited under various N2 gas 
                flow rate during sputtering  
 
 

To optimize the required thickness of each layer in multilayer film, the single layer 

of AlxN(1-x) film with Al concentration of 75, 60 or 55 at% was deposited separately with 

constant deposition time of  5 mins. The thickness of the each film was analyzed by using 

cross-sectional SEM images (Fig. 3). 
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Figure 3: Single layer thickness of AlxN(1-x) film deposited for 5 mins with different Al  

               concentration a) 75 at.% b) 60 at.% or c) 55 at.%. 

 
Synthesis of anti-reflecting transparent AlN film: 

           For anti-reflecting coating, AlN disc (99%) and pure Ar and N2 (99.99%) was used 

as sputtering target and working gas respectively. Before sample deposition, the AlN target 

was pre-sputtered for 10 min in order to remove any surface contamination.  AlN film was 

deposited on glass, Si (100) and SS substrates at room temperature using RF power of 150 

W and working gas pressure of 0.8 Pa. To obtain favorable thickness of 100 nm, various 

AlN films were deposited by varying the deposition time. The optimized deposition time 

was about 11.5 mins to deposit the anti-reflecting AlN film of around 100 nm (as 

confirmed by cross-section SEM image in Fig. 4).  

      
                    

 
 
Figure 4: Cross-section SEM image of anti-reflecting transparent AlN film deposited with 

a  time of 11.5 mins.  
 

After optimizing the condition to obtain required thickness and concentration of 

each layer, the multilayer film was deposited in situ by RF sputtering. Before deposition, 

SS substrate was polished to obtain mirror like surface and then later cleaned with different 
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cleaning solutions to remove surface contamination. However, the multilayer films were 

deposited on SS, glass and Si substrate. Ni film of about 100 nm was first deposited with 

the condition mentioned above. Then 3 or 4 layers of AlxN(1-x) with different metal 

concentration were deposited with varying thickness. Detailed description about these 

multilayer films in terms of thickness and metal concentration is summarized in table 3. 

Grading of layers is such that the metal concentration decreases from bottom to top of the 

film. Thickness of each layer is selected such that there is destructive interference which 

results in low reflectance and high absorption in the visible range, but metal gradation is 

more important than layers thickness of the composite film. All the films were covered 

with transparent AlN film of around 100 nm as an anti-reflecting coating.  

 

Characterization of multilayer films: 

 

The surface morphology and cross-section thickness of all films were studied by 

scanning electron microscope (SEM-FEG, JSM 7001F, JEOL) equipped with energy-

dispersive spectroscopy analysis (EDS, INCA PentaFET-x3) to determine the composition 

of the samples. Optical measurements in the Ultraviolet (UV), visible and near Infrared 

(NIR) range were performed in a Bruker IFS66 spectrometer in a reflection mode with 

incidence angle of 15 degree for incoming beam. Measurements have been performed in 

the wavelength range between 250 to 2500 nm to obtain the reflectance spectra. 

 

 

     

 

 

 

 

 

 

 

Table 3: Detailed description about multilayer films in terms of thickness and metal  

               concentration. 

Multilayer films Layers Thickness 
 (nm) 

Al concentration 
(at%) 

 
 

3-layer film  
(A3) 

Ni layer  100 --- 
1st AlxN(1-x) 110 75 
2nd AlxN(1-x) 60 60 
3rd AlxN(1-x) 25 55 

AlN (AR film) 100 50 
 
 

4-layer film  
(A4) 

Ni layer  100 --- 
1st AlxN(1-x) 110 75 
2nd AlxN(1-x) 60 60 
3rd AlxN(1-x) 25 55 
4th AlxN(1-x) 16 52.5 

AlN (AR film) 100 50 
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4.3 Results and Discussion:  

 

 Multilayer films with 3 and 4 AlxN(1-x) layers are designated as A3 and A4 

respectively. Fig. 5a and 5b presents the plot of percentage reflection (%R) as a function of 

wavelength for A3 and A4 samples respectively. The absorptance value is calculated from 

the %R in the range of 250 to 2500 nm using equation (1). The absorptance for A3 and A4 

on glass is 0.93 and 0.92 and that on SS is 0.86 and 0.875, respectively (table 4). This 

indicates that extra forth layer is insignificant to put any effect on the absorption properties 

of the absorber film. The difference between the absorptance value for glass and SS 

substrate is not well understood.  

 

Presently we do not have any facilities in our department to measure %R in far IR 

range (2.5 to 25 µm) which would assist to calculate thermal emittance of the films. But 

accordingly to Fig. 1 the selective absorber layer must reflect all the IR light (λ > 2500 nm) 

and absorb UV-Vis light (λ < 2500 nm). So the %R measured for the selective layer should 

make a rapid transition from 0 to 100 % in the range of 2000 to 5000 nm. Thus to have a 

rough estimation about the ability of our multilayer films to reflect the IR light we 

measured the %R value at 2500 nm. Higher reflectance at 2500 nm for the film indicates 

the rapid transition of %R in IR range and low emittance. So the %R for the 3 and 4 layers 

film on glass is 44 % and 42 % and that on SS is 46 % and 22 % (table 4) respectively. 

These results demonstrate that 3 layers has better tendency to reflect IR light than 4 layers 

films.  
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Figure 5: Reflectance spectra of (a) A3 and (b) A4 multilayer films. 

 

To improve the % R at 2500 nm for 4 layers we increased the thickness of each 

layer by 10 nm. But we found that %R at 2500 nm decreases further (table 4). Therefore, in 

this study we conclude that between 3 and 4 layers film, there is no much difference in the 

absorption, but the %R is better for 3 layers film than 4 layer film at wavelength 2500 nm. 

Thus further studies were conducted by using only 3 layer films.  
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Figure 6: Reflectance spectra of (a) A3- and (b) A3+ multilayer films. 

 

 To advance further with 3 layer films, we varied the thickness of each layer of 

AlxN(1-x) and measured the %R. We decreased and increased the thickness of each AlxN(1-x) 

absorber layer of A3 samples by 10 nm which is designated as A3- and A3+ respectively. 

Figs. 6a and 6b represents the plot of %R as a function of wavelength for these samples. 

The absorptance value for A3- and A3+ is 0.91 and 0.935 on glass and 0.86 and 0.90 on 

SS, while %R at 2500 nm is 41 % and 55 % for glass and 43 % and 42 % for SS 

respectively (table 4). Comparing these values with that obtained for A3 sample shows that 

decreasing thickness does not cause any change in optical properties. But by increasing the 
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thickness there is slight increase in absorptance as well as %R (specially on glass). So we 

decide to further increase the thickness of each absorber layer of A3 sample by 20 nm 

which is designated as A3++. The absorptance value increases further to 0.96 and 0.93 on 

glass and SS respectively. However, the %R at 2500 nm decreases drastically to 28 % and 

26 % for glass and SS respectively (table 4). 
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Figure 7: Reflectance spectra of (a) A3Ni+ and (b) A3+Ni+ multilayer films. 

 

These results show that A3+ is the best sample with absorptance more than 0.90 and 

high %R at 2500 nm. To study the effect of Ni, we increased the thickness of Ni from 100 

nm to 200 nm and then deposit A3 and A3+ samples with AlN AR-coating on top. These 

samples are designated as A3Ni+ and A3+Ni+, and %R reflection graph as function of 
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wavelength is shown in Fig. 7a and 7b respectively. The absorptance value increases for 

both A3Ni+ and A3+Ni+ samples to 0.96 and 0.97 for glass and 0.935 and 0.93 for SS 

respectively (table 4). While % R at 2500 nm was decreased to value of 34 and 28 % for 

glass and 31 and 26 % for SS, respectively. This shows that increase in Ni thickness causes 

increment in absorptance value but imposes negative effect on % R at 2500 nm and that on 

emittance. Between all samples with different configuration we found that A3+ showed 

very good optical properties with optimized thickness.   

 

AlN Samples Absorptance  % Reflection at 2500 nm 

 Glass SS Glass SS 

A3 0.93 0.86 46 % 43 % 

A4 0.92 0.875 44 % 22 % 

A4+ 0.92 0.90 33 % 16 % 

A3- 0.91 0.86 41 % 43 % 

A3+ 0.935 0.90 55 % 43 % 

A3++ 0.96 0.93 28 % 26 % 

A3Ni+ 0.96 0.935 34 % 31 % 

A3+Ni+ 0.97 0.93 28 % 26 % 

 

Table 4: Absorptance and % R value at 2500 nm for all the multilayer films 

 

 This absorber layer will be coated on receiver used in stirling engine where 

operating temperature is around 700 oC. So we heat treated A3+ and A3+Ni+ samples at 

700 oC with holding time of 2 hrs in air or vacuum condition. Only films deposited on SS 

were used for annealing purpose. % R was measured for these heat treated samples and 

summarized in table 5 with calculated value of absorptance. The results shows that 

absorptance and %R (at 2500 nm) does not varies much after heat treatment thus showing 

the thermal stability of the films.  
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AlN Samples Annealing 

condition 

Absorptance % Reflection at 

2500 nm 

 

 

A3Ni+ 

In air 0.89 43 % 

Low vacuum  

(0.1 mbar) 

0.885 39 % 

High vacuum 

(1 x 10-5 mbar) 

0.90 42 % 

 

 

A3+Ni+ 

In air 0.94 42 % 

Low vacuum  

(0.1 mbar) 

0.91 34 % 

High vacuum 

(1 x 10-5 mbar) 

0.93 41 % 

Table 5: Absorptance and % R value heat treated A3Ni+ and A3+Ni+ multilayer films at 

700oC for 2 hrs in different conditions.  

 

4.4 Conclusion: 

 

      Multilayer cermet films as a solar absorber for high temperature applications were 

developed by RF-magnetron sputtering. The Cermet material in the form of Ni/AlxN(1-

x)/AlN metal dielectric composite was deposited on SS and glass substrates with optimized 

thickness to acquire better optical properties as a solar absorber. The 3 and 4 layers of 

AlxN(1-x)  with metal gradation were  synthesized with varying thickness and found that 3 

layer exhibit highest solar absorptance (more than 0.90) and lowest thermal emittance (%R 

at 2500 nm). Increasing reflecting Ni layer thickness causes the increment in solar 

absorptance value but thermal emittance decreases drastically. Heat treatment of multilayer 

samples at 700 oC for 2 hrs in air and vacuum did not cause major variation in solar 

absorbance thus showing the thermal stability of the cermet films.  
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Summary: 
 

Energy is at the heart of most critical economic, environmental and developmental 

issues facing the world today. Clean, efficient, affordable and reliable energy services are 

indispensable for global prosperity. This thesis illustrates the key role of renewable energy 

in a long-term transition towards a clean and sustainable energy future. In presented work 

we study the essential problems encountered during the hydrogen production from water 

splitting using TiO2 Photocatalyst such as low visible light absorption and recombination of 

photo-generated charges (electron and holes). 

 
1) Hydrogen will likely become the primary energy carrier in the future. However, 

production of hydrogen for fuel-cells will require catalyst. Thus catalyst in the form of 

thin film is developed to obtain a pure H2 from water splitting using solar energy. Using 

physical method such as RF sputtering and chemical method like sol gel (spin coating) 

we have successfully synthesized TiO2 thin film, which is most preferred material to be 

used as photoanode in H2 production by photoelectrochemical water splitting. It also 

has advantage over bulk powder. The depositions of TiO2 thin film were performed on 

electrical conducting ITO whose electrical properties play vital role to reduce the 

photon energy loss. The photo-anodes have been characterized by several techniques to 

infer on their optical, structural and compositional properties. The H2 generation rate 

was measured to be 12.5± 0.1 and 4.3 ± 0.1 µmole/h for the sputter and sol–gel 

deposited TiO2 films, respectively. The observed differences in hydrogen production 

have been attributed to the peculiarities in absorption properties of the two TiO2 films 

that in the case of sputter-deposited films are more prone to absorb radiation also 

because of the produced defects during the deposition process. 

1A)The hydrogen production obtained by TiO2 based photoelectrochemical cell is low due 

to the relatively large band gap Eg of TiO2 and consequently its poor absorption of 

visible light. It was found that doping with metal ions may extend the photo-response of 

TiO2 into the visible spectrum by introducing additional energy levels in the band gap 

of TiO2. This large band gap of TiO2 has been reduced by doping TiO2 by transition 

metals such as Cr and Fe by RF sputtering and sol gel. UV–Visible spectra show that 

the sputter-metal-doped-TiO2 films are much more efficient than the chemically 
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prepared samples to induce red shift of the absorption edge for absorbing visible light. 

In addition, we proved that dopant atoms must be located, at low concentration, near 

the ITO–TiO2 interface to avoid the formation of recombination centres for photo-

generated electron–hole pairs. H2 production rate is higher with Fe-doped TiO2 (15.5 

µmol/h) than with Cr-doped TiO2 (5.3 µmol/h) because Fe ions trap both electrons and 

holes thus avoiding recombination. On the other hand, Cr can only trap one type of 

charge carrier. 

1B) TiO2 doped with Cr ions (9 at.%) shows an increase in the optical absorption efficiency 

and photons with energy as low as 2.1 eV are absorbed as compared to the lower limit 

of 3.2 eV for undoped TiO2. However, in photo-electrochemical cell, negligible 

photocurrent is measured with ITO/Cr-doped-TiO2 (9 at.%) single bilayer, a problem 

that we attribute to the increased recombination rate of the photo-generated charges. It 

becomes essential to solve the recombination problem of photo-generated charges for 

metal doped TiO2.This was achieved by depositing ITO/ doped TiO2 multilayer films 

with different numbers of ITO/Cr-doped-TiO2 (9 at. %) bilayers (namely, 3-, 4-, 5-, 6- 

and 7-bilayers) by keeping the total thickness of TiO2 constant. The reduced thickness 

of the Cr-doped TiO2 film, deposited on ITO, significantly contributes to reduce the 

charge recombination rates. This is because the generated photoelectrons, travelling 

into TiO2 film of limited thickness, rapidly enter the space charge interface of the 

ITO/TiO2 films from where they are instantaneously injected into the ITO layer and 

then removed towards the cathode of the photo-electrochemical cell: here H+ reduction 

occurs. When the multilayer film is exposed to visible light, we observe that the 

photocurrent increases as function of the number of bilayers. The maximum value of 

the photocurrent is obtained with 6-bilayers of ITO/Cr-doped-TiO2. The enhanced 

photocurrent is attributed to both higher absorption of visible light by Cr-doped-TiO2 

and to the number of space charge ITO/TiO2 interfaces in multilayer films. With six 

bilayers, the H2 production rate obtained through water-splitting is about 24.4 µmol/h, a 

value about two times higher than that of pure TiO2 (12.5 µmol/h).  

To further check the multilayer concept we doped TiO2 with efficient vanadium 

ions in order to absorb visible light by forming impurity level within the band gap. The 

results of Vanadium doped TiO2 has been repeated similarly as Cr-doped TiO2 

multilayer stacks. The hydrogen production rate of 31.2 µmol/h was measured for 6-
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bilayers based V6-doped TiO2 multilayer film and is about 2.5 times higher than that 

measured with pure TiO2 film. 

Thus in the present work we showed that multilayer structure for metal doped TiO2 

is not only capable of absorbing visible light but also with reduced recombination 

processes.  

2) Solar water heating (SWH) systems are mature renewable energy technology which 

has been accepted in most countries for many years. Heat exchanger for water heating 

using solar concentrated radiation was designed, built and tested. Black textured copper 

oxide as an absorber layer was successfully synthesized on copper substrate by 

chemical conversion method. This copper oxide absorber layer showed total absorbance 

(99.8 % to 99 %) of solar radiation at different angle of incidence. The high absorbance 

property acquired by oxide layer is mainly attributed to its black color and surface 

textured effect obtained by adopted chemical treatment. This layer also showed long 

term thermal stability in the hot water surrounding with no significance change in solar 

absorption. The multilayer AR coating was developed for quartz window to have 

complete transmittance of incident concentrated solar radiation. By depositing 4 layers 

AR coating in form of MgF2/Al2O3/ZrO2/MgF2 on both side of quartz window showed 

significant reduction in reflectance from 7.4 % (for bare quartz) to 0.82 % (for 

multilayer coating) for the broad-band visible light range. The combination of good 

solar absorber (CuO) and AR coating (multilayer film) leads to excellent efficiency of 

designed water heating system which is far better than commercially available flat plate 

or vacuum tube collector. 

3) The spectral selective solar absorber in the form of multilayer cermet film was      

developed for high temperature application (700-800°C) using RF sputtering. The 

Cermet material in the form of Ni/AlxN(1-x)/AlN metal dielectric composite was 

deposited on SS and glass substrates with optimized thickness to acquire better optical 

properties as a solar absorber. The 3 and 4 layers of AlxN(1-x)  with metal gradation were  

synthesized with varying thickness and found that 3 layer exhibit highest solar 

absorptance (more than 0.90) and lowest thermal emittance (%R at 2500 nm). 

Increasing reflecting Ni layer thickness causes the increment in solar absorptance value 

but thermal emittance decreases drastically. Heat treatment of multilayer samples at 
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700 oC for 2 hrs in air and vacuum did not cause major variation in solar absorbance 

thus showing the thermal stability of the cermet films.  
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APPENDIX: 
 
 

Synthesis methods for TiO2 thin film 
 

 

 

 

TiO2 can be prepared in the form of powder, crystals, or thin films. Both powders 

and films can be built up from crystallites ranging from a few nanometres to several 

micrometers. Thin films have advantage over powder in terms of the surface area which is 

the most important property required by catalyst. The surface morphology of the thin film 

can be varied with an ease by using different deposition conditions and by decreasing the 

thickness of thin film, the high surface to volume ratio can be obtained which in turn 

enhances the properties of the material. One more advantage of thin film prevail over 

powder is reusability of the films. Following paragraph explains the experimental 

techniques used in our lab for synthesis of TiO2 films. 
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I) RF Sputtering: 

                                                                                                                                                           

 

 

RF sputtering 

Sputter deposition is a physical vapor deposition process for depositing thin films, 

sputtering means ejecting material from a target and depositing it on a substrate such as a 

silicon wafer. The target is the source material. Substrates are placed in a vacuum chamber 

and are pumped down to a prescribed process pressure. Sputtering starts when a negative 

charge is applied to the target material causing a plasma or glow discharge. Positive 

charged gas ions generated in the plasma region are attracted to the negatively biased target 

plate at a very high speed. This collision creates a momentum transfer and ejects atomic 

size particles form the target. These particles are deposited as a thin film into the surface of 

the substrates.  

Sputtering is extensively used in the semiconductor industry to deposit thin films of 

various materials in integrated circuits processing. Thin anti reflection coatings on glass, 

which are useful for optical applications are also deposited by sputtering. Because of the 

low substrate temperatures used, sputtering is an ideal method to deposit contact metals for 
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thin- film transistors. This technique is also used to fabricate thin film sensors, photovoltaic 

thin films (solar cells), metal cantilevers and interconnects etc. 

Sputtering can be done either in DC or RF modes. DC sputtering is done with 

conducting materials. If the target is a non conducting material the positive charge will 

build up on the material and it will stop sputtering. RF sputtering can be done for both 

conducting and non conducting materials. Here, magnets are used to increase the 

percentage of electrons that take part in ionization of events and thereby increase the 

probability of electrons striking the Argon atoms, increase the length of the electron path, 

and hence increase the ionization efficiency significantly. 

 

Operation procedure for RF sputtering system 

 

Block Diagram for evacuation system 

 
A. Sample loading procedure: 

 
1. Fix the target material on cathode and the thickness of target material should not 

exceed over 5mm.  

2. Mount the substrate on the substrate holding plate; which can be found on the   

sputtering system itself.  

   Turbo        
   Pump 



208 

   (The area of uniform deposition, to a great extent depends on the distance of target and the 

holder; though it depends on the gas pressure, sputtering power and the target material also). 

 

 

 
3. Fix the substrate holding plate onto the substrate holder inside the chamber.  

 4. CLOSE the vacuum chamber.  

 

Cathode 2 
Target holder 

Cathode 1 
Target holder 
holder 

Cathode 3 
Target holder 
holder 

Substrate 
holder 

Si 
substrate 

Si 
substrate 
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i. Starting up of system/ Turbomolecular Pump (TP): 

1. Switch On the chiller, open water inlet valve and check for water circulation.  
 
      2. Before starting up of TP, the status of each valves have to be confirmed as  follows;  

       Main valve………………………………CLOSE  

          Roughing valve …………………………CLOSE  

          Foreline (backing) valve……………..….CLOSE  

          Chamber vent valve…………………..…CLOSE 

 
3. Turn ON the main power switch and rotary pump (RP) switch.  
 
4. After RP working noise becomes small, OPEN backing valve and turn ON TP    
     switch.  
 

 
 
5. After approx.20 min DP will start by itself.  
 
C. Creation of vacuum: 
 
1. OPEN roughing valve and wait till the pressure on Pirani gauge shows 0.05mbar   

(approx 15min).  
 

Turbo 
Pump 
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2. CLOSE roughing valve and OPEN backing valve.  
 
3. Pour liquid nitrogen through LN2 trap.  
 
4. Open main valve.  
 

Turbo 
Pump 
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5. Switch ON the Pirani gauge and wait till chamber pressure reaches 2X10-5 mbar  
 
D. Setting of deposition pressure:  
 
1. Once the vacuum reaches to 2X10-5 milli bar; introduce Argon gas (Ar) to the   chamber 

by opening the argon inlet valve gradually. Please be careful not to exceed the pressure 

over 2X10-2 mbar to protect TP performance.  

2. Close the main valve gradually so as to approach the deposition pressure.  

3. Confirm if the pressure is stable.  

Note: The deposition rate for any given material depends on the deposition pressure. Hence 

for reproducible results use same values. 

4. Flush argon for 5 min; ie leave it in the set deposition pressure condition (this is done to 

flush out the air molecules if any are left after evacuation)  

 

E. Sputtering:  

 
1. Before starting to sputter make sure that the right cathode is selected (as the system has    

     3 targets), using the cathode selection switch. Same applies to the cathode shutter.  

Turbo 
Pump 
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2. After glow discharge occurs, set matching again as RF controller incident power meter 

to maximum and reflected power to minimum.  

3. Carry out the Pre sputtering on the condition slide shutter is CLOSED to clean the 

substrate surface, remove oxide layer and discharge conditioning. The Pre sputtering 

time depends on the sort of material to be deposited and aimed film property.  

4. OPEN the slide shutter to perform main sputtering after Pre sputtering.  

5. Once finished close the slide shutter.  

6. If there are more than 1 sample to be sputtered then move the samples using  substrate 

motion control panel.  

7. Repeat the same process for other samples.  

8. For multi-material sputtering; after finishing one material decrease the voltage;    

    change the cathode selector and cathode shutter. Repeat the same process again.  

 

Sputtering can be done in either DC or RF modes  
 
DC sputtering:  
 
x DC sputtering is done with conducting materials.  
 
x If target is non-conducting material, the positive charge will built up on target material     
    and stops sputtering  
 
RF sputtering:  
 
x Both conducting and non-conducting materials can be sputtered.  
 
x Higher sputter rate at lower pressure.  
 

Advantages of vacuum deposition:  
 
x Reducing the particle density so that the mean free path for collision is long.  
 
x Reducing the contaminants  
 
x Low pressure plasma environment  
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ADVANTAGES OF MAGNETRON SPUTTERING  
 
x Here magnets are used to increase the percentage of electrons that take part in ionization 

events, increase probability of electrons striking Argon, increase electron path length, 

so the ionization efficiency is increased significantly.  

 
E Other reasons to use magnets:  

– Lower voltage needed to strike plasma.  

– Controls uniformity.  

– Reduce wafer heating from electron bombardment.  

– Increased deposition rate  

 

Operating parameters:  
 
• Argon pressure  

• Sputter voltage  

• Substrate temperature  

• Substrate to target distance  

• Deposition time  

 

Comparison of Thermal Evaporation and Sputtering: 
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 II) Sol gel method: 

 

In sol gel method, TiO2 thin film deposited by spin coating technique. Spin coating 

is a procedure used to apply uniform thin films to flat substrates. This technique utilizes 

centrifugal forces created by a spinning substrate to spread a coating solution evenly over a 

surface. This coating technique is quick and efficient. It can be used on a laboratory scale 

as well as in a production setting. Some technologies that depend heavily on high quality 

spin coated layers are: 

• Photo-resist for defining patterns in microcircuit fabrication. 

• Dielectric/insulating layers for microcircuit fabrication – polymers, SOG, etc. 

• Magnetic disk coatings - magnetic particle suspensions, head lubricants, etc. 

• Flat screen display coatings. - Antireflection coatings, conductive oxide, etc. 

• Compact Disks – DVD, CD ROM, etc. 

• Television tube phosphor and antireflection coatings. 

 

Basic Process: There are four distinct stages involved in the spin coating process  

 

1. Dispense Stage: The deposition process involves dispense of an excessive amount of 

fluid onto a stationary or slowly spinning substrate. The fluid is deposited through a nozzle 

at the centre of the substrate or over some programmed path. An excessive amount of fluid 

is used to prevent coating discontinuities caused by the fluid front drying prior to it 

reaching the wafer edge. For many solutions it is often beneficial to dispense through a sub 

micron sized filter to eliminate particles that could lead to flaws. 

 

2. Spin up Stage: In the spin up stage, the substrate is accelerated to the final spin speed. As 

rotational forces are transferred upward through the fluid which forms a wave front and 

flows to the substrate edge by centrifugal force, leaving a fairly uniform layer behind. 

 

3. Spin off Stage: The spin off stage is the spin coating stage where the excess solvent is 

flung off the substrate surface as it rotates at speeds between 2000 and 8000 RPMs. The 
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fluid is being thinned primarily by centrifugal forces until enough solvent has been 

removed to increase viscosity to a level where flow ceases. The spin off stage takes place 

for approximately 10 seconds after spin up. 

 

4. Evaporation Stage: Evaporation is the complex process by which a portion of the excess 

solvent is absorbed into the atmosphere. If significant evaporation occurs prematurely, a 

solid skin forms on the fluid surface which impedes the evaporation of solvent trapped 

under this skin and, when subjected to the centrifugal forces of the spinning substrate 

causes coating defects. 

 

Stage 3 (flow controlled) and Stage 4 (evaporation controlled) are the two stages 

that have the most impact on final coating thickness. Figure 8 represents different stages in 

spin coating. 

 

 

Figure 8: Four different stages involved during spin coating. 
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Deposition parameters: The process parameters that control this coating procedure are 

dispensing amount and location, spin speed, spin time and acceleration/deceleration rate. A 

minimum amount of coating solution must be applied to fully cover the substrate. To do 

this, an excess of coating solution is required. As the sample spins at higher spin speed, 

rotational acceleration and the force on the liquid increases. Correspondingly, the amount 

of liquid forced from the sample is also increased, leaving a lower coating coverage or 

thickness. Similarly, if the sample is spun for longer time more coating solution is removed 

over the substrate. So this means that by controlling the spin speed and time the final 

thickness of the film is varied. The effect of spin time on coating coverage is large for short 

time periods, but as the time increases a point of diminishing returns will occur, and the 

influence is minimal. In addition to centrifugal forces that are used to spread the liquid over 

the surface, there is also force due to acceleration from low to high spin speed. This 

acceleration will influence the final coating coverage. 

 

  In addition to spin coating parameter the solution properties must also be 

considered when designing a spin-coating profile. The viscosity of the solution must be low 

enough to cover the substrate surface during spinning. As in any coating application, the 

surface tension of the coating must be appropriately matched with the substrate that is 

being coated upon. If a surface tension mismatch, the coating will not completely wet out 

and thus leaving behind defects in the coating. 

 

Experimental set-up: Spin coating system is basically consists of vacuum chuck attached 

to the vacuum pump to hold the substrate during rotation. Schematic diagram of basic spin 

coater is shown in figure 9 (a). Motor is used to rotate the vacuum chuck at different speed 

controlled by a digital control unit. The body of our spin coater (SPS spin150) is made of 

Natural Polypropilene (NPP) (figure 9 (b)). Maximum speed of 6000 rpm with maximum 

acceleration of about 3000 rpm per second is attainable by our system with accuracy of 1 

rpm/second. This spin coater can be programmed upto 20 programs with 99 steps per 

program. 
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Figure 9: (a) Principle schematic diagram of spin coater. (b) Our SPS spin 150 spin  
                 coater. 
 
Advantages: 

 

1. Film thicknesses are easily changed by changing the spin speed, or switching to a     

     different viscosity solution. 

2. Another advantage of spin coating is the ability of the film to get progressively more  

    uniform as it thins, and if the film ever becomes completely uniform during the coating  

     process, it will remain so for the duration of the process. 

3. Easy to handle, compact and low cost. 

 

Disadvantages: 

 

1. As substrate sizes get larger, the throughput of the spin coating process decreases.    

     Large substrates cannot be spun at a sufficiently high rate in order to allow    

    the film to thin and dry in a timely manner resulting in decreased throughput. 

2. The biggest disadvantage of spin coating is its lack of material efficiency. Typical spin  

     coating processes utilize only 2-5 % of the material dispensed onto the substrate,  

      while the remaining 95-98 % is flung off into the coating bowl and disposed. This  

     increases the prices of the raw materials as well as increases disposal costs. 
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