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PREFACE

Another thesis has also been submitted to the Georgia Institute of Tech-

nology in Atlanta, Georgia, USA, for fulfillment of the requirements of

the dual-degree program. The interested reader is then referred to that

manuscript entitled “Simulation and Modeling of the Powder Diffraction

Pattern from Nanoparticles: Studying the Influence of Surface Strain,”

where they will find a chapter discussing the effect of surface strain gra-

dients on the powder diffraction peak profiles.
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SUMMARY

Nanostructured materials are currently at the forefront of nearly

every emerging industry, as they offer promising solutions to problems

ranging from those facing energy technologies, to those concerning the

structural integrity of materials. With all of these future applications,

it is crucial that methods are developed which can offer accurate, and

statistically reliable characterization of these materials in a reasonable

amount of time. X-ray diffraction is one such method which is already

widely available, and can offer further insight into the atomic structure,

as well as, microstructure of nanomaterials.

This thesis work is then focused on investigating how different struc-

tural features of nanoparticles influence the line profiles of the x-ray pow-

der diffraction pattern. Due to their extremely small size, the contribu-

tion from crystallite size broadening becomes the dominating feature in

an observed diffraction peak. Therefore, the theory of size broadening

was critically reviewed concerning the considerations necessary when the

crystallite size approaches a few nanometers. Furthermore, the analysis

of synthesized shape controlled platinum nanoparticles was carried out

using a developed line profile analysis routine, based on the Debye func-

tion analysis (DFA) approach, to determine the distribution of particle

size and shape in the sample.

xxi



The Debye function simulates the powder diffraction pattern from

atomistic models. This allows for the coupling of this technique with

atomistic simulations, like molecular dynamics (MD), to gain further un-

derstanding of the diffraction pattern from nanoparticles. Techniques

were developed to study how lattice dynamics, and the resulting thermal

diffuse scattering, are affected by the small crystallite domains. The dif-

ferent results from Al and Cu particles were discussed. Also, the use of

atomic models allowed for an in depth study of how the presence of twin

and deformation faults affects the diffraction pattern from small crys-

tallites. This study then improves the understanding of diffraction from

small crystallites, and showcases the level of insight which is achievable

through the coupling of simulation and diffraction pattern analysis.
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CHAPTER I

INTRODUCTION

1.1 General Motivation

It is fair to say that in present day, the phrase “nanotechnology” has

a Jules Verne quality about it. Stories touting the latest discoveries of

scientists, which just yesterday were science fiction, commonly fill the

pages of popular science magazines, and captivate all who read about

what life will be like in the nano-future. While some projections of when

these discoveries will precipitate into a real product are somewhat ambi-

tious, exciting proposals include the use of nanotechnology in the fields

of electronics, photonics, energy, and composites with unique mechani-

cal properties. However, the interest in nanotechnology goes far beyond

these applications, as almost all properties of a material have been found

to have some degree of size dependence. Trying to understand the physi-

cal origins of this size dependence, not to mention the development of the

fabrication processes necessary to make these small materials, is forcing

scientists to really understand the behavior of materials at the atomistic

level. The ultimate goal is then enough understanding that the fabrica-

tion of materials might begin with the consideration of their atomistic

assembly, and continue with structuring over larger length scales. Then,
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from a list of desired properties, like strength or electrical conductivity,

one would be able to make the appropriate material in a lab — much

like constructing a building to desired specifications.

The further understanding of any material’s behavior is contingent

upon observations, which means the further development of characteri-

zation techniques is crucial. These measurements serve to ensure that the

fabricated material actually exhibits the desired characteristics, as well

as, helps to understand the influence of different aspects of the fabrication

process. The small size of nanostructured materials can pose a problem

for many characterization techniques. In order to study the structure

of these small materials, special techniques in microscopy are commonly

employed, which include transmission electron microscopy (TEM), scan-

ning electron microscopy (SEM) and atomic force microscopy (AFM).

While these techniques allow for invaluable images, and can even resolve

the atomic structure of materials, they are somewhat limited in that only

a small volume of the synthesized material can be studied in a reasonable

amount of time. Nanomaterials which are produced industrially require

a yield on the level of kilograms, orders of magnitude larger than the

milligrams which are produced in the laboratory. A complete characteri-

zation of such a large batch of material by microscopy can be costly and

time consuming.

X-ray powder diffraction (XRD) offers a complementary structural

characterization technique, where information from a large statistical
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sampling of a material can be extracted from the diffraction pattern.

The diffraction pattern contains information over many length scales,

from the atomic structure to the microstructure of a material. However,

obtaining the detailed information on the microstructure of a material

can be complicated. It involves modeling subtle changes in the shape of

the observed diffraction peaks, and has been largely developed consider-

ing materials with somewhat large crystalline domains. So, before XRD

can be effectively used in the characterization of nanomaterials, it is nec-

essary to extend, and test, the existing models which describe diffraction

from small crystalline domains.

1.2 Focus of Thesis

The current thesis work will then exhibit the progress made in develop-

ing better diffraction pattern analysis techniques for small crystalline do-

mains, focusing on the case of metal nanoparticles. Research on nanopar-

ticles has progressed rapidly in recent years, as they have found applica-

tion in the fields of catalysis, medicine, electronics, and photonics [112].

Synthesis techniques have been developed to control not only size, but

also the shape of nanoparticles [42]. The high yield production of shape

specific nanoparticles opens a new door in materials engineering by allow-

ing for desirable properties to be achieved by tuning the particle shape.

One of the most promising applications of these shape controlled

nanoparticles is their use as a highly efficient, reaction selective, het-

erogeneous catalysts. Heterogeneous catalysts are an important part
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of the chemical manufacturing industry as they reduce the amount of

energy necessary to carry out a chemical reaction by promoting the reac-

tion to take place on their surface. Nanoparticles are expected to make

an impact in this field because their small size results in more surface

area per gram of catalyst which improves the catalytic efficiency. The

reduction of the amount of catalyst is important since many catalysts

are made of precious metals like platinum and ruthenium. The ability

of tailoring the shape can result in preferential exposure of the highly

catalytically active surfaces. Furthermore, the exact chemical reaction

which is promoted can be controlled by engineering the nanoparticles

to preferentially expose specific faces. Therefore, the use of shape con-

trolled nanoparticles can result in a further improvement in efficiency

by promoting the chemical reaction which requires less energy. As these

nanoparticles begin to be increasingly used in the industry, an improved

analysis of the structure from the diffraction pattern can be important

in characterizing shape of the synthesized nanoparticles, as well as, any

structural modifications which might occur throughout their lifetime of

use.

The initial goal of the present research is then to develop a powder

diffraction pattern analysis technique which can determine the different

particle shapes which make up a sample. As it will be shown in the fol-

lowing work, the shape of a spot in reciprocal space, and also the shape

of the powder diffraction peak, is a direct consequence of the shape of
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the crystallite. However, the crystallite size and shape are not the only

characteristics which influence the diffraction peak profiles. Crystalline

defects of all kinds are known to change the peak shapes, each in a differ-

ent and specific way. Not to mention there can also be contributions from

a general strain gradient, and thermal motion of the atoms. Therefore,

in order to achieve a reliable characterization of a nanoparticle shape,

the influence of these other effects must be considered. However, many

models which have been developed to describe the influences of these

crystal defects assume the case of large crystallites. Therefore, the cur-

rent research will also be focused on testing and extending the models

for the influence of crystal defects on the diffraction pattern considering

the case of small crystallites.

In order to achieve these goals the current research will employ a

developing powder diffraction pattern analysis technique which relies on

atomistic descriptions of the crystallites. The powder diffraction pattern

can be directly obtained from any arrangement of atoms in a volume

through the Debye function [37]. The analysis of the diffraction pattern

by this approach has not been extensively developed in the past due to

the computational burden which is demanded. However, this problem

becomes tractable as computers become cheaper and faster. The Debye

function then opens the door to a deeper understanding of the features

observed in the diffraction pattern. Atomistic models can be constructed
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with desired characteristics, the diffraction pattern simulated by the De-

bye function, and the influence of each characteristic on the diffraction

pattern can be directly observed. This approach can systematically test,

and improve upon, the models which exist in the diffraction literature

regarding the influences of crystallite size, crystal defects and strains on

the diffraction pattern.

Interesting avenues of research also begin to emerge when it is re-

alized that atomistic simulations like molecular dynamics (MD) can be

integrated into this approach. Atomic models which are the result of MD

simulations can be used to simulate the diffraction pattern and study fea-

tures which are the result of an energetically more favorable model. The

long term goal might be to one day incorporate MD simulations directly

into the analysis of diffraction patterns. This would allow diffraction

pattern analysis to evolve beyond arguments based on symmetries of

the crystal lattice, and incorporate the energetics and dynamics of the

system. Also, in the reverse sense, the merging of diffraction and MD

simulations allows for a further method of testing the atomic structure

and microstructure predicted by atomistic simulations with that found

experimentally. This kind of feedback can give unique insight over mul-

tiple length scales, which allows for the improvement of MD methods,

and development of better interatomic potentials.
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CHAPTER II

POWDER DIFFRACTION BACKGROUND

2.1 Physical Basis of X-ray Diffraction

By definition, the word “diffraction” is a characteristic of waves which

describes their ability to spread out and fill space. This phenomenon

is common in everyday life, and explains why light from a street lamp

can bend around a corner, or why you to can hear someone without see-

ing them. In the field of optics, the word diffraction takes on a slightly

different meaning, and is used to describe the combination of two phe-

nomena: scattering and interference (i.e. a diffraction grating). In this

sense, diffraction is the study of the interference pattern resulting from

the light which scatters from an object. Historically, the presence of such

an interference pattern actually proved that light is a wave and diffracts,

as opposed to traveling ballistically. Therefore, any experiments studying

such an interference pattern have come to be called diffraction experi-

ments.

X-rays are a bandwidth of light with a wavelength, λ, much shorter

than the visible spectrum — in the range from 0.5Å to 2.5Å. When x-

rays encounter matter they scatter from the electrons in the atoms. X-ray

diffraction is then the use of x-rays to produce an interference pattern
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to measure the arrangement of atoms in a material. Knowledge of the

atomic structure is important for explaining physical properties like the

strength, or electrical conductivity, of a material. It is by no means the

only scattering method useful in materials characterization, and many of

the same principles of diffraction which will be presented here also apply

to techniques like neutron and electron diffraction. The fundamental

difference in these techniques being the physical mechanism of how the

incident radiation (i.e. x-rays, neutrons or electrons) is scattered by the

atoms.

An x-ray can scatter from an atom following two primary mecha-

nisms. In the first case, when an x-ray encounters an atom, it can seem

to instantaneously “bounce off” of the electron density around an atom.

The mechanism of this scattering event begins by considering that light

can be described as an oscillating electromagnetic field. When such an

oscillating field approaches an atom, it causes the electron density of

the atom to oscillate also. This oscillating electron density produces an

oscillating dipole made of the negative electron cloud, and the positive

atomic nucleus. Classical electrodynamics tells us that an oscillating

dipole radiates an electromagnetic field, or light. When this oscillat-

ing dipole produces x-rays of the same wavelength as the incident x-ray,

energy is conserved — a process which is called elastic scattering, or

Thompson scattering. In the second scattering mechanism, the atom ab-

sorbs some energy from the incident x-ray, and the scattered radiation
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Figure 1: Cartoon of x-rays scattered by a collection of scatterers

is emitted with a lower energy. This mechanism is thus an example of

inelastic scattering, and is more commonly called Compton scattering.

The scattered radiation from both the elastic and inelastic scattering

events, which occur at different atoms in a material, interfere to form

the observed diffraction pattern. The effect of the elastic scattering gives

rise to the prominent Bragg reflections, due to the interference of light

with the same wavelength. Meanwhile, the effect of Compton scattering

is largely featureless, due to the destructive interference of x-rays with

multiple wavelengths. This scattered radiation contributes to the back-

ground signal, and becomes more important to consider when discussing

the contributions of diffuse scattering.

2.1.1 Interference from multiple scattering centers

In the following discussion the intensity of scattered radiation at a point p

in space from a collection of scatterers at positions r1, r2, ..., rn(depicted
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in Figure 1), will be discussed considering the interference of monochro-

matic waves. As this is a rather general treatment of diffraction, the

reader is assumed to already have an introduction to wave mechanics,

and is referred to the text by Cullity [32] for more basic information.

The incoming waves are assumed to be parallel, traveling in the direc-

tion S0, and allowed to be incoherent. As such, the phase of the incident

radiation when it scatters is allowed to differ from one incident wave to

the next. The phase of each incident wave is considered through the

points w1, w2, ..., wn, which represent points along the path of the in-

cident wave where its amplitude is at a maximum. While this happens

repeatedly along the wave path, only one such point is depicted for each

incident wave in Figure 1.

Once scattered, the path taken by each wave to reach the observation

point p is described by the direction Sn, which we will approximate by a

constant vector, S, by assuming that the observation point, p, is far away

from the scatterers. The amplitudes of the scattered waves observed at

point p can be expressed in general as

�n = En exp [2πi (νt − ln/λ)] , (1)

where En signifies the electric field amplitude, and ln the distance traveled

by wave n from wn to p. The variables t, ν and λ signify the propagation

time, wave frequency, and wavelength respectively. Since the speed of

x-rays is generally independent of the propagation medium, the waves

are traveling at approximately the speed of light. Then given that the
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scatterers are sufficiently clustered together, it is safe to assume that the

propagation times are equal. Therefore, the phase difference between the

x-rays is determined by the distance traveled, ln. Studying the geometry

of Figure 1, one finds that this distance can be expressed as

ln = |rn − wn| + |p − rn|, (2)

and ln/λ becomes

ln/λ = S0 · (rn − wn) + S · (p − rn). (3)

The amplitudes of waves are additive, while the intensity is the square

modulus of the amplitude, implying that the intensity of the scattered

radiation at point p is given by the relationship

I = AA∗ =
�

m

�m
�

n

�∗n. (4)

Substituting this into Equation (1) leads to the expression

I =
�

n

|En|
2 +
�

m

�

n�=m

EmE
∗
n exp [−2πi (lm − ln) /λ] . (5)

From Equation (3), the argument of the exponential is found to be ex-

pressible in terms of the scattering wave vectors as

(lm − ln) /λ = (wm−wn) · S0 − (rm−rn) · S0 + (rm−rn) · S

= (rm−rn) · (S − S0)+ (wm−wn) · S0. (6)

We then define the scattering vector, s, as

s = S − S0, (7)
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where the magnitude of s is defined as |s| = s = 2 sin θ/λ, and 2θ is the

scattering angle between the vectors S and S0. Also defining the distance

vector between scatterers as dmn = rm−rn, and the extra phase factor

φmn = (wm−wn) · S0, the expression for the intensity at p becomes

I =
�

n

|En|
2 +
�

m

�

n�=m

EmE
∗
n exp [−2πi(dmn · s + φmn)] . (8)

From this description of the intensity we find that for a perfectly coherent

source, where φmn = 0, the intensity is given by the familiar relation

I =
�

n

|En|
2 +
�

m

�

n�=m

EmE
∗
n exp [−2πi(dmn · s)] . (9)

Then, in the case that the scattering vector is parallel to the distance

vector, (as depicted in Figure 1) and that their scalar product equals an

integer, n, we obtain the well known Bragg Law from the scalar product

relation,

dmn · s = n, (10)

2dmn sin θ = nλ.

However, real instruments only exhibit a certain degree of spatial, as

well as temporal, coherency. The measured intensity is then the result

of an average over the possible phase factors, φmn, from the many waves

which are interfering at the point p. The form of this phase factor distri-

bution is characteristic of the source, optics and measurement geometry.

In powder diffraction this is one of many factors which are incorporated

into what is called the instrumental profile. The existence of these kind
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of instrumental effects is one reason why the inverse Fourier transform of

the measured intensity cannot be directly used to yield information on

the electron density and microstructure. To properly account for incident

beam coherency, and other instrumental effects, the intensity found as-

suming an ideal instrument (perfect coherency) must be convolved with

the instrumental profile. While proper consideration of the instrument is

of the utmost importance, the work presented here is focused on describ-

ing the features of the diffraction pattern resulting from the scattering

of a crystallite, and as such makes the above assumptions leading up

to Equation (9). In reciprocal space methods the instrumental effect is

then considered by convolving the intensity determined assuming perfect

coherence, with the profile function attributed to the instrument. This

treatment is in contrast to that taken in direct space methods (i.e. total

scattering and Debye function analysis), which attempt to remove the

instrumental effect by deconvolving it from the measured intensity.

The diffraction theory which is treated in this work only considers

the possibility of one scattering event for a given incident wave. Known

as the kinematical approximation, this assumption is well suited to de-

scribe x-ray scattering from imperfect, sub-micron crystallites. However,

in general, any scattered wave can again scatter before exiting the crys-

tallite, resulting in significant changes in the observed intensity. For this

case the theory of dynamical scattering [77] has been developed, and it

becomes essential in the interpretation of electron diffraction patterns.

13



2.1.2 Scattering from an atom

Now, we want to calculate the intensity observed at point p considering

the scatterers are actually electrons in a single atom. Quantummechanics

tells us that electrons are also described as waves, and are not localized

at a point in space. In order to calculate the observed intensity we must

assume that each volume of space, dvr, at position r contains a charge

eρ (r) dvr and scatters with a power proportional to that charge. In this

relationship e is the charge of an electron, and ρ (r) is the normalized

charge density at point r. It can be shown that the scattered amplitude

from a single electron, j, is given as

fj(s) =
e2

mec2
Pol�

R

�

ρj(r) exp (−2πir · s) dvr, (11)

where the integral is done over all space for the total scattering power

of an electron. Here the mass of an electron, and the speed of light, are

denoted as me and c respectively. The factor Pol
� denotes the effect which

polarization has on diminishing the amplitude for different scattering

angles, and will be discussed later in terms of its effect on the intensity.

The variable R then denotes the distance from the scattering event to the

observation point. Assuming that the scattering amplitudes from each

electron in an atom simply add, we find the intensity as

I =
e4

m2
ec

4

Pol

R2

�
�

j

|fj|
2 +
�

j

�

k�=j

� �

ρj(rj)ρk(rk) exp (−2πidjk · s) dvjdvk

�

.

(12)
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Instead of using the atomic scattering factor determined by Equation

(12), it is common to use a more numerically amenable atomic scattering

factor which is given by a series of exponentials of the form

fn(s) =
�

j

aj exp(−bjs
2/4) + c. (13)

The coefficients of this form of the atomic scattering factor are found

by either fitting to measurements, or from numerical calculations of the

intensity given by Equation (12). It should be noted that this treatment

is only valid when the wavelength of radiation is not near an absorption

edge. When this criterion is no longer true it is necessary to include

a dispersion term in the atomic scattering factor, and the anomalous

scattering factor must be used [77].

2.1.3 X-ray polarization effect

As in the case of any reflection, when an x-ray is scattered by the electron

in an atom it becomes polarized. Without getting into the details, polar-

ization implies that observation of the scattered beam is the strongest in

a direction normal to the polarization direction, and falls off as a func-

tion of the scattering angle [155]. If unpolarized incident radiation is

assumed, then the polarization factor in Equation (12) becomes

Pol =
1 + cos2 2θ

2
. (14)

However, if a monochromator is used, or the scattering experiment is

done at a synchrotron, then the incident beam is already polarized, and
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the general polarization expression becomes

Pol =
(1 + Q) + (1 − Q) cos2 2θmono cos

2 2θ

1 + cos2 2θmono
. (15)

In this expression 2θmono is the scattering angle of the monochromator,

and Q is a variable denoting the degree of polarization. For unpolarized

x-rays, Q = 0, and Equation (15) reduces to Equation (14), while in the

case of radiation from a synchrotron source Q = 1.

2.1.4 Generalization of the scatterer

The additive property of wave amplitudes allows the definition of a scat-

terer to become a more general concept over larger length scales. This

allows us to also determine the intensity which is observed at the point p

from a cluster of atoms. This cluster can be the basis atoms of a unit cell,

or the atoms in a small particle. As before, the amplitude of the scat-

tered wave is the sum of the scattered waves from each atom, Fn =
�

n

fn,

where the atomic scattering factor is described by Equation (13). This

expression is commonly called the structure factor when calculating the

scattering from a unit cell basis, or the form factor when calculating the

scattering from an entire crystallite. The intensity assuming coherent

radiation is then given by

I = Ie
Pol

R2

�
�

n

|fn|
2 +
�

m

�

n�=m

fmf
∗
n exp (−2πidmn · s)

�

, (16)

where the notation Ie = e4/m2
ec

4 denotes the total scatting power of an

electron. The double summation in Equation (16) is carried out assum-

ing each atom is represented by its effective atomic scattering factor fn.
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In most cases the atomic scattering factor is assumed to be independent

of the local environment of an atom, and changes only with its oxida-

tion state. This representation then effectively assumes that two atoms

scatter independently, and that their electron densities do not overlap a

significant amount, as the overlap integral in Equation (12) is not car-

ried out. The relationship in Equation (16) is the starting point of most

scattering theory, and the basic relationship necessary to calculate the

structure factor for a lattice.

In some cases, it is also useful to treat an entire crystallite as a single

scatterer positioned at its center of mass. The larger length scale com-

monly associated with these systems results in the diffraction pattern

features falling in the small-angle regime. Following the same consider-

ations concerning the scattered amplitude, A =
�

n

Fn, we arrive at an

analogous expression for the scattered intensity

I = Ie
Pol

R2

�
�

n

|Fn|
2 +
�

m

�

n�=m

FmF
∗
n exp (−2πidmn · s)

�

. (17)

However, it becomes more important to carefully consider the indepen-

dent scatterer assumption in this case. In small-angle scattering, if the

crystallites are infinitely dilute, the scattered intensity is given only con-

sidering the self-scattering term, or the first summation of Equation (17),

where Fn is commonly called the crystallite form factor. However, this

is an ideal limit, and most materials must be reasonably concentrated

to observe a signal. In which case, the inter-crystallite scattering, or the

double summation in Equation (17), must be considered. When dealing
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Figure 2: Illustrations of reflection and transmission measurement ge-
ometries are shown.

with identical scatters, the term |Fn|
2 can be factored out of the double

summation in Equation (17), and the remaining summation is called the

structure factor in small-angle scattering literature. While not generally

considered, the inter-crystallite scattering can have an influence on the

wide-angle pattern as well. It will be shown in Chapter 6 that it only

becomes important to consider when the crystallites become aligned, and

regularly spaced into some super-structure. In this case, it is no longer

valid to consider each crystallite as scattering independently, and the full

expression of Equation (17) must be evaluated.

2.1.5 Absorption Corrections

As an incident beam passes through a material, its intensity is diminished

due to the described scattering events, as well as, other photon-electron

interactions. This effect is called absorption, and is a determining factor

in the absolute value of the observed intensity. The intensity reduction

is dependent on the scattering angle, and its exact functional form is

determined by the experiment geometry. Only the final forms of the
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absorption corrections important to the work carried out in this thesis

are described below, and the reader is referred to the International Tables

of Crystallography, Vol. C [108] for more information.

When the diffraction experiment is carried out in a reflection geom-

etry of a thin sample, which is illustrated in Figure 2, the absorption

correction takes on the form

Abs = 1 − exp

�

−
2µltρ

sin θ

�

. (18)

In absorption correction factors like Equation (18), the variable µl de-

notes the linear mass absorption coefficient, t the sample thickness, and

ρ the mass density of the material. The value of µl is determined by the

material’s chemical composition, and the wavelength of incident radia-

tion. In this study the values of this quantity measured, and provided

by the National Institute of Standards and Technology (NIST) [69] were

used.

When the scattering measurement is done using a capillary, the mea-

surement is described as a transmission geometry, which is illustrated in

Figure 2. Assuming that the sample is larger than the incident beam

diameter, the absorption correction becomes

Abs = exp(µltρ(1− 1
cos θ ))/cos θ, (19)

while when the sample is smaller than the beam, this factor reduces to

Abs = exp

�

µltρ

�

1 −
1

cos θ

��

. (20)
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2.2 General Powder Diffraction Theory

Relations like Equations (9) and (16) only describe the diffracted inten-

sity from a single crystallite fixed in space. Another class of materials

which is common to exist is composed of many crystallites. In diffraction

the term “powder” is often used to describe this polycrystalline form. In

order to be properly classified as an ideal powder, the microstructure of

a material must:

i) have a crystallite size which is small enough to provide good

counting statistics, and

ii) have no preferential orientation of the crystallites in the ma-

terial.

While a granular material, like sand, is automatically associated with a

powder, it must be confirmed that the internal crystallite size is small

enough before it can be classified as a powder in terms of diffraction.

Dense polycrystalline materials, like processed metals, can also be de-

scribed as a powder. However, it is common that the procedures used in

processing result in a preferential alignment, or texture, of the crystallite

orientations within the material. This texture will cause the diffraction

pattern to deviate from what is expected from a powder. The follow-

ing section will then focus on describing the diffraction pattern from a

powder, showing how it is related to the single crystal intensity.
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Assuming each crystallite scatters independently, the powder inten-

sity is then the summation of the intensities from each crystallite in the

sample. For the moment, we will assume a material microstructure with

a uniform crystallite size. Then the intensities from two crystallites in

the material which are oriented differently with respect to the scattering

vector will appear as a two single crystal intensities, one correspondingly

rotated with respect to the other in reciprocal space (RS). Figure 3 shows

an example of this concept for the case of a cubic crystallite composed

of a cubic atomic lattice. If both crystallites are present in the beam

path, a superposition of the two patterns, like that depicted in the re-

ciprocal space portion of Figure 3, will be observed as the diffraction

pattern. A powder can have millions of crystallites in the beam, oriented

at all possible directions. In order to conceptualize the diffraction pat-

tern from such a system, it can be useful to consider the superposition

of the intensity in reciprocal space from each crystallite. In such a case

the distinct Bragg spots will no longer be well defined, and the intensity

at a given distance from the origin of reciprocal space will be blurred

together, forming concentric shells about the origin. We will call one

of these spherical shells a powder diffraction sphere (PDS), whose ra-

dius corresponds to shkl = 1/dhkl, where dhkl is the distance between the

hkl planes in the atomic lattice. A two-dimensional slice through such

a series of concentric spheres would then look something like the rings

depicted in Figure 4.
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Figure 3: The relationship between the crystallite orientation and the
diffraction pattern observed in reciprocal space is exhibited assuming
cubic crystallites composed of a cubic lattice. It is assumed that the
incident beam is directed into the page, normal to one of the faces of the
cube. A two-dimensional cross-section of the diffraction patterns in the
xy-plane is depicted.

Figure 4: The relationship between the distribution of a powder pattern
in reciprocal space and the intensity measured with a point detector is
depicted.
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Figure 5: The geometry of how an Ewald sphere intersects a “powder
sphere” in reciprocal space is depicted.

The portion of reciprocal space observable by an x-ray measurement

can be described by the Ewald sphere. The Ewald sphere is then a

sphere of radius 1/λ, which intersects the origin of reciprocal space at a

point on its surface, and whose center is determined by the orientation

of the incident radiation with respect to the crystallite lattice, S0. A

two-dimensional depiction of the Ewald sphere, relative to the scattered

intensity from powder associated with a given hkl, is found in Figure 5.

In three dimensions, the intersection of the Ewald sphere with the powder

intensity produces rings, known as the Debye-Scherrer rings, named after

the scientists who first attributed these diffuse halos, or rings, to the

powder microstructure of a material [38].

The powder intensity measured at a successively larger scattering an-

gles, 2θ, traces a path on the surface of the Ewald sphere. Instead of

measuring the entire powder ring, point detectors measure the inten-

sity accurately at a point in reciprocal space. By considering the Ewald
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sphere, it is found that scanning this kind of a detector over an angle

corresponds to a measurement of the intensity in reciprocal space along

the radial direction relative to the origin. Figure 4 then depicts the

relationship between the observed peaks, and the full powder intensity

distribution in reciprocal space. As will be shown throughout the current

work, the shape of these peaks contains information on the microstruc-

ture, and crystal defects present in the material.

The powder diffraction intensity measured at some scattering vector,

s, in the curve depicted in Figure 4 will then have contributions from

all regions of the single crystal intensity which are equidistant from the

RS origin. This region of reciprocal space then corresponds to a PDS of

radius s. The powder diffraction intensity is then found by averaging the

intensity from a single crystallite on the PDS, and then scaling by the

number of crystallites in the sample. We will refer to this averaging as the

powder integral, and it involves integrating the single crystal intensity

on the surface of the PDS. The powder intensity, IP , is then found by

the powder integral defined as

IP (s) =

�
I(s)dΩ

4πs2
, (21)

where Ω represents the spherical solid angle in reciprocal space, and the

Jacobian of Equation (21) is expressible as dΩ = s2 sin θdθdφ.

24



2.2.1 Lorentz factor for reciprocal space powder intensity

In general there are two approaches to arriving at the powder pattern

which differ in the whether the powder integral, or the interference cal-

culation, like that in Equation (16), is carried out first. The more tra-

ditional approach to arriving at the powder intensity is done by first de-

termining the diffracted single crystal intensity in reciprocal space, I(s),

and then assuming it is uniformly distributed on the PDS, sometimes

called the powder average. While this procedure is repeatedly covered

in many texts on x-ray diffraction, confusion can arise concerning the

correct form of the Lorentz factor, which corrects for the geometrical

considerations of taking the powder average. The appropriate correction

becomes increasingly important for very small crystallites, therefore, it

will be briefly reviewed in the following discussion.

Discussions of the Lorentz factor in the classic diffraction texts con-

sists of stringing together a series of seemingly unrelated considerations

concerning the percentage of crystallites in the diffracting position at a

given angle, and averaging the intensity over the powder ring [77, 156]. It

is also common to lump the Lorentz factor with the effect of polarization,

creating a Lorentz-Polarization factor which includes all angular depen-

dence of the intensity due to the measurement geometry [32]. Instead of

clarifying the Lorentz factor, it is the opinion of the author that these

descriptions tend to just confuse, and hide, its origins.

The Lorentz factor comes from the fact that we are considering the

25



powder intensity, and arriving to a suitable model requires we take the

powder integral. In fact, one commonly found traditional form of the

Lorentz factor is already present in the definition of the powder integral,

Equation (21). Using the definition s = 2 sin θ/λ, the Lorentz factor is

found from the term in the denominator to be proportional to 1/ sin2 θ.

This Lorentz factor is found in the original derivations of the method of

approximating the powder integral, called the tangent plane approxima-

tion (TPA) [151, 137], as a factor of

LTPA(θ) =
1

2π sin2 θ
. (22)

A few examples of these tangent planes relative to the PDS are also de-

picted in Figure 9. As will be discussed in Chapter 3, the TPA only

becomes valid for large crystallites, and is only exact for spheres. Fur-

thermore, it will be demonstrated that this expression of the Lorentz

factor is really a consequence of the assumption of the TPA, and is not

the true Lorentz factor given by the powder integral in Equation (21).

Features which suggest the approximate nature of Equation (22) are that:

(i) it results in the intensity diverging at 2θ = 0, and (ii) one may also

notice that the factor of 1/s2 in Equation (21) can be canceled by the

factor of s2 coming from dΩ. Therefore, the correct form of the Lorentz

factor is only found by evaluating the powder integral on the surface of

the PDS.

As will be discussed in Section 3.1, the true form of the Lorentz factor
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for a crystalline material is found to be

L(θ, θhkl) =
1

2π sin θ sin θhkl
. (23)

Patterson was the first to find this form of the Lorentz factor for the

special case of the powder intensity from a spherical crystallite [104],

and Warren later repeated the exercise using a slightly different math-

ematical approach [154]. Later, Ino and Minami showed that this form

is true for any crystallite shape, by expanding the powder integral into

an asymptotic series [71]. In the limit that the crystallite becomes large,

the powder peak becomes narrow, and Lorentz factor found in Equation

(23) can be approximated by 1/2π sin2 θhkl, which is consistent with the

traditional form of Equation (22).

2.2.2 The Debye Function

The second approach to finding the powder intensity is to bring the

orientational average of Equation (21) inside the interference calculation

of the intensity. Doing so by way of Equation (16) results in an integral

of the form

IP (s) =
IePol Abs

4πR2

�

m,n

fmf
∗
n

�

exp (−2πisdmn cos θ) sin θdθdφ,

which has closed form solution known as the Debye function

IP (s) =
IePol Abs

R2

�

m,n

fnf
∗
m

sin (2πsdmn)

2πsdmn
. (24)

The relationship depicted in Equation (24) was first described by Peter

Debye in a 1915 paper showing that diffraction phenomena does not rely
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on a crystalline state, but also exists for molecules [37]. This early work

on diffraction from molecules led to the seminal paper by Zernicke and

Prins [166], which is the basis for much of the later work on scattering

from liquids and amorphous materials.

The primary assumption when using the Debye function is that the

same configuration of scatterers is found at all orientations with respect

to the incident beam. This assumption is analogous to our definition of

a perfect powder, and in fact, the Debye’s understanding of the expected

intensity from randomly oriented molecules may have directly led to his

work with Scherrer on powder patterns [38]. Since Equation (24) intrin-

sically considers the orientational average, use of a Lorentz factor with

this expression is not necessary.

The summation in Equation (24) is a double sum over all interatomic

distances, a computational problem which scales as O(N2), where N de-

notes the number of scatterers in a system. Assuming that the number

of scatterers is proportional to the volume of our system, the calcula-

tion problem is found to scale as O(R6), where R is the radius of an

equivalent volume sphere. With this incredible calculation burden, it is

understandable why the Debye function was primarily used to calculating

the intensity observed from small molecules until the advent of comput-

ers. Still, in 1941 Germer and White applied it to the study of nanocrys-

talline Cu films, and showed the transition of the diffraction pattern from

a few atoms to an appreciable crystallite size [54]. Use of the equation
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gained some popularity in the early 1990s, through the studies of Hall

who demonstrated that the fast Fourier transform (FFT) can be used to

improve the calculation time [64]. Since then, the Debye function has

become an important tool to understanding the diffraction pattern from

small crystallites, or nanoparticles, and is employed in studies scattered

throughout current scientific literature.

2.3 Line Profile Analysis - A Brief Historical Survey

Study of the shape of the powder diffraction peaks to extract microstruc-

tural information is commonly called line profile analysis (LPA), and has

its roots in some of the first diffraction experiments. The evolution of

line profile analysis over the years has been largely guided by the type

of information obtainable from a diffraction pattern of the time. The

first powder diffraction patterns were recorded using photographic film

in a Debye-Scherrer camera, and dark lines in the developed film rep-

resented the Bragg powder peaks. It was quickly recognized that the

integral breadth, or width, of the line was related to the crystallite size

and strain. Assuming that there is little or no strain in a material,

the crystallite size can be determined from the integral breadth via the

Scherrer equation [129], which is defined as

L =
Kλ

β cos θhkl
. (25)

In this expression L denotes an average domain size, commonly given as

the cube root of the crystallite volume. The variable β is the integral
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breadth of the Bragg peak, θhkl is the position of the Bragg peak, and K

is called the Scherrer constant which is related to the crystallite shape

assumed [79]. A strain in the lattice was later shown by Stokes and

Wilson [138] to also result in a broadening of the observed lines following

the general relationship

� =
β

2
cot θhkl, (26)

where � is defined as the “apparent tensile strain” in a distorted lattice.

In order to separate these two effects, and determine contributions of size

and strain broadening to the measured diffraction pattern, Williamson

and Hall developed a method of plotting β cos θhkl vs sin θhkl [161] —

which is ideally a linear trend whose slope and intercept are related to

the crystallite strain and size respectively.

This model of Williamson-Hall embodies the essence of peak broaden-

ing. The crystallite size broadens all peaks uniformly, while the micros-

train results in a broadening which is dependent on the specific diffraction

spot. However, quantitatively this model only goes so far. As stated by

Stokes and Wilson in their original paper [138], since most materials

are elastically anisotropic, the actual dependence of the integral breadth

due to lattice strain is more complicated than the relationship given in

Equation (26). This results in a Williamson-Hall plot which is seemingly

scattered, and hardly linear. Recently, so-called modified Williamson-

Hall analyses have been proposed in an attempt to relate the scattered

trend to the contribution of dislocations [144] and faulting [145]. While
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these modified analyses might help to understand the type of strain in

the material, they have been shown to be quantitatively less reliable in

terms of obtaining defect densities [127].

When scintillator detectors became available in the early 1950s, the

intensity could be easily recorded on a relative scale, making the full

peak shape, or peak profile, easier to obtain. This improved information

of the peak allowed for more complex theories to be tested. Notably, the

Warren-Averbach method demonstrated the separation of different size

and strain contributions to the line profile through the Fourier transform

of the peak [156, 157]. The theory that a diffraction spot was the Fourier

transform of the crystallite size, and shape, was known at least 10 years

earlier [104, 45], however, Warren and Averbach extended this concept by

including a strain contribution, and developing the correct methodology

for the powder pattern.

Raw data also has contributions from the background, noise, and

other aberrations. So, it became customary to fit the data with an an-

alytical function — like a Gaussian or pseudo-Voigt — to extract the

peak shape. Advances in peak fitting were largely driven by the Rietveld

method [117, 118], which ironically only fits the peaks to obtain an accu-

rate peak position and integrated intensity. Nonetheless, the statistical

treatment of each data point as an independent observation marked a

milestone in line profile analysis. The portion of the diffraction commu-

nity interested in the microstructure information then developed a vast
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literature on the relationship between the parameters of the various ana-

lytical peak functions used, and the desired microstructure characteristics

[134].

Modern line profile analysis is seeing a paradigm shift from fitting to

modeling, where microstructure models are used to describe the measured

diffraction data. This avoids the need to assume an analytical peak shape

function, which can bias the results [36]. The reciprocal space approach

to peak modeling is based on constructing peak shapes by combining

independent models describing the effects of features like size and strain

broadening. The different effects are convolved to obtain the resulting

peak. As an example, if the assumed contributions to the peak profile

are: instrumental, crystallite size and faulting effects, then the simulated

peak is constructed following an expression like

Ihkl(s) =

�

T IP (L)AS(L)CF (L) exp(2πiL(s − shkl))dL, (27)

where T IP (L), AS(L), and CF (L) represent the Fourier transforms of

the contributions from instrumental, crystallite size and faulting respec-

tively. The integration in Equation (27) is the Fourier transform with

respect to the real space variable L, and more contributions can be in-

cluded into the peak shape by multiplying their respective transforms

in the integral. For further details on the derivation and form of these

transforms, the reader is directed to the later chapters covering each.

The pattern modeling then proceeds by refining the parameters of each
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model, controlling characteristics like the crystallite size or faulting prob-

ability, until the best fit with the measured pattern is obtained. Largely

the works of Scardi and Leoni in the development of Whole Powder Pat-

tern Modeling (WPPM), and to some extent the work of Ribárik and

Ungár in the development of Convolutional Multiple Whole Profile fit-

ting (CMWP)[115, 116], have pushed this method forward, and made it

accessible to the diffraction community.

A complementary real space method to model the diffraction pat-

tern which has gained popularity following the interest of the scientific

community with nanomaterials is Debye function analysis (DFA). In this

approach atomistic constructions are used to simulate the diffraction pat-

tern via the Debye function, which is then compared with the measured

pattern. Parameters controlling the probability of a sample containing a

crystallite of a given size, shape or defect concentration are then refined

until a best fit is obtained.

Due to the computational burden of calculating the Debye function,

many studies employing DFA assume the diffraction pattern from homo-

geneous, monodisperse samples, and are actually more structural studies

as opposed to line profile studies. Some of the best of which were con-

ducted by Torchet et al. comparing the structure of molecular dynamics

simulations to electron diffraction patterns of Ar [47, 48, 49], CO2[141],

and H2O [142] crystallites. Later, Landman and Whetten led a com-

bined simulation and experimental effort to study the structure of Au
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nanoparticles of sizes larger than those given by “magic numbers” using

mass spectrometry and x-ray diffraction [29, 31, 159, 160]. Also no-

table is the more recent work of the Berkeley Nanogeoscience group led

by Banfield, Waychunas, and Gilbert, who have studied the structures of

iron oxide and zinc sulfide nanoparticles in multiple solvent environments

[55, 56, 158].

Among the first to use a polydisperse DFA modeling routine were

Hall et al., who investigated the particle size stability of multiple twinned

particles [62, 63, 113], along with Gnutzmann and Vogel, who employed

DFA to study Pt catalysis and oxidation [58]. In recent years, Cervellino

has worked extensively to make the Debye function less computationally

intensive for polydisperse particle systems [24]. This technique continues

to mature, and recent works are pushing the limits of the DFA, developing

it into a full line profile analysis tool capable of modeling particle shape,

size, faulting, and strain [14, 23, 88, 97].
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CHAPTER III

STUDY OF PARTICLE SIZE EFFECT

The powder diffraction line profile from nanoparticles is dominated by

size broadening due to their extremely small dimensions. Therefore, an

accurate description of this effect is crucial to modeling their diffraction

patterns. In this chapter the methods of both the reciprocal space mod-

eling approach, and the real space, Debye function approach, will be

reviewed and compared.

3.1 Dependence of intensity distribution on crystal-
lite shape

The theory of size broadening in powder diffraction first requires an ac-

curate description of the distribution of intensity in reciprocal space from

a single small crystallite. The fundamental concept necessary to arrive to

the single crystal intensity was already presented in the form of relations

like Equation (12) which show the scattered amplitude proportional to

the Fourier transform (FT) of the atomic electron density. This treat-

ment is also true in a general sense, as the amplitude of a scattered x-ray

wave is related to the distribution of the electron density in space as

A(s) =

�

ρ(r) exp(−2πis · r)dvr, (28)
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with ρ(r) now representing the total electron density at point r. This re-

lation holds for any state of matter, and does not depend on the material

being in a crystalline state.

3.1.1 Crystallite Electron Density Description

The electron density from any collection of atoms is expressible in terms

of the summation of the contributions from each atom, defined as ρ(r) =

�

j

ρj(r − rj), where ρj(r) is the electron density from the j-th atom,

positioned at rj. If the scattering medium happens to be crystalline,

then the atomic positions can be described in terms of the regular atomic

positions within a unit cell.This leads to an electron density of the form

ρ(r) =
�

m

�

a

ρa(r −m− ra), (29)

where m is the position vector of the unit cell, and ra is the position of

the a-th atom in the unit cell.

By definition, a crystallite is composed of an atomic lattice which fills

a finite volume of space. This volume can be defined in general terms

using a shape function such as

σ(r) =






1 r ∈ Vc

0 r /∈ Vc

, (30)

where r is a vector in real space and Vc is the volume of the crystallite.

The shape function of this form allows the formalism of a lattice, which

is by definition infinite, to be employed to describe a crystallite. In the
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Figure 6: The resulting descriptions of the electron density in a small
crystallite are depicted for the cases of (a) the carved infinite e-density,
and (b) the Ino-Minami e-density. (Figure from Ino-Minami [70])

original treatment of the shape function by Patterson and Ewald [45, 104],

the electron density in a crystallite is defined as

ρe(r) = ρ∞(r)σ(r), (31)

where ρ∞(r) denotes the electron density of an infinite lattice. From

Equation (29), the electron density for an infinite lattice can be shown

to take an equivalent form [70]

ρ∞(r) =
�

a

ρa(r) ∗ z(r − ra), (32)

where the symbol ’∗’ denotes a convolution, the sum is over all a atoms

in a unit cell. The function z(r) denotes the positions of the unit cell’s

a-th atom in the crystallite through a series of delta functions defined as

z(r − ra) =
�

m

δ(r −m− ra). (33)
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Then, the convolution in Equation (32) does nothing more than position

atoms in space. Combining Equations (31) and (32), the electron density

in a crystallite is found to be

ρe(r) =
�

a

[ρa(r) ∗ z(r − ra)] σ(r). (34)

This definition of the electron density can be imagined as the equivalent

of taking a cookie cutter, and carving out the electron density from the

larger lattice. The resulting form of the electron density and description

of the crystallite is presented in Figure 6a. However, this representation

of the crystallite is somewhat unphysical, as the electron density from

atoms which are positioned just outside its surface is still considered to

contribute to the crystallite. Nonetheless, this expression of the electron

density is reasonable for large crystallites, since the fraction of the volume

which is near the surface is low compared to the total volume of the

particle.

Assuming that the primary building block of the crystallite is an

atom, Ino and Minami (I-M) have proposed an alternative description of

the electron density which is more appropriate for small crystallites. The

I-M description only considers the electron density from atoms whose

centers lie within the shape function. From this consideration, the elec-

tron density in a crystallite is expressed as

ρIM(r) =
�

a

ρa(r) ∗ [z(r − ra)σ(r)] . (35)

While switching the order of the convolution and product in Equation
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(35), compared to Equation (31), might first seem to be a slight differ-

ence, it has important implications on the description of the crystallite.

In Equation (35) the shape function now acts as a mask on the lattice

function, z(r), only allowing the atoms whose centers are within the

crystallite volume to be considered in the crystallite. An example of the

resulting description of the electron density in a crystallite is depicted in

Figure 6b. When compared to the traditional description, it is evident

that the electron density near the surface is more realistically represented

by Equation (35).

3.1.2 Scattered Intensity

Following Equation (28), the scattered amplitude is found from the FT

of Equations (31) and (35). This action can be carried out considering

the FT of the necessary functions. The FT of the electron density of an

atom is the atomic scattering factor defined as

fa(s) =

�

ρa(r) exp(−2πis · r). (36)

Also, the FT of the lattice function z(r) is given as

Z(s, shkl) =

�

z(r − ra) exp(−2πis · r)dvr, (37)

=
1

Vuc
exp(−2πis · ra)

�

hkl

δ(s − shkl),

with shkl denoting the position of the hkl Bragg spot and Vuc representing

the volume of the unit cell. Finally, the transform of the shape function
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is defined simply as

S(s) =

�

σ(r) exp(−2πis · r). (38)

Using these definitions, as well as the identities for the FT of convolutions

and products, the scattered intensity is then found to take the general

form

A(s) =
1

Vuc

�

hkl

F (s, shkl)S(s − shkl), (39)

where the structure factor, F (s, shkl) is dependent on the model chosen

to represent the electron density of the crystallite. For the traditional

case the structure factor is given by [70]

Fe(shkl) =
�

a

fa(shkl) exp(2πishklra), (40)

while for the I-M description this function takes the form

FIM(s, shkl) =
�

a

fa(s) exp(2πishklra). (41)

In these expressions the atomic scatting factor is assumed to by spheri-

cally symmetric. The small difference between Equations (40) and (41)

means that for the traditional case the intensity at a Bragg spot is only

scaled by the value of the atomic scattering factor at the Bragg posi-

tion, however, for the I-M case the atomic scattering factor modulates

the intensity everywhere in space.
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As in section 2.1, the observed intensity is given by the square mod-

ulus of the scattered amplitude, and is found from Equation (39) to be

I(s) =
k(s)

V 2
uc

�
�

hkl

|F (s, shkl)S(s − shkl)|
2

+
�

hkl

�

h�k�l�

F (s, shkl)S(s − shkl)F
∗(s, sh�k�l�)S

∗(s − sh�k�l�)

�

, (42)

with the indices h�k�l� representing Bragg points different than hkl, and

the function k(s) incorporating the effects of polarization, absorption and

temperature discussed in Chapter 2. The second set of summations in

Equation (42) is commonly neglected by assuming that the crystallite is

large enough that the overlap of intensity between between Bragg spots

is negligible [77]. However, this assumption becomes less accurate as the

crystallite becomes smaller, or as the number of Bragg points become

more dense in reciprocal space — which can be due to a lattice with a

larger unit cell, or less symmetry.

3.1.3 Random Shift Treatment

In the description of the particle shape just given, it was intrinsically

assumed that the shape function and the lattice have the same center.

This is not generally true, and shifting the position of the shape function

with respect to the underlying lattice can result in a different description

of the particle, thus a different diffraction pattern. Mathematically the
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Figure 7: The results of carving a sphere from an FCC lattice for dif-
ferent relative positions of the shape function are depicted.

shape function can be generally expressed relative to its center as

σ(r − t) =






1 r − t ∈ Vc

0 r − t /∈ Vc

, (43)

where t is formally defined as the vector connecting the lattice origin O,

and the shape function center O�. Figure 7 depicts two such particles

which are the result of assuming the same shape function, but different

displacements of the shape function relative to the lattice. It is evident

that the resulting particles describe very different versions of the spherical

particle.

The Fourier transformation of the shape function then has a phase

shift, due to the introduction of the displacement t, and is given from

Equation (38) as

S(b, t) = exp(−2πib·t)

�

σ(r�) exp(−2πib·r�)dvr� = exp(−2πib·t)S(b),

(44)
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following a change of variables defined by r� = r − t. The intensity

obtained by substituting this expression into Equation (42) is then

I(s) =
k(s)

V 2
uc

�
�

hkl

|F (s, shkl)S(s − shkl)|
2

+
�

hkl

�

h�k�l�

exp(−2πi(shkl − sh�k�l�) · t)F (s, shkl)S(s − shkl)F
∗(s, sh�k�l�)S

∗(s − sh�k�l�)

�

,

(45)

When considering the scattering from a material composed of many crys-

tallites, or a powder, the average intensity is what is observed. Assuming

that each crystallite represents a different translation of the shape func-

tion, the average intensity is then given as an average over all translations,

defined as I(s) =
�
I(s, t)dt. Since

�
exp(−2πib · t)dt = 0, the average

intensity from Equation (45) is given by

I(s) =
k(s)

V 2
uc

�

hkl

|F (s, shkl)S(s − shkl)|
2. (46)

Therefore, neglecting the second summation in Equation (42) is justi-

fied for any particle size, but only if the many crystallites in a material

represent a uniform distribution of all possible translations of the shape

function. This average has been described as the “random shift treat-

ment” [70], or the “ξ- average” [68], and is an important consideration

when trying to compare the intensities predicted by reciprocal space de-

scriptions to that calculated by the Debye function.
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3.1.4 Common Volume Function

Considering that the intensity from a single crystallite is given by (46),

the intensity from a Bragg spot is found to be proportional to

Ihkl(s) = |F (s, shkl)|
2S(s − shkl)S

∗(s − shkl). (47)

The product of the shape function Fourier transforms, S and S∗, is equiv-

alent to the Fourier transform of the shape common volume function

expressed as

S(s − shkl)S
∗(s − shkl) =

�

v(r) exp(−2πi(s − shkl) · r)dvr, (48)

where the common volume function1 , v(r), is the integral defined in

general as

v(r) =

�

σ(x)σ(x − r)dvx. (49)

The function v(r) can be envisioned, and calculated, as the common

volume between two identical shapes, one displaced relative to the other

by the vector r. These two shapes are commonly referred to as the crystal

and its “ghost” following the treatment of Stokes and Wilson [137]. A

schematic depicting this fundamental concept is shown in Figure 8

The form of v(r) is well known for a few particle shapes. For a

rectangular box with edge lengths Lx, Ly, and Lz it is straightforward to

show

v(r) = LxLyLz(1 −
x

Lx
)(1 −

y

Ly
)(1 −

z

Lz
), (50)

1Hosemann has also described the common volume function as the “convolution
square” of the shape function [68].
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Figure 8: Illustration of the common volume between an arbitrary shape
and its “ghost”. The region V (x) is equivalent to v(r) defined in Equation
(49). (Figure from Guinier p. 39 [59])

with r = xx̂ + yŷ + zẑ. While for a sphere of diameter D, the common

volume function becomes

v(r) =
π

6
D3(1 −

3r

2D
+

r3

2D3
). (51)

A cylindrical crystallite becomes slightly more complex, since it can exist

with the axis of rotation normal to any crystal plane. For a cylinder of

height H, and diameter D, whose rotation axis is defined as the vector

z, the common volume function found from the work of Langford and

Louër [78] is

v(r) =
1

2
D2(H − r cos φ)

�
arccos α − α(1 − α2)1/2

�
, (52)

where z · r = zr cos φ, and α = r sin φ/D .
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3.1.5 Summary of Derivation

In summary, when applying the reciprocal space description of the par-

ticle shape to small crystallites, one must be mindful of the three consid-

erations which have just been discussed:

1. Proper description of the surface electron density,

2. Changes from displacement of the shape function with respect to

the lattice,

3. Approximation of neglecting cross terms in Equation (45).

The effects of all three approximations on the diffraction pattern are size

dependent, having a larger influence as the particle size decreases.

In addition to the three considerations just outlined, the powder peak

profile can be determined using the tangent plane approximation. The

validity of this technique is a fourth consideration, which is also depen-

dent on both the crystallite size and shape. As discussed in Section 2.2,

the powder intensity is obtained from the single crystal intensity by a

powder average. However, in many cases the averaging of the shape

function, and integration of the intensity on the powder sphere, does not

have an analytical solution, and is approximated by integration along a

tangent plane to the powder sphere, known as the tangent plane approx-

imation (TPA). This approximation will introduce a further error, which

is more evident for smaller particles due to their larger reciprocal lattice
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Figure 9: Depicted is a 2D cross section of the scattered intensity from a
cubic particle, centered at the origin of reciprocal space. The concentric
rings represent the intersection of the powder sphere with the xy-plane,
and the appropriate tangent planes are depicted for the hh0 reflection
as straight lines. For this reflection the powder integration will then
integrate along path of the ring, while the tangent plane approximation
will integrate along the tangent lines.

spots. However, this is a direct consequence of the tangent plane approx-

imation, and not the assumptions made with regard to the representation

of the crystallite. A study of the inaccuracy of this approximation for

small crystallites is the topic of the next section.

3.2 Powder profile dependence on crystallite shape

The powder diffraction peak is given by integrating the intensity, in Equa-

tion (46), over the full surface of the powder diffraction sphere (PDS).

This PDS integration is schematically demonstrated in Figure 9 as an in-

tegration of the intensity from the single crystallite on a full circle. From

Equations (47) and (48), the peak profile is given as

Ihkl(s) =
|F (s, shkl)|

2

4πs2

� �

v(r) exp(−2πi(s − shkl) · r)dvrdΩ, (53)
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where the integration is done over the entire range of the reciprocal space

solid angle, dΩ, which is expressed as s2 sin θdθdφ. Changing the order

of integration, the orientational average only applies to the exponential,

exp(−2πis·r) , which has the known solution, sin(2πsr)/2πsr. Therefore,

the intensity becomes

Ihkl(s) = |F (s, shkl)|
2

�

v(r) exp(2πishkl · r)
sin(2πsr)

2πsr
dvr, (54)

where r = |r|. Since both v(r) and sin(x)/x are even functions, and the

integral is over all space, the imaginary part of the intensity from the

exponential is zero, and the integral becomes

Ihkl(s) = |F (s, shkl)|
2

�

v(r) cos(2πshklr)
sin(2πsr)

2πsr
dvr. (55)

The integral in Equation (55) is only analytically solvable in special

cases when spherical symmetry exists in the shape self-convolution. For

instance, in the case of a sphere of diameter D, the common volume

function is given by Equation (51), and the powder profile from Equation

(55) is found to be

Ihkl(s) =
Vc|F (s, shkl)|

2

2πsshkl

3D

8
[Z (πD(s − shkl)) − Z(πD(s + shkl)] , (56)

where the function Z(x) is now defined as

Z(x) =
1

x2

�

1 +

�
sin x

x

�2

− 2
sin 2x

2x

�

, (57)

and Vc denotes the volume of the crystallite [154, 104]. It should be noted

that through this powder average the correct Lorentz factor of 1/(sshkl)

is again found in the expression for the intensity.
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3.2.1 Tangent Plane Approximation

For other shapes, instead of evaluating the integral in Equation (55), the

peak profile is commonly approximated by the intensity integrated on

the tangent plane to the PDS. The TPA is shown in Figure 9 for the

case of a 1̄1̄0 Bragg spot as an integration of the intensity along the lines

tangent to the circles representing the powder sphere. From the figure, it

becomes clear why the TPA becomes invalid for small crystallites which

have diffuse Bragg spots.

The TPA was originally formulated in terms of the common volume

function by Stokes and Wilson (S-W TPA) as

ISWhkl (s) =
|F (s, shkl)|

2

2πs2

Lmax�

0

v(Lŝhkl) cos(2π(s − shkl)L)dL, (58)

where s = s · ŝhkl, L is related to the real space vector r in Equation

(55) by L = r · ŝhkl, and Lmax is the maximum displacement in the

direction ŝhkl, such that v(Lŝhkl) �= 0 [137]. This form of the TPA was

later shown to be inaccurate for small crystallites by Ino and Minami

who have derived appropriate corrections to the TPA intensity through

an asymptotic expansion of the integral in Equation (55) [71]. Taking

the first order correction, the Ino-Minami tangent plane approximation

(I-M TPA) intensity is given by

IIMhkl (s) =
|F (s, shkl)|

2

2πsshkl

Lmax�

0

v(Lŝhkl) [cos(2π(s − shkl)L) − cos(2π(s + shkl)L)] dL.

(59)
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Comparing the two forms of the TPA in Equations (58) and (59), one

finds important differences between the I-M and S-W TPA expressions.

First, the I-M TPA is proportional to 1/sshkl, while the S-W TPA is

related to 1/s2. Furthermore, an additional factor of cos(2π(s + shkl)L)

is present in the I-M TPA expression. This additional factor prevents

the divergence of the intensity at the origin of reciprocal space from the

1/s dependence of the intensity. Comparison of the I-M TPA intensity

expression finds striking similarity with the analytical solution to the

powder intensity from spherical crystallites expressed in Equation (56).

3.2.2 Numerical Evaluation of the Powder Integral

In the present study, we would like to demonstrate the effectiveness of

a different approach which obtains the powder diffraction pattern for

small crystallites of any shape by solving the integral in Equation (55)

numerically. The intensity from Equation (55) is then approximated by

the sum

Ihkl(s) � |F (s, shkl)|
2
�

m

�

n

�

o

v(r) cos(2πshklr)
sin(2πsr)

2πsr
ΔV, (60)

where r = xâ1+yâ2+zâ3, with x = mΔx, y = nΔy, z = oΔz; m, n, o ∈ Z

and ΔV = ΔxΔyΔzâ1 × â2 · â3. Here the vectors, âi, are unit lattice

vectors. The volume integration is defined in terms of the atomic lattice,

so that the Miller indices of the peak can be directly used in the cosine

term, resulting in

cos(2πshklr) = cos(2π(hx + ky + lz)). (61)
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The precision of the integration is then controlled by the size of the

differential volume, or more explicitly the size of Δx, Δy, and Δz. This

form of the intensity has also been described by Ino and Minami [71] to

test the validity of their asymptotic expansion of the peak profile.

The speed of calculating the intensity in the form of Equation (60)

is limited by having to calculate the volume integral for each scattering

vector length, s. This can be dramatically improved by first taking the

orientational integral of the shape function and cosine product described

as

p(r) =

�

v(r) cos(2πshklr)dΩ, (62)

where dΩ now represents a real space solid angle. In practice this orien-

tational integral can be taken by first discretizing space, as described in

the discussion surrounding Equation (60), and then summing the con-

tributions from those ΔV ’s which are equidistant from the origin. The

necessary calculations can be further reduced considering that since both

v(r) and cos(2πshkl ·r) are even with respect to the vector r, therefore, the

integration only needs to be calculated for half of the angular range and

then doubled. Also, the symmetry of v(r) for a given shape can be ex-

ploited in calculating p(r). The function p(r) only needs to be tabulated

once for a given hkl, and then can be used in the summation of Equa-

tion (63). The powder intensity is then reduced to the one dimensional

summation

Ihkl(s) � |F (s, shkl)|
2

tmax�

t=0

p(r)
sin(2πsr)

2πsr
Δr, (63)
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where r = tΔr. The value of tmax is related to the maximum distance

between points in a crystallite, rmax, and therefore depends on its size

and shape. The quantity rmax is different than Lmax in Equation (58) in

that Lmax is the maximum distance in a crystallite in the direction ŝhkl.

As will be demonstrated in the following section, the powder integration

procedure also allows for the calculation of the 000 peak, or the small-

angle signal, for any shape for which the common volume function can

be defined.

The final powder pattern is found by summing the contributions from

each Bragg spot. In terms of the peak family multiplicity, mhkl, the

powder intensity from a single crystallite becomes

I(s) =
k(s)

V 2
uc

�

hkl

mhklIhkl(s), (64)

where Ihkl(s) is given by relations like Equation (59) or (63).

3.2.3 Comparison of Powder Peak Profiles

The cases of spherical, cubic, and cylindrical particles represent differ-

ent extremes in terms of the shape function, and resulting powder peak

profiles. As previously mentioned, a sphere is a smooth shape with an

analytical shape function. However, a cube has sharp edges and corners

which makes it difficult to represent in Fourier space. While a long, thin

cylinder leads to a nearly planar Bragg spots in RS. These shapes then

offer good tests to gauge the performance of the TPA for small sized
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particles allowing for it to be compared to that found by the powder in-

tegration (PI). In the following examples particles consisting of an FCC

gold lattice (a = 0.40809nm) were assumed, and the effects of temper-

ature, polarization and absorption have been ignored (i.e. k(s) = 1) to

highlight the features in the powder pattern profiles. The intensity was

simulated over a range in s which is observable with Cu Kα1 radiation. In

calculating the intensity from Equation (63) the differential volume was

diminished until the intensity converged to a precision of 10−4 over the

entire simulated range. The small-angle peak is not possible to calculate

by the TPA, and it was found to be necessary to add the PI small-angle

peak to the TPA pattern to allow for a proper comparison with the Debye

calculated intensity.

Powder patterns were also calculated from atomistic descriptions,

consisting of a perfect Au FCC lattice cut into the desired shape, by

means of the Debye function, defined as

I(s) = f2(s)
�

i

�

j

sin(2πsdij)

2πsdij
, (65)

with f2(s) representing the square of the atomic scattering factor, and dij

representing the distance between atom i and atom j. The similar form

of the Debye function to that of the PI Equations (60) and (63) becomes

immediately apparent. When using the Debye function the fundamen-

tal concern becomes, “What is the appropriate atomistic description to

use when calculating the Debye intensity?” This consideration is ac-

counted for in the previously described RS methods through the random
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Figure 10: The powder patterns generated by the I-M tangent plane
approximation (TPA), powder integration (PI), and Debye function are
compared for Au spheres having diameters of 1.01 nm and 5.06 nm. The
difference between the intensity obtained by the powder integration, and
the other respective methods is displayed below the powder patterns.

shift treatment. However, the intensity calculated by the Debye function

does not take into account this consideration, and the calculated Debye

diffraction pattern is specific to the atomic description which was used.

An exact match between the two methods is then not expected unless

the Debye intensity from different atomic descriptions is averaged over

all possibilities, or a representative atomic description can be found —

the latter will be shown to be possible for some cubic crystallites.

First, the patterns from spherical gold particles with the diameters of
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1.01nm and 5.06nm were simulated using Equation (64), assuming the

I-M TPA and PI described by Equation (59) and (63) respectively. The

comparison of the patterns depicted in Figure 10 shows a remarkable

agreement between the two methods. This is somewhat unexpected con-

sidering the small size of the crystallites, even for the case of spheres.

This result then both affirms the PI method of calculating the diffrac-

tion pattern by Equation (63), and suggests that the I-M TPA is more

than sufficient to simulate the powder pattern from a spherical crystal-

lite. Also depicted in Figure 10 are the corresponding Debye patterns

from single atomistic descriptions of the spherical particles. A difference

between the Debye and PI patterns is only apparent in case of the ex-

tremely small sphere, showing the slightly different peak profiles resulting

from the specific Debye atomic description versus the random shift treat-

ment. It is interesting to note that for the sphere with a diameter of only

5.06 nm (D ∼ 12.4a) the difference in the patterns from the two methods

becomes negligible. This implies that the differences due to the specific

and averaged crystallite descriptions can only be discerned for extremely

small crystallites, which are composed of a few unit cells. This result is

in agreement with a similar study conducted by Cervellino et al. who

found that a crystallite with a size of D ∼ 10a was sufficient for good

agreement between the Debye and RS patterns from Au spheres [25].

The authors would only like to emphasize, that while Cervellino et al.

called the difference in the patterns an “error” on the part of using the RS
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Figure 11: The powder patterns generated by the I-M tangent plane
approximation (TPA), powder integration (PI), and Debye function are
compared for Au cubes having edge lengths of 0.816 nm and 4.08 nm.
The difference between the intensity obtained by the powder integration,
and the other respective methods is displayed below the powder patterns.

random shift treatment, it is really an understandable and expected dif-

ference from the crystallite descriptions assumed in the two techniques.

In the past the authors have also shown the agreement between the De-

bye and I-M TPA patterns to be extremely good when considering a size

distribution of spherical crystallites, as the subtle differences in the peak

shapes from the two methods begin to be averaged out by considering

different sized crystallites [12].

The representation of the powder intensity from cubic crystallites

poses a slightly tougher test for the TPA. Figure 11 shows the patterns

for cubes with edge lengths of 0.816 nm and 4.08nm again calculated
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Figure 12: Atomic description used in calculating the Debye function
intensity from a cube having a side length of 0.816nm (2a) viewed normal
to one of the cube faces. The outline of an f.c.c. unit cell is also drawn
to help guide the eye.

from the I-M TPA, PI and Debye methods. The sizes of these cubes

were chosen such as to have an equal volume as the previously studied

spheres. Careful comparison of the profiles from the I-M TPA and PI for

the L = 0.816nm case finds that the TPA is unable to match the exact

profile shapes, or the relative intensities, of the low angle peaks. For the

larger L = 4.08nm case, the agreement becomes better for the higher

angle peaks, however, the I-M TPA is still unable to properly represent

the 111 and 200 peaks. For instance, the I-M TPA pattern shows an

offset of the 111 and 200 peak positions relative to the patterns from the

PI method and Debye function. While this effect is not huge it is still

visible for the small crystallites considered.

The patterns for the L = 4.08nm case is plotted on a log scale to
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demonstrate that the 111 peak from a cube contains an abnormal shoul-

der to low angle, best described as a sharp ledge. The I-M TPA is found

to be unable to recreate this peak shape, and results in a smooth asym-

metric tail. In fact, as one might expect, the 111 peak is not the only hkl

which exhibits this strange peak shape for a cube, but other members

of the family, like 222, have similar features which is not immediately

apparent in the figure due to the superposition with other peaks. The

presence of this feature is also found in the diffraction pattern simulated

by the Debye function, and a nearly exact match of the Debye intensity

with the PI pattern is found for both cubes considered. The unique shape

of the 111 peak is one example of a defining characteristic of a powder

peak profile from a cubic crystallite which is lost when considering the

TPA.

The kind of agreement observed between the Debye and PI intensity

for the cubes studied here is more of the exception than the rule. When

the cube side length becomes a multiple of the unit cell parameter (i.e.

L = 0.816nm = 2a and L = 4.08nm = 10a), a special case exists where a

single representative atomic description of the cube can be found which is

equivalent to the random shift treatment. Such a construction is depicted

in Figure 12, and comes from the consideration of periodic boundary

conditions, where atoms on the faces cannot exist on both sides of a

cube. For other cube sizes, and atomic constructions, a slight difference

between the PI and Debye patterns — similar to that observed for the
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Figure 13: The powder patterns generated by the I-M tangent plane
approximation (TPA), powder integration (PI), and Debye function are
compared for an Au cylinder having a diameter 0.816 nm, height of 4.08
nm and its rotation axis normal to the 111 planes of the lattice. The
difference between the intensity obtained by the powder integration, and
the other respective methods is displayed below the powder patterns.

case of the spheres — was found when considering crystallites smaller

than 5 nm. Still, the agreement which has been demonstrated shows the

ability of the PI method to correctly simulate the powder intensity for

cubic crystallites.

Finally, the case of a small cylindrical rod having a height, H, of

4.08nm and a diameter, D, of 0.816nm (H/D = 5) was considered to

compare the three methods. The resulting patterns are depicted in Figure
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13. The rod was assumed to have its rotation axis normal to the 111

planes of the internal lattice. Comparison of the TPA and PI intensities

finds a generally good agreement except when it comes to the 111 peak,

which is the sharpest peak in the patterns. The TPA intensity is shown to

poorly represent the position and symmetry of the 111 peak. These kind

of inaccuracies can lead to not only a poor determination of the crystallite

size, but the position offset can also lead to a wrong lattice parameter.

Reasonable agreement is again seen between the PI and Debye intensities

in Figure 13 considering the small size of the rod, and the fact that a

representative atomic description does not exist for the case of a cylinder,

as was the case for some cubes.

The presented cases of cubic and cylindrical crystallites are prime

examples of why it is extremely important to have an accurate descrip-

tion of the peak profile when modeling the pattern from nanocrystallites.

Skepticism of the accuracy of RS LPA methods at determining such mi-

crostructural quantities for small crystallites has been the topic of some

recent studies in the diffraction literature [99, 100]. In the work of Palosz

and co-workers, the patterns from Debye calculated diffraction patterns

were fitted with smooth analytical functions, like pseudo-Voigts, and the

fits were analyzed to determine information on the crystallite size and

unit cell parameter. It was concluded that the small size of the crystallites

prohibited the accurate determination of these quantities, and trends of

the apparent lattice parameters (ALPs) have been studied. Given the
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careful study on the sensitivity of the powder peak description which has

been presented here, it becomes clear that a series of pseudo-Voigts, or

any other analytical function, cannot properly model the powder pat-

tern from a nanocrystallite. It is then possible that their observed size

dependent, ALPs are nothing more than an exemplification of this fact.

The level of agreement of the developed powder integration procedure

with the Debye patterns exhibited in the present study is evidence that

accurate microstructural information of nanocrystallites can be obtained

following the proper considerations.

To ensure that any mismatch of the intensity from the I-M TPA and

PI methods is not caused by an improper representation of the scale

parameter, or the I-M TPA Lorentz factor 1/sshkl, a study of the inte-

grated intensity from the TPA peaks and the PI peaks was conducted.

The same integrated intensity was found for a given hkl peak simulated

by the two methods for a given crystallite shape and size. Furthermore,

it was found that the cos(2π(s − shkl)L) term in Equation (59) was im-

portant for an exact match of the integrated intensity. This affirms that

both methods of simulating the pattern preserve the scattering power of

the single crystallite, and reinforces the claim that the observable differ-

ences between the I-M TPA and PI methods originate from the tangent

plane approximation to the powder integral.
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3.3 Diffraction pattern from a size distribution

The discussion until now has been concerned with the diffraction pattern

from a powder of particles having the same size and shape — something

which is somewhat experimentally unrealistic. In nature, a powder is

actually composed of particles of various sizes and shapes, with their dis-

tribution determined by the kinetics and thermodynamics of the crystal

growth mechanism. As it will be shown, the existence of a size distribu-

tion requires further averaging of the powder diffraction pattern, which

can reduce some of the influences of the three approximations outlined

in Section 3.1.

In order to test this, a study was conducted where the diffraction

pattern was simulated for a size distribution using the Debye function,

and was then modeled using the reciprocal space line profile analysis

method of Whole Powder Pattern Modelling (WPPM), attempting to

determine the full size distribution from just the peak profiles. This

study also serves as a direct comparison of accuracy of the two methods

when applied to small crystallites. It is then a benchmark to verify the

methods used to simulate a size distribution with the Debye function, as

well as, probe the range of validity of the reciprocal space methods for

very small particles. A brief description of each method to simulate the

diffraction pattern from a powder containing a size distribution will be

given to understand the differences in both approaches.
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3.3.1 Simulating a size distribution by the Debye function

The methods used to simulate the diffraction pattern from a powder hav-

ing a distribution of sizes by the Debye function is fairly intuitive. Given

enough computational resources, the powder intensity for a crystallite of

any size and shape can be obtained by direct use of Equation (24). For

a given shape, the average pattern from a distribution of sizes is then

given by a weighted average of the respective patterns such as

IP (s) =
�

D

w(D)IP (s,D), (66)

here D represents some size determining parameter of a shape, which

would be the diameter for a sphere. Since the intensity calculated by

the Debye function is intrinsically scaled by the number of scatterers in

the particle, the weights, w(D) in Equation (66), are then related to

the number fraction of each size, and follow the normalization condition,

�

D

w(D) = 1. It is common to assume a continuous functional form of

the size distribution with respect to the size parameter, D. The weights

of Equation (66) can then be given by

w(D) =
g(D)ΔD�

D

g(D)ΔD

,

where g(D) is the size distribution function assumed and ΔD is the sam-

pling interval of the size distribution.

It now should be apparent that the average pattern from Equation

(66) is really an approximation for a continuous size distribution, the
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accuracy of which is determined by the sampling interval. Since a finite

number of particles must be considered, and the direct average is nec-

essary, the sampling interval cannot go to zero. However, a reasonable

sampling interval can be determined when considering particle made of a

crystal lattice. For example, for a particle composed of a polygon shape

which is defined by limiting planes, this sampling interval can be defined

as the interplanar distance of the lattice — since any interval smaller than

this would not change the atoms included in the shape. Other arguments

can be made to conserve the stoichiometry, or the atomic volume, in a

particle. So, this parameter varies depending on the lattice and circum-

stance. However, until this study the accuracy of this approximation to

represent the influence of a size distribution on the diffraction pattern

had not been assessed.

3.3.2 Simulating a size distribution by reciprocal space meth-
ods

The basic approach to simulating the effect of a size distribution by recip-

rocal space methods follows that described for the Debye function. The

intensity for each peak is found from the average of different crystallite

sizes, weighted by the size distribution. However, in the reciprocal space

approach the average is incorporated into the Fourier transform of the

peak profile, instead of taken over the resulting pattern as in the case of

the Debye function.

Adopting the tangent plane approximation, the average profile can
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be expressed as

IP (s)hkl = k(s)
|F (s, shkl)|

2

�
g(D)Vc(D)dD

� �

v(Lŝhkl, D)g(D)Vc(D) exp(2πi(s−shkl)L)dDdL,

(67)

which is just a re-expression of Equation (66) in the limit where ΔD → 0,

and using the intensity given by Equation (58), where the self-convolution

function is now explicitly described as a function of the particle size

parameter D. The term k(s) in front of Equation (67) represents the

contributions to the pattern which are dependent on the geometry of the

measurement, such as the terms outside of the integral in Equation (16).

In Equation (67) the number size distribution, g(D), is now weighted by

the crystallite volume, Vc(D), giving the volumetric size distribution, to

account for the fact that a larger crystallite has more scattering power

than a smaller one, and will then have more influence on the diffraction

pattern.

Assuming a system of crystallites composed of the same shape but

different sizes, the average over D in Equation (67) can be taken resulting

in the intensity of the form

IP (s)hkl = k(s)|F (s, shkl)|
2

�

AS
hkl(L) exp(2πi(s − shkl)L)dL,

where the Fourier coefficients of the peak shape due to the crystallite size

and shape are found to be

AS
hkl(L) =

1
�
g(D)Vc(D)dD

�

v(Lŝhkl, D)g(D)Vc(D)dD. (68)
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These coefficients are then useful in modeling the diffraction pattern

using an approach such as that described by Equation (27). If the size

distribution is described by an analytical function then the integral of

Equation (68) can be solved in terms of its parameters. For example,

assuming a log normal distribution which is defined in terms of the two

parameters M and S as

g(D) =
1

DS(2π)1/2
exp

�
− (lnD −M)2 /2S2

�
, (69)

the Fourier coefficients become

AS
hkl(L,M, S) =

3�

n=0

Hc
n,hklerfc

�
ln(LKc

hkl) −M − (3 − n)S2

S21/2

�
µl,3−n
2µl,3

Ln,

(70)

where Hc
n,hkl and K

c
hkl are coefficients corresponding to the crystallite

shape — examples are given in [127] — and µl,i is the i-th moment

of the log normal distribution. More forms of the Fourier coefficients

corresponding to crystallite sizes following Gamma or York distributions

are found in [124].

3.3.3 Comparison of direct space and reciprocal space meth-
ods

It is important to explore differences between the Debye (real space)

approach, and the traditional (reciprocal space) approach to LPA. This is

particularly interesting to assess the compatibility of the results obtained

for nanocrystalline systems with domains in the order of 3 to 10 nm,

where both approaches are possible to use. To this purpose, diffraction
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patterns simulated using a Debye algorithm have been modeled using the

whole powder pattern modelling (WPPM) approach [124]. Results show

a good compatibility between the methods, and point out the key role

of noise (i.e., data quality) in limiting our possibility to unveil the finest

details of the nanostructure.

In this study, simulations are focused on spherical gold crystals with

a lattice parameter of 4.081 Å. Spheres were chosen because the shape

function has an analytical expression that can be treated more strictly

by WPPM. The Debye approach utilized four unique log normal size

distributions in simulating the patterns. These distributions were chosen

to create sets of patterns defined by a common Scherrer size. This allowed

for the study of any differences in the peak profiles calculated by the two

approaches due to the effect of the distribution shape, while preserving

the integral peak breadth. Two sets of diffraction patterns were simulated

to have Scherrer sizes, < D >V , of 2.7 nm and 4.0 nm, respectively; while

the log normal standard deviations, σ�, used were 0.15 nm and 0.40 nm

resulting in a narrow and wide distribution for each set. (See Equation

(116) and (117) for definitions of < D >V and σ respectively.)

The Debye simulated pattern was calculated following the approach

outlined in Section 3.3.1. In this study two rules were assumed to govern

the sampling interval: i) that ΔD is constant, ii) that the volume incre-

ment between consecutive clusters is an integer multiple of the Wigner-

Seitz unit cell volume. Using these two assumptions it can be shown
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that

ΔD = a(3/2π)1/3 ∼ 0.78a, (71)

where a is the FCC lattice parameter. The sampled distance sets for each

particle were used to calculate diffraction patterns via a suitably adapted

Debye formula, which is amenable to a fast transform. More details on

the fast Debye simulation algorithms can be found elsewhere [25, 24].

Three levels of Poisson noise were then added to the simulated in-

tensity to obtain patterns with signal-to-noise ratios, SNR =
√
Imax, of

316.2, 100, and 31.6 (max noise added). Then simulated patterns were

modeled with the WPPM approach [124, 86], refining the parameters

of the FCC lattice, size distribution, small angle scattering contribution

and a Chebyshev polynomial background. A range of trial size distribu-

tion forms was assumed including: continuous and discrete log normal

distributions, and a continuous gamma distribution. The results of these

analyses for each distribution are given in the following discussion.

3.3.3.1 Continuous log normal distribution

The patterns calculated by the Debye approach were first modeled as-

suming a continuous log normal distribution of spheres in the WPPM

framework. The obtained size distributions matched exactly the expected

Debye distribution for all studied patterns. Even at the small particle size

range of 1-10 nm, the WPPM method was able to accurately distinguish

the different log normal parameters of two size distributions resulting in

patterns with the same integral breadth. The exact match between the
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Figure 14: Results of modeling the Debye patterns assuming a con-
tinuous log normal distribution: (a) < D >V= 2.7nm σ� =0.1491nm
wss= 3072.61, (b) < D >V=2.7nm σ� =0.3975nm wss= 4088.86, (c)
< D >V=4.0nm σ� = 0.1494nm wss= 766.35, and (d) < D >V= 4.0nm
σ� =0.3946nm wss= 990.89.

discrete distribution used in the Debye simulations and the continuous

curve employed in WPPM was beyond expectations (see figure 15).

The lower residual and weighted sum of squares, defined as

wss ≡
�

[(IDebye − IWPPM)/IDebye]
2,

for the distributions with a larger Scherrer size of 4.0nm was somewhat

expected (see figure 14) . As the size increases the differences between

the discrete Debye crystal, and the spatially averaged reciprocal space

method, become less influential. Furthermore, as discussed in section

3.2.3, at larger sizes the shape of the particle created in the Debye ap-

proach is increasingly well represented by a sphere. The agreement of the
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Figure 15: The distributions obtained from the modeling of patterns
before the addition of noise are compared.

obtained WPPM distribution with that used in the Debye simulations

remained excellent as the SNR was decreased in the patterns. There was

only a very slight deviation from the expected distribution at the highest

investigated noise level. In particular, the obtained distribution tended

to broaden and shift to sizes smaller than expected.

3.3.3.2 Discrete log normal distribution

A discretely sampled log normal size distribution was also employed in

WPPM to mimic the form of the size distribution used in the Debye ap-

proach. This distribution consisted of a set of weighted delta functions

at the same regular steps as that used in the Debye simulation, given by

Equation (71). The weight of each delta function was governed by the
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value of a log normal distribution, and the parameters of this governing

function were then refined in the WPPM framework, keeping the number

of free parameters the same as in the continuous case. This form of the

distribution was chosen in order to make the WPPM method more con-

sistent with the discreteness of the Debye approach, and give a reference

point to the continuous distribution assumption.

The discrete log normal size distribution parameters found had the

same agreement with the expected values as those found for the contin-

uous case (see Figure 15). The weighted sum of squares, and residual

intensity, did not show any significant improvement from the continuous

case. Furthermore, the background obtained when utilizing this distri-

bution was found to be very similar to that obtained when assuming

the continuous log normal distribution. Therefore, it is not accounting

for unseen effects on the pattern due to the discreteness of the size dis-

tribution. It is then our conclusion that the discrete size distribution

utilized in the described Debye approach does not result in noticeable

effects in the simulated pattern. As noise was added to the data the

agreement of the discrete distribution followed the same general trend as

the continuous log normal distribution.

3.3.3.3 Continuous gamma distribution

To investigate the sensitivity of these methods to the functional form of

the size distribution, the simulated patterns were also modeled assuming

a gamma distribution in WPPM. The total number of parameters which
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was concurrently refined did not change as the gamma distribution is

described by two parameters, just like the case of the log normal. The

inaccurate assumption of a gamma distribution was only noticeable in the

modeling of the patterns from the broader and skewed size distributions

(see Figure 15). In these cases the character of the distribution used in

modeling becomes evident, and the gamma distribution was in better

agreement at larger volumes due to the larger influence of this size range

on the diffraction pattern. The ability of WPPM to recover a good

representation of the expected distribution in the small size range became

worse as the SNR was decreased. However, modeling of the patterns with

increased noise obtained Scherrer sizes that were still in good agreement

with the expected values. Therefore, even when the assumed distribution

is not representative of the actual particle sizes, such as in the case of

the broader size distributions, the correct Scherrer size was found by the

modeling.

Differences in the quality of the fit assuming either the log normal,

or gamma, distributions were observed only in the noise-free patterns,

where the weighted sum of squares was 5-10 times lower when assuming

the log normal distribution. With the addition of noise, the weighted

sum of squares became nearly equivalent, masking the ability to discern

which size distribution form was a better model (see Figure 16). There-

fore, while the Scherrer size was always matched, reliable details of the

size distribution form could not be obtained from the noisy data. This
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Figure 16: Best fit models of the < D >V= 2.7nm σ� =0.15nm pattern
assuming (a) continuous log normal dist. no noise, (b) continuous gamma
dist., no noise, (c) continuous log normal dist. with SNR = 31.6, (d)
continuous gamma dist., SNR = 31.6.

conclusion is important to modeling noisy experimental data, as it seems

hopeless to distinguish the two distributions from diffraction alone. In

this case, the growth conditions and other observations must be taken

into consideration.

3.4 Conclusions of Size Effect Study

The important conclusion of this study is that the correct description

of the particle, or shape function, is increasingly significant as the size

reduces. In reciprocal space methods the shape function describes a con-

tinuous body and commonly assumed to be an average over many specific
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description. In the case of the Debye method this attribute is strictly de-

pendent on all assumptions made when constructing the crystallite and

simulating the diffraction pattern. Thus, when deciding between meth-

ods to model a diffraction pattern it is most important to consider if the

underlying averaging of the reciprocal space approaches, or the specificity

of the Debye method, is more appropriate to describe the studied system.

Another theme which runs throughout this chapter is that when em-

ploying reciprocal space methods to study crystallites with a size on the

order to 10nm, it can be necessary to reconsider the common assump-

tions made for large crystallites. For instance, it was shown how use

of the shape function description given by Ino and Minami, and avoid-

ing the tangent plane approximation, becomes increasingly important

for crystallites of small size and specific shape. These more appropri-

ate descriptions push the validity of reciprocal space methods to smaller

crystallite size, and to the limit of what can be called a crystallite.

The agreement seen in the final study considering different crystallite

size distributions can only be attributed to the effect of averaging over

multiple crystallite sizes. This effect is believed to be similar to the

average over random shift treatment described in Section 3.1, as more

descriptions of the crystallite shape and surface electron density near the

surfaces are considered as the size distribution broadens. This improves

the accuracy of traditional reciprocal space methods in this small size

range for a realistic sample with a crystallite size distribution.
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CHAPTER IV

DEBYE FUNCTION ANALYSIS OF PT 111

NANOPARTICLES

The development of modern synthesis methods which control the shape

and size of nanoparticles [20, 87] has further increased interest in their

use as chemical catalysts. As many chemical reactions have been es-

tablished to be surface structure sensitive, control of the particle shape

makes possible the engineering of high surface area catalysts which are

efficient and reaction selective [18, 85, 119]. Transmission Electron Mi-

croscopy (TEM) measurements have been commonly used to characterize

the shape controlled nanoparticles and information about the surfaces is

then inferred [18, 119]. While this analysis can give some information on

the size and shape of the nanoparticles, obtaining these results can be

time consuming and consider only a small fraction of particles. Further-

more, TEM is an ex-situ measurement which is done in an environment

much different than that in which the catalyst is used. For TEM analysis

of a nanoparticles, the sample is often dried onto a sample holder. This

sample holder is then placed into a vacuum chamber for measurement in

the electron beam. It is then possible that the structure which is found

via TEM is not consistent with that found in an electrochemical reaction
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environment. In-situ wide-angle diffraction analysis then offers a possible

useful tool to characterize a nanoparticle sample.

In the present study it will be demonstrated that wide-angle x-ray

diffraction measurements can be used to determine a reliable statistical

representation of particle size, as well as shape. This information will

be extracted from the experimentally measured pattern via the develop-

ing method called Debye Function Analysis (DFA) which simulates the

diffraction pattern from atomic models of nanoparticles. This method

also allows for the characterization of strains and defects, such as fault-

ing, which might exist in a nanoparticle sample. Observation of faulted

nanoparticles is not uncommon in TEM studies of metal nanoparticles.

Twinned particles have been found to exist as Lamellar Twinned Particles

(LTPs), which contain one or more parallel fault planes, as well as Mul-

tiple Twinned Particles (MTPs), which contain intersecting fault planes

[91]. The characterization of MTPs by a DFA method has been carried

out in the literature for a variety of different metal nanoparticle compo-

sitions [23, 31, 63, 150, 149, 165], however, until now LTPs have not been

widely considered. The results of the DFA method will be compared to

that obtained by Whole Powder Pattern Modelling (WPPM)[124, 126], a

reciprocal space based technique of diffraction pattern analysis. WPPM

models the diffraction pattern by combining the different effects that

microstructure features, such as crystallite size and strain, have on the
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diffraction pattern line profiles. The presented study then offers an eval-

uation of how well two very different diffraction pattern modeling ap-

proaches can model the diffraction pattern from nanoparticles.

4.1 Nanoparticle synthesis and TEM characteriza-
tion

The Pt nanoparticles used in this study were prepared by H2(g) reduction

of an aqueous solution consisting of H2PtCl6, and sodium polyacrylate us-

ing a methodology similar to that previously reported [2, 1, 105, 135, 148].

In brief, 1 ml of 0.1 M sodium polyacrylate solution was added to 100

ml of an aged 1×10−4 M solution containing the Pt precursor, H2PtCl6.

The pH of the solution was adjusted to 7 with 0.1 M HCl. Finally, the

solutions were purged, 5 min of Ar bubbling and 1 min of H2 bubbling

were used. The reaction vessel was then sealed, and the solution was

left overnight. After complete reduction (12-14 hours), two NaOH pel-

lets were added to produce the precipitation of the nanoparticles. After

complete precipitation, the nanoparticles were washed 3-4 times with

ultra-pure water.

Transmission Electron Microscopy (TEM) and High Resolution Trans-

mission Electron Microscopy (HRTEM) have been employed to investi-

gate the size and shape of the synthesized nanoparticles. TEM experi-

ments were performed with a JEOL, JEM-2010 microscope working at

200 kV whereas HRTEM experiments have been carried out on a JEOL

3010 microscope (LaB6, Cs=1.1 mm) operated at 300 kV, providing a
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Figure 17: TEM of images of the synthesized Pt nanoparticles are
depicted. (a-c) The mixture of particle shapes of different degrees of
faceting was produced and (d) the existence of twin faulting was also
observed.

point-to-point resolution of 0.19 nm. The nanoparticles observed in Fig-

ure 17a have triangular, diamond and hexagonal projections (also shown

in Figure 17b), suggesting the existence of tetrahedral, octahedral, and

cuboctahedral or possibly cubic nanoparticles respectively. As depicted

in Figure 17c, octahedral as well as tetrahedral particles were commonly

observed with truncated tips. Some particles, such as that depicted in

Figure 17d, were also found to contain a twin fault. In this case a twin

fault is present as the average angle between the atomic planes is found

to be 110.8° which is very close to the tetrahedral angle between (111)

and (11̄1̄) in an FCC lattice: 109.5°. A statistic of shapes was made from

360 particles which were clearly focused giving the results: octahedral:

46%, tetrahedral: 22%, cuboctahedral: 14%, spherical: 4% and irregular

shapes: 14%.
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The determination of the particle size and shape is not straightfor-

ward as each shape has a different characteristic length and projected

area which depends on the orientation of the particle relative to the elec-

tron beam. The diameter of a circle having an equal projected area to

the observed particle was used as a universal measure to characterize the

particle size. The particle size histogram obtained by analysis of TEM

images is displayed in Figure 22, and reveals a Pt mean particle size of

8.714 nm and a standard deviation of 1.59 nm. A theorem first shown

by Cauchy says that the average projected area of a convex shape con-

sidering all possible orientations is given as one quarter of the shape’s

surface area [22]. Since the surface area of the shapes assumed in the

XRD modeling is known, relationships can be derived to find the equiv-

alent diameter of the average projected area of each shape. This allows

the size distributions determined by TEM to be compared with those

obtained by XRD.

4.2 Dependence of the calculated pattern on particle
shape

Before the results of modeling the diffraction pattern from the prepared

Pt (111) sample can be fully appreciated a brief study of how nanoparticle

shape affects the diffraction pattern and a description of the developed

DFA algorithm is necessary. The powder diffraction intensity for any ar-

rangement of x-ray scatterers can be calculated directly using the Debye

function.
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The generality of Equation (24) allows for the Debye function to be

employed to simulate the nanoparticle diffraction pattern of particles hav-

ing any shape. It can be reasoned that a sphere is the most energetically

favorable shape of an isolated nanoparticle as it has the lowest surface

area for a given volume, thereby, minimizing the surface energy. How-

ever, different surfaces of a crystal lattice can have dramatically different

energies, which can result in a nanoparticle having a shape resembling

a polygon given by the Wulff construction. These surface energies are

then altered through the adsorption of organic molecules during parti-

cle growth, allowing for the synthesis of different particle shapes. A few

commonly observed shapes of metal nanoparticles are displayed in Figure

18a which are the result of the preference to expose different amounts of

either the (111) or (100) surfaces. Cubic nanoparticles are the result of

the preference to expose only (100) faces, while all surfaces of both the

octahedron and tetrahedron are (111). Other truncated shapes, such as

the cuboctahedron, are more likely and are a mixture of exposed (111)

and (100) surfaces.

The dependence of the diffraction pattern on the particle shape can

be understood by considering how the shape affects the pair distribution

function (PDF), which is defined in Section 5.3. The major differences

in the PDFs of each shape shown in Figure 18a are primarily seen in

the trend of the function at longer distances, as well as the maximum

interatomic distance present when considering shapes having the same
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Figure 18: The PDF and resulting powder intensity is depicted for a
series of crystallite shapes.

volume. The decay rate of the PDF in this range depicts the relative

amount of long range order present in a given shape. Therefore, scatter-

ing from this long range order will have more influence on the diffraction

pattern of shapes like tetrahedra or cubes. These subtle differences re-

sult in the distinguishing features of diffraction pattern peaks in Figure

18b, which are primarily noticed at smaller scattering vectors around the

111 and 200 peaks of platinum, as seen in Figure 18c. A tetrahedron

has broader 111 and 200 peaks, which are devoid of any satellite peaks

due to the lack of centrosymmetry of the shape. Satellite peaks are seen

around the 111 peak of an octahedron due to the symmetry induced by

the (111) surfaces. In the case of a cube there are satellite peaks around

the 200 peaks due to its (100) faces, but also the 111 peak exhibits a

strong asymmetric tail to smaller scattering angles. A blend of features

seen in the cube and octahedron diffraction patterns is observed in the
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Figure 19: The PDF and powder intensity is depicted for particles
containing different kinds of faulting.

pattern of a cuboctahedron, since the shape can be envisioned as a com-

bination of the two. Also, the pattern from a cuboctahedron is very

similar to that of a sphere, which is somewhat expected as visually a

cuboctahedron is a rough approximation to the sphere. When a distri-

bution of particle sizes is considered, the oscillations observed in Figure

18c around the peaks are smoothed, but the diffraction peak shape and

broadening remain dependent on the particle shape and size distribution.

[12, 79, 123]

Also considered in this study were particles which contain twin and

deformation stacking faults. The character of faulting present in the pre-

pared nanoparticle sample was determined by considering four different

particle structures: a sphere containing a deformation fault in the cen-

ter, a sphere containing a twin fault in the center, an icosahedron, and

a decahedron. The icosahedron is an MTP which contains three orthog-

onal twin planes, while the decahedron is the result of five intersecting
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twin planes, and both have all (111) surfaces. The PDFs and diffraction

patterns for each faulted particle considered are displayed in Figures 19a,

and 19b respectively. The diffraction peaks from a sphere containing a

twin exhibit broadening, while those of a sphere containing a fault plane

exhibit both broadening and a slight shifting. These findings are consis-

tent with the effects of faulting described by Warren [153], and Paterson

[103]. The icosahedron and decahedron exhibit very different patterns as

the high degree of faulting present in these particles results in a different

effective crystal symmetry. A detailed description of these MTPs has

been presented by Cervellino, et al. [23], and elsewhere in the literature.

4.3 Description of DFA Routine

A Debye Function Analysis (DFA) algorithm was developed to determine

the relative amounts of the different particle shapes present in a sample by

analyzing the measured diffraction pattern. The diffraction pattern from

a polydisperse collection of particles having multiple sizes and shapes can

be expressed as a weighted average of the pattern from each particle as

in

I(2θ) =
�

shape

wshape
�

D

w(D)shapeI
shape
D (2θ) (72)

where IshapeD (2θ) is the diffraction pattern for each particle size and shape

calculated from Equation (24). The weight w(D)shape represents the nu-

merical fraction of particles of a given shape of size D, while the weight

wshape represents the numerical fraction of particles of a given shape.
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As discussed in Section 3.3, the discrete sampling of the size distribu-

tion was done in the calculation of the Debye pattern. In this method the

particle can be described in terms of an onion-like structure consisting

of concentric shells. In the case of the spherical particles, the shell thick-

ness, or size sampling interval, ΔD, was taken to be the nearest-neighbor

distance, or ΔD = a
√
2/2, while for other shapes the sampling interval

was determined by the distance between complete shells of atoms which

retain the shape. For instance, for the case of an FCC cubic particle this

distance is a/2. A particle of any size can then be described as a union of

the necessary shells. This description saves computational time, as well

as, memory space, since the weighting of different particle sizes can be

re-expressed in terms of weighting the scattering attributed to a given

shell as

w(shell) =
Dmax�

D=Dshell

w(D). (73)

This expression follows from considering that the minimum particle size

containing a given shell is Dshell = (shell) ∗ ΔD, and all particles up to

the maximum size, Dmax, will contain this shell. Using this expression,

the diffraction pattern for a polydisperse sample becomes

I(s) =
�

shape

wshape
�

shell

w(shell)shapeI
shape
shell (s). (74)

Here the intensity from a given shell, Ishapeshell (s), is more than just scatter-

ing between atoms within a given shell, but also must include scattering
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between the atoms in the shell, and all smaller shells.

It is important to keep in mind that the size and shape distributions

used in Equations (72) and (74) are numerical distributions. The Debye

function automatically conserves the scattering power of a collection of

atoms, which is proportional to the volume, or number, of the atoms. So a

larger particle with more scattering power will result in a larger intensity

than that of a smaller particle. If volumetric, or mass, distributions are

used in the weighting of the average pattern, then the signal from the

larger particles will be further enhanced, and the resulting diffraction

pattern will be wrong.

In fitting the simulated pattern to an experimental pattern, it is al-

ways necessary to scale the diffraction pattern since measurements can

be collected for different times, and detectors are never one hundred per-

cent efficient. However, as just mentioned, the scattering power in the

intensity described by Equation (72) changes with the particle shapes,

and size distributions considered in the modeling. This will lead to cor-

relation between the scale parameter and the size distributions obtained.

In order to reduce the amount of correlation the unit scattered intensity

should be used by normalizing the pattern calculated in Equation (74) by

the number of scatterers in the simulated system, N [59]. The intensity

then takes the form

IN(s) =
1

N

�

shape

wshape
�

D

w(D)shapeI
shape
D (s), (75)
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with the number of atoms in the system determined simply by

N =
�

shape

wshape
�

D

w(D)shapeN(D)shape, (76)

with N(D)shape being the number of atoms in a particle of a given shape

and size, D. It should be noted that as an alternative, the unit scaled

pattern from each particle can be used in the average of Equation (75).

However, in this case it then becomes necessary to use the volumetric size

and shape distributions for the appropriate weighting of the patterns in

the average.

The intensities measured in a laboratory x-ray diffraction pattern are

influenced by not only the scattering power of the material, but also

phenomena and measurement parameters such as: x-ray polarization, x-

ray absorption, the measurement geometry, and the thermal motion of

atoms. In order to model experimental data with the Debye Function,

the known effects of each of these phenomena was multiplied by the

intensity calculated in (75), arriving at the simulated intensity through

an expression of the form

Icalc(2θ) = A(2θ) · Pol · DW · Abs · IN(2θ) + BG(2θ) (77)

where A(2θ) is a variable scale factor which can be a function of 2θ, Pol is

the polarization factor, DW is the Debye-Waller factor, Abs is the x-ray

absorption factor, and BG(2θ) is a function to model the background.

Unless otherwise noted the scale factor was assumed to be a constant,

independent of scattering angle. However, as will be discussed in the
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following section, it can also be expressed as a function of the scattering

angle in an attempt to account for aberrations of the measured intensity

from non-ideal instrument and measurement conditions. A Chebyshev

polynomial background function was added to the calculated pattern

to account for features such as scattering by the environment, and the

parameters of which were refined along with the other parameters in the

model. An independently measured background was not subtracted from

the experimental pattern as it can change when the sample is present

because of absorption by the sample.

The continuous diffraction pattern generated by the Debye function

poses a problem to incorporate effects like instrumental peak broadening

into the modeling as the commonly used Caglioti convolution [21] is no

longer possible. In this study, the breadth of the measured diffraction

peaks (shown in Figures 20 and 23) was observed to a Full-Width-Half-

Maximum (FWHM) on the order of 1.0 deg. The instrumental broad-

ening was determined by separately measuring the pattern of a LaB6

standard (SRM 660a), and the FWHM was found to be on the order of

0.01 deg. (2θ). Therefore, the observed broadening is dominated by the

particle morphology, and the instrumental contribution can be ignored

with small relative error.

Relatively few parameters are necessary to fully determine a simulated

diffraction pattern. The total number is largely based on the number of

shapes considered in the model, and the kind of size distribution assumed.
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Other standard parameters control the background and scaling of the

diffraction pattern. In total around 20 parameters are necessary for a

system of 4 different shapes with each described by a distinct log normal

size distribution. The challenge of modeling a diffraction pattern is then

to determine the parameters which result in the best agreement with the

measured pattern. This agreement was measured considering the value

of χ2 defined as

χ2 =

�
1

n − p

�

2θ

[Icalc(2θ) − Iexp(2θ)]
2 /Iexp(2θ)

�1/2

, (78)

with Icalc(2θ) and Iexp(2θ) respectively representing the simulated and ex-

perimental intensities composed of n points, and p is the number of free

parameters considered in the model. To this end a least-squares min-

imization routine based on the Levenberg-Marquardt (L-M) algorithm

[92] was developed. At a given step in the L-M routine the local gradient

of the parameter space is considered in order to continually move the

model in a direction which is expected to give a better fit. In the present

study, since analytical expressions of the intensity are not readily obtain-

able, the local gradient was evaluated numerically. The component of

the gradient corresponding to a free parameter is then found by slightly

changing the parameter, evaluating the χ2 corresponding to the new sys-

tem, and then taking the ratio

∂χ2

∂p
∼=

(χ
�2 − χ2

0)

p� − p0
. (79)

While the L-M routine has the advantage of always moving in a direction
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which improves the fit, it also has a tendency to get stuck in local minima,

and not explore a substantial portion of the parameter space. Therefore,

when it is being used, it is always necessary to assume different starting

values of the parameters to find the best fit.

4.4 Modeling of the measured diffraction pattern

X-ray powder diffraction patterns of the prepared Pt (111) sample were

measured in a laboratory setting using a Rigaku PMG/VH diffractometer

fitted with a copper tube and a monochromator, so that only Cu Kα

radiation illuminated the sample (Cu Kα1: λ = 0.154059 nm and Cu

Kα2: λ = 0.154445 nm). The nanoparticles were spread onto a Si wafer,

and measured in a reflection geometry over the 18–154° range with a step

of 0.20°, and a counting time of 60s/step.

Since fine details about the particle shape and structure were sought,

input from the complimentary analyses previously presented was used as

a starting point in the modeling of the diffraction pattern. For instance,

multiple combinations of particle shapes that were observed in the TEM

images were attempted in the previously described DFA routine to model

the collected pattern. Each shape was assumed to have a log normal size

distribution, and the parameters controlling the size and shape distribu-

tions were simultaneously refined with factors such as the scale factor,

background function and x-ray absorption thickness.

In an effort to efficiently obtain a good fit, it is important to system-

atically switch free different parameters. The first parameters to refine
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are the scale and background. Followed by the parameters governing the

lattice to find the right peak positions. This allows the modeling to get

a rough idea of the peak heights, and positions, before refining the fine

details of the peak profiles. Next the parameters controlling the size dis-

tribution, absorption and temperature factor can be set free, followed by

the finer details concerning the shape distributions and defect densities.

As previously stated, it is important to test different initial configurations

of shapes of different relative weights, and size distributions before de-

ciding on the best fit parameters. The remaining discussion will compare

the best fit parameters determined by the modeling assuming different

combinations of shapes.

When defects and strains were not considered, a model consisting of

56 % octahedral, 17% tetrahedral, 7% cuboctahedral, and 20% spherical

particles resulted in a good fit of the measured pattern (χ2 = 2.12). The

fit significantly improved when particles containing twin faults where

present in the modeling, with the best fit obtained when twinned spheres

were considered (χ2 = 1.73). In this case particles were found to have a

size of 8.4±1.9nm and consisting of 60% octahedra, 27% tetrahedra, 3%

cuboctahedra, and 10% twinned spheres. A comparison of this best fit to

the measured pattern is depicted in Figure 20. An improvement of the fit

from the defect free model was also found when icosahedral particles were

included in the modeling (χ2 = 1.95). While this did not result in the

absolute best fit, the possibility of the sample containing some amount
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Figure 20: The Debye fit of the pattern measured from the Pt nanopar-
ticle system is depicted.
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of these nanoparticles cannot be ruled out. However, the more likely

existence of single twinned particles over MTPs, for nanoparticles of the

size studied here, has also been found in the case of Au nanoparticles[31,

150]. Furthermore, no particles were observed in the TEM analysis which

exhibited the characteristic five fold symmetry of an icosahedron.

Some correlation of the parameters governing particle sizes and shapes

is expected, but the results were found to be very stable as the algorithm

converged to the same values given small perturbations. The case of

dramatically different shape fractions resulted in a poorer fit of the data

and a higher value of χ2. Also, the results of complementary analyses

validate the findings of the modeling. Figure 21 shows that the most

abundant shapes determined by the DFA routine (octahedra and tetra-

hedra) matches that observed by TEM for each assumed mixture of par-

ticle shapes. These dominant shapes also agree with the Electrochemical

characterization of the sample, which determined that the synthesized

nanoparticle sample had a dominant (111) surface. The existence of par-

ticles containing some twin character is supported by HRTEM analysis

of the synthesized nanoparticles, see Figure 17. The size distributions of

each shape which resulted in the best fit are shown in Figure 22 to be in

very good agreement with that obtained by TEM image analysis. The

slightly smaller particle size determined by the DFA algorithm can be

attributed to the unaccounted for instrumental broadening. The lattice

parameter determined from this best fit was 0.39196 nm, slightly smaller
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Figure 21: The particle shape distributions obtained from different char-
acterization techniques is compared.

than the accepted bulk value of 0.3924 nm for Platinum. This might be

due to a particle size dependent lattice parameter as a value of the same

magnitude for Pt clusters has been previously reported [122].

The same diffraction pattern was also analyzed using a program called

PM2K [86], the latest software developed based on the WPPM method.

The modeling was carried out using the same assumptions regarding the

particle size distributions and pattern background as that in the DFA

routine. The resulting best fit shown in Figure 23, was obtained from

8.0 ± 3.7nm particles consisting of 60% octahedra, 8% tetrahedra, and

32% spheres. Again, as also shown in Figure 21, the most abundant

shapes of octahedra and tetrahedra are identified from this method. The
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Figure 22: The size distributions obtained by TEM, DFA and WPPM
methods are compared.
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determined size distributions, depicted in Figure 22, show some deviation

from the TEM measurements, which might be explained from the inabil-

ity of the WPPM approach to consider truncated shapes. In contrast,

DFA offers complete flexibility in the particle shapes considered as only

a list of atomic coordinates are necessary to simulate the pattern. Along

with information on particle size and shape, the WPPM modeling deter-

mined a twin fault probability of about 1.3%, which is consistent with

the DFA and TEM analyses. Also, a small edge dislocation density of

about 2.0 × 1015m−2 was obtained, using contrast factors determined by

a new general model [93], and assuming c11 = 347 GPa, c12 = 251 GPa,

and c44 = 76.5 GPa [133]. It is possible that the determined dislocation

density is actually accounting for other strain fields present in the par-

ticles, such as those due to particle agglomeration. A lattice parameter

of 0.39190 nm was found in the modeling, which is consistent with that

found using DFA.

The fit of the measured pattern determined by WPPM, displayed in

Figure 23, exhibits a nearly featureless difference pattern, and finds the

best χ2 of 1.37. The better fit observed by using WPPM is partially due

to its ability to refine the integrated intensity of each peak independently.

Conversely, the diffraction patterns simulated by DFA are strictly deter-

mined by the model assumed, and can involve idealized measurement

assumptions. For instance, in the present study the sample was assumed
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Figure 23: The best fit of the particle pattern obtained by PM2K is
shown.
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to be homogeneously spread on the silicon wafer with a uniform thick-

ness. The more likely case of a variable sample thickness will induce a

change in the observed intensity that is dependent on the scattering an-

gle. In fact, study of the integrated intensity of each peak in the measured

pattern found that the consideration of the Lorentz-polarization factor,

secondary monochromator, and Debye-Waller factor were not enough to

completely account for the trend of integrated intensity as a function of

the scattering angle. The existence of an inhomogeneous sample thick-

ness is one possible explanation of this discrepancy. The use of DFA

then requires a perfect measurement to obtain a perfect fit of the data.

A variable scale parameter, which is a function of the scattering angle,

A(2θ), was used in an attempt to account for these kind of measurement

aberrations. A slight improvement from the best DFA fit was found

when a scale parameter expressed as a 5th order Chebyshev polynomial

was used (χ2 = 1.59). The parameters of this function were not found

to be correlated to those of the background, as the same background

was found when the variable scale parameter was used. This can be ex-

pected as the two functions model scattering from different sources. The

variable scale parameter models the diffracted scattering power from the

sample, while the background is largely determined by scattering from

the sample holder and surrounding environment. The particle size and

shape parameters, which were the result of this improved fit, showed no

considerable difference from what was already reported.
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4.5 Summary

Pt nanoparticles have been synthesized, by reduction of a Pt salt in

a solution containing polyacrylate, to have a preferential (111) surface.

Three very different characterization methods of TEM analysis, XRD

measurements and cyclic voltammetry showed consistent results, as the

preferential (111) surface was found to be due to the presence of octa-

hedral and tetrahedral nanoparticles with a size of about 8.7nm. DFA

modeling of the x-ray diffraction pattern found an abundance of octa-

hedra with a size that agreed with TEM observations. The modeling

improved when particles containing twinning were considered, and the

predominance of particles containing a single twin was found over mul-

tiple twinned particles. The different pattern analysis of WPPM found

consistent results. A complete, and coherent, statistical determination

of the important characteristics of nanoparticles which are intended for

catalytic applications was demonstrated here through combined electro-

chemical and x-ray diffraction measurements.
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CHAPTER V

MOLECULAR DYNAMICS BACKGROUND

“the atomic hypothesis (or the atomic fact, whatever you wish

to call it) that all things are made of atoms – little particles

that move around in perpetual motion, attracting each other

when they are a little distance apart, but repelling upon being

squeezed into one another [...] provides an enormous amount

of information about the world, if just a little imagination

and thinking are applied.” -Richard Feynman [50]

5.1 Basic Principles of Molecular Dynamics

Molecular dynamics (MD) is a robust computational method of simulat-

ing the structure, and dynamics, of materials on an atomistic level. Since

its conception in the 1950s [3, 4], its application has spanned all fields of

science, allowing for useful insight into the problems like the structure of

proteins, and material deformation mechanisms. In the MD framework

atoms are assumed to be the fundamental unit of a material, and are rep-

resented in the simulation by little more than its position, velocity, mass

and charge. The atoms act on each other through interatomic potentials

which in the MD framework are given by empirical functions, φij. More

formally, a potential energy function describes the energy of an atomic
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bond between the atom i and atom j in the simulation. A more compre-

hensive review of some of these potential forms will be given in Section

5.2, for now let us just assume that φij represents a smooth differential

function. Potentials can also be formulated considering some three-body,

or many-body interaction, but the two-body interaction is enough for the

purposes of the present discussion.

The total kinetic energy of the atoms in the simulation is then given

directly by

K =
�

i

miv
2
i , (80)

while the potential energy is given by

U =
�

i

�

j�=i

φij. (81)

Also, following classical Newtonian mechanics, it is evident that the equa-

tions of motion of the atoms in the system are governed by the relation-

ship

mi
d2ri
dt2

= −
dUi
dri
, (82)

where Ui represents contribution to the potential energy by atom i.

An MD simulation is then carried out by assuming an initial configu-

ration of atoms in space, and then letting the system evolve by iteratively

solving Newton’s equation of motion for all atoms in the system. A time

step then consists of one step in time taken by the simulation. The size of

this step should be on the scale of the motion of the atoms in a material

in order to properly capture this motion. For most crystalline materials,
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this is on the order of a femtosecond, or 10−15s, which is a minute fraction

of time as we perceive it. Also, an atom is really a tiny representation

of a material, as in just one cubic centimeter of a material, there are on

the order of 1023 atoms. Therefore, MD simulations are suitable for the

better understanding of phenomena which occur at small time and length

scales. It is not the only simulation technique used to model materials.

For problems of an even smaller scale, density functional theory (DFT)

simulation techniques offer the ability to study the electronic structure of

materials. While for problems of a larger scale, continuum mechanics can

be used to model the mechanical stability of materials. A brief overview

of the main materials simulation methods, and time and lengths scales

which they can cover, is depicted in Figure 24. Molecular dynamics is

then a crucial link in understanding how discrete atoms assemble to make

a larger material, which is then describable as a continuous body.

5.1.1 Verlet time integration

As previously mentioned, the evolution of the atomic system in an MD

simulation is solved in a stepwise fashion by integrating Newton’s equa-

tions of motion for each atom in the system. Then it can be said that

the position, and velocity, of an atom evolves following a deterministic

chain such as

ri(t) → ri(t + Δt) → ri(t + 2Δt). (83)

Many algorithms have been developed to integrate Newton’s equa-

tions of motion over the time step Δt, each having their own costs and
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Figure 24: Graph showing the different length scales of computer sim-
ulations. (Image from Buehler [19])

102



benefits [5]. In the present study the Verlet algorithm was employed

which is based on an assumption of the reversibility of time. The posi-

tion of an atom at a future time can be expressed as

ri(t + Δt) = ri(t) + vi(t)Δt +
1

2
ai(t)Δt

2 + O(Δt3), (84)

and similarly the position at a time in the past is given by

ri(t − Δt) = ri(t) − vi(t)Δt +
1

2
ai(t)Δt

2 − O(Δt3). (85)

Summing Equations (84) and (85) yields the relation

ri(t + Δt) = 2ri(t) − ri(t − Δt) + ai(t)Δt
2 + O(Δt4), (86)

which is used to solve for the future position of the atoms. A similar

expression can also be derived to solve for the velocity of the atom at a

future time. The acceleration of the atom, ai(t), is found from considering

Equation (82). Using the Verlet relationship of Equation (86) is also more

accurate than solving Equation (84) directly, as the error in the Verlet

algorithm expected to be O(Δt4) instead of O(Δt3).

5.1.2 Simulation box and periodic boundary conditions

A molecular dynamics simulation can then be thought of as a virtual

experiment which studies how Newton’s equations of motion can control

a complex interconnected system of atoms. The virtual volume of space

within which this experiment is taking place is commonly called the sim-

ulation box. The simulation box should be considered more than just
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a rigid confinement space for the atoms, but can also have characteris-

tics which makes it an important dynamic aspect of any MD simulation.

For instance, the volume of the simulation box can be allowed to change

throughout the course of the simulation, controlling the pressure of the

system. Also, its boundaries do not have to be rigid walls, which change

an atom’s trajectory upon impact, but can be periodic so that an atom

which passes through the boundary will appear on the other side of the

box. The use of periodic boundary conditions (PBCs) also allows atoms

near the boundary to have interactions with atoms on the other side of

the boundary. This treatment is a generalization of the one-dimensional

Born-von Karman periodic boundary condition which was developed to

study the atomic vibrations in a linear chain of harmonic resonators [16].

In the Born-von Karman treatment the linear chain is actually described

as a closed loop so that all atoms have the same local environment, and

no fixed boundary conditions are necessary.

The PBCs in an MD simulation can be envisioned as surrounding

the simulation box on all sides with other boxes containing a copy of

the atomic system in the original box. Atoms in the central simulation

box are allowed to interact with neighbors across the boundary, and all

motion of the atoms in the central box is mimicked in the surrounding

boxes. Then if an atom moves out of the central box it will appear on the

other side as the atom in the neighboring box has then just moved into

the central box. A graphical depiction of this concept is shown in Figure
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Figure 25: Graphic illustrating periodic boundary conditions (Image
from Allen [5])

25. While the use of PBCs is an important tool in the efficient simulation

of a material, the long range periodic nature which it implies can lead to

artifacts in a calculated diffraction pattern. This aspect will be discussed

in Chapter 6 along with a comparison of different approaches to avoid

these kind of artifacts.

5.1.3 Thermodynamics and statistical ensembles

While directly solving Newton’s equations of motion can yield a lot of

information on the atomic structure of a material, it is somewhat limited
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in that it is always driven to the end where all forces between atoms

are neutralized, and the energy is minimized. This evolution lacks the

consideration of the effects which temperature, and pressure, have on the

structure of a material. The simulation of temperature and pressure then

requires slightly altering Newton’s equations of motion.

One method to simulate the effects of temperature in a system follows

the classical statistical mechanics method of considering the atoms as

being in contact with a thermal reservoir. Energy is then allowed to flow

back and forth between the atomic system and the reservoir in an effort

to keep the temperature in the system constant. This approach ensures

that the energy of the total system (atoms + reservoir) is conserved

throughout the simulation time. Following the original description by

Nosé [98], the temperature of the atomic system is adjusted by scaling

the velocities of the atoms following

v = s
·
r, (87)

where s is a scale parameter related to the energy transferred between

the atoms and the reservoir, and
·
r is the time derivative of the atomic

positions. The potential energy of the thermal reservoir is then given by

Us = (f + 1)kBT ln s, (88)

where f is the number of degrees of freedom in the atomic simulation

(f = 3N − 3). Similarly, the kinetic energy associated with the reservoir
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is

Ks =
1

2
QT

·
s, (89)

where QT is a parameter representing the thermal “mass” of the reservoir.

The total Lagrangian is then given by the sum of kinetic and potential

energies from the atoms and reservoir, and the usual differentiation to

find the equations of motion results in

··
r = F/ms2 − 2

·
s
·
r/s, (90)

and

QT
··
s =

�

i

m
·
r
2

i s − (f + 1)kBT/s, (91)

which are respectively the adjusted equations of motion for the atoms,

and thermal reservoir parameter s. The parameter QT is specified at

the beginning of the simulation, and governs the rate at which energy

is transferred between the reservoir and the atoms. When QT is large

then the exchange is slow, while when QT is small the exchange is fast.

Therefore, an appropriate value of QT must be determined for a given

simulation so that the exchange is not too fast leading to radical temper-

ature fluctuations, while fast enough to allow for a timely convergence of

the system to the desired temperature.

Controlling the pressure in the system can be done following similar

considerations, where instead of considering flow of energy from a thermal

reservoir, one must consider the energy associated with the volume of the

simulation box. This is analogous to controlling the pressure in a liquid or
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a gas using a piston. Considering the energy associated with the volume

of the box, a similar expression to that of Equation (91) can be derived

governing the change of the box volume with time [5]. Also, once again

the rate of fluctuation of the box volume is governed by a parameter,

Qp, which is analogous to the mass of a piston, and an appropriate value

must be specified to ensure the system is not subjected to radical pressure

fluctuations.

The basic considerations presented here to control the temperature

and pressure of an MD simulation are able to be combined into a frame-

work which simultaneously links the atomic system to multiple virtual

thermal reservoirs, and systems controlling the box volume [94, 96].

These are known as a Nosé-Hoover chains, and their inclusion also helps

to avoid sporadic fluctuations in the temperature and pressure of the

system [95]. Also, the shape of the box can be altered to control more

than just the hydrostatic pressure, but also the amount of shear stress

in the system with time [101]. For the latest and most complete formu-

lation of the theoretical framework of temperature and pressure control

in MD simulations the reader is referred to the work of Shinoda, Shiga

and Mikami [132].

Not all parameters of the system can be controlled simultaneously,

and one must decide which conjugate variables to control. For example,

the pressure and volume of the system cannot be simultaneously constant

throughout a simulation, and one or the other must be chosen to be
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Table 1: Table of ensemble names in MD and classical thermodynamics
MD Name Classical Name

NVE Microcanonical ensemble
NVT Canonical ensemble
NPT Isobaric-isothermal ensemble
µPT Grand canonical ensemble

controlled. This is exactly the concept of thermodynamic ensembles in

statistical mechanics. In MD simulations these ensembles are named by

three characters signifying which parameters are assumed to be constant.

For instance, a constant number of atoms (N ), constant volume (V )

and constant energy (E) is called NV E. Table 1 refers these names to

the more classical names used to refer to these ensembles in statistical

mechanics and thermodynamics.

5.2 Interatomic Potentials

As mentioned in the discussion surrounding Equation (81), an MD sim-

ulation relies on empirical potential energy functions to describe the in-

teraction between atoms. This interaction does not have to only consider

pairs of atoms, but also can be generalized to consider the influence of

all neighboring atoms. The former interaction is called a pair potential

while the latter interaction is commonly called a many-body potential.

A common thread among most potentials, whether pair or many-body,

is that they are composed of a repulsive term and an attractive term.

The combination of attractive and repulsive parts to build a potential
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is epitomized in the Lennard-Jones (LJ) potential defined as

φij(dij) = 4�0

��
σ

dij

�12

−

�
σ

dij

�6
�

, (92)

where σ and �0 are variable parameters which determine the characteris-

tics of the bond. Since the LJ potential is only dependent on the distance

between atoms, dij, it is in fact a pair potential. The attractive part of

the LJ potential is then the portion raised to the sixth power, while the

repulsive part is component raised to the twelfth power. An appropriate

balance of these two components is then necessary to describe the bond-

ing in a material. While pair potentials are a good pedagogical example,

it was found that they are not capable of reproducing the elastic proper-

ties of some materials. For instance, a pair potential has been shown to

always follow the Cauchy relation, defined as c12 = c44, where c12 and c44

are the elastic constants [51]. In fact, most metals are known to violate

this relationship, and this was a driving force for developing many-body

potentials.

The Embedded-atom method (EAM) potential has been shown to

be one of the more robust many-body potential formulations which has

been devised to describe the bonding in metals [35, 34, 52, 33]. It also

has the benefit of not requiring much more computation than a pair

potential. The EAM potential describes the interaction of atom i with

its surrounding neighbors as

φi = F(
�

j

ρj(ri)) +
�

j�=i

Φ(dij),
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and is composed of a many-body and pair potential part. The many-body

part is contained in the embedding function F(ρ), which is dependent the

total electron density at the position ri from the contributions of the sur-

rounding neighbors, ρj(ri). Figure 26 depicts this embedding principle,

and how the electron density from a set of neighbors is determined by

the arrangement of its neighbors. The relationship then gets its name

from this concept, as this portion of the potential can be thought of as

the energy necessary to embed the atom i in the electron density of the

surrounding atoms. Meanwhile, the pair interaction is embodied in the

function Φij which consists of an effective coulombic repulsive expression,

Φij = ZiZj/dij,

where Zi represents the effective charge of atom i. The embedding func-

tion, F (ρ), is then the attractive term of this relationship, and is also

the hardest to formulate, since it cannot be directly measured. How-

ever, since the forms of the electron density and coulombic repulsion are

known, a reasonable form is found assuming an appropriate equation of

state for the metal. The EAM potential is then formulated assuming the

Rose equation of state, which describes the energy of a metallic bond in

terms of its deviation from the ideal lattice parameter by

E(a) = −Esub(1 + a
∗)e−a

∗

,
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with Esub representing the sublimation energy [121]. The reduced pa-

rameter a∗ is expressed as

a∗ = (a/a0 − 1)/(Esub/9BΩ)1/2,

where a0 is the equilibrium lattice constant, B is the bulk modulus, and

Ω represents the equilibrium atomic volume. The embedding function is

then found by fitting the potential to this equation of state, which has

the benefit of being determined by only a few characteristic properties of

the metal.

Besides the ability to represent the elastic properties of a material, the

EAM potential can adjust itself to account for many different scenarios.

This ability comes from the flexibility of the many-body term, which

is dependent on the local electron density. For example, this electron

density can come from atoms of different types allowing the EAM to also

represent the interactions of bimetallic alloys [33]. The EAM potential is

also able to adjust to change the description of the interactions for atoms

near a surface or interface. The lower coordination number and electron

density of atoms near a surface results in a softer bond in the EAM

formulation. The EAM potential has been used in the study of some low

index single crystal surfaces with qualitatively good results [33].

While it is a large step forward in the representation metallic bond-

ing, the EAM potential has a few serious drawbacks. First, in the fitting

of the potential only bulk properties are considered. Therefore, if real

accurate information is desired about the surface of a material, the EAM
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Figure 26: The embedding concept is shown as the energy of an atom
is the total local electron density from its neighbors.

potential is not able to do more than mimic the general trend between

elements. Secondly, the many-body interaction is formulated with spher-

ically symmetric electron density distributions in mind. Therefore, any

directional nature in a bond cannot be represented by the EAM potential.

For the reasons just described, the original formulation of the EAM

potential was later adjusted by Baskes into what is known as the modified

embedded-atom method (MEAM) [11]. The basis of the modifications

were to allow for the possibility of directional bonding in the expressions

for the electron density. This begins to allow the EAM framework to

properly represent the bonding in materials like silicon. The changes to

the original EAM formulation are not dramatic, as the electron density

in the MEAM potential are represented by a superposition of ellipsoids.

However, the precise formulation of the MEAM potential varies in the
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literature, as different expressions have been tried to fix problems of in-

consistencies between MEAM predictions and experimental observations

[82]. For instance, it was shown that the most stable crystal structure

of BCC metals was predicted by the original MEAM potential to be

different than what one expects. This was found to be remedied by

including a stronger second nearest neighbor interaction in the MEAM

(2NN-MEAM) of the BCC metals [82, 83]. This new 2NN-MEAM for-

mulation was also later found to be necessary to correct for problems in

describing the structural stability of FCC metals at finite temperature

[84]. Such problems included an inaccurate thermal expansion of the

lattice and inaccurate surface reconstructions of the low index surfaces.

However, it is still unclear to what extent the MEAM potential is able

to accurately represent the surface structural, and thermal properties,

of materials. This inconclusiveness is more due to the lack of accurate

experimental data on the subject than lack of computing resources.

Other formulations of the EAM framework have also been proposed

which claim to be more suited for the simulation of surfaces and small

collections of atoms. The surface embedded-atom method (SEAM) was

one of the first of such to be proposed. The SEAM was developed to

take into account the effect of bonding near the surface more correctly

as the interaction volume is allowed to change and flatten out as an

atom moves toward the surface [60, 61]. While this is suited for planar

single crystal surfaces, this formulation has not yet been tested in a more
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general sense on high index, or curved surfaces. A more recent take on

solving the shortcomings of the EAM potential for clusters of atoms is

the extended embedded-atom method (XEAM) [81]. In this approach the

local atomic electron density is slightly altered to introduce an element

of directionality in the boding, and distinguish between different local

orientation of neighboring atoms. While this approach tends to find

good agreement with the density functional theory simulations which are

used to fit the data, it has yet to be shown to work in a general sense

and mimic the behavior of real materials.

5.3 Simulation Characterization

An MD simulation can generate an excessive amount of data, and the

correct analysis of this information is as important as the proper con-

struction of a simulation. A brief description of the how this atomic

information is related to observable quantities is presented in the follow-

ing section.

Perhaps the most straightforward property measurable from a sim-

ulation is the temperature of the system at a given moment in time.

Temperature is related to the amount of kinetic energy of the system

through the relation

T =
2

3

K

NkB
, (93)

where the kinetic energy, K, is calculated by Equation (80), N represents

the number of atoms in the simulation and kB is the Boltzmann constant.
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The atomic positions can be used to study the correlations in the

distances between atoms in the simulation. One such function called the

radial distribution function (RDF) measures the relative fluctuations in

the atom density of the system. The RDF is calculated by counting the

number of atoms contained within a spherical shell of radius d, where the

center of the sphere is an atom in the simulation. The result is averaged

over the system by considering all atoms as the center of the sphere. and

normalized to the number of atoms expected at that distance assuming

a uniform atomic density. The RDF can then be expressed as

g(d) =
m(d)

NVsρ0
(94)

where m(d) is the total number of atomic pairs at a distance d, Vs is

the volume of the spherical shell (expressible as 4πd2Δd), and ρ0 is the

average atomic density of the system defined as N/V , with V being the

volume of the simulation box. Another function commonly defined as

a measure of atomic structure is called the pair distribution function

(PDF). This function then gives the average number of atomic pairs at

a distance d, and is found by the relationship

p(d) =
m(d)

NΔd

. (95)

The structural information in these distribution functions is the fun-

damental property of a system which determines its powder diffraction

pattern. In fact, the quantity m(d) can be directly used in the Debye
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function to calculate the powder pattern. Then assuming that the sys-

tem is composed of only one type of atom, the powder pattern intensity

is related to the PDF and RDF by the expressions

I(s) = k(s)f2(s)
�

d

m(d)
sin(2πsd)

2πsd
, (96)

= k(s)f2(s)NΔd

�

d

p(d)
sin(2πsd)

2πsd
, (97)

= k(s)f2(s)Nρ0
�

d

Vsg(d)
sin(2πsd)

2πsd
, (98)

=
2f2(s)ρ0

s

�

d

dg(d) sin(2πsd)Δd, (99)

which can also be expressed as the sine transform of dg(d) assuming Δd →

0. This expression of the final relation in Equation (96) as an integral is

the basis of the analysis of Total Scattering methods in diffraction [41].

If the simulation is conducted at a finite temperature, then the atoms

are vibrating around a mean position as a function of time. The struc-

ture of these vibrations can also be studied by calculating the velocity

auto-correlation function (VAF). This relationship measures the rate at

which the velocity of the atoms is changing, and is useful in obtaining

information on the phonon structure present in the simulation. The VAF

for atom j is defined as

cj(Δt) = �vj(t0) · vj(t0 + Δt)� (100)

where the brackets �...� denote an average over all initial times, t0, in the

simulation. This function is related to the vibrational density of states
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(VDOS) through the Fourier transform defined as

Γ(ω) =
1

kBT

� �

j

mjcj(t) exp(−iωt)dt, (101)

where mj is the mass of atom j.

The forces between atoms also give information on the stresses in

the system. However, the fundamental limitation to defining stress in

an MD simulation is that one cannot think in terms of a continuum,

which is defined at every point in the volume, but instead considers an

atomic system, which is defined at discrete points in space. Therefore,

the stress in an MD simulation can be calculated in a few slightly different

forms, and it is important to specify the exact definition being used. In

the present study the common definition was employed, which gives a

component of the 3-dimensional stress tensor of the system for a pair

potential as

σij = −
1

V

�
�

α

mαvα,ivα,j +
1

2

�

α

�

β�=α

Fαβ,idαβ,j

�

, (102)

where vα,i represents the i-th component of the velocity vector of atom

α, similarly Fαβ,i is the i-th component of the force vector between atom

α and β, and dαβ,j the j -th component of the distance vector between

the atoms. The first term in Equation (102) is a kinetic term accounting

for the energy of the atoms associated with thermal motion, while the

second term is called the virial stress and dominates the value of the

stress tensor at low temperatures. When many-body potentials are used

then the stress tensor can be expanded accordingly. The pressure of the
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system is then related to the trace of the stress tensor, P = −Tr(σ)/3,

resulting in the expression

P = NkBT +
1

3V

�

α

�

β�=α

Fαβ · dαβ, (103)

where the kinetic energy term is now expressed in terms of the system

temperature.

5.4 Nanoparticle Simulation Review

The small size of nanoparticles makes them an ideal case to study us-

ing MD simulations. Early simulations of nanoparticles were focused on

atomic clusters consisting of no more than 1000 atoms, and having a

size around 1 nm. MD simulations were used to find the atomic con-

figurations which resulted in the minimum energy state of the cluster.

At this size the minimum energy state is no longer the atomic lattice,

and finding the most stable atomic configuration required inventive ge-

netic algorithms to search the many possibilities of the cluster description

[164]. These algorithms were able to solve the atomic configurations of

the “magic number” clusters which are more likely to be exist in nature

due to their closed-shell electronic structure.

Work on slightly larger nanoparticles (D = 1 - 10 nm) has been largely

focused on also determining the stable structure of the isolated nanopar-

ticles. In this size range it was again found that the bulk atomic lattice is

not necessarily the most stable structure, and particles were found to ex-

ist which contain an intersecting network of twin boundaries [91]. These
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types of particles are commonly referred to as multiple twin particles

(MTPs), and often contain a characteristic five-fold symmetry axis. The

more widely observed examples of MTPs are icosahedral and decahedral

particles, which are schematically depicted in Figure 27. These MTPs

cannot grow to be very large as the stacking fault energy associated with

the multiple twin planes will cause the configuration to be unstable. Then

MD simulations have been carried out which try to predict the particle

size ranges where MTPs become a more stable configuration than a par-

ticle made of the bulk atomic lattice. This is in an effort to create a

size-dependent phase diagram for most transition metals which describes

the thermodynamically stable structure of nanoparticles of different sizes

[10].

A few different approaches have been proposed for studying the size-

dependent structure of nanoparticles. The first approach consists of start-

ing from a melted state of the metal and then rapidly cooling the system,

or quenching, to a lower temperature [26, 27, 28, 66, 131]. The atomic

positions in the resulting particle are then analyzed to characterize the

particle structure. While this approach properly considers any relaxation

and restructuring of the atoms near the surface, it is somewhat unreal-

istic as the slowest quench rate which is achievable in an MD simulation

is still orders of magnitude faster than what can be achieved in practice.

Furthermore, a recent study has found that the resulting structure can

be dependent on the quench rate assumed in the MD simulation [27].
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Another approach to predict the minimum energy structure is by con-

structing a series of particles of different size and shape, calculating the

corresponding energies, and comparing the energy curves as a function of

particle size [7, 8, 28, 30, 29, 31, 66]. These curves are then used to map

the expected phase diagram of nanoparticles from the structure resulting

in the lowest energy. While this method can give an idea of the most

stable structure, it is really only the most stable of the configurations

which are envisioned to be correct. The most stable atomic configura-

tion might be something which was not considered at the outset of the

study. Furthermore, the study of the minimum energy state is only appli-

cable to the describing the system at a temperature of 0K. The addition

of thermal energy can mean that the stable particle configuration may

well be another atomic structure, or result in a equal likelihood of many

different atomic structures. Finally, while MD simulations begin to offer

a suggestion of the stable atomic configuration it should always be kept

in mind that this is really only in terms of the interatomic potential is

used and the corresponding assumptions of how the bonding in the par-

ticle is described [27]. The simplified vision of bonding described by MD

simulations may be manifested in a different sense as the particle size

decreases to the nanoscale.

Until recently most MD simulations of nanoparticles have been min-

imum energy structural studies trying to determine whether the atomic

lattice, or some MTP description is more stable. A few notable exceptions
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Figure 27: Figure of icosahedral and decahedral particles

include those simulations which have been already mentioned in Section

2.3 regarding their contribution to diffraction studies. Many nanoparti-

cles are synthesized with a surfactant which bonds to the surface of the

particle and limits their growth and agglomeration. The studies of Land-

man were some of the first to consider the influence of this interaction in

their MD simulations of Au nanoparticles capped by an alkylthiol sur-

factant [89]. This chemical then makes an Au-S bond on the surface of a

nanoparticle which will change the surface energetics of the nanoparticle.

Luedke and Landman conducted a rather thorough investigation of the

resulting structure and dynamics of the encapsulated nanoparticle and

were able to identify likely bonding sites of the alkylthiol on the surface

of the Au nanoparticle. Simulations of this kind can give great insight

into the role of surfactants in the nucleation and growth mechanisms of

nanoparticles. In this direction the simulations of Gilbert et al. are also

significant contributions [55, 57]. Gilbert and co-workers have simulated
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the structure and dynamics of nanoparticles which are dispersed in a sol-

vent like water. The important interaction of the particle and the solvent

is commonly overlooked, or ignored, in simulation studies. Their simu-

lations have been able to explain the solvent dependent phase stability,

and transformations, of TiO2, and ZnS nanoparticles. These simulations

show the importance of properly considering the interactions on the sur-

face of nanoparticles is necessary before comparison with experimental

measurements is possible.
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CHAPTER VI

POWDER DIFFRACTION FROM SYSTEMS OF

CRYSTALLITES

In describing the diffraction pattern from materials we have so far only

considered the case where the crystallites in a material can be treated as

independent scatterers. This means only considering the interference of

x-rays which have scattered within a single crystallite, or the contribution

of intra-crystallite scattering to the diffraction pattern. This ignores the

interference of scattered waves originating from different crystallites in

the material, what we will refer to as inter-crystallite scattering. When

two crystallites in a material are not positioned, or oriented, in a regular

fashion, the lack of order, or coherency, results in the inter-crystallite

intensity summing to zero in the wide-angle regime. This then allows

for the their treatment as independent scatterers. However, it is not en-

tirely clear to what extent crystallites must be misoriented to satisfy this

claim, and what observable effects ordering might have on the wide-angle

powder pattern. The following chapter will begin to explore these ques-

tions by applying the Debye function calculation to systems of multiple

crystallites.
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Figure 28: The view of a crystallite system in terms of the different
techniques to simulate the diffraction pattern are shown.

In simulating a system of multiple crystallites, a more practical ques-

tion arises concerning how many crystallites are necessary to obtain a rep-

resentative diffraction pattern. This consideration is gaining importance

as the Debye function is increasingly applied to generate the diffraction

pattern from polycrystalline atomic simulations [17, 40]. Therefore, a

parallel topic throughout the following chapter will be the study the size

of the simulation necessary to achieve a reliable diffraction pattern.

6.1 Calculating the powder diffraction pattern from
systems of crystallites

Often in the generation of a system of crystallites, or microstructures,

periodic boundary conditions (PBCs) are necessary for more realistic

simulations of a computationally reasonable size. However, as already

discussed, improperly calculating the diffraction pattern from such a sys-

tem can result in artifacts, due to the cutting of the domains by the
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boundaries, and the new periodic order possible in the system. Then the

first challenge when simulating a system of multiple crystallites is how to

properly consider the finite size of the simulation space, and avoid any

artifacts due to the use of periodic boundary conditions in the simulation

box. Two slightly different methods exist for solving this problem, and

calculating the diffraction pattern from a system of multiple crystallites.

The first, which we will refer to as the crystallite reconstruction (CR)

method, uses the PBCs to reconstruct crystallites which are cut by the

boundaries. As shown in the example of Figure 28, in the reconstruction

only one copy of a crystallite is allowed, so a decision must be made as to

the position of the crystallite relative to the box. In the present study the

crystallites were reconstructed on the side of the box corresponding to the

crystallite center of mass. The diffraction pattern is then calculated by

applying the Debye function of Equation (24), but slightly reformulating

it as

IP (s) = k(s)f
2(s)

�

d

m(d)sinc (2πsd) , (104)

where all of the distances of the same length have been tabulated into

m(d), which is then the multiplicity of the distance di, and k(s) is a

function representing the constants and factors in front of Equation (24).

As shown in Section 5.3, the multiplicity function is related to the PDF,

p(d), or the RDF, g(d), by m(d) = Np(d)Δd and m(d) = 4πd2NΔdρ0g(d)

respectively. As will be shown in Section 6.2.2, the finite size of the

reconstructed system will result in features in the small-angle regime of
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the simulated pattern.

The use of this method to calculate the diffraction pattern allows for

the easy separation of the inter-crystallite and intra-crystallite contribu-

tions to the total intensity. Following the same reasoning which lead to

Equation (17), the powder intensity from a system of crystallites can be

expressed as

IP (s) = k(s)f
2(s)

�
�

M

IM +
�

M

�

M�=N

IMN

�

, (105)

where IM is the intensity scattered from the M-th crystallite, and IMN

is the intensity from the interference of waves which have scattered from

the different M-th and N-th crystallites. The first summation is then the

intra-crystallite contribution, while the cross summation amounts to the

inter-crystallite contribution. In both cases the intensity takes the form of

Equation (104), with the difference of course being whether the distance

is considered between atoms in the same crystallite or not. Effectiveness

of the independent scatterer assumption can then be assessed by studying

the inter-crystallite intensity.

The second method of calculating the diffraction pattern from peri-

odic systems of multiple crystallites consists of assuming that at some

distance from an atom, any ordered structure of a material is lost. In

this case, the long range structure can be considered homogeneous, and

the PDF is approximated as

p(d) = 4πd2ρ0, (106)
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which is found from integrating the average atomic density, ρ0, on the

surface of a sphere of radius d. A cartoon exhibiting how this treatment

relates to the initial PBC microstructure is depicted in Figure 28. Then

for each atom in the system, the interatomic distances only need to be

calculated to the critical distance, rc, which defines the transition to the

homogeneous regime, and the intensity is given by

IP (s) = k(s)f
2(s)

�

N +
rc�

d>0

m(d)sinc (2πsd) + N4πρ0

∞�

d>rc

d2sinc (2πsd)Δd

�

.

(107)

The second summation can be expressed as an integral with the following

solution

N4πρ0

∞�

rc

r2sinc (2πsr) dr = N4πρ0

�
rc cos(2πsrc)

(2πs)2
−

sin(2πsrc)

(2πs)3

�

.

(108)

Therefore, the homogeneous approximation (HA) intensity [40] is given

by

IP (s) = k(s)f
2(s)

�

N +
rc�

d>0

m(d)sinc (2πsd)+

N4πρ0

�
rc cos(2πsrc)

(2πs)2
−

sin(2πsrc)

(2πs)3

��

. (109)

The benefit of the HA method is that it does not require any recon-

struction of the atomic positions to evaluate the intensity, as the PBCs

are used in the calculation of the interatomic distances. However, it is

only valid for systems which can be said to be homogeneous in the long
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range limit, and is therefore not applicable to any systems which ex-

hibit long range order. One important step when using Equation (109)

is determining the appropriate critical distance, rc, which separates the

structured and homogeneous regimes. In most cases, this can be de-

fined by studying a precalculated PDF, and determining when it can be

approximated by Equation (106). However, again the case of periodic

boundaries must be carefully considered as rc must be smaller than the

simulation size. Finally, it should not be disregarded that the integration

of Equation (108) neglects the influence of absorption as it extends to

infinity. The full implications of this approximation on the calculated in-

tensity are still unclear. Nonetheless, the HA intensity has the desirable

quality that it masks the finite size of the simulation box. This will be

shown to be effective in the simulation of the small-angle pattern from a

system of densely packed particles as it results in clear features from the

particle configuration.

The HA method can also require less computational power than the

CR method. In the CR method the number of computations required

always scales as N2. However, this factor is less for the HA method as the

number of distances to calculate is related to the smaller volume defined

by rc. However, as already discussed, the HA method requires some

precalculation of the PDF for the proper determination of rc, and with

current understanding of the technique, further trial and error can be

necessary to find the best value of rc which produces a reliable diffraction
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pattern. This increases the computational demands calculating the HA

intensity, and may result in the HA method costing the same amount of

computational resources as the CR method.

6.2 Patterns from Random packing of spheres

In the present study we will use different packing of spherical crystallites

to study the influence of inter-crystallite scattering on the powder diffrac-

tion pattern. While this is a crude representation of a microstructure,

it embodies the features which are of interest to us as the positions and

orientations of the crystallites are able to be controlled. The simulated

systems also allow for some insight into the effects of inter-crystallite

scattering on the small-angle pattern from densely packed systems.

6.2.1 Particle system generation

To represent a system where no ordering existed in the microstructure,

a method of packing the spherical crystallites to a specified density was

devised. This method follows the considerations of random hard-sphere

packing which has been developed for densification studies of granular

materials, as well as, to simulate the structure of amorphous glasses

[73, 76, 143].

The algorithm begins by creating the population of the particles in

a system. Given the number of particles, N, and the size distribution,

g(D), the number of particles in the population of a given size, n(D), is
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found to be

n(D) = Ng(D)ΔD, (110)

where ΔD is the sampling interval of the size distribution — analogous

to that defined in Section 3.3.1. A volume of free space is then created

considering the desired packing density, ρ, which is defined as the ra-

tio of the volume of the particles to the total simulation volume. The

simulation space is defined as a cube whose volume is given by

Vbox =

�

D

n(D)V (D)

ρ
, (111)

where V (D) is the volume of a particle of size D. With the simulation

box created, the center of each particle is assigned an initial random

position in the box. In this initial configuration it is likely that some

particles are too close and have an overlapping volume.

An iterative approach roughly based on Monte-Carlo methods was

used for finding the separated particle positions. During this reposition-

ing routine, PBCs were assumed for the simulation box to avoid impinge-

ment of particles by the box boundaries. In an iteration, if two spheres

are found to be overlapping, then the particles are slightly separated by

a random distance which is bounded by a maximum displacement. This

maximum displacement is adjusted throughout the course of the separa-

tion routine by trying to keep the fraction of particle displacements which

result in successful particle separation equal to 0.5 [5]. Once all particles

have been separated the routine stops, and the periodic boundary con-

ditions of the box can be removed depending on the pattern simulation
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Figure 29: A constructed particle system particle system of a log normal
size distribution and a packing density of 0.5 is depicted.

technique. Figure 29 depicts an example of a resulting particle system

containing 64 spheres representing a log normal size distribution with a

packing density of 0.5.

With the particle system initialized, atoms are filled into the crystal-

lites. The orientation of the atomic lattice in each particle with respect

to the reference frame of the box is specified by a set of Euler angles. For

the case of a randomly oriented system, this set of angles was randomly

chosen for each particle. The position of the atom i in the box is then

described in terms of the position and orientation of particle M, to which

it belongs, following
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r�i = xM +RMri, (112)

where xMand riare the positions of the particle, and atom position, in the

reference frame of the practical respectively, and RM is the orientation

matrix defined in terms of the Bunge-Euler angles (φ1, ψ, φ2) as

RM =








cos φ1 cos φ2 − sin φ1 sin φ2 cos ψ sin φ1 cos φ2 + cos φ1 sin φ2 cos ψ sin φ2 sin ψ

− cos φ1 sin φ2 − sin φ1 cos φ2 cos ψ cos φ1 cos φ2 cos ψ − sin φ1 sin φ2 cos φ2 sin ψ

sin φ1 sin ψ − cos φ1 sin ψ cos ψ








.

(113)

With the atomic positions initialized the diffraction pattern can be cal-

culated following either the CR, or HA methods previously described in

Section 6.1.

For large simulation systems of defect free particles, the large amount

of memory required to store all of the atomic coordinates can be avoided

by expressing these distances in terms of the reference frame of a given

particle. In the reference frame of the box, the distance between atom i

and atom j is expressed as

dij = r�i − r�j = xM +RMri − (xN +RNrj) (114)

Transforming this into the reference frame of particle M, the distance

vector is found to be

R−1
M dij = R−1

M [(xM − xM) −RNrj] + ri. (115)
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Figure 30: The patterns calculated by the crystallite reconstruction
method for different systems of crystallites with a diameter of 4.6nm are
compared.

Since in the powder pattern one is only concerned with the magnitude

of this distance, the relation in Equation (115) will give an equivalent

result. The memory necessary to describe the particle system is then only

governed by the number of atomic positions within the largest particle.

6.2.2 Study of patterns from monodisperse systems

Systems of randomly packed particles, each having the same diameter,

were generated following the routine described in Section 6.2.1 to study

the diffraction patterns found from assuming the CR and HA methods.

In this section, all particles were filled with a defect-free Au lattice (a =

4.0809Å), and random orientations were assigned to simulate a powder.

Also, the patterns were simulated assuming polarized radiation with a

wavelength of 1.54056 Å (Cu Kα1).

The CR patterns from systems of particles having a diameter of 4.6nm
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are depicted in Figure 30. They show that changing the characteristics

of such a particle system only influences the small-angle regime of the

calculated intensity. Changing the number of particles in the simulation

has the effect of increasing the value of the intensity at s = 0, as expected

considering that this value is found from Equation (24) to be f2(0)N2,

where N is here the number of atoms in the system. From this point

on the y-axis, the intensity decreases, following different trends which

all eventually converge to the pattern from an isolated particle. The ob-

served features in this region of the diffraction pattern are attributed to

the effects of the auto-correlation of the system as a whole, as well as,

the structure of the particles in the system. The autocorrelation largely

determines the observed intensity near s = 0, while the features of the

particle structure factor are seen in the region of the pattern where the

intensity begins to resemble that from a single particle. For instance, by

increasing the packing density of the simulated system, the intensity is

found to dip below that from an isolated particle in the region around

s of 0.1 nm−1, even leading the slight formation of a peak at s = 0.2

nm−1 for the rather high packing density of 0.5. The existence of this

peak is evidence that the generated particle system is beginning to be-

come more ordered as it approaches the dense packing limit of 0.74 for

a monodisperse system. The wide-angle pattern is found to be identi-

cal, and independent of the constructed system. This is further evidence

that the assumption of independently scattering crystallites is completely
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Figure 31: The inter-particle scattering contributions to the patterns
calculated in Figure 30 are shown.

warranted when considering a powder.

Further credence for this claim is garnered by studying the contri-

bution of inter-crystallite scattering to the patterns of Figure 30 This

intensity is shown in Figure 31, and has been calculated from consider-

ing Equation (105). The inset of Figure 31 again shows how the size of

the system is reflected in the intercept of the inter-crystallite intensity.

The figure also demonstrates that the features attributed to the structure

of the particle system are really coming from this inter-crystallite con-

tribution to the intensity. Even the peak at 0.2 nm−1 is observed in the

pattern found from the system with a packing density of 0.50. Finally,

the inter-crystallite intensity is found to converge to zero for larger values

of s. Therefore, the disorder in the simulated powder system was enough

that the wide-angle intensity can be safely treated as if each crystallite

scattered independently.
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Figure 32: Patterns calculated by the homogeneous approximation from
systems of 2000 particles with a diameter of 3nm are shown.

The same method creating a system of particles was also used to gen-

erate arrangements of particles for the calculation of the HA intensity

described by Equation (109). In this case the particles were assumed

to have a slightly smaller diameter of 3nm. The diffraction patterns re-

sulting from this approach for a series of increasing packing densities are

depicted in Figure 32. In the calculation, the maximum possible rcwas

assumed — which is L/2, where L is the side length of the box. The

intensities depicted in Figure 32 again find that the crystallite config-

uration only influences the small-angle regime. The striking feature of

the calculated HA intensities is the clear emergence of a peak around

0.3 nm−1 as the packing density is increased. As in the case of the CR

patterns, this peak is the result of the structuring into a more ordered

system, however, it is much more evident in the HA calculated intensity.

Further inspection finds that its position shifts to higher values of s with
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increasing packing density. This trend is consistent with the considera-

tion that a system of particles which is more densely packed, will have

particles which are on average closer to one another. Also, the features

observed in the HA patterns are in good agreement with those expected

from a system of spheres having a hard-sphere interaction [59]. Further-

more, it is again found that the wide-angle patterns in Figure 32 are the

same, and in agreement with that from an isolated sphere of the same

size. The ability of the HA method to clearly depict features in both

the wide-angle and small-angle, offers a lot of interesting possibilities to

combine the refinement of patterns measured in the two regimes.

6.3 Critical system size of polydisperse systems

The reliability of the calculated diffraction pattern is related to how well

the simulated system represents the real system. Since the size of a

simulation is limited, it is important to understand the critical number

of particles necessary for the simulated system to statistically resemble

reality and produce a representative diffraction pattern. This critical size

will be shown to be related to the degree of polydispersity in the system,

where polydispersity can be defined in a general sense as the diversity of

the objects in a collection. The cases of polydisperse systems describing

different size distributions and defect densities will be considered in the

following discussion.
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6.3.1 Particle Size Distribution

It is already apparent from the patterns presented in Section 6.2.2, that

one particle is sufficient to simulate the wide-angle pattern from a ran-

domly oriented, monodisperse system. It is then desirable to determine

what this critical system size, Nc, is for different log normal size dis-

tributions. The number of particles of each size in a simulated system

was determined using Equation (110), with the log normal distribution

defined as in Equation (69). A comparison of the distribution which is

given by Equation (110) and the continuous log normal distribution is

depicted in Figure 33. The volumetric moment and standard deviation

of a log normal distribution, defined as

< D >V= 3 exp (M + 7S/2) /4, (116)

and

σ =
��

exp(S2) − 1
�
exp

�
2M + S2

��1/2
(117)

respectively, were used to characterize a given distribution. The patterns

from systems containing multiple particles (MP), were then compared

to the wide-angle patterns simulated from the isolated particle (IP) ap-

proach described in Section 3.3.1, which arrives at the intensity by ap-

propriately weighting the intensity from a particle of a given size.

Figure 34 depicts the how the patterns simulated from systems having

< D >V of 4.6nm but different standard deviations converge to the IP

pattern as N is increased. The qualitative trends describing the influence
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Figure 33: The size distribution which is generated in a constructed
system is compared to the desired log normal distribution function.
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Figure 34: The simulated patterns from systems having a size dis-
tribution characterized by (a) < D >V=4.6nm σ = 0.90nm, (b)
< D >V=4.6nm σ = 1.59nm, (c) < D >V=7.5nm σ = 1.42nm, and
(d) < D >V=7.5nm σ = 2.10nm are shown.
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of polydispersity on Nc is apparent from just considering these two cases.

The MP patterns, shown in Figure 34(a) for systems with a narrower

size distribution, find a match with the IP pattern for a much smaller

simulation size of 125 particles, while the patterns from a broader size

distribution in Figure 34(b) requires a much larger number of particles.

If we consider the breadth of the size distribution as a measure of the

polydispersity, it is apparent that Nc must increase with the amount of

polydispersity in the system. This trend was also observed in the patterns

from systems having a larger average particle size, as in Figure 34(c) and

34(d).

To obtain a more quantitative estimate of Nc, the value of χ
2 between

the MP and IP wide-angle patterns was calculated according to

χ2 =

�
�

s

1

IIP (s)
[IMP (s) − IIP (s)]

2 /n

�1/2

, (118)

where n is the number of intensity points considered. In this context the

wide-angle pattern was defined as the scattering vector, s, range between

2 and 13 nm−1, composed of about 900 points. The Nc was then defined

as the minimum number of particles necessary for χ2 ≤ 1. The variation

of χ2 with the particle population, N, is shown in Figure 35(a) for four

different distributions — each having < D >V of 4.6nm, but different

standard deviations. It is evident that the rate of convergence of the MP

pattern to the IP pattern is somehow related to σ�. However, the study of

other systems with different mean sizes shows that Nc is not determined
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Figure 35: The trends of χ2 versus the particle number of crystallites in
the system is depicted for the for the size distributions considered. The
dotted line shows an approximation of Nc for the distribution having
< D >V= 4.6nm and σ = 1.59nm, as the real value Nc was larger than
the maximum particle population possible.

by σ alone. The Nc obtained for a series of size distributions having

a mean size 4.6nm and 7.5nm are plotted in Figure 35(b). This figure

shows that the Nc for a log normal distributions is also related to the

average particle size. Further tests are required to develop a better model

which might allow for the prediction of Nc. However, the aforementioned

trend has been further demonstrated as Nc increases with the width of

the size distribution, or polydispersity, in the system.

The cause for the discrepancy between the MP and IP patterns is

the difference in the actual size distribution present in a system, and

the ideal size distribution. As shown in Figure 33 this difference is pri-

marily exhibited in the abundance of the larger particles in the tail of

a broad distribution. Since n(D) is restricted to integer values, then

g(D)MP = n(D)/NΔD will be a poor approximation to g(D) from Equa-

tion (69) when N is small. Furthermore, diffraction is a volume weighted
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measurement, therefore, small discrepancies in the large particle tail of

the two distributions will be magnified in the diffraction pattern.

6.3.2 Particles Containing Defects

Polydispersity can also be realized in a system in the form of local differ-

ences in atomic density, or defect densities. To investigate the influence

of such characteristics, systems of crystallites were created containing

varying densities of stacking faults. In order to focus on the effect of

polydispersity due to faulting, systems were simulated with particles of

the same size. Either twin faults, or deformation faults, were created

during the particle construction by disrupting the {111} planar order-

ing accordingly. The fault probability of a system was defined as the

ratio between the number of fault planes, and the total number of (111)

planes in the system patterns. This definition follows the conventional

terminology describing the effect of faulting on close packed planes in

LPA [103, 153]. A slight discrepancy is expected between the fault prob-

ability created in the simulated particle systems and the value obtained

from LPA, since the LPA theory assumes that all faults have an equal

surface area — which cannot be true for faults at different positions in

a spherical particle. Each fault in the particle system was randomly as-

signed to a particle, a different {111} plane, and a different position in

the particle. Some resulting patterns for systems with different densities

of deformation faults, α, and twin faults, β, are depicted in Figure 36(a).

The diffraction pattern range depicted in the inset of Figure 36(a) shows
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Figure 36: The patterns from systems containing faults and the trends
of χ2 are depicted.

that the pattern from a system containing deformation faults exhibits

a pronounced shift of the 200 peak to smaller angle while the patterns

from a system containing twin faults primarily shows broadening. These

features are consistent with the expected effects on the powder pattern

[155], and are evidence that the effects of faulting are still observable in

powder patterns from small crystallites.

As in study of polydispersity due to different particle sizes presented

in Section 6.3.1, the diffraction patterns from systems containing an in-

creasing number of particles were compared with a reference pattern

to determine Nc. However, a simple weighting scheme to simulate the

diffraction pattern by IP methods does not exist. Therefore, in calcu-

lating χ2, an MP reference pattern was used coming from a sufficiently

large system, which was determined to be 500 particles. The trend of χ2

as a function of the particle population depicted in Figure 36(b) shows
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that systems with a higher probability of faults require a larger number

of particles in order to reach the convergence threshold (χ2 ≤ 1). Assum-

ing that a slightly larger faulting density allows for more possibilities of

faulting arrangements in a particle, this observation is consistent with the

previously described trend that increased polydispersity requires a larger

simulation size to generate a reliable diffraction pattern. Furthermore, it

shows that Nc is not solely dependent on the particle size distribution,

but also characteristics like the defect population.

6.4 Ordering and coherency

In recent literature it has been proposed that powder diffraction peak

broadening is not only affected by crystallite size and strain, but also

by the scattering from neighboring crystallites which are “coherently”

ordered [111]. This phenomenon has been observed in the diffraction

patterns from thin films [110], micro-dot arrays [109] and has even been

used to explain uncharacteristic broadening observed in the pattern from

ball milled nanocrystalline fluorides [114]. Two criteria exist for two

crystallites to be said to be coherently ordered:

• the lattice orientations of the crystallites should differ by a small

amount, and

• long range structure should exist in their crystallite positions.
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Then, the presence of ordered crystallites in the case of thin films may

be reasoned by evolutionary grain growth and interactions with the sub-

strate during the thin film synthesis. However, it is unclear if this event

can occur in ball-milled nanocrystalline materials as it is uncertain the de-

gree which neighboring crystallites have similar lattice orientations, and

more importantly, it is unlikely that regularity exists in their crystallite

positions. Without delving into the physical mechanisms necessary to

create such a microstructure, we will approach the question by assum-

ing that such a microstructure can exist, and then study the wide-angle

powder diffraction pattern from a many particle system as a function of

each criterion for coherent ordering.

First, to study the influence of the lattice orientation, the particle

positions from a loosely packed system were used. However, instead of

assigning a random orientation to all particles, a certain number of par-

ticles were oriented such that the coordinate axes of the particle lattice

were aligned with that of the simulation box. The term coherency prob-

ability is then defined as the percentage of particles in the system which

were initialized with the same lattice orientation. In the cases of systems

having a coherency probability less than one, the remaining particles in

the system were initialized with a random lattice orientation.

The wide-angle patterns from 27 identical particles (D = 4.6nm)

with a rather dense packing of 0.5 and containing different coherency

probabilities are shown in Figure 37(a). The simulations with a lower

146



� � � � �� ��
�

�����

�����

�����

��
��
��

��
�

��������

��������������������������
�����������������������������
��������������������������

���

��� ��� ��� ��� ��� ��� ��� ��� ��� ���

�����

����

���

��������

�������������������

Figure 37: Patterns corresponding to randomly packed systems of differ-
ing (a) coherency probability and (b) coherency domain sizes are shown.

coherency probability of 0.5 model materials which have coherently ori-

ented crystallites randomly interspersed in the microstructure. It is seen

from Figures 37(a) and 37(b) that the diffraction pattern from this type

of a system does not exhibit any noticeable signs of coherency as the pat-

tern does not differ from that of a randomly oriented system. A distortion

of the peak shape was only observed when the coherency probability ap-

proached unity, as seen in the slight narrowing and distortion of the 111

and 200 peaks from the 27 particle system in Figure 37(b). A peak nar-

rowing at low angles is predicted by the theory of Rafaja [111], but the

effect simulated here is much more subtle than what was observed by

Ribarik, et al. in nanocrystalline fluorides [114].

Larger coherent systems consisting of more than 100 particles were

also simulated to study how the coherently oriented volume, referred to

as the coherent domain size, affects the diffraction peak shape. As the co-

herent domain size was increased to 125 particles, the effect of coherency

on the pattern seen in Figure 37(b) is even further diminished. If regions
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of coherently oriented crystallites are present in a real polycrystalline

material, one would expect that the coherent domain size would not be

identical throughout the material, and the diffraction measurement would

be an average over a distribution of domain sizes. In an effort to study

the effect of this averaging, the patterns from the 27 and 125 particle

were averaged and the result is depicted in Figure 37(b). Even though

only two coherent domain sizes were considered, the resultant average

pattern already begins to mask any deviation of the 27 particle pattern

from the randomly oriented particle pattern. As a larger set of coher-

ent domain sizes was considered in the averaging, the resultant pattern

continues to converge to the randomly oriented particle pattern, showing

no effect of particle coherency. Therefore, both the cases of randomly

interspersed coherently oriented crystallites, and the average diffraction

pattern from different coherent domain sizes, result in the pattern from

a randomly oriented particle system. It is therefore unlikely that crys-

tallite coherency is an observable phenomenon in the diffraction pattern

of nanocrystalline powders without long range ordering. In the study of

Ribarik, et al., a bimodal size distribution was used to model the effect

of the observed coherency. In this case the actual existence of such a size

distribution in the sample could explain the observed peak broadening

instead of the effects of coherency.
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When the regular spacing condition for coherent scattering is imple-

mented into a particle system by ordering the coherently oriented par-

ticles into a superlattice dramatic effects are observed in the wide-angle

diffraction pattern. Figure 38 shows that when a simple cubic super-

lattice of particles is assumed the typical diffraction peaks from a gold

lattice split into two or three clearly identifiable peaks which are modu-

lated by the diffraction pattern of a single gold particle. The positions

of these new peaks are dependent on the superlattice spacing, and can

be indexed according to the new long range order which is present in the

system. Since the superlattice spacing does not have to be a multiple of

the atomic unit cell parameter, this ordering of coherent particles is then

best described as a local incommensurate superlattice. While a coher-

ent crystallite superlattice of this kind can exist in nature — shown to

be due to interactions like nanoparticle surface ligand interactions, and

magnetic ordering — it was demonstrated here to show the upper limit

of the effect that coherency can have on the wide-angle pattern. Any sys-

tem of coherently oriented crystallites can then be viewed as somewhere

between the presented extremes of the randomly arranged system, and

the ordered superlattice.
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Figure 38: The patterns from orientationally ordered cubic superlattice
of 125 patterns (D = 4.6nm) are shown for different cubic grid spacings
(Grid Δ), which are expressed in terms of the lattice parameter of the
FCC in the particles, a.
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CHAPTER VII

EFFECTS OF THERMAL MOTION ON THE

POWDER DIFFRACTION PATTERN

7.1 General TDS Theory

The theory describing the effects of thermal motion on the diffraction

pattern was one of the first problems that was treated in x-ray diffraction,

perhaps motivated by the popular belief at the time of the method’s

conception that the presence of this motion would destroy the diffraction

signal from a lattice [46]. The theory can be expressed beginning with a

static lattice, and including the consideration that each atom is vibrating

around its average position. The position of an atom is then expressed

as rn = Rn+un, with Rn and un signifying average atomic position, and

its instantaneous displacement respectively. The intensity from Equation

(16) then becomes

I = Ie
Pol

R2

�
�

n

|fn|
2 +

�

m

�

n�=m

fmf
∗
n exp (−2πidmn · s) exp (−2πi (um − un) ·s)

�

, (119)

where dmn = Rm − Rn. A common diffraction pattern is collected over

a time scale much longer than that of atomic motion, so the observed

pattern is really the time average of Equation (119). Assuming that the
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thermal displacements are small relative to the spacing between atoms

in the atomic lattice, we can use the relation

�exp (−2πi (um − un) ·s)� = exp
�
−
�
[2π (um − un) ·s]

2� /2
�
. (120)

The time average intensity then becomes

�I� = k(s)

�
�

n

|fn|
2 +

�

m

�

n�=m

fmf
∗
n exp (−2πidmn · s) exp

�
−2π2

�
[(um − un) · s]

2��
�

, (121)

where the terms in front of Equation (119) are now represented by k(s).

Expressing u · s as ums cos θm, and expanding the term [(um − un) · s]
2,

we arrive at the expression

�I� = k(s)

�
�

n

|fn|
2 +
�

m

�

n�=m

fmf
∗
n exp (−2πidmn · s)

exp
�
−2π2s2

��
u2m cos2 θm

�
+
�
u2n cos

2 θn
�
− 2 �umun cos θm cos θn�

��
�

(122)

We can then define the Debye-Waller exponential factor

Mm = 2π2s2
�
u2m cos2 θm

�
=

8π2 sin2 θ

λ2
�
u2m cos2 θm

�
, (123)

resulting in the final general form of the intensity due to thermal motion

�I� = k(s)

�
�

n

|fn|
2 +
�

m

�

n�=m

fmf
∗
n exp (−2πidmn · s)

exp (−Mm −Mn) exp
�
4π2s2 �umun cos θm cos θn�

�
�

. (124)
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The first exponential in Equation (124) is the unchanged Bragg scatter-

ing condition, the second is the well known Debye-Waller factor, while

the final exponential is related to the average correlation of the atomic

motion. The assumed form of this correlation term is then the point of

contention between existing diffraction theories of thermal motion. The

two extremes of random atomic motion, and coupled atomic motion will

be treated in the following subsections.

It should be noted that the derivation which has been given follows

the procedure of James [77] and Warren [155], as the time average is

considered before the volume average. The reverse method, considering

the spatial average and then the time average, has been described by

Guinier [59] and Suortti [139] resulting in identical expressions for the

scattered intensity, which is evidence of its ergodic nature.

7.1.1 Random Atomic Motion

The early work by Debye on the subject of thermal motion assumes that

the atoms can be treated as independent harmonic oscillators [39]. This

assumption carries with it the result that the correlation between any two

atoms which is averaged over time is zero. Following this treatment, and

assuming a monoatomic system, the intensity of Equation (124) reduces

to

�I� = k(s) |fn|
2

�

N + exp (−2M)
�

m

�

n�=m

exp (−2πidmn · s)

�

. (125)
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Adding and subtracting the N terms which are necessary to complete

the double sum, one finds the expression

�I� = k(s) |fn|
2

�

N [1 − exp (−2M)]+

exp (−2M)
�

m

�

n

exp (−2πidmn · s)

�

. (126)

This form of the thermal effect will be referred to as the Debye thermal

diffuse scattering (TDS), since its general form was first described by Pe-

ter Debye in 1914 [39]. The first term in Equation (126) is a smooth in-

creasing function with s that contributes isotropically to the background

of the diffraction pattern. The second term is an exponential decay which

diminishes the intensity of the diffraction spots with increasing s.

If the thermal motion is isotropic, then the exponential factor 2M can

be expressed as Bisos
2/2, resulting in the definition of the Debye-Waller

factor as

Biso = 8π2
�
u2m cos2 θm

�
. (127)

The quantity um cos θm is the displacement of atom m in the direction of

the scattering vector s. For isotropic motion, the average value can be

expressed in terms of the mean squared displacement (MSD) of an atom

as �u2
m� = 3 �u2m cos2 θm� [59]. Therefore, Biso is related to the MSD by

Biso =
8π2

3

�
u2
m

�
. (128)
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7.1.2 Coupled Atomic Motion

The description of atomic motion as random is at odds with the knowl-

edge that a network of bonds exist between atoms. Then, if one atom

moves, a force will act upon its neighbors, ultimately resulting in their

motion in a similar direction. The theory of lattice dynamics of such a

coupled system was developed extensively by Max Born and coworkers

[16] around the same time as when Debye was working on his theory

of specific heat in solids. This theory was then employed in the early

experiments by Laval [80] and Preston [107] to explain the temperature

dependence of diffuse anisotropic streaking and satellite peaks observed

in their measured diffraction pattern. The study of such features in the

diffraction pattern is referred to as thermal diffuse scattering (TDS).

Commonly the TDS is considered as only an observable feature in the

background between peaks that does not contribute to a broadening of

the diffraction peaks. However, it will be demonstrated that correlated

atomic motion produces very broad peaks which are positioned under the

Bragg peaks. Therefore, it becomes a concern for accurate line profile

analysis, as the improper handling of such an effect can lead to wrong

microstructure parameters.

Elasticity theory tells us that the displacement of an atom at any

given moment can be decomposed into a sum over a set of normal elastic
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plane waves as

un(rn, t) =
�

g

�

j

Agjegj cos (ωgjt − 2πg · rn − δgj) . (129)

In this description g is the wave vector of the plane wave, Agjis its am-

plitude, egj is a unit vector in the direction of the vibration polarization,

ωgj the angular frequency, and δgj an arbitrary phase. The index j then

represents the different independent polarizations a wave can have in the

solid. In a monoatomic three dimensional lattice j = {1, 2, 3}, repre-

senting the 2 longitudinal and 1 transverse acoustic waves possible for

a given wave vector, g. The total number of independent vibrations is

then given as 3N, where N is the number of atoms in the system.

This description of the atomic displacement can be used to obtain

a suitable form of the correlation term in Equation (124). Expressing

sum cos θm as um · s, and using Equation (129), one finds that

s2 �umun cos θm cos θn� =

��
�

g

�

j

Agjegj · s cos (ωgjt − 2πg · rm − δgj)

�

�
�

g�

�

j�

Ag�j�eg�j� · s cos (ωg�j�t − 2πg · rn − δg�j�)

��

. (130)

If the phase of each wave is arbitrary, the cross terms from the two sum-

mations will average to zero. Therefore, with the use of cosine identities,

and considering that �cos(ωt)� = 0 [155], it can be shown that the previ-

ous expression reduces to

s2 �umun cos θm cos θn� =
1

2

�

g

�

j

�
A2
gj

�
(egj · s)

2 cos (2πg · dmn) . (131)
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Using this result, and expanding the correlation exponential in Equation

(124) in terms of a Taylor series, the intensity becomes

�I� = k(s) |fn|
2

�

N +
�

m

�

n�=m

exp (−2πidmn · s)

exp (−2M)
�
1 + �Ymn� + �Ymn�

2 /2 + ...
�
�

, (132)

where

�Ymn� = 2π2s2
�

g

�

j

�
A2
gj

�
cos2 θgj cos (2πg · dmn) . (133)

Similar reasoning also leads to the relationship

2M = 2π2s2
�

g

�

j

�
A2
gj

�
cos2 θgj. (134)

From Equation (132) it is clear that the form of the Debye TDS is the

zeroth order approximation to the TDS found when assuming a coupled

system. In addition there are higher order corrections, corresponding to

the power of �Ymn�, which are added under the Bragg pattern.

7.1.3 Relating diffraction observables to vibrational density of
states

For comparison of the developed description of the TDS with the ob-

servable features, the task at hand becomes relating the mean ampli-

tude squared of a wave,
�
A2
gj

�
, to other quantities like the density of

states and temperature of a system. The mean kinetic energy of an

elastic wave over time is given by �Kgj� = 1
4
Nm

�
A2
gj

�
ω2
gj, where N is

the number of atoms in the system, and m is the mass of each atom.
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By the virial theorem, the average total energy is twice the mean ki-

netic energy, so < Egj >=
1
2
Nm

�
A2
gj

�
ω2
gj. Treating each elastic wave

as a harmonic oscillator, this mean energy can also be expressed as

< Egj >= �ωgj(n(ωgj, T )+
1
2
), where � is Plank’s constant and n(ωgj, T )

is the partition function of the phonons. Since phonons follow Bose-

Einstein statistics,

n(ωgj, T ) =
1

exp(�ωgj/kBT) − 1
, (135)

which can be approximated as n(ωgj, T ) = kBT at high enough temper-

atures. Therefore, the mean square amplitude is found to be

�
A2
gj

�
=

2�

Nmωgj
(n(ωgj, T ) +

1

2
). (136)

Often equipartition is assumed allowing the sum over g in the eval-

uation of quantities like �Ymn� and 2M to be expressed in terms of an

integral of the density of states, Γ(ωgj), over the first Brillouin zone.

Equations (133) and (134) then become

�Ymn� = 4π2s2
�

Nm

�

g

�

j

Γ(ωgj)

ωgj
(n(ωgj, T )+

1

2
) cos2 θgj cos (2πg · dmn) dg,

(137)

and

2M = 4π2s2
�

Nm

�

g

�

j

Γ(ωgj)

ωgj
(n(ωgj, T ) +

1

2
) cos2 θgjdg, (138)

respectively. Since the speed of sound in a lattice is frequency depen-

dent, the relationship ωgj = 2πcgjgς(g) is necessary to convert between
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ω and g, where ς(g) is the assumed dispersion relationship, and cgj is

the low frequency limit of the speed of sound for the wave vector g and

polarization j.

7.1.4 Powder TDS for Cubic Materials

Until this point effort has been made to leave the relations in a general

form, and avoid any approximations. However, general analytic solutions

of Equations (137) and (138) are not possible. Also, when considering

the powder intensity, the intensity described by Equation (132) needs to

be further averaged over the powder sphere.

In order to find a solution which produces a reasonable representation

of the TDS, multiple models have been proposed of varying complexity

and realism. In the study of the TDS in a powder diffraction pattern

from a cubic material, Warren proposed one of the first notable models

[155]. However, it is somewhat limited to special cases as it: relies heavily

on the Debye theory of lattice vibrations to approximate the density of

states, assumes a constant average velocity of sound, neglects a frequency

dispersion relationship, and was originally formulated for temperatures

around the Debye temperature, ΘD. Generalizations and improvements

have been proposed in the past by a number of authors. The calculation

of the first order TDS was extended to lower temperature by Herbstein

and Averbach [67]. The allowance for a speed of sound which differs

for the longitudinal and transverse modes, cl and ct respectively, was
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considered by Paskin [102] following cl � 2ct as it is a common charac-

teristic in cubic materials. Later, Suortti [139] considered the dispersion

relationship of a linear chain, as well as pointed out the importance of

convolving the TDS with the Bragg peak. Finally, Walker and Chipman

[152] extended the treatment to allow for the description of a material

with elastic anisotropy.

It is a common assumption that the first and second order terms

dominate the TDS, therefore, most efforts are spent developing these

relationships. Also, it is common to approximate the integral over the

first Brillouin zone as an integral over a sphere of equal volume. While

this approximation conserves the integrated intensity of the TDS, some

doubt has been raised by Walker and Chipman regarding its ability to

represent the true profile of the TDS peak [152].

Only a brief sketch of the derivation for the TDS in the powder pat-

tern from an isotropic cubic material will be presented here as the full

discussion is rather lengthy. The reader is directed to Sections 11.5, 11.10

and 11.11 of Warren [155] for more details. Following a series of simplify-

ing assumptions — the use of the average speed of sound cj, ωj = 2πcjg,

and the density of states assumed as a quadratic function in the first

Brillouin zone — Equation (137) becomes

�Ymn� = 2M
Si (zDmn)

zDmn

, (139)
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where

Si(z) =

z�

0

sin x

x
dx, (140)

zDmn = 2πgDdmn, (141)

and 2M is the Debye-Waller exponential factor, which at high enough

temperatures can be approximated as

2M =
3h2T

mkBΘ2
M

s2. (142)

The reciprocal space length gD is the radius of a sphere whose volume

equal to that of the first Brillouin zone, or VBZ = 4πg3D/3. Also, the

characteristic temperature ΘM is similar to the Debye temperature, but

is actually an average of the Debye temperatures for the longitudinal and

transverse waves, Θl and Θt respectively, and is given by the relationship

3

ΘM

=
1

Θl

+
2

Θt

. (143)

Therefore, the intensity from Equation (132) for the l-th order TDS be-

comes

Il(s) = k(s) |f |2 exp (−2M)
2Ml

l!

�

m

�

n

exp (−2πidmn · s)

�
Si (zmn)

zmn

�l
.

(144)

Equation (144) gives the intensity at a point in reciprocal space, as

described in Section 2.2 the powder intensity is found by taking the

average of this quantity over the powder sphere. In doing so the sum

over the mn pairs can be replaced by the sum over nearest neighbor
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shells at a distance di and with a multiplicity Ci. Then the l-th order

powder TDS intensity is found to be

IPl
(s) = k(s)N |f|2 exp (−2M)

2Ml

l!
Ql, (145)

where

Ql =
1

2s

�

hkl

mhkl

shkl
Φl (|s − shkl|) , (146)

and

Φl (|s − shkl|) =
g2max − |s − shkl|

2
+

1

4π2

∞�

i=1

Ci
d2i

�
Si (zi)

zi

�l
[cos (2π|s − shkl|di) − cos (2πgmaxdi)] . (147)

After explicitly considering the first few nearest neighbor shells, the re-

mainder of the infinite summation in Equation (147) can be approx-

imated as an integral assuming a continuous atomic density. Warren

finds that Φl for l > 2 can be approximated by Φ2, resulting in the total

TDS powder intensity simplifying to

IPTDS
= k(s)Nf2n(s) [exp (−2M) 2M (Q1 − Q2) + (1 − exp(−2M))Q2] .

(148)

It should be noted that the Lorentz factor is already included in the

description of Ql given in Equation (146). The intensity predicted by

Equation (148) for an Al lattice at 300K is depicted in Figure 39. It is

found that this form of the TDS results in very sharp peaks centered at

the positions of the Bragg peaks with broad tails which extend between

peaks. While the contribution of the TDS to the diffraction pattern is
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Figure 39: The Warren Powder TDS assuming an Al lattice is depicted.

small relative to the Bragg scattering, it can have an impact on changing

the apparent shape of the diffraction peaks, especially in their tails. It will

also be shown in the following section that the diffraction pattern from

MD simulations at an elevated temperature also exhibit these features.

The controllable nature of these simulations then allows for a precise

study of the consequences of assuming different models for the TDS.

7.2 Simulating Bulk Lattice Vibrations and the Pow-
der Diffraction Pattern

Molecular dynamics can be used to study the effects of thermal motion on

the powder diffraction pattern by calculating the diffraction pattern from

the atomic positions in the simulation. First, it was desirable to study the

influence of bulk lattice vibrations, before attempting to understand the

slightly more complicated case of the vibrations in smaller crystallites.

The techniques used here to simulate the pattern are not standard, so a

163



description of the reasoning behind the employed procedure is necessary.

7.2.1 Molecular Dynamics Simulation Parameters

Molecular dynamics simulations were carried out assuming a periodic

simulation box containing a perfect lattice, using the LAMMPS simula-

tion software [106]. Starting from 0 K, the temperature of the system

was gradually raised in steps of 100K and allowed to stabilize at tem-

peratures from 100 K to 500 K. Once the system had stabilized at each

temperature, the positions of the atoms were output for a series of time

steps. The position information is an effective snapshot of the system

at a given moment in time which can be used to simulate the diffrac-

tion pattern. The periodic structure of the system was avoided by only

considering atoms in the center of the system. The powder diffraction

patterns of the center atoms from each snapshot were directly calculated

using the Debye function. The series of patterns at a given temperature

were then averaged to obtain the time averaged pattern. This average

pattern was treated as experimental data, and analyzed using modern

line profile analysis techniques [124, 86].

It is necessary to carefully consider the setup and behavior of the

MD simulations to ensure it exhibits realistic lattice dynamics. In the

present study a simulation box containing 108,000 atoms and with an

edge, L, consisting of 30 FCC unit cells (L ~ 12 nm) was created. The

boundary conditions of the box were periodic, allowing for the study of

the bulk thermal behavior and atomic vibrations. The number of atoms
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Figure 40: The temperature and pressure of an MD system is shown
over the duration of a simulation which was used in this study.

(N ), pressure (P) and temperature (T) were controlled throughout the

simulation. The use of this ensemble allows the simulation box to account

for thermal expansion and change its volume isotropically to maintain the

desired pressure. The pressure of the system was kept at 0 atmospheres

as only the effect of temperature was intended to be studied. As shown in

the thermal and barometric history of the simulation depicted in Figure

40, the temperature was increased from 0K in steps of 100K, and allowed

to stabilize for a time of 50 ps (50,000 time steps). After the stabilization

period, the system was allowed to evolve for another 5 ps to obtain the

series of atomic positions used in the diffraction pattern calculation.

The assumed interatomic potential describing the interaction between

atoms determines the thermal response of a system. In the present work

many-body interatomic potentials based on the theory of the embedded

atom method were used. In the case of Cu the embedded atom method
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(EAM) potential [52] was used, while for Al the effective medium theory

(EMT) potential [72] was employed. These potentials have been devel-

oped using the elastic properties of the respective bulk metals measured

at 300K, and are then appropriate for the setup and temperature range

studied here.

As a test of the simulated lattice dynamics, the vibrational density

of states (VDOS) was calculated from the atomic velocities. The atomic

velocities were output at same time as the atomic positions. This velocity

information was then used to calculate the velocity auto-correlation func-

tion, c(t), defined in Equation (100). Following the methods described

by Dove [163], the VDOS, Γ(ν), for a monoatomic material is obtained

from the Fourier transform of the velocity auto-correlation function as in

Equation (101). The VDOS obtained by analyzing the velocities of our

MD simulations are depicted in Figure 41, and show a form consistent

with that found from inelastic neutron scattering [136, 140]. Therefore,

the atomic vibrations observed from this technique are indeed consistent

with those of the real materials.

7.2.2 Simulation of the Powder Pattern

If the atomic positions of a time step are directly used to calculate the

diffraction pattern, the periodic nature of the system will result in arti-

facts. Therefore, before the diffraction pattern was calculated, a sphere

of diameter less than the simulation box size was carved out of the atomic
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Figure 41: Comparison of the vibrational density of states calculated
from the atomic velocities of the Cu and Al MD simulations at 300K.

positions. The choice of this shape is looking ahead to minimize the ef-

fects of the approximations made in the pattern analysis, as the sphere

has an analytical shape function [104]. This method of carving the sphere

from this perfect periodic system intentionally does not include the influ-

ences which defects, surfaces, or interfaces have on the lattice dynamics

and powder pattern. Once the sphere was carved from the larger simula-

tion system, the diffraction pattern is calculated using the Debye function

as given by Equation (24). In this study the polarization factor describ-

ing the intensity from unpolarized incident x-rays, given by Equation

(14), and a 1 Å wavelength of radiation were assumed. Since the pattern

is already being calculated from a dynamic system, it is not necessary to

include any temperature effect in the pattern calculation.

It is important to keep in mind that an experimental diffraction pat-

tern is actually an average pattern collected over a time on the order of

167



seconds. The simulation of an MD system over a comparable time range

is beyond the limit of existing computing power. Instead, a strategy of

finding a representative time averaged pattern is necessary to effectively

simulate the effects of thermal motion on the diffraction pattern. This

can simply be accomplished by averaging the patterns from a series of

snapshots until the average pattern converges, and the inclusion of the

pattern from more time steps does not change the resulting pattern. The

time range over which these patterns should be averaged should be on

the order of the oscillation period of the longest wavelength vibration

considered, while not so long to allow for atomic diffusion. In this study

an average of 10 snapshots over a time range of 5 ps was found to be suf-

ficient to calculate the time average pattern. It should be kept in mind

that in calculating the pattern from each time step, a spatial average of

the atomic oscillations is also being performed, so the number of time

steps necessary to arrive to an average pattern is also dependent on the

size of the system considered.

7.3 Comparing TDS Models

Some of different powder TDS models which are described in Section 7.1

have been used to study the patterns simulated by the methods described

in Section 7.2. This allows for the evaluation of the ability of each model

to represent the features in the diffraction pattern attributed to the TDS,

as well as, the influence which each model has on the determined char-

acteristics of the crystallite.
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The described procedure of using MD to simulate the thermal effects

on the diffraction pattern was carried out considering both a Cu and an

Al lattice system. While both have an FCC lattice, these two metals

exhibit very different thermal and elastic behaviors. Consideration of

their experimental elastic constants shows that copper has an anisotropy

factor of 3.2, while aluminum is nearly isotropic with a factor of 1.2

[6]. The thermal motion of atoms is then dependent on these elastic

properties, and comparing the patterns from these two materials can

show the effects of isotropic versus anisotropic thermal motion.

7.3.1 Debye vs Warren TDS

In an effort to convey the implications of the random and correlated

atomic motion assumptions, the Debye TDS and Warren TDS models

were used to model the patterns from the simulated Al and Cu particles.

In this study spheres of diameter of 10nm were carved out of MD simu-

lations stabilized at 300K. The Debye TDS described by Equation (126),

as well as, the Warren TDS described by Equation (148), were imple-

mented into the framework of the diffraction pattern modeling software

PM2K [86]. The only other features which were assumed in the pattern

modeling were the contributions of the crystallite size to the wide-angle

peak broadening and small-angle signal. The small-angle scattering con-

tribution was only included to correctly model the low angle tail of the

111 peak. The pattern refinement then consisted of finding the crystallite

size, lattice parameter and thermal parameter which resulted in the best
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Figure 42: The fits assuming the Debye TDS to model MD simulated
powder patterns are depicted.

fit of the simulated pattern for each assumed TDS model.

The fits from assuming the Debye TDS to model the patterns from

Al and Cu are depicted in Figure 42. In both cases it is evident that the

smooth TDS function which is the result of the Debye model does not ap-

propriately represent the features in the tails of the simulated diffraction

peaks. The parameters which resulted in the depicted best fits for each

case is depicted in Table 2. The inability of this model to represent the

diffraction pattern is also reflected in the deviation of the obtained di-

ameter and Biso. The use of the Debye TDS leads to an underestimation

of the diameter. Also, somewhat surprisingly the obtained Debye-Waller

parameters are less than expected. The inaccuracies resulting from the

Debye model are evidence that the thermal motion of the simulated sys-

tems does not follow the random motion assumptions.

The same patterns were also modeled assuming the powder TDS
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Table 2: Parameters found from the best fit ∗Experimentally measured
values reported by Fox [53].

Al GoF a (nm) D (nm) B (Å
2
)

Debye TDS 0.291 0.4011 9.77 0.740

Warren TDS 0.081 0.4011 9.95 0.914

Expected - 0.4011 10.0 0.85∗

Cu GoF a (nm) D (nm) B (Å
2
)

Debye TDS 0.767 0.3632 9.77 0.465

Warren TDS 0.186 0.3632 9.97 0.587

Expected - 0.3632 10.0 0.54∗

model for cubic materials developed by Warren. The high level of agree-

ment which this model allows is evident in the fits depicted in Figure 43.

Comparing these fits with those obtained assuming the Debye TDS, it

becomes evident that the specific features present in the Warren model

are necessary to model correctly the features in the tails of the peaks.

The parameters found from this model in Table 2 finds that the proper

representation of the peak features also results in more accurate deter-

mination of the particle size and Debye-Waller parameter.

Studying the fits obtained from the Al and Cu systems does not find a

dramatic difference in the ability of the Warren TDS model to represent

the two cases. However, a slight improvement in the modeling of the Al

patterns described by the GoF. This slight improvement is in agreement

with the understanding that the Warren and Debye models have been

developed assuming isotropic thermal motion. Still, this disagreement

for Cu is very subtle, and does not effect the accuracy of the parameters
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Figure 43: The fits assuming the Warren TDS to model MD simulated
powder patterns are depicted

which were obtained from the modeling.

7.3.2 Assessment of Error from Neglecting the TDS

The methods described in Section 7.2 were again used to simulated the

pattern from a 10nm sphere, but this time at a range of temperatures.

The obtained patterns were modeled assuming the commonly employed

technique of ignoring the TDS, and trying to fit the background with a

smooth polynomial function. The obtained values of the particle size, lat-

tice parameter and Debye-Waller factor were then compared the known

values to understand what kind of errors are introduced into the mod-

eling by improperly treating the TDS contribution. This analysis was

again repeated for Al and Cu systems to demonstrate cases of differing

degrees of elastic anisotropy.

Examples of the calculated average patterns from the Al and Cu simu-

lations at different temperatures are shown in Figure 44. These calculated
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Figure 44: The patterns from a D = 10nm sphere carved from the Al
and Cu systems at different temperatures are depicted. The patterns are
shown in a log scale to highlight the features of the background.
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Figure 45: The fit of the pattern from the Al and Cu simulations at
500K shows the inability to completely represent the peak shape and
background trend. The inset highlights the fit of the background.
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patterns were then analyzed using the Whole Powder Pattern Modelling

[124] software PM2K [86]. The patterns were input as experimental data

and modeled assuming: a Delta size distribution of spheres containing an

FCC lattice, Debye-Waller (D-W) temperature factor, and a fifth order

Chebyshev polynomial to represent the background and TDS. An exam-

ple of the level of agreement observed in the use of this model is depicted

in Figure 45. The ability of this model to correctly fit the calculated

patterns decreased as the temperature was increased, as shown in the

increasing trends of the Goodness-of-Fit (GoF) of Figure 46. Therefore,

the match shown in Figure 45 is an example of the poorest fits obtained

for the Al and Cu particles in this study.

A comparison of the PM2K model parameters obtained from the Cu

and Al patterns is shown in Figures 46 and 47. First it is interesting

to note that the model is always able to fit the patterns from the Al

system better than those of the Cu system. This is consistent with the

understanding that the D-W factor is derived assuming isotropic atomic

motion. The figure also shows how the trends of the determined lat-

tice parameters as a function of temperature are nearly linear. The

slope of this trend gives linear expansion coefficients of 20.8x10−6K−1

and 16.6x10−6K−1 for Al and Cu respectively. These values are in good

agreement with the experimental values for these metals [6]. The de-

termined Biso coefficients are shown in Figure 47 to also increase nearly

linearly with temperature. The higher slope of this trend for Al implies
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a weaker bond than Cu, and correlates with the shallower potential well

of Al.

Most importantly for the purpose of this study, the particle size de-

termined from the line profile analysis is shown to decrease with tem-

perature in Figure 47. This is caused by the correlated lattice dynamics

of the system, which leads to a distribution of intensity into the peak

tails. The peaks in the modeling are then broadened to obtain a better

fit, resulting in a decrease in the obtained particle size. The error in the

particle size due to this effect is not huge, and on the order of 2.5% at

300K for both Cu and Al. However, it should be kept in mind that not

properly accounting for the thermal effect introduces this error, which

can also propagate into the determination of other physical parameters

such as the fault probability, and dislocation density.

It has been demonstrated how the coupling of molecular dynamics

and Debye function calculation can be used to study the complex effect

which lattice dynamics has on the powder diffraction pattern. The use

of a Debye-Waller temperature factor and Chebyshev background has

been shown to lead to an underestimation of the crystallites size which

becomes worse as the temperature increases. This calls for the use of more

sophisticated TDS models when accurate microstructural information is

necessary. The discussion of extending of the developed models to be

more appropriate for small crystallites is the topic of the next section.
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Figure 46: The comparison of the GoF obtained for the Al and Cu cases
shows that the modeling is able to better represent the patterns from the
Al system. Also the thermal expansion trends of the two systems are
depicted.
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Figure 47: The determined Debye-Waller factors of the MD systems
increase with temperature, while the determined particle size decreases.
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7.4 Powder TDS for Small Crystallites

Like in much of the diffraction theory which has been discussed in this

work, the TDS theory which has been presented in Section 7.1.4 has been

derived assuming an infinite lattice. This is a fair assumption when the

crystallite is large and dominated by scattering from the bulk. How-

ever, as the size becomes small the vibrational density of states (VDOS)

changes, then so to must the TDS by virtue of relations like Equation

(137).

7.4.1 Size Dependent Maximum Phonon Wavelength

Consideration of the maximum phonon wavelength observable in a crys-

tallite yields the first expected influence of the particle size on the VDOS.

Just as in acoustics, an approximation of the first harmonic in a crystal-

lite can be thought of as a wave which travels through a particle having

a node (or anti-node depending on the boundary conditions) positioned

at either boundary of the particle. The wavelength of this mode is then

related to the particle size by

λmax ∝ 2D, (149)

where D is some size parameter of a crystallite. This first harmonic

represents the maximum wavelength of a normal mode which can be

present in an acoustically isolated crystallite. This maximum wavelength

in turn can be related to a minimum vibrational wave vector, gmin, or

frequency, ωmin, through the speed of sound and dispersion relationship
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describing a given material. A small crystallite size then has the effect

of forcing the density of states to zero for frequencies below ωmin. This

influences the TDS by changing the limits of integration over the Brillouin

zone as Equation (137) becomes

�Ymn� = 4π2s2
�

Nm

gmax�

gmin

�

j

Γ(ωgj)

ωgj
(n(ωgj, T )+

1

2
) cos2 θgj cos (2πg · dmn) dg,

(150)

and an analogous expression is also found for Equation (138). The to-

tal number of independent vibrational modes must be conserved as 3N.

Therefore, this was considered in the present study by defining the up-

per bound of the integral, gmax, as that which conserves the integrated

density of states
gmax�

gmin

�

j

Γ(ωgj)dg = 3N. (151)

Assuming that the density of states continues to follow the quadratic

form assumed in the Debye theory, this normalization condition results

in the relationship g3D = g3max − g
3
min.

Considering this adjustment, the powder TDS of Warren is found to

take a similar form, but now

Φl (|s − shkl|) =
1

4π2

∞�

i=1

Ci
d2i

�
Si (zmaxi) − Si(zmini

)

zDi

�l
[cos (2πg1di) − cos (2πgmaxdi)] ,

(152)

where zmaxi = 2πgmaxdi and zmini
= 2πgmindi. The reciprocal space

length g1 is conditionally dependent on the vicinity of the scattering
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Figure 48: The TDS intensities predicted from the modified Warren
TDS model is depicted for a series of values for λmax. In this figure the
TDS intensities have been offset for clarity.

vector, s, to a reciprocal space point, shkl, taking the values

g1 =






|s − shkl| |s − shkl| > gmin

gmin |s − shkl| ≤ gmin

. (153)

This relationship originates from the assumption that the density of

states is zero below gmin, and has the effect of truncating the TDS peaks.

This expression for Φl can then be used in Equation (146) to modify War-

ren’s model for the powder TDS and account for this phonon confinement

effect. The resulting effect on the TDS is shown in Figure 48 for a series

of maximum phonon wavelengths. It is apparent that the truncation of

the TDS only becomes apparent as the crystallite size approaches a few

nanometers.

179



7.4.2 Surface and Edge Modes

The second influence of the small crystallite size is found from considering

that the fraction of surface and edge vibration modes becomes sizable

compared to the bulk modes for small crystallites. The influence of this

effect on the Debye-Waller constant was first treated by Schoening [130],

who’s model was later extended to describe the first order TDS by Urban

[146]. Schoening and Urban used the density of states derived from

considering a cube whose boundaries are clamped or rigid, originally

described by Bolt [15], Maa [90] and Roe [120]. The density of states

which has not yet been averaged over the three polarizations, j, is then

assumed to take the form

Γ(νj) =
4πV ν2j
c3

+
πSνj
2c2

+
L

8c1
, (154)

where the volume, surface area and edge length of the crystallite are

denoted by V , S, and L respectively. It is readily seen how the first term

expresses the volumetric vibration modes, while the second and third

terms describe the surface and edge modes respectively. The general

density of states dependence on the frequency is then νd−1, where d is

the dimensionality of the vibration mode. The ci constants are related

to the speed of sound of the longitudinal and transverse modes by

1

c1
=

β2
cm
,

1

c2
=

β1
c2m
, (155)

1

c3
=

1

c3m
,
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where the average velocity, cm, is found by the relation
3
c3m

= 1
c3l
+ 2

c3t
, and

the β constants are given by

β1 =
1 +

2c2l
c2t

�
1 +

2c2l
c2t

�2/3 , (156)

and

β2 =
1 +

2c2l
c2t

�
1 +

2c2l
c2t

�1/3 . (157)

An exact evaluation of the β parameters then requires knowledge of the

speeds of the longitudinal and transverse waves in the material. Schoen-

ing sites a value of β1 = 1.35 to be a reasonable approximation for a

sphere, however, little explanation of this claim is found. While this

model may not be exactly appropriate for stress free surfaces, the basic

trend of more surface modes for small sizes is still embodied in this form

of the density of states.

Following the arguments of Urban, and again considering the finite

size of the crystallite as described Section 7.4.1, the first order TDS is

found with Φ1 taking the form

Φ1(|s − shkl|) =
1

3
ln

�
gmax
g1

�

+
β1S

12V

�
g−1
max − g

−1
1

�
+
β2L

96πV

�
g−2
max − g

−2
1

�
,

(158)

where the reciprocal space length g1 is defined in Equation (153). The

first term in Equation (158) is found to be identical to the first order size-

modified Warren TDS model, while the second and third terms represent

the added contributions from the surface and edge vibrations respectively.
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Studying the scale factors in front of each contribution to this TDS finds

that the contribution from edge modes is more than two orders of mag-

nitude less than the volumetric contribution. Therefore, even at small

sizes the contribution from edge modes can be neglected in this model to

a good approximation.

In some of the following studies involving the modeling of the TDS, a

combination of the Urban and the modifiedWarren models has been used,

where the first order TDS is taken to be that given by the Urban model

but ignoring the edge mode contribution, and the higher order terms

are given by the modified Warren model. The assumption of ignoring

the contribution from surface and edge modes in the higher order TDS

terms is believed to be reasonable given the very slight influence which

these higher orders have on the diffraction pattern. A few examples of

the TDS predicted by this model are depicted in Figure 49 for a series of

different values of β1. The first having β1 = 0, is then equivalent to the

modified Warren model for the TDS derived in the previous section. As

β1 is increased the features in the TDS become more prominent.

7.5 Simulating the TDS in the diffraction pattern from
Small Crystallites

While the method of carving a sphere from a bulk sphere might be rea-

sonable to study the effect of bulk phonons, it is not suitable to study the

phonon confinement effects mentioned in Section 7.4. This is because the

vibrational modes which exist throughout the carved sphere are actually
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Figure 49: The TDS intensities predicted by the Urban model assuming
a 10nm domain are depicted for different values of β1. The TDS trends
in this figure have been offset for clarity.

attributed to the larger periodic simulation box. Simulations were then

carried out considering spherical nanoparticles of different sizes in order

to study the size effects on the TDS. However, the minimization of the

surface energy of a nanoparticle suspended in vacuum could have a few

consequences, including strain of the atomic lattice near the surface, and

even a restructuring of the entire crystallite. Therefore, a nanoparticle

with a core-shell configuration was conceived to study the TDS effects.

The simulated core-shell particle consists of a core region, which was

allowed to vibrate, and is surrounded by a shell region, where each atom

was fixed in space and not allowed to vibrate. The volume of the core

region was defined by the desired particle size, while the shell region then

surrounded the core with a spherical shell having a thickness of 2nm.

The entire particle was constructed having a uniform lattice, and the
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interaction of the core atoms and shell atoms was governed by the same

potential. The purpose of the shell is then to limit the restructuring of the

core atoms, and also to define the volume of confinement for the possible

phonon modes. In calculating the diffraction pattern, only the positions

of the core atoms were considered, and the patterns from multiple time

steps was averaged following the same considerations as in Section 7.2.

While this core-shell construction may not be consistent with a real

nanoparticle, it serves as a good test of the models for the TDS size

dependence described in Section 7.4. As already mentioned, it prevents

the culmination of a lot of strain in the simulated nanoparticle, which

can lead to the broadening and shifting of the peaks in the resulting

diffraction pattern. Furthermore, the rigid shell serves to limit the atomic

motion at the core particle boundaries. This is actually consistent with

the VDOS adopted by the Urban model, which is based on a cube which

has “clamped” surfaces and edges. However, what is not initially obvious

is that encapsulating the free core by a rigid shell actually leads to a

change in pressure in the core volume. This built up pressure in turn

leads to an expansion, or contraction, of the lattice in the core. This is

actually due to the energy coming from the interface which is now created

at the boundary of the core and shell regions. To avoid this build up of

pressure, the core-shell particle must be initialized with a shell which is

already accounting for any change in the core volume.

The method of starting from the minimum energy state, and slowly
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ramping the temperature, cannot be used stabilize the core atoms at a

desired temperature as the corresponding thermal expansion will again

build up pressure in core due to the rigid shell. Instead the velocities of

the core atoms were initialized with a random distribution mimicking a

system at 300K. The core atoms were then allowed to stabilize assuming

an NVT ensemble, after which the atomic positions of the core atoms

were used to calculate the diffraction pattern.

7.6 Modeling the Powder TDS from Small Crystal-
lites

The simulated diffraction patterns were then treated as experimental

data and modeled using the latest version of the WPPM software PM2K,

which has been expanded to consider the different TDS models discussed

in this work. In particular two models which have been developed for the

special considerations of the TDS from small crystallites were employed

to model the patterns from the core-shell simulations. The first model is

the modification of the Warren TDS model to account for a maximum

phonon wavelength which can exist in in the crystallite. The theory

which governs this model has been described in Section 7.4.1. The second

model was then the substitution of Warren’s first order TDS with the

TDS predicted by Urban’s model. This theory has been laid out in

Section 7.4.2, and includes a further extension of Warren’s model which

attempts to include the contributions of any surface modes to the TDS.

The comparison of these two models then allows for the demonstration
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of how each extension influences the results of the diffraction pattern

modeling.

The procedure of simulating the atomic motion in the core, calcu-

lating the diffraction pattern and then modeling the pattern assuming

these models for the TDS was repeated for particles having diameters

from 5nm to 20nm. The high level of agreement between the simulated

patterns and the best fit model is depicted in the different weighted sum

of squares (wss) in Figure 50. It is observed that the Urban model ac-

tually resulted in a slightly better fit of the simulated pattern than the

modified Warren TDS model. Also, the fit for patterns from smaller

crystallites was found to be better than that for larger particles. It is

possible that this is evidence that the TDS models are better suited to

describe the diffuse scattering found in the diffraction pattern from these

cases. However, it is also possible that the TDS is not as apparent in

these cases as the broadening due to the small particle size dominates

the simulated pattern. It was found that both models resulted in a sys-

tematic difference in the modeled pattern which was found for all sizes

considered. The difference is most evident when studying the difference

patterns of the fits obtained for the largest particles which have a diam-

eter of 19nm, and are depicted in Figure 51. The same patterns in the

difference was also found when using each model on the smaller sizes,

however, the features became less defined as the particle size decreased.

Both models resulted a nearly perfect match of the obtained lattice
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Figure 50: Weighted Sum of Squares (wss) which was obtained from
modeling the patterns from the core-shell simulations.
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Figure 51: Best fits of core-shell patterns when assuming Warren TDS
and Urban TDS
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Figure 52: The lattice parameters (a) obtained from modeling the core-
shell patterns.

parameter and particle size from the modeling. The trends of this agree-

ment with particle size is shown in Figured 52 and 53 for the obtained

lattice parameter and relative deviation of the crystallite size respectively.

The Urban TDS model resulted in a slightly better agreement than the

Warren model between the known core size and that obtained from the

modeling. However, the difference is very slight, within the estimated

standard deviation of each parameter. Also, the particle size is always

correctly determined to within 1%. This high level of agreement should

be compared to the errors introduced in the determined particle size when

assuming a smooth Chebyshev polynomial to model the TDS, which is

described in Section 7.3.2. Therefore, a proper handling of the TDS can

be important when trying to quantitatively determine microstructural

parameters like the particle size.

Finally, the values obtained for the Debye-Waller parameter, Biso, can

be compared. The atomic positions in the MD simulations have been an-

alyzed to determine the mean squared displacement (MSD). The MSD,

�u2�, is then related to Biso by the relationship expressed in Equation
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Figure 53: The relative error (ΔD/D) in the diameter obtained in the
modeling of the core-shell patterns.

(128). The results using both models are then compared to this expected

value in Figure 54. Though all simulations were done at the same tem-

perature, the trend of the Biso of from the core atoms is increasing due

to the pinning of the atoms near the interface by the rigid encapsulat-

ing shell. As the particle size decreases, the fraction of atoms which are

pinned near this interface increases, leading to a decrease in the average

MSD.

While for the smaller particle sizes both models tend to slightly over-

estimate the Biso, on the whole, the modified Warren TDS model allows

for a better match with the expected results. It is also evident that for

the larger particle sizes, the Urban model tends to underestimate the

Biso of the system. This underestimation is believed to be due to the

lack of normalization in the Urban model when considering the contribu-

tion from the surface modes. As mentioned in the derivation of the other

models, the integrated density of states for the system must equal 3N

(see Equation (151)). In the model which has been formulated by Urban
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the contribution from the surface modes is just added on to the volu-

metric part, which already has been correctly normalized. Therefore,

the total integrated density of states from the volumetric, surface and

edge contributions will be greater than 3N. This has the consequence

of correspondingly scaling the TDS. To conserve the integrated intensity

in the powder pattern, the only factor which should scale the TDS is

the Biso parameter. In the present modeling the β1 in the Urban model

was taken as the suggested (yet arbitrary) value of 1.35. Therefore, since

the Urban TDS was slightly scaled by the surface contribution, a smaller

Biso parameter was necessary to model the TDS contribution. While this

study points out this flaw in the Urban model, work is currently on going

to correct for this and properly normalize the Urban model.

The initial purpose of the current study was to demonstrate that

the small particle size actually limits the maximum wavelength which a

phonon can have in the system, and this feature is also present in the

observed TDS. The Warren and Urban TDS models have been imple-

mented in such a way which allows for the refinement of this maximum

wavelength parameter. A comparison of the values obtained from the

two models is depicted in Figure 55, along with a line which depicts the

trend of λmax = D. The large uncertainty in the values obtained from

the very small particle sizes unfortunately does not allow for a clear un-

derstanding of the observed trend for the smallest sizes studied. When
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the particle size approaches 10 nm, it is found that the Warren model ob-

served an trend of λmax which is nearly equivalent to the diameter of the

core region. The Urban model finds a similar increasing trend, however,

the values of the obtained λmax are slightly less than those found from

the Warren model. While some disagreement in the value of the λmax

exists, it is important to note that both models find an increasing λmax

with particle size, which is evidence of the phonon confinement effect.

In the original formulation described in Section 7.4.1, it was pre-

dicted that λmax was proportional to 2D, while the results of the modi-

fied Warren model seem to suggest that for the considered system λmax

is proportional to D. This implies that in the simulated system the first

harmonic mode is suppressed, and that the largest phonon mode is actu-

ally something like the second harmonic mode, which has a node also in

the center of the core. This is reasonable since due to the fixed boundary

conditions of the system, the existence of the first harmonic mode in the

system would put an anti-node at the center of the particle, which would

mean that those center atoms would undergo large displacement fluctua-

tions. However, the spherical symmetry of the core region does not allow

for this kind of motion, and displacement waves are expected to have a

radial symmetry. Therefore, the finding that the second harmonic mode

is the largest phonon is consistent with the constructed particle system.

In conclusion, this study of modeling the TDS from small core-shell
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Figure 54: The Debye-Waller factor (Biso) obtained from modeling the
core-shell patterns.

crystallites shows the level of agreement which can be expected from ap-

plying the developed small crystallite TDS models in ideal circumstances.

A number of reasons can be cited to explain the discrepancies found in

the modeling. On the diffraction theory side the number of simplifying

assumptions taken to arrive at the final form of the TDS, including the

heavy reliance on the DOS predicted by the Debye model, can explain

some of the differences found. Meanwhile, the simulation is also not

without flaw, as the interaction potential is really the entity which is

controlling the thermal behavior of the system, and artifacts cannot be

ruled out from the constructed core-shell system. The current simulation

then serves to showcase the current level of understanding on each side,

and the many ways in which they can to be improved before a more exact

modeling of the TDS can be obtained.
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Figure 55: The maximum phonon wavelength (λmax) obtained from
modeling the core-shell patterns.
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CHAPTER VIII

MODELING EFFECTS OF FAULTING IN A

FINITE FCC CRYSTALLINE DOMAIN

The effect of both twin and deformation faults on the line profiles of FCC

metals can be described using the method of difference equations devel-

oped for the FCC case by Paterson [103] and later adopted by Warren

[153]. However, in this theory assumptions are made which are unjus-

tified when the coherent domain size becomes small. First, an infinite

stacking of planes is assumed when modeling the probability correlation

function. This function commonly denoted P0(n) is the probability of

finding two layers of the same type (i.e.: A, B, or C) n layers apart.

Clearly this infinite stacking does not hold for the case of nanocrystalline

materials, as the domain size shrinks to the limit where the number of

planes becomes countable. Second, the crystallite is treated as having a

constant cross-sectional area of each plane. This assumption is warranted

as long as the crystallite is large enough such that the scattered inten-

sity is dominated by a core region with a constant cross-section, and the

intensity from the remaining crystallite volume is negligible. However,

as the crystallite size diminishes the volume of this core region becomes
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comparable to the remaining crystallite volume, and the constant cross-

section assumption is no longer accurate. It is then the goal of this

work to quantify how large is the error in the fault probabilities obtained

from employing the latest theory of faulting in diffraction to analyze the

diffraction pattern from crystallites which are small, and do not have

a constant planar cross-section. Then, a new method of describing the

effect of faulting in a finite planar stack will be developed and shown to

be effective at representing the effect of faulting in small domains.

8.1 Powder Diffraction Theory of Faulting

Beginning with the description of Warren [155], the intensity in recipro-

cal space from a finite crystallite containing faults can be expressed as

I = ψ2

∞�

m=−∞

Nm

�
eiφ(m)

�
e2πimh3/3. (159)

In this expression (Warren, Equation 13.39) the FCC lattice is described

in terms of a hexagonal lattice with continuous reciprocal space coeffi-

cients h1and h2 defined in the (111) plane and h3 normal to the plane.

The symbol ψ2 represents the form factor of the planes and is factorized

outside of the sum by approximating the crystallite as a columnar stack

of (111) planes with equivalent cross sections. The term Nm represents

the number of pairs of planes separated by a distance md111, where m

is an integer and d111 is the distance between planes in the stack, and
�
eiφ(m)

�
is the average phase factor due to the relative displacement of
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each plane. This factor is determined considering how the phase changes

when scattering occurs from two planes of different type. Since FCC can

be represented as an ABC stacking there are only three distinct phase

factors:

φ0(m) = 0 when pair is of the same type (i.e. AA),

φ1(m) = −2π(h1 − h2)/3 when pair is a positive sequence (i.e. AB),

(160)

φ2(m) = 2π(h1 − h2)/3 when pair is a negative sequence (i.e. AC).

The average phase factor is then expressed as

�exp (iφ(m))� = P0(m) exp (iφ0(m))+P1(m) exp (iφ1(m))+P2(m) exp (iφ2(m))

(161)

where Pi(m) is the probability of finding a pair of planes of type i, sep-

arated by m planes. In a powder, symmetry exists between P1(m) and

P2(m) because a positive stacking sequence will then become negative

when observed from the opposite point of view. Therefore, these two

probabilities are equal, and utilizing the normalization condition gives

�exp (iφ(m))� = P0(m) + (1 − P0(m)) cos (2π(h1 − h2)/3) . (162)

Therefore, the effect of faulting on the powder pattern of FCC crystallites

is completely determined by the probability correlation function, P0(m).
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Figure 56: All possible sequences basal planes which make up an or-
thorhombic lattice are related to the probability of deformation faulting
(left) and twin faulting (right).

8.1.1 Recursion solution to P0(m)

Most existing methods to calculate the planar correlation function, P0(m),

rely on a probabilistic treatment, similar to the initial works of Hendricks

and Teller [65], as well as Wilson [162], which relates the probability of a

fault existing on a given plane to the type of preceding plane. Figure 56

depicts all possible sequences of three FCC (111) planes, and relates them
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to the probability of a fault existing in the sequence. From these kinds

of sequences, recursion relations can be determined which describes the

probability of finding a plane of the same type between different levels

of the sequence. The resulting recursion relations take the form

P0(m) + P0(m− 1) + P0(m− 2) − 1 = α(1 − α)(3P0(m− 2) − 1) (163)

and

P0(m)+P0(m−1)+P0(m−2)−1 = β(P0(m−1)+2P0(m−2)−1), (164)

for deformation and twin faults respectively. Assuming that the faulting

configuration in the crystallite does not allow for the possibility of both a

twin and deformation fault to exist near one another, the contribution of

each to the correlation function (the right hand side of Equations (163)

and (164)) are additive, and the general recursion relation becomes

P0(m) + P0(m − 1) + P0(m − 2) − 1 = α(1 − α)(3P0(m − 2) − 1)+

β(P0(m − 1) + 2P0(m − 2) − 1). (165)

The final assumption, regarding of the nature of how the faults are dis-

tributed in a crystallite, has been explored by numerous authors to derive

different recursion relations. Estevez-Rams et al. (E-R) [44] has shown

that when both deformation and twin faults are allowed to exist within

crystallite in a random arrangement without any assumption of their

proximity, the expression of Equation (165) is missing factors of the form

αβ and α2β. Before this, the work of Jagodzinski and coworkers [74, 75]
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studied how specific arrangements of twins and faults affected the correla-

tion function by extending the recursion treatment to consider sequences

of more than three layers.

Recursion relations like Equation (165) have a known solution of the

general form

P0(m) = a + bxm. (166)

The a, b, and x parameters are then solved for by plugging this solu-

tion into the recursion relation like Equation (165). In this case, the

probability correlation function is found as [147]

P0(m) =
1

3

�

1 +

�

1 +
iβ

ϕ

��
−(1 − β) + iϕ

2

�m
+

�

1 −
iβ

ϕ

��
−(1 − β) − iϕ

2

�m�

, (167)

where

ϕ2 = 3 − 12α − 6β + 12α2 − β2. (168)

The solution corresponding to the recursion relations of E-R [44] follows

the same form except the variable ϕ is found to be

ϕ2
ER = 3 − 12α − 6β + 12α2 − β2 + 24αβ(1 − α). (169)

The reader is referred to the discussion presented by Estevez-Rams et al.

[44], which describes how this solution changes for the cases when ϕ2 = 0

and ϕ2 < 0.

Often it is desirable to express the complex solution of the correlation

function found in Equation (167) in polar form. It can be shown that
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the correlation function is then found to be

P0(m) =
1

3

�

1 + 2(−1)mZ|m|

�

cosmγ +
β

ϕ
sin |m|γ

��

, (170)

where

Z =
1

2

�
(1 − β)2 + ϕ2

�1/2
, (171)

and

γ = arctan

�
ϕ

1 − β

�

. (172)

8.1.2 Resulting Fourier transform of powder peak

As discussed by Warren [155], the average phase factor for a powder in

Equation (162) can take on two forms

�exp (iφ(m))� =






1 L0 = 0 (mod 3)

(3P0(m) − 1)/2 L0 = ±1 (mod 3)
(173)

where L0 is related to the FCC peak indices by L0 = h + k + l. Since

the average phase factor is not affected by a change in the probability

correlation function when L0 = 0 (mod 3), we will refer to those mem-

bers of the hkl family of reflections as the unbroadened subcomponents.

Furthermore, those who satisfy L0 = ±1 (mod 3) will be referred to as

the broadened subcomponents.

Considering Equation (170), the average phase factor of the broad-

ened components is then given by

�exp (iφ(m))� = (−1)mZ|m|

�

cosmγ +
β

ϕ
sin |m|γ

�

. (174)
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This expression can then be used in Equation (159) to find the effect

which faulting has on the distribution intensity in reciprocal space. Since

all other factors are even in m, the imaginary part of the FT will cancel,

leaving the intensity given as

I(h1h2h3) = ψ
2

∞�

m=−∞

NmZ
|m|

�

cosmγ +
β

ϕ
sin |m|γ

�

cos

�
2πmh3

3
+

1

2

�

.

(175)

Using trigonometric identities to re-express the product of cosines and

sines results in the intensity of the form

I(h1h2h3) = ψ
2

∞�

m=−∞

NmZ
|m|

�

cos

�

2π|m|

�
h3 − L0

3
+ δB3

��

+

σL0

β

ϕ
sin

�

2π|m|

�
h3 − L0

3
+ δB3

���

, (176)

where δB3 the peak shift in the B3 direction defined as

δB3 = σL0

�
γ

2π
−

1

6

�

, (177)

and

σL0 =






+1 L0 = 1 (mod 3)

0 L0 = 0 (mod 3)

−1 L0 = −1 (mod 3)

. (178)

The intensity given by Equation (176) is actually the distribution of

intensity around a Bragg spot. In order to obtain the powder intensity,

the broadening due to the cross-section, ψ2, is ignored, and the intensity

in reciprocal space approximated as a thin rod extending from the Bragg
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spot in the direction normal to the faulting plane. The powder intensity

from that Bragg spot is then obtained by remapping this intensity in

terms of the radial direction in reciprocal space, s. This transformation

is given by

Δh3 = 3
a2shkl
L0

Δs, (179)

= 3
h20

L0shkl
Δs,

where h20 = h2 + k2 + l2, and Δs = s − shkl. Therefore, neglecting the

scale factor which will be given in Equation (214), the powder intensity

becomes

I(s, shkl) ∝
∞�

m=−∞

NmZ
|m|

�

cos

�

2π|m|

�
h20

L0shkl
Δs + δs

��

+

σL0

β

ϕ
sin

�

2π|m|

�
h20

L0shkl
Δs + δs

���

, (180)

where

δs = σL0

L0shkl
3h20

�
γ

2π
−

1

6

�

. (181)

In some cases it is preferable to express this relationship in the for-

malism of the Fourier integral. In which case, we introduce the real space

variable

L =
mh20
L0shkl

, (182)

and express the powder intensity from the broadened components as

I(s, shkl) ∝

∞�

−∞

NmZ
|m|

�

cos (2πLΔs + δs) + σL0

L0

|L0|

L

|L|

β

ϕ
sin (2πLΔs + δs)

�

dL.

(183)
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The factor Nm is really the size contribution, which can be expressed

more generally as AS(L). Then the Fourier coefficients due to faulting

are given by

AF (L) = Z
|σ0L0shkl/h

2
0|, (184)

BF (L) = σL0

L0

|L0|

L

|L|

β

ϕ
, (185)

and the intensity is found to be

I(s, shkl) ∝

∞�

−∞

AS(L)AF (L) [cos (2πLΔs + δs) + BF(L) sin (2πLΔs + δs)] dL.

(186)

This is the form of the intensity which is used in the WPPM method [124,

125] and is implemented in the program PM2K [86]. It should be kept in

mind that the intensity given by relations like Equations (180) and (186)

only give the intensity from a single component. The observable powder

diffraction peak must be constructed by summing contributions from

each component in the family of planes. The correct considerations for

faulting has been presented by Velterop et al. [147], and a few examples

will be presented in Section 8.4.1.

8.2 Study of Faulting in Nanoparticles

The following study will then test the validity of the expressions just

described to predict the effect of faulting in small domains. The fault

probability in a constructed model of a Au spherical nanoparticle will be

203



compared with that obtained from modeling the Debye simulated powder

pattern using the WPPM methodology.

8.2.1 Atomistic Model and Pattern Simulation Procedure

Diffraction patterns were calculated by applying the Debye function (see

Equation (24)) to a geometrical computer construction of a spherical Au

particle containing either twin or stacking faults, such as those depicted

in Figure 57. In this study the polarization effect describing the inten-

sity from unpolarized incident x-rays, described by Equation (14), and

a wavelength of Cu Kα1 radiation (λ = 1.54056 Å) were assumed. A

Debye-Waller temperature factor was not included in the calculation as

it would only diminish the calculated intensity, and thereby make the

effect of faulting less evident with the increase of scattering angle.

The simulated spherical particle used to calculate the interatomic dis-

tances was constructed beginning from a perfect Au FCC lattice (a =

4.0809 Å) of dimensions slightly larger than the desired sphere. A twin

fault was created in the lattice by rotating all planes above the desired

fault plane by 180° about the normal vector to the plane, while a defor-

mation fault was created by removing the desired plane and shifting all

atoms above by an interatomic spacing in the direction of the missing

plane. The spherical particle of the desired size was then cut out of the

faulted lattice.

Also considered in this study was an average pattern resulting from a
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Figure 57: The left image is a 3D view of a constructed spherical par-
ticle (D = 9.8nm), the middle image is a cross-section view of a particle
containing a deformation fault through its center, and on the right is a
cross-section view of a particle containing a twin fault through its center.

system of many particles. The creation of this system follows the meth-

ods discussed in Chapter 6. All particles were created with the same

diameter, however, the fault position was randomly chosen in each parti-

cle. A system of this type simulates a more realistic powder, and allows

for an averaging over all possible fault positions. The contribution of

inter-crystallite scattering was not considered to avoid the effect of par-

ticle packing density in the small-angle region. This approach allows for

the modeling of the average pattern over the full range of the diffraction

pattern without considering the particle structure factor.

8.2.2 Modeling the simulated pattern with modern theory

The calculated diffraction patterns were then treated as experimental

data and modeled using PM2K [86], a modern line profile analysis soft-

ware based onWhole Powder Pattern Modelling (WPPM) [126, 124, 128].
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This is a line profile analysis method which combines the effects of crys-

tallite characteristics on the diffraction peaks in reciprocal space, then

uses their Fourier transform to model the observed pattern.

In the modeling it was only necessary to consider the effects of a delta

size distribution of spherical crystallites and stacking faults on the wide-

angle peak profiles. While the effects of a size distribution have been

discussed elsewhere [124], the effect of faulting used in this study did not

exactly follow that described in previous articles on the WPPM method.

Instead, faulting Fourier coefficients were used which include previously

neglected high order dependence on the fault probabilities. The low fault

probability present in the crystallites of this study falls into the case of

s2 > 0 following the notation of Estevez-Rams et al. [44]. The Fourier

coefficients of the diffraction peak shape due to faulting used in this work

are then given by Equations (169), (184), and (185). These expressions

were implemented in PM2K in place of Equation. 13a,b described in

Reference [124]. This form of the faulting Fourier coefficients follows

from considering a stacking which contains both deformation and twin

faults simultaneously, and has been derived to be more accurate through

the entire range of faulting probabilities [43, 44].

In this study both the small-angle and wide-angle regions were con-

sidered concurrently over the range of 2θ from 0 to 175 degrees. In order

to account for the small-angle region in the modeling the known pat-

tern from a monodisperse, isolated spherical particle was scaled and then
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Figure 58: The depicted PM2K modeling from a sphere (D = 9.8nm)
containing a twin fault at its center shows the level agreement in (a) the
wide-angle, and (b) the small-angle regimes which was also achieved for
the patterns from other studied crystallites.

added to the wide-angle pattern. By considering the value of the Debye

function at zero degrees, it is evident that this scale parameter should

be N2, where N is the number of scatterers in the system. Also, the

same atomic structure factor and polarization factor were applied to the

small-angle pattern to be consistent with the Debye function calculation.

The inclusion of the small-angle contribution was necessary, because as

the simulated crystallites were very small, oscillations from this feature

extended into the region near the 111 peak. Also, including the small-

angle region allowed for an independent determination of the particle

size, thereby, eliminating any correlation between the size and faulting

found from solely studying the line profiles.

The modeled wide-angle diffraction pattern was scaled in electron

units by an analytical factor to match the intensities given by the Debye
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function. As already discussed in Section 3.2, Warren [154] and Patter-

son [104] have already shown that the crystallite size contribution to the

powder peak is described by Equation (56). The use of this scale param-

eter, as well as the necessary polarization and atomic scattering factors,

allows for a direct match of the PM2K modeled pattern and the Debye

pattern without the use of a background function. In the modeling of the

diffraction pattern only 4 free parameters where then necessary to refine:

the lattice parameter, faulting probability, particle size, and a variable

scale factor which was independent of 2θ. The variable scale factor was

always found to be 1.0, which is a further verification of the normaliza-

tion and analytical scale factor used. Figure 58 exhibits the quality of

the fits obtained in both the small-angle and wide-angle regions of the

pattern.

8.2.3 Discussion of Modeling Results

First, patterns simulated from individual spherical particles containing a

single fault were modeled using the previously described method. A se-

quence of spheres containing a fault positioned increasingly distant from

the center of the sphere was used to study the influence on the calculated

intensity and the determined fault probability. The fault position was

measured in terms of the distance from the particle center to the fault

plane along the fault plane normal vector. Keeping with the implicit as-

sumptions of the Paterson-Warren treatment, if each (111) plane has an

equal area and equal probability of containing a fault plane, and given
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Figure 59: The relative deviation from the planar fault probability of the
PM2K determined fault probability for (a) spheres containing a deforma-
tion fault, and (b) spheres containing a twin fault are shown as a function
of fault position. The relative deviation is defined as (αPM2K − αp) /αp.
The fault position (z ) is also normalized by the sphere radius (R) to
allow for direct comparison of the observed trends with increasing size.

that each particle contains one fault, the fault probability is simply given

by the inverse of the number of (111) planes, N111. In terms of the par-

ticle size, D, and interplanar distance, d111, this planar probability, αp,

is given simply as

αp =
d111
D
, (187)

=
a

D
√
3
.

The fault probability obtained from the modeling can then be com-

pared to this value to measure a relative percent deviation from the equal

planar area assumption. The trends of this deviation for different par-

ticle sizes are shown in Figure 59 for both twin and deformation faults,

where the fault position has now been normalized by the sphere radius.

As the fault moves away from the center, the effect on the pattern and
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the determined fault probability decreases for both deformation and twin

faults. A possible explanation of the decreasing trend of the determined

fault probability is the corresponding decrease of the fault plane surface

area. The area of a plane, A, intersecting a sphere at different distances

from the sphere center, z, is geometrically found to be

A = πR2 sin2 (arccos (z/R)) , (188)

where R is the sphere radius. A volumetric fault probability, αV , can then

be defined from the fault plane area, the sphere volume, and assuming

the fault thickness is equal to one interplanar distance

αV =
Ad111
V

,

=
a
√
3 sin2 (arccos (z/R))

4R
. (189)

The relative deviation of this volumetric fault probability to the planar

probability becomes independent of sphere size, and is compared with the

determined fault probabilities in Figure 59. While the general trend of the

determined fault probabilities is roughly represented by the volumetric

probability, it is clear that it poorly represents the percent deviation

when the fault is near the center of the particle and it does not account

for the size dependence in the trends observed.

It is evident from Figure 59 that for a given fault position the rela-

tive deviation decreases as the particle size increases. This observation is

related to finite stacking which is present in the particles. As a particle

becomes larger it agrees more with the Paterson-Warren theory which
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Table 3: Fault probabilities and relative deviations determined from the
average patterns from systems containing 100 spheres with D = 9.8nm,
and αp of 0.0244.

1 Fault / Particle Constant System Fault Prob.
PM2K Prob. Relative Dev. PM2K Prob. Relative Dev.

Def. Faults 0.0268 0.0996 0.0233 -0.0539
Twin Faults 0.0320 0.3140 0.0292 0.1975

assumes an infinite stacking, and the relative deviation decreases. This

effect also accounts for the different shapes of the faulting probability

trends and the changing intersection point of these trends with the pla-

nar and geometrically derived fault probabilities. Therefore, both the

changing planar area, and the finite stacking present in nanocrystallites,

are necessary to describe the trends observed in the determined fault

probability, and the effects which faulting has on their diffraction peak

shapes.

It is then of interest to study how this dependence on fault posi-

tion is perceived on average. The use of a single particle to calculate

the diffraction pattern using the Debye Function implies a powder of

identical particles. A real system will contain crystallites with different

minimum energy fault configurations and whose diffraction pattern is the

average of the scattered intensity from each crystallite. As a first approx-

imation the Paterson-Warren theory does not consider the energetics of

a stacking sequence, but assumes that on average faulting will seem ran-

dom with each plane having an equal probability to contain a fault. In

this study, average patterns from systems of 100 particles were generated
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following two different schemes to distribute faults among the particles

which are consistent with this assumption. The first scheme assumed

that each particle contained one fault and that the fault was randomly

positioned. The second scheme assumed that only the total fault proba-

bility of the system was conserved, allowing for the number of faults in

each particle and the respective fault positions to be randomly chosen.

Therefore, in the second case some particles will contain multiple faults

while others can contain no faults. In all systems only spheres with a di-

ameter of 9.8nm were used, and the total planar fault probability was set

to 1/N111, which is 0.0244 for this particle size. Also, the patterns from

systems containing different numbers of particles were studied to ensure

that 100 particles are enough to produce a statistically representative

average pattern in each case following the methods discussed in Section

6.3. The values of the fault probabilities determined from modeling the

resulting diffraction pattern, and their relative deviation from the planar

fault probability, are compared in Table 3. The determined average fault

probability is seen to fall within the bounds of the probabilities found

in the fault position study. It is interesting to note that a lower devia-

tion is observed for the particle systems containing deformation faults,

and the deviation for those containing twins is found to be as much as

30%. The better agreement of the determined deformation fault proba-

bility with the planar fault probability is also observed in Figure 59. It is

also interesting to note that the determined fault probability is different
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depending on the assumptions used to distribute the faults throughout

the system. This suggests a further correction to the Paterson-Warren

theory, as faults which cannot be considered infinitely dilute and non-

interacting can also affect the observed diffraction pattern and obtained

fault density.

The recursion relation treatment of Paterson and Warren is a statis-

tical method which describes the effect of faulting on the pattern from

an average system, and thus must be compared with a pattern from an

analogous system. When the pattern from a system containing different

fault positions was considered the determined fault probability tended

to overestimate the planar fault probability present in the system. This

result is linked to the trend found for the fault position dependence in

Figure 59 where the fault probability was generally over estimated un-

til it was moved close to the surface. The obtained deformation fault

probability seemed to agree better with the expected value than those

obtained for systems containing twin faults as a maximum deviation of

about 10% versus 30% was observed respectively for each. Furthermore,

even at the low fault probability considered, differences were observed in

patterns depending on how faults are distributed throughout the system.

This seems to suggest that, for this small crystallite size, interaction be-

tween faults causing multiple disruptions of the crystalline stacking may

have an enhanced influence on the resulting diffraction pattern.

This study has then shown that the effect which faulting has on the
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powder diffraction pattern from a single crystallite is strongly dependent

on the fault position. Both the finite stacking sequence present in a

spherical nanocrystallite and a changing surface area of the planes must

be considered to properly account for this position dependence. To this

end, a further study on the consequence of having a finite stacking has

been performed, and a modified theory accounting for this effect will be

described in the remainder of the chapter.

8.3 Planar Correlation of Finite Domains Contain-
ing Faults

In order to study the effect of faulting in a small crystallite it is necessary

to develop a different strategy to calculate the probability correlation

function. In our approach, first a basic understanding of how a fault

changes the correlation between a pair of planes will be discussed. Then,

it will be shown how a termination in the sequence affects this correlation,

and simple statistical reasoning will be used to derive analytical expres-

sions for the probability correlation function of a finite stack containing a

fault. Finally, an ensemble average of these expressions is carried out to

obtain a form of the probability correlation function more consistent with

that observed in a powder. A demonstration of the resulting diffraction

profiles concludes this study along with a comparison with peak pro-

files obtained assuming the latest formulation of the recursion method

solution for FCC materials. This type of model is especially suited for

the case of small crystalline domains, thin films or metal nanoparticles,
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whose energetics do not allow for large numbers of faults within a given

domain. It is then not suited to study multiple twinned particles, which

can contain three or five twin faults arranged in a non-crystallographic

symmetry [91, 23].

8.3.1 Effect Of Deformation Faults

To understand how faulting changes the correlation between planes, it

is enough to study an example stacking sequence before and after the

creation of a fault. Here we will only consider the forward stacking

direction and later account for the opposite stacking direction in the

calculation of the powder diffraction pattern (see discussion leading to

Equation (162)). The FCC lattice is represented as a stack of (111) planes

and the ABC convention is used to denote the three different plane types.

As shown in the following examples the fault position is denoted by a

pipe “|” in the sequence.

. . . ABCABCA. . . (perfect) (190a)

. . . ABCA|CAB. . . (deformation fault) (190b)

. . . ABCA|CBA. . . (twin fault) (190c)

Any pair of planes can be characterized by the number of planes

which are spanned, m, and the number of steps between these planes in

a forward permutation, which we will call the pair type, i (i.e. i = 1

for (AB), and i = 2 for (AC)). It is readily noticed that for a perfect
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stacking sequence all pairs with a separation m are of type i, where i ≡ m

(mod n) and n is the number of different plane types in the sequence.

A separation, m, then can be said to belong to the set mi, making the

calculation of P0(m) trivial for an infinite perfect stacking sequence. In

this case all spacings in the set m0 are between pairs of type 0, implying

P0(m0) = 1, and these are the only spacings between pairs of type 0, so

P0(mi�=0) = 0.

By studying the planar sequence of Equation (190b), we find that a

deformation fault affects the planes after the fault by changing them to

the next type in the forward permutation sequence. Also, only a pair of

planes which has a fault between them will have their pair type affected

by this change. Comparison of stacking sequences with and without a

deformation fault, such as those depicted in Equations (190a) and (190b),

finds that a pair, Δi, which spans a fault will change its type, i, following

Δ0
f
→ Δ

�

1, Δ1
f
→ Δ�

2, and Δ2
f
→ Δ�

0. (191)

In these relations the pairs which do not span a fault are depicted on

the left of the arrow, while on the right denoted with an apostrophe are

the new pair types due to the pair spanning a fault. By this notation,

the transformation of (AA)
f
→ (AB)� falls in the case of Δ0

f
→ Δ�

1. A

stacking fault then not only increments the plane type, but also has the

effect of incrementing the pair type.

In an infinite stack, the number of pairs separated by m planes which

can span a fault is always m. However, in a finite stack the number of
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pairs which span a fault depends on the distance from the fault plane to

a surface boundary. For example, consider the three finite stacks:

ABCA|CABCABC (p=4),

ABC |BCABCABC (p=3),

AB|ABCABCABC (p=2).

It is evident that in the case of the first fault position depicted, p = 4,

four distinct pairs having a spacing of four planes (m = 4) can span the

fault plane. When the fault position is moved to p = 3, only three such

pairs span the fault and similarly two pairs for p = 2. Considering the

cases of other pair separations it is found that the number of pairs which

span a fault, Nf , is dependent on both the spacing, m, and the fault

position, p, and is conditionally expressible as

Nf(N,m, p
�) =






m m ≤ p�

p� p� < m ≤ N − p�

N −m N − p� < m

. (192)

Here p’ is the number of planes from the fault to the nearest surface,

and for a deformation fault,

p� =






p p ≤ N/2

N − p N/2 < p

. (193)

The case of N − p� < m in Equation (192) means both boundaries are

limiting the number of pairs which span the fault, and all pairs in the

stack of separation m span the fault.
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Using this relationship and the relations of Equation (191), the prob-

ability correlation function for a finite stack containing a deformation

fault can be derived. If m ∈ m0 every pair which spans the fault will

become a 1-type, so the fraction of pairs which are 0-type is the comple-

ment of the fraction which spans the fault. When m ∈ m1, the number

of pairs which become 0-type does not change, and when m ∈ m2 the

fraction of faults which become 0-type is the fraction which spans the

fault. These observations, along with Equation (192), result in a proba-

bility correlation function of the form

m0 m1 m2

P0(m) =






1 − m
N−m

, 0, m
N−m

m ≤ p�

1 − p�

N−m
, 0, p�

N−m
p� < m ≤ N − p�

0, 0, 1 N − p� < m

.

(194)

A series of correlation functions calculated using this relationship is

shown in Figure 60 for a 50 layer stack containing a deformation fault

at different positions. When the fault is near the boundary the planar

correlation resembles that of a perfect FCC stack as only correlations for

large m are altered. As the fault is moved toward the center of the stack

the P0(m) for smaller separations become increasingly affected. After

the fault crosses the middle of the stack a symmetry is observed for the

cases of p = 15 and p = 35, as well as p = 5 and p = 45, due to their

equivalent distance to the nearest surface, p’.
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Figure 60: The probability correlation functions, P0(m), calculated by
Equation (194) are depicted for a 50 layer stack containing a deformation
fault at series of positions, p. In each case the values of the set m0 are
denoted by �, those of the set m1 by •, and those of the set m2 by � to
allow for their clear distinction.

8.3.2 Effect of Twin Faults

The same general treatment described in the previous section can be

adopted to study the case of a finite stacking sequence containing a twin

fault. Considering a twin located on an A plane, as in the stack shown

in Equation (190c), we find that the twin fault has the following effects

on the pair type:

(AA)
t
→ (AA)�, (BB)

t
→ (BC)�, (CC)

t
→ (CB)�,

(AB)
t
→ (AC)�, (BC)

t
→ (BB)�, (CA)

t
→ (CA)�,

(AC)
t
→ (AB)�, (BA)

t
→ (BA)�, (CB)

t
→ (CC)�,

(195)

where now the t above the arrow signifies that transformations are due

to the pair spanning a twin fault. Unlike the case of the deformation
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fault, the expressions in Equation (195) are now specifically dependent

on the pair and twin plane, so the Δi notation has not been used. Here

we only describe the case of a twin on an A-type plane, but analogous

expressions are found for a twin on a B or C plane. The transformations

like those in Equation (195) define the important pairs to consider when

calculating P0(m). For instance, for the case of an A-type twin it be-

comes apparent that P0(m0) of an ideal stacking will be decreased by an

amount proportional to the number of (BB) and (CC) pairs which span

the twin fault. Also, P0(m1) will be increased by an amount related to

the number of (BC) pairs spanning the fault, and similarly P0(m2) will

be increased by the proportion of (CB) pairs. Assuming the fault is not

near a boundary, we find that the number of the important pairs has a

solution independent of the fault type

N0(m,m ≤ p) =






2m/3 m ∈ m0

(m − 1)/3 m ∈ m1

(m + 1)/3 m ∈ m2

, (196)

where N0 stands for the number of pairs which span the twin fault and

influence P0(m) — the second criterion being what differentiates this

quantity from Nf, defined in Equation (192).

When the number of important pairs becomes influenced by the pres-

ence of a surface boundary, the relationship describing their abundance

becomes dependent on the twin plane type. We will define the twin plane
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type, t, relative to its distance from the left boundary by t ≡ p (mod n).

The number of important pairs for p� < m ≤ N − p� is found by consid-

ering a sequence without a boundary, and subtracting the number which

are missing due to the nearest boundary. This can be expressed as

N0(p
�) = N0(m,m ≤ p�) − Nm−p�

X , (197)

where Nm−p�

X is the number of planes of type X in a perfect stack of

length (m−p�). The plane type, X, is determined as the first plane of an

important pair for a given twin type. For instance, considering again an

A-type twin (t = 1), when m ∈ m1, the important pair is (BC), so X is

B in this case. Using expression (197), and considering the three possible

twin types, the following expression for N0 when p
� < m ≤ N−p� is found

N0(m, p
� < m ≤ N − p�) =






(2p� + a0)/3 m ∈ m0

(p� + a1)/3 m ∈ m1

(p� + a2)/3 m ∈ m2

, (198)

where the constants, ai, have a dependence on the twin type, t, and are

given in Table 4

The final case to consider is when the planar spacing is large enough

that the correlation function is influenced by both surfaces. Now all pairs

in the system span the fault so it is necessary to determine the number
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Table 4: Constants for N0(m) of Equation(198)

a0 a1 a2

t = 0 0 0 0
t = 1 -2 -1 -1
t = 2 -1 -2 1

Table 5: Constants for N0(m) of Equation (199)
b0

s = 0 s = 1 s = 2

t = 0 0 1 2
t = 1 0 -2 -1
t = 2 0 1 -1

b1
s = 0 s = 1 s = 2

1 0 2
1 0 -1
-2 0 -1

b2
s = 0 s = 1 s = 2

-1 1 0
-1 -2 0
2 1 0

of important pairs which exist in a stack of length N. In doing so one

finds N0(m) is not only a function of the fault type, which determines

the important pairs, but also is dependent on the extent of the stacking.

Therefore, we can define the stack type, s, as, s ≡ N (mod n). Again,

considering all possible combinations of s, t and m it is found that N0(N−

m) takes the form

N0(m,N − p� < m) =






(2(N −m) + b0)/3 m ∈ m0

((N −m) + b1)/3 m ∈ m1

((N −m) + b2)/3 m ∈ m2

, (199)

where the constants, bi, are given in Table 5 for the possible combinations

of t and s.
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Putting together the three discussed cases, the probability correlation

function for a finite stack of N planes containing a twin fault at position

p is given by

m0 m1 m2

P0(m) =






1 − 2m
3(N−m)

, m−1
3(N−m)

, m+1
N−m

m ≤ p�

1 − 2p�+a0
3(N−m)

, p�+a1
3(N−m)

, p�+a2
3(N−m)

p� < m ≤ N − p�

1 − 2(N−m)+b0
3(N−m)

, (N−m)+b1
3(N−m)

, (N−m)+b2
3(N−m)

N − p� < m

.

(200)

It should be noted just like for deformation faults, p’ is actually

the distance of the twin plane to the nearest boundary. However, for

twins the fault position changes depending on which boundary is con-

sidered. For example, a twin position defined from the left boundary is

ABCAB|ACBA, as the disruption in the stacking is only evident after the

fifth plane. However, the twin position for the same stack starting from

the right boundary and moving to the left is ABCA|BACBA. Therefore,

it follows for twins,

p� =






p p ≤ (N + 1)/2

N − p + 1 (N + 1)/2 < p

. (201)

This relationship also defines the symmetry of P0(m) with respect to the

twin position (i.e. the case of p = 5 is equivalent to p = N − 4).

The probability correlation functions given by Equation (200) for a

planar stack containing a twin at different positions are plotted in Figure
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Figure 61: The series of P0(m) shown has been calculated using Equa-
tion (200) for a stack containing a twin fault at different positions, p.
The sets mi are denoted by the same shapes as in Figure 60.

61. The effect of a twin fault on the planar correlation is seen to be

strikingly different than that of a deformation fault, depicted in Figure

60, as the function now tends to 1/3 for large m, and the values for the

set m1 are no longer zero. It is apparent that as the twin moves beyond

the center of the stack, positions like p = 5 and p = 45 result in similar

correlation functions, but differ at larger m, as the rule for twin position

symmetry is not exactly observed in this case.

8.3.3 Average Fault Position

The above expressions can be used to derive the average probability corre-

lation function which results from a system of crystallites each containing

one fault at different positions. This quantity is of more interest to pow-

der diffraction since the observed pattern is the result of an averaging

over the intensity from many crystallites in a sample. For the moment,
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assuming that all crystallites in a system contain the same number of

planes, the average correlation function is given simply as

P0(m) =
�

p

wpP0(m) (202)

where wp is the number fraction of the fault positions considered in the

average and thus must follow
�

p

wp = 1. Neglecting any consideration

of fault energetics, the most straightforward assumption is one where all

fault positions are equally probable. While possibly unjustified in some

cases, this assumption puts the developed model on similar footing as

previous models for the effect of faulting on the diffracted intensity, as it

is commonly assumed that all planes have an equal probability of con-

taining a fault. In this case, for crystallites containing a deformation

fault the sum over p in Equation (202) is from the first plane to the

N − 1 plane, because a deformation fault on the N-th plane does not

result in a fault in the stacking sequence. The number fraction for an

equally probable fault position is then given by wp = 1/(N − 1). The

expression for the correlation function of this average fault position can

be solved analytically by considering two cases, that of 0 ≤ m < N/2,

and N/2 ≤ m ≤ (N − 1). For the first case the average probability

correlation function when m ∈ m0 is given by

P0(m) =
2

m�

p�=1

�
1− p�

N−m

�
+2

N/2�

p�=m+1
(1− m

N−m)

N−1
,

P0(m) = 1 − m
N−1

.
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While in the second case for, N/2 < m ≤ N −1, the average probability

correlation function is expressed as

P0(m) =
2
N−m−1�

p�=1

�
1− p�

N−m

�
+2

N/2�

p�=N−m

0

N−1
,

P0(m) = 1 − m
N−1

.

In the above derivation only the relations for the set of m0 were shown,

but following the same steps expressions for m1 and m2 can be derived.

The final expression for the average correlation function for a system of

crystallites each containing one deformation fault is then found to be

m0 m1 m2

P0(m) =

�

1 − m
N−1

, 0, m
N−1

.

(203)

The average fault position correlation function for crystallites con-

taining a twin fault is also calculated in this way. However, in this case

only N − 2 twin positions are considered, since the twin positions p = 1

and p = N result in a planar correlation which is the same as a per-

fect stack. Following steps as the deformation fault case, and properly

accounting for the ai and bi constants, results in an average correlation

function of the form

m0 m1 m2

P0(m) =

�

1 − 2m
3(N−2)

, m−1
N−2

, m+1
N−2

.

(204)
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It is then interesting to compare this form of the correlation function

with that derived from the recursion equation method. The expression

for the probability correlation function given by Estevez-Rams (E-R)

[44] is the most recent form which has been derived for faulting in close

packed FCC lattices. The average correlation function for a powder of

crystallites of fifty layers containing one fault is compared to the E-R

correlation function for a stacking sequence of the same fault probability

(α = 1/50, or β = 1/50) in Figure 62. The difference between these

expressions, shown below the correlation functions, clearly depicts how

these models deviate with increasing correlation length. The E-R model

decays slower than the derived model, and asymptotically tends to the

value of 1/3 for both deformation and twin faults. Differences in the

trends are expected because, as previously discussed, the recursion rela-

tion method is solved assuming an infinite stack and intrinsically allows

for the possibility that a crystallite contains multiple faults in terms of

increasing faulting probability. The developed models, instead, are more

specific and only consider the effect of one fault in a finite stack of layers.

8.3.4 Limit of P0(m) as N becomes large

The fault position and plane spacing can be expressed in terms of the

stack length N,
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Figure 62: Comparison of P0(m) with that given by the expression
of Estevez-Rams et al. (E-R) for a stack of 50 planes containing (a) a
deformation fault, or (b) a twin fault. Below each figure the difference is

given, Diff. =
�
P0(m) − PE−R

0 (m)
�
. Again, the sets mi are denoted by

the same shapes as in Figure 60.

m = µN 0 ≤ µ < 1 (205)

p = ρN 0 < ρ < 1 (206)

where μ and ρ are fractional coefficients. Substituting these expressions

into Equation (194), the probability correlation function for a stack con-

taining a deformation fault then becomes independent of N,

m0 m1 m2

P0(m) =






1 − µ
1−µ
, 0, µ

1−µ
µ ≤ ρ

1 − ρ
1−µ
, 0, ρ

1−µ
ρ < µ ≤ 1 − ρ

0, 0, 1 1 − ρ < µ

.

(207)

This independence of N means that the effect of a single deformation
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fault on the correlation function is the same regardless of the domain

size.

The case of a twin fault is different. Substituting the new expressions

for m and p into Equation (200), a functional dependence on N remains

from Equations (198) and (199), and the expression of P0(m) for a twin

becomes

m0 m1 m2

P0(m) =






1 − 2µ
3(1−µ)

, µ
3(1−µ)

, µ
3(1−µ)

µ ≤ ρ

1 − 2ρ+a0/N
3(1−µ)

, ρ+a1/N
3(1−µ)

, ρ+a2/N
3(1−µ)

ρ < µ ≤ 1 − ρ

1 − 2(1−µ)+b0/N
3(1−µ)

, (1−µ)+b1/N
3(1−µ)

, (1−µ)+b2/N
3(1−µ)

1 − ρ < µ

.

(208)

Therefore, some terms in the planar correlation function of a twinned

stack have a 1/N dependence, which will be prevalent for small domain

sizes. As N becomes large the constants ai/N and bi/N go to zero and

this expression can be approximated as

m0 m1 m2

P0(m) =






1 − 2µ
3(1−µ)

, µ
3(1−µ)

, µ
3(1−µ)

µ ≤ ρ

1 − 2ρ
3(1−µ)

, ρ
3(1−µ)

, ρ
3(1−µ)

ρ < µ ≤ 1 − ρ

1
3
, 1

3
, 1

3
1 − ρ < µ

.

(209)

The error introduced when using the large N expression goes as 1/N,

so a stack of 100 layers containing a twin fault will be within roughly 1%

of the exact expression when using Equation (209) instead of Equation
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(200). This size dependence is not possible to describe in the correlation

functions derived from recursion relations due to the previously discussed

infinite stack assumption.

8.4 From Planar Correlation to the Powder Diffrac-
tion Peak

8.4.1 Calculating the Powder Peak from P0(m)

The remainder of this study will be focused on the powder diffraction

peak profile resulting from the described models for the planar correla-

tion function. Recalling the discussion in Section 8.1.2 and considering

the broadened case, it is shown that the expression for the intensity in

reciprocal space given by Equation (159) becomes

I(h1h2h3) = ψ
2

∞�

m=−∞

N|m|
3P0(|m|) − 1

2
cos (2π |m| h3/3) , (210)

as both P0(m) and Nm are mirrored about m = 0. The continuous

variable h3 can then be expressed in terms of its vicinity to the reciprocal

space point L0 as

h3 = L0 + Δh3.

After substituting this expression for h3 into Equation (210), expanding

the cosine and properly accounting for the dependence of the sine function

on |m| into the amplitude coefficient, the sum in Equation (210) becomes

a Fourier series
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I(h1h2Δh3) = ψ2
∞�

m=−∞

Am cos (2πmΔh3/3) + Bm sin (2πmΔh3/3)(211a)

Am = N|m|
3P0(|m|) − 1

2
cos(2πmL0/3) when L0 = ±1 (mod 3)

(211b)

Bm = −
m

|m|
N|m|

3P0(|m|) − 1

2
sin(2πmL0/3) when L0 = ±1 (mod 3)

(211c)

This expression then gives the general relation between the probability

correlation function, P0(m), and the Fourier coefficients Am and Bm.

For the unbroadened subcomponents a similar Fourier series is found

with coefficients of the form

Am = N|m| when L0 = 0 (mod 3) (212)

Bm = 0 when L0 = 0 (mod 3) (213)

which are not surprisingly only influenced by the stack size.

The powder pattern intensity from a given hkl component can be ap-

proximated by remapping the intensity given in Equation (211a) to that

observed along the shkl direction [147, 155], where shkl =
√
h2+k2+l2/a =

2 sin θhkl/λ and a is the FCC unit cell parameter. Therefore, the contribu-

tion to the peak profile from a single component of a family of reflections

becomes
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I(shkl, Δs) =
Ie(θ)NaRλ

2f2(θ)L(θ)3a2shkl
16πVa |L0|

∞�

m=−∞

Am

N
cos

�
2πa2shkl
L0

mΔs

�

+

Bm

N
sin

�
2πa2shkl
L0

mΔs

�

, (214)

which is analogous to Warren’s Equation 13.59, and most of the variables

have the same meaning. The only differences are that here Na represents

the number of atoms, Va signifies the volume per atom, and L(θ) repre-

sents the Lorentz factor as the polarization factor is included in Warren’s

definition of Ie(θ) (see [155] p. 29). Also, the term 1/B3| sinφ| used in

Warren’s expressions has been expressed here in the form 3a2shkl/L0.

The observed diffraction profile is then the sum of the peaks from all

broadened and unbroadened subcomponents of an hkl reflection, and can

be calculated following the considerations described by Velterop [147].

To highlight the effect of faulting on the peak profile we will consider

the intensity without the contributions from the Lorentz-Polarization, or

atomic scattering factors defined as

I�(shkl, Δs) =
3a2shkl
|L0|

∞�

m=−∞

Am

N
cos

�
2πa2shkl
L0

mΔs

�

+
Bm

N
sin

�
2πa2shkl
L0

mΔs

�

.

(215)

It should be noted that the peak broadening given by this formulation

only considers the contributions from faulting and finite stack size normal

to the fault plane. Peaks from small crystallites will also be broadened
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due to their small planar cross section. It is then only used in the present

study as a means of comparing the peak shapes resulting from the dif-

ferent models for faulting in an FCC lattice.

As an example of how the powder diffraction peak is affected by differ-

ent fault positions, a series of profiles of broadened subcomponents were

calculated employing the probability correlation functions given by Equa-

tions (194) and (200) for deformation and twin faults respectively. The

subcomponents broadened by deformation faults are depicted in Figure

63 for a series of fault positions in a stack of 50 Au (111) planes. It is seen

that the profile shows the most broadening and shifting when the fault is

in the center of the stack (p = 25) for all peaks considered. For this fault

position, a large amount of asymmetry is observed in the peak shape,

even to the extent that a second peak is apparent opposite to the peak

shift. Moving the deformation fault closer to the boundary (decreasing

p) has the effect of diminishing the features due to the deformation fault,

and the contribution for size broadening becomes the defining character-

istic. This behavior is best understood by considering that a fault has

the most influence on P0(m) when it is at the stack center, as shown in

Figure 60. The more that the correlation function deviates from that of

a perfect stack, the more the peak profile is influenced.

The same study of the broadened components due to a twin fault

at different positions is shown in Figure 64. The effect of the twin on

the peak shape is different from that due to the deformation fault as the
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Figure 63: The extent of broadening and shifting caused by a defor-
mation fault at different positions, p, is depicted for a few broadened
sub-components of powder diffraction peak profiles. A stack of 50 Au
(111) planes with a lattice parameter, a, of 0.40809nm was assumed in
the calculation of the presented profiles. The case of p = 25 is then a
fault at the center of the stack with the fault moving toward the left
boundary as p is decreased.

predominant effect is observed to be profile broadening. It is again found

that the most broadened profile is obtained when the twin is in the center

of the stack, and the broadening decreases as the fault moves toward the

boundary.

In terms of the powder pattern the positional dependence is not as

important as the average quantity. The diffraction profile due to a collec-

tion of crystallites which contain one fault and equal probability all fault
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Figure 64: The extent of broadening caused by a twin fault at different
positions, p, is depicted for a few broadened sub-components of powder
diffraction peak profiles. The assumptions of the size and type of stack
used to calculate the profiles are the same as those given in Figure 63.
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positions can also be calculated using Equation (215), but now employ-

ing Equations (203) and (204) to describe P0(m). Some resulting powder

peaks, as well as the contributions from all subcomponents of the peak

(broadened and unbroadened), are depicted in Figure 65 for deformation

faults, and Figure 66 for twin faults. Also depicted in these figures are

the profiles resulting from the E-R correlation functions, as well as, the

difference between the total profiles from the two models. In all cases

the profiles are calculated assuming a stack of 50 Au (111) planes, with

a faulting probability assumed to be 1/50.

The case of deformation faulting leads to the largest difference in the

peak profiles predicted by the two models. As shown in Figure 65, the

peaks from the developed average fault position model are more shifted

and broadened than the those found using the E-R model. The calcu-

lated 111 and 200 peaks are prime examples, as the calculated differences

between the peak shapes are shown to reach as much as +/- 20% of the

calculated intensities. For the patterns due to twinning a better agree-

ment is found between the developed model and the E-R model. The

peaks from the average position model show only slightly more broaden-

ing than the E-R model peaks. Again the 311 peaks are found to have

the best agreement, as the 111 and 200 peaks differ by at most +/- 10%

of the calculated intensities. Referring back to Figure 62, it is apparent

that the better agreement for the case of twinning stems from the fact

that there is a better match between the two twin correlation functions
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than those for deformation faults.

8.4.2 Influence of P0(m) on Peak Broadening and Asymmetry

To further study the influence of P0(m) on the broadened peak shape,

the sum in Equation (211a) can be rewritten as

I(h1h2Δh3) = ψ
2

∞�

n=−∞

�
A3|n|−1 cos (2π (3 |n| − 1)Δh3/3)+

B3|n|−1 sin (2π (3 |n| − 1)Δh3/3) + A3|n| cos (2π3 |n|Δh3/3)+

B3|n| sin (2π3 |n|Δh3/3) + A3|n|+1 cos (2π (3 |n| + 1)Δh3/3)+

B3|n|+1 sin (2π (3 |n| + 1)Δh3/3)
�
. (216)

After expanding the cosine and sine functions this is found to be equiv-

alent to

I(h1h2h
�
3) = ψ

2

∞�

n=−∞

A�
n cos (2πnΔh3) + B

�
n sin (2πnΔh3) (217a)

A�
n = A3|n| + cos (2πΔh3/3)

�
A3|n|+1 + A3|n|−1

�
+

sin (2πΔh3/3)
�
B3|n|+1 − B3|n|−1

�
(217b)

B�
n =

n

|n|

�
B3|n| + cos (2πΔh3/3)

�
B3|n|+1 + B3|n|−1

�
+

sin (2πΔh3/3)
�
A3|n|−1 − A3|n|+1

��
(217c)
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Figure 65: The sub-components and total diffraction profiles are given
for the 111, 200, and 311 peaks assuming both the average deforma-
tion fault position model, and the model for FCC faulting developed
by Estevez-Rams [44]. For consistency the fault probabilities assumed
in the E-R model were: α = 1/50 and β = 0. Below the calculated
peaks is the difference between the total profiles given from the relation,
Diff. = IAvg.Pos. − IE−R. In each peak the “broadened” components are
depicted by dashed lines, while the “unbroadened” component is depicted
by a dotted line.
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Figure 66: The subcomponents and total diffraction profiles are given
for the 111, 200, and 311 peaks assuming the average twin fault position
model, and the model for FCC faulting developed by Estevez-Rams [44].
In this case the fault probabilities assumed in the E-R model were: α = 0
and β = 1/50. The difference between models and the components of
each peak are depicted in the same way described in Figure 65.
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Substituting in the expressions for Am, and Bm in Equation (211) leads

to the following relationships defining the coefficients of Equation (217):

A�
n = N3|n|

�

cos (2πL0/3)
3P0(3 |n|) − 1

2
+

cos (2π(L0 + Δh3)/3)

�
3 (P0(3 |n| + 1) + P0(3 |n| − 1))

2
− 1

��

+

3 (P0(3 |n| + 1) − P0(3 |n| − 1))

2
(218a)

B�
n = −

n

|n|

�

N3|n|

�

sin (2πL0/3)
3P0(3 |n|) − 1

2
+

sin (2π(L0 + Δh3)/3)

�
3 (P0(3 |n| + 1) − P0(3 |n| − 1))

2
− 1

��

+

3 (P0(3 |n| − 1) − P0(3 |n| + 1))

2

�

(218b)

When n is small these coefficients are dominated by the part mul-

tiplied by N3|n|. It is then evident in Equation (218) that the cosine

coefficients, An’, which can be attributed to peak broadening, are largely

dependent on the sum of the P0(m1) and P0(m2) terms. Furthermore, the

sine coefficients, Bn’, commonly attributed to the peak asymmetry, are

determined by the difference between these P0(m1) and P0(m2) terms.

These relationships are true in general for any probability correlation

function of an FCC stacking. In terms of our study this is the key to
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explain why the peak shape of a stack containing a deformation fault

exhibits an asymmetry and shift, whereas that containing a twin is pri-

marily broadened. The correlation function derived for a deformation

fault in Equation (203) has a difference in the P0(m1) and P0(m2) terms

given by, −P0(m2). Whereas this difference for a twin fault, given from

Equation (204), is nearly zero except when there are few planes in the

stacking.

It can then be argued that some of the observed shift in peak position

commonly attributed to deformation faults is actually a consequence of

the strong peak asymmetry. This result maybe somewhat surprising

since, following the treatment of Warren [155], it is commonly believed

that any peak asymmetry is only due to twin faulting. As shown in

Figure 66, it is not incorrect that peaks broadened by twins exhibit slight

asymmetry, however, the fact that the profiles from deformation faults

also result in peak asymmetry calls into question the validity of methods

which rely solely on the peak asymmetry and peak shift to quantify the

deformation and twin fault densities.

The true limit of information obtainable from studying a faulted FCC

powder diffraction peak profile is found by considering that due to the na-

ture of the Fourier series in Equation (218), a profile can only be uniquely

linked to an average P0(m). Therefore, if multiple faulting scenarios re-

sult in the same average correlation function, then powder diffraction

cannot distinguish between them. The separation of the faulting effect
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from the broadening due to crystallite size and other strains is only possi-

ble by simultaneously considering the profiles of multiple reflections in the

pattern. The modified Williamson-Hall analysis is one proposed method

to consider the effect of faulting on the broadening of multiple reflections

[145]. However, only information on the peak in terms of its full-width

half-maximum (FWHM) or integral breadth (IB) is used to determine

the faulting densities. In the process of simplifying the treatment, im-

portant information about the complicated shape of the peak from the

many subcomponents, and faulting effects is neglected [147], making the

fault densities found from this method quantitatively less reliable [127].

A slightly more sophisticated treatment has been recently proposed in

the convolutional multiple whole profile (CMWP) modeling framework

which has parametrized the influence of different fault probabilities on

the FWHM, asymmetry and peak positions of profile subcomponents

[9]. While accounting for some aspect of the peak shape by considering

multiple subcomponents, the description of the profiles in terms of a few

parameters again neglects a fair amount of information in the peak shape,

and use of a Lorentzian function to describe the peak shape may bias the

results. Just by inspecting the subcomponents of peak profiles simulated

in the present paper it is quickly concluded that a profile due to faulting

is not necessarily Lorentzian, or any other analytical peak function, but

is instead determined from the probability correlation function. Given

the complexity of the determining a reasonable faulting density from the
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powder pattern it is best to utilize all of the information possible from the

measured intensity, and properly treat the peak as the Fourier transform

of a real physical model. These are the fundamental assumptions of the

whole powder pattern modeling (WPPM) method, which has been de-

veloped to consider the most recent models of faulting in FCC materials

[44, 124].

8.5 Summary and Conclusions

The fundamental differences between the disorder caused by a defor-

mation fault versus a twin fault has been clearly traced, through the

probability correlation function, to their effects on the diffraction peak

profile. Furthermore, when considering a finite stack the planar corre-

lations have been shown not only to depend on the fault position, but

also on the extent of the stack when considering twin faults, implying the

same must be true for the diffraction profile. In fact, recent simulation

studies have found that the presence of a fault at different positions in a

spherical nanocrystallite results in similar trends on the peak broadening

and shifting, as well as, dramatic differences in the observed fault prob-

ability [13]. This is evidence that the description of broadening which

has been presented is not completely masked by the broadening due to

the small cross section of a nanocrystallite. Nonetheless, for a proper

description of the peak profile from such a case, a convolution of the

described features in the intensity with those due to the particle size and

shape must be made. As the general form of the Fourier coefficients is
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given in Equation (211), modern reciprocal space modeling techniques

like Whole Powder Pattern Modelling (WPPM) [124] show promise in

utilizing the developed model and performing this convolution in recip-

rocal space. The same can be said regarding the use of the developed

model to describe the effect of faulting in powders of crystallites with

a broad size distribution. The development of such a robust line pro-

file analysis tool is ongoing, along with experimental validation of the

proposed model to describe faulting in small crystallites.

When considering the average correlation function, the model allows

for considerable flexibility as the possibilities for different average pla-

nar correlation functions extend far beyond the uniform fault position

distribution demonstrated in Section 8.3.3. If a more complex fault po-

sition distribution is found to be suitable for a given system, then only

the weights, wp, in Equation (202) need to be adjusted and the resulting

peak profile recalculated.

The current limiting assumption of the developed model is that only

one fault is allowed to exist in a given crystallite. In this regard it might

be true that the recursion equation model [44, 155] is more appropri-

ate to represent faulting in many FCC materials, especially those with

a large crystallite size. Accounting for multiple faults in the developed

theoretical framework is not impossible, but becomes increasingly com-

plex, as the number of cases to consider increases with the number of

faults. For example, a finite stack containing just two faults requires the
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consideration of each fault being either a deformation fault or twin fault,

as well as all the different possible distances between faults, and their

positions relative to the boundaries. With the computation power avail-

able in modern desktop computers, it might be better suited to directly

compute the correlation functions and averages of the desired faulting

scenarios. In which case, the general expression of Equation (211) is

still applicable to model the peak profile from the calculated correlation

functions.
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CHAPTER IX

SUMMARY AND FUTURE WORK

9.1 Summary

This work was focused on investigating the influence which structural and

dynamic characteristics of metal nanoparticles have on the resulting line

profiles in the powder diffraction pattern. A systematic approach of sin-

gling out each feature which influences the shape of diffraction peaks was

carried out through the use of atomistic models and the Debye function.

In many cases this allowed for the existing theory governing line profile

analysis to be tested, and extended, to the limit of the smallest possible

crystalline domains. Furthermore, this work explored the possibility of

combining atomistic simulations like molecular dynamics with the study

of powder diffraction. This allowed for the consideration of energetics

into the construction of the appropriate nanoparticle models, as well as,

the simulation of the dynamic behavior of the atoms at an elevated tem-

perature. Finally, on the experimental side, this work contributed to the

development of an emerging line profile analysis technique called Debye

function analysis (DFA). This technique tests the models used to repre-

sent nanoparticles in the powder pattern generation, and was shown to

allow for the characterization of a sample of shape controlled platinum
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nanoparticles.

Almost every structural aspect of a crystallite has some influence on

the observed diffraction pattern. With this in mind it is important to

consider some expected hierarchy of the features in a pattern which is

being analyzed. As discussed in Chapter 3, the small size of a nanopar-

ticle has the most dramatic influence on the observed peak profiles. This

also carries with it the consequence that an appropriate assumption of

the crystallite shape is important to explain all of the features in the

profile. The discussion of Section 3.1 presented the theory of size and

shape broadening in a very general way, which is more appropriate for

the consideration of small crystalline domains. In the process, the lim-

itations of assuming the tangent plane approximation to describe the

powder intensity from these small domains were laid out. In Section 3.2

a new proposed method of carrying out the powder integral numerically

was described, and the resulting diffraction patterns were compared with

those found assuming the tangent plane approximation and the Debye

function. The level of agreement found between the Debye function and

this numerical powder integration technique is offers a lot of insight into

the theory of size broadening, and offers an interesting avenue for future

line profile analysis. Finally, in Section 3.3 the consequences of assum-

ing a size distribution were demonstrated, and excellent agreement was

found between the reciprocal space and Debye function approaches.
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The development of the Debye function into a robust line profile anal-

ysis tool for the analysis of experimental patterns was presented in Chap-

ter 4. This method was then employed in an attempt to characterize the

crystallite shapes present in a sample of platinum nanoparticles which

were synthesized to preferentially expose 111 surfaces. The experimen-

tal data collected in a laboratory setting were refined by the developed

DFA routine in an attempt to determine the relative fraction of different

crystallite shapes in the sample. The model which resulted in the best fit

found a dominance of octahedral particles having a size of around 8.5 nm.

This result was found to be in good agreement with TEM analysis, and

the line profile analysis method of whole powder pattern modelling. The

same abundant particle shape was also supported by the TEM analysis

and cyclic voltammetry characterization which found a predominance of

111 surfaces in the sample.

Chapter 6 explored the starting assumption taken in much of diffrac-

tion theory, which is that each crystallite can be treated as if it scatters

independently. A routine for simulating a densely packed system of spher-

ical particles was described in Section 6.2, and the resulting diffraction

patterns from the different approaches for simulating the pattern were

described. The consideration of a polydisperse system of particles of dif-

ferent sizes and containing different defects was shown to result in an

increase in system size necessary to result in an accurate powder diffrac-

tion pattern. Finally, the simulations discussed in Section 6.4 found that
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the independent scattering assumption is not valid to describe the wide-

angle peaks system of crystallites when ordering exists in the spatial

arrangement, as well as, the orientation of the crystallites.

The implications of breaking away from the descriptions of atoms in

a lattice as being static is discussed in Chapter 7 in terms of the study

of the thermal diffuse scattering (TDS). Molecular dynamics simulations

were used to generate the time averaged powder pattern influenced by

the bulk lattice vibrations, and the results of assuming various models

to describe the TDS were compared in Section 7.2. These simulations

found that the assumption of an inappropriate model for the TDS led to

an inaccurate determination of the Debye-Waller factor and an under-

estimation of the particle size. A few improvements to extend the TDS

theory to consider the effect of a finite crystallite size were proposed in

Section 7.4. The results of these considerations were tested on molecular

dynamics simulations of Al core-shell nanoparticles, and the modeling of

the patterns found that the consideration of the effects of phonon con-

finement on the modified Warren model were necessary for an accurate

determination of the vibrational characteristics of the system.

Finally, Chapter 8 considered the effect of faulting in a small crys-

talline domain. The effect of faulting in the powder diffraction pattern is

found to be dependent on the position of the fault plane in the crystallite,

decreasing as the fault moved toward the surface. Section 8.2 exhibits

how this can be incorrectly interpreted as a decreasing fault probability
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when trying to model the pattern from spherical nanoparticle containing

different faults. This study also found that the cross-section of the par-

ticle matters, and that it might not always be appropriate to treat the

faults as dilute and non-interacting when an exact faulting probability is

desired. A new approach to describing the effect of faulting in finite do-

mains is presented in Sections 8.3 and 8.3.3. This theory shows that the

decreased effect of faulting which is observed as the fault moves toward

the surface of a crystallite is really due to changes in the planar corre-

lation function. A method of calculating this function for a crystallite

containing a single fault of either twin or deformation type is presented.

Also, a general formulation to calculate the resulting diffraction peak

profiles from the planar correlation function is given. This method is

used to compare the peaks from the new approach to modern diffraction

theory which does not consider the finite size of the crystallite.

9.2 Future Avenues of Research

The studies presented in this thesis, which constitute a broad investiga-

tion into the levels of information which is contained in the diffraction

pattern from nanoparticles, is really only scratching the surface of each

respective topic. A few interesting doors which have been opened dur-

ing the course of this work will be outlined here as well as the possible

impact which these directions can have on the treatment of diffraction

measurements.
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9.2.1 DFA and Global Modeling Routines

The analysis of Pt nanoparticles presented in Chapter 4 required the com-

bined characterization using multiple, complementary techniques. Each

technique provided different kind of information which was crucial to

avoid biases of a single method and arrive at a coherent understanding

of the studied system. Conceptually this can be thought of as a global

modeling engine, which inputs the data from a series of experiments, and

outputs the model which works best with all known results. While this

paradigm has been circulating in the scientific literature for some time

now, the approaches of how to correctly weight and stitch together the

information from each technique are still in their infancy.

The Debye function can offer a lot opportunities to further the under-

standing of these global modeling approaches and bridge different meth-

ods of modeling diffraction pattern. For instance, the radial distribution

function (RDF) is an automatic by product of calculating the diffraction

pattern via the Debye function. There is nothing preventing the com-

parison of this RDF information with the local structural information

obtainable by treatment of the diffraction pattern following the methods

of Total Scattering. This can then allow for a simultaneous modeling of

the diffraction data from the measured RDF, as well as, the measured

wide-angle diffraction pattern to find the best structural model. Further-

more, as briefly discussed in Chapter 6, the Debye function also allows

for the simulation of the small-angle diffraction pattern. This can lead to
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a unification of the diffraction pattern, which allows for complementary

information to be obtained over spanned length scales. As detector tech-

nology is also currently available which can withstand the intensity of

the primary beam. This has resulted in 2D detectors which can measure

beautifully and continuously the pattern through the small-angle and

into the wide-angle. As these measurements become more popular tech-

niques of modeling the data will be increasingly desired, and the Debye

function then offers a possible solution.

However, before Debye function analysis can make a lasting impres-

sion of these new areas of diffraction analysis, appropriate methods of

how to handle instrumental effects on the simulated diffraction peaks

must be further developed. At present, the contribution of the instru-

ment is either neglected, or attempted to be removed from the measured

data by deconvolution. Both of which lead to uncertainties in the anal-

ysis and cloud the fine features which are trying to be modeled by the

Debye function. Ideally the contributions should be convolved with the

simulated intensity, however, the continuous nature of the intensity from

the Debye function prevents such an approach. A solution to this prob-

lem might be to not use the Debye function explicitly, but instead use

the Debye-like approach of numerically evaluating the powder integral,

described in Section 3.2 which allows for the accurate calculation of the

powder intensity peak by peak. This treatment of the simulated inten-

sity is then much more amenable with a convolution operation with any
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instrumental contribution.

9.2.2 Development of Structural Models

As already demonstrated in the discussed case studies, the combination

of atomistic simulations and diffraction line profile analysis offers an new

and rich approach which can deepen our understanding of the structure

of materials. While it might be desirable to think that one day the

atomistic descriptions of molecular dynamics will replace the empirical

models used to model the diffraction pattern from nanomaterials, a lot of

work still has to be done to improve both methods before that goal can

be achieved. The use of atomistic simulation in diffraction allows for the

better observation of what aspects of the structure result in observable

features in the diffraction pattern. Furthermore, they serve to test the

existing models, and hopefully lead to improvements which will lead to

a better characterization of a material through the diffraction pattern.

The cases of lattice dynamics which have been investigated in this study

are just a few examples of the many kinds of phenomena which can be

investigated by this approach. The structural models of polycrystalline

materials opens another research door, not to mention the exploration of

effects from seemingly amorphous and glassy structures.

The coupling of these techniques should really be considered a two

way street, as diffraction offers a useful means to compare the predictions

made by the simulation with the phenomenon which is actually observed

experimentally. Then the information on the aspects which might be
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lacking in the atomistic simulation can be refined and improved to de-

velop the methods of the simulation. This might lead to the development

of better interatomic potentials, as well as, the more accurate simulation

a microstructure evolution, such as that for nucleation and growth. With

the perspective of so much enlightening development of both simulation

and experiment, it is my belief that the coupling of molecular dynamics

and diffraction pattern analysis will offer a lot of insight into behavior of

materials for a long time to come.
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