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A B S T R A C T

Remote sensing optical images of very high geometrical resolution can
provide a precise and detailed representation of the surveyed scene.
Thus, the spatial information contained in these images is fundamen-
tal for any application requiring the analysis of the image. However,
modeling the spatial information is not a trivial task. We addressed
this problem by using operators defined in the mathematical morphol-
ogy framework in order to extract spatial features from the image.
In this thesis novel techniques based on mathematical morphology are
presented and investigated for the analysis of remote sensing optical
images addressing different applications.
Attribute Profiles (APs) are proposed as a novel generalization based
on attribute filters of the Morphological Profile operator. Attribute fil-
ters are connected operators which can process an image by removing
flat zones according to a given criterion. They are flexible operators
since they can transform an image according to many different at-
tributes (e.g., geometrical, textural and spectral).
Furthermore, Extended Attribute Profiles (EAPs), a generalization of
APs, are presented for the analysis of hyperspectral images. The EAPs
are employed for including spatial features in the thematic classifica-
tion of hyperspectral images.
Two techniques dealing with EAPs and dimensionality reduction trans-
formations are proposed and applied in image classification. In greater
detail, one of the techniques is based on Independent Component
Analysis and the other one deals with feature extraction techniques.
Moreover, a technique based on APs for extracting features for the
detection of buildings in a scene is investigated.
Approaches that process an image by considering both bright and
dark components of a scene are investigated. In particular, the effect of
applying attribute filters in an alternating sequential setting is investi-
gated. Furthermore, the concept of Self-Dual Attribute Profile (SDAP)
is introduced. SDAPs are APs built on an inclusion tree instead of a
min- and max-tree, providing an operator that performs a multilevel
filtering of both the bright and dark components of an image.
Techniques developed for applications different from image classifi-
cation are also considered. In greater detail, a general approach for
image simplification based on attribute filters is proposed. Finally, two
change detection techniques are developed.
The experimental analysis performed with the novel techniques devel-
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oped in this thesis demonstrates an improvement in terms of accura-
cies in different fields of application when compared to other state of
the art methods.

Key words: Remote sensing, mathematical morphology, image process-
ing, pattern recognition, classification, image simplification, building
extraction, change detection, very high resolution images, hyperspec-
tral images, urban scenes, attribute filters, connected operators, multi-
level analysis.

v



Á G R I P

Fjarkönnunarmyndir með mjög mikla greinihæfni geta veitt nákvæmar
og ítarlegar upplýsingar um yfirborð jarðar. Þær staðbundnu upp-
lýsingar sem er að finna í þessum myndum eru mjög mikilvægar
fyrir margs konar greiningu á myndunum. Hins vegar er líkanagerð
fyrir staðbundnu myndupplýsingarnar ekki einfalt verkefni. Í þessari
doktorsritgerð er fengist við þetta vandamál með því að nota virkja
sem skilgreindir eru með stærðfræðilegri formfræði (e. Mathematical
Morphology).
Í ritgerðinni eru settar fram nýjar aðferðir sem byggja á stærðfræðilegri
formfræði fyrir greiningu mismunandi gerða fjarkönnunarmynda.
Grundvallaraðferðin í ritgerðinni er auðkennaprófílar (e. Attribute
Profiles, APs) sem er nýstárleg útvíkkun á formfræðilegum prófíl-
um (e. Morphological Profiles), en APs notast við auðkennasíur í
stað hefðbundinna formfræðilegra sía. Auðkennasíur eru samtengd-
ir myndvirkjar sem meðhöndla myndir með því að fjarlægja „flötâ
svæði (svæði með sama grágildi) samkvæmt tiltekinni viðmiðun. Þær
eru sveigjanlegir virkjar þar sem þeir geta breytt mynd með notkun
margra mismunandi auðkenna (sem byggja t.d. á rúmfræði, áferð og
rófupplýsingum).
Í ritgerðinni eru einnig settir fram útvíkkaðir auðkennaprófílar (e.
Extended Attribute Profiles EAPs)), en þeir eru útvíkkun á APs, og
eru notaðir til að fá fram upplýsingar um rúmfræðileg einkenni við
greiningu mynda með mikilli rófupplausn. Tvær aðferðir eru notaðar
með EAPs í flokkun og víddafækkun, þ.e. óháð þáttagreining (e.
Independent Component Analysis, ICA) og útdráttur einkenna (e.
Feature extraction). Til viðbótar er þróuð tækni sem byggir á APs til
útdráttar einkenna fyrir greiningu á byggingum í þéttbýli.
Aðferðir sem vinna bæði bjarta og dimma hluti í myndunum samtímis
eru rannsakaðar. Í þessu sambandi er hugmyndin um Self-Dual Attri-
bute Profile (SDAP) kynnt. Jafnframt er sett fram almenn aðferð til
einföldunar mynda með APs. Að lokum eru tvær aðferðir til skynjunar
á breytingum þróaðar.
Aðferðirnar sem þróaðar hafa verið í rannsókninni er beitt í flokkun
margs konar fjarkönnunarmynda. Flokkunarnákvæmnin er almennt
betri en með þeim bestu aðferðum sem hingað til hefur verið beitt við
flokkun þessara fjarkönnunarmynda.
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1
T H E S I S O V E RV I E W

Abstract. In this chapter, we give an introduction to this dissertation.

In particular, we briefly present the context in which this work has been

developed by providing an overview of the problem of the modeling of the

spatial information for the analysis of remote sensing images. The main

objectives and the novel contributions of this thesis are then presented. Finally,

the organization of this document is reported.

1.1 the remote sensing imaging system

Remote sensing passive imaging sensors detect the electromagnetic
energy radiated and reflected by the Earth surface. The energy that
reaches the sensor from the surface comes from an emitting source (in
the visible spectrum, mainly the sun), propagates through the Earth’s
atmosphere and the transmitted component of the incident energy
hits the surface. The surface interacts with the incident electromag-
netic wave by absorbing, scattering and reflecting it. The scattered
and reflected components propagate back through the atmosphere
(again with absorption) reaching the sensor. The radiance measured
by the sensor is split into different spectral components for collecting
the signal in only some bands of the electromagnetic spectrum (ac-
cording to the type of sensor) and then is focused by the optics of the
imaging system and modulated in electrical current for being finally
detected and stored. The imaging system is defined by a characteristic
impulse response. For more details on the imaging process please
refer to [1, 2, 3, 4, 5, 6, 7, 8]. In real imaging sensor, the energy emitted
by a punctual source is imaged as a disk by the detector since the
energy is spread over a finite patch in the focal plane. This effect due
to the optics and the finite size of electronic detectors (e.g., cells of the
CCD sensor) placed on the focal plane defines the spatial resolution of
the sensor (capacity of the sensor in distinguish two spatially adjacent
points on the ground) [1]. Thus, the electromagnetic energy measured

Part of this chapter is going to appear in:

J. A. Benediktsson, L. Bruzzone, J. Chanussot, M. Dalla Mura, P. Salembier,
and S. Valero, “Hierarchical analysis of remote sensing data: Morphological
attributes profiles and binary partition trees,” in Proc. of 10th Int. Symp. on Math-

ematical Morphology (ISMM 2011), P. Soille, G. K. Ouzounis, and M. Pesaresi,
Eds., Intra, Lake Maggiore, Italy, 6th-8th July 2011, invited paper.
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is quantized both in the spectral and spatial domain by the acquisition
process. Spatially, the sensed scene is imaged in a set of cells (pix-
els) distributed in a regular rectangular grid (due to the geometry of
the CCD sensor). The portion of the ground surface enclosed in the
beam with width given by the angular aperture of the imaging sensor
is referred as Ground-projected Field Of View (GFOV) and can be
roughly seen as the sensor footprint on the ground [6, 9]. The spacing
between pixels on the ground is named the Ground-projected Sample
Interval (GSI) and is usually designed to equal the Ground-projected
Instantaneous Field of View (GIFOV). However, the representation
of the GIFOV as square footprint is inadequate because the reflected
energy measured corresponds to the integration energies across a
surface which almost never matches a square pattern (since the point
spread function of the sensor is bell shaped) [10].
It is clear that the potential of the remote sensing imagery strongly
depends on how much in details of the sensed reality can be described.
The capability of the imaging sensor in representing the scene can
be assessed in terms of spatial, spectral and radiometric resolution.
With particular attention to the spatial domain, the spatial resolution
indicates the smallest distance between two objects that can be dis-
tinguished by the sensor [11]. When the size of the objects on the
surveyed landscape (e.g., buildings, trees, roads) is close to the geo-
metrical resolution of the sensor, the objects are represented in the
image as a single or few adjacent pixels. In this scenario, the digital
numbers of neighboring pixels show a relatively low correlation. Due
to the possible presence of different land cover types in the footprint
of each pixel on the ground, the digital number associated to the pixel
can be thought as obtained by merging the reflectance response of the
different materials, leading to the so called “mixed pixel”. Moreover,
the spectral response correspondent to a pixel can be also affected by
the radiation components scattered from or reflected by surrounding
land covers of the area investigated [12]. When the spatial resolution
of the sensor increases, the objects on the ground are represented in
the image as regions of spatially connected pixels. This mixing phe-
nomenon can be reduced with the increased resolution but cannot be
completely canceled. In fact, it can be still found on pixels represent-
ing the boundaries between objects with different characteristics of
reflectivity [6]. This effect is referred as the “boundary effect” in [13].

1.2 towards the interpretation of the scene

Focusing the attention on the image analysis, Schowengerdt [6, Ch. 1,
p. 7–8] dichotomizes the analysis of remote sensing imagery in data-
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centered and image-centered approaches. The former approach performs
an analysis of the sensed images driven by the data. Tasks such as
the measure of the spectral absorption, the estimation of fractional
abundances of surface materials or of parameters as the soil mois-
ture, biomass etc. are included in this type of analysis. The latter
approach refers to the interpretation of the scene by exploiting the
spatial relationships among features on the ground. The extraction of
the information from the scene can be done by an experienced user
through photointerpretation or by a computer aided system (“quanti-
tative analysis” in [5]). The image analysis performed by a computer
try to mimic the activity of the photointerpreter and thus, has to be
driven by some opportunely coded knowledge.

The interpretation of a natural scene, when is performed by a hu-
man, seems an intuitive and quite straightforward process due to
the innate facility for humans in extracting information from visual
shapes, forms, and textures [14]. Nevertheless, the process of interpret-
ing the scene is actually made up by several different and complex
steps. For example, the interpretation of an entire scene can be done by
splitting and analyzing the image in different parts separately. After-
wards, objects can be recognized according to their characteristics (e.g.,
spectral, spatial and relational) which are matched with templates
derived by preexistent knowledge (i.e., known by the interpreter). The
semantic of the structures in the image is exploited for increasing the
understanding of the scene. During the analysis, a set of expert rules
is built up performing the interpretation image.
Computer-based techniques for image analysis basically aims at mod-
eling the human interpretation process. Due to its complexity, this task
is still an open issue. For this reason, most of the practical interpreta-
tions of the scene are based on the human analysis [3]. However, the
ever increasing amount of data acquired by the satellites and the avail-
ability of aerial and satellite images from archives make a “manual“
approach to the analysis completely inadequate for a full exploitation
of the information. Thus, the need of an automated analysis is clearly
a demand.
In practical situations, the access and exploitation of the information
extracted by Earth Observation (EO) data for applications such as
resource inventory and management, urban planning, land records
for taxation and ownership control, facilities management, marketing
and retail planning, vehicle routing and scheduling [15] is performed
through Geographical Information Systems (GIS) [5]. Methodologies
belonging to the fields of image processing, information extraction,
pattern recognition and machine learning make possible the increase
in the level of abstraction from the numerical value of a pixel to the rep-
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resentation of the geospatial objects that model the real-world entities,
needed for linking remote sensing data and GIS. However, a complete
and automatic integration of remote sensing data and GIS has still
to be achieved since many issues are still open [16, 15]. For example,
in [17] it is evidenced the constant need of further developments in
spatially-based image analysis methods. Striving for an information
interchange between remote sensing and GIS, it is fundamental to
work towards an object oriented analysis for bridging between geospa-
tial concepts in GIS and the synergy between image-objects and their
radiometric characteristics and analyses in remote sensing data [18].
In this perspective, in [18] the importance of the Object-Based Image
Analysis (OBIA) is clearly pointed out. Working at the object level
permits to extract from the overwhelming amount of details of the
scene only the informative components through the representation of
the scene in a simplified way enhancing the content and increasing the
understanding. Moreover, a representation of the scene through object
entities can fully exploit the advances in artificial intelligence such
as fuzzy logic classification, rule-based classification from the expert
systems domain, and neural nets, which model the human ways of
thinking [19]. Different techniques have been presented for accomplish
this goal: image classification, segmentation, texture analysis, pattern
matching, object recognition, etc.
Since the analysis carried out by the computer emulates the human
perception, the guiding principle for the definition of the transition
from the image domain to the object representation domain is given
by concepts from spatial thinking and more in general by cognitive
psychology [18]. In this perspective, the ultimate benchmark of the
automated image analysis is human perception [18].

1.3 modeling the spatial information

With the constant increase in geometrical resolution of Earth Observa-
tion sensors faced in the last decades, the spatial information provides a
ever increasing contribute to the understanding of the remote sensing
imagery, since it characterizes the sensed landscape in a complemen-
tary way with respect to the spectral signatures of the land covers.
In the past, the processing of low resolution images was mainly per-
formed with pixel-based approaches due to their direct application to
the image. Such set of approaches only takes into account the spectral
signature of the pixels but not any spatial measure or characteristic
extracted by the image. Although, the results produced can be sat-
isfactory for low resolutions, since a low correlation is experienced
between neighboring pixels, the performances of such approaches
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drastically reduce when applied to VHR images. This effect is not only
related to non considering any spatial measure but also because with
a finer geometrical resolution, the within-class variability of an object
in the image increases. In a classification task, the increased spectral
covariance produced by a greater variability within a class reduces the
overall class spectral separability [13].
Although an approach based only on the spectral values can be ap-
plied straightforwardly to the image since each pixel can be considered
separately to the others, the extraction and exploitation of the spatial
information is a complex and multifaced task.
Furthermore, when dealing with VHR images, the interpretation of
the scene can largely benefit from the analysis of the spatial domain.
In addition, the reach of a fine spatial resolution usually is obtained at
the detriment of the spectral resolution. In fact, in general most VHR
sensors can acquire one or few spectral bands. In this scenario, the in-
clusion of information belonging to the spatial domain is compulsory
for obtaining consistent results in the analysis of the image. Spatial
information can be coded as relations between neighboring pixels,
patterns in the spatial domain (e.g., texture), spatial characteristics of
regions (e.g., geometrical, morphological, textural measures), struc-
tural relations in objects, relational links between entities in the scene,
etc. In general, we can refer to spatial information as the knowledge
on the scene that can be derived by characteristics extracted from the
spatial domain.
Recently, Daya Sagar and Serra [20] underlined how the retrieval and
characterization of the spatial information is a current challenge for
geoscience scientists. Due to the wide range of features related to the
spatial domain, there are several ways of characterizing this informa-
tion source. From a general survey of techniques modeling the spatial
information in remote sensing, one can notice that there are different
approaches for extracting the spatial information and correspondent
ways (with different levels of abstraction) for including the extracted
information in the processing chain aiming at the understanding of
the image.
Roughly, it is possible to group the techniques in three approaches
(ordered increasingly according to the level of semantic introduced in
the representation of the scene) ranging from the pixel- to region- and
to object-level. With the term ”region“ we refer to a set of spatially
connected pixels with similar characteristics (e.g., intensity, spectral
signature, texture) which are different from surrounding ones [21].
The term ”object“ can be roughly intended as a region with a semantic
information. More formally, in [18, p.98] object is referred to a discrete
spatial entity that has many permanent properties which endow it
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with an enduring identity and which differ in some way or another
from the properties of its surroundings. The three macro-groups in
which we have clustered the different techniques are the following:

1. Pixel-level. At this level the spatial information that can be mod-
eled is mainly related to the spatial context of the pixels. The
characterization of the spatial content is done by exploiting the
correlation among the spectral signature of pixels included by
a subset of the spatial domain (e.g., a window). The correlation
shown by neighboring pixels is both due to the acquisition of sig-
nificant portions of energy from adjacent pixels by the imaging
sensors and to the presence of the same land cover on regions
large compared with the size of a pixel [5, Ch. 8],[22, Ch. 6].
The investigation of the neighborhood of each pixel can be done
in different ways. The dependent spatial variations of the neigh-
boring pixels have been modeled in a stochastic framework as a
realization of a spatial random field (SRF) [23], e.g., with Markov
Random Fields (MRFs) [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37] and Conditional Random Fields (CRFs) [38, 39, 40, 41].
In [42, 43, 44, 45, 46, 47, 48, 49, 50, 51] the contextual relations
between pixels were exploited for a robust analysis of the scene
in an image classification task.
The characterization of the spatial context can be done also by
computing some measures on the pixels included in a local
window. Such operation is actually a filtering. According to the
transformation performed on the neighborhood of each pixel
(i.e., the type of measures computed) it is possible to extract
features such as, texture, shape, size, etc.

The spatial context was investigated by considering the corre-
lation of couples of pixels at a fixed distance and direction in
the Gray Level Cooccurrence Matrix (GLCM) [52] or in semivari-
ograms [53]. The textural information has also been characterized
by Gabor filters and wavelets [54, 55, 56], as well as many other
techniques.

The application of a sequence of filters in a multiscale archi-
tecture has proven to be useful for performing a multiscale
decomposition of the image [57, 58]. The multiresolution de-
composition attempts to mimic human perception in identifying
objects of different shape and structure on different scales.

The characteristics of the (homogeneous) region in which each
pixel is included were extracted by spatial features such as the
length and width of lines centered at each pixel spanning the
homogeneous area [59, 60, 61], the Pixel Shape Index (PSI) [62].
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Measures computed from straight lines extracted in from the
scene were also used in [63].

2. Region-level. At this level, the scene is partitioned in regions (i.e.,
segmentation) permitting to extract spatial features that can de-
scribe the structures in the scene [17, Ch. 5]. The segmentation
can be exploited in different ways. For example can increase
the robustness of analysis by considering the segments as the
fundamental spatial entities (i.e., increasing the robustness of the
analysis w.r.t. pixel-based approaches) [64, 65, 66, 67, 68, 69]. The
segmentation can also increase the understanding of the scene
by considering textural, spatial and spectral features extracted
from the segments [70, 71].
Different segmentation techniques can be used for performing
the segmentation (e.g., watershed [17], morphological filters [72],
mean-shift [73], etc.).
In many cases a single segmentation of the scene is not suffi-
cient for a consistent representation of the objects in the scene.
Thus, hierarchical approaches can overcome this limitation [74,
Ch.2], [71, 64].

3. Object-level. This is the highest level of abstraction with semantic
included in the analysis giving information on the thematic of the
regions. Thus, from this representation of the scene it is possible
to perform an analysis on the relations between objects leading
to the deepest understanding of the scene (obviously, if the ex-
traction of the objects is consistent) [19, 18, 75, 76, 77, 14, 78, 79].

Obviously, by increasing the level of abstraction in the analysis it is
possible to extract and exploit more spatial information. However, the
increase in the abstraction strongly requires the application of proper
techniques in order to guarantee the consistency of the results.

1.4 image analysis based on mathematical morphology

It the context of the modeling of the spatial information, Mathematical
Morphology (MM) [80, 81, 82, 83] holds a fundamental role since it
provides a set of powerful tools for analyzing the spatial domain.
In 2002, Soille and Pesaresi [84] identified as the main applications in
the context of remote sensing image analysis that could be addressed
by MM: i) image filtering; ii) image segmentation and iii) image
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measurements. Thus, MM tools permit to enrich the image analysis
by including spatial information mainly at pixel- and region-level,
according to the analysis carried out in the previous section. In fact,
many MM operators are defined as neighborhood transformations of
the image [82]. Thus, the spatial context is ”natively“ considered when
applying such operators. Moreover, MM techniques have been proven
to be effective when applied to tasks such as image classification,
object recognition and extraction, segmentation, etc.

In ten years of developments from the general survey of [84], we
have witnessed to the appearance of many techniques involving MM
for the analysis of remote sensing images strengthening the mutual
connection between remote sensing and MM [85]. Focusing the atten-
tion to very high resolution (VHR) images, we highlight the consoli-
dation of the role of connected operators [86, 87] as efficient filters for
achieving a simplification of the image obtained by only merging flat
zones (i.e., avoiding the detriment of the geometrical features of the
regions unaffected by the transformation). Connected operators have
been proven to be suitable to handle the characteristics of VHR images
since they are capable to perform an image transformation that can
selectively suppress uninteresting details and maintaining unaffected
structures that are relevant for the analysis. Connected operators have
gained popularity in the remote sensing community also due to the
successful diffusion of Morphological Profiles (MPs) [72]. MPs are a
multiscale decomposition of a grayscale image in a stack of filtered
images obtained by transforming the input scene with a sequence of
opening and closing by reconstruction filters (i.e., connected operators)
based on structuring elements (SEs) with fixed shape and increasing
size. The application of the MP and its extension are reviewed in
details in Ch. 3 in a review of the relevant works employing multilevel
approaches in the application of connected filters.

1.5 objectives and novel contributions of the thesis

The work presented in this thesis is aimed at investigating and defining
novel techniques based on mathematical morphology for the analysis
of remote sensing images. In particular, this study is devoted to the
definition and in depth evaluation of the use of connected operators
in a multilevel architecture for different remote sensing applications.
State of the art techniques based on the application of connected op-
erators in a multilevel approach (e.g., MP) have already proven to be
effective for the analysis of the scene (see Ch. 3 for a review). Never-
theless, several limitations exist (e.g., on the capabilities of modeling
the spatial information, efficiency in the computation, etc. see Ch. 4).
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The work presented in this dissertation attempts to overcoming those
limitations.

The novel contributions of this thesis are as follows.

1. Pioneering the use of attribute filters and tree-based image representa-

tion structures in remote sensing [88].

To the best of our knowledge, morphological attribute filters [89]
and the hierarchical tree representations of the image with max-
tree [90] were not yet used in the remote sensing field before our
work of [88].

2. Definition of Attribute Profiles [91].

The Attribute Profile (AP) concept is based on the application
of attribute filters in a multilevel architecture. It generalizes the
definition of the MP leading to an efficient structure with an
increased capability in modeling the spatial information.

3. Definition of Extended Attribute Profiles [92].

The Extended Attribute Profiles (EAPs) extends the concept of
Attribute Profiles to the analysis of hyperspectral images.

4. Investigation of dual techniques [93, 94].

In some applications a simultaneous processing of both dark
and bright structures in the scene is desirable. Thus, we have
investigated two approaches based on dual connected operators
for the processing of VHR images.

5. Definition of a general approach to the spatial simplification of VHR

images [95].

Image simplification is a key operation leading to the under-
standing of the scene. We proposed a general approach to the
simplification of the scene driven by the type of available infor-
mation on the scene according to different operative scenarios.

6. Application of multilevel techniques based on connected filters to differ-

ent tasks.

The proposed techniques were successfully considered and tuned
for remote sensing applications such as thematic classification
of the scene [96, 97, 98, 92, 91, 88, 94], image simplification [95],
change detection [99, 100] and object recognition [101].

1.6 thesis organization

This dissertation is organized in three parts and eleven chapters.
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Part 1 aims at giving both an introduction to the problem addressed
by our research and a description on the context in which the work
has been developed.
Chapter 2 presents some fundamental concepts of mathematical mor-
phology on which the proposed technique are based.
Chapter 3 recalls the concept of morphological profile and its exten-
sion to the hyperspectral domain as related work.
Moreover, a survey of significant techniques appeared in the literature
based on the morphological profiles is also presented.

Part 2 collects the contributions of this work for the image classifica-
tion and object extraction tasks.
Chapter 4 introduces the concept of attribute profile as generalization
of the morphological profile based on attribute filters. The results of
the experimental analysis carried out on a panchromatic image are
reported.
Chapter 5 presents extended attribute profiles the extension of the AP
for hyperspectral images. The experiments performed on two hyper-
spectral images are shown.
Chapter 6 reviews two techniques dealing with EAPs. One technique
performs the computation of the EAP on the features extracted by
an independent component analysis. The second technique addresses
the problem of dimensionality reduction by applying different feature
extraction techniques.
Chapter 7 deals with dual techniques. In this chapter, the application
of attribute filters in an alternating sequential setting (leading to a
quasi self-dual operator) is presented. Moreover, self-dual attribute
profiles are introduced as self-dual version of the APs.
Chapter 8 describes a technique based on AP for the extraction of
features suitable for the detection of the buildings in the scene. The
AP are computed by optimizing the selection of the parameters of the
filters.

Part 3 presents techniques addressing applications such as, image
simplification and change detection.
Chapter 9 reports a general approach aiming at performing a sim-
plification of the image in different ways driven by the information
available on the scene.
Chapter 10 presents two change detection techniques. One technique
is based on CVA and connected operators. In the second technique
APs are used for gathering information on the changes occurred on
the morphological characteristics of the objects.
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Finally, in the last chapter, concluding remarks on the proposed
techniques are given. Furthermore, future research developments are
discussed.



2
F U N D A M E N TA L S

Abstract. In this chapter fundamental concepts on connected operators are

presented. In particular, the definition of opening and closing by reconstruc-

tion and attribute filters is recalled and the representation of the image as a

hierarchical trees of regions is reviewed.

2.1 fundamental properties

Let us consider a grayscale 2D image f with discrete single tone pixel
values. Then, the image f can be defined as a mapping from E, the
image domain (which is a subset of Z

2) into Z. A morphological neigh-

borhood transformation transforms a pixel p of the image f according
to a function ψ and a neighborhood N(p) of p (set of pixels con-
nected to p according to a connectivity rule). This can be formulated
as [ψ( f )](p) = ψ[N(p)] [82]. Obviously, the output of the transform
depends on the function φ considered and on how the neighborhood
N is defined. Usually, the set that defines the neighborhood in such
transformations is known as a structuring element (SE) and it is defined
by a certain shape and a center. The shape is usually a discrete repre-
sentation of continuous shapes (e.g., lines, rectangles, circles, etc.) on
the domain lattice. The center identifies the pixel on which the SE is
superposed when probing the image.

We recall below the definitions of some fundamental properties
of morphological image transformations that will be useful in the
following discussion.

• Idempotence. A transformation ψ is idempotent if the output of
the transformation is independent of the number of times it is
applied to the image: i.e., ψ(ψ( f )) = ψ( f ).

Parts of this chapter were published in:

M. Dalla Mura, J. Benediktsson, J. Chanussot, and L. Bruzzone, Optical Remote

Sensing - Advances in Signal Processing and Exploitation Techniques. S. Prasad,
L. M. Bruce, J. Chanussot Eds. Springer Verlag, 2011, ch. The Evolution of
the Morphological Profile: from Panchromatic to Hyperspectral Images.

M. Dalla Mura, J. A. Benediktsson, and L. Bruzzone, “Classification of remote
sensing images with attribute profiles and extended attribute profiles,” in
32nd Symposium on Remote Sensing for Environmental Sciences (RESES 2010),
Shikanoshima, Fukuoka, Japan, 29 - 31 August 2010, pp. 7–17, invited paper.
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• Increasingness. A transformation is said to be increasing if and
only if it keeps the ordering relation between images, i.e., f ≤ g

⇔ ψ( f ) ≤ ψ(g) ∀ f , g. The notation f ≤ g means that f (p) ≤ g(p)

for each pixel p in the definition domain of the images.

• Extensivity and Anti-extensivity. A transformation ψ is extensive
if, for each pixel, the transformation output is greater or equal to
the original image, i.e., f ≤ ψ( f ). The correspondent property is
anti-extensivity and is satisfied when f ≥ ψ( f ) for all the pixels
in the image.

• Absorption property. The absorption property is fullfilled when
two transformations, defined by different parameters i, j, are
applied to the image, and the following relation is verified:
ψiψj = ψjψi = ψmax(i,j).

Another fundamental concept is that of the so-called connected com-

ponent. In a grayscale image a connected component (also called a “flat
zone”) is defined as a set of connected iso-intensity pixels. Two pixels
are connected according to a connectivity rule. Common connectivity
rules are the 4- and 8-connected, where a pixel is said to be adjacent to
four or eight of its neighboring pixels, respectively. The connectivity
can be extended by more general criteria defining a connectivity class
[102].

2.2 opening and closing by reconstruction

The two fundamental neighborhood transformations in mathematical
morphology are erosion and dilation. Most morphological operations
are based on a selected combination of erosion and dilation. Erosion
and dilation are denoted by εB and δB, where B refers to the structur-
ing element used in the operation. The erosion or dilation operators
transform an input image by giving as output for each pixel p the
infimum (∧) or supremum (∨) of the intensity values of the set of pixels
included by the SE when it is centered on p, respectively. It is impor-
tant to note that infimum and the supremum are the minimum and
maximum of an ordered set, respectively. The definition of the erosion
and dilation transformation for a grayscale discrete image f is given
below.

εB( f ) =
∧

b∈B

f−b, (2.1)

δB( f ) =
∨

b∈B

f−b. (2.2)
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The sequential composition of erosion and dilation leads to the
definition of the morphological opening and closing transformations.
Morphological opening of an image f by a structuring element B is
defined as the erosion of f by B followed by the dilation of the eroded
output by B̆, the reflected structuring element with respect to B:

γB( f ) = δB̆[εB( f )]. (2.3)

In contrast, a morphological closing of an image f by a structuring
element B is defined as the dilation of f by B followed by the erosion
of the dilated output by the reflected structuring element B̆:

φB( f ) = ε B̆[δB( f )]. (2.4)

While the output of an erosion would have an effect on all the brighter
structures independent of the size, an opening flattens bright objects
that are smaller than the size of the structuring element and, because
of dilation, mostly preserves the bright large areas. Similar conclusion
can be drawn for darker structures when a closing is performed.
The terms brighter and darker are considered with respect to the
surroundings gray tones. The morphological opening and closing
operators usually lead to severe effects on the image especially when
the SE is large with respect to the size of the structures in the image.
Moreover, with these operators, the geometrical characteristics of the
structures can be distorted or completely lost. This is obviously an
undesirable effect when information on the objects of interest have to
be retrieved after the filtering.

Morphological operators based on the geodesic reconstruction can ef-
fectively process the image by overcoming this issue. This is achieved
by either completely removing or preserving the connected compo-
nents in the image according to their interaction with the SE of the
transformation. In greater detail, if a component in the image is larger
than the SE then it will be unaffected, otherwise it will be merged to a
brighter or darker adjacent region depending upon whether a closing
or opening is respectively applied.
An opening by reconstruction is performed in two separated phases
and can be formally defined as:

γ
(i)
R ( f ) = Rδ

f [ε
(i)( f )]. (2.5)

The first transformation, εi( f ), is an erosion of the image f with
an SE of size i, which defines the size of the opening. This aims at
creating the so called marker image for the reconstruction operation.
The second phase performs a reconstruction by dilation, Rδ

f ( · ), of
the marker image taking as reference mask f . This operation is an



2.3 attribute filters 16

iterative procedure that applies geodesic dilation (which is defined as
the infimum of the elementary dilation and the mask image) on the
marker image until idempotence (δ(n)f = δ

(n+1)
f ):

Rδ
f ( · ) = δ

(n)
f ( · ) = δ

(1)
f · δ

(1)
f . . . δ

(1)
f ( · )

︸ ︷︷ ︸

ntimes

. (2.6)

The reconstruction phase permits to fully retrieve all those structures
that are not completely suppressed by the erosion and it potentially
needs several iterations before reaching stability.
By duality, a closing by reconstruction is defined as the reconstruction
by erosion of f from the dilation of f using a structuring element of
size n:

φ
(i)
R ( f ) = Rε

f [δ
(i)( f )]. (2.7)

It is important to note that the result obtained with operators by re-
construction is less dependent on the shape of the selected structuring
element than in the case of morphological opening or closing. Oper-
ators by reconstruction are also less severe than the corresponding
morphological ones, which can be explained by analyzing the ordering
relations between the operators:

γ ≤ γR ≤ f ≤ φR ≤ φ. (2.8)

An example of the iterative process of an opening by reconstruction
operation according to (2.5) is presented in Figure 2.1. It worths not-
ing that the compact regions that were not completely erased by the
erosion are fully retrieved in a single iteration of the reconstruction
process. Conversely, the reconstruction of the elongated region needs
27 iterations. Thus, the presence of large regions with complex shapes
strongly affects in terms of complexity the analysis, since they require
a significant number of iterations for reconstructing the entire region
and each iteration of the reconstruction process performs a processing
of the whole image. However, more efficient algorithms for perform-
ing the reconstruction exists which permit to reduce of an order of
magnitude the complexity of this transformation [103].

2.3 attribute filters

Morphological attribute filters are morphological transformations that
process an image according to a criterion. A generic criterion T can
be defined as a mapping of the set S of values considered by T to the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.1: Example of opening by reconstruction. (a) Original binary 30×30

pixels image (F); (b) Morphological erosion of (a) with B a disk
of diameter 5 pixels as SE (εB( f )); (c) Reconstruction by dila-
tion, iteration 1; (d) Reconstruction by dilation, iteration 2; (e)
Reconstruction by dilation, iteration 10; (f) Reconstruction by di-
lation, iteration 20; (g) Reconstruction by dilation, iteration 25; (h)
Reconstruction by dilation, iteration 27 (⇒ γR( f )).

couple of Booleans { f alse, true}. The criterion is evaluated on each
connected component of the image. If the criterion is verified, then the
component is preserved. If it is not verified, the component is removed.
The criteria are usually related to the question whether the value of
an attribute α of the component C fulfills a predefined condition,
e.g., T(C) = α(C) ≥ λ, with {α(C), λ} ∈ R or Z for scalar attributes,
where the attributes can actually be any measure computable on the
image regions. This leads to great flexibility in the behavior of attribute
filters, which consequently improves their capability in modeling the
spatial information with respect to operators based on fixed SEs. For
example, the attributes considered can be purely geometric (e.g., area,
length of the perimeter, image moments, shape factors), textural (e.g.,
range, standard deviation, entropy), etc.

Since attribute filters can only transform an image by merging its
connected components, these filters belong to the family of connected
filters [89]. Actually, morphological attribute filters are connected
filters and the morphological operators by reconstruction are included
in their definition [89].
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A very important property of the criterion considered in the trans-
formation is increasingness. A criterion is said to be increasing when, if
it is verified for a connected component, then it will be also true for
all the components nested in it. This property leads to have for exam-
ple T(Cj) = true when also T(Ci) = true for any Cj ⊆ Ci. Examples
of increasing criteria involve increasing attributes (e.g., area, volume,
size of the bounding box, etc.) and an inequality relation (e.g., ≥). In
contrast, non increasing attributes, such as scale invariant measures
(e.g., homogeneity, shape descriptors, orientation, etc.), lead to non
increasing criteria.

In the following the definition of attribute filters will be recalled for
binary and grayscale images. Attribute openings for binary images
consider an increasing criterion T. According to [89], they are obtained
by computing a trivial opening, ΓT, on the output of a connected open-
ing, ΓF, applied to all the connected components of a binary image F.
Given a pixel p in the image domain and a connected component C,
the connected opening is computed as:

ΓF(p) =
{ C i f p ∈ C;

∅ otherwise.
(2.9)

The trivial opening keeps the regions for which the increasing criterion
T holds. This can be expressed as:

ΓT(C) =
{ C i f T = true;

∅ otherwise.
(2.10)

Attribute opening is then given by:

ΓT( f ) =
⋃

p∈F

ΓT(ΓF(p)). (2.11)

If the criterion considered is increasing, the resulting transformation is
increasing, idempotent and anti-extensive (i.e., it is an opening). In con-
trast, if the increasingness property is not fulfilled by the criterion, the
filter remains idempotent and anti-extensive but not increasing any-
more. For this reason, the transformation based on a non-increasing
criterion is not an opening, but a thinning.
Analogous considerations can be made for the dual transformation by
considering the background regions instead of the foreground ones.
If the criterion is increasing, the transformation is actually a closing

otherwise it is a thickening.
An example of binary attribute thinnings is shown in Figure 2.2.

From the filtered images it is possible to notice how the elongated
objects can be isolated from the other compact objects by using the
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moment of inertia attribute (Fig. 2.2c), whereas when considering
the area as attribute only one of the two elongated objects is kept
(Fig. 2.2b). This simple example proves how complementary informa-
tion is extracted by considering different attributes.

A1 = 9
A2 = 0.15

A1 = 123
A2 = 0.51

A1 = 25
A2 = 0.17

A1 = 24
A2 = 0.24

A1 = 13
A2 = 0.17

A1 = 23
A2 = 0.99A1 = 36

A2 = 0.16

(a)

(b) (c)

Figure 2.2: Example of binary attribute thinnings. (a) Original 30×30 pixels
binary image showing the values of the attributes A1 (area) and
A2 (moment of inertia) for each region in the image; (b) Binary
attribute opening with predicate T = A1 ≥ 50; and (c) Binary
attribute thinning with predicate T = A2 ≥ 0.5.

The extension of the operators from binary to gray-scale images
is straightforward when the criterion is increasing because of the
principle of threshold superposition [104]. Since a grayscale image can
be expressed as the sum of all its binary thresholds, then the output
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image of these filterings is the sum of all the filtered input threshold
images, i.e.,

γT( f ) =
K

∑
k=0

ΓT(Fk) (2.12)

with Fa the binary threshold image f at graylevel k ∈ [0, K] the des-
tination domain of the grayscale values. Equation (2.12) can also be
expressed as:

γT( f )(p) = max{k : ΓT(Fk)(p) = 1} p ∈ E. (2.13)

When the attribute criteria are not increasing, the extension to
numerical functions is not straightforward anymore. For example, let
us consider a numerical function f and a binary criterion T that acts
on the binary sections Fk of f at successive thresholds k1 < k2 < k3. We
may have Fk2 = ∅, whereas Fk 6= ∅ for k = {k1, k3}. Thus, the results
of the transformation applied to successive sections of the image do
not decrease as k increases. Therefore, they cannot be considered as
the stack of sections of a function. The simplest way to force the
decreasingness of the sequence is to replace the image Fk by the
union of all the binary thresholds from the top section, i.e., by F′

k =

∪{Fi( f ), i ≥ k}. This leads to the following definition of grayscale
attribute thinning with a non increasing criterion T̃:

γT̃
max( f )(p) = max{k : ΓT̃(F′

k)(p) = 1}. (2.14)

This solution leads the grayscale attribute thinning (see (2.13)), which
is referred to as max rule in [90]. However, other arbitrary filtering
strategies can be implemented in order to achieve different output
effects when extending the binary thinning and thickening to nu-
merical images [90, 105]. For example, Urbach et al. found that the
so-called subtractive rule is particular suitable when considering shape
descriptors as attributes [105]:

γT̃
sub( f )(p) =

K

∑
k=0

ΓT̃(Fk)(p). (2.15)

If the criterion is increasing, then (2.14) and (2.15) are equal to (2.13).
Similar conclusions can be drawn for attribute closing and thickening.

2.4 representations of an image as a tree

Let us consider a discrete 2D image f that is a map from the discrete
image domain E ⊆ Z

2 to Z. Since the codomain of f is ordered, the
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image can be fully represented by its upper or lower level sets, which
are defined as

[ f ≥ λ] = {x ∈ E, f (x) ≥ λ}

[ f < λ] = {x ∈ E, f (x) < λ},
(2.16)

with λ ∈ Z. Thus, upper and lower level sets are composed by binary
images obtained by thresholding the input image at all the values
mapped by the function f . The connected components extracted by
the binarization of the input image related to the upper or lower level
sets can be grouped in the sets:

U( f ) = {X : X ∈ CC([ f ≥ λ]), λ ∈ Z} (2.17)

L( f ) = {X : X ∈ CC([ f < λ]), λ ∈ Z} (2.18)

with CC( f ) the connected components of the generic image f . If we
consider f as a function of the height (coded by the values of the
codomain), the upper (lower) level sets are obtained by slicing the
topographic relief at different heights and projecting the points with
greater (lower) values than the thresholding height to the plane at the
given height. By varying the height of the plane, it can be seen how
connected components (i.e., regions of isolevel) can merge, enlarge,
shrink, split, appear or disappear according to the morphology of
the elevation surface. Among the connected components extracted
by either the upper or lower level sets (belonging to U( f ) or L( f )

respectively) there is an inclusion relationship [106]. In greater details,
any two components A, B ∈ U( f ) are either nested (A ⊆ B or B ⊆ A)
or disjoint (A ∩ B = ∅). Analogous considerations can be done for
L( f ). Due to the inclusion relations between the flat zones in the
image, it is possible to associate a node of a tree to each connected
component and represent the image as a hierarchical structure. The
hierarchical tree representing the components in U( f ) (L( f )) and their
inclusion relations is called max-tree (min-tree) [90]. In the max-tree
representation, the root node is the entire image domain at the lowest
grayscale value while the leaves of the tree are the regional maxima.
An example of max-tree is reported in Fig. 2.3. By duality, the min-tree
can be obtained by generating the max-tree on the complement of the
image and shows as root the whole image at the highest grayscale
value and as leaves the regional minima. Both min- and max-trees
are equivalent representations of the image. However, not all the com-
ponents present in U( f ) are also present in L( f ) and vice versa. For
example, the top of two peaks (i.e., regional maxima) in the image
having the same height, will be represented in the upper level set as
two distinct components while in the lower level set they will belong
to the same component. A self-dual representation of the connected
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Figure 2.3: Example of max-tree. (a) Gray-scale image with intensities rang-
ing from 0 to 3; (b) Image in (a) with its connected components
labelled; and (c) Max-tree of (a). This shows the relations between
the nodes associated to the connected components in (b).

components of an image called inclusion tree (or tree of shapes) exists
for continuous images [107]. When dealing with discrete images (as in
this work) different discrete connectivity rules have to be associated to
minima and maxima regions (e.g., 8- and 4-connectivity for the defini-
tion of the upper and lower level sets, respectively [106]) leading to a
quasi self-dual representation of the image. If only one type of connec-
tivity was used for computing the inclusion tree, inconsistent results
would be obtained since the notion of hole is not properly defined. We
believe that the fact that the inclusion tree is not completely self-dual
does not affect the results for practical applications. For example, even
connected operators applied in an alternating sequence (providing
a quasi self-dual effect biased by which operator starts first in the
sequence) proved to be suitable for obtaining a simplification of the
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image [93]. The inclusion tree is also a complete representation of the
input image (i.e., it is possible to fully retrieve the image from the tree).
The inclusion relations between flat regions represented in this tree
structure is given by the saturation of the connected components. The
saturation is an operator that fills the holes of a component. With holes
of a connected component A are intended all those regions that belong
to the background of A but which are not connected to its border. A
saturated region (i.e., component with its holes filled) is also called a
shape. Thus, according to the operator of saturation, a component A

can be considered as included in B (regardless their relative graylevel
difference) if A ⊆ B in U( f ) or L( f ). The construction of the tree can
be performed by an efficient algorithm called Fast Level Set Transform
(FLST) that starts from considering the regional extrema (leaves of the
tree) and progressively saturates the components until only a single
flat region (the root of the tree) is obtained [107]. The progressive satu-
ration of the components explains the inclusion relations on which the
tree is constructed. The inclusion tree is a more general representation
of the image with respect the max- and min-trees since comprehends
both the U( f ) and L( f ) sets.

Another representation of the image as hierarchical tree of isolevel
regions is given by binary partition trees (BPTs) [108]. Since BPTs contain
those connected components considered more interesting according
to the criterion involved during the tree creation (e.g., homogeneity,
size, contrast, etc.) they can enhance certain features (according to the
criterion used) more than a min- max- or inclusion tree. Connected
operators can be efficiently computed on the trees generated from the
image [109]. The representation of the image as max-tree is useful
for performing anti-extensive connected operators (e.g., thinning). By
duality, extensive connected operators (e.g., thickening) can be com-
puted on the min-tree. Self-dual connected operators can be obtained
by considering an inclusion tree. Moreover, since the inclusion tree
stores both the components of the upper and lower level sets, one
can perform an anti-extensive or extensive transformation by only
considering the regions of the upper or lower level set, respectively.
Since connected operators modify an image only by merging its flat
zones, the filtering is performed on the hierarchical tree as a pruning.
In general, the tree is pruned by evaluating a binary predicate T on
the nodes and removing those that do not fulfill it. The predicate
usually compares an attribute attr computed on the pixels belonging
to a connected component C (corresponding to a node in the tree) and
a given threshold value taken as reference λ: e.g., T = attr(C) ≥ λ.
The attributes can be any measure computable on the regions (e.g.,
area, volume, entropy, etc.).
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If we consider a filtering done according to an increasing predicate
(i.e., for the connected components A and B holds that if T(A) = true

then T(B) = true with B ⊆ A) the connected operator obtained will
also be increasing and the pruning can be performed by removing
entire branches (constituted by a node and all its descendants) from
the tree. If the predicate is non-increasing, then different filtering rules
can be applied in order to determine which nodes have to be removed
since the evaluated criterion could be fulfilled for certain nodes but
not for their descendants [109].

2.5 attribute filters based on tree representations

Attribute filters computed on gray-level images according to the defi-
nitions given in Sec. 2.3 are not efficient in terms of implementation.
However, it is possible to take advantage of the hierarchical represen-
tations of the image as trees (e.g., max-tree).
The computation of the attribute filters on the max-tree structure is
composed by three steps which are detailed in the following.

i) Max-tree creation. This step aims at generating the tree from
the image by identifying the connected components in the im-
age and by modeling the hierarchical representations between
nested nodes. This phase of the process is computationally most
demanding.

ii) Evaluation of the criterion. After the creation of the tree, the cri-
terion is evaluated by comparing the attribute extracted from
each node and the threshold value (λ) which is considered as
reference and defines the degree of filtering. Then, the tree is
pruned by removing those nodes that do not fulfill the crite-
rion. If the criterion is non increasing, different filtering rules
can be implemented as reported above (see (2.14), (2.15)). They
correspond to different strategies in pruning the tree [90, 105].

iii) Image restitution. The final step is the conversion of the pruned
tree back to an image.

Since the max-tree is constructed by growing the tree from the lowest
grayscale value to the maximum one, this structure is suitable for
transformations such as opening and thinning. On the contrary, for
operators of closing and thickening, the min-tree is considered. A min-
tree is the representation of the image dual with respect to max-tree
and can be simply computed as the max-tree of the complement of
the input image.
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R E L AT E D W O R K S : T E C H N I Q U E S B A S E D O N
M O R P H O L O G I C A L P R O F I L E S

Abstract. This chapter aims at recalling the concepts of Morphological Profile

and Extended Morphological Profile and their theoretical definitions. More-

over, an overview of the many significant contributions that have appeared in

the literature since the definition of the MP is also reported.

3.1 introduction

Morphological Profiles (MPs) are an effective tool for extracting spa-
tial features from the image in order to describe the objects in the
scene [72]. A MP performs a multiscale decomposition of an image
based on a simplification of the scene through the suppression of
progressively larger details. The MP is defined on the morphological
operators of opening and closing by reconstruction (morphological
operators particularly suitable for the analysis of high geometrical res-
olution images [82]) and it was firstly applied in 2001 on panchromatic
images [72]. From its presentation, the MP was used in an increas-
ing number of applicative domains. Remarkably, the MP definition
has been generalized from the analysis of a single band image (e.g.,
panchromatic) to hyperspectral images made up of hundreds of spec-
tral channels and has become one of the state of the art techniques for
the analysis of such images [110].

In this chapter, we present an overview of the concepts of MP
and of its extension suitable for the analysis of hyperspectral images,
extended morphological profile (EMP). Furthermore, we give an overview
of the different techniques involving the MP that have appeared in the
literature allowing the reader to follow the evolution of the MP over
this last decade.

This chapter were published in:

M. Dalla Mura, J. Benediktsson, J. Chanussot, and L. Bruzzone, Optical Remote

Sensing - Advances in Signal Processing and Exploitation Techniques. S. Prasad,
L. M. Bruce, J. Chanussot Eds. Springer Verlag, 2011, ch. The Evolution of
the Morphological Profile: from Panchromatic to Hyperspectral Images.
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3.2 morphological profiles for the analysis of panchro-
matic images

3.2.1 Morphological Profiles and Differential Morphological Profiles

In general, for real applications it is unlikely that filtering of an im-
age with a single opening and closing by reconstruction completely
models the spatial information in a complex scene. This behavior
might limit the capability of the image analysis. A common proce-
dure is to filter an image with a sequence of many different SEs in
order to extract more information on the scene. Granulometries and
anti-granulometries are examples of this approach. A granulometry
is obtained by the application of a series of opening with SEs of in-
creasing sizes and fixed shape. An anti-granulometry is generated
analogously by closing operators. By analyzing the result of a gran-
ulometry one is able to gather information on the size distribution
of those objects brighter than the surrounding background. Thus, we
can refer to this procedure as a multi-scale analysis. When performing
such an analysis with operators based on the geodesic reconstruction,
the progressive simplification of the image does not come at the detri-
ment of the geometry of those objects that are not canceled from the
image.

The morphological profiles are based on these ideas. Morphological
profiles were introduced by Pesaresi and Benediktsson in [72] and
defined as a concatenation of an anti-granulometry followed by a
granulometry performed by closing and opening by reconstruction
transformations, respectively. The anti-granulometry is referred as
closing profile Πφ and the granulometry as opening profile Πγ. The
morphological opening profile of an image f is an array of n openings
performed on the original image using a SE of size λ, and it is defined
as

Πγ( f ) = {Πγλ
( f ) : Πγλ

( f ) = γλ
R( f )} λ = 0, 1, . . . , n. (3.1)

Thus by duality, the morphological closing profile composed by n

levels can be denoted by

Πφ( f ) = {Πφλ
( f ) : Πφλ

( f ) = φλ
R( f )} λ = 0, 1, . . . , n. (3.2)

Therefore, both the opening and closing profiles are generated by
opening and closing by reconstruction operators with the image f

taken as mask and with SEs of fixed shape and size increasing on the
n levels. When a closing profile and an opening profile, both of size n,
are joined a morphological profile is obtained. The MP is of size 2n− 1,
because when λ = 0 the opening and closing profiles are equal to the
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original image (Πγ0 = γ0
R( f ) = Πφ0 = φ0

R( f ) = f ) and thus they are
considered only once (see Fig. 3.1)

MP( f ) =

{

Πφλ
( f ), λ = (n − 1 + i) i ∈ [1, n];

Πγλ
( f ), λ = (i − n − 1) i ∈ [n + 1, 2n + 1];

}

.(3.3)

The derivative of a MP, denoted as differential morphological profile

(DMP) [72], can be computed as the differences between two adjacent
levels of the MP,

DMP( f ) =

{

∆φλ
( f ), λ = (n − 1 + i), i ∈ [1, n];

∆γλ
( f ), λ = (i − n − 1), i ∈ [n + 1, 2n];

}

(3.4)

with the differential closing profile ∆φλ
and differential opening profile

∆γλ
simply defined as

∆γ = {∆γλ
: ∆γλ

= Πγλ−1 − Πγλ
} λ = 1, 2, . . . , n; (3.5)

∆φ = {∆φλ
: ∆φλ

= Πφλ
− Πφλ−1} λ = 1, 2, . . . , n. (3.6)

The DMP stores the residuals of the sequential transformations ap-
plied to the image. This can be particular useful when the multi-scale
analysis has to be visualized, since the most important components of
the profiles are more evident than when the MP is considered.
Moreover, from the DMP the information on the scale of the objects
in the image can be extracted. In [72], this information was used for
generating from the image a multiscale segmentation map, called
morphological characteristic. In greater detail, each pixel in the image is
labeled with the index of the level in the MP in which the maximum
of its derivative (i.e., DMP) occurs.
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Figure 3.1: Example of MP composed by 5 levels, obtained by 2 openings
and 2 closings (j > i). For generating this MP a squared SE was
considered, with size of 5 (i) and 9 (j) pixels.

3.2.2 Experimental Analysis and Discussion

Morphological profiles were first applied in [72] for segmenting two
800×800 pixels HR panchromatic images acquired by Indian Remote
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(a) (b)

Figure 3.2: Panchromatic images. (a) IRS-1C image of the city of Athens,
Greece (800×800 pixels, 5.8 m geometrical resolution, spectral
range 0.5-0.75 µm; (b) IKONOS image of the city of Reykjavik,
Iceland (975×639 pixels, 1m geometrical resolution, spectral range
0.53-0.93 µm.

Sensing 1C (IRS-1C) with a 5 m geometric resolution on a dense urban
area of Milan, Italy, and on an agricultural area of Athens, Greece. The
application of operators by reconstruction to the two images showed
a better representation of the geometry of the objects in the scene
with respect to the processing with standard morphological operators.
Moreover, the segmentation maps obtained by the morphological
characteristic of the images were not affected by the oversegmentation
effect that was noticeable when a classical watershed segmentation
was performed.

In [111], the MPs were applied for the first time in a classification
task. An IRS-1C panchromatic image of Athen, Greece, (Figure 3.2a)
and an IKONOS panchromatic image from Reykjavik, Iceland, (Fig-
ure 3.2b) were classified with a conjugate gradient neural network.
In both the experiments, eight closings and eight openings were ap-
plied to the original images leading to a 17-dimensional feature vector
considered as input to the neural network. In order to reduce the
dimensionality of the filtered data, two feature extraction methods
and a feature selection technique were investigated. The considered
approaches were: i) discriminant analysis feature extraction (DAFE)
[2]; ii) decision boundary feature extraction (DBFE) [2]; and iii) a sim-
ple feature selection based on sorting the indexes of the DMP using
the value of the discrete derivative. The obtained classification results
showed as the use of the features extracted by the MP increased the
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overall accuracy from 69.4% and 70.9% of the original panchromatic
image to 77.7% and 95.1% when considering the entire differential
profile for the IRS-C1 and IKONOS image, respectively. Among the
techniques of feature reduction, the DBFE outperformed DAFE and
the feature selection technique. However, lower accuracies than those
obtained by considering the whole DMP were obtained.

A morphological profile was built in [112] by applying alternating
sequential filters (ASF) by reconstruction instead of the operators of
opening or closing by reconstruction. Alternating sequential filters
by reconstruction are iterative sequential applications of an opening
and a closing by reconstruction (or vice versa) of increasing size. The
MP built on ASF were applied to the IKONOS panchromatic image in
Figure 3.2b. The feature extracted were classified by a neural network.
Although the standard MP performed better than the one with ASF
on the original, the latter showed to be more robust when analyzing
the image corrupted by Gaussian noise.

In [113], the DMP was interpreted as a fuzzy measure of the charac-
teristic size and contrast of the objects in the image. The fuzzy measure
extracted from the DMP was compared to predefined possibility dis-
tributions in order to derive a membership degree for the thematic
classes of the samples in the image. The decision is taken by selecting
the class with the highest membership degree. The experimental re-
sults were obtained from the analysis of the Reykjavik IKONOS image
in Figure 3.2b.

In order to perform a better modeling of the spatial features in the
image, in [114] the computation of two MPs with SEs of different
shape was proposed for classification. The authors considered in their
analysis a disk-shaped SE and a linear SE with different orientations
(which generate directional profiles [84]). While the MP built with
the former SE is suitable to extract the smallest size of the structures,
the latter allows one to infer the largest size of the objects. Moreover,
an interesting variant of the geodesic reconstruction called “partial
reconstruction” was presented. The proposed reconstruction proce-
dure performs a partial geodesic reconstruction (the iterative process
is converging to idempotency). This leads to reaching a trade-off be-
tween the preservation of the objects geometries and a reduction of
the over segmentation effect introduced by standard reconstruction.
Two study areas were considered in the analysis, an IKONOS and a
Quickbird panchromatic images both acquired on the area of Ghent
(Belgium). The proposed technique significantly outperformed the re-
sults obtained without considering any spatial feature in the analysis.
Furthermore, an increase in the overall accuracies with respect to the
case with standard reconstruction of about 2% and 7% was achieved



3.3 extended morphological profiles 30

by considering the two MPs built with partial reconstruction for the
two sites, respectively.

3.3 extended morphological profiles for the analysis of

multispectral and hyperspectral images

3.3.1 Extended Morphological Profile

The extension of the MP to hyperspectral data presented in [115],
which led to the definition of the Extended Morphological Profile, is
achieved through a two step procedure. At first, the multidimensional
data is reduced through a PCA to few informative dimensions (i.e.,
the first principal components, PCs). The PCs corresponds to the
eigenvectors of the estimated covariance matrix of the data and are
ordered increasingly according to the values of the correspondent
eigenvalues. The first PCs are meaningful for data representation since
they account for most of the variance of the data in the original feature
space. In general, the first considered PCs accumulate most of the
total variance of the data (e.g., usually a threshold on 99% is taken).
Subsequently, on each PC a full MP is computed. Thus, the EMP of
the first c principal components can be formalized by

EMP( f ) = {MP(PC1), MP(PC2), . . . , MP(PCc)}. (3.7)
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Figure 3.3: Example of EMP computed on the first two PCs and composed
by 5 levels for each MP.

As seen from (3.7), the EMP is the concatenation of MPs on a single
stack. Since the dimensionality of the EMP can rapidly increase when
increasing the number of considered PCs and the levels of the MP,
in [115] the application of feature extraction techniques was proposed
in order to decrease the curse of dimensionality phenomenon [116].
Feature extraction techniques for classification should be considered
in order to achieve a dimensionality reduction and an effective sep-
aration of the distributions of the classes in the transformed feature
space [117].
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3.3.2 Experimental Analysis and Discussion

(a) (b)

Figure 3.4: Hyperspectral images acquired by ROSIS-03 sensor over the area
of Pavia (Italy) with 2.6m of spatial resolution. (a) Pavia, city
center, 1096×715 pixels, 102 spectral bands; (b) Pavia, University
area, 610×340 pixels, 103 spectral bands. 1

The extended morphological transformations based on the ordering
of the pixels multidimensional values done by considering spectral-
distance metrics were applied in [118] to two hyperspectral images
acquired by AVIRIS and DAIS sensors. The AVIRIS image was ac-
quired on Salinas Valley (CA) and is composed by 512×217 pixels
with 192 spectral bands with 3.7m of spatial resolution. The DAIS im-
age showed a 400×400 pixels scene of the center of Pavia (Italy) with
a 5m geometrical resolution. The classification accuracies obtained by
the presented techniques outperformed ones achieved by considering
only the original hyperspectral images up to 8% and 7% for the two
images, respectively.

The EMP presented in Sect. 3.3.1 was applied in [115] to two hy-
perspectral images, one acquired by the DAIS sensor on the center
of Pavia (400×400 pixels, 80 spectral bands, 2.4 geometrical resolu-
tion) and the other collected by the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) over the Washington DC Mall area
(1280×307, 189 spectral bands, 2.8m spatial resolution). The experi-
ments were obtained by considering the first two PCs for building
the EMP. When considering the features extracted by the EMP, the
overall accuracy in classifying the test sites with a neural network sig-
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nificantly increased with respect to considering only the hyperspectral
data (+45% and +12% for the two images, respectively). Moreover,
DAFE, DBFE, and NWFE [2] were considered for reducing the dimen-
sionality of the data before the classification. Although a significant
reduction of the dimensionality of the data was achieved (i.e., reducing
the load for the classification stage) no increase in terms of overall
accuracy were accounted with respect to considering the EMP with
full dimensionality. However, among the considered feature extraction
techniques, in both cases NWFE performed the best among the others
in terms of classification accuracies reaching values of accuracy close
to those obtained by the full EMP.

In [119] the features extracted by an EMP computed on the first
PC were considered by using five classifiers (Maximum Likelihood
for Gaussian data, Fisher linear discriminant, the ECHO classifier,
Fuzzy ARTMAP and a feed forward neural network classifier) along
with two feature extraction techniques (DAFE and DBFE). The data
used in the experiments involved two test sites on the urban area of
Pavia, Italy, acquired with the Digital Airborne Imaging Spectrometer
(DAIS). Each hyperspectral image was composed of 80 channels with
a spatial resolution of 2.6m. When considering the morphological
features the overall accuracy increased by more than 27% with respect
to considering the first PC alone. Moreover, the reduction of the feature
size with the DBFE technique further improved the accuracy of about
2%.

In [120], ICA was considered instead of PCA for computing the EMP.
ICA, in contrast to PCA, leads to a better extraction of the information
sources (especially when they are non Gaussian). In experiments an
hyperspectral image of the center of Pavia (Italy) acquired by the
ROSIS-03 sensor (see 3.4a) was considered. The classification was per-
formed with a maximum likelihood classifier. The overall accuracy
obtained by the EMP built on the independent components outper-
formed by 5% the overall accuracy of the classification of the original
hyperspectral data.

Kernel Principal Component Analysis instead of the conventional
PCA was considered in [121] as feature reduction technique for com-
puting the EMP. Results were obtained for three hyperspectral images,
two acquired on the city of Pavia (Italy) (Figure 3.4a, 3.4b) and one
on Washington DC Mall (1280×307, 189 spectral bands, 2.8m spatial
resolution). An SVM classifier with linear and Gaussian kernels was
considered in the experiments. The results obtained proved that KPCA
can extract more informative components with respect to PCA. In fact,
the EMP computed on the KPCs increased up to +20% and +5% the
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overall accuracy obtained by the classification of the hyperspectral
data and with the EMP with PCA, respectively.

Several feature extraction and selection methods were considered
for building the EMP. The classification maps obtained with a random
forest and an SVM classifier applied to the hyperspectral images
reported in Figure 3.4a and 3.4b, showed how the EMP with PCA
is not adequate in terms of overall accuracy with respect to other
techniques. In particular, NWFE and BDFS performed the best on the
experiments with both the classifiers.

The work presented in [122] was devoted to the fusion of spatial
features extracted through a standard EMP and the original hyper-
spectral data. This approach was proposed to increase the amount
of spectral information considered in the classification task. The ex-
perimental analysis was carried out on two hyperspectral images of
the city of Pavia (Italy) both acquired by ROSIS-03 sensor. The two
original images are shown in Figure 3.4a and 3.4b. Feature extraction
techniques were also employed for reducing the dimensionality of the
data and an SVM classifier was used for generating the classification
maps. For the university site (see Figure 3.4b), the overall accuracy
increased from 79% to 84% (without feature extraction) and to 88%
(with feature extraction), with respect to the EMP obtained with the
proposed approach.

In [123], an extension of the segmentation procedure based on the
analysis of DMPs for panchromatic images [72] was proposed. The
novel segmentation technique was developed for automatic object
detection in high-resolution images by combining spectral and struc-
tural information. In contrast to [72], the DMPs computed on the first
PCs extracted from the images were analyzed in order to extract the
connected components that best represent each object in the scene.
Three hyperspectral images were considered: the image of the center
of Pavia (Figure 3.4a), the HYDICE image acquired over Washington
DC Mall (1280×307, 189 spectral bands, 2.8m spatial resolution), and
a 500×500 pansharpened IKONOS image of Ankara (Turkey). The ob-
tained results showed a more precise segmentation of the images and
a reduced oversegmentation effect with respect to the maps obtained
by the morphological characteristic of [72].

3.4 conclusion

In this chapter an overview on the use of the morphological profile
(MP) in remote sensing applications has been given. The MP proved
to be an effective tool for the analysis of high geometrical resolution
remote sensing images because it is defined as a composition of
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opening and closing by reconstruction transformations. Operators by
reconstruction permit to filter the image by entirely preserving the
geometry of those structures that are not erased from the scene.

The definition of the extended morphological profile (EMP) for
multispectral and hyperspectral images was presented. The vectorial
image is reduced through Principal Component Analysis for con-
structing the EMP to a reduced number of images, on which MPs are
computed. The EMP is finally obtained as the concatenation of the
single MPs.

An overview of results obtained by experimental analysis of various
techniques developed using the MP and EMP were reported. A signif-
icant increase in classification accuracies was observed when features
extracted by MP/EMP (or their variants or extensions) were used
for classification in comparison to approaches that only use spectral
information.



Part II

P R O P O S E D T E C H N I Q U E S F O R I M A G E
C L A S S I F I C AT I O N A N D O B J E C T E X T R A C T I O N



4
AT T R I B U T E P R O F I L E S

Abstract. This chapter is devoted to present the concept of Attribute Pro-

file. At first, the motivations that led to the definition of the AP are given.

Subsequently, the AP is theoretically introduced. Considerations on the com-

putational complexity are also reported. Finally, the effectiveness of AP is

assessed on a classification task.

4.1 introduction

As can be observed from the literature reviewed in Ch. 3, the com-
putation of a multi-scale processing (e.g., by MPs, DMPs, EMPs) has
proven to be effective in extracting informative spatial features from
the analyzed images. For example, MPs computed with a compact SE
(e.g., square, disk, etc) proved to be suitable for modeling the size of
the objects in the image (e.g., in [111] this information was exploited
for discriminating small buildings from large ones). Nevertheless, pro-
files built by filters based on SEs have their main limitation in the
capability to model other feature than the size of the objects. The
computation of two MPs was proposed for modeling both the length
and the width of the structures [114]. In greater detail, one MP is built
by disk-shaped SEs for extracting the smallest size of the structures,
while the other employs linear SEs (which generate directional profiles
) for characterizing the objects maximum size (along the orientation
of the SE). This is useful for defining the minimal and maximal length
but, as all the possible lengths and orientations cannot be practically
investigated, such analysis is computationally intensive. Furthermore,
if one attempts to filter the image according to different degrees of
spectral homogeneity or according to different shape descriptors, the
results would be rather cumbersome. This limitation is particularly
important when the discriminative power of the analysis could have
been increased by modeling other features rather than the size (e.g.,
contrast, texture, geometry, etc.).

This chapter was published in:

M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Morpholog-
ical attribute profiles for the analysis of very high resolution images,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 48, no. 10, pp. 3747 – 3762,
Oct. 2010.
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Attribute filters can overcome this limitation of the MPs [88]. Due
to their flexibility they can perform a processing of an image based on
many different types of features. In fact, the attributes can be of any
type. For example, they can be purely geometric, textural, based on
the contrast, etc.
In this chapter, we present Attribute Profiles for characterizing the spa-
tial information of VHR data by using a multilevel approach based on
morphological attribute filters. APs are proposed to be an extension of
the morphological profiles and of their derivative concepts, which are
conventionally defined for openings and closings by reconstruction.
Thus, the proposed theoretical framework permits the definition of
a more general set of profiles based on the morphological attribute
operators. The profiles built by morphological attribute filters permit a
more flexible investigation of the scene, leading to a better modeling of
the spatial information. Moreover, thanks to an efficient implementa-
tion, their application becomes computationally less demanding than
conventional profiles built with operators by reconstruction.

4.2 limitations of morphological profiles

The main limitation of MPs lies in the partial analysis that is performed
with the computation of the profile. In greater detail, MPs attempt
to model the spatial information within the scene by analyzing the
interaction of a set of SEs of fixed shape and increasing size with the
objects in the image. Although this is a powerful tool for performing
an investigation on the scale of the structures (thanks to the suitability
of the SEs for modeling the size of the objects), it leads only to a partial
characterization of the objects in the scene. In fact, one could aim at a
description of the image based on other features (e.g., shape, texture,
etc.) rather than the size in order to increase the discriminative power
of the analysis. From a theoretical viewpoint, filters by reconstruction
based on SEs could be used to model other geometrical features, e.g.,
to represent the information on the shape of the regions by analyzing
a set of MPs generated by SEs of different shapes. Nonetheless, the
generation of profiles for different shapes would be computationally
unfeasible. In fact, in order to perform an analysis aimed at modeling
the shape characteristic, the range of the possible sizes assumed by all
the components in the image should be investigated by each profile in
order to remove the dependence of the results to the scale.
Another important limitation is the strong constraint given by the use
of a SE for modeling the concepts of different characteristics of the spa-
tial information (e.g., size, shape, homogeneity, etc.). This limitation is
particularly evident when features more complex than the geometrical
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primitives of size and shape are required (e.g., shape factor, length of
the skeleton of a region, etc.). Moreover, SEs are intrinsically unsuit-
able to describe features related to the graylevel characteristics of the
regions (e.g., spectral homogeneity, contrast, etc.).
A final limitation of MPs is the computational complexity associ-
ated with their generation. The original image has to be completely
processed for each level of the profile, which requires two complete
processing of the image, one performed by a closing and the other by
an opening transformation. Thus, the complexity increases linearly
with the number of levels included in the profile.

4.3 definition of attribute profiles

The definition of an attribute opening profile is quite straightforward
since a sequence of attribute openings with a family of increasing crite-
ria T = {Tλ : λ = 0, . . . , n}, with T0 = true ∀X ⊆ E, leads leads to a
granulometry. Thus, attribute opening profiles can be mathematically
defined as

ΠγT ( f ) = {ΠγTλ : ΠγTλ = γTλ( f ), ∀λ ∈ [0, . . . , n]}. (4.1)

As for a MP, when λ = 0, ΠγT0 ( f ) = γT0( f ) = f . We point out
that this definition of attribute opening profile includes also the mor-
phological opening profile by reconstruction, since openings by re-
construction are a particular set of attribute openings. By comparing
attribute profiles to conventional MPs, it can be noticed that both per-
form multi-scale analysis of the image since the SE/criterion, driven
by the increasing scalar λ, progressively erases from the image larger
structures. Moreover, attribute opening profiles provide the same ca-
pabilities in processing the image as for openings by reconstruction
but adding more flexibility in the definition of the filtering criterion.
For example, if we consider a compact SE (e.g., square-, disk-shaped),
the structures are removed from the scene if the SE does not fit in
them. Thus, the image is processed according to the smallest size
of the regions. If we consider instead the length of the diagonal of
the box bounding each region as an attribute, then the structures are
filtered according to a measure of their global extension, which is still
related to the concept of scale but in a different way with respect to
considering the smallest size of the objects. Moreover, if we take into
account the area of the regions a different measure of the size of the
objects is provided. Thus, by selecting different type of attributes, even
if they are all increasing measures, different characterizations of the
scale of the structures are generated.
If we consider other types of attributes not constrained by the increas-
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ingness property, a different behavior is achieved by the filters. For
instance, it is possible to assess how the image reacts to a filtering
done on multiple levels with an attribute invariant to changes in scale.
This would permit to characterize the image by extracting information
related to the shape of the structures through a measure which is
independent of their size. Thus, the application of attribute thinning
in a multi-level approach leads to attribute thinning profiles. However,
their definition is not direct as for attribute opening profiles. In fact,
since attribute thinnings are not increasing, the absorption law might
not be satisfied in the profile. This can result in sequential elements
of the profile that are not ordered. For example, regions erased at a
certain level of the profile might appear again in subsequent levels
associated to more relaxed criteria. This is an undesirable effect espe-
cially if a derivative of the profile needs to be computed. In order to
build a consistent profile on attribute thinnings it is necessary that the
absorption law is fulfilled by the filtered images, leading the AP to be
a set of cumulative functions. This can be obtained by constraining
the criteria used in the filtering. The family of non-increasing criteria
U = {Uλ : λ = 0, . . . , n} considered for computing the profile has to

be an ordered set. Moreover, the criteria have to be consistently either
in the form of Uλ = a(X) > τλ or Uλ = a(X) < τλ for all the con-
nected component X ⊆ E, and τi ≤ τj for i ≤ j, with a denoting a
generic non-increasing attribute computed on the component X, and
τλ being the scalar value taken as the threshold at the level λ of the
profile. If the criteria are ordered and defined as mentioned above,
then the following rule holds: If a connected set X ⊆ E does not satisfy
the criterion Ui (i.e., Ui(X) = f alse), then also Uj(X) = f alse, with
i ≤ j and Ui, Uj ∈ U. Thus, for binary trivial thinning it holds that if
Γ̃Ui(X) = ∅ ⇒ Γ̃Uj(X) = ∅ and this leads Γ̃Ui(F) ⊆ Γ̃Uj(F) for binary
attribute thinning. In the grayscale case it becomes γ̃Ui( f ) ⊆ γ̃Uj( f ).
The latter property corresponds to the absorption law that can be

expresses also as γ̃Ui γ̃Uj( f ) = γ̃
Umax (Ui ,Uj)( f ). Thus, by selecting these

criteria, the profile is behaving like a granulometry.
Consequently, it is possible to define an attribute thinning profile,
based on a set of ordered criteria Uλ = a(X) > τλ, with U0 =

true ∀X ∈ E as:

Πγ̃U ( f ) = {Πγ̃Uλ : Πγ̃Uλ = γ̃Uλ( f ), ∀λ ∈ [0, . . . , n]}. (4.2)

Actually Πγ̃U includes also ΠγT in its definition since the attribute
thinning profile produces the same results as for the attribute openings
if the criteria U fulfill the more restrictive property of increasingness.
By duality, the attribute closing profile can be defined as

ΠφT ( f ) = {ΠφTλ : ΠφTλ = φTλ( f ), ∀φ ∈ [0, . . . , n]}, (4.3)
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and analogously to 3.3, we can define an attribute profile as:

AP( f ) = Π( f ) =






Πi :

〈

Πi = ΠφUλ , λ = (n − 1 + i), ∀λ ∈ [1, n];

Πi = ΠγUλ , λ = (i − n − 1), ∀λ ∈ [n + 1, 2n + 1]






.(4.4)

The AP can also be expressed in an alternative formulation as:

AP( f ) =
{

φUλL ( f ), φUλL−1 ( f ), . . . , φUλ1 ( f ), f , γUλ1 ( f ), . . . , γUλL−1 ( f ), γUλL ( f )
}

, (4.5)

with 2L + 1 the number of levels in the profile.
Attribute thinning profiles permit us to perform a multi-level analy-

sis of the image based on attributes (represented by ordered criteria)
not necessarily related to the scale of the structures of the image. In
fact, the choice of attributes like the shape factor, the spatial moments,
etc., results in an AP that represents a multi-level (not multi-scale)
decomposition of the image according only to the shape of the regions.
Furthermore, the attribute can also be a measure which is not related
to the geometry of the regions but to the graylevels of their pixels. For
example, the scene can be simplified by removing structures accord-
ing to homogeneity instead of their scale or shape. As for MPs, the
residuals of the progressive filtering can be important. Thus we can
extend 3.4 by introducing the differential attribute profile (DAP) for the
set of non-increasing criteria U, is

DAP( f ) = ∆( f ) =






∆i :

〈

∆i = ∆φUλ , λ = (n − 1 + i), ∀λ ∈ [1, n];

∆i = ∆γUλ , λ = (i − n), ∀λ ∈ [n + 1, 2n]






.(4.6)

where ∆φUλ and ∆γUλ represent the differential thickening and thinning
profiles, respectively, whose definition is straightforward and thus not
reported.
Examples of a DMP and three DAPs computed on a panchromatic
Quickbird image of the city of Trento (Italy) for four different thematic
classes are presented in Figure 4.1. The attributes selected for the three
DAPs are: i) area; ii) moment of inertia; and iii) standard deviation. By
analyzing the differential profiles, as expected, it can be noticed that
the DMP shows a similar behavior to the DAP with the area attribute,
since both process the image according to the scale of the objects. The
DAPs built on the moment of inertia and the standard deviation have
a different behavior from the scale attributes. However, given a region,
regardless of the type of attribute considered, the active responses of
the pixels belonging to the region in the profile are all located either
in the opening or closing part of the profile. In fact, dark objects are
detected in the closing profile and bright ones on the opening side.



4.4 analysis of the complexity 41

The diversity shown by considering the DAPs built on different types
of attributes results in features that potentially can increase in the
separability of the information classes.

Figure 4.1: Examples of four differential profiles computed on four samples
belonging to different thematic classes (Vegetation, Road, Build-
ing, and Shadow) from a panchromatic Quickbird image of Trento
(Italy). The values of the shown profiles are normalized in the
range [0,1]. The horizontal axis reports the levels of the profiles.
In the legend, DMP refers to the conventional DMP built by a
squared-SE, DAPa, DAPi, DAPs denote the differential attribute
profiles built on the area, moment of inertia and standard devia-
tion attribute, respectively. The subtractive rule was considered
for the non-increasing criteria.

4.4 analysis of the complexity

The main advantage, in terms of computational complexity, of the
approach based on the max-tree with respect to the use of operators
by reconstruction for performing multi-level filtering relies on the
fact that the image has not to be completely processed at each level
of the profile. In fact, the tree structure is built only once from the
original image and after the attribute is computed on the components
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of the image, the same data structure is pruned by a set of thresholds
λ generating the filtered images at the different levels. Moreover,
we point out that, if an attribute can be computed incrementally
(e.g., area, volume, standard deviation, etc.), the computation of the
attribute can be embedded in the creation of the tree, thus avoiding
visiting all the nodes further. If a multi-level multi-attribute analysis
is performed, the processing can further take advantage from the
architecture based on the max-tree. In fact, the tree is still created
only once, and the investigated attributes can be computed on the
nodes, if possible, directly during the creation of the tree. However,
even if the attributes need to be computed off-line after the creation
of the tree, they can be calculated simultaneously at the visiting of
each node, requiring a single scan of the tree. Moreover, during the
computation of the attributes, their dependences can be exploited. For
example, if the standard deviation and the area attributes need to be
computed, the former requires in its definition the computation of
the area, which can be directly exploited from the second attribute.
Obviously, this further optimizes the analysis. Finally, the evaluation
stage simply checks the criteria against the attributes values of the
nodes in the tree. This is the only operation in the entire analysis that
linearly depends on the number of levels and attributes considered.
If we quantitatively analyze the computational complexity of the
implementation of the different operators, the conventional opening by
reconstruction based on the iterative geodesic reconstruction [82] has a
worst-case time complexity with an upper bound of O(N2), where N

is the number of pixels in the image. When computing a granulometry
by reconstruction composed by L levels, the computational complexity
has an order of 2LN2 in the worst-case. Vincent [124] proposed an
efficient algorithm based on first-input-first-output queue and two
raster scans of the image which is an order of magnitude faster than the
conventional technique and, thus, can reduce the load of computing
a profile. Nevertheless, the image has to be entirely processed 2L

times, regardless the algorithm considered. Instead, when considering
an approach based on the max-tree, the computational complexity
of the analysis can be reduced. The most demanding stage of an
attribute filtering based on the max-tree is the creation of the tree
that relies on a flood-filling algorithm. This algorithm is linear with
respect to both the number of pixels and the connectivity [125]. The
pruning of the tree and the image restitution are both O(N) operations.
Thus, the computational cost of a profile is O(NG + 4LN), being G

the number of graylevels in the image. On parallel machines, the
max-tree computation is further speeded up according to a slightly
varying implementation based on the union-find algorithm. More
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considerations on the memory use of max-trees according to their
implementation can be found in [126].

4.5 experimental results

4.5.1 Data set Description

The experimental analysis was carried out by classifying two por-
tions taken from a large VHR panchromatic image acquired by the
Quickbird sensor on July 2006 with geometric resolution of 0.6 m. We
did not consider the multi-spectral images acquired by the Quickbird
scanner in order to focus the analysis only on the capabilities of differ-
ent APs to model the geometrical/spatial information. This choice is
also reasonable for some operational conditions when satellites that
acquire only the panchromatic band (e.g., WorldView 1) are used. The
two considered images are made up by 400×400 (Figure 4.2a) and
900×900 (Figure 4.3a) pixels, respectively. Both the images represent

(a) (b) (c)

Figure 4.2: Data set 1. (a) Panchromatic image of 400×400 pixels; (b) map
of the test areas; and (c) map of the objects selected for the
assessment of the geometrical accuracy. Thematic classes: road,

building, shadow, vegetation.

two complex urban areas belonging to the city of Trento, Italy. Most
of the surveyed buildings are residential with heterogeneous size and
shape. Some large industrial buildings are also present in the scene.
The presence of shadows can be observed especially in proximities of
buildings. All these factors contribute to the complexity of the con-
sidered scene. The pixels of the two images were grouped into four
informative classes: Road, Building, Shadow and Vegetation. For both
images a training set, composed by samples randomly selected from
labeled areas not included in the test sets, was considered and two
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(a) (b) (c)

Figure 4.3: Data set 2. (a) Panchromatic image of 900×900 pixels; (b) map
of the test areas; and (c) map of the objects selected for the
assessment of the geometrical accuracy. Thematic classes: road,

building, shadow, vegetation.

independent test sets were defined by photo-interpretation in order to
evaluate the performances of the classification. One test set is devoted
to the evaluation of the thematic accuracy, while the other checks
the geometric precision of the classification map on a set of selected
objects in the scene according to the protocol proposed in [127, 128].
The geometrical accuracy is evaluated by a set of five indexes model-
ing: over-segmentation (OS), under-segmentation (US), fragmentation
(FG), shape factor (SH) and errors on the objects borders (ED). The
index modeling the OS gives a measure of the overlap between the
region which mostly covers a reference objects in the classification
map and the area of reference objects. The US error computes how
much the regions correspondent to the reference objects are larger
than the reference objects. The FR index refers to a descriptor of how
the areas of the reference objects are fragmented in different regions
in the classification map. Finally, the SH and the ED measures indicate
how the shapes and the edges respectively of the reference objects
differ to those of the correspondent regions in the reference map. All
the error indexes range from 0 to 1 (in the tables the values are given
in percentages), with zero representing a perfect match and one the
greatest divergence between the reference objects and the correspon-
dent regions in the classification map. For further information on the
geometric error indexes the reader can refer to [128]. The two test
sets are reported in Figure 4.2b-4.2c and 4.3b-4.3c for data set 1 and 2

respectively. The number of samples selected for training and testing
the two data sets are reported in Table 4.1.
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Table 4.1: Number of samples per class for the training and test set for the
two data sets.

Land Cover
Data set 1 Data set 2

Train Test Train Test

Roads 199 907 300 3068

Buildings 209 3330 300 4184

Shadow 255 853 300 1715

Vegetation 222 1030 300 4568

Total 855 6120 1200 13535

4.5.2 Results

For both the images a 17-dimensional morphological profile was gen-
erated using a squared SE with size increasing in 8 steps (7, 13, 19,
25, 31, 37, 43, and 49). These values were arbitrarily chosen and since
they range from 4.2 to 29.4 meters they are able to model the size of
the heterogeneous objects in the scene. Three attribute profiles with
the same dimensionality of the MP were also created following the
approach based on the max-tree data structure. All the filtering trans-
formations were performed on the already constructed tree in order
to reduce the computational burden. For all the APs, the considered
criterion was “the attribute must be greater than λ”. Three different
attributes were considered for the construction of the AP: the area,
first moment of Hu, and the standard deviation. The AP with the area
attribute describes the scale of the structures in the scene; it is the only
increasing attribute among the three selected. In order to create the
profile with the area attribute, the following values of λ were selected:
49, 169, 361, 625, 961, 1369, 1849 and 2401. Although, these values
correspond to the square of the SE sizes used for creating the MP, the
multi-scale analysis obtained models the scale of the objects in the
scene with a different criterion with respect to the MP. The second
attribute considered is the moment of inertia. The original image was
filtered by progressively suppressing from the scene those regions
with attribute smaller than the following increasing thresholds: 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. The AP based on the standard deviation
attribute performs a multi-level decomposition of the objects in the
scene that is not related to the geometry of the regions but models the
homogeneity of the graylevels of the pixels in the regions. The profile
was built according to the following reference values of the standard
deviation: 10, 20, 30, 40, 50, 60, 70 and 80. As for the definition of the
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SE sizes in the MP, the threshold values of λ were arbitrarily selected
in order to cover the significant range of variation of the attribute
for all the connected components of the image. Different analyses
were carried out on the data. At first, each AP was considered sepa-
rately and then, all the features extracted by the APs were taken into
account simultaneously. In order to compare the behavior of the dif-
ferent profiles, we chose to present the derivatives of the constructed
profiles (i.e., DMP and DAPs) because the differences among them
are perceptually more visible than by analyzing the correspondent
morphological/attribute profiles. The DMP (Figure 4.4a) is visually
similar to the DAP built by evaluating the area attribute (Figure 4.4b).
Many regions which are suppressed at a certain level in the DMP are
present at the same level in the DAP. However, some other objects are
not revealed at the same level in the two profiles but in adjacent levels.
For example, the thin and elongated region in the middle of the scene
that is present in the second and third image from the left (levels 3

and 5 respectively) in the DMP, in the DAP results in the third and
fourth (respectively 5 and 7). These differences in the two differential
profiles are mainly due to the different modeling of the concept of
scale and to the choice done for the step size of the SEs and of the
values of the thresholds λ, for the area attribute. In particular, the
filters based on the area attribute remove the structures from the image
according to their cardinality, whereas the operators by reconstruction
with a square SE interact to the smallest size of each region. Thus this
different behavior is particularly evident when considering elongated
regions. Different conclusions can be drawn by comparing the DMP
to the DAPs generated by the moment of inertia and the standard
deviation. At first it is evident that at higher levels of the profiles (i.e.,
related to large values of λ), also regions that are spatially smaller
than some others, appeared in previous levels, are present. This is due
to the non-increasingness of the selected criterion.
In order to quantitatively compare the capabilities of the proposed pro-
files in modeling the spatial characteristics of the scene we classified
the original image using each profile. A random forest technique with
200 trees was used for the classification [129]. The random forest clas-
sifier is formed by an ensemble of decision tree classifiers. We chose
to use this non-parametric classifier because of the high redundancy
shown by the profiles that can be critical for the estimation of the statis-
tics in classical parametric classifiers. The classification is achieved by
selecting the output of the ensembles of the tree classifiers according
to a majority voting. The features considered by the classifier were the
panchromatic band and the generated profiles. For the definition of
the split on each node in the random forest, the number of considered
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(a)

(b)

(c)

(d)

Figure 4.4: Extracts of differential profiles built on the first data set. (a) DMP
created by a SE with a square shape; DAPs with (b) area attribute,
(c) moment of inertia attribute, and (d) standard deviation at-
tribute. For all the profiles the levels 1, 3, 5, and 7 are reported
from left to right. All the images are stretched for visual purposes.
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variables was correspondent to the square root of the number of input
features. The aim of this analysis was to investigate how the accuracy
(both thematic and geometric) varies when including in the analysis
the knowledge gathered on the spatial domain by the profiles. In
particular, the results obtained by considering the panchromatic band
and a conventional MP were compared to those obtained by different
APs. Table 4.2 and 4.3 show the thematic error index, in terms of
percentage overall error (OE) and the kappa error (κE) on the test set,
and the five geometric error indexes. The kappa error is computed as
1-κ in percentage, with κ the kappa coefficient [130]. Furthermore, the
accuracies obtained by each class are shown in Table 4.4 and 4.5. In
particular, the producer and user accuracy are reported. We recall that
the PA is computed, for each class, as the total number of the patterns
correctly classified divided by the total number of the patterns belong-
ing to the considered class in the reference map. The PA measures
how many reference patterns are correctly classified by each class. The
UA is obtained by dividing the total number of correctly classified
patterns for each class by the total number of patterns classified to the
same class. The UA indicates how many samples associated to a class
are actually belonging to that class in the reference. More information
on PA and UA can be found in [130]. In the tables, we refer to each AP
as APattr, with attr a letter identifying the attribute (a area, i moment
of inertia, s standard deviation). APall denotes all the APs considered
together.
By analyzing the thematic accuracies reported in Table 4.2 for the
original panchromatic band, one can observe that a clear increase of
the accuracy is obtained by using jointly the features that model the
spatial information. The accuracy achieved by considering the MP is
comparable to the one obtained by the single APs with moment of
inertia and standard deviation attributes. Instead, the AP constructed
on the area attribute produced the highest overall error and kappa
error among the profiles. This is due to the selected thresholds used
for computing the filtering, which might not properly model the great
variety in the scale of the objects for the considered scene. The best
results according to the thematic accuracy are obtained by the joint use
of the AP with moment of inertia and the AP with standard deviation
attribute, which reduced the overall classification error by about 24%
and the kappa error of 32%, with respect to the use of the only origi-
nal panchromatic image. The improvement was about 9% in overall
error and 14% in kappa error, with respect to the conventional MP.
Even if the global accuracies are in general quite small, making more
complex the visual interpretation of the maps, by evaluating the geo-
metric indexes, one can see that the classification of the panchromatic
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image shows a large over-segmentation error (thus, a small under-
segmentation error) with respect to the maps obtained by considering
the profiles. This behavior is also confirmed by a visual inspection of
the classification maps shown in Figure 4.5. In fact, it is possible to
observe that the classification map obtained with the panchromatic
image (Figure 4.5a) is highly fragmented, whereas the other maps are
more homogeneous. As best case, when considering the map obtained
by the AP with moment of inertia, a reduction by about 29% and
7% in the over-segmentation and fragmentation error respectively is
achieved. This effect can be noticed in the row of buildings at the top
of the image. Nevertheless, the AP inertia shows a high US error which
can be due to the missed recognition of the buildings on the bottom
of the image and the generation of broad areas. The lowest US error
among the profiles and the overall lowest ED error are achieved, by
considering the AP with moment of inertia and the AP with standard
deviation attribute together. Table 4.3 shows the error rates on the test
set obtained by analyzing the data set 2. As for the previous data set,
the thematic errors decrease when considering the spatial information
provided by the profiles. Also in this case, the results obtained by
considering a single AP are similar to those generated by the MP (this
is also clear from the classification maps in Figure 4.6). In this exper-
iment the AP built on the area attribute results in a thematic error
only slightly smaller than the one of the original panchromatic image
(about 4% in both overall and kappa errors). However, as confirmed
by the map, the geometrical errors are similar with those obtained
by considering the other profiles. Again, the highest thematic accu-
racy is obtained when considering the APs with moment of inertia
and standard deviation attributes. The thematic errors are reduced by
about 28% in the overall error and 38% in kappa errors with respect to
the original panchromatic image and by about 12% and 17% (overall
and kappa errors) against the conventional MP. As for the first data
set better accuracies are obtained by considering only the AP with
moment of inertia and the AP with standard deviation attribute than
considering together also the AP with area attribute. This can be due
to the increase in the dimensionality of the feature space given by
considering also the AP with area attribute, which makes the analysis
more complex (i.e., Hughes phenomenon) without providing enough
additional independent information than to the other APs. However,
one should observe that the selection of the threshold values λs affects
the capability of the computed profile in modeling the spatial features
of the objects. Thus, an AP with different threshold values for the
area attribute might provide features which are more discriminant. In
addition, also the geometry of the reference objects is globally more
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Table 4.2: Errors obtained by classifying the panchromatic image along with
morphological/attribute profiles for data set 1.

Features
Thematic Error Index Geometric Error Indexes

OE (%) κE (%) OS (%) US (%) ED (%) FG (%) SH (%)

PAN 46.5 63.9 40.6 21.9 61.9 18.8 18.7

MP 32.4 45.9 12.8 51.4 66.5 12.7 15.0

APa 46.9 54.2 15.3 46.5 62.5 15.3 18.2

APi 33.6 41.5 11.7 55.9 69.0 11.6 12.8

APs 33.0 47.7 13.8 51.2 66.7 13.7 13.8

APi + APs 23.0 32.4 13.4 46.8 61.9 13.4 16.1

APall 30.5 37.9 13.2 43.6 62.9 13.2 16.9

Table 4.3: Errors obtained by classifying the panchromatic image along with
morphological/attribute profiles for data set 2.

Features
Thematic Error Index Geometric Error Indexes

OE (%) κE (%) OS (%) US (%) ED (%) FG (%) SH (%)

PAN 56.2 77.2 60.8 16.6 71.4 23.0 16.6

MP 39.9 56.4 44.8 18.1 50.9 3.4 15.0

APa 52.4 73.4 44.3 12.7 61.7 13.9 15.7

APi 40.5 56.8 15.8 71.4 82.9 4.9 20.9

APs 41.1 57.9 34.6 52.0 70.7 11.0 15.8

APi + APs 28.1 39.1 27.0 44.2 62.4 10.3 16.4

APall 28.3 39.4 27.7 46.3 64.9 15.2 15.5

precisely preserved by the AP with moment of inertia and AP with
standard deviation attribute considered together in comparison to the
other single profiles. In particular, the over-segmentation error in the
map obtained by considering all the APs decreases of about 34% and
18% compared to that of the map generated by the only panchromatic
image and by the MP, respectively. This can be observed as a more
uniform classification of the vegetated areas in the middle of the image
and of some roads. As for data set 1, the AP inertia shows small US
and FG errors but high US error, which can be due to the presence of
large areas associated to the Vegetation class.

By considering Table 4.4 and 4.5, it is possible to make a detailed
class-by-class analysis by considering the producer accuracy (PA) and
user accuracy (UA) obtained. The two results for both the data sets
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Table 4.4: Class specific Producer Accuracy (PA) and User Accuracy (UA)
obtained by classifying the panchromatic image along with mor-
phological/attribute profiles for data set 1. The best accuracies
obtained are marked in bold.

Features
Road Building Shadow Vegetation

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

PAN 29.5 62.1 76.1 42.4 94.0 97.1 32.0 45.7

MP 31.6 73.5 90.7 55.1 92.5 97.4 74.0 78.5

APa 33.1 77.2 71.0 33.2 92.5 97.4 39.6 59.8

APi 41.1 76.6 93.9 49.7 87.6 97.5 51.3 85.6

APs 32.4 87.8 90.7 46.5 94.3 97.1 85.8 90.0

APi + APs 96.6 45.6 62.5 96.8 98.0 94.7 89.1 79.0

APall 41.8 89.5 93.4 51.0 92.2 97.4 62.7 88.9

Table 4.5: Class specific Producer Accuracy (PA) and User Accuracy (UA)
obtained by classifying the panchromatic image along with mor-
phological/attribute profiles for data set 2. The best accuracies
obtained are marked in bold.

Features
Road Building Shadow Vegetation

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

PAN 39.8 47.7 34.0 29.3 85.8 90.3 38.1 37.0

MP 60.2 22.6 67.2 52.7 88.6 94.3 49.8 79.3

APa 60.4 40.7 33.4 25.1 89.4 93.4 38.9 55.7

APi 87.4 69.5 56.9 11.6 87.1 92.2 45.8 84.4

APs 68.0 15.1 51.5 71.1 86.6 94.1 56.1 64.1

APi + APs 69.2 91.1 66.5 69.8 93.2 86.7 70.6 60.1

APall 92.2 69.9 70.8 60.1 88.1 93.8 59.0 75.2
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are analyzed together in order to observe trends in the obtained re-
sults. Focusing the attention on the specific thematic classes, we can
underline as, with respect to the other attributes, the AP with moment
of inertia performed well in identifying the roads, in particular for
data set 2. However, for both data sets, the best results were obtained
by considering all the APs. When considering the Building class, the
conventional MP, the AP with standard deviation attribute and the AP
with all the attributes performed the best and gave comparable results.
For this particular class, good results were also obtained by the AP
with moment of inertia but only in data set 1. The class Shadow was
globally well classified by all the profiles and no particular trend in
the results was noticed. Finally, the vegetated areas were extracted
well by the AP with the standard deviation attribute especially in data
set 1. The MP and the AP with moment of inertia and the one with all
the attributes also reached similar results.

4.6 conclusion

In this chapter attribute profiles have been introduced for classifica-
tion of very high resolution remote sensing images and differential
attribute profiles have been proposed and formally defined. The mo-
tivation of this work relies on the need to improve the flexibility, the
capability of modeling different kind of objects, and the computational
load associated with the widely used conventional morphological pro-
files and their derivative.
Attribute profiles can be used for extracting information from the spa-
tial domain by reducing the limitations of the morphological profiles.
This approach allows one to analyze the original image in a multi-level
fashion by the application of a sequence of morphological attribute op-
erators. These operators are adaptive morphological connected filters,
which include in their general definition also opening and closing by
reconstruction. Attribute filters are flexible tools that enable to analyze
an image not only on the basis of the scale of the structures (as for
operators by reconstruction), but also according to other measures/at-
tributes computed on the regions. Thus, it is possible to perform a
multi-level analysis of the scene by exploiting measures related to
many different geometric primitives (e.g., shape), the graylevel of the
pixels, or any other parameter that can be computed on the regions.
We propose to compute the attribute profiles according to an effective
implementation based on the max-tree, i.e., an efficient representation
of the data, which leads to a reduction of the computational load of
about one order of magnitude with respect to morphological profiles.
The proposed technique was applied to two very high resolution
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panchromatic images acquired by Quickbird satellite on the city of
Trento, Italy. Three attribute profiles, based on different attributes,
were extracted from the panchromatic band. We considered i) the area
(which is related to the MP created with a squared SE); ii) the moment
of inertia (which is a descriptor of the geometry of a region invariant
to the scale); and iii) the standard deviation of the graylevels of the
pixels (which measures the homogeneity of the regions). The data
were classified by a random forest classifier. The obtained maps were
evaluated by checking their thematic accuracy and the geometric pre-
cision in representing some reference objects in the scene. The results
pointed out the effectiveness of the proposed APs, which involved
a sharply higher thematic and geometric accuracy with respect to
considering the only panchromatic band. Moreover, the profiles built
on different attributes led to similar results in terms of accuracy but
also conveyed different and complementary information into the clas-
sification process. In fact, the joint use of the three attribute profiles
in the classification tasks resulted in an decrease of the classification
kappa errors up to 38% and 17% with respect to the only panchromatic
image and to the MP, respectively. The obtained classification maps
are also more precise in the representation of the geometry of the
regions as proven by the geometrical error indexes.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.5: Data set 1. Classification maps obtained by: (a) panchromatic
image only; (b) MP; (c) APa; (d) APi; (e) APs; (f) APi + APs;
and (g) APall . Thematic classes: road, building, shadow,

vegetation.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.6: Data set 2. Classification maps obtained by: (a) panchromatic
image only; (b) MP; (c) APa; (d) APi; (e) APs; (f) APi + APs;
and (g) APall . Thematic classes: road, building, shadow,

vegetation.
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E X T E N D E D AT T R I B U T E P R O F I L E S

Abstract. In this chapter an extension of the attribute profile concept suitable

for handling hyperspectral images is presented. The issues related to the

extension of morphological operators for the analysis of multitone images is

briefly presented along with a review of solutions appeared in the literature.

The definition of Extended Attribute Profile and Extended Multi-Attribute

Profile is then given. Finally the results obtained by employing the proposed

techniques for the classification of two hyperspectral images are reported.

5.1 introduction

When dealing with hyperspectral data, the spectral values of the
pixels carry important information and it must be taken into account
in the data analysis (see [110] for a review of the main techniques for
hyperspectral image processing). Along with the spectral response of
the pixels, if the geometrical resolution is high, the characteristics of
the objects in the spatial domain are also informative. In this scenario,
the extension of mathematical morphology tools (e.g., MPs) to multi-
valued data is not straightforward since an ordering relation between
the elements of this set of data is not natively defined (i.e., there is no
ordering relation between vectors). In [115], this issue was addressed
by reducing the original dimensionality of the hyperspectral data by
computing the MP on each of the first principal components (i.e.,
scalar images) extracted from the data by the Principal Component
Analysis. The definition of the EMP and a review of works based on
the EMP can be found in 3.3.1 and 3.3.2, respectively.

In this chapter, Extended Attribute Profiles (EAPs) and Extended
Multi-Attribute Profiles (EMAPs) are presented for the analysis of hy-
perspectral high resolution images. These extended profiles are based
on morphological attribute filters and, through a multi-level analysis,
are capable to extract spatial features that can better model the spatial
information, with respect to conventional extended morphological pro-

This chapter was published in:

M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Extended
profiles with morphological attribute filters for the analysis of hyperspectral
data,” International Journal of Remote Sensing, vol. 31, no. 22, pp. 5975–5991, Nov.
2010.
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files. The features extracted by the proposed extended profiles were
considered for a classification task. Two hyperspectral high resolution
data sets acquired on the city of Pavia, Italy, were considered in the
analysis. The effectiveness of the introduced operators in modeling the
spatial information was proved by the higher classification accuracies
obtained with respect to those achieved by a conventional extended
morphological profile.

We propose the definition of the Extended Attribute Profile and
Extended Multi-Attribute Profile which rely on the application of the
APs to hyperspectral data and to a straightforward further extension
to a multi-attribute scenario, respectively. The proposed operators can
also be considered as an extension of EMPs since an AP includes in
its definition the MP. The proposed techniques were applied to the
classification of two high resolution hyperspectral data sets acquired
on the city of Pavia, Italy. The morphological features extracted were
classified by a random forest classifier.

5.2 problem of extending the morphological operators

to multi-tone images

The extension of the concept of a morphological profile from the anal-
ysis of single-tone images to multi-tone images (e.g., multispectral
and hyperspectral imagery) is certainly a non trivial task because the
extension of the morphological operators for scalar to multivariate
values is an ill-posed problem. In fact, the output of a generic morpho-
logical operator processing an image, is usually the result of a function
computed on an ordered set of values (e.g., the infimum for erosion,
the median for the median filter, the supremum for dilation, etc.).
When dealing with scalar images, the ordering of the values mapped
by the image f (p) → k, with p ∈ E and k ∈ {0, . . . , K} ⊂ Z, is well
defined. The scalar elements in the partially ordered set {0, . . . , K}

have an unique infimum and supremum. Thus, the morphological
operators are well defined. In contrast, when the image destination
domain becomes a subset of a multivariate domain, e.g., f (p) → k,
k ∈ Z

n the ordering relation between the mapped vectorial values is
not defined anymore. For this reason, the direct application of con-
cepts seen in previous sections to multi- or hyperspectral images is
not possible.

In order to overcome this issue several solutions have been pre-
sented in the literature. One possible approach relies on the arbitrary
re-definition of the concepts of morphological filters for handling
multi-valued images by forcing an ordering relation on the vecto-
rial set of values. In in [118], Plaza et al. proposed a reduced vector
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ordering scheme based on the spectral purity index of the pixel vec-
tors. The input vectors are ordered according to a spectral-based
distance measure (i.e., scalar value). Three distance measures com-
monly used in hyperspectral analysis were considered: i) spectral
angle distance (SAD); ii) spectral information divergence (SID); and
iii) hidden Markov model-based information divergence (HMMID).
Having defined an ordering relation between vectorial values, the
definitions of the morphological operators of opening and closing by
reconstruction computed according to this ordering relation can be
applied to the hyperspectral data. A reader who is interested in greater
details on the extensions of the mathematical morphology concept to
multi-valued images can refer to [131, 132, 133, 134].
Another approach for extending morphological transformations to
vectorial data deals at first with the reduction of the hyperspectral
data to only one (or few) channels and subsequently to the application
of the morphological operators to each obtained image separately.
The reduction of the dimensionality can be done by means of sev-
eral techniques. The first work based on this approach considered
Principal Component Analysis (PCA) as feature reduction technique
[120, 115] (see Sec. 3.3.2 for details). In [120] Independent Component
Analysis was used. Kernel PCA (KPCA) was exploited in [121, 135].
In [136] the reduction of the dimensionality was performed by PCA,
KPCA, Non-parametric Weighted Feature Extraction (NWFE), Deci-
sion Boundary Feature Extraction (DBFE) and Bhattacharyya Distance
Feature Selection (BDFS) techniques [2].

5.3 extended profiles with attribute filters

Analogously to the definition of EMPs, we can compute the APs
(as defined in 4.4) on the c principal components extracted from the
original hyperspectral data. This leads to the definition of the Extended
Attribute Profile:

EAP = {AP(PC1), AP(PC2), . . . , AP(PCc)}. (5.1)

A scheme of the EAP is reported in Figure 5.1. We remind the reader
that the EAP includes in its definition the EMP (because the operators
by reconstruction can be viewed as a particular set of morphological
attribute filters) and, thus, it can be considered as its generalization.
The main advantage in using the EAP instead of the EMP relies on
the great flexibility given by the definition of the attributes used
in the processing for modeling the spatial features that need to be
extracted. Moreover, the computation of the filters on the max-tree
structure reduces the computational complexity with respect to the
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Figure 5.1: Architecture for computing an Extended Attribute Profile.

EMP because the tree (both max- and min-) is built once for each
principal component and filtered multiple times according to the
required number of levels. Samples of EAPs created on different
attributes are presented in Figure 5.2. From the figure it is possible
to notice how the thickening and thinning transformations computed
with different attributes process the original images in different ways.
In particular, one can observe how the profiles built with the area and
the length of the diagonal attributes perform differently even if both
the attributes are increasing. When considering the EAP with moment
of inertia, it is possible to observe how the effect of the filtering is
significantly different from those of the other EAPs. In this profile the
elongated structures are revealed. The profile with standard deviation
attribute also performs differently from the others. For example, one
can see that the processing preserves some small regions of high
contrast which are instead erased in the other attributes.

Moreover, since APs created by different attributes to extract differ-
ent information from the scene, the idea of EAP is further evolved to
Extended Multi-Attribute Profile EMAP. The EMAP merges different
EAPs in a single data structure. A EMAP composed by m different
EAPs can be easily formulated as

EMAP = {EAPa1 , EAP′
a2 , . . . , EAP′

am} (5.2)

with ai a generic attribute and EAP′ = EAP\{PC1, . . . , PCc}. The
latter relation is necessary for avoiding the multiple presence of the c

principal components (we remind that APa1,i( f ) = APa2,i( f ) = · · · =

APam,i( f ) = f for the level i = n + 1). The computation of the EMAP
structure is shown in Figure 5.3.
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φT(PC1) PC1 γT(PC1) φT(PC2) PC2 γT(PC2)

AP(PC1) AP(PC2)

Figure 5.2: Examples of EAPs computed on the first two PCs of a portion of
the University data set. Each row shows an EAP built by different
attributes. Attributes, starting from the first row, are: area, length
of the diagonal of the bounding box, moment of inertia and
standard deviation. Each EAP is composed by the concatenation
of two APs computed on PC1 and PC2. Each AP is made up of
three levels, a thickening image φT , the original PC and a thinning
image γT . All the thickening and thinning transformations were
computed with the following attributes value, λs: Area: 5000;
Lenght of the diagonal: 100; Moment of inertia: 0.5; Standard
deviation: 50.
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EMAP

EAP1

EAP2

EAPn

EAP

EAP

...

EAP

Hyper. Image

. . .

Figure 5.3: Architecture for computing an Extended Multi-Attribute Profile.

It is clear that, although the EMAP leads to an increase in the
dimensionality of the features, it gains greater capabilities in extracting
spatial information with respect to a single EAP. Moreover, the load in
the computation required by an EMAP is slightly greater than the one
of a single EAP, since the max- and min-tree are computed only once
for each PCs and they are filtered with different attributes at different
levels.

5.4 experimental results

5.4.1 Data set Description

The experiments were carried out on two widely used data sets ac-
quired on the city of Pavia, Italy (for a review of works carried out on
this images refer to [137]). The surveyed scenes are urban areas, one set
was acquired on a portion of the city centre while the other shows the
University area. The data were acquired by the hyperspectral airborne
sensor ROSIS-03 (Reflective Optics Systems Imaging Spectrometer).
The sensor acquired 115 spectral bands ranging from 0,43µm to 0,86µm

and the geometrical resolution of the images is 1.3 m. The considered
data were atmospherically corrected but not geometrically (e.g., it is
possible to notice the geometrical distortions due to the displacement
of the airborne platform during the acquisition). The first data set,
which represents the highly dense city centre (in the following referred
as Centre), is a 1096×489 pixels portion of the original imaged scene.
For this data set, 102 bands out of the 115 were considered due to
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noise. Nine thematic classes were considered: Water, Tree, Meadow,
Self-blocking Bricks, Soil, Asphalt, Bitumen, Tile, and Shadow. The
image acquired over the University area is composed by 103 bands (12

bands were removed due to noise) of 610×340 pixels. Nine thematic
classes were identified in this scene: Trees, Asphalt, Bitumen, Gravel,
Metal sheets, Shadows, Self-blocking Bricks, Meadows, and Bare soil.
The train and test sets for the two data sets are described in Table 5.1.
The true color images and the related reference maps are shown in
Figure 5.4.

5.4.2 Experimental Set Up

For the three data sets, the first four principal components were
initially considered in the analysis in order to explain more than the
99% of the total variance of the multivariate original data. Table 5.2
reports the values of variance and cumulative variance accounted by
the PCs for each data set.

An EMP with 4 levels (i.e., leading to a stack of 36 features, 9 for
each PC) was computed with a disk-shaped SE of radius increased
with a step size of 2. Four attributes were considered in the analysis:

1. a, area of the regions;

2. d, diagonal of the box bounding the region (as the area, it is a
measure of the size of the regions);

3. i, first moment invariant of Hu, or moment of inertia (it measures
the elongation of the regions), [138];

4. s, standard deviation of the gray-level values of the pixels in the
regions (index related to the homogeneity of the regions).

For each attribute an EAP was computed. Below the values of the λ

used in the filtering are reported:

1. EAPa: λa = [100 500 1000 5000];

2. EAPd: λd = [10 25 50 100];

3. EAPi: λi = [0.2 0.3 0.4 0.5];

4. EAPs: λs = [20 30 40 50].

The features obtained by the computation of the four EAPs were also
used for creating an EMAP, thus, based on EAPa, EAPd, EAPn and
EAPs.

The original PCs and the extended profiles were analyzed by a
Random Forest (RF) classifier. A RF is an ensemble of decision trees
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[129]. In the learning phase of the classifier, each decision tree is
trained with a bootstrapped portion of the training set (the samples
left out are used for an internal measure of accuracy, called out-of-
bag) and selecting a fraction of the available features for defining
the split of each node of the tree. The classification of a pattern is
achieved by predicting the class label by each tree in the forest and
associating the pattern to the class that gathers most of the votes. In
the experiments carried out, a RF was composed of an ensemble of
100 trees, which in preliminary experiments showed to be a good
trade-off between the accuracy in modeling the problem and the time
needed for the learning phase. The number of variables (i.e., features)
involved in the training of the classifier was set to the square root of
the number of input variables, as suggested by Breiman as default
value in [129]. The accuracy of the obtained results was assessed
according to the available test sets by measuring the Overall Accuracy
(OA), the Average Accuracy (AA) (which is computed as the average
of the Producer Accuracies) and the Kappa coefficient (K). In order
to avoid redundancy in the next subsections, only the OA will be
taken discussed. However, the results for AA and K are reported in
the Tables.

5.4.3 Results with Extended Profiles

The results obtained by the analysis carried out on the two data sets
proved that the inclusion of features that model the spatial information
(e.g., those computed by extended profiles) can significantly improve
the classification accuracies (up to 21.9% for the University data set)
with respect to considering only the spectral information given by the
PCs. For this reason the results obtained by the PCs alone are reported
but they will not be further discussed.

For the Centre data set analogous conclusions can be drawn. In
general, the results obtained by all the experimental configurations
were very good (OA ranging from 96.6% to 98.83%). However, the best
accuracies were obtained by the EMAP (see Table 5.3). The gain with
respect to the single PCs and the EMP was about 2.2% and 0.6%. It is
possible to notice how the accuracies obtained by the EMP are similar
to those obtained by the EAPs.

In comparison to the Centre data set, different results were obtained
for the University data set (Table 5.4). The EAP built by the area
attribute performed the best for the University data set, with a relative
increase of OA of about 2.4% and 11.6% as compared to the EMAP
and EMP, respectively. The other EAPs performed similarly to the
EMP (∼ ±5%) and worse than the EMAP in terms of accuracies (at
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minimum -3% obtained by the EAPd). The motivation of the worst
performance of the EMAP with respect to the EAPa can be due to the
great difference of the dimensionality of the features generated by the
two operators (36 for the EAP versus 132 for the EMAP).

Tables 5.5 and 5.6 report the class specific accuracies (Producer and
User Accuracy) for the three data sets.

Details of the classification maps obtained for the two datasets are
shown in Figure 5.7 and 5.6. Although it is not possible to clearly
indicate which types of objects in the scene benefits of the use of a
specific attribute in the classified images, it is clear that the information
extracted by the EAPs leads to an overall increase in the precision of
the maps.

5.4.4 Results with a Reduced Number of PCs

In order to better investigate the behavior of extended profiles in
extracting informative features, we carried out some experiments with
a reduced number of PCs. Tables 5.7 and 5.8 report the results in
terms of OA, AA and Kappa coefficient, respectively, for the extended
profiles computed on the first 3, 2 and 1 PCs. The most notable trend
in all the experiments is the steep increase in the accuracy when
considering only the first PC and the first two PCs. Concerning the
relative overall accuracies obtained by the different extended profiles
we can state that for the centre data sets, the EMAP performed always
the best in terms of accuracies, except when considering the first two
PCs where the best results were obtained by EAPs (-0.31%) for the
Centre data set.

When considering the University data set, by decreasing the number
of considered PCs a trend in the difference of OA between the EAPa

and the EMAP is noticed. The improvement in OA of the EAPa over
the EMAP is 2.4% with four PCs (see Section 5.4.3). This difference
decreases with the reduction of the number of PCs. In contrast, when
considering only one PC the OA obtained by the EMAP exceeds the
one of EAPa by 7.8%.

From this set of experiments, it is possible to conclude that a reduced
number of PCs (i.e., with a reduced number of features generated by
the profiles) the EMAP outperforms the other extended profiles, in
terms of overall accuracies.

5.5 conclusion

In this chapter extended attribute profiles and extended multi-attribute
profiles have been proposed for the analysis of high resolution hy-
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perspectral images. The introduced extended profiles are based on
morphological attribute filters, which have already proven their suit-
ability to the analysis of high resolution images. In particular, this
work aims at exploiting the great flexibility in defining the attributes
(and thus, in modeling the features related to the chosen attributes)
which is provided by this set of morphological operators.

The extended profiles proposed in this work follow the architecture
of the previously proposed extended morphological profiles. In greater
detail, the attribute filters are applied to a subset of the first principal
components extracted from the original data and then concatenated
into a single data structure. Extended attribute profiles are based on
a multi-level analysis of the principal components based on a single
attribute. In contrast, the extended multi-attribute profiles take into
account multiple attributes. On the one hand, this leads to an increase
in the dimensionality of the extracted features; on the other this results
in a greater and more precise modeling of the spatial features.

The proposed techniques were applied to two high resolution hy-
perspectral images acquired over the city of Pavia, Italy. The data
sets represent a portion of the dense urban centre of the city and
an university area. Four attributes were considered in the analysis,
leading to the generation of four correspondent extended attribute
profiles: i) area; ii) diagonal of the bounding box; iii) moment of
inertia; and iv) standard deviation. The obtained profiles were also
combined together in an extended multi-attribute profile. The features
extracted by the extended profiles were considered for classification
by a random forest classifier. The single principal components and
the features generated by a conventional extended morphological pro-
file were considered for comparison. From the obtained results, it is
possible to make the observation that the proposed extended profiles
led to better classification accuracies than those generated by both the
principal components alone and the extended morphological profile.
This result can be explained by the better capability of the extended
profiles based on attribute filters in describing spatial features than the
conventional approach based on the extended morphological profile.
By analyzing the results obtained by the proposed extended profiles
it is possible to notice that the classification of multiple attributes
achieved the best accuracies for the data set of the centre. Conversely,
on the university data set, the extended attribute profile with area
attribute outperformed the others. This can be due to the significant
increase in the dimensionality of the features generated by the EMAP
with respect to the single EAPs, which may affect the generalization
capabilities of the classifier.
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(a) (b)

(c) (d)

Figure 5.4: True color images and maps of the test sets for the (a)-(b) Centre,
(c)-(d) University data sets.
Thematic classes for the Centre: water, trees, asphalt,

self-blocking briks, bitumen, tiles, shadows, mead-
ows, bare soil.
Thematic classes for the University: trees, asphalt, bi-
tumen, gravel, metal sheets, shadows, meadows,

self-blocking briks, bare soil.
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(a) (b)

(c) (d)

Figure 5.5: Centre data set. Classification maps obtained by: (a) the PCs,
(b) the EMP, (c) the EAPa, and (d) the EMAP.
Thematic classes: water, trees, asphalt, self-blocking
briks, bitumen, tiles, shadows, meadows, bare soil.
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(a) (b)

(c) (d)

Figure 5.6: University data set. Classification maps obtained by: (a) the PCs,
(b) the EMP, (c) the EAPa, and (d) the EMAP.
Thematic classes: trees, asphalt, bitumen, gravel,

metal sheets, shadows, meadows, self-blocking briks,
bare soil.
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(a) (b)

(c) (d)

Figure 5.7: Centre data set. Details of the classification maps 5.7 obtained by:
(a) the PCs, (b) the EMP, (c) the EAPa, and (d) the EMAP.
Thematic classes: water, trees, asphalt, self-blocking
briks, bitumen, tiles, shadows, meadows, bare soil.
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(a) (b)

(c) (d)

Figure 5.8: University data set. Details of the classification maps in 5.6 ob-
tained by: (a) the PCs, (b) the EMP, (c) the EAPa, and (d) the
EMAP.
Thematic classes: trees, asphalt, bitumen, gravel,

metal sheets, shadows, meadows, self-blocking briks,
bare soil.
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Table 5.1: Number of samples per class for the train and test sets for the
Centre and University data sets.

Class
Centre University

Train Test Train Test

Water 745 65278 - -

Trees 785 6508 524 3064

Meadow 797 2905 540 18649

Metal sheets - - 265 1345

Gravel - - 392 2099

Bricks 485 2140 514 3682

Bare Soil 820 6549 532 5029

Asphalt 678 7585 548 6631

Bitumen 808 7287 375 1330

Tiles 223 3122 - -

Shadow 195 2165 231 947

Total 5536 103539 3921 42776

Table 5.2: Variance and Cumulative Variance in percentage explained by each
principal component for Centre and University data sets.

Centre University

Var Cum. Var. Var Cum. Var.

PC1 68.15 68.15 58.32 58.32

PC2 28.70 96.86 36.10 94.42

PC3 2.28 99.14 4.44 98.86

PC4 0.32 99.46 0.30 99.16

Table 5.3: Centre data set: Overall Accuracy (OA), Average Accuracy (AA)
and Kappa value of the obtained results. The best accuracies ob-
tained are marked in bold.

PCs EMP EAPa EAPd EAPn EAPs EMAP

Features 4 36 36 36 36 36 132

OA (%) 96.60 98.27 98.37 98.04 97.97 98.77 98.83

AA (%) 93.24 97.66 97.91 96.74 96.43 97.58 98.02

Kappa 0.94 0.97 0.97 0.97 0.97 0.98 0.98
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Table 5.4: University data set: Overall Accuracy (OA), Average Accuracy
(AA) and Kappa value of the obtained results. The best accuracies
obtained are marked in bold.

PCs EMP EAPa EAPd EAPn EAPs EMAP

Features 4 36 36 36 36 36 132

OA (%) 70.42 80.71 92.32 86.84 76.24 78.68 89.89

AA (%) 79.25 86.64 92.00 88.00 84.68 86.27 90.25

Kappa 0.63 0.75 0.90 0.82 0.70 0.73 0.87
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Table 5.7: Centre data set: Overall Accuracy (OA), Average Accuracy (AA)
and Kappa value obtained by considering a reduced number of
PCs. The best accuracies obtained are marked in bold.

PCs EMP EAPa EAPd EAPn EAPs EMAP

OA (%)
PC1−3 95.99 97.92 98.47 98.16 97.95 98.81 98.96

PC1−2 93.57 96.81 97.95 97.44 97.78 98.57 98.26

PC1 51.48 66.41 88.57 86.79 91.36 93.37 94.24

AA (%)
PC1−3 91.89 96.42 98.26 97.34 96.64 97.61 98.45

PC1−2 85.87 94.17 97.31 96.00 96.19 97.03 97.72

PC1 41.97 61.25 80.46 70.49 79.88 85.71 88.46

Kappa
PC1−3 0.93 0.96 0.97 0.97 0.97 0.98 0.98

PC1−2 0.89 0.95 0.97 0.96 0.96 0.98 0.97

PC1 0.35 0.52 0.81 0.77 0.85 0.89 0.90

Table 5.8: University data set: Overall Accuracy (OA), Average Accuracy
(AA) and Kappa value obtained by considering a reduced number
of PCs. The best accuracies obtained are marked in bold.

PCs EMP EAPa EAPd EAPn EAPs EMAP

OA (%)
PC1−3 64.94 76.62 90.54 79.66 73.22 75.99 88.77

PC1−2 61.17 72.69 88.18 80.31 71.04 81.25 86.96

PC1 38.73 46.21 55.34 48.62 44.80 48.23 63.16

AA (%)
PC1−3 75.44 86.73 91.03 86.04 83.43 85.31 90.43

PC1−2 72.21 83.86 88.16 85.94 81.43 85.34 88.23

PC1 50.57 64.08 69.08 64.52 60.52 65.82 73.20

Kappa
PC1−3 0.57 0.71 0.87 0.74 0.67 0.70 0.85

PC1−2 0.53 0.66 0.84 0.75 0.64 0.76 0.83

PC1 0.26 0.37 0.47 0.38 0.34 0.39 0.55
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T E C H N I Q U E S B A S E D O N E X T E N D E D AT T R I B U T E
P R O F I L E S A N D D I M E N S I O N A L I T Y R E D U C T I O N
T R A N S F O R M AT I O N S

Abstract. In this chapter the role of dimensionality reduction transformations

in the computation of the extended attribute profile is investigated. Two

techniques are presented for the classification of hyperspectral images. The first

technique is based on the computation of the EAPs on the features extracted

by Independent Component Analysis. The second technique combines feature

extraction transformations on the EAPs. Each technique is presented in a

separate section of this chapter.

6.1 classification of hyperspectral images by using eaps

and ica

6.1.1 Introduction

In this section, a technique based on Independent Component Analysis
(ICA) and extended morphological attribute profiles is presented for
the classification of hyperspectral images. The ICA maps the data into
a subspace in which the components are as independent as possible.
Attribute profiles, which are extracted by using several attributes, are
applied to each image associated with an extracted independent com-
ponent, leading to a set of extended attribute profiles. Two approaches
are presented for including the computed profiles in the analysis. The
features extracted by the morphological processing are then classi-

Parts of this chapter were published in:

M. Dalla Mura, A. Villa, J. A. Benediktsson, J. Chanussot, and L. Bruzzone,
“Classification of hyperspectral images by using morphological attribute filters
and independent component analysis,” in Proc. 2nd Workshop on Hyperspectral

Image and Signal Processing: Evolution in Remote Sensing, Reykjavik, Iceland,
14–16 June 2010.

——, “Classification of hyperspectral images by using extended morphological
attribute profiles and independent component analysis,” IEEE Geoscience and

Remote Sensing Letters, vol. 8, no. 3, pp. 541 –545, 2010.

M. Dalla Mura, J. Benediktsson, and L. Bruzzone, “Classification of hyperspec-
tral images with extended attribute profiles and feature extraction techniques,”
in 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS),
2010, pp. 76 –79.
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fied with an SVM. The experiments carried out on two hyperspectral
images proved the effectiveness of the proposed technique.

6.1.2 Independent Component Analysis

Hyperspectral sensors record images with hundreds of bands and a
very high spectral resolution. The very detailed spectral description
provided by these kind of images increases the capability to distin-
guish between land cover classes, thus achieving accurate classification
maps. However, the analysis of this huge amount of data presents
some methodological issues which need to be addressed. In particular,
the high dimensionality of the data is a critical problem, due to the
appearance of the Hughes phenomenon: after a certain threshold, if
the number of features increases, the generalization capability of the
classifier decreases when a fixed number of training samples is used.
The threshold mainly depends on the number of samples used to train
the classifier. Because of these reasons, feature reduction is often ap-
plied as a pre-processing step before the classification of hyperspectral
data, in order to avoid the curse of dimensionality, and to reduce the
computation time. Although it is not optimal for classification, the
PCA is often used for such a task, due to its simplicity and ease of use.
The principle of PCA is to project the data into an orthogonal space, so
that the eigenvectors correspondent to the greatest eigenvalues retain
the maximum variance of the data. Because the PCA is based on the
analysis of covariance matrix and second order statistics, it can neglect
some important information, especially when few components are
retained. In this section, we propose to use ICA for feature reduction,
as an effective alternative to PCA. ICA consists of finding a linear
decomposition of the observed data into statistically independent com-
ponents. Given an observation model: x = As where x is the vector
of the observed signals, A is a matrix of scalars corresponding to the
mixing coefficient and s is the vector of the source signals, the ICA
finds a separating matrix W such that y = Wx = WAs, where y is a
vector of independent components (ICs).
Independence is a much stronger assumption than the decorrelation,
which can be obtained with PCA or Factor Analysis (FA). In ICA,
the concept of independence can be summarized as follows: Each
component should not provide any information about higher (than
second) order statistics of the other components. However, there are
several methods for estimating ICA. In this section we have used
the algorithm Joint Approximate Diagonalization of Eigen-matrices
(JADE), due to good results shown when used for feature reduction in
hyperspectral remote sensing data [139]. Due to space constraints we
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refer the reader interested in more details about the general framework
of ICA to [140].

6.1.3 Approaches to Deal with Multiple EAPs

The choice of the most suitable attribute and range of thresholding
values (λs) for extracting the information on the geospatial objects is
certainly a complex task, especially when a piori information on the
scene is not available. A possible approach attempting to overcome
this issue relies on the computation of EAPs with different kinds of
attributes. However, this leads to the problem of properly exploiting,
in the analysis, the different information extracted by the computed
EAPs.
A simple strategy is the Stacked Vector Approach (SVA), which com-
bines the EAPs by concatenating them in a single vector of features
(also called Extended Multi-Attribute Profile, EMAP [92]), see Fig.
6.1a. However, even if complementary information can be extracted
by considering different attributes, a great redundancy is present in
the features extracted. Thus, it is advisable that a classification algo-
rithm with excellent penalization capability is used for classifying the
features in order to handle the increased dimensionality which can
lead to the Hughes phenomenon.
Another approach is the Fusion Approach (FA) that is based on the
separate classification of each EAP and on the fusion of the results
obtained by the independent classifiers in order to generate the final
decision map, see Fig. 6.1b. In comparison to the SVA, the FA keeps
low the dimensionality of the data and increases the robustness of
the results, especially if the different EAPs generate complementary
errors.
An SVM classifier is considered with the One Against One (OAO)
multiclass strategy. The fusion rule considered when combining the
results of the single classifiers relies on the sum the votes of the classi-
fiers applied to the four MPs, assigning each pixel to a class, according
to the majority voting scheme. Obviously, other decision criteria can
be applied.

6.1.4 Experimental Results

The experimental analysis was carried out on two hyperspectral im-
ages acquired over the city of Pavia (Italy) by the ROSIS-03 hyperspec-
tral sensor. Details on the two images can be found in Sec. 5.4.1. In
the following we will refer to the two data sets as “University” and
“Centre” respectively.
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Figure 6.1: Proposed approaches for dealing with multiple EAPs. (a) Stacked
Vector Approach (SVA) and (b) Fusion Approach (FA).

In the analysis carried out, all the samples of the training set were
used for the University data set while for the Centre data sets, for each
class, only 50 samples (randomly chosen from the global 5536 samples
available as training) were considered. All the experiments conducted
on the latter data set were run ten times with a set of different training
samples each time.

From both the two hyperspectral images four components extracted
by PCA and ICA were considered. The first four PCs contain more
than 99% of the total variance of the data for both the data sets.
The components were rescaled to the range [0,1000] and converted to
integer in order to be processed by the attribute filters. Four EAPs were
computed by considering four different attributes on the components
extracted by PCA and ICA: i) a, area of the regions (λa = [100 500

1000 5000]); ii) d, length of the diagonal of the box bounding the
region (λd = [10 25 50 100]); iii) i, first moment invariant of Hu,
moment of inertia [138] (λi = [0.2 0.3 0.4 0.5]); and iv) s, standard
deviation of the gray-level values of the pixels in the regions (λs = [20

30 40 50]). The area and the length of the diagonal of the bounding
box extract information on the scale of the objects. The moment of
inertia and the standard deviation are not dependent on the size
dimension but they are related to the geometry of the objects and the
homogeneity of the intensity values of the pixels, respectively. Each
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EAP is 36-dimensional, i.e., it is composed of four APs with 9 levels
computed on each component extracted. In the sequel, the notation
EAPattr denotes the EAP built with the attr attribute. The classification
maps are obtained by analyzing the features extracted by the extended
profiles with an SVM classifier with RBF kernel. The model selection
in the training phase of the classifier was based on a gradient descent
method, which proved to be computationally less demanding than the
exhaustive investigation of the parameters on a grid approach, giving
comparable results [141].

The thematic accuracies of the obtained maps (which are presented
in Tables 6.1 and 6.2) were assessed by computing the Overall Accu-
racy (OA), the Average Accuracy (AA) and the Kappa coefficient (K)
on the available reference data. The statistical significance of the classi-
fication maps obtained by PCA and ICA and the same morphological
processing was evaluated with the McNemar’s test. All the results
were statistically significant.
The obtained results are reported in Table 6.1. It is clear as, in most of
the cases, by including the features extracted by the EAPs in the anal-
ysis resulted in higher accuracies (up almost 17% of OA) than those
obtained by considering only the spectral features. The ICA proved to
extract more informative components from the data, leading to better
results than those generated by the PCA in all the experiments. When
considering the contribution of the single EAPs, the EAPs built with
area and the moment of inertia attributes performed the best with the
PCA and ICA, respectively. This proves how it can be difficult to select
a priori the most suitable attribute on the data. In these experiments,
considering all the EAPs together, in the SVA architecture, with the
ICA gives excellent results in terms of classification accuracies. As
far as we know, these accuracies are higher than all those reported
in the literature for this data set without post-processing [122, 65]. In
contrast, the SVA approach led to low accuracies for the PCA. This can
be due to the high variation in terms of accuracy showed by the single
EAPs (more than 20% of OA), which affects the overall performances
of this approach. The FA is performing well in average and has a
robust behavior since in all the experiments the accuracies obtained,
when compared to those of the single EAPs, are slightly lower than
the best case (less than 2% of OA) and better than all the others. The
improved accuracies obtained by the proposed technique are also
confirmed by the higher precision shown in the map obtained when
considering the ICA and all the EAPs together (see Fig. 6.2c).
Table 6.2 reports the thematic accuracies obtained on the Centre data
set (the correspondent classification maps are not reported for space
constraints). Similar considerations as for the University data set can
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be drawn. For this data set also, it is evident the importance of in-
cluding the spatial information, which led to an increase in terms of
accuracy with respect to considering the original hyperspectral data or
the components obtained from the dimensionality reduction technique.
The best overall accuracy obtained by using the EAPs, is higher of
about 2% than those obtained by the original spectral features and
the first components. Considering the PCA and ICA transformations,
the latter leads to the best results in most of the cases (except for the
single components extracted and for the EAPs). When looking at the
performances obtained by considering the spatial features extracted by
the EAPs, one can see that the EAP with area attribute outperformed
the other single EAPs with PCA, while when considering the ICA the
choice of the standard deviation performed the best among the single
EAPs. Moreover, when considering the SVA strategy resulted in the
best accuracies with the ICA preprocessing (which is slightly worse
than the best EAP). Again, the FA led to results over the average of
the accuracies obtained by the single EAPs.

Table 6.1: University data set. Classification accuracies obtained by classi-
fying the hyperspectral image (Spect.), the four components ex-
tracted (4 Comp.), each single EAP, and the data with the pro-
posed approaches: Stacked Vector Approach (SVA) and Fusion
Approach (FA).

Spect. 4 Comp. EAPa EAPd EAPi EAPs SVA FA

Feat. 103 4 36 36 36 36 144 (144)

Principal Component Analysis

OA (%) 77.89 72.92 90.00 85.42 69.80 86.56 77.81 89.21

κ (%) 72.34 66.25 87.06 81.24 63.22 82.82 71.08 86.06

AA (%) 85.78 81.55 92.04 89.55 82.48 91.15 86.84 92.04

Independent Component Analysis

OA (%) 77.89 74.64 91.26 87.94 93.57 87.69 94.47 91.69

κ (%) 72.34 68.22 88.55 84.31 91.63 84.14 92.80 89.13

AA (%) 85.78 77.18 92.36 91.72 95.73 90.92 96.58 94.11
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Table 6.2: Centre data set. Classification accuracies obtained by classify-
ing the hyperspectral image (Spect.), the four components ex-
tracted (4 Comp.), each single EAP, and the data with the pro-
posed approaches: Stacked Vector Approach (SVA) and Fusion
Approach (FA). The results reported are the average of the ac-
curacies obtained in 10 trials with 50 training samples per class
randomly chosen for each trial.

Spect. 4 Comp. EAPa EAPd EAPi EAPs SVA FA

Feat. 102 4 36 36 36 36 144 (144)

Principal Component Analysis

OA (%) 96.25 96.24 98.40 97.83 97.81 98.48 98.43 98.39

κ (%) 93.59 93.56 97.26 96.27 96.24 97.39 97.31 97.24

AA (%) 92.80 92.65 97.18 96.18 96.23 96.93 97.26 97.21

Independent Component Analysis

OA (%) 96.25 96.47 98.59 98.18 97.91 97.97 98.69 98.47

κ (%) 93.59 93.94 97.58 96.87 96.42 96.51 97.75 97.38

AA (%) 92.80 92.39 97.50 96.76 96.15 96.18 97.58 97.26

6.1.5 Conclusion

In this section we have presented a technique based on independent
component analysis and attribute profiles for the classification of
hyperspectral images. In greater details, from the hyperspectral image
some independent components are extracted, and different attribute
profiles are computed for each one, leading to extended attribute
profiles. The features obtained by the morphological processing are
then classified with an SVM classifier. We proposed two approaches
for considering the features extracted by the different EAPs, one based
on the concatenation of the EAPs and one based on the fusion of the
classification results obtained on the single EAPs.

The experimental analysis was carried out on two well-known hy-
perspectral images acquired on the city of Pavia (Italy). The results
obtained on these data sets proved that the preprocessing of the hy-
perspectral data carried out with ICA is more suitable than the PCA
for modeling the different sources of information present in the scene.
Moreover, from the experiments and results, it was evident how im-
portant the spatial features extracted by the EAPs are for classification.
The concatenation of the different EAPs gave excellent results in terms
of classification accuracies (with respect to other works present in



6.2 classification with eaps and feature extraction 83

(a) (b) (c) (d)

Figure 6.2: ROSIS Pavia University data set. Classification maps obtained
by: (a) PCA with area attribute (EAPa), (b) PCA with FA, (c) ICA
with SVA, and (d) ICA with FA.
Thematic classes: trees, asphalt, bitumen, gravel,

metal sheets, shadows, meadows, self-blocking bricks,
bare soil.

the literature on these data sets). This approach did not perform well
only in one case with the PCA, i.e., when the single EAPs led to
results significantly different one to the other (range of difference in
the overall accuracies greater than 20%). However, this effect did not
occur with the ICA, where the obtained results were more uniform
and all statistical significant (according to the McNemar’s test). The
approach based on the fusion of the classification results with the
majority voting strategy proved to have a robust behavior leading to
accuracies slightly lower than those of the best case obtained with a
single EAPs but better than all the others.

6.2 classification of hyperspectral images with eaps and

feature extraction techniques

6.2.1 Introduction

In this section we investigate the combined use of morphological at-
tribute filters and feature extraction techniques for the classification of
a high resolution hyperspectral image. Although the exploitation of
the features extracted by the profiles already proved to improve the ac-
curacies in a classification task [91, 92, 72, 115], the profiles in general
increase significantly the dimensionality of the data being analyzed.
This effect is further increased when considering multiple APs/EAPs
built on different attributes in order to provide richer descriptions of
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the spatial information contained in the scene. Furthermore, the in-
formation contained in a profile is, in general, intrinsically redundant
(e.g., adjacent levels in a profiles can differ one to the other only by
few regions in the whole image). The increase in the dimensionality
and the high redundancy can be an issue, especially if a classifier non
robust to the Hughes phenomenon is considered. The reduction of
the dimensionality of the data performed with FE techniques suitable
for classification proved to increase the classification accuracies when
considering MPs and EMPs. Thus, this approach becomes very inter-
esting when applied to EAPs especially when multiple attributes are
considered.
In this section we investigate the classification of HR hyperspectral
images based on extended attribute profiles and feature extraction
techniques. In particular, extended attribute profiles are computed
on the hyperspectral image with different attributes. Subsequently,
the dimensionality of the generated profiles is reduced by FE. Three
technique have been considered for FE: Discriminant Analysis Feature
Extraction (DAFE), Decision Boundary Feature Extraction (DBFE) and
Non-Weighted Feature Extraction (NWFE). The feature extracted were
considered by two classifiers: Maximum Likelihood (ML) and Random
Forest (RF) classifiers.

6.2.2 Feature Extraction Techniques

Three well known feature extraction techniques are considered: DAFE,
DBFE and NWFE.
The technique of DAFE performs the Fisher discriminant analysis [2],
which is a linear projection of the multivariate data on the C − 1 or-
thogonal directions that are the most discriminant for the C Gaussian
distributions estimated on the thematic classes in the image. If the
number of features is less than the number of classes, then the number
of features becomes the maximum number of discriminant compo-
nents that can be extracted. The most discriminant features are found
as those which maximize a separability criterion J = tr(Σ−1

W ΣB) where
ΣW denotes the within-scatter matrix which gives a measure of the
overlapping of the different distributions and ΣB the between-scatter
matrix which indicates the separability of the means of the distribu-
tions.
The DBFE technique [2], in contrast to DAFE, does not take into ac-
count the statistics of the class distributions, since it is based only
on the analysis of the boundary that separates the different classes.
In greater detail, discriminant features in the DBFE are extracted as
directions orthogonal to the decision boundary. However, DBFE is
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(a) (b) (c)

Figure 6.3: ROSIS data set, University of Pavia: Classification maps obtained
with RF classifier and EAPall with (a) DAFE; (b) DBFE; (c) NWFE.
Thematic classes: asphalt, meadows, gravel, trees,

metal sheets, bare soil, bitumen, bricks, shadows.

affected when few training samples are available in the analysis.
The NWFE technique [2] was proposed in order to overcome the lim-
itations of DBFE. NWFE is similar to the DAFE technique but it is
based on the estimation of local means (obtained by weighting each
sample according to its distance to the decision boundary) and on
non-parametric between- and within-scatter matrices.

6.2.3 Experimental Results

The data set considered in the experiments is a 610×340 pixels high
resolution hyperspectral image acquired by the airborne sensor ROSIS-
03 on the University campus of the city of Pavia (see Sec 5.4.1).

From the hyperspectral data four PCs were considered for the anal-
ysis in order to explain more than the 99% of the total variance of
the data. Subsequently, four EAPs were computed with different at-
tributes: i) a, area of the regions; ii) d, length of the diagonal of the box
bounding the region; iii) i, moment of inertia, [91]; and iv) s, standard
deviation of the gray-level values of the pixels in the regions. The area
and the length of the diagonal of the bounding box are increasing
attributes that are useful to perform a multi-scale analysis of the data.
The moment of inertia attribute is also a purely geometric descriptor
that measures the elongation of the regions. However, since it is scale
invariant, it is not increasing and can be employed for extracting infor-
mation on the geometry of the regions regardless their scale. Finally,
the standard deviation attribute measures the homogeneity of the
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Figure 6.4: Representation of the proposed processing scheme when analyz-
ing all the EAPs together (EAPall).

intensity values of the pixels belonging to each region in the image
and thus gives information that is not related to the geometry of the
regions but, is dependent on the spectral contrast of the pixels. Four
reference values, λ in Eq. (5.1), were considered for building each of
the four EAPs, leading to 36-dimensional profiles (composed by four
APs of 9 levels computed on the PCs). The λs values considered are
the following: i) EAPa, λa = [100 500 1000 5000]; ii) EAPd, λd = [10 25

50 100]; iii) EAPi, λi = [0.2 0.3 0.4 0.5]; iv) EAPs, λs = [20 30 40 50].
The concatenation of the four EAPs in a single vector was denoted
as EAPall . The feature extraction techniques DAFE, DBFE and NWFE
were applied to each of the profiles considered. The estimation of
the covariance matrices of the probability density functions for the
different class distributions was done by the leave-one-out covariance
estimator since the high redundancy present in the profiles led to
singular matrices by using the conventional maximum likelihood es-
timator. A scheme of the processing flow when considering all the
profiles (EAPall) is reported in Fig. 6.4.
The features extracted by the FE techniques considered were ana-

lyzed by two classifiers: a Maximum Likelihood (ML) classifier with
the assumption of Gaussian distributed classes and a Random Forest
(RF) classifier. The RF was created with 100 trees. During the training
phase of the RF, the number of variables considered in each split of the
trees, was set to the square root of the total number of features. The
classification results were quantitatively evaluated by measuring the
Overall Accuracy (OA) on the reference data. In Table 6.3, the accura-
cies obtained without the feature extraction techniques are presented.
It is possible to notice how similar results are obtained by consid-
ering only the hyperspectral channels (Spectr.) and the first PCs for
all the classifiers. The classification of the EAPs with the ML led to
poor results, due to the low reliability of the estimation of the class
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distributions as Gaussian in the feature space with full dimensionality.
Conversely, the RF proved to be robust to the high dimensionality and
capable to handle the information extracted by the EAPs leading to
significantly higher accuracies then those obtained without consider-
ing any spatial feature. In particular, the EAPa performed well with
respect to the EAPs with other attributes for the RF classifier whereas
the EAPi performed the best for the ML classifier.
In the experiments with FE techniques, the classifiers were applied
progressively on an increasing number of the features extracted. The
best results are shown in Table 6.4 (the number of features considered
is reported in brackets). The importance of the application of a FE is
evident from the results. For example, when considering each single
EAP and the ML classifier, the gain in terms of accuracies is up to 19%
and 34% when compared to the classification of only the hyperspectral
data and each EAP without FE, respectively. Also when looking at
the RF classifier applied to each single EAP, the use of a FE technique
led to better OAs in most of the cases with respect to consider the
data without FE, obtaining a gain up to 10% . However, in almost all
the experiments, the best accuracies were obtained by performing FE
on all the EAPs (EAPall). The best classification in terms of OA was
obtained with the RF and the DAFE technique leading to 96.01% of
OA (the classification map is reported in Fig. 6.3.c). When comparing
the accuracies resulting from each FE technique it is possible to state
that in average the application of the NWFE technique outperformed
the results obtained by DAFE and DBFE up to 1.5% and 0.8% of OA,
respectively.

Table 6.3: Overall Accuracies obtained without any FE technique. The best
accuracy obtained for each classifier is marked in bold.

Spectr. PCs EAPa EAPd EAPi EAPs EAPall

Feats 103 4 36 36 36 36 144

ML 70.47 75.20 72.21 65.05 73.08 54.34 64.19

RF 71.66 69.89 90.99 86.66 82.94 81.64 89.71

6.2.4 Conclusion

In this section we presented a technique that exploits feature extraction
techniques applied to the images generated by Extended Attribute
Profiles derived from a hyperspectral image for data classification.
EAPs can extract useful information but increasing the dimensionality
of the data especially when multiple attributes are considered. Three
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Table 6.4: Overall Accuracies obtained with the FE techniques. The number
of features considered for each experiments is reported in brack-
ets. The best accuracy obtained for each FE and each classifier is
marked in bold.

FE Technique Classifier EAPa EAPd EAPi EAPs EAPall

DAFE
ML 89.97 (7) 84.68 (8) 84.56 (10) 85.41 (8) 91.48 (11)

RF 92.68 (20) 90.13 (25) 90.84 (35) 86.52 (14) 96.01 (121)

DBFE
ML 88.69 (6) 82.33 (8) 81.47 (7) 85.18 (5) 83.80 (11)

RF 88.69 (30) 85.07 (36) 82.20 (36) 87.55 (20) 94.50 (81)

NWFE
ML 89.93 (14) 83.03 (4) 87.54 (10) 88.55 (12) 91.18 (11)

RF 92.99 (24) 87.25 (30) 93.47 (27) 79.83 (5) 91.89 (41)

techniques for reducing the data dimensionality suitable for classifica-
tion were considered: i) DAFE; ii) DBFE; and iii) NWFE. The features
extracted were classified with the ML and RF classifiers.
The experimental analysis carried out on a HR hyperspectral image
of Pavia, Italy, proved the importance of the FE stage in the process-
ing chain. When considering the ML classifier, the use of FE brought
the greatest gain in terms of accuracy. This can be explained by the
sensitiveness of the ML to the Hughes phenomenon. The RF classifier
proved to be more robust in presence of high dimensionality and
redundant features with respect to the ML. However, in most of the
cases the application of a FE technique led to better accuracies with
respect to perform the classification on the data with full dimension-
ality. The RF classifier outperformed in almost all the experiments
the other classifiers. The best accuracies were obtained by considering
all the EAPs together along with a FE technique. Regarding the FE
techniques, the NWFE in average slightly outperformed the other FE
techniques in terms of overall classification accuracies.
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D U A L T E C H N I Q U E S

Abstract. APs and EAPs handle differently bright and dark structures in

the image. However, for some applications it is important to simultaneously

operate on bright and dark regions. Dual transformations are then suggested

in this scenario. In this chapter we present two techniques based on this

approach. Firstly, we show the different effects obtained by applying many

attribute filters in an alternating sequence for image simplification. Subse-

quently, a technique based on self-dual attribute profiles for the classification

of VHR panchromatic images is proposed.

7.1 alternating sequential attribute filters

7.1.1 Introduction

Very high resolution (VHR) remote sensing images can currently reach
a geometrical resolution under 50 cm. The increase in geometrical
resolution with respect to images of medium resolution (which have a
pixel footprint greater than 1 sqm) leads to a significant improvement
in the representation of the objects details. For example, chimneys on
roofs, cars on roads, tree crowns are now represented in images. If
on the one hand such improved resolution increases the capabilities
of such imagery, on the other hand, it can make the analysis more
complex and demanding [71]. If the VHR image is analyzed by tech-
niques developed for images of lower resolution it is likely that these
techniques are not able to deal with the great amount of details present
in the image [71]. In fact, the surveyed objects (even those having a
homogeneous reflectance) can appear in the image as a fragmented

Parts of this chapter were published in:

M. Dalla Mura, J. A. Benediktsson, and L. Bruzzone, “Alternating sequential
filters with morphological attribute operators for the analysis of remote sensing
images,” in Image and Signal Processing for Remote Sensing XVI - SPIE Proceeding,
vol. 7830. Toulouse, France: SPIE Publications, Bellingham, WA, 2010, pp.
783 006–1–783 006–8.

Parts are going to appear in:

——, “Self-dual attribute profiles for the analysis of remote sensing images,”
in Proc. of 10th Int. Symp. on Mathematical Morphology (ISMM 2011), P. Soille,
G. K. Ouzounis, and M. Pesaresi, Eds., Intra, Lake Maggiore, Italy, 6th-8th July
2011.
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composition of many bright and dark areas, due to phenomena such
as the great amount of details, the uneven illumination, the presence
of shadows, the natural texture of the surfaces.
Image simplification can be a useful pre-processing operation for an-
alyzing a VHR image. The reduction of the complexity of the scene
aims at reducing the presence of uninteresting details and thus en-
hancing only the components that are informative for the subsequent
analysis. However, the simplification process should not affect the
characteristics of the interesting objects in order to fully preserve their
information for the subsequent analysis.

The image simplification can be obtained by applying Alternating
Sequential Filters (ASFs). ASFs are filters defined in the mathematical
morphology framework as a sequential application of the alternate
composition of either opening and closing or closing and opening. The
alternate application of opening and closing (and vice-versa) filters
both regions that are brighter (with the opening) and darker (with
the closing) than their surrounding greylevels. Morphological ASFs are
obtained by morphological opening and morphological closing [82]. An
example of the application of a morphological ASF is reported in
Figure 7.1(b). It can be noticed how a simplification of the original
scene is obtained. However, the geometrical characteristics (e.g., region
shapes, edges) of the structures non completely removed by the filter-
ing are not preserved. ASFs by reconstruction are better candidates than
morphological ASFs for the analysis of VHR images since they are
based on opening by reconstruction and closing by reconstruction [99]. Op-
erators by reconstruction are connected filters and thus they process
an image only by merging connected components (regions of con-
nected pixels of iso-intensity graylevel). As shown by the Figure 7.1(c),
ASFs by reconstruction are more suitable than morphological ASFs in
processing VHR images. The filtering effects that can be obtained by
ASFs by reconstruction are limited since operators by reconstruction
process the image according to a window with given size and shape
(called structuring element, SE). In general, the use of isotropic SEs
(e.g., disk or square) in the ASF leads to a simplification of the scene
obtained by removing progressively larger regions. When considering
lines as SEs, a directional effect is obtained since the image is filtered
by removing structures with the same orientation of the SE. However,
more complex effects are difficult to achieve (e.g., filter the image
according to measures of texture).
Morphological attribute filters can overcome the limitations of the
use of SEs. Attribute filters are connected operators and they include
in their definition filtering by reconstruction [91]. The filtering effect
obtained with attribute filters is mainly due to the type of attribute
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selected (e.g., area, length of the perimeter, standard deviation, shape
index) leading to a great flexibility in the definition of this family of
filters.

(a) (b) (c)

Figure 7.1: Example of Alternating Sequential Filters. (a) Original image;
(b) Morphological ASF with sequence morphological opening
followed by a morphological closing with disk-shaped structur-
ing element of radius 5 pixels; (c) ASF by reconstruction with
sequence opening by reconstruction followed by a closing by
reconstruction with disk-shaped structuring element of radius
5 pixels.

In this section we aim at: i) defining Alternating Sequential Attribute
Filters (ASAFs), which are ASFs computed with attribute filters; ii)
presenting a possible implementation of ASAFs and iii) showing the
effects obtained by ASAFs with different attributes for a qualitative
analysis.

7.1.2 Definition of ASAF

Alternating Sequential Attribute Filters can be defined as the alternate
application of the product of attribute thinning and attribute thicken-
ing with progressively stricter criteria. As guideline for the definition
of ASAF we follow the presentation of the ASF given in [80]. The
product of attribute thinning and attribute thickening composes the
alternate core operator that is iteratively applied for performing the
filtering. Different compositions of the alternate operator are possible.
The main ones are reported below.

• mλ = γTλ φTλ ;

• nλ = φTλ γTλ ;

• rλ = φTλ γTλ φTλ ;

• sλ = γTλ φTλ γTλ .
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The ASAF is computed on a family of ordered criteria {Tλ} with
the scalar value λ taken as reference in the predicate, ranging in the
interval [λ1, λ2] with step size k. The range of values of λ is increasing
monotonically from λ1 (lowest value) to λ2 (greatest value). For OP
criteria, the criterion Tλ1 is the most relaxed predicate (i.e., almost all
the regions satisfy the criterion and the image will be slightly affected
by the filtering), whereas Tλ2 is the strictest predicate (i.e., produces
the most severe changes in the image). When considering OR criteria,
the severity of the filter is minimal for the criterion Tλ2 and maximal
for Tλ1 .

Let us now consider the alternate product mλ = γTλ φTλ as core
operator. We show in the following the ASAF definition, which can
be straightforwardly extended to the other alternate compositions of
thinning and thickening.

• Order-preserving (OP) criterion (e.g., T = A > λ) with λ2 ≥ λ1

ASAFm = M
Tλ2
Tλ1

(k) = mλ2 mλ1+(k−1)(λ2−λ1)/k . . . mλ1+(λ2−λ1)/kmλ1 . (7.1)

• Order-reversing (OR) criterion (e.g., T = A < λ) with λ2 ≥ λ1

ASAFm = M
Tλ1
Tλ2

(k) = mλ1 mλ2−(k−1)(λ2−λ1)/k . . . mλ2−(λ2−λ1)/kmλ2 . (7.2)

For OP criteria, the ASAF is obtained by, at first, computing the alter-
nate filter with criterion Tλ1 and increasing step by step the reference
value till the criterion Tλ2 of the last iteration of the filter. Conversely,
for OR criteria, the reference λ is progressively reduced from λ2 to λ1.

As a general guideline, the step size k, regulating the increasing of
λ, should be taken as the smallest possible variation that can occur
in {A}, the domain of the (significant) values of the attribute. The
progressive increase of the reference value should be the smallest
possible in order to obtain the proper simplification effect. Since, only
one of the extrema of the range interval of λ defines the severity of the
filter (i.e., it can be thought as the “filter size”), the other extremum,
which sets the starting point of the filtering, can be fixed without
affecting much the filtering effect. Therefore, for OP criteria, λ1 can be
set to the lowest value of the attribute ∧{A} and the ASAF notation
can be simplified to MTλ2 . Analogously, when dealing with OR criteria,
it is possible to define λ2 as ∨{A}, leading to the filter MTλ1 . For both
(7.1) and (7.2) the absorption law is fulfilled (MTλ MTµ = MTλ for
Tλ ⊇ Tµ).
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7.1.3 Implementation of ASAF based on Min- and Max-tree

The implementation of the ASAF based on min- and max-trees is
detailed in the following for the alternate operator mλ = γTλ φTλ at an
arbitrary iteration i of the filtering procedure:

1. Compute the min-tree on the image g (which was already filtered
by the previous alternate operators);

2. Compute the attributes and filter the tree according to Tλi
;

3. Retrieve the filtered image φTλi (g);

4. Compute the max-tree on the filtered image φTλi (g);

5. Compute the attributes and filter the tree according to Tλi
;

6. Transform the filtered tree back to an image ( γTλi φTλi (g)).

By analyzing the implementation of the ASAF as presented above,
it is possible to notice how this approach can be computationally
demanding (a min- and a max-tree structures are computed for each
λ) and for a large range of λ this can be a significant limitation. The
main advantage in using the max-tree representation is given by the
knowledge of all the possible values of the attribute before filtering
the tree. This knowledge helps in speeding up the process since the
filtering can be performed only for the significant λs in the range
avoiding to perform a filtering for those λs that would not produce
any change.

In order to speed up the filtering process, it is possible to use
faster implementation of the alternating sequence as presented in [80].
However, those are approximations of the ASAF as defined in the
previous subsection and they can produce slightly different filtered
images. The simplest move to reduce the computational burden of the
filter is the increase of the step size k used for defining the increase
rate of the range of λs. Such approximated version of the ASAF is
reported below (for a OP criterion and the mλ operator):

M̂Tλ(k) = mλmλ−k . . . mk+1m1. (7.3)

Another possible lighter approximated version of the ASAF is given
by the following operator:

M̃Tλ = γTλ φTλ−1 γTλ−2 . . . γT2 φT1 . (7.4)

In this approach, either a thinning or a thickening is computed for
each λ. Analogous definitions can be derived for the other alternate
operators.
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7.1.4 Experimental Results

The effects produced by filtering an image with an ASAF are mainly
due to the attribute and the ordering relation of the criterion. The
ASAF with increasing attributes leads to a simplification of the image
by merging regions of increasing size. Conversely, ASAFs with non-
increasing attributes produce a reduction of the complexity of the
scene by merging regions according to features related to the shape
characteristics of the regions, relative contrast between pixels, etc. The
ordering relation used in the definition of the criterion indicates how
the feature associated to the attribute is considered in the analysis. For
example, if the spectral homogeneity is the feature considered (e.g.,
estimated by the standard deviation of the values of the pixels), by
setting the ordering relation one can define if the simplification of the
image will be done by affecting the most or the least homogeneous
regions.

7.1.4.1 Experimental Set-up

A GeoEye-1 panchromatic image of 400×400 pixels having a geomet-
rical resolution of 0.5 m was used for the qualitative analysis of the
ASAF. The image was acquired on Borgo Valsugana a village close to
the city of Trento, Italy. The acquired scene presents heterogeneous
residential buildings, roads and some vegetated areas (see Figure 7.2).
Four attributes were considered in the analysis: area, length of the

(a) (b)

Figure 7.2: GeoEye-1 image of Borgo Valsugana, Trento, Italy. (a) Panchro-
matic band; (b) True color composition of the pansharpened
multispectral channels.

diagonal of the bounding box (denoted for simplicity “diagonal“ in
the following), moment of inertia and standard deviation. The area
and the diagonal are increasing attributes and they give a measure that
can be associated to the size of the regions. Conversely, the moment of
inertia and the standard deviation are non-increasing attributes. The
moment of inertia can be considered as a measure of the spatial elon-
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gation of a region. It assumes the lowest value for a disk-shaped region
and rapidly increases as soon as the region become more elongated.
The standard deviation computed on the graylevel values of the pixels
in a region can be related to a measure of the spectral homogeneity.
The min filtering rule was adopted for increasing criteria, whereas
the subtractive was chosen for the non increasing ones. For further
information on the filtering rules we refer the reader to [91].

The alternate operator used in the composition of the ASAF was
mλ: the sequence of an attribute thinning followed by an attribute
thickening. The implementation of the ASAF was carried out with the
approximation presented in (7.3), since the direct application of (7.1),
(7.2) was computationally too demanding.

7.1.4.2 Results

Figure 7.3 shows the results obtained by applying the ASAF with area
and diagonal to the considered image. One can see how a similar effect
is obtained with the two attributes. By making the criterion stricter,
larger regions are merged together. The Figures 7.3(b) and (d) are
associated with the lowest degree of simplification, i.e., they show the
scene with small details removed (e.g., the particulars of the roof of
the buildings, the white signs on the roads). By increasing the severity
of the filters, larger structures are removed (e.g., some buildings, trees,
parts of the roads).

Compared to Figure 7.3, a different effect is seen in the filtered im-
ages of Figure 7.4. The filtering done with moment of inertia attribute
(Figure 7.4(a)–(c)) enhances the elongated regions by progressively
removing compact objects. When considering the standard deviation
attribute (Figure 7.4(d)–(f)), the image is simplified by merging regions
more homogeneous as soon as the criterion is made stricter.

The inverse effect of the ASAFs in Figure 7.4 was obtained by
defining the criterion with reversed ordering relation (see Figure 7.5).
The less severe filter with moment of inertia attribute removes the
most elongated regions (Figure 7.5(a)), whereas the most severe filter
(Figure 7.5(c)) only keeps the most compact objects. When considering
the standard deviation attribute, the image is filtered by progressively
merging homogeneous regions.

7.1.5 Conclusion

In this section we proposed Alternating Sequential Attribute Filters
(ASAFs). We defined ASAFs as the sequential application of the prod-
uct of an attribute thinning and an attribute thickening. Two definition
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: ASAF with increasing attributes and order preserving relation.
Area attribute: (a) λ = 50, k = 3; (b) λ = 500, k = 20; (c) λ = 2500,
k = 100. Length of the diagonal of the bounding box: (d) λ = 20,
k = 2; (e) λ = 40, k = 2; (f) λ = 80, k = 3.

(a) (b) (c)

(d) (e) (f)

Figure 7.4: ASAF with non-increasing attributes and order preserving re-
lation. Moment of inertia: (a) λ = 0.2, k = 0.01; (b) λ = 0.225,
k = 0.05; (c) λ = 0.25, k = 0.05. Standard deviation: (d) λ = 20,
k = 1; (e) λ = 35, k = 3; (f) λ = 50, k = 4.

were presented, according to the ordering relation of the criterion con-
sidered in the filtering. A possible implementation of the ASAFs based
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(a) (b) (c)

(d) (e) (f)

Figure 7.5: ASAF with non-increasing attributes and order reversing relation.
Moment of inertia: (a) λ = 0.5, k = 0.1; (b) λ = 0.4, k = 0.1; (c)
λ = 0.3, k = 0.1. Standard deviation: (d) λ = 150, k = 10; (e)
λ = 100, k = 10; (f) λ = 50, k = 10.

on min- and max-trees was presented. Moreover, two approximated
versions of the original definition were reported in order to decrease
the computational burden of the processing.
ASAFs were applied to a panchromatic very high resolution image ac-
quired by GeoEye-1. By analyzing the obtained results it was possible
to notice how different effects are obtained by considering different
criteria (i.e., attributes and ordering relations), thus leading to different
ways of simplifying the image.

7.2 self-dual attribute profiles

7.2.1 Introduction

Since the APs are based on the application of either extensive or anti-
extensive operators, the multilevel simplification is either obtained on
the bright or dark components of the image. If a simultaneous simplifi-
cation of bright and dark regions is aimed, self-dual operators should
be used. The application of self-dual connected operators leads to
an image simplification characterized by more homogeneous regions
with respect to the results obtained by extensive or anti-extensive con-
nected operators. In a remote sensing scene this effect can be useful for
flattening textured areas (e.g., agricultural fields, vegetated areas, etc.)
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or removing both dark and bright details. In [93] we investigated the
effects of Alternating Sequential Attribute Filters (ASAFs) obtained
by the application of attribute thinning and attribute thickening in
an alternating sequential approach on a VHR remote sensing image.
The selection of different attributes with progressively stricter crite-
ria (i.e., producing greater simplifications of the image) showed how
significantly different effects can be obtained on the image. However,
the alternating sequence of thinning and thickening operators is not a
self-dual operator since the filtering effect is biased by the operator
that is applied first. Furthermore, the non approximated computation
of ASAFs is computationally very demanding.
In this section we propose to use an inclusion tree for computing the
AP instead of the min-tree and max-tree as done in [91]. The inclusion
tree is a tree representation of an image which fuses both the min-tree
and max-tree of the image in a single data structure [106]. The main
advantages for the use of an inclusion tree for the computation of a
profile relies on: i) the construction and subsequent manipulation of
a single representation of the image embedding the min- and max-
tree representation (requiring less resources in term of computational
complexity and memory occupation); and ii) the capability of comput-
ing extensive, anti-extensive or self-dual connected operators. In this
section we focus on the latter aspect investigating Self-Dual Attribute
Profiles (SDAPs) which are APs based on self-dual connected opera-
tors for the classification of a VHR remote sensing image.

7.2.2 Definition of Self-dual Attribute Profiles

If we take into account the inclusion tree, the AP can be obtained by
considering in the filtering the components belonging to the upper
level set or lower level set for performing a thinning or thickening,
respectively. The phase devoted to the construction of the inclusion
tree with the FLST implementation results faster and requires less
memory for storing the data than the construction of both a min- and
max-tree [106].
The use of an inclusion tree permits also to filter the image with
self-dual operators when the inclusion relations defined by the satu-
ration of the components are considered instead of those belonging
to the upper or lower level set. Self-dual operators are advisable for
the processing of remote sensing images if a simplification leading to
more homogeneous regions with respect to the effect obtained by a
non dual operator is required.
As an example of this effect, Fig. 7.6 shows the results obtained by
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filtering a particular of a VHR remote sensing panchromatic image
considering as a predicate T = card(C) ≥ λ with card(C) the cardi-
nality of the connected component C with increasing values of λ. The
filtering was computed on a min-, max- and inclusion tree. The opera-
tor obtained with the considered predicate on a max-tree (min-tree)
was basically an area opening (area closing). When considering the
inclusion tree, a self-dual operator (that is called grain filter in [106])
was applied. By analyzing the figure is possible to see how bright and
dark details were preserved unaffected in the images filtered with
area closing and opening, respectively. For example the bright areas
on the roof (probably due to glares of roof windows, metal plates or
solar cells) of the building on the top of the image and bright small
regions composing the texture of the garden on the bottom right were
completely preserved by the area closing. Analogously, the shadows
casted on the roof by the dormers and other shaded regions on the
vegetated area on the top of the image were unaffected by all the open-
ings. In comparison, the effect of the self-dual filter can be noticed
in the production of more homogeneous regions since both bright
and dark components were simultaneously filtered. For instance, the
particulars on the roofs were removed and the textured areas were
completely flattened.
Analogously to the definition of the AP (4.4), it is possible to de-

rive a formulation of Self-Dual Attribute Profiles (i.e., APs built with
self-dual operators):

SDAP(u) =
{

u, ρTλ1 (u), . . . , ρTλL−1 (u), ρTλL (u)
}

, (7.5)

with ρ the self-dual operator based on the predicate T, and being
{Tλ} a set of L ordered predicates. In contrast to APs, the SDAP is
composed by L + 1 images while the AP built with the same sequence
of λs is made up of 2L + 1 images.

7.2.3 Experimental Results

In the experimental analysis a VHR image acquired by GeoEye-1 over
Borgo Valsugana a village close to the city of Trento, Italy was consid-
ered for classification. The data set is composed by a panchromatic
band and four multispectral (MS) pansharpened images (acquired on
the visible and near infrared electromagnetic spectrum) of 400×400

pixels with a geometrical resolution of 0.5 m. The Normalized Veg-
etation Index (NDVI) image was also generated for enhancing the
vegetated areas. The NDVI is given by NIR−R

NIR+R with NIR and R the
bands acquired on the near infrared and red regions, respectively.
The scene presents heterogeneous residential buildings, roads and
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(a)

(b)

(c)

(d)

Figure 7.6: Particular of the panchromatic band of 0.5 [m] resolution ac-
quired by GeoEye-1 image of Borgo Valsugana, Trento, Italy
reported in Figure 7.7a. (a) Original image; (c) Area closing
(φTλ ); (b) Area opening (γTλ ); (d) Grain filter (ρTλ ). The values of
area taken as reference and used by all the three operators are
λ = {50, 500, 1000, 2000} (correspondent to images from left to
right).

some vegetated areas. Six thematic classes were identified in the image:
Buildings, Roads, Trees, Meadows, Shadows and Soil. A reference map
of the coverage classes was generated by visual inspection leading to
a total of 67977 labeled pixels.
For including the spatial information in the analysis, an AP and a
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SDAP with area attribute and 12 reference values (λ = {5, 25, 50,
100, 150, 200, 300, 500, 750, 1000, 2000, 3000 }) were computed on the
panchromatic image. The AP was computed using the implementation
of the min and max-tree included in the C++ Milena library [142]
and the SDAP from an adaptation of the code for the inclusion tree
provided in the MegaWave2 toolbox 1.
The data set was classified by 6 different classifiers: Linear Bayes Nor-
mal classifier, Quadratic Bayes Normal classifier, Random Forest (RF),
3-Nearest Neighbor, SVM with linear kernel and SVM with RBF kernel.
Part of the labeled samples of the reference image was considered
for the training of the classifiers, the rest was used for computing the
classification accuracy, which was assessed by the Overall Accuracy
(OA) and the Kappa coefficient (κ). Two training sets were considered
taking for all the classes a total of the 1% (685) and 10% (6801) of the
reference samples.
The classification accuracies obtained by considering different features
are reported in Table 7.1. With 10% of the samples used for training, it
can be seen that considering the images of the SDAP as features and
the RF as classifier outperformed in terms of overall accuracies the best
results obtained by the spectral features (MS + NDVI) and AP taken
singularly of 0.25% and 2.34%, respectively. By a visual inspection of
the map correspondent to the best accuracy obtained by the spectral
features among all the classifiers (Fig. 7.7d) is possible to notice that the
vegetation was well classified (also separating meadows from trees).
However, roads and buildings were often mixed and the shapes of
some objects were distorted (see the shadow of the building on the top
left). In contrast to Fig. 7.7d, the maps obtained by the AP (Fig. 7.7e)
and SDAP (Fig. 7.7f) show less confusion between roads and buildings
but the natural classes (i.e., soil, meadows and trees) were not correctly
detected. Furthermore, Fig. 7.7f in comparison to Fig. 7.7e shows more
homogeneous regions (due to the use of self-dual operators in the
computation of the profile). When the spectral features are considered
along with the AP or SDAP, the best accuracies among all the experi-
ments were obtained. In particular, considering the training set as 10%
and the best obtained OAs, there was an increase of accuracy up to
about 7% compared to considering both the spectral features and the
SDAP singularly and about 9% with respect to considering only the
AP. A greater precision in detecting buildings, roads and vegetation
is also clear from the maps (Fig. 7.7g, 7.7h). When comparing the
best overall accuracies obtained by considering the AP against the
SDAP, both with the spectral features, similar results were obtained
(with a SVM with RBF kernel and a RF, respectively). However, the

1 Available at http://megawave.cmla.ens-cachan.fr.
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results obtained with the SDAP slightly outperformed those achieved
with the AP. Again, when comparing Fig. 7.7g and 7.7h, the use of
SDAP produced a less noisy map than considering the AP. However,
in Fig. 7.7h some shadows in the vegetated areas were not correctly
detected as instead occurs in Fig. 7.7g. Satisfactory results are also
obtained with a reduced training set (1% of the reference samples)
confirming the improvements given by using the SDAP.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.7: GeoEye-1 Borgo Valsugana data set. (a) Panchromatic band; (b)
True color composition of the pansharpened multispectral chan-
nels; (c) Map of the reference samples. Classification maps (all
taking the 10% of the reference samples as training) obtained by:
(d) MS + NDVI and SVM with RBF kernel classifier (OA 86.23%);
(e) AP and RF classifier (OA 84.14%); (h) SDAP and RF classifier
(OA 86.48%); (g) MS + NDVI + AP and SVM with RBF kernel
classifier (OA 93.45%); (h) MS + NDVI + SDAP and RF classifier
(OA 93.50%). Thematic classes: buildings, roads, trees,

meadows, shadows, soil.

7.2.4 Conclusion

In this section we have proposed to compute Attribute Profiles on the
inclusion tree of the image instead of considering a min- and max-
tree. The use of the inclusion tree as structure representing the image
contains the information of both the min- and max-tree. Moreover, on
the inclusion tree can also be computed self-dual connected operators,
which produce a greater simplification of the image with respect to
non dual filters since they operate simultaneously on the bright and
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dark components of the image. Thus, we have derived the definition of
Self-Dual Attribute Profiles as a version of the APs based on self-dual
operators.
In the experimental analysis carried out, we considered for classifi-
cation a remote sensing image acquired by GeoEye-1 with geometric
resolution of 0.5 m on an area close to Trento, Italy. An AP and a
SDAP were computed on the panchromatic band with area attribute
and same values taken as reference in the computation of the profile.
The results obtained showed how including the AP or SDAP as fea-
tures in the classification of the spectral features greatly improves the
accuracies with respect to considering only the spectral information.
The use of the SDAP against the AP leads to better results in terms of
accuracies in most of the cases (also with a reduced training set). The
greater accuracies were also supported by the obtained maps showing
regions classified more homogeneously. The best overall accuracies
among all the experiments were obtained by the spectral features
and the SDAP with a random forest classifier. The obtained results
proved that the use of the SDAP is effective for modeling the spatial
information of the scene even with a reduced number of features with
respect to considering the AP.
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8
AT T R I B U T E P R O F I L E S F O R B U I L D I N G
E X T R A C T I O N

Abstract. In this chapter we present a technique based on AP for the

generation of features suitable for building extraction. In details, we address

the issue of selecting the most suitable parameters of the filters by proposing

an architecture which embeds in the filtering procedure an optimization step

based on genetic algorithms.

8.1 introduction

Building extraction from satellites optical images is attracting increas-
ing attention from the remote sensing community thanks to the recent
availability of commercial very high resolution (VHR) images. VHR
images are characterized by a geometrical resolution of about one
meter (e.g., IKONOS sensor) or even sub-meter (e.g., 0.6 m for Quick-
bird, 0.5 m for World View sensors). This outstanding geometrical
resolution permits to address the building extraction task not only by
analyzing aerial images, which are costly and not always easily avail-
able, but also by considering commercial satellite products. The most
important exploitations of the automatic extraction of the buildings
are the monitoring of the urban growth, the updating of cartographic
and geometric maps, the revision of cadastrial databases, etc. How-
ever, due to the increased geometrical resolution, the images show a
large amount of details in the representation of the surveyed objects
leading to a great variety and complexity of the scene. In particular,
the buildings, especially in complex urban areas, are heterogeneous
in shape, size, orientation, textural characteristics, spectral values, etc.
This results in an increased complexity in the definition of a proper
procedure able to comprehensively handle those aspects. The limita-
tion of pixel-based techniques are evident and further knowledge on
the scene has to be extracted and included in the analysis. For example
this can be done by modeling and exploiting the structural informa-

This chapter was published in:

M. Dalla Mura, J. A. Benediktsson, and L. Bruzzone, “Modeling structural
information for building extraction with morphological attribute filters,” in
Image and Signal Processing for Remote Sensing XV - SPIE Proceeding, vol. 7477.
Berlin, Germany: SPIE, Bellingham, WA, 2009, pp. 747 703–1–747 703–9.
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8.2 attributes for building extraction 106

tion of the scene. In general the building extraction task is addressed
by an analysis based on a two steps procedure: i) Feature Extraction
and; ii) Decision. The first stage is devoted to the preliminary analysis
of the data aiming at extracting features, primitives and, in general,
any information that can be discriminant for the representation of
the buildings. The metadata extracted by this analysis can be consid-
ered as an intermediate product in the processing chain. According
to the approach involved in this first phase, the obtained results aim
at enhancing the information related to buildings. The second step
addresses the generation of a final decision map based on the analysis
of the intermediate results. In this work we focus our attention only
on the first step of the building extraction chain. As already reported
in the literature, the extraction of useful information for the detection
of buildings in VHR images can be performed by morphological oper-
ators based on the geodesic reconstruction, which are tools defined in
the mathematical morphology framework [82]. With particular regard
to the building extraction task, the MPs and DMPs can be consid-
ered for the modeling of the structural information of the building
structures. For example, in [143] an automatic building extraction
technique is presented, which is based on the extraction of spectral,
structural and contextual information. The DMP computed from the
image is also used in [143] for extracting the shadows from the image
in order to provide contextual information for confirming the inferred
position of the buildings. We address the issue of the selection of the
most suitable filter parameters for the building extraction problems
by integrating an optimization procedure based on genetic algorithms
(GAs) in the filtering procedure.

8.2 attributes for building extraction

The proper approach for the application of attribute filters to VHR
images in order to handle the great heterogeneity of the buildings is
certainly a multilevel architecture where the image is processed by
the same filter type but with different values, λ, used as reference
when evaluating the criterion. The building rooftops present in the
image do not appear as bright or dark regions but they show different
degrees of contrast with respect to their adjacent regions. For this
reason, both an extensive and anti-extensive transformations have to
be performed. Moreover, since a single attribute could not be enough
for modeling the structural characteristics of the filter, we propose
a multi-attribute multilevel analysis of the image. The choice of the
attributes computed by the filters was made according to the most
representative characteristics of the buildings.
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The first attribute is purely geometric and aims at modeling the scale
of the structures by evaluating the similarity between the shape of
each region in the image and the one of a reference structure. The
description of the shape is done by the seven moments invariant of
Hu. For their definition we refer the reader to [138]. These indexes are
invariant to translation, rotation and scaling, so this attribute is non-
increasing. These characteristics are important for this task since even
buildings of the same shape can assume different orientations, scales
and positions in the image. The choice of the reference shape is also
very important and problem-dependent. Thus, the multilevel analysis
carried out by this attribute shows with which degree the regions in
the image are similar to the shape of reference. In the following this
attribute will be denoted by H.
Another discriminative characteristic of the buildings with respect
to the background is the textural patterns present on the rooftop.
In general, the buildings show a relative spectral homogeneity espe-
cially when compared to vegetation areas. Thus, the second attribute
(denoted by S) is the standard deviation of the values of the pixels be-
longing to each region. This attribute is purely spectral and so it does
not depend on the geometry of the regions; thus, it is non-increasing.
The filtering performed with this attribute permits to model the spec-
tral homogeneity of connected areas in the scene. However, the scale
of the objects in the image is also a discriminant feature, so the area
(referred as A) of the regions is taken into account as third attribute in
the analysis.
All the filters evaluate a criterion which is “the selected attribute has
to be greater than λ“. The lambda is the parameter of the filter which
has to be tuned.

8.3 filtering by optimization based on gas

As already mentioned in the introduction, the selection of proper
values for λ, which are taken as reference by the filters, is of funda-
mental importance for generating accurate results. We address this
issue by proposing the integration of an optimization procedure based
on genetic algorithms (GAs) into the filtering process.

8.3.1 Genetic Algorithms

The genetic algorithm is a widely used technique defined in the frame-
work of evolutionary algorithms for finding solutions in optimization
problems. Basically, a GA is defined by a representation of the prob-
lem to optimize in terms of genetic biology and by a fitness function
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which evaluates the goodness of the found solutions. In greater detail,
the variables in the problem are the genes and a possible solution
is an individual defined by a set of values which bind the variables
in the problem. All the individuals in the population receive a score
according to the fitness to the requirement of the problem. The GA
keeps evolving the population until a stopping criterion is verified.
In general, the evolution terminates when the maximum number of
iterations is reached or the population converged to a best solution.
The basic operations that can be applied to the individuals are cloning,
mutation and crossover. The first is the merely propagation of one indi-
vidual to the subsequent generation. The mutation results in a change
of one or more values in defining an individual. This is necessary in
the evolution for maintaining diversity. The crossover combines two
genes called parents by crossing them and generates two children by
crossed parts of the parents. Different possible crossover techniques
are possible: for example, one-point crossover splits the parents in
two halves and combines the opposite splits of the parents; two-point
crossover do the same with two splitting points, etc. The GA is also
driven by the evolutionary strategy that determines which individuals
should survive, reproduce and die. The strategy also rules the evolu-
tion of the offspring on subsequent generations by determining which
individuals should be replaced. For example, an effective replacement
is the one performed according to the elitism. This leads to the propa-
gation of only the best individuals through the next generations. For
extensive details on GAs we refer the interested reader to [144].

8.3.2 Parameters Tuning with Genetic Algorithms

In order to integrate the GA in the filtering process, the problem of
selecting the best filters parameters (λ) has to be represented in the
domain of genetic. The variables of the problem are the thresholds of
the filters and in the GA are the chromosomes. An individual in the
population of the GA is thus defined by a particular set of lambdas.
The selected fitness function has to evaluate the quality of the solutions.
Since a labeled set of values is available for this problem, the score
of an individual is taken as the overall thematic accuracy of the map
obtained by classifying the filtered images, computed on the labeled
set. Other measures of accuracy could be considered for scoring the
individuals. For example, the thematic accuracy could be evaluated on
specific classes, or the geometric indexes of accuracy could be taken
into account [128]. The general architecture of the proposed technique
based on APs integrating the optimization procedure is reported in
Figure 8.1. The GA is separately applied to each attribute filtering
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Figure 8.1: General architecture of the proposed technique.

included in the analysis. At first, the optimization generates the best
parameters (according to the considered fitness function) for the first
filtering. The selected parameter is used both for the thinning and
thickening transformations. Subsequently, the parameter of the second
level is optimized. In this case, the filtered images obtained by the first
filtering are considered as additional features during the evaluation
of the solutions identified for the second set of filters. The same is
done for the third level. When also the parameters of the last level are
found, then the result of the global analysis is simply given by the
classification of all the features (the AP with lambdas selected by the
GAs).

8.4 experimental results

8.4.1 Data set Description

The experiments were carried out on a VHR panchromatic Quickbird
image with geometric resolution of 0.6 m, acquired on July 2006 on an
area of the city of Trento.

The Figure 8.2 is a 500×500 pixels portion of the entire surveyed
scene, showing a complex urban area. Many buildings are present in
the image, their heterogeneity is evident by noting the variety in their
geometrical characteristics. It is also clear the great heterogeneity in
the values of radiance due to different covering materials of the roofs,
which in many cases does not show a high contrast with respect to
adjacent objects. Moreover, the presence of elements on some roofs
(e.g., windows, chimneys), the different illumination of the pitches and
the shadows are further increasing the complexity of the recognition
task. Four informative classes were considered for describing the
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(a) (b)

Figure 8.2: Trento data set. (a) Panchromatic band; and (b) true color pan-
sharpened image. Both the images are visually enhanced.

objects present in the scene. They are: Road, Building, Shadow and
Vegetation.

Table 8.1: Labeled set of pixels reporting the number of pixels for each the-
matic class for the training and test sets.

Sets Road Building Shadow Vegetation Total

Training 58 178 43 88 367

Test 47 178 40 73 348

8.4.2 Experimental Set up

In order to compare the proposed method to a standard technique
based on mathematical morphology for the building extraction task,
a conventional morphological profile was computed on the original
panchromatic image. The profile was built by selecting a SE with
squared shape and four sizes (3, 7, 11, and 15 pixels). The obtained
filtered images are considered as components of the feature vector
given as input to the classification process. The vector is made up of a
total of nine components: the original image, four images obtained by
the thinning and four by the thickening profile. The multi-attribute
analysis was carried out by considering the three attributes presented
in Sec. 8.3.2, which are H (the similarity between the geometrical
moments invariant of Hu computed on each region and those of a
reference shape), S (the standard deviation of the values of the pixels
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(a) (b)

(c) (d)

Figure 8.3: Classification maps obtained by: (a) MP; (b) AP with H attribute;
(c) AP with HS attributes; (d) AP with HSA attributes.

belonging to each connected component), and A (the cardinality of the
regions). The panchromatic image is processed according to the archi-
tecture shown in Figure 9.1. For all the attribute filters four different
thresholds (λ) were selected leading to eight filtered images for each
attribute (four from the anti-extensive and four from the extensive
transformations). The total number of features handled by the system
when the image is processed with the three attributes is 25 (8 for each
attribute plus the original image). The GA used in the tuning of the
filters parameters is a standard steady state GA, which is based on
overlapping populations and elitism for selecting the best individuals
to propagate through the next generations. The operations of mutation
and crossover considered in the evolution of the population were the
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basic ones since no problem specific implementation was considered.
We used the implementation of the GA provided by the open source
library GAlib1. The number of iterations was selected as stopping cri-
terion and it was fixed to 500. The evaluation of the individuals of the
population was based on a classification process and on the measure
of a fitness function based on the overall accuracy of the classification
map evaluated on the available labeled set. The experiments were
carried out by considering two classifiers both trained on the available
training set: a maximum likelihood and a random forest classifier [129].
The random forest classifier selected was composed by the ensemble
of 100 decision trees. The number of variables investigated in each
split of the tree was the square root of the total number of the input
features. We considered for both the classifiers the implementations
provided by the open source library OpenCV2.

8.4.3 Results

The quantitative results obtained in the experiments are reported
in the following tables. Table 8.2 shows the accuracies obtained by
considering a maximum likelihood classifier, whereas Table 8.3 is
relative to the random forest classifier. For both the tables, the first row
refers to the classification of the panchromatic band alone, the second
one indicates the results obtained by classifying the original image
and its morphological profile. The last three rows report the results
obtained by the proposed technique based on AP when the number
of attributes considered in the analysis is increased. By analyzing

Table 8.2: Accuracies obtained by the classification with a maximum likeli-
hood classifier of i) the original image, ii) the morphological profile
and iii) the proposed method.

Class Overall Accuracy (%)
Class by Class Accuracy (%)

Building Road Shadow Vegetation

Pixel-based 31.89 6.18 0.00 100.00 82.20

MP (Square SE) 61.20 81.75 48.93 100.00 39.72

AP (H) 73.85 82.02 0.00 92.50 89.15

AP (H, S) 75.28 69.66 42.55 100.00 93.97

AP (H, S, A) 76.43 92.69 42.55 70.00 63.85

in details the obtained outcomes it is possible to state that the pixel-

1 Available at http://lancet.mit.edu/ga/.
2 Available at http://opencv.willowgarage.com/wiki/.
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Table 8.3: Accuracies obtained by the classification with a random forest
classifier of i) the original image, ii) the morphological profile and
iii) the proposed method.

Class Overall Accuracy (%)
Class by Class Accuracy (%)

Building Road Shadow Vegetation

Pixel-based 27.01 6.18 42.55 0.00 100.00

MP (Square SE) 72.98 88.20 42.55 100.00 50.68

AP (H) 68.96 84.83 31.91 100.00 46.57

AP (H, S) 78.45 90.71 40.42 100.00 76.60

AP (H, S, A) 79.88 91.01 42.55 100.00 76.71

based analysis leads to unreliable results, also confirmed by the visual
inspection of the classification maps (which are not reported here).
This even further confirms the need of the inclusion of information
on the spatial domain for better modeling the objects in the scene.
When the structural information both modeled by a conventional MP
or APs is included in the classification process the overall accuracy is
strongly increased. By the joint analysis of the numerical results and
the obtained classification maps it was possible to notice how the type
of classifier used in the analysis matters. The maximum likelihood
classifier proved to be non effective mainly due to the high redundancy
shown by the morphological features and possibly their non-gaussian
ditrubution. However, also with this elementary classifier it is possible
to notice how the proposed multi-attribute approach improves the
accuracies obtained by the use of the MP. The class specific accuracies
are not showing a stable trend according to the features used. For this
reason we believe that a non parametric classifier such as the RF can
better handle the type of features to be analyzed.
We then choose to focus the following analysis only on the results
obtained by the RF for which the classification maps are also reported
(see Figure 8.3). By comparing the results in Table 3 obtained by
including in the analysis the MP and the features generated by the
multi-attribute processing, it is possible to state that when considering
AP with only the attribute H, the accuracies obtained are definitely
better than in the pixel-based case but slightly inferior than those
obtained by the MP. This can be related to the attribute used. In
fact, the similarity between the geometrical moments computed on
each region with the square shape taken as reference might not be so
discriminant as a conventional multiscale analysis. We remind that
when selecting this attribute, the connected components in the image
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are processed by only considering a parameter which is related to
their shape and independent on the size of the regions. When the
analysis is carried out by considering two attributes, both the overall
accuracy and the specific accuracy for the building class overcomes
those obtained by the MP. The proposed technique based on three
attributes leads to the best accuracies which reach about 80% and 91%
with a relative gain with respect to the analysis with MP of about
7% and 3% in overall accuracy and accuracy for the building class,
respectively. From a specific evaluation of the maps it is worth noticing
how the map obtained by the AP with H attribute appears fragmented.
This could be caused by the attribute used which processes the image
only according to parameters related to the shape of the regions. The
inclusion of the standard deviation attribute in the analysis produces a
more homogeneous map (Figure 8.3c) even if the criterion is also non-
increasing. This is mainly due to the modeling the textural information
on the structures in the image, which result in a better identification
of the vegetation, buildings and roads (as confirmed by Table 8.3). The
proposed technique based on the three attributes (Figure 8.3d) permits
a slightly better characterization of the building objects with respect
to the map obtained by the MP.

8.5 conclusion

In this work we presented a morphological multi-attribute technique
based on morphological attribute filters for the extraction of features
suitable to the building extraction task. Attribute profiles were chosen
in order to better modeling the structural information of the scene with
respect to techniques based on morphological profiles that usually
only perform a multiscale decomposition of the image. Moreover, the
computation of morphological filters is also affected by the issue of
the selection of proper filter parameters. We addressed this problem
by defining an architecture based on genetic algorithms for tuning
the parameters of the APs. In greater detail, the proposed technique
performs a multi-attribute processing of the image. For illustrating the
effectiveness of the proposed architecture on a real image, we proposed
to use three attributes related to the characteristics of the buildings
which are: i) the similarity between the structures in the image and a
square shape taken as reference; ii) the standard deviation of the pixels
values; and iii) the area of the regions in the image. The first attribute
is related to the shape of the objects, the second to their spectral
homogeneity, and the third to their scale. The choice of the parameters
defining the multilevel analysis for each attribute is performed by
the genetic algorithm, which evaluates the fitness of the proposed
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solutions (filter parameters) by classifying the images obtained by the
filtering and using the overall accuracy obtained on a reference labeled
set. The classification was performed by both a maximum likelihood
and a random forest classifier. The obtained results further confirmed
the necessity of including information extracted by the spatial domain
of the scene in order to generate consistent maps. Moreover, the high
redundancy in the features (either generated by a morphological
profile or by attribute profiles) is not properly handled by a simple
parametric classifier such as the maximum likelihood (which may also
be affected by the non gaussian distributions of the features). The
results obtained by the proposed technique overcome those obtained
by a standard approach based on morphological profiles of about
7% in the overall accuracy of the classification maps, proving the
effectiveness of the presented method.
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A G E N E R A L A P P R O A C H T O I M A G E
S I M P L I F I C AT I O N

Abstract. In this chapter a general approach based on morphological con-

nected filters for the spatial simplification of very high resolution remote

sensing images is introduced. Different operative scenarios are considered

according to the information available on the scene for the analysis. In greater

detail, the proposed approach is made up of two steps: i) the selection of the

parameters defining the connected filters driven by the information available

on the scene and on the specific application; and ii) the application of the

tuned filter to the input image.

9.1 introduction

The interpretation of remote sensing images is a complex task due to
the overwhelming amount of information present in the scene, espe-
cially when dealing with images of very high geometrical resolution.
In general, the interpretation of the scene can be obtained by consider-
ing only part of the whole information contained in the image. All the
details that are irrelevant for the image understanding (which are dif-
ferent for different applications) can affect the quality of the analysis
and should be removed or attenuated. From a theoretically point of
view, the operation that is usually (implicitly or explicitly) done for
coping with the huge amount of information is image simplification in

the spatial domain, which aims at both reducing the complexity of the
scene by removing some spatial details from the image and enhancing
those characteristics which are more informative in the image for the
specific application. In these terms, the image simplification can be
thought as an “increase of the signal to noise ratio” of the image,
where with signal and noise we intend the information that has to
be extracted and removed, respectively. Different simplifications of
the image are possible and the type of processing is driven by the
application.

Part of this chapter is going to appear in:

M. Dalla Mura, J. Benediktsson, and L. Bruzzone, “A general approach to
the spatial simplification of remote sensing images based on morphological
connected filters,” in 2011 IEEE International Geoscience and Remote Sensing

Symposium (IGARSS), 2011, Accepted.

117
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Even a simple low-pass filter can produce a simplification of the im-
age. However, it would also lead to a global degradation of the spatial
features of the scene. Image simplification can be done with morpho-
logical connected filters [109]. Connected filters only operate on the
flat regions of the image without introducing new discontinuities, thus
they do not alter the shapes of the regions nor distort their edges. Due
to their characteristics, connected filters are then suitable for the anal-
ysis of remote sensing images (especially when the spatial resolution
is high) since a reduction of the complexity of the image without the
detriment of the spatial characteristics of the objects of interest can be
obtained [72, 91]. Actually, MPs and APs are composed by a sequence
of versions of the original image with a progressively greater degree
of spatial simplification. Their effectiveness in applications such as
segmentation, classification, object detection, etc. proved how reduc-
ing the spatial complexity of the scene is essential for the analysis of
remote sensing images.
In this paper we propose a novel general approach based on con-
nected filters for the spatial simplification of remote sensing images.
In greater detail, the image simplification is obtained in two stages: i)
the parameters of the filters are tuned according to the requirements
derived from both the specific application scenario and the available
prior information on the scene (settings that define different opera-
tive scenarios); and ii) the image is filtered with a proper connected
operator and the determined parameters.

9.2 proposed general approach

The proposed approach is composed of two modules that perform
the operations of: i) selection of the parameters and operators; and ii)
filtering. The first module interfaces with the external environment,
collects information on the type of simplification required (if available)
and translates the input requests into the settings of the filter. The sec-
ond module computes the transformation of the input image through
the application of the filter with the selected parameters. The flowchart
showing the architecture of the proposed approach is presented in
Figure 9.1.

9.2.1 Selection of the Filter Parameters

By considering in greater detail the selection of the filter parameters,
we identified three possible operative scenarios:
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Figure 9.1: Flowchart of the proposed general approach for the simplification
of remote sensing images based on connected filters.

1. No prior knowledge on the scene nor on the application is
available;

2. No prior knowledge on the scene is available but there is knowl-
edge on the application;

3. Both prior knowledge of the scene and of the application are
available.

scenario 1 In the first scenario a generic simplification is per-
formed on the image. Since no hints are given on the kind of informa-
tion that should be enhanced on the scene, the image can be processed
by a predetermined criterion. For example, it can be performed a re-
duction of the image complexity by attenuating the noisy components
(e.g., by removing small regions with greylevel significantly different
from their surroundings) and by removing the effects due to the vari-
ability of the imaged natural scene which are not very significant for
the interpretation of the scene (e.g., flattening small differences of the
graylevels in homogeneous regions). Since the simplification obtained
in this scenario should be useful for most of the applications, the
filtered image should not be significantly different from the original in
order to avoid the penalization of some objects or some image features
over the others. The automation of the processing is simply done by
defining the simplification criterion, since no other external interaction
is possible.

scenario 2 As defined for the second scenario, when the simplifi-
cation aims at enhancing determined objects due to the knowledge of
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the application but no specific information on the investigated area
is available, the parameters of the filters should be selected in order
to model the conceptual case of the analysis. For example, if one
aims at highlighting the buildings but no actual knowledge on the
buildings present in the image is available, the image can be filtered
keeping all those regions with rectangular shape and a proper scale
according to a general knowledge of the spatial characteristics of the
buildings. The translation of the conceptual features to specific filter
parameters (e.g., “keep rectangular regions” ⇒ attribute filter with
criterion: {rectangularity > 0.5}) can be done in different ways. For
example, the user can manually define the operators and the reference
values of the attributes according to its conceptual representation of
the objects of interest or, in order to automate the process, the relations
between the attribute values and the concepts can be expressed by a
fuzzy possibilistic model. In [113], a similar approach based on a fuzzy
measurement of the characteristic size and contrast of each object in
the scene, obtained from the interpretation of the derivative of the MP,
was considered for classification.

scenario 3 The selection of the filter parameters done in the third
scenario is based on the information available on the investigated
scene. If the available information is a set of labeled samples (i.e., a
training set), the reduction of the image complexity generated by the
filtering aims at decreasing the intra-class variability of the objects
but keeping the inter-class variability. The quality of the simplification
obtained is evaluated on the known samples according to a given
criterion. The automation of the model selection can be performed
iteratively by minimizing a cost function that represents the fitness
of the generated result with the input requirements according to the
criterion considered in the evaluation until a stopping condition is met.

9.2.2 Filtering

The filtering stage can be performed in different ways according to
the connected operators chosen by the previous module. For example,
if the objects of interest are “bright” (regions of high reflectance) then
an anti-extensive operators (e.g., an attribute thinning) should be con-
sidered. When both bright and dark regions should be processed then
a dual or self-dual operator is more effective. The different connected
operators can be efficiently computed by exploiting the representation
of the image as trees, such as min-, max- and inclusion-trees [109].
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The architecture of the proposed approach can be also exploited for
producing multiple simplifications of the considered image done at
different levels (i.e., obtaining MPs and APs).

9.2.3 Discussion

The generality of the proposed approach relies also on the different
types of remote sensing images that can be processed. Connected
filters natively operates on optical scalar images (e.g., panchromatic
band) but they can be extended also to multi- and hyper-spectral
images (e.g., as proposed in [92]) or even to images acquired by ac-
tive systems if proper operators and attributes suitable to modeling
the characteristics of the Synthetic Aperture Radar (SAR) signal are
selected. The characteristics of SAR images are completely different
with respect to optical data. For example, the scene is represented
in a geometry referred to the range dimension and furthermore, a
multiplicative noise component (speckle) is present.
Several applications can benefit from the proposed approach since
the simplification of the image is a fundamental preprocessing step
in several tasks. In particular, the simplification aimed at enhancing
some objects in the scene can ease the detection and extraction of
the targets of interest. Moreover, the classification of the scene can
exploit the reduction of the intra-class variability leading to a greater
separation of the distributions of the different classes. A simplification
producing the suppression of small non significant details can also
be useful in the detection and monitoring of changes in the analysis
of multitemporal images since it can lead to a reduction of the false
alarm rate.

9.3 experimental results

In the experimental analysis the first two operative scenarios (see
Sec. 9.2.1) were taken into account. A Quickbird panchromatic image
of 995×995 pixels and geometrical resolution of 0.6m acquired over
a residential urban area of the city of Bam, Iraq, was considered (see
Figure 9.3a).
By considering the first scenario, which assumes no knowledge of the
application nor of the scene, a generic simplification was computed.
The complexity of the original image was reduced by removing small
bright and dark areas and by flattening the interior of homogeneous
objects performing an adaptive quantization, which is a pruning of
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the tree representing the image that keeps only one node in each
monotone branch (segment of a branch between two subsequent
bifurcations) [106].
When considering the second scenario, two different simplifications
of the original image were performed aiming at enhancing a specific
class of thematic objects (i.e., buildings) and a more generic set of
areas such as the elongated dark structures (e.g., shadows casted by
buildings, dark roads). The obtained simplified images are reported in
Figure 9.3b, (c). Since no information on the scene was available, the
parameters of the filters were estimated from the common knowledge
of the characteristics of the objects of interest. It was assumed that
buildings were represented in the image as compact and rectangular
shaped regions with a size suitable for a residential building. Three
attributes were considered: i) moment of inertia (measure of the spatial
compactness of a region); ii) rectangularity (ratio of the area of a region
and the area of its bounding box); and iii) area (the cardinality of the
regions). Since in general the buildings are made of concrete that is
characterized by a high reflectance (with respect to vegetated areas)
an attribute thinning was considered as the operator performing the
filtering. The simplification aimed at enhancing the dark areas was
performed by selecting the following attributes: the moment of inertia

(modeling the elongation) and the height, computed as difference
between the maximum graylevel of the image and the level of each
region (used for selecting the areas based on their low reflectance). The
filtering was performed with an attribute thickening operator since
the focus was on the dark regions. In these experiments the conversion
from the conceptual characteristics of the target objects and the type
of operator, attributes and thresholds was done manually. However,
this process can be automated, e.g., by defining fuzzy possibilistic
functions representing the membership of the attribute values for each
operator and the characteristics to be modeled.
Figure 9.2 shows how the simplification performed on a particular
of a building rooftop is able to keep most of the information of the
scene with less flat regions. The number of connected components
was reduced from 2789 for 9.2a to 1059 to 9.2c.

By a visual inspection of Figure 9.3b it is possible to notice that
most of the buildings are kept unaffected by the filtering (even with
some differences of the graylevel between the original image), while
the background is flattened. Analogously, the structures present in
Figure 9.3c mainly correspond to the shadows of the buildings and
segments of the road network while all the other objects are erased by
the filtering.
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(a) (b)

(c) (d)

Figure 9.2: Bam data set: (a) Particular (80×60 pixels) of the Quickbird
panchromatic image (Figure 9.3a) showing the roof of a building;
(b) Contours of the flat regions of (a) (2789 regions); (c) Result of a
generic simplification performed on (a) (removal of regions with
area < 10 and flattening of object interior performed by adaptive
quantization); (d) Contours of the flat regions of (c) (1059 regions).
The greylevels of the images are stretched for visual purposes.

9.4 conclusion

In this chapter, a general approach based on morphological connected
filters for the spatial simplification of remote sensing images has
been defined in three scenarios modeling common different operative
conditions. The motivation of this work is the importance of image
simplification as preprocessing transformation for several applications
aiming at image interpretation and the lack of an explicit definition
of an approach including the operations that lead to the process of
image simplification. The effectiveness of the proposed approach has
been confirmed by the qualitative results obtained on a very high
resolution image. Moreover, the generality and the capability to be
fully automated make the proposed approach of interest for many
remote sensing applications.
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(a)

(b) (c)

Figure 9.3: Bam data set: (a) Quickbird panchromatic image (995×995 pix-
els); (b) Simplification enhancing the buildings (attribute thinning
with criterion {(R > 0.3) ∧ (I < 0.5) ∧ (50 < A < 5000)}); and (c)
Simplification enhancing the elongated dark areas (attribute thick-
ening with criterion {(H > 10000) ∧ (I > 1.0)}). Attributes: R:
rectangularity, I: moment of inertia, A: area, H: height.
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C H A N G E D E T E C T I O N T E C H N I Q U E S B A S E D O N
C O N N E C T E D O P E R AT O R S

Abstract. In this chapter, two multilevel techniques are proposed for change

detection. The first presented technique deals with alternating sequential

connected filters and self-dual reconstruction filters. The second technique is

based on attribute profiles.

10.1 introduction on change detection on vhr images

Human development and natural forces continuously alter landscapes.
The analysis of these variations is necessary in many tasks such as
monitoring landuse, risk assessment, and the analysis of the world-
wide population growth and development. For this reason, change

detection (CD) has an increasing importance in the field of remote
sensing. The images acquired by periodical passes of remote sensing
satellites over the same areas permit a regular analysis of changes oc-
curred on the ground. The large amount of available satellite data have
led the remote sensing community to focus its attention on unsuper-
vised change-detection techniques, where ground-truth information is
not necessary.
In this scenario, with the launch of a new generation of optical satel-
lites, such as IKONOS, Quickbird, Eros A1, very high resolution (VHR)
images have been commercially available and their diffusion will fur-
ther increase with the future World View satellites. The VHR images
are characterized by a submetric resolution; thus, the acquired scenes
show many details (e.g., small trees, particulars of buildings, cars,
etc.) that were not observable by the previous generation sensors. In
addition, the high resolution in representing the surveyed scene makes

Parts of this chapter were published in:
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vised technique based on morphological filters for change detection in very
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no. 3, pp. 433–437, July 2008.
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on the capabilities of morphological attribute profiles in change detection on
VHR images,” in Image and Signal Processing for Remote Sensing XVI - Proceedings

of SPIE, vol. 7830. Toulouse, France: SPIE, Bellingham, WA, 2010, pp. 783 016–
1–783 016–10.
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the contextual information a predominant feature in VHR images. In
fact, unlike in low and medium spatial resolution images, the relations
between adjacent pixels become a fundamental information source for
the understanding of the scene. The high geometrical resolution and
the contextual information are features particularly important in the
urban scenes, opening new perspectives for CD applications.
A widely used unsupervised CD technique for medium resolution
images is the change vector analysis (CVA). CVA can be divided into
three phases [145]: i) Pre-processing, where the multitemporal images
are made comparable through co-registration, geometric correction
and radiometric calibration; ii) Image comparison, where the spectral
differences between the two images are represented by computing
the spectral change vectors (SCVs); and iii) Analysis of the results of the

comparison, that aims at extracting the changed regions by generating
a map where each pixel is associated to the class of changed ωc or
unchanged ωu patterns.

In light of the properties of multitemporal VHR images (i.e., pres-
ence of a relevant amount of geometrical details, shadows, residual
misregistration, multiscale objects), unsupervised CD in these data is
a complex task [146]. Most of the CD methodologies presented within
the last 30 years [145, 147] for low or medium geometrical resolution
imagery cannot handle the geometric and textural information present
in VHR images. In particular, standard pixel-oriented techniques based
on the thresholding of the magnitude of the SCVs, result in change
detection maps showing a great number of false alarms and artifacts
[146].
According to the specific characteristics of VHR images, object-oriented

approaches are more suitable to exploit the context relations. These
approaches permit to drive the analysis of the multitemporal images
by the spatial information extracted from the objects in the scene. In
[71], an object-oriented method was presented, which decomposes
the images at different resolution levels and exploits the multiscale
structure for classification of VHR data. This method was extended
to multilevel change detection in [148] by defining a multiscale CVA
technique. In greater detail, the decomposition of the image into dif-
ferent levels permits to adaptively take into account the scales of the
structures in the scene and to progressively reduce the complexity of
the magnitude image. However, only relatively few CD techniques are
available for VHR images and further research is necessary on this
topic.

In the following two section, change detection techniques using
morphological connected operators are presented.
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10.2 an unsupervised technique based on morphological

connected filters

10.2.1 Introduction

A very promising approach to the analysis of VHR remote sensing
images is based on morphological filters. Morphological filters are
non-linear operators defined in the mathematical morphology (MM)
framework and widely applied to image processing problems. MM is
based on the operators of erosion ε and dilation δ. The other morpho-
logical operators can be constructed by combining these fundamental
operators [82]. In image processing, morphological filters are defined
by a structuring element (which designs the shape and size of the
filter) and a neighborhood transformation (which defines how the
values of the pixels included in the SE are processed). The output of
the morphological transformation shows how the image interacts with
the size and shape of the SE. In this framework, morphological filters
are formally defined as image transformations that are idempotent and
increasing [82]. Since opening and closing satisfy these properties, they
are morphological filters. The effect of an opening or a closing is basi-
cally to simplify the input image by erasing, respectively, bright and
dark objects (in the meaning of brighter and darker than surrounding
regions) in the scene, while preserving other structures in the image.
Morphological filters are intrinsically object-oriented transformations
because they focus the processing of the image on areas with a shape
and size defined by the SE. These properties and the non-linearity
of the morphological operators result very important for the analy-
sis of VHR remote sensing images, especially for reducing the noise
components by preserving the geometrical features of the objects into
the scene. For these reasons, the application of morphological filters
to VHR images was investigated in the context of segmentation [72]
and classification [115] problems with convincing results. However,
despite its potential effectiveness, MM was not used in change detec-
tion problems on VHR images.
In this section, we present a CD technique based on the integrated use
of morphological filters and CVA technique. In particular, we define
a processing scheme that jointly exploits the SCVs information and
the capabilities of MM in properly separating the changes in multi-
temporal images from the sources of noise. In addition, we present an
analysis aimed at choosing the morphological filter more suitable for
the analysis of SCVs derived from multitemporal VHR images.
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Figure 10.1: General scheme of the proposed technique.

10.2.2 Proposed Change-Detection Technique Based on Morphological Fil-

ters and Change Vector Analysis

10.2.2.1 Architecture of the Proposed Change Detection Technique

Let us consider two co-registered multispectral VHR images with
B spectral channels, X1 = {Xb

1, 1 ≤ b ≤ B} and X2 = {Xb
2, 1 ≤

b ≤ B}, acquired over the same area at different times t1 and t2,
respectively. Here each spectral image Xb

k , with k = 1, 2, has size of
I × J pixels: Xb

k = {Xb
k(i, j), 1 ≤ i ≤ I, 1 ≤ j ≤ J}. Let Ω = {ωc, ωu} be

the set of classes associated with changed and unchanged pixels. It is
assumed that an adequate pre-processing phase has been applied to
the multitemporal images in order to make them as more comparable
as possible. In particular geometric corrections, co-registration, and
radiometric corrections should be applied to the data.

The proposed CD technique is made up of three steps: i) computa-
tion of the SCVs; ii) morphological filtering; iii) generation of the map
of changes (Figure 10.1). The comparison between the multitemporal
multispectral images X1 and X2 is obtained through the CVA technique.
The magnitude of the SCVs (which is associated to an image called
difference image Xd) contains information about the changes occurred
between the two acquisitions. As any greyscale image, the difference
image can be thought as a topographic map, where the greyscale inten-
sity of each pixel is associated to a measure of elevation. According to
this interpretation, a higher intensity value (i.e., a brighter pixel in the
image) corresponds to a higher elevation in the related topographic
map. Hence, it is possible to characterize the structures present in the
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image in terms of convexity and concavity, where these properties
are associated to areas of high and low intensity, respectively, w.r.t.
the surroundings. The presence of convex regions (areas made up
of pixels with high intensity) is due to a difference in the spectral
signature of the correspondent regions on the ground (which can
be associated to a change occurred between two acquisitions [145]).
Different phenomena during the acquisitions (e.g., illumination of the
scene, sensor view angle, etc.) and the presence of noise (mainly due to
the residual misregistration between the multitemporal images) lead
to the presence of convex portions in the magnitude image associated
with unchanged areas. In general, the residual misregistration appears
in the difference image as thin and elongated convex regions, which
corresponds in the scene to the borders of well defined structures (e.g.,
buildings, streets, rivers etc.) or textured areas (e.g., the patterns on
the rural fields) [146]. Differences in the scene illumination and sensor
view angle result in shadows with different positions and shapes in
the multitemporal images. These differences appear in the magnitude
image as convex regions made up of pixels with intensity comparable
to those of patterns that belong to changed areas. If no prior informa-
tion about the shape and the size of the changed objects is available,
it is not possible to distinguish a real change from these regions by
analyzing only the magnitude of the SCVs. These effects are the main
source of errors in the generation of the CD map.
In the proposed technique, after CVA, the complexity of Xd is reduced
with the filtering phase, carried out by a morphological filter, which is
applied to the magnitude of the SCVs. If the decision phase is based
on the analysis of the image statistics computed on the magnitude
of the SCVs, the filtering process should not alter the distribution of
the data. Thus, the morphological filter should fulfill the property
of self-duality, guaranteeing that convex and concave structures are
equally processed. The transformation resulting by the application of
a morphological filter, depends on the shape and the size of the SE.
Filtering with relatively small SEs results in: i) Removing structures
that are brighter and darker than the surroundings, ii) reducing noise
present into the image, and iii) flattening light textures on the object
surfaces. In other words, the size of SE defines the grade of the sim-
plification reached on the resulting image, determining how many
details or small changes will be deleted from the image. Obviously,
the larger the SE size, the greater the simplification and the coarser the
resulting image. The shape of the SE is another important parameter.
For CD problems without any a priori information about the shape
of the changed areas, it is reasonable to chose an isotropic SE that
processes the image without preferring any specific direction. In this
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scenario the choice of a SE with a disk shape can be considered the
most general, because the pixels in the perimeter of the neighborhood
have the same distance to the center. On the contrary, if information
about the investigated changes is available, the shape and size of
the SE can be selected according to the geometrical characteristics of
the objects in the scene. For example, in an urban area a rectangular
shaped SE would better match the building shapes; in this scenario,
the size of the SE could be chosen taking into account the average
dimension of the analyzed structures.
Finally, the CD map can be generated according to one of the unsuper-
vised CD techniques proposed in the literature for the analysis of Xd

[147]. Each pixel, in the final CD map, belongs to the class of changed
ωc or unchanged ωu patterns.

10.2.2.2 Morphological Filters for Change Detection in VHR Images

The morphological filters applied to the magnitude of the SCVs permit
us to erase convex and concave regions of a defined shape and size.
This leads to a simplification of the difference image and a reduction
of the noise components. Nevertheless, considering the SCVs com-
puted from two multispectral VHR images, the selection of a proper
morphological filter is not a trivial task. The complexity of Xd needs to
be reduced preserving its geometrical information. If we consider stan-
dard morphological filters, (e.g., morphological opening, γ, which is
the dilation of an eroded image, and morphological closing, φ, which
is the erosion of a dilated image) the simplification of the magnitude
image would be reached with a partial loss of the geometrical infor-
mation.
In order to properly exploit the very high resolution representation of
the details in the scene, we propose the use of self-dual reconstruction
filters (SDRFs) and alternating sequential filters (ASFs), both based
on morphological operators by reconstruction. The morphological
filters by reconstruction, defined by new advances in MM, are based
on a non-Euclidean metric [149]. This family of filters is effective in
applications where the geometrical information has to be preserved.
These operators simplify the difference image by erasing the structures
that interact with the SE, but preserve the shape of those that are not
canceled. Their use permits also to avoid typical drawbacks of the
morphological classical operators as the shape noise (i.e., presence in
the output image of patterns with the same shape as the SE used) and
the shift of the object borders [82], which can compromise the analysis
of VHR images.

SDRFs are operators based on the self-dual reconstruction. SDRF
could be designed as a median filter, followed by a self-dual recon-
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struction using the original image as a mask (this operation retrieves
the geometry of structures that are degraded but not erased by the
median filter). The application of a median filter and the self-dual
reconstruction guarantees the equal processing of concave and convex
structures, satisfying the property of self-duality. According to [82],
the self-dual reconstruction of the median filter of the difference image
Xd can mathematically be expressed as:

YSDRF
d = RXd

[ζ(i)(Xd)] (10.1)

where R is the self-dual reconstruction operator and ζ(i) is the median
filter operator with SE of size i (defining the SDRF size). By increasing
the size of the median filter, a greater simplification of the image
(enlarging the flat zones) is achieved.

ASFs, a sequential composition of opening and closing by recon-
struction, are defined as follows:

YASFm

d = Mi = mi . . . m1(Xd), with mi = γ
(i)
R φ

(i)
R , (10.2)

YASFn

d = Ni = ni . . . n1(Xd), with ni = φ
(i)
R γ

(i)
R , (10.3)

where mi is the sequence of a closing by reconstruction followed by
the dual opening with a SE of size i, while ni is the combination
of an opening followed by a closing. The opening and closing by
reconstruction with size i of a general image f are based respectively
on the reconstruction by dilation, Rδ, and the reconstruction by erosion,
Rε, [82]:

γ
(i)
R ( f ) = Rδ

f [ε
(i)( f )] and φ

(i)
R ( f ) = Rε

f [δ
(i)( f )]. (10.4)

The reconstruction performed using the original image as a mask
leads to the iterative degradation of the image but restores partially its
geometrical information. The processing driven by using the original
image as a mask consists of progressively "flattening" the object sur-
faces while preserving their borders. The robustness of ASF against
the noise is well known in the literature [84], where it has been used
mostly in applications on SAR imagery (e.g., despeckling). Nonethe-
less, ASF has already been used on VHR imagery for classification.
Chanussot et al. [112] have shown how this operator is well suited for
a progressive simplification of the VHR image. Therefore, the idea
of applying this operator to the CD task is very promising. The se-
quence of an opening and closing (or its dual) can be iterated several
times increasing the size of the SE at each iteration. By iterating the
filter, larger regions are processed involving a reduction of the image
complexity. It is possible to filter the difference image through the
sequences of open-close or close-open. These operators are dual with
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respect to the set complementation but not self-dual, i.e., leading to
different results when one is applied instead of the other. Choosing for
instance, n, the open-close sequence, narrow bright structures would
be suppressed by the starting opening. By duality, if closing is selected
first, as for m, small darker structures would be removed first. Con-
sidering VHR images, in the first iteration of the ASF, the SE has the
smallest dimension (if we consider a disk, it would have the diameter
of 3 pixels equivalent to about 2 meters at nadir on a pancromatic
Quickbird image having resolution 0.7 m). The first iteration of the
ASF (with the smallest filter size) filters the noise present into the
image. After that, the choice of the open and close sequence is not
really significant because the geometrical resolution is much higher
than the minimum target size [72].

10.2.3 Experimental Results

The proposed method was evaluated on a data set of multitemporal
and multispectral VHR images acquired by the Quickbird sensor on
the Trentino area (Italy) in October 2005 and July 2006. In the pre-
processing phase the two images were pan-sharpened generating a
new set of multispectral images with the same geometrical resolution
of the panchromatic band. The pan-sharpening was carried out by
applying the Gram-Schmidt procedure implemented in the ENVI soft-
ware package [150] to the panchromatic channel and the four bands
of the multispectral image. Moreover, the multitemporal images were
radiometrically corrected and co-registered. The registration process
was carried out by using a polynomial function of order 2 according
to 14 ground control points (GCPs), and applying a nearest neighbor
interpolation. The final data set was made up of two pan-sharpened
multitemporal and multispectral images of 992 × 992 pixels with a
spatial resolution of 0.7 m, which have a residual misregistration of
about 1 pixel on GCPs (Figure 10.2). Between the two acquisition dates,
two kinds of changes occurred: i) New houses were built in rural area;
and ii) some roofs in industrial and urban areas were rebuilt. Different
illumination of the scene (due to different acquisition seasons) and
a different acquisition angle during the imaging are the reasons for
the presence of a great number of not correspondent shadows in the
two images. It is worth noting that the different illumination in the
two multitemporal images modifies the spectral response of some
unchanged areas.

In applying the proposed CD technique, the comparison between
the two multitemporal images was carried out by computing the
magnitude of the SCVs obtained by CVA after the data normalization.
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(a) (b)

(c) (d)

Figure 10.2: Gray scale representation of the pan-sharpened multispectral
and multitemporal images acquired in (a) October 2005 and
(b) July 2006; (c) magnitude of the spectral change vectors com-
puted from (a) and (b) (the image is visually enhanced) and
(d) reference map.
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Table 10.1: Change-detection errors (in number of pixels and percentages)
obtained by using the proposed technique.

Method
Filter Correct Detections False Alarms Missed Alarms Total Errors

Size pixels % pixels % pixels % pixels %

Standard CVA 15396 73.60 64502 6.70 5522 26.40 70024 7.12

CVA

with

SDRF

9 17595 84.11 67682 7.03 3323 15.89 71005 7.22

13 18692 89.36 69181 7.18 2226 10.64 71407 7.26

17 18689 89.34 61510 6.39 2229 10.66 63739 6.48

21 18680 89.30 53963 5.60 2238 10.70 56201 5.71

25 18680 89.30 47867 4.97 2238 10.70 50105 5.09

CVA

with

ASF

9 19465 93.05 62605 6.50 1453 6.95 64058 6.51

13 19682 94.09 47688 4.95 1236 5.91 48924 4.97

17 19851 94.90 42898 4.45 1067 5.10 43965 4.47

21 18779 89.77 16382 1.70 2139 10.23 18521 1.88

25 17880 85.48 15679 1.63 3038 14.52 18717 1.90

The difference image was processed with a SDRF and an ASF by
reconstruction using, for both the operators, a SE with disk shape.
In ASF, the sequence close-open, m, was chosen. The final map of
changes was obtained by thresholding the filtered image with the
automatic technique based on the Kittler and Illingworth (KI) method
[151] under the Gaussian assumptions. However, other thresholding
techniques can be used [152].

In order to allow a quantitative evaluation of the effectiveness of the
presented method, the CD map generated by the proposed technique
was compared to a reference map (which includes 20918 changed pix-
els and 963146 unchanged pixels) defined according to the available
prior knowledge on the considered area. The results presented in Ta-
ble 10.1 permit us to asses the effectiveness of the proposed technique
with respect to the standard pixel-based CD procedure based on the
CVA. In particular, when considering a disk SE of diameter 17 pixels,
the number of missed alarms (MAs) sharply decreases of 15.74% and
21.30% for the SDRF and the ASF, respectively; in both cases the false
alarms (FAs) decreases to less than 3%.1 Furthermore, Table 1 shows
that by increasing the size of the filters, the number of FAs (mostly
due to both the different acquisition conditions at the two dates and
the residual registration noise) is progressively reduced. The ASF by

1 Missed alarms and false alarms are also referred in the literature as false negatives
and false positives, respectively.
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reconstruction leads to a significant reduction of the number of FAs,
but the MA rate is strongly dependent on the filter size. In greater
detail, changed regions with the same size of the SE are removed
(this implicitly defines a minimum bound on the size of detectable
changed objects). If we compare the results obtained by the ASF with
those yielded by the SDRF in similar conditions on the SE size, we can
observe that with the SDRF the complexity of the difference image
is not reduced as much as applying the ASF, but the MA rate is less
sensitive to the size of the filter. This was expected from the SDRF
definition, which permits the preservation of the structures that are
not removed by the median filter even if they are smaller than the SE.2

(a) (b)

(c)

Figure 10.3: Change-detection maps obtained (a) by applying the standard
pixel-based method and the proposed technique (b) with a SDRF
and (c) with an ASF by reconstruction with open-close sequence.
Both the filters were applied with a disk SE diameter of 17 pixels.

2 As a general guideline, the maximum value of the filter size should be not higher
than the expected minimum size of changed areas.
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The qualitative analysis of the CD maps presented in Figure 10.3
confirms the effectiveness of the proposed technique. The comparison
of the maps generated by the standard CVA (Figure 10.3a) and the
proposed method (Figure 10.3b and 10.3b) with the reference map
(Figure 10.2d) leads us to conclude that the use of morphological
filters attenuates significantly the noise associated with FAs in the CD
process. In particular, the effects of the residual registration noise are
strongly reduced by the proposed approach. Moreover, the use of both
considered morphological filter types leads to a better exploitation
of the spatial correlation of the adjacent pixels in the images, thus in-
creasing the detection of changed structures and reducing the residual
noise.

10.2.4 Conclusion

In this section, a technique for change detection in VHR images based
on morphological filters has been proposed. The method is based on
the integration of morphological filters by reconstruction (alternating
sequential filters and self-dual reconstruction filters, specifically se-
lected and tuned for the processing of VHR images) with the CVA
technique. This technique exploits the strong non-linearity characteris-
tic of the morphological operators for filtering the VHR images, while
preserving their geometrical information and exploiting the contextual
relations.
The aforementioned method was evaluated on a data set made up
of two real multitemporal and multispectral VHR images. From the
analysis of the obtained results, the proposed method confirms to
be effective in detecting the changed areas in a more accurate and
precise way with respect to the standard pixel-based CVA technique.
Moreover, the use of morphological filters by reconstruction, espe-
cially the ASFs, permits to decrease the error rate by exploiting the
high geometrical resolution of the data with a limited computational
effort. In fact, the details of the changed structures are extracted by
preserving their geometrical properties.

10.3 study on the capabilities of morphological attribute

profiles in change detection on vhr images

10.3.1 Introduction

In this section we propose a change detection technique based on
morphological Attribute Profiles (APs) suitable for the analysis of
VHR images. In greater detail, this work aims at detecting the changes
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occurred on the ground between the two acquisitions by comparing the
APs computed on the image of each date. The experimental analysis
has been carried out on two VHR multitemporal images acquired
by the Quickbird sensor on the city of Bam, Iran, before and after
the earthquake occurred on Dec. 26, 2003. The experiments confirm
that the APs computed at different dates show different behaviors for
changed and unchanged areas. The change detection maps obtained by
the proposed technique are able to detect changes in the morphology
of the correspondent regions at different dates regardless their spectral
variations.

10.3.2 Proposed Change Detection Technique Based on Morphological At-

tribute Profiles

The proposed technique aims at detecting changes by comparing, at
each pixel, the behavior of the AP computed on the image of each
date. The starting assumption is that on the pixels belonging to un-
changed areas, having similar spatial characteristics, the effect of the
filtering would be similar, i.e., obtaining similar profiles. Instead, for
pixels belonging to changed areas we obtain profiles with significant
differences at the considered acquisition dates. For example, if we
compare two multitemporal profiles of a single pixel of an unchanged
building, in general, they show a similar trend till the level in which
the building structure is merged to an adjacent region by the filter.
Considering the subsequent levels, profiles can result different since
the information of the building structure is lost. However, the compari-
son of the profiles is not trivial. In fact, if the comparison is performed
on all the levels of the profiles inconsistent results might be obtained.
By a qualitative analysis of the behaviour of the profiles it came out
that the comparison between levels of the profiles is reliable until a
certain level (usually when the objects in the image are canceled and
thus, their structural characteristics are lost). Because of side effects
(e.g., different seasons of acquisition and a different view angle sensor
introduce different illumination in the scene and a different shape
effect) that involve in radiometric variations, the two classes of change
and no-change can be confused, making a direct comparison between
the profiles inappropriate. These mismatches between the analyzed
images make a spectral comparison of the multitemporal images diffi-
cult and thus the characterization of the objects within the scene. In
order to give a context meaning to the profile, for each pixel must be
taken into account a different range of values of the used attribute.
The following technique, focusing on the geometrical changes, aims
at performing a comparison of the profiles taking into account the
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Figure 10.4: General scheme of the proposed technique.

different spatial contextual information on each analyzed pixel. The
processing flow of the proposed architecture is based on three main
steps:

1. Application of the attribute morphological filters;

2. Regions extraction and reliable levels selection;

3. Comparison of the attribute profiles and generation of the change
detection map.

step one : application of the aps The first step aims at com-
puting on each multitemporal image an AP and the corresponding
DAP, using the attribute of area. The obtained images of the APs show
a multiscale filtering of the input images. In the closing profile dark
regions are shown, whereas in the opening profile we can find the
bright ones. The behavior of the APs is characterized by a monotonous
decreasing trend of gray levels from the components of closing to
opening ones. Since the DAPs are generated by computing the deriva-
tive of APs, they show peaks in correspondence of changes in the
values of APs. A DAP is calculated as the difference between a given
level of the relative AP and the its previous level.

step two : regions extraction and reliable levels selec-
tion This phase focuses on the analysis of the DAPs, in order to
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extract the objects in the scene. By analyzing the mono-dimensional
trend of the DAPs it was noticed that:

• for each peak in the DAP, a region is present in the DAP at the
level correspondent to the peak (which is the region canceled by
the current level of filtering);

• the intensity value of each peak in the DAP is related to the gray
level of the region which was erased by the filter;

• in general, a pixel can have several peaks in the DAP (i.e., the
pixel belongs to completely different regions at different levels
of resolution);

• some regions are more relevant than others in representing the
object which the pixel belongs to.

From the analysis of the DAPs, it is possible to find a level of resolu-
tion that can more properly represent each object.
In order to perform the extraction of the regions, it is necessary to
apply a binarization to each level of resolution in order to extract
all the connected regions that have values greater than zero (see Fig-
ure 10.9), since the images of the DAP are in grayscale. Subsequently,
we compute some measures on the regions at each level of the pro-
file as proposed in [123], in order to find the levels in which each
region is best represented from a perceptual point of view leading
to the selection of the reliable levels. Two parameters are taken into
account: standard deviation and spatial dimension of a given region.
The method is based on the consideration that meaningful regions are
homogeneous. Taking into account that a single pixel would be the
most homogeneous region, the joint use of the mentioned parameters
ensures that a region selected as meaningful will be as spectrally ho-
mogeneous and large as possible. Thus, for each region, belonging to
each date, the reliable level R is computed according to the following
criterion:

R = n̂ : max
(

M(n)
)

with M(n) = D
(
n, parent(n)

)
· C(n) (10.5)

with n the level in the DAP, D( · ) the standard deviation computed
between the pixels in region of n and its parent region (i.e., the region
in the previous level), and C( · ) the area of the region.
In general, a given region in the AP becomes large after a number
of filtering steps, reaching a level in which it will merge with the
surrounding ones (level at which it will appear in the DMP), losing
partially or completely its physical structural meaning. Consequently,
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the level at which we are interested in, usually corresponds to the
value that precedes this effect. This approach was applied on both
the closing and opening profiles separately, obtaining for each date
a map of the reliable levels for both the closing and opening profiles.
Between the obtained maps we computed the maximum in order to
generate for both closing and opening operations a unique multi-
temporal reliable levels map (Figure 10.5a and 10.5b). Moreover, by
considering the greater level (i.e., coarser image) permits to maximize
the differences between the profiles associated to the changed areas,
since the comparison of the profiles is performed until the selected
level. In fact, by performing the comparison of the profiles until the
greatest level is reached can show a difference in the behavior of the
profiles due to the change.

(a) (b)
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Figure 10.5: Reliable levels maps obtained applying the relation (10.5) to: (a)
the closing component; (b) the opening component.

step three : comparison of the attribute profiles and gen-
eration of the change detection map In the last step, a
comparison between the profiles of each pixel belonging to the images
of the two dates is performed. Also in this phase, the components
of closing and opening are analyzed separately. It is expected that
unchanged areas show similar behaviors in the AP, whereas changed
zones have a different trend in the profile.

In order to reduce the effects of radiometric variation in acquisition
which is not associated to a real change, the values of the APs for
each pixel are normalized on all the range of values considered for
λ in order to sum to one. Then the APs for each pixel p in the two
multitemporal images are compared till the reliable level R, defined at
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the previous step. The change indicator (CI) is obtained applying the
following definition to all pixels:

CI(p) =
R

∑
l=1

|APt1(p, l)− APt2(p, l)| (10.6)

Finally, the binary change detection map can be obtained by threshold-
ing the above defined change indicator. In our experiment a manual
trial and error thresholding procedure was adopted.

10.3.3 Experimental Results

10.3.3.1 Data set description

The proposed method is evaluated on a data set of multitemporal
panchromatic images acquired by the Quickbird sensor with geometric
resolution of 0.6 m. The images show an area of 1000×1000 pixels of
the city of Bam, Iran, acquired in September 2003 and March 2004,
Figure 10.6a and 10.6b, respectively. The considered area represents an
urban area made up by small buildings. After the earthquake occurred
on 26th December 2003, most of the buildings ware destroyed, an
undamaged area is located in the left side of the images, characterized
by some large buildings. It is possible to notice the presence of a
different illumination due to the different acquisition seasons which
results in shadows differences.

(a) (b)

Figure 10.6: Panchromatic images: (a) September 2003; (b) March 2004.

10.3.3.2 Experimental results on two subsets of the considered data set

An analysis of the effectiveness of the proposed method is carried out
on two small subsets of the considered data set. The two regions are
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selected such as one presents a building that did not collapse after the
earthquake and one that was completely destroyed.
In this example we report the results obtained in steps two and three
of the proposed method in order to show the different behaviors of
the proposed representation in changed and no-changed areas. In step
two we computed the closing and opening components of the reliable
levels map applying in (10.5) and computing the maximum between
the reliable levels maps belong to both dates. In the third phase the
closing and opening components of the change indicator map are
obtained applying the comparison (10.6) between the normalized APs.
We can see the effectiveness of the meaningful region selection of
the method. The changes associated to shadows are shown by the
closing component of the change indicator map in Figure 10.7c, while
the changes of the buildings are well represented by the opening
component in Figure 10.8c.

10.3.3.3 Experimental results on the entire data set

For both images a 121-dimensional AP and a DAP of 120 dimensions
were generated using the attribute area with a range of values between
0 - 3000, and a constant step increase of 50 pixels. An example of
DAPs binarization is shown in Figure 10.9. The chosen range of values
is related to the dimension of objects in the scene. The comparison
between the two multitemporal images was carried out by computing
the difference between the APs taking into account for each pixel its
reliable level. The comparison is performed for both the closing and
opening profiles (Figure 10.10a and 10.10b). The final change detection
maps (Figure 10.11a and 10.11b) are obtained by applying a trial and
error thresholding procedure to the change indicator maps. In order
to allow a qualitative evaluation of the effectiveness of the proposed
approach, the final maps are compared with a change detection map
obtained by applying the standard CVA (Figure 10.11c). The proposed
technique permits to detect the changes preserving their geometrical
information resulting more homogeneous and spatially precise than
the map obtained with the standard CVA. For the considered data set:
the CD map given by opening shows most of the changes occurred
on buildings, while, the CD map corresponding to closing shows
the changes mostly due to variations on the shaded areas. The maps
obtained with the proposed technique show changes related to the
geometrical changes in contrast with the CVA map, which shows
spectral changes.
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Figure 10.7: Example of unchanged region: (a) region at dates t1 and t2, left
and right respectively; (b) closing and opening components of
the reliable levels map, obtained in step two; (c) closing and
opening components of the change indicator map, obtained in
step three.
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Figure 10.8: Example of changed region: (a) region at dates t1 and t2, left and
right respectively; (b) closing and opening components of the
reliable levels map, obtained in step two; (c) closing and opening
components of the change indicator map, obtained in step three.
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(a)

(b)

Figure 10.9: DAPs binary maps: (a) September 2003; (b) March 2004. The
images show the multilevel behavior of the profiles. From left
side we have: closing profile at levels 28, 19, 6 of λ and opening
profile at levels 8, 19, 37 of λ.

10.3.4 Conclusion

The APs have proved their effectiveness in integrating the geometric
information in the classification and segmentation tasks. In this sec-
tion we proved their effectiveness also in change detection field. A
new change detection technique based on attribute profiles has been
proposed for a multitemporal VHR data set.
For each pixel a region-based analysis is performed in order to find the
meaningful level of resolution, thus, the APs computed on the image
of each date are compared. The attribute filters are able to decrease
the complexity of the images and the change detection maps obtained
with the proposed method show areas that changed their geometry
during the two acquisitions independently from spectral variations.
By applying the proposed approach, geometrical information related
to the objects is preserved, and moreover, the application of the APs
permits us to automatically separate the changes occurred on dark
areas, mostly composed by shadow regions, from those occurred on
bright regions, mostly composed by buildings, that appear in closing
and opening, respectively.
The qualitative analysis of the results obtained considering two VHR
images of Bam, Iran, proved that the change detection maps obtained
with the proposed technique are qualitatively more accurate and
spatially precise with respect to the one obtained by the standard
pixel-based CVA approach. As future developments we plan to: i)



10.3 change detection technique based on aps 146

(a) (b)

Figure 10.10: Change indicator maps obtained applying the relation (10.6):
(a) closing profile; (b) opening profile.

improve the level of automatization of the proposed method; ii) test
it on data sets with different characteristics and on different change
detection problems; and iii) perform a quantitative evaluation of its
performance.
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(a) (b)

(c)

Figure 10.11: Final map obtained after the thresholding: (a) closing compo-
nent; (b) opening component; (c) CVA.
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C O N C L U S I O N

Abstract. This chapter presents a general discussion of the work described

in this thesis reviewing the main contributions of this research. Specific con-

cluding remarks on the research topics treated in the dissertation are also

given. Finally, perspectives on possible future developments of the work are

presented.

The inclusion of the spatial information in any form (e.g., modeled
as contextual relations, by descriptors of the structures in the image,
as relations between different type of objects, etc.) is essential for all
the analysis dealing with optical remote sensing images, especially
when the geometrical resolution is high. Thus, the analysis of the
scene must take into consideration the characteristics extracted by the
spatial domain, along with the spectral signatures of the pixels, for
a proper exploitation of all the available informative components. In
this applicative scenario, mathematical morphology provides tools for
the processing of the data that have already proven their usefulness
and effectiveness for conveying spatial information in the analysis.

The work presented in this dissertation addressed the problem
to model the spatial information with novel techniques based on
mathematical morphology for applications such as: i) thematic classifi-
cation; ii) image simplification; iii) building extraction; and iv) change
detection. The proposed techniques were defined for dealing with
panchromatic and multi-/hyperspectral images.
As a general conclusion of the research carried out, the following
observations can be made:

• In all the applications addressed by our work, connected oper-
ators demonstrated to be suitable for performing analyses that
require the preservation of spatial characteristics of structures
of interest while suppressing uninteresting components in the
scene. Connected operators transform the image by only merg-
ing flat regions. Thus, features as edges and shapes cannot be
distorted but only either completely canceled or kept unaffected.

• Morphological attribute filters are very flexible operators. More-
over, they are connected operators so they do not alter the edges
of the regions. The freedom in selecting the attributes allows
one to set up a filtering of the image which can suit the needs

148
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of the application. Attribute filters have a greater capability in
performing a transformation that suits the aim of the analysis
(e.g., remove small regions, filter out bright objects with squared
shape, flatten textured regions) with respect to connected oper-
ators based on a structuring element. In fact, operators based
on SE can only tune the size and shape of the SE leading to
transformations with a limited capability.

• Multilevel architectures are proper approaches to the consistent
description of complex scenes. A single scale or single level of
filtering usually is not sufficient for handling the heterogeneous
characteristics of the objects in real scenes. Multilevel techniques,
such as APs and EAPs, are more appropriate for the modeling
of the spatial information in complex scenes.

• Representation of the image as a hierarchical structure of regions
is very important. Max-tree and inclusion-tree represent an im-
age as a tree structure where each node of the tree maps a region
in the image. Such representations have proven to be suitable for
the efficient implementation of attribute operators.

With particular regard to the topics treated in this research, some
specific observations can be made.

• Image classification.

The main novelties introduced by this work consist in the defi-
nition and investigation of attribute profiles, extended attribute
profiles and self-dual attribute profiles, which are multilevel
operators suitable for characterizing the spatial information of
the image.
In Ch. 4, we have presented the definition of APs and have re-
ported the experimental analysis carried out for the classification
of panchromatic images. APs have proven to be an effective
tool for the modeling of the spatial characteristics of the objects.
In particular, when the APs are computed on attributes that
can model different spatial characteristics, features conveying
complementary information in the analysis are obtained. When
compared to the conventional morphological profiles, the use of
APs based on different attributes led to a gain in terms of accura-
cies up to 12%. APs are based on the max-tree structure making
them appealing also in terms of computational complexity, since
their computation requires less resources than for a MP.
Analogously, when hyperspectral images are considered, ex-
tended attribute profiles (Ch. 5) led to very accurate results.
When compared to the results obtained by the EMP, EAPs based
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on different attributes led always to higher accuracies (up to
9%).
In Ch. 6 two techniques based on the EAPs and dimensionality
reduction techniques were proposed. The first technique per-
forms the computation of the EAPs on the features extracted
by an ICA (instead of the PCA). It was tested on a hyperspec-
tral data set leading to high accuracies. The ICA led to better
results than the PCA because it can better model the information
sources.
The problem of the high dimensionality of the features when
dealing with the EAPs was addressed by proposing a technique
based on a dimensionality reduction step performed by feature
extraction techniques (DAFE, DBFE and NWFE were consid-
ered). An improvement in terms of accuracies when considering
a feature extraction technique was assessed by the experimen-
tal analysis. As confirmed by the results, in this scenario, the
reduction of the dimensionality is particularly important for
investigating the effect of the Hughes phenomenon on the classi-
fier.
Dual techniques for the analysis of VHR images were also in-
vestigated (Ch. 7). Alternating sequential attribute profiles were
proposed, they are attribute filters applied in an alternate setting.
ASAF has shown to be promising for the capability of perform-
ing transformations on both dark and bright components in the
image with the flexibility given by the definition of the attributes.
However, their high computational complexity is a limit to their
application on large scale.
Attribute profiles computed on the inclusion-tree, namely self-
dual attribute profiles, were proposed. SDAP were shown to be
effective tools for the classification of VHR images. In the experi-
ments carried out, the SDAP outperformed the AP in terms of
classification accuracies. The SDAP permits the simultaneous
transformations of bright and dark structures in a multilevel
setting with a reduced complexity with respect to ASAF.

• Building extraction.

A technique based on APs for the extraction of features which
can be used for extracting the buildings from the image was
proposed in Ch. 8. The technique is based on a genetic algo-
rithm used for optimizing the selection of the parameters when
computing the AP. Standard deviation, a shape index and the
area were selected as attributes for proper modeling the charac-
teristics of the building structures. The quality of the features
obtained by the filters with optimized parameters was assessed
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by classifying the features extracted and checking the accuracy
in the identification of the buildings.

• Image simplification.

For the problem of image simplification, a general approach
based on hierarchical representations of the image (e.g., max-
tree and inclusion-tree) and a filtering stage adaptively defined
according to the information available on the scene were pro-
posed in Ch. 9. An important feature of the proposed approach is
the generality. According to the operational scenario, a different
processing of the image is performed. The good results obtained
in the preliminary experiments make this approach promising
for the image simplification task.

• Change detection.

In the context of change detection, two techniques were proposed
in Ch. 10. The first technique is based on the application of
connected operators to the image of the spectral change vector.
The simplification of the image obtained by the filtering stage
proved that a reduced number of total errors was achieved
without distorting the edges of the detected changed areas with
respect to the results obtained by a conventional CVA.
The second presented technique deals with APs. From each
multitemporal image, an AP is computed. The AP are then
analyzed in order to detect significant changes in the trend of
the profiles that can be related to the occurrence of a change on
the ground. The interesting feature of this technique relies in
the capability of providing information on the changes occurred
on the morphology of the structure in the scene resulting in a
informative component complementary to the one derived by the
spectral variation (used in most the conventional approaches).
The obtained results again show higher accuracies in terms of
detection of the changed areas when compared to those given
by the CVA.

On the basis of the study, the analysis and the experiments carried
out in the framework of this thesis, we identified some interesting
directions of research as future developments of this work.

• In our opinion a further investigations aimed at exploiting more
the tree representation of the image should be carried out. In
particular, we believe that the tree structure could be better
exploited for performing a region-based analysis of the image.
Moreover, the combination of the concepts proposed in this thesis
and the representation of the image given by binary partition
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trees is also of interest. Furthermore, the hierarchical structure
of the tree could be also used for gathering information on the
composition of the scene according to the relations that exist
between the region/objects of the image.

• Another interesting direction would be to extend the presented
techniques by considering different notions of connectivity. The
proposed techniques are based on the conventional 4- and 8-
connectivity rules but general connectivity classes are also avail-
able.

• The extension and investigation of the proposed techniques
on data acquired by other sensors (e.g., LIDAR and SAR im-
ages) should also be of interest. Indeed, very few applications of
mathematical morphology techniques on other data than optical
images exist.
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