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1 Introduction

The zoning of hydrogeological risk areas is one of the main tasks of land-use planning in

alpine areas. Snow avalanches are natural phenomena which can seriously affect human

settlements in mountainous regions. In Italy avalanche historical databases collect records

of avalanche events only since a short period of time and the low frequency of avalanches in

some sites makes it difficult to perform a statistical analyses of these data. Old documents,

interviews with the inhabitants, dendrochronological analysis supply further informations,

useful for avalanche risk area mapping. Simulations made with physical and mathematical

models can improve the knowledge of the dynamics of these events. For given topogra-

phy, bed roughness and initial characteristics of the snow mass (volume, initiation zone,

material properties), physical and mathematical models can be used to estimate the final

deposit configuration, impact forces on obstacles and other dynamic parameters.

In this thesis, three different mathematical and numerical models, based on the rheo-

logical theory of Savage and Hutter (28) for granular flows, are introduced. The choice

of this type of rheology is justified by the consideration that the vast majority of snow

avalanches, which take place in alpine regions, are granular avalanches (see Figure 1.1).

In chapter §2, a one–dimensional model with variable width, suitable for the simulation

of confined avalanches, is described. It has been implemented in a curvilinear coordinate

system. New rheological hypotheses have been introduced in order to describe the frictional

interaction with vertical sides. The model has been tested against experimental data

relevant to cases with constant width, collected in literature.

In chapter §3, the two–dimensional model, implemented by the writer during his degree

thesis, has been developed. It was originally written in a horizontal coordinate system,

assuming a linear stress tensor distribution and the constancy of the velocity along the

vertical instead of along the normal to the bottom direction. The model has been improved

by defining a rotated absolute coordinate system, which best fits the sliding surface, espe-

cially in the run–out zone. Alternative choices of the structure of the stress tensor have

been tested against experimental data. The two–dimensional model cannot still be applied

to real cases. The severe distortion of the mesh, due to strong planimetric gradients of

1



1. Introduction

Figure 1.1: Granular deposit surveyed at the avalanche site of Lavina Granda, in mountainous
range of Vigolana, close to Trento (Italy) (February 6th 2004).

velocity, causes the crash of the model in presence of complex topographies.

In order to solve this type of problems, we focused our attention on meshless methods,

introduced in chapter §4. In meshless methods, the computational nodes, which discretize

the fluid domain, are not bounded by topological relations, as in finite difference and

finite element schemes. This makes them suitable for problems characterized by mass

separations, strong deformations and discontinuities, like high velocity impacts, high Mach

number compressible fluid dynamics, elastic–plastic flows, crack growth problems. The

Moving Least Square Particle Hydrodynamics (MLSPH) method, created by Dilts, (7)

and (8), has been applied to the one–dimensional model developed at the Department of

Civil and Environmental Engineering of Trento. In the MLPSH model the equations of

motion are written in weak form and the field variables of the problem are approximated

by means of the Moving Least Square Approximants (MLSA) (Lancaster and Salkauskas

(16)). The MLSA have been applied to the reconstruction of the snow distribution in the

Trentino Province, in order to test their behaviour.

The avalanche site of Lavina Granda, in Vigolana range, has been equipped to measure

the dynamic parameters of real avalanches, in order to understand the behaviour of an

2



1. Introduction

avalanche site and to provide parameters for the calibration of the models. In chapter §5
the monitoring activity, observations and collected data are reported.

1.1 The physical and mathematical model

1.1.1 The hypotheses

Assuming that snow balls, which form during the initial phase of motion, are small com-

pared to the avalanche depth, the medium is treated as a continuum. The granular mass

in considered incompressible. A dilatation of the mass (not more than 30% in volume, ac-

cording to laboratory experiments performed with zeolite by Scotton (29)) occurs mainly

at the very initial instants, therefore the assumption of incompressibility applies during

most of the motion.

To describe the internal rheology, Savage and Hutter (27) proposed a Mohr–Coulomb

type yield criterion. To represent the dependence of the tangential stress pζξ on the normal

stress pζζ , they reported in their article the following relation:

tanφ =
pζξ
pζζ

=

ps(ν) tanφs(ν) + f2(ν)ρpσ
2

(
duξ
dζ

)2

ps(ν) + f1(ν)ρpσ2

(
duξ
dζ

)2 ,

Through experiments performed by means of an annular shear cell, they observed a depen-

dence of the internal friction angle φ on the velocity gradient and on the linear granular

concentration ν. ps is the quasi–static contribution to the normal stress pζζ , σ is the

particle diameter, ρp is the particle density. They noticed that, incrementing the velocity,

a strong dilatation and fluidization takes place. Frictional interactions between particles

are substituted by collisional interactions. Nevertheless, as duξ/dζ grows, the proportion-

ality between tangential and normal stresses is conserved. When duξ/dζ is very big, the

internal frictional angle φ asymptotically goes to a dynamic constant value φd, function

of the concentration ν and not of the velocity gradient:

tanφd (ν) =
f2 (ν)

f1 (ν)

Hungr and Morgenstern (11) performed experiments in open channels in order to investi-

gate the behaviour of granular flows at high velocity. They observed that, as the velocity

grows, the momentum transfer mechanism changes, passing from a frictional type to a

collisional type. Along the normal to the bottom direction, the linear velocity profile is

3



1. Introduction

substituted by a constant profile (“plug–flow”), with shearing concentrated close to the

sliding surface. They stated that the interaction of the granular mass with the bottom

can be described through a Coulomb–type relation, with a bottom friction angle δ that is

smaller than the internal friction angle φ.

All these observations support the hypotheses of our models. A Mohr–Coulomb type

internal yield criterion, with internal friction angle φ, is applied; a Coulomb–type frictional

interaction is assumed along solid boundary surfaces, with a friction angle δ smaller than

φ; the velocity is considered constant along the normal to the bottom direction.

Thermodynamic aspects, related to frictional heat production and snow fusion and

to granulation processes in the initial phases of natural events, are omitted. Moreover,

the model doesn’t simulate mass exchanges with the snow at the bottom and the related

variations of momentum, of mass and of the geometry and roughness of the sliding surface.

4



2 A one–dimensional model with variable

width

2.1 Introduction

In this chapter a one–dimensional model for rectangular channels with variable width is

developed. The model can be adopted for the study of the dynamic of granular avalanches

along narrow valley with variable section. The extension of the original one–dimensional

model with constant width implies new rheological hypotheses in order to describe the

components of the stress tensor on vertical banks. Continuity and motion equations are

simplified in the hypothesis of “shallow water” and averaged in the transversal direction

and normally to the bottom.

A three–dimensional curvilinear coordinate system is defined with ζ normal to the bot-

tom, ξ orientated along the channel, and η normal to ξ and ζ (Figure 2.1). The thalweg of

the channel is supposed to lie on a vertical plane, i.e. transversal curvature is neglected.

The cross section is assumed rectangular with left and right lateral banks defined by:

φl (ξ, η) = η − b (ξ)

2
= 0 ,

φr (ξ, η) = η +
b (ξ)

2
= 0 ,

where b is the width of the channel.

In the curvilinear coordinate system the velocity vector is defined as u = (uξ, uη, uζ) =

uξgξ + uηgη + uζgζ , where gξ, gη e gζ are the versors which define locally the directions

of ξ, η e ζ respectively.

5



2. A one–dimensional model with variable width

Figure 2.1: The three–dimensional coordinate system.

2.2 The mathematical model

2.2.1 The mass balance equation

We consider an infinitesimal curvilinear volume with edges dξ, dη and dζ long. The balance

of mass fluxes through lateral surfaces gives (see Figure 2.2):

−uξ dη dζ +

(
uξ +

∂uξ
∂ξ′

dξ′
)
dη dζ − uη

dξ′ + dξ′′

2
dζ +

(
uη +

∂uη
∂η

dη

)
dξ′ + dξ′′

2
dζ +

−uζ dξ′ dη +

(
uζ +

∂uζ
∂ζ

dζ

)
dξ′′ dη = 0 .

Being R = R (ξ) the local curvature radius and χ = χ (ξ) = 1/R the curvature, one

6



2. A one–dimensional model with variable width

Figure 2.2: Fluxes of mass.

obtains:

dξ

R
=

dξ′

R− ζ =
dξ′′

R− ζ − dζ ⇒

⇒ dξ′ = (1− χ ζ) dξ and dξ′′ = (1− χ ζ − χdζ) dξ .

Finally, neglecting infinitesimal terms of superior order:

1

(1− χ ζ)
∂uξ
∂ξ

+
∂uη
∂η

+
∂uζ
∂ζ
− χ

(1− χ ζ)
uζ = 0. (2.1)

2.2.2 Momentum balance equations

The momentum balance equations, in vectorial form, are:

du

dt
= g +

1

ρ
∇ ·P . (2.2)

The inertial terms can be developed as follow:

du

dt
= +

∂uξ
∂t

gξ +
∂uη
∂t

gη +
∂uζ
∂t

gζ +
∂

∂ξ′
(uξ gξ + uη gη + uζ gζ)

dξ′

dt
+

+
∂

∂η
(uξ gξ + uη gη + uζ gζ)

dη

dt
+

∂

∂ζ
(uξ gξ + uη gη + uζ gζ)

dζ

dt

7



2. A one–dimensional model with variable width

In the curvilinear system:

∂gξ
∂ξ′

= − dβ
dξ′

gζ =
1

R− ζ gζ ,
∂gη
∂ξ′

= 0 ,
∂gζ
∂ξ′

=
dβ

dξ′
gξ = − 1

R− ζ gξ ,

∂gξ
∂η

=
∂gη
∂η

=
∂gζ
∂η

= 0 ,

∂gξ
∂ζ

=
∂gη
∂ζ

=
∂gζ
∂ζ

= 0 ,

dξ′

dt
= uξ ,

dη

dt
= uη ,

dζ

dt
= uζ .

where β = β (ξ) is the angle upon the horizontal (see Figure 2.3).

Figure 2.3: The variation of gξ and gζ along ξ.
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2. A one–dimensional model with variable width

So we obtain:

along gξ:
∂uξ
∂t

+
uξ

1− χζ
∂uξ
∂ξ

+ uη
∂uξ
∂η

+ uζ
∂uξ
∂ζ
− χ

1− χ ζ uξuζ ; (2.3)

along gη:
∂uη
∂t

+
uξ

1− χζ
∂uη
∂ξ

+ uη
∂uη
∂η

+ uζ
∂uη
∂ζ

;

along gζ :
∂uζ
∂t

+
uξ

1− χζ
∂uζ
∂ξ

+ uη
∂uζ
∂η

+ uζ
∂uζ
∂ζ

+
χ

1− χ ζ uξ
2 .

The terms on the right side of equation (2.2) become (calculation details are not reported):

along gξ: g sinβ +
1

ρ

(
1

1− χ ζ
∂pξξ
∂ξ

+
∂pηξ
∂η

+
∂pζξ
∂ζ
− 2χ

1− χ ζ pζξ
)
, (2.4)

along gη: +
1

ρ

(
1

1− χ ζ
∂pξη
∂ξ

+
∂pηη
∂η

+
∂pζη
∂ζ
− χ

1− χ ζ pζη
)
,

along gζ : −g cosβ +
1

ρ

(
1

1− χ ζ
∂pξζ
∂ξ

+
∂pηζ
∂η

+
∂pζζ
∂ζ

+
χ

1− χ ζ (pξξ − pζζ)
)
.

2.2.3 Motion equations in non–dimensional form

Non–dimensionalization is executed through scale values of quantities which characterize

the phenomenon:

- Ls: the longitudinal length scale;

- Bs: the transversal length scale;

- Hs: the depth scale;

- Rs: the scale for the radius of curvature of bed profile;

- Us = Uξs: the scale for the velocity along ξ;

- Uηs: the scale for the velocity along η;

- Uζs: the scale for the velocity along ζ;

- Ts = Ls/Uξs: the time scale;

- Ps: the pressure scale;

- ρs: the density scale.

9



2. A one–dimensional model with variable width

Figure 2.4: Volume and surface forces on the infinitesimal curvilinear volume.

Non–dimensionalized variables are indicated with superscript̂. The ratio between depth

and longitudinal scale is defined as ε = Hs/Ls. Assuming Bs ∼= Hs it results Bs/Ls ∼=
ε. The ratio between longitudinal scale and curvature radius scale is λ = Ls/Rs. The

continuity equation becomes:

1(
1− λ εχ̂ ζ̂

) ∂ûξ
∂ξ̂

+
1

ε

Uηs
Uξs

∂ûη
∂η̂

+
1

ε

Uζs
Uξs

∂ûζ

∂ζ̂
− λ Uζs

Uξs

χ̂(
1− λ ε χ̂ ζ̂

) ûζ = 0.

Fluxes in different directions are of the same order of magnitude if Uηs/Uξs ∼= Bs/Ls ∼= ε

and Uζs/Uξs ∼= ε.
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2. A one–dimensional model with variable width

In the same way motion equation in ξ direction can be non–dimensionalized. The left

member becomes:

U2
s

Ls

(
∂ûξ

∂t̂
+

ûξ

1− λ ε χ̂ ζ̂
∂ûξ

∂ξ̂
+ ûη

∂ûξ
∂η̂

+ ûζ
∂ûξ

∂ζ̂
− λ ε χ

1− λ ε χ̂ ζ̂
ûξ ûζ

)
.

The right one gives:

g sinβ +
Ps
ρsHs

1

ρ̂

(
ε

1− λ ε χ̂ ζ̂
∂p̂ξξ

∂ξ̂
+
Hs

Bs

∂p̂ηξ
∂η̂

+
∂p̂ζξ

∂ζ̂
− 2λ ε

χ̂

1− λ ε χ̂ ζ̂
p̂ξζ

)
.

The inertial terms of motion equation in η direction become:

U2
s

Ls
ε

(
∂ûη

∂t̂
+

ûξ

1− λ ε χ̂ ζ̂
∂ûη

∂ξ̂
+ ûη

∂ûη
∂η̂

+ ûζ
∂ûη

∂ζ̂

)
. (2.5)

The external forces terms:

= +
Ps
ρsHs

1

ρ̂

(
ε

1− λ ε χ̂ ζ̂
∂p̂ξη

∂ξ̂
+
Hs

Bs

∂p̂cηη

∂η̂
+
∂p̂ζη

∂ζ̂
− λ ε χ̂

1− λ ε χ̂ ζ̂
p̂ζη

)
. (2.6)

The governing equation along ζ can be treated in a similar way. The left member in

non–dimensional form appears as:

U2
s

Ls
ε

(
∂ûζ

∂t̂
+

ûξ

1− λ ε χ̂ ζ̂
∂ûζ

∂ξ̂
+ ûη

∂ûζ
∂η̂

+ ûζ
∂ûζ

∂ζ̂
+
λ

ε

χ̂ û2
ξ

1− λ ε χ̂ ζ̂

)
.

The right member:

= −g cosβ +
Ps
ρsHs

1

ρ̂

(
ε

1− λ ε χ̂ ζ̂
∂p̂ξζ

∂ξ̂
+
Hs

Bs

∂p̂ηζ
∂η̂

+

+
∂p̂ζζ

∂ζ̂
+ λ ε

χ̂

1− λ ε χ̂ ζ̂
(p̂ζζ − p̂ξξ)

)
.

λ is assumed of order 1 (i.e. the radius of curvature, Rs, is comparable to Ls) and ε << 1

(”shallow water” hypothesis). It is assumed that inertial, gravitational and pressure forces

are comparable. It descends that U 2
s /Ls

∼= g ∼= Ps/ρsHs and so the Froude number scale

is Frs = Us/
√
g Hs

∼= 1/
√
ε and the pressure scale Ps ∼= ρs U

2
s . It follows that, in the

motion equation along η, all inertial terms are negligible in (2.5), and, discarding all terms

depending on ε in the second member (2.6), the result is:

∂pηη
∂η

+
∂pζη
∂ζ

= 0 . (2.7)
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2. A one–dimensional model with variable width

Similarly in motion equation along ζ, neglecting terms of order ε, one gets:

∂pζζ
∂ζ

+
∂pηζ
∂η

= +ρ
(
g cosβ + χuξ

2
)
. (2.8)

The continuity equation and the motion equation along ξ will be simplified later, in the

averaged form.

2.2.4 The definition of the stress tensor

To define the stress tensor we rely on the rheology proposed by Hutter and Savage (28),

modified to keep into consideration the effects on vertical banksides. A Mohr–Coulomb

type yield criterion, with internal friction angle φ, is applied to the granular material.

The bottom and the lateral sides are treated as sliding surfaces with a Coulomb type

frictional law. δb, δl, δr are the friction angles at the bottom, left side and right side

respectively. Relying on these boundary conditions the stress tensor can be exactly defined

at basal corners of the rectangular section. At each side a local coordinate system, with

Ξ orientated along the bank and H normal to it, can be defined (see Figure 2.5).

The stress tensor at the left and right corner in the corresponding local coordinate

system ΞHζ, can be defined as:

(
P̃
)
l/r

=




pΞΞ (pΞH)l/r pΞζ

(pHΞ)l/r (pHH)l/r pHζ

pζΞ pζH pζζ


 .

Assuming secondary circulations and stresses of little magnitude, we can consider pζH ∼=
pHζ ∼= 0.

Frictional boundary conditions at the bottom and at the left and right sides give:

pζΞ = +sgn (uξ) tan δb pζζ ,

(pHΞ)l = +sgn (uξ) tan δl (pHH)l ,

(pHΞ)r = −sgn (uξ) tan δr (pHH)r .

The Mohr–Coulomb type yield criterion, applied to the coordinate planes ΞH and Ξζ,

allows to evaluate pΞΞ ’s dependence on pζζ and pHH .

On the Mohr diagram, the circle which defines the stress state on the plane Ξζ must pass

through the point (−pζζ , |pζΞ |) and has to be tangential to the yield envelope with slope

φ (Figure 2.6). Two circles respect the imposed conditions. The one which corresponds to

12



2. A one–dimensional model with variable width

Figure 2.5: (Ξ, H)–local coordinate systems relevant to the orientation of the banks.

a greater value of −pΞΞ is associated to the passive state, which, in the theory of Savage

and Hutter, takes place when ∂uξ/∂ξ < 0. The other circle represents the stress state

when ∂uξ/∂ξ > 0 (active state). It means that:

pΞΞ = kζa/p pζζ , (2.9)

where kζa/p is equal to ka or kp defined as:

kp

ka

}
=

2

cos2 φ

[
1±

√
1− cos2 φ

cos2 δ

]
− 1, if

∂uξ
∂ξ

<
> 0 . (2.10)

Similar hypotheses can be used to define stress tensor components on the plane ΞH.

Two circles, tangential to material yield locus defined by the internal frictional angle

φ, can be drawn through the point (−pHH , |pHΞ |) (see Figure 2.7). The criterion of

selection between the two corresponding states is not as clear as on plane Ξζ and has to

be experimentally tested. One idea could be to assume as discrimination element the sign

13



2. A one–dimensional model with variable width

Figure 2.6: The definition of the stress tensor components on the plane Ξζ according to the
Savage–Hutter rheology (28).

Figure 2.7: The definition of the stress tensor components on the plane ΞH according to the
Savage–Hutter rheology (28).

of ∂uξ/∂ξ, just as on Ξζ plane. The result is that:

pΞΞ = kHa/p pHH ,

where kHa/p is identical to kζa/p. According to this approach:

pHH = pζζ and so kHH = 1 .
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2. A one–dimensional model with variable width

Another possible choice is to take kHa/p equal to ka or kp as defined by equation (2.10),

according to the sign of ∂b/∂ξ.

(
kHa/p

)
l/r

=

{
ka
kp

}
if

∂b

∂ξ
>
< 0 .

For example, if lateral banks converge (∂b/∂ξ < 0), passive state takes place and pΞΞ =

(kp)l/r (pHH)l/r. In this way one obtains that:

(pHH)l/r =
pΞΞ(
kHa/p

)
l/r

=
kζa/p(
kHa/p

)
l/r

pζζ = (kHH)l/r pζζ .

On the left and right banks the pressure pHH can be different because of unequal friction

angles δl and δr.

Finally, we can write the stress tensor at each corner at the bottom of the section as:

(
P̃
)
l/r

=




kΞΞ (kΞH)l/r kΞζ

(kHΞ)l/r (kHH)l/r kHζ

kζΞ kζH kζζ


 pζζ =

(
K̃
)
l/r

pζζ .

where

kΞΞ = kζa/p ,

(kΞH)l/r = (kHΞ)l/r = ±sgn (uξ) tan δl/r k
ζ
a/p/k

H
a/p ,

kΞζ = kζΞ = −sgn (uξ) tan δb ,

(kHH)l/r = kζa/p/
(
kHa/p

)
l/r

,

kHζ = kζH = 0 ,

kζζ = 1 .

Every component of
(
P̃
)
l/r

depends linearly on pζζ .

The components of (P)l/r in (ξ, η, ζ)–coordinate system are obtained rotating the stress

tensor by the angle (α)l/r between (Ξ)l/r and ξ (see Figure 2.5):

(P)l/r =
(
R P̃ RT

)
l/r

=
(
R K̃ RT

)
l/r

pζζ = (K)l/r pζζ .
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2. A one–dimensional model with variable width

where (R)l/r is the rotation matrix:

(R)l/r =




cos (α)l/r − sin (α)l/r 0

sin (α)l/r cos (α)l/r 0

0 0 1


 .

(α)l/r can be calculated as:

(α)l/r = ± arcsin
db/dξ

2

√
1 +

(
d (b)l/r /dξ

)2
. (2.11)

The components of (K)l/r, the tensor of stress coefficients, in the (ξ, η, ζ)–coordinate

system, result:

(kξξ)l/r = cos2 (α)l/r (kΞΞ)l/r − 2 sin (α)l/r cos (α)l/r (kHΞ)l/r +

+ sin2 (α)l/r (kHH)l/r ,

(kξη)l/r = (kηξ)l/r = sin (α)l/r cos (α)l/r

(
(kΞΞ)l/r − (kHH)l/r

)
+

+
(

cos2 (α)l/r − sin2 (α)l/r

)
(kHΞ)l/r ,

(kξζ)l/r = (kζξ)l/r = cos (α)l/r (kζξ)l/r ,

(kηη)l/r = sin2 (α)l/r (kΞΞ)l/r − 2 sin (α)l/r cos (α)l/r (kHΞ)l/r +

+ cos2 (α)l/r (kHH)l/r ,

(kηζ)l/r = (kζη)l/r = sin (α)l/r (kζξ)l/r .

Deriving equation (2.8) over ζ and equation (2.7) over η and then subtracting the two

equations, one obtains:

∂2pηη
∂η2

+
∂2pζζ

∂ζ2 = 0 , (2.12)

and so if pζζ were linearly distributed along ζ, pηη should be linearly distributed over η.

It can be noticed from (2.11) that sin (α)l/r = O (ε) and so (kζη)l/r is negligible compared

with the other coefficients. Integrating the governing equation along ζ (equation (2.8))
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2. A one–dimensional model with variable width

over η, in the range between −b/2 and b/2, and then over ζ, in the range between ζ and

h, the hydrostatic distribution of pressure is obtained:

∂p̄ζζ
∂ζ

= ρ
(
g cosβ + χ ū2

ξ

)
⇒

⇒ p̄ζζ = −ρ
(
g cosβ + χ ū2

ξ

)
(h (ξ, t)− ζ) ,

where

φh (ξ, ζ, t) = ζ − h (ξ, t) = 0 (2.13)

represents the equation of free surface, and

p̄ζζ =
1

b

∫ bl

br

pζζ dη

is the value of pζζ averaged over η. According to the“plug–flow”hypothesis, uξ is supposed

constant over ζ and η, and h constant over η. On this basis it seems reasonable to suppose

pζζ linear along ζ. As a consequence, equation (2.12) tells that pηη has to be linear along

η. Being the stress tensor proportional to pζζ at the inferior corners of the section, a linear

dependence of all the components of the stress tensor from ζ and η can be hypothesized.

It is possible to separate the dependence from ξ and ζ in different factors, such as:

P (ξ, η, ζ, t) = −K (ξ, η, t) pζζ (ξ, ζ, t) =

= −Kl (ξ, t) (η − br (ξ)) + Kr (ξ, t) (bl (ξ, t)− η)

bl (ξ, )− br (ξ)
·

· ρ
(
g cosβ (ξ) + χ (ξ) uξ

2 (ξ, t)
)

(h (ξ, t)− ζ) . (2.14)
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2. A one–dimensional model with variable width

2.2.5 Motion equations averaged over η

Now it is possible to integrate over η the mass and momentum balance equations. The

averaged components of the velocity vector are:

ūξ =
1

b

∫ b/2

−b/2
uξ dη ,

ūη =
1

b

∫ b/2

−b/2
uη dη ,

ūζ =
1

b

∫ b/2

−b/2
uζ dη ,

The kinematic boundary conditions at the sides are:

(u)l/r · ∇ (φ)l/r = 0⇒

⇒ ±1

2

(uξ)l/r

1− χ ζ
db

dξ
+ (uη)l/r = 0 .

Multiplying by (1− χ ζ) the continuity equation (2.1) and integrating over η, one

obtains:

∂

∂ξ
(b ūξ) + b

∂

∂ζ
(ūζ (1− χ ζ)) = 0 . (2.15)

In order to integrate the inertial terms of the motion equation in the direction ξ (2.3),

it is useful to write them in conservative form, summing the continuity equation (2.1)

multiplied by uξ:

∂uξ
∂t

+
1

1− χ ζ
∂

∂ξ

(
uξ

2
)

+
∂

∂η
(uξ uη) +

∂

∂ζ
(uξ uζ)− 2

χ

1− χ ζ uξ uζ .

Then, they can be integrated over η, simplified invoking kinematic boundary conditions,

and, at last, re–written in non–conservative form, subtracting the averaged continuity

equation (2.15) multiplied by ūξ/ (1− χζ):

b

(
∂ūξ
∂t

+
ūξ

1− χ ζ
∂ūξ
∂ξ

+ ūζ
∂ūξ
∂ζ
− χ ūξ ūζ

1− χ ζ

)
.

The integration of the terms of forces requires more work. The generic component of

the stress tensor can be written as (see (2.14)):

pij = −ρA (kij)l (η + b/2) + (kij)r (b/2− η)

b
(h (ξ, t)− ζ) ,

18



2. A one–dimensional model with variable width

where:

A = A (ξ, t) = g cosβ + χ ū2
ξ ,

being uξ nearly constant over the section (“plug–flow” condition).

The averaged value of pij over η results:

p̄ij =
1

b

∫ b/2

−b/2
pij dη = ... = −ρA (kij)l + (kij)r

2
(h− ζ) .

The member of forces (2.4) integrated over η gives:

g b sinβ−
[

1

1− χ ζ
∂

∂ξ

(
bA

(kξξ)l + (kξξ)r
2

(h− ζ)

)
+

−A (h− ζ)

2

1

1− χ ζ
∂b

∂ξ

(
(kξξ)r + (kξξ)l

)
+

+A (h− ζ)
(
(kηξ)l − (kηξ)r

)
+

−bA (kξζ)l + (kξζ)r
2

(
1 +

2χ b

1− χ ζ

)]
.

2.2.6 Motion equations averaged over the section

We define the components of velocity averaged over the entire section:

Uξ =
1

h

∫ h

0
ūξ dζ ,

Uη =
1

h

∫ h

0
ūη dζ ,

Uz =
1

h

∫ h

0
ūζ dζ ,

In order to average over ζ, it is necessary to invoke the kinematic boundary conditions:

- at the bottom:

(uζ)b = 0 .
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2. A one–dimensional model with variable width

- at free surface, from (2.13):

∂φh
∂t

+∇φh · ū = 0 ⇒

⇒ −∂h
∂t
− ūξ

1− χh
∂h

∂ξ
+ ūζ = 0 .

The continuity equation becomes:

b
∂h

∂t
+

1

1− χh
∂

∂ξ
(b hUξ) .

The inertial terms of the motion equation along ξ:

b h

((
1− χ h

2

)
∂Uξ
∂t

+ Uξ
∂Uξ
∂ξ
− χUξ Uz

)
.

The averaged value of the generic component of the stress tensor is:

Pij =
1

h

∫ h

0
pij dζ = −ρA (Kij)l + (Kij)r

2

h2

2
,

where, assuming ūξ, (kij)l and (kij)r nearly uniform along ζ:

A = A (ξ, t) = g cosβ + χUξ
2 ,

(Kij)l =
1

h

∫ h

0

(
k̄ij
)
l
dζ ∼= (kij)l and

(Kij)r =
1

h

∫ h

0

(
k̄ij
)
r
dζ ∼= (kij)r .

The member of forces is given by:

g sinβ b h

(
1− χh

2

)
−
[
∂

∂ξ

(
Abh2

4

(
(Kξξ)l + (Kξξ)r

))
+

−Ah
2

4

∂b

∂ξ

(
(Kξξ)r + (Kξξ)l

)
+

+
Ah2

2

(
1− χh

3

) (
(Kηξ)l − (Kηξ)r

)
+

−Ah b
2

(
1 +

χh

2

) (
(Kζξ)l + (Kζξ)r

)]
.
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2. A one–dimensional model with variable width

Neglecting all the terms depending on λ ε, the final versions of the continuity equation

and of the motion equation along ξ, divided by b h are:

∂ (b h)

∂t
+
∂ (b hUξ)

∂ξ
= 0 , (2.16)

∂Uξ
∂t

+ Uξ
∂Uξ
∂ξ
− χUξ Uz =

= g sinβ +
1

b h

[
∂ (b hPξξ)

∂ξ
+
∂b

∂ξ

(
(Pξξ)r − (Pξξ)l

)
+

+h
(
(Pηξ)l − (Pηξ)r

)
− 2 b Pζξ

]
. (2.17)
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2. A one–dimensional model with variable width

2.3 The numerical model

Motion equations are solved by means of a lagrangian finite difference scheme. The granu-

lar mass is discretized in a number N of cells, delimited through N + 1 surfaces normal to

the bottom (see Figure 2.8). The computational grid moves with the mass. The averaged

velocity of each grid node i,

Uξi = Uξi (x (t) , t) = Uξi (t) ,

is calculated at instant tn+1, solving the averaged momentum balance equation along ξ

(equation (2.17)) through a Collatz scheme (see (32)). The Equation of motion along ξ is

an ordinary differential equation of first order, and can be written as:

dUξ
dt

= f (Uξ, t) .

According to the Collatz scheme, such type of equations are integrated in two steps:

Uξ
n+1
i = Uξ

n
i + ∆t f

(
Û
n+1/2
ξi , tn+1/2

)
, where

Û
n+1/2
ξi = Uξ

n
i +

∆t

2
f
(
Ûnξi, t

n
)

and

∆t = tn+1 − tn .

Afterwards the position of the generic node i can be updated:

ξn+1
i = ξni +

Uξ
n+1
i + Uξ

n
i

2
∆t .

The conservation of mass is ensured imposing the constancy of volume for each cell. It

follows that the depth of the generic cell i+ 1/2 at instant n+ 1 comes from:

hn+1
i+1/2 =

∀i+1/2

bn+1
i+1/2

(
ξn+1
i+1 − ξn+1

i

) ,

being ∀i+1/2 the constant volume for cell i+1/2 and bi+1/2 the channel width at
(
ξn+1
i + ξn+1

i+1

)
/2.

Some conditions are imposed on the integration time step ∆t to guarantee the stability

of the model. In order to prevent the overlapping of neighbour cells, the generic node must

not go over the subsequent nodes during a single time step. Furthermore, the informations

relevant to changes of the motion field in a node must not cover distances greater than the

extension of adjacent cells. The velocity of such informations is the celerity of propagation

of little gravitational waves and so this appears as a Courant–Friedrichs–Levy type stability
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2. A one–dimensional model with variable width

Figure 2.8: The curvilinear computational grid used to discretize the granular mass.

condition. To smooth the instabilities arising during the run–out phase, ∆t is reduced up

to prevent the inversion of motion during a single time step.

In spite of all these conditions on the time step ∆t, further instabilities can arise de-

velop in presence of shocks induced by abrupt slowing down due to slope reductions or to

narrowings of the channel. They are reduced through an adding diffusive term.

A detailed description of the numerical scheme, used for the one–dimensional model with

constant width 1d and applied, with little changes, to the variable–width model 1dwvar,

can be found in (6).

The numerical model is implemented in a C++ code. To treat half integer numbers

(i.e.numbers which can be represented as the sum of an integer and constant 1/2), we

resorted to the HINT class, developed by dr. Enrico Bertolazzi and available on the web

site http://www.ing.unitn.it/~bertolaz.
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2. A one–dimensional model with variable width

2.4 Comparison of numerical results with experiments

The rheological hypotheses, applied to describe the frictional interactions withthe vertical

side banks of the channel, have been tested against data of different laboratory experi-

ments, executed in constant width chutes:

- a slump test on horizontal plane, reported in (4);

- one experiment in a double slope chute, described in (12);

- three experiments with different granular materials in a convex and concave curved

chute (see (10)).

Simulations of the variable width model 1dwvar, developed by the author, are compared

with simulations obtained by the original one–dimensional model with constant width

1d, implemented at the Department of Civil and Environmental Engineering. In the 1d

model, to take account of the lateral friction, two different corrective factors for the bottom

friction angle δ have been tried. One approach was proposed by Savage and Hutter (28):

tan δeff =

(
1 + k

Hs

Bs
h

)
tan δ = (1 + ε kwall h) tan δ , where (2.18)

kwall =
Ls
Bs

k .

The other one, due to Greve and Hutter (10), proposes:

δeff = δ + ε kw
h

Hs
. (2.19)

2.4.1 Slump on horizontal plane

The experiments were carried out at the Hydraulic Laboratory of the University of Trento

in a 0.3m wide chute, with the lateral vertical walls and the bottom in perspex, a trans-

parent plastic material. The mass of granular material is initially confined by a rotating

gate, that can be instantaneously opened by the recalling force of a spring. The gate is

initially inclined of 55o on the horizontal plane. D’Accordi made experiments with two

granular materials: gravel and zeolite. We present the results obtained with zeolite, an

anionic synthetic resin, having dimensions which range from 0.1mm to 2mm and a mean

diameter of 1mm. Internal and bottom static friction angles were estimated through a

24



2. A one–dimensional model with variable width

shear box:

φ = 28o ± 0.75o ;

δ = 18o ± 0.75o .

Depth are non–dimensionalized through Hs = 0.17m, the initial depth of the mass. The

longitudinal scale Ls is taken equal to 0.119m, the horizontal projection of the frontal

inclined part of the initial deposit. The transversal length scale is Bs = 0.3m, the width

of the chute.

Simulation φ[o] δ[o] k[-]

d.1d.1 26 18 0

d.1d.2 26 18 0.4

Table 2.1: Values of the rheological parameters used in the numerical simulations of the experiments
of D’Accordi (4) with the one-dimensional model with constant width (1d). φ is the internal friction
angle, δ the bottom friction angle, k the coefficient of the corrective factor of δ proposed by Savage
and Hutter (28) (see equation (2.18)).

Simulation φ[o] δb[
o] δl[

o] δr[
o]

d.1dwvar.1 26 18 0 0

d.1dwvar.2 26 18 18 18

Table 2.2: Values of the rheological parameters used in the numerical simulations of the experiments
of D’Accordi (4) with the one-dimensional model with variable width (1dwvar). φ is the internal
friction angle, δb the bottom friction angle, δl and δr are the lateral friction angles at the left and
right sides respectively.

Numerical simulations of 1d and 1dwvar, obtained neglecting the lateral friction, are

compared in Figure 2.9. The results are identical, but fitting of experimental data is worse

than in the simulations shown in Figure 2.10, where a coefficient k = 0.4 is used in the

corrective factor equation (2.18) of δ in the 1d model, while a lateral friction angle equal

to 18o is applied at the lateral sides of the chute in the 1dwvar model. The 1dwvar model

gives a better prediction than the 1d model.
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Figure 2.9: Slump on horizontal plane. Comparison of experimental data and numerical simulations
produced by the one–dimensional models with constant width (1d) and variable width (1dwvar),
assuming no frictional interaction at lateral walls. The values of rheological parameters used in
different simulations are shown in Table 2.1 and Table 2.2.
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Figure 2.10: Slump on horizontal plane. Comparison of experimental data and numerical simu-
lations produced by the one–dimensional models with constant width (1d) and variable width
(1dwvar), adding lateral friction at banks. The values of rheological parameters used in different
simulations are shown in Table 2.1 and Table 2.2.
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2. A one–dimensional model with variable width

2.4.2 Double slope chute

The data of these laboratory experiments are collected from Hutter et al. (12).

Figure 2.11: The experimental apparatus used by Hutter et al. (From (12)).

The experimental chute is made up of two straight segments, connected by a curved

replaceble one. The first segment has an inclination angle adjustable from 40o to 60o;

the second one is horizontal (see Figure 2.11). The bottom, in PVC, can be covered with

different linings (drawing paper or sandpaper), in order to modify the basal roughness.

One side wall is in plexiglass to make it possible to photograph. The other one is in PVC,

coated with a gray plastic folio. The mass is hold in its initial position by a gate, kept

normal to the bottom by a bolt. When the bolt is removed, the gate rotates around an

horizontal axis, dragged by the angular momentum exerted by a weight, hung to a lever

arm applied at the axle of the gate. The mass is istantaneously released on the inclined

segment and comes to a complete stop on the horizontal one.

One–dimensional models have been tested against exp.29, executed by releasing a mass

of 500 g of Vestolen, a granular material made up of white plastic particles of lense–
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2. A one–dimensional model with variable width

type shape (diameter 4mm, height 2.5mm, density 950 kg/m3 and highest bulk density

540 kg/m3). The measured internal friction angle φ is 29o−36o. Using different procedures

to estimate the bottom friction angle on PVC, Hutter et al. obtained δb = 19.0o± 2.0 and

δb = 22.5o. No information is supplied on the values of the lateral friction angle at the

frontal and back wall sides.

The initial shape of the released mass is assumed to be triangular with an horizontal

upper surface, as in Figure 2.12. The geometrical scales Ls and Hs are assumed equal to

the initial lenght of the mass 0.149m. The width of the chute 0.1m is assigned to the

transversal geometrical scale Bs. The scale for velocity is Us =
√
g Hs = 1.21m/s and so

the scale for time results Ts = Ls/Us = 0.12 s.

Figure 2.12: Initial shape of the granular mass.

Simulation φ[o] δ[o] k[-]

h.1d.1 29 19.5 0

h.1d.2 29 19.5 0.453

Table 2.3: Values of the rheological parameters used in the numerical simulations of the experiment
of Hutter et al. (12) with the one–dimensional model with constant width (1d). φ is the internal
friction angle, δ the bottom friction angle, k the coefficient of the corrective factor of δ proposed
by Savage and Hutter (28) (see equation (2.18)).
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2. A one–dimensional model with variable width

Simulation φ[o] δb[
o] δl[

o] δr[
o]

h.1dwvar.1 29 19.5 0 0

h.1dwvar.2 29 19.5 19.5 14

Table 2.4: Values of the rheological parameters used in the numerical simulations of the experiment
of Hutter et al. (12) with the one–dimensional model with variable width (1dwvar). φ is the internal
friction angle, δb the bottom friction angle, δl and δr are the lateral friction angles at left and right
sides respectively.

Hutter et al. obtained the best numerical simulations using φ = 26o, δ = 19.5o and k = 0

(see (12)). In Figure 2.13 the temporal evolution of the position of the front and the rear

of the mass for exp.29 is compared to numerical simulations obtained neglecting lateral

friction. During the flowing phase the computed mass is more spread than in experimental

data, while during the run–out phase roles are inverted, so that the computed final length

results underestimated with respect to experimental data. Best results are given by the

1dwvar model.

Appliying to δ the correction given by equation (2.18), with k = 0.453, in the 1d model,

and using the lateral friction angles (δ)l/r = 18o in 1dwvar, numerical simulations give

worse predictions of the final position of the front and better predictions of the final

position of the rear and of the mean position of the deposit (see Figure 2.14); the final

length remains nearly the same as in cases without lateral friction. Model 1dwvar returns

better fittings again.
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Figure 2.13: Double slope chute. Positions of the front and the rear of the mass plotted versus
time for exp.29. Comparison between experimental data and numerical simulations produced by
the one–dimensional models with constant width (1d) and variable width (1dwvar), with no lateral
friction at the lateral banks. The values of the the rheological parameters used in different simu-
lations are shown in Table 2.3 and Table 2.4. The curvilinear coordinate ξ is non dimensionalized
through Ls = 0.149m, the intial length of the mass, time through Ts =

√
Ls/g = 0.12 s.
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Figure 2.14: Double slope chute. Positions of the front and the rear of the mass plotted versus
time for exp.29. Comparison between experimental data and numerical simulations produced by
the one–dimensional models with constant width (1d) and variable width (1dwvar), adding lateral
friction at the lateral banks. The values of the rheological parameters used in different simulations
are shown in Table 2.3 and Table 2.4.The curvilinear coordinate ξ is non–dimensionalized through
Ls = 0.149m, the intial length of the mass, time through Ts =

√
Ls/g = 0.12 s.
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2.4.3 Convex and concave curved chute

The experiments of Greve and Hutter (10) were executed in a convex and concave curved

chute, 0.1m wide and 4m long. The inclination angle β[o], as function of the dimensionless

arc length ξ̂ = ξ/Ls, with Ls = 0.150m, is given by:

β
(
ξ̂
)

= β0 e
−0.1bξ + β1

γ

1 + γ8
− β2 e

−0.3 (bξ+10/3)
2

, with (2.20)

γ =
4

15

(
ξ̂ − 9

)
, and

β0 = 60.0o , β1 = 31.4o , β2 = 37.0o .

The bed geometry in the (x̂, ẑ)–absolute dimensionless coordinate system is obtained by

the integration:

x̂
(
ξ̂
)

=

∫ bξ

0
cosβ (τ) dτ + x̂0 , ẑ

(
ξ̂
)

=

∫ bξ

0
− sinβ (τ) dτ + ẑ0 .

The trend of β as function of the dimensional absolute coordinate x is shown in Fi-

gure 2.15. The second term in equation (2.20) is responsible for the deviation from the

exponential tendency. The result is a bump in the exponential geometry of the bed (see

Figure 2.16).

The bottom of the chute consists of a flexible strip of plexiglass. To change the bed

friction angle δ, Greve and Hutter covered it with no. 120 SIA sandpaper or drawing paper

linings. One wall is in transparent plexiglass in order to make it possible to photograph the

motion of the granular material. No information is given about the other wall. The mass

is released on the incline by rotating the confining gate, initially oriented in the vertical

direction. Mass is supposed to have an initial triangular shape. Longitudinal and normal

scales, Ls and Hs, are assumed equal to the initial length and depth of the mass. The

velocity scale is Us =
√
g Hs and the time scale Ts = Ls/Us.

Only three of the experiments carried out by Greve and Hutter are reported here.

In exp.16 a mass of 1.5 l of Vestolen, the same granular material seen in §2.4.2, is released

on the chute, having the bottom lined with no. 120 sandpaper. Greve and Hutter provide

the experimentally estimated values of 37.0o±2.0o and 34.6o±2.0o for the internal friction

angle φ and the bottom friction angle δ respectively. They used φ = 37o, δ = 29o, kw = 11o

in the numerical simulation.

In Figure 2.17 the positions of the rear, the front and the maximum height are plotted

versus time. Figure 2.18 shows the temporal evolution of the maximum height h. The lon-
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Experiment Simulation φ[o] δ[o] kw[o] k

exp.16 g16.1d.1 37 29 11 -

exp.29 g29.1d.1 37 26.5 11 -

exp.29 g29.1d.2 37 26.5 - 0.4

exp.36 g36.1d.1 44 30 12 -

Table 2.5: Values of the rheological parameters used in the numerical simulations of the experiments
of Greve and Hutter (10) with the one-dimensional model with constant width (1d). φ is the
internal friction angle, δ the bottom friction angle, kw the coefficient of the corrective factor of δ
proposed by Greve and Hutter (10) (see equation (2.19)), k the coefficient of the corrective factor
of δ proposed by Savage and Hutter (28) (see equation (2.18)).

Experiment Simulation φ[o] δb[
o] δl[

o] δr[
o]

exp.16 g16.1dwvar.1 37 30 15 15

exp.29 g29.1dwvar.1 37 26.5 26.5 26.5

exp.36 g36.1dwvar.1 44 30 30 30

Table 2.6: Values of the rheological parameters used in the numerical simulations of the experiments
of Greve and Hutter (10) with the one-dimensional model with variable width (1dwvar). φ is the
internal friction angle, δb the bottom friction angle, δl and δr the lateral friction angles at left and
right sides respectively.

gitudinal curvilinear coordinate ξ is non–dimensionalised through Ls = 0.375m, the ma-

ximum height h through Hs = 0.08m and the time t through Ts = Ls/Us = Ls/
√
g Hs =

0.42 s. Using φ = 37o, δb = 30o (closer to the experimental value) and (δ)l/r = 15o, model

1dwvar shows a better behaviour than 1d model, both in the prediction of the position

of the front and of the point of maximum height and in the prediction of the maximum

height of the mass, during all the motion.

Exp.29 was carried out with 1.5 l of Vestolen on drawing paper. The measured basal

friction angle is 24.7o ± 1.5o. The parameters used by Greve and Hutter in the numerical

simulation are φ = 37o, δ = 26.5o and kw = 11o. Model 1dwvar run with φ = 37o and

δb/l/r = 26.5o.

The results are shown in Figure 2.19, where h is non–dimensionalised through Hs =

0.1m, ξ through Ls = 0.3m, t through Ts = Ls/Us = Ls/
√
g Hs = 0.30 s.

The presence of the convex bump in the middle of the chute causes the separation of
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the granular avalanche in two parts: one part remains before the point of maximum slope

along the bump, while the other one goes beyond it and stops in the segment at lower

slope. The profiles produced by the one–dimensional models are later and deeper than

the experimental ones. The 1d model gives poorer results than the 1dwvar model. Also

the volume splitting over and under the bump is better simulated by the 1dwvar model.

Model 1d overestimates the volume which stops on the bump.

Analogous considerations are valid for exp.36, shown in Figure 2.20, where, for the

non–dimensionalization, the length scale is Ls = 0.33m, Hs is 0.09m and the time scale is

Ts = Ls/Us = Ls/
√
g Hs = 0.35 s. Experiment exp.36 was performed with a mass of 1.5 l

of quartz 0, having mean grain diameter of 3mm, maximum length lmax = 5.0mm, bulk

density at densest packing 1562 kg/m3 ± 20 kg/m3 and density 2600 kg/m3 ± 150 kg/m3.

The granular mass is released on the chute lined with drawing paper. The measured

internal friction angle is φ = 44.0o ± 2.5o, the bottom friction angle δ = 31.1o ± 1.5o.

The values of the numerical parameters used in model 1d are the ones applied by Greve

and Hutter: φ = 44o, δ = 30o and kw = 12o. Model 1dwvar gives the best numerical

simulations with φ = 44o and δb/l/r = 30o.

In this case, the model 1d gives a better description of the maximum height, but the

deposit volumes ratio is poorly reproduced, as in exp.29.
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Figure 2.15: Convex and concave curved chute. The bed inclination angle β[o] versus the absolute
dimensional coordinate x[mm]. The circles highlight the positions of maximum and minimum slope
along the bump.
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Figure 2.16: Convex and concave curved chute. The bed geometry in the (x, y)–absolute dimen-
sional coordinate system. The circles highlight the positions of maximum and minimum slope
along the bump.
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Figure 2.17: Convex and concave curved chute. Exp.16. Position of the front, the rear and the
maximun height of the mass. Comparison of experimental data and numerical simulations of
models 1d and 1dwvar, with the numerical parameters shown in Table 2.5 and Table 2.6. ξ is
non–dimensionalized through Ls = 0.375m, time t through Ts = Ls/Us = Ls/

√
g Hs = 0.42 s,

being Hs = 0.08m.
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Figure 2.18: Convex and concave curved chute. Exp.16. Temporal evolution of the maximum depth
of the granular mass. Comparison of experimental data and numerical simulations of models 1d and
1dwvar, with the numerical parameters shown in Table 2.5 and Table 2.6. h is non–dimensionalized
through Hs = 0.08m, time t through Ts = Ls/Us = Ls/

√
g Hs = 0.42 s, being Ls = 0.375m.
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2. A one–dimensional model with variable width
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Figure 2.19: Convex and concave curved chute. Exp.29. Comparison of experimental and nu-
merical profiles obtained with models 1d and 1dwvar, with the numerical parameters shown in
Table 2.5 and Table 2.6. h is non–dimensionalized through Hs = 0.1m, ξ through Ls = 0.3m, t
through Ts = Ls/Us = Ls/

√
g Hs = 0.30 s. The circles signal the positions of points of maximum

and minimum slope.
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Figure 2.20: Convex and concave curved chute. Exp.36. Comparison of experimental and nu-
merical profiles obtained with models 1d and 1dwvar, with the numerical parameters shown in
Table 2.5 and Table 2.6. h is non–dimensionalized through Hs = 0.09m, ξ through Ls = 0.33m,
the time t through Ts = Ls/Us = Ls/

√
g Hs = 0.35 s. The circles signal the positions of the points

of maximum and minimum slope.
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2. A one–dimensional model with variable width

2.4.4 Concluding remarks

In all the reported cases with constant width, by appliying the values of the physical

parameters which gave the best fittings to Hutter et al. (12) and Greve et al. (10), 1dwvar

model showed a better behaviour than 1d model. Nevertheless, to verify definitively the

effectiveness of the rheological hypotheses, it is necessary to test the 1dwvar model on

laboratory cases with known lateral friction angles and with converging and diverging

side walls. An experimental campaign is being designed at the Hydraulic Laboratory

of the University of Trento, in order to better investigate the effects of different lateral

roughnesses and of a longitudinally varying width of the channel.
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3 The two–dimensional model

Extending the theory of Savage and Hutter (27) to the two–dimensional case, Hutter

et al. (13) developed a model based on a curvilinear coordinate system, which applies

to topographies with small lateral curvature. The definition of a curvilinear coordinate

system is not so obvious with arbitrarily complex topographies, especially if it is not

possible to identify an unique thalweg line.

A two dimensional model has been written in an absolute orthogonal coordinate system

at the Department of Civil and Environmental Engineering of Trento by De Toni (5). A

detailed description of the model is in De Toni et al. (6). The behaviour of the model has

been thoroughly investigated and some corrections have been applied.

3.1 The original model

Initially, the equations of motion have been written in a non–ortho–normal curvilinear

system, relevant to the topographical surface, through the techniques of the tensorial

analysis. The equation written in the direction normal to the bottom, simplified according

to the hypothesis of “shallow water”, provides the hydrostatic pressure distribution, with

an added centrifugal term. The stress tensor is then defined in a different ortho–normal

coordinate system, relevant to the direction of the velocity vector. Afterward the equations

of motion have been written in a (x, y, z)–ortho–normal coordinate system with z oriented

along the vertical, rotating the stress tensor previously defined. Finally, assuming that

the velocity is constant and the pressure distribution is linear along the vertical direction

z instead of normally to the bottom, the motion equations are averaged over z.

3.1.1 The three-dimensional motion equations

The continuity equation and the momentum balance for an incompressible continuum in

vectorial form are:

∇ · u = 0 ,

ρ
du

dt
= ρ (u,t + u · ∇u) = f +∇ ·P ,

(3.1)
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3. The two–dimensional model

where u is the velocity vector, ρ is constant density, f is the external force per unit volume

(the gravitational force ρg, with g the gravity acceleration vector), P is the stress tensor,

with the convention of positive outward stress, t is the time. The notation ,x represents

the partial derivative with respect to the generic variable x.

In the (x, y, z)–absolute coordinate system, with z orientated along the vertical, the

geometries of the sliding and of the free surfaces are defined by the equations: Φb (x) =

b (x, y)− z = 0 and Φf (x, t) = z− f (x, y, t) = 0, respectively, being x the position vector.

The kinematic boundary conditions take the form:

ub · ∇Φb = 0 and
∂Φf

∂t
+ uf · ∇Φf = 0 ,

where uf and ub are the velocity vectors at free surface and bed surface, respectively. The

stress is assumed to be zero at the free surface while a Coulomb–type relation is used to

describe the frictional interaction between the mass and the bottom surface. In this way

the dynamic boundary conditions are given by:

Pbnb − nb (nb ·Pbnb) = + (ub/ |ub|) tan (δ) (nb ·Pbnb) and Pfnf = 0 ,

where δ is the bed friction angle and nb = ∇Φb/ |∇Φb| and nf = ∇Φf/ |∇Φf | are the

normal outwards unit vectors at the bottom and at the free surface.

3.1.2 Internal pressure distribution

The equations of motion can be written in a non–ortho–normal curvilinear coordinate

system with ζ normal to the slope and the coordinate lines ξ and η lying on the basal

surface in planes normal to the y and x axis, respectively, as shown in Figure 3.1.

The equations of motion (3.1) can be written in the ( ξ, η, ζ )–curvilinear coordinate

system using the tensorial analysis techniques (Simmonds (31)). Applying the Einstein’s

summation convention, along the generic curvilinear coordinate xi, one obtains:

ρ ui,t + ρ uj ∇j ui = f i +∇jpij ,

being:

u = ui gi ,

f = f i gi ,

P = pij gi gj ,

∇ = gk∇k .
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3. The two–dimensional model

gi are the “cellar” base vectors, defined as:

gi =
∂x

∂xi
,

where x = x (x1, x2, x3) represents the position vector of a generic point, written as

function of the curvilinear coordinates xi. The “cellar” base vectors define, locally, the

directions of the curvilinear coordinate lines.

gi are the reciprocal base vectors, called “roof” base vectors. They are defined so that:

gi · gj = δij =

{
1 if i = j

0 if i 6= j
,

where the symbol δij is the Kronecker delta.

A generic vector u can be represented through its “roof” components ui, “physic” com-

ponents u(i) or “cellar” components ui:

u = ui gi = u(i) gi/ |gi| = ui g
i .

A second order tensor P can be written as follows:

P = pij gj gi = p(ij) gj gi/ (|gj | |gi|) = pij gi gj .

∇k is called the covariant derivative with respect to xk. The covariant derivative of the

roof component ui of a vector u can be defined using the Christoffel symbols Γkij :

∇jui = ui,j + Γijk u
k .

For the roof components pij of a tensor P:

∇kpij = pij ,k + Γilk p
lj + Γjlk p

il .

where:

Γkij = gi,j · gk .

It can be demonstrated that Γkij = Γkji.

The momentum equation along ζ is non–dimensionalized by scaling with the character-

istic parameters of the phenomenon: Ls for the geometrical dimensions of the mass along

x, y, ξ and η directions; Hs for the flow depth; Ps for the pressure terms; Ts for the time;

Us and Uζ s for the velocity components along and normal to the sliding surface respec-

tively; ρs for the density. The maximum altitude difference covered by the avalanche is
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3. The two–dimensional model

considered comparable with Ls. It is assumed that ε = Hs/Ls is small (“shallow water”

hypothesis) and that Ts = Ls/Us = Hs/Uζ s. It follows that Uζ s = εUs. The pressure

and the inertial terms are assumed to be of the same order of magnitude as gravitational

forces, i.e. Ps ≈ ρs U2
s ≈ ρs g Ls.

It can be demonstrated (see De Toni et al. (6)) that, neglecting the terms of order ε,

the vectors of the “cellar” base are:

gξ =
1√

1 + b2,x

∣∣∣
η=0

( 1, 0, b,x ) ,

gη =
1√

1 + b2,y

∣∣∣
ξ=0

( 0, 1, b,y ) ,

gζ =
1√

1 + b2,x + b2,y

(−b,x, −b,y, 1 )

and that “roof” base vectors are given by:

gξ =

√
1 + b2,x

∣∣∣
η=0

1 + b2,x + b2,y

(
1 + b2,y, −b,x b,y, b,x

)
,

gη =

√
1 + b2,y

∣∣∣
ξ=0

1 + b2,x + b2,y

(
−b,x b,y, 1 + b2,x, b,y

)
,

gζ = gζ .

Γkζζ is identically 0 and the dimensional analysis reveals that Γkiξ = Γkξi and Γkiη = Γkηi

are of order 1/Ls. Hence, discarding the terms of order ε, the motion equation along ζ

results:

ρ

[
Γζξξ

(
uξ
)2

+ 2 Γζξη u
ξ uη + Γζηη (uη)2

]
= − ρ g√

1 + b2,x + b2,y

+ pζζ ,ζ . (3.2)

According to the “plug–flow” hypothesis, the velocity vector is considered constant along

the depth and so equation (3.2), integrated over ζ, gives a linear pressure profile. It can
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3. The two–dimensional model

be written in terms of the physical components of velocity and stress tensor:

p(ζζ) = −
ρ
(
h̃− ζ

)

√
1 + b2,x + b2,y


g +

b,xx
1 + b2,x

(
u(ξ)

)2
+

b,xy√
1 + b2,x

√
1 + b2,y

u(ξ) u(η)+

+
b,yy

1 + b2,y

(
u(η)

)2
)

(3.3)

= −ρA
(

1− ζ

h̃

)
,

where h̃ is the normal depth of the granular mass and A collects all the terms not explicitly

shown.

3.1.3 Mohr–Coulomb closure

The simulation of the dynamic of granular materials is dramatically affected by the choice

of the rheological closure law. In our one–dimensional model, the rheology of Savage and

Hutter (27) has been successfully tested with experimental data. The extension of this

theory to two dimensions is not straightforward.

The first step is to find the principal directions of the stress tensor. Pudasaini and

Hutter (23) chose the plane defined by ζ and the thalweg direction as main principal

surface. We opted for the plane passing through ζ, normal to the bed, and Ξ. During the

motion, Ξ is oriented along the direction of the velocity vector (Figure 3.2). When the

mass is at rest, Ξ is chosen along the projection, on the sliding surface, of the gradient

of the free surface elevation in the xyz reference system. In this way the basal frictional

shear stress, pζΞ , is precisely directed opposite to the velocity during the motion and the

definition of the stress tensor is independent of the topography and the position of the

thalweg line. H is normal to Ξ and ζ.

Assuming H to be a principal direction means that p(ΞH) = p(HΞ) = p(ζH) = p(Hζ) = 0.

The secondary circulations, normal to the mean direction of the motion, are likely to

be small, except for cases with abrupt deviations. Hence, ∂u(H)/∂Ξ and ∂u(H)/∂ζ and

related shear stresses, p(ΞH) and p(ζH), are negligible.

On the plane Ξζ, using the rheological theory of Savage and Hutter (27), the stress

tensor components at the bottom are linearly depending on
(
p(ζζ)

)
b

(the subscript b means

evaluated at the bottom). If we consider
(
p(HH)

)
b

= k2

(
p(ζζ)

)
b
, then the entire stress

tensor is proportional to
(
p(ζζ)

)
b
. Hence, in the coordinate system ΞHζ, the components
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3. The two–dimensional model

Figure 3.1: Absolute and curvilinear coordinate
systems.

Figure 3.2: Local coordinate system ΞHζ rele-
vant to the velocity vector, adopted to define the
stress tensor.

of the stress tensor at the bottom are:

(P)b =




p(ΞΞ) p(HΞ) p(ζΞ)

p(ΞH) p(HH) p(ζH)

p(Ξζ) p(Hζ) p(ζζ)




∣∣∣∣∣∣∣∣∣∣∣∣∣∣
b

=

=




ka/p 0 tan δ

0 k2 0

tan δ 0 1




(
p(ζζ)

)
b

= K̃
(
p(ζζ)

)
b
. (3.4)

The linear dependence of the stress tensor on pζζ , reported in equation (3.4), is assumed

to hold inside the entire moving mass.

ka/p is defined according to the scheme shown in Figure 3.3. In particular:

kp

ka

}
=

2

cos2 φ

[
1±

√
1− cos2 φ

cos2 δ

]
− 1 if

(
∂u(Ξ)

∂Ξ

)

b

< 0
> 0

,
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3. The two–dimensional model

Figure 3.3: Definition scheme of the stress tensor components in the coordinate system ΞHζ.

where φ and δ are the internal and bed friction angles, used to define the internal yield

criterion and the bed–snow interaction.

The second step is to define the secondary principal stress in the direction H, normal

to the main principal surface. Hutter et al. (13) relate p(HH) to the maximum or the

minimum principal stress, p1 and p3:

p(HH) = p2 = k2 p
(ζζ) =





p1 = k1 p
(ζζ) if

(
∂u(H)

∂H

)

b

< 0

p3 = k3 p
(ζζ) if

(
∂u(H)

∂H

)

b

> 0

. (3.5)

If
(
∂u(Ξ)/∂Ξ

)
b
> 0, i.e. in active stress state:

k2 =




k

(a)
1

k
(a)
3



 =

1± sinφ

cos2 φ

(
1−

√
1− cos2 φ

cos2 δ

)
if

(
∂u(H)

∂H

)

b

<
> 0 .

k
(a)
1 = p

(a)
1 /p(ζζ) , k

(a)
3 = p

(a)
3 /p(ζζ), (see Figure 3.3 for p

(a)
1 and p

(a)
3 ).

If
(
∂u(Ξ)/Ξ

)
b
< 0, i.e. in passive stress state:

k2 =




k

(p)
1

k
(p)
3



 =

1± sinφ

cos2 φ

(
1 +

√
1− cos2 φ

cos2 δ

)
if

(
∂u(H)

∂H

)

b

<
> 0 ,

where k
(p)
1 = p

(p)
1 /p(ζζ), k

(p)
3 = p

(p)
3 /p(ζζ) (see Figure 3.3 for p

(p)
1 and p

(p)
3 ).

49



3. The two–dimensional model

3.1.4 The integrated equations of motion

The vertically averaged velocity components in the x and y directions of the absolute

coordinate system are defined as:

Ux =
1

h

∫ f

b
ux dz , Uy =

1

h

∫ f

b
uy dz ,

where h is the vertical depth of the mass.

The vertically integrated continuity equation, taking into account the kinematic boun-

dary conditions, reduces to:

h,t + (hUx),x + (hUy),y = 0 .

In order to integrate the momentum conservation equations along z it is necessary to

know the stress tensor over the entire profile. Equation (3.4), which, strictly speaking,

holds only at the bottom, is assumed to be valid over the entire flow depth. Furthermore

velocity is assumed uniform along z, instead of along ζ. Similarly the hydrostatic distri-

bution (3.3) is considered to hold along the vertical direction. Under these hypotheses,

taking into account the kinematic and dynamic boundary conditions at the bottom and

free surface, the integration of the momentum balance equations along x and y gives:

dUx
dt

= Ux,t + Ux Ux,x + Uy Ux,y = ((kxx,x + kyx,y) A+ kxxA,x + kyxA,y)
h

2
+

+ (kxx h,x + kyx h,y) A+

+ (kxx b,x + kyx b,y − kzx) A ,

dUy
dt

= Uy,t + Ux Uy,x + Uy Uy,y = ((kxy,x + kyy,y) A+ kxy A,x + kyy A,y)
h

2
+

+ (kxy h,x + kyy h,y) A

+ (kxy b,x + kyy b,y − kzy) A ,

where:

K =




kxx kxy kxz

kyx kyy kyz

kzx kzy kzz




is the stress coefficient tensor K̃ (defined by equation (3.4)) rotated into the absolute

coordinate system xyz.
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3. The two–dimensional model

3.1.5 The numerical model

The vertically averaged equations are solved by means of a lagrangian finite difference

scheme. The granular mass is discretized through a triangular mesh (see Figure 3.4).

Figure 3.4: The triangular mesh which discretizes the fluid domain.

The values of the velocity vector Ui, defined at the vertexes of the mesh, are estimated

by integrating the momentum balance equations along x and y through a two–step Collatz

scheme (Stoer and Burlisch (32)). Node positions are then updated at every time step.

The vertical depth hi is defined at each triangular cell of the mesh. The volume of every

cell is kept constant to satisfy the continuity equation, so that, at each time step, the value

of the vertical depth hi is calculated dividing the volume by the area of the basal triangle.

The length of the time step ∆t is varied during the simulation in order to fulfil a

Courant–Levy–Friedrichs type stability condition. An artificial viscosity term is introduced

in the momentum equations, to smooth numerical instabilities associated to shocks. The

computational code is written in C++ and uses the library P2MESH (Bertolazzi and

Manzini (3)) to manage the triangular mesh.

A detailed description of the mathematical and numerical model can be found in De

Toni et al. (6).

51



3. The two–dimensional model

3.2 The orientation of the absolute coordinate system

The comparison with experimental results obtained by Wieland et al. (34) on a chute with

small lateral curvature shows a delay of the simulated profiles with respect to the experi-

mental ones during the initial phases of the motion. Gray et al. (9) proposed a correction

of the basal friction angle δ, in order to get best fittings with their two–dimensional model

written in a curvilinear coordinate system. The same correction, applied to our model,

gives poor reproductions of the final deposit. Tests performed with our model show that a

better simulation of the initial phases of motion can be obtained orientating the xy plane

along the surface that best approximates the bottom topography of the starting zone.

3.2.1 Chute with a small lateral curvature

Wieland et al. (34) performed their experiments on a chute constituted by an initia-

tion zone, inclined at 40o on the horizontal, with shallow parabolic cross–slope section,

smoothly connected to a flat horizontal run–out zone. The chute was constructed of steel

sheet, wood and plaster, and was completely covered with paint, to have homogeneous

frictional properties.

The granular material was released from a hemispherical cap.

Experiment V 05, performed with rounded Vestolen plastic beads (diameters ranging

from 2mm to 3.5mm, basal friction angle δ = 27o, internal friction angle φ = 33o), has

been simulated numerically.

Our numerical model fails to reproduce correctly the initial phases of the motion, while

fitting of last instants is excellent (see Figure 3.5, simulation w.2d.1). In Table 3.1 the

values of the numerical parameters applied in the different simulations are reported.

Gray et al. (9) suggested to apply a corrective factor, which reduces the basal friction

angle δ at the rear, in order to obtain a better prediction of its position at initial times:

δ =

{
δ0 if x ≥ xn − (xn − xr) /4
δ0 −mδ (xn − (xn − xr) /4− x) if x < xn − (xn − xr) /4

. (3.6)

xn and xr identify the positions of the front and of the rear and x the position of the

generic point along the mass. Applying the corrective term (3.6) to our model, with the

values mδ = 10o/m suggested by Wieland et al. (34), the improvement in accuracy is

limited to the initial phase, while the deposit is badly fitted (see Figure 3.5, simulation

w.2d.2).

An offset in time equal to 0.2 s gives better results, except for the very initial instants.
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3. The two–dimensional model

Here, the position of the centre of mass is well predicted considering the time offset, but

the longitudinal spreading is larger than in the experimental data (see Figure 3.6). This

can be explained observing that, during the initial phase, the depth of the granular mass is

comparable to its length, so that the hypothesis of “shallow water” decays. Furthermore,

at steep slopes the deviation of the direction normal to the bottom from the vertical is

large. Therefore the errors introduced by assuming the constancy of velocity and the linear

distribution of stress tensor along z are likely not negligible.

Simulation mδ[
o/m] Time offset [s] βr

w.2d.1 0 0.0 0

w.2d.2 10 0.0 0

w.2d.3 0 0.2 0

w.2d.4 0 0.0 40

Table 3.1: The values of the parameters which characterize the different numerical simulations of
experiment V 05, described in Wieland (34). mδ is the coefficient of the corrective term of the
bottom friction angle δ, represented by equation (3.6). Time offset represents the delay introduced
in the numerical simulation. βr is the inclination on the horizontal of the rotated coordinate
system.
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Figure 3.5: Comparison between experiment V 05 performed by Wieland et al. (1999) and
numerical simulations obtained by correcting the bottom friction angle δ through equation (3.6).
The values of the applied numerical parameters are shown in Table 3.1. All the geometrical
dimensions are non–dimensionalized by hc, the initial depth of the mass. β is the inclination
angle of the thalweg line on the horizontal.
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Figure 3.6: Comparison between experiment V 05 performed by Wieland et al. (1999) and
numerical simulations obtained by adding an offset of 0.2 s to the time. The values of the
applied numerical parameters are shown in Table 3.1. All the geometrical dimensions are non–
dimensionalized by hc, the initial depth of the mass. β is the inclination angle of the thalweg
line on the horizontal.
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To evaluate these errors the original two–dimensional model has been developed, in

order to give the opportunity of running the program in a rotated absolute coordinate

system. Figure 3.7 shows the comparison between the simulation made with the horizontal

coordinate system and the simulation made with the absolute coordinate system rotated

by 40o about the y–axis, in order to better fit the sliding surface in the initiation zone.

The reproduction of the very initial instants is excellent. Then, in the simulation, the

delay of the rear is not recovered while the fitting of the front noticeably improves. When

the avalanche reaches the horizontal part of the chute, the quality of the numerical results

gets suddenly worse.

Using a coordinate system inclined at 40o on the horizontal, the deviation of the direction

identified by z from the normal to the bottom ζ, reduces considerably in the initiation

zone: it vanishes along the thalweg of the chute and slightly increases as the cross distance

from the thalweg increases. The problem is transferred to the run–out zone, where the

directions ζ and z are inclined of 40o one with respect to the other.

It follows that, in the application to real cases, it is important to choose the orientation

of the absolute coordinate system so that the reference surface xy best fits the topography.
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Figure 3.7: Comparison between experiment V 05 performed by Wieland et al. (1999) and
numerical simulations obtained applying the horizontal coordinate system and the coordinate
system inclined at 40o. The values of the applied numerical parameters are shown in Table 3.1.
All the geometrical dimensions are non–dimensionalized by hc, the initial depth of the mass. β
is the inclination angle of the thalweg line on the horizontal.
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3.3 The definition of the secondary principal stress

Some experiments have been performed at the Hydraulic Laboratory of the University of

Trento, in a double slope unconfined chute. The comparison with the simulations of the

model shows that Hutter’s approach for the definition of the secondary principal stress is

not always effective.

3.3.1 Double slope unconfined chute

The model has been tested against experimental data collected at the Hydraulic Labora-

tory of the University of Trento.

The experimental apparatus consisted of a sliding surface, made up of two connected

planes in forex with slopes of 27o and 0o (Figure 3.8).

Figure 3.8: Experimental apparatus at the Hydraulic Laboratory of the Department of Civil and
Environmental Engineering of the University of Trento.

The granular material was synthetic zeolite, with almost uniform grain size distribution.

Diameters ranged from 0.1mm to 2mm, with a mean value of 1mm. The values of the

internal friction angle φ and of the bed friction angle δ, measured by means of a shear box

by D’Accordi (4), were 28o ± 0.75o and 22o ± 0.75o, respectively. The values used in the

simulations were φ = 28o and δ = 22o.
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3. The two–dimensional model

In experiment Exp. 2.0, the mass of zeolite was released from a truncated conical shape

holder, that was risen up normally to the bottom by a pneumatic piston. The conical

holder was 20 cm high, with a basal radius of 21.8 cm and the lateral surface inclined at

50o on the basal plane. The initial position of the centre of the base was x = −111.4 cm

and y = −3 cm.

The final deposit was automatically scanned by means of a laser distancemeter, mounted

on a two–axial moving system (see Figure 3.9). Sensor moving and data acquisition are

controlled by means of a LABVIEW program.

Figure 3.9: The two–axial pneumatic moving system, carrying a laser distance sensor, used to
automatically map the final deposit of experiments performed on the double–slope unconfined
chute at the Hydraulic Laboratory of the University of Trento.

In Figure 3.10 it is shown the comparison between the experimental data and the results

of the numerical simulations obtained using different approaches in the definition of the

secondary principal stress. Assuming p(HH) equal to the maximum or minimum principal

stress according to the sign of ∂UH/∂H , as in equation (3.5), the geometry of the mass

at rest in the numerical simulation results deeper and laterally less spread (simulation

DT.2d.1). Imposing p(HH) always equal to the maximum principal stress p1, independently

of the sign of the velocity gradient, the final deposit is better reproduced (simulation

DT.2d.2).

A further campaign of experiments would be necessary in order to better understand

this aspect of the rheology.
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Figure 3.10: Comparison between experimental data, collected at the Hydraulic Laboratory of the
University of Trento, and numerical simulations (plan, longitudinal section and amplified (factor 5)
longitudinal section at y/R = −0.023). Simulation DT.2d.1 is obtained applying Hutter’s approach
to the calculation of pHH (equation (3.5)). In simulation DT.2d.2 it is assumed pHH = p1. All
geometrical dimensions are non-dimensionalized byR, the lower base radius of the truncated conical
holder (Figure 3.8), equal to 21.8 cm.
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3. The two–dimensional model

3.4 The distortion of the mesh

One of the most critical deficiencies of the model, that precludes the application to complex

topographies, is represented by the severe distortion of the mesh when strong transversal

gradients of the velocity take place. For example, the model is unable to reproduce mass

separations due to the interposing of obstacles along the path of the avalanche, as can be

seen in Figure 3.11.

Figure 3.11: The distortion of the mesh when the mass collides with a dihedral obstacle. From
Musner (22).

One possible solution could be to redefine the computational grid, before the distortion

of the mesh causes the crash of the model. Remeshing algorithms are computationally

expensive and yield a loss in accuracy, because of the errors introduced by remapping

the field variables over the entire fluid domain. An alternative way to solve the problem

could be the application of meshless methods, characterized by the absence of topological

constraints between the nodes which represent the fluid domain. This property makes

meshless methods suitable for the simulation of motion fields characterized by mass sepa-

rations, strong deformations and discontinuities.

3.5 Final considerations

Our two–dimensional model reproduces sufficiently well experimental data, especially in

presence of a weak lateral confinement and during the final phases of motion. Only two

physical parameters, φ and δ, which are experimentally defined, have to be set.
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3. The two–dimensional model

In order to better predict the motion of the granular material during its entire evolution,

it could be necessary to keep some terms of the balance equations, neglected in the hypo-

thesis of “shallow water”. The application of a different plane reference surface, which, on

the average, fits better the topography, allows to have z closer to ζ and reduces the errors

due to the assumption of “plug flow” and linear pressure distribution along z, instead of

along ζ.

However it is noticeable that, in natural events, the “shallow water” hypothesis is more

likely to be violated in the run–out zone rather than in the initiation zone, because of the

larger flow depth. For this same reason the deviation of z from ζ causes worse fittings where

the mass stops. Furthermore, in application to real cases, attention is normally focused

to the final stages of motion, to evaluate the impact forces on structures and to map the

areas reached by the avalanche. Therefore it is reasonable to choose the orientation of the

absolute coordinate system so that it better fits the run–out zone.

The model has to be further improved in order to apply it to real cases. The substantial

exchanges of mass between the avalanche and the bottom during natural events can affect

the dynamics of the motion by varying the momentum of the mass. Furthermore, the

rear of the avalanche experiences, at its passage, a modified geometry of the bed and a

different friction angle at the bottom. All these effects are not reproduced by the model.

The error introduced neglecting these phenomena could be estimated through laboratory

experiments on erodible bed.

In order to prevent the problems due to the distortion of the mesh, we focused our

attention to meshless methods. The application of one of these methods, the Moving

Least Square Particle Hydrodynamics, to the one–dimensional model, will be described in

the next chapter.
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4 The application of meshless numerical

methods

4.1 What are meshless methods?

Meshless methods were first introduced by Lucy (18) and Gingold and Monaghan (14)

in astrophysical and cosmological problems. Then they were modified, developed and

applied to a wide range of problems, like high velocity impacts, compressible and incom-

pressible fluid-dynamics, elastic–plastic flows, crack growth problems and to many other

cases characterized by strong deformations, large discontinuities and mass separations.

The use of a mesh in the discretization of the spatial domain is the principal reason

of the troubles shown by Finite Difference Methods (FDM) and Finite Element Methods

(FEM) for such kind of problems. The generation of the mesh is not straightforward: the

creation of the initial element connectivity is not entirely automated and if computational

time is low in FEM, human intervention is necessary and time expensive. Furthermore,

the distortion of the mesh requires a periodical re-meshing, through complex adaptive

procedures, which have to “map” the field variables, with an additional computational

cost and a decay of accuracy of the result.

Meshless methods represent the problem domain by a set of nodes scattered in the

space. Nodes are not connected and no information on the geometrical relationships

between the nodes is required. Furthermore, nodal density can be varied in the spatial

domain and during the analysis, in order to increase the accuracy where large deformations

and discontinuities take place. The field variables of the problem are interpolated or

approximated through shape functions, which are relevant to the nodes and not to the

elements as in FEM. For example the value of the generic variable q in the point x is

estimated by:

qs (x) =
n∑

i=1

qi φi (x, s) , (4.1)

where qi is the value of the variable at node i, φi = φi (x, s) is the shape function of node
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4. The application of meshless numerical methods

i evaluated in x and depending on the parameter s, n is the number of nodes included in

a “small local domain” of x. Only the nodes contained in this “small local domain” of x,

called support domain, contribute to the estimate of the field variable in x. The derivatives

of the field variable can be easily obtained from equation (4.1):

∇qs (x) =
n∑

i=1

qi∇φi (x, s) .

The support domain can have different shapes and dimensions, according to the density

and arrangement of nodes. In particular the size of the support domain ds is calculated

as:

ds = αs dc , (4.2)

where αs is the dimensionless size of the support domain and dc represents a characteristic

length associated to the nodal spacing in the neighborhood of x. dc can be determined

through the next simple steps. For one–dimensional cases, given the initial estimation of

the support domain dimension Ds, and calculated nDs , the number of nodes covered by

the domain of dimension Ds, dc is given by:

dc =
Ds

(nDs − 1)
(4.3)

Finally, the dimension of the support domain ds is calculated through equation (4.2), for

a fixed dimensionless size of the support domain αs. For two-dimensional and three–

dimensional cases the average nodal spacing is given by:

dc =

√
As

(nAs − 1)
and dc = 3

√
Vs

(nVs − 1)
,

where As and Vs are estimations of first try of the area and the volume of the support

domain.

Normally the contribution of each node to the construction of the approximation of the

field variable in x, will be weighted through a weight function.

In case of drastically heterogeneous distribution of nodes, using the support domain to

identify the nodes involved in the construction of the shape functions can result in very

poor approximations. In order to prevent this kind of problems, it was developed the

concept of influence domain, defined as “the domain that a node exerts an influence upon”

(17). The influence domain is associated to the node i and not to the point of interest
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4. The application of meshless numerical methods

x. According to the approach of the influence domain, all nodes which include in their

influence domain the point of interest x are used in the construction of the shape functions.

The size of the influence domain di can be determined according to the nodal distribution,

through a procedure similar to that seen for the support domain (see equation (4.2)).

The concepts of the support domain and of the influence domain are represented in

Figure 4.1 and in Figure 4.2. The comparison of the two figures shows how differently

they work in presence of unbalanced distributions of nodes. For example node 2, that

belongs to an area with high nodal density, is included in the support domain of point

x, located in a low density area, whereas point x is not comprehended in the influence

domain of node 2.

Meshless methods apply to partial differential equations, written both in strong and

weak form.
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4. The application of meshless numerical methods

Figure 4.1: The definition of the support domain centered in the point of interest x. Both the
nodes 1 and 2 are included in the support domain of the point of interest.

Figure 4.2: The definition of the influence domain for nodes 1 and 2. The point of interest is
contained in the influence domain of node 1, but is excluded from the influence domain of node 2.
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4. The application of meshless numerical methods

4.1.1 The properties of the shape functions

Setting the initial nodal distribution in meshless methods is more flexible than in FEM.

Avoiding nodal alignments insures against the arising of singular matrices.

A compulsory condition that shape functions must respect is the partition of unity :

n∑

i=1

φi (x, s) = 1 ,

which allows shape functions to reproduce any rigid motion of the domain. Another

important property descends from this:

n∑

i=1

∇φi (x, s) = ∇
n∑

i=1

φi (x, s) = 0 . (4.4)

The Kronecker delta function property provides that:

φi (x = xj , s) =

{
1 i = j

0 i 6= j
for i, j = 1, 2, ... , n .

It is not a necessary condition, but it simplifies the imposition of essential boundary

conditions. When shape functions satisfy the Kronecker delta condition the evaluation of

the field variables given by equation (4.1) is an interpolation, that is qs (x) passes through

the nodal values. Differently, equation (4.1) is an approximation of the field variable q (x).

The consistency requirement of the shape functions ensures the convergence of the

applied meshless method, as nodal spacing goes to 0. The approximation is said to have

kth–order consistency if it can exactly reproduce all the polynomial terms up to the kth–

order. The order of consistency required for the convergence depends on the order of the

partial differential equations and on the form they are expressed in (weak or strong form).

The approximant function has compatibility of order k if its derivatives are continuous up

to kth–order. The compatibility affects the convergence and the accuracy of the solution.

The shape functions normally have compact support, that is the domain for field varia-

bles interpolation or approximation is small compared to the entire physical domain. Re-

sulting system matrices have narrow bandwidth, with a reduction of the computational

cost.

4.1.2 Smoothed Particle Hydrodynamics (SPH) shape functions

The integral representation of a generic function q (x) is given by:

q (x) =

∫

Ω
q (ξ) δ (x− ξ) dξ ,
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4. The application of meshless numerical methods

where δ (x) is the Dirac delta function:

δ (x) =

{
1 x = 0
0 x 6= 0

.

The Dirac delta function δ (x) can be approximated through an appropriate function

W (x, s), called kernel or weight or smoothing function. The integral representation of

q (x) is approximated by a finite integral form:

qs (x) =

∫

Ω
q (ξ) W (x− ξ, s) dξ . (4.5)

s is called smoothing length and controls the size of the compact support domain. The

kernel function W (x− ξ, s) must satisfy two properties:

∫

Ω
W (x− ξ, s) dξ = 1 (4.6)

and

lim
s→0

W (x− ξ, s) = δ (x− ξ) .

From equation (4.6) it follows that:

∫

Ω
∇W (x− ξ, s) dξ = 0 (4.7)

The integral of equation (4.5) is numerically discretized through the summation:

qs (x) =
n∑

i=1

qiW (x− xi, s) Vi ,

where Vi represents the volume associated to the generic node i and n is the number of

nodes contained in the support domain of x or which contain x in their influence domain.

It follows the definition of the SPH shape function:

φi (x, s) = W (x− xi, s) Vi .

The derivatives of the SPH approximation and, consequently, of the shape functions are:

∇qs (x) =

n∑

i=1

qi∇W (x− xi, s) Vi ,

∇φi (x, s) = ∇W (x− xi, s) Vi .

(4.8)
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Equation (4.7) ensures that the derivative of the integral representation of 1 returns 0, but

this is not true for its discretized version (4.8). It is for this reason that, in the generic

point x, the derivative of the function q is calculated as:

∇qs (x) = ∇
(

n∑

i=1

qiW (x− xi, s) Vi

)
− q (x) ∇

(
n∑

i=1

W (x− xi, s) Vi

)
=

=
n∑

i=1

(qi − q (x)) ∇W (x− xi, s) Vi ,

Furthermore, it is easy to demonstrate that the integral SPH representation (4.5) has only

0th–order consistency. In order to have consistency of order 1 the first moment of the

kernel function has to vanish, that is the kernel function must be symmetric about the

origin. This condition is satisfied by interior points, but not by points near the boundary.

To improve the order of consistency of the SPH–approximation the kernel function has

to be renormalized ((24) and (15)). Working with the discretized kernel approximation,

we can correct the derivative representation by means of a second rank tensor D (x, s),

such that:

∇qs (x) = D (x, s)∇
(

n∑

i=1

qiW (x− xi, s) Vi

)
+

−q (x) D (x, s) ∇
(

n∑

i=1

W (x− xi, s) Vi

)
=

=
n∑

i=1

(qi − q (x)) D (x, s)∇W (x− xi, s) Vi .

D is called re-normalization matrix and it can be demonstrated that, asking for ∇qs to

reproduce exactly any polynomial of order up to 1, D (x, s) = E (x, s)−1, where:

Ekl (x, s) =
n∑

i=1

(
xi

(k) − x(k)
) ∂W (x− xi, s)

∂x(l)
.

If the smoothing length s goes to 0, the consistency of the discretized SPH representation

is ensured (see (33)).
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4.1.3 Moving Least Square Particle Hydrodynamics (MLSPH) shape

functions

The Moving Least Square Approximants (MLSA), introduced by Lancaster and Salkauskas

(16), solve the problem of consistency in a different way. The approximation of the field

variable q is obtained through a linear combination of a given set p of m functions pj (x),

with j = 1, 2, ... , m:

qs (x) =
m∑

j=1

pj (x) aj (x, s) = p (x)T · a (x, s) . (4.9)

If p is the base of polynomials of order up to k, the consistency is ensured up to order k.

The coefficients aj (x, s) are evaluated by minimizing the function:

J (x, s) =

n∑

i=1

(
p (xi)

T · a (x, s)− qi
)2

W (x− xi, s) (4.10)

n is the number of nodes contained in the support domain of x (or containing x in their

influence domain ). J in equation (4.10) represents the weighted summation of the residuals

of the approximation of the field variable q (x), through equation (4.9), at the known nodes

xi, with a frozen on x. The role of the weight function is to give different importance to

nodes at unequal distances from x. Furthermore, thanks to the weight function, x enters

into the nodes’ supports and leaves from them gradually, ensuring the compatibility of the

approximation.

The vector of coefficients a (x, s), calculated in order to minimize the sum J of weighted

residuals, is given by:

a (x, s) = A−1 (x, s) B (x, s) q , (4.11)

where:

qT = [q1, q2, ... , qn] ,

A (x, s) =
n∑

i=1

W (x− xi, s) p (xi) pT (xi) ,

B (x, s) = [B1, B2, ... ,Bn] , with

Bi (x, s) = W (x− xi, s) p (xi)

(4.12)
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Substituting equation (4.11) into equation (4.9), one obtains:

qs (x) =
n∑

i=1

qi φi (x, s) , where

φi (x, s) = p (x)T A (x, s)−1 Bi (x, s) .

It can be demonstrated that the gradient of the MLS approximant is:

∇φi (x, s) = +
[
∇p (x)T A−1 p (xi) + p (x)T A−1 A A−1 p (xi)

]
W (x− xi, s) +

+p (x)T A−1 p (xi) ∇W (x− xi, s) ,

where A is A (x, s).

A necessary condition for A being invertible is that the number n of neighboring nodes

is greater than the number m of functions of the base. But this is not sufficient. If nodes

are aligned or are very close one to the other, A can become singular. In order to avoid

singularities, the dimension s of the support of nodes can be determined as a function

of the local nodal density. Another solution could be to modify the maximum order of

the polynomial of the base, according to the local density of nodes, but this means losing

compatibility at the intersections between the influence domains of the nodes and reducing

the consistency order.

4.2 The application of MLS approximants to the prediction

of snow distribution

In the degree thesis by Sanfilippo (26), in order to test the efficiency of MLS approximants,

they have been applied to the prediction of snow distribution in the Province of Trentino

(Italy). Given the values of snow depth at several meteorologic stations located in Trentino,

MLS approximants have been used to evaluate the snow depth in other points of interest.

In particular, using the Digital Elevation Model of Trentino with resolution 200× 200m,

maps of the distribution of snow have been realized and the volume of snow cover in all

Trentino has been evaluated. What follows refers to the elaborations performed with the

data collected on the 10th of January of 2001. The weather stations are shown in Figure 4.4

and their names, elevations above sea level and measured snow depths on January 10th

2001, are reported in Table 4.1. Different types of MLS approximants have been applied

to estimate the snow distribution. Two indicators of the goodness of the approximation

are represented by the mean and the standard deviation of the residuals of the estimations
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from the known values at the snow stations. The computations are performed excluding

the target point from the set of known nodes. In Table 4.2 the different types of MLS

approximants are compared.

Because of the strong variability of the distribution of weather stations, the size s of

the node supports should be chosen very large in order to gain matrix A invertibility

everywhere in the spatial domain. An alternative solution is to apply a MLS algorithm

with a variable size s of the node support. In particular the value of s at each node is set

in order to have, at each point of interest x, a sufficient number of neighboring nodes for

matrix A (4.12) invertibility.

The used weight function was a cubic spline:

W (x− xi, s) =





2

3
− 4 r2

i + 4 r3
i ri ≤

1

2
4

3
− 4 ri + 4 r2

i −
4

3
r3
i

1

2
< ri ≤ 1

0 1 < ri

,

with:

ri =
|x− xi|

s
.

The calculations were first made with a linear base:

pT (x) = [ 1, x, y, z] .

Figure 4.5 shows the approximated snow distribution obtained by choosing the size of the

influence domain of each node in order to have at least 4 contiguous nodes for each point

of interest. In Table 4.2 it can be noticed that incrementing the number of neighboring

nodes, the approximation gets poorer. The reason is that the approximation loses its local

character, because the influence of far nodes increases.

Figure 4.6 shows the results obtained with the quadratic base:

pT (x) =
[
1, x, y, z, x2, y2, z2, x y, x z, y z

]
,

where s at each node is selected to have at least 11 neighboring nodes for each calculation

point. The mean deviation is smaller than in linear cases (0.17m), but an anomalous

growth of snow depth arises along the valley floor. This can be justified by the absence

of snow depth measures at low altitudes. As shown in Figure 4.3, the quadratic term z2
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is the responsible for the non–monotone trend of the approximation. Adding 5 fictitious

stations, with snow depth equal to 0 along the valley floors, the approximation improves.

Using fictitious stations the mean deviation goes to 0.15m, as reported in Table 4.2. It

is the best result, but anomalous trends are still recognizable at the eastern border of

Trentino. The deficiency of this approach is that the choice of the position of the fictitious

stations can be hardly automated.

Spurious trends can be removed also using a base mildly non–linear along z, without

the term in z2, such as:

pT (x) =
[
1, x, y, z, x2, y2, x y, x z, y z

]
.

The result is shown in Figure 4.8. The mean deviation is 0.19m, greater than the value

obtained with the fictitious stations, but the algorithm does not requires external inter-

ventions.
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Figure 4.3: The incorrect parabolic extrapolation at low values of z (continuous line), when known
nodes (empty circles) are absent in that region. Adding the fictitious node represented by the filled
circle, the approximation retains a monotone trend in the whole region of interest (dashed line).

Another way to ensure matrix A invertibility is to keep s constant, reducing the order of

the base when the number of neighboring nodes is less than the number of base functions.
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The approximants lose the consistency property, as can be observed in Figure 4.9. The

discontinuities are localized where strong heterogeneities in snow stations distribution are

concentrated. Incrementing s the discontinuities disappear, the mean deviation reduces,

as shown in Table 4.2, but the local character of the approximation is lost and the approx-

imant converges to the quadratic one.

The comparison of computed volumes in Table 4.2 shows that the most reliable estimates

may have a mistake of over 100%. The volumes evaluated by the uncorrected quadratic

MLS approximant and by the variable base MLS approximant, with s = 17000m, are

unlikely.

The MLS approximants can be applied to the estimation of any spatial function, known

in a limited set of arbitrarily distributed nodes. For example, in the field of avalanche

studies, the MLS approximant can be used in the determination of the spatial distribution

of snow in the avalanche catchment, given the values of snow depth measured by means

of half–meter graduated poles.
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Id Name Elevation [m s.l.] snow depth [m]

1PEI Tarlenta 2010 1.40

2RAB Rabbi 1280 0.09

3PIN Pinzolo 1530 0.20

4SMC S.Martino di C. 1460 0.21

5PSV S.Valentino Pass 1330 0.00

6BON Bondone 1445 0.20

7PVA Valles Pass 2040 1.30

8PAN Paneveggio 1535 0.14

9PTA Panarotta 1775 0.56

10PM Pampeago 1775 0.56

11AN Andalo 1008 0.15

12FO Sommo Pass 1360 0.10

13PR Predazzo 1655 0.25

14PO Pozza di Fassa 1380 0.11

15TR Tremalzo 1520 0.24

16PT Brocon Pass 1560 0.28

17CA Caoria 925 0.13

18SB Canal S.Bovo 1240 0.10

19PF Vallarsa 1175 0.10

20BA Malga Baessa 1260 0.20

21MB Malga Bissina 1750 1.25

22CI Ciampac 2160 1.22

23MC Campiglio 1650 1.85

continue
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Id Name Altitude [m a.m.s.l.] snow depth [m]

24NO Noana Valley 1025 0.10

25TO Tonale Pass 1880 1.28

26SP S.Pellegrino Pass 1980 0.91

27CM Ciampedie 1975 0.88

28RM Rumo 1090 0.06

30PN Presena 2730 3.10

31RO Rolle Pass 2000 1.23

Table 4.1: The list of snow and meteorologic stations in Trentino, used for the elaborations. For
each station the identifier used in Figure 4.4, the name, the elevation above mean sea level, the
measured snow depth on the 10th of January of 2001 are reported.

MLS approximant Standard deviation Mean deviation Volume

[m] [m]
[
109m3

]

Linear, 4 neighbors 0.28 0.18 2.661

Linear, 5 neighbors 0.28 0.20 2.567

Linear, 11 neighbors 0.30 0.22 2.341

Quadratic, 11 neighbors 0.28 0.17 4.302

Quadratic with fictitious stations,

11 neighbors 0.28 0.15 3.989

Quadratic along xy, mildly non–linear

along z, 11 neighbors 0.28 0.19 2.935

Variable base order, s = 17000m 0.39 0.21 6.412

Variable base order, s = 45000m 0.32 0.18 3.916

Table 4.2: The standard and the mean deviation of the residuals and the computed volume for
different types of MLS approximants.
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Figure 4.4: Digital Elevation Model of the Province of Trentino (Italy), with the snow and me-
teorologic stations used for the estimation of the snow distribution. Identifiers of stations are
indicated in Table 4.1. The stations marked with the symbol indicated in the legend are excluded
from computations, because they have no snow depth measure on January 10th 2004.

Figure 4.5: The snow distribution evaluated by MLS approximants, using a linear polynomial base
and varying s up to have at least 4 neighboring nodes for each calculation point.
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Figure 4.6: The snow distribution evaluated by MLS approximants, using a quadratic polynomial
base and varying s up to have at least 11 neighboring nodes for each calculation point.

Figure 4.7: The snow distribution evaluated by MLS approximants, using a quadratic polynomial
base and varying s up to have at least 11 neighboring nodes for each calculation point. 5 fictitious
stations are indicated on the map through red crosses. They have been introduced in order to
correct the increase of snow depth at low altitudes due to the quadratic trend in absence of known
values of snow depth along the valley floors. The snow depth assigned to these fictitious nodes is
0.
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Figure 4.8: The snow distribution evaluated by MLS approximants, using a base mildly non-linear,
varying s to have at least 11 neighboring nodes for each calculation point.

Figure 4.9: The snow distribution evaluated by MLS approximants, , with s constant (= 17000m),
using a variable base order. The position of the snow stations is indicated through red crosses.
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4.3 The MLSPH equations

The typical hydrodynamic equations of motion can be written in vectorial form as:

ρ
dy

dt
= f +∇ · F (y) , (4.13)

where y is the vector of conserved quantities, f is the source/sink term and F is the vector

of fluxes. We can define a set of base functions {φi}ni=1 for a n–dimensional subspace of a

function space of which the components of y are members. As in the Galerkin method, the

equations of motion can be re–written in weak form by multiplying them by an arbitrary

base function φi and integrating over the spatial domain Ω:

∫

Ω
φi ρ

dy

dt
dx =

∫

Ω
φi (f +∇ · F) dx . (4.14)

In the MLPSH scheme proposed by Dilts ((7), (8)) φi are the MLS shape functions asso-

ciated to the nodes, located in xi (with i = 1, ... , n), through which the continuum is

represented, that is:

ys (x) ≈
n∑

i=1

φi (x, s) yi , where

yi = y (xi) .

(4.15)

The flux term in the second member of equation (4.14) is usually integrated by parts.

Using the Reynolds transport theorem:

∫

Ω
φi ρ

dy

dt
dx =

∫

Ω
φi f dx +

∫

Ω
∇φi · F dx +

∫

∂Ω
φi F n dA , (4.16)

where ∂Ω is the boundary of Ω, dA is an infinitesimal element of ∂Ω and n is the outwards

normal to dA.

The Galerkin method provides that y will be expanded according to equation (4.15) and

substituted into equation (4.16). The flux term F is usually non linear and the resulting

integral would become difficult to evaluate. Instead of y, F could be represented by means

of the base functions:

Fs (x) =
n∑

i=1

φi (x, s) Fi ,

with Fi = F (yi).
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The next step is to define a quadrature rule to evaluate the integrals. Given a generic

function g = g (x), defined on Ω, the mean value theorem states that:

∃ ξ ∈ Ω such that

∫

Ω
φi g dx =

(∫

Ω
φi dx

)
g (ξ) .

A good approximation of the integral could be:

∫

Ω
φi gdx ∼= Vi gi ,

being:

Vi =

∫

Ω
φi dx ,

gi = g (xi) ,

(4.17)

This is called the one point quadrature rule. Vi can be interpreted as the numerical

volume associated to particle i. Applying the one point quadrature to the left member of

equation (4.14) and to the sink/source term and expanding the flux term, one obtains the

so–called collocation method:

ρi Vi
dyi
dt

= fi Vi +
n∑

j=1

Fj Bij , (4.18)

where:

Bij =

∫

Ω
φi∇φj dx .

Equation (4.18) does not ensure local conservation, because it does not satisfy the flux

balance properties, that is fluxes between particles are not equal and opposite. Infact

the term of fluxes is not antisymmetric with respect to the particle index. Furthermore,

it can be demonstrated (see (8)) that, applying the approximate quadrature, it does not

guarantee the global conservation.

Applying the one point quadrature to equation (4.16), the result is:

ρi Vi
dyi
dt

= fi Vi +

n∑

j=1

Fj (Cij −Bji) , (4.19)

where:

Cij =

∫

∂Ω
φi φj n dA .
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This can be considered a complete Galerkin method. It is globally conservative, but not

locally conservative, for the same reason seen for equation (4.18).

Applying the integration by parts, it is easy to demonstrate that:

Bij =

∫

Ω
φi∇φj dx =

∫

∂Ω
φi φj n dA−

∫

Ω
∇φi φj dx = Cij −Bji . (4.20)

Cij is different from 0 only when both nodes i and j intersect the boundary, that is,

defining the set of boundary nodes:

B = {i : Supp (φi) ∩ ∂Ω 6= 0} ,

with Supp (φi) the support of the base function φi, it results:

Bij +Bji =

{
Cij if i, j ∈ B

0 otherwise
.

From equation (4.4) and equation (4.20), it follows that:

0 =
n∑

j=1

Bij =
n∑

j=1

∫

Ω
φi∇φj dx =

∫

Ω
φi

n∑

j=1

∇φj ⇒

⇒ 0 =
n∑

j=1

Cij −Bij .

Dilts (8) suggests to add (4.18) and Fi times the summation
∑n

j=1 Bij , withBij rewritten

according to the equivalence (4.20):

ρi Vi
dyi
dt

= fi Vi +
n∑

j=1

1

2
(Fj + Fi) (Cij +Bij −Bji) , (4.21)

The resulting method is globally conservative and satisfies the flux balance principle, being

the integrated flux antisymmetric with respect to particle index. The next step is to define

a volume quadrature rule Q (.) and a surface quadrature rule ∂Q (.) for the terms Bij and

Cij . A one point quadrature scheme can be used to estimate Bij :

Bij ≈ Vi∇φj (xi) .

The surface quadrature rule ∂Q (.) must satisfy the equivalence (4.20), such that:

Q (Bij) = ∂Q (Cij)−Q (Bji) , when i, j εB. (4.22)
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Dilts (8) argues that, even using the one–point quadrature rule and a compatible surface

rule according to (4.22), the schemes (4.19) and (4.21) are not necessarily consistent.

Infact, if the flux term F is a polynomial of order not higher than the base functions,

the approximation of its divergence in the second member of (4.19) and (4.21) can be

not a function of the gradient of a polynomial. Finally it is not ensured that the surface

quadrature rule ∂Q (.) satisfies the condition:

n∑

i=1

ni =

∫

∂Ω
n dA =

∫

Ω
∇ (1) dx = 0 .

All these deficiencies can compromise the accuracy of the numerical scheme.
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4.4 A MLSPH one–dimensional model with constant width

In collaboration with Musner (22), the MLSPH algorithm has been applied to a one–

dimensional model with constant with, developed at the Department of Civil and Envi-

ronmental Engineering of the University of Trento, and called mlsph1d.

4.4.1 The original equation of motion

The mass and momentum conservation laws for an incompressible continuum, written in

vectorial form, are:

∇ · u = 0 ,

du

dt
= g +

1

ρ
∇ ·P ,

where ρ is density, u is the velocity vector, g is the gravity acceleration and P is the

stress tensor. In the (ξ, ζ)–curvilinear coordinate system, lying on a vertical plane, with

ξ orientated along the slope and ζ normally to it, the free surface is represented by:

Φh (x, t) = ζ − h (ξ, t) = 0 .

The kinematic and dynamic boundary conditions are give by:

∂Φh

∂t
+ u · ∇Φh = 0 ,

Ph · nh = 0

being nh = ∇Φh/ |∇Φh| the unit vector normal to the free surface, and Ph the stress

tensor at ζ = h (ξ, t).

At the bottom (ζ = 0), the kinematic boundary condition is:

u · nb = 0 ,

with nb = (0, −1) the unit vector normal to the sliding surface. A Coulomb–type friction

law is used to represent the interaction of the granular flow with the bottom:

Pb nb − nb (nb ·Pb nb) = + (ub/ |ub|) tan δ (nb ·Pb nb) ,

where Pb is the stress tensor at the bottom and δ is the bottom friction angle. The

equations of the model are non-dimensionalized by means of the following scale quantities:

- Ls: the length scale along ξ;
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- Hs: the depth flow scale;

- Rs: the curvature radius scale;

- Uξs: the velocity scale along ξ;

- Uζs: the velocity scale along ζ;

- Ts: the time scale;

- Ps: the pressure scale;

- ρs: the density scale.

Having defined the ratios ε = Hs/Ls and λ = Ls/Rs, the following hypothesis are intro-

duced:

- ε << 1, i.e. the “shallow water” assumption;

- ε λ << 1⇒ Hs << Rs, that is small bottom curvature;

- U2
s /Ls ≈ g ≈ Ps/ρsHs, that is inertial, gravitational and pressure forces are compa-

rable;

- constancy of the velocity vector along the normal to the bottom direction;

Furthermore, from obvious kinematic considerations, Ts = Ls/Uξs and from the continuity

equation it follows that Uζs = εUξs.

According to these hypothesis the mass and momentum balances are simplified and then

integrated over ζ. The continuity equation becomes:

1

h

dh

dt
= −∂Uξ

∂ξ
, (4.23)

being:

Uξ =
1

h

∫ h

0
uξ dζ .

It can be expressed in a form which will turn out useful later:

h
d (1/h)

dt
= +

∂Uξ
∂ξ

. (4.24)

The momentum balance along ζ yields the hydrostatic pressure distribution:

pζζ (ζ) = −ρ
(
g cosβ + χUξ

2
)

(h− ζ) ,
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where β is the slope angle and χ is the curvature of the bottom. The other components

of the stress tensor are derived by applying the Hutter and Savage rheology (28) and are

the same found in §2.2.4, relevant to the plane ΞH. At the bottom it results that:

(pξξ)b = ka/p (pζζ)b ,

(pζξ)b = (pξζ)b = +sgn (uξ) tan δ (pζζ)b ,
(4.25)

where ka/p is defined according to the sign of ∂uξ/∂ξ, as in equation (2.10) (see Figure 2.6).

The linear dependence of the components of the stress tensor on pζζ , expressed by equa-

tion (4.25) at the bottom, is assumed to hold over the entire depth of the flowing mass.

Simplifying the momentum balance along ξ, according to the hypothesis previously intro-

duced, and integrating over ζ, one obtains:

h
dUξ
dt

= g h sinβ +
∂

∂ξ

(
Pξξ h

ρ

)
+

2Pζξ
ρ

, (4.26)

being:

Pξξ =
1

h

∫ h

0
pξξ dζ = ka/p ρ

h

2

(
g cosβ + χUξ

2
)

Pζξ = +ρ
h

2
sgn (Uξ) tan δ

(
g cosβ + χUξ

2
)
.

In order to highlight pressure terms and sink and source terms, equation (4.26) can be

re–written as:

h
dUξ
dt

= G −R−∇P , (4.27)

where G = g h sinβ represents the driving gravitational force, R = −2Pζξ/ρ is the resis-

tance term, and P = −Pξξ h/ρ is the stress flux term.

4.4.2 The one–dimensional MLSPH equation of motion

In the one–dimensional case the numerical particle volume defined by equation (4.17),

becomes a numerical particle length:

li =

∫

Lsupp

φi dξ , (4.28)

where:

Lsupp =
n⋃

i=1

si ,
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is the one–dimensional spatial domain, constituted by the union of the nodal support

domains si. The continuity equation (4.24) and the momentum balance along ξ (4.27)

correspond to equation (4.13) with ρ substituted by h and with:

u =

[
1/h

Uξ

]
, f =

[
0

G −R

]
, F =

[
Uξ
−P

]
.

Substituting into equation (4.21), one obtains:

hi li
d (1/hi)

dt
=

1

2

n∑

j=1

(Uξj + Uξi) (Cij +Bij −Bji) ,

hi li
dUξ
dt

= (Gi −Ri) li −
1

2

n∑

j=1

(Pj + Pi) (Cij +Bij −Bji) .
(4.29)

Equation (4.29) does not ensure the Galilean invariance: even if the velocity field is

constant, h disturbances could arise due to the numerical approximation. This deficiency

can be removed if the mean velocity (Uξj + Uξi) /2 is substituted by the difference Uξj−Uξi
in the equation of continuity. This is a common practice in SPH models. Another problem

is that li is difficult to calculate through equation (4.28). A possible solution is to treat

li as an unknown, by introducing a numerical particle area Ai, assumed constant, defined

as:

Ai = li hi .

The continuity equation becomes:

d (Ai/hi)

dt
=
dli
dt

=
1

2

n∑

j=1

(Uξj − Uξi) (Cij +Bij −Bji) . (4.30)

In order to attenuate numerical instabilities, the momentum equation is corrected with

an artificial viscosity Πij , in the form proposed by Monaghan (see (20)) for SPH methods:

Ai
dUξ
dt

= (Gi −Ri) li −
1

2

n∑

j=1

(Pj + Pi + Πij) (Cij +Bij −Bji) , (4.31)

with:

Πij =

{
h̄ij
(
−αv c̄ijµij + βvµ

2
ij

)
if ∇Uξ < 0, that is Uξ ij · ξij < 0

0 if ∇Uξ ≥ 0, that is Uξ ij · ξij ≥ 0
, (4.32)
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where:

µij =
s̄ij Uξ ij ξij
ξ2
ij + γv s̄2

ij

,

being for the generic quantity f :

f̄ij =
fi + fj

2
, fij = fi − fj .

In equation (4.32) ci represents the celerity of the hyperbolic differential system at

the generic node i. It can be calculated writing the continuity equation (4.23) and the

integrated momentum equation along ξ (4.26) in a moving coordinate system
(
ξ̂, t̂
)

, with:

ξ̂ = ξ −
∫ t

0
Uξ dt ,

t̂ = t .

If Uξ is assumed to be constant with respect to ξ and t, it can be demonstrated (see (22))

that the hyperbolic system can be expressed in matrix form as:

[
h
Uξ

]

,t̂

+




0 h

−Pξξ
ρh

0



[
h
Uξ

]

,ξ̂

=




0

g sinβ +
1

ρ

∂Pξξ
∂ξ

+
2Pξη
ρh


 ⇒

⇒ y,t̂ + C y,ξ̂ = d .

The notations ,t̂ and ,ξ̂ represent the derivation with respect to t̂ and ξ̂.

The characteristic celerities of the system are the eigenvalues of matrix C:

∣∣∣∣∣∣∣∣

−c h

−Pξξ
ρ

−c

∣∣∣∣∣∣∣∣
= c2 +

Pξξ
ρ

= 0 ,

and so:

c1,2 = ±
√
−Pξξ

ρ
= ±

√
ka/p

h

2
(g cosβ + χUξ2) .

In presence of convex curved slopes the centrifugal term becomes negative and, if the flow

velocity is high, the radicand can become negative. In such cases the physical model fails

to describe the phenomenon, because the flow loses adhesion to the bottom and a jump

takes place.
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Going back to the artificial viscosity (4.32), the term depending on αv is linear with

respect to the velocity difference and produces a pressure that prevents particles from

getting too close. The term depending on βv is a quadratic function of the velocity

difference and it becomes important when the velocity difference is large with respect to

the characteristic celerity, i.e. in presence of strong shocks. Finally, the term depending

on γv prevents singularities. As shown in Figure 4.10, the viscosity term is maximum for

ξij = γ
1/2
v ŝij , being si the dimension of the support of the generic node i. If particles get

too close the viscosity term vanishes, and so γv must be chosen small enough. The values

proposed by Monaghan (20) for these three parameters are αv = 1, βv = 2 and γv = 0.01.
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Figure 4.10: The dependence of the artificial viscosity Πij on ξij (from (22))

As observed by Monaghan (20), this artificial viscosity is Galilean invariant, that is

vanishes for rigid body rotations, and conserves total linear momenta.

4.4.3 Time integration

The MLSPH continuity equation (4.30) and momentum equation (4.31) are integrated

over time with a predictor–corrector algorithm. Being:

dy

dt
= f (y, t)
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the MLSPH discretized system, at a first try the unknown vector y is estimated at generic

time tn+1 as a function of its value at the previous instant:

yn+1
(0) = yn + f (yn, tn) ∆t .

Then y at intermediate time tn+1/2 is evaluated by interpolation:

y
n+1/2
(0) =

yn + yn+1
(0)

2
,

and is used to determine yn+1 at next try through:

yn+1
(1) = yn + f

(
y
n+1/2
(0) , tn+1/2

)
∆t .

An iterative procedure then starts up. At the generic step k:

yn+1
(k) = yn + f

(
y
n+1/2
(k−1) , t

n+1/2
)

∆t ,

y
n+1/2
(k) =

yn + yn+1
(k)

2
.

The iterations are interrupted when the difference between two subsequent tries is less

than a predefined tolerance.

The integrals Bij are evaluated by means of the one–point quadrature, renouncing the

consistency in the representation of the flux terms:

Bij = li∇φj (ξi) = li∇iφj .

Cij is calculated according to the compatibility condition (4.22).

As suggested by Monaghan (20) and Morris (21), the time integration step is limited in

order to prevent the rise of instabilities. Three different conditions have been imposed:

∆t < τu
si
Uξi

,

which prevents each particle i from covering a space greater than a τu fraction of its

support dimension si during the single time step ∆t. τu has been taken equal to 0.2.

∆t < τc
si
ci
,

which is a Friedrichs–Levy–Courant type condition. We used τc = 0.2.
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∆t < τa

√
si
ai
,

being ai the MLSPH acceleration:

ai =
1

Ai


(Gi −Ri) li −

1

2

n∑

j=1

(Pj + Pi + Πij) (Cij +Bij −Bji)


 .

The optimal value of τa was 0.1.

4.4.4 The initial condition

The initial dimension d0
i of the influence domain of each node i has be chosen in order to

ensure the invertibility of the MLS matrix (4.12). For each calculation point, the minimum

number of adjacent nodes for the MLS matrix invertibility is equal to the number of MLS

base functions, but if the nodes are aligned in the plane ξζ, it can be insufficient. For the

stability of the simulation, it would be better to have a greater number of neighboring

nodes, but incrementing the size of the nodal support the accuracy decreases and the

computational time grows. For the sake of simplicity, the support domain approach has

been preferred to the influence domain support for the initial definition of the nodal support

dimension (see §4.1). The initial dimension of support domain s0
i is defined through

equation (4.2):

si = αs dci ,

where dci represents the nodal spacing close to node i and is calculated through equa-

tion (4.3).

As in Dilts (7), the initial “length” associated to each node is calculated as:

l0i = s0
i

l0tot∑n
j=1 s

0
j

,

where l0tot is the initial total length of the granular mass. The constant area Ai associated

to each node i is defined at the initial instant as:

Ai = l0i h
0
i .
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4.4.5 The time evolution of support domains

A typical equation used in SPH methods to update the size of support domain is in the

one–dimensional case:

1

s

ds

dt
=
∂Uξ
∂ξ

.

The comparison with the continuity equation (4.23) brings to the relation:

1

s

ds

dt
=

1

h

dh

dt
.

Descending from this, the relation suggested by Liu (17) to update si is:

sn+1
i = sni

(
1− hn+1

i − hni
hni

)
.

4.4.6 Comparison with experiments

Convex and concave curved chute

MLSPH models turned out to be suitable for cases characterized by strong deformations

and by separations of mass, because of the absence of a mesh. The movements of each

node are not bound by topological relations with the neighboring nodes. For this reason

the mlsph1d model has been tested against the experimental results of Greve and Hutter

(10), relevant to a convex and concave curved chute, introduced in §2.4.3. The presence of

a bump in the center of the channel causes the separation of the flowing mass. One part

of the avalanche stops above the bump. The other part runs over the bump and stops

where the slope reduces definitively.

In Figure 4.11 the MLSPH one–dimensional model mlsph1d and the original one–

dimensional model with constant width 1d are compared. The used values of the physical

parameters are the ones which gave the best results with the 1d model: φ = 37o, δ = 26.5o,

k = 0.4. During the initial phases of motion, the mass in the mlsph1d simulation is more

elongated and has smaller depth than in the experimental data. The simulation of the

model 1d provides a better fitting. When the mass begins to experience the presence of the

bump (non–dimensional time t = 3.10) the results of the two simulations are comparable

and fit the experimental data quite well. During the final phases the behaviors of the

two models differentiate again. The 1d model describes better the upstream deposit. The

mlsph1d reproduces correctly the shape of the downstream deposit, but it overestimates

its volume.
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Simulation m αs αv βv γv

g29.mlsph1d.1 2 10.0 0.0 0.0 0.01

g29.mlsph1d.2 2 3.0 0.0 0.0 0.01

g29.mlsph1d.3 2 3.0 1.0 2.0 0.01

g29.mlsph1d.4 3 3.0 1.0 2.0 0.01

Table 4.3: The numerical parameters characterizing the simulations performed with the model
mlsph1d. All the other parameters are the same for all the simulations: the number of nodes
n = 40, the coefficients of time step corrections τu = 0.2, τf = 0.1, τc = 0.2. The physical
parameter are φ = 37o, δ = 26.5o and k = 0.4. It is to point out that k, the corrective factor
used to keep into account the lateral friction, is the one proposed by Savage and Hutter (28) (see
equation (2.18)).

Both the simulations show a narrow strip of mass between the two deposits. In the

simulation of the mlsph1d model it is more thick. The particles at the interior ends of the

two deposits have a low value of h and consequently they have a large support domain.

They are responsible for the presence of the strip. It is not gained a complete separation

between the two deposits. Using the influence domain approach instead of the support

domain approach, this problem is likely to reduce. Incrementing the nodal density near

to these areas during the simulation should give good results, too.

Figure 4.12 shows the effects of adding the artificial viscosity (4.32) to the pressure

term in the MLSPH momentum equation (4.31). In the simulation g29.mlsph1d.2 no

viscosity is inserted. In the simulation g29.mlsph1d.3 the values of the artificial viscosity

parameters are the ones suggested by Monaghan (20): αv = 1, βv = 2 and γv = 0.01.

αs was set to 2, the minimum value which prevented the rise of numerical instabilities.

The artificial viscosity gets effective when the mass is compressing and so no difference

is noticeable until the instant t = 3.10. Nevertheless, only during the final phases of the

motion the two simulations differ considerably. The downstream deposit of simulation

g29.mlsph1d.3 is more spread and thin than in simulation g29.mlsph1d.2. The accuracy

of the fitting decreases. The use of the artificial viscosity should be limited to cases where

strong instabilities arise.

Another solution in presence of instabilities could be to increment the initial number of

neighboring nodes for each particle. In Figure 4.13 the results of simulation g29.mlsph1d.1,

with αs = 10, and simulation g29.mlsph1d.2, with αs = 3 are compared. In the first case

the size of the support domain and consequently the number of neighboring nodes is
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strongly incremented. The MLS approximants make a mean over a greater number of

nodes and the result is a flattening of the final downstream deposit. However the loss of

accuracy is less pronounced than with the artificial viscosity.

Finally, in Figure 4.14 the effect of incrementing the number of base function is shown.

In the simulation g29.mlsph1d.4, the parameter αs was brought to 6, in order to use 3 base

functions instead of 2, without adding artificial viscosity. The increase of the computa-

tional time, from 358 s in simulation g29.mlsph1d.2 to 1022 s in simulation g29.mlsph1d.4

is not rewarded with an improvement in numerical accuracy. The differences are very

small and they can be distinguished only at the very final instants of motion.

94



4. The application of meshless numerical methods

0.0

0.2

0.4

0.6

0.8

1.0

h/
H

s[
−]

Exp.29
g29.1d.2
g29.mlsph1d.2

0.0
0.1
0.2
0.3
0.4

h/
H

s[
−] t=1.02

0.0
0.1
0.2
0.3
0.4

h/
H

s[
−] t=2.01

0.0
0.1
0.2
0.3
0.4

h/
H

s[
−] t=3.10

0.0
0.1
0.2
0.3
0.4

h/
H

s[
−] t=4.13

0.0
0.1
0.2
0.3
0.4

h/
H

s[
−] t=5.12

0.0
0.1
0.2
0.3
0.4

h/
H

s[
−] t=7.23

0 2 4 6 8 10 12

0.0
0.1
0.2
0.3
0.4

ξ/Ls[−]

h/
H

s[
−] t=9.28

Figure 4.11: Convex and concave curved chute. Exp.29. Comparison of experimental and
numerical profiles obtained with the one–dimensional MLSPH model and with the original fi-
nite difference one–dimensional model. The comparison is between the numerical simulations
g29.mlsph1d.2, characterized by the parameters reported in Table 4.3 and g29.1d.2, reported in
Table 2.5. h is non–dimensionalized through Hs = 0.1m, ξ through Ls = 0.3m, t through
Ts = Ls/Us = Ls/

√
g Hs = 0.30 s. Circles signal the positions of points of maximum and mini-

mum slope.
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Figure 4.12: Convex and concave curved chute. Exp.29. Comparison of experimental and nume-
rical profiles obtained with the one–dimensional MLSPH model. The comparison is between the
numerical simulation g29.mlsph1d.3 and g29.mlsph1d.2, characterized by the parameters indicated
in Table 4.3. Both the simulations have the same value of αs. The artificial viscosity is introduced
in simulation g29.mlsph1d.3. h is non–dimensionalized through Hs = 0.1m, ξ through Ls = 0.3m,
t through Ts = Ls/Us = Ls/

√
g Hs = 0.30 s. Circles signal the positions of points of maximum

and minimum slope.
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Figure 4.13: Convex and concave curved chute. Exp.29. Comparison of experimental and nu-
merical profiles obtained with the one–dimensional MLSPH model. The comparison is between
the numerical simulations g29.mlsph1d.1 and g29.mlsph1d.2, characterized by the parameters re-
ported in Table 4.3. Both the simulations are without viscosity. The simulation g29.mlsph1d.1
has αs = 10, g29.mlsph1d.2 has αs = 3. h is non–dimensionalized through Hs = 0.1m, ξ through
Ls = 0.3m, t through Ts = Ls/Us = Ls/

√
g Hs = 0.30 s. Circles signal the positions of points of

maximum and minimum slope.
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Figure 4.14: Convex and concave curved chute. Exp.29. Comparison of experimental and nu-
merical profiles obtained with the one–dimensional MLSPH model. The comparison is between
the numerical simulations g29.mlsph1d.4 and g29.mlsph1d.2, characterized by the parameters re-
ported in Table 4.3. In the simulation g29.mlsph1d.4 the number of base function is incremented
to 3, against the 2 base function of simulation g29.mlsph1d.2. The simulation g29.mlsph1d.4 has
αs = 6, while g29.mlsph1d.2 has αs = 3. h is non–dimensionalized through Hs = 0.1m, ξ through
Ls = 0.3m, t through Ts = Ls/Us = Ls/

√
g Hs = 0.30 s. Circles signal the positions of points of

maximum and minimum slope.
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4.4.7 Final remarks

The mlsph1d turned up to be less accurate than the original one–dimensional model with

constant width, especially if the artificial viscosity is added. A possible reason could be

the loss of consistency due to the use of the one–point quadrature rule. The model is no

more convergent. Furthermore, according to the approach of the support domain, with

an uniform initial distribution of nodes, the boundary nodes have a support which is two

times larger than the interior nodes. This fact is responsible for the absence of a real

mass separation between the two masses in the simulation of the experiment of Hutter.

A solution to this could be to increment the nodal density near to the boundary. The

application of the influence domain approach could improve the quality of the simulation

as well.

Another limit of MLSPH method is the considerable increment of computational time.

For example the simulation g29.mlsph1d.2 required a computational time of 358 s, with a

value of 97% of used CPU, while the simulation g29.1d.2 required only 3 s and a value of

81% of used CPU. The increase in computational cost is a deficiency of all meshless me-

thods. The application of more recent methods like the normalized SPH should improve

this aspect.

For all these reasons the application of meshless methods to the one–dimensional cases

is not justifiable, except in order to test it with the aim of extending the application

of meshless methods to the two–dimensional model. In this case the benefits should be

tangible. The absence of nodal links should allow the flowing mass to easily adapt to the

varying topography.
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5 Field activity

The avalanche site of Lavina Granda in the mountain range of Vigolana (Figure 5.1), close

to Trento, has been surveyed in order to examine the physical processes that generate

snow avalanches and to collect data suitable for the calibration of the numerical models.

5.1 The Vigolana mountain range

The Vigolana range lies to the south–east of Trento. It bounds to the north on the ValSorda

and the Vigolo Vattaro Plateau, to the east on the Centa Valley and the Carbonare Saddle,

to the south on the Sommo Pass, the Folgaria Plateau and the Cavallo Stream, to the

west on the Adige Valley. It is 65 km2 wide and its ridge has the shape of a L, with

a first segment oriented from north–west to south-east, and a second segment oriented

from north–east to south–west. The ridge goes from the Ceriola Peak (1935ma.s.l.)

(the north–west edge) towards the Vigolana Peak (2148ma.s.l.) and the Filadonna Peak

(2150ma.s.l.). Here the mountain chain bends to south–west towards the Cornetto Peak

(2060ma.s.l.).

All the Vigolana range is characterized by calcareous outcrops. The ridge bounds to

the east and to the north the wide Scanuppia Plateau, characterized by Karstification and

crossed by only two valleys, the Scaletta Valley in the south–west, and the Gola Valley in

the south. Steep calcareous cliffs cover the northern and eastern sides of Vigolana, and

are furrowed by deep dry valleys. In sequence, from the north–west edge to the north–east

edge, there are the Cestara Gorge, the Valley of Stanghet Stream, the Zirezara Valley, the

Scalone valley, the Calcarotta Valley, the Lavina Granda Valley, the Larga Valley and the

Bianca Valley. The eastern side is crossed by the valleys of the left tributaries of the Centa

Torrent.

As far as the vegetation is concerned, sub–Mediterranean species prevail up to an alti-

tude of 400ma.s.l.. Then, from 400ma.s.l. to 900ma.s.l., there are mixed woods of

chestnuts, horn-beams, hazels, lindens, ashes, elms, maples. Woods of beech cover the

slopes of the Vigolana from 900ma.s.l. to 1400ma.s.l.. Beech is mixed with Norway
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spruce, silver fir and larch, which are dominant at higher altitudes, up to the superior

limit of vegetation at 1600ma.s.l.. As the altitude gets higher, forest trees are replaced

by bushes of mountain pine, alpine grasslands and screes.

The climate is characterized by rainy autumns, with peaks of precipitations, which can

be snowy at high altitudes, in November. A minor period of intense precipitation can

occur during the spring (snowy in the first part of the season) or during the summer.

Winter is usually dry.

5.2 The avalanche site of Lavina Granda

Lavina Granda is a valley sited in the northern mountainside of Vigolana. It has two sub–

catchments, located between the Madonnina refuge and the Gabrielli Cave. The maximum

altitude is 2132ma.s.l.. The two catchments join at the altitude of 1560ma.s.l.. The

channel intersects two dirt roads, at the altitudes of 1280ma.s.l. and 1110ma.s.l.. A

transversal check dam, at the altitude of 780ma.s.l., interrupts the course of the stream.

The channel is averagely north–facing, as shown in the aspect map (Figure 5.4). The

slope map is shown in Figure 5.3. The altimetric profile of the channel and the trends of

the slope angle and of the width with respect to the cumulative horizontal distance are

represented in Figure 5.11. All these maps have been obtained through the elaboration

of the Digital Elevation Model and of the colour digital ortho–photo of 1999, provided by

the Autonomous Province of Trento. The bottom of the channel is covered by sand, gravel

and boulders with maximum size of 1m. In several points the channel has rocky outcrops,

associated with abrupt slope increase and often narrowing of the channel.
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Figure 5.1: The Vigolana range and the Lavina Granda Valley on the black and white ortho–photo
of 1994.
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Altitude:

2150ms.s.l.

1650ms.s.l.

1150ms.s.l.

650ms.s.l.

150ms.s.l.

Figure 5.2: The Digital Elevation Model with resolution of 10m of the Lavina Granda valley.
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Slope angle:

80o

60o

40o

20o

0o

Figure 5.3: The slope map. The slope angle is measured in sexagesimal degrees on the horizontal.
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Aspect angle:

360o East

270o South

180o West

90o North

0o East

Figure 5.4: The aspect map. The aspect angle is measured in counterclockwise sexagesimal degrees
from east.
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5.3 Available data

The available cartographic products relevant to this area are: a topographic map (the

Provincial Technical Map, scale 1:10000), the Digital Elevation Model with resolution of

10m (Figure 5.2), a black and white digital ortho–photo of the year 1994 (resolution 1m,

scale 1 : 10000), a colour digital ortho–photo of the year 1999 (resolution 0.1m, scale

1 : 10000).

The Snow, Avalanches and Meteorology Office of the Autonomous Province of Trento is

responsible for the avalanche surveys drawing up and for the updating of the Avalanches

Registers and of the Maps of Likely Avalanche Location.

A satellite image of the 30th of March 2004, having resolution 2.8m, was supplied by

the hydrology group of the Department of Civil and Environmental Engineering of Trento.

5.3.1 Avalanche registers and the Map of Likely Avalanche Location

The avalanche activity in Lavina Granda has been recorded since 1979. Since 1988 new

more detailed registers are available.

According to the Avalanche Register of the Snow and Avalanches Office of the Province

of Trento, the avalanches that take place in the Lavina Granda Valley (identified as 04309

and shown in the Map of Likely Avalanche Location, Figure 5.7), can occur more than one

time every year. Usually they are granular dense avalanches of moist snow (see Figure 5.5),

but more rarely dry powder avalanches can happen (see Figure 5.6). The avalanches of

Lavina Granda usually occur in the period that goes from January to March, due to the

fresh snow or rain overload or to the temperature rise, and they mostly start as cohesionless

avalanche. The maximum recorded volume is relevant to the event that occurred on the

27th of January of 1985. A volume of 100000m3 reached the altitude of 900ma.s.l.,

running into the forest and pulling down a mass of 40000 kg of beech trees.

The snowpack involved by the detachment in the starting zone is up to 5m deep, con-

sidering also the snow drift, and covers an area up to 20000m2 wide.

Quite frequently the avalanches reaches the dirt road at the altitude of 1280ma.s.l.

and more rarely the dirt road at the altitude of 1110ma.s.l.. The most disastrous event

within living memory occurred in 1929. The avalanche reached the area now occupied by

the football field at the altitude of 690ma.s.l..
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Figure 5.5: The deposit of a granular avalanche in Lavina
Granda site (January 16th 2004).

Figure 5.6: The effects of a powder avalanche in Lavina
Granda site (March 21st 2004).

Figure 5.7: Map of Likely
Avalanche Location. From Au-
tonomous Province of Trento
(http://www.gis.provincia.tn.
it/).
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5.3.2 The starting zone

The main features of the terrain: slope, aspect, vegetation

The starting zones in the two sub–catchments have been drawn by coupling the informa-

tions about slope (Figure 5.9), wood cover (Figure 5.10) and the observations made during

the surveys.

The slope is the main factor that induces the detachment of an avalanche. The discrim-

ination of different types of snow movement as a function of the slope angle (McClung and

Schaerer, (19)) is reported in Table 5.1.

Slope Angle [o] Avalanche type

10–25 Wet snow avalanches

25–35 Rare (large) slab avalanche; wet loose snow avalanches

35–45 Slab avalanches with generic dimension

45–55 Frequent small slab avalanches

30–60 Frequent dry loose snow avalanches

60–90 Rare avalanches; frequent sluffs

Table 5.1: The distinction between different types of avalanches occurring at different slope angles
of the mountainside.

As can be seen in Figure 5.9, the right sub–catchment is crowned by high rock walls,

starting from the altitude of 1900ma.s.l. and culminating at the maximum altitude of

2132ma.s.l.. The slope angle exceeds 60o and the fresh snow is discharged through fre-

quent sluffs occurring during the snowfalls. The fallen snow accumulates at the base of the

cliff, and, depending on the stability state of the snowpack below, it can either press and

consolidate the snow cover or trig loose snow movements or slab avalanches. At the right

side of the right starting zone lies a sub–catchment that usually does not contribute to the

avalanche of Lavina Granda, because the masses falling down along the steep mountain

side at the foot of the Madonnina Refuge (Figure 5.8), after a jump at the altitude of

1800ma.s.l., stop on a grassland characterized by a considerable slope reduction. Only in

extreme conditions these volumes can reach the main channel.

The left starting zone is much more complex morphologically. Two couloirs are located

in the right side. The snow, falling from the lateral rock walls and steep sides, accumulates
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Figure 5.8: The steep slope below the Madonnina Refuge (December 12th 2004).

along the channel, and can be destabilized afterwards due to a temperature rise or an

overload. The upper part of the left side is characterized by a bowl–shaped slope, suitable

for the snow drift accumulation, with inclinations ranging from 30o to 50o on the horizontal.

This area seems to be prone to the release of quite large slab avalanches, but the presence

of a wood of mountain pine suggests that such events have not taken place for a long time.

Another important factor for the release of snow avalanches is represented by the expo-

sures of the mountain sides. Going from the left to the right sides of the channels in the

starting zones, the exposure passes from north–east to north–west, as shown in Figure 5.4,

with an average aspect counterclockwise angle of 92o from east in the left sub–catchment

and of 83o in the right one. North facing mountainsides receive an amount of heat for

solar radiation that can be 10 times smaller than south facing sides (1). Furthermore they

release heat through long wave irradiation (19). After the snowfalls, all the isothermal

metamorphic processes, like rounding and sintering of snow, are very slow, preventing the
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Slope angle:

90o

60o

30o

0o

Figure 5.9: The slope map of the starting zone. The slope angle is measured in degrees on the
horizontal. The assumed two sub–catchments are delimited by the white line.

settlement of the snowpack. Besides, because of the large temperature gradients, faceting

processes take place, producing weak layers in the snow cover. For all these reasons the

stabilisation of the snowpack on north–facing mountainsides is strongly slowed down.

The two starting areas are very wide. The right orographic sub–catchment has a ma-

ximum estimated surface of 146000m2, while the left sub–catchment is 148600m2 wide.

Because of the complexity of the topography the contemporary involvement of the entire

sub–catchments is unlikely, but it cannot be, a priori, excluded.
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Figure 5.10: The ortho–photo of the starting zone, with the two assumed sub–catchments, delimited
by the yellow and the red lines.

The assessment of initial volumes

The closest snow–weather stations, where snow depth data can be collected, are the ones

at Sommo Pass, Mount Bondone and Mount Panarotta.

The snow–weather station of Sommo Pass is located at the east border of Vigolana

mountain range. It has Gauss–Boaga coordinates 1671125m east, 5087425m north and

an altitude of 1360ma.s.l.. It is north–west facing.

The station of Mount Bondone is on the Bondone Plateau (1659160m east, 5097650m

north), west of Vigolana, at the altitude of 1495ma.s.l., facing south.

The station of Panarotta is on the north–facing side of Mount Panarotta, at the altitude

of 1775ma.s.l.. The Gauss–Boaga coordinates are 1679499m east, 5102262m north.
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All the stations are manual. The other available data are the instantaneous temperature

of the air, the daily maximum and minimum temperature of the air, the daily temperature

of the snow at the depths of 0.1m and 0.3m, the snowpack depth, the depth and the

density of the fresh snow, the probe penetration, the observations of the cloudiness, of

the weather conditions, of the aeolian activity, of the presence of snow cornices and of the

occurrence of avalanches.

A statistical analysis of the maximum annual snow depth has been performed by Ben-

fatto (2), for her degree thesis, using the data relevant to the period from 1980 to 2002.

The maximum depths for the return periods of 100 and 300 years have been calculated,

using different statistical distributions (lognormal, Gumbel, exponential and gamma with

two parameters) and with different estimate methods (least squares, moments, maximum

likelihood). The Pearson test has been applied in order to evaluate the goodness of the

estimate.

Obviously, being the range of years very limited with respect to the chosen return period,

results must be used with caution.

The best results for the station of Sommo Pass are the ones obtained with the lognor-

mal distribution and the exponential distribution, with parameters estimated through the

method of moments. The values of snow depth with a return period of 100 years in the two

cases are 2.36m and 2.47m respectively. For the return period of 300 years, the estimated

snow cover depth are 2.86m and 2.97m for the lognormal distribution and the Gumbel

distribution.

The Mount Bondone station does not give acceptable results according to the Pearson

test.

The best distributions for the station of Panarotta are the Gumbel distribution and

the gamma distribution, with the parameters estimated through the method of moments.

For the return period of 100 years, the corresponding values of snow depth are 2.79m and

2.62m. 3.16m and 2.88m are the values given by the Gumbel and the gamma distribution

for a return period of 300 years.

It is possible to estimate the value of the snow depth h0 at the mean slope and mean

altitude of the two starting zones, by applying the corrective factors proposed by Salm et

al. in the “Swiss Guidelines” (25):

h0 =

(
h∗0 +

0.05 (z − 2000)

100

)
f (β0) + dw , (5.1)

being h∗0 the snow depth at the altitude of 2000ma.s.l., z the altitude in ma.s.l., dw the

snow drift (usually ranging from 30 cm to 50 cm) and f (β0) a corrective factor related to
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the mean slope of the catchment β0:

f (β0) =
0.291

sinβ0 − 0.202 cosβ0
. (5.2)

The left starting zone has a mean altitude of 1887ma.s.l. and a mean slope angle of

44o. For the right sub–catchment the average altitude is 1883ma.s.l. and the average

slope is 46o. Applying the corrective factor (5.1) and (5.2) by Salm et al., we obtain,

for a return period of 100 years, values of the maximum depth ranging from 1.3m to

1.9m on the right sub–catchment and from 1.4m to 2.0m on the left sub–catchment. The

corresponding volumes go from 192000m3 to 281000m3 on the right sub–catchment and

from 207000m3 to 299000m3 on the left sub–catchment.

For a return period of 300 years, the maximum depth goes from 1.5m to 2.1m in the

right sub–catchment and from 1.6m to 2.2m in the left sub–catchment. The correspond-

ing volumes range from 215000m3 to 309000m3 on the right sub–catchment and from

232000m3 to 330000m3 on the left one.

It is noticeable that the density of the snow in the starting area can be different from the

density into the flowing avalanche. In particular, measures collected in various snow sta-

tions in Trentino show that fresh snow density can vary between 30 kg/m3 and 250 kg/m3,

depending on the water content and on the shape of the snow grains. McClung and

Schaerer, in (19), suggest to evaluate the flowing density through the expression:

ρ = ρsC + ρa (1− C) ,

where ρs is the density of the snow, ρa is the density of the air and C represents the

volume concentration of the snow. For powder avalanches ρs is the density of the ice, that

is 917 kg/m3, and C is about 0.01. The resulting flow density is 10 kg/m3. For dense

snow avalanches ρs varies between 200 and 550 kg/m3 and C in the range from 0.3 to 0.5.

The corresponding density is normally included in the range between 60 and 275 kg/m3.

It follows that the flowing volume can be definitely very different from the volume in the

starting zone.

5.3.3 The track

The flowing track is represented by a channel, approximately half pipe shaped, with the

bottom covered by sand, gravel and boulders with maximum diameter of more than 1m.

The altimetric profile and the trend of the width and of the slope angle versus the cu-

mulative distance, obtained from the analysis of the ortho–photo, of the Digital Elevation
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Model and of the Provincial Technical Map, are reported in Figure 5.11. The average

slope, weighted through the length of each segment, is 38%, corresponding to a slope an-

gle of 21o, a typical value for a sliding segment. The weighted standard deviation is 12%

(7o). The slope variations along the channel are not negligible and can strongly affect the

dynamic of the flowing mass. Abrupt slope decreases produce intermediate stops of the

avalanche. The weighted mean width of the channel is of 16.1m, with a weighted standard

deviation of 5.4m. The width normally ranges from 10m to 15m, but for a long segment

of 700m about the lower dirt road, it grows up to 20–25m.

5.3.4 The runout zone

Just above the check dam at the altitude of 780ma.s.l., the track of the channel interrupts.

The avalanche can go beyond the dam and in Figure 5.12. The planimetric and altimetric

view of 6 possible rectilinear paths are shown. The orange path is the one covered by the

historical avalanche of 1929, that reached the football field at the altitude of 690ma.s.l..

The altimetric profile of the other two right paths is adverse to the continuing of the

avalanche motion. The left paths pass through a tree forest that obstructs the passage of

the avalanche. Nevertheless, for the presence of previous avalanche deposits, subsequent

avalanches can deviate from the common paths. Furthermore, these considerations are

valid for a dense snow avalanche, while a powder avalanche can be barely influenced by

the morphology of the terrain and by the presence of the wood.
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Figure 5.11: The altimetric profile of the channel, the trend of the width and of the slope angle
vs. the horizontal cumulative distance. They have been obtained through the analysis of the
ortho–photo, of the DEM and of the Provincial Technical Map.
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Figure 5.12: 6 different paths of the avalanche on the alluvial fan, used for the numerical simula-
tions. Plan view and altimetric profiles
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5.4 Monitoring of avalanche activity

The avalanche site of Lavina Granda has been equipped with instruments suitable for the

evaluation of the flow depth and of the velocity along the channel and for the estimation of

the snow depth and of the avalanche paths in the two sub–catchments. Two topographic

surveys (a quick one and a detailed one) have been executed in snowy conditions and

during the summer. During winter seasons 2003–2004 and 2004–2005 several events have

been observed, allowing to characterize the behaviour of snow avalanches in Lavina Granda

channel.

5.4.1 Field instrumentations

Two graduated 3.5m–high poles have been placed in the two sub–catchments (Figure 5.13)

in order to evaluate the snow depth in the starting zone. The poles have been lo-

cated on low–slope places, safe from the risk of damages caused by snow movements.

A SWAROVSKI AT80 spotting scope, equipped with a 800× HABICHT ST/CT photo–

adapter for a NIKON F4s 35mm camera, has been used to observe and photograph the

two poles from far away.

In order to monitor the avalanche activities in the starting zone, 42 coloured and

numbered cubic wooden tracers, with the side 15 cm long, have been spread in the sub–

catchments (Figure 5.14). Their initial position was measured by means of a PROMARK2

Figure 5.13: The two graduated poles, located in the two sub–catchments in order to estimate the
snow depth in the starting zone (October 29th 2002).
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Figure 5.14: The coloured tracers, spread over the two sub–catchments in order to monitor the
avalanches flowing paths (October 29th 2002).

GPS survey system. The survey of their final position, after snow melting, gives the chance

to identify the channels mainly affected by the avalanche activity.

Three chronographs CASIO stopwatch HS–5 have been placed along the channel in or-

der to measure the flowing velocities, at the altitudes of 1500ma.s.l., 1442ma.s.l. and

1400ma.s.l., having reciprocal distances of 139m and 85m (see Figure 5.15). Each chrono-

graph is contained in a box, located in safe position on the side of the channel. The

chronograph is connected to a wooden cross placed in the center of the channel, through

a nylon thread, 0.35mm thick and having a yield load of 11 kg, and an iron wire, 1.5mm

thick. When the avalanche passes, it pulls down the wooden cross, drags the iron wire

and tears the nylon wire, starting the chronograph up. The time interval between two

subsequent chronographs is used to assess the velocity, given the distance.

A flowing depth measuring section has been equipped at the second chronograph (see

Figure 5.16). An iron cable, 6mm thick, has been hung out across the section and 8

numbered wooden saddles, having a side of 15 cm, have been hung at the cable at different

heights from the bottom, through a nylon thread 0.35mm thick. At the avalanche passage,

lower saddles are removed, and the remaining ones allow to estimate the flowing depth.
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Figure 5.15: The chronographs placed along the channel in order to measure the avalanches flowing
velocity (December 6th 2002).

Figure 5.16: The flowing depth measuring section equipped at the second chronograph (December
6th and 18th 2002).
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5.4.2 The topographic surveys

The detailed topographic surveys

Two detailed topographical surveys of the La-
vina Granda channel, in winter and summer
conditions, have been carried out in 2004.
They have been performed by means of a
theodolite LEICA TCR 705 (see Figure 5.17)
and a target pole. Measures of inclined distan-
ces, azimuth angles and zenith distances have
been taken, with declared standard deviations
of 5′′ of sexagesimal degrees on angular mea-
sures and 10mm on distance measures. The
deposit of the avalanche occurred on Decem-
ber 2003 has been surveyed on February 6th

2004. 287 points, shown in Figure 5.18, have
been surveyed on the surface of the avalanche
deposit, with a station point on the dirt road
at the altitude of 1110ma.s.l.. On July 29th,
the same segment of the channel has been sur-
veyed, in order to reconstruct the topography
of the channel. Two station points were neces-
sary, because problems of points inter–visibility
arised, due to the vegetation. 253 points have
been measured.
By comparing the Digital Elevation Model of
the bottom surface and of the snow cover sur-
face, deduced from the elaboration of the data
of the two surveys, it was possible to define the
snow depth distribution of the deposit, repre-
sented in Figure 5.18. The final volume of the
deposit has been assessed, providing a value of
5050m3. It is noticeable that the avalanche de-
posited considerable volumes of snow also along
the channel.

Figure 5.17: The theodolite for the mea-
sure of inclined distances, zenith angles and
azimuth distances.
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Figure 5.18: The snow depth distribution, obtained through the elaboration of the data of the two detailed topographic surveys, carried
out along the segment of the Lavina Granda channel, above the lower dirt road at the altitude of 1110ma.s.l.. The points of the winter
topographic survey are represented through red crosses. The contour lines derive from the Digital Terrain Model obtained from the
summer survey.
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The quick topographic survey

The topographic survey of Lavina Granda snow avalanche channel, in Vigolana range, near

Trento, has been carried out also by means of a quick procedure, using a laser distance-

meter LEICA DISTO BASIC, a compass and clinometer SILVA CLINOMASTER. This

quick and simple procedure has been chosen in order to obtain a sufficiently approxi-

mated representation of the channel, both in winter and in summer conditions. Adoption

of more precise and more complicated methods proved to be unsuitable (GPS methods

showed inappropriate, due to frequent lack of a sufficient number of satellites; theodolite

based procedure demonstrated time expending and difficult to perform due to high slope

and instrument heaviness) or too expensive (aerial photogrammetric techniques).

In Figure 5.21 is represented, on the left, the horizontal plane through the station point

Pi. The angle on the horizontal plane is measured by means of a compass (Figure 5.23, on

the left). On the right side of the same figure is represented the vertical plane through two

station points Pi and Pi+1, belonging to the thalweg of the avalanche channel. The angle

on the vertical plane between the azimuth and the direction defined by the line passing

through Pi and Pi+1 is measured by a clinometer (Figure 5.23, on the right). Practise

allows to measure angles with a precision of 0.5 sexagesimal degrees. The measurement of

the distance between the station points Pi and Pi+1 is obtained using a laser distancemeter

suitable for distances smaller than 100m. The precision of distance measurement is around

10 cm, independently of weather conditions.

Figure 5.19: The comparison between the morphology of the channel at the end of the autumn
(December 18th 2002) and after the passage of an avalanche (January 16th 2004), in the segment
between the intermediate and the upper chronographs.
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Figure 5.20: The comparison between the morphology of the channel in autumnal conditions
(November 5th 2004) and in snowy conditions (January 2nd 2005), about the cliffs just below the
lower chronograph.

The survey of cross sections is performed as showed in Figure 5.22, using the same

implements described above. The segment of Lavina Granda channel between the fork

at the altitude of 1560 and the lower dirt road at the altitude of 1110ma.s.l. has been

surveyed. A first survey was carried out on May 21th 2004, when the channel was filled

by the deposits of previous avalanches. A second survey was performed when the terrain

was free from the snow, on July 29th. In Figure 5.24 is reported a 3–D view of the bottom

survey carried out on July 29th 2004. In Figure 5.25 are shown the bottom slope profiles

along the avalanche channel, given by the cited spring and summer surveys.

The analysis of the mean slope and the standard deviation provides interesting results.

The mean slope for the two surveys is nearly the same: 0.438m/m for the spring survey

versus 0.427 for the summer survey. Standard deviation passes from 0.082m/m for the

survey of May, to 0.107m/m for the survey of July. The reason is that the avalanche,

during its motion, fills the concave segments and reduces the curvature of the channel.

The morphology of the channel is completely different in winter and summer conditions,

as can be observed in Figure 5.19 and Figure 5.20. The modified roughness and geometry

of the channel explain the smaller resistance offered to the flow of following avalanches, as

observed during the winter surveys to the site.

In Figure 5.26 is reported the channel slope trend as function of the horizontal distance,

obtained through the elaboration of data extracted from the Digital Elevation Model of

the Autonomous Province of Trento. It differs significantly from the slope profile relevant

to the summer survey, even if the mean slope (0.419m/m) and the standard deviation
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(0.123m/m) are quite similar.

The quick survey demonstrated effective to draw the profile of the channel in different

snow cover conditions. When long segment are surveyed, in order to limit error propaga-

tion, it’s necessary to fix the survey to some topographical intermediate points, measured

through more precise procedures. The survey can get more accurate and reliable volume

assessments can be derived.
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Figure 5.21: Survey of distance between two points on the thalweg is performed by means of a
laser distancemeter; the measurement of the angle on the vertical plane is performed by means of
a clinometer; the angle on the horizontal plane is measured by means of a compass.

Figure 5.22: Survey of the cross–sections, performed by means of a laser distancemeter and of a
clinometer.
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Figure 5.23: Compass (on the left) and clinometer (on the right) for the measure of the angle on
the horizontal plane (Figure 5.21, on the left) and the angle on the vertical plane (Figure 5.21, on
the right).

Figure 5.24: A 3–D view of Lavina Granda bottom survey, realised on July 29th 2004.
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Figure 5.25: Slope profiles along the Lavina Granda avalanche channel, in the case of the summer
survey (July 29th 2004) and in the case of the winter survey (May 21st 2004).
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Figure 5.26: Comparison of the slope profiles along the Lavina Granda avalanche channel, obtained
from the summer survey (July 29th 2004) and the Digital Elevation Model (DEM).

128



5. Field activity

5.4.3 Surveyed events

Winter season 2002–2003

No avalanche reached the equipped sections of the channel during the winter season 2002–

2003. The maximum snow depth measured along the channel was 50 cm.

Summer season 2003

During the summer 2003 a debris flow came down along the channel. On the 24th of June

an intense precipitation (rain mixed with hail) affected the area. During 2 hours, 35mm of

equivalent water fell at Vigolo Vattaro, to the north of the channel. The granular material

of the debris flow was poor of fine fraction and had mean diameter of 10 cm.

Several channels contributed to feed the debris flow. In Figure 5.27 is shown the mor-

phological modification induced by the debris flow in the starting zone.

By measuring the final positions of the recovered wooden tracers, it was possible to

identify the feeding areas and the paths of the debris flow, shown in Figure 5.30.

Through the chronographs, a velocity of 5–6m/s was measured. The debris flow reached

the dam at the end of the channel, at the altitude of 780ma.s.l.. A final deposit volume

of 500m3 was estimated, but considerable depositions took place along the channel (see

Figure 5.28 and Figure 5.29).
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Figure 5.27: The morphologic evolution in the initiation zone of the debris flow. The two images
show the same channel in autumn 2002 (October 29th 2002) and in summer 2003 (July 18th 2003).

Figure 5.28: An intermediate deposit of the de-
bris flow, at the intersection between the channel
and the dirt road at the altitude of 1280ma.s.l.
(August 10th 2003).

Figure 5.29: Erosion and lateral depositions due
to the debris flow along the channel (July 18th

2003).
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Figure 5.30: The feeding areas and the paths of the debris flow of the summer 2003.

131



5. Field activity

Winter season 2003–2004

In order to avoid the tracers being moved by other phenomena (like intense floods or debris

flows), and to prevent the tracers from being frozen to the ground, the best period to place

the tracers is after a small snowfall. Because of the entity of the first snow precipitation,

it was impossible to replace the tracers moved by the debris flow. This precluded the

possibility to monitor the avalanche activity in the catchment.

During the winter season 2003–2004, 4 avalanches have been surveyed in the Lavina

Granda site. The positions of the final deposits for the 4 events are reported with different

colours in Figure 5.39.

The first event occurred on December 2003. From 70 to 80 cm of fresh snow fell in

three days, from the 29th to the 31st of December of 2003 at the snow–weather stations of

Sommo Pass and Bondone Mount. The avalanche was first surveyed on the 1st of January

of 2004, from far away. It was a loose granular avalanche, induced by the overload of

fresh snow. It reached the intersection of the channel with the dirt road at the altitude

of 1110ma.s.l.. The final deposit, shown in Figure 5.31, was 6–7m deep, 15m wide and

150m long, with an estimated volume of 13000m3. The maximum flowing depth was of

7–8m, as can be seen from Figure 5.32. No measure of velocity has been taken because

Figure 5.31: The final deposit of the avalanche that occurred
on December of 2003, at the altitude of 1110ma.s.l. (January
16th 2004).

Figure 5.32: The maximum flowing
depth for the granular avalanche
occurred on December (photo
taken on January 16th 2004).
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of a malfunction of the chronographs.

On February 2004 a second granular avalanche took place. The only recorded precipi-

tation occurred on January 19th 2004. 14 cm and 24 cm of fresh snow were surveyed at

Bondone Mount and Sommo Pass snow–weather stations respectively. The avalanche was

smaller than the preceding one and reached the upper intersection of the channel with

the dirt road at the altitude of 1280ma.s.l.. It mobilised the partially linked snow parti-

cles deposited along the channel during the previous event and big particle clusters (with

diameter up to 1m) characterized the final deposit. No image or quantitative datum is

available, because of the high risk of access to the channel.

Between the 11th and the 12th of March 2004, 90–100 cm of fresh snow fell, and a

powder avalanche occurred. The signs of the avalanche, among which the tree debris (see

Figure 5.33), were recognizable up to the altitude of 870ma.s.l., just above the dam.

The effects of the powder avalanche on the forest at the side of the channel, shown in

Figure 5.34, have been found below the third chronograph, at the altitude of 1400ma.s.l..

In our opinion, it was the dense core of the powder avalanche that tore the iron cable

at the flowing depth measuring section (see Figure 5.35). Another powder avalanche

came down along the Lavinella, a channel on the right orographic side of Lavina Granda

(Figure 5.36): several plants of beech have been uprooted in the runout zone (Figure 5.37),

at the altitude of 1250ma.s.l.. The avalanche site of Lavinella is identified by the code

04312 on the Avalanche Register. It’s characterized by rare events. The last and only

Figure 5.33: The tree debris transported by
the powder avalanche. Entire plants have
been uprooted (May 12th 2004).

Figure 5.34: The signs of the powder avalanche
on the left side of the channel, opposite the third
chronograph, at the altitude of 1400ma.s.l.. All
the trees are bended downstream (March 21st

2004).
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Figure 5.35: The two edges of the iron cable, torn by the powder avalanche at the flowing depth
measuring section, in the Lavina Granda channel (May 12th 2004).

recorded event took place on the 31st of January of 1986. The avalanche reached the same

altitude and uprooted 80000 kg of beech trees.

From the 3th of May to the 6th of May an intense precipitation occurred, characterized

by a water equivalent of 115mm and 99mm at the weather stations of Bondone and

Sommo Pass. It was followed by a storm on May 8th. No snowfall data are available for

this period. On the 12th of May, during an inspection to the channel, a new granular

deposit, shown in Figure 5.38, was found. It was located at the altitude of 1290ma.s.l.

and was characterized by particles with diameters varying from 5 cm to 100 cm, the biggest

particles being concentrated on the front of the deposit.
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Figure 5.36: A satellite image, dated March 30th 2004, where are
recognizable the area interested by the powder avalanches in Lavina
Granda and Lavinella sites.

Figure 5.37: The runout zone of the avalanche that
occurred in the Lavinella channel. In the back-
ground the uprooted beech plants are recognizable
(March 21st 2004).

Figure 5.38: The final granular deposit of the
avalanche that flew down at the beginning of
May of 2004 (May 12th 2004).
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Figure 5.39: The locations of the final deposits of the 4 avalanches occurred during the winter
season 2003–2004. In green the granular avalanche of December 2003; in yellow the granular
avalanche of February 2004; in red the powder avalanche of March 2004; in cyan the granular
avalanche of May 2004.
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Autumn–winter 2004–2005

During the autumn 2004, in the night between the 1st and the 2nd of November, during a

violent storm, 88mm of rain fell in 11 hours, following two smaller events of 33.6mm and

30.4mm. A debris flow took place in the channel and modified the bed morphology. One

deposit formed just over the section of the intermediate chronograph (see Figure 5.40). Big

boulders, having diameters of over 1m, occupied the front of the deposit. Other erosion

and deposition areas are recognizable along all the channel, up to the lower dirt road

(altitude 1110ma.s.l.). In Figure 5.41 is shown the sliding surface of a rotational ground

failure that occurred at the base of the road: an erosional mechanism that was found in

several other points along the channel.

After an abrupt drop in the temperatures, a first snowfall took place between the 10th

and the 11th of November. 30 cm and 43 cm of fresh snow fell at Bondone Mount and

Sommo Pass respectively. A following period of high temperatures caused the snow cover

consolidation. A second snowfall occurred between the 30th of November and the 1st

of December of 2004. The overload due to the new supplies of fresh snow (38 cm at

Sommo Pass and 30 cm at Bondone Mount), induced the starting of slab avalanches in

several points in the right sub–catchment of Lavina Granda (see Figure 5.42). A granular

avalanche formed and went over the first dirt road, stopping at the altitude of 1250ma.s.l.,

where the channel gets narrower and steeper. The snowballs in the granular deposit had

Figure 5.40: The debris flow deposit that formed
opposite the intermediate chronograph during
the event of the November 2004 (November 5th

2004).

Figure 5.41: A rotational ground failure at
the base of the dirt road at the altitude of
1110ma.s.l., occurred during the debris flow
event of the November 2004 (November 5th

2004).
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diameters ranging between 1 cm and 20 cm, with peaks of 50 cm. During the survey of the

initiation zone, carried out on December 12th 2004, in several places the fracture lines of

still untriggered slab avalanches were recognizable (see Figure 5.43). When the avalanche

occurred, only two chronographs were equipped: the intermediate and the lower one. The

two chronographs were started by the avalanche. The estimated time interval was of 27 s,

that means a velocity of 3m/s over a distance of 85m. The measured velocity is very low,

but the shape of depositions along the channel suggests that a stop could have occurred

between the two chronographs, due to the low inertia of the mass and to the high resistance

offered by the bed roughness. In particular a transversal trench, left by the debris flow

just above the second chronograph, is the supposed reason for the intermediate stop of the

avalanche. In the same section the avalanche deposit showed a similar transversal cut.

The precipitation of the end of November was followed by hot winds from south–west,

Figure 5.42: The crown fractures of two
slab avalanches, started in the right sub–
catchment.In the lower picture the graduated
pole is recognizable (December 12th 2004).

Figure 5.43: The fraction line of a slab avalanche
not still triggered (December 12th 2004).
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driven by a strong depres sion in Spain. The high temperatures caused a quick snow

metamorphism and consolidation, the formation of slabs in the starting zone and the

aggregation of the particles of the first avalanche deposit.

Another intense snowfall occurred on December 26th and 27th (49 cm and 41 cm of fresh

snow respectively at Sommo Pass and Bondone Mount snow stations), followed by strong

winds from north, which formed considerable snow drift deposits. A second granular

avalanche occurred, arriving a little above the second dirt road (see Figure 5.49). It was

likely a slab avalanche: the crown of a slab could be guessed from far away in the right

sub–catchment. The avalanche removed the first avalanche deposit and the aggregates of

the first avalanche deposit are still recognizable in the new deposit (see Figure 5.44). This

time, the segment of the channel opposite to the last chronograph (shown in Figure 5.45)

and the one by the higher dirt road (1280ma.s.l.) were full sliding segments. At the higher

dirt road the flow was about 3m deep, as shown in Figure 5.47, and released laterally a

bank with sub–vertical smooth internal surface and the external face inclined at an angle

equal to the internal friction angle φ on the horizontal (Figure 5.46). The estimated φ is

37o ± 2o. In most of the events, the presence of lateral banks left by granular avalanches

is observable, where the section gets wide or the channel curves.

The granular intermediate depositions along the channel showed interesting phenomena

of slab–type yield on a very smooth sliding surface (Figure 5.48). The corresponding

bottom friction angle δ should be very low.
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Figure 5.44: Aggregate of particles of a pre-
vious deposit, entrained but not broken up by
the avalanche of the end of December (January
2nd 2005).

Figure 5.45: The full sliding sections at the lower
chronograph (January 2nd 2005).

Figure 5.46: The external face of the
lateral bank, inclined at φ on the hori-
zontal (January 2nd 2005).

Figure 5.47: The sub–vertical smooth lateral bank left
by the avalanche at the upper dirt road 1280ma.s.l..
The flowing depth is about 3m (January 2nd 2005).

Figure 5.48: A slab–type movement
of the granular material deposited by
the avalanche along the channel. The
smooth sliding bottom appears on the
surface (January 2nd 2005).
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Figure 5.49: The locations of the final deposits of the 2 avalanches occurred during the winter
season 2004–2005. In yellow the granular avalanche of the beginning of December 2004; in red the
granular avalanche of the end of December 2004.
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5.5 Final considerations

During two years of surveys at the Lavina Granda Valley, we have collected a large amount

of qualitative and quantitative data about the behaviour of the avalanches occurring in

the site.

The feature that more arises is the great variability of the initial and boundary conditions

and of the events which took place in the Lavina Granda channel. The definition of the

initial snowcover depth, that can be carried out through statistical analysis, is likely one of

the smallest causes of uncertainty. The area that can potentially feed the avalanche is very

large, but various sub–catchments contribute following different detachment mechanisms,

which normally do not apply simultaneously. Nevertheless, the hypothesis of a crisis of

the system that involves the entire area cannot be excluded a priori.

Another considerable source of uncertainty is the ratio between the initial density of the

snowcover and the density of the flowing mass. The snowcover features (stratification, den-

sity, resistance, type of links between snow grains) and the detachment conditions deter-

mine the type of avalanche (wet dense avalanche, dry dense avalanche, powder avalanche)

that can evolve during the motion, depending on the topography of the channel and on the

properties of the deposits of preceding events. Indeed, these deposits can strongly modify

the morphology and the roughness of the channel and can be incorporated by the flowing

avalanche, affecting its dynamic.

In the campaign of numerical simulations in design, all these uncertainty factors have

to be considered in order to reconstruct all the possible scenarios. Nevertheless, making

a statistical analysis on such data to assign a return period to each simulated event is a

barely meaningful task, because of the difficulty to evaluate the uncertainty level of the

initial conditions.
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6 Concluding remarks

In this thesis the one–dimensional model with variable width 1dwvar for the simulation of

confined granular avalanches has been presented. It is based on the theory of Savage and

Hutter (27) for granular material, modified in order to represent the stresses between the

flowing avalanche and the vertical side walls. The model has been applied to experimental

cases with constant width, in order to test the original rheological hypotheses. The back

calculation of the experiments through the 1dwvar model gave noticeably better results

than the basic constant width model, 1d, where the interaction of the avalanche with

the lateral wall was simply treated by applying a corrective term to the bottom friction

angle δ. A campaign of experimental tests is in design at the Hydraulic Laboratory of

the University of Trento, in order to thoroughly investigate the behaviour of the 1dwvar

model with respect to cases where the width of the channel is longitudinally varying and

the lateral friction angle is known.

The two–dimensional model, developed at the Department of Civil and Environmental

Engineering of the University of Trento by the writer, has been improved, by allowing the

rotation of the absolute coordinate system. The“plug–flow”assumption and the hypothesis

of hydrostatic pressure distribution along the direction z of the rotated coordinate system

is better fulfilled where the outward normal to the bottom surface is better approximated

by z. Nevertheless, in this way, only limited area of the slope are well fitted by the xy

coordinate plane. A possible solution could be to change the orientation of the absolute co-

ordinate system in order to fit the areas covered by the flowing mass during the subsequent

phases of motion. A different approach has been proposed recently by Zwinger et al. (35).

They integrate the momentum equation for each node in a local ortho–normal coordinate

system relevant to velocity vector, demonstrating that the introduced error in the pressure

gradient term of the momentum equation is of order ε3/2. The two–dimensional model

showed strong instabilities due to the deformation of the mesh in presence of complex to-

pographies of the sliding surface. Re–meshing algorithms are computationally expensive

and generally produce a loss of accuracy, due to the re–mapping of the field variables.

It’s possible to remedy to this last deficiency by applying finite volume schemes based on
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6. Concluding remarks

the use of Voronoi cells (see Zwinger et al. (35)). We have undertaken a different way,

by focusing our attention on meshless methods, where the mass is represented through a

set of not connected nodes. The Moving Least Square Particle Hydrodynamics (MLSPH)

scheme by Dilts (7), (8), has been applied to the one–dimensional model with constant

width, in order to get indications on the advisability of its extension to the two–dimensional

case. The resulting numerical model MLSPH1d showed less accurate and definitely more

time expensive than the original model. Nevertheless the application of meshless schemes

to the two–dimensional case, where the constraints imposed by the mesh are stronger, is

still promising. Furthermore, new meshless methods have been recently developed, faster

than the MLSPH scheme, like the normalized Smoothed Particle Hydrodynamic scheme.

The application of Rienmann solvers to this meshless scheme, to substitute the traditional

viscosity term, source of accuracy loss, has been recently tested, as reported by Vila (33).

The avalanche site of Lavina Granda has been surveyed in order to get informations and

measures relevant to the behaviour of snow confined avalanches. Simple measure devices

have been installed in order to collect measures of flowing depth, of velocity, of the initial

snow cover depth and to monitor the avalanche activity in the starting zone. A quick

topographic survey method, suitable for the assess of involved volumes and of morpho-

logical modifications induced by the avalanche deposits, has been tested. Six avalanches

occurred during two winter seasons (2003–2004 and 2004-2005), one powder avalanche and

five dense granular avalanches, started as both cohesionless and slab avalanches. Mainly

due to the high risk of access to the site during the winter, few quantitative measures

could have been taken. Nevertheless, a great amount of qualitative observations has been

collected, useful to characterise the phenomena which take place in the Lavina Granda

Valley. What clearly arises is their extreme variability and the consequent uncertainty of

evaluation of the possible scenarios that can occur. The evaluation of the detachment area

and of the ratio between the initial density and the flowing density dramatically affects

the assessment of the involved volumes. The features of the initial snowcover as well as

the state of the channel (e.g. presence of more or less consolidated deposits) influence the

type of flux and its evolution during the motion. Knowing the behaviour of the avalanche

site, it possible to simulate the different possible scenarios by means of a numerical model,

but it’s very difficult to assign them a return period.
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