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SUMMARY 

The masonry still one of the widespread construction system for low-rise residential 

buildings even for countries prone to seismic risk. Seismic design methods yet in 

use are based on idea that controlling forces is better way to control earthquake 

induced damages. In recent decades, however, was highlighted as the differences 

in strength between two levels of damage is low, and therefore as the damage is 

better correlated to the displacement. Also, in recent years, has arose a widespread 

expectation for being able to control the damage based on the probability of 

occurrence of an earthquake or being able to base the design on different 

performance levels ("performance-based design").  

In this context, the design of masonry buildings needs to develop these design 

methods. The results of experimental tests performed at the University of Padua in 

the recent years on different masonry systems both reinforced and unreinforced 

with different horizontal and vertical joints typologies, which were aimed to 

characterization under combined in-plane vertical and horizontal cyclic loading, 

were used to make different strategies of finite element modeling that reproduce 

and extend the experimental results using parametric analyses. These analyses 

allow a comparison and a validation of an analytical model which was then 

developed. This model is able to reproduce the envelope curves of the cyclic shear-

compression tests and it is able to interpret the performances of panels linking them 

with limit states resulting from integration of cross-section equilibrium equations. 

Finally, it was applied a model able to reproduce the hysteretic behavior of masonry 

and were carried out dynamic analyses using the input data derived from the 

envelope curves. The data thus collected can be used as database and as input for 

displacement-based design methods. 
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SOMMARIO  

La muratura rimane uno dei sistemi costruttivi più diffusi per edifici di modesta 

elevazione anche nei paesi inclini al rischio sismico. I metodi di progettazione anti-

sismica finora in uso, sono basati sul concetto che il controllo delle forze agenti su 

una struttura sia il miglior approccio per controllare il danno indotto da un terremoto. 

Nei decenni scorsi è stato tuttavia evidenziato come la differenza in termini di forze 

fra due livelli di danno sia minima e come dunque il danno sia meglio correlato allo 

spostamento. Inoltre, negli ultimi anni, si è venuta a creare una diffusa aspettativa 

di poter riuscire a controllare il danno in funzione della probabilità di accadimento di 

un terremoto; ovvero riuscire a basare la progettazione su diversi livelli prestazionali 

(“performance-based design”).  

In questo contesto la progettazione di edifici in muratura, necessita uno sviluppo di 

tali sistemi di progettazione. Usando i risultati di test sperimentali eseguiti 

all‟Università di Padova che miravano alla caratterizzazione sotto combinazioni di 

carichi verticali e orizzontali ciclici agenti nel piano, su diversi sistemi di muratura 

sia non armata che semplice con diverse tipologie di giunto orizzontale e verticale, 

si sono messe a punto diverse strategie di modellazione agli elementi finiti che 

riproducono ed estendono i risultati sperimentali mediante analisi parametriche. 

Queste analisi permettono un confronto e la validazione di un modello analitico che 

è stato successivamente messo a punto il quale è in grado di riprodurre le curve di 

inviluppo delle prove a taglio-compressione e capace di interpretare le performance 

dei pannelli relazionandole direttamente a stati limite derivanti dall‟analisi della 

sezione. Infine si è applicato un modello in grado di riprodurre il comportamento 

isteretico della muratura e si sono svolte analisi dinamiche utilizzando in input le 

informazioni derivate dalle curve di inviluppo trovate. I dati così ricavati possono 

essere utilizzati come database e come indicazione per una progettazione rivolta 

agli spostamenti. 
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1. INTRODUCTION 

1.1. Background 

The construction of new masonry buildings is far from being marginal in many 

countries of the world, including Europe, even in countries prone to seismic risk, 

since it is still a competitive choice for low rise residential buildings from many 

points of view, not necessarily all related to seismic performance, but connected to 

the improvement of the properties of insulation of buildings and the need of making 

the construction process easier and faster.  

Anyhow, many collapses and deaths in recent and past earthquakes are due to 

unsatisfactory performance of unreinforced masonry (URM) buildings. However, it 

must be recognized that usually they were non-engineered, low-quality old 

constructions. This can partially explains why there is a rather negative attitude 

towards the use of structural masonry for new buildings in seismic areas and very 

seldom structural masonry is considered as a choice for the design of new 

structures in seismic areas (Magenes, 2010).  

In first instance, it is essential to recognize that the majority of the collapses of URM 

masonry buildings in recent earthquakes involves buildings which do not comply 

with most of the requirements that new masonry building should satisfy according to 

the current seismic codes (Decanini et al., 2004). On the other hand, a huge 

amount of buildings, executed with modern masonry construction systems and 

designed according to the old codes, cannot be verified with the new seismic codes, 

even when they proved to sustaining earthquake actions, as it comes from the on-

site experience of the author (L‟Aquila, Italy, April 2009) and from the review of 

post-earthquake damage surveys reported in literature (Latina, 1999). 

The behavior of an accurate design and construction of low rise structurally 

designed and engineered URM buildings should be possible also for a design PGA 

up to 0.3 g (Magenes, 2006). For higher seismic hazards, the solutions of confined 

or reinforced masonry are available, whose competitiveness and effectiveness in 

seismic areas is however not fully recognized in some countries.  

There is, hence, the need to find a compromise between the achievement of an 

acceptable level of structural safety and the employment of new technologies for 

load bearing masonry systems, developed from traditional construction systems, 

which involves cultural and economic considerations. 
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The development of new systems for constructing unreinforced masonry walls has 

been driven by the market towards systems that have better thermal insulation 

properties and allow faster and cheaper construction processes (Hendry, 2001). 

Because of these developments, the latest construction technologies have replaced 

traditional head joints, fully filled with mortar, with preformed pockets for mortar 

infills at the lateral face or mortarless head joints with mechanical interlocking 

between units. Traditional bed joints have also been replaced by thin-layer mortar 

joints, which are laid on edge-ground units. These systems have been developed in 

countries not prone to seismic risk, but have rapidly spread throughout Europe and 

also beyond (Tomaževič et al., 2006). However, in the concurrent development of 

Italian seismic design code (DM 14/01/2008, 2008), the use of contemporary 

masonry systems, different from those characterized by traditional head and bed 

joints, is not yet regulated, when it is allowed by European seismic code (EN 1998-

1: 2004. Eurocode 8, 2004). Therefore, the National and European seismic codes 

allow the use of reinforced masonry, but despite the seismic capabilities of these 

construction systems, they find very seldom diffusion in the market. 

In last few years, the possibility to being able to control the damage based on the 

probability of occurrence of an earthquake, or to base the design on different 

performance levels, has arose. Limit states design approach, which has been 

introduced into codes of practice and is currently being adopted by the European 

and National Codes (DM 14/01/2008, 2008; EN 1996-1: 2005. Eurocode 6, 2005; 

EN 1998-1: 2004. Eurocode 8, 2004); requires the knowledge, not only of the lateral 

load bearing capacity, but also of the failure modes and deformability properties of 

masonry walls as a necessary needs for the study of the seismic response of entire 

masonry structures. As on example, non-linear static methods of analysis that have 

been developed rely on the knowledge of such characteristics. 

Modern codes in seismic design or assessment of buildings, including EC8 and the 

Italian NTC, consider four main methods of structural analysis: linear static (or 

simplified modal), linear dynamic (typically multimodal with response spectrum), 

nonlinear static (also named “pushover”), nonlinear dynamic.  

Structural analyses of masonry were mainly aimed to the in-plane behavior, since 

the basic principles of conceptual design of low-rise structures for earthquake 

resistance are based on the box-type of behavior. For global analysis of the 

structural system linear methods and nonlinear static methods are the ones that can 

be used in common practice. With the comparison between linear and nonlinear 

analysis results can be appreciate the limits of elastic analysis when applied to ULS 

seismic assessment and the reason why masonry structures were the firsts for 

which at a code level a simplified nonlinear approach was necessary in real 

applications. Among others, (Magenes et al., 2006) provides examples of such 



1. Introduction 

29 

comparisons under static lateral load. In the nonlinear FEM models the calculated 

shears in walls show dramatic differences when compared to linear elastic FEM.  

At ultimate conditions, the moderate nonlinear behavior (“ductility”) of the wall piers 

tends to a situation where forces not according to initial elastic stiffness. 

As a consequence, both EC8 and NTC in the case of linear elastic approaches use 

q-factor to reduce the elastic design spectrum ordinates and consider also the 

introduction of the Over Strength factor (OSR), which recognize also for masonry 

structures the ability to sustain higher base seismic shear than elastic analysis can 

predict. However, as pointed out by (Morandi & Magenes, 2008) there are 

conceptual difficulties in defining a rational approach for the evaluation of a single 

conservative value of the q-factor (i.e. of the OSR) for a specific masonry.  

More consistent results could be achieved only favoring nonlinear procedures, even 

though simplified, or the combined use of linear and nonlinear methods. In this 

perspective, displacement based design methods could allow a more rational 

solution of the problem (Magenes, 2010). 

In many cases, a static nonlinear analysis can provide a more realistic simulation of 

the building response, besides avoiding the uncertainties related to the definition of 

the q-factor. Despite the explicit possibility given by EC 8 to use nonlinear static 

procedures only little guidance on some important design parameters, is given to 

the designer in EN 1998-1. No reference is given regarding the deformation/drift 

limits that should be used in the analysis, neither other modeling criteria.  

Such information is given however in Annex C of (EN 1998-3: 2005. Eurocode 8, 

2005) for existing buildings and the Italian code NTC 2008 provides drift limits for in-

plane response which are consistent with EN 1998-3. However, Annex C of EN 

1998-3 does not provide suggestions for confined or reinforced masonry, whereas 

NTC 2008 suggests increasing the limits of unreinforced masonry by 50% in the 

case of reinforced masonry. Some of these limits should be suitably revised on the 

basis of the more recent available experimental information and future advances. 

Some of these new finding and perspectives could be read in (Costa et al., 2008; da 

Porto, 2005; DISWall, 2008; ESECMaSE, 2008; Tomaževič & Weiss, 2010) for the 

experimental data and (Ahmad et al., 2010) as regard displacement-based 

approach. 

Experimental work may allow the development of knowledge on seismic behavior of 

masonry structures built with different materials or construction systems. However, 

this investigation method is very costly and, in practice, it can be applied to a limited 

number of configurations. Another way, for understanding the behavior of masonry 

systems, is the development of analytical and numerical analysis methods. A wider 

range of configurations can be simulated using these approaches, but they must be 

calibrated on the basis of experimental data to be considered as reliable. 
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Static non-linear analysis methods for masonry buildings have improved in the last 

decade, but it is felt that reference values for some basic design parameters should 

be provided by the norms, in order to make the methods applicable in practice by 

the designers with more consistent results. Updated information allow adopting both 

force-based design approaches and more rational displacement-based design 

approaches for masonry buildings is progressively becoming available and could be 

transferred into design codes, including Eurocode 8. 

In this field, the research described in the present thesis, is aimed to 

characterization of displacement capacity to overcome some of those code 

limitations and to contributing to available data for the development of 

displacement-based design approaches for both reinforced and unreinforced 

masonry. Moreover a part of present work has been included in the (DISWall, 2008) 

research project (coordinated by University of Padova) and is included in a more 

general research activity on masonry structures that is being carried out at the 

University of Padova since the end of the Seventies. This activity includes studies 

on various typologies of modern masonry, both reinforced and unreinforced, 

investigations on the mechanical behavior and on the strengthening techniques for 

historic brick and stone masonry walls, studies on special investigation techniques 

for the diagnosis of masonry structures, research on the seismic behavior and 

modeling of masonry buildings, which has created a large background on which the 

work carried out relies. 

1.2. Aim and Methods 

The main aim of the present research is that of contributing to the knowledge of the 

behavior under in-plane cyclic loading, i.e. as in the case of seismic actions, of 

various masonry systems. In particular, the behavior under in-plane vertical and 

horizontal cyclic load was investigated on different masonry systems focusing on 

displacement performances.  

To this aim, an extensive modeling program was carried out based on experimental 

tests performed at the University of Padova in the recent years on different masonry 

systems. These systems includes unreinforced masonry walls made with different 

types of joints (head joints made with mortar pockets, dry head joints with 

mechanical interlocking, thin-layer mortar bed joints) and new type of reinforced 

masonry walls, characterized by the use of both horizontal and vertical perforated 

units and the use of bars or prefabricated trusses for horizontal reinforcements. 



1. Introduction 

31 

Experimental results were reproduced by different Finite Element Models 

approaches and by analytical model develop by author.  

It was extend the experimental results using parametric analyses of both FEM and 

analytical models. These analyses relates to principal geometrical and mechanical 

parameters which mainly influence the behavior of masonry walls. 

The new analytical model is a formulation of a fiber element and is cast in the 

general framework of the mixed method. It includes effects of shear deformation, 

diagonal shear failure mechanism and it is able to follow response in post-peak 

phase. The model is able to interpret the performances of panels linking them with 

limit states resulting from integration of cross-section equilibrium equations. Its 

results were collected proposing design equations directly related to performance 

levels and both geometrical and mechanical properties of URM panels.  

Also dynamic models were carried out, to define the dynamic properties and to 

evaluate the degradation process, in particular relating damping with ductility of 

masonry system. 

1.3. Thesis Organization 

The thesis is divided into 8 chapters. The problems related to the seismic behavior 

of reinforced masonry buildings are briefly presented in Chapter 2, and it gives a 

state-of-the-art about present and past research on the in-plane behavior of 

masonry and some details about the background of different analysis approaches 

used in the thesis. Chapter 3 presents the experimental program, the data and the 

results of the in-plane tests carried out on systems object of the research. The tests 

were carried out as part of other thesis, and the author took part in both test 

execution and data analysis. 

Chapter 4 present and discuss the Finite Element Models carried out using different 

approaches for reinforced and unreinforced masonry systems under investigation 

for the evaluation of the stress state inside the masonry walls and to provide an 

extension experimental results. 

Chapter 5 and Chapter 6 reports the results of models carried out with analytical 

approaches. Respectively a static model, which was developed by the author, that 

leads to give capacity curves and a dynamic hysteretic model, already available 

from literature, focused to obtain energy dissipation characteristics. 

The analysis of the results oriented to displacement-based design methods is 

presented and discussed in Chapter 7. Obviously the last Chapter reports the 

conclusions of the present research. 
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2. LITERATURE REVIEW 

2.1. Introduction 

The purpose of the present section is to give a critical overview of the recent and 

past research works about the in-plane and behavior of masonry. Due to the 

unfeasibility of treating such an extensive subject in a brief and at the same time 

comprehensive manner, many of the quoted topics are simply mentioned, and the 

reader is referred to the bibliographical references, or to the following sections of 

the thesis, where some of the issues are discussed more in detail.  

The main topics are: (1) the main issues related to the in-plane seismic behavior of 

masonry walls both regarding reinforced masonry and unreinforced masonry; (2) 

the main issues related to the in-plane modeling of masonry walls focusing on Finite 

Element modeling and other analytical approaches available in literature. 

2.2. Structural Behavior of Masonry Wall under Seismic Action 

The modern buildings are designed for earthquake resistance following the basic 

principles of box-type of behavior. This assumption implies the presence of rigid 

diaphragms, in their own plane, able to distribute the horizontal loads to the shear 

walls (Shing et al., 1990). As a consequence the main seismic resistance 

mechanism of the building is related to the in-plane behavior of the walls (shear 

walls), whereas the out-of-plane behavior represent a local mechanism. In fact, the 

walls perpendicular to the horizontal actions are supported by floors and roofs, 

which transfer also these horizontal loads to the shear walls (Fig. 2.1). The 

connections between the walls and with the floors are fundamental to guarantee the 

development of the box-type behavior (Fig. 2.2).  

The masonry shear walls, according to the type of construction and their 

configuration, solid or pierced by windows and door openings, lead to various 

seismic behavior and failure mechanism. Three main categories of shear walls are 

classified (Paulay & Priestley, 2009; Tomaževič, 1999): cantilever walls linked by 

flexible wall slabs, coupled shear walls with weak piers and coupled shear walls 

with weak spandrels (Fig. 2.3). 
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Fig. 2.1. Transferring of lateral loads (wind load) from out-of-plane walls,  

through the rigid slab to the shear walls (from Hamid 2009). 

 

 
Fig. 2.2. Response of simple masonry building to horizontal actions: building with deformable 

floors without ties (left), building with deformable floors and tied walls (middle) and building 

with rigid floors and tie-beams (right) (from Macchi and Magenes, 2002). 

 

 
  

Fig. 2.3. Cantilever walls linked by flexible wall slabs (left), coupled shear walls with weak 

piers (middle) and coupled shear walls with weak spandrels (right) (from Tomaževič, 1999). 

 

The former resistant model (Fig. 2.3 left) is characterized by floors rigid in their 

plane, but flexible in the orthogonal direction, therefore they do not transfer any 

moments between the shear walls. The shear walls are in this case cantilevers fixed 

on the bottom and free at the top of the building. The critical condition is at the base 

storey, where large bending moment is required. In terms of seismic response, the 
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cantilever walls represent a suitable structural behavior, since it is dominated by 

flexure, and so it guarantees high ductility and energy dissipation, if carefully 

detailing are provided. 

Usually the masonry buildings are made by shear walls (so called since they resist 

to the lateral shear loads with their in-plane shear capacity (Drysdale & Hamid, 

2008) pierced by window and door openings, in which the spandrels connect the 

shear walls and transfer the horizontal loads and also bending moments. In this 

case two main resistant elements are identified: the spandrels, which are the 

portion of masonry between two overlying openings, and the piers between two 

next openings. Depending on the proportion of the openings, the weakest element 

is the piers (Fig. 2.3 middle) or the spandrels (Fig. 2.3 right). In the case of the 

spandrels reach the failure, they keep transferring the horizontal loads but they 

transfer a residual part of bending moments, so the global behavior leads towards 

to the structural response of cantilever walls linked by flexible wall slabs. When the 

piers are weaker than the spandrels, which is usually the case in traditional 

unreinforced masonry construction (Tomaževič, 1999), damage will first involve the 

piers (Fig. 2.4). The piers will fail in shear or with rocking mechanism according to 

the geometry, materials and vertical loads. The last failure mechanism is the more 

sensitive one, because the piers withstand the vertical loads and the shear failure is 

characterized by low energy dissipation capacity and ductility. Improvement can be 

provided with adequately distribute horizontal reinforcement. 

 

 
Fig. 2.4. Typical shear cracks in window piers of a brick-masonry building,  

Budva, Montenegro, 1979 (from Tomaževič, 1999). 

 

In the case of RM buildings, spandrels and piers can be provided with adequate 

vertical and horizontal reinforcement qualitatively showed in Fig. 2.5, in order to 

obtain predominant flexural behavior. As a result of the capacity design, the lateral 

resistance, the energy dissipation capacity and the ductility of the structure are 
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increased. Moreover the hinging of the spandrels which couple the shear walls, 

leads to a reduction of bending moment at the base, an energy dissipation capacity 

distributed over the entire height of the shear walls, which allows restraining the 

amount of reinforcement. Therefore this mechanism is the most desirable among 

the three identified mechanisms (Tomaževič, 1999). In any case there are some 

reasons to considerate the cantilever walls system as the best, rather than coupled 

walls with spandrels hinging, since high ductility demand is concentrated in the 

coupling spandrels, and they suffer rapid strength and stiffness degradation. This 

leads to an uncoupling of the shear walls and results in an increase in bending 

moments for shear walls, which are not able to resist, if they are designed as 

coupled walls (Paulay & Priestley, 2009). 

 

  
Fig. 2.5. Reinforcement of the spandrel between two overlying openings (left) and 

reinforcement of window pier (right); 1. tie-beams, 2. reinforcement of threshold,  

3. vertical reinforcement, 4. lintel reinforcement (from Giuffrè, 1980). 

 

 
Fig. 2.6. Seismic response of masonry building, in which tie-beams, ties and  

rigid floors inhibit out-of-plane flexural failures (from Macchi and Magenes 2002). 
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In most cases load bearing masonry walls are used for residential buildings, whose 

configuration varies from the single occupancy house (Fig. 2.7), one or two-storey 

high, to the multiple-occupancy residential buildings of load-bearing masonry, which 

are commonly constituted by two or three-storey when they are built of unreinforced 

masonry, but can reach relevant height (five-storey or more) when they are built 

with reinforced masonry (Fig. 2.8). Intermediate types of buildings include two-

storey, semi-detached two-family houses (Fig. 2.9) or attached row houses (Fig. 

2.10). In these buildings, the masonry walls carry the gravity loads and they usually 

support concrete floor slabs and roofs, which are characterized by adequate in-

plane stiffness. The inter-storey height is generally low, around 3 m. 

In these structures the seismic resistance mechanism, and in general the resistance 

to horizontal actions, is provided by coupled shear walls (Fig. 2.6) discussed 

previously. Without forgetting that in certain cases, in particular for low-rise 

residential buildings such as single occupancy houses or two-family houses, the 

roof structures can be made of wooden beams and can be deformable, even in new 

buildings. In these cases, or in the upper storey of multi-storey (multiple-occupancy) 

residential buildings, wall designs can be governed by resistance to out-of-plane 

forces (Mosele, 2009). 

 

 
 

Fig. 2.7. One-family house in San Gregorio 

nelle Alpi (BL, Italy) (Mosele, 2009). 

Fig. 2.8. Residential complex in Colle Aperto 

(MN, Italy) (Mosele, 2009).  

 

  
Fig. 2.9. Two-family house in Peron di 

Sedico (BL, Italy) (Mosele, 2009). 

Fig. 2.10. Eight row houses in Alberi di 

Vigatto (PR, Italy) (Mosele, 2009). 
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2.2.1. Unreinforced Masonry 

Some systematic studies aimed at the definition of the complete failure envelope of 

masonry, were developed for the entire range of combinations of ideal biaxial stress 

states. The first investigations were experimentally carried out with the tests on 

square masonry panels tested under different combination of tension and 

compression and different orientation of loading with respect to the head and bed 

joints. They allowed defining the experimental failure criteria for brick masonry 

(Page, 1980; Page, 1981; Page, 1983; Samarasinghe & Hendry, 1980), for 

concrete block masonry (Hamid & Drysdale, 1980; Hamid & Drysdale, 1981; 

Hegermeir et al., 1978), for masonry made of perforated clay blocks (Ganz & 

Thürlimann, 1984). Fig. 2.11 left shows the failure envelope found for brick masonry 

by (Page, 1982), where the anisotropic behavior of masonry is evidenced by the 

different shapes obtained varying the loading angle and by the corresponding 

observed failure modes (Fig. 2.11 right). 

 

 
Fig. 2.11. Experimental failure criteria for brick masonry walls under biaxial compression (left) 

and failure modes (right) for brick masonry walls under different uniaxial and biaxial stress 

state (after Page, 1982). 

 

A typical case of biaxial stress state is masonry pier under combined vertical and 

horizontal load (Fig. 2.12). The homogeneous stress states found e.g. by (Page, 
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1982) interest only a part of shear walls which are rather subjected to 

heterogeneous stress states. Considering that the appearance of one failure 

mechanism depends on parameters such as the geometry of the masonry walls and 

the ratio of vertical to horizontal load (Tomaževič, 1999), that failure characterizes 

the behavior of a masonry wall in a structure, rather than the simple material 

behavior. 

First appearance of failure usually involves the center of shear wall or stretched 

corner (A and B zones in Fig. 2.12) or in the more compressed corner of pier (C 

zone in Fig. 2.12). It was experimentally verified from above mentioned researches 

that the main failure modes relevant for unreinforced masonry walls are (Fig. 2.13): 

- flexural failure; 

- shear failure (typically with diagonal cracks and combined with flexure); 

- sliding on bed joints. 

The first mechanism is characterized by the early appearance of crack in joint under 

tension stress state (A zone in Fig. 2.12), followed by a second limit state 

characterized by crushing of compressed toe of pier (C zone in Fig. 2.12). 

Shear failure, on contrary, can involve different failure mechanisms, in particular: 

failure can involve the horizontal and vertical joints causing a stepped-crack; or 

failure can involve also the blocks (or bricks) giving a diagonal cracking which pass 

throughout masonry units and joints. The third shear failure mechanism is the 

sliding along bed joints with an almost horizontal crack progress. This mechanism is 

less frequent and can be mainly imputed to poor quality of mortar and/or low vertical 

stress. In general this failure mechanism do not appear for new URM made with 

perforated clay units (da Porto, 2005; Mosele, 2009). 

Another frictional mechanism can be seen after the stepped-cracks were appeared 

with a sliding along the horizontal parts of crack. 

 

 
Fig. 2.12. Failure mechanisms of a wall portion subjected  

to vertical and horizontal actions (Andreaus, 1991). 
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Fig. 2.13. Main modes of a masonry pier (Tassios, 1988). 

 

The valuation of shear strength of plain masonry under a biaxial stress state like 

(Vm) is based on a Mohr-Coulomb formulation in the European, Italian and British 

codes and in (Tomaževič, 1999). Therefore this term implicitly take into account the 

level of axial load acting on the wall. Furthermore, (Tomaževič & Lutman, 1988) 

proposes to use, in alternative, the (Turnšek & Čačovič, 1971), i.e., to define the 

shear strength of URM wall on the basis of masonry tensile strength. 

Vm is based on the shear stress acting on the masonry cross-section, evaluated on 

the basis of the aspect ratio of the wall, for the Australian standard. ACI 530 

evaluates Vm as a function of square root of the masonry compressive strength f‟m 

and taking into account the aspect ratio M/Vl, which implicitly recalls the tensile 

strength of masonry. NZS 4230 takes into account, in the URM shear strength 

contribution, the dowel-action of vertical bars, the aspect ratio and the degradation 

of shear strength by respectively: C1, C2 and νbm, which is the basic shear stress 

provided by masonry, still given by the square root of masonry compressive 

strength (see Voon & Ingham, 2007). 

These terms are derived, as already explained, by (Shing et al., 1990) and 

(Anderson & Priestley, 1992). They both evaluated the URM contribution on the 

basis of the square root of masonry compressive strength. In particular, Shing et al 

(1990) also consider the dowel-action of vertical bars by means of (0.0217ρvfyv).  

American formulations are characterized by adopting tensile strength in the URM 

contribution, since Vm term contains √   , and in particular (Anderson & Priestley, 

1992) gives     √   , which corresponds to     √   , usually accepted as 

estimation of tensile strength of masonry (Tassios, 1988). (Tomaževič, 1999) 

proposed to evaluate the tensile strength as 0.03÷0.09 fm.  

These are consistent with data and observations provided by (Mosele, 2009). 

(Anderson & Priestley, 1992) take into account the aspect ratio with k1 factor, which 

was set not to be greater than one on the basis of experimental data, and the 

degradation of shear strength with k2 factor, due to the cyclic loading in the inelastic 

range, which is calculated on the basis of ductility, i.e. ratio of maximum 
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displacement to displacement at initial yield in the flexure (μmax = δmax/δyielding). This 

factor is taken into account implicitly into the νbm term by NZS 4230, and has been 

recently revised by Voon & Ingham (2007). Fig. 2.14 left shows the relationship 

between k2 and μmax for (Anderson & Priestley, 1992) and for (Voon & Ingham, 

2007). For the walls of the present research, k2 factor is equal to 1 for both the 

applied axial load level in the case of Anderson-Priestley proposal, and is equal to 

0.91 and 0.73, respectively for the higher and lower axial load level, following the 

Voon-Ingham relation. 

It has to be noted that both Anderson-Priestley and Voon-Ingham relations relate 

ductility based on maximum displacement δmax therefore the reduction of shear 

strength is related to that limit state, whereas (Mosele, 2009) observed that, to 

obtain the eventual shear strength reduction at maximum load limit state, ductility 

has to be calculated referring to displacement at maximum load δHmax, and 

becomes μHmax=δHmax/δyielding. Therefore the previous values of k2 factor valid for the 

maximum lateral load capacity are 1 for both the applied axial load level in the case 

of Anderson-Priestley proposal, and 1 and 0.9, respectively for the higher and lower 

axial load level, in the case of Voon-Ingham, as Fig. 2.14 right gives. 

 

 
Fig. 2.14. Ductility vs Masonry shear resisting mechanism relationships. Maximum ductility 

(left) and ductility at maximum shear strength (right) (Mosele, 2009). 

 

The American and New Zealand formulations also consider the axial load 

contribution VP with specific terms as reported in Table 2.1. For ACI 530 this 

contribution was obtained by data regression, whereas for NZS 4230 from physical 

consideration. The New Zealand code takes into account also the reduced 

deformation capacity of masonry, in post-cracking phase, with increasing axial load 

level, observed by (Matsumura, 1988; Shing et al., 1990; Sveinsson et al., 1985). 

Therefore NZS 4230 limits the axial load which contributes to shear strength, as 

follow: N*≤0.1f‟mtl, to prevent the occurrence of brittle shear failure.  
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2.2.2. Reinforced Masonry 

Loadbearing masonry buildings can be idealized as a combination of two structural 

elements: piers and spandrels, which interact to withstand the lateral loads due to 

wind or seismic forces. The trickiest condition for masonry structures subjected to 

lateral loads is that of the pier, as it supports also the gravity loads and transfers 

them to the foundation. As a consequence the study of the seismic response of 

shear walls, made with a new construction system, has to be carried out first of all 

by means characterizing the response of piers under shear-compression loads. 

This is a key issue for buildings with box-type behavior (Fig. 2.6), as low/medium-

rise residential buildings, in which the out-of-plane behavior needs to be verified just 

at local level.  

 

  
Fig. 2.15. Flexural failure mechanism: opening of the first flexural crack (left, from Macchi and 

Magenes, 2002) and activated vertical reinforcement (right, from Paulay and Priestley, 2009). 

 

The pier is loaded by a combination of axial and horizontal loads, which induce both 

flexural and shear deformations. The failure modes associated to the reinforced 

masonry shear walls are essentially two: flexural or shear failure, according with the 

flexural strength is reached rather than the shear capacity, respectively (Drysdale & 

Hamid, 2008; Giuffrè, 1980; Tomaževič, 1999). The former failure mechanism 

develops with appearing of horizontal cracks in the bed joint of the stretched side 

(Fig. 2.15 left), following which the vertical reinforcement activates (Fig. 2.15 right), 

whereas the opposite side is under compression. The flexural failure occurs due to 

yielding of vertical reinforcement, which means ductile failure, if the crushing of the 

compressed masonry is avoided. Confinement of the compressed zone increases 

the crushing strength leading to a higher ductility. 
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Fig. 2.16. Equilibrium of sectional forces at flexural failure  

of a reinforced masonry wall (from Tomaževič, 1999). 

 

Fig. 2.16 gives the strains, stresses and loads, acting to the section of a masonry 

wall reinforced with symmetrical vertical reinforcement at the ends. 

Under the usual hypothesis for flexure theory, such as plain sections remain plain 

and linear strain distribution, and assuming yielding of tension and compression 

vertical reinforcements, which allows the direct calculation of the depth of stress 

block: a, the flexural capacity of the reinforced masonry wall‟s section shows in Fig. 

2.16, can be evaluated by (Eq. 2.1): 

 (Eq. 2.1) 

Where Mu,s is the contribute of masonry and Mrv,y is the contribute of vertical 

reinforcement to the flexural capacity, ζ0 is the average compression stress due to 

the axial load N and          is the lever arm of the torque force moment of 

vertical reinforcement. 

Some codes, such as, the Italian one (DM 14/01/2008, 2008) adopts the (Eq. 2.1) 

for the evaluation of bending capacity, whereas other standards, such as the US 

code ACI 530 (2005) indicates to neglect the contribution of compressed bars. 

In the case of uniformly distribute vertical reinforcements there is a slight reduction 

in flexural strength, which is compensated by improved shear transfer and avoiding 

the bond and anchorage problems because of the limited grout space, other than 

reduced congestion of flexural reinforcement, in respect to the reinforcement 

concentrated to the wall ends (Priestley, 1986). Therefore, when it is practically 

possible, the distributed configuration of vertical reinforcement is preferred (Paulay 

& Priestley, 2009). In any case the main role of the vertical reinforcement is to avoid 
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the rocking mechanism, which is characterized by higher displacement capacity but 

with low energy dissipation capacity, whereas the vertical reinforcement induce also 

high energy dissipation in particular in the post-yielding phase. 

 

 
Fig. 2.17. Arch-beam (left) and Truss (right) mechanism of reinforced masonry wall failing in 

shear (from Wakabayashi and Nakamura, 1984). 

 

 

 

 

Fig. 2.18. Shear failure with diagonal shear crack (left), step shape crack or crack passing 

through mortar joints and units (right) (from Macchi and Magenes, 2002). 

 

The shear failure mechanism of reinforced masonry walls is governed, at beginning, 

by the arch-beam mechanism (Fig. 2.17 left) due to the presence of vertical 

reinforcement. At a certain level of horizontal load, the diagonal crack appears on 

the masonry strut (Fig. 2.18), and the horizontal reinforcement prevents the 

separation of the wall‟s cracked part and provides the load transfer between the 

edges of the cracks, which provides therefore the interlocking mechanism between 

the two surfaces of each diagonal crack (Fig. 2.19 right). At this stage the 

combination of vertical and horizontal reinforcement and masonry leads to 

developing a truss mechanism (Fig. 2.17 right), and new diagonal cracks open over 
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the entire surface of the wall. Interlocking on the diagonal cracks closed by 

horizontal reinforcement and the presence of reinforcement improve the energy 

dissipation capacity and reduce the strength degradation (which means reduced 

brittleness) of the unreinforced masonry. 

The distributed vertical reinforcement is subjected to transversal efforts resulting in 

its bending, which is known as the dowel-action mechanism (Fig. 2.19 and Fig. 

2.20). Part of the shear capacity of the wall can also be attributed to this mechanism 

by various authors, such as (Tomaževič, 1999) and (Tassios, 1988), even if it has to 

consider that this mechanism needs large deformations to be activated, which 

cannot be related to the maximum strength limit state. In the case of vertical 

reinforcement concentrated at the ends of the wall, which is the most common 

typology of RM in Italy and Europe, the dowel-action becomes very poor 

contribution, so it seems reasonable neglect it (Mosele, 2009). In any case, only 

vertical steel reinforcement is not capable of contributing to the shear resistance of 

masonry, as assessed in post-earthquake damage observations and through 

experimental indications. Walls reinforced with vertical reinforcement fail in shear, 

despite their predicted flexural behavior (Tomaževič, 1999). 

The ultimate state of reinforced masonry wall is often reached with crushing of 

masonry units at the center of the wall or at the compressed toe, due to a 

combination of bending and shear. This indicate the fully exploitation of loadbearing 

capacity of masonry (Tomaževič, 1999). 

Arch-beam and truss mechanism are the two main mechanisms governing the in-

plane response of reinforced masonry wall, exploiting the tensile properties of 

vertical and horizontal reinforcement, such as the compressive characteristics of 

masonry. The shear response results in a global behavior in between the arch-

beam and truss mechanism, this combination is made taking into account by 

compatibility and equilibrium conditions (Wakabayashi & Nakamura, 1984). This 

theoretical model was able to accurately provide the load-displacement envelop and 

the contribution of horizontal reinforcement (Tomaževič & Lutman, 1988; 

Wakabayashi & Nakamura, 1984), but, such as for other models (Shing et al., 1993; 

Tassios et al., 1984) the adopted equations are not always adequate for practical 

design, and the validity is limited to specific cases (Mosele, 2009). 
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Fig. 2.19. Mechanism of action of vertical (left) and horizontal (right) reinforcement of 

masonry wall failing in shear (from Tomaževič, 1999). 

 

 
Fig. 2.20. Dowel mechanism of vertical reinforcement at shear failure of a reinforced masonry 

wall (Tomaževič, 1999). 

 

The complexity of the mechanisms induced by the presence of the reinforcement, 

as above described, is also related to the difficult in quantifying the influence of 

each mechanism on shear capacity. Therefore researchers and standards evaluate 

the shear resistance of RM walls in a simplified way, as a sum of contributions. The 

usual procedure to write a shear strength formulation is to introduce terms related to 

the shear mechanisms and subsequent to calibrate the influence of each terms. 

Four main contributions are usually considered by formulations proposed to predict 

the nominal shear strength VR of reinforced masonry walls: Vm is the shear strength 

of unreinforced masonry, VP is the contribution of axial load, Vs is the contribution 

due to horizontal reinforcement and Vdw is the contribution due to dowel-action of 

vertical reinforcement, as shown by (Eq. 2.3). Formulations of this type are 

proposed by many standards as the (EN 1996-1: 2005. Eurocode 6, 2005), the 

Italian code (DM 14/01/2008, 2008), the New Zealand code NZS 4230 (2004), the 

US code ACI 530 (2005), the Australian Standard AS 3700 (2001) and British 
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Standard BS 5628-2 (2005), with some differences. The single terms in the 

considered formulation are reported in Table 2.1. 

                (Eq. 2.2) 

 
Table 2.1. Terms of equation for reinforced masonry shear strength (Mosele, 2009). 

 

The meaning of terms into the equations is given in (Mosele, 2009).  

In the European, Italian, British and Australian codes, and in (Tomaževič, 1999) and 

(Tomaževič & Lutman, 1988), the shear strength of masonry (Vm) is evaluated on 

the bases of phenomenological criteria, which interpret the URM failure mode. The 

contribution of horizontal reinforcement (Vs) is added considering full or partial 

yielding of horizontal bars. Furthermore, (Tomaževič, 1999) adds the contribution of 

dowel-action of vertical bars (Vdw), which is neglected by the above mentioned 

codes. 

On the contrary, the American and New Zealand code consider the contribution of 

shear strength of URM (Vm), value of axial load (VP), and reduced effect of 

horizontal reinforcement (Vs), on the basis of semi-empirical relationships obtained 
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by data-regression and physical interpretation of phenomena. They are both based 

on (Shing et al., 1990) and (Anderson & Priestley, 1992) proposals, being the NZS 

4230 formulation a further development of the American proposal derived by the 

(Voon & Ingham, 2007) work. 

In particular (Shing et al., 1990) proposed a formulation based on the fitting of their 

experimental data in order to take into account the influence of vertical bars and 

applied axial load, whereas they adopted simple physical concept to evaluate the 

shear reinforcement contribution. They also validated this equation considering the 

data obtained by (Sveinsson et al., 1985). Anderson & Priestley, starting from the 

formulation of Shing et al. and (Matsumura, 1988), proposed a new evaluation of 

the shear strength of reinforced masonry by means of regression analysis of data 

obtained by Sveinsson et al., Matsumura and Shing et al. 

The term to evaluate the shear strength of plain masonry Vm can be evaluated 

using the formulations proposed in paragraph 2.2.1. 

Tensioning of horizontal reinforcement becomes effective when the first shear crack 

appears, by preventing separation of cracked portions of the wall (as stated before). 

The contribution of the horizontal reinforcement Vs is calculated in the same way as 

stirrups in reinforced concrete members, as presented in (Eq. 2.3), which is directly 

derived by the common “truss-action”. This formula calculates the number of 

stirrups across the diagonal crack (assumed to be 45° sloped starting from the 

effective length of the resisting section), and considers that each stirrup is able to 

develop the maximum tensile capacity. 

   
 

 
        (Eq. 2.3) 

In (Mosele, 2009) and in some previous researches (Tomaževič & Lutman 1998, 

Anderson and Priestley 1992) were demonstrated that shear reinforcement is 

exploited less than its maximum capacity. In particular Tomaževič & Lutman and 

Mosele obtained this information directly by experimental measurements, whereas 

Anderson and Priestley observed this through statistical data fitting. On the basis of 

these considerations, the horizontal reinforcement contribution Vs is calculated 

multiplying the second term of (Eq. 2.3) times a reduction factor Crh . 

The horizontal reinforcement reduction factor Crh is equal to 0.6 for DM 14/01/2008, 

0.8 for AS 3700 and for NZS 4230, 0.5 for ACI 530 and for Anderson and Priestley, 

and 0.27 for (Tomaževič, 1999). 

The horizontal reinforcement reduction factor Crh is equal to 0.9 and 0.3 

respectively for Eurocode 6 and for Tomaževič & Lutman (1988), but in these cases 

it multiplies the total area of horizontal reinforcement, Asw . The British Standard 

does not consider to apply a reduction factor to horizontal reinforcement 



2. Literature Review 

49 

contribution. (Shing et al., 1990) proposed to neglect the contribution of the top and 

bottom reinforcing bars, which do not have adequate development lengths to 

guarantee tensile resistance, when a diagonal crack opens. So their formulation 

takes into account only the inner reinforcing bars, which can develop the entire 

tensile strength, and these bars are considered fully effective (no reduction factor 

Crh applies). 

(Tomaževič, 1999) applies such a large reduction to horizontal reinforcement 

strength on the basis of experimental results, but takes into account the contribution 

of vertical reinforcement, by analytical evaluation of dowel-action (Priestley & 

Bridgeman, 1974). Dowel-action contribution is considered separately only by 

Tomaževič, whereas other proposals generally do not consider it or, in the case of 

Shing et al., Anderson & Priestley and New Zealand, implicitly take it into account in 

the Vm term. In particular, Shing et al. obtains small relevance of dowel contribution, 

with respect to other contributions. 

The NZS 4230 substantially proposes the same dowel contribution of Shing et al., 

that for NZS 4230 also changes according to the already discussed k2 factor. 

Anderson & Priestley obtained, by regression analysis, that the dowel mechanism 

does not affect the shear strength, so they set that term to zero. Since the ACI 530 

is based on their formulation, also the American Standard does not consider the 

dowel action. 

This is likely related to the fact that at ultimate load, the plastic zones are 

concentrated where the dowel mechanism acts and so its contribution is largely 

reduced, in particular in the case of concentrated vertical reinforcement. 

 

  
Fig. 2.21. Sliding shear failure mechanism (left, from Macchi and Magenes, 2002) and role of 

reinforcement (right, from Paulay and Priestley, 1992). 

 

In case of low axial load and poor quality mortar, sliding shear failure occurs, 

characterized by sliding of the upper part of wall on one mortar bed joint (Fig. 2.21 

left). Sliding affects mainly squat walls, in which sliding displacement can occur at 
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the base along the flexural cracks, after significant yielding of vertical reinforcement, 

for a certain level of lateral load, transferred by means of dowel-action of vertical 

reinforcement (Fig. 2.21 left). This phase induces a reduction of both strength and 

stiffness of friction resistant mechanism (Paulay & Priestley, 2009). This failure 

mode is not frequent for RM walls since the clamping effect guaranteed by vertical 

reinforcement provide positive contribution. For RM walls made with clay units, the 

sliding failure mode is also infrequent, because the mortar is usually of high quality 

in order to guarantee the bond with bed joint reinforcement. 

The resistance to sliding shear is proposed by authors (Paulay & Priestley, 2009; 

Tomaževič, 1999), to be evaluated neglecting the contribution of wall friction, and 

considering only the dowel-action as shear transfer mode along the base, which 

can be calculated adopting the Vdw contribution in formulation proposed by 

(Tomaževič, 1999) for shear strength. 

 

2.3. In-Plane Modeling of Masonry Walls 

2.3.1. Finite Element Modeling Approaches 

Many advanced computational approaches are also available to assess seismic 

behavior in masonry. Non-linear finite element modeling has been recognized as a 

general and efficient method for analysis of the load-bearing and displacement 

capacity of masonry systems, and can accurately describe the pre-peak and post-

peak behavior of masonry under different monotonic load combinations by adopting 

inelastic constitutive material models (Gambarotta & Lagomarsino, 1997a; 

Gambarotta & Lagomarsino, 1997b; Lourenço, 1996a; Rots, 1997). Conversely, 

cyclic behavior can better be described by damage-based material models 

(Calderini & Lagomarsino, 2008; Gambarotta & Lagomarsino, 1997a; Gambarotta & 

Lagomarsino, 1997b) than by those implementing plasticity concepts (Lourenço, 

1996a; Rots, 1997). 

In general, numeric representation of masonry can be achieved by modeling 

masonry constituents separately (units and mortar joints, micro-modeling approach, 

see Fig. 2.22b,c), or by following a global approach in which the whole structure is 

schematized as a continuum without any distinction between masonry constituents 

(macro-modeling, see Fig. 2.22d). The first approach can again be subdivided into 

detailed micro-modeling (Fig. 2.22b), in which units and mortar joints are 

represented by continuum elements and contact surfaces between units and mortar 
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by interface elements, and simplified micro-modeling (Fig. 2.22c), in which 

expanded units are represented by continuum elements and non-linear behavior of 

mortar joints and contact surfaces is collapsed into interface elements. 

 

 
Fig. 2.22. Different modeling strategies for masonry structures: (a) real masonry specimen, 

(b) detailed micro-modeling, (c) simplified micro-modeling, (d) macro modeling (Lourenço, 

1996). 

 

The micro-modeling strategy for masonry has mainly focused on the development 

of reliable interface models, since the first introduced by Page (1978). Several 

constitutive laws were defined, incorporating damage and plasticity concepts 

(Gambarotta and Lagomarsino, 1997a; Rots, 1997) or plasticity theory only 

(Giambanco et al., 2001; Lotfi & Shing, 1994; Lourenço et al., 1997).  

(Lourenço, 1996a) developed an interesting interface model under multi-surface 

plasticity theory, in which not only shear and tensile but also compressive behavior 

can be taken into account through a cap model (see Fig. 2.23). This interface model 

was further developed with a refined description of the dilatancy phenomenon by 

(van Zijl, 2004).  

 

 
Fig. 2.23. Limit failure surfaces for interface model (Lourenço, 1996). 
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An accurate micro-model has to include the main local failure mechanisms for 

masonry (Fig. 2.24) as identified by (Lourenço, 1996a): 

a) tensile failure of joints; 

b) sliding along horizontal and vertical joints for low normal compression 

stress; 

c) direct tensile failure of units; 

d) diagonal cracking for medium to higher normal compression stress; 

e) vertical crack, usually identified as crushing of masonry units, due to effect 

of dilatancy of mortar joints, which cause indirect tensile failure in the units. 

 

 
Fig. 2.24. Local failure mechanisms for masonry (Lourenço, 1996a). 

 

Appropriate modeling of cracks through units is of basic importance, to avoid an 

over-stiff response and a considerable higher failure load of the numerical models 

than those experimentally determined (Chaimoon & Attard, 2007; Lourenço, 

1996a).  

Within micro-modeling, cracks through masonry units can be accommodated by 

employing two main strategies. In the case of bricks (Fig. 2.25), the insertion of a 

central potential vertical crack by means of interface elements suffices to simulate 

global behavior correctly (Lourenço, 1996a; Rots, 1997). 

The use of smeared crack models is more appropriate for blocks that may undergo 

distributed cracking (Lotfi and Shing, 1994; Rots, 1997; Giambanco et al., 2001). It 

is worth mentioning that the first approach turned out to be very robust, whereas the 

second may present some convergence problems due to bifurcation (Lourenço, 

1996; Rots, 1997).  
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Anyway in micro models with a simplified schematization there is a loss in accuracy 

because Poisson‟s effect given from mortar joint is lost. In this case the expanded 

unit has to average its characteristics in order to take in account the properties of 

joint.  

 
Fig. 2.25. An example of simplified micro modeling  

approach for brick masonry (Lourenço, 1996a). 

 

Macro-modeling commonly uses non-linear anisotropic constitutive material models. 

In some simplified cases, non-linear isotropic models are also employed. Several 

materials models are available for masonry, incorporating either damage 

(Gambarotta and Lagomarsino, 1997b; de Borst, 2002; Calderini and Lagomarsino, 

2008) or multi-surface plasticity theory (Rots, 1997; Lourenço et. al., 1997).  

Mechanical parameters may be derived from experimental data or deduced from 

homogenization techniques (Pegon and Anthoine, 1997; Ma et al. 2001; Calderini 

and Lagomarsino, 2008). This approach becomes effective when units and mortar 

joints can be taken into account on average; when this is not provided, possible 

discrepancies between real and numerical behavior may arise (Lourenço, 1996; 

Lourenço et. al. 1997). 

Among damage models a smeared crack constitutive model based on isotropic total 

strain is developed along the lines of the Modified Compression Field Theory, 

originally proposed by (Vecchio & Collins, 1986) which describes the stress as a 

function of the strain. This concept is known as hypo-elasticity when the loading and 

unloading behavior is along the same stress-strain path. Within the total strain-

stress relationships, various approaches are possible. 

One commonly used approach is the coaxial stress-strain concept, in which the 

stress-strain relationships are evaluated in the principal directions of the strain 

vector. This approach, also known as the Rotating Crack model, is applied to the 

constitutive modeling of reinforced concrete during a long period and has shown 
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that the modeling approach is well suited for reinforced concrete structures. More 

appealing to the physical nature of cracking is the fixed stress-strain concept in 

which the stress-strain relationships are evaluated in a fixed coordinate system 

which is fixed upon cracking. Both approaches can be described in the same 

framework where the crack directions are either fixed or continuously rotating with 

the principal directions of the strain vector. 

As title of example, in Fig. 2.26 are showed two relations which describe 

respectively the constitutive relation for tensile behavior (left) and for compressive 

behavior (right), in a contest of Total Strain Rotating Crack model. The first is a so 

called linear softening relation, while the second is a parabolic relation according to 

(Feenstra, 1993). 

 

  
Fig. 2.26. Total Strain Rotating Crack isotropic damage model. Stress strain  

relation in tension (left) and in compression (right) (from De Witte, 2005). 

 

 
Fig. 2.27. Orthotropic plasticity Rankine-Hill failure criteria (Lourenço, 1997). 

 

In addition to the plasticity traditional isotropic plasticity models as: Tresca (1864), 

Von Mises (1913), Mohr-Coulomb and Drucker-Prager (1952); the approaches of 

above mentioned authors a based on orthotropic multi-surface plasticity, comprising 

of an anisotropic Rankine yield criterion in tension combined with an anisotropic Hill 
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criterion for compression. Masonry is an example of a material for which this 

criterion applies, having different strengths parallel and perpendicular to the bed 

joints. In Fig. 2.27 is proposed a representation of this failure surface in the usual 

(ζx, ζy, η). 

Concluding, in general micro-modeling strategy is more detailed and is a valuable 

tool to reproduce masonry assemblages tested during experimental research. It 

requires a large number of parameters, but facilitates understanding of the local 

behavior of masonry and parameterizing the results of experimental trials. 

Conversely, it is not suitable for simulating the global behavior of buildings, since 

the computational burden is usually excessive. The macro-modeling approach is 

less detailed, but depends on a limited number of parameters. It is suitable for large 

structures, thus becoming more attractive for practice-oriented analyses. 

2.3.2. Other Modeling Approaches 

Finite Element modeling can provide powerful analysis tools; however, they are 

computationally demanding and a large number of user-specified parameters are 

needed for the constitutive behavior definition.  

There are other approaches for modeling nonlinear behavior of masonry structures 

as limit analysis where are estimated the ultimate load at collapse and the 

corresponding failure mechanism (Como e Grimaldi 1986, Abruzzese et al. 1992) 

and they are usually employed in vulnerability analyses. Other approaches follow a 

bi-dimensional approximation of masonry piers or spandrels using strut-and-tie 

models e.g (Calderoni et al., 1987 e 1989) or the more recent and sophisticated 

model from (Roca, 2006) which implement a primary ties for in tension and a 

residual model with no ties. Another class of model schematizes the structure using 

monodimensional elements able to deform in shear. They were first developed from 

(Tomaževič, 1978) and have undergone several refinements in next years 

(Tomaževič, 1999), and are based on so-called storey-mechanism approach (POR 

method) and each pier is characterized by an idealized non-linear shear-

displacement curve (typically elastic perfectly-plastic with limited ductility see Fig. 

2.28).  

Also based on storey-mechanism approach is the so-called macro-element 

discretization which is based on an equivalent frame idealization of the structure 

(Magenes & Della Fontana, 1998) or (Lagomarsino et al., 2007). These elements 

represent damages, failure and displacements or rotations in pre-defined zones on 

the basis of mechanical assumptions and implementation of non-linear constitutive 

formulation of phenomenological force-displacement relations which can take in to 
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account flexure and/or shear strength and failure determined by drift limits (SAM 

method see Fig. 2.29). 

 

 
Fig. 2.28. POR Method. Construction of storey resistance envelope on the  

basis of bi-linear resistance envelopes of structural walls. (Tomaževič, 1999). 

 

 (a) 
 (b) 

Fig. 2.29. SAM Method: (a) equivalent frame model; (b) bi-linear relation used for masonry 

piers (Cattari, 2007). 

 

Another approach is proposed by (Benedetti & Steli, 2008). With a simple no-

tension material and simple elastic perfectly-plastic rule for masonry and the usual 

hypothesis of cross section remain straight, these authors present an explicit 

formula for the shear-displacement curve of a URM pier, by integration of the 

curvature diagram. Also extend to the case of masonry with Fiber Reinforced 

Polymer (FRP) by introducing the hypothesis of an elastic–plastic resisting force 

(equal to the debonding value) of the FRP reinforcement up to the crushing of the 

masonry in compression.  
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Fig. 2.30. Equilibrium configurations of the masonry panel under  

compression and shear (Benedetti & Steli, 2008). 

 

 
Fig. 2.31. Equilibrium configurations of the FRP reinforced panel under  

compression and shear (Benedetti & Steli, 2008). 

 

This is a very simple model includes only an elastic shear deformation and able to 

reproduce the behavior until the ultimate ductility only accounting a flexure failure. 

Anyhow it suggested that a cross sectional analysis approach can be developed 

also for masonry walls. 

A promising approach developed for Reinforced Concrete (RC) structures is fiber 

element approach. They still keep the basic hypothesis of subdividing the structure 

in mono-dimensional elements, even though they could be defined as a hybrid 

between FEM and macro-models. In these models the element (such as a pier) is 

subdivided into longitudinal fibers. The constitutive relation of the section is not 
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specified explicitly but it is derived by integration of the response of the fiber. These 

models usually assume that plain section remain plane. 

Several fiber beam–column elements were developed in the last 20 years with 

capability of reproducing coupled axial force and flexure effects, e.g. (Spacone et 

al., 1996; Taucer et al., 1991). The fiber approach fits perfectly within the Euler–

Bernoulli beam theory and caters for the accurate description of response of 

slender flexure-dominated members and full structures (Pinho & Elnashai, 2000). 

However, for structures with non-slender elements subjected to seismic loading the 

coupling between shear, axial and bending action becomes important. Recent 

studies (Ceresa et al., 2009; Guedes & Pinto, 1997; Jiang & Kurama, 2010; Marini 

& Spacone, 2006; Marmo, 2008; Mostafaei & Vecchio, 2008; Petrangeli et al., 1999; 

Saritas & Filippou, 2009) have attempted to overcome this limitation by introducing 

into the fiber approach the Timoshenko beam theory, or even a generalized beam 

theory coupled with multi-axial constitutive laws for material. 

 

 
Fig. 2.32. Fiber element with nonlinear shear deformations: (a) fiber strain field;  

(b) concrete fiber strains; (c) microplanes; and (d) tributary transverse steel reinforcement 

(Jiang & Kurama, 2010). 

 

From this literature review, it resulted that the existing modeling strategies for fiber 

beam–column elements with shear effects accounted for are few: they present quite 

different conceptual backgrounds and solution strategies with varying degrees of 

implementation complexity and calibration requirements. Among others, we note 

the well-developed efforts of Jiang & Kurama (see Fig. 2.32), which refer to 

Petrangeli et al. work, and formulation recently proposed by Saritas & Filippou, 

based on general and elegant approaches.  

Some authors further introduced the bond-slip behavior between reinforcement and 

concrete e.g. (Cosenza et al., 2006) based on work of Manfredi & Pecce, 1998. 

In plastic areas, decreasing shear strength of the element is noted, due to a 

decreasing or absent shear resistant mechanisms in the concrete. The influence of 

shear forces on the behavior of the beams was modeled by (Priestley et al., 1994); 

such a model is based on a reduction of the shear strength depending on the local 
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ductility, as expressed in terms of linear variation of the curvature. The Cosenza et 

al. model represents an improvement of Priestley‟s since it enables the sectional 

ductility at any step of the analysis to be directly determined and then evaluates the 

shear strength of those sections located in the plastic regions (see Fig. 2.33).  

 

 
Fig. 2.33. Bending-Shear interaction after Priestley et al.1994:  

failures mode (Cosenza et al., 2010). 

 

In general, if compared with finite element continuum models, the most important 

advantages of fiber element models are that they require a significantly reduced 

number of degrees of freedom and a significantly reduced number of user-defined 

constitutive parameters. In the nonlinear range, however, most conventional fiber 

models are limited to axial and flexural deformations, whereas the shear 

deformations are assumed to remain linear-elastic. Thus, these models are not 

effective in fully capturing the behavior of structures where nonlinear shear 

deformations play a significant role such as RC or masonry non slender walls.  
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3. EXPERIMENTAL DATA AND RESULTS 

3.1. Introduction 

The main aim of this chapter is to present the results of extensive experimental 

activity carried out in last few years at University of Padova, regarding the definition 

of in-plane behavior and seismic performances of innovative masonry construction 

systems. In particular masonry systems built with traditional materials but using 

innovative building solutions (masonry made with unit with mortar pocket infill in 

vertical joints, or made with thin layer mortar joints) or solutions made for seismic 

actions (reinforced masonry with mixed vertical and horizontal perforated clay 

units). 

Experimental campaigns were aimed to characterize of mechanical behavior of 

load-bearing masonry systems. The principal research objectives were: 

- experimentally evaluate mechanical performances (strength, stiffness failure 

modes both under compression and shear) related also to mechanical properties 

of joint and unit. 

- define mechanical behavior of structural elements under in-plane cyclic actions, 

not only regarding strength and failure modes, but also to hysteretic behavior 

properties, as first crack stress, energy absorbed and dissipated at every cycle, 

stiffness degradation under cyclic actions and ductility. 

This research activity was born from the fact that those new masonry typologies 

were not clearly recognizable with masonry systems used in common practice and 

which were well known in terms of performances, thus need to be investigated. 

On the other hand, mechanical characterization of non-ordinary masonry systems 

(“ordinary” means that are made with horizontal and vertical joints filled with mortar 

and with thickness between 10 and 15 mm) should be done before their use as said 

in different Italian codes (DM 20/11/1987) and (Ordinanza P.C.M. n. 3274: 2003, 

2005). 

Finally as reported by (Ordinanza P.C.M. n. 3274: 2003, 2005) (and its 

modifications) and by clarification provided by Italian governmental organization 

“Protezione Civile” (SSN 0034852, 08/08/03), non-ordinary masonry systems 

should be tested under cyclic tests in order to verify stability under cyclic action 

reversals and the ductility. 
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3.2. Unreinforced Masonry Experimental Works and Results 

The tests were carried out at the Laboratory for Structural Material Testing, at the 

University of Padova. Three typologies of masonry walls were studied: masonry 

made with thin layer joints (TM), masonry made with ordinary bed joint and 

interlocking (tongue and groove) units (TG), and masonry made with ordinary bed 

joint and units with pocket for mortar infill (Po). According to the (EN 1996-2: 2006. 

Eurocode 6, 2006), this last typology can be classified as having filled head joints, 

considering that mortar was provided over a minimum of 40% of the unit width. The 

main objective was to assess the cyclic behavior of masonry made with different 

types of head and bed joints, under in-plane loading.  

 

   

 
TM 

 
TG 

 
Po 

 
Fig. 3.1. The three masonry unit types respectively: TM TG and Po (above)  

and construction of a specimen for Thin-layer Masonry (below) 

 

The unit cross section was the same for all the unit typologies, and it was designed 

according to the provisions for unit geometry given by the Italian seismic code valid 
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at time of tests (Ordinanza P.C.M. n. 3274: 2003, 2005). The units contained holes 

having a void area equal to 43% of the gross cross-sectional area, nominal 

dimensions of 250x300 mm (length x width) and height equal to 250 mm for the TM 

units, and 225 mm for the TG and Po units. The specimens made with thin layer 

joints were assembled using a special premixed mortar with cement binder, methyl-

cellulose polymeric additives for regular water retention and fine aggregates (size 0-

0.5 mm), laid by means of the mechanical device (Fig. 3.1), in bed joints with 

average thickness equal to 1.3 mm. The mortar used for the reference specimens 

was a general purpose premixed cement-lime mortar with aggregates having 

maximum size equal to 4 mm, and the resulting bed joints had average thickness of 

about 12 mm.  

The experimental phase started with accurate specimen preparation and 

construction. Almost 150 tests on mortars and units, 70 tests on micro-assemblages 

for the determination of the properties of the unit-mortar interface (couplets and 

crossed couplets) and more than 50 tests on large assemblages (wallettes) were 

carried out. Table 3.1 summarizes the main tests carried out on small and large 

specimens. Detailed descriptions of test procedures and results are reported 

elsewhere (da Porto, 2005; da Porto et al., 2005). 

 

 
Table 3.1. Tests carried out on small and large size specimens. (da Porto et al., 2005) 

3.2.1. Basic material characterization 

Table 3.2 and Table 3.3 summarize the main mechanical properties of the units and 

the mortars used: average and normalized compressive strength of the units in the 

direction of the vertical loads (fb,m and fb) and in the horizontal direction (fbh,m and 

fbh); splitting tensile strength in the direction parallel to the length and to the width of 



Displacement Capacity of Load-bearing Masonry as a Basis for Seismic Design 

64 

the unit calculated on the gross area (ft//l and ft//w); flexural strength fmt and 

compressive strength fm of the mortar; elastic modulus E and Poisson‟s ratio ν. 

The tests for the determination of the shear strength under zero compressive stress 

were carried out on specimens made with two elements, according to the (UNI EN 

1052-3, 2007). 

 

Unit 
fb,m 

[N/mm
2
] 

fb 
[N/mm

2
] 

fbh,m 
[N/mm

2
] 

fbh 
[N/mm

2
] 

ft//l 
[N/mm

2
] 

ft//w 
[N/mm

2
] 

E 
[N/mm

2
] 

ν 
[εhl/εv] 

ν 
[εhw/εv] 

TM 20.42 23.49 7.57 8.71 0.248 0.468 9328 -0.22 -0.32 

TG 20.96 23.58 9.10 10.46 0.201 0.472 7997 -0.17 -0.22 

Po 20.43 22.98 7.95 9.14 0.199 0.579 7887 -0.14 -0.23 

Table 3.2. Mechanical properties of the units. (da Porto et al., 2005) 

 

Mortar 
Water/product 

ratio 
Curing 
days 

fmt 
[N/mm

2
] 

fm 
[N/mm

2
] 

E 
[N/mm

2
] 

ν 

Thin layer 0.35 
28 4.43 17.68 

8238 0.21 
60÷75 5.08 19.79 

General 
purpose 

0.28 
28 3.51 11.51 

9507 0.15 
60÷75 4.22 14.64 

Table 3.3. Properties of the mortars. (da Porto et al., 2005) 

 

 
Fig. 3.2. Test of sliding along a mortar joint: shear-compression stresses  

diagrams for specimens failed along the joint. (da Porto et al., 2005) 

 

The specimens were tested under 0.05, 0.10, 0.20 and 0.30 N/mm
2
 confining 

pressure.  

Higher values of confining pressure, recommended by the standard, were not 

applied due to premature failure of the units, occurred on three TM and eight TG-Po 

specimens. Coefficients of friction and cohesion were 0.40 and 0.44 N/mm
2
 for six 

specimens with thin-layer joints (TM), which actually presented pure sliding failure. 

In specimens with ordinary bed joints (TG and Po), when mortar droppings in the 

unit holes were effective, premature failure of units occurred; when mortar 

droppings were not effective, sliding failure along the bed joints was observed (ten 
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specimens). The latter specimens had a friction value of 0.64 and cohesion of 

0.54 N/mm
2
. When the dowel action of mortar droppings was added to this value, 

the estimated value of cohesion rose to 0.9 N/mm
2
. The cohesion of mortar 

droppings was evaluated from the mortar cohesion times the net area of unit holes. 

Following the findings of Rots (1997) for ordinary mortar joints, the effective 

droppings taken into account were 35% of the total. This value was then smeared 

over the gross unit area, giving an estimated cohesion of mortar droppings of 0.36 

N/mm
2
. 

Fig. 3.2 shows the shear stress-confining compressive stress diagrams that allow 

determining the coefficient of friction and the cohesion of the unit-mortar interface.  

 

The tensile tests on the bed joint were carried out by adapting the crossed couplet 

test configuration (ASTM C952, 2002). The load was applied monotonically until 

failure, under displacement control (0.01 mm/s), by means of two U shaped metallic 

profiles. The failure occurred suddenly by separation of the two contact bed faces of 

the units for the thin layer joint specimens, at an average tensile stress equal to 

0.20 N/mm
2
 on the gross crossed unit area, equivalent to 0.36 N/mm

2
 on the gross 

unit area. . In the case of ordinary joint masonry, mortar adhesion was generally 

higher than unit strength, so that cracking occurred. For specimens with contact bed 

face separation, failure occurred at an average tensile stress of 0.49 N/mm
2
 on the 

gross crossed unit area, or 0.89 N/mm
2
 on the gross unit area. 

3.2.2. Standard Tests 

The uniaxial compression tests were carried out under monotonic loading, with a 

load increment rate of about 0.5 kN/s (EN 1052-1, 1998). On all the specimens a 10 

kN preload was applied. The specimens were instrumented with six LVDTs (±10 

mm), two in the horizontal, two in the vertical direction on the main faces of the 

specimen, and two in the horizontal direction on the width. The results including 

maximum compressive stress ζmax (maximum applied load divided by the horizontal 

cross sectional area) are shown in Table 3.4. The elastic modulus, E, determined 

between 10-40% and 30-60% of the ultimate load and Poisson‟s ratio, ν, evaluated 

on the first linear branch of the curve (10-40%) are also shown in Table 3.4.  

 

Spec. 
ζmax 

[N/mm
2
] 

E10-40% 
[N/mm

2
] 

E30-60% 

[N/mm
2
] 

ν 
[‰] 

TM 6.95 4497 4424 -0.45 

TG 5.67 4924 4278 -0.36 

Po 5.34 5237 4141 -0.25 

Table 3.4. Uniaxial compression tests results. (da Porto et al., 2005) 
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Fig. 3.3. Typical load displacement diagrams under uniaxial compression.  

Masonry made with thin layer joint. Vertical measured displacements are  

negative (left), horizontal displacements are positive (right). 

 

 

 

Fig. 3.4. Typical crack pattern under uniaxial compression.  

Masonry made with thin layer joint. 

 

In almost all specimens, vertical cracks developed, starting from the central part of 

the façades, following the discontinuity of the head joints. This condition evolved 

until total collapse. In some cases, the test walls were completely split into columns 

at failure. Type of masonry did not influence the failure mode particularly. The 

compressive strength of TM masonry (thin-layer joints) was 23% higher than in TG 

(ordinary bed joint and interlocking units). TM specimens also showed lower 

deformability to vertical loads than TG specimens. Poisson‟s coefficient (ratio 

between horizontal and vertical deformation) was higher by 25%. This coefficient 

was high in both TM and TG due to the dry mechanical interlocking between units 

at the head joints, which influenced the values of horizontal displacement on the 

first linear branch of the stress-strain curve. The compressive strength and elastic 
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moduli of TG and Po (mortar pockets) masonry were practically equal, although the 

latter had lower values of compressive strength (-6%). 

Fig. 3.3 shows a typical load-displacement diagram and Fig. 3.4 shows a typical 

crack pattern for the three types of tested specimens. 

 

Diagonal compression tests were carried out under displacement control, at a rate 

of 0.01 mm/s. Loads were applied by two steel loading shoes, according to (ASTM 

E 519, 2007). Specimens were instrumented with four displacement transducers 

placed along the diagonals.  

The results including nominal shear strength, ηmax (maximum applied load divided 

by the diagonal cross sectional area), shear modulus (G), shear strain (γ) evaluated 

between 10-40% and 30-60% of the ultimate load, shear strain γηmax, and the 

vertical and horizontal strains (εvηmax, εhηmax) and their ratio at ultimate load are 

reported in Table 3.5. A typical load-displacement diagram (Fig. 3.5) shows the 

elastic-brittle behavior of the specimens that is due, however, also to the test 

configuration itself. In Fig. 3.6 is possible to see the typical crack pattern resulted 

from tests. 

 

Spec. 
ηmax G10-40% G30-60% γ10-40% γ 30-60% γηmax εvηmax εhηmax εhηmax/εvηmax 

[N/mm
2
] [N/mm

2
] [N/mm

2
] [‰] [‰] [‰] [‰] [‰] - 

TM 0.206 927 753 0.039 0.086 0.248 0.281 -0.033 -0.123 

TG 0.270 1002 816 0.062 0.124 0.342 0.373 -0.032 -0.099 

Po 0.537 1402 1213 0.071 0.154 0.399 0.459 -0.061 0.124 

Table 3.5. Diagonal compression tests results. (da Porto et al., 2005) 

 

 
Fig. 3.5. Typical load displacement diagrams under diagonal compression.  

TG masonry. Vertical measured displacements are negative (left),  

horizontal displacements are positive (right). 
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In almost all specimens, collapse occurred suddenly, with the formation of stepped 

cracks which followed the head and bed joints along the loaded diagonal. Due to 

the loading configuration, displacements along the horizontal diagonal were smaller 

than in the vertical direction. In the case of TM, only cohesion of mortar-unit 

interface and friction were active. In the case of TG and Po, internal cohesion of 

mortar and dowel action of mortar droppings in the unit holes were also effective. 

The presence of mortar pockets exalted these effects. The nominal shear strength 

of TM masonry was 24% lower than that of TG. This was caused by the very high 

bond strength developing in general-purpose mortar. The nominal shear strength of 

Po masonry was exactly twice that of TG masonry, thanks to the resisting 

mechanisms which developed along the head joints.  

 
 

Fig. 3.6. Typical crack pattern under diagonal compression.  

TG Masonry. 

3.2.3. In-plane Cyclic Tests 

Specimens for evaluating the seismic behavior of masonry walls were sized about 

1000x1250x300 mm. In-plane cyclic shear compression tests were carried out 

(RILEM TC76-LUMC3, 1991). Masonry walls were tested with a cantilever-type 

boundary condition, with fixed base and top end free to rotate, by applying centered 

and constant vertical loads of 17%, 22%, 27% and 33% of the mean compressive 

strength measured by the uniaxial compression tests. The lowest level (17%) was 

chosen to force rocking; the highest (27% and 33%) to obtain shear-type behavior; 

the intermediate level to have mixed failure mode. Horizontal cyclic displacements, 

with increasing amplitude and with peaks repeated three times for each 

displacement amplitude, were applied at a frequency of 0.004 Hz. One reference 

specimen per type was tested under monotonically increasing displacements. Fig. 
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3.7 shows the test set-up and the instrumentation scheme. For a complete 

description of test setup refer to (da Porto, 2005). 

 

 
(a) (b) 

Fig. 3.7. In-plane cyclic shear-compression: (a) test set-up; (b) instrumentation scheme. 

 

During in-plane cyclic tests, the masonry walls attained four main limit states, which 

were used to idealize observed behavior. At first, specimen responses were linear 

elastic, with similar stiffness values. Rocking of specimens as rigid bodies caused 

the development of horizontal flexural cracks, generally located in the first mortar 

bed joint between the specimen and the lower concrete beam (Hf, δf). As tests 

continued, the first diagonally oriented shear crack also formed (Hcr, δcr). These 

cracks, passing both through joints and units, multiplied and increased until 

maximum resistance was reached (Hmax, δHmax). After developing their full 

displacement capacity, specimens reached the ultimate state (Hdmax, δmax). In the 

following, this is anticipated when strength degradation of 20% occurred (Hu, δu). 

Fig. 3.8 shows the hysteresis loops of specimens tested under vertical loads of 27% 

of mean compressive strength; Fig. 3.9 shows the crack pattern of a TM specimen 

tested under the same vertical load. Finally Fig. 3.10 shows the envelope curves of 

experimentally obtained hysteresis loops. 

 

   
Fig. 3.8. Lateral load-displacement diagrams for specimens TM (left), TG (centre) and Po 

(right) tested under 27% ratio of applied vertical load to maximum compressive strength 
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Fig. 3.9.Crack pattern after shear-compression test.  

(TM 27% specimen) 

 

 
Fig. 3.10. Shear-compression envelope curves. 

 

In terms of tensile strength, evaluated by the (Turnšek & Čačovič, 1971) criterion, 

differences among the three series were limited. Po masonry had tensile strength 

only 11% higher than the other masonry types. The rotation angle and displacement 

at damage limit state in Po specimens were 225% higher than in TM; in TG, they 

were 169% higher than in TM. The values at the ultimate limit state for Po were 

103% higher than in TM; in TG, they were 44% higher than in TM. The ductility 

ratio, expressed as the ratio between ultimate displacement δu and displacement at 

the attainment of crack limit δcr, was high in the case of TM, although this was due 

to the low level of displacement at which the first shear crack opened, 

corresponding to a rotation angle of only 0.32%. 

Table 3.6 lists the values of referential tensile strength ft, experimental value of 

shear modulus G, ratio between lateral load and lateral displacements at the 

relevant limit states, and corresponding values of rotation angle at crack limit (cr), 

maximum resistance (Hmax) and ultimate limit state (u). The dissipation capacity, 

pre-existing

at failure
buckling

spalling

SIDE   A
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evaluated both from the input and dissipated energy and the corresponding 

damping, and from the analysis of the hysteresis loops, was low for all the types of 

masonry and for a detailed descriptions of cyclic test results refers to (da Porto et 

al., 2009a). 

 

 
Table 3.6. Experimental. Lateral load, displacement and rotation angle at flexural cracking, 

shear cracking, maximum resistance and ultimate limit states. The values are average 

obtained at positive and negative displacement amplitudes (da Porto, 2005). 

 

The specimens made with thin layer joints (TM) showed the lowest displacement 

capacity, in terms of rotation angle or drift. At each relevant limit state (shear 

cracking, attainment of maximum resistance and attainment of ultimate 

displacement) they presented values of drift respectively equal to -63%, -35%, -30% 

with respects to the specimens with ordinary bed joints (TG), and -69%, -45%, -51% 

with respects to the specimens with mortar pocket (Po). Apparently high values of 

ultimate ductility (ratio du/dcr) for the specimens with thin layer joints, higher than for 

specimens TG and Po, are due to the very low value of displacement at the shear 

cracking limit dcr, which corresponds to a rotation angle ψcr equal to only 0,32%. 

This low value can be compared to the limit value of inter-storey drift for damage 

limit state verification fixed by the codes, which is equal to 0.30% (Ordinanza 

P.C.M. n. 3274: 2003, 2005). 

It can be also observed that the presence of the mortar pocket (Po) did not affect 

significantly the displacement capacity of the tested walls, if compared to the 

specimens made with ordinary bed joints and with tongue and groove indentation 

(TG). The comparison between the ductility indicators of the test series Po and TG 

at the relevant limit states (dcr/dHmax, du/dHmax, du/dcr), in fact, yield to the same 

values of ratio between the displacement at the opening of the first shear crack and 

the attainment of the maximum resistance (displacement capacity under increasing 

loads after the damage has already occurred). The values of the ratio between the 
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ultimate displacement and the displacement at the maximum resistance and at the 

opening of the first shear crack are respectively 16% and 18% higher for the 

specimens Po than TG. 

 

 
Table 3.7. Cumulative input and dissipated energy at shear cracking, maximum resistance 

and at collapse; values of coefficient of equivalent viscous damping at the same limit states. 

 

 
Table 3.8. Values of coefficient of equivalent viscous damping at shear cracking, maximum 

resistance and at collapse. 

 

Regarding the energetic parameters, the values found in Table 3.7 and Table 3.8 

show a low energy dissipation capacity for all the tested specimens. Apparent 

increases are only due to the large cycles characterized by an unstable response of 

the specimen before the collapse. Above all, the dissipation capacity is very similar 

for the three tested masonry typologies. The higher values of input and dissipated 

values for the specimens with ordinary joints (TG and Po) than with thin layer joints 

(TM) is mainly due to the higher displacements reached before collapse. However, 

it can be seen again that the ratio between dissipated and adsorbed energy are 

similar for the three tested series. For a more detailed description refer to (da Porto, 

2005). 
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3.3. Reinforced Masonry Experimental Works and Results 

The reinforced masonry system described here is based on the use of concentrated 

vertical reinforcement, similar to confined masonry. It is a new system of this type 

recently developed within the European Project (DISWall, 2008). Special clay units 

with horizontal holes and recesses for horizontal reinforcement are used (Fig. 

3.11a). The recesses are grooves on the unit bed faces, where the horizontal 

reinforcement is simply laid. Mortar is used for bedding as commonly done during 

unreinforced masonry wall construction (Fig. 3.12). Vertically perforated units are 

used for the confining columns.  

Vertical reinforcement in the columns is made of steel bars; horizontal 

reinforcement may be made of either steel bars or prefabricated steel trusses. The 

mortar was developed on purpose for this reinforced masonry system, in particular 

for what concern the properties of consistence, plasticity, and workability, to allow 

for a proper bed joint and recess filling and at the same time, also for a proper filling 

of the reinforced vertical cavities.  

 

 (a)  (b) 

Fig. 3.11. Details of (a) horizontally perforated unit (b) vertically perforated unit. 

 

 
(a) 

  

  
(b) 

Fig. 3.12. (a) Reinforced masonry system and (b) construction phases. 
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The main advantages of this system are related to durability and construction 

issues: placing the horizontal reinforcement into recesses filled with mortar 

improves reinforcement durability, makes the reinforcement positioning more 

precise and easier, allows producing good bond between mortar and units, and 

mortar and reinforcement. In addition, using units with horizontal holes helps 

fulfilling internal environment comfort conditions: this technique is traditionally 

adopted in the Mediterranean countries to improve thermal insulation. Units with 

horizontal holes could also benefit acoustic insulation, provided that head joints are 

covered with mortar, as it actually is. 

Reinforced and confined types of masonry were developed to exploit the strength 

potential of masonry and to solve its lack of tensile strength, significantly improving 

not only resistance, but also ductility and energy dissipation capacity. In the last few 

decades, a great variety of reinforced and confined masonry techniques have been 

proposed. The various masonry systems depend on many parameters: geometric 

shape and material of units, composition of mortar and/or grout, and quantity and 

layout of reinforcement (Tomaževič, 1999). 

As the new reinforced masonry system was designed for use in seismic areas, the 

main aim of the experimental program was to assess its behavior under in-plane 

cyclic actions. However, the effectiveness of horizontally perforated units in 

transferring horizontal loads to lateral confining columns may be reduced by unit 

brittleness and/or malfunctioning of the composite system at the interface between 

central masonry panels and confining columns. Hence, the basic properties of the 

constitutive materials (units, mortar and reinforcement) and the behavior of the 

reinforced masonry system in compression have been extensively investigated (da 

Porto et al., 2010b). As regards in-plane behavior under horizontal actions (i.e., 

seismic action), cyclic shear compression tests were carried out on fourteen full-

scale specimens, differentiated by: presence or absence of vertical reinforced 

confining columns, use of steel bars or prefabricated trusses as horizontal 

reinforcement, aspect ratio (height to length ratio) of tested specimens, and value of 

applied axial compression loads. The tests characterized the mechanical behavior 

of the proposed construction system and allowed evaluation of the influence of 

these aspects on the main parameters (strength, ductility, energy dissipation, 

viscous damping, stiffness degradation) influencing the seismic behavior of 

reinforced masonry walls. 

3.3.1. Basic material characterization 

The geometry of units, physical properties of mortar, and composition of both units 

and mortar were especially developed for the new reinforced masonry system. 
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The horizontally perforated units were developed to optimize the behavior under in-

plane actions, following the concept of robustness mentioned in (EN 1998-1: 2004. 

Eurocode 8, 2004) and in (Tomaževič et al., 2006) and (da Porto et al., 2010a).  

The unit webs and shells were rectilinear and continuous, according to Italian 

seismic requirements (DM 14/01/2008, 2008) and were 12 mm thick. Web 

connections had a high curvature radius, and hole percentage was less than 45%. 

Nominal dimensions were 250 x 300 x 200 mm (length, width, height). The units 

contained 20% of tuff. This composition avoided shrinkage problems. Their mean 

compressive strength in the direction of vertical loads (fbm) was 9.26 N/mm
2
 and in 

the direction orthogonal to vertical loads, in the plane of the wall (fbhm), it was 

13.24 N/mm
2
. Table 3.9 lists the mechanical properties of units.  

 

 
Table 3.9. Mechanical properties of units with horizontal and vertical holes. 

 

 
Table 3.10. Physical and mechanical properties of fresh and hardened mortar. 

 

The main objective of mortar development was to use a single product, suitable for 

laying the horizontally perforated units and filling the vertical reinforced cavities. 

Mortar requirements were: compressive strength higher than 10 N/mm
2
, as 

recommended by (EN 1998-1: 2004. Eurocode 8, 2004) and (DM 14/01/2008, 

2008); balanced consistence, plasticity, and workability for bed and head joints and 

vertical cavities; good adhesion to units and reinforcement. Starting from two 

general-purpose M10 mortars, with hydraulic binder and aggregates with a 

maximum diameter of 4 mm, various modified mortars were produced, with 

plasticizing additives, which made fresh mortar more plastic, soft, workable and 

aerated, or powders for dispersal, which increased adhesion properties. During this 

developmental stage, a large variety of physical and chemical tests were carried out 

to check workability, bleeding properties, bulk density, air content, workable life. 

The mean flexural (fm,t) and compressive (fm) strengths of the final product after 28 

days' curing were 4.27 N/mm
2
 and 14.07 N/mm

2
, respectively Table 3.10.  

The horizontal reinforcement was made of B450C hot-rolled steel with yielding 

stress (fy) of 500 N/mm
2
 and elastic modulus of 204.4 kN/mm

2
; the truss 

reinforcement had yielding stress of 486 N/mm
2
 and elastic modulus of 
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203.7 kN/mm
2
. The vertical reinforcement was made of B450 cold-drawn steel, with 

yielding stress of 501 N/mm
2
 and elastic modulus of 189 kN/mm

2
. 

The detailed description of the basic mechanical tests is reported elsewhere (da 

Porto et al., 2010b; Mosele et al., 2008). 

3.3.2. Standard Tests 

As the new reinforced masonry system was designed for use in seismic areas, the 

main aim of the experimental program was to assess its behavior under in-plane 

cyclic actions. However, to give an assessment of the mechanical behavior a 

specific part of the experimental program was dedicated to the behavior of the 

system under uniaxial compression. The main aims of these tests were to gather 

information on material properties, to study the interactions between the various 

masonry portions under simple stress states, and to assess the overall performance 

in compression of the composite system, before more complex in-plane cyclic shear 

compression tests were carried out. The behavior of the reinforced masonry system 

in compression was studied both on specimens of the entire system and on its 

single components, i.e., confining columns and masonry panels without confining 

columns. The confining columns were built and tested with 3 (C3) and 5 (C5) rows 

of units. The masonry panels without confining columns were built using only 

horizontally perforated units, and adopting two types of horizontal reinforcement. In 

one series (SRHC), the horizontal reinforcement was made up of two ribbed 

reinforcing bars with 6-mm diameter. In the other series (TRHC), prefabricated truss 

reinforcement was used. In all specimens, the horizontal reinforcement was 

distributed at 400-mm intervals. Similarly, tests on specimens of the entire system 

were repeated on two series, one with two steel bars with 6-mm diameter at 400-

mm intervals (SRC), and the other with prefabricated truss reinforcement at 400-

mm intervals (TRC). The difference between SRHC–TRHC and SRC–TRC is that 

the latter also had vertical confining columns, reinforced with two ribbed steel bars 

with 16-mm diameter, at each edge. The amount of horizontal and vertical 

reinforcement was the same of that used in specimens for in-plane cyclic shear-

compression tests, described in (da Porto et al., 2010b; Mosele, 2009). That 

amount was obtained following the provisions of the Italian code (DM 14/01/2008, 

2008), taking the minimum prescribed horizontal reinforcement, and calculating the 

vertical reinforcement to force the shear failure of specimens. Table 3.11 lists the 

compression tests carried out and gives the specimen geometry. Fig. 3.13 shows 

the details of the elements tested in compression.  

 



3. Experimental data and Results 

77 

 
Table 3.11. Characteristics of specimens for uniaxial compression tests. 

 

 
Fig. 3.13. Specimens for compression tests: confining columns (left); plain masonry (center); 

complete reinforced masonry system (right) 

 

Table 3.12 lists compressive strength fc (maximum load divided by gross horizontal 

cross-sectional area), elastic modulus E, between 10 and 40% of the maximum 

load, and Poisson‟s ratio ν, evaluated on the first linear branch of the stress-strain 

curves. For a full detailed description of tests refers to (da Porto et al., 2010b; 

Mosele, 2009). 

 

 
Table 3.12. Results of uniaxial compression tests. 
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3.3.3. In-plane Cyclic Tests 

The specimens were tested with a cantilever-type boundary condition, with fixed 

base and top end free to rotate, by applying centered and constant vertical loads of 

11% and 16% of the measured maximum compressive strength of the reinforced 

masonry walls, corresponding to 15% and 22% of the measured maximum 

compressive strength of the walls without confining columns. The corresponding 

compressive stress levels (0.4 and 0.6 N/mm
2
) are adequate to represent typical 

vertical loads for buildings from two to four storeys in height. Two specimens, one 

for each pre-compression level, constitute each series listed in Table 3.13. 

 

Name 
Dimension 

(mm) 

Horizontal 

Reinf. 

ρw 

(%) 

Vertical 

Reinf. 

ρl 

(%) 

n° of 

tests 

HS 1550x300x1690 - - - - 2 

SRHS 1550x300x1690 Rebar 0.045 - - 2 

TRHS 1550x300x1690 Truss 0.040 - - 2 

SRSa 1550x300x1690 Rebar 0.045 4Ф16 0.173 2 

TRSa 1550x300x1690 Truss 0.040 4Ф16 0.173 2 

SRSb 1030x300x1690 Rebar 0.045 2Ф16 0.130 2 

TRSb 1030x300x1690 Truss 0.040 2Ф16 0.130 2 

Table 3.13. Specimen details for shear compression tests. 

 

Specimens were instrumented with 24 potentiometric displacement transducers to 

measure displacements, wall flexural and shear deformations, base uplift and 

relative sliding between wall and footing. Four strain-gauges were used to measure 

strains in both vertical and horizontal reinforcement bars at characteristic sections 

of the wall (see Fig. 3.14). Lateral and vertical loads were measured by means of 

load cells with the three hydraulic actuators used. The lateral displacement at the 

top of the wall was measured by a magnetostrictive displacement transducer, which 

was also used for retro-activation of the actuators. Fig. 3.14 (a, b, c) shows the 

instrumental scheme.  

Fig. 3.15 (above) shows a view of the test set-up. Horizontal cyclic displacements, 

of increasing amplitude and with peaks repeated three times for each displacement 

amplitude, were applied at a frequency of 0.004 Hz (Fig. 3.15, below). Further 

details on tests setup, instrumentation and procedure are available in (Mosele, 

2009).  

During experimental tests, the attainment of four limit states, which can be used to 

idealize the behavior of the masonry wall, were observed. These limit states 

correspond to changes in how the specimens resist the progressive increment of 

applied lateral displacement. 
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 (a) 

 (b) 

 (c) 

Fig. 3.14. Specimens and scheme of instruments for shear compression tests: 

 (a) plain masonry; (b) squat and (c) slender reinforced masonry walls. 
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Fig. 3.15. Shear compression test set-up (above). 

Horizontal displacement history (below). 

 

This idealization, purposely developed for plain masonry (Abrams, 2001), was 

adapted to our reinforced masonry wall specimens. 

Fig. 3.16 shows three specimens (TRHS, TRSa and TRSb) tested under 

compressive stresses of 0.6 N/mm
2
, Fig. 3.17 shows the corresponding load- 

displacement diagrams, and Fig. 3.18 shows some details at failure. Fig. 3.19 

compares limit states and the idealized envelope curves of all tested specimens. 

Lastly, Table 3.14 lists the values of lateral loads (H) and corresponding rotation 

angles (ψ = δ / H) at the four limit states, the main load and ductility ratios, and 

observed failure modes. 

The first non-linearity, due to the first cracks opening on the bottom bed-joints (Hf, 

δf), occurred at displacements of about 1 - 2 mm (mean rotation angle ψ = 0.075%), 

independently of type of specimen or applied axial load. 
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(a) 

 
(b) 

 
(c) 

 
Fig. 3.16. Crack patterns at ultimate displacement in TRHS (a), TRSa (b) and TRSb (c)  

under compressive stresses of 0.6 N/mm
2
. 

 

In slender specimens, which were characterized by flexural failure and damage 

concentrated at the compressed toe (Fig. 3.16c), the following crack limit state (Hcr, 

δcr) occurred when the vertical bars yielded, at displacements of 9-12 mm (ψ = 

0.50-0.70%), according to axial loads and type of horizontal reinforcement.  

In squat specimens, characterized by shear failure mode (Fig. 3.16b), the second 

non-linearity took place when the first diagonal crack opened and strains of shear 

reinforcement simultaneously increased. This occurred at displacements of 5 mm 

(ψ=0.30%), independently of applied axial load. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.17. Load displacement diagrams of (a) TRHS 0.6, (b) TRSa 0.6  and (c) TRSb 0.6. 
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(a) 

 
(b) 

 
(c) 

Fig. 3.18. (a) Buckling of vertical bars in TRSa 0.4; (b) tension failure of vertical bars in SRSb 

0.4; (c) transverse deformation of truss at end of test in TRHS 0.6. 

 

 
Fig. 3.19. Limit states envelop curves of masonry specimens. 

 

Subsequently, in slender walls, loads increased gradually until maximum load (Hmax) 

and the relevant displacement (δHmax, Fig. 3.17c and Fig. 3.19) were reached. This 

condition represents the third limit state, and is characterized by crushing of 

masonry.  

Conversely, squat specimens reached this state with consistently increased loads 

(Fig. 3.17b and Fig. 3.19), and with the formation of a diagonal strut, defined by 

cracks which crossed units and mortar joints. Spalling of units was also observed 

(Fig. 3.16b). At the lower axial load level, damage of the compressed toes due to 

buckling of vertical bars also occurred (Fig. 3.18a). 
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Specimen 
Hf ψf Hcr ψcr Hmax ψHmax Hu ψu Hcr/ 

Hmax 

Hu/ 

Hmax 

ψcr/ 

ψHmax 

ψu/ 

ψcr 

Failure 

mode kN % kN % kN % kN % 

ζ0=0.6 N/mm² 

HS 06 36 0.07 66 0.31 77 0.99 48 1.99 0.86 0.63 0.31 6.42 R 

TRHS 06 60 0.09 96 0.26 106 0.70 86 0.85 0.91 0.81 0.36 3.33 R 

SRHS 06 49 0.06 91 0.26 114 1.33 102 1.71 0.80 0.89 0.20 6.58 R 

TRSa 06 104 0.09 169 0.31 207 0.73 166 0.86 0.82 0.80 0.42 2.77 S 

SRSa 06 88 0.06 159 0.31 217 0.74 182 1.04 0.73 0.84 0.41 3.41 S 

TRSb 06 40 0.09 86 0.68 93 1.28 81 2.71 0.92 0.88 0.53 4.00 F 

SRSb 06 41 0.08 80 0.53 89 1.20 70 1.81 0.90 0.79 0.44 3.42 F 

ζ0=0.4 N/mm² 

HS 04 45 0.08 66 0.22 77 1.20 65 1.85 0.86 0.84 0.18 8.41 R 

TRHS 04 47 0.07 71 0.25 79 1.39 37 3.69 0.90 0.47 0.18 14.76 R 

SRHS 04 45 0.06 72 0.27 81 2.21 26 3.41 0.89 0.32 0.12 12.63 R 

TRSa 04 82 0.07 144 0.30 199 0.70 160 1.25 0.72 0.80 0.44 4.13 S/F* 

SRSa 04 81 0.09 137 0.30 200 1.04 149 1.45 0.68 0.75 0.29 4.80 S/F* 

TRSb 04 32 0.10 74 0.73 79 1.18 68 3.29 0.94 0.87 0.62 4.53 F 

SRSb 04 30 0.08 67 0.53 78 1.46 70 2.70 0.86 0.90 0.36 5.07 F 

R = rocking, F = flexure, S = shear, S/F = combined shear/flexure mechanism 

Table 3.14. Results of shear compression tests. 

 

This phenomenon took squat specimens to the ultimate limit state with high strength 

degradation (10-15%) and low displacement capacity (12-20 mm, corresponding to 

ψ=0.70-1.14%, according to axial compression load). This ultimate limit state 

corresponded to the values of displacements δu (and loads Hu), at which the 

specimens still showed stable behavior, before reaching maximum experimental 

displacement and collapse. Slender walls had high displacement capacity (30-

60mm, ψ=1.70-3.70%) and hence ductile behavior, due to flexural failure mode, 

which occurred with fracture of vertical bars, according to axial load (Fig. 3.18b).  

In walls without vertical reinforcement, high values of ultimate displacements were 

due to rocking, and damage was concentrated at the bottom of the specimen (Fig. 

3.16a and Fig. 3.18c).  

The values of rotation angles at the ultimate limit state were weighed against those 

proposed by the Italian standard (DM 14/01/2008, 2008) for non-linear static 

analysis of reinforced masonry buildings. 1.2% assumed for flexural behavior and 

0.6% assumed for shear behavior are moderately conservative, compared with the 

experimental values.  

Lastly, the seismic response of buildings is related not only to strength and 

displacement capacity, i.e., ductility, of the structural members, but also to typical 
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parameters of cyclic behavior, such as energy dissipation capacity, stiffness 

degradation and viscous damping coefficient, according to damage propagation. 

The energy dissipation capacity of our reinforced masonry system was lower than 

that usually reported for reinforced masonry walls (Bernardini et al., 1997; Magenes 

et al., 1996; Tomaževič et al., 1996). The ratio between dissipated and input energy 

of the complete reinforced masonry system ranges between 20% and 40% (Fig. 

3.20). In any case, these values are still higher than those generally given for 

unreinforced masonry (da Porto et al., 2009a; Magenes & Calvi, 1997). The trend of 

the viscous damping coefficient is generally similar to that of energy dissipation 

capacity (Fig. 3.21). The viscous damping coefficient was about 5%, and tended to 

increase in the post-peak phase in reinforced masonry walls (TRS and SRS), 

whereas it remained constant for specimens without vertical reinforcement (HS 

series). 

 

 (a)  (b) 

Fig. 3.20. Ratio of dissipated/input energy vs normalized displacement.  

Specimens under (a) 0.4N/mm
2
 and (b) 0.6N/mm

2
. 

 

 (a)  (b) 

Fig. 3.21. Viscous damping coefficient vs normalized displacement.  

Specimens under (a) 0.4N/mm
2
 and (b) 0.6N/mm

2
. 
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4. FINITE ELEMENT MODELS 

4.1. Introduction 

According to experimental results of extensive campaigns presented in previous 

chapter, aimed to defining the mechanical behavior of different load-bearing 

masonry systems both reinforced and unreinforced, a methodical process of Finite 

Element Model (FEM) calibration was carried out.  

The procedure was done in order to obtain one single set of parameters that can be 

used with different modeling strategies and able to describe various types of test. 

Experimental behavior was reproduced by different types of non-linear FEM 

models. Both macro- and micro-modeling strategies, implementing either the 

isotropic damage or orthotropic plastic model, were adopted.  

Results allow some conclusions to be drawn about the behavior of the three 

unreinforced masonry types and the reinforced masonry system under investigation 

(in particular for shear-compression behavior) and the reliability of the modeling 

strategies. 

Finally, in order to investigate the influence of principal geometrical and mechanical 

parameters on in-plane behavior of these load-bearing masonry systems, were 

extended the experimental results performing different parametrical analyses. 

All FEM analyses were carried out using code DIANA
™

 release 9.3. 

4.2. Unreinforced Masonry Walls 

4.2.1. Different Modeling Approaches Presentation 

Experimental results were reproduced by means of both macro- and micro-

modeling strategies. A plane stress state was assumed in all adopted models, 

implementing actual experimental boundary conditions and loading schemes. Eight-

node elements with a Gauss integration scheme were used in continuum models 

and for masonry units in micro models. In the discrete micro-models, six-node 

interface elements with the Lobatto integration scheme were also adopted. 
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The macro-modeling strategy implemented two types of constitutive laws: the 

isotropic total strain rotating crack model (Rots, 1997) and the orthotropic plastic 

model developed by (Lourenço et al., 1997). The first was implemented with linear 

softening in tension and parabolic curve in compression; the second applied the 

Rankine-Hill failure criterion. The simplified micro-modeling strategy implemented 

continuum elements, adopting both the above-mentioned constitutive laws for the 

expanded units. “Expanded” means that the head and bed joints were collapsed 

into zero-thickness interface elements and units were expanded to maintain the 

global geometry (Rots, 1997). The Coulomb friction criterion with parabolic 

compression cap and tension cut-off describes interface behavior (Lourenço & 

Rots, 1997). For a description of modeling background refer to paragraph 2.3.1. 

 

Various simplified criteria were proposed to calibrate the numerical models.  

The fracture energies of masonry in tension (Gft) and compression (Gfc) were not 

experimentally evaluated but are needed by models approaches. These inelastic 

parameters were defined according to an extensive literature research for masonry 

and using Model Code 90 for concrete (FIP CEB, 1991), and were summarized into 

a database valid for masonry structures (da Porto et al., 2010a; Guidi, 2006) and 

summarized in Table 4.1. 

The isotropic continuum model does not need any other parameter, as other elastic 

and strength values (elastic and shear modules and corresponding Poisson‟s 

coefficient, masonry compressive and tensile strength) were experimentally 

determined.  

 

Material / Fracture energy  
Gft  

N/mm  
Gfc  

N/mm  

Masonry unit 0.020  0.080  15  50  

Masonry 0.018  0.050  5  20  

Unit/joint interface  0.006  0.018  5  20  

Table 4.1. Database of values for fracture energy of masonry. 

 

Instead, the orthotropic plastic continuum model with Rankine-Hill failure criterion 

implements more parameters. To define the orthotropic values of elastic and 

strength parameters, one set of values was again based on the experimental 

results. The values along the orthogonal axis were evaluated by assuming direct 

proportionality with the net areas in the two orthogonal directions (Eq. 4.1): 

,

,

net x
x y

net y

A

A

 
     

 
 

 (Eq. 4.1) 
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where Anet,x and Anet,y are net areas in the horizontal and vertical directions, taking 

into account the actual geometry of the perforated units, and x and y are generic 

mechanical properties in the horizontal and vertical directions. This simple criterion 

was assumed on the basis of the fragile nature of units. 

According to the experimental data, the (EN 1992-1-1, 2004) at point 4.2.1.3.3(5) 

and (Lourenço, 1996b) recommendations, the value of strain at peak compressive 

strength for masonry was on average -2.2‰. Based on this value, it was possible to 

evaluate κp, which is the equivalent plastic strain at peak compressive strength, as 

required by the implemented failure criterion. 

Other parameters had to be estimated are α, β and γ, which define the envelope of 

the Rankine-Hill failure criterion. For their evaluation, biaxial tests should be carried 

out. The values proposed by (Lourenço, 1996a) according to the experimental 

works of (Page, 1981; Page, 1983) on clay brick masonry and (Ganz & Thürlimann, 

1982; Ganz & Thürlimann, 1984) on perforated clay block masonry, were assumed. 

Table 4.2 lists the parameters adopted by the orthotropic continuum model. The 

parameters of the isotropic continuum model can be inferred from the values in the 

vertical direction (y subscript).  

 

Series 
Ex ν ftx Gftx

 
fcx Gfcx α γ 

N/mm
2
 - N/mm

2
 N/mm N/mm

2
 N/mm - - 

TM 3191 0.45 0.177 0.018 4.93 17.03 0.71 2.13 

TG 3143 0.36 0.158 0.018 3.62 16.51 0.64 1.91 

Po 3185 0.25 0.167 0.018 4.93 16.36 0.61 1.82 

 
Ey Gxy fty Gfty fcy Gfcy β κp 

N/mm
2
 N/mm

2
 N/mm

2
 N/mm N/mm

2
 N/mm - ‰ 

TM 4497 1551 0.249 0.018 6.95 17.81 -1 0.65 

TG 4924 1810 0.247 0.018 5.67 17.32 -1 1.05 

Po 5237 2095 0.274 0.018 6.95 17.19 -1 1.18 

Table 4.2. Parameters of orthotropic continuum model. Parameters of isotropic total strain 

rotating crack model can be obtained from values in y-direction. 

 

The procedure of unit expansion and mortar joint collapse in the interface models 

defines the linear stiffness kn and ks (respectively normal and tangential) of the 

interface elements. Classical formulations in the literature lead to overestimation of 

stiffness values. These are generally reduced to carry out analysis (Chaimoon & 

Attard, 2007; Lourenço, 1996a; Rots, 1997). In the present study, this procedure 

was based on the correction factor Δ, based on experimentally measured 

displacements (Eq 4.2): 

exp

u m u m

u m

h h h h

E EE

   
     
    

 (Eq. 4.2) 
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where hu and hm are, respectively, the heights of unit and mortar joint, Eexp is the 

global experimental elastic modulus of masonry, and Eu, Em are the experimental 

elastic moduli of units and mortar. Mathematical models assume that there is 

perfect contact at the interface, whereas the correction takes into account the fact 

that, in reality, obvious irregularities are found in mortar joints and unit-joint 

interfaces (Vermeltfoort, 2005). The elastic material displacement (Δltot), seen as 

the sum of the ideal elastic displacement of unit and mortar, thus becomes (Eq 4.3): 

' '

u um m
tot

u m u m

h hh h
l

E E E E
            (Eq. 4.3) 

where ζ represents the stress state; E'u and E'm are the corrected elastic moduli of 

units and mortar, that are assumed to be reciprocally proportional to the ratio of the 

corresponding displacement to the elastic material displacement. The common 

equivalence between elastic material displacement and model displacement yielded 

the elastic moduli of expanded unit, E‟u (Eq. 4.4a), and mortar, E‟m (Eq. 4.4b). 

Applying the basic equations of mechanics, the interface normal kn and shear 

stiffness ks were thus evaluated. 

' u
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E L E


 

  
 

 (b) (Eq. 4.4) 

The other parameters needed to define the failure criterion were chosen according 

to the literature. Dilatancy angle (ψ) was assumed to be zero, as it tends toward 

zero with the increase in normal stresses. This choice also avoids non-conservative 

predictions of shearing resistance (Rots, 1997; van Zijl, 2004).  

Cs defines the contribution of shear stresses to failure (Lourenço, 1996a); its value 

was chosen in order to fit the cap model with the experimental results. The values 

of fracture energy in tension (Gft) and compression (Gfc) were found as explained 

above. In addition, for mode II fracture energy in shear (Gfs), the formulation 

proposed by (Lourenço, 1996a) was used. To complete the interface definition, the 

equivalent plastic strain was evaluated following the same criteria already explained 

for the continuum model. Table 4.3 lists the interface parameters in both isotropic 

and orthotropic discrete models. For TM and TG, some head joint interface 

properties are set with values close to zero, to simulate the absence of mortar in 

vertical joints, without losing friction and compression properties. 
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Complete definition of the interface model also requires setting constitutive laws for 

expanded units. In this case, the model relies on the properties of the single units 

and not on those of the masonry walls. For the isotropic interface model, the elastic 

and strength properties of the units were experimentally determined. The inelastic 

parameters were found as explained previously. For the interface model with 

orthotropic plastic failure of units, orthotropic properties were defined by applying 

the criterion expressed by (Eq. 4.1). Table 4.4 lists the unit parameters adopted in 

the orthotropic discrete model. The parameters implemented by the isotropic 

discrete model correspond to values in the y-direction.  

 

Bed joint 
interface 

kn ks ft fc Gft Gfc 

N/mm
3
 N/mm

3
 N/mm

2
 N/mm

2
 N/mm N/mm 

TM 34.90 14.42 0.36 25 0.026 20 

TG 57.13 24.88 0.89 25 0.050 20 

Po 69.46 30.17 0.89 25 0.063 20 

 
c tgθ tgψ Cs Gfs κp 

N/mm
2
 - - - N/mm ‰ 

TM 0.44 0.40 0 16 0.044 1.40 

TG 0.90 0.64 0 16 0.090 0.34 

Po 0.90 0.64 0 16 0.090 0.67 

Head joint 
interface 

kn ks ft fc Gft
 

Gfc 

N/mm
3
 N/mm

3
 N/mm

2
 N/mm

2
 N/mm N/mm 

TM 25.10 10.36 0.00025 11 0.00002 19.29 

TG 33.00 14.34 0.00025 11 0.00002 19.29 

Po 38.20 16.62 0.21 11 0.018 19.29 

 
c tgθ tgψ Cs Gfs

 
κp 

N/mm
2
 - - - N/mm ‰ 

TM 0.05 0.09 0 16 0.005 0.42 

TG 0.05 0.09 0 16 0.005 0.86 

Po 0.36 0.64 0 16 0.036 1.04 

Table 4.3. Parameters for interface in orthotropic discrete model and in discrete model 

implementing isotropic total strain rotating crack constitutive law for unit. 

 

Unit 
Ex

 
ν ftx Gftx fcx Gfcx α γ 

N/mm
2
 - N/mm

2
 N/mm N/mm

2
 N/mm - - 

TM 6615 0.22 0.332 0.024 7.57 17.03 0.71 2.13 

TG 5104 0.17 0.300 0.022 9.10 16.51 0.64 1.91 

Po 4797 0.14 0.352 0.025 7.95 16.36 0.61 1.82 

 
Ey Gxy fty Gfty

 
fcy Gfcy β κp 

N/mm
2
 N/mm

2
 N/mm

2
 N/mm N/mm

2
 N/mm - ‰ 

TM 9269 3799 0.468 0.034 20.42 17.81 -1 0.90 

TG 7767 3319 0.472 0.034 20.96 17.32 -1 0.36 

Po 7704 3379 0.579 0.042 20.43 17.19 -1 0.45 

Table 4.4. Parameters for unit material in orthotropic discrete model. Parameters of isotropic 

total strain rotating crack micro-model can be obtained from values in y-direction 
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The geometry meshing took advantage of specimen regularity. Structured regular 

mesh was, thus, used. The mesh sensitivity problem was also taken in to account, 

but with a reasonable number of subdivision model showed a good stability 

response. Actually, mesh refinement had a neglectable influence on global 

response of models. This is in agreement with the used implementation of fracture 

energies in DIANA™. Material constitutive laws were based on fracture energy by 

the definition of the crack bandwidth (h) of the element, for which DIANA™ 

assumes a value h related to the square root of the area of the element (De Witte & 

Kikstra, 2005). 

 

Iterative process of FEM analyses was conducted using Newton-Raphson method 

(see Fig. 4.1a) with indirect displacement control, i.e. applying force but using arch-

length algorithm able to describe snap-back behaviors. Line-search algorithm was 

also used to improve both stability and speed of convergence process. 

Furthermore during the analysis procedure was used a DIANA™ option able to 

auto-adapt the load step magnitude based on previous step number of iteration (in 

a given range). 

 

 (a) 
 (b) 

Fig. 4.1. Ratio of dissipated/input energy vs normalized displacement. Scheme of iterative 

method of Newton-Raphson (a) convergence criterion adopted (b) (De Witte & Kikstra, 

2005). 

 

An energetic convergence criterion was adopted. It is based on ratio between norm 

of internal forces and displacement product at current iteration, and norm of internal 

forces and displacement product at the start of load step (Fig. 4.1b). Tolerance was 

imposed to be less than 10
-4

 with reference to (Eq. 4.5). 
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4.2.2. Standard Tests and In-plane Cyclic Envelopes Modeling 

All type of FEM models, described in previous section, were used to analyze the 

experimental tests presented in paragraph 3.2.  

The uniaxial compression tests analyses, carried out with these different models, 

gave similar results, apart from the isotropic continuum model. The latter can 

reproduce the behavior of masonry walls until first crack opening, but cannot reach 

the ultimate state, whereas the other models can very well reproduce both the value 

of the experimental ultimate load (Pu,e, Table 4.5) and deformability along the 

direction of loading.  

 

Series 
Exp. 

Continuum 
Orthotropic 

Continuum 
TSRCM 

Micro-model 
Orthotropic 

Micro-model 
TSRCM 

Pu,e 
kN 

Pu,m 
kN 

Pu,m/Pu,e 
% 

Pu,m 
kN 

Pu,m/Pu,e 
% 

Pu,m 
kN 

Pu,m/Pu,e 
% 

Pu,m 
kN 

Pu,m/Pu,e 
% 

Uniaxial compression 

TM 2050 2036 99 1307 64 2041 99 2047 100 

TG 1686 1674 99 1307 78 1679 99 1685 100 

Po 1583 1577 99 1253 79 1588 100 1588 100 

Diagonal compression 

TM 86 491 568 165 191 85 99 86 100 

TG 114 356 314 162 143 119 105 92 81 

Po 211 327 155 190 90 223 106 203 96 

Table 4.5. Uniaxial and diagonal compression, experimental (Pu,e) and numerical (Pu,m) 

ultimate loads. 

 

The models reproduce vertical displacements (negative in Fig. 4.2) better for TG 

and Po specimens than for TM specimens, where they are stiffer than real walls. 

They correctly estimate horizontal displacements (positive in Fig. 4.2) until the 

opening of the first crack, but then underestimate them. This happens because 

experimental horizontal displacements undergo a sudden discontinuity when the 

first crack opens. The continuum orthotropic model is the only one that is able to 

average the trend of horizontal displacements before and after crack opening. 

Regardless of masonry type, the test set-up induces concentration of stresses in 

the center of specimens. The experimentally observed occurrence of the first cracks 

at that point confirms the results of the numerical simulation.  

The main difference in the behavior of the three tested masonry types lay in the 

presence of the vertical mortar joint in Po specimens, which produces better 

distribution of tensile stresses induced by compression (Fig. 4.3, where the mesh 

was hidden in order to highlight stress distribution). However, due to the higher 

tensile stresses which filled head joints can transfer to units, collapse occurs earlier 

and the ultimate load correspondingly decreases, when compared with TG 

specimens (Table 4.5), matching experimental evidence.  
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Fig. 4.2. Uniaxial compression: experimental and numerical load displacement diagrams. 
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Only micro-models can describe this particular behavior, as they adequately 

reproduce stress concentrations in units and joints. Masonry with ordinary bed joints 

(TG) and thin-layer joints (TM) do not show particular differences in terms of stress 

distribution, although at the same level of applied load, thin joints induce lower 

tensile stresses in the block (Fig. 4.3), thus causing the experimentally observed 

increase in compressive strength with respect to TG specimens. 

 

(a) 

 

(b) 

(c) 

Fig. 4.3. Uniaxial compression: interface model with orthotropic units.  

Principal tensile stresses at 50% of TM ultimate load: (a) TM, (b) TG; (c) Po. 
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Fig. 4.4. Diagonal compression: experimental and numerical load displacement diagrams. 
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Diagonal compression tests gave differing results. In terms of both stiffness (Fig. 

4.4) and ultimate load (Pu,e, Table 4.5), micro-models generally showed good 

agreement with experimental behavior, whereas continuum models significantly 

overestimated ultimate loads. Experimental horizontal displacements were lower 

than numerical ones, but their small extent, close to measuring device sensitivity, 

should be taken into account. When first setting of joints occurs, between 20 and 

40 kN, micro-models show decreased stiffness.  

 

(a) 

 

(b) 

(c) 

Fig. 4.5. Diagonal compression: interface model with orthotropic units.  

Principal tensile stresses at ultimate load: (a) TM, (b) TG; (c) Po. 
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The absence of filled head joints in the TG and TM specimens leads to a 

distribution of principal stresses which differs from homogeneous distributions of 

continuum materials. Stresses are concentrated in parallel diagonal bands that can 

be identified only by micro-models. These stress bands follow the masonry texture, 

not the main geometric diagonal of walls. Therefore, areas close to head joints are 

almost completely unloaded (Fig. 4.5a, b). This distribution is favored by unit 

geometry (shape and dimension) and masonry bond arrangement (one-layer 

masonry with simple overlap and unfilled head joints). Collapse thus occurs in both 

experimental tests and micro-models, due to concentration of tensile stresses in 

bed joints around the central unit. Failure is initially located there, then other joints 

along the same direction fail and the specimens separate into two portions. Thanks 

to its mortar pockets, Po masonry shows a stress distribution that is closer to that of 

homogeneous solids (Fig. 4.5c). Strength thus increases, as experimentally 

observed, and the results of continuum and discrete models become similar (Table 

4.5). In addition, all the proposed modeling strategies are able to reproduce the 

experimental stiffness values (Fig. 4.4). 

In general, all models confirm the fragility of the collapse mode, but isotropic micro-

models describe deformation behavior better. The models also highlight the fact 

that, when a diagonal test set-up is applied to masonry walls made with large units 

and unfilled head joints, the resulting stress distribution strongly influences 

specimen behavior. As already observed by (Bosiljkov, 2001), specimen failure 

modes depend on the most unfavorable combination of possible failure 

mechanisms, and may significantly differ from failure modes observed on real walls. 

 

Series 

Exp. 
22% 

Continuum 
TSRCM 

Micro-model 
TSRCM 

Exp. 
27% 

Continuum 
TSRCM 

Micro-model 
TSRCM 

Hmax,e 
kN 

Hmax,m 
kN 

Hmax,m/Hmax,e 
% 

Hmax,m 
kN 

Hmax,m/Hmax,e 
% 

Hmax,e 
kN 

Hmax,m 
kN 

Hmax,m/Hmax,e 
% 

Hmax,m 
kN 

Hmax,m/Hmax,e 
% 

TM 135 134 99 139 103 166 160 96 158 95 

TG 127 119 94 123 97 154 142 92 147 96 

Po 140 111 79 118 84 143 132 92 142 99 

Series 

Exp. 
22% 

Continuum 
TSRCM 

Micro-model 
TSRCM 

Exp. 
27% 

Continuum 
TSRCM 

Micro-model 
TSRCM 

u,e 
% 

u,m 
% 

u,m/u,e 
% 

u,m 
% 

u,m/u,e 
% 

u,e 
% 

u,m 
% 

u,m/u,e 
% 

u,m 
% 

u,m/u,e 
% 

TM 0.89 0.54 61 0.85 95 0.72 0.57 79 0.65 90 

TG 1.43 1.13 79 1.21 85 1.27 0.73 57 1.18 93 

Po 1.64 0.93 57 1.49 91 1.25 0.76 61 1.25 100 

Table 4.6. Cyclic shear-compression, experimental (Hmax,e) and numerical (Hmax,m) maximum 

load and experimental (θu,e) and numerical (θu,m) maximum drift. 

 

In shear-compression tests simulation the horizontal load was applied as a 

controlled displacement at the central node in the top concrete beam.  
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Fig. 4.6. Shear-compression. Interface model with isotropic units.  

Principal compression stress at maximum strength of walls:  

TG 27% (above) and Po 27% (below) (legend is in N/mm
2
). 

 

The analyses of continuum models were very sensitive to parameters defining 

tensile strength and, due to concentration of stresses in the compressed toe of 

masonry, also to those defining compressive strength. Particularly the orthotropic 

continuum model presented anticipated failure and also modified the experimentally 

observed sequence of damage mechanisms.  

Isotropic micro-models reproduced experimental behavior fairly well without any 

correction of parameters extracted by the previous model calibration phase, i.e. the 

standard test reproduction. Instead, orthotropic micro-models did not reproduce 

experimental behavior very well, and also presented anticipated failure very often. 

For this type of model and loading scheme, the adopted calibration procedure, 

which gave good results for monotonic and diagonal compression, was not 

effective. However, all the various models were able to reproduce initial elastic 

stiffness fairly well, although continuum models were always slightly stiffer than 
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micro-models. Comparison of the various masonry types showed that their behavior 

was similar.  

 

(a) (b)  

Fig. 4.7. Shear-compression, TM with vertical load of 27%: experimental crack pattern (a) 

and numerical principal compression stress at ultimate load (b) of compressive strength. 

 

 

 
Fig. 4.8. Shear-compression envelope curves: experimental and numerical load drift-

diagrams: TM with vertical load of 22% (above) and 27% (below) of compressive strength. 
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The only difference was seen in masonry with mortar pockets (Po) that again 

showed better stress distribution than the other masonry types, and a higher 

tendency to rocking, as experimentally observed (see as example Fig. 4.6). 

From Fig. 4.8 to Fig. 4.10 are show the comparison between experimental behavior, 

represented by the envelope of the hysteresis loops, and numerical results, for the 

three masonry types and for specimens tested under compressive loads of 22% 

and 27% of their compressive strength. Both isotropic models, which gave the best 

results, reproduced stiffness and maximum horizontal loads very well, which were 

only slightly underestimated (generally between -1% and -8%). Isotropic micro-

models were also able to estimate maximum displacement with an acceptable error, 

between 0% and -15% (see Table 4.6). Both these modeling strategies could 

reproduce the observed sequence of failure mechanisms and, in particular, the 

isotropic micro-models presented crack patterns consistent with experimental ones 

(see, for example, Fig. 4.7a and b). 

 

 

 
Fig. 4.9. Shear-compression envelope curves: experimental and numerical load drift-

diagrams: TG with vertical load of 22% (above) and 27% (below) of compressive strength. 
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Fig. 4.10. Shear-compression envelope curves: experimental and numerical load drift-

diagrams: Po with vertical load of 22% (above) and 27% (below) of compressive strength. 

4.2.3. Parametrical Extension of Experimental Tests 

The experimental perforated clay units were designed on purpose for this research, 

following the principles of „robustness‟ given by recent seismic codes (DM 

14/01/2008, 2008; EN 1998-1: 2004. Eurocode 8, 2004; Ordinanza P.C.M. n. 3274: 

2003, 2005). They had compressive strength of about 20 N/mm
2
, whereas the 

compressive strength of perforated clay units used in practice varies over a range of 

about 20 to 5 N/mm
2
. Therefore, in order to study the influence of unit compressive 

strength (fcu) on the global shear behavior of the three masonry types, analyses 

were repeated with units with compressive strength of 20, 15, 10 and 5 N/mm
2
. 

From the results of model calibration, the simplified micro-modeling strategy, with 

total strain rotating crack law for units, turned out to be the most suitable to 

reproduce the cyclic shear behavior of masonry monotonically. The parametric 

analyses thus implemented this model. The adopted models simplify the unit mortar 

interaction, and their results are influenced by some parameters, such as unit 

fracture energy, that were assumed. However, the methodical approach followed for 
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model calibration and the comparison between numerical and experimental results, 

allowed the parametric study of the three masonry types. 

A database of unit properties was created to estimate the mechanical 

characteristics of the theoretical units. It contains values reported in the literature for 

about 100 perforated clay units characterized by similar percentages of holes (da 

Porto, 2005; DISWall, 2008). The fitting process used relationships similar to those 

proposed by Eurocode 2 for concrete (EN 1992-1-1, 2004). They were adapted to 

estimate unit elastic modulus Eu (Eq. 4.6) and unit tensile strength ftu (Eq. 4.7), 

starting from unit compressive strength fcu. (Eq. 4.6) and (Eq. 4.7) refer to the gross 

area of units. 

33041u cuE f  (Eq. 4.6) 

0.580,087tu cuf f   (Eq. 4.7) 

For each masonry type and each value of unit compressive strength, analyses were 

repeated by applying the same vertical load used in the experimental and numerical 

phases of the research, or a vertical load corresponding to the same ratio between 

applied load and compressive strength of masonry. In the latter case, it was 

possible to compare the behavior of each masonry type, varying the unit 

compressive strength, when stresses inside the walls had comparable intensity. 

To evaluate the pre-compression load on the models with different masonry 

compression strength (with correlation to different unit strength) an adapted version 

of the (Guidi, 1954) relation (Eq 4.8) was used, and fitted with the experimental 

data. For further details about this formula refer to (da Porto, 2005; da Porto et al., 

2010b). The adopted version of the equation used the following values: a=4.52, b=1 

and c=2.75. Table 4.7 shows the parameters used in the parametric analyses that 

were changed from the models used to reproduce the experimental tests. 

c)flog(b
a

f
f m

cu
mc,   (Eq. 4.8) 

N/mm
2 

TM TG Po 

fcu 20.42 15.00 10.00 5.00 20.96 15.00 10.00 5.00 20.43 15.00 10.00 5.00 

ftu 0.47 0.42 0.33 0.22 0.47 0.42 0.33 0.22 0.58 0.42 0.33 0.22 

fc,m 6.95 5.16 3.44 1.72 5.67 4.12 2.74 1.37 5.34 4.12 2.74 1.37 

ζ0 
22% 1.53 1.14 0.76 0.38 1.25 0.91 0.60 0.30 1.17 0.91 0.60 0.30 

27% 1.88 1.39 0.93 0.46 1.53 1.11 0.74 0.37 1.44 1.11 0.74 0.37 

Table 4.7. Parametric analyses. Parameters changed from the used relations. 
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Fig. 4.11. Parametric shear-compression curves: experimental and numerical load drift-

diagrams: TM with vertical load of 22% (above) and 27% (below) of compressive strength. 

 

From Fig. 4.11 to Fig. 4.13 are presented the capacity curves found with 

parametrical analyses (blue and red lines) carried out for the three masonry type 

(TM, TG and Po respectively) together with experimental results (grey lines) and 

relatives numerical model (green line).  

When the applied vertical load changes in order to keep the ratio with masonry 

compressive strength constant (blue lines), the effect of unit strength and of the 

concurring applied vertical load can be appreciated. In TM, the maximum horizontal 

load decrease is almost linear with unit strength decrease (-22% at fc=15 N/mm
2
, -

45% at fc=10 N/mm
2
, and -70 at fc=5 N/mm

2
). In TG and Po, the maximum 

horizontal load decrease is less pronounced when unit strength is higher, but is 

exactly the same in TM at the lowest unit strength (-11% at fc=15 N/mm
2
, -40% at 

fc=10 N/mm
2
, and -70 at fc=5 N/mm

2
). Behavior in terms of maximum displacement 

is similar in the three types. For unit strength of 15 N/mm
2
, displacement is 11% 

smaller than for unit strength of 20 N/mm
2
, due to whole capacity of wall to sustain 

loads decreases. At lower unit strength (10 and 5 N/mm
2
), the effect of the lower 

vertical load applied becomes evident (rocking mechanism), and maximum 

displacement increases by 12% and 110% respectively. 
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Fig. 4.12. Parametric shear-compression curves: experimental and numerical load drift-

diagrams: TG with vertical load of 22% (above) and 27% (below) of compressive strength. 

 

When the applied vertical load is the same as in the experimental tests (red lines), 

besides the effect of unit strength, the behavior of the various masonry types can be 

appreciated. For TM masonry, maximum horizontal load decreases by -5%, -11%, 

and -28% for unit strengths of 15, 10 and 5 N/mm
2
 (compared with the case with 

unit strength of 20 N/mm
2
). For TG and Po masonry, it decreases by about -2%,-7% 

and -23%. It worth to point out the great strength decay, when unit with 5 N/mm
2
 of 

compressive strength were used. 

The behavior in terms of drift at ultimate limit state (maximum drift) is different in the 

various types. As expected, at the lowest unit strength, maximum drift decrease 

was higher in TM (-63%) than in TG and Po (-57%). However, at higher unit 

strength, this trend changes, and the maximum drift decrease was -28% and -17% 

for TM at unit strength of 10 and 15 N/mm
2
, but -38% and -26% for TG and Po. 

Also here it has to be noted the nonlinear decrease unit with 5 N/mm
2
 of 

compressive strength were used. 
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Fig. 4.13. Parametric shear-compression curves: experimental and numerical load drift-

diagrams: Po with vertical load of 22% (above) and 27% (below) of compressive strength. 

4.3. Reinforced Masonry Walls 

4.3.1. Modeling Approach 

For modeling the reinforced masonry walls under study, a simplified micro-modeling 

strategy with continuum elements and no unit-mortar interface elements was 

adopted. This strategy was slightly different from previously adopted (and described 

in paragraph 4.2.1) with the aim of broadening the spectrum of adopted 

approaches. 

The constitutive laws of mortar and blocks were implemented using the Total Strain 

Rotating Crack isotropic damage model (Rots, 1997), which describes the tensile 

and compressive behavior with one stress-strain relationship. The steel 

reinforcement behavior was described by means of elasto-plastic Von Mises yield 

criterion, without hardening. 

Eight-node isoparametric plane-stress elements with Gauss integration scheme 

were used in the models. The Newton-Raphson iteration procedure was used (it 

 0

 50

 100

 150

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

L
o

a
d

 [
k
N

]

Drift [%]

Po FC=05 22%
FC=10 22%
FC=15 22%
FC=05 349kN
FC=10 349kN
FC=15 349kN
Po 349kN 22%

 0

 50

 100

 150

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

L
o

a
d

 [
k
N

]

Drift [%]

Po FC=05 27%
FC=10 27%
FC=15 27%
FC=05 429kN
FC=10 429kN
FC=15 429kN
Po 429kN 27%



4. Finite Element Models 

105 

was also used the so called line-search algorithm) with an energetic convergence 

criterion (as previously done for URM masonry, see paragraph 4.2.1). For standard 

compression tests were imposed vertical force using arch length method, whereas 

for shear compression tests simulation was used a displacement control applying it 

as in experimental tests. 

The reinforcement had the shape of a line and was considered fully bonded and 

embedded in all the plane stress elements that define the wall geometry (as 

provided by DIANA™ version 9.3 used to carry out these analyses). Considering 

the type of model used, it was not possible to make a distinction between the truss 

and the bar reinforcement used.  

Each different material was defined by following properties: elastic modulus (E) 

equal in compression and in tension; Poisson‟s coefficient (ν); tensile and 

compressive strengths (ζt and ζc respectively); fracture energies in tension and 

compression (Gft and Gc respectively). Being a plane stress model, the presence of 

vertical columns filled by mortar used to cast vertical reinforcements, did not directly 

take in to account. It was done by averaging throughout wall thickness the 

properties of different materials, weighing them in proportion to their thickness over 

the whole wall thickness. 

The fracture energy of masonry in tension (Gft) and in compression (Gfc) are 

parameters needed into the continuum model implementing the isotropic total strain 

rotating crack constitutive law that have not been experimentally evaluated. These 

values have been found using the criteria and data described in paragraph 4.2.1. 

Other parameters, which are not directly available from the experimental tests, are 

the tensile strengths of the masonry components. The values of the tensile 

strengths were evaluated indirectly from the numerical model developed for the 

uniaxial compression tests (wallettes without confining columns, confining columns 

and complete RM system walls). The tensile strength to be assigned to the vertical 

joints (and with good approximation, even horizontal joints) was assessed by 

means of matching the opening of the first crack in the vertical joints, seen as a 

discontinuity in the load displacement curve (see Fig. 4.14a). To get an estimate of 

other tensile strength the same procedure was adopted. Furthermore, the obtained 

parameters were in agreement with those available both in the literature (Rots, 

1997) and with those resulting from equations proposed for concrete by the EC2 

(EN 1992-1-1, 2004). It should be noted that the tensile strength assigned to the 

joints is not the mortar strength, but an assessment of the strength of the interface 

between the mortar and the blocks (which is less). 

Finally, a structured regular mesh was used. Mesh sensitivity problem was also 

taken in to account, but still valid the observations made in paragraph 4.2.1 and 

mesh refinement had a neglectable influence on global response of models. 



Displacement Capacity of Load-bearing Masonry as a Basis for Seismic Design 

106 

4.3.2. Uniaxial Compression and In-plane Cyclic Envelopes Modeling 

The validation of the numerical model has been based on the experimental results. 

Material properties are derived from experimental tests carried out on masonry 

materials and, in a later stage, on standard tests of masonry macro-assemblages 

(i.e. uniaxial compression and shear compression tests on wallettes). 

The use of a continuum model requires the calibration of the material properties 

through homogenization procedures in order to get results in agreement with the 

experimental ones (i.e. between the vertical mortar columns at the wall edges, used 

for casting the vertical reinforcement, and the vertically perforated units that contain 

it). This process yielded to a reduction of about 30% for the elastic moduli derived 

from the tests on materials, which mainly took into account the absence of interface 

elements in the model (Rots, 1997). Whereas the Poisson‟s ratios were equal to 

experimental ones. In the case of the unit, to take into account the compressive 

failure accompanied by web detachment and the effects of the complex tri-

dimensional stress state on the unit orthotropy, the compressive strength was also 

reduced by about 50%. As introduced before, the tensile strength assigned to the 

joints was assessed from the strength of the interface between mortar and units, 

backcalculating the values of stresses when the first cracks in the vertical joints, 

seen as a discontinuity in the load displacement curve, occur (see Fig. 4.17a), 

Horizontal holes). By matching this crack pattern into the numerical model, the 

mortar-block (see also Fig. 4.15) interface appeared to have a tensile strength of 

approximately 0.2 N/mm
2
 (see Table 4.8). To get an estimate of other tensile 

strength the same procedure was adopted.  

The experimental condition of reinforcement-mortar bond is not realistically 

modeled with the full-bonded hypothesis used for embedded reinforcements 

available in DIANA™. In order to take into account this fact, the elastic modulus of 

the steel reinforcement was also reduced by about 40%, with respect to 

experimental values. (see Table 4.8) 

 

Material 
E ν ft fc Gft Gfc 

N/mm
2
 - N/mm

2
 N/mm

2
 N/mm N/mm 

Horizontal preforated units 5381 0.15 0.90 2.90 0.0170 2.0 

Vertical preforated units 9085 0.18 0.85 9.70 0.0170 6.0 

Mortar bed joints 8370 0.17 0.30 12.00 0.0064 6.0 

Mortar head joints 8370 0.17 0.21 12.00 0.0045 6.0 

Vertical preforated units with  
mortar pocket (homogenized) 

8895 0.17 1.13 9.60 0.0200 6.0 

Horizontal reinforcements 122700 / 460 / / 

Vertical reinforcements 116300 / 510 / / 

Table 4.8. Reinforced masonry FEM model parameters. 
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(a) 

(b) 

(c) 

Fig. 4.14. Uniaxial compression test. Stress-strains diagrams  

(grey: experimental, red: numerical). 
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(a) 
Horizontal Holes 

(half of specimen) 

  

(b) 
Columns 

(quart of specimen) 

 

 

(c) 
Complete System 

 
Fig. 4.15. Uniaxial compression test. Principal compression stresses. 
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The comparison between the experimental results and the numerical models for the 

uniaxial compression tests, gives the following results. Fig. 4.14 compares 

experimental and numerical stress-strain curves. The models reproduced the 

various test series fairly well. The compressive strengths of columns (C5) and wall 

with horizontally perforated blocks (SRHC-TRHC) were, respectively, 

underestimated and overestimated by 5%. The compressive strength of the entire 

reinforced masonry system was overestimated by about 7%. The elastic modulus 

and experimental and model strains were almost identical for C5 and SRHC–TRHC. 

The elastic modulus of the entire reinforced masonry system was overestimated by 

10% (SRC-TRC). C5 and SRHC-TRHC reproduced experimental behavior very 

well, with cracks opening in vertical joints and propagating in the units (Fig. 4.15).  

As expected, the compressive stresses of SRC-TRC were concentrated in the 

confining columns, which were stiffer than the central masonry portion. Also in this 

case, the model simulated experimental behavior very well. The first cracks opened 

at the interface between the two components of the systems. The state of stress at 

this interface remained high during the entire analysis, but later vertical cracks also 

appeared on the central masonry panel (Fig. 4.15c). The model properly 

reproduced the experimental strains of the confining columns and central masonry 

portion. Fig. 4.16 shows the model axial strains along the wall, on four courses (the 

third, fourth, fifth and sixth from the bottom), and their average, at three load levels 

(10, 40 and 60% of maximum load). The mean values in the central part of the wall 

were higher than those in the confining columns. This change in behavior occurred 

between 250 and 380 mm of wall length (and symmetrically between 1170 and 

1300 mm), i.e., where vertically and horizontally perforated units alternated on each 

unit course. For further details refer to (da Porto et al., 2010b). 

 

 

Fig. 4.16. Axial strains at 10, 40 and 60% of maximum load (model) 
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Fig. 4.17. Scheme of shear wall finite element model. 

 

The set of parameters defined was adopted for the simulation of shear-compression 

tests (Table 4.8). The specimens were tested with cantilever type boundary 

condition and applying a centered and constant vertical load (see section 3.3.3 and 

Fig. 3.15). The top steel girder, the top r.c. beam and the bottom bond beam are 

modeled with linear-elastic elements. The vertical forces are converted into a 

normal distributed load over the complete length of the top concrete beam. The 

horizontal load is applied as a controlled displacement. The central node in the top 

r.c beam has been chosen to apply the horizontal displacement as during the 

experimental tests (see Fig. 4.17).  

Considering the type of model used, it was not possible to make a distinction 

between the truss and the bar reinforcement used. This was chosen as 

experimental results showed substantially the same behavior of the specimens 

reinforced with the two different types of horizontal reinforcement (see section 

3.3.3). The analyses aimed at reproducing the experimentally observed shear-

compression behavior of the reinforced masonry system were carried out under 

incremental displacement (pushover analyses). This type of analysis is adequate to 

reproduce the experimental envelope curve obtained by means of the tests. 

Fig. 4.18 and Fig. 4.19 show the average of the experimental hysteresis loops 

envelope (blue color) obtained by the shear compression tests, and the comparison 

with the numerical results (red curves), respectively for the slender and the squat 

specimens. Table 4.9 and Table 4.10 compare the main experimental and 

numerical results, for specimens with applied vertical load of 0.4 and 0.6 N/mm
2
.  

 

Loading 
steel beam 

Reinforced 
concrete beam 

Vertical  
reinforcements 

Horizontal 
reinforcements 

Supporting block 

Masonry panel 

Applied loads 



4. Finite Element Models 

111 

 

 
Fig. 4.18. Shear-compression envelope curves. Experimental (blue)  

and numerical (red) load-displacement diagrams for slender walls:  

with vertical load of 0.4 N/mm
2
 (above) and 0.6 N/mm

2
 (below). 

 

vertical compression 
0.4 N/mm

2
 

Fmax dFmax Fdmax dmax 

kN mm kN mm 

TRSa 199 11.67 166 19.99 

SRSa 200 17.23 172 19.99 

Model 200 10.87 156 16.83 

error +0% -25% -8% -16% 

TRSb 79 19.55 68 54.65 

SRSb 78 24.24 70 44.75 

Model 77 15.45 64 31.85 

error -2% -29% -7% -36% 

Table 4.9. Comparison between experimental and FEM model at maximum strength  

of wall and at maximum displacement for vertical compression stress of 0.4 N/mm
2
. 
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Fig. 4.19. Shear-compression envelope curves. Experimental (blue)  

and numerical (red) load-displacement diagrams for squat walls:  

with vertical load of 0.4 N/mm
2
 (above) and 0.6 N/mm

2
 (below). 

 

vertical compression 
0.6 N/mm

2
 

Fmax dFmax Fdmax dmax 

kN mm kN mm 

TRSa 207 12.19 166 14.25 

SRSa 217 12.50 182 17.50 

Model 227 10.51 181 15.73 

error +7% -15% +4% -1% 

TRSb 93 21.25 81 45.00 

SRSb 89 19.99 70 30.00 

Model 89 11.18 77 31.34 

error -2% -46% +2% -16% 

Table 4.10. Comparison between experimental and FEM model at maximum strength  

of wall and at maximum displacement for vertical compression stress of 0.6 N/mm
2
. 
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The models slightly overestimate the initial stiffness and reproduce the maximum 

horizontal load with an absolute average error of about 3%. 

Due to the higher initial model stiffness, the numerical displacements at maximum 

load are underestimated up to -40%. However, the maximum errors are found in 

slender specimens where the envelopes curves showed a relative long branch with 

almost constant load, and taking in to account experimental variability, definition of 

displacement at maximum load can varies. 

Furthermore, the values of maximum displacement at collapse for high vertical 

compression level (0.6 N/mm
2
), when a sudden drop of strength occurs as 

observed during the experimental tests (da Porto et al., 2009b; Mosele, 2009), are 

in agreement (absolute average error 9%, see Table 4.10) with the experimental 

ones. For flexural specimens under lower vertical stress level, the maximum 

displacement is underestimated (average error about -26%, see Table 4.9). 

However, from the interpretation of the model results, it can be said that the failure 

modes and the crack pattern are in agreement with those observed in the 

experimental phase (see Fig. 4.20 and Fig. 4.21 which gives the principal tensile 

stress on cracks for the masonry for squat specimen models). 

 

Slender specimens 

 

ζ0 = 0.4MPa ζ0 = 0.6MPa 

  
Fig. 4.20. Crack patterns using maximum principal strains at ultimate state. 

 

The reduction of axial load level allows to observe, for squat specimen, a change of 

failure mode from shear to shear/flexural mode, pointed out by the less clear 

diagonal strut and higher concentration of stresses on the compressed toe of 

masonry. The same reduction in vertical load induces, in the slender specimens, a 

less concentration of stresses at the base of the wall, together with a higher 

exploitment of the stretched vertical reinforcement. 
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Squat specimens 

 

ζ0 = 0.4MPa ζ0 = 0.6MPa 

  
Fig. 4.21. Crack patterns using maximum principal strains at ultimate state. 

4.3.3. Parametrical Extension of Experimental Tests 

The influence of three parameters on the behavior of analyzed reinforced masonry 

system was investigated: axial load level, slenderness and percentage of 

reinforcement. For each parameter, a specific series of numerical analyses was 

carried out.  

To check the influence of different vertical load level on the behavior of the 

analyzed reinforced masonry system, a series of numerical analyses were carried 

out, where the vertical load on the wall was changed to obtain a vertical stress level 

from 0.2 to 2.0 N/mm
2
. That corresponds, in reality, to a different number of storeys 

above ground or to a different building use. 

These analyses were carried out on walls having the same slenderness (H/L 1.09 

and 1.64) and the same ratio of vertical reinforcement (0.17% and 0.13%) of the 

experimental specimens, and also with vertical reinforcement ratio just above the 

minimum required as in the Italian standard (DM 14/01/2008, 2008), which is 

0.05%. We did not take in to account the requirement of 200 mm
2
 in each side of 

the wall. Thus, the parametric combinations were extended within a reasonable 

range in order to analyze the principal failure mechanisms and the changes in 

masonry behavior. In the analyses code in Fig. 4.22 and Table 4.11 (e.g., 

164_45_073_08), the first number gives the wall slenderness (1.64 in this example), 

the second and third numbers show the horizontal (0.045%) and the vertical 

(0.073%) reinforcement ratios, the fourth number, finally, shows the vertical stress 

level (0.8 N/mm
2
) at which the analysis is carried out. An overall number of 32 

analyses were carried out for this study. 
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name H/L Hor. Reinf. Ver. Reinf. ζ0 ηmax Driftmax Hmax dmax 

 - % % N/mm
2
 N/mm

2
 % kN mm 

109_45_066_02 1.09 0.045 0.066 0.2 0.20 0.625 93 14.37 

109_45_066_04 1.09 0.045 0.066 0.4 0.27 0.862 125 19.84 

109_45_066_06 1.09 0.045 0.066 0.6 0.34 0.827 157 19.01 

109_45_066_08 1.09 0.045 0.066 0.8 0.41 0.782 189 18.00 

109_45_066_10 1.09 0.045 0.066 1.0 0.47 0.516 218 11.86 

109_45_066_12 1.09 0.045 0.066 1.2 0.53 0.475 247 10.93 

109_45_066_16 1.09 0.045 0.066 1.6 0.66 0.371 305 8.52 

109_45_066_20 1.09 0.045 0.066 2.0 0.74 0.242 342 5.56 

109_45_173_02 1.09 0.045 0.173 0.2 0.35 0.442 164 10.16 

109_45_173_04* 1.09 0.045 0.173 0.4 0.43 0.732 200 16.83 

109_45_173_06* 1.09 0.045 0.173 0.6 0.49 0.684 227 15.73 

109_45_173_08 1.09 0.045 0.173 0.8 0.56 0.661 259 15.21 

109_45_173_10 1.09 0.045 0.173 1.0 0.62 0.574 288 13.21 

109_45_173_12 1.09 0.045 0.173 1.2 0.65 0.500 301 11.50 

109_45_173_16 1.09 0.045 0.173 1.6 0.74 0.438 346 10.07 

109_45_173_20 1.09 0.045 0.173 2.0 0.80 0.344 370 7.90 

164_45_073_02 1.64 0.045 0.073 0.2 0.14 0.802 44 18.45 

164_45_073_04 1.64 0.045 0.073 0.4 0.19 1.234 59 28.39 

164_45_073_06 1.64 0.045 0.073 0.6 0.23 1.216 72 27.96 

164_45_073_08 1.64 0.045 0.073 0.8 0.27 1.159 85 26.66 

164_45_073_10 1.64 0.045 0.073 1.0 0.31 0.700 97 16.10 

164_45_073_12 1.64 0.045 0.073 1.2 0.35 0.657 109 15.11 

164_45_073_16 1.64 0.045 0.073 1.6 0.43 0.565 134 13.00 

164_45_073_20 1.64 0.045 0.073 2.0 0.51 0.376 156 8.65 

164_45_130_02 1.64 0.045 0.130 0.2 0.21 0.873 64 20.08 

164_45_130_04* 1.64 0.045 0.130 0.4 0.25 1.385 77 31.85 

164_45_130_06* 1.64 0.045 0.130 0.6 0.29 1.363 89 31.34 

164_45_130_08 1.64 0.045 0.130 0.8 0.33 1.283 101 29.51 

164_45_130_10 1.64 0.045 0.130 1.0 0.37 0.921 113 21.18 

164_45_130_12 1.64 0.045 0.130 1.2 0.40 0.765 125 17.58 

164_45_130_16 1.64 0.045 0.130 1.6 0.46 0.616 142 14.17 

164_45_130_20 1.64 0.045 0.130 2.0 0.52 0.535 161 12.32 

* analysis that corresponds to an experimental condition 

Table 4.11. Table of parametric variations carried out. Variation of vertical load applied. 

 

Fig. 4.22 shows the load-drift curves with variation of vertical compression load. The 

lines with dots represent the FEM analyses which reproduce experimental walls. 

As expected, the maximum shear stress increases for increasing applied vertical 

stresses (see Fig. 4.22). The maximum horizontal displacement in the wall 

decreases with the increase of the vertical compression level (see Fig. 4.22 and 

Table 4.11). This indicates that the applied vertical load directly influences the 

mechanism of failure in the walls.  
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For vertical loads corresponding to 0.2 N/mm
2
, the models show a large decrease 

of maximum drift when compared to higher vertical stresses (Fig. 4.22). This can be 

imputed to the change of behavior from flexure (in slender models) or mixed 

shear/flexure (in squat models) to crushing of compressed toe.  

 
Squat walls 

 
Slender walls 

8  

Fig. 4.22. Variation of vertical load. Load – Drift curves. 
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name H/L Hor. Reinf. Ver. Reinf. ζ0 ηmax Driftmax Hmax dmax 

 - % % N/mm
2
 N/mm

2
 % kN mm 

065_45_052_04 0.65 0.045 0.052 0.4 0.41 0.433 320 9.96 

065_45_052_06 0.65 0.045 0.052 0.6 0.52 0.394 404 9.06 

065_45_162_04 0.65 0.045 0.162 0.4 0.57 0.301 447 6.93 

065_45_162_06 0.65 0.045 0.162 0.6 0.63 0.278 489 6.41 

082_45_050_04 0.82 0.045 0.050 0.4 0.32 0.723 198 16.63 

082_45_050_06 0.82 0.045 0.050 0.6 0.42 0.636 258 14.63 

082_45_164_04 0.82 0.045 0.164 0.4 0.50 0.451 312 10.36 

082_45_164_06 0.82 0.045 0.164 0.6 0.65 0.443 404 10.20 

109_45_066_04 1.09 0.045 0.066 0.4 0.27 0.862 125 19.84 

109_45_066_06 1.09 0.045 0.066 0.6 0.34 0.827 157 19.01 

109_45_173_04* 1.09 0.045 0.173 0.4 0.43 0.732 200 16.83 

109_45_173_06* 1.09 0.045 0.173 0.6 0.49 0.684 227 15.73 

164_45_073_04 1.64 0.045 0.073 0.4 0.19 1.234 59 28.39 

164_45_073_06 1.64 0.045 0.073 0.6 0.23 1.216 72 27.96 

164_45_130_04* 1.64 0.045 0.130 0.4 0.25 1.385 77 31.85 

164_45_130_06* 1.64 0.045 0.130 0.6 0.29 1.363 89 31.34 

219_45_098_04 2.19 0.045 0.098 0.4 0.16 1.153 36 26.53 

219_45_098_06 2.19 0.045 0.098 0.6 0.19 1.094 44 25.15 

219_45_174_04 2.19 0.045 0.174 0.4 0.20 0.590 46 13.56 

219_45_174_06 2.19 0.045 0.174 0.6 0.24 0.902 56 20.74 

* analysis that corresponds to an experimental condition 

Table 4.12. Table of parametric variations carried out. Variation of slenderness ratio. 

 

To check the influence of different wall geometry on the behavior of the analyzed 

reinforced masonry system (that corresponds, in reality, to the different wall length 

that can be found in a building), a series of numerical analyses were carried out 

where the length and thus the slenderness of the walls were changed. The H/L 

values were varied between 0.65 and 2.19 which correspond to walls with length 

varying from 2.60 to 0.75m. In these analyses, the vertical load was kept constant 

and equal to the two values adopted for the experimental tests (0.6 N/mm
2
 and 

0.4 N/mm
2
) and again the vertical reinforcement ratios used were 0.13% and 

0.17%, consistently with the experimental tests, or minimum requirement similar to 

the Italian building code (0.05%). The label codes of the analyses in Fig. 4.23 and 

Table 4.12 can be read as explained in the previous section. An overall number of 

20 analyses were carried out in this case. 

The maximum shear stress increases with the length of the wall (see Fig. 4.23 and 

Table 4.12). However, the simultaneous increase of vertical reinforcement causes 

higher increase of shear resistance (Fig. 4.23), accompanied by higher fragility. 

Pure shear limit can be observed for 065_45_162_06 and 082_45_164_06, i.e. the 

squatter walls with highest vertical stresses and reinforcement.  

In addition, for slenderness of 2.19, which represents the minimum length for the 

masonry system under investigation, the behavior changes again and the maximum 
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drift shows a large decrease (see Fig. 4.23). This can be imputed to the change of 

behavior from flexure to crushing of compressed toe. 

 
Ratio between 0.65 and 1.09 

 
Ratio between 1.64 and 2.19 

 
Fig. 4.23. Variation of slenderness ratio. Load – Drift curves. 
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vertical load (0.6 N/mm
2
 and 0.4 N/mm

2
) and the slenderness ratio (H/L 1.09 and 

1.64), remained constant and consistent with the experimental value. The codes of 

the analyses in Fig. 4.24 and Table 4.13 are consistent with the previous ones; the 

overall number of analyses carried out was 28. 

Fig. 4.24 shows the obtained results. The walls with reinforcement ratio lesser than 

0.13% (4Φ14 for squat and 2Φ16 for slender models) exhibited crushing of the 

compressed toe after yielding of flexural reinforcement. Conversely, the walls with 

vertical reinforcement ratio higher than 0.2% (4Φ18 for squat and 2Φ14+2Φ16 for 

slender models), failed in shear with a limited ductility (see Fig. 4.24 and Table 

4.13). For the walls without vertical reinforcement, the behavior changed 

dramatically. A rigid rocking mechanism developed, accompanied by premature 

crushing of compressed toe, reduction of the ultimate drift capacity, and consequent 

numerical instability.  

 

name H/L Hor. Reinf. Ver. Reinf. ζ0 ηmax Driftmax Hmax dmax 

 - % % N/mm
2
 N/mm

2
 % kN mm 

109_45_000_04 1.09 0.045 0.000 0.4 0.16 0.592 74 13.62 

109_45_066_04 1.09 0.045 0.066 0.4 0.27 0.862 125 19.84 

109_45_097_04 1.09 0.045 0.097 0.4 0.33 0.836 151 19.23 

109_45_132_04 1.09 0.045 0.132 0.4 0.38 0.737 175 16.96 

109_45_173_04* 1.09 0.045 0.173 0.4 0.43 0.732 200 16.83 

109_45_219_04 1.09 0.045 0.219 0.4 0.49 0.570 228 13.10 

109_45_270_04 1.09 0.045 0.270 0.4 0.54 0.492 249 11.32 

109_45_000_06 1.09 0.045 0.000 0.6 0.23 0.507 109 11.66 

109_45_066_06 1.09 0.045 0.066 0.6 0.34 0.827 157 19.01 

109_45_097_06 1.09 0.045 0.097 0.6 0.39 0.815 180 18.75 

109_45_132_06 1.09 0.045 0.132 0.6 0.44 0.795 202 18.30 

109_45_173_06* 1.09 0.045 0.173 0.6 0.49 0.684 227 15.73 

109_45_219_06 1.09 0.045 0.219 0.6 0.54 0.626 250 14.39 

109_45_270_06 1.09 0.045 0.270 0.6 0.58 0.573 268 13.18 

164_45_000_04 1.64 0.045 0.000 0.4 0.10 0.558 32 12.85 

164_45_073_04 1.64 0.045 0.073 0.4 0.19 1.234 59 28.39 

164_45_100_04 1.64 0.045 0.100 0.4 0.22 1.540 68 35.41 

164_45_130_04* 1.64 0.045 0.130 0.4 0.25 1.385 77 31.85 

164_45_173_04 1.64 0.045 0.173 0.4 0.29 1.297 89 29.83 

164_45_230_04 1.64 0.045 0.230 0.4 0.34 0.683 105 15.71 

164_45_260_04 1.64 0.045 0.260 0.4 0.37 0.676 113 15.56 

164_45_000_06 1.64 0.045 0.000 0.6 0.15 0.510 47 11.74 

164_45_073_06 1.64 0.045 0.073 0.6 0.23 1.216 72 27.96 

164_45_100_06 1.64 0.045 0.100 0.6 0.26 1.642 80 37.76 

164_45_130_06* 1.64 0.045 0.130 0.6 0.29 1.363 89 31.34 

164_45_173_06 1.64 0.045 0.173 0.6 0.33 0.973 101 22.39 

164_45_230_06 1.64 0.045 0.230 0.6 0.37 0.675 115 15.53 

164_45_260_06 1.64 0.045 0.260 0.6 0.39 0.656 120 15.09 

* analysis that corresponds to an experimental condition 

Table 4.13. Table of parametric variations carried out. Variation of vertical reinf. ratio. 
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Squat walls 

 
Slender walls 

 
Fig. 4.24. Variation of vertical reinforcement ratio. Load – Drift curves. 
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4.4. Analysis of results and Conclusions 

4.4.1. Unreinforced Masonry Walls 

In Fig. 4.25 are summarized the results of parametric analyses in the three masonry 

types. The dots represent the performance of each numerically analyzed wall in 

terms of maximum resistance (Hmax) and drift at ultimate limit state (u). Red curves 

correspond to analyses carried out by applying the same vertical load used in the 

experimental tests. Blue curves show analyses carried out under vertical load, 

corresponding to the same ratio between applied load and masonry compressive 

strength. The four dots in each curve correspond to results of analyses carried out 

on walls made with units of different strength (20, 15, 10 and 5 N/mm
2
) and, 

obviously, decreases in maximum load correspond to lower unit strength. 

In general, all masonry types showed an almost linear variation in maximum 

horizontal force of wall with the compressive strength of unit (and wall, in broad 

sense) when the latter was used in constant ratio with vertical compression load 

(blue lines). The bends of blue curves depend of drift behavior conditioned from 

rocking when the effects of lower vertical load became prevalent. Despite of this 

fact the distribution and the evolution of stresses inside the walls did not change in 

this case. 

When the applied vertical load is the same as in the experimental tests (red lines) 

the strong, non-linear maximum load decrease that all masonry types showed at the 

lowest unit strength indicates that, for modest unit strength, wall behavior becomes 

more brittle independently of masonry type, and this occurs when unit strength is 

between 10 and 5 N/mm
2
 (the differences between masonry types are due to the 

greater brittleness of thin-layer joint masonry).  

Combined with maximum drift decrease, this fact is reflected in the red curves of 

Fig. 4.25 and depends on the different failure modes of the masonry types. The 

curves bend sharply in the case of TG and Po masonry, indicating that failure mode 

changes with different unit strength.  

The model results show that flexural/rocking behavior prevails at higher unit 

strength, whereas brittle failure develops and prevents rocking from occurring at 

lower unit strength. In the case of TM, the red curves of Fig. 4.25 are almost linear, 

in this case shear failure dominates at high unit strength range and confirms the 

brittleness of this type of masonry.  

In facts, comparison of the three masonry types in Fig. 4.25 shows that maximum 

drift in TM, is always lower than in Po and TG. 
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Fig. 4.25. Results of parametric analyses: maximum load versus maximum drift diagrams 

under same vertical load (red lines) and under same ratio of vertical load to compressive 

strength (blue lines). 
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Regard the above observations, it has to be noted that the Italian codes require a 

minimum characteristic compressive strength of unit of 5 N/mm
2
, for the use in 

seismic areas (DM 14/01/2008, 2008). The European seismic code also 

recommends a minimum normalized compressive strength of masonry units of 

5 N/mm
2
 (EN 1998-1: 2004. Eurocode 8, 2004).  

However, the former, being a characteristic strength, refers to an average strength 

which is higher than 5 N/mm
2
 (and for sure comprised between 10 and 5 N/mm

2
). 

Instead, the latter, being a normalized compressive strength, refers to an average 

compressive strength of unit, which is even lower than 5 N/mm
2
 considering the unit 

dimensions generally found in the construction market and the procedures adopted 

to obtain this strength from tests (EN 772-1: 2000, 2007). 

4.4.2. Reinforced Masonry Walls 

The Fig. 4.26, Fig. 4.27 and Fig. 4.28 summarize the results of analyses presented 

in paragraph 4.3.3 in terms of mean maximum shear stress and maximum drift 

plotted against parameter was changed in parametrical analyses. 

As expected, the maximum shear stress increases for increasing applied vertical 

stresses (see Fig. 4.26). The increment is almost linear and is greater for the squat 

than for the slender models. The maximum horizontal displacement in the wall 

decreases with the increase of the vertical compression level (see Fig. 4.26 and 

Table 4.11). This indicates that the applied vertical load directly influences the 

mechanism of failure in the walls. After the toe crushing and under higher 

compression loads, the wall change its failure mode from a ductile one, as observed 

in the curves with vertical load lesser than 1.0 N/mm
2
, to a brittle shear mode, with 

reduced inelastic deformation capacity beyond the peak load. The slender walls are 

more sensitive to this change of failure mode (see Fig. 4.26). 

For vertical loads corresponding to 0.2 N/mm
2
, the models show a large decrease 

of maximum drift when compared to higher vertical stresses (Fig. 4.26). This can be 

imputed to the change of behavior from flexure (in slender models) or mixed 

shear/flexure (in squat models) to crushing of compressed toe and the model was 

not able to follow displacement after this. The slender models (with greater H/L 

ratio) are more sensitive to this effect. 

 

When was varied the slenderness ratio the maximum shear stress increases with 

the length of the wall (see Fig. 4.27 and Table 4.12). This occurs because the 

relative contributions of bending and shear deformations depend on the wall aspect 

ratio (H/L) and, consequently, the relative stiffness vary with the length of the wall 

(see Fig. 4.27). 
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Maximum mean shear stress – Vertical stress applied 

 
Maximum drift - Vertical stress applied 

 
Fig. 4.26. Results of parametric analyses. Variation of vertical stress. 
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In the case of slenderness ratio equal to 1.64, due to the flexural-type behavior, with 

the lower reinforcement ratio the walls are under-reinforced, and collapse occurs 

due to failure of reinforcement in tension. In addition, for slenderness of 2.19, which 

represents the minimum length for the masonry system under investigation, the 

behavior changes again and the maximum drift shows a large decrease (see Fig. 

4.27). This can be imputed to the change of behavior from flexure to crushing of 

compressed toe. The models with larger vertical reinforcement ratio are more 

sensitive to this effect. 

 
Maximum mean shear stress – Slenderness ratio 

 
Maximum drift - Slenderness ratio 

 
Fig. 4.27. Results of parametric analyses. Variation of slenderness ratio. 
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Maximum mean shear stress – Vertical reinf. ratio 

 
Maximum drift - Vertical reinf. ratio 

 
Fig. 4.28. Results of parametric analyses. Variation of vertical reinf. ratio. 
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ratio higher than 0.2% (Fig. 4.28). For the walls without vertical reinforcement, the 

behavior changed dramatically. A rigid rocking mechanism developed, 

accompanied by premature crushing of compressed toe, reduction of the ultimate 

drift capacity, and consequent numerical instability. 

Hence, the increase of the vertical reinforcement has a positive influence on the 

ultimate strength of the walls. Up to a certain quantity, the increase of reinforcement 

ratio increases both strength and the available displacement capacity otherwise the 

walls would be under reinforced. After a certain limit, the increase of reinforcement 

still increases the ultimate load capacity, but it reduces the available ductility (see 

Fig. 4.28).  

4.4.3. Summary and conclusions 

Three types of load-bearing un-reinforced masonry walls, made with perforated clay 

units and differing types of head and bed joints were experimentally tested under in-

plane cyclic loads. Four different types of non-linear models, which follow macro- 

and micro-modeling strategies and implement isotropic damage or orthotropic 

plastic criteria for materials, were calibrated. The main mechanical parameters were 

extracted by common tests, used in practice to characterize materials and simulate 

actual loading conditions in structural masonry walls, and were applied without 

arbitrary corrections.  

Inelastic parameters, which can be obtained by means of more complex test 

procedures and are useful for theoretical studies of masonry behavior, were defined 

according to an extensive literature survey.  

Lastly, some simple criteria to evaluate mechanical properties of expanded units in 

micro-models and to obtain orthotropic parameters from isotropic ones were 

defined. The first criterion is based on the net area ratio that characterizes masonry 

cross-sections and influences masonry anisotropy when perforated units are used. 

The second allows micro-model interface parameters to be found and they can be 

applied to the analyses without any correction, by systematically introducing the 

experimental correction due to mortar joint and mortar-unit interface irregularity into 

the numerical models. 

In the case of uniaxial compression, three out of the four models reproduced 

experimental behavior fairly well. Orthotropic models and the isotropic micro-model 

are more suitable. Experimental behavior under diagonal compression was properly 

described only by micro-models, both orthotropic and isotropic. In particular the 

isotropic micro-model described shear compression tests accurately. The type of 

test that is being simulated influences the accuracy of numerical results more than 

masonry type itself. In general, at least one modeling strategy simulated each type 
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of test very well, and allowed differences in stress distribution and behavior due to 

the type of masonry bond arrangement to be appreciated. Analyses confirmed that 

the various test configurations used to study the shear behavior of masonry walls 

(i.e., diagonal compression and shear compression tests) leads to different stress 

distributions, clearly, but they also showed that the types of tested masonry could 

emphasize this effect (i.e. unit dimension and joints arrangements). 

 

Thanks to the methodical approach followed, it was possible to define a reliable 

modeling strategy for analysis of in-plane loaded masonry. Parametric analyses 

showed how wall performance under combined shear and compression depend on 

unit strength and masonry type. In general, maximum horizontal load and drift at 

ultimate state decrease with unit strength. For masonry with ordinary bed joints (Po 

and TG), the decrease in unit strength also corresponds to a change in dominant 

failure mode, from flexure/rocking to shear whereas, in the case of more brittle thin-

joint masonry (TM), a more brittle failure prevails throughout the unit strength range. 

In all masonry types, critical behavior arises at unit strengths between 10 and 

5 N/mm
2
. If the ratio of applied vertical load to masonry compressive strength is 

kept constant, maximum drift may increase at lower unit strength, as vertical load 

decreases and rocking behavior prevails but, in any case, the displacement 

capacity of thin-layer joint masonry remains lower than in other masonry types. 

 

Analyses on a newly perforated clay unit reinforced masonry system were done 

with the aim of modeling the envelope of cyclic shear compression tests carried out. 

The results of the analyses carried out were discussed and the main results are in 

the following: 

- finite element and experimental results were compared and good agreement was 

found in terms of load, displacements, failure modes and crack patterns; 

- the calibrated model was used to carry out some parametric analyses in order to 

investigate the influence of vertical load, slenderness and vertical reinforcement 

ratio on the behavior of the masonry system under investigation; 

- the maximum horizontal load capacity of the walls changes, as expected, with the 

variation of these parameters and their combinations.  

- in general, it was possible to find linear relation between the maximum shear 

stress and both the vertical load and the vertical reinforcement percentage.  

- the maximum shear stress presented a non-linear decrease with increase of H/L 

ratio.  

- the ultimate drift curves generally presented a non-linear trend in relation to these 

parameters, due to the variation of ductility caused by the change of failure 

mechanisms in the reinforced masonry walls. 
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5. ANALITICAL MODEL 

5.1. Introduction 

In order to simplify the approaches described in previous chapter an analytical 

model able to reproduce the force-displacement behavior of URM and RM masonry 

walls was built. 

For masonry wall (S.D.o.F. structure) under in plane both vertical and horizontal 

forces, the model is able to take in to account the deformability (also shear 

deformation), that relates the wall behavior with section curvature. The model can 

reproduce both flexural and shear failures, and identifies the achievement of various 

limit states which represent the performances of masonry walls (i.e. serviceability, 

damage control, ultimate, and collapse prevention), related with cross-section or 

whole panel limit states.  

5.2. Model Hypothesis and its Capabilities  

The model is a formulation of a fiber element and is cast in the general framework 

of the mixed method. The proposed state determination is based on a non-linear 

algorithm that always maintains static equilibrium within the element and converges 

to a state that satisfies the element constitutive relation within a specified tolerance.  

The proposed solution algorithm is particularly suitable for the analysis of the highly 

non-linear behavior of softening members, such as reinforced and unreinforced 

masonry piers under varying axial load.  

The formulation of the wall element is based on the assumption of linear geometry. 

The element is divided into a discrete number of cross sections. Plane sections 

remain plane and normal to the longitudinal axis during the element deformation 

history. While this hypothesis is acceptable for small deformations of elements 

composed of homogeneous materials, it does not properly account for phenomena 

which are characteristic of masonry elements (such as cracking). The effect of 

cracking can be included in the model by an appropriate modification of the stress-

strain relation of masonry according to the smeared crack concept of finite element 

analysis. This effect is only significant in the pre-yield phase of response and can 
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be neglected in studies which focus on the hysteretic behavior under large inelastic 

deformation reversals (Spacone et al., 1996).  

From the assumption that sections remain plane and normal to the longitudinal axis, 

all strains and stresses act parallel to this axis. Since the reference axis is fixed, this 

implies that the geometric centroids of the sections form a straight line that 

coincides with the reference axis. It is worth pointing out that the section subdivision 

into fibers derives from the numerical solution of the integrals for the determination 

of the section stiffness and resisting force from the corresponding stresses and 

strains. This point is discussed in more detail in the in the next paragraph (5.3). 

The validity of the analytical results depends therefore on the accuracy of the 

material models. Since the present study is limited to the behavior of masonry 

members and the effect of bond-slip on reinforcement bars is neglected, only two 

material models are required: one for masonry and one for reinforcing steel (if 

reinforcement is present). The element formulation simplifies the task of material 

model selection to uniaxial behavior, which is thoroughly studied and well 

established to date. Three-dimensional effects on material behavior can be included 

into the uniaxial model by appropriate modification of the parameters that define the 

monotonic envelope. This could be important in the case of confined masonry, 

where confinement has a significant effect on the stress-strain behavior, but is not 

the case for masonry systems which this thesis refers. The model does not take into 

account the effect of confinement by transverse reinforcement because this 

phenomenon was not possible for the reinforced masonry construction system 

which this study refers (Mosele, 2009). Actually this is true for reinforced clay 

masonry walls in general, since the reinforcements are placed into horizontal joints 

and they not be able to develop a full bond and confinement effect as reinforced 

concrete. Therefore shear deformation of masonry element does not take into 

account the contribution of horizontal reinforcements (if they are present) until shear 

failure occurs.  

Strength deterioration of masonry members under large deformation reversals 

depends largely on the capacity of masonry to sustain stresses in the strain range 

beyond achievement of maximum strength. This requires the use of a refined even 

simple material model. The model used in this study is shown in Fig. 5.1. The 

monotonic envelope of masonry in compression is a 4 branch multi-linear curve 

(plus a residual strength which is intended only for numerical stability) and was 

neglected the masonry contribution in tension. Even though more accurate and 

complete models have been published since the (Kent & Park, 1971) model, this 

approximation represents a good compromise between simplicity and accuracy.  
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Fig. 5.1. Masonry stress-strain relation. 

 

The non-linear behavior of the proposed element derives in part from the material 

constitutive laws and in part from shear stiffness degradation effect. Therefore 

shear effects are also included, which is a reasonable approximation for normal 

height to depth ratios of the masonry member (it will be discuss more in detail in 

5.3.3). 

The model takes into account possible shear failures at wall level, using the 

phenomenological approach proposed by (Turnšek & Čačovič, 1971) and modified 

by (Tomaževič & Lutman, 1988). This approach refers to a diagonal shear failure 

induced by a tensile failure of masonry panel. It takes into account of effect of axial 

load and, coupled with information provided by this model (namely relation between 

overturning moment and load eccentricity), it can change shear distribution factor 

(b) and update the shear strength of panel with horizontal force variation. The 

choice using only diagonal indirect tensile failure mechanism in shear can be 

justified in the light of observed failure modes in tests under consideration and in 

others experimental works present in literature (da Porto et al., 2009b; Magenes et 

al., 2008; Tomaževič, 2009). If shear failure occurs the model approximates 

empirically the post-peak load-displacement curve of element in a similar way to 

criteria proposed by (Anderson & Priestley, 1992) and (Voon & Ingham, 2007) and 

taking in to account (Mosele, 2009) observations. It does point out however, that the 

criteria presented by these authors aimed to assess the maximum shear strength 

for a given ductility, while the aim of this model is to describe the decay of strength 

with increasing displacement (and therefore also of ductility in the broad sense) 

after the maximum strength achievement (it will be discuss more in detail in 5.3.4).  
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Summarizing, the model start from Moment-Curvature analysis of panel with 

isostatic boundary conditions (fixed to the base) and considers masonry wall as 

isotropic homogeneous material. Then, from pure flexural analysis, considering (if 

present) the contribution of vertical reinforcement bars at wall ends to the flexural 

strength and displacement, the model adds shear deformation contribution.  

Therefore the model follows the wall behavior in the post-peak branch of capacity 

curve and takes into account possible indirect tensile diagonal shear failure of panel 

and the strength contribution of horizontal reinforcement bars (if they are present) 

and approximates shear strength decay with increasing displacements.  

5.3. Model Building and Input Required 

5.3.1. Moment-Curvature Function 

In order to build the moment and curvature functions the inputs required are 

geometrical, material properties and boundary condition definition. Respectively 

these are L, H, t for length, height and thickness of wall (geometrical), fm, Em and G 

which define compressive strength, elastic and shear modulus of masonry (material 

properties) and ζ0 the vertical compression stress (boundary condition). Of course, 

when reinforcements are present there are more inputs required such as the area of 

vertical and horizontal re-bars (As and Ash respectively). In addition, for vertical re-

bars, positioning with respect to the wall edge (d‟) and spacing between horizontal 

re-bars (s), and also steel material properties, such elastic moduli (Es and Esh 

respectively) and steel yield strengths (fys and fysh) 

Imposing equilibrium equations it is possible, for a generic cross-section, moment 

and curvature related to a specific strain (i.e. at the maximum compressed side). In 

this way it is possible to identify some limit states related to cross-section 

performances even though limited to flexure response. Observing that shear 

deformation don‟t affect curvature, moment and curvature previously calculated are 

still valid even when shear deformation is added. Therefore isostatic boundary 

conditions of panel suggest that these cross-section limit states related to base 

section of wall will give, at least, the first indicators of whole panel behavior. 

Furthermore, imposing that compression strain grows (at compressed toe), it is 

possible to control the whole moment curvature curves and by simply imposing 

equilibrium equations.  

In details, imposing vertical translation equilibrium equation and ε (the masonry 

strain at compressed edge of section) the model is able to find the correct cross-
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section part under compression (named β) using the following equations (from Eq. 

5.1 to Eq. 5.6):  

       (Eq. 5.1) 

           (Eq. 5.2) 
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 (Eq. 5.5) 

         (Eq. 5.6) 

Where d is the distance between vertical reinforcement in tension and the edge of 

section in compression, N the total vertical force applied to masonry panel (it is 

constant as ζ0), C is the total compressive reaction force provided by masonry, S is 

the reaction of vertical reinforcement in tension (negative in this reference system) 

and S‟ the reaction of vertical reinforcement in compression (which is positive).  

The solutions was achieved using MathCad 14 (from PTC software) environment 

with non-linear solver that uses Levemberg-Marquardt method and a numerical 

tolerance of 10
-5

N for (Eq. 5.6) and integrals of (Eq. 5.2).  

For each strain imposed to masonry in compression (which always grows during a 

push-over analysis) model can relate an effective compression depth (β(ε)) starting 

from a strain ε0 due to initial ζ0 stress state using the following equations (from Eq. 

5.7 to Eq. 5.9) in the previous (Eq. 5.6). 

                (Eq. 5.7) 

      ,
             |  |     

           |  |     
 (Eq. 5.8) 

             (Eq. 5.9) 
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When compression depth is known is possible to calculate the position of resultant 

provided by masonry contribution. With (Eq. 5.10) it was calculate this position 

referring to compressed end of section. 
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 (Eq. 5.10) 

Then, imposing rotational equilibrium to section, it was find out the bending moment 

as a function of maximum compression strain in masonry compressed end of 

section (M(ε)) with following equation (Eq. 5.11): 

     (  
 

 
)  [(         )  (      )  (        )] (Eq. 5.11) 

Using a more general form (with the above mentioned hypothesis that section 

remains plane), it was also calculated the curvature as function of maximum 

masonry compression strain (θ(ε)) by (Eq. 5.12) 

             (Eq. 5.12) 

Furthermore, as common practice, model limits the post-peak response with some 

additional controls: 

a) maximum strength loss is 20% of bending moment at peak; 

b) vertical reinforcements in compression do not yield (         ). 

The first point above find reference in a manifold of codes and research works 

(Ordinanza P.C.M. n. 3274: 2003, 2005; Tomaževič, 1999).  

Instead point b) gives a raw approximation for the model and is un-conservative 

limit for possible buckling effects of compressed vertical reinforcements. Correctly 

evaluate the buckling length (and consequently buckling load) is an hard task 

because mortar columns, where vertical reinforcements are arranged, might be in a 

non-linear range of stress-strain relation and also horizontal reinforcements don‟t 

provide a full constraint when reinforcement bars can buckle. 

5.3.2. Flexural Displacement Contribution 

Despite both bending moment and curvature are functions of same maximum 

masonry compression strain, it should be pointed out that the model cannot relate 

them straightforward. This is an issue that imposes to leave a pure analytical 
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solution for a less fascinating but practically suitable numerical way. This would be 

objective of future improvements of model.  

Anyhow, we can observe that for a non-linear solution, which is the target of this 

model, the curvature profile along the height (H) of masonry wall is a prioi unknown. 

Then it is useless to relate bending moment directly to curvature (M(θ)) because 

even if it is theoretically possible by cross-section equilibrium equations it is not 

when model need integration along wall height to obtain the global response.  

Furthermore, bending moment profile along wall height is known, thanks to isostatic 

boundary conditions, and varies linearly from 0 at top of the wall up to maximum at 

base of masonry pier. So it is possible to relate and integrate curvature with 

bending moment, but during the strength-loss branch of Moment-Curvature (and/or 

Force-Displacement curves), the solution becomes not unique and θ(M) function 

does not have a straightforward analytical solution.  

Therefore, this model adopts a workaround of these problems: 

a) approximating θ(M) function obtained from linear interpolation of θ(ε)-M(ε) 

functions at cross-section level; 

b) dividing θ(M) function in two branches one before and one after the 

maximum bending moment. 

Linear interpolation of functions θ(ε) and M(ε) is made with θ as dependent value 

from M value and where each couple refers to the same maximum masonry strain 

in compression. The operation of dividing these functions in two branches was 

intended to have two monotone functions and furthermore made possible a handily 

way to manipulate post-peak moment profile (Fig. 5.2 provides a typical form of 

Moment curvature relation). Actually both these procedure was applied for all 

variables e.g. C, S, S‟, β in order to refer all of them directly to cross-section 

bending moment and not only for curvature. 

As stated above, due isostatic boundary conditions, model can refer to base 

bending moment (and of course base shear force) without losing any information 

about moment variation along wall height because it is always linear. This makes 

possible to describe curvature profile for a given base shear force and hence 

integrate it to obtain a rotation profile and, with a second integration process, the 

displacement profile. 

Therefore, model draws shear force versus displacement curve or rather a capacity 

curve of wall. To be precise only flexural capacity curve was found until shear 

deformation contribution to displacements is also added. 
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Fig. 5.2. Moment-Curvature relation. An example of typical form.  

(TG masonry with σ0=1.55 N/mm
2
, M [kNm] and φ[106/mm]) 

 

There are a couple of issues about post-peak response treatment and integration 

process that have to be pointed out. First, when the wall reaches maximum bending 

moment at base cross-section (according to moment-curvature function found), rest 

of the wall has lower moment. Then, in the next step (see Fig. 5.3), base-wall 

bending moment decreases following moment-curvature function (start softening 

branch). Instead other cross-sections have different behavior because their moment 

decreases even though it did not reach maximum moment. Hence base section 

behaves following found moment curvature function and its curvature grows with 

strength softening when it is not for the rest of wall. Model does not provide a 

loading-unloading stress-strain function, so needs to approximate this phenomenon 

with one more hypothesis at moment-curvature level. A good and accepted in 

literature hypothesis (Benedetti et al., 1982; Del Piero, 1983) describes 

compression unloading for masonry as linear.  

This model introduces the hypothesis of constant curvature unloading for all cross-

sections above the wall base, hence with a further approximation. This is justified 

from observation that curvature of elastic branch is negligible against more stressed 

cross-sections (see Fig. 5.4 where the green line represents the elastic curvature 

profile or an estimate of error introduced introducing this hypothesis).  

To describe post-peak capacity curve it was built a matrix where the curvature of 

base cross-section follows the full moment-curvature function whereas sections 

above base keep constant for each horizontal shear force applied at top of wall. 
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Fig. 5.3. Post-peak behavior of model.  

(A) Member and loading; (B) Moment distribution; (C) Curvature distribution;  

(D) Moment-Curvature relation. (Taucer et al., 1991) 

  

 
 

Fig. 5.4. Curvature along height of wall. An example of typical form. 

Red line curvature profile at max strength, blue line at ultimate strength and 

green elastic curvature. (TG masonry with σ0=1.55 N/mm
2
, H [mm] and φ [1/mm]) 

 

In general this this kind of approaches bear to discretization sensitivities when 

integrating the functions along height of wall because section base curvature (the 

only one where curvature increases beyond maximum moment) has more or less 

influence in whole response (the integrated one) with change of discretization size. 

This problem was found in other works in literature (Jiang & Kurama, 2010; Taucer 

et al., 1991) but with a reasonable number of subdivision along the wall and 
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especially close to the base (where are the non-linarites concentrated), the 

response of wall becomes stable.  

5.3.3. Shear Displacement Contribution to Flexural Behavior 

After the calculation of pure flexural response the model adds the deflection 

induced by shear. This was estimated by integration along wall height too, but using 

(Eq. 5.13) that express angular deflection due to shear: 

     
   

      
 

 

    
  (Eq. 5.13) 

Where χ indicates shear coefficient that is constant and equal to 6/5=1.2 for 

rectangular sections used in this model; F is horizontal force applied and β is the 

neutral axis position of cross-section measured from compressed end of section. 

This form of equation was used for directly taking into account the actual section 

involved in the shear-flexure deformations as soon as the material is (by 

hypothesis) not resisting to traction.  

Fixed the force applied (F), β varies along the height of the wall, from whole section 

length (L) in the upper part of panel, that is still elastic, and decreases with 

increasing of moment up to the base section. Hence, when masonry reaches elastic 

limit (εel) and starts non-linear part of stress-strain curve, shear modulus do not still 

as remaining constant. Besides since G is an elastic modulus, it acts only in the 

cross section part that is still in the elastic range (masonry compression strain 

smaller than εel). 

This two observations are translated in the following (Eq. 5.14 and 5.15): 
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 (Eq. 5.14) 

          
      

    
  (Eq. 5.15) 

So, previous (Eq. 5.13) becomes the following (Eq. 5.16): 

     
   

         
 

 

      
  (Eq. 5.16) 

Integrating this equation (using the same recommendations presented in previous 

paragraph 5.3.2) along the height of wall bears to find shear displacement 

contribution (an example in Fig. 5.5). 
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 Fig. 5.5. Displacement profiles along height of wall.  

Red line: total displacement profile at max strength, blue line shear  

displacement contribution and green flexure displacement contribution.  

(TG masonry with σ0=1.55 N/mm
2
, H [mm] and Δ [mm]) 

5.3.4. Shear Strength and Displacement Limits 

Mixed method proposed with the model calculates flexure behavior by successive 

integrations to get the response of masonry wall, starting from section equilibrium 

equations while possible shear failure is evaluated considering masonry pier 

subjected to a global mechanism. Model follows a phenomenological approach that 

considers masonry shear failure as truss tensile-induced failure and indirectly takes 

into account vertical load (Tomaževič & Lutman, 1988; Turnšek & Čačovič, 1971). 

Furthermore, in present model masonry shear strength is not considered constant 

because it can calculate for every single bending moment value and eccentricity of 

load resultant (e) over cross-section. According with formulation proposed in 

(Bernardini et al., 1982a; Bernardini et al., 1982b) the (Eq. 5.17) 
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 (Eq. 5.17) 

Where b is the factor that refers to maximum tangential stress distribution with 

respect the mean one. It varies between 1.5 for slender cantilever walls (      ⁄ ) 
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and 1 for squat cantilever walls     ⁄ . Therefore factor b is function of 

eccentricity (    ⁄ ) and indirectly function of bending moments (see Fig. 5.6). 

  

 

Fig. 5.6. Variation of b coefficient with base shear force.  

(TRSa masonry with σ0=0.6 N/mm
2
, b [-] and F [kN]) 

 

Accordingly to this, shear strength (Vr) is a summation of two contributions: 

masonry shear strength (Vm) and horizontal reinforcements (Vsh) if they are present. 

First term is calculated from (Eq. 5.18): 

      (
   

    
 √

  

   
  )      (Eq. 5.18) 

With fmt is indicated tensile strength of masonry (considered as homogeneous 

material) and it is evaluated from (Eq. 5.19): 

     √              ⁄  (Eq. 5.19) 

This definition is a refinement of American formulations that are characterized by 

adopting tensile strength in the URM contribution, since Vm term contains √  , and 

in particular (Anderson & Priestley, 1992) gives     √  , which corresponds to 

    √  , usually accepted as estimation of tensile strength of masonry (Tassios, 

1988). 

(Tomaževič, 1999) proposed to evaluate the tensile strength as 0.03÷0.09 fm. These 

are consistent with data and observations provided by (Mosele, 2009). This model 

provides also a limitation of 0.2 N/mm
2
 that improves the best fitting for all masonry 

systems under investigation in this thesis (both URM and RM system). 

Shear contribution due to horizontal reinforcements is given by (Eq. 5.20): 
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      (
 

 
         ) (Eq. 5.20) 

This formula calculates the number of stirrups across the diagonal crack (assumed 

to be 45° sloped starting from the effective length of the resisting section: d). 

Spacing between two horizontal reinforced joints was named s and Cr is reduction 

coefficient that takes into account efficiency of stress transfer among horizontal 

reinforcements and masonry (Anderson & Priestley, 1992; Mosele, 2009; 

Tomaževič & Lutman, 1997) and it is equal to 0.6 in agreement with (Ordinanza 

P.C.M. n. 3274: 2003, 2005). In this way model can calculate shear strength of 

masonry panel (Vr) associated to each bending moment (M). The isostatic boundary 

conditions bear that shear strength of pier must be confronted with wall base 

bending moment or rather the flexure capacity of masonry wall. Then it is possible 

to verify whether shear failure occurs in the wall that is whether shear strength is 

lesser then flexure capacity (Fig. 5.7).  

  

 

Fig. 5.7. Variation of shear strength with base shear force (green line). 

Blue line is the masonry shear strength contribution Vm. Red line is the 

total shear strength Vr. (TRSa masonry with σ0=0.6 N/mm
2
, graph in kN) 

 

When shear failure occurs, model follows the capacity curve until this point. After 

that it needs to describe post-peak behavior in terms of strength decay and 

displacements.  

As introduced above (paragraph 5.2) force-displacement relation is composed by 

two branches. The first where strength still constant with displacement increasing 

and a second branch where a parabolic decay of strength, with displacement 
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increasing, take place until the ultimate displacement fixed at 20% of strength decay 

respect to maximum shear capacity (see Fig. 5.8). 

The displacement of two points where model change between these branches were 

found with following equations (Eq. 5.21 to Eq. 5.24): 
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)+                          (Eq. 5.21) 
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 (Eq. 5.22) 

Where    is the displacement point where constant strength ends when shear 

failure occurs. It was found limiting   
  function between two constraint point given 

by:     the displacement where shear failure starts to develop and       the 

displacement of maximum flexure capacity.  

 

 
Fig. 5.8. Post peak behavior of model in case of diagonal shear failure. 

Blue line: flexure capacity curve. Red line: diagonal shear post-peak curve. 

 

The function   
   is characterized by two components. The first factor is a ratio 

controls how much masonry shear capacity is far from flexure capacity (without 

horizontal reinforcement contribution) and how much “ductile” would be flexure 

post-peak response if shear failure did not occur. Second factor of   
  is a sum of 

displacement due to masonry shear strength and displacement due to horizontal 

reinforcement contribution (left over to    ). These two addends are magnified by 
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    and     resulting from best fitting of experimental results of both reinforced and 

unreinforced masonry systems under investigation which had a shear failure.  
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 (Eq. 5.24) 

   is the ultimate displacement when shear failure occurs after the parabolic decay 

which starts after    point. It was found limiting   
  function between two constraint 

point given by:           considered as a minimum multiplier factor of 

displacement    (in according with experimental data) and           appear as 

reasonable limit for shear failure ductility. Again   
  has the same form of   

  but it is 

fitted with experimental results using different coefficients     and     which 

magnify respectively     and the displacement contribution of stirrups         . 

The coefficients    ,    ,     and     were fitted using both reinforced and 

unreinforced masonry which had shear failure and their values proposed are 

respectively:        ,         ,         and       . 

5.4. Analyses of Unreinforced Masonry Walls 

To validate the analytical model described in previous paragraph (5.3) were done a 

series of analyses focused to reproduce the experimentally observed data. 

Afterwards was carried out a series of parametrical analyses aimed to extend the 

experimental results and investigate the influence of different parameters on 

masonry behavior. 

5.4.1. Experimental Tests Reproductions 

The input required for the model are described in paragraph 5.3.1 and summarized 

in Table 5.1 there are those used for different unreinforced masonry Po, TG and 

TM. The calibration process was quite easy because of simplified hypotheses used 

in the model and consequent limited number of parameters needed.  

The model uses, obviously, the same geometrical and boundary conditions of 

experimental test set-up (namely L, H, t, σ0). The mechanical parameters are the 

same resulting from experimental tests for compressive strength (fm), elastic 

modulus of masonry (Em). The only parameter used to calibrate the model is the 
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shear elastic modulus (G). Starting from standard diagonal compression test results 

G was corrected (lowering about 20%) to catch the initial stiffness of elastic branch 

of capacity curves. It was found a good agreement with shear modulus extrapolate 

form shear-compression tests which is quite lower from the former one as observed 

in (da Porto et al., 2009b; Mosele, 2004).  

 

Wall 
fm Em G L H t H/L 

N/mm
2 

N/mm
2
 N/mm

2
 mm mm mm - 

TM 6.95 4497 700 984 1271 300 1.292 

TG 5.67 4983 600 992 1187 300 1.196 

Po 5.34 5113 550 993 1184 300 1.192 

Table 5.1. Mechanical and geometrical parameters used modeling unreinforced masonry. 

 

Fig. 5.9 Fig. 5.10 and Fig. 5.11 show the comparison between experimental 

behaviors, represented by the envelope of the hysteresis loops, and modeling 

results, for the three masonry types (respectively for Po, TG and TM) and for 

specimens tested under different compressive load. Dashed lines are the 

experimental positive and negative envelopes, the continuous lines are the modeled 

capacity curves and dots represent some limit states in the model. 

The model was able to well reproduce initial elastic stiffness. Comparison of the 

various masonry types showed that their behavior was similar. In general model 

highlight that for all masonry types the sequence of limit states is not constant with 

different vertical load. When low vertical stress ratio was applied first limit state is 

horizontal cracking at base, with reduction of cross-section that actually responds to 

compression. The response still almost linear until second limit state, first non-

linearity in masonry (see Fig. 5.1), was achieved for most stressed element in 

compression. On the contrary for higher vertical stress ratios model come out from 

masonry stress-strain linear branch before the wall base cross-section show the 

first horizontal crack. 

Therefore in general model underestimates the experimental strengths (except for 

TM-33% wall but only with 2% of error). The model is in fairly good agreement with 

experimental results in term of maximum strengths and maximum displacements. In 

strength the average error is about 7% and maximum error is about 20%, in terms 

of maximum displacement the average error is about 26% (and 20% if exclude one 

TM-22%).  

With a closer look on Po walls (Fig. 5.9) is possible to observe that model of wall 

Po-17% (i.e. with ζ0/fm = 0.17) had lower ultimate displacement capacity compared 

with experimental (error about 34%). This fact can be imputed to rocking prevailing 

behavior which is difficult to catch with the model. Other Po analyses with different 
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vertical axial loads were able to reproduce correctly the flexural behavior. Despite 

Po-22% analysis show a higher error in term of strength (about 20%) respect other 

analyses.  

 

 
Fig. 5.9. Po masonry. Model versus Experimental load-displacement capacity curves. 

 

 
Fig. 5.10. TG masonry. Model versus Experimental load-displacement capacity curves. 
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Furthermore it can be noted that the choice to put critical limit state when maximum 

masonry compression stress in the wall (at compressed toe) reaches the masonry 

compressive strength (ζm.max = fm) is supported by a great change in stiffness 

between before and after this point and also from observation of some 

discontinuities in experimental capacity curves close to this point. 

Even though TG-27% shows an error in term of maximum horizontal force of about 

20%, TG wall analyses (Fig. 5.10) confirm flexural-type behavior experimentally 

observed with good agreement in terms both of maximum displacement (average 

error 12%) and of horizontal strength (average error about 11%). Still valid the 

observations pointed out for Po masonry type which had a similar behavior to TG 

masonry. 

 

Fig. 5.11 shows the TM masonry analyses compared with experimental envelope 

curves. The curves are in very good agreement until maximum strength both in 

terms of displacement and force. Anyway it can be noted that analysis of TM-27% 

wall has a lower maximum strength than TM-33% wall on contrary experimental 

specimens had for TM-27% a higher maximum horizontal force than TM-33%. 

Despite this fact model load error is still lower than 7% at maximum strength. 

Moreover the model is able to catch both flexural-type of failure for TM-17% and 

TM-22% and shear failure for TM-27% and TM-33% walls.  

The simplified approach used to describe shear failure, which is controlled by only 

one parameter (tensile strength fmt), is able to catch experimental specimens which 

were subjected to this kind of failure. This is consistent with the idea that shear 

cracks in masonry are generally related to principal tensile stresses derived by bi-

axial stress state. This type of stress state is adequately described by (Turnšek & 

Čačovič, 1971), which considers not only the tensile strength influence, but also the 

effect of different axial stresses and is consistent with that obtained (Anderson & 

Priestley, 1992) by data regression and with the experimental data. 

Analyses of TM-27% and TM-22% in particular have a higher displacement capacity 

compared with the experimental tests related to. Actually this is the major difference 

showed by the model, but it is worth to point out that those analyses refer to a 

boundary zone between shear failure and flexural failure and this fact together with 

experimental variability could be a partial explanation of this difference. 
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Fig. 5.11. TM masonry. Model versus Experimental load-displacement capacity curves. 

 

Table 3.6 summarizes the experimental limit states. It shows lateral load, 

displacement and rotation angle (drift) related to first observed flexural cracking, 

shear cracking, maximum resistance and displacement of last stable cycle. These 

are obtained averaging values at positive and negative displacement amplitudes. 

Table 5.2 summarizes the modeling analysis limit states showing same parameters 

but it can be noted that the choice of limit state was slightly different for first two limit 

states. In facts, model can highlight earlier the first non-linearity than experimental 

tests and data observation, because it can highlight the reaching of a selected limit 

state for a single cross-section. On contrary during tests, and from data obtained, is 

possible to notice when mechanism changes wall behavior involving at least a part 

of wall and not only one section. This explains why experimental limit state named 

flexural cracking was always after both first non-linearity of masonry in compression 

and the first horizontal crack due to reduction of compressed zone. 

Since model is able to find the exit from masonry linear elastic behavior this is 

considered more significant limit state than the appearance of first horizontal crack. 

The second, and fundamental, limit state refers to the attainment of masonry 

compressive strength and start of yielding branch (see Fig. 5.1) at maximum 

compressed zone, i.e. at toe of wall. Here masonry stress-strain curve enters in a 

plastic phase and wall leaves completely the linear behavior. For this reason this 

limit state was chosen as critical limit state which ductility parameter (µ) refers to 

(see from Fig. 5.15 to Fig. 5.17). 
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Fig. 5.12. Po masonry. Mean shear stress versus drift at different limit states of Model. 

 

 
Fig. 5.13. TG masonry. Mean shear stress versus drift at different limit states of Model. 

 

 
Fig. 5.14. TM masonry. Mean shear stress versus drift at different limit states of Model. 
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Fig. 5.15. Po masonry. Mean shear stress versus ductility at different limit states of Model. 

 

 
Fig. 5.16. TG masonry. Mean shear stress versus ductility at different limit states of Model. 

 

 
Fig. 5.17. TM masonry. Mean shear stress versus ductility at different limit states of Model. 
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Wall 

1
st
 non-linearity Masonry Yielding Maximum Strength Max displacement 

He δe Ψe Hcr δcr Ψcr Hmax δHmax ΨHmax Hδmax δmax Ψδmax 

kN mm % kN mm % kN mm % kN mm % 

σ0/fm = 0.33 

TM-33% 46.0 0.63 0.05 153.4 5.38 0.42 164.2 7.35 0.58 131.3 8.88 0.70 

TG-33% 40.0 0.50 0.04 136.6 4.69 0.39 155.1 11.55 0.97 124.1 19.11 1.61 

Po-33% 46.7 0.61 0.05 123.2 4.45 0.38 136.7 10.64 0.90 109.4 19.96 1.69 

σ0/fm = 0.27 

TM-27% 59.8 0.82 0.06 142.5 5.00 0.39 154.7 8.74 0.69 123.7 17.14 1.35 

TG-27% 53.3 0.67 0.06 126.4 4.31 0.36 139.0 10.08 0.85 111.2 19.52 1.64 

Po-27% 50.4 0.66 0.06 119.7 4.31 0.36 131.6 10.17 0.86 105.3 20.10 1.70 

σ0/fm = 0.22 

TM-22% 72.0 1.00 0.08 126.6 4.57 0.36 135.9 9.85 0.77 108.8 21.48 1.69 

TG-22% 64.2 0.82 0.07 112.3 3.87 0.33 120.5 8.61 0.73 96.4 20.23 1.70 

Po-22% 61.1 0.81 0.07 104.4 3.81 0.32 111.8 8.52 0.72 89.5 21.00 1.78 

σ0/fm = 0.17 

TM-17% 73.5 1.11 0.09 104.7 4.07 0.32 110.0 8.26 0.65 88.0 23.29 1.83 

TG-17% 65.4 0.90 0.08 93.1 3.37 0.28 97.8 7.10 0.60 78.3 22.46 1.90 

Po-17% 61.9 0.89 0.07 88.0 3.36 0.28 92.5 7.13 0.60 74.0 22.91 1.93 

Table 5.2. Model. Lateral load, displacement and rotation angle at first masonry non-linearity, 

masonry compression yielding, maximum strength and maximum displacement limit states. 

5.4.2. Parametrical Extension of Experimental Tests 

The analyses done with the numerical model approach reported in paragraph 4.2.3 

were repeated and extended using the analytical model proposed in this chapter, 

besides other parametrical analyses were done aimed to investigate the influence 

of slenderness on global shear behavior of the three masonry types TM, TG and 

Po. Furthermore a series of analyses with the purpose to find a better definition of 

displacement in case of flexural failure needed in the section 7.1 will presented. 

In the first series of analyses was changed, as in paragraph 4.2.3, the unit 

compressive strength (fcu) between 5 and 20 N/mm
2
. 

In the micro modeling FEM strategies adopted, the model inputs required were 

compressive strength, elastic modulus (Eu) and tensile strength (ftu) of blocks. In 

order to calibrate unit elastic modulus and tensile strength a formulation relating 

them to the unit compressive strength was adopted. The analytical model proposed 

in this chapter is a homogenized macro model then needs to relate compressive 

strength of unit to compressive strength, elastic modulus, shear modulus and 

tensile strength of masonry wall (fm). 

This issue was overcome using a formulation first proposed from (Guidi, 1954) and 

recently calibrated on basis of wide database (da Porto, 2005; DISWall, 2008) using 

the equation following (Eq. 5.25) where fcm is the compressive strength of mortar: 
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                 (Eq. 5.25) 

The elastic modulus was calibrated starting from calculated fm using (Eq. 5.26) 

which was fitted with experimental data. The shear modulus G was supposed 

proportional to Em and linearly varied with. Finally evaluation of tensile strength of 

masonry (fmt) uses the (Eq. 5.19) previously described. 

        √  
 

 (Eq. 5.26) 

Table 5.3 lists the mechanical parameters used during compressive strength 

parametrical analyses. 

For each masonry type and each value of unit compressive strength, analyses were 

repeated by applying the same vertical load used in the experimental tests, or a 

vertical load corresponding to the same ratio between applied load and 

compressive strength of masonry. In the latter case, it was possible to compare the 

behavior of each masonry type, varying the unit compressive strength, when 

stresses inside the walls had comparable intensity. Hence, three types of masonry, 

two levels of vertical compression stress and four unit compressive strength 

repeated in two combinations (with same ratio and same magnitude used in 

experimental tests) yield a total analyses number of 48. 

 

[N/mm
2
] fcu fm Em G 

Po 

20 5.49 4748 511 

15 4.12 4314 464 

10 2.74 3769 405 

5 1.37 2991 322 

TG 

20 5.49 4748 572 

15 4.12 4314 519 

10 2.74 3769 454 

5 1.37 2991 360 

TM 

20 5.99 4888 761 

15 4.49 4441 691 

10 2.99 3880 604 

5 1.50 3079 479 

Table 5.3. Parameters used in compressive strength 

parametrical analyses of unreinforced masonry. 

 

For these analyses vertical compression ratios corresponding to 17% and 22% of 

masonry compressive strength were used. This choice was slightly different from 

corresponding FEM parametrical analysis, because this analytical model is oriented 

to find masonry behavior close to cases which are more often present in practical 

design of unreinforced masonry buildings (low-rise building bears to a quite low 

vertical load), more than inspect masonry capabilities in term of stress and strain 
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inside the wall. In the next will be indicate a wall with label composed by three parts: 

first indicate the type of masonry, second the vertical stress applied (in percentage 

or indicating e.g. ζ0 = 0.89 N/mm
2
 as “089”) and third number the compressive 

strength of unit considered (indicating e.g. fcu = 5 N/mm
2
 as “05”, fcu = 10 N/mm

2
 as 

“10”, …) 

Fig. 5.18 shows the analyses for Po masonry with reference to vertical stress ratio 

of 17% of compressive strength of this masonry (in yellow and red), approximates 

with (Eq. 5.25) and also the analyses done with vertical load applied in experimental 

tests which was 0.89 N/mm
2
 (in green and blue). Obviously the horizontal forces 

and maximum displacements tend to increase with masonry compressive strength 

in both vertical load combinations. 

It can be noted that walls with constant ratio between vertical load and compressive 

strength (in yellow and red), tend to have the same behavior with the same 

sequence of limit states (showed with markers) despite capacity of masonry 

increase significantly with masonry compressive strength increments. Furthermore 

these increments are almost linear both in terms of force and displacement 

capacity.  

The limit state sequence showed in these analyses was:  

1. horizontal cracking of wall at base section (Fhc); 

2. masonry leaves its elastic part of stress-strain curve at base section (Fe); 

3. masonry yields in compression at toe of wall (Fcr); 

4. wall reaches maximum horizontal shear strength (Fmax); 

5. maximum displacement capacity (δmax). 

If vertical load was kept constant (in green and blue), the masonry behavior 

changes with compressive strength of masonry: from ductile flexure, when high unit 

strength was used, to brittle flexure when low unit strength was used. When 

compressive strength was between 10 and 20 N/mm
2
 maximum shear resistance of 

walls was changed about 20% between walls with fcu = 20 and 10 N/mm
2
 and a 

great decrease was found when fcu = 5 N/mm
2
.  
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Fig. 5.18. Po-17% masonry. Parametrical analyses with block strength variation. Horizontal 

force versus displacement. Red/yellow constant ratio, green/blue constant load combinations. 

 

 
Fig. 5.19. Po-22% masonry. Parametrical analyses with block strength variation. Horizontal 

force versus displacement. Red/yellow constant ratio, green/blue constant load combinations. 
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Fig. 5.20. TG-17% masonry. Parametrical analyses with block strength variation. Horizontal 

force versus displacement. Red/yellow constant ratio, green/blue constant load combinations. 

 

 
Fig. 5.21. TG-22% masonry. Parametrical analyses with block strength variation. Horizontal 

force versus displacement. Red/yellow constant ratio, green/blue constant load 

combinations. 
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Fig. 5.22. TM-17% masonry. Parametrical analyses with block strength variation. Horizontal 

force versus displacement. Red/yellow constant ratio, green/blue constant load 

combinations. 

 

 
Fig. 5.23. TM-22% masonry. Parametrical analyses with block strength variation. Horizontal 
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force versus displacement. Red/yellow constant ratio, green/blue constant load 

combinations. 

 

In this vertical load combination the sequence of limit states previously described is 

not always valid. Fhc and Fe were achieved in different order, as with the same 

vertical load Fe tends to be reached earlier if compressive strength decreases. 

When lowest unit compressive strength was used, wall started to displaces when it 

was already in nonlinear phase of masonry stress-strain relationship and this fact 

causes a low initial stiffness. 

Fig. 5.19 shows Po masonry analyses carried out with vertical loads of 22% of 

vertical compressive strength and with constant vertical load of 1.14 N/mm
2
. 

Observations done for Fig. 5.18 are still valid also in this case and it is worth to 

point out that strong loss of masonry capacity, both in term of strength and 

displacement, shown when constant load was applied and unit compressive 

strength was 5 N/mm
2
, became more important with this higher vertical load. 

 

 

fcu Fmax Fmax/ Fmax20 Fmax Fmax/ Fmax20 

N/mm
2
 kN % kN % 

Po 

 ζ0 = 0.89 N/mm
2
 ζ0 = 1.14 N/mm

2
 

20 92.7 100 112.9 100 

15 86.7 93 102.8 91 

10 74.6 80 82.8 73 

5 38.5 41 22.5 20 

TG 

 ζ0 = 0.94 N/mm
2
 ζ0 = 1.24 N/mm

2
 

20 96.9 100 119.3 100 

15 90.1 93 107.5 90 

10 76.6 79 83.9 70 

5 35.9 37 13.1 11 

TM 

 ζ0 = 1.16 N/mm
2
 ζ0 = 1.53 N/mm

2
 

20 106.5 100 129.9 100 

15 97.9 92 114.8 88 

10 80.6 76 84.6 65 

5 28.9 27 0.7* 0.5* 

Table 5.4. Summary of maximum horizontal strength in case of constant load applied. 

 

Analyses done for TG masonry are showed in Fig. 5.20 and Fig. 5.21 respectively 

with ratios of 17% and 22% of masonry compressive strength and with constant 

loads of 0.94 N/mm
2
 and 1.24 N/mm

2
. Besides, Fig. 5.22 and Fig. 5.23 show 

parametric analyses of TM masonry. When constant loads were used, compression 

stress was respectively 1.16 N/mm
2
 and 1.53 N/mm

2
. Also for TM masonry previous 

remarks are still valid but it can be noted as ζ0 = 1.53 N/mm
2
 is higher than 

masonry compressive strength for fcu = 5 N/mm
2
 so an analysis with  

ζ0 = 1.49 N/mm
2
 was performed. Results (marked with *) are reported in Table 5.4 

with a summary of maximum horizontal strength in case of constant load applied. 
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The second series of parametrical analyses, as outlined before, concerns variation 

of wall slenderness, namely the wall length (L). It was changed from experimental 

length adding or removing a unit. Hence from four unit as in the original walls, to 3 

unit, named slender walls (suffix SL), and 5 unit, named squat walls (suffix SQ).  

Combination for this kind of parametric analysis includes three masonry types, four 

ratios of vertical load and three wall slenderness‟s for a total number of 36 

analyses. Table 5.5 summarizes the different wall lengths used in these analyses 

and indicates corresponding slenderness ratio (H/L).  

 

Wall suffix 
L H H/L 

mm mm - 

TM 

SL 738  1.722 

 984 1271 1.292 

SQ 1230  1.033 

TG 

SL 744  1.595 

 992 1187 1.196 

SQ 1240  0.957 

Po 

SL 745  1.589 

 993 1184 1.192 

SQ 1241  0.954 

Table 5.5. Parameters used in slenderness parametrical analyses of unreinforced masonry. 

 

From Fig. 5.24 to Fig. 5.26 the results of slenderness parametrical analyses are 

presented in terms of force-displacement curves with markers used to indicate 

principal limit states. With black and grey lines was show slender walls (SL), with 

green and blue the squat walls (SQ) and in red and yellow experimental analyses 

reproductions. 

In general, all three masonry types with slender walls exhibited a flexure failure. 

Furthermore, in general when slenderness ratio decreases masonry wall capacity to 

sustain lateral load tends to increase together with displacement capacity until 

shear failure takes place. 

Excluding Po-17%-SQ and TG-17%-SQ other squat walls exhibited a shear failure. 

Moreover Po-22%-SQ, TG-22%-SQ and TM-17%-SQ had a shear failure which 

demonstrated a certain amount of ductility reserve. Actually in these analyses 

maximum shear strength was reached after critical limit state (fixed when masonry 

yields in compression at wall base), that ensures that flexural damage develops 

before shear failure takes place. On the contrary, other squat walls showed a very 

sudden shear failure before masonry reached maximum compressive strength in 

any cross section along the wall. Also at maximum displacement these walls 

denoted a poor ductility with a strong drop of strength immediately after the shear 

failure. 
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Fig. 5.24. Po masonry. Parametrical analyses with slenderness variation. Horizontal force 

versus displacement. Red/yellow experimental, green/blue squat, black/grey slender walls. 

 

 
Fig. 5.25. TG masonry. Parametrical analyses with slenderness variation. Horizontal force 

versus displacement. Red/yellow experimental, green/blue squat, black/grey slender walls. 
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Fig. 5.26. TM masonry. Parametrical analyses with slenderness variation. Horizontal force 

versus displacement. Red/yellow experimental, green/blue squat, black/grey slender walls. 

5.5. Analyses of Reinforced Masonry Walls 

To validate the analytical model described in previous paragraph (5.3) for RM walls 

a series of analyses focused to reproduce the experimentally observed data were 

done. 

Afterwards, a series of parametrical analyses aimed to extend the experimental 

results and investigate the influence of different parameters on reinforced masonry 

behavior was carried out. 

5.5.1. Experimental Tests Reproductions 

The input required for the model are described in paragraph 5.3.1 and summarized 

in Table 5.6 there are those used for reinforced masonry. The calibration process 

was quite easy because of simplified hypotheses used in the model and 

consequent limited number of parameters needed.  

The model uses, obviously, the same geometrical and boundary conditions of 

experimental test set-up (namely L, H, t, ζ0). The mechanical parameters result 
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from experimental tests done, as elastic modulus (Em) and compressive strength 

(fm) of masonry, or vertical and horizontal reinforcements yield stress (fysv and fysh 

respectively) and elastic moduli (Esv and Esh respectively).  

It can be noted that fm was chosen slightly higher (2%) than average compressive 

strength resulting from experimental uniaxial compression tests. This was due to 

observation that wall specimen which showed an earlier failure that affected the 

mean value, also showed a better crack pattern and moreover only two uniaxial 

experimental tests were done. Hence fm value was rounded to 4 N/mm
2
.  

From test results G was calibrated in order to catch the initial stiffness of capacity 

curves.  

Masonry and reinforcement details are summarized in Table 5.6 and Table 5.7 

respectively. It is worth to remember that model cannot reproduce the complex 3D 

interaction developed in masonry joints when truss horizontal reinforcement was 

used and hence model cannot catch differences between single bar and truss 

behavior except for the effects of their different cross-section reinforcement area (or 

percentage over wall area). 

 

fm Em G 
Wall 

L H t H/L ζ0 

N/mm
2 

N/mm
2
 N/mm

2
 mm mm mm - N/mm

2
 

4.00 5835 650 

SRSa04 1530 1657 290 1.083 0.4 

TRSa04 1530 1675 293 1.095 0.4 

SRSa06 1530 1680 295 1.098 0.6 

TRSa06 1525 1666 298 1.092 0.6 

SRSb04 1015 1660 295 1.635 0.4 

TRSb04 1017 1660 291 1.632 0.4 

SRSb06 1020 1660 295 1.627 0.6 

TRSb06 1015 1660 295 1.635 0.6 

Table 5.6. Masonry mechanical and geometrical parameters in reinforced masonry system. 

 

Esv fysv d' 
Wall 

Vertical Reinf. Horizontal Reinf. Esh fysh 

N/mm
2 

N/mm
2
 mm Reinf. % Reinf. % N/mm

2
 N/mm

2
 

188760 501 125 

SRSa04 4Φ16 0.181 2Φ6/40cm 0.047 204400 500 

TRSa04 4Φ16 0.179 1 truss/40cm 0.041 203700 486 

SRSa06 4Φ16 0.178 2Φ6/40cm 0.046 204400 500 

TRSa06 4Φ16 0.177 1 truss/40cm 0.040 203700 486 

SRSb04 2Φ16 0.134 2Φ6/40cm 0.046 204400 500 

TRSb04 2Φ16 0.136 1 truss/40cm 0.041 203700 486 

SRSb06 2Φ16 0.134 2Φ6/40cm 0.046 204400 500 

TRSb06 2Φ16 0.134 1 truss/40cm 0.041 203700 486 

Table 5.7. Reinforcement mechanical and geometrical parameters for reinforced masonry. 

 

Fig. 5.27 shows the comparison between experimental behaviors, represented by 

the envelope of the hysteresis loops, and modeling results, for the slenderness ratio 
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H/L=1.09 and under vertical compression load ζ0=0.4N/mm
2
. Dashed lines 

represent the experimental positive and negative envelopes, continuous lines show 

the modeled capacity curves and dots represent some limit states in the model.  

The model was able to well reproduce initial elastic stiffness. Model had same 

sequence of limit states both for truss and single bar horizontal reinforcements. 

They are in sequence: horizontal crack at base cross-section, first non-linearity in 

masonry (see Fig. 5.1 and named Fe), achievement of shear masonry strength (Vm), 

maximum horizontal wall strength (Fmax) and maximum displacement (dmax fixed in 

model when horizontal force decay to 80% of Fmax). See Table 5.8 for details on 

main limit states. It has to be noted that critical limit state was set equal to Vm 

contrary to unreinforced masonry (URM) systems described in previous paragraph. 

This was due to the fact that these walls reach Vm before masonry yielding in 

compression and obviously because for URM Vm correspond to Fmax. 

The response was still almost linear until second limit state was achieved and 

failure occurred because walls reached their shear limit (Vr). 

Therefore model underestimates the experimental strengths with error of 6.7% for 

truss horizontal reinforcement and of 3.4% for single re-bar. The model is in fairly 

good agreement with experimental results also in term of maximum displacements, 

corresponding global trend of post peak capacity curve (average error 14.5%).  

Other main limit states are summarized in Table 5.8. Altought these are in good 

agreement with experimental ones, some differences are to be considered as 

normal because model limit states refer to cross-section achievement (at wall base) 

of fixed condition, conversely experimental limit states was fixed after that at least a 

part of wall was involved.  

Fig. 5.28 shows experimental versus model comparison for analyses where the 

slenderness ratio H/L=1.09 and under vertical compression load ζ0=0.6N/mm
2
. As 

before, model was able to well reproduce initial elastic stiffness.  

Model had same sequence of limit states both for truss and single bar horizontal 

reinforcements. They are in sequence: horizontal crack at base cross-section, first 

non-linearity in masonry (Fe), achievement of shear masonry strength (Vm), 

masonry yielding in compression (Fym), maximum horizontal wall strength (Fmax) and 

maximum displacement (dmax). See Table 5.9 for details on main limit states. Also 

here the response still almost linear until second limit state was achieved. 

Therefore model underestimates the experimental strengths but with negligible 

maximum error of 1.1%. These modeled walls are in fairly good agreement with 

experimental results also in terms of maximum displacements seeing global trend of 

post peak capacity curve (average error 15.5%).  
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Fig. 5.27. Reinforced masonry H/L=1.09 σ0=0.4 N/mm

2
.  

Model versus Experimental load-displacement capacity curves. 

 

 
Fig. 5.28. Reinforced masonry H/L=1.09 σ0=0.6 N/mm

2
.  

Model versus Experimental load-displacement capacity curves. 
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All wall analyzed with slenderness ratio of 1.09 had a shear failure and it is worth to 

point out that for both vertical compression stress adopted the vertical 

reinforcements in tension did not reach their yielding stress (fysv). This fact confirms 

experimental evidences and walls cannot completely profit of presence of vertical 

reinforcement due to shear strength limitations. 

 

vertical compression 
0.4 N/mm

2
 

Fe De Fcr dcr Fmax dFmax Fdmax dmax 

kN mm kN mm kN mm kN mm 

TRSa 
Experim. 82 1.12 144 5.08 199 11.67 166 19.99 

Model 82 1.17 134 4.01 186 11.55 149 21.25 

SRSa 
Experim. 81 1.49 137 5.00 200 17.23 172 19.99 

Model 82 1.17 133 3.86 186 12.94 155 24.53 

TRSb 
Experim. 32 1.66 74 12.04 79 19.55 68 54.65 

Model 33 0.99 68 7.98 79 14.77 75 40.98 

SRSb 
Experim. 30 1.31 67 8.82 78 24.24 70 44.75 

Model 33 0.99 69 8.11 79 14.61 75 40.73 

Table 5.8. Comparison between experimental and analytical model of principal limit states at 

vertical compression stress of 0.4 N/mm
2
. 

 

vertical compression 
0.6 N/mm

2
 

Hf dHf Hcr dcr Hmax dHmax Hdmax dmax 

kN mm kN mm kN mm kN mm 

TRSa 
Experim. 104 1.51 169 5.13 207 12.19 166 14.25 

Model 88 0.98 154 4.36 207 12.66 166 14.56 

SRSa 
Experim. 88 1.26 159 5.13 217 12.50 182 17.50 

Model 87 0.99 153 4.41 214 14.97 171 17.21 

TRSb 
Experim. 40 1.51 86 11.25 93 21.25 81 45.00 

Model 37 0.85 80 9.38 92 19.20 89 32.06 

SRSb 
Experim. 41 1.26 80 8.76 89 19.99 70 30.00 

Model 37 0.85 74 6.91 93 19.22 90 31.99 

Table 5.9. Comparison between experimental and analytical model of principal limit states at 

vertical compression stress of 0.6 N/mm
2
. 

 

Fig. 5.29 and Fig. 5.30 show experimental versus model comparison for analyses 

where the slenderness ratio H/L=1.63 and under vertical compression load ζ0=0.4 

N/mm
2
 and ζ0=0.6 N/mm

2
 respectively. 

As in previous analyses, model was able to fairly well reproduce initial elastic 

stiffness. Even if TRSb04 and SRSb04 analyses slightly overestimate experimental 

stiffness. Model had same sequence of limit states both for truss and single bar 

horizontal reinforcements and for both vertical stress applied. They are in 

sequence: horizontal crack at base cross-section, first non-linearity in masonry (Fe), 

achievement of shear masonry strength (Vm), masonry yielding in compression 

(Fym), yielding of vertical reinforcements in tension (Fys), maximum horizontal wall 

strength (Fmax) and maximum displacement (dmax).  
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Fig. 5.29. Reinforced masonry H/L=1.63 σ0=0.4 N/mm

2
.  

Model versus Experimental load-displacement capacity curves. 

 

 
Fig. 5.30. Reinforced masonry H/L=1.63 σ0=0.6 N/mm

2
.  

Model versus Experimental load-displacement capacity curves. 
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Also here the response is still almost linear until second limit state was achieved. 

Therefore model overestimates the experimental strengths with the negligible 

maximum error of 1.5%. These modeled walls are in fairly good agreement with 

experimental results also in terms of maximum displacements seeing global trend of 

post peak capacity curve (average error 18%). It has to be noted that after walls 

reached the horizontal force applied Fys (vertical re-bars yielding), capacity curve 

became almost horizontal presenting a kind of “ideal plastic” branch, denoting the 

great influence of vertical reinforcements on these walls which failed in flexure. 

Notwithstanding, reinforcement yielding in tension was not chosen as critical point 

which refers ductility ratio because it is not always presents in all walls and, if used, 

makes non unique the definition of ductility ratio. 

In general, with reference to Table 5.8 and Table 5.9 it can be noted that for ζ0 = 

0.4 N/mm
2
 analyses (except for TRSa04) definition of displacement when maximum 

horizontal force was reached is rather lower from experimental evidence with an 

average error of about 30%. However, because these walls are strongly influenced 

by the fact that load is close to maximum for a certain portion of capacity curve, 

hence the definition of displacement at maximum experimental load may differ from 

the analytical definition.  

5.5.2. Parametrical Extension of Experimental Tests 

112 shear compression parametrical analyses of reinforced masonry panels were 

performed using the analytical model proposed in this chapter, which resume and 

expand FEM model analyses. 

These analyses were aimed to inspect main parameters characterizing mechanical 

behavior of this construction system which are: 

- vertical load applied (40 analyses combinations); 

- slenderness of wall (20 analyses combinations); 

- vertical reinforcement ratio (28 analyses combinations); 

- horizontal reinforcement ratio (24 analyses combinations). 

All combinations were repeated for two different series: one with vertical 

reinforcement ratio similar to that used in experimental tests and another with 

minimum vertical reinforcement ratio following prescriptions of Italian building code 

(Ordinanza P.C.M. n. 3274: 2003, 2005). Nevertheless, it was limited the total 

number of combination using only the single bar horizontal reinforcement solution. 

This choice was made because, as before mentioned, model cannot compute the 

complex three dimensional effects of truss in mortar joint and observing analyses 

done reproducing experimental behavior gave similar results for both truss and 

single rebar systems. 
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Fig. 5.31. Vertical load variation from 0.2N/mm

2
 to 3.8N/mm

2
 (yellow and blue). H/L=1.63 

vertical reinforcement ratio 0.134%. Model load-displacement capacity curves. 

 

 
Fig. 5.32. Vertical load variation from 0.2N/mm

2
 to 3.8N/mm

2
 (red and green). H/L=1.63 

vertical reinforcement ratio 0.179%. Model load-displacement capacity curves. 
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Furthermore truss reinforcement masonry was not inspected also with FEM 

analysis. 

As done for unreinforced masonry, also in this case will be indicating the walls using 

labels composed by three parts. Experimental walls still using original label and 

“SQ” indicates other squat walls and “SL” other slender walls.  

The analyses done by changing vertical compression load are presented from Fig. 

5.31 to Fig. 5.34. Vertical load varies from 0.2 N/mm
2
 to 2 N/mm

2
 and in addition 

was performed two further analyses with vertical load of 3 N/mm
2
 and 3.8 N/mm

2
. 

Hence vertical load over vertical compressive strength (or vertical stress ratio) 

varies from 5% to 50% plus two analyses at 75% and 95%. 

The four graphs respectively refer to: slender walls with minimum reinforcement 

ratio for (Ordinanza P.C.M. n. 3274: 2003, 2005) which is at least 1Φ16 at both end 

of wall (Fig. 5.31), slender walls with experimental reinforcement ratio (Fig. 5.32), 

squat walls with 1Φ16 at both end of wall (Fig. 5.33) and squat walls with 

experimental reinforcement ratio (Fig. 5.34). In general, load and displacement 

capacity increases with vertical load, except for analyses with ζ0/fm ≥ 40%. Only 

squat walls with vertical reinforcement ratio of 0.179% presented diagonal shear 

failure (see Fig. 5.34). Other walls failed in flexure but with a wide range of ductility 

capacity. In fact, with vertical load ratio greater than 25%, analyses have shown a 

little displacement capacity after maximum horizontal load. But, when ζ0/fm ≥ 40% 

maximum load and displacement capacity were limited by yielding of vertical 

reinforcement in compression before maximum flexural capacity achievement. This 

model is not able to consider possible buckling of vertical reinforcement in 

compression and to stop analysis when it yields. This condition bears to a sudden 

and brittle failure of walls, and should therefore be avoided. 

Fig. 5.35 and Fig. 5.36 show results of slenderness parametrical analyses. 

Slenderness ratios correspond to: S1 with H/L=2.20, S2 with H/L=1.63, S3 with 

H/L=1.09, S4 with H/L=0.82 and S5 with H/L=0.65. Obviously, S2 and S3 

correspond to experimental slenderness ratio. Fig. 5.35 shows walls subjected to 

vertical load of 0.4 N/mm
2
 and Fig. 5.36 walls with 0.6 N/mm

2
. 

Obviously initial stiffness and maximum load tend to increase with decrease of H/L 

ratio (S1 has less stiffness and strength of S5). Yellow and red lines correspond to 

analyses with almost constant vertical reinforcement ratio of 0.179%, while green 

and blue line indicate that minimum vertical reinforcement was used (1Φ16). 

All walls analyzed, for H/L ratio greater than 1.63 shown a flexural failure. 

As expected, high vertical reinforcement ratio tends to cause diagonal shear failure. 

Besides, walls with minimum reinforcement ratio and H/L<1.09 were limited from 

yielding of vertical reinforcement in compression before developing their maximum 

flexural capacity.  
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Fig. 5.33. Vertical load variation from 0.2N/mm

2
 to 3.8N/mm

2
 (yellow and blue). H/L=1.09 

vertical reinforcement ratio 0.089%. Model load-displacement capacity curves. 

 

 
Fig. 5.34. Vertical load variation from 0.2N/mm

2
 to 3.8N/mm

2
 (red and green). H/L=1.09 

vertical reinforcement ratio 0.179%. Model load-displacement capacity curves. 
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Fig. 5.35. Slenderness ratio variation from 0.652 to 2.197. Vertical load 0.4N/mm

2
, vertical 

reinforcement 0.179% (yellow) or 1Φ16 (blue). Model load-displacement capacity curves. 

 

 
Fig. 5.36. Slenderness ratio variation from 0.652 to 2.197. Vertical load 0.6N/mm

2
, vertical 

reinforcement 0.179% (red) or 1Φ16 (green). Model load-displacement capacity curves. 
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Despite this fact, it is worth to point out that for ζ0 = 0.6 N/mm
2
 analyses with 

minimum vertical reinforcement ratio presented a good ductility capacity and their 

maximum strength became greater than other walls with more flexural 

reinforcements when H/L decreases because the latter were limited by diagonal 

shear strength. 

Fig. 5.37 and Fig. 5.38 show the analyses done varying vertical reinforcement ratio. 

First graph shows walls subjected to a vertical load of 0.4 N/mm
2
, while second 

shows walls with ζ0 = 0.6 N/mm
2
. 

For each graph it can be noted two distinct groups of results which refer to slender 

walls (in yellow and blue) and squat walls (in red and green). 

In general, with increasing of vertical reinforcement ratio walls have a stiffer 

response (and this make easy distinguishing each wall in the graphs). Also the 

vertical compression ratio, as highlighted with previous parametrical analyses, had 

an influence on results. 

It was used realistic combination of vertical re-bars from 0 (but horizontal 

reinforcements stilled present) to 0.27% and 0.28% for slender and squat wall 

respectively. For slender walls these percentages correspond to: 1Φ12, 1Φ14, 

1Φ16, 1Φ14+1Φ16 and 2Φ16 at each wall side. Besides, for squat walls: 2Φ12, 

2Φ14, 2Φ16, 2Φ18 and 2Φ20 at each wall side. 

First of all it can be noted the dramatic influence of vertical reinforcement presence 

on global behavior of shear walls seeing the walls, both slender and squat and both 

with low and high vertical load, without vertical reinforcement. They are still in a 

range with about half strength and displacement capacity showed from average of 

other walls. 

In general, with the increase of vertical re-bar ratio also maximum load and 

displacement capacities increase, but the tendency of diagonal shear failure also 

increases, which limits both loads and displacements. Except wall failed with 

diagonal shear mechanism and walls with no vertical reinforcements, all walls that 

failed in flexure were limited in maximum displacement from yielding of compressed 

vertical reinforcements but after showing a good ductility capacity. 

Fig. 5.39 and Fig. 5.40 show all possible combinations considering slender and 

squat walls, with two experimental vertical load ratio and two vertical reinforcement 

ratio (minimum gave from Italian code and ratio used in experimental tests) for a 

total of 8 walls. These walls were analyzed with horizontal reinforcements in all 

joints, or every second joint, or without horizontal reinforcement (vertical 

reinforcement still present). In these analyses one more part was added to labels 

indicating different walls. Respectively “000” when was used no horizontal 

reinforcement and “ALL” when all horizontal joints are reinforced. 
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Fig. 5.37. Vertical reinforcement variation from 0% to 0.28%. Vertical load 0.4N/mm

2
.  

H/L=1.63 yellow/blue, H/L=1.09 red/green. Model load-displacement capacity curves. 

 

 
Fig. 5.38. Vertical reinforcement variation from 0% to 0.28%. Vertical load 0.6 N/mm

2
.  

H/L=1.63 yellow/blue, H/L=1.09 red/green. Model load-displacement capacity curves. 
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Fig. 5.39. Horizontal reinforcement variation from 0 to all joint. Slenderness ratio H/L = 1.63.  

Model load-displacement capacity curves. 

 

 
Fig. 5.40. Horizontal reinforcement variation from 0 to all joint. Slenderness ratio H/L = 1.09.  

Model load-displacement capacity curves. 
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When no horizontal reinforcement was present in the walls failure occurred for 

diagonal shear mechanism with all vertical reinforcement, vertical loads and 

slenderness considered. When re-bars every second joint were added, slender 

walls change their failure to flexure with a great increase of displacement and 

strength capacity.  

Furthermore, for squat walls (Fig. 5.40 different behavior between minimum and 

experimental vertical re-bars ratio) took place. Respectively, in first case (green and 

yellow curves) flexural failure occurred when horizontal reinforcements (as 

highlighted for slender walls) were added, whereas walls with higher vertical 

reinforcement ratio (red and blue curves) required reinforcements in all horizontal 

joints to avoid shear failure. 

In general, introducing or increasing horizontal reinforcement hinders shear failure 

of walls (especially for high vertical reinforcement ratio) and increases global 

performances in terms of strength and displacement in comparison with the same 

walls with lower horizontal reinforcement ratio. 

5.6. Analysis of Results and Conclusions 

The model presented was validated reproducing experimental tests (see 5.4.1 and 

5.5.1) and through parametrical analyses done in paragraphs 5.4.2 and 5.5.2 it is 

was possible to collect interesting data regarding displacements and limit states of 

both unreinforced and reinforced masonry walls (S.D.o.F. structure) subjected to in-

plane actions.  

This simplified model can take into account shear deformation contribution and 

possible diagonal shear failure mechanism. Furthermore it is able to describe the 

achievement of predetermined limit states relate to cross-section condition or, 

generally, to global performance (e.g. shear strength contribution of masonry Vm) of 

walls. In this way it becomes easy to relate these limit conditions to design 

performance limit states (i.e. serviceability, damage control, ultimate, and collapse 

prevention). 

An aspect that is worth to emphasize, and not noticed before, is that the model 

allows figuring out displacement profile of wall along its height, besides model can 

show flexural and shear deformation contribution to total displacement. Fig. 5.41 to 

Fig. 5.44 show these contributions in the case of TG-22% (used as example) 

masonry analysis with change of horizontal force applied corresponding to above 

mentioned limit states: first non-linearity and yielding of masonry in compression, 

attainment of maximum horizontal resistance and maximum displacement. 
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Fig. 5.41. Displacement profiles along height of wall at masonry first non-linearity point.  

Red line: total displacement profile, blue line shear displacement contribution and green 

flexure displacement contribution. (TG masonry with σ0=1.24 N/mm
2
, H [mm] and Δ [mm]) 

  

 

Fig. 5.42. Displacement profiles along height of wall at masonry  

yielding point in compression. Red line: total displacement profile, blue  

line shear displacement contribution and green flexure displacement  

contribution. (TG masonry with σ0=1.24 N/mm
2
, H [mm] and Δ [mm]) 
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Fig. 5.43. Displacement profiles along height of wall at max strength.  

Red line: total displacement profile at max strength, blue line shear  

displacement contribution and green flexure displacement contribution.  

(TG masonry with σ0=1.24 N/mm
2
, H [mm] and Δ [mm]) 

  

 

Fig. 5.44. Displacement profiles along height of wall at maximum  

displacement. Red line total displacement profile, blue line shear  

displacement contribution and green flexure displacement contribution.  

(TG masonry with σ0=1.24 N/mm
2
, H [mm] and Δ [mm]) 
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It is clear that shear contribution plays a major role already at the end of elastic 

phase, even though total displacement profile is still flexure-like. When applied 

horizontal force increases, shear displacement contribution becomes prevailing and 

the total displacement profile becomes shear-like already at critical limit state (Fig. 

5.42). 

From this point to ultimate displacement, the contribution of shear grows quickly 

compared to flexural contribution and in the end it is about 6-9 times (Fig. 5.44). 

This tendency is valid in case of flexure failure for all three unreinforced masonry 

types (TM, TG and Po) but also for reinforced masonry system. For walls failing in 

shear, this kind of comparison is still valid until the achievement of maximum 

horizontal resistance because it is inherent to model construction that after this 

point displacement is only approximates in an empirical way. At maximum 

horizontal force, the ratio between shear and flexure displacement contributions to 

total displacement at the top of wall, range around 3-4 for all walls. 

In general modeled walls are greatly influenced by shear deformation and shear 

deformation is controlled by a great extent from shear modulus (G). Despite this 

sensitivity, model was in good agreement with experimental G obtained from shear-

compression tests and with lower bound of values provided by (Circolare 2/02/2009 

n. 617 C.S.LL.PP., 2009). 

5.6.1. Unreinforced Masonry Walls 

In this section will be presented analysis results in terms of drift (ψ=δ/H), at each 

main limit state, comparing different parameters which were varied in order to see 

the influence of these mechanical and geometrical conditions on displacement 

capacity of masonry walls under in-plane actions. 

Fig. 5.45 shows vertical stress variation when critical drift was achieved (above), at 

maximum horizontal strength of wall (middle) and at maximum displacement 

(below). The results were grouped by masonry compressive strength (using 

different colors) and by masonry type (using different marker sign). 

Critical drift (ψcr) has about linear function with vertical stress, when it is proportional 

with masonry strength (left part of chart). On the contrary, when vertical stress is 

still constant and masonry compressive strength is low, critical drift has nonlinear 

function with vertical stress (right part of chart). It is possible to see this nonlinear 

decrease of drift already when unit compressive strength correspond 10 N/mm
2
 but 

it become important when fcu was set to 5 N/mm
2
.  

In these analyses critical drift ranges between 0.1% and 0.35%. 
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Fig. 5.45. Unreinforced masonry. Critical drift versus Vertical stress (above).  

Drift at maximum strength versus Vertical stress (middle).  

Drift at maximum displacement versus Vertical stress (below). 
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Furthermore it can be noted the influence of masonry strength itself, observing that 

TM masonry critical drift was in general lower than TG and Po masonry which had 

lower compressive strength. 

Drift at maximum horizontal shear force strength (ψFmax) of wall showed a similar 

trend (graph in the middle of Fig. 5.45).  

Nonlinear trend showed by ψcr is less noticeable for ψFmax and nonlinearity can be 

highlighted only when unit with compressive strength of 5 N/mm
2
 and higher vertical 

stress were used. In these analyses, drift ranges between about 0.2% and 0.8% 

thus two times the range of ψcr. 

The lower graph of Fig. 5.45 shows maximum drift (ψdmax) reached by walls during 

the analyses done. In this case the trend of ψdmax with different vertical loads is 

more disperse. But, as expected, with a first approximation can be considered that 

maximum drift decreases when vertical compression stress is increasing. In these 

analyses, ψdmax ranges between 0.4% and 2% again about two times ψFmax. 

 

Fig. 5.46 shows the drift variations at main limit states of analyses done when 

masonry compressive strength changes. The results were grouped by masonry 

vertical compression stress (using different colors) and by masonry type (using 

different marker sign). 

The upper graph of Fig. 5.46 clearly shows that critical drift has linear relation with 

masonry compressive strength when the same vertical load ratio (in blue and red) 

was used. Furthermore if vertical load was kept constant the compressive strength 

of masonry had less influence on critical drift, but there is a strong nonlinear 

decrease when fcu ≤ 10 N/mm
2
 confirming the considerations made for Fig. 5.45. 

When considers ψFmax, graph in the of Fig. 5.46 shows similar trend of ψcr, but in 

this case when vertical stress was kept constant also the drift can be considered in 

first approximation as constant, except for walls which had unit compressive 

strength lower than 10 N/mm
2
 which manifest same nonlinear drift decrease as 

mentioned before. Furthermore this decrease is more important when higher 

compression stress was applied (see yellow versus green markers). 

The lower part of Fig. 5.46 shows maximum drift capacity of masonry walls 

analyzed. In this case relation between fcu and ψdmax is almost linear when constant 

vertical load ratio and also when magnitude of vertical load was kept constant. 

Besides, when higher vertical stress and lower masonry unit compressive strength 

is considered drift presents the non-linear decrease as showed in previous limit 

states. 
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Fig. 5.46. Unreinforced masonry. Critical drift versus Masonry compressive strength (above). 

Drift at maximum strength versus Masonry compressive strength (middle).  

Drift at maximum displacement versus Masonry compressive strength (below). 
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Fig. 5.47. Unreinforced masonry. Critical drift versus Slenderness ratio (above). Drift at 

maximum strength versus Slenderness ratio (middle). Drift at maximum displacement versus 

Slenderness ratio (below). Rhombus: flexure failure, Dots: shear failure. 
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Fig. 5.47 shows results of analyses done with slenderness ratio variation in terms of 

drift. The analyses were grouped by vertical load applied (using colors) and by 

different failure modes (rhombuses indicate flexure failure, dots diagonal shear 

failure).  

The upper graph of Fig. 5.47 presents drift at critical limit state. It shows that in case 

of flexural failure critical drift tends to slightly decrease with the increasing of H/L 

ratio. When shear failure occurred critical drift was lower. Furthermore, when 

vertical stress ratios were 27% and 33% all squatter walls had critical point that 

coincided with maximum horizontal strength indicating a very brittle failure. In 

general higher compression stress ratio implies higher drift. In these analyses ψcr 

ranges about between 0.25% and 0.4%. 

Drift at maximum horizontal strength of walls is showed in middle graph of Fig. 5.47  

Walls failing in flexure showed the same trend explained before and ψFmax 

decreases with increasing of slenderness ratio. Also here, the observation that 

higher compression stress ratio implies higher drift is still valid, but with some 

exceptions in case of shear failure. When shear failure occurred drift at maximum 

strength was lower. In these analyses ψFmax ranges between 0.5% and 0.9% in 

case of flexure failure, when for shear failure it ranges between 0.25% and 0.7%. 

The last graph of Fig. 5.47 shows the trend of maximum drift. Different from 

previous limit state, here it can be seen that lower compression stress ratio implies 

lower maximum drift. While still valid for walls with flexural failure a decreasing trend 

with the increasing of H/L ratio. On contrary the few walls that fail in shear seem to 

increase their ψdmax with slenderness. In these analyses, ψdmax ranges between 

1.3% and 2.4% in case of flexural failure, when for shear failure it ranges between 

0.25% and 1.3%. 

5.6.2. Reinforced Masonry Walls 

In this section analysis results in terms of drift (ψ=δ/H), at each main limit state will 

be presented, comparing different parameters which were varied in order to see the 

influence of these mechanical and geometrical conditions on displacement capacity 

of reinforced masonry walls under in-plane actions. 

 

Fig. 5.48 shows vertical stress variation when critical drift was achieved (above), at 

maximum horizontal strength of wall (middle) and at maximum displacement 

(below). The results can be grouped by slenderness (green and yellow for slender 

walls, and blue and red for squat walls) or by vertical compression ratio (green and 

blue for minimum reinforcement required by Italian code, and yellow and red for 

experimental reinforcement ratio). 
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Critical drift (ψcr) was limited by masonry diagonal shear strength when lower 

vertical compression stress was kept, on contrary ψcr was limited by achievement of 

masonry compressive strength at compressed toe of walls when higher 

compression stress was used.  

In first case the function with vertical load is about linear, while in the second case 

the function seems nonlinear descending with increasing of ζ0.  

Squat walls with higher vertical reinforcement ratio showed shear failure. In this 

case ψcr was lower but still have the same trend. Excluding very high compression 

stress, critical drift ranges about between 0.2% and 0.5%.Drift at maximum shear 

strength of wall can be seen in the middle graph of Fig. 5.48. Almost linear function 

can be seen between ψFmax and vertical compression stress for all analyses. This 

fact is still true until ψFmax was limited by achievement of yielding at reinforcement 

bar in compression.  

In this case ψFmax corresponds also with ψdmax for limitations imposed by 

assumptions of this model.  

Furthermore also in this case, as previous highlighted, walls with shear failure had 

lower ψFmax. In general, walls with higher reinforcement ratio exhibited a high ψFmax 

compared to same walls with lower vertical reinforcement ratio (if shear failure did 

not occur). 

Drift at maximum shear strength of walls ranges between 0.5% and 3.5%. 

In this case walls under very high and very low compression stress had similar 

ψFmax. Considering observations done for ψcr appears that in walls with very low 

vertical load ratio, ψFmax/ ψcr is close to 1, while for very high vertical load this ratio is 

greater, but walls reaches ψcr very early. 

The third graph of Fig. 5.48 shows drift at maximum displacement capacity varying 

applied vertical stress. The general trend was similar to that described for ψFmax with 

the difference that when vertical stress is lower than 0.6 N/mm
2
, ψdmax change its 

trend and increases with the decrease of vertical load (left part of graph). 

Fig. 5.49 shows limit state drifts of analyses performed varying slenderness ratio. 

They were grouped by vertical stress applied and by vertical reinforcement ratio. 

Critical drift was limited by masonry shear strength (Vm) when H/L was low (and 

increases almost linearly with slenderness ratio), while it is limited by achievement 

of maximum masonry compressive strength (fm) when H/L≥1.6. Furthermore, ψcr 

was lower in case of shear failure and with higher vertical reinforcement ratio. In 

general, ψcr ranges between 0.1% and 0.5% 
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Fig. 5.48. Reinforced masonry. Critical drift versus Vertical stress (above).  

Drift at maximum strength versus Vertical stress (middle).  

Drift at maximum displacement versus Vertical stress (below). 
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Fig. 5.49. Reinforced masonry. Critical drift versus Slenderness ratio (above).  

Drift at maximum strength versus Slenderness ratio (middle).  

Drift at maximum displacement versus Slenderness ratio (below). 
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Second graph of Fig. 5.49 refers to drift at maximum shear strength of walls. In 

general ψFmax showed a decrease trend with increasing of slenderness ratio. 

Besides, ψFmax is limited when shear failure occurred and in this case drift is lower 

but increases with slenderness ratio of walls. This happened for walls with higher 

vertical reinforcement ratio in similar way for both vertical stress considered. 

Drift ranges between 0.9% and 1.8% in case of flexural behavior, while it ranges 

between 0.3% and 0.9% in case of shear failure. 

Maximum drift in case of slenderness variation can be seen in lower graph of Fig. 

5.49. For this limit state, when minimum reinforcement ratio is kept, flexural failure 

occurred and ψdmax was still almost constant at level of 2%. This limit appears to be 

acceptable also in case of higher vertical reinforcement ratio as that used in 

experimental tests if shear failure did not occur.  

When shear failure occurred, this limits ψdmax which had an almost linear increase 

with H/L ratio. In this case, ψdmax ranges between 0.35% and 1.6%. 

 

In Fig. 5.50 can be analyzed the influence of vertical reinforcement ratio on drift at 

main limit states. In the first graph, critical drift had a general decrease with 

increasing vertical reinforcement ratio (it was limited by achieving of Vm). However, 

in case of low vertical reinforcement ratio, masonry compression yielding limits 

critical drift, because it is in linear relation with reinforcement ratio. 

Critical drift ranges between 0.15% and 0.5%. It can be noted that if no vertical 

reinforcement is used, ψcr was still around 0.15%. 

The trend of drift with vertical reinforcement ratio can be seen in middle graph of 

Fig. 5.50. In this case the failure mechanism affects the drift capacity and the slope 

of ψFmax trend. In left part drift is related to a flexure behavior, in the right part drift 

refers to diagonal shear behavior. 

ψFmax ranges between 0.5% and 1.5%. It can be noted that if no vertical 

reinforcement was used ψFmax still around 0.3%. 

Maximum drift (with reference to lower graph of Fig. 5.50) had similar trend of ψFmax 

and different slopes in left part refers to a flexural failure of walls when in right part 

the slope changes in relation to shear failure occurring. 

ψdmax ranges between 0.5% and 3.0%. It can be noted that if no vertical 

reinforcement was used ψdmax still around 1%. 

In first graph of Fig. 5.51 can be noted as practically horizontal reinforcement had 

no influence on critical drift and which was more affected by influence of vertical 

compression and vertical reinforcement ratio. 

Critical drift ranges around between 0.35% and 0.5% except for squat walls with 

higher vertical reinforcement ratio. In the last case ψcr was around 0.25%. 
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Fig. 5.50. Reinforced masonry. Critical drift versus Vertical reinforcement ratio (above).  

Drift at maximum strength versus Vertical reinforcement ratio (middle).  

Drift at maximum displacement versus Vertical reinforcement ratio (below). 
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Fig. 5.51. Reinforced masonry. Critical drift versus Horizontal reinforcement ratio (above).  

Drift at maximum strength versus Horizontal reinforcement ratio (middle).  

Drift at maximum displacement versus Horizontal reinforcement ratio (below). 
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The middle graph of Fig. 5.51 reports drifts at maximum shear strength of walls. In 

this case it can be noted that with increasing of horizontal reinforcement ratio 

increases also ψFmax. The range of ψFmax is between 0.3% and 2.7%. But if, at least 

one every two horizontal joint was reinforced, lower bound of range raises to 0.8%. 

The lower graph of Fig. 5.51 reports drifts at maximum displacement. Also in this 

case it can be noted that with increasing of horizontal reinforcement ratio, increases 

also ψdmax. The range of ψdmax is between 0.3% and 3.7%. But if, at least one every 

two horizontal joint was reinforced, lower bound of range raises to 1.0%. 

Furthermore it worth to point out that with low horizontal reinforcement ratio both for 

ψFmax and ψdmax, if vertical reinforcement ratio increases the drift decreases, but this 

trend changes if a good horizontal reinforcement was provided. Moreover slender 

walls showed better drift performances in case of no horizontal reinforcement, but 

squat walls can achieve the best performances if balanced vertical and horizontal 

reinforcements were used. 

5.6.3. Summary and conclusions 

It was built a model for masonry wall (S.D.o.F. structure) under in plane vertical and 

horizontal forces, able to take in to account the load-displacement capacity curve 

(also considering non-linear shear deformation) and to reproduce both flexural and 

shear failures. The model presented was validated reproducing experimental tests 

(see 5.4.1 and 5.5.1) 

The modeling results of these analyses carried out with the above mentioned model 

were discussed and the main results are summarized in the following: 

- In general modeled walls are greatly influenced by shear deformation and shear 

deformation is controlled to a great extent by shear modulus (G). Despite this 

sensitivity, model was in good agreement with experimental G obtained from shear-

compression tests and with lower bound of values provided by (Circolare 2/02/2009 

n. 617 C.S.LL.PP., 2009) 

- As expected, in general, flexural behavior was fairly well reproduced by model 

achieving both strength and displacement showed in experimental tests, despite 

some inconsistencies present for unreinforced masonries. 

- Shear strength formulation adopted was able to correctly forecast experimental 

walls subjected to shear failure and also, with acceptable approximation, their loads 

and displacements. 

- model was able to describe the achievement of various limit states which 

represent the performances of masonry walls relating with cross-section (e.g. when 

masonry pier reach compressive strength at base section) or whole panel limit 

states (e.g. when wall reach shear strength provided by masonry). 
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Three types of load-bearing un-reinforced masonry walls, made with perforated clay 

units and differing types of head and bed joints were modeled under in-plane cyclic 

loads. The modeling results of these analyses were discussed. 

- Parametric analyses showed how wall performance under combined shear and 

compression depend on unit strength, slenderness and masonry type.  

- In general, maximum horizontal load and drift at ultimate state decrease with unit 

strength. The decrease in unit strength also corresponds to a change in dominant 

failure mode, from flexure/rocking to brittle flexure. In all masonry types, critical 

behavior arises at unit strengths between 10 and 5 N/mm
2
 as found with FEM 

approach.  

- If the ratio of applied vertical load to masonry compressive strength is kept 

constant, maximum drift decreases at lower unit strength, as vertical load 

decreases but not affect the failure mechanism (this fact differs from results of FEM 

analyses). In any case, the displacement capacity of thin-layer joint masonry 

remains lower than in other masonry types. 

 

Reinforced masonry systems were modeled under in-plane cyclic loads. The 

modeling results of these analyses were discussed and the main results are in the 

following: 

- increment of axial load leads to increase of shear capacity at the expense of 

ductility, in particular related to the post peak phase - variation of axial load allows 

to control the failure mode: from brittle shear failure to ductile flexural failure, and 

from more to less ductile flexural failure; 

- the higher the aspect ratio (slender wall) the higher the ductility, where 

displacement capacity is concentrated in post peak phase; 

- slenderness ratio influence failure mode and allows to control if shear or flexure 

prevails, but in general has less influence if minimum vertical reinforcement ratio is 

applied (flexure failure prevails); 

- vertical reinforcement ratio allows to control the failure mode from brittle shear 

failure to ductile flexural failure, but in general has less influence on slender walls 

(flexure failure prevails in this way); 

- in case of no horizontal reinforcement, slender walls showed better drift 

performances compared to squat walls; even though the latter achieve the best 

performances, when balanced vertical and horizontal reinforcements were used. In 

general, the higher horizontal reinforcement ratio the higher displacement capacity, 

within the range analyzed. 
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6. DYNAMIC ANALYSES 

6.1. Introduction 

In this chapter are presented the analysis method utilized to simulate the dynamic 

behavior of masonry systems under investigation and also the results of these 

analyses. 

The non-linear dynamic analyses were carried out with the main aim of providing 

the Hysteretic Damping (ξhys) factor, for the proposed masonry systems, at 

designers, so that the design process with these systems is safe and easy through 

linear elastic analyses. 

Non-linear dynamic analyses required the use of cyclic non-linear mechanical 

models, as also indicated by (DM 14/01/2008, 2008). It was applied the hysteretic 

model available after (da Porto et al., 2009c) which was developed during the 

DISWall European Project (DISWall, 2008) and based on model of (Tomaževič & 

Lutman, 1996).  

Were carried out non-linear dynamic analyses of one degree of freedom systems 

characterized with experimental data available from (da Porto et al., 2009c) and (da 

Porto, 2005) respectively for reinforced masonry (RM) and unreinforced masonry 

(URM) systems. 

Were applied 10 spectrum-compatible accelerograms with different Peak Ground 

Acceleration (PGA) in order to catch the performances at different displacements 

(or drifts, or ductility). Furthermore the analyses took in to account also different soil 

properties according to classification of (DM 14/01/2008, 2008). 

6.2. A Hysteretic Model for Masonry Walls 

6.2.1. Experimental Cyclic Shear-Compression Tests Modeling 

The idealized envelope curves on which the construction of the hysteresis loops 

was based, were taken as the quadri-linear curves defined by the four experimental 

limit states given in paragraph 3.3.3 and available after (Mosele et al., 2008) and 

also reproduced by analytical model presented previous in Chapter 5.  
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The experimental observations on which the model is based are the following:  

1. The loading phase can be divided in two parts: the first part, with low 

displacement, and high stiffness (until the point A in Fig. 6.1) and a second part 

with lower stiffness (until the point B in Fig. 6.1). The former still almost 

unchanged among different loading cycles, with only low decay of stiffness 

values; conversely, the second phase presented a high decay of stiffness. 

Furthermore, the transition between these two parts occurred when forces and 

displacements were close to first limit state (the point 1 in Fig. 6.1) and 

decreases with the increase of cycle amplitudes. 

2. The un-loading phase can be subdivided in three parts: the first characterized by 

a high value of stiffness which determines the breadth of cycle and the 

dissipated energy (until the point C in Fig. 6.1); the second in which stiffness still 

almost the same as in second loading phase (until the point D in Fig. 6.1); finally, 

the third phase where the stiffness increase again and still constant in the 

succeeding loading phase of next loading cycle. The latter increase of stiffness 

happened when forces were similar to the stiffness change during the loading 

phase (points A and D in Fig. 6.1), giving the typical S form of hysteresis cycle. 

3. Repeated amplitude cycles showed high strength decay during loading phase, 

when the unloading phase strength still almost unchanged respect to first cycle 

of that amplitude. Hence following cycles with the same amplitude were smaller 

and gave less dissipated energy amount compared to first cycle. 

 

 
Fig. 6.1. Idealized envelope curve (1-2-3-4) and scheme of the hysteresis loop (A-B-C-D). 

 

Starting from these observations, the construction of the hysteresis loops has been 

based on the definition of four symmetrical points (A, B, C, D). These points are 

found by means of two coefficients: C1 and C2, which are calculated by imposing 
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the equivalence of the input energy and the dissipated energy in the experimental 

and modeled loops during a cycle (see Fig. 6.1). 

The modeling of the first cycles at each displacement level is carried out as follow. 

System still linear elastic until the cycles reaches the first limit state (point 1 in Fig. 

6.1) the opening of a cycle start after this amplitude. Hence, for little displacements 

system still moves over the envelope until the loading reversal (which is the point 

B). The point A is always placed on the idealized envelope curve. Its ordinate is a 

function of the maximum resistance (Hmax) using the coefficient C1 and the 

parameter Z (Eq. 6.5), which is a ductility parameter and is used to define HA and 

HC, respectively the forces of point A and C. The point B is found on the four-limit-

states idealized envelope curve, and placed at the defined displacement dB of given 

cycle. The slope of the first unloading branch (KBC) changes according to the 

amplitude of the cycle under consideration and the ordinate of the point C (HC), 

where the first unloading branch ends, is defined by the coefficient C2 and the 

parameter Z. KBC (Eq. 6.2) is determined on the basis of another parameter, called 

CK (Eq. 6.1). This parameter allows obtaining a linear variation of the slope of 

branch B-C, starting from elastic stiffness K1 to a lower bound represented to the 

slope of the second branch of the envelope curve (K1-2). The point D has the same 

ordinate of the point A, and is found imposing that the slope of KC-D = KA-B. The 

negative semi-cycle was built keeping the symmetrical point of A, B, C and D. Since 

point -A still almost constant, whereas point D increases the displacement along 

with the increase of cycle amplitude, KD-A decreases at every cycle modeled Fig. 

6.2. 

 

 
Fig. 6.2. Degradation of stiffness KD-A. 
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Squat walls C1 SDC1 C2 SDC2 

SRSa 0.4 0,402 0,050 0,836 0,070 

TRSa 0.4 0,400 0,060 0,916 0,056 

SRSa 0.6 0,424 0,025 0,846 0,035 

TRSa 0.6 0,466 0,033 0,892 0,067 

mean 0,423 0,042 0,873 0,057 

Slender walls C1 SDC1 C2 SDC2 

SRSb 0.4 0,311 0,063 0,852 0,056 

TRSb 0.4 0,311 0,069 0,803 0,064 

SRSb 0.6 0,391 0,069 0,922 0,025 

TRSb 0.6 0,396 0,043 0,950 0,019 

mean 0,352 0,061 0,882 0,041 

Table 6.1. Hysteretic model parameters C1 and C2. 

 

From fitting of experimental tests the form coefficients C1 and C2 did not still 

constant during cycles with different magnitude, but they were almost constant at 

first cycles and decreasing with the increase of cycle magnitude, because HA and 

HC tend to decrease.  

Model introduces Z parameter that provides an estimate coefficient C1 and C2 

variation, allowing to considers constant these parameters and rely on it to control 

their variation. Z is evaluated on the basis of CZ (Eq. 6.4) and dE (Eq. 6.3). With 

displacements lower than dE, Z is considered equal to 1. After dE, Z decreases 

linearly. As example mean C1 and C2 values (using Z corrector) found for RM 

system are reported in Table 6.1 with corresponding standard deviations (SD). 
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Further details on model are available on (DISWall, 2008) and (da Porto et al., 

2009c). 

6.2.2. Arrangement of Hysteretic Model for Random Seismic Input 

The model, as it has been defined in the previous paragraph, assumes to know the 

amplitude of each cycle. Furthermore every cycle is greater than the previous, so 

the displacement at point B (dB) is also the maximum reached displacement (dmax). 

Under these assumptions, it is possible to define for each cycle the stiffness of the 

branch A-B (KA-B) as the stiffness that moves the system exactly from point A to 

point B, known a priori. 

If we consider seismic action, it is impossible to assume a priori the amplitude of 

cycles. In fact, the earthquake induced displacement represents the unknown 

quantity. For this reason it has been necessary to define KA-B in order to establish 

how the system has to move when point A is exceeded. Furthermore the 

amplitudes of cycles are not certainly increasing, but random, so dB usually does 

not overlaps dmax. Therefore Z parameter is referred to the maximum displacement, 

instead to point B. 

 

 
Fig. 6.3. Asymmetrical cycles. 

 

The stiffness of branch A-B is implicitly defined in such a way to assure an increase 

in degradation with the increase of reached displacement. When the system starts 

to unload, the point B is detected. If the corresponding displacement is greater than 

the previous, Z parameter is updated and thus there is a degradation of point A. On 

the contrary, if dB is less than dmax, neither Z changes nor A. So, the stiffness KA-B is 

defined as the slope of the secant to the point A and B. 
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This definition implies that, reproducing a cyclic test, asymmetrical cycles are 

obtained. In fact, with reference to Fig. 6.3 and considering the i-th cycle, the model 

initially considers dmax = dBi-1 , because the higher displacement reached is 

represented by the amplitude of the previous cycle. The considered stiffness KA-B is 

the secant to the points Ai-1 e Bi-1. Therefore, the system moves from point Ai-1 in 

order to reach point Bi-1, which is placed on the quadri-linear curve. Then it 

continues following the envelope until it reaches point Bi that represents the new 

dmax. It is now possible to update the parameter Z and calculate Ai. The asymmetry 

derives from the fact that the negative part of the cycle is carried out considering the 

i-th state. In this way the system, after the un-loading B-C and C-D, passes at first 

trough point –Ai and then directly through point –Bi. 

The stiffness of the section D-A (KD-A), cannot be defined implicitly as the secant to 

points D and A, because for casual cycle amplitudes, the monotone degradation is 

not ensured. Therefore, if it is determined that the slope of the section D-A is lower 

than the current KD-A, the latter is updated according to the secant to the points D 

and A and in this way the system pass through the point A. Otherwise, to move to 

point A the system should move with stiffness greater than current KD-A, which 

however must not be exceeded. Therefore, exceeded point D, the system moves 

with the current stiffness KD-A until it reaches the strength HA, defining a new point, 

which is indicated by the letter E (Fig. 6.4). Beyond point E stiffness KA-B is utilized. 

 

 
Fig. 6.4. Definition of point E. 

 

The un-loading considered until now occurs in the section A-B, but this is merely a 

general condition. In fact, during a dynamic analysis the direction of the 

displacement can change its sign at any time. It is therefore possible to distinguish 
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two cases: displacement inversion in the section B-C or C-D (Fig. 6.5 on the left), 

and displacement inversion in the section D-A (Fig. 6.5 on the right). 

In the first case, the system simply changes its direction moving from the place 

where it is with stiffness KA-B. In the second case, we have instead the opening of 

the cycle, still according to the parameter Z and the coefficient C2, determined on 

the basis of amplitude Δ (Fig. 6.5). Hence we have two phases: a first branch B-C 

with stiffness KB-C and a second branch C-E with stiffness KD-A. Once passed point 

E, the system moves with stiffness KA-B. 

 

 
Fig. 6.5. Re-loading conditions. 

6.2.3. Seismic Input used in the analyses 

Dynamic analyses were carried out on 10 synthetic time-histories composed of 

2048 points taken at a sampling frequency of 100 Hz. The time-histories were 

created in MATLAB™, and are compatible with the type 1 spectra of (EN 1998-1: 

2004. Eurocode 8, 2004) with a lower bound and upper bound of 10% of deviation 

between generated and code-prescribed spectra in the period range from 0.10 to 

2.00 s. Their Peak Ground Acceleration (PGA) is normalized to ag (Fig. 6.6). 

Definition of the response spectra varies according to the different types of soils. 

The main five soil categories are: A, rock or other rock-like geological formation; B, 

very dense sand, gravel, or very stiff clay; C, medium-dense sand, gravel or 

medium stiff clay; D, loose-to-medium cohesionless soil or predominantly soft-to-

firm cohesive soil; E, soil profile consisting of a surface alluvium layer.  
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Fig. 6.6. Eurocode 8 recommended Type 1 spectra for ground Types A to E. 

 

The analyses were repeated for the two limit soil group classified, i.e. soil A and soil 

D. Despite soil E has a peak spectral acceleration higher than soil D, the latter 

shows a larger plateau that has a bigger seismic demand at medium-high periods. 

Hence the effective response in the non-linear range determine an increase of 

effective periods, that often are beyond of TC of soil E, to characterize the whole 

response until the ultimate capacity soil D spectrum appear more severe. 

In Fig. 6.7 are reported the synthetic time-histories used in the analyses. 

Fig. 6.8 shows the spectrum-compatibility between mean value of 10 

accelerograms normalized to ag and the corresponding spectra given from (EN 

1998-1: 2004. Eurocode 8, 2004) for the two types of soil: A (rock soil) and D (soft 

soil), in the period range 0.15-2.0 s. 

 

  
Fig. 6.7. Synthetic time-histories used in the analyses, generated respect soil A (above) and soil 

D (below). 
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Fig. 6.8. Spectrum-compatibility between the mean value 10 time histories of accelerograms 

and Eurocode 8 type 1 spectra for soil A and D. 

6.3. Analysis of Results and Conclusion 

6.3.1. Application for Reinforced Masonry System 

The hysteretic model calibration of cyclic shear compression test for RM system 

was already done in (da Porto et al., 2009c) and here were reported only the main 

results with the aim of providing details on model capability to catch experimental 

behavior and the parameters used for further seismic analyses carried out for this 

thesis. All 8 RM specimens were taken into account. 

Fig. 6.10 shows the comparison between the experimental data and the modeled 

hysteretic loops. As can be seen, there is fair good agreement. From the 

comparison between experimental and modeled values of the ratio between 

dissipated and input energy (see Fig. 6.11) it can be seen that the model 

reproduces fairly well the energy balance of the tests. The differences are generally 

lower than 5% for the squat specimen, and 3% for the slender specimen.  

 

Squat walls C1 C2 CK CZ 

SRSa 0,4 0,402 0,836 -0,057 -0,135 

TRSa 0,4 0,400 0,916 -0,047 -0,094 

SRSa 0,6 0,424 0,846 -0,067 -0,157 

TRSa 0,6 0,466 0,892 -0,101 -0,164 

mean 0,423 0,873 -0,068 -0,138 

Slender walls C1 C2 CK CZ 

SRSb 0,4 0,311 0,852 -0,022 -0,048 

TRSb 0,4 0,311 0,803 -0,026 -0,045 

SRSb 0,6 0,391 0,922 -0,026 -0,055 

TRSb 0,6 0,396 0,950 -0,028 -0,048 

mean 0,352 0,882 -0,025 -0,049 

Table 6.2. Hysteretic model parameters for reinforced masonry system. 
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Table 6.2 gives the values of the parameters found on the basis of these 

specimens. C1 and C2 coefficient are reported also in a graphical way in Fig. 6.9 

from which is possible to see that these parameters can be assumed constant with 

its mean value for parameter C2, when the C1 parameter gave a significant 

difference between slender and squat walls. This can be useful in the case of 

extension of experimental results. 

 

 
Fig. 6.9. C1 and C2 coefficients for RM. 

 

  

  
Fig. 6.10. Experimental hysteresis loops and loops from model. Squat (left) and slender 

(right) specimens; σ0=0.4 N/mm
2
 (above) and σ0=0.6 N/mm

2
 (below) vertical compression 
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load. 

 

  

  
Fig. 6.11. Ratio of dissipated/input energy: comparison between experimental and modeled 

values. Squat (left) and slender (right) specimens; σ0=0.4 N/mm
2
 (above) and σ0=0.6 N/mm

2
 

(below) vertical compression load. 

 

In order to see the model capability to simulate also the seismic behavior of this RM 

system, in Fig. 6.12 are reported some cases of nonlinear time histories analyses 

(using the same TH to better confront other differences) done using different soil, 

different slenderness ratios and different PGA. In the firsts two rows of this figure, 

the squat specimen with 0.6 N/mm
2
, soil A and PGA = 0.35 g is confronted 

changing respectively the soil (type D) and the slenderness ratio. The latter 

(slender) is confronted in the last row changing only the PGA from 0.35 g to 0.25 g. 

Other details will be reported in next the chapter 7 on which these results are used 

with the aim of estimate the damping factor for this RM system. 
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Fig. 6.12. Some example of model results given for different soil (above), different 

slenderness ratios (middle) and different PGA (below). 

6.3.2. Application for Unreinforced Masonry System 

For URM system under investigation in this thesis was done a similar calibration 

process using the hysteretic model done for RM. In this case from experimental 

tests can be seen that the behavior of the three typologies of masonry TM, TG and 

Po was similar. In particular for low vertical pre-compression level the specimens 

showed a flexural/rocking behavior with a low amount of dissipated energy.  
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The specimens tested under a vertical load of 0.27% of their masonry compressive 

strength, showed higher dissipated energy and also different failure modes. For 

these reason this hysteretic model was applied at this level of vertical compression 

load. 

 

 

 

 
Fig. 6.13. Experimental hysteresis loops and loops from model. TM (above), TG (middle) and 

Po (below) specimens with vertical compression load of 0.27% of their compressive strength. 
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It worth to point out that from observation of experimental cycles the model needed 

to be revise in definition of Z parameter. In particular for URM, it was noted that the 

cycle opening represented by point C of model (and controlled by parameter C2), 

tend to be proportional to force at point B. In the idealized behavior of model, this 

means that Z parameters (that control the variation of C1 and C2), for parameter C2 

is a constant and it does not vary with cycle amplitude. Provided this modification 

also in this case the hysteretic model was able to catch the experimental behavior 

fairly well.  

In Table 6.3 are reported the model parameters and in Fig. 6.14 the coefficientsC1 

and C2 graphically. In Fig. 6.13 and Fig. 6.15 respectively show the experimental 

and modeled loops and their energetic balance for the three masonry types. 

 

URM C1 C2 CK CZ 

TM 0.27% 0,735 0,949 -0,179 -0,098 

TG 0.27% 0,718 0,965 -0,106 -0,052 

Po 0.27% 0,691 0,962 -0,108 -0,059 

mean 0,715 0,959 -0,131 -0,070 

Table 6.3. Hysteretic model parameters for unreinforced masonry system. 

 

 
Fig. 6.14. C1 and C2 coefficients for URM. 

 

In order to see the model capability to simulate also the seismic behavior of this 

URM systems, in Fig. 6.16 are reported some cases of nonlinear time histories 

analyses done using different masonry type, different soil and different PGA. Other 

details will be reported in next the chapter 7 on which these results are used with 

the aim of estimate the damping factor for this URM system. 
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Fig. 6.15. Ratio of dissipated/input energy: comparison between experimental and modeled 

values. TM (above), TG (middle)s Po (below) specimens under vertical compression load of 

0.27% of their compressive strength. 
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Fig. 6.16. Some example of model results given for different masonry type (above), different 

soil (middle) and different PGA (below). 
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7. DISPLACEMENT CONSIDERATIONS IN SEISMIC DESIGN 

OF MASONRY FOR SDOF STRUCTURES 

7.1. Introduction and Performance-based Design Considerations 

In last few years, has arose the possibility to being able to control the damage 

based on the probability of occurrence of an earthquake or base the design on 

different performance levels. The masonry still one of the widespread construction 

system for low-rise residential buildings even for countries prone to seismic risk, 

hence masonry needs to develop these design concepts.  

Tailor seismic response to control risk requires a proper definition of performance 

indicators (they could be deformation limits, acceleration limits, etc.). Seismic codes 

usually are based on idea that controlling forces is the best way to control the 

damage induced by earthquake. However in the end of twentieth century (Moehle, 

1992; Priestley, 1993) proposed the hypothesis that deformations is better than 

forces to control damage induced by earthquake. Hence, in the next years were 

developed design procedures based on that idea, the so called Displacement-

Based Design (DBD) methods. For a wide summary on this argument can be seen 

the report of FIB Bulletin 25 ((editor) Calvi, 2003) and (Sullivan et al., 2003). 

One of the most promising and developed DBD methods available in literature is 

the so called Direct Displacement-Based Design (DDBD) from (Priestley et al., 

2007). Its main idea is to identify, at beginning of design process, the design 

displacement which can assure an acceptable damage for considered earthquake 

intensity. The method assumes that the design displacement can be found without 

to know the strength of structure. Another important concept of this procedure is the 

Substitute Structure given from (Gulkan & Sozen, 1974) and (Shibata & Sozen, 

1976) which represent the non-linear behavior of complex structure with an 

equivalent Single Degree of Freedom (SDoF) structure that uses linear effective 

(secant) properties. In this way, when parameters of SDoF structures were defined, 

the design deformation limit and the equivalent damping of equivalent substitute 

structure can be calculated and the effective period (Teff, related to base shear) 

obtained from them through displacement spectra. 

An advantage of this method is that it permits to design a structure directly for 

different seismic risk levels. Knowledge of them was recently improved in term of 

displacement from (Cauzzi et al., 2008). Clearly, together with the design intensity 
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level, another important aspect is the deformation limit considering not only the 

structural damage but also non-structural element limits. For some materials this 

deformation limits have only few references in literature. This can be imputed to 

design methods that usually gave more importance to forces than displacements. 

DDBD method requires also a definition of an Equivalent Viscous Damping (EVD) 

which relates to dissipated energy during an earthquake and varies in relation to 

structural typology. 

When were known both design displacement and EVD, the displacement spectrum 

is abated relating with equivalent damping, obtaining the Teff of substitute structure. 

From the effective period it is easy to give the effective stiffness of the SDoF 

equivalent structure (                  
 ⁄ ) and design base shear is finally 

obtained multiplying effective stiffness for design displacement. The use of effective 

stiffness permits that inelastic forces develop in relation to strength assigned at 

each structural element. This is another innovative aspect of DBD method. 

In Italy, one topic (Linea 4) of the recent RELUIS project further developed DDBD 

method for different structural typologies involving many Italian Universities. The 

results were heterogeneous due to different available state-of-the-art, in fact DDBD 

was deeply developed for some structural typologies (e.g. reinforced concrete 

structures) whereas for others it was at first application (e.g. for masonry and 

retaining structures). The results are available in RELUIS project final report 

((editors) Calvi & Sullivan, 2009). 

 

  

 
 

Fig. 7.1. DDBD method from (Priestley et al., 2007) 
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In this field, the present work can be able to give some indications about 

displacements as performance indicators for masonry structures and furthermore 

complete the information for DDBD method with EVD curves. 

7.2. Drift Limit Proposal 

The proposed analytical model is able to interpret the performances of panels 

linking them with limit states resulting from integration of cross-section equilibrium 

equations (see chapter 5).  

Analytical model results were here generalized proposing some design equations 

directly relating both geometrical and mechanical properties of URM panels to 

performance levels (Similar further developments are awaited for RM systems). 

Different to what is present in RELUIS proposals, but according to experimental 

evidences and Italian building code (DM 14/01/2008, 2008) the present work 

defines four different limit states for masonry piers. Two of them are serviceability 

limit states and other two are ultimate limit states. They are respectively: 

guarantees to being operative immediately after the earthquake (the structure still 

substantially in the elastic range); damage control limit state (guarantees the 

structural resistance and controls damage on non-structural elements), life safety 

(guarantees structural strength and ductility) and collapse prevention (which is 

convenient only for the assessment of existing structures). 

7.2.1. Further Parametrical Investigation for Unreinforced Masonry 

Considering the parametrical analyses done for unreinforced masonry systems 

using the model developed in this thesis (explained in paragraphs 5.4.2 and 5.6.1) 

which changed the masonry unit strength, the three typologies of masonry showed 

a similar behavior and TG and Po masonry had the same compressive strength 

having the same strength of mortar and of unit (they were different only for different 

elastic modulus, Em and elastic shear modulus, G in those parametrical analyses). 

Furthermore is possible to represent these analyses of TG masonry in Fig. 7.2(a) 

which summarize the drift at different limit states in a compact form and Table 7.1 

which represent, as example, the drift achieved by model at maximum horizontal 

strength of walls. 

Especially in Table 7.1 can be seen that, despite the wide range of different 

configurations considered in these parametrical analyses, still some holes in the 



Displacement Capacity of Load-bearing Masonry as a Basis for Seismic Design 

210 

table. In order to describe better the drift relates to those parameters (fm and ζ0) the 

holes must be filled.  

Thus further parametrical analyses were done for the overall number of 32 

combinations for TG masonry (16 from previous analyses). Then the corresponding 

Table 7.1 become Table 7.2 and Fig. 7.2(a) becomes Fig. 7.2(b) 

 

TG fm [N/mm
2
] 

ζ0 [N/mm
2
] 1.37 2.74 4.12 5.49 

0.23 0.116    

0.30 0.131    

0.47  0.184   

0.60  0.209   

0.70   0.241  

0.91   0.273  

0.93 0.077 0.256 0.277 0.292 

1.21 0.016 0.269 0.315 0.331 

Table 7.1. Drift at maximum strength for TG masonry. Parametrical analyses of chapter 5. 

 

TG fm [N/mm
2
] 

ζ0 [N/mm
2
] 1.37 2.74 4.12 5.49 

0.23 0.245 0.254 0.270 0.288 

0.30 0.293 0.295 0.307 0.323 

0.47 0.401 0.389 0.393 0.403 

0.60 0.474 0.465 0.462 0.468 

0.70 0.512 0.517 0.510 0.512 

0.91 0.522 0.621 0.609 0.605 

0.93 0.514 0.636 0.622 0.617 

1.21 0.230 0.753 0.750 0.738 

Table 7.2. Drift at maximum strength for TG masonry. Parametrical analyses of chapter 5. 

 

In this way was possible to improve the accuracy of fitting process in order to 

provide some formulae able to directly give the drift limit states without perform the 

whole model analysis, and of course, can make faster the design process. 

Next to mechanical parameters, also the slenderness geometrical parameter (H/L) 

was investigated in previous paragraphs 5.4.2 and 5.6.1 (overall number of 

analyses 36). See Fig. 7.3 for a concise presentation of results consistent with Fig. 

7.2. These analyses represent the results in terms of drift with variation of main 

factors that affect the behavior of unreinforced masonry systems under 

investigation. 
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(a) 

(b) 

Fig. 7.2. Graphical view of different drift limit states for TG masonry. 

Analyses of chapter 5 (a), further analyses (b). 

Maximum drift (blue), drift at Fmax (red) and critical drift (green). 
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 (a) 

 (b) 

 (c) 

Fig. 7.3. Graphical view of different drift limit states for TM (a), TG (b) and Po (c) masonries. 

Slenderness analyses of Chap. 5. Max drift (blue), drift at Fmax (red) and critical drift (green). 
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7.2.2. Some Drift Limit State Design Proposals for URM 

From observation that loadbearing unreinforced masonry are not usually used for 

building with class of importance (or class of use) with high occupancy level, the 

limit states which govern the acceptable risk are the damage control and the life 

safety (and collapse limit states if consider also existing structures) according to 

(DM 14/01/2008, 2008). Therefore only these limit states were considered in the 

next. 

Two main failure mechanisms influenced the experimental specimens and, thus 

were considered in the model: flexure and diagonal shear failure mechanism. These 

failure modes also influence the response in terms of drift as explained in 

paragraphs 5.4.2 and 5.6.1 showing different shape and slope in curves (e.g. Fig. 

5.47). From this fact, it was chosen to subdivide the fitting process for walls showed 

flexure failure from walls showed a diagonal shear failure. The smaller resulting drift 

form these two relations will be the drift for the specific limit state. 

In the light of experimental tests, FEM and analytical modeling results it was 

assumed that the response of unreinforced masonry walls, under combined vertical 

and horizontal in-plane forces, is characterized form three main parameters (as 

mentioned before) that are: masonry compressive strength, vertical compression 

stress (mechanical parameters) and the slenderness ratio (geometric parameter). 

It has to be noted that all parametrical analyses given for TG masonry by changing 

masonry strength (on the basis of unit strength) and vertical compression load ratio 

had flexural failure. Whereas, the analyses done by changing slenderness ratio had 

flexural failure in 18 cases over the 32 combinations tested for the three masonry 

types. Furthermore, 7 walls in the group of walls that presented diagonal shear 

failure (14 walls) gave a very brittle response, in facts the maximum shear force 

was limited by reaching shear limit strength before masonry in compression 

reached the fm limit (also at the base of wall). 

The mechanical parameters were taken as independent for the reason that they 

present non-linear relation due to non-linear stress-strain constitutive law adopted 

and, in general, for the non-linearity of response. Hence, considering only their ratio 

cannot fully represent the wall response. 

The fitting was performed with a trial and error process taking in to account not only 

the goodness of single limit state function, but the consistence with the others. For 

example, were constrained the curve of first limit state have a drift lesser than the 

drift at maximum strength limit state, which must be lower than maximum drift. 

The fitting procedure in first few trials fixed all parameters except one in order to 

simplify the understanding of global shape of otherwise complex iper-surface (in 

facts the drift was considered dependent from three variables). Following, two 
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parameters were released and one fixed in order to catch the cross-correlation 

between them (and in a broad sense the covariance). 

The resulting formulae are reported in the following (Eq. 7.1) to (Eq. 7.5). Where ψcr 

is the critical drift and the ψFmax and ψdmax are respectively the drift at maximum 

strength and at maximum displacement. The suffix “fl” means function refers to 

flexural failure, when suffix “sh” refers to diagonal shear failure relation. 

Obviously the drift that has to be considered is the lesser between flexure failure 

and diagonal shear failure at corresponding limit state. 
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 (Eq. 7.5) 

Taking the previous representation from Fig. 7.2(b) and Fig. 7.3 is possible to give a 

concise representation of results provided by (Eq. 7.1) to (Eq. 7.5) simply adding 

surfaces generated by change of two parameters over the three considered. 

In Fig. 7.4 it can be seen the approximation provide by the proposed equations 

when was fixed the slenderness ratio (was used the experimental H/L ratio) and 
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varied the two main mechanical parameters considered in the case of TG 

unreinforced masonry.  

 
Fig. 7.4. Graphical view of different drift limit states (black dots) for mechanical parameters 

variation (TG masonry). Surfaces deriving from (Eq. 7.1) to (Eq. 7.5):  

maximum drift (blue), drift at Fmax (red) and critical drift (green). 

 

The complex shapes well represent the trends of analyses results. It easy to 

observe that masonry with low compressive strength have low displacement 

capacity and in particular very low or negligible post-peak ductility (ψdmax/ψFmax) 

when vertical load increase. Vice versa, for masonry with good compressive 

strength the ratio ψdmax/ψFmax increases. In particular, it can be seen that low level of 

vertical stress induces high ultimate drift capacity, but also that ductility 

concentrates in the post-peak branch with a low ratio between drift at maximum wall 

strength and critical drift (ψFmax/ψcr). 

Fig. 7.5, Fig. 7.6 and Fig. 7.7 represent the curves generate by the proposed 

functions fixing the masonry compressive strength respectively to the value valid for 

TM, TG and Po masonry. In these graphs the parametrical results are presented 

with black dots and the different limit state curves using different colors. 



Displacement Capacity of Load-bearing Masonry as a Basis for Seismic Design 

216 

In these analyses model gave also diagonal shear failure and the equations 

proposed are substantially able to catch not only when shear failure arises but also 

give an estimation of the wall drift capacity in these cases.  

 

 
Fig. 7.5. Graphical view of different drift limit states (black dots) for slenderness variation (TM 

masonry). Surfaces deriving from (Eq. 7.1) to (Eq. 7.5):  

maximum drift (blue), drift at Fmax (red) and critical drift (green). 

 

The fitting process leaded to good approximation for ψFmax and ψcr curves, but for 

ψdmax the masonry TM (it has the higher compressive strength) the proposed 

equations lead to an overestimation of this drift capacity, when TG and Po showed 

only a slightly underestimation of ψdmax. 

Also here in general, the effect of low vertical load is concentrate the ductility 

capacity in post-peak phase, lowering ψFmax/ψcr ratio and increasing ψdmax/ψFmax. 
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Fig. 7.6. Graphical view of different drift limit states (black dots) for slenderness variation (TG 

masonry). Surfaces deriving from (Eq. 7.1) to (Eq. 7.5):  

maximum drift (blue), drift at Fmax (red) and critical drift (green). 

 

Shear failure affects the wall response lowering drift capacities and ductility ratios 

and this occurs more when vertical load tends to increase. 

Whereas increasing the slenderness ratio leads to lower ductility ratios, in particular 

when low vertical stress was applied. This last statement still valid until diagonal 

shear failure occurs, in this case a decrease in slenderness ratio leads very quickly 

to a coarse displacement capacity and ductility ratios. Finally very brittle diagonal 

shear failures can be distinguished in the graphs when green curve encounter the 

red curve, or in other words when ψFmax was fixed as equal to ψcr because walls 

failed in shear before stress concentration at compressed to of walls reached fm. 
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Fig. 7.7. Graphical view of different drift limit states (black dots) for slenderness variation (Po 

masonry). Surfaces deriving from (Eq. 7.1) to (Eq. 7.5):  

maximum drift (blue), drift at Fmax (red) and critical drift (green). 

7.2.3. Error Estimation for Drift Formulae Proposed 

In order to provide an estimation of errors introduced by this further simplification 

step, were calculated some statistical parameters, such as the Pearson product-

moment correlation coefficient (denoted by R), the standard deviation (usually 

denoted by ζ, but to avoid confusion, here denoted by SD) and finally the relative 

standard deviation (RSD). 

It was assumed that analytical model data as true and they were confronted with 

corresponding values obtained by proposed equations (i.e. when obtained with the 

same fm, ζ0 and H/L were used). The Pearson correlation coefficient indicates the 

strength of a linear relationship between two variables (Eq. 7.6). The covariance 

(COV) is calculated with (Eq. 7.7). 

       
        

           
 (Eq. 7.6) 
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R can vary between -1 and +1 and a value of 1 implies that a linear equation 

describes the relationship between X and Y perfectly, with all data points lying on a 

line for which Y increases as X increases. Anyhow, R value generally does not 

completely characterize their relationship (Anscombe, 1973; Wilcox, 2005). 

Therefore, the information was completed by the use of SD and RSD (which is SD 

divided by mean) that can better represent together with R, not only the linear 

relationship between drift derived from model and from equation, but also a gauge 

of their dispersion. It worth to point out that, in this case, the SD was not calculated 

using residual from difference between equation result and the mean of series 

results, but from difference between equation result and the corresponding (i.e. 

calculated using the same parameters) result of analytical model. In this way were 

constructed the graphs presented on left side of figures from Fig. 7.8 to Fig. 7.11. 

Table 7.3 present the values of Pearson correlation coefficient for each drift limit 

state (in the rows) and for different parametrical analyses that were taken in to 

account and summarized in previous figures and tables (in the columns). It was 

added also the averaged values of R both for drift limit state and for analysis. The 

global average Pearson correlation is 0.969 that is a very high value even though in 

one case this correlation had the lower value of 0.759. This is due to two analyses 

were the equations provided a underestimation of critical drift for masonry Po with a 

slenderness ratio and vertical compression stress induced a fragile failure (see Fig. 

7.7 and Fig. 7.11c). In the Table 7.4 can be seen the results of the comparison in 

terms of standard deviation (with the dimension of drift). Also in this case the critical 

drift of masonry Po showed higher value respect others. It can be noted that in this 

case averaging the SD value between different limit states does not have sense 

because they refers to different mean drift. On contrary, these comparison can be 

done using RSD values provided in Table 7.5 (with are dimensionless and 

expressed in percentage), because in this case the SD were “weighed” using the 

mean value. Anyway, the RSD showed a tendency to increase with the increase of 

drift in absolute magnitude. This is partially due to the facts that mean values are 

not fully representative of drift limit states (otherwise this design proposal equations 

would been meaningless). 

From Fig. 7.8 to Fig. 7.11 are presented the graphical views of differences between 

model and equations results (left) and the corresponding distribution of deviations 

from model results (right) at different limit states. In other words with the continuous 

blue lines are showed the model drift both in horizontal and vertical axis, and with 

red crosses the results of equations proposed (gray lines represent the shift due to 

SD).  
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 (b) 

  (c) 

Fig. 7.8. Mechanical parameters variation (TG masonry). Graphical view of differences 

between model and equations results (left) and the corresponding distribution of deviations 

from model results (right). At maximum drift (a), drift at Fmax (b) and critical drift (c). 

 

In Fig. 7.8 can be noted a trend in the residuals, anyhow the equation tend to be 

conservative and provide a lower value of drift that with this analyses were fairly 

high. 
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 (b) 

 

 
(c) 

Fig. 7.9. Slenderness variation (TM masonry). Graphical view of differences between model 

and equations results (left) and the corresponding distribution of deviations from model 

results (right). At maximum drift (a), drift at Fmax (b) and critical drift (c). 
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Fig. 7.10. Slenderness variation (TG masonry). Graphical view of differences between model 

and equations results (left) and the corresponding distribution of deviations from model 

results (right). At maximum drift (a), drift at Fmax (b) and critical drift (c). 
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Fig. 7.11. Slenderness variation (Po masonry). Graphical view of differences between model 

and equations results (left) and the corresponding distribution of deviations from model results 

(right). At maximum drift (a), drift at Fmax (b) and critical drift (c). 
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R [-] fm-ζ0 (TG) H/L-ζ0 (TM) H/L-ζ0 (TG) H/L-ζ0 (Po) mean 

ψcr 0.997 0.983 0.996 0.759 0.934 

ΨFmax 0.991 0.986 0.981 0.991 0.987 

ψmax 0.993 0.989 0.983 0.980 0.986 

mean 0.994 0.986 0.987 0.910 0,969 

Table 7.3. Summary of R. Columns refer to analyses type, rows refer to different limit states. 

 

SD [%] fm-ζ0 (TG) H/L-ζ0 (TM) H/L-ζ0 (TG) H/L-ζ0 (Po) mean 

ψcr 0.007 0.014 0.009 0.026 0.014 

ΨFmax 0.022 0.046 0.043 0.040 0.038 

ψmax 0.218 0.127 0.123 0.165 0.158 

Table 7.4. Summary of SD. Columns refer to analyses type, rows refer to different limit states. 

 

RSD [%] fm-ζ0 (TG) H/L-ζ0 (TM) H/L-ζ0 (TG) H/L-ζ0 (Po) mean 

ψcr 3.5 4.2 2.9 8.0 4.7 

ΨFmax 4.7 7.9 6.9 6.2 6.4 

ψmax 13.4 11.3 9.4 11.2 11.3 

mean 7.2 7.3 6.4 8.5 7.5 

Table 7.5. Summary of RSD. Columns refer to analyses type, rows refer to different limit 
states. 

7.3. Equivalent Viscous Damping 

7.3.1. A Procedure to Find Hysteretic Damping of the Equivalent Elastic Substitute 

Structure 

Hysteretic model and analyses described in previous Chapter 6 allow to build 

relation curves between ductility and Equivalent Viscous Damping (EVD) which are 

useful in DDBD design process when the displacement elastic spectrum needs to 

be scaled in agreement to EVD showed by the structure at the performance chosen 

when defining the design displacement (Priestley et al., 2007). 

In the algorithm defined with this purpose, can be distinguished two phases. In the 

first nonlinear time history (NLTH) analyses are carried out using hysteretic model 

described in previous chapter; in the second phase, through an equivalent elastic 

system (substitute structure) can be defined the EVD. The latter is obtained by 

imposing the equality, in displacement, between response of NLTH analysis and the 

linear elastic equivalent system. 

For each time history considered the procedure the following steps:  

1. Definition of target displacements. 

Hysteretic model considers the system response as elastic until the achievement 

of first limit state. Hence, target displacements are placed from first limit state 
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until the ultimate displacement capacity. n equal-spaced points subdivide the 

non-linear part of envelope curve (it was chosen n = 7).  

2. Research of PGA multiplier factor. 

For each target displacement it carries out NLTH analyses using the 10 

synthetic accelerograms utilizing an elastic damping close to zero. These 

analyses are repeated scaling the TH using a multiplier factor of PGA until the 

maximum displacement achieved by NLTH is equal to target displacement with 

a specified tolerance. It is a iterative procedure and at each iteration the PGA is 

updated from previous one taking in to account the difference between the 

actual maximum displacement found and the target. 

3. Determination of secant stiffness and effective period. 

When target displacement achieved is knows the multiplier factor of PGA to 

achieve it. Thus can be calculated the corresponding secant stiffness which is 

found relating point on envelope curve at target displacement. Knowing the 

secant stiffness it is easy to obtain the effective period (         

√        ⁄ ). 

4. Definition of equivalent linear elastic system 

The linear elastic equivalent system is defined through effective period (or the 

corresponding secant stiffness) given from previous step and from hysteretic 

dumping equal to elastic damping used in point 2. On this system is carried out a 

TH scaled using PGA in point 2. Maximum displacement obtained from this 

analysis represents the linear response of equivalent system for the considered 

hysteretic damping. 

5. Research of equivalent hysteretic damping 

Equivalent hysteretic damping means the value of damping which is able to 

make equal the displacement of linear elastic system to target displacement. 

Hence, for each iteration, linear elastic analysis is repeated varying the damping 

value, starting from previous one and taking in to account the difference 

between obtained displacement and the target displacement. 

Elastic damping coefficient used in point 2 of procedure is close to zero because 

the aim is find the damping component due to hysteretic dissipation. To avoid 

numerical problems the starting value of elastic damping was set at very low value, 

but not zero. It was chosen a conventional value of 0.5% (one tenth of usual elastic 

damping component). The tolerance imposed in NLTH analyses to find the PGA 

was set to 2% of target displacement, while for linear elastic analyses was set to 

1%. 
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7.3.2. Discussion of Results on Experimental Walls 

The procedure explained in previous paragraph was repeated for each tested 

specimen (8 for RM system and 3 for URM system), for each target displacement 

(7), for the 10 synthetic accelerograms, for the 2 groups of soils, giving a total 

number of 1540 NLTH analyses as many linear elastic analyses.  

In the figures Fig. 7.12 and Fig. 7.13 are presented the results for reinforced 

masonry system of this procedure divided for soil type. Each line in figures 

represents one experimental wall. Each one of seven dots composing the line is the 

mean value of 10 NLTH plus 10 equivalent linear analyses at corresponding target 

displacement. The ductility is defined respect to second limit (2
nd

 LS) state 

consistent with experimental results and previous analysis approaches used. 

Hence, the first limit state (1
st
 LS), fixed when masonry wall lives the elastic range, 

has ductility less than one. Therefore hysteretic model start to open cycles from 1
st
 

thus hysteretic damping start to increase from this limit state. 

In Fig. 7.12 are presented the results in terms of equivalent hysteretic damping 

versus drift. It can be seen that obviously the damping is almost zero at elastic limit 

(not zero because elastic component was set to 0.5%) and, in general, the damping 

shows a logarithmic trend with the increasing of target displacement. In these 

curves walls characterized by shear failure (red and orange) at the same drift have 

a higher damping value respect the curves that represent the walls failed in flexure 

(blue and azure). When shear failure occurs, it can be noted also that for drift 

beyond drift of maximum strength (3
rd

 LS) the damping shows a sudden change of 

trend. In facts beyond 3
rd

 LS the damping increased a lot, even of 50%, going from 

values around 10% to value around 15%. 

With reference to Fig. 7.13, that represent the damping respect to ductility variation, 

can be noted the curves with different failure tend to be superimposed. This fact is 

valid with reference to different failures and for both soil considered.  

Furthermore, from results of equivalent elastic systems the effective periods (Teff) of 

walls failed in shear gone about from 0.1 s for the first limit state (ductility less than 

one) to 0.35s for the ultimate displacement capacity. For walls showed a flexure 

behavior the previous range is about from 0.15 (1
st
 LS) to 0.7 s (4

th
 LS). Observing 

the spectra for soil type A and D from Eurocode 8 (given in Fig. 6.6) all walls still 

about on plateau of those spectra excluding the walls that fail in flexure and on soil 

type A (TC = 0.4 s). 

Therefore, this can be seen in the Fig. 7.13 because for soil A and flexure behavior 

(blue and azure lines) after a ductility of about 2 the damping tends to stabilize 

around the value of 12%. On contrary, for soil type D which have TC = 0.8s can be 

noted trend that always increasing until average values of damping around 20%. 
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Fig. 7.12. Equivalent Hysteretic Damping versus Drift curves. 

Experimental RM walls under soil type A (above) type D (below). 
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Fig. 7.13. Equivalent Hysteretic Damping versus Ductility curves. 

Experimental RM walls under soil type A (above) type D (below). 
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Fig. 7.14. Equivalent Hysteretic Damping versus Drift curves. 

Experimental URM walls under soil type A (above) type D (below). 
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This phenomenon can be explained if considers that the displacement at 2
nd

 LS, at 

which the ductility is referred to, is about of 5 mm for Po and TG and practically the 

half for TM. So, even if TM typology has a displacement capacity almost two times 

lower respect the others, it can reach a similar ultimate ductility. 

 

 

 
Fig. 7.15. Equivalent Hysteretic Damping versus Ductility curves. 

Experimental URM walls under soil type A (above) type D (below). 
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In reference to already done considerations for RM about variation of effective 

period, it is interesting to notice that the elastic period is about 0.2 s for all three 

typologies, whereas the one at ultimate LS is about 0.5 s for Po and TG and 0.4 s 

for TM. For the A soil, the first two typologies show a logarithmic trend that reach a 

plateau round a damping value of 9% beyond a ductility of about 2.5. For D soil the 

trend is linear until a value of 20%. The TM typology give linear trend for both soil 

and reach values of about 10% for A soil and 12 % for D soil. 

 

 

 
Fig. 7.16. Equivalent Hysteretic Damping versus Drift curves.RM walls under soil type A 

(above) type D (below). Experimental (continuous lines), analytical model (dash-dot lines). 
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Fig. 7.17. Equivalent Hysteretic Damping versus Ductility curves.RM walls under soil type A 

(above) type D (below). Experimental (continuous lines), analytical model (dash-dot lines). 

7.3.3. Extension of Results Using Analytical Model Envelopes 

In order to test the capacity of analytical model (presented previous in Chapter 5) 

coupled with the hysteretic model to represent the non-linear dynamic in-plane 

behavior of masonry walls were carried out a series of analyses using the hysteretic 

model on the basis of four limit states provided by the developed analytical model. 

0

5

10

15

20

25

0.0 1.0 2.0 3.0 4.0 5.0 6.0

d
a
m

p
in

g
 [

%
]

ductility [-]

Hysteretic Damping - soil A

SRSa06 Sa06

SRSb04 Sb04

0

5

10

15

20

25

0.0 1.0 2.0 3.0 4.0 5.0 6.0

d
a
m

p
in

g
 [

%
]

ductility [-]

Hysteretic Damping - soil D

SRSa06 Sa06

SRSb04 Sb04



7. Displacement Considerations in Seismic Design of Masonry for One Degree of Freedom Structures 

233 

This kind of correlation is a hard task because is done after a series of successive 

approximations made first from calibration of model which can represent the 

capacity curve and the limit state and after applying a hysteretic model and a series 

of dynamic random seismic excitations. These lead to a response which is sensitive 

to capacity of dissipate energy from hysteretic cycles and it is also sensitive to 

assignment of limit states. 

Two walls that represent the extremes of behaviors showed during experimental 

tests of reinforced masonry system were taken in to account, namely the squat wall 

with higher vertical compression load and the slender wall with lower 

precompression. Those are respectively the red and blue continuous lines of Fig. 

7.16 and Fig. 7.17. Instead, the dash dotted lines are the curves which refer to 

analytical model envelopes. 

All the observation made before still valid here because globally the general form of 

the curves from analytical model show an almost perfect correlation with curves 

referring to experimental limit states and fully calibrated with hysteretic model used. 

Conversely the curves from analytical model present in general a higher hysteretic 

damping and the relative errors with curves from experimental model can reach 

20%, but in the most of cases range around 15%.  

7.4. Conclusions 

7.4.1. Drift Limit 

In this chapter some formulations aimed to provide drifts for unreinforced masonry 

panels directly related with limit states model presented in chapter 5 were 

proposed. These formulations use simple geometrical and mechanical properties of 

URM panels to find drifts at different performance levels. They are able to catch 

both flexural and shear failure drift limits. Similar further developments are awaited 

for RM systems. 

These formulations derive from an extrapolation process and were validated with 

specific experimental tests that cover a limited number (even though indicative) of 

new unreinforced masonry types and in with results of numerical models shown in 

chapter 5. 

The proposed formulae have a complex form, however, they only depend on a 

limited number of engineering parameters (such as masonry compressive strength, 

vertical compression stress and wall slenderness). Therefore, although they need to 

be simplified in the light of practical use and further validated with other 
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experimental tests, it appears that they follow the engineering criteria generally 

adopted in DDB design methods. They can be thus regarded as a first indication in 

the case of unreinforced masonry systems. 

7.4.2. Equivalent Damping 

In this chapter a procedure to evaluate the hysteretic component of Equivalent 

Viscous Damping (EVD), of both unreinforced and reinforced masonry walls, in 

relation to masonry drift and ductility is presented. The analyses were repeated for 

two extreme types of soils (A and D) of Eurocode 8. In addition, analyses aimed to 

compare the damping deduced form experimental limit states with that given from 

analytical model limit states were performed. 

The results show a general logarithmic trend in drift-damping and ductility-damping 

curves, with a more linearized trend for walls having small displacement capacity. 

The damping at ultimate displacement capacity ranges around 12%-15% for RM 

and around 10% for URM with soil A. While, damping reaches values around 20%, 

both RM and URM on soil D. 

In the comparison of results given by analyses carried out on the basis of 

experimental and numerical envelopes, the latter tend to have a greater damping 

for both soils. The average error is around 15%, although the correlation between 

the two curves is very good (98%). This shows in one hand, the hysteretic model 

applied is robust, and on the other hand, adopting the numerical envelope curves 

obtained by means of the developed analytical model (chapter 5) leads to 

acceptable errors. 

Finally, the results of the dynamic analyses shows that, in the case of RM walls, the 

ductility-damping curves of walls failed in shear and flexure can be almost 

superimposed, apart for the higher ductility values available only when flexural 

failure occurred. 
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8. CONCLUSIONS 

8.1. Introduction 

Some general remarks about the research carried out and the main conclusions 

obtained by the analyses are presented in this chapter. 

The observations on the modeling approaches are given with the aim to define their 

reliability. Next, the results achieved by the analyses are discussed also with 

reference to the parametrical analysis extensions. Remarks were given for analyses 

on different masonry systems made with perforated clay units both reinforced and 

unreinforced, with different joint typologies. 

In addition, observations about feasibility of displacement-based design for masonry 

are given on the basis of proposed formulae and results of dynamic analyses 

carried out. 

Finally, the open issues, standing from the present work, are described as further 

possible field which needs further research and investigation. 

8.2. About Reliability of Modeling Approaches 

8.2.1. FEM Models 

Four different types of non-linear models, which follow macro- and micro-modeling 

strategies and implement isotropic damage or orthotropic plastic criteria for 

materials, were calibrated. The main mechanical parameters were extracted by 

common tests, used in practice to characterize materials and simulate actual 

loading conditions in structural masonry walls, and were applied without arbitrary 

corrections.  

Some simple criteria to evaluate mechanical properties of expanded units in micro-

models and to obtain orthotropic parameters from isotropic ones were defined. The 

first criterion is based on the net area ratio that characterizes masonry cross-

sections and influences masonry anisotropy when perforated units are used. The 

second allows micro-model interface parameters to be found and they can be 

applied to the analyses without any correction, by systematically introducing the 
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experimental correction due to mortar joint and mortar-unit interface irregularity into 

the numerical models. 

In the case of uniaxial compression, three out of the four models reproduced 

experimental behavior fairly well. Orthotropic models and the isotropic micro-model 

are more suitable. Experimental behavior under diagonal compression was properly 

described only by micro-models, both orthotropic and isotropic. In particular the 

isotropic micro-model described shear compression tests accurately. The type of 

test that is being simulated influences the accuracy of numerical results more than 

masonry type itself. In general, at least one modeling strategy simulated each type 

of test very well, and allowed differences in stress distribution and behavior due to 

the type of masonry bond arrangement to be appreciated.  

Analyses confirmed that the various test configurations used to study the shear 

behavior of masonry walls (i.e., diagonal compression and shear compression 

tests) leads to different stress distributions, clearly, but they also showed that the 

types of tested masonry could emphasize this effect (i.e. unit dimension and joints 

arrangements). 

8.2.2. Analytical Models 

It was built a model for masonry wall (S.D.o.F. structure) under in plane vertical and 

horizontal forces, able to take in to account the load-displacement capacity curve 

(also considering non-linear shear deformation) and to reproduce both flexural and 

shear failures. The model was validated reproducing experimental tests (see 5.4.1 

and 5.5.1) 

As expected, in general, flexural behavior was fairly well reproduced by model 

achieving both strength and displacement showed in experimental tests, despite 

some inconsistencies for unreinforced masonries. However, they can partially be 

imputed to test variability of masonry specimens themself. 

In general, modeled walls are greatly influenced by shear deformation and, 

obviously, shear deformation is controlled to a great extent by shear modulus (G). 

Despite this sensitivity, model was in good agreement with experimental G obtained 

from shear-compression tests and with lower bound of values provided by 

(Circolare 2/02/2009 n. 617 C.S.LL.PP., 2009). Shear strength formulation adopted 

was able to correctly forecast experimental walls subjected to shear failure and 

also, with acceptable approximation, their loads and displacements. 

Model was able to describe the achievement of various limit states, which represent 

the performances of masonry walls relating with cross-section (e.g. when masonry 

pier reach compressive strength at base section) or whole panel limit states (e.g. 

when wall reach shear strength provided by masonry). 
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8.3. About Results of Analyses Carried Out 

8.3.1. Unreinforced Masonry systems 

Thanks to the methodical modeling approach followed, it was possible to define a 

reliable modeling strategy for analysis of in-plane loaded masonry, able to 

reproduce the experimentally observed masonry behavior.  

Parametric analyses showed how wall performance under combined shear and 

compression depend on unit strength and masonry type.  

If the ratio of applied vertical load to masonry compressive strength is kept 

constant, FEM model and analytical model results may differs. Maximum drift may 

increase at lower unit strength, as vertical load decreases and rocking behavior 

prevails in FEM analyses; when maximum drift decreases at lower unit strength, 

without affecting the failure mechanism in analytical analyses. In any case, the 

displacement capacity of thin-layer joint masonry remains lower than in other 

masonry types. 

In general, maximum horizontal load and drift at ultimate state decrease with unit 

strength. The decrease in unit strength also corresponds to a change in dominant 

failure mode, from flexure/rocking to brittle flexure. In all masonry types, critical 

behavior arises at unit strengths between 10 and 5 N/mm
2
. This fact was confirmed 

with both FEM and Analytical approaches.  

Masonry units with compressive strength close to lower limit provided by codes 

leads to brittle failures with limited load and displacement capacities. Also in this 

case Italian code appears on the safe side because it fix the limit on the basis of 

characteristic strength (fm>fck≥5 N/mm
2
) when Eurocode 8 fix this limit on the basis 

of normalized unit strength (for this kind of unit geometry, in accordance with EN 

772-1:2000 (2007), result fm<fb≥5 N/mm
2
). 

To avoid brittle failure vertical load need to be limited in ratio to masonry 

compressive strength. Italian code (NTC 2008) appears more conservative than 

Eurocode 8, when provides construction rules for “simple” masonry buildings, 

because it requires a basic verification of mean storey compressive stress, on 

contrary Eurocode 8 does not require this control.  

Eurocode 8 allows the use of masonry made by mortarless head joints, while in the 

Italian seismic code (NTC 2008) this is not yet regulated. Although, were taken in to 

account, e.g. by means of FEM analyses, the actual joint arrangement conditions, 

results of analyses on masonry systems showed a similar behavior under combined 

vertical and horizontal loading. Hence, thin layer bed joints and vertical ungrouted 

joints with mechanical interlocking between masonry system does not present 
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significant differences on global behavior from traditional head and bed joint 

masonry systems, despite showed lower ductility performances. 

8.3.2. Reinforced Masonry Systems 

Modeled RM system and experimental results were compared and good agreement 

was found in terms of load, displacements, failure modes and, for FEM models, also 

the crack patterns. 

Calibrated models were used to carry out parametric analyses in order to 

investigate the influence of vertical load, slenderness and vertical reinforcement 

ratio (also horizontal reinforcement ratio with the analytical model) on the behavior 

of the masonry system under investigation.  

Maximum horizontal load capacity of the walls changes, as expected, with the 

variation of these parameters and their combinations. In general, it was possible to 

find linear relation between the maximum shear stress and both the vertical load 

and the vertical reinforcement percentage. Maximum shear stress presented a non-

linear decrease with increase of H/L ratio.  

Increment of axial load leads to increase of shear capacity at the expense of 

ductility, in particular related to the post peak phase. Thus, variation of axial load 

allows to control the failure mode. The same can be said for also vertical 

reinforcement ratio. Italian code prescription about vertical reinforcement assigns 

limits both for minimum percentage (0.05% of gross sectional area) and for 

maximum percentage (1%). In the light of the obtained results, maximum limit 

appears high to avoid brittle failure modes; even though it is more conservative than 

Eurocode 8 provisions that indicate only a lower bound limit for vertical 

reinforcement ratio. 

Slenderness ratio influence failure mode and allows to control if shear or flexure 

prevails. In general, the higher the aspect ratio (slender wall) the higher the ductility, 

where displacement capacity is concentrated in post peak phase. 

In case of no horizontal reinforcement, slender walls showed better drift 

performances compared to squat walls; even though the latter achieve the best 

performances, when balanced vertical and horizontal reinforcements were used. In 

general, the higher horizontal reinforcement ratio the higher displacement capacity, 

within the analyzed range. 
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8.4. About Feasibility of Displacement-Based Design for Masonry 

8.4.1. Drift limits 

Some formulations aimed to provide drifts for unreinforced masonry panels, directly 

related with limit states model presented in chapter 5 using simple geometrical and 

mechanical properties, were proposed. They are able to catch both flexural and 

shear failure drift limits.  

The proposed formulae have a complex form; however, they only depend on 

masonry compressive strength, vertical compression stress and wall slenderness. 

Therefore, it appears that they follow the engineering criteria generally adopted in 

DDB design methods. They can be thus regarded as a first indication in the case of 

unreinforced masonry systems. 

8.4.2. Damping 

A procedure to evaluate the hysteretic component of Equivalent Viscous Damping 

(EVD), of both unreinforced and reinforced masonry walls, in relation to masonry 

drift and ductility is presented in chapter 7.  

The results show a general logarithmic trend in drift-damping and ductility-damping 

curves, with a more linearized trend for walls having small displacement capacity. 

The damping at ultimate displacement capacity ranges around 12%-15% for RM 

and around 10% for URM with soil A. While, damping reaches values around 20%, 

both RM and URM on soil D. 

The comparison of results given by analyses carried out on the basis of 

experimental and numerical envelopes, shows in one hand, that the hysteretic 

model applied is robust, and on the other hand, that adopting the numerical 

envelope curves obtained by means of the developed analytical model (chapter 5) 

leads to acceptable errors (around 15%). 

Finally, the results of the dynamic analyses show that, in the case of RM walls, the 

ductility-damping curves of walls failed in shear and flexure can be almost 

superimposed, apart for the higher ductility values available only when flexural 

failure occurs. Therefore, also in this case the results follow the engineering criteria 

generally adopted in DDB design methods. They can be thus regarded as a first 

indication in the case of reinforced masonry systems. 
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8.5. Future Work and Developments 

Further developments of the research carried out on reinforced and unreinforced 

masonry system could be aimed both at integrating the modeling program and 

completing the validation part of the present thesis. 

Drift formulations at different limit states provided also for reinforced masonry 

systems would be an immediate development of thesis work. 

Next, with the aim of validate and further extend the different modeling approaches, 

experimental data on different masonry systems available from literature can be 

drawn. This can be done also in order to further validate and extend both 

formulation proposed for drift and ductility-damping curves. 

Analytical model would be improved introducing at material constitutive level, at one 

hand, an interaction of non-linear shear deformation effects also including 

transverse reinforcement (thus, avoiding phenomenological interpretation of them) 

and on the other hand, a hysteretic law allowing for the modeling under reversed-

cyclic loading.  

Evaluating both displacements and dynamical effects on whole structure would be 

another development of presented S.D.o.F. model. This can be useful in the light of 

DDB design method, which need the displacement profile of structure to be 

evaluated and to calibrate the damping-ductility curves for the equivalent substitute 

structure. 
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