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Abstract

Modern communication and space systems such as satellite communication devices, radars, SAR
and radio astronomy interferometers are realized with large antenna arrays since this kind of
radiating systems are able to generate radiation patterns with high directivity and resolution. In
such a framework conventional arrays with uniform inter-element spacing could be not satisfac-
tory in terms of costs and dimensions. An interesting alternative is to reduce the array elements
obtaining the so called “thinned arrays” Large isophoric thinned arrays have been exploited be-
cause of their advantages in terms of weight, consumption, hardware complezity, and costs over
their filled counterparts.

Unfortunately, thinning large arrays reduces the control of the peak sidelobe level (PSL) and does
not give automatically optimal spatial frequency coverage for correlators. First of all the state of
the art methodologies used to overcome such limitations, e.g., random and algorithmic approaches,
dynamic programming and stochastic optimization algorithms such as genetic algorithms, sim-
ulated annealing or particle swarm optimizers, are analyzed and described in the introduction.
Successively, innovative guidelines for the synthesis of large radiating systems are proposed, and
discussed in order to point out advantages and limitations. In particular, the following specific

1ssues are addressed in this work:

1. A new class of analytical rectangular thinned arrays with low peak sidelobe level (PSL). The
proposed synthesis technique exploits binary sequences derived from McFarland difference
sets to design thinned layouts on a lattice of P x P (P + 2) positions for any prime P.
The pattern features of the arising massively-thinned arrangements characterized by only
P x (P + 1) active elements are discussed and the results of an extensive numerical analysis

are presented to assess advantages and limitations of the McFarland-based arrays.

2. A set of techniques is presented that is based on the exploitation of low correlation Almost
Difference Sets (ADSs) sequences to design correlator arrays for radioastronomy applica-
tions. In particular three approaches are discussed with different objectives and perfor-
mances. ADS-based analytical designs, GA-optimized arrangements, and PSO optimized
arrays are presented and applied to the synthesis of open-ended “Y” and “Cross” array
configurations to mazimize the coverage uw—v or to minimize the peak sidelobe level (PSL).
Representative numerical results are illustrated to point out the features and performances
of the proposed approaches, and to assess their effectiveness in comparison with state-of-
the-art design methodologies, as well. The presented analysis indicates that the proposed
approaches overcome existing PSO-based correlator arrays in terms of PSL control (e.g.,

> 1.0dB reduction) and tracking u — v coverage (e.g., up to 2% enhancement), also im-



proving the speed of convergence of the synthesis process.

3. A genetic algorithm (GA)-enhanced almost difference set (ADS)-based methodology to de-
sign thinned planar arrays with low-peak sidelobe levels (PSLs). The method allows to
overcome the limitations of the standard ADS approach in terms of flexibility and perfor-
mance. The numerical validation, carried out in the far-field and for narrow-band signals,
points out that with affordable computational efforts it is possible to design planar array

arrangements that outperform standard ADS-based designs as well as standard GA design

approaches.
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Figure 68. Numerical validation - Problem II - extension of the range of ADS
applicability: Graphical comparison of the PSL against the iteration ¢ of ADSGA,
GA and Haupt [18] approaches along the two main directions ¢ = 0° (a) and ¢ = 90°
(b). Slices of the amplitude pattern obtained after optimization procedure along the
two main directions ¢ = 0° (¢) and ¢ = 90° (d).

Figure 69. Numerical validation - Problem II - extension of the range of ADS
applicability: Power patterns |W (u, U)\2 for ADSGA (a) and for GA (b) approaches.
(¢) and (d) show the corresponding array arrangements with ADSGA and GA-based

methods, respectively.

Figure 70. Numerical validation - Problem II - extension of the range of ADS
applicability: Graphical comparison of the PSL against the iteration i of ADSGA,
GA and Haupt [18] approaches along the two main directions ¢ = 0° (a) and ¢ = 90°
(b). Slices of the amplitude pattern obtained after optimization procedure along the
two main directions ¢ = 0° (¢) and ¢ = 90° (d).

Figure 71. Numerical validation - Problem II - extension of the range of ADS
applicability: Power patterns [W (u,v)|* for ADSGA (a) and for GA (b) approaches.
(¢) and (d) show the corresponding array arrangements with ADSGA and GA-based

methods, respectively.

Figure 72. Numerical validation - Problem III - GA designed ADS construction
technique: (a) Behaviour of the optimal fitness, Fpop, against the iteration number
i, (b) Three-level autocorrelation function of the convergence (36,32,28,23)-ADS
arrangement, (¢) Final 2D ADS layout.

Figure 73. Numerical validation - Problem IIl - GA designed ADS construction
technique: Plot of the power pattern associated to the antenna array built with the
(36, 32,28,23)-ADS arrangement.
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Figure 74. Numerical validation - Problem III - GA designed ADS construction
technique: (a) Behaviour of the optimal fitness, Fpop, against the iteration num-
ber i, (b) Three-level autocorrelation function of the convergence (60,6, 0,29)-ADS
arrangement, (¢) Final 2D ADS layout.

Figure 75. Numerical validation - Problem III - GA designed ADS construction
technique: Plot of the power pattern associated to the antenna array built with the
(60, 6,0,29)-ADS arrangement.

Figure 76. Numerical validation - Problem III - GA designed ADS construction
technique: (a) Behaviour of the optimal fitness, Fpop, against the iteration number
i, (b) Three-level autocorrelation function of the convergence (64,59,54,43)-ADS
arrangement, (¢) Final 2D ADS layout.

Figure 77. Numerical validation - Problem III - GA designed ADS construction
technique: Plot of the power pattern associated to the antenna array built with the
(64,59, 54,43)-ADS arrangement.

Figure 78. Numerical validation - Problem III - GA designed ADS construction
technique: (a) Behaviour of the optimal fitness, Fpop, against the iteration number
i, (b) Three-level autocorrelation function of the convergence (100,5,0,79)-ADS
arrangement, (¢) Final 2D ADS layout.

Figure 79. Numerical validation - Problem III - GA designed ADS construction
technique: Plot of the power pattern associated to the antenna array built with the
(100, 5,0,79)-ADS arrangement.

Figure 80. Numerical validation - Problem III - GA designed ADS construction
technique: (a) Behaviour of the optimal fitness, Fpop, against the iteration number
i, (b) Three-level autocorrelation function of the convergence (144,137,130, 101)-
ADS arrangement, (¢) Final 2D ADS layout.

Figure 81. Numerical validation - Problem III - GA designed ADS construction
technique: Plot of the power pattern associated to the antenna array built with the
(144,137,130, 101)-ADS arrangement.

Figure 82. Numerical validation - Problem III - GA designed ADS construction
technique: (a) Behaviour of the optimal fitness, Fpop, against the iteration number
i, (b) Three-level autocorrelation function of the convergence (192,184,176, 135)-
ADS arrangement, (¢) Final 2D ADS layout.
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Figure 83. Numerical validation - Problem III - GA designed ADS construction
technique: Plot of the power pattern associated to the antenna array built with the
(192,184,176, 135)-ADS arrangement.

Figure 84. Numerical validation - Problem IIl - GA designed ADS construction
technique: (a) Behaviour of the optimal fitness, Fpop, against the iteration number
i, (b) Three-level autocorrelation function of the convergence (196,7,0,153)-ADS
arrangement, (¢) Final 2D ADS layout.

Figure 85. Numerical validation - Problem IIl - GA designed ADS construction
technique: Plot of the power pattern associated to the antenna array built with the
(196,7,0,153)-ADS arrangement.

Figure 86. Numerical validation - Problem III - GA designed ADS construction
technique: (a) Behaviour of the optimal fitness, Fpop, against the iteration number
i, (b) Three-level autocorrelation function of the convergence (225,8,0,168)-ADS
arrangement, (¢) Final 2D ADS layout.

Figure 87. Numerical validation - Problem IIl - GA designed ADS construction
technique: Plot of the power pattern associated to the antenna array built with the
(225, 8,0, 168)-ADS arrangement.
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Chapter 1

Structure of the Thesis

This chapter describes how the Thesis is organized.

First of all, Chapter 2 presents an overview of the Thesis, pointing out the context
of the thinned antenna arrays for communication and radio astronomy, the problem that

have been considered and a brief analysis of the solutions proposed in literature.

Chapter 3 describes some of the most significative and relevant techniques in the state-
of-the-art, to design thinned arrays for communication and radio astronomy. The aim is
to present the basis and background of the work carried out in this Thesis during the
research activity developed during my PhD and make a comparative assessment with

methodologies proposed in this Thesis.

Chapter 4 deals with a new class of rectangular thinned arrays with low and controlled
peak side lobe level (PSL). These arrays are based on McFarland Difference Sets (DSs),
that likewise two-dimensional DSs exhibit a two-level autocorrelation function, and on
a suitable synthesis procedure based on Genetic Algorithm (GA) optimization. GA has
been exploited due to the extremely large number of admissible McFarland sequences.
This methodology allows to obtain massively-thinned arrangements with a rectangular
shape that exhibit different total main beam widths (TMBWs) in azimuth and elevation
and low PSL.

Chapter 5. In this chapter, in order to design correlator arrays for radioastronomy ap-
plications a set of hybrid techniques is introduced and numerical validated. These hybrid

techniques take advantage of the apriori information on suboptimal analytically derived
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correlator arrangements. In more detail, to improve performance of correlators for ra-
dioastronomy Almost Difference Sets (ADSs) sequences, that are characterized by almost
ideal autocorrelation properties, are exploited with stochastic optimization algorithms

such as genetic algorithms (GAs) and particle swarm optimizers (PSOs).

Chapter 6 proposes a GA-enhanced ADS technique (ADSGA) for the synthesis of pla-
nar antenna arrays for communication applications and shows that the developed ADSGA
hybrid technique allows to overcome the limitations related to the use of ADS sequences

and obtain optimal performance.
Chapter 7 concludes the Thesis. In particular the main results are summarized, the

open problems and future research directions in the exploitation of the proposed method-

ologies and techniques are outlined.
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Chapter 2

Introduction

2.1 Context and Background

There are many practical ways to exploit antenna arrays. Antenna arrays are widely used
both in civil and military applications. In communication and broadcast engineering they
are used in TLC systems such as TV and radio transmitters, for example in AM or FM
broadcast radio stations to enhance signal. Arrays are largely utilized in warships, aircraft
radar systems and missile fire-control systems. Other uses are sonar, weather research and
biomedical (e.g. radiotherapy) applications [1|[2]. Another particular kind of framework
where antenna arrays can be very useful is represented by space applications, e.g. satellite
communication systems and radio astronomy. The radiating systems of these applications
have some common requirements: high resolution (the term "resolution" is used in the
sense of Rayleigh and is proportional to the beamwidth), high gain, low sidelobe level
[3] and, for radio astronomy applications, optimal coverage in spatial frequency domain.
In communication and space applications, steerable reflectors are one of the most useful
kinds of antennas. Reflectors have a diameter that can be equal up to 100m but they

cannot be much larger because of mechanical problems and prohibitive costs.
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Figure 1. Introduction - Example of large reflector antenna.

For these reasons, the attention has turned to very large arrays with a number of
radiating elements from two up to hundreds or thousands. For conventionally designed
arrays where all elements are uniformly spaced an upper limit exists to the spacing, if
the grating lobes are not permitted to appear in the visible region. In this case we
have traditional filled arrays that have an element placed in every location of a uniform
lattice with half-wavelength spacing between the lattice points. As a result the required
number of elements, being proportional to the aperture dimension in wavelength, becomes

astronomically large if a beamwidth on the order of minute of arc is desired [3].

Figure 2. Introduction - Example of conventional filled array with patch radiating elements.

Most of the recent investigations on arrays with non-uniformly spaced elements showed
the possibility of reducing the number of radiating elements and optimizing the design of

arrays. An unequally spaced, thinned array may be used to:
1. achieve a narrow main lobe with reduced number of elements
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2. achieve a wide scan angle or operate over a broad frequency band without the

appearance of grating lobes
3. achieve desirable radiation patterns without amplitude taper across the aperture.

Thinning an array means turning off some elements in a uniformly spaced or periodic array
to create a desired amplitude density across the aperture [4]. An element connected to
the feed network is “on”, and an element connected to a matched or dummy load is “off”.
When thinned arrays have fewer than half of the elements of their filled counterparts,
they are called massively thinned arrays. In this research proposal we are not interested
in amplitude tapering techniques since these methodologies have a higher complexity
and cost [5]. We have to remember that thinning is normally accompanied by loss of
sidelobe control, for this reason, thinned arrays are synthesized in according to one or
more optimization criteria. For example, optimization of the beam pattern means to

achieve the minimum PSL in the entire visible range or the maximum gain [3|[4][6].

Figure 3. Introduction - Example of large circular thinned array.

In this scenario large thinned arrays allow us to obtain the following advantages:
better performance with respect to reflector antenna, increased operational robustness,
implementation cost saving and more programmatic flexibility. Each of these topics is dis-
cussed further in the following paragraphs. For larger antennas, the beam width naturally
is narrower. As a result, antenna-pointing error becomes more critical. To stay within the
main beam and incur minimal loss, antenna pointing has to be more precise. Yet this is
difficult to achieve for larger structures. With an array configuration of smaller antennas,

antenna-pointing error is not an issue. The difficulty is transferred from the mechanical to
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the electronic domain. As long as the combining process is performed with minimal signal
degradation, an optimal gain can be achieved. Arraying also allows an increase ineffective
aperture beyond the present capability for supporting a mission at a time of need. In the
past, the Voyager Mission relied on arraying to increase its data return during Uranus
and Neptune encounters in the late 1980s. The Galileo Mission provides another example
in which arraying was used to increase the science data return by a factor of 3. (When
combined with other improvements, such as a better coding scheme, a more efficient data
compression and a reduction of system noise temperature, a total improvement of a factor
of 10 was actually realized) [7]. Arraying can increase system operability. Firstly, higher
resource utilization can be achieved. In the case of an array the set can be partitioned
into many subsets supporting different missions simultaneously, everyone tailored accord-
ing to the link requirements. So doing, resource utilization can be enhanced. Secondly,
arraying offers high system availability and maintenance flexibility. Let us suppose an
array built with 10 percent spare elements. The regular preventive maintenance can be
done on a rotating basis while allowing the system to be fully functional at all times.
Thirdly, the cost of spare components would be smaller. Instead of having to supply the
system with 100 percent spares in order to make it fully functional around the clock, the
array offers an option of furnishing spares at a fractional level. Equally important is the
operational robustness against failures. With a single resource, failure tends to bring the
system down. With an array, failure in an array element degrades system performance but
does not result in a service shutdown [7]. In particular, thinned arrays can be projected
to have a certain amount of redundant radiating elements in order to guaranteeing PSL

control in presence of one or multiple failures.

A cost saving is realized from the fact that smaller antennas, because of their weight
and size, are easier to build and move. The fabrication process can be automated to reduce
the cost. It is often approximated that the antenna construction cost is proportional to the
antenna volume. The reception capability, however, is proportional to the antenna surface
area. Note, however, that antenna construction is only a part of the overall life cycle cost
for the entire system deployment and operations. To calculate the actual savings, one
needs to account for the cost of the extra electronics required at multiple array elements
and the cost related to the increase in system complexity [7]. One of the most important
quality of thinned arrays is the reduced number of antennas: with few radiating elements
we can keep under control the PSL, satisfying the technical requirements, and also increase
the cost saving. Arraying offers a programmatic flexibility because additional elements
can be incrementally added to increase the total aperture at the time of mission need.

This option allows for a spread in required funding and minimizes the need to have all the
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cost incurred at one time. The addition of new elements can be done with little impact

to the existing facilities that support ongoing operations.

In conclusion thinned arrays seem to be suitable to satisfy the previous requirements

typical of communication systems and improve performance.

Radio interferometers and synthesis arrays, which are basically ensembles of two el-
ement interferometers, are used to make measurements of the fine angular detail in the
deep radio emission from the sky. The angular resolution of single radio antennas is insuf-
ficient for many astronomical purposes. Practical considerations limit the resolution to a
few tens of arcseconds. For example, the beamwidth of a 100m diameter antenna at 7mm
wavelength is approximately 17arcsec. In the optical range the diffraction limit of large
telescopes (diameter-8 m) is about 0.015 arcsec, but the angular resolution achievable
from the ground by conventional techniques is limited to about one arcsec by turbulence
in the troposphere. For progress in astronomy it is particularly important to measure
the positions of radio sources with sufficient accuracy to allow identification with objects
detected in the optical and other parts of the electromagnetic spectrum. It is also very
important to be able to measure parameters such as intensity, polarization, and frequency
spectrum with similar angular resolution in both the radio and optical domains. Radio
interferometry enables such studies to be made. Precise measurement of the angular po-
sitions of stars and other cosmic objects is the concern of astrometry. This includes the
study of the small changes in celestial positions attributable to the parallax introduced
by the earth’s orbital motion, as well as those resulting from the intrinsic motions of the
objects. Such measurements are an essential step in the establishment of the distance
scale of the universe. Radio techniques provide an accuracy of the order of arcsec or less

for the relative positions of objects closely spaced in angle.

Compared with communication systems, to obtain optimal performance, namely a
high-sensitive and high-resolution measurement of radio sources, a uniform inter-element
spacing of the radiating elements is not the best solution. We need not only a low PSL but
also coverage of spatial frequency domain as uniform as possible. If the spatial domain is
not uniformly sampled the radio source is not correctly recovered and spurious artifacts are
presents. A non-uniformly spaced correlator array, as shown in [8][9], gives the possibility

of reducing the PSL and optimizing the coverage.
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Figure 4. Introduction - The VLA, an array of 27 elements, each a 25-m paraboloid, is a Y-shaped

array having three equiangular linear arms of 21 km.
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Figure 5. Introduction - (a) and (b) are examples of radio maps obtained with radio astronomy

correlators.
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Chapter 3

State of the Art

3.1 Arrays for Communication and Radio Astronomy -
Introduction to the State-of-the-Art

In the framework of arrays for communications, radar and space applications, Skolnik
proposed one of the first examples of thinning large antenna arrays. In his work [4]
he describes statistically designed density-tapered arrays. With the usual method for
designing directive antennas with low sidelobes, the received (or radiated) energy is greater
at the centre than at the edges [4]. The idea proposed in [4] is the following: the density
of elements located within the aperture is made proportional to the amplitude of the
aperture illumination of conventional filled arrays (designed with Taylor or Dolph methods
[10][11]). In other words, the signal at each element of the array is of equal amplitude but
the spacing between adjacent elements differs. The selection of the element locations is
performed statistically by utilizing the amplitude illumination as the probability density
function for specifying the location of elements (for this reason it is also called space
taper) [4]. Statistically designed density-tapered arrays are useful when the number of
elements is large and when it is not practical to employ an amplitude taper to achieve low
sidelobes. A density taper has advantages over an amplitude taper in certain applications.
Transmitting arrays, for example, with individual power amplifiers at each element are
easier to design and to build and more efficient to operate if each amplifier delivers full
rated power [4]. The density-tapered array permits the system designer to employ equal-
power amplifiers at each element and still achieve low sidelobes. Receiving antennas can
also benefit from density tapering. In conclusion, this technique is to be considered for
the design of large array antennas where good sidelobes are important and where it is not

convenient to use an amplitude taper across the aperture [4].
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In [6] Steinberg derived a formula for the PSL of a thinned array where the elements are
randomly located. In a random array, the location of each radiating element is a random
variable drawn from a population described by a probability density function (e.g.uniform
pdf). Since an a-priori description of a random array can only be given statistically, it is
logical to seek an estimator of the peak sidelobe in terms of a probability or confidence
level that the predicted value will not be exceeded. Steinberg obtained a probabilistic
estimator of the peak sidelobe of uniform random array with equally weighted elements.
This theoretical result was tested by measurement of the peak sidelobe of several hundred

Monte Carlo computer-simulated random arrays [6].

During the 1960’s many thinning algorithms were created. The methodologies to thin
arrays fall into the following categories: algorithmic-specific aperiodic designs; random-
element locations chosen at random; random removal-holes chosen at random; dynamic
programming-quasi-trial-and- error. In [6], Steinberg compared algorithmic design of
thinned aperiodic arrays tested by computer simulations with random arrays. The dis-
tribution is compared to that of a set of 170 random arrays [6][6]. Both distributions are
found to be nearly log normal with the same average and median values. They markedly
differ in their standard deviations. However, the standard deviation of the random array
distribution is approximately half that of the algorithmic group. The author showed that
algorithmically thinned arrays rarely offer enough control of the far radiation pattern to
be superior to random arrays. Furthermore the compactness of the random distribution
almost guarantees against selection of a random array with catastrophically large peak
sidelobes. The only procedure that gives superior performance is dynamic programming-
quasi trial-and-error method of sidelobe control, a highly constrained approach. More in
detail, the first element is located at random. The second location is that which gives
the best combination. The third location is that which gives the best trio based on the
fixed locations of the first two elements, etc. Despite dynamic random design method is
commonly considered as the reference strategy for the synthesis of thinned arrays because
of its simplicity (does not require any computational procedure), its good performance
(quasi trial-and-error method gives a slight improvement) and flexibility [6][6].

In order to improve performance of thinned arrays respect to random arrays, different
ways have been used. The first is based on the use of optimization algorithms and the
second on particular kind of combinatorial sequences.

Assuming, like in the previous methodologies, the number of radiators is a finite num-
ber and each radiator can have two values on and off (thinning may also be thought of

as quantized amplitude taper where the amplitude at each element is represented by one
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bit), the number of possible combinations, where @) is the number of array elements, is
2@, Thinning a large array for low sidelobes involves checking a rather large number of
possibilities in order to find the best thinned aperture. Exhaustive checking of all possi-
ble element combinations is only practical for small arrays [13]. Optimization algorithms
represent an alternative to exhaustive search. Most optimization methods (including
down-hill simplex, Powell’s method, and conjugate gradient) are not well suited for thin-
ning arrays. They can only optimize a few continuous variables and get stuck in local
minima [14]. Also, these methods were developed for continuous parameters, whereas the
array-thinning problem involves discrete parameters. The dynamic programming method
can optimize a large parameter set (many elements), but it is also vulnerable to local
minima [15]. Simulated annealing and genetic algorithms (GA) [14][16][17] are optimiza-
tion methods that are well suited for thinning arrays. There is no limit to the number of
variables that can be optimized. Although quite slow, these algorithms can handle very
large arrays. These methods are global since they have random components that test
for solutions outside the current minimum, while the algorithm converges. The global
nature of the algorithms and the lack of derivative information cause a very slow converge
compared to other non-global methods. If the array is symmetric, then the number of

possibilities is substantially smaller and the GA converges faster.

In [18|, Haupt presents an example of thinning strategy based on Genetic Algorithms
(GAs) used to find a thinned array that produces the lowest PSL allowing us to improve
the performance of large arrays. A Genetic Algorithm is a global method for optimiza-
tion inspired by the Natural Selection Principle whose main concepts are competition and
adaptability [14]. The paper [18] shows that the on/off structure of the thinned array
(linear or planar) is codified into the chromosomes of the GA. After encoding the param-
eters in binary strings called genes, GA performs the genetic operations of reproduction,
crossover, natural selection, and mutation to arrive at the optimum solution. During each
iteration, the trial solution provides by the GA is given in input to the fitness function.
The fitness is defined in [18] as the PSL and the purpose of the GA is to find out the array
configuration minimizing this function. A genetic algorithm can be used to numerically
optimize both linear and planar arrays and arrives at better thinning configurations for
arrays than previous optimization attempts or statistical attempts. Previous methods of
array thinning used statistical methods may fail to produce an optimum thinning while
the genetic algorithm searches in a smart way for the best thinning that produces low
sidelobes [18|.

A different approach to obtain low PSL large arrays is to use particular kind of com-
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binatorial sequences. With this approach Leeper describes in [5][19] a class of massively

thinned linear and planar arrays that shows well-behaved sidelobes in spite of the thinning.

The Genetic search algorithms can obtain better performance but this method is not
appropriate for very large or very highly thinned arrays and the improvements that this
methodology offers are difficult to predict a-priori. Rather than using a search algorithm,
the approach in [5][19] attacks directly the sidelobe control problem by applying the prop-
erties of Difference Sets (DSs) [2], to the placement of antenna elements within a regular
lattice. In particular Leeper uses the class of Cyclic-Difference Sets (CDS) sequences as
function that describes the position of active elements in arrays [20]. The property that
makes CDS an effective prescription for the design of the thinned array is that the auto-
correlation of CDS (and generally all kind of DSs) is a two-valued function. It is possible
to demonstrate [5] that this kind of autocorrelation allows controlling the PSL of an array
built with CDS geometry. The CDS method guarantees more effective suboptimal array
synthesis in terms of PSL with respect to random elements placement. 2D-CDSs have
similar autocorrelation property of 1DCDSs [2][5][19][20].

The deterministic placements of DS create an isophoric array (“isophoric” means “uni-
form weight”) with attendant uniformity of spatial coverage. The uniformity consistently
produces, with no searching required, a reduction in PSL when compared to random el-
ement placement. More specifically, in any linear array of aperture half-wavelengths, the
Nyquist sampling theorem shows that the array power pattern can be completely deter-
mined from uniformly spaced samples of the pattern. In an isophoric array, the even-
numbered samples will necessarily be “locked” to a constant value less than 1/K times
the main-beam peak, where K is the number of elements in the thinned array. While
the odd-numbered samples are not so constrained, the net effect is to produce patterns
with much lower PSL than are typical with cut-and-try random placement. Obviously,
isophoric arrays can be planar as well linear [5].

In [21], Kopilovich suggests another method for synthesizing a planar aperiodic thinned
array antenna with a low peak sidelobe level. Instead of using the previous CDS, Kopilovich
shows the implementation of combinatorial constructions called non-Cyclic difference sets.
The most important class of the non-Cyclic 2D-DSs is represented by the sets of Hadamard
type (HDSs). In the same way of the previous Leeper method, Kopilovich uses the fact
that when the elements of an equi-amplitude array antenna are arranged according to
a DS law, its pattern takes constant value in the net of uniformly located space points
in the sidelobe region, and this value is less than 1/K, where K is the active element

number. In distinction to the method using Cyclic DSs developed by Leeper [5][21], that
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enables one to build planar antenna arrays only on rectangular grids with co-prime side
lengths, the described method omits such a constraint. Based on such sets, rectangular
and square aperiodic roughly half-filled array antennas can be built. Kopilovich uses this

strategy to obtain square array antennas, with the element number in the array up to
300.

The definition of binary sequences of length with suitable autocorrelation properties,
for which DSs are not available, has been carefully investigated in information theory
and combinatorial mathematics. It has been found that it is often possible to determine
sequences with a three-level autocorrelation function by taking into account the so-called
almost difference sets (ADSs) [22][23]. ADSs are a research topic of great interest in
combinatorial theory with important applications in cryptography and coding theory.
Moreover, although ADS generation techniques are still subject of research, large collec-
tions of these sets are already available. In such a framework, the whole class of ADSs
seem to be a good candidate for enlarging the set of admissible analytic configurations
with respect to the DS case. From this viewpoint, ADSs allow to obtain low PSL and
predictable results in a very effective. With respect to DSs, ADSs have the advantage of
having a larger set of admissible sequences [22][23].

Finally, the last approach described to improve large arrays performance is based on
merging the combinatorial and stochastic methods in order to take advantage from their
good characteristics and to compensate for their drawbacks [5].

One of the first attempts to exploit this idea was developed by Caorsi et al. [24].
The ripples formation caused by CDS could be corrected in some way by GA search
capabilities, while the uniform spatial coverage of CDS-optimized arrays could be helpful
to speed up the convergence of the genetic procedure. One possible way of implementing
this approach is to consider CDS based arrays as a-priori knowledge to be inserted in the
genetic search process in order to improve its efficiency. To this end, the steps aimed
at transferring good CDS-derived schemata into the GA population are the following.
At the initialization step, the GA population is composed by a selected CDS Dy and
V' cyclic shifts of the Dg difference set, while the remaining chromosomes of the initial
population are randomly mutated cyclic shifts. Moreover, during the iterative loop of
the GA, the mutation occurs in order to introduce new unexplored solutions into the
search space. In order to keep higher order CDS-derived schemata, trial solutions having
binary configurations belonging to higher order schemata are mutated only in chromosome
positions out of the schemata locations [24]. These mechanisms are aimed at constraining

the GA to synthesize array configurations similar to CDS-based ones, but with limited

33



ripple amplitudes thanks to evolutionary capabilities [24].

In the same way Donelli et al. make use of a hybrid technique based on HDS and binary
PSO [25][26]. PSO is a stochastic multiple agents optimization algorithm extensively
applied in the framework of antenna array optimization [25][26][27]. By imitating the
social behaviour of groups of insect and animals in their food searching activities, PSO
is based upon the cooperation among particles. The ensemble of the particles, referred
to as swarm, explores the solution space to find out the best position (i.e., the optimum
of a suitably defined cost function). HSs-based arrays generate the initial trial solutions
of this hybrid method that then is optimized by binary PSO. Integrating the HS-based
method developed by Kopilovich [21] with PSO optimization strategy gives an important

improvement in thinned array performance.

In the framework of the antenna array for space systems, we have a particular appli-
cation where the previous synthesis techniques were applied. Arrays are used in radio
astronomy to estimate the brilliance [9][29][30]. Astronomers are interested in designing
correlator arrays that properly sample the spatial distribution they observe. The design
of correlator (also known as interferometric) arrays is essentially an optimal sampling
problem [9][29][30] in which the positions of the antennas are chosen in order to ensure
optimal performance regarding all possible observation situations (source positions and
durations of observation), scientific purposes (single field imaging, astrometry, detection,
...) and constraints (cost, ground composition and practicability, operation of the instru-
ment, ...) [31][32]. In order to obtain such features, high performance correlator arrays
have to show either a maximal coverage in the spatial frequency (or u — v) domain, or
a minimum peak sidelobe level (PSL) in the angular (or [ —m) domain [8][31]. Towards
this end, many different design principles have been proposed, including minimum redun-
dancy [33], pseudo-randomness [34], power laws [35], difference set arrangements [36], and
minimization of the holes in the sampling [37]. Ruf in [16] uses simulated annealing to
optimize low-redundancy linear arrays while Jin [31] makes use of PSO. Well-established
optimization based sum-array design techniques cannot be directly applied, since, unlike
in traditional sum arrays, the responses in both the © — v and the [ — m domains have
to be considered in the design procedure [31]. As a consequence, design techniques have
to include the array spatial coverage evaluation, the Earth rotation effects and the [ —m

beam calculation in the synthesis procedure.
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3.2 Random Arrays [6]

3.2.1 Introduction

The cost of a large phased array which is designed primarily for high angular resolution
rather than for weak signal detection may be reduced manifold through thinning, i.e.,
reducing the number of elements in the aperture below that of the filled array in which
the inter element spacing is nominally one half-wavelength. Increasing the inter element
spacing has another salutary effect; a separation of a few wavelengths reduces mutual
coupling to negligible proportions. Thinning, therefore, is attractive from both points
of view. But these benefits are not free of penalty. Unless the element locations are
randomized or made otherwise non periodic, grating lobes appear. Also, the reduction
in the number of elements reduces the designer’s control of the radiation pattern in the
sidelobe region, which in turn influences the level of the largest, or peak, sidelobe. In this
chapter the peak sidelobe of random arrays is studied (N.B.: The random array ([6])
is characterized by element locations chosen by some random process. Conversely in a
statistical array ([4]) a conventional filled array is designed and a given fraction of the

elements is removed at random).

3.2.2 Linear Random Array

Consider an array of N unit, isotropic and monochromatic radiators at locations x,,. The
x, are chosen from a set of independent random variables described by some first proba-
bility density distribution, initially assumed to be uniform over the interval [—L/2, L/2]
where L is the array length. It is assumed that each element, irrespective of its location,
is properly phased so that a main lobe of maximum strength is formed at 6y, which is
measured from the normal to the array. The reduced angular variable u = sin # — sin 6,
contains the beam steering information. The complex far-field radiation pattern f(u) is
the Fourier transform of the current density. Since the latter is a set of delta functions,
f(u) is proportional to the sum of unit vectors having phase angles kx,u, k = 2w/ be-
ing the wavenumber associated with the wavelength A\. The array factor is the Fourier
transform of the current density i(x). The current density i(z) of a random array of N
equally excited isotropic elements is the sum of delta functions at the locations x,, and

the complex far-field radiation pattern becomes

f(u) :F{Zé(x—xn)} :Zexp (Jkz,u) (3.1)
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3.1 can be rewritten as

flu) = Zgzo cos (kx,u) + j ZnNzo sin (kz,u)

a(u) + b(u) (3.2)

Since u is defined over the interval [—1, 1], it follows that |f(—u)| = |f(u)|. Therefore, it
is sufficient to consider the radiation pattern |f(u)| only over the interval [0, 1].

The radiation pattern f(u) as given by (3.2), is a complex random process. For the
special case where element locations are independent and uniformly distributed over the

interval [—L/2, L /2], the expected values of the processes a(u) and b(u) are

E{a(u)} = %l;im — Nsinc(uL/A) (3.3)
and
E{b(u)} =0 (3.4)

The process a(u) and b(u), for a given value of u, are sums of N independent, identically
distributed random variables. When N is large, the central the central limit theorem
justifies approximating a(u) and b(u) as Gaussian random variables. The mean of a(u),
as given by (3.3), is approximately zero for u greater than a few beam widths (the nominal
beamwidth is A/L). Furthermore, for imaging problems in which high angular resolution is
demanded, \/L < 1. Thus in most of the sidelobe region, the two orthogonal components
of f(u) are approximately zero-mean wide sense stationary Gaussian random processes.
For a given u, the magnitude of f(u) is known to be Rayleigh distributed [?]. Let
us denote the magnitude pattern as A(u)A |f(u)|. The probability density function of
A(u) will be given by [6]
p(A) = % exp (—A4*/N) (3.5)
It follows that the mean square value A2, which is the average sidelobe power level,
is N (and consequently the rms amplitude is \/N) The power ratio of the average
sidelobe to the main lobe is N/N? = 1/N. The average is A = \/7N/2. Hence, the
variance is 02 = A2 — (Z)2 =N (1—7/4).
The integral [6] .
a = / p(A)dA = exp (—A%/N) (3.6)
Ao
is the probability that the magnitude of an arbitrary sample of the radiation pattern, away
from the region of the main lobe, exceeds some threshold Agy. Its complement, 1 — a;, is

the probability that such a sample is less than Ay. If n independent samples are taken [6]
B=[1-exp(-45/N)]" (3.7)
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is the probability that none exceeds Ag. From (3.3), A3 = —N1In (1 — 8Y/"). It is con-
venient to normalize this expression to N, the average sidelobe level, and to give the

dimensionless power ratio AZ/N a new symbol, B. Thus [6]
B=-In(1-4Y")~In(n) —In(ln(87")) (3.8)

B may be interpreted as a statistical estimator of the power ratio of the peak-to-average
sidelobe of a set of n independent samples. B is a confidence level; it is the probability
that none of n independent samples of the sidelobe power pattern exceeds the mean value
by the factor B. n is an array parameter, which is a function of all the relevant array
properties other than N. It is proportional to the number of sidelobes in the visible
region. It maybe calculated in several ways. An interesting method utilizes the Nyquist
sampling theorem. The complex radiation pattern of a random array is such a band-
limited function, the “limit” being due to the finite length of the array. The far-field
complex radiation pattern f(u) is related to the radiating element positions according to
(3.1). From (3.1) we can define the expression for the power pattern of an array of unit
radiators

N N
F)fru) = exp (jk (2, — ) u) (3.9)

m=0 n=0

The visible domain is —1—sin 0y < u < 1—sinfy. The length of the non-redundant portion
is 1 4 |sinfy|. Consequently, the number of independent samples needed to specify the
complex radiation pattern is 2 (L/A) (1 + |sinfp|). Half this number may be associated
with the amplitude of the array factor and half with its phase. Therefore, the power
pattern is uniquely specified by [6]

n= (é) (1 + |sin o)) (3.10)

independent samples, the average angular interval between samples being A\/L. n is
dominated by the length of the array in units of wavelength and secondarily influenced
by the beam steering angle.

Equations (3.8) and (3.10), however, are insufficient to provide an unbiased estimate
of the peak sidelobe. The probability is zero that any finite set of samples of
a power pattern falls exactly upon the crest of the largest sidelobe. Hence
such estimation is downward biased. A correction to (3.8) may be obtained by
calculating the difference between the largest of a set of samples and the height of the
lobe from which the sample is taken. The approximate mean increment reduces to 142/ B,
and the estimator of the normalized peak becomes (for details [6])

2
B,=B+1+ 4 (3.11)
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The power ratio of the peak sidelobe to the main lobe is [6]

- N N

peak sidelobe  peak sidelobe avg 1 B+1+2/B
: — . : =B,- = - == (3.12)
main lobe avg main lobe

Experimental data indicate that the estimator closely matches the data when B 2> 3. The
fact that the match is satisfactory for B as small as 3 implies that (3.12) is useful even
for small arrays. Using B = 3 in 3.8 gives the smallest array for which the estimator is
satisfactory.

The minimum number of elements for which the theory is satisfactory (|6]) is the larger
of 15 or 2B (n, 3), or

Npin = max {15, 2B} (3.13)

oos

Figure 6. Random Arrays - Pattern of 70-wavelength random array of 30 isotropic elements [6].
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Figure 7. Random Arrays - Probabilistic estimator of peak sidelobe of random array. N is the is
number of array elements, PSL/M L is power ratio of peak sidelobe to main lobe, § is probability or
confidence level that no sidelobe exceeds ordinate, L is array length, X\ is wavelength, 0y is beam

steering angle [6].
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3.2.3 Planar Array

Extension of the peak sidelobe theory to two and three dimensional arrays requires only
a reevaluation of the array parameter n. Consider as an example a rectangular planar
array having sides L; and L, and uniform pdf of element location. The angular interval
for independent sampling of the pattern amplitude in these orthogonal planes is A\/L;
and \/Ly. The area in the u; — us plane associated with each sample point is on the
order of A2/ (L,L,). The visible area of the plane, which is a circle of unit radius, is 7.
Hence the maximum number of independent samples over the hemisphere is approximately
7wL1Ly/A?. The same result pertains to a three-dimensional array in which L; L, is the
projected area upon a plane perpendicular to the axis of the main lobe of the element
factor. Symmetry in the pattern reduces the number of independent samples. With the
array steered to the zenith (6 = 0) each lobe in every polar cut has an image lobe in the
same plane [6]. Thus the range of variation of n with 6, is a factor of two. The logarithmic
relation (3.8) between peak sidelobe and the array parameter minimizes the importance
of the detailed variation. The dominant feature is the approximate squaring of n when a
fixed number of elements NV is spread from a linear array to a planar array of the same
length and width. The result is (approximately) a doubling, or 3 — dB increase, in the
peak sidelobe [6].

Figure 8. Random Arrays - Examples of (a) a 50 x 50 elements square random array and () a

100 x 100 elements square random array [6].
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3.2.4 Comparison between the Peak Sidelobe of the Random Ar-
ray and Algorithmically Designed Aperiodic Arrays [12]

3.2.4.1 Database

In [12], a database of 170 random arrays with various parameters were created by com-
puter, their antenna patterns calculated, and the peak sidelobe of each measured. Approx-
imately half that number algorithmically designed aperiodic arrays were collected from
the literature. For each, the peak sidelobe was measured and the pertinent, parameters
tabulated.

The aperiodic designs fall into the following categories:
e algorithmic: specific aperiodic designs

e random: element locations chosen at random

e random removal: holes chosen at random

e dynamic programming: quasi-trial-and error

The random arrays were developed for an earlier study of the peak sidelobe of such arrays
[6]. The elements were located on a line by random numbers drawn from a population

having uniform probability density.

3.2.4.2 Results

Algorithmic design of thinned aperiodic arrays rarely offers enough control of the far
radiation pattern to be superior to random location of the array elements. A study of
70 algorithmic arrays and 170 random arrays showed their peak sidelobes, when suitably
normalized to permit, comparison, to be indistinguishable in the mean and median [12].

A quasi-trial-and-error procedure called dynamic programming was found to be 3.5dB
superior in the mean. The distribution of the normalized peak sidelobe of the 170 random
arrays found to be log normal with a standard deviation of 1.1dB. The compactness of
the distribution precludes the use of trial-and-error procedures to achieve a peak sidelobe
materially below the population mean. The same characteristic almost, guarantees against

selections of element locations which produce unexpectedly large sidelobes [12].
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3.3 Statistical Removal (Random Removal) [4]

3.3.1 Introduction

This chapter considers the design of “thinned” planar array antennas in which the density
of elements located within the aperture is made proportional to the amplitude of the
aperture illumination of a conventional “filled” array. (A “thinned” array is one that
contains less elements than a “filled” array of equally spaced elements located a half
wavelength apart). The selection of the element locations to provide the desired density
taper is performed statistically by utilizing the amplitude taper as the probability density
functions for specifying the location of the elements. In a “thinned” array all the elements
are assumed to radiate equal power if a transmitting array, or equal amplitude weighting
if a receiving array. It is further assumed that the element spacings of a “thinned” array
are not equal [4].

An unequally spaced, thinned array may be used to
e achieve a narrow main lobe with reduced number of elements

e achieve a wide scan angle or operate over abroad frequency band without the ap-

pearance of grating lobes

e achieve desirable radiation patterns without amplitude taper across the aperture.

3.3.2 Analysis of Statistical Density-Tapered Arrays

The usual method for designing directive antennas to achieve low sidelobes is to taper the
amplitude of the aperture illumination so that the received (or radiated) energy is greater
at the center than at the edges.

A density taper has advantages over an amplitude taper in certain applications. Trans-
mitting arrays, for example, with individual power amplifiers at each element are easier to
design and build and more efficient to operate if each amplifier delivers full rated power.
The density-tapered array does not suffer any of amplitude taper inconveniences and
permits the system designer to employ equal-power amplifiers at each element and still
achieve low sidelobes. Receiving antennas can also benefit from density tapering.

The theory of the design of density-tapered arrays is not on as firm a foundation as
that of amplitude tapered arrays. The design techniques of Dolph ([10]) and Taylor ([11])
which are based on the properties of polynomials and which are widely used for amplitude

tapered antennas do not seem applicable to unequally spaced arrays.
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There are two basic methods for matching a density taper to an amplitude taper. In
one technique the density is matched deterministically to the desired amplitude taper by
trial and error placement of the elements or by certain approximation techniques applied
to the integral of the aperture illumination. The other design technique, and the one which
is the subject of this paper, is a statistical method which utilizes the desired amplitude
illumination as a probability density function for determining whether or not an element
should be located at a particular point within the aperture.

Consider an array antenna with some arbitrary arrangement of N elements. The
excitation at each element is assumed to be of equal amplitude. The field intensity
pattern (array factor) assuming the elements to be isotropic radiators is [4]

N

E(0,6) = exp (jin) (3.14)

n=1

where 6 and ¢ are angular coordinates describing the pattern and ¢, is the phase of the
signal at the n — th element measured with respect to some reference. The phase 1, is
a function of ¢ and ¢ and the location of the n — th element on the aperture. The N
elements may be located on any type of aperture.
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Figure 8. Statistical Arrays - Geometry of an M by M element array arranged on a square grid.

Angular coordinates are also shown [4].

If elements are removed from the array the field intensity pattern may be written [4]
N

E(0,¢) =Y Fnexp (jibn) (3.15)
n=1
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where F,, is either zero or unity according as the element is removed or left in place.
The quantity F,, thus has only the values of 0 and 1. In a statistically designed array,
F,, is selected randomly and independently from element to element by a random number
generator in such a way that its average value (ensemble average over many selections) is
[4]

F,=A, (3.16)

where A,,, is the amplitude of the excitation that would normally be applied to the n —th
element if it were designed with an amplitude taper across the aperture. The field intensity
of the equivalent amplitude-tapered array used as the model is [4]

Eo(0,0) =Y Anexp (jibn) (3.17)

The radiation pattern of (3.15) is statistical since F,, is statistical. By the Central Limit
Theorem of statistics, the distribution of the quantity E (6, ¢) for a given 6 and ¢ will be
approximately Gaussian, if N is large.

The mean of the statistical pattern of (3.15) is found using the fact that the mean of
the sum is the sum of the means,

E0,0) = Foexp (jtbn) = > Anexp (jthn) = Eo (6, 9) (3.18)

Thus the mean or average pattern is identical with the field-intensity pattern of the am-
plitude tapered array used as the model. This array factor (3.17) will be referred to as
the model array factor. The coefficients A, are selected by standard design procedures
[10]-[11] for amplitude-tapered arrays to obtain a desired mean pattern. Since the quan-
tities A,,, are the mean values of a random variable with values 0 and 1, we must always
have 0 < A,, < 1. This may be obtained by properly scaling the original amplitude taper
of the model-array design.

The square of the field-intensity pattern is the power pattern and is written
E6,9)° = E(9,¢) - E*(0,0)
N N

n=1m=1

(3.19)

where E* (0, ¢) denotes the complex conjugate. There is a theorem which states that the
mean of a product of statistically independent random variables is equal to the product of

the means of those random variables. The variables F},, and F}, in (3.19) are independent if
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and only if m # n. If m = n they are of course identical. Therefore the double summation
is separated into terms with m = n and terms with m # n, and the average is taken as

follows:

=N F24 >N FuFexp ( (Y — ) (3.20)

m#n

Since the values of F,, are either 0 or 1, F> = F,, and the first summation of (3.20)

becomes
Y F2= ZF2 ZF _ZA (3.21)

Using the theorem mentioned above, the second summation of (3.20) involving terms with

m # n becomes

ZZA A exp (5 (U — ¥n)) (3.22)

m¥#n
This is simply the power pattern corresponding to the model-array pattern E (6, ¢) of
(3.17), except that the terms with m = n are missing. When these terms are restored

and subtracted from the result, the following is obtained
E(0,9)]° = ZA +1Eo (6,0)]° —ZA2
= \EO o) + ZA

(3.23)

where |Eq (8, ¢)|” is the power pattern of the model array with "equivalent" amplitude
taper A,,, applied to each element.
The fraction of elements removed is controlled by the amplitude taper chosen for the

model array. The exact number of elements after the elimination procedure is
Np =) _F, (3.24)

On the average, the number of elements left in the array is [4]

N N
Ng=> F,=Y Ay=NA, <N (3.25)
and the variance is
N
0% =N — (Np)* = 4, (1 - A,) (3.26)
n=1



If it is assumed that the degree of element removal is such that the omnidirectional
component [second term of (3.23)] of the power pattern is larger than the sidelobes of the

model amplitude-tapered array pattern, then the average value of the sidelobes is

average statistical sidelobes = SL
N N
3.27
- Y-y o
n=1 n=1
Substituting Np from (3.25)
— — = _ Ng
SL:NE—NE/GQZNE ].—N— (328)
Pa

where p, is the aperture efficiency of the model amplitude taper given by A, ([4]). Since
pa is of the order of unity, (3.28) states that the average sidelobe level approaches Np,
the number of elements left within the array, when the fraction of elements removed
(1 — Ng/N) is large. The average sidelobe level relative to the peak value of the main

beam after the elimination of elements is
average relative sidelobe =
> an-an) (3.29)

|E(0,0)]?

:p%

From (3.23),

|E(0,0)] = (ZAH> +Y) A (1-Ay)

2 (3.30)
Therefore, (3.29) becomes
SA0-4) 12t
pR——— = I (3.31)
|E(0,0)| 2 n An
and after elaboration L
Ng
1-
p ~ NTPG (332)
E
and —
1 N
P for WE <1 (3.33)
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where (G,, is the gain of the model amplitude-tapered array, Gy, is the average gain of
the statistical designed density-tapered array. If one starts with an N element array
and remove elements according to the above statistical procedure, the average number of
elements that remain is given by (3.25). The N-element array is said t o be “thinned” and

the degree of thinning, or percentage of elements removed, is

N
degree of thinning = 100 (1 - —E) % (3.34)
A given amplitude taper therefore has a certain natural degree of thinning. If it is desired
to remove more elements than the natural number, so that the number remaining N, =
kNg, where k < 1, an examination of (3.25) shows that this may be accomplished by
multiplying the amplitudes A,,, by the factor k ([4]). Thus

N
N, =kNg =) kA, (3.35)

n=1
The above analysis can be repeated for N, = kNg elements. In a statistically designed
array [, is selected randomly and independently from element to element so that its
ensemble average is F,, = kA,. When k = 1, the array is said to be “naturally” thinned.

The average field intensity (ensemble average over many selections) is
[E0,9)] = kEqy (6, ¢) (3.36)

which is similar to that of the model amplitude-tapered array. The average power pattern,

or radiation pattern is

E(0,0)] = k2| By (0, 0)° +ZkA A,) (3.37)

The first term of the radiation pattern is proportlonal to the radiation pattern of the model
amplitude-tapered array. When k£ = 1, it is equal to it, corresponding to a naturally
thinned array. The second term is independent of angle. Thus the average statistical
sidelobes which dominate the pattern outside the vicinity of the main beam (and the

near-in sidelobes) may be written [4]
N
SL=" kA, (1—kA,) (3.38)

The equation (3.38) shows that the statistical sidelobes of a thinned array are determined
by the model aperture amplitude distribution A,,, and by k, the factor which determines

the number of elements removed. The near in sidelobes are also determined by A,,.
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Figure 9. Statistical Arrays - In (a) the solid curve is the computed radiation pattern of a statistically

designed array naturally thinned using as a model the 30dB Taylor circular aperture distribution whose

pattern is shown by the dashed curve. In (b) the locations of the elements for the 30dB design with

natural thinning [4].
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Figure 10. Statistical Arrays - In (a) there is the computed radiation pattern of a statistically

designed array using as a model the 25dB Taylor design but with approximately 90 per cent of the

elements removed. In (b) the corresponding locations of the elements [4].
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3.4 Optimization Algorithms Approach

3.4.1 Introduction

Thinning an array means turning off some elements in a uniformly spaced or periodic
array to create a desired amplitude density across the aperture. An element connected
to the feed network is on, and an element connected to a matched or dummy load is
off. Thinning an array to produce low sidelobes is much simpler than the more general
problem of non uniform spacing the elements. Non uniform spacing has an infinite number
of possibilities for placement of the elements. Thinning has 2% possible combinations,
where () is the number of array elements. If the array is symmetric, then the number
of possibilities is substantially smaller. Thinning may also be thought of as a quantized
amplitude taper where the amplitude at each element is represented by one bit. Thinning
a large array for low sidelobes involves checking a rather large number of possibilities
in order to find the best thinned aperture. Exhaustive checking of all possible element
combinations is only practical for small arrays. Most optimization methods (including
down-hill simplex and conjugate gradient) are not well suited for thinning arrays. They
can only optimize a few continuous variable sand get stuck in local minima. Also, these
methods were developed for continuous parameters, where as the array thinning problem
involves discrete parameters. Dynamic programming can optimize a large parameter set
(many elements), but it is vulnerable to local minima.

Simulated annealing ([38]|), genetic algorithms ([18]), ant colony ([39]) and
other stochastic algorithms ([14][28][27]) are optimization methods that are well suited
for thinning arrays. There is no limit to the number of variables that can be optimized.
Although quite slow, these algorithms can handle very large arrays. These methods are
global in that they have random components that test for solutions outside the current
minimum, while the algorithm converges. The global nature of the algorithms and the
lack of derivative information causes them to converge very slowly compared to other
non-global methods. The purpose of this method is to find a thinned array that produces

the lowest maximum relative sidelobe level (rsll).

3.4.2 Genetic Algorithm [1§]
3.4.2.1 GA - Algorithm

A genetic algorithm ([14]) is used to numerically optimize both linear and planar ar-

rays. Genetic algorithms are modeled after genetic recombination and evolution. The
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algorithms encode parameters in binary strings called genes and perform the genetic
operations of reproduction, crossover, natural selection, and mutation to arrive at the
optimum solution. These algorithms arrive at better thinning configurations for arrays
than previous optimization attempts or statistical attempts. Other optimization methods
cannot be applied to large arrays, while statistical methods cannot find optimum solutions
([14][18]).

The goal of the genetic algorithm is to find a set of parameters that minimizes the
output of a function. Genetic algorithms differ from most optimization methods, because

they have the following characteristics
1. They work with a coding of the parameters, not the parameters themselves.
2. They search from many points instead of a single point.
3. They don’t use derivatives.
4. They use random transition rules, not deterministic rules.

Fig. 11 is a flow chart of a genetic algorithm. Steps are labeled as A through F for easy
reference.

Values for all the parameters are represented by a binary code (step A). Each encoded
parameter is placed side by side to form a long binary string called a gene. Every gene has
an associated output corresponding to the function evaluated at the quantized parameters.
Thus, the genetic algorithm has a finite, but possibly very large, number of parameter
combinations to check. A gene with N, B — bit parameters has a total of 2V? possible
genes. If the parameters are continuous, then the genetic algorithm limits performance
due to quantization errors associated with the binary encoding of the parameters. On
the positive side, genetic algorithms are ideally suited for optimization of functions with
discrete parameters.

A thinned array has discrete parameters. One bit represents the element state as
on=1oroff =0. For example, a six element array may be represented by 101101, where
elements 2 and 5 are turned of f. Assuming the linear array is symmetric about its center
allows the 2N element array to be represented by a gene with N bits. Our six-element
array example can then be represented by the gene 101. The fitness associated with this
gene is the maximum relative sidelobe level (rsll) of its associated far-field pattern. The
function in this paper is the relative far-field pattern of an array of point sources. Its
output to be minimized is the maximum rsll. The parameters affecting the output are

whether an antenna element is on or off ([18]).
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Genetic algorithms model genetic recombination and evolution in nature. As in nature,
the gene is the basic building block. Genetic algorithms start with a random sampling of
the output space. Many of the genes from this list have terrible maximum rsll’s. Genes
that produce a superior output survive, while genes that produce a weak output die off.

Usually initial population and genes are randomly generated (step B). Then genes are
ranked from best to worst, (step C) according to their rsll. The most common suitability
criterion is to discard (step D) the genes with the worst performance. After this “natural”
selection takes place, the genes mate (step E) to produce offspring. Mating takes place
by pairing the surviving genes. Once paired, their offspring consist of genetic material
from both parents. One last step is to introduce a random mutation in the list of genes
(step F). A mutation changes a zero to a one or a one to a zero. The mutation helps the
algorithm avoid a local minimum. over again with the parents and the offspring (step C
). Mutation usually doesn’t improve the solution. It is a very necessary part of genetic
algorithms, though. Without it, genetic algorithms are more likely to get stuck in a local
minimum. Natural selection, mating, and mutation will take place with these genes. The
algorithm continues this process until a suitable stopping point is reached. Eventually,

all the genes will be identical except for the single mutated gene ([18]).

3.4.2.2 GA Optimization for the design of Linear Array

For linear array synthesis problem, each gene has an associated rsll calculated from

N
2mnd
22 o cos (2mndu + &) elpat (u)

FF (u) =
() = max 2 FFp (3.39)
svg = u <1

where
e 2N is the number of elements in the array

on

0 off

a, is the amplitude weight of element n = {

d is the spacing between elements

e u = cos (o)

¢ is the angle measured from line passing through antenna elements

0s = —2mduy is the steering phase
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e clpat (u) is the element pattern

® (( is constant

e ['F,, .. is the peak of main beam

The region of u for which F'F is valid

array occurs at u = L

2Nd’

excludes the main beam. The first null for a uniform

Thinning an array causes the null to move, so a constant, ¢, is

needed in the formula to adjust for the first null location ([18]).

3.4.2.3 GA Optimization for the design of Planar Array

For planar N x M element array synthesis problem, each gene has an associated

rsll calculated from

M N

FF(0,¢) = ZZamn cos [(2m — 1) wd, sin 0 cos @] x cos [(2n — 1) 7d, sinfsin ¢| (3.40)

m=1n=1

where

e M is the number of elements in the array in the y—direction

e N is the number of elements in the array in the r—direction

e d, is the spacing between elements in the x—direction

e d, is the spacing between elements in the y—direction
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Figure 11. Thinned Arrays with Genetic Algorithms - Flow chart of a genetic algorithm [18].
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3.4.3 Simulated Annealing [38]

In the past few years, three-dimensional (3-D) acoustic imaging has been one of the main
innovations in both underwater and medical applications. To obtain 3-D electronic focus-
ing and beamforming (i.e., 3-D imaging capabilities), a two-dimensional (2-D) aperture
should be used to generate and/or receive an acoustic field. When such an aperture is
spatially sampled, the adoption of a 2-D-array antenna (also called planar array) is as-
sumed. To prevent grating lobes (i.e., aliasing effects due to spatial under sampling), a
half-wavelength (\/2) spacing between the elements of the array should not be exceeded.
At the same time, in order to obtain a fine lateral resolution, the array should have a
wide spatial extension. The \/2-condition with the fine resolution requirement often will
result in a 2-D array composed of some thousands of elements. As an acquisition channel
is associated with each array element, the cost of a 2-D array of this type (i.e., a fully
sampled array) is prohibitive ([38]).

One of the most promising approaches to reducing the number of array elements (for
both linear and planar arrays) is based on the concept of aperiodic arrays. A fully sampled
array is thinned by removing a fraction of the original set of elements, thus obtaining a
sparse array. Aliasing effects are avoided because there are no periodicities at the positions
of the sparse array elements. The main drawback of the thinning operation is an often
unacceptable high level of the side lobes present in the beam pattern (BP) (i.e., the spatial
response of the array). Therefore, the thinning should be an optimization operation aimed
at reducing the number of elements, while maintaining adequate BP properties for the
addressed application ([38]).

In this method, a synthesis method is proposed that is aimed at designing a sparse and
aperiodic array to be used as a planar antenna for a narrow-band beamforming processor,
mainly for underwater applications. The purpose of the method is to minimize the number
of elements able to generate a BP that fulls some a priori fixed constraints by acting on
the positions and weights of the elements. The stochastic method proposed in this paper
is based on simulating annealing (SA) and is an evolution of the method for the synthesis
of linear arrays. The main features, which represent improvements over other methods,

are the following:
e very large 2-D arrays can be modeled
e both weights and positions can be optimized

e the number of elements can be minimized
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e asymmetric arrays can be synthesized, thus a larger number of degrees of freedom

can be exploited

e the overall extent of the 3-D BP can be considered.

3.4.3.1 SA - Algorithm

Initially, simulated annealing (SA) aimed to simulate the behavior of the molecules of a
pure substance during the slow cooling that results in the formation of a perfect crystal
(minimum energy state). The use of this technique to solve other types of problems is
based on the analogy between the state of each molecule and the state of each variable that
affects an energy function to be minimized. This function is called the energy function,
f(Y), Y being the vector of state variables. The algorithm is iterative: at each iteration,
a small random perturbation is introduced into the current state configuration Y; (I being
the iteration). If the new configuration, Y, causes the value of the energy function to
decrease, it is accepted (Y11 = Y,,). Instead, if Y,, causes the value of the energy function
to increase, it is accepted with a probability dependent on the system temperature, in
accordance with the Boltzmann distribution. The higher the temperature, the higher the
probability that the state configuration which caused the energy function to increase will
be accepted. In short, the probability that Y,may be accepted as a new configuration,
Pr{Y;;1 =Y,}, can be expressed as:

exp(f(Y)—f(Yn).,
Pr {Yl+1 = Yn} = kT Zf f (Yl) < f (Yn) (341)
1, otherwise

where k is the Boltzmann constant and 7' is the system temperature. As the iterations go
on, the temperature 7" is gradually lowered, following the reciprocal of the logarithm of the
number of iterations, until the configuration freezes in a certain final state. This method
is very useful to minimize an energy function that has many local minima as, thanks to its
probabilistic nature, it represents a notable improvement over classical methods of local
descent (despite being computationally demanding). The repetition of the process, using
different initial configurations, increases the reliance on the quasi-optimality of results,

even though a full optimality cannot be proved ([38]).

3.4.3.2 Optimization Procedure for Linear and Planar Arrays

The conceptual mechanisms and the peculiarities of the SA implementation that have
been applied to obtain an efficient minimization of the energy function are presented.

Fig. 12 shows a flow-chart of the optimization procedure. One can start the synthesis
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by considering a fully sampled array, i.e., a planar array composed of N \/2-equispaced
elements. Then, according to the process behavior, the elements are divided into two sets:
an active set (i.e., having weights different from zero) and an inactive set (i.e., having
weights equal to zero). The number of active elements is M and the relation M < N is
always verified. The initial temperature, 75", is chosen high enough and such that the
first configuration perturbations may almost always be accepted, even though they lead
to a sharp increase in energy. When one starts the iteration [, one chooses an element i
randomly (both active and inactive elements are visited according to a random sequence
that does not include any further visit to the same element before all the elements have
been visited once). If the chosen element is active, one can move it to an inactive condition
by following fixed death probability; whereas, if the chosen element is inactive, one can
activate it (with a random weight) by following a resurrection probability. On the basis
of the temperature 7" (), such state transitions can be accepted or not. If one of these
transitions is accepted, the number of active elements M must be updated. If the element
7 is active and its death does not occur, the weight w; is perturbed and, on the basis of

the temperature 7" (1), the perturbation can be accepted or not (|38]).

During the optimization procedure, a constraint is imposed to limit to low values the
current taper ratio (CTR), which is the ratio between the maximum and minimum weight
coefficients. This constraint makes it possible to avoid any consequences of possible un-
foreseen occurrences regarding the elements with the largest weight coefficients. To limit
the CTR value, one should perturb each weight coefficient in a random and continuous

way; but one should make sure that the coefficient value is included in an a priori fixed

range [Wmin; Wnaz)-

The number of iterations, [, is increased every time all the N elements have been
perturbed once. The process terminates when a state of persistent block (freezing) is
reached due to the slow temperature reduction. Alternatively, according to previous
experiences, one can perform a number of iterations which is large enough to ensure that
a block state will be reached ([38]).

Owing to the probabilistic nature of SA, different temperature schedulings and random
initial configurations may lead to different final results. However, if a logarithmic schedul-
ing is chosen, almost all the process runs give slightly different results in terms of both
energy values and array characteristics. This means that the resulting array configuration

is stable and close to the optimal one ([38]).
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Figure 12. Thinned Arrays with Simulated Annealing - Flow-chart of the optimization procedure [38].

3.4.4 Ant Colony [39]

It is known that with aperiodic arrays it is possible to get low sidelobe levels in all
directions or only at some regions. The advantage of uniform amplitude excitation is clear
from the point of view of the feeding network. However, the synthesis problem is complex
and cannot be solved with analytical methods. Therefore, global optimization methods are
a good option to afford these problems. Among them, genetic algorithms (GA), particle
swarm optimization (PSO), and simulated annealing (SA) have already been used in
array synthesis for different requirements.The purpose of using an algorithm based on ant
colony optimization (ACO) to synthesize thinned arrays with low SLL without pretending
to compare ACO neither with PSO nor with GA or any other optimization technique.
The main advantage of ACO algorithms could come from the implicit local search that
they perform and also from their simplicity. Of course, it still depends on the problem
and in the particular implementation of the algorithm, because all these algorithms have
parameters heuristically chosen that can have a strong influence on the algorithm behavior
for a particular problem. Moreover, the same algorithm with same parameters applied
to the same problem can find different solutions in the same number of iterations ([39]).

This is a consequence of their intrinsic randomness.

3.4.4.1 ACO - Algorithm

The ACO is a global search optimization method that is based on the behavior of ant

colonies in obtaining food and carrying it back to the nest. It is a “short path” based
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algorithm. When the ants walk around in search for food, they give off pheromone on the
ground. Ants select paths according to pheromone level. The shorter the trail from the
nest to the food source, the higher the pheromone level and thus the probability of ants
choosing that path. Furthermore, ants use this to remember the path to the food, and it
helps to add new ants to that trail, getting more food from that place to the nest. These
pheromone also evaporate slowly with time. This decreases the probability of taking paths
toward finished food sources ([39]).

The implementation of an algorithm based on this natural behavior is well suited
for discrete problems (although codification using real numbers is also possible). In our
case, we have implemented ant colony procedure as follows (having two working modes:
forward when the ants search food, and backward when they carry the food to home).

Define pheromone concentration function and desirability function and choose param-

eters: Number of ants, «, 3, ...

Initialize Iy,1>,...,1I,
For each iteration
For each ant
For each adjoining node
Calculate pheromone function and desirability
End for
Chose one node
If food is found
Mode 0: Come back home
Else-if ant is at home

Mode 1: Searching food

End if
Update pheromone
End for
End for
Solution is I;,ls,...,I, with best result

We have N bits, thus corresponding to an N-dimensional space of solutions. In this
case, every ant means an array solution, i.e., a vector with N bits. Ants describe paths that
are divided into nodes. They move from one node to another through the N-dimensional
space of solutions by checking the desirability and the pheromone concentration level
of their neighboring nodes before making a probabilistic decision among all of them. A

neighboring node is calculated by toggling the state of only one element of the array. This
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means that every ant has N neighboring nodes and has to decide which one among them
to move toward, in a probabilistic manner. One of the most common and suitable form
for combining the two parameters used to calculate the probability of choosing one node

in a path is

75 ()] - [n;]°
1,7 t) = 342
PO =SSR P 342

where p; ; is the is the probability of choosing node j at iteration ¢ from node 4, 7; (¢)
is the pheromone level of node j at iteration ¢, 7; is the desirability of node j, a is the
parameter controlling the relative importance of pheromone in the decision process while
£ does the same with the desirability. 6; is the set of nodes available at decision point ¢
([39])-

There are different implementations of the function 7;. This function controls the
change in pheromone level in nodes with time. This includes the increase when ants visit

that node but also the evaporation with time. We can use, for example,

where A7; (t) is is the pheromone addition on node j, and d; (¢) is the pheromone persis-
tence
p, ifmod (L) =0
d(t) = 7 (3.44)
0, <f mod % # 0

where ~ is the period of pheromone elimination, and is the coefficient of pheromone

elimination by period ([39]).

3.4.4.2 Optimization Procedure for Linear and Planar Arrays

There are different methods to synthesize a suitable solution using aperiodic arrays. The
most common one entails varying the position of the elements symmetrically. However,
when the number of array elements is large, another option is to use the concept of thinned
arrays. In this work the positions of the elements will be fixed, but with each element
being able to present two states: “on” (when the element is fed) and “off” (when the
element is passively terminated in an impedance equal to the source impedance of the fed
elements) ([39]).

For a linear array where there are 2N elements placed symmetrically along the

r—axis, the far field pattern is

AF (¢) =2) I, cos[m(2n — 1) - cos (¢)] (3.45)
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where [, is the excitation amplitude of the n—th element. In our case, I, is 0 if the state
of the n—th element is “off” and 1 if it is “on”. The distance between elements is 0.5\ and
all them have identical current phase. In this case, we search the lowest value of SLL with
isotropic elements. The desirability 7;is defined as the absolute value of the normalized
SLL (dBs)

n; = |SLL (dB)| (3.46)

For a planar array structure of elements, the array factor is given by

AF (0,¢) = 42 Z Ly cos [m (2n — 1) - sin (0) cos (¢)]-

n=1m=1

cos [m (2m — 1) - sin () sin (¢)]

(3.47)

Therefore, the objective is to find out which array elements should be enabled or disabled
(I, = 1 or I,,,,, = 0) to get the desired radiation pattern characteristics. In this section,
we will deal with the design of a thinned planar array. The SLL level will be checked in
the two main planes of the array (|39])

0y = min (ISLLy—or (dB)],|SLLy—o (dB)]) (3.48)
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3.5 Differences Sets [5][19]

3.5.1 Introduction

Tradition filled phased arrays have an element placed in every location of a uniform
lattice with half wavelength spacing between the lattice points. Massively thinned
arrays have fewer than half the elements of their filled counterparts. Such drastic
thinning is normally accompanied by loss of sidelobe control. This chapter describes a class
of massively thinned linear and planar arrays that show well behaved sidelobes in spite
of massive thinning. Isophoric arrays derive their sidelobe control from a deterministic
placement of elements that achieves a uniform weighting of spatial coverage. The term
isophoric is based on the Greek roots that denote uniform weight [5][19].

For a given aperture size, massive thinning offers reductions in element count, cost,
weight, power consumption, and heat dissipation, albeit with an attendant reduction in
antenna gain.

For a given element count, thinning offers narrowed beamwidth by making larger
apertures possible.

Rather than using a search algorithm, the approach in this chapter attacks the side-
lobe control problem directly by applying the properties of difference sets, a topic from
combinatorial mathematics, to the placement of antenna elements within a regular lat-
tice. These deterministic placements create an isophoric array with attendant uniformity
of spatial coverage. The uniformity consistently produces, with no searching required,
a reduction in peak sidelobe level (PSL) when compared to random element placement
[5][19].

More specifically, in any linear array of aperture V' half wavelengths, the Nyquist
sampling theorem shows that the array power pattern can be completely specified from
2V uniformly spaced samples of the pattern. In an isophoric array, the even-numbered
samples will necessarily be “locked” to a constant value less than 1/K times the main-beam
peak, where K is the number of elements in the thinned array. While the odd-numbered
samples are not so constrained, the net effect is to produce patterns with much lower
PSLs than are typical with cut-and-try random placement [5][19].

[sophoric designs apply to linear or planar arrays, whether large or small. While this
paper focuses on arrays with 50% thinning, isophoric arrays include arrays thinned to the
extent that the number of elements is approximately the square root of the number of
elements in their filled counterparts.

Some proposed modern arrays use tens, hundreds, or even thousands of elements
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combined with digital beam forming (DBF) to produce multiple simultaneous beams.
For these arrays, this paper shows how a filled DBF-based array can be operated as two
“interwoven” isophoric arrays, thereby reducing the computational complexity in each. In
addition, by simple cyclic shifting of the element assignments overtime, it is possible to
produce power patterns for which the entire sidelobe region is approximately a constant
value of %K relative to the main beam, where K is the number of elements in the original

filled array. In other words, the “peaks” in the sidelobe region virtually vanish [5][19].

3.5.2 Notation

This section introduces some definitions and notation needed in later sections.

The array factor for a linear array of identical isotropic radiators is defined as

V-1
f(u)= Z A exp (j2mmaou) (3.49)

m=0
where a,, = 1 if an element exists at distance mx, wavelengths from the origin and

Ay, = 0, otherwise u = sin (#) is the commonly used direction parameter with # measured
off of a normal to the array, and the lattice has V possible element locations numbered 0
to V — 1, uniformly spaced at x( intervals of wavelengths.

The corresponding array factor for a planar array on a uniform z,y lattice with

Zo, Yo wavelength spacing is

Ve—1Vy—1

f (u,v) = Z Z A €XP (727 (Mxou + nyov)) (3.50)
m=0 n=0
where a,,,, = 1 if an element exists at location (mxg,ny,) wavelengths relative to the
origin and a,,,, = 1, otherwise u = sin () cos (¢), and v = sin () sin (¢) are the commonly
used direction parameters and the array lattice has V' = V.V, possible element locations
numbered (0,0) to (V, — 1,V,, — 1). The angle # is measured off of a normal to the array
plane and ¢ is measured off of the z-axis of the array plane.
To simplify both expressions, steering angles have, without loss of generality, been set
to zero. As usual, applying an appropriate linear phase variation across the elements will
allow the main beam to be steered.

Array power patterns for linear and planar arrays are represented as

£ ()= f () - f* (u) = |f ()]

ff* (’LL,’U) _ f (’LL,’U) . f* (u’ U) — |f (u’ U)IQ (351)
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Since the array factor and power pattern are periodic as well as band limited, a
finite number of samples, taken from a single period, are sufficient to regenerate the entire
factor or pattern over all u. The derivations of the sampling theorem for f (u) and ff* (u)

are straightforward. For linear and planar arrays are ([5|[19]):

v:: . (on) sin [ﬂ\/xo (u - V—xoﬂ -

V sin [mzo <u — VLxO)]
2V—1 sin |:27TVZL‘0 (u

Z & <2on) 2V tan [mo (U_QVEO))]} (3.53)

2V xo

3

The form (3.52) for f (u) is valid for V" an odd integer. When V' is even, the sine function
in the denominator must be replaced by a tangent function. Note that while it takes
2V samples to specify the power pattern ff* (u), it takes only V' samples to specify the
array factor f (u). The reason is that the samples of f (u) are complex, while those of
ff* (u) are real. Having both a real and imaginary part, each sample of f (u) contains
twice the information of ff*(u) sample. Thus, f (u) both ff*(u) and are completely
specified by 2V numbers. The sampling theorem shows that at least 2V numbers are
required to specify either f (u) or ff*(u). Conversely, both have, at most, 2V degrees
of freedom in that one can arbitrarily specify only 2V sample points in the power pattern.
In particular, control over the power pattern is equivalent to and limited to control
of the 2V sample points ([5][19]).

The corresponding forms for planar arrays are

Vyp—1Vy—1 sin |:7T‘/'x:L‘0 (’LL — VZO)] sin |:7T‘/yy0 (’U — V:y())
Z Z (V Ty y?/0>

}
- [Wl’o (u _ Vixﬂ V, sin [Wyo (U ~ T )J)

m=0 n=0

0 S SPTE ful el ok B G Gk -

2Viwo' 2Vyyo 2V, tan |:7T£L’0 (u o )} 2V, tan [Wyo < QVZyo

m=0 n=0

3.5.3 Difference Sets

Difference sets and their associated block designs are a branch of combinatorial theory.

This section contains a brief introduction to the theory and properties of difference sets
[5][19].
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By definition, a (V, K, A) difference set is a set of K unique integers
D ={dy,dy,....dg_1}, with0 < d; < (V — 1) (3.56)
such that for any integer 1 < a < (V —1)
di—d;=amod(V), i #j (3.57)

has exactly A solution pairs (d;, d;) from the set {D}, where mod V' means the difference
sets is to be taken modulo V.

While three parameters are used to describe a difference set, only two of the parameters
are independent. Since there are K (K — 1) possible differences (d; — d;) with i # j and
since each of the (V' — 1) possible unique differences is to appear exactly A times, it follows
that

K(K-1)=A(V—1) (3.58)

As an example, consider the above set Dy = {0,3,5,6} for which V =7 K =4, A = 2.
As shown in Table I, each of the V' — 1 = 6 possible unique differences appears exactly
A =2 times and since K = 4, (3.58) is also satisfied.

Given a (V, K, A) difference set D, the set

D'={dy+s,di+s,do+s,..,dg 1+s}=D+s (3.59)

where each element is taken modulo V', will also be a (V, K, A) difference set. In this
case, D' is called a cyclic shift of D. If D, and D, are two difference sets with the same
parameters (V, K, A) and D, = tD, + s for any integers ¢ and s with ¢ prime to V' (that
is, t and V' have no common factors), then and are called equivalent difference sets.
If Disa (V,K,A) difference set, then its complement D* will be a difference set with
parameters (V,V — K,V — 2K + A) [5][19].

For any particular (V, K, A) satisfying (3.58) there may be no difference sets, one dif-
ference set (disregarding equivalent sets), or several nonequivalent difference sets. Proofs
of existence and nonexistence are of great concern to theoreticians. For now, it is sufficient
to note that the sets are abundant, that tables of the sets exist, and that construction al-
gorithms can be used to create them. In particular, construction algorithms exist for sets
with K/V =~ %, i, %, where K /V is defined herein as the thinning factor. It is also pos-
sible to construct very highly thinned Singer difference sets for which K is approximately
the square root of V' [5][19].
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3.5.4 Difference Sets, Autocorrelations, and Linear Arrays

From a difference set D, we may construct a sequence or “array” of ones and zeros
Ay ={q;},i=0,1,..,V -1 (3.60)

where a; = 1if jisin D and a; = 0 if 5 is not in D. For example, set D3 above gives rise
to Ay = {1101000001000}. If we create an infinite array of ones and zeros

A[ = {..,a_g,a_l,ao,al,ag, }, 1= O, 1, ceey V-1 (361)

by periodically repeating Ay, we may define an autocorrelation for A; given by

V-1
Cr(r) = antnir (3.62)
n=0

It follows that if and only if A; is formed from a difference set, then

Cr () = { K, ift(modV)=0 (3.6

A, otherwise

In other words, the autocorrelation function is two-valued. Ultimately, it is this
property that makes the difference set an effective prescription for the design of thinned
arrays. As shown in the next section, by tying the one’s and zero’s to element locations
in a lattice, a periodically repeating element placement sequence dictated by difference
sets necessarily has an array power pattern with all sidelobe peaks constrained to be
at an identical fixed level that is less than 1/K times the main lobe peak. When the
infinite sequence is truncated to a single period, these same fixed levels remain, tying
down half the sample points of the power pattern. The PSL of the resulting pattern is
then determined by the remaining sample points [5][19].

3.5.5 Linear Isophoric Arrays

From any sequence of one’s and zero’s we can construct a corresponding linear phased
array by starting with an empty lattice of element locations spaced %—Wavelength apart,
placing an element at each location where the sequence has a “1”, and skipping each
location where the sequence has a “0”. From such a construction we can form an array

element location function
o

Ar(x) = Z a0 (x — nxop) (3.64)

n=—oo
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for an infinite length array, where J (x) is the usual Dirac delta function, and z, is the
inter element spacing (|5][19]). Typically, o = 5 wavelength.

While an infinite length array is of no practical interest, a study of its properties will
lead to the central result for isophoric arrays. As with any array, the power pattern for
this array will be the Fourier transform of the autocorrelation function of the location

function. From (3.63), the autocorrelation function of isophoric array is given by

Cr(x)= (K—-A) 25 —nVxg)

o (3.65)

+A Z 0 (x — nxg)
This sum represents an infinite train of impulses at xy = 0, g, +2x¢,.... All the
impulses have area A except for those at y = 0,+Vxq, £2Vxy,..., which have area

(K—AN)+A=K.
We recall that the Fourier transform of an infinite train of unity-area impulses at x =

0, +x9, £2x0, ... is itself an infinite train of impulses in u, each with area 1/z, located at

u=0,£1/x9,+2/x,.... From this it follows that the Fourier transform of autocorrelation
Cr(x) is
£ = (K-8 305 (um )
== (3.66)
1 n

Using (3.58) we can eliminate A and create a normalized ff; (u) by writing

Thw= L —p[m Zé(u—v—m)]

N (3.67)
+(1—=p) [xio Z_ 5<u—xﬂ0>]
where . (K1)
=% {1 — = 1>} (3.68)

This normalized power pattern has a “main-lobe” impulse with an area of 1 at u =

0,+1/z9, £2/xy, ..., and identical “sidelobe” impulses with area p located at u = +1/ (Vxo) , 2/ (V) ...

(I51[19]).-

A finite-length isophoric array will have element location function
V-1
= Z a0 (x — nxop) (3.69)
n=0
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Ar (x) is therefore a single “truncated” cycle of the infinite length array in (3.64). Let
fff(u) and f f7 (u) be array power patterns for the infinite and finite arrays, respectively.

Then a basic property of the Fourier transform permits us to write

Ff1(u) = ffi(u) v%o Yo (u - V%O) (3.70)

n=—oo

This expression shows that f f; (u) and f f7 (u) are “tied together” at u = 0, +1 /g, £2/xq, ....
[t is sometimes said that f f7 (u) forms an “envelope” for the ff; (u) impulse train. There-
fore, the power pattern ff7 (u) for an isophoric array must necessarily pass through the
fixed points prescribed by (3.66).

It follows that for an isophoric array

(3.71)

1, forn=0,£V,£2V, ..
ffr(nf (Vo)) =
0, for all other n

Fig. 13-(a) shows the normalized power pattern for a particular isophoric linear array
of 32 elements on a 63-slot lattice with uniform xy = %—Wavelength spacing. The regularly
spaced, dotted points located at u = 2/63,4/63,6/63, ... are the sample points referred to
in (3.70). At each of these “even numbered” sample points f f* (u) = 101og,, (p) —18.06dB,
illustrating the effects predicted by (3.70) and (3.71).

Note that in Fig. 13-(a), the peak at u = 2 is simply a repetition of the main
beam. From (3.49), it is straightforward to show that any array in which the elements
are constrained to be located at the fixed points of a uniform lattice will necessarily have
a power pattern that is periodic in u with period uy = 1/xy as well as being symmetric
about any integer multiple of u = 1/ (2z), where x; is the spacing between adjacent
lattice points measured in wavelengths. For comparison, Fig. 13-(b) shows a power
pattern for a random array of 32 elements on the same aperture. Note that: 1) there
is no regularity evident in the dotted points and 2) the PSL for this particular array is
approximately 6 dB higher than that for the isophoric array. In this chapter, the term
random array refers to an array in which an element may appear anywhere with an
aperture with equal likelihood. A lattice array is an array in which elements may only
appear at uniformly spaced points in the aperture. A random lattice array is an array in

which the elements are located at randomly chosen lattice points [5][19].
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Figure 13. Isophoric Array - (a) Isophoric linear array power pattern. Number of elements = 32.
Aperture size = 62 half-wavelengths. (b) Random linear array power pattern. Number of elements = 32.

Aperture size = 62 half-wavelengths [5].

More generally, the expected PSL of the isophoric array will be lower than that of a

corresponding random array by

Isophoric PSL Reduction (linear array)

3.72
~ 34 10log,, (1 — K/V) "dB (3.72)

The 3-dB portion of the PSL reduction comes from constraining the locations to
those determined by difference sets. The remainder of the improvement comes from
simply constraining the elements locations to the points of a fixed lattice. Note that this
latter improvement becomes vanishingly small with increased thinning; that is, as K/V
approaches zero. However, the 3-dB improvement remains even for highly thinned arrays
[5][19].

The theory of the random array shows that

ff*(u) =10logy, (1/K)dB (3.73)

is the average power in the sidelobe region of a random array. Both figures show a reference

line at this average level for these arrays, namely at 15.05dB.

3.5.6 Expected Power Pattern of a Linear Isophoric Array

Isophoric array PSLs in the preceding section could be reduced still further by trying
various cyclic shifts of the difference set that was used to generate the initial array. A
cyclic shift of a difference set {D} simply adds an integer s to each member of {D} and

then reduces each result modulo V. Clearly, there are V' unique such shifts possible for
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s=20,1,...,V — 1. This is a relatively small number to apply in a “cut-and-try” attempt
at lowering PSL.

More importantly, as shown in this section, the average power pattern of an isophoric
array, taken over all V' cyclic shifts of the underlying difference set, is exactly the same
as the average power pattern of all the possible arrays that one could create by placing
K elements on a lattice with V' slots.

The expected (average) power pattern of a linear isophoric array is defined as

BUF ()] = £ (0) = -3 £F; () (3.74)

where ff¥(u) is the power pattern generated by an array whose underlying difference set
has undergone a cyclic shift of s units.

As shown below,

sin (muV )

1) =p+(1—p)

The derivation of this result is straightforward but lengthy. To conserve space, we simply

3.75
V2sin? (Tux) (8.75)

outline the steps as follows:

1. Note that as with any power pattern, each ff(u) is the Fourier transform of the
autocorrelation of the element location function of the array built from a cyclic shift

s of the underlying difference set.

2. By substituting the Fourier transform expression for each ff*(u) in (3.74) and
interchanging the order of summation and integration, the average Fourier trans-
form of the power patterns becomes the Fourier transform of the average of the V'

autocorrelations.

3. Fundamental properties of difference force the average autocorrelation to be

k6 (0), T=0
Cp(rmg) = § (V—|r)) 3500 (x —ag), forO<|r| <V (3.76)
0, || >V

4. The (normalized) Fourier transform of Cg (120) is f f% (u), as given by (3.75).

Note that for a moderately large V, (say, greater than 30), K/V < % and u not close

to zero (that is, the sidelobe region), the contribution to be made by the second term in

(3.75) is quite small. Under these conditions

fIe(w) = p= % [1 - @} (3.77)



In the special case K = V, the array is filled and the expression reduces to the well-
known power pattern of a filled array. The filled array is in fact a special case of an
isophoric array [5][19].

(3.75) also represents the grand average power pattern of all possible placements of K
elements on a V-slot lattice. One way of viewing the V' cyclic shifts of an isophoric array
is that they represent a small set of arrays whose average power pattern is the same as the
average pattern of the much larger set of all possible of K elements on a V-slot lattice. In
the example used thus far, the 63 cyclic shifts of Array 1 have an average power pattern
identical to that of the 9.16 x 10'7 possible placements of 32 elements on a 63-slot lattice.

o
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Figure 14. Isophoric Array - Expected power pattern of isophoric array with V' = 63 and K = 32 [5].

Note also that while the average sidelobe power of a random array is 1/ K, the average
power of a random lattice array is ~ (1/K) (1 — K/V). Thus, simply constraining
the element placements to lattice positions reduces sidelobe levels to some ex-
tent, although the improvement becomes vanishingly small with increased thinning. As
stated previously, further constraining the element placements to be those dictated by a
difference set produce another 3 dB of expected PSL reduction. This 3-dB reduction is
independent of how much the array has been thinned [5][19].

3.5.7 Extension to Planar Arrays

[sophoric arrays, both static and spatially hopped, can be planar as well as linear. The
principals are the same. We seek a deterministic placement of K elements in a rectangular
lattice such that the element location function has a two-level autocorrelation function in
two dimensions [5][19].

The element location function for a planar array is defined by

Ve—1Vy—1

Ar (z,y) = Z Z Um0 (T — Mmxo, y — NYo) (3.78)

m=0 n=0

68



where the array has dimensions V,V,, § (z — g,y — h) is interpreted as a unit impulse at
location (x,y) = (g, h), and the coefficients form a V,-by-V, matrix of ones and zeros that
designate the presence or absence of an array element at (mxo, nyg).

Analogous to (3.62), we form a two-dimensional autocorrelation for an infinitely re-
peated version Aj (z,y)of Ar (z,y) as

&
L
&
L

CI (p7 Q) = am,naerp,nJrq (379)

m=0

S
o

We let the number of ones in the a,, , coefficients equal K and assume that we can discover

a placement of ones and zeros such that

K, if V, divides p and V,, divides q

: (3.80)
A, otherwise

Cr(p.q) = {
That is, A; (z,y) has a two-level autocorrelation function. If this can be done, then we
know that all the V.V, sample point sin the sidelobe region of f (u,v) (3.54,3.55) will
necessarily have magnitude K. We also know that the even-numbered samples from the
sidelobe region of ff* (u,v) will have magnitude K?. The odd-numbered samples will be
the ones that determine the PSL [5][19].
Results from Monte Carlo simulations show that compared to a random (nonlattice)
placement of elements on the same aperture, a static (not spatially hopped) isophoric

array will have an expected improvement in PSL of

Isophoric PSL Reduction (planar array)

3.81
~ 1.5+ 10log,, (1— K/V) " dB (3.81)

where V' = V.V, . This improvement is 1.5dB smaller than it was for linear arrays.
As with linear arrays, if we can find a placement algorithm with the property described
by (3.80), then we can spatially hop the array element assignments as we did for linear
arrays, thereby guaranteeing a fixed low-sidelobe power pattern for ff* (u,v) as we did
for £ (u) (5I19)).

Assume we have a linear sequence of V' ones and zeros
AVI{CI,Z'}, 220,1,,‘/—1
dictated by a difference set as in (3.57). Then the assignment

A, = G where m =i (modVy)

3.82
n=1(modV,) i=0,1,..,V -1 ( )
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will create a rectangular array of ones and zeros

AVI Vy — {am,n}

(3.83)
m=20,1,2,..,V, -1, n=0,1,2,...,V, — 1

that has the desired two-level autocorrelation function.

For example, the (63, 32, 16) difference set would be placed in a 9 x 7 array as shown in
Table II. As shown, aq is placed in the “southwest” corner of the array and each succeeding
coefficient is placed in the slot to the “northeast”, continuing from the other side whenever
an edge is reached until the entire V' =V, V,, = (9)(7) = 63 coefficients have been placed.
The table shows the placement of the first 18 coefficients. An antenna element will be
placed in each location where a; = 1 and not placed where a; = 0.

With the approach above, we can create a static isophoric array with expected power

pattern
sin® (ruVyxo) sin® (ruV,yo)

[y (w,v) =p+(1—p) (3.84)

V2 sin® (ruwg) V2 sin® (muyo)
As with linear arrays, once we move into the sidelobe region (that is, v and v not too
close to 0,42, £4, ...), the expected normalized pattern is approximately the constant p,
where p is given by (3.67). Fig. 15 shows for a m—slot lattice, with128 elements.

Note that for the special case V = K, p becomes zero and ff; (u,v) becomes the
power pattern of the familiar filled rectangular-lattice array. Note also that the beamwidth
implied by (3.84) is independent of the thinning factor § = K/V. Even a very highly
thinned isophoric array will have the same beamwidth as a filled array.

Again, as with linear arrays, if we begin with a filled lattice and operate it as two
independent interwoven isophoric arrays with spatially hopped element assignments, we

can actually achieve two independent patterns obeying f 7, (u, v) on a time-averaged basis.
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[ ¥uv) (dB)

Figure 15. Isophoric Array - Expected power pattern of isophoric planar array with
V =V,V, =15 x 17 half-waves and K = 128 elements. this exact pattern is realizable with “spatial
hopping”. Note pattern floor at 10log;, p = —24dB [5].
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3.6 Almost Difference Sets [22]

3.6.1 Introduction

Massive thinning of arrays (i.e., the reduction of the number of the array elements below
half of its filled counterpart) is of great importance in practical applications because of
the reduction of the array costs, weight, power consumption, HW and computational
complexity.

However, such advantages usually come at the cost of a loss of sidelobe level (SLL)
control and gain compared to the filled arrangement. In order to overcome these draw-
backs, several thinning techniques have been proposed. Deterministic thinning has been
first studied, but no significant improvements of SLL control compared to a random ele-
ment placement have been obtained. More recently, dynamic programming and stochastic
optimization techniques, such as simulated annealing (SA) and genetic algorithms (GAs)
have been successfully applied. Despite the satisfactory results, statistical methodologies
have not an easy application to large arrays because of the computational burden and
convergence issues. Moreover, due to their stochastic nature, it is often difficult to a-priori

estimate the expected performances for a given aperture size and thinning factor.

The synthesis of massively thinned arrays has been faced in a very promising fashion
by considering equally-weighted arrays. Such an approach is based on the use of binary
sequences derived from difference sets (DSs), which are known to possess two-level peri-
odic autocorrelations. In different works it has been shown that, if the element excitations
are chosen according to the binary distribution derived from DSs, the peak sidelobe level
(PSL) of the synthesized linear array is 3-dB lower than that of the corresponding random
distribution. Such a result has been successfully exploited for the design of both linear
and planar arrays, although the PSL reduction is about 1.5-dB smaller when planar ar-
chitectures are dealt with. The application of DSs has also allowed some improvements

in thinned-array design procedures based on GA optimization [22].

Recently, the definition of binary sequences of length N with suitable autocorrelation
properties, for which DSs are not available, has been carefully investigated in information
theory and combinatorial mathematics. It has been found that it is often possible to
determine sequences with a three-level autocorrelation function by taking into account
the so-called almost difference sets (ADSs). ADSs are a research topic of great in-
terest in combinatorial theory with important applications in cryptography and coding
theory. Moreover, although ADS generation techniques are still subject of research, large

collections of these sets are already available. As regards the array synthesis, a prelimi-
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nary application, although limited to a particular subset of ADSs. In such a framework,
the whole class of ADSs seem to be a good candidate for enlarging the set of admissible
analytic configurations with respect to the DS case, despite a reduction of expected per-
formances. From this viewpoint, it is of interest to carefully detail the ADS features for
antenna arrays synthesis [22].

In this chapter, the exploitation of ADSs properties for the design of linear thinned
arrays is discussed and analyze in depth through a solid mathematical description. The
proposed ADS based technique is aimed at synthesizing arrays with performances close
to those with DSs, but enhancing the set of admissible array configurations. It is also
worth while to point out that the paper is not aimed at defining an optimal method for
the design of thinned arrays, but its purpose is to propose some guidelines to the array
designers who, whether by necessity or choice, are synthesizing a thinned array without
considering stochastic optimizations or a random placement, but using a deterministic

strategy with predictable results [22].

3.6.2 Almost Difference Sets - Definitions and Properties

Let us provide just some basic definitions and main properties of ADSs.

A K-subset D = {d;, € [0, N —1],d,, # d;; k,h,1 =0,..., K — 1} of an Abelian group
G of order N is called a (N, K, A, t)-almost difference set if the multiset M = {m; = (d), — d;),
dy #d;j=0,..., K x (K —1) — 1} contains nonzero elements of G each exactly A times,
and the remaining NV —1—t nonzero elements each exactly A+1 times. As a consequence,
DSs are ADSs for which t = N — 1 or t = 0. 1. An Abelian group is a group satisfying
the requirement that the product of elements does not depend on their order. In addition
to the other axioms of a group, the product operation is associative, G has an identity
element, and every element of G has an inverse [22].

If G=Zand Disa (N, K, A t)-ADS of G, then the cyclic repetition of the binary
sequence A = {a, € [0,1];n =0,..., N — 1}of length N, whose nth element is

1, D
o= b el (3.85)
0, otherwise

(3.86)

0, otherwise

{ 1, if mody (n) € D
Sp =

The corresponding autocorrelation function, C; (2), is a periodic function defined as fol-
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lows

and equal to

CAPS (2) =

N-1
Cs(z) = Z SnSni1 2 €L
n=0

K

Y

A,

A+,

z=0
z€eL

otherwise

JK>A+1

(3.87)

(3.88)

in the period z € [0, N — 1], L being a set of N — 1 — ¢ elements (i.e. L = {l, € Z;
p=1,.., N —1—t}). For illustrative purposes, let us consider the examples of ADSs

reported in Table I together with the corresponding binary sequences and autocorrelation

functions. For completeness, the plots of CAP% () are shown in Fig. 16 [22].

N 13 21 33 45
G G, ={0,..,12} G, = {0,.., 20} G, =1{0,.., 32} G, ={0,... 44}
K 3 6 16 22
A 0 1 7 10
¢ 6 10 16 22
D= {0,1,2,3,4,586,
D= (0,1,2.3.4.5.6, =4
. D, = {0,1,3,13 7,8,11,12,15,
D D, = {5, 6,9} 8,13,14, 18,20,
16,17} 16,19, 23,24, 29,
22,95,28, 20}
30, 32, 35, 37, 30}
A,=  {1111111101
A, = {0000 A, = {1101000 Ay = {11111110100
01100110010
A 01100 00000010 00110001010
001100001101
1000} 0110000} 10010011000}
001010100000}
s 8, = {‘"u&l)Al! } Sy ={AsnA, } 8; = { oAy Ay } 8= {-“)Ahémm}
3, 2=0 6,2=0 16, z = 22, z=0
1, 2= 2,6,7,9 7,z= 3,6,7,9,10,11, 10, = 6,9,10,11,12,14,16,18,
s 0,2= 2,56
CH7% (=) 10,11,12, 13, 15,18, 20,22, 19,20,21, 24,25, 26,27,
7,811
14,15,19 23,24, 286,27, 30 29,31, 33,34, 35,36, 30
LzeL= {13, 2,zeL= {1,3,4,5, 8, zeL= {1,2,4,58,12, 11,zeL= {1,2,3,4,5,7,8,13,15,
4,9, 8,13,16, 14,16,17,19,21, 17,22, 23,28, 30, 37,
10,12} 17,18, 20} 25,28,29,31,32} 38,40, 41, 42,43, 44}

Table 1. Linear Thinned Arrays based on Almost Difference Sets - Examples of ADSs and their

descriptive functions [22].
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Figure 16. Linear Thinned Arrays based on Almost Difference Sets - Autocorrelation function

C4P% (2) of D; and D, in Table I [22].

It is worth noting that the autocorrelation function CAP9 (2) of a (N, K, A, t)-ADS is
close to that of the (if any) corresponding (N, K, A)-DS

P (2) ={ N (3.5
A, otherwise
In fact, the difference is limited to just a unity in N — 1 — ¢ points where CAP% (2) =
A + 1. Moreover, the ADSs share several other properties with the DSs. In particular,
neither DS nor ADS can be defined for every value of N, K, A, and ¢ . Indeed, for
(N, K, A,t)-ADSs in an Abelian group, the following existence condition holds true

KK-1)=tA+(N-1-t)(A+1) (3.90)

being K >A+1,0< K< N,and 0 <t< N —1.
On the other hand, if D is an ADS, then the set

D= {df):nuﬂN(@p%a%dk%cm

(3.91)
koh1=0,.. K —1}

where o € Z, is still an ADS. Therefore, starting from an (N, K, A, ¢)-ADS, it is possible
to build different (N, K, A, t)-ADSs by applying a cyclic shift to its elements (i.e., a cyclic
shift on the associated binary sequence A). Mathematical proofs of existence or non-
existence of ADSs for different choices of are currently topic of research in the framework
of combinatorial theory and suitable techniques for the generation of new families of ADSs
are still in progress. However, several ADSs has been already found and their properties

can be profitably exploited for array synthesis [22].
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3.6.3 ADS-Based Linear Arrays - Mathematical Formulation
3.6.3.1 ADS-Based Infinite Arrays

An infinite thinned array can be defined from whatever binary sequence A of length N

by introducing the array element location function V¥, (z)

o0

Uy (z)= Z $p0 (z — nd) (3.92)
where 0 (.) is the Dirac delta function, d and z are the lattice spacing and the spatial
coordinate along the linear array, respectively (both expressed in wavelength). In practice,
the infinite thinned array is defined by locating the array elements along a uniform lattice
with spacing d at those positions where ¥, (z) = oo [22].

As with any array, the power pattern of the ADS-based infinite linear array turns out

to be the Fourier transform of the autocorrelation function of ¥, (z), CgP% (2), that is
PPy (u) = F{C3"° (2)} (3.93)

where F {.} denotes the Fourier transform operator, u = sin (6), u € [—1, 1], and

G375 (z) = AD oz md)
FEAN t{ i §(z —ndN — zpd)} (3.94)

+ (K—A)ié(z—ndN)

n=—oo

where the index [, satisfies the condition C (I,) = A + 1 [22].
By substituting (3.94) in (3.93) and recalling the Fourier transformation properties of

an infinite train of pulse functions, one can show that

Z PP..0 (u - N—d> (3.95)

n=—oo

where, see equation

=
+

N—1—t
Nid (K — A+ Z exp j27rlpn/N)> , n=0,+N,+2N, ...
PP, = Pt (3.96)

N—1-t
NL (K A+ Z exp (j2ml, n/N)) otherwise
p=1
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However, unlike DSs, further simplifications of (3.95) are not trivial since the following
term of PP,

(K —A+ thexp (k27rlpn/N)>

p=1

N—1-t
= <K — A+ Z exp (k;27rlpn/N)> , lp=0
p=1

(3.97)
cannot be evaluated in closed form. In fact, the set L depends on the ADS at hand
and PP, (u) has to be evaluated on a case-by-case basis instead of in a general fashion.
However, it is still possible to provide an a-priori estimate of the peak sidelobe level of
the infinite array, PS L., defined as

PSL. = maXPPOO’n
n#0 PPOO70

(3.98)

Actually, it turns out that PSL is limited by the following upper

popMAX _ K—-—A—-1+t(N—1) (3.99)
> (N-1)A+K—-1+N—1 '

and lower

t(N—t)
K—A—1—,/4Ch
(N“DA+K—1+N—t¢

respectively. Moreover, for fixed values of n = ¢/ (/N — 1) and of the thinning percentage

PSLMIN — (3.100)

factor v, (v = K/N), the range of variation of PSL., reduces as N increases until a
threshold. Such a behavior is pointed out in a study on the dependence of the confidence
range index A, = PSLMAX/PSLMIN wwhich by (3.90), (3.99), and (3.100) turns out to

be, see the following equation

_ N —V) =N +n+ (N -1 /N (n—n?) + N (202 —n) —»*
N2 (v = v?) =N + 1 — (N = 1) /N () = n?) + 1

On N for different values of the ADS-parameters. The asymptotic threshold of A,

appears to be equal to

Ase (3.101)

lim (Ay) = —— Vit V(=) (3.102)

N—o0 v — 12

As expected, the condition A, is asymptotically verified when n = 1 (i.e., t = N — 1
and the ADS coincides with a DS), since PSL,, = PSLED%. Such a conclusion identically
holds true for n = 0 (i.e., t = 0), whatever the admissible value of v [22].
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Let us also notice from (3.101) that the following property A () = A (1 — v) holds
true. Moreover, the analysis and the corresponding plots are limited to the range of N
values for which an ADS sequence can exist [i.e., (3.90), K > A+ 1,0 < K < N, and
0 <t < N —1]. Asit can be observed, the value of the confidence index decreases when
lv —0.5| — 0 and it attains its minimum value when v = 0.5. In such a case, A, —
[1 + 4\/M] asymptotically with a maximum value equal to max, {Ax],_,5} =
4.77dB for n = 0.5 [22].

3.6.3.2 ADS-Based Finite Arrays

As regards finite arrays, since the array element location function V (x)

U(z) =) 5,6 (¢ — nd) (3.103)

is now a truncated version of W, (x) , then it can be easily shown that PP, (u) and the

power pattern of the finite configuration, PP (u), are related by the following relationship

> 5(v )

PP, (u) = PP (u) =—=

104
Na (3.104)

Accordingly, PP (u) necessarily satisfies the sampling condition at each coordinate u =
u, = n/Nd, that is

PP (u,) = NdPPs, n=0,..,|¥] (3.105)

In order to illustrate such a behavior, Fig. 17 shows the plots of PP (u) and of the
coefficients PP, ,, for the thinned array of K = 22 elements on a N = 45-locations lattice
(d = 1/2) defined from the ADS D,. It is worth noting that, since ¥ (z) is real-valued,
the beam pattern is symmetric with respect to v = 0 and only the range u € [0,1] is
considered [22].
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Figure 17. Linear Thinned Arrays based on Almost Difference Sets - Normalized PP (u) derived from
the ADS derived from the ADS D, (D, = fo)J ) and its cyclic shifts D\ (o =17, o = 24).

o=

Number of elements: N = 45-Aperture size: 22\ [22].

Starting from (3.104), it is then possible to estimate the PSL of a finite array

PSL =

(3.106)

where U), is the width of the main lobe region, by using the associated infinite array
power pattern PP, (u). It is worth noting that (see Fig. 4) the PSL value is determined
by the behavior of the power pattern at u = u,, .1 = (m+1/2) Nd

PSL =

max { PP (um+1/2)}’ —— {NJ (3.107)

PP (0) 2
being 412 = (m +1/2) /Nd.

To evaluate PP (um+1/2), let us consider the sampling theorem and (3.104). It follows
that

PP (u) = i VNAPP.,, exp (jén) ]S\ifnsi[;ﬂ[:frz ((Z: Nid))}} (3.108)

where ¢, n =, ..., N — 1, are the phase terms of the sampled array factor (¢o = 0), which
are known quantities only when the ADS at hand is specified. By evaluating (3.108) in
u =0 and ¥ = Up,41/» and substituting in (3.107), we obtain

2

i NZI PP exp (60) sin [7 (m —n +1/2)]
n=0

. w(m—n+1/2)
N sin [ﬁ]

(3.109)
PSL =




Consequently, the PSL of an ADS-based finite array is fully specified from the knowledge
of PPy, and ¢,, n = 0,1,...,N — 1. However, since the PP, , coefficients of ADS
sequences neither can be expressed in closed-form (as for RDSs) nor have equal expressions
(as for DSs), it is not available (although approximated) a threshold value for the PSL as

for DSs. Nevertheless, it is possible to yield the following set of inequalities
PSLMIN < pSIPW < PSLP < PLSYY < pSLMAX (3.110)

where PSL = min {PSL (D)}, PSLMIN = PSLMIN PSLPW = max {PS Lo, PSL™"},

o€[0,N-1
PSLVP — E{@%i[’l}PéLm, and PSLMAX — E (@i} PSLMAX being E{7") ~
0.8488+1.128log;, N and PSL™" = E{®7"} min (PP, ,,) /PPs. It should be pointed
out that PSLPY and PSLY? are determined Wy}Llen the ADS sequence is available since
they require the knowledge of the coefficients PP, ,. On the contrary, PSLMN and
PSLMAX can be always a-priori computed from (3.100) and (3.99), respectively [22].
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Figure 18. Linear Thinned Arrays based on Almost Difference Sets - Comparative Assessment - Plots

of the PSL bounds of the ADS-based finite arrays and of the estimator of the PSL of the random arrays
(RND - random array, RNL - random lattice array) when v = 0.489 versus (a) the array dimension, NV,

and (c) the index 1. Normalized generated from Dj? * and estimated PSL values of the corresponding

random sequences (b) [22].
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3.7 Basic Theory of Interferometry for Radio Astron-
omy |[8][9][30][31]

3.7.1 Introduction

The particular interest in correlator antenna arrays for radio astronomy applications can
be traced back to 1960s, and it was accompanied by drastic instrumental advances in
interferometry techniques. Compared to conventional sum arrays, the enhanced data
gathering efficiency of a correlator array is closely related to its spatial-filter-like behavior
and the unique signal combination scheme by pair-wisely correlating output signals from
all antenna elements. Unlike the well-established synthesis techniques for sum arrays,
determining an appropriate configuration of a correlator array is essentially
an optimal sampling problem. In order to obtain a clear image of a distant radio
source, an ideal correlator array is desired to have either the maximum coverage
in the spatial frequency domain (the © — v domain) or the lowest sidelobe level
(SLL) in the angular domain (the [ — m domain) [31].

3.7.2 Problem Definition

Fig. 19 depicts the measurement of a distant radio source using a correlator antenna
array. The source has a brightness distribution 7 (I,m) in the angular domain and the
cosmic signal is collected by the ground-based array with a configuration of f (z,y). The
visibility of the source, V' (u,v), is defined in a plane perpendicular to the direction of
source and this plane is referred as the u — v domain. Here x and y are measured in
kilometers; u and v are unitless quantities and u\ (or vA) has a unit of kilometer, where
A is the freespace wavelength. [ and m are directional cosines of a point in the angular
domain with respect to the u— and v— axes, respectively. They are measured in radians
by applying the small-angle assumption since the desired field of view (FOV) in many
practical cases is usually no more than a few degrees. It is worthwhile to mention that
the definition of the w — v domain is similar to that of the “u — v domain” in conventional
antenna language, which is often used to describe the far field of an antenna. In this thesis,
the notion of “u — v domain” follows the radio astronomy nomenclature and represents

the spatial frequency domain instead of the angular domain [8][9][31].

82



I—m domain

u—v domain
x— v domain

Figure 19. Radio Astronomy - Conceptual sketch of a radio astronomical measurement using a
correlator antenna array. The brightness distribution I (I,m) in the angular domain is retrieved by the
inverse Fourier transform of the samplings of its visibility V (u, v) in the spatial frequency domain. The
sampling points are determined by autocorrelating the array configuration f (x,y) in the spatial domain

[31].

The particular importance of introducing the concepts of visibility and the u — v

domain stems from the Fourier transform relationship between and given in

I(l,m)= /_OO /_OOV (u,v)exp [j27 (ul + vm)] dudv (3.111)

that applies to most radio sources with the spatially incoherent feature in their emissions.
In other words, the visibility represents the spatial frequency spectrum of a radio
source. The radio astronomical measurement described in Fig. 19, therefore, resembles
the microwave holographic imaging in the sense that [ (I,m) can be retrieved by the
inverse Fourier transform of the sampled components of V' (u, v).

Fig. 20 provides a quantitative description of the measurement and summarizes all
Fourier transformation pairs between the v — v domain and the [ — m domain. Similar to
the transient response of a system in signal processing, the point source responses of the
array in the v — v domain and the [ — m domain are characterized by the u — v coverage
W (u,v) and the synthesized beam by (I, m), respectively. This spatial-filter-like behavior

is only valid when the output signals from antenna elements are pair-wisely processed,
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which makes correlator arrays a better option than conventional sum arrays for the sake
of signal-to-noise ratio (SNR) and data gathering efficiency [8][9][31].

In general, a uniform u — v coverage is preferable if the array is aimed to observe very
bright and complicated sources, and a synthesized beam with a low SLL might function
better in extracting images out of noisy data. Although W (u,v) and by (I, m) are related
as one of the Fourier transformation pairs in Fig. 20, there is not a rigorous proof that
the most complete u — v coverage leads to the optimal synthesized beam. The selection of
an appropriate array configuration f (z,y) has to be accomplished via the optimizations
of W (u,v) and by (I, m) in different domains separately [8][9][31].
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Figure 20. Radio Astronomy - Relationship among antenna quantities for an incoherent field.

3.7.3 The U-V Coverage

First let us consider how the array configuration f (x,y) is related to the v — v coverage,

W (u,v). Here we assume that two antenna elements are separated by a baseline vector
B = dul + guA (3.112)

and the antenna dimensions are much smaller than the length of baseline, B|. Tt has been
shown that for a snapshot observation at zenith, the output signals of the correlator that

connects the antenna pair are the sampled visibilities at symmetric spatial frequencies
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(u,v) and (—u, —v). Thus for an N-element correlator array with the ith element located

at (x;,y;) and a configuration of

N
fey) =20 (x;xy;y) (3.113)

W (u,v) can be located by searching all baseline vectors via the autocorrelation of the

array’s configuration

W (u,v) = /Z/Zf(x,y)f(x—u)\,y—v)\)dxdy

_ EN: i H(u—%v—%) (3.114)

i=1 =15

Here [] (u,v) is a 2D unit impulse function defined by

H(u,v):{ Lou=v=0 (3.115)

0; elsewhere

The summation in (3.114) does not include ¢ = j terms since each antenna is not corre-
lated with itself. The origin (u,v) = (0, 0) is therefore not included in the u—wv coverage,
while all other spatial frequencies satisfying (u,v) = ((z; — ;) / (N), (vi —y;)/ (\))are
sampled. Theoretically an N-element array should have N (N — 1) samplings in the u—v
domain for a snapshot observation, however, the actual number of samplings is often less
than that due to the redundancy in the array configuration. An appealing solution to
increase the number of sampling points is to apply a tracking observation in which the
Earth rotation effect is incorporated [8][9][31].

3.7.4 The Earth-Rotation Effect

In a tracking observation, each baseline vector tracks an arc of an ellipse in the u — v
domain due to the rotation of the Earth. The axial ratio of ellipse and the length of arc are
determined by the source declination d, the elevation £, the latitude £ and the azimuth
A of baseline, along with the observation time duration 2h (h € [0,12], unit: hours).
For each instant hour angle H € (— (hw) /(12), (h7)/(12)) (unit: radians) during the
observation, the particular sampling spatial frequency (u,v) at that instant is specified

by a matrix equation

in H bzl 0 X
U _ 'sm | COS. Y, (3.116)
—sindcos H sindsin H cosd 7
A
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where
cos Lsin € — sin L cos € cos A

= ‘?‘ cos Esin A (3.117)
sin £sin € + cos L cos &€ cos A

N

Assume the time interval between taking two samplings is Ah, the total number of u —
v samplings is increased by a factor of (h)/ (Ah) compared to a snapshot observation
[8[91[31].

F16. 5. The geometry of an interferometer.

Figure 21. Radio Astronomy - The geometry of an interferometer. The baseline intersects the celestial
sphere at B, which has declination d and the local hour angle h. The source is at point S, with
coordinates § and H. The projection of the baseline on the intersection of the plane SOB and a plane

tangent to the celestial sphere at S is D cos .

3.7.5 The Synthesized Beam

As shown in Fig. 20, the synthesized beam by (I, m) is calculated by the inverse Fourier
transform of the u — v coverage W (u,v). This relationship applies to both snapshot and
tracking observations in which W (u, v) is obtained using (3.114) and (3.116)-(3.117), re-
spectively. Typically by (I, m) is calculated by inverse fast Fourier transformation (IFFT),
in which the u —v domain is discretized into N, x N, rectangular grids each with a dimen-
sion of Au x Av. Multiple u — v samplings lying in each grid are averaged and relocated
at the center of the grid [8][9][31].

The maximum FOV in the [ —m domain, L,,,, and M,,,, (in radians), are determined
by the grid size Au and Awv

Linaz = 1/Au, My = 1/Av (3.118)

Under the assumption that the antenna dimension is much smaller than the length of
baseline, the maximum FOV is far less than the half-power beamwidth (HPBW) of each
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antenna element. The effect of element pattern in the synthesized beam is just multiplying
a constant, which can be omitted when investigating a normalized pattern. The resolution

of the beam plot is given by:
Rl = Lmax/NU7 Rm - Mmax/Nv (3119)

By applying zero-padding in the u — v domain, the resolution can be improved to obtain
more detailed sidelobe features of by (I, m).

Similar to applying amplitude tapering in low-sidelobe aperture antennas, a weight-
ing function w (u,v) is often imposed in the u — v domain to suppress sidelobes of the

synthesized beam. Therefore the beam calculation has a general form
bo (I,m) < W (u,v)w (u,v) (3.120)

where < represents the Fourier transformation pair [8][9][31].

3.7.6 Image Retrieval

Operating as a spatial filter, the response of a correlator array to an extended source is

obtained by a multiplication in the © — v domain
Vinea (u,0) = W (u,v) w (u,v) V (u,v) (3.121)
or a convolution in the [ —m domain
Imea (I, m) = I (I,m) % by (I,m) (3.122)
as shown in Fig. 20. Since the RHS’s of (3.121) and (3.122) are related by the Fourier

transformation, the source image I, (I, m) can be retrieved by the IFFT of sampled
visibility Viea (u, v)
Vinea (4, 0) & Lineq (I, m) (3.123)

For a better assessment of the array’s performance, the image retrieval process can be
simulated by specifying a source with a known brightness distribution I (I,m) obtained
from an actual astronomical measurement. In this paper, however, due to the lack of
measured raw-data, the source is specified in the u — v domain by applying benchmark
visibility functions provided. For instance, the visibility of a 2-D Gaussian source is

defined by
1

2o

is the variance that modulates the angular width of the source. With this

Vi(u,v) =

exp [— (u® +v?) /207] (3.124)

where o2

analytical form of V' (u,v), the exact value of sampled visibility V},., (u,v) at an arbitrary
spatial frequency is calculated by (3.121) [8][9][31].
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3.7.7 Basic Two-Elements Interferometer

An interferometer system can be expressed schematically in a fairly general way in Fig.
22. Two antennas, each with its amplifying system, are connected to a correlator (or mul-
tiplier), which includes an averaging or integrating circuit with a specified time constant
that is much longer than the reciprocal of the frequency bandwidth of the system, so that
many voltage impulses are averaged in a simple observation [8][9][31].

The interferometer is assumed to observe an extended source of incoherent and sta-
tistically radiation. The antennas are pointed in the same direction. For these conditions

the output of the correlator is

r(r) = / / P (€ 0) Ar () A5 (1) G (€ — €,0) G5 (€ — €,0) exp (j2mwr)dude’
o (3.125)
in which

e 7 (7) is the output of the correlator

[ is the line-integrated brightness distribution of an isolated, finite source

A is the frequency response of the amplifier

e (i is the antenna voltage gain

v is the frequency (Hz)

e 7 =7, — 7, is the difference between in transit time from a plane wavefront in space

to the correlator via the two possible paths

7, is the geometrical component of 7

7; is the instrumental component of 7

& =sind
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Figure 22. Radio Astronomy - Basic correlator interferometer system.

This formula is quite general. In the case of two identical antennas with identical,
band-limited amplifiers it reduces to

vo+Av/2 ~

r(r) = / e ao (€, 1) |A ()]

—00 vo—Av/2

2

G (€ =&, v)| exp (j2mvT) (3.126)

The time delay 7 is the difference between the geometrical delay 7, and is the instrumental

delay, 7;. The instrumental delay is adjusted to the value D& /¢, so that

T = M (3.127)

where D is the separation of the antennas in meters and c is the velocity of the wave in
space. If the amplifier passband Av is sufficiently small, so that the antenna pattern and
the brightness distribution do not vary significantly over the band, Equation 3.126 can be

written

r(€0.61,D) = / P (&) P (6 €.61) dé (3.128)

[e.9]

where & is the direction in which the antennas are aimed and &; is the direction for

which 7 = 0. The function f)(fo,f’,fl) is the product of the antenna power pattern
. 2
G (& — &', 1p)| , the bandwidth pattern (or delay pattern)

Av/2
B6-¢.anD)= [ | AW exp[j2mw (6 ~€) D/el i (3.120)
and the interference pattern
F(&,¢,D) =exp[—j2mvy (& — &) D/ (] (3.130)
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The bandwidth pattern has a peak in the direction &;. When the source and the antenna
beamwidth are of small angular extent, the integrand in Equation (3.129) is nonzero over
only a small range of 6 centered at #,. The instrumental delay can be adjusted to the
value DEy/c so the delay pattern also has a peak at £&. Now let 6" be defined as 6y — 0;
then @ is small and

& ~sinfy — cosbysinf = & — £ cos b

Define u as (Dcosfy) /Ao . This is the spatial frequency and is the component of the
baseline (in wavelengths) in the direction normal to 6.

Equation (3.128) can be rewritten

r(u) = /_oo T (€,00) P (&, u, Av) dE (3.131)

[e.9]

Now let us examine the form Equation (3.131) assumes when the bandwidth is narrow
enough so that for all baselines the bandwidth pattern is much wider than the antenna
pattern, and when source being observed is, in turn, small compared with the antenna

pattern. In this case

r(u) = /_OO T (&, 1) exp (—j2méu) dé = 4 (u, v) (3.132)

o0

This will be called the “fringe function”. It is the Fourier transform of the brightness
distribution, and it is apparent, therefore, that the interferometer can be used to make a
Fourier analysis of the structure. This is the basis of aperture synthesis. It is seen from
(3.132) and the definition of u that the spatial frequency measured with a given baseline
is the baseline length, in wavelengths, projected on a plane tangent to the celestial sphere
at the location of the source. By using a sufficient number of different baselines, enough
Fourier components can be measured to permit the reconstruction of the source by Fourier
transformation [8][9][31].

It has been assumed that the source is finite, in fact, that is small compared with
the antenna beam. A source of extent A{ can be completely represented by sampling its
spatial frequency spectrum at intervals u = 1/A¢&. This follows from the basic properties
of the Fourier series representation of a function with a finite base. Furthermore, if the
smallest detail to be measured is A¢,,,. Thus, the number of baselines needed to perform a
complete, one-dimensional analysis on a source is equal to the width of the source divided
by the width of the finest detail that is to be resolved. A two-dimensional analysis requires
a number of baselines equal to the square of the number for one dimension.

A Fourier series with discrete, uniform spacing of the terms in the frequency domain

is a periodic function of the spatial coordinate. If one-dimensional antenna is synthesized
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by means of a series of interferometers whose baselines increase successively in length by
a uniform interval, the response to a point source is a comb-shape series of evenly spaced
spikes in the ¢ dimension. In an actual observation, an isolated single source can be
mapped accurately by this means. If there are other sources present, however, the map
of the source under investigation may be seriously distorted by their interactions with
the higher-order responses, which are usually termed “grating lobes”. The spacing of the
responses in the ¢& domain is inversely proportional to the increment of the baseline spacing
in the u domain; therefore, it is important to plan the observing program according to the
nature of the source under investigation. In a two-dimensional synthesis operation, there
will be a two-dimensional array of grating lobes, of which examples will be seen [8][9][31].
In the Fourier-series method of aperture synthesis, it is necessary to measure each
component of the series only once. If several antennas are available, together with the
necessary electronics to permit simultaneous operation of several baselines, the most eco-
nomical arrangement of the antennas is one which provides the largest number of necessary
baselines with the minimum number of duplications. It is possible to arrange four anten-
nas on a straight line in such a way that there are no redundant baselines; but for larger
number of elements and for two-dimensional arrays redundancies are inevitable [40].
The aperture illumination is the distribution of the electric field in the plane of the
antennas. In a synthesis array consisting of a small number of antennas, for example,
the illumination would consist of a number of discrete points in the aperture plane. The
autocorrelation function of the illumination is called the transfer function. The Fourier
transform of the brightness distribution (in spatial coordinates) is the brightness spectrum
(in spatial frequency terms), and the product of the brightness spectrum and the transfer
function is the output in terms of spatial frequencies: that is, the observed brightness
spectrum, whose Fourier transform is the conventional radio telescope output. Only
those spatial frequency components are present in the output which are also present in
the transfer function; thus, the performance of the synthetic telescope can be investigated
by examinating its transfer function. The transfer function has the same configuration
as the diagram of the antennas in the u dimension, or in the u — v plane in the case of a

two-dimensional array.

3.7.8 Comparison between Conventional Sum Arrays and Corre-

lator Arrays

In early radio astronomical measurements in 1940s, conventional two-element sum arrays

are used as an alternative for 1-D and 2-D image retrieval of radio sources. Different spatial
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frequencies are sampled by varying the baseline between two antenna elements. On the
other hand, multi element sum arrays are usually used as a probe for directly mapping the
source in the angular domain, and the direction of probe is steered by applying phased
array techniques. Here we compare both types of sum arrays to correlator arrays, and it
will be shown that correlator arrays have unique advantages in both noise reduction and
data gathering efficiency [9][31].

Fig. 23(a) shows a schematic diagram of a two-element sum array. The voltage signals
from both antennas are summed and squared by a square-law detector, and the output
of the detector is low-pass filtered before being recorded. Assume the signal voltage from
antenna [ is V sin (27 fot). The output of antenna 1 is therefore delayed by 7 = (? . ?) ,

where B is the baseline vector, & is the unit vector pointed to the source and ¢ is the wave
velocity in free space. Noticing that u = (ﬁ . ?) /(A\) . The output of the square-law

detector is

W' (u) = {v sin (27 fot) + V sin {2wa (t - “—CA)} }2 (3.133)

By filtering harmonics of 27 fot, which represent radio frequencies, the output of the sum

array is

W (u) = V? {1 + cos (27”;07”)} (3.134)

For a certain radio source, the cosine term in (3.134) is a function of u only and represents
the spatial frequency to which the array responds. It is not filtered out since varies slowly
as the Earth rotates. However, due to the noise power which is typically several orders
of magnitude greater than the signal from the source, the large offset represented by the
constant term in (3.134) is desired to be removed.

In the two-element correlator array shown in Fig. 23(b), output signals of two an-
tenna elements are multiplied and time-averaged, namely, correlated. Using the same

expressions as those in (3.133), the output of the multiplier is

W' (u) = V?sin (27 fot) sin [27Tf0 ( - u_c)\)}
4 [on (262

cos (4 fot) cos (FHot2)

+ sin (4 fot) sin (WTOM)]

(3.135)

_I_

The second and the third terms in (3.135) vanish after being time averaged. Therefore

the output of the correlator is

W(u):‘%zcos(

2m OUA) (3.136)
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with the cosine term remains only [9][31].

For a sum array with elements, since the output signals of all elements are summed up,
it is not feasible to identify the © — v domain response of the array. Using such a multi
element sum array, a radio source is usually mapped in [ — m domain by convolving its
power pattern and the brightness distribution of the source, and only one data is obtained
at any instant. In this case, what contributes most to the convolution is the brightness
distribution within a small angular region determined by the narrow beam formed by the
array. In order to achieve a radio map within a reasonably large angular region, the main
beam of the array must be phase-steered. On the other hand, a correlator array responds
to the entire FOV by sampling multiple spatial frequency components simultaneously. It

is therefore more efficient than a sum array in gathering data for mapping purpose [9][31].
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Figure 23. Radio Astronomy - Comparison between the signal processing schemes of a 2-element: (a)

sum array and (b) correlator array.
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3.8 Particle Swarm Optimization for Radio Astronomy
[31]

3.8.1 Introduction

Compared to conventional deterministic and pseudodynamic programming techniques dis-
cussed in other works, the PSO optimizer provides more flexibilities to optimize the array
performance in both the © — v domain and the [ — m domain, by performing statistical
explorations in high-dimensional, non-linear solution spaces. Benchmark examples are
presented to illustrate its effectiveness in designing correlator arrays with typical open-
ended and closed configurations such as the “Y” and the Reuleaux triangle, by obtaining

optimal arrays that outperform uniform arrays and representative existing designs [31].

3.8.2 A Numerical Example: A Uniform Y-Shaped Array

By utilizing basic formulations (3.113)-(3.123), an analyzer is developed to calculate the
u — v coverage and the synthesized beam of a correlator array with an arbitrary configura-
tion f (z,y). Let us take a 27-element array is constructed on a Y-shaped rail track, which
is a representative open-ended configuration similar to the Very Large Array (VLA) at
Socorro, New Mexico (£ = 34°, £ = 0°). The entire array is rotated by 5° from the north-
south direction to achieve a better u — v coverage for observations at low declinations.
Each arm of the “Y” extends up to 21 km and each antenna element is a 25m-diameter
parabolic reflector. The ratio between the maximum baseline (B,,., = 21v/3km) and the

dimension of each individual antenna element is approximately 1400.

A Gaussian source with the visibility specified in (3.124) is used to test the image
retrieval capability of the array. The variance of the Gaussian function is selected as
0 = (Bmaz)/ (8N)and the original source image I (I,m) is plotted in Fig. 24(a) by the
inverse Fourier transform of (3.124) at 128 x 128 FFT grids. The image plot is scaled
from —30dB to 0dB [31].
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Figure 24. Radio Astronomy - (a) Original source image with the visibility specified by the Gaussian
function in (3.124). (b) Image retrieved by the uniform Y-shaped array shown in Fig. 4(a).

3.8.3 Optimization of Y-Shaped Arrays
3.8.3.1 The Particle Swarm Optimization Technique

PSO is a recently proposed evolutionary algorithm that addresses both continuous and
discrete optimizations by applying the swarming behavior in the nature. The basic prin-
ciple of PSO is to iteratively explore the solution space using a swarm consists of multiple
agents. Each agent represents a candidate design and its performance is quantified by
a fitness function representing the goal of optimization. At each iteration, all agents in-
terchange the information of the best design that has ever been found. Each agent is
navigated by its own experience and the knowledge from other agents. This procedure
repeats until the swarm converges to the global optimum. Being applied to a large variety
of practical electromagnetic applications, a robust PSO optimizer has been developed [31].
The PSO algorithm is applied in this section to optimize element positions on each
arm of the “Y” in order to reduce the redundancy in the u — v coverage and suppress the
sidelobes in the synthesized beam. The number of antenna elements in each optimization is
fixed to be 27, and the candidate design has a three-fold symmetry (i.e., the nine elements
on each arm have the same distribution) to guarantee a good azimuthal -distribution. To
maintain the same Bi,q, of 21v/3km, it is also assumed that there is always an element
located at the end of each arm. Therefore the array configuration is represented by an

eight-dimensional real vector
T = |11, 73, .., Tg] (3.137)

in which z; € (0,21) (unit: kilometers) represents the radial displacement of the ith
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element from the center of the array. The optimization is performed over Z and minimizes
the fitness functions discussed in following subsections depending on different optimization
goals [31].

3.8.3.2 Optimizing the U-V Coverage

The first-order requirement of optimizing the snapshot u — v coverage is to reduce the
redundancy while maintaining the uniformity of v — v samplings.

The fitness function can be therefore defined as

f = _Nsampled (3138)

to maximize the number of sampled grids. The negative sign is used due to the default
setting of PSO as a minimizer.

The optimization is executed using a 10-agent swarm for 500 iterations. The optimized
array (denoted by Y1) and its u—v coverage are plotted in Fig. 25(a) and (b), respectively.
The radial displacements of nine elements on each arm are tabulated in Table II. The fixed
element at the end of each arm is denoted zg as and it has a constant radial displacement
of 21 km. Compared to the uniform Y-shaped array, the u — v samplings are distributed
in 558 grids with 24 more sampled grids obtained. More importantly, there are no more
overlapping samplings in the arm directions due to the slight perturbation induced into
the uniform element distribution.

In order to verify the robustness of the optimizer, 10 independent optimizations are
performed using the fitness function defined in (3.138). All these trials converge to the
same optimal design shown in Fig. 25(a) and the v — v coverage with 558 sampled grids
is the best result that can be achieved. It is worthwhile to mention that, although the
ideal number of 702 sampled grids is used as the target for optimizing element positions,
it is not possible to achieve this exact number since there is not such a function f (x,y)
whose autocorrelation is completely flat in the u — v domain [31].

A similar criterion is applied to optimize the u — v coverage for an 8-hour tracking
observation, with the only difference in selecting the value of N,,;4 defined in (??). Under
the same observation condition previously mentioned (h = 8 hours, At = 5 minutes), the
total number of u — v samplings is increased by a factor of (h) / (At) = 96. Ideally N4
should be increased by a factor of v/96, however, the number of FFT grids (128 x 128)
in the mapping procedure is comparable to the number of u — v samplings in this case.
A Ngvig = N, = N, = 128 is therefore selected to achieve more sampled FFT grids. The

fitness function is defined to be similar to (3.138). The same optimization setup of 10
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agents and 500 iterations is applied. By incorporating the analysis of Earth rotation effect
in each fitness evaluation, the total optimization time is increased to about 20 minutes
[31].

The configuration of optimized array (Y2) and its tracking u — v coverage are plotted
in Fig. 26(a) and (b), respectively. The optimized element locations are also tabulated in
Table 1. In order to represent the number of sampled grids in a concise manner with such

a large N4, we define the filling ratio of the u — v domain as

R=>" (3.139)

where A, is the total sampled area and A. is the area of the big circle of the six-point
star. Compared to the uniform array, the filling ratio of array Y5 is increased from 68.9%

to 86.5% by non-uniformly locating antenna elements on each arm [31].
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Figure 25. Radio Astronomy - (a) Configuration of the optimized 27-element Y-shaped array (Y7) for

the maximum snapshot u — v coverage. (b) Snapshot u — v coverage of Y has 558s sampled grids.

97



30+

20

100

: g
Z 0 < 0
> pe s b x
P ¥e o > -
. i
-10 > . o
-20
=20
-30
=30}, 4 g 0 . i i -40
-30 -20 -10 0 10 20 30 -40 -20 0 20 40
% (km) u x A (km)
(a) (b)

Figure 26. Radio Astronomy - (a) Configuration of the optimized 27-element Y-shaped array (Y3) for
the maximum tracking v — v coverage. (b) Tracking u — v coverage of Y> has a filling ratio of 86.5%, as

defined in (3.139).

3.8.3.3 Optimizing the Synthesized Beam

In order to suppress the sidelobes in the synthesized beam, the peak sidelobe in the 2-D

beam plot is identified and a fitness function is defined as:
f =max|[by (I,m)] in sidelobe region (3.140)

The beam is calculated based on the u—uv coverage of the 8-hour tracking observation, and
a —15dB Gaussian tapering is applied to the u—v samplings as previously mentioned. Fig.
27(a) and (b) plot the optimized array configuration (Y3) and its synthesized beam using
10 agents for 500 iterations. The element locations of the optimal design are presented in
Table II.

Array (Y3) also has good sidelobe features for other source declinations. As shown in
Fig. 28, the optimized array outperforms the uniform Y-shaped array in a wide range
of source declinations from +30° to +80° with SLLs around or lower than —18 dB. The
deteriorated SLL when tracking a source at +90° is possibly due to the redundancy re-
sulted by the three-fold symmetry. A better SLL at +90° can be achieved by optimizing

an array with asymmetrical element distributions on each arm [31].
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| Design | 21 | ma | &3 | @4 | w5 | ms | xv | #8 [ @o |

Uniform Array | 2.33 | 4.67 | 7.00 0,33 1167 | 14.00 | 16.33 | 18.67 | 21.00
Array Y3 2.49 | 5.06 7.36 10,40 | 12,92 | 15.06 | 17.00 | 18.97 | 21.00
Array Yz 3.72 | 815 | 11.36 | 13.99 | 16.64 | 19.03 | 19.67 | 20.37 | 21.00
Array Ya .32 | 3.93 | 549 9.30 11.44 | 1548 | 17.04 | 20.11 | 21.00

Table II. Radio Astronomy - Radial Element Displacement of Optimized Y-Shaped Arrays (Unit:

Kilometers).
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Figure 27. Radio Astronomy - (a) Configuration of the optimized 27-element Y-shaped array (Y3) for
the lowest SLL. (b) Synthesized beam of Y has a peak SLL of —20.3 dB.

-8 - - ! " -
g -10 2 A
. R Uniform Y-Shaped Array
£ N \
s k. \
8 -2 ook A
E \\‘\ . L A
N i a_ L
,-E _14 - \\\‘ > A i
(= ~
= L Power-law Array A
(.g k\ ~‘\ ll,#
I
g -16 | \\A‘_.,A--A--.‘—'A"-‘-“ !
= o Optimized Array Y, ¢
) ' '
o A A / ’
-18 | . el '
\\ s o ke - —A
w
_20 ; i i i H
-20 0 20 40 60 80 100

Declination (deg)

Figure 28. Radio Astronomy - Comparison between a uniform array, a power-law array (o = 1.7) and

the optimized array Y3 for SLLs in 8-hour tracking observations with different source declinations.
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3.8.3.4 Benchmark Comparisons

Table IT compares performances of the uniform and three optimized Y-shaped arrays. It
is quite obvious that each of (Y;), (Y2) and (Y3) only outperforms other designs in the
snapshot u — v coverage, the tracking u — v coverage and the peak SLL of the synthesized
beam [the peak SLL referred in Tables IT and IV corresponds to the maximum of by in
sidelobe region, as defined in (3.140)|, respectively. By realizing that these design goals
are not directly interrelated to each other, it is appropriate to justify here the advantage
of applying PSO to correlator antenna array designs.

First of all, PSO provides a flexible optimization platform to accommodate different
circumstances that might be encountered in practical astronomical measurements. Since
the only input required by the optimizer is the fitness value, a large variety of design goals
can be approached by simply applying different fitness functions without significantly
modifying the optimizer itself. On the other hand, in some conventional optimization
methods such as the gradient-based method, antenna locations are directly manipulated
according to the distribution density function of snapshot v — v samplings, which makes
the methodology not as effective for optimizing the synthesized beam.

Secondly, the fitness functions elaborated in (3.138) and (3.140) enable the optimizer
to be more effective in obtaining the desired u — v coverage and synthesized beam. For
instance, the snapshot u — v coverage of a circular array is optimized by maximizing
the summation of u — v separations using simulated annealing (SA). In order to test its
applicability in designing Y-shaped arrays, we did four comparative optimizations in PSO

using the same fitness function of

Mp
=3 )EZ . ?k’ (3.141)
Jok;iF#k
and different element numbers of N = 9,12,18 and 27. Here ﬁj and ?k represent the
jth and the kth baseline vector, respectively; and Mp = (N (N — 1)) /(2) is the total
number of baselines [31].
Finally, let us consider the actual VLA configuration designed by the power-law, in

which the ith element’s position is defined by (unit: kilometers)

7 =21 x (%) (3.142)

where o = 1.7. In PSO-optimized arrays discussed above, it is interesting to notice that Y5
resembles a “reversed” version of the power-law design, which has more antenna elements

concentrated near the center rather than near the edges. In fact, the power-law-based
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design is selected largely for reasons of economy. By selecting a proper «, the total number
of antenna stations along the rail track is significantly reduced by sharing some stations
between multiple array configurations with different scales. However, under the particular
observation conditions considered in this chapter, the highly-condensed elements near the
edge in the configuration of Y5 compensate the Earth-rotation effect more efficiently. It
is observed in Table II that the filling ratio of the power-law design is only 59.8%, which
is even worse than the uniform Y-shaped array. Moreover, its synthesized beam is also
outperformed by the optimized low-SLL design Y3 in a wide range of source declinations,
as shown in Fig. 29 [31].
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Figure 29. Radio Astronomy - (a) Original image of a Gaussian source and retrieved images by ()

array Y1, (c) array Y and (d) array Y3 . The best image is retrieved by optimized array Ya.
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Chapter 4

Rectangular Thinned Arrays Based on
McFarland Difference Sets

4.1 Introduction

ARRAY systems for frequency-modulated continuous-wave (FMCW) radars and SAR ap-
plications usually have to exhibit different total main beam widths (TMBWs) in azimuth
and elevation and low PSLs [41], [15]. To meet these requirements and provide suitable res-
olutions, large rectangular layouts are needed [41], [15]. Since large fully-populated rectan-
gular arrangements can yield to unacceptable high costs, weight, power consumption, and
feeding network complexity [1], [42], architectural solutions with a reduced number of ele-
ments over large apertures with satisfactory PSLs and TMBWs values are often preferred.
Towards this end, thinning techniques are generally exploited [1], [42] even though their
main drawback is a lower sidelobe control when compared to their filled counterparts [1],
[42]. In order to overcome such a limitation, several approaches have been proposed includ-
ing the random displacement of the array elements [3], [6], the dynamic programming [43],
and the stochastic optimization [44]-[45]. In such a framework, analytical techniques seem
to be promising tools because of their numerical efficiency and the PSL control [19], [5].
By exploiting the auto-correlation properties of binary sequences, such as difference sets
(DSs) [19]-[21] or almost difference sets (ADSs) [22]-[46], a regular and a-priori predictable
behaviour of the sidelobes is guaranteed [47|. Unfortunately, only specific geometries and
array sizes can be synthesized [5], [25], [48]. Despite the availability of quite large DS-
ADS repositories [49]-[50], planar arrays based on DSs and ADSs are usually square [21],
[48] or almost square [5], [48], while few examples of DS-based rectangular arrangements

with different azimuth and elevation TMBWs are actually used (Following the approach
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discussed in [19], [5], a rectangular DS array of size N; x Ny can be generated only if a
1D DS is available with length N = 22 — 1 such that N; = 2™ — 1 and Ny = N/Nj are
coprime and greater than one. Accordingly, only 6 of such sequences exist for N; < 30
corresponding to N = {15,63,255,511,1023} [49], and only 3 these exhibit strongly dif-
ferent azimuth and elevation TMBWSs [i.e. (N7 x No) = {(3 x 85),(3 x 341), (7 x 73)}]).
[41], [5]. In this paper, thinned rectangular arrays based on McFarland sequences [51],
which are a particular class of DSs, are analyzed for the first time to the best of the au-
thors’ knowledge, and a suitable synthesis procedure based on a binary Genetic Algorithm
(GA) [44] is proposed (McFarland sequences, likewise two-dimensional DSs [5], exhibit a
two-level autocorrelation function). It is worthwhile to point out that the exploitation of
such a class of DSs enables the extension of the design approach proposed in [19], [5] to
rectangular layouts of size (being a prime number) with different azimuth and elevation
TMBWs.

The outline of the chapter is as follows. Section 4.2 introduces McFarland sequences
and their application to array thinning. Afterwards, the GA-based synthesis technique for
designing McFarland arrays is presented (Section 4.3) and a set of representative numerical
results concerned with different apertures and thinning factors is provided (Section 4.4)
to show features, potentialities, and limitations of the proposed thinning strategy. An

Appendix is present in Section 4.5.

4.2 Mathematical Formulation

Let us consider a two-dimensional regular lattice of P x () positions spaced by s, and
s, wavelengths along x and y, respectively. The array factor of a thinned arrangement

defined over such a lattice is equal to [42]

T

-1

F(u,v) = d (p, q) exp [j27 (ps,u + qsyv)] (4.1)

O

I
=)
I
=)

u = sin (#) cos (¢) and v = sin () sin (¢) being the direction cosines. Moreover, d (p, q) is

the McFarland binary thinning sequence|48]

1 M
d(p,q)={ P dlp-ale.a) € p=0,... P—1,¢=0,..,Q — 1 (4.2)

0 otherwise

where P is a prime number, ) = P(P + 2), M is a McFarland DS [51] with indexes
N = P?(P+2), N=P(P+1) and A = P. Furthermore, -],and |, , stand for the
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reminder of division by P and P + 2, respectively. It is now worth noticing that several
McFarland arrays can be generated for each P value. From the McFarland generation
technique in the Appendix, it follows that a distinct DS, D = {d (p,q),p=0,..., P—1,qg =
0,..., P(P+2)—1}, corresponds to (a) each value of the integer & in [0, ..., P+1], (b) the set
of P+1 vectors (as, b;) (t=0,...,P+1,t # k), and (c¢) the P+ 1 elements (w (Hl), wétﬂ))
(t=0,..,P+1,t+# k) used for deriving M. As a result, up to (P +2)! x P?’*2 different
McFarland sets can be generated for each prime P. In turn, each McFarland set defines

up to P%(P + 2) different layouts by performing cyclic shifts of the thinning matrix [5]
D= (p, q) = {d [(p +00)]ps (a+ ay)JP(P+2)] p=0,...P—1,q=0,..,P(P+2)—1
p=0,...P—1,49g=0,..,P(P+2)—1}

o, and o, being the shift indexes along the array axes. In conclusion, the total number

of different McFarland arrangements generated for each P turns out to be
U (P) = (P+2)*x (P+1)! x p2+ (4.3)

where (+)! indicates the factorial.
As for the power pattern, a McFarland array defined over a rectangular grid of P x

P (P + 2) locations satisfies the following sampling property [5]

I ) P—1 P(P+2)
F
(o) S X
P—1P(P+2)—
where y(m,n) Z Z d (p,q [ (p,+m)]p, (¢ + n)JP(P+2)] is the two-valued pe-

riod autocorrelatlon functlon of D [51] whose values are

-1

(m, 1) X exp [j271’ (m?f + P(PLZH))} (4.4)

X (m,n) = (K —A)d(m,n) + A

m=0,..,P—1,n=0,.,P(P+2)—1 (4.5)

d (m,n) being the delta function [i.e 6 (m,n) = 1if m = n = 0 and § (m,n) = 0 otherwise].
As an example, Fig. 30(a) shows a McFarland array obtained for P = 3, while the
corresponding autocorrelation reported in Fig. 30(b). From 4.4 and 4.5, it follows that
the samples of the power pattern of McFarland arrays are a-priori known. Moreover, it
has been proved in [5| that they produce patterns with much lower PSLs that are typical
with cut-and-try random placement. More in detail, Monte Carlo simulations have shown
that compared to a random (nonlattice) placement of elements on the same aperture, a
DS array has an expected PSL improvement of ~ 1.5 + 101log,,(1 — (K/N))~*[dB] [5].
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In order to fully exploit the features of McFarland sequences for array thinning, a
suitable synthesis procedure is presented in Section 4.3.

d(p,q), McFarland Array, P=3
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Figure 30. McFarland Rectangular Arrays - Example of (a) a McFarland array and (b) the associated
(two-level) autocorrelation function (P = 3).

4.3 McFarland Array Synthesis Procedure

In order to find the optimal (i.e., with the lowest PSL) McFarland layout for every P value,
all ¥(P) deducible arrays should be, in principle, analyzed. Unlike other 2D DS-based
thinned architectures [21]|, an exhaustive procedure is here computationally unfeasible
due to the extremely wide number of layouts even for small P values. As an example,

more than ¥(P) & 2.15 x 10" McFarland arrays can be defined over a lattice of size
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Px@Q =5x35 (P =5- Table I). As a consequence, a different and more efficient
selection approach is mandatory to analyze the PSL properties of these arrangements
for identifying the optimal layout.Towards this end, the problem of finding the optimal
McFarland array among all existing W(P) layouts for a given is recast as an optimization
one where the fitness function to be minimized is defined as follows

®(D) £ PSL{D} (4.6)
where
[ | F'(u, )]
PSL{D} = = 4.7
(D} & =P (47)

(2 being the sidelobe region [21].

Because of the discrete nature of the descriptors of the McFarland sets |[i.e., 0, 0y, k,
(at, by) and (zDYH), wétﬂ)) fort =0,...,P+ 1, t # k|, a binary GA-based approach [24],
[44] is exploited. More specifically, the following procedure is iteratively applied.

1. Initialization (i = 0) - A randomly-chosen initial population of C' trial solutions
(or individuals), p.(i), ¢ =1,...,C is defined,;

2. Coding - Each individual p.(7) encodes the values of the McFarland integer de-
scriptors o, € [0,P — 1], 0, € [0,P(P+2) — 1], k € [0,P + 1], (a,b:) (a: €
0,P — 1,0, € [0,P —1),t = 0,.,P +1,t # k) and (w?“’,wgt“)) € Vi

(m&”” c0,P— 1,0 €[0,P—1),t=0,...P+1,t# k)) into a binary string

(or chromosome);

3. GA-Evolution - At each i-th iteration, the genetic evolution takes places through
selection, crossover, reproduction, mutation and elitism operators [24], [44] taking

into account the fitness values &, = ®.{p.(i)}, c =1, ..., C of current trial solutions;

4. Termination - The iterative optimization terminates when the optimal fitness
value, ®pop(i) = min,. P.{p.(7)}, is smaller than an user-defined threshold or when
a maximum number of iterations I,,,, has been reached. Then, the fittest trial in-
dividual p = arg, {min; (min. [®.{p.(7)}])} is assumed as the optimal solution (i.e.,
the optimal setup for the McFarland descriptors). Otherwise, the iteration index is
updated (i — i+ 1) and goto 3.

It is worth to point out that, unlike [18], [24], the objective of the GA procedure is here
not to design an optimally thinned array, but the search of the fittest arrangement in

terms of PSL. among all available McFarland layouts for a given P.

107



4.4 Numerical Results and Discussion

This section is aimed at (a) numerically assessing the features and the potentialities of the
McFarland rectangular layouts and (b) validating the GA-based synthesis approach for
generating optimal PSL arrangements when dealing with both small and large apertures.
The GA-based search has been applied with the following setup: cross-over probability
equal to 0.7, mutation probability equal to 10~2, maximum number of iterations I,,,, =
5 x 10%, population size C' = 10. Moreover, has been assumed s, = s, = 0.5. It is
worth remarking that, although deduced for a broadside steering, the final layouts will be
optimal for s, = s, = 0.5 whatever the steering direction [thanks to 4.4]. Moreover, since
in most cases the highest secondary lobes appear near the main lobe in DS planar arrays
[19], such layouts are expected to represent the optimal ones also for most other steering
directions and inter-element spacings.

The first numerical experiment is concerned with the McFarland sequence with P = 3
for which an exhaustive analysis, although computationally cumbersome, can be still
performed in a reasonable amount of time. The plot of the PSL values of the whole set
of U(P)|p_y = 3.54 x 10" McFarland arrays indicate that several DS layouts exhibit
PSLs equal or very close to the optimal one PSL?" = —9.3dB [Fig. 31(a)]. This is also
confirmed by the index A(n) given by

Aly) 2 \I]<P>JPSL§77PSL°P’5 (4.8)
v(P)

and defined as the fraction of McFarland layouts that exhibit a PSL equal or below 7
times the optimal value PSL°" (Fig. 32). As a matter of fact, although the optimal
configurations are quite rare [A(n = 1.0) ~ 5.5 x 10~%- Fig.32|, a non-negligible portion of
the randomly-generated layouts exhibits a PSL close to PSL* [A(n = 0.9) = 0.01]. This
suggests that the GA-based search method should quickly find a sub-optimal configura-
tion, while a larger number of iterations may be required to actually reach convergence to
the global optimum. Such a behaviour is pointed out by the plot of the evolution of the
optimal GA solution within the solution space of McFarland arrays in Fig. 31(b) where
the blue crosses identify the elements of the GA solution set at the i-th GA iteration, while
the red line is concerned with the overall (ordered) McFarland solution set as a function
of the sequence index. Indeed, less than 300 iterations are sufficient to find a McFarland
arrangement with PSL ~ —8.6dB, while the convergence is reached after I..,, = 1693
steps. Such an outcome confirms that the GA-based synthesis is able to effectively sample
a large solution space finding the optimal McFarland layout characterized by a low PSL

value despite only 12 active elements over a lattice of 45 positions [Fig. 30(a)].
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Figure 31. GA-Based McFarland Synthesis - Plots of (a) the PSL values of the whole set of
McFarland arrays and (b) evolution of the PSL of the GA solution during the iterative (¢ being the

iteration index) sampling of the McFarland solution space.

Similar conclusions can be drawn from the analysis (non exhaustive, but limited to a
percentage of the whole set of McFarland configurations) carried out for P=5and P =7
[Figs. 33(a) and (b)], even though a faster convergence of the GA-search is expected when
dealing with larger dimensions as suggested by the values of A(n) [e.g., A(n =0.9) =~ 0.1
for P =5 vs. A(np =0.9) = 0.01 for P = 3 - Fig. 32|. This is further confirmed by
the evolution of the GA solutions in Fig. 33. As a matter of fact, only /.,,, = 52 and
I.ony = 47 iterations are necessary to reach the convergence when P =5 [Fig. 33(a)| and
P =17 [Fig. 33(b)], respectively.
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Figure 33. GA-Based McFarland Synthesis - Evolution of the PSL of the GA solution during the
iterative (¢ being the iteration index) sampling of the McFarland solution space when (a) P =5 and (b)
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For completeness, Fig. 34 gives the corresponding arrangements and power patterns.
As expected from DS theory, the optimal layouts at convergence | P = 5 - Fig. 34(a);
P =17 - Fig. 34(c)] exhibit controlled and regular sidelobes | P =5 - Fig. 34(b); P =7 -
Fig. 34(d)] despite the massive thinning (v 2 K/N = (P+1)/(P(P+2)) ~ 0.17 for P = 5,
v =~ 0.13 for P = 7 - Table III). Moreover, thanks to the McFarland distribution, the
corresponding architectures give different resolutions in each angular domain as indicated

by the locations of the first nulls of the beam pattern (see z,vs. z, in Table III).

111



¢l

Pl wEA) | Amaysie| we) | v | 2 | Pszovas)
3| 5123 3x15 | 354x107 | 0.2667 | 6.66x 10" | 1.33x 101 |  —9.28
5| (175,30,5) 5x35 | 215x 10 | 01714 [ 410x 107" | 5.74x 1072 |  —10.41
7| (a41,56,7) 7x63 | 531x10% 01270 [ 285 x 107! | 317x 1072 |  —12.04
11| (1573,132,11) | 11x 143 | 9.64x 103 | 0.0830 | 1.81x 101 | 1.34x 102 | —15.56
13 || (2535,182,13) | 13x 195 | 5.14%10% | 0.0718 | 153 %101 | 1.02x 102 | —15.54
17 || (5491,306,17) | 17x 323 | 1.32x 105 | 0.0557 | 1.17x 10~ | 6.19x 1073 | —15.61
19 || (7581,380,19) | 19% 399 | 5.47x 107 | 0.0501 | 1.05x 10 | 5.01x 1073 | —15.63
23 || (13225,552,23) | 23x 575 | 4.73x 109 | 0.0417 | 8.69x 102 | 347x10% | —15.50
29 || (26071,870,20) | 20x 899 | 1.18 x 1016 | 0.0334 | 6.89 x 1072 | 222 103 | —15.02

Table III. McFarland Rectangular Arrays (P < 29) - Features and Performance Indexes.
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Figure 34. GA-Based McFarland Synthesis - Optimal McFarland layouts (a), (¢) and the
corresponding power patterns (b), (d) when P =5 (a), (b) and P =7 (¢), (d).

In order to assess the performances of McFarland thinned arrays also when impractical
(for an exhaustive analysis) apertures are at hand, the next experiments are concerned
with 11 < P < 29. The results of the GA-based synthesis when P = 11 and P = 13 are
provided in Figs. 35 and 36. Despite the decreasing thinning factor (vp—;; ~ 8.4 x 1072
vp_13 ~ 7.2 x 1072 - Table I), high sidelobe do not appear since PSLp_;; = —15.56dB
and PSLp_13 = —15.54dB (Table I). Moreover, the power patterns in Fig. 36 [P = 11 -
Fig. 36(a); P = 13 - Fig. 36(b)| show the sidelobe regularity expected from the two-level
autocorrelation McFarland layouts notwithstanding the highly-sparse element distribution
[P =11 - Fig. 35(a); P = 13 - Fig. 35(b)].
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Previous conclusions can be also extended to wider McFarland layouts ( P < 29 -
Table IIT). As it can be noticed, low PSL values are obtained whatever the P dimension
(PSL € [-15.61dB, —15.0]dB for P € [17,29] - Table III), despite the sharp reduction of
the thinning factor (v < (1/P) - Table III).

As a final numerical validation, a comparison between the performances of the best
McFarland array and those of the best sparse array with the same size and thinning
factor found by means of a traditional GA-based approach [51], [50] is provided. The
GA methodology is applied by assuming standard “binary” descriptors of the geometry
[24], [50], rather than the McFarland descriptors introduced above. As a consequence,
the obtained design will not be a DS layout. More in detail, a state-of-the-art randomly
initialized GA method (see [24], [50] for the implementation details) is employed for
designing a thinned rectangular array of size P x () = 7 x 63 with K = 56 active elements.
The stochastic optimization has been carried out by considering a GA population of size
10, a mutation probability equal to 1072 and a crossover probability of 0.7. The maximum
number of GA iterations has been set to 5 x 10% [24], [50]. By comparing the performances
obtained by the GA-optimized layout [Fig. 37(a)| with those of the McFarland one [Fig.
34(¢)], it turns out that the stochastically optimized architecture does not to reach a PSL
value [Fig. 37(b)| as low as that of the proposed layout [Fig. 34(d)] [PSLga = —10.76dB
vS. PSLyrerariana = —12.04dB] even though also non-DS layouts can be synthesized in
the former case. Such a result is due to the size of the search space that has to be explored
by the standard GA methodology (i.e., 24), which is extremely larger than that defined
by the McFarland descriptors (U(P = 7) ~ 5.31 x 10%' - Table III).
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d(p.q), Optimal GA Array, P=7, Q=63, K=57

W (u,v)| Normalized - [dB]

Figure 37. Comparison with Standard GA-Thinned Rectangular Arrays - Optimal layout (a) and the
corresponding power pattern (b) obtained by GA when P =7, Q = 63 and K = 56.
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4.5 Appendix

In this section, a procedure for the generation of a McFarland Sets is presented.
Let be P a prime number and let us define Vg = {(wy,ws) : 0 <w; < P—1,0 <wy <
P — 1, wy,we € N}, Hy = {(0,0)}and My = 0. Select an integer k € [0, ..., P + 1] and
choose P + 2 (not necessarily different) vectors (a;,b;) € Vg with o <t < P+ 1, t # k.
For every t € [0, ..., P+ 1], let V4,1 = V,\H, and determine the set M, as follows:

M, =M, Hypy =10

~ 1 ~ 1
= ([, ot ] v =)

M =M U { [(pwgﬂ) + at+1)JP, (PIDSHU + bt-i—l)JP ,p=0,..,P— 1} }

ift £k

where (wit“), u?étﬂ)) is randomly picked element in V, ;.

From [51], it follows that Mp,, is a McFarland DS (i.e. M £ Mp,,) with indexes
N=P(P+2),K=P(P+1),and A = P.
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Chapter 5

Hybrid ADS-Based Techniques for
Radio Astronomy Array Design

5.1 Introduction

The design of correlator (also known as interferometric) arrays has been a topic of re-
search since thel960s for applications in radio astronomy [1]-[52]. The efficiency of the
data gathering of correlator arrays is related to their spatial filtering properties [31], [8].
Therefore, the design of a correlator array essentially consists in solving an optimal sam-
pling problem [31] where the positions of the array elements are chosen to ensure optimal
performances in all possible observation situations (i.e., source positions and durations
of the observation), for whatever scientific purpose (e.g., single field imaging, mosaicing,
astrometry, detection), and different constraints (i.e., cost, ground composition and prac-
ticability, operation of the instrument) [31], [53|, [54]. In order to reach these objectives
and unlike traditional sum arrays, correlator arrays have to generate either a maximal
coverage in the spatial frequency (or ) domain or a minimum peak sidelobe level (PSL)
in the angular (or ) domain [31], [8], [53] as detailed in Section 5.2. Towards this end,
many and customized strategies have been proposed including minimum redundancy [55],
[40], [33], pseudo randomness [34], power laws [35], difference set arrangements [36], and
minimization of the holes in the sampling [37]. As regards optimization-based sum-array
design techniques [1], [56]-[59], they also cannot be directly applied since the array spa-
tial coverage evaluation, the Earth rotation effects [60], [29], and the beam calculation
must be taken into account in the synthesis procedure as pointed out in [31] and [54].
However, optimization-based design techniques can still represent an important tool for

future planned instruments, especially when the underlying architecture is mechanically
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reconfigurable (as for the future planned ALMA [57] and SKA [58]).

In such a framework, valuable results have been obtained in [62], [31] thanks to the
integration of a tool for the systematic analysis of correlator arrays and an effective par-
ticle swarm optimizer (PSO). However, despite the good performances, such a technique
does not exploit the available analytical knowledge on interferometric arrays [31]. Usu-
ally, introducing a priori information in stochastic optimizers is known to improve their
performances in terms of both rate of convergence and final design properties [24], [25].
This is expected to hold true also for the synthesis of correlator arrays. Therefore, this
paper is aimed at introducing and numerically validating a set of hybrid techniques that
take advantage of the a priori information on suboptimal analytically derived correla-
tor arrangements. The proposed methodologies are based on recently introduced binary
sequences with almost ideal autocorrelation properties, named Almost Difference Sets
(ADSs) [61]-[63]. Such sequences are exploited in three different ways: (i) as a codebook
in an exhaustive search approach; (ii) as initial trial solutions for a binary optimization
process (ADS -hybridized GA); (iii) as a-priori information for a real-coded optimization

technique (ADS-enhanced PSO). The main motivations of these recipes are:

e ADSs seem to be good candidates for the synthesis of correlator arrays since they
exhibit correlation properties very similar to those of DSs [5], [64], whose effective-
ness in such a framework has been already shown [36], but they are available in a
wider set of admissible configurations [61][65][63];

e GAs are highly efficient tools for discrete optimization problems [44] potentially
suitable for the effective design of correlator arrays whose elements lie on a regular

lattice;

e PSO [59] has already shown its effectiveness and reliability when dealing with cor-

relator arrays [31];

e the a-priori information can be straightforwardly integrated in stochastic optimiza-
tion tools and it has proven to be effective in enhancing performances and con-
vergence in array synthesis [24], [25]. Indeed, a good initial population (based on
some a priori known sub-optimal solutions) contains good “schemata” [66] which can
evolve through genetic operators to improve the GA speed of convergence towards

the global minimum (similar considerations apply to PSO, as well).

The outline of the chapter is as follows. After a short review on correlator arrays and a

description of the key problems in synthesizing interferometric arrangements (Section 5.2),
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the performances of the design methodology (i) are analyzed to point out potentialities
and limitations of the analytic ADS-based approach (Section 5.3). Afterwards, the GA-
(i) and PSO-based (iiz) hybrid methodologies are presented and numerically validated
dealing with benchmark problems (Section5.4).

5.2 Mathematical Formulation and Problem Statement

The interferometer beam, which describe the spatial filtering features of a correlator array,
is defined as [8]
S(l,m)=1TFT{W (u,v) X a(u,v)} (5.1)

where IFT {-} denotes the Inverse Fourier Transform operator, a (u,v) is a tapering
function devoted to suppress the sidelobes in the domain [8], and W (u,v) is the u — v

coverage function

W (u,v) = /_00 /_00 f(z,y) f(x—ul\y—ovX)dedy (5.2)

where A is the wavelength and f (z,y) is the element location [8|.

As far as tracking observations are concerned, the effects of the Earth rotation must
be introduced in the coverage function (5.2), and the interferometer beam in (5.1) turns
out modified as [8]

St (l,m) =ITFT{Wr (u,v) X a(u,v)} (5.3)

W (u,v) being the tracking u — v coverage function [8] which is a function of the source
declination D, the elevation &£, the latitude £, the azimuth of the baseline A, and the
time angle during the observation 7, = %. Moreover, H is the total tracking time
(in hours) and the number of snapshots collected during the observation.

As for the arising interferometer beam (5.3), the computation of the inverse Fourier
transform is usually carried out by means of an IFFT procedure [8|. Towards this end,
the u — v domain is partitioned in N, x N, cells of size Av x Au and the IFFT procedure
limits the [ — m domain within the range —Aiu <[ < Aiu and _A%; <m< A%}, while the

Z being the IFFT zero-padding factor

beam pattern Sy is sampled at (m, = )

[31].
For illustrative purposes, the element location function of an Y-shaped array with
N = 27 elements (L = 21 [km] and ¢ = 5 [deg]) is shown in Fig. 38(a), while the

associated St (u,v) pattern is reported in Fig. 38(b) in correspondence with a working
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frequency of 3.6 GHz and for the following setup: D = 34°, £ =0, L = 34°, H = 8 hours,
K =97, N, = N, = 128, and Au = Av = 6.82 x 103. Analogously to [31], the plot in Fig.
38(b) has been generated by applying an all-over Gaussian weighting a (u, v) with an edge
tapering of —15dB. Moreover, Z has been set to 8 for visual purposes and only the angular
range within £01 arc seconds is displayed to highlight the near-in sidelobes. The design of
a correlator array requires the optimization of the features of W (u, v), Wr (u,v), S (I, m),
and/or St (I, m) depending on the problem at hand. Standard benchmark synthesis prob-
lems are stated in the following subsections and, for comparison purposes, the reference
Y-shaped arrangements in [31] similar to the Very Large Array (VLA) at Socorro, NM
[8], [67], will be considered unless otherwise stated.

Y3 Aray, [Jn, 2008]

Array Y3 - Uin, 2008]

y [km]
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Figure 38. Y-shaped Arrays [P =18, Q =9, A =4, r = 13, Equal-unequal arms] - Plots of the
arrangement (a) and associated St (u,v) (b) for the array Y3 [31]; optimal ADS geometry with equal

(¢) or unequal (e) arms, and associated synthesized beams (d),(f).
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5.2.1 Problem A - Optimization of Sy (u,v)

The first benchmark problem is concerned with the suppression of the sidelobes of the
interferometer beam during tracking observations. Towards this end, the following metric
[31].

max_ St (I, m)
I,m)eER

St (lo, mo)

has to be minimized, R and (ly, mg) being the main lobe region and the main beam

Fy=PSL=" (5.4)

steering direction, respectively.

5.2.2 Problem B - Optimization of the u—v Coverage in Snapshot
Observation

The optimization of the snapshot u — v coverage is the second reference problem. In order

to reduce the redundancy of the correlator array , while keeping a uniform sampling, the

u — v domain is partitioned in Ny,.iq X Ngpiq square cells of equal size Agpiq X Agrig and

the following cost function, to be minimized, is then defined

Fp=% (5.5)

where B [B < (N,.4)°] is the number of different cells sampled by the snapshot coverage

function W (u,v) given by
A]Vg'ridf11Vg7‘id71

B= Z Z G (i,7) (5.6)

where G (i,7) = 1 if W (u,v) # 0 when (—% + Z) Agria < U < (_Ng;id i 1) Ay,
<_Ng2md +j) Agria <v < (_% +7+ 1) Agria, and G (7, 7) = 0 otherwise.

5.2.3 Problem C - Optimization of the u—v Coverage in Tracking
Observation
In the third problem, the maximization of the tracking u — v coverage is at hand. As for

Problem B and analogously to [31], the domain is still discretized, but in a finer grid of

N, x N, cells of size Au x Awv, to define the following cost function to be maximized:

1
Fe =

v

(5.7)
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v being the filling index defined as the ratio between A, (e.g., the number of cells belonging
to the circle around the “six point star” autocorrelation when dealing with a uniformly
spaced array [31]) and Ag [i.e., the number of cells sampled by the tracking coverage
function Wr (u,v) given by (5.6) with Wy instead of WW|.

5.3 ADS-Based Y-Shaped Correlator Arrays

ADSs have been introduced in combinatorial mathematics and code theory to overcome
some limitations of DSs while providing similar properties [61][65][63]. Although success-
fully applied in several fields ranging from cryptography up to antenna array synthesis
[22][47][48][69][70], they have never been considered (to the best of the authors’ knowledge)

in the framework of correlator arrays as proposed in the following exhaustive procedure:

1. Initialization - Given a target number of active elements N and an arm length L,
select from [68] a reference-ADS D (for definition and properties, see [61], [65]) with
Q = &, E being the arm number (E = 3 for an Y layout). Set o. = 0 (o, being the
cyclic shift applied to the e—th arm of the array) and locate the i—th array element

of the correlator array at

. L dg+0oe
o = () ]

L dg+0oe
g = cos (4 ) [1+<q+P moar] (5.8)

1=Qe+q,q=0,....0—1,e=0,..,.E—1

2. Evaluation - Evaluate the degree of “fitness” to a design problem of the current

trial arrangement by computing the cost function in (5.4), or (5.5), or (5.7);

3. Iteration - Update o, (0. < 0. + 1) and use the same shifted ADS-based element
distribution on each arm of the correlator (“equal” configuration) or a different shift

one each arm by iteratively repeating Step 2 and Step 3 (“unequal” configuration);

4. Termination - Stop when (“equal” configuration) or P¥ (“unequal” configuration)
trial designs have been evaluated. Set the “optimal” ADS design to the arrangement
with the highest “fitness”.

It is worth to notice that such a procedure is very simple and computationally efficient

since just up to P¥ evaluations are required for a correlator array with NV active elements.
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Moreover, the array elements are displaced on a regular lattice of P positions on each arm

allowing an easier realization with respect to arbitrary displacements.

In order to evaluate the performance of the ADS-based analytic approach as well as
to compare the arising configurations with state-of-the-art arrangements [31], the design
of the Y-shaped correlator described in Section 5.2 has been considered as first test case.
Because of the design requirements (Q = 9), the (18, 9, 4, 13)-ADS D, [68] (see Table

IV) has been adopted as reference sequence.

As far as Problem A is concerned, Fig. 39(a) shows the behavior of the PSL as a
function of the shift number o, for both the “equal” and “wunequal” arrangements. The
figures of merit at the convergence (Table V) indicate that ADS-based designs significantly
improve the performance of reference uniform ( PSL,,; = —13.1[dB]) and power-law
(PSL, = 16.2[dB]) arrays. Moreover, the arising PSL values turn out to be close to that
of stochastically optimized arrays (PSLs = —20.3[dB]) [31], even though the convergence
has been reached after few evaluations of the cost function when the same o, is applied to
every arm. As expected and because the increased number of degrees-of-freedom (DoFs),
a smaller PSL can be yielded by setting different shifts on the arms, but more evaluations

are necessary [o"" = 2708 vs. 0% = 7|.

On the other hand, it is worthwhile to observe [Fig. 39(b)| that different ADS layouts
present performances close to that of the optimal one pointing out an interesting fea-
ture of the ADS synthesis to be exploited when “compromise” problems with conflicting

requirements are at hand.

Concerning Problems B and C| similar conclusions on the computational efficiency of
the analytic ADS-based synthesis arise (Table V). However, the behaviors of B and v ver-
sus o, [Fig. 39(c) and (e)] as well as the characteristics of the convergence designs (Table
V) indicate that (a) the ADS strategy reaches results with performances comparable or
better than those of power-law arrays in Problem B (B}, = 408 and BY},¢ = 430 versus
By, = 428) and significantly better for the Problem C (v5},¢ = 0.828 and v4},¢ = 0.831
versus v, = 0.598); (b) the coverage of ADS-based arrays worsens when compared to
uniform arrays [Fig. 39(c), Buns = 534|, while they outperform uniform arrangements
in Problem C [vy,r = 0.689]; (¢) as expected, the PSO-based synthesis gives better per-
formances than the ADS-based strategy in both Problem B (B; = 558) and Problem C

(ry = 0.865) thanks to the unconstrained displacement of the array elements.
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ADS| P | Q| A v |

do, ... do-1

D,

18

13

0,1,5,6,7,8,10,12,15

D,

88

44

21

22

3,4,5,7,8,9,10,11, 1215, 16, 17, 18, 20,
22,23, 25,27, 30, 33, 34, 36, 37, 39,
43,47,52,53, 54, 57, 58, 59, 66, 67,
68,69, 70,72, 75,76, 78, 80, 84, 87

180

90

44

45

0,4,8,9,10, 11,12, 14, 15, 18, 19, 22, 23, 24, 25, 28, 30, 33, 34,
40, 42,45, 48,52, 53,54, 55,57, 61, 63, 65, 68, 71, 73, 76, 77,
78,79, 80, 82, 84, 89, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105,
111,112,113, 121, 126, 128, 129, 131, 132, 133, 137, 138, 139,
140, 141, 143, 145, 146, 149, 150, 151, 152, 153, 156, 158,
159, 162, 163, 166, 167, 168, 170, 172,173, 175, 176, 177, 179

42

21

10

31

0,3,4,5,6,8,9,12, 14, 17, 19, 27, 28,29, 30, 31, 34, 35, 36, 38, 41

30

15

22

5,6,8,9, 10,14, 16, 17, 19, 20, 22, 23, 24, 27, 29

Table IV. ADS Dy, D5,D3, and D4 and descriptive parameters.
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Lc1

Equal arms

Unequal arms

Design Problem | PSL |dB| | B v o| =2 PSL|dB| | B v o =
Uniform - —13.1 534 | 0.689 | - | 0.41 - - - - -
Power-law - —16.2 428 | 0.598 | - | 0.44 - - - - -
Ys [31] A 203 | 412 ] 0751 | - | 0.20 - - - - -
Y1 [31] B —-17.3 558 | 0.719 | - | 0.22 - - - - -
Ys [31] C —16.7 366 | 0.865 0.39 - - - - -

A —-19.34 388 | 0.758 | 7 | 0.33 —19.98 400 | 0.807 | 2708 0.29

ADS B —15.84 408 | 0.688 | 1 | 0.40 —19.00 430 | 0.767 | 2094 0.26

C —17.76 396 | 0.828 | 9 | 0.32 —17.65 398 | 0.831 | 2781 0.32

Table V. Numerical results - Yaps Arrays [P =18, Q =9, A =4, r = 13] - Comparison of ADS-based Y-shaped arrays

and some representative designs (bold numbers identify optimized quantities).




Once again, the plots of B and v versus the cyclic shift [Fig. 39(d), (f)] further confirm
that multiple ADS designs with close sub-optimal performances can be synthesized start-
ing from a single ADS with the potential of providing good trade-off solutions in terms of
PSL, B, and v despite negligible computational efforts. To investigate such an issue, Fig.
40 pictorially summarizes the performances of the whole set of trial ADS arrays generated
by D;. For comparisons, the representative points of the solutions in [31] are reported, as
well. As expected, good trade-off ADS arrays are available especially in the space |Fig.
40(b)]. They positively compare also with optimized designs and most of them overcome
both uniform and power-law architectures [Fig. 40(b)]. In order to quantitatively esti-
mate the effectiveness of the ADS “compromise” solutions, let us analyze the normalized

trade-off performance index = defined as follows:

(1]
|

(PSL—PSLOPf)xH(PSL—PSLOPt) 2
- PSLopt

Bopt

1/2
+ [ (V—yoPt>:oZ<y—y0Pt> :| 2 }

. |:(B—B°Pt)><’H<B—B°Pt):| ? (5.9)

where H (-) is the Heaviside function and the “optimal” values (i.e., PSL" = —20.3[dB],
Bt = 558 and vP' = (.865) have been set to those of the layouts Y3, Y7, and Y5 in [31].
As it can be noticed (Fig. 41), the = indexes of several ADS designs turn out to be better
than power law (=, = 0.44), uniform (=,,; = 0.41), and Y5 (=5 = 0.39) architectures.
Moreover, ADS layouts with different shifts on the array arms also improve the results
from Y3 (25 = 0.29). On the contrary, no bare ADS design outperforms Y; (Z; = 0.22).
As a matter of fact, the arising number of ADS baselines turns out to be significantly

smaller than that of the optimized design in [31] and of the uniform arrangement [Fig.

39(b)-(c)]-

Summarizing, the obtained results suggest that (a) ADS layouts provide v, PSL and
= values which are close to or better than those of state-of-the-art globally optimized
architectures when dealing with Problems A and C; (b) the “bare” ADS approach cannot
be profitably applied when Problem B is of interest and suitable hybridization and/or an

increasing of the DoFs (e.g., no position constraints) is mandatory.
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Figure 39. Yaps Arrays [P =18, Q =9, A =4, r = 13, Equal-unequal arms] - Behavior of optimal
(a) PSL, (¢) , and (e) v versus evaluated shift for ADS-based Y arrays, and comparison with reference

designs from [31]. Plots of (b) PSL, (d) B, and (f) versus evaluated shift for ADS-based Y arrays.
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Figure 40. Yaps Arrays [P =18, Q =9, A =4, r = 13, Equal-unequal arms] - Behavior of (a) B
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with reference designs from [31].
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Figure 41. Yaps Arrays [P =18, Q =9, A = 4, r = 13, Equal-unequal arms] - Behavior of for = all

Yaps arrays derived from D; , and comparison with reference designs from [31].

5.4 ADS-Based Hybrid Methodologies

A first attempt to improve the performance of ADS-based designs while keeping their
favorable properties (i.e., the computational efficiency of the synthesis process and the
geometric simplicity of the lattice architecture) is aimed at defining an iterative hybrid
GA-ADS (in the following, ADSGA) approach. The iterative approach is based on a
standard GA implementation where the positions of () active elements over a lattice of P
positions are encoded in a binary string of length P, thus defining a chromosome of length
E x P. To exploit the ADS properties, the initial GA population of dimension is deter-
mined by first sorting the shifted versions of the reference ADS arrangement according to
their fitness values and selecting the first Vg4 highly ranked sequences (« being the hy-
bridization factor,0 < o < 1) as trial array solutions. The remaining of the population is
randomly chosen within the range of admissibility of the problem unknowns. As regards
the GA operators, both crossover and mutation are applied with crossover probability
Pc and mutation probability Py, according to standard binary implementations [44], but
constraining to () the number of active elements on each arm of the correlator.

The first numerical assessment is still concerned with the Y-shaped correlator and it
deals with Problem A (i.e., the PSL minimization) by fixing the following setup: Vga =
10, o = 0.5, Pc = 0.9, Pyy = 0.01, and a maximum number of iterations equal to
Inrax = 400. “Fqual” and “unequal” arrangements on each arm have been simulated
and a standard GA (RNDGA) has been also applied for evaluating in a comparative
fashion the impact of the ADS initialization. The results reported in Table VI indicate
that the ADSGA array [Fig. 40(b)| outperforms the bare ADS-based geometries both
in the “equal” (PSLYysq4 = —19.84[dB] versus PSLY,s = 19.34[dB]) and “unequal”
(PSLYhsaa = —20.93[dB] versus PSLY, s = —19.98|dB]) configurations.
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Equal arms Unequal arms

1€T1

Design | Problem || PSL [dB] | B v I = PSL[dB] | B v I =

A —19.57 400 | 0.770 | 90 | 0.31 —20.14 460 | 0.794 | 331 0.29

GA B —13.55 534 | 0.737 | 279 | 0.37 —15.00 534 | 0.748 | 1719 0.30

C —16.40 394 | 0.838 | 244 | 0.35 —16.14 412 | 0.841 | 399 0.33

A —19.84 424 | 0.769 | 175 | 0.27 —20.93 404 | 0.773 | 231 0.30

ADSGA B —13.55 534 | 0.737 | 203 | 0.37 —14.75 534 | 0.742 | 1799 0.31
C —16.01 400 | 0.839 | 283 | 0.35 —18.11 396 | 0.845 | 432 0.31

A —20.83 457 | 0.763 | 407 | 0.21 —21.25 453 | 0.781 | 414 0.22

PSO B —16.88 550 | 0.768 | 186 | 0.20 —17.97 552 | 0.759 96 0.17
C —17.57 407 | 0.878 | 260 | 0.30 —17.94 387 | 0.881 | 464 0.32

A —20.91 457 | 0.800 | 312 | 0.20 —21.35 489 | 0.781 | 493 0.16

ADSPSO B —17.80 554 | 0.747 | 222 | 0.18 —18.44 554 | 0.787 | 269 0.13
C —17.48 379 | 0.879 | 245 | 0.35 —17.94 415 | 0.882 | 288 0.28

Table VI. Numerical results - Comparison of optimized Y-shaped arrays (bold numbers identify optimized quantities).



On the other hand, the PSL value in correspondence with the “unequal” ADS ar-
ray turns out to be lower than that for GA-based “equal” arrangements (PSL%,qq4 =
—19.84[dB], PSLYypea = —19.57[dB]). Such a result further confirms that unequally
displacing the array elements over the correlator arms can provide non-negligible per-
formance improvements independently of the synthesis technique. However, “unequal”
layouts usually require a larger number of iterations to reach the convergence due to the
additional DoF's (I3,qaa = 175 vs. I4heca = 231, Iphpoa = 190 vs. IR paa331).

As a further observation, it is worth noting that the ADSGA array outperforms the
corresponding RNDGA solution both in terms of fitness (PSLY,sc4 = —19.84|dB]| versus
PSLYvpaa = —19.57[dB|, PSLYhgqa = —20.93[dB] versus PSLYy paa = —20.14[dB])
and convergence rate |[Fig. 42(a) and Table VI| assessing the effectiveness of an ADS
initialization to improve the GA optimization. Thanks to the properties of “unequal”
layouts and the effectiveness of an ADS initialization, the hybrid GA-based approach is
even able to improve the state-of-the-art PSO solution [31] ( PSLY},gaa = —20.93[dB|
versus PSL3z = —20 — 30[dB]), despite the wider set of DoF's of this latter.

Concerning the reliability of the ADSGA and RNDGA layouts as “compromise” solu-
tions, it is note worthy (Table VI) that they exhibit trade-off indexes very close or better
than Y3 (e.g., 2%psaa = 0.27 versus Z3 = 0.29). Such a behavior seems to assess the
ability of the approach to intrinsically provide good compromise solutions also without
directly optimizing the “compromise indezx” =.

Dealing with the application of ADSGA to the other benchmark problems, even though
the positive effect of the ADS integration still holds true, it results that (Table VI) both
B and v indexes, as well as the corresponding “compromise” performances, cannot be
improved significantly without resorting to non-regular designs (i.e., avoiding regular lat-
tices) as for PSO-based state-of-the-art solutions [31].

Towards this aim, an hybrid real-valued multiple-agent optimization approach based
on a standard iterative PSO method [31], [59], [25] is then investigated. Likewise the
ADSGA, the initial set of trial solutions is generated by exploiting the ADS sequences.
Otherwise, the positions of the N active elements of the array are encoded in a PSO
particle by setting each unknown as the distance between two adjacent array elements.

Because of the limitations of the ADS and ADSGA approaches in dealing with Problem
B and Problem C; such benchmark tests will be first considered for validating the AD-
SPSO. Towards this end, the following setup for the PSO parameters has been adopted:
Vpso = 10, ¢ = ¢o = 2, w = 0.4, and I;4x = 500. For a complete comparison, a PSO
approach with a random initialization (RNDPSO) has been implemented, as well. The

numerical simulations related to Problem B and whose results are illustrated in Fig. 43
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indicate that the hybrid ADSPSO procedure is able to reach higher fitness values than
ADS and ADSGA techniques (BY}spso = 554 versus BY}qo4 = 534 and By}, = 430)
and very close to [31] (B; = 558), while significantly outperforming uniform and power
law layouts (By,; = 534, By = 428) thanks to the additional DoFs of the real-valued

formulation (i.e., arbitrary element positions over each arm).
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Figure 42. Problem A [Equal-unequal arms, N = 27] - Synthesis results for the GA and ADSGA

approaches: (a) behavior of the optimal PSL versus the iteration number ¢, and comparison with

reference designs from [31], (b) optimal Yapsca array arrangement, and (c) associated synthesized

pattern.

Moreover, as for the GA-based approaches, the hybrid ADS implementation exhibits

improved performances (Bgyppso = 550 vs. Bihepso = 554, Bihppso = HH2 vs.
BYhspso = H54) and convergence properties (Iphppso = 286 vs. IYhepso = 222,

un J—
mvppso = 296 vs.

Whepso = 269) with respect to the randomly initialized PSO also
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when real-coded unknown are at hand. Moreover, the PSO-based hybrid technique always
guarantees the best “compromise” performances (Table VI). As a matter of fact, it turns

out that =%, ¢pgo = 0.18 and =% gpgo = 0.13, while = = 0.22.
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Figure 43. Problem B [Equal-unequal arms, N = 27] - Synthesis results for the RNDPSO and
ADSPSO approaches: (a) optimal Yapspso array arrangement and (b) associated u — v coverage

function.

The improvements allowed by the ADSPSO are even more evident when addressing
Problem C (Fig. 44), as confirmed by the indexes in Table VI (e.g., v4)spso = 0.882
versus vo = 0.865). As far as the trade-off index = is concerned, one could notice that the
ADSPSO solution for the Problem C still overcomes the corresponding ADSGA design
(2% spso = 0.28 versus =% o4 = 0.31), but it does not reach the optimal value yielded
by the ADSPSO when applied to Problem B (Table VI). Such results, together with that
from the bare ADS (E%}s = 0.32) indicate that, whatever the design technique, the
configurations suitable for Problem C are not reliable compromise solutions.

For completeness and further verification of the positive effect of the increased number
of DoFs of the real-valued optimization, the ADSPSO has been applied to Problem A
as well (Fig. 45), although the ADSGA was already able to improve state-of-the-art
performances. The flexibility of the real-valued encoding used in the ADSPSO allows a
further reduction of the array PSL with respect to the ADSGA (and obviously Y3) in both
the equal case (PSLYhspso = —20.91[dB]| versus PSLY o4 = —19.84|dB]) and unequal
one (PSLYhspso = —21.35[dB] versus PSLY o4 = —20.93[dB]), but at the expense of
the geometric regularity of the GA or bare ADS lattice-based solution [Fig. 45(b) versus
Figs. 42(b) and 38(c)|.
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As it can be observed, the ADS initialization allows an improvement of the opti-
mization technique performance whatever the problem at hand [Table VI|. Moreover,
from previous outcomes, the real-valued ADS hybrid approach seems to always yield
better performance than the GA-based technique (Table VI). Such a conclusion could
be misleading since it has been drawn for arrays with a small number of active ele-
ments (N = 27) [31]. In order to evaluate the performance of the ADS-based methods
when dealing with larger N, the Problem A is still addressed, but considering medium
(large) N. More in detail, Problem A is formulated by assuming L = 100 (210) Km,
Aux N, = Av X Ny, = Ayrig X Nypig = 4'16;105 (4'2X}\05‘/§), and Z = 2. Consequently,
the hybrid solvers have been applied with the following setup: Voa = Vpso = 20,
Iniax = 400 and @ = % = 44 (90). Moreover, the reference ADS sequence is the
(88,44, 21, 22)- ADS D, [(180, 90, 44, 45)- ADS D] [68]. In order to point out

the efficiency of binary-valued techniques, Fig. 46 shows the optimization of the PSL

during the iterative minimization. As it can be observed, the GA-based approaches
outperform the corresponding PSO implementations when dealing with both medium
and large arrays (PSOYpsgalyoizy = —15.86[dB] vs. PSLYpsqal iz = —17.54[dB,
PSLYpspsol yearo = —18.35[dB] vs. PSLYhecal yeoro = —20.15[dB]). Such a behavior
is mainly related to the greater efficiency of the binary optimizers in sampling very large
solution spaces as those when is medium/large. On the other hand, it is worthwhile to
point out the more significant effect of the ADS initialization on the arising PSL and the
convergence rate of the optimization when applying GA-based approaches (Fig. 46),while

the improvement turns out to be less important using real-valued PSO approaches.
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Figure 46. Problem A - Behavior of the optimal PSL versus the iteration number i for the RNDGA,
ADSGA, RNDPSO, and ADSPSO approaches for (a) N = 132 (equal and unequal arms) and (b)
N =270 (equal arms).

In order to provide further insights on the expected improvements over existing ap-
proaches, the next experiment deals with a design example for the 12-m Atacama Large
Millimeter /Sub millimeter Array (ALMA) [57] (Problem A has been considered). In this
case, a Y-shaped (E = 3) layout with L = 9000[m|, N = 63, ¢ = 7/6, L =D = —23° and
& = 0[57] has been optimized at 300GHz assuming N, = N, = 256, Aux N, = Avx N, =
Agria X Nyrig = 3.2 x 107, and Z = 2. The results obtained starting from the (42,21,10,
31)-ADS D, (Table IV) indicate that PSO-based approaches overcome GA-based tech-
niques (Table VII), as expected because of the moderate value of [Fig. 47(a)|, by achieving
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PSLYYepso = —18.55[dB] [Fig. 47(b)]. Moreover, it is worth noticing that the “unequal”
layouts always guarantee non-negligible improvements over their equally spaced coun-
terparts (e.g., PSLYpsoa = —17.25[dB] versus PSLY}gq4 = —17.56[dB] - Table VII).
Furthermore, the comparisons with uniform and power law analytical designs (Table VII)
further assess the effectiveness of the proposed approaches (e.g., PSLY} ¢ = —15.57[dB]
versus PSL, = —11.01|dB| - Table VII).
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Equal arms Unequal arms

6€T

Design Problem || PSL |dB]| B v I PSL |dB] B v I
Uniform - —12.40 2766 | 0.712 - - - - -
Power-Law - —11.01 2479 | 0.610 - - - - -
ADS A —15.48 2412 | 0.731 - —15.57 2372 | 0.721 -
GA A —16.82 998 | 0.550 | 207 —17.02 1618 | 0.716 370
ADSGA A —17.25 1044 | 0.511 87 —17.56 1544 | 0.671 282
PSO A —17.58 931 0.607 | 233 —17.61 779 | 0.501 309
ADSPSO A —18.08 893 | 0.562 | 152 —18.55 877 | 0.596 266

Table VII. Numerical results - Comparison among optimized ALMA configuration

(bold numbers identify optimized quantities).
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Finally, the last example is aimed at analyzing the hybrid approaches when applied
to the synthesis of a different geometry and set of parameters. Let us consider a “Cross”
geometry (E = 4) at 1.42GHz characterized by L = 189|m|, N =60, ¢ =0, N, = N, =
256, Au x N, = Av X Ny = Agpig X Ngpig = 4000, Z2 =2, D = -33.8°, £ =0, L = —33.8°
(i.e., similar to the “Chris-Cross” array [8]|60]). The results from the synthesis process
starting from the reference sequence (30,15,7,2)-ADS Dy, indicate that, as expected, PSO-
based approaches provide better layouts [Fig. 48(a)| than GA-based techniques because of
the relatively small dimension of the solution space (i.e., low number of active elements).
Moreover, the improvement caused by “unequal” element placement is more significant
than for the Y geometry. This is due to the highest redundancy of the Cross geometry
that can be more easily broken by an unequal arm displacement [e.g., Fig. 48(b)]. For
completeness, a summary of the performance indexes is given in Table VIII. These results
further confirm the effectiveness of an ADS initialization to enhance the efficiency of the
optimization procedures (e.g., PSLryppso — PSLapspso =~ 1.4|dB] - Table VIII).
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I

Equal arms

Unequal arms

Design | Problem || PSL |dB| | B v I || PSL|dB|| B v I
GA A —14.21 | 201 | 0.572 | 157 || —14.69 | 283 | 0.763 397
ADSGA A —14.90 | 261 | 0.692 | 159 —15.16 | 283 | 0.756 389
PSO A —16.29 | 265 | 0.905 | 387 —17.83 | 339 | 0.873 328
ADSPSO A —17.69 | 265 | 0.912 | 324 —21.10 | 301 | 0.847 266
Table VIII. Numerical results - Comparison of optimized Cross arrays (bold numbers identify optimized quantities).
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iteration number 4, (b) optimal ADSPSO array arrangement and (¢) associated St (u,v).
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Chapter 6

Hybrid Almost Difference Set
(ADS)-based Genetic Algorithm (GA)
Method for Planar Array Thinning

6.1 Introduction

In the framework of antenna arrays for communication and space applications, such as
radars for remote sensing, arrays for microwave imaging or satellite and ground commu-
nications one of the most important requirements is represented by high directivity and
low peak sidelobe level (PSL) [1]. To satisfy these requirements an interesting solution is
represented by large thinned arrays. Thinned arrays, as put in evidence in [6] are a good
solution since thinning offers reduction in element count, cost, weight, power consump-
tion, and heat dissipation, albeit with an attendant reduction of the antenna gain. In
scientific literature ([5][6][12]) it is showed that the main drawback associated to thinning
is the loss of sidelobe control. Several different techniques have been proposed and devel-
oped to overcome such a problem: e.g. random technique [3]|[12], algorithmic approaches
[12], dynamic programming [71], genetic algorithms [18][44], simulated annealing [38|, and
particle swarm optimisers [25]. One of the more interesting approaches is based on the
use of deterministic combinatorial sequences called difference sets (DSs) that have been
successfully employed to analytically determine thinned arrangements with well controlled
sidelobes [5|. This approach generate arrays that have element locations constrained by an
algorithm based on difference sets. These constraints produce arrays with PSLs demon-
strably better than those obtainable with simple cut-and-try placement techniques, as

well as many previously published algorithmic techniques. Since only a limited number
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of DS sequences exists, recently a new analytical approach have been proposed. Such an
analytical approach has been extended to a wider class of geometries by exploiting the
mathematical properties of almost difference sets (ADSs) [61][65]. ADSs are character-
ized by a three-valued autocorrelation function that allows to obtain deterministic arrays
configuration with a controlled and predictable PSL [50]. Moreover, the reliability of the
analytic ADS-based thinning has been analysed also taking into account the mutual cou-
pling effects among array elements [46]. However, despite several interesting features and
advantages, the use of ADS sequences for array thinning has some limitations. In more
detail

e arrays based on ADS sequences usually provide sub-optimal and not optimal PSL

performance;

e although large repositories of ADSs are available [16], the possible array configu-
rations are limited. ADS arrays with arbitrary aperture sizes and thinning factors
cannot be designed, since ADS sequences exist only for specific sets of descriptive

parameters;

e a general purpose ADS construction techniques do not exist at present. The explicit
forms of ADS sequences has to be determined on a case by case basis using suitable

construction theorems [61][65] or other approaches.

The aim of this chapter is to introduce a way to improve and enhance the ADS-based
design technique and to overcome the above limitations [50]. The main idea is to exploit a
GA-based procedure, that is particularly suitable for these applications for the following

considerations
1. GAs are able to deal with binary optimisation problems;
2. GAs have been used and applied to thin antennas arrays [18];
3. GA optimization procedure can integrate information and constraints of ADSs [44].

In other words the method that is proposed in this chapter is a GA-enhanced ADS tech-
nique, called hereinafter ADSGA. Differently from other works published about exploiting
ADS to thin antenna arrays [22|[46], as well as other array design problems (such as inter-
leaved arrays [69]), the proposed approach does not rely on a analytic technique but on
a hybrid one. Consequently it is not possible to determine a priori performance bounds.
The main objectives of this chapter are not only to propose a hybrid technique to design

linear thinned arrays, but also to proposed an approach useful when either the ADS-based
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array performance do not comply with the radiation requirements of the application at
hand or no ADS is available for the geometry (aperture size or thinning factor) under
study [50].

The structure of the chapter is as follows. First of all a review of ADS design techniques
for planar array thinning is presented. Then a (GA-enhanced methodology is proposed
to address three different problems concerned with ADS-based planar arrays (Section
6.2). In Section 6.3, the hybrid technique is applied to the three problems and validated
by means of several numerical simulations. Representative results concerned with both
small and large arrays as well as different thinning factors are discussed to point out its

reliability.

6.2 Problem statement and mathematical formulation

Let us consider a planar arrangement defined over a lattice of P x @) positions (N = P x Q)

being the total number of elements) [23]. The array factor of is equal to

P-1Q—1
W (u,v) = ZZ s (p, q) exp [2mi (pdyu + qd,v)] (6.1)

p=0 ¢=0

where s (p, q) is the array weight of the (p, ¢)th element, d, and d, are the lattice spacings
along the x and y directions (in wavelengths), u = sin (6) cos (¢), and v = sin (#) sin (¢)
(u? + v? < 1) [23]. Dealing with equally weighted thinned arrays, s(p,q) = 0, p =
0,....°P —1,qg =0,...,Q — 1, can either assume the value 1 or 0 when an element is
present or not at the (p,q)th lattice position. In ADS-based thinning techniques the

lattice weights are selected as follows

1 if (pg)eD
s(p.q) = (6.2)
0 otherwise

where Disa (N, K, A, t)-ADS, where N is the array size, K the number of active elements,
and A and t are parameters which define the autocorrelation properties of the considered
ADS [23]. A (N, K, A,t)-ADS is defined as a K-subset D = {d; € G,k =0, ..., K — 1} of
the Abelian group G of order P x Q (G = Z"®Z®, P and Q being chosen according the

Kronecker Decomposition Theorem) for which the multiset
M:{mj c (dh—dl),dh;édl;j:O,...,K(K—l)—l}
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contains ¢ nonzero elements of G each exactly A times and the remaining PQQ — 1 — ¢
nonzero elements each exactly A + 1 times [23|. Therefore, an ADS satisfies the following
existence condition

K(K—1)=tA+(PQ—1—1t)(A+1) (6.3)

where K > A+1,0 < K < PQ,and 0 <t < PQ — 1. Moreover, it is worth noticing that
DSs and ADSs for whicht = PQ—1ort =0. if Disa (N, K, A, t)-ADS, then it is possible
to define the two dimensional binary sequence S = {s(p,q) =1(0), if (p,q) € (¢) D;
p=0,..,P—1,q=0,..,Q—1}[23].

In more detail, by exploiting the properties of the autocorrelation function, ¢ (7, 7,) =
P-1Q-1

ZZ (p, q [ (P + Tl moar » (@ + Ty)lmoa| (Peing P x @ its period), of ADS binary

p=0 gq=0
sequences, which is known to be the three-level function

K (T, 7y) =0
E(Te,Ty) = A fortvalues of (7, 7,) (6.4)
A+1 otherwise

it turns out that the power pattern |W (u, v)|* of an ADS-based array satisfies the following

constraint

W (ko) - T k1)
(6.5)

k=0,.,.P—1, 1=0,..,Q —1
i.e., the samples of the power pattern are equal to the inverse discrete Fourier transform

(IDFT) of the autocorrelation function & (7, 7,),

P-1Q—-1

T (k)= > &(mmy)exp2mi (k) /P + (1,0) /Q)],

p=0 ¢=0

which, from (6.4), turns out to be equal to
T (k,l) =K —A+ NAS (k, 1)+ ¥ (k1) (6.6)

In (6.6), 0 (k,1) is the discrete impulse function [§ (k,1) = 1if k=1=0, and ¢ (k,[) =

N—-1-t

0] otherwise W (k,l) = IDFT {3 (7, 7,)}, where ¢ (7,,7,) = Z 8 (rp— 70,1 —70),

and (Tx,Ty) r =1,..,N — 1 —t, are the indexes at which §(TI,Ty) A+ 1 [23].

According to (6.4), the ADS sequence exhibits a three-level autocorrelation function.
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Thanks to (6.5), the following a priori bounds have been derived for the one-way PSLs of
ADS-based thinned arrays [23]:

PSL'NE < pSIMIN < pSLOPT < pSIMAY < pSLSUP (6.7)

where PSLOPT = min {PSL [D=Y)]} 6, =0,..,P—1,0,=0,..,Q — 1,

Oz,0y

Ox,0 2
_ g [T

PSL [DC=)] [Weze0) (0, 0)[

where (ug,vg) is the main lobe steering direction, M is the main lobe region [23|, and
(W (0., 0,) (u,v)|” is the power pattern [23] of the layout generated from the cyclical shift

sequence of the reference ADS, D(@#:),

D(Ux70y) = {((p + Ow)modP ) (q + Oy)mon> ; (p’ Q) € D’ Tus Oy € Z} ’

The analytic expressions of the bounds in (6.6) state the peak sidelobe level of ADS-based
arrays is constrained by the a priori known quantities PSL!NF PSLMIN  pSpMAX
PSLSYP [23]:

(t+1)(N—t—1)
pSLINF — KA

K2

[0.54-0.8logy o (N)]

min {7Y (k,
PSILMIN _ {(k,l)eHo{ (k,0)}

K2

max {7 (k, l)}} [—0.1+1.51og,(N)]

PSLMAX: (k,1)eHo

K2

(KA ) (N—1=1) ) [-0.1+1.5log, (V)]

PSLSUP — =

These constrains on PSL indicate that ADS-based thinned arrays exhibit a sidelobe level
which can be predicted either from the knowledge of the features of the ADS sequence
(PSL™F and PSLSYF only depend on N, K, A and t) or from the expression of T (k, 1)
(necessary for computing PSLMN and PSLMAX and returning higher accuracy of esti-
mation) [23].
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Figure 49. Ezample from [23] of Planar Array based on Dgpt— ADS . Number of elements:
P x @ =7 x11. Plots of the PSL bounds versus n = # (PQ =77, v =10.4805) (a). Plot of the
normalized array factor (b) generated from D3”'- ADS array arrangement (c) (courtesy from [23]).

As put in evidence in the Introduction, the ADS-based approach for array thinning is
limited, despite of the advantages of random thinned arrays and computational efficiency.
Therefore a methodology able to overcome these limitations while exploiting the ADS
analytic features seems to be of some interest in view of communication and space appli-
cations [50]. Accordingly, the ADSGA hybrid approach is presented. This methodology
tries to exploit the advantages associated to both ADS and GA-based techniques [50].
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Concerning the iterative ADSGA optimisation, the standard structure of the GA is
modified to exploit the positive key features of the ADSs. The structure of the Genetic
Algorithm (GA) considered in this work are briefly described [44][50]:

1. Initialisation: The Initial (i = 0) population is randomly chosen. A set of M trial
solutions, py, (i), m = 1,..., M is defined. The way to define this set of trial solution
allows to define ADSGA method instead of standard GA.

2. Coding: Each Individual p,, (i) codes the values of an unknown set of parameters

into a binary string (called Chromosome);

3. GA-FEvolution: At each iteration ¢, the genetic evolution exploit suitable binary
operators of evolution and natural selection (selection, crossover, reproduction, mu-
tation and elitism [6, 9]) applied in a probabilistic fashion and taking into account

the fitness values F,,, = F' {p,, (i)} ,m = 1,..., M of current trial solutions;

4. Termination: The iterative procedure ends when one of the following stop criteria
is satisfied. The optimal fitness value, Fpop = min {F,,}, is smaller than an user-

m
defined threshold or the maximum number of iterations I,,,, has been reached. The

‘final solution’ is the fittest trial solution determined throughout the whole iterative
Process, Peony = arg {mjn <min [F{pm (z)}]) }

The initial population (i = 0, ¢ being the iteration index) is generated as follows for
ADSGA method [50]. The N = P x @ shifted versions of a reference ADS are ranked
according to their PSL values. Then, half-trial solutions (M being the dimension of the
GA population) are chosen with chromosomes equal to the binary sequences of the first
M /2 highly ranked shifted ADSs

pm (1) = {bm () =w™ (p,q); p=0,...,P—-1,¢=0,..,Q = 1,n=0,..,N — 1}

1<m<¥
(6.8)
where b,, (n) is the nth digit of the mth trial solution and s\7=7) (p,q) = 5™ (p,q) =
1 (being m = o, + (P x 0, —1) = f(04,0,) if (p,q) € D= and =) (p,q) =
5™ (p, q) = 0, otherwise. Concerning the remaining of the population, the trial solutions

are chosen randomly within the range of admissibility of the problem at hand

pm (1) = {by, (n) =1y (n);n=0,..., N —1}
(6.9)
1<m<¥
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Tm (n) being a random digit and N = P x ). Such an initialisation allows the “transfer”
into the GA chromosomes of the good ADS-based schemata also providing a sufficient
variability within the population to avoid the stagnation [6]. As regards the GA operators,
both crossover and mutation are applied following the standard binary implementations
[6], but also guaranteeing the updated trial solutions be admissible and comply with
the problem constraints (e.g.fixed thinning factor v = K/N) [50]. Towards this end, the
crossover operation is repeated until the new chromosomes satisfy the solution constraints,
while a conditioned mutation is applied. More specifically, let v be the user-defined

thinning factor, then the bit-mutation probability is defined as follows [50]

[N XV — "Zl b (h)]
Py (n) = ¥ _h;‘) x [1—2b(n)] +b(n) (6.10)

The set of parameters of he GA-based procedure are: Po = 0.9 (crossover), Py, = 0.01

(mutation rate) and N = P x @ (population size) if not otherwise stated.

6.2.1 Problem I - PSL minimisation in array synthesis

In order to determine an optimal thinned configuration starting from the (usually) sub-
optimal ADS arrangement with a given aperture size Nsps = Paps X Q aps and thinning
factor v4pg, let us formulate the following constrained optimisation problem, similarly to
[50]

Problem I: Minimise F {p} = s {|W (u,v)|*} / [W (0,0)]?, Ras the main lobe
u,v M

region as

K

1P Y ’
@sasy max {T (k,0)}

Ry =< (u,v) € [-1,1] x [-1,1] : w* +0v* <1, uv <

subject to K = Kapg and N = Napg (namely P = P4ps and Q = Qaps)-

to be solved through ADSGA. In Such a case, the GA fitness function is defined as the
PSL of the array while the constraints force the array to kept its descriptive parameters
(i.e. original dimension, N = N4pg , and thinning, v = vapg).
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6.2.2 Problem II - extension of the range of ADS applicability in

array synthesis

The use of an ADS-based technique for array synthesis is sometimes limited to fixed
array dimensions and thinning values because of the limited, although quite large, set of
available ADS sequences. In order to design a thinned configuration with arbitrary values
of N = P x (Q and v, still exploiting the properties of the existing ADS arrangements,

the following problem is at hand (in a similar way to [50])

Problem II: Minimise F' {p} = ( H%%)IEE {ilw (u,v)|2} /W (0,0)]?, Ry the main lobe
U,V M

region as
Ry =X (u,v) € [-1,1] x [-1,1] : v +0* <1, uv < K
M ’ ’ T -~ 4PQs$sy(knll)aX {Y(k,D} [
) EHO

are subject to K = K and N = N, being K # Kaps and/or N # Naps (namely
P # Pyps and Q # Qaps).

Such a constrained optimisation problem is quite similar to that in previous Section,
but, in this case, no ADS-based array is available in correspondence with the array pa-
rameters (N, K) [50].

6.2.3 Problem III - definition of a general purpose ADS construc-

tion technique for array synthesis

With reference to the potential limitation (IIT) outlined in the Introduction, the aim is
now to find the explicit forms of ADSs sequences (i.e. binary sequences with a three-
level autocorrelation function) for arbitrary values of N. Towards this end, let us denote
withL {p} and R {p} the number of levels of the autocorrelation function ¢ (7,,7,) of a
trial solution p and the number of (7., 7,) values for which & (7, 7,) differ from 6.4. Then,
the search for admissible (but not available in ADS repositories) ADS sequences is recast

as the solution of the following

Problem IIT: Minimise F {p} = a[L{p} —3] + BR{p} subject to N = N, where
N # Naps (namely P # Paps and Q # Qaps) and « and [ are suitable user-defined
weight coefficients [47].
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In such a case, the optimisation at hand turns out to be different from that in Problem
I and Problem TI. As a matter of fact, it is defined and performed with the ADSGA within
the “autocorrelation space” instead of in the “pattern space”, while the constraints are still
on the set of parameters defining the ADS as well as the corresponding array arrangement
[50].

6.3 Numerical analysis

6.3.1 Application to Problem I

As suggested in [5], the combinatorial and the stochastic methods are combined in in order
to take advantage from their good characteristics and to compensate for their drawbacks.
The ripples caused by ADS sequences can be corrected by GA capabilities, while the
controlled PSL of ADS-based arrays is useful to speedup the convergence of the genetic
procedure and get optimal PSL for planar arrays. The inter element distances are assumed
dy =d, = % hereinafter.

In particular, now we consider when the application deals with Problem I: obtain an
optimal thinned configuration starting from the ADS arrangement and comparing it with
standard GA approach.

As stated in previous section, to determine an optimal thinned configuration starting
from the (usually) sub-optimal ADS arrangement with a given aperture size Napg =
Pips X Qaps and thinning factor v4pg, let us formulate the following constrained op-
timisation problem, that is to minimise F'{p} = (um?éM {|W(u,v)|2} /W (0,0)]*, Ry

7v)
the main lobe region, subject to K = Kaps and N = Naps (namely P = Papg and
@ = Qaps). The constraints force the array to kept its descriptive parameters (i.e.
original dimension, N = Napg , and thinning, v & vapg).

The experiments deal with the 2D ADSs described in the following Table

N|PlQ| K| A|t] v
19772 | 12] 240555
121 [11]11] 61 | 30 | 60 | 0.502
289 | 17| 17145 | 72 | 144 | 0.501
529 | 23 | 23| 265 | 132 | 264 | 0.500

Table IX: Properties of the ADS sequences
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6.3.1.1 Array arrangement P X Q =7 x 7

In this example we have used to initialize the population at step ¢ = 0, the (7 x 7,25, 12, 24)-
ADS (Naps =49, vaps = 0.555). Fig 1 shows the behaviour of the optimal fitness value
against the iteration number 7 in correspondence with the ADSGA and the standard GA

minimization procedure.

The results can be summarized in the following

PSL [dB]

g7 b I I I I

i
Iteration Number [x103]

Figure 50: Problem I- PSL minimisation in array synthesis: Behaviour of the optimal fitness value,

PSL(i), against the number of iteration number, i.
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Figure 51. Numerical validation - Problem I -PSL minimisation in array synthesis: Power patterns
|W (u,v)|? for ADSGA (a) and for GA (b) approaches. (¢) and (d) show the corresponding array
arrangements with ADSGA and GA-based methods, respectively.
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6.3.1.2 Array arrangement P x () =11 x 11

In this example we have used to initialize the population at step ¢ = 0, the (11 x 11,61, 30, 60)-
ADS (Naps = 121, vaps = 0.502). Fig 1 shows the behaviour of the optimal fitness value
against the iteration number ¢ in correspondence with the ADSGA and the standard GA

minimization procedure.

The results can be summarized in the following Figures.
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Figure 52. Numerical validation - Problem I - PSL minimisation in array synthesis: Behaviour of the

optimal fitness value, PSL(i), against the number of iteration number, 1.
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Figure 53. Numerical validation - Problem I - PSL minimisation in array synthesis: Power patterns

|W (u,v)|* for ADSGA (a) and for GA (b) approaches. (¢) and (d) show the corresponding array

arrangements with ADSGA and GA-based methods, respectively.
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6.3.1.3 Array arrangement P x () =17 x 17

In this example we have used to initialize the population at step ¢ = 0, the (17 x 17,145, 72, 144)-
ADS (Naps = 289, vaps = 0.501). Fig 1 shows the behaviour of the optimal fitness value
against the iteration number ¢ in correspondence with the ADSGA and the standard GA

minimization procedure.

The results can be summarized in the following Figures.
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Figure 54. Numerical validation - Problem I - PSL minimisation in array synthesis: Behaviour of the

optimal fitness value, PSL(i), against the number of iteration number, 1.
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Figure 55. Numerical validation - Problem I - PSL minimisation in array synthesis: Power patterns

|W (u,v)|* for ADSGA (a) and for GA (b) approaches. (¢) and (d) show the corresponding array
arrangements with ADSGA and GA-based methods, respectively.
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6.3.1.4 Array arrangement P x () = 23 x 23

In this example we have used to initialize the population at step ¢ = 0, the (23 x 23,265, 132, 264)-
ADS (Naps = 529, vaps = 0.500). Fig 1 shows the behaviour of the optimal fitness value

against the iteration number ¢ in correspondence with the ADSGA and the standard GA
minimization procedure.

The results can be summarized in the following Figures.
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Figure 56. Numerical validation - Problem I - PSL minimisation in array synthesis: Behaviour of the

optimal fitness value, PSL(i), against the number of iteration number, 1.
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Figure 57. Numerical validation - Problem I - PSL minimisation in array synthesis: Power patterns
|W (u,v)|* for ADSGA (a) and for GA (b) approaches. (¢) and (d) show the corresponding array
arrangements with ADSGA and GA-based methods, respectively.

160



6.3.1.5 Summary

H Loons H v H PSL[dB]

Pxq@Q || ADSGA | GA | ADSGA | GA | ADS || ADSGA GA ADS

77 1445 920 0.428 0.489 | 0.555 —16.13 | —14.40 | —9.69
11 x 11 4366 1125 0.496 0.487 | 0.502 —16.50 | —16.03 | —12.63
17 x 17 208 3512 0.480 0.494 | 0.501 —17.74 | —=17.50 | —13.88
23 x 23 1418 2800 0.484 0.482 | 0.500 —18.74 | —18.35 | —13.90

Table X. Numerical validation - Problem I - PSL minimisation in array synthesis: Summary of the
results obtained. Comparing the results of the new proposed ADSGA technique with the standard GA
methodology, we obtain a reduction of PSL that goes from 1.73[dB] to 0.24[dB].

o. GA ===
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11 b ,
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Yo,
ast o T R
7 ©ri i o
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15 g
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-18 |+

-19

24

Figure 58. Numerical validation - Problem I - PSL minimisation in array synthesis: Graphical
comparison of the PSL of different array configurations (the side P on the horizontal axis) for ADSGA
an GA methodologies. We can observe that the PSL improvement of the ADSGA method reduces

compared with standard GA as the dimension of the array increases.
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6.3.2 Application to Problem II

In this section the aim, according to Problem II, is to design antenna arrays with arbitrary
values of elements N = P x ) and thinning v, still exploiting the existing (and limited)
ADS arrangements. In other words, starting from an ADS-based array configuration
(with Naps = Paps X Qaps elements, v4pg) used as initial guess of the optimization
iterative procedure, we want to synthesize a new array configuration with N # N,pgs and
V # VADs.

For the sake of comparison of the performance of the proposed approach, the array

configurations are chosen among the state-of-the-art examples, such as [25] and [18].

6.3.2.1 ADSGA method compared with [25]

In order to compare the results of the optimization procedure with [25], we have the

define the following problem:

Problem II: Minimise F {p} = ( m)gx {|W(u,v)|i:0 + |W(u,v)|izo} /W (0,0)?,
u,v)¢Ras

Ry; the main lobe region as previously defined. The problem is subject to K = K
and N = N, being K 7é KADS and/or N 7é NADS (namely p 7& PADS and Q 7é QADS)-
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6.3.2.2 P x (@ =6x6 Array Configuration

Starting ADS ‘ Naps H Array Geometry [18] ‘ N

he
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Figure 59: Problem II- extension of the range of ADS applicability: Behaviour of the

value, PSL(i), against the number of iteration number, .

optimal fitness

=
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Figure 60: Problem II- extension of the range of ADS applicability: Power patterns |W (u,v)|2 for
ADSGA (a) and for GA (b) approaches. (¢) and (d) show the corresponding array arrangements with
ADSGA and GA-based methods, respectively.
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6.3.2.3 P x (@ =8 x 8 Array Configuration

Starting ADS ‘ Naps H Array Geometry [18] ‘ N

(7x7,25,12,24) | 49 | 8 x 8
9 m
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Figure 61: Problem II- extension of the range of ADS applicability: Behaviour of the optimal fitness

value, PSL(i), against the number of iteration number, .
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Figure 62: Problem II- extension of the range of ADS applicability: Power patterns |W (u,v)|2 for
ADSGA (a) and for GA (b) approaches. (¢) and (d) show the corresponding array arrangements with
ADSGA and GA-based methods, respectively.
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6.3.2.4 P x () =12 x 12 Array Configuration

Starting ADS ‘ Nuaps H Array Geometry 18] ‘ N
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Figure 63: Problem II- extension of the range of ADS applicability: Behaviour of the optimal fitness

value, PSL(i), against the number of iteration
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Figure 64: Problem II- extension of the range of ADS applicability: Power patterns |W (u,v)|2 for
ADSGA (a) and for GA (b) approaches. (¢) and (d) show the corresponding array arrangements with
ADSGA and GA-based methods, respectively.
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6.3.2.5 P x (@ =16 x 16 Array Configuration

Starting ADS ‘ Nuaps H Array Geometry 18] ‘ N

(13 x 13,85,42,84) | 169 | 16 x 16 | 256
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Figure 65: Problem II- extension of the range of ADS applicability: Behaviour of the optimal fitness
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Figure 66: Problem II- extension of the range of ADS applicability: Power patterns |W (u,v)|2 for
ADSGA (a) and for GA (b) approaches. (¢) and (d) show the corresponding array arrangements with
ADSGA and GA-based methods, respectively.
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6.3.2.6 Summary

Array — Dimesion v
PxQ ADSGA | GA | SPSO [25] | HSPSO [25] | DS [21]
6 x6 0.583 0.555 0.50 0.42 0.583
8% 8 0.546 0.500 — — 0.562
12 x 12 0.541 0.534 0.44 0.48 0.542
16 x 16 0.500 0.515 — — 0.531

Table XI: Problem I- PSL minimisation in array synthesis: Summary of the results obtained.
Comparing the results of the new proposed ADSGA technique with the standard GA methodology, the
SPSO, the HSPSO [25] and DS [21], we obtain that ADSGA is able to improve PSL performance also
when N # Naps.

Array — Dimesion H PSL|dB|
PxQ ADSGA | GA | SPSO [25] | HSPSO [25] | DS [21]
6 x 6 ~14.16 | —13.23 | —12.72 —13.06 —12.55
8% 8 ~16.55 | —15.92 - - —13.71
12 x 12 ~16.90 | —16.53 | —15.54 ~16.74 —15.47
16 x 16 ~17.45 | —17.67 - - —15.17

Table XII: Problem I- PSL minimisation in array synthesis: Summary of the results obtained.
Comparing the results of the new proposed ADSGA technique with the standard GA methodology, the
SPSO, the HSPSO [25] and DS [21], we obtain that ADSGA is able to improve PSL performance also
when N # Naps.
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Figure 67: Problem I- PSL minimisation in array synthesis: Graphical comparison of the PSL of
different array configurations (the side P on the horizontal axis) for ADSGA an GA methodologies. We
can observe that the PSL improvement of the ADSGA method reduces compared with standard GA as

the dimension of the array increases.
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6.3.2.7 ADSGA method compared with [18]

In order to compare the results of the optimization procedure with [18], we have the define

the following problem:

Problem II: Minimise F {p} = ( n;;x {|W(u,v)|z:0+ |W(u,v)|i:0}/|W(0,O)|2,
u,v)ERyr

Ry the main lobe region as defined in [18]. The problem is subject to K = K and
N = N, being K 7é KADS and/or N 7é NADS (namely p 7é PADS and Q 7& QADS)-
The two examples that are considered are the followings

Starting ADS ‘ Naps H Array Geometry [18] ‘ N
(7 x 11,37, 17, 36) 7 10 x 20 200
(37 x 37,685,342,684) | 1369 40 x 40 1600
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6.3.2.8 P x () =10 x 20 Array Configuration
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Figure 68: Problem II- extension of the range of ADS applicability: Graphical comparison of the PSL

against the iteration i of ADSGA, GA and Haupt [18] approaches along the two main directions ¢ = 0°

(a) and ¢ = 90° (b). Slices of the amplitude pattern obtained after optimization procedure along the
two main directions ¢ = 0° (¢) and ¢ = 90° (d).
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|WaFr (u,v)] Normalized - [dB]

Figure 69: Problem II- extension of the range of ADS applicability: Power patterns |W (u,v)|* for

ADSGA (a) and for GA (b) approaches. (¢) and (d) show the corresponding array arrangements with
ADSGA and GA-based methods, respectively.
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6.3.2.9 P x @ =40 x 40 Array Configuration
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Figure 70: Problem II- extension of the range of ADS applicability: Graphical comparison of the PSL
against the iteration i of ADSGA, GA and Haupt [18] approaches along the two main directions ¢ = 0°
(a) and ¢ = 90° (b). Slices of the amplitude pattern obtained after optimization procedure along the

two main directions ¢ = 0° (¢) and ¢ = 90° (d).
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Figure 71: Problem II- extension of the range of ADS applicability: Power patterns |W (u,v)|* for

ADSGA (a) and for GA (b) approaches. (¢) and (d) show the corresponding array arrangements with
ADSGA and GA-based methods, respectively.
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6.3.2.10 Summary

P | Q|| ADSGA | GA | GA — [Haupt] [18]
10 | 20 0.455 0.515 0.54
40 | 40 0.485 0.491 0.81

Table XIII: Problem II- extension of the range of ADS applicability: Summary of the results obtained
about thinning factor v. Comparing the results of the new proposed ADSGA technique with the
standard GA methodology and [18].

BWy— BWg—90
P| Q| ADSGA| GA | GA—[Haupt| 18] | ADSGA | GA | GA— [Haupt] 18]
10 | 20 0.2412 0.2460 0.2480 0.1289 0.1289 0.1289
40 | 40 0.0546 0.0546 0.0546 0.0546 0.0546 0.0546

Table XIV: Problem II- extension of the range of ADS applicability: Summary of the results obtained
about main lobe dimension BW. Comparing the results of the new proposed ADSGA technique with
the standard GA methodology and [18].

H PSLy_o[dB] [ PSLy_g0[dB]
Pl ol apsca| ca | GA—[Hauwpt 18] || ADsSGA | GA | cA - [Haupt] 18]
10 | 20 —20.93 —20.74 —20.07 —23.45 —21.87 —19.76
40 | 40 —-19.24 —18.97 —17.20 —19.28 —19.12 —17.20

Table XV: Problem II- extension of the range of ADS applicability: Summary of the results obtained.
Comparing the results of the new proposed ADSGA technique with the standard GA methodology and
[18]. We obtain with ADSGA a reduction of PSL in both examples.
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6.3.3 Application to Problem III

As stated in the Introduction and in the description of the Problem III, several construc-
tion techniques to obtain ADS sequences have been already developed and even large
repositories are now [61][65] available. However, the fact that the ADS sequences of ar-
bitrary length are, at present, not available is a limitation for their use in real-world
problems. As a matter of fact, since ADS synthesis techniques are usually based on the
cyclotomy property, they generate sequences characterized by specific cyclotomic numbers
and not with arbitrary length [47].

As proposed in the description of Problem III, here a new method is proposed for the
synthesis of sequences of arbitrary length. The approach reformulates the ADS design in
terms of a combinatorial optimization problem where the cost function quantifies the misfit
between the autocorrelation of a binary sequence and the three valued function of the DSs.
The binary genetic algorithm (GA) is used to minimize such a cost function because of
its “hill-climbing” features and its ability to effectively sample the binary solution space
[47]. The parameters of the cost function have been set o = 1072 and 8 = 10~*. The

number of iterations [,,,, depends on how large is the search space.
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6.3.3.1 (36,32,28,23)-ADS
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Figure 72. Numerical validation - Problem III - GA designed ADS construction technique: (a)
Behaviour of the optimal fitness, Fpop, against the iteration number 4, (b) Three-level autocorrelation

function of the convergence (36,32, 28,23)-ADS arrangement, (¢) Final 2D ADS layout.
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Figure 73. Numerical validation - Problem III - GA designed ADS construction technique: Plot of the
power pattern associated to the antenna array built with the (36,32, 28,23)-ADS arrangement.
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6.3.3.2  (60,6,0,29)-ADS
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Figure 74. Numerical validation - Problem III - GA designed ADS construction technique: (a)
Behaviour of the optimal fitness, Fpop, against the iteration number 4, (b) Three-level autocorrelation

function of the convergence (60, 6,0,29)-ADS arrangement, (¢) Final 2D ADS layout.
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|Wag (u,v)| Normalized - [dB]

Figure 75. Numerical validation - Problem III - GA designed ADS construction technique: Plot of the
power pattern associated to the antenna array built with the (60,6,0,29)-ADS arrangement.
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6.3.3.3 (64,59,54,43)-ADS
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Figure 76. Numerical validation - Problem III - GA designed ADS construction technique: (a)
Behaviour of the optimal fitness, Fpop, against the iteration number 4, (b) Three-level autocorrelation

function of the convergence (64,59, 54,43)-ADS arrangement, (¢) Final 2D ADS layout.
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Figure 77. Numerical validation - Problem III - GA designed ADS construction technique: Plot of the
power pattern associated to the antenna array built with the (64,59, 54,43)-ADS arrangement.
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6.3.3.4 (100,5,0,79)-ADS
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Figure 78. Numerical validation - Problem III - GA designed ADS construction technique: (a)
Behaviour of the optimal fitness, Fpop, against the iteration number 4, (b) Three-level autocorrelation

function of the convergence (100,5,0,79)-ADS arrangement, (¢) Final 2D ADS layout.
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|Wag (u,v)| Normalized - [dB]

Figure 79. Numerical validation - Problem III - GA designed ADS construction technique: Plot of the
power pattern associated to the antenna array built with the (100,5,0,79)-ADS arrangement.
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6.3.3.5 (144,137,130,101)-ADS
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Figure 80. Numerical validation - Problem III - GA designed ADS construction technique: (a)
Behaviour of the optimal fitness, Fpop, against the iteration number 4, (b) Three-level autocorrelation

function of the convergence (144,137,130,101)-ADS arrangement, (¢) Final 2D ADS layout.

188



|Wag (u,v)| Normalized - [dB]

Figure 81. Numerical validation - Problem III - GA designed ADS construction technique: Plot of the
power pattern associated to the antenna array built with the (144,137,130, 101)-ADS arrangement.
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6.3.3.6 (192,184,176,135)-ADS
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Figure 82. Numerical validation - Problem III - GA designed ADS construction technique: (a)
Behaviour of the optimal fitness, Fpop, against the iteration number 4, (b) Three-level autocorrelation

function of the convergence (192,184, 176,135)-ADS arrangement, (¢) Final 2D ADS layout.
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|Wag (u,v)| Normalized - [dB]

Figure 83. Numerical validation - Problem III - GA designed ADS construction technique: Plot of the
power pattern associated to the antenna array built with the (192,184,176, 135)-ADS arrangement.
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6.3.3.7 (196,7,0,153)-ADS
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Figure 84. Numerical validation - Problem III - GA designed ADS construction technique: (a)
Behaviour of the optimal fitness, Fpop, against the iteration number 4, (b) Three-level autocorrelation

function of the convergence (196,7,0,153)-ADS arrangement, (¢) Final 2D ADS layout.
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|Wag (u,v)| Normalized - [dB]

Figure 85. Numerical validation - Problem III - GA designed ADS construction technique: Plot of the
power pattern associated to the antenna array built with the (196, 7,0, 153)-ADS arrangement.
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6.3.3.8 (225,8,0,168)-ADS
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Figure 86. Numerical validation - Problem III - GA designed ADS construction technique: (a)
Behaviour of the optimal fitness, Fpop, against the iteration number 4, (b) Three-level autocorrelation

function of the convergence (225, 8,0, 168)-ADS arrangement, (¢) Final 2D ADS layout.
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Figure 87. Numerical validation - Problem III - GA designed ADS construction technique: Plot of the
power pattern associated to the antenna array built with the (225, 8,0, 168)-ADS arrangement.
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6.3.3.9 Summary

A GA-based technique has been proposed as a new methodological tool for designing 2D
ADS sequences of arbitrary length. As put in evidence in the Introduction Section 6.1,
although large repositories of ADSs are available, ADS arrays with arbitrary aperture
sizes and thinning factors cannot be designed, since ADS sequences exist only for specific
sets of descriptive parameters. Moreover, even for admissible aperture sizes and thinning
factors, general purpose ADS construction techniques do not exist at present and the
explicit forms of ADS sequences has to be determined on a case by case basis using
suitable construction theorems.

To overcome this problem, the original synthesis has been reformulated as a combina-
torial optimization. Towards this end, a suitable fitness function exploiting the autocor-
relation properties of ADSs has been introduced and minimized by means of a GA-based
iterative procedure. In other words, the aim is now to find the explicit forms of ADSs
sequences for arbitrary values of N. In such a case, the optimisation at hand turns out to
be different from that in Problem I and Problem II. The GA works within the “autocor-
relation space”, while the constraints are still on the set of parameters defining the ADS
as well as the corresponding array arrangement.

In the following Table, the (N, K, A, t)-ADS sequences that have been found by means

of GA procedure are described.

vjrla|xfale] v
36 | 6 | 6 | 32 | 28 | 23 | 0.888
60 || 6 10| 6 0 |29 || 0.10
64 || 8 | 8 || 89 | 54 | 43 | 0.921
100 | 10 [ 10 || 5 0 | 79 || 0.50
144 1 12 | 12 || 137 | 130 | 101 || 0.951
192 12 | 16 || 184 | 176 | 135 || 0.958
196 || 14 14| 7 0 | 153 || 0.35
2251151 15| 8 0 | 168 || 0.35

Table XVI: Properties of the ADS sequences that have been designed by the proposed GA-based
techniques. Neither of these (N, K, A, t)-ADS sequences can found in [61] or [65].

All the sequences in Table XVT are not described by the available theorems and this
shows that the proposed ADS-synthesis technique correctly works. It is mandatory to
put in evidence that, as expected, the GA-based ADS synthesis technique requires much
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more iterations to determine the three-level autocorrelation binary sequence for a given
geometry for larger search spaces. Anyway the proposed method assessed its reliability
whatever the dimension athand.

As a final observation, it is worthwhile to point out that the new ADSs determined
solving different instances of Problem III can be directly used to define new thinned arrays
or as starting points for different formulations of Problem I or Problem II. Indeed, the

power patterns of different new ADS-based arrays have been plotted.
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Chapter 7
Conclusion

As described in the Abstract, this Thesis has presented innovative guidelines for the syn-
thesis of antenna arrays for communication and radioastronomy systems and applications.
In more detail in the first part of the Thesis a new family of analytically-designed thinned
arrays with different azimuth and elevation TMBWs has been proposed. Thanks to the
properties of McFarland DSs, several massively thinned isophoric architectures have been
deduced and the PSLs of the arising layouts, defined over grids of size P x P(P +2) (P
being a prime number), have been numerically analyzed. Towards this end, a GA-based
search procedure has been exploited due to the extremely large number of admissible
McFarland sequences.

The numerical results point out the following issues

e the design of McFarland arrays is highly efficient whatever P, since up to W (P)
layouts can be obtained by simply selecting the associated descriptors ,0,, oy, &,
(a;, b;) and <w§i+1),1ﬂéi+l)> fori=0,...,P+1;

e unlike traditional binary encodings used for thinned array designs [44], the GA-
based procedure is able to more efficiently identify optimal McFarland layouts thanks
to the discrete nature of the McFarland descriptors and also the large number of

optimal solutions available within the search space (Fig. 3);

e despite the extremely low number of active elements (v < (1/P)), McFarland ar-
rays exhibit well-controlled sidelobes especially for large dimensions. This suggests
their exploitation for the design of extremely light large arrays as well as of archi-
tectures with interleaved functionalities (e.g., multi-function radar arrays in which

each function correspond to a highly sparse sub-array [41]).
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Further studies will be devoted to analyze the effects of the presence of real array elements
and/or mutual coupling. Furthermore, it is still a work in progress the exploitation of

McFarland sequences for designing interleaved architectures.

In the second part of this Thesis ADS sequences have been exploited to design corre-
lator arrays for radio astronomy applications in a computationally efficient and reliable
fashion. Three strategies have been presented that exhibit different features, computa-
tional complexity and flexibility. More specifically: (a) a fully analytic technique based on
ADS layouts to provide sub-optimal designs with extremely reduced computational costs;
(b) an ADSGA hybrid technique that employs a binary description of the correlator array
to obtain optimized configurations with interesting geometric properties and improved
PSL performances; and (¢) an ADSPSO strategy devoted to enhance the flexibility of the
lattice-based approaches and exploiting a real-coded description of the geometry at hand.
An extensive numerical validation has been carried out to analyze features and advan-
tages of the proposed approaches, also in comparison with state-of-the-art methodologies,
in several working conditions, including design examples for future planned instruments

(i.e., the ALMA architecture [57]).

The obtained results have pointed out the following key issues:

e ADS-based analytic layouts outperform equally spaced or power-law state-of-the-art
designs in terms of PSL control and snapshot or tracking coverage (e.g., v4}s =
0.831 versus v, = 0.598 - Table II);

e the analytic ADS technique synthesizes arrays with sub-optimal performances if
compared to state-of-the-art stochastically optimized arrangements (e.g., PSLs =
—20.3|dB| versus PSLY,g = —19.98|dB| - Table II), but it is extremely efficient in
terms of computational costs and the generation of reliable compromise solutions
(versus =; = 0.22 vs. 2%}, = 0.26 - Fig. 4);

e ADS-based hybrid approaches outperform corresponding standard randomly initial-
ized GA and PSO techniques for both convergence rate and array features whatever
the synthesis objective and the array geometry (e.g., PSLY\poa = —20.14[dB]
versus PSLYYeqa = —20.93[dB] for Problem A - Table II);

e the ADSPSO turns out to be more efficient and effective than the ADSGA when
dealing with small arrangements, while the ADSGA outperforms the other hy-

bridizations when medium /large arrays are at hand (Section IV);
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e the “unequal-arms” geometry usually guarantees fitter solutions than the state-of-
the-art “equal-arms” displacements, especially when is small (e.g., PSLYhopso =
—21.35[dB] versus PSL3 = —20.3|dB| - Tables IT and IIT).

Future efforts will be devoted to assess the advantages, potentialities, and limitations of
the proposed methodologies when dealing with more realistic scenarios (e.g. directive
elements or wideband behavior) and/or considering other geometric architectures such
as Reuleaux triangles [31]. Towards this end, the exploitation of linear ADSs in open
and closed-ended configuration as well as 2D ADSs [48| will be carefully analyzed. As
an additional research topic in future papers, the design parameter spaces for which
computational efficiency is a practical limitation will be explored. Indeed, this could allow
to discriminate when optimization is impractical even with modern computers and ADS-

based techniques are best-in-class or when a full-stochastic approach is more effective.

Finally the third part of this Thesis has been devoted to a hybrid ADSGA-based
methodology for planar antenna arrays. This synthesis technique has been presented and
developed to improve performance of large thinned arrays. These results can be very
useful to design and enhance the features in the far-field and for narrow-band signals of
ADS-based binary sequences for planar array thinning. To overcome the main limitations
(i.e. flexibility and performance) of ADS-based thinned arrays, while taking advantage
of their properties, an innovative methodological approach that, unlike the ADS thinning
techniques described in [48|, does not rely on purely analytical design method, has been
proposed. An extensive numerical analysis has been performed by addressing different
kinds of problems, each one concerned with a specific ADS limitation. The obtained

results have pointed out the following outcomes:

1. thanks to the ADS initialisation, the ADSGA provides improved performance with
respect to a standard GA approach when dealing with linear array thinning, even

though the improvements are not always very significant;

2. ADSGA-constrained designs are usually advantageous since they avoid both quasi-
dense layouts of limited practical importance as well as large main lobe widths,

unlike unconstrained architectures;

3. the knowledge of ADS reference sequences and the a priori information on the
performance of the corresponding arrays turn out to be useful even for synthesising
antenna arrangements with different (also when ADSs do not exist) thinning factors

or sizes;
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4. the hybrid approach can be profitably employed to determine the explicit form of
new ADS sequences of desired length beyond those already available, thus extending

the range of applicability of the ADS-based array thinning.
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