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Abstra
tModern 
ommuni
ation and spa
e systems su
h as satellite 
ommuni
ation devi
es, radars, SARand radio astronomy interferometers are realized with large antenna arrays sin
e this kind ofradiating systems are able to generate radiation patterns with high dire
tivity and resolution. Insu
h a framework 
onventional arrays with uniform inter-element spa
ing 
ould be not satisfa
-tory in terms of 
osts and dimensions. An interesting alternative is to redu
e the array elementsobtaining the so 
alled �thinned arrays�. Large isophori
 thinned arrays have been exploited be-
ause of their advantages in terms of weight, 
onsumption, hardware 
omplexity, and 
osts overtheir �lled 
ounterparts.Unfortunately, thinning large arrays redu
es the 
ontrol of the peak sidelobe level (PSL) and doesnot give automati
ally optimal spatial frequen
y 
overage for 
orrelators. First of all the state ofthe art methodologies used to over
ome su
h limitations, e.g., random and algorithmi
 approa
hes,dynami
 programming and sto
hasti
 optimization algorithms su
h as geneti
 algorithms, sim-ulated annealing or parti
le swarm optimizers, are analyzed and des
ribed in the introdu
tion.Su

essively, innovative guidelines for the synthesis of large radiating systems are proposed, anddis
ussed in order to point out advantages and limitations. In parti
ular, the following spe
i�
issues are addressed in this work:1. A new 
lass of analyti
al re
tangular thinned arrays with low peak sidelobe level (PSL). Theproposed synthesis te
hnique exploits binary sequen
es derived from M
Farland di�eren
esets to design thinned layouts on a latti
e of P × P (P + 2) positions for any prime P .The pattern features of the arising massively-thinned arrangements 
hara
terized by only
P×(P + 1) a
tive elements are dis
ussed and the results of an extensive numeri
al analysisare presented to assess advantages and limitations of the M
Farland-based arrays.2. A set of te
hniques is presented that is based on the exploitation of low 
orrelation AlmostDi�eren
e Sets (ADSs) sequen
es to design 
orrelator arrays for radioastronomy appli
a-tions. In parti
ular three approa
hes are dis
ussed with di�erent obje
tives and perfor-man
es. ADS-based analyti
al designs, GA-optimized arrangements, and PSO optimizedarrays are presented and applied to the synthesis of open-ended �Y � and �Cross� array
on�gurations to maximize the 
overage u−v or to minimize the peak sidelobe level (PSL).Representative numeri
al results are illustrated to point out the features and performan
esof the proposed approa
hes, and to assess their e�e
tiveness in 
omparison with state-of-the-art design methodologies, as well. The presented analysis indi
ates that the proposedapproa
hes over
ome existing PSO-based 
orrelator arrays in terms of PSL 
ontrol (e.g.,
> 1.0dB redu
tion) and tra
king u − v 
overage (e.g., up to 2% enhan
ement), also im-



proving the speed of 
onvergen
e of the synthesis pro
ess.3. A geneti
 algorithm (GA)-enhan
ed almost di�eren
e set (ADS)-based methodology to de-sign thinned planar arrays with low-peak sidelobe levels (PSLs). The method allows toover
ome the limitations of the standard ADS approa
h in terms of �exibility and perfor-man
e. The numeri
al validation, 
arried out in the far-�eld and for narrow-band signals,points out that with a�ordable 
omputational e�orts it is possible to design planar arrayarrangements that outperform standard ADS-based designs as well as standard GA designapproa
hes.
Keywords[Planar Arrays, Thinned Arrays, Correlator Array Antenna, Di�eren
e Sets, M
FarlandSequen
es, Almost Di�eren
e Sets, Geneti
 Algorithms, Parti
le Swarm Optimizer℄
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omparison with referen
edesigns from [31℄.� Figure 42. Problem A [Equal-unequal arms, N = 27℄ - Synthesis results for theGA and ADSGA approa
hes: (a) behavior of the optimal PSL versus the iterationnumber i, and 
omparison with referen
e designs from [31℄, (b) optimal YADSGAarray arrangement, and (
) asso
iated synthesized pattern.� Figure 43. Problem B [Equal-unequal arms, N = 27℄ - Synthesis results for theRNDPSO and ADSPSO approa
hes: (a) optimal YADSPSO array arrangement and(b) asso
iated u− v 
overage fun
tion.� Figure 44. Problem C [Equal-unequal arms, N = 27℄ - Synthesis results for theRNDPSO and ADSPSO approa
hes: (a) optimal array arrangement and (b) asso-
iated tra
king u− v 
overage fun
tion.� Figure 45. Problem A [Equal-unequal arms, N = 27℄ - Synthesis results for theRNDPSO and ADSPSO approa
hes: (a) Behavior of the optimal PSL versus theiteration number i, and 
omparison with referen
e designs from [31℄, (b) optimal
YADSPSO array arrangement, and (
) asso
iated synthesized pattern.� Figure 46. Problem A - Behavior of the optimal PSL versus the iteration number
i for the RNDGA, ADSGA, RNDPSO, and ADSPSO approa
hes for (a) N = 132(equal and unequal arms) and (b) N = 270 (equal arms).� Figure 47. ALMA - Problem A [Equal-unequal arms, N = 63 ℄ - Synthesis re-sults for the ADSPSO approa
h: (a) optimal array arrangement and (b) asso
iated
ST (u, v).� Figure 48. Cross arrays - Problem A [Equal-unequal arms, N = 60℄ - Synthesisresults for the RNDGA, ADSGA, RNDPSO and ADSPSO approa
hes: (a) behav-ior of the optimal PSL versus the iteration number i, (b) optimal ADSPSO arrayarrangement and (
) asso
iated ST (u, v).15



� Figure 49. Example from [23℄ of Planar Array based on D
opt
3 - ADS . Number ofelements: P × Q = 7 × 11. Plots of the PSL bounds versus η = t

PQ−1
(PQ = 77,

ν = 0.4805) (a). Plot of the normalized array fa
tor (b) generated from D
opt
3 - ADSarray arrangement (
) (
ourtesy from [23℄).� Figure 50. Numeri
al validation - Problem I - PSL minimisation in array synthesis:Behaviour of the optimal �tness value, PSL(i), against the number of iterationnumber, i.� Figure 51. Numeri
al validation - Problem I - PSL minimisation in array synthesis:Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes. (
) and (d)show the 
orresponding array arrangements with ADSGA and GA-based methods,respe
tively.� Figure 52. Numeri
al validation - Problem I - PSL minimisation in array synthe-sis: Behaviour of the optimal �tness value, PSL(i), against the number of iterationnumber, i.� Figure 53. Numeri
al validation - Problem I - PSL minimisation in array synthesis:Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes. (
) and (d)show the 
orresponding array arrangements with ADSGA and GA-based methods,respe
tively.� Figure 54. Numeri
al validation - Problem I - PSL minimisation in array synthe-sis: Behaviour of the optimal �tness value, PSL(i), against the number of iterationnumber, i.� Figure 55. Numeri
al validation - Problem I - PSL minimisation in array synthesis:Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes. (
) and (d)show the 
orresponding array arrangements with ADSGA and GA-based methods,respe
tively.� Figure 56. Numeri
al validation - Problem I - PSL minimisation in array synthe-sis: Behaviour of the optimal �tness value, PSL(i), against the number of iterationnumber, i.� Figure 57. Numeri
al validation - Problem I - PSL minimisation in array synthesis:Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes. (
) and (d)show the 
orresponding array arrangements with ADSGA and GA-based methods,respe
tively. 16



� Figure 58. Numeri
al validation - Problem I - PSL minimisation in array synthesis:Graphi
al 
omparison of the PSL of di�erent array 
on�gurations (the side P onthe horizontal axis) for ADSGA an GA methodologies. We 
an observe that thePSL improvement of the ADSGA method redu
es 
ompared with standard GA asthe dimension of the array in
reases.� Figure 59. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Behaviour of the optimal �tness value, PSL(i), against the number ofiteration number, i.� Figure 60. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes.(
) and (d) show the 
orresponding array arrangements with ADSGA and GA-basedmethods, respe
tively.� Figure 61. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Behaviour of the optimal �tness value, PSL(i), against the number ofiteration number, i.� Figure 62. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes.(
) and (d) show the 
orresponding array arrangements with ADSGA and GA-basedmethods, respe
tively.� Figure 63. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Behaviour of the optimal �tness value, PSL(i), against the number ofiteration number, i.� Figure 64. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes.(
) and (d) show the 
orresponding array arrangements with ADSGA and GA-basedmethods, respe
tively.� Figure 65. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Behaviour of the optimal �tness value, PSL(i), against the number ofiteration number, i.� Figure 66. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes.17



(
) and (d) show the 
orresponding array arrangements with ADSGA and GA-basedmethods, respe
tively.� Figure 67. Numeri
al validation - Problem II - PSL minimisation in array synthe-sis: Graphi
al 
omparison of the PSL of di�erent array 
on�gurations (the side Pon the horizontal axis) for ADSGA an GA methodologies. We 
an observe that thePSL improvement of the ADSGA method redu
es 
ompared with standard GA asthe dimension of the array in
reases.� Figure 68. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Graphi
al 
omparison of the PSL against the iteration i of ADSGA,GA and Haupt [18℄ approa
hes along the two main dire
tions φ = 0° (a) and φ = 90°(b). Sli
es of the amplitude pattern obtained after optimization pro
edure along thetwo main dire
tions φ = 0° (
) and φ = 90° (d).� Figure 69. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes.(
) and (d) show the 
orresponding array arrangements with ADSGA and GA-basedmethods, respe
tively.� Figure 70. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Graphi
al 
omparison of the PSL against the iteration i of ADSGA,GA and Haupt [18℄ approa
hes along the two main dire
tions φ = 0° (a) and φ = 90°(b). Sli
es of the amplitude pattern obtained after optimization pro
edure along thetwo main dire
tions φ = 0° (
) and φ = 90° (d).� Figure 71. Numeri
al validation - Problem II - extension of the range of ADSappli
ability: Power patterns |W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes.(
) and (d) show the 
orresponding array arrangements with ADSGA and GA-basedmethods, respe
tively.� Figure 72. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level auto
orrelation fun
tion of the 
onvergen
e (36, 32, 28, 23)-ADSarrangement, (
) Final 2D ADS layout.� Figure 73. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: Plot of the power pattern asso
iated to the antenna array built with the
(36, 32, 28, 23)-ADS arrangement. 18



� Figure 74. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration num-ber i, (b) Three-level auto
orrelation fun
tion of the 
onvergen
e (60, 6, 0, 29)-ADSarrangement, (
) Final 2D ADS layout.� Figure 75. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: Plot of the power pattern asso
iated to the antenna array built with the
(60, 6, 0, 29)-ADS arrangement.� Figure 76. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level auto
orrelation fun
tion of the 
onvergen
e (64, 59, 54, 43)-ADSarrangement, (
) Final 2D ADS layout.� Figure 77. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: Plot of the power pattern asso
iated to the antenna array built with the
(64, 59, 54, 43)-ADS arrangement.� Figure 78. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level auto
orrelation fun
tion of the 
onvergen
e (100, 5, 0, 79)-ADSarrangement, (
) Final 2D ADS layout.� Figure 79. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: Plot of the power pattern asso
iated to the antenna array built with the
(100, 5, 0, 79)-ADS arrangement.� Figure 80. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level auto
orrelation fun
tion of the 
onvergen
e (144, 137, 130, 101)-ADS arrangement, (
) Final 2D ADS layout.� Figure 81. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: Plot of the power pattern asso
iated to the antenna array built with the
(144, 137, 130, 101)-ADS arrangement.� Figure 82. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level auto
orrelation fun
tion of the 
onvergen
e (192, 184, 176, 135)-ADS arrangement, (
) Final 2D ADS layout.19



� Figure 83. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: Plot of the power pattern asso
iated to the antenna array built with the
(192, 184, 176, 135)-ADS arrangement.� Figure 84. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level auto
orrelation fun
tion of the 
onvergen
e (196, 7, 0, 153)-ADSarrangement, (
) Final 2D ADS layout.� Figure 85. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: Plot of the power pattern asso
iated to the antenna array built with the
(196, 7, 0, 153)-ADS arrangement.� Figure 86. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: (a) Behaviour of the optimal �tness, FPOP , against the iteration number
i, (b) Three-level auto
orrelation fun
tion of the 
onvergen
e (225, 8, 0, 168)-ADSarrangement, (
) Final 2D ADS layout.� Figure 87. Numeri
al validation - Problem III - GA designed ADS 
onstru
tionte
hnique: Plot of the power pattern asso
iated to the antenna array built with the
(225, 8, 0, 168)-ADS arrangement.
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Chapter 1Stru
ture of the ThesisThis 
hapter des
ribes how the Thesis is organized.First of all, Chapter 2 presents an overview of the Thesis, pointing out the 
ontextof the thinned antenna arrays for 
ommuni
ation and radio astronomy, the problem thathave been 
onsidered and a brief analysis of the solutions proposed in literature.Chapter 3 des
ribes some of the most signi�
ative and relevant te
hniques in the state-of-the-art, to design thinned arrays for 
ommuni
ation and radio astronomy. The aim isto present the basis and ba
kground of the work 
arried out in this Thesis during theresear
h a
tivity developed during my PhD and make a 
omparative assessment withmethodologies proposed in this Thesis.Chapter 4 deals with a new 
lass of re
tangular thinned arrays with low and 
ontrolledpeak side lobe level (PSL). These arrays are based on M
Farland Di�eren
e Sets (DSs),that likewise two-dimensional DSs exhibit a two-level auto
orrelation fun
tion, and ona suitable synthesis pro
edure based on Geneti
 Algorithm (GA) optimization. GA hasbeen exploited due to the extremely large number of admissible M
Farland sequen
es.This methodology allows to obtain massively-thinned arrangements with a re
tangularshape that exhibit di�erent total main beam widths (TMBWs) in azimuth and elevationand low PSL.Chapter 5. In this 
hapter, in order to design 
orrelator arrays for radioastronomy ap-pli
ations a set of hybrid te
hniques is introdu
ed and numeri
al validated. These hybridte
hniques take advantage of the apriori information on suboptimal analyti
ally derived21




orrelator arrangements. In more detail, to improve performan
e of 
orrelators for ra-dioastronomy Almost Di�eren
e Sets (ADSs) sequen
es, that are 
hara
terized by almostideal auto
orrelation properties, are exploited with sto
hasti
 optimization algorithmssu
h as geneti
 algorithms (GAs) and parti
le swarm optimizers (PSOs).Chapter 6 proposes a GA-enhan
ed ADS te
hnique (ADSGA) for the synthesis of pla-nar antenna arrays for 
ommuni
ation appli
ations and shows that the developed ADSGAhybrid te
hnique allows to over
ome the limitations related to the use of ADS sequen
esand obtain optimal performan
e.Chapter 7 
on
ludes the Thesis. In parti
ular the main results are summarized, theopen problems and future resear
h dire
tions in the exploitation of the proposed method-ologies and te
hniques are outlined.
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Chapter 2
Introdu
tion
2.1 Context and Ba
kground
There are many pra
ti
al ways to exploit antenna arrays. Antenna arrays are widely usedboth in 
ivil and military appli
ations. In 
ommuni
ation and broad
ast engineering theyare used in TLC systems su
h as TV and radio transmitters, for example in AM or FMbroad
ast radio stations to enhan
e signal. Arrays are largely utilized in warships, air
raftradar systems and missile �re-
ontrol systems. Other uses are sonar, weather resear
h andbiomedi
al (e.g. radiotherapy) appli
ations [1℄[2℄. Another parti
ular kind of frameworkwhere antenna arrays 
an be very useful is represented by spa
e appli
ations, e.g. satellite
ommuni
ation systems and radio astronomy. The radiating systems of these appli
ationshave some 
ommon requirements: high resolution (the term "resolution" is used in thesense of Rayleigh and is proportional to the beamwidth), high gain, low sidelobe level[3℄ and, for radio astronomy appli
ations, optimal 
overage in spatial frequen
y domain.In 
ommuni
ation and spa
e appli
ations, steerable re�e
tors are one of the most usefulkinds of antennas. Re�e
tors have a diameter that 
an be equal up to 100m but they
annot be mu
h larger be
ause of me
hani
al problems and prohibitive 
osts.23



Figure 1. Introdu
tion - Example of large re�e
tor antenna.For these reasons, the attention has turned to very large arrays with a number ofradiating elements from two up to hundreds or thousands. For 
onventionally designedarrays where all elements are uniformly spa
ed an upper limit exists to the spa
ing, ifthe grating lobes are not permitted to appear in the visible region. In this 
ase wehave traditional �lled arrays that have an element pla
ed in every lo
ation of a uniformlatti
e with half-wavelength spa
ing between the latti
e points. As a result the requirednumber of elements, being proportional to the aperture dimension in wavelength, be
omesastronomi
ally large if a beamwidth on the order of minute of ar
 is desired [3℄.

Figure 2. Introdu
tion - Example of 
onventional �lled array with pat
h radiating elements.Most of the re
ent investigations on arrays with non-uniformly spa
ed elements showedthe possibility of redu
ing the number of radiating elements and optimizing the design ofarrays. An unequally spa
ed, thinned array may be used to:1. a
hieve a narrow main lobe with redu
ed number of elements24



2. a
hieve a wide s
an angle or operate over a broad frequen
y band without theappearan
e of grating lobes3. a
hieve desirable radiation patterns without amplitude taper a
ross the aperture.Thinning an array means turning o� some elements in a uniformly spa
ed or periodi
 arrayto 
reate a desired amplitude density a
ross the aperture [4℄. An element 
onne
ted tothe feed network is �on�, and an element 
onne
ted to a mat
hed or dummy load is �o��.When thinned arrays have fewer than half of the elements of their �lled 
ounterparts,they are 
alled massively thinned arrays. In this resear
h proposal we are not interestedin amplitude tapering te
hniques sin
e these methodologies have a higher 
omplexityand 
ost [5℄. We have to remember that thinning is normally a

ompanied by loss ofsidelobe 
ontrol, for this reason, thinned arrays are synthesized in a

ording to one ormore optimization 
riteria. For example, optimization of the beam pattern means toa
hieve the minimum PSL in the entire visible range or the maximum gain [3℄[4℄[6℄.

Figure 3. Introdu
tion - Example of large 
ir
ular thinned array.In this s
enario large thinned arrays allow us to obtain the following advantages:better performan
e with respe
t to re�e
tor antenna, in
reased operational robustness,implementation 
ost saving and more programmati
 �exibility. Ea
h of these topi
s is dis-
ussed further in the following paragraphs. For larger antennas, the beam width naturallyis narrower. As a result, antenna-pointing error be
omes more 
riti
al. To stay within themain beam and in
ur minimal loss, antenna pointing has to be more pre
ise. Yet this isdi�
ult to a
hieve for larger stru
tures. With an array 
on�guration of smaller antennas,antenna-pointing error is not an issue. The di�
ulty is transferred from the me
hani
al to25



the ele
troni
 domain. As long as the 
ombining pro
ess is performed with minimal signaldegradation, an optimal gain 
an be a
hieved. Arraying also allows an in
rease ine�e
tiveaperture beyond the present 
apability for supporting a mission at a time of need. In thepast, the Voyager Mission relied on arraying to in
rease its data return during Uranusand Neptune en
ounters in the late 1980s. The Galileo Mission provides another examplein whi
h arraying was used to in
rease the s
ien
e data return by a fa
tor of 3. (When
ombined with other improvements, su
h as a better 
oding s
heme, a more e�
ient data
ompression and a redu
tion of system noise temperature, a total improvement of a fa
torof 10 was a
tually realized) [7℄. Arraying 
an in
rease system operability. Firstly, higherresour
e utilization 
an be a
hieved. In the 
ase of an array the set 
an be partitionedinto many subsets supporting di�erent missions simultaneously, everyone tailored a

ord-ing to the link requirements. So doing, resour
e utilization 
an be enhan
ed. Se
ondly,arraying o�ers high system availability and maintenan
e �exibility. Let us suppose anarray built with 10 per
ent spare elements. The regular preventive maintenan
e 
an bedone on a rotating basis while allowing the system to be fully fun
tional at all times.Thirdly, the 
ost of spare 
omponents would be smaller. Instead of having to supply thesystem with 100 per
ent spares in order to make it fully fun
tional around the 
lo
k, thearray o�ers an option of furnishing spares at a fra
tional level. Equally important is theoperational robustness against failures. With a single resour
e, failure tends to bring thesystem down. With an array, failure in an array element degrades system performan
e butdoes not result in a servi
e shutdown [7℄. In parti
ular, thinned arrays 
an be proje
tedto have a 
ertain amount of redundant radiating elements in order to guaranteeing PSL
ontrol in presen
e of one or multiple failures.A 
ost saving is realized from the fa
t that smaller antennas, be
ause of their weightand size, are easier to build and move. The fabri
ation pro
ess 
an be automated to redu
ethe 
ost. It is often approximated that the antenna 
onstru
tion 
ost is proportional to theantenna volume. The re
eption 
apability, however, is proportional to the antenna surfa
earea. Note, however, that antenna 
onstru
tion is only a part of the overall life 
y
le 
ostfor the entire system deployment and operations. To 
al
ulate the a
tual savings, oneneeds to a

ount for the 
ost of the extra ele
troni
s required at multiple array elementsand the 
ost related to the in
rease in system 
omplexity [7℄. One of the most importantquality of thinned arrays is the redu
ed number of antennas: with few radiating elementswe 
an keep under 
ontrol the PSL, satisfying the te
hni
al requirements, and also in
reasethe 
ost saving. Arraying o�ers a programmati
 �exibility be
ause additional elements
an be in
rementally added to in
rease the total aperture at the time of mission need.This option allows for a spread in required funding and minimizes the need to have all the26




ost in
urred at one time. The addition of new elements 
an be done with little impa
tto the existing fa
ilities that support ongoing operations.In 
on
lusion thinned arrays seem to be suitable to satisfy the previous requirementstypi
al of 
ommuni
ation systems and improve performan
e.Radio interferometers and synthesis arrays, whi
h are basi
ally ensembles of two el-ement interferometers, are used to make measurements of the �ne angular detail in thedeep radio emission from the sky. The angular resolution of single radio antennas is insuf-�
ient for many astronomi
al purposes. Pra
ti
al 
onsiderations limit the resolution to afew tens of ar
se
onds. For example, the beamwidth of a 100m diameter antenna at 7mmwavelength is approximately 17ar
se
. In the opti
al range the di�ra
tion limit of largeteles
opes (diameter-8 m) is about 0.015 ar
se
, but the angular resolution a
hievablefrom the ground by 
onventional te
hniques is limited to about one ar
se
 by turbulen
ein the troposphere. For progress in astronomy it is parti
ularly important to measurethe positions of radio sour
es with su�
ient a

ura
y to allow identi�
ation with obje
tsdete
ted in the opti
al and other parts of the ele
tromagneti
 spe
trum. It is also veryimportant to be able to measure parameters su
h as intensity, polarization, and frequen
yspe
trum with similar angular resolution in both the radio and opti
al domains. Radiointerferometry enables su
h studies to be made. Pre
ise measurement of the angular po-sitions of stars and other 
osmi
 obje
ts is the 
on
ern of astrometry. This in
ludes thestudy of the small 
hanges in 
elestial positions attributable to the parallax introdu
edby the earth's orbital motion, as well as those resulting from the intrinsi
 motions of theobje
ts. Su
h measurements are an essential step in the establishment of the distan
es
ale of the universe. Radio te
hniques provide an a

ura
y of the order of ar
se
 or lessfor the relative positions of obje
ts 
losely spa
ed in angle.Compared with 
ommuni
ation systems, to obtain optimal performan
e, namely ahigh-sensitive and high-resolution measurement of radio sour
es, a uniform inter-elementspa
ing of the radiating elements is not the best solution. We need not only a low PSL butalso 
overage of spatial frequen
y domain as uniform as possible. If the spatial domain isnot uniformly sampled the radio sour
e is not 
orre
tly re
overed and spurious artifa
ts arepresents. A non-uniformly spa
ed 
orrelator array, as shown in [8℄[9℄, gives the possibilityof redu
ing the PSL and optimizing the 
overage.27



Figure 4. Introdu
tion - The VLA, an array of 27 elements, ea
h a 25-m paraboloid, is a Y-shapedarray having three equiangular linear arms of 21 km.

(a) (b)Figure 5. Introdu
tion - (a) and (b) are examples of radio maps obtained with radio astronomy
orrelators.
28



Chapter 3State of the Art
3.1 Arrays for Communi
ation and Radio Astronomy -Introdu
tion to the State-of-the-ArtIn the framework of arrays for 
ommuni
ations, radar and spa
e appli
ations, Skolnikproposed one of the �rst examples of thinning large antenna arrays. In his work [4℄he des
ribes statisti
ally designed density-tapered arrays. With the usual method fordesigning dire
tive antennas with low sidelobes, the re
eived (or radiated) energy is greaterat the 
entre than at the edges [4℄. The idea proposed in [4℄ is the following: the densityof elements lo
ated within the aperture is made proportional to the amplitude of theaperture illumination of 
onventional �lled arrays (designed with Taylor or Dolph methods[10℄[11℄). In other words, the signal at ea
h element of the array is of equal amplitude butthe spa
ing between adja
ent elements di�ers. The sele
tion of the element lo
ations isperformed statisti
ally by utilizing the amplitude illumination as the probability densityfun
tion for spe
ifying the lo
ation of elements (for this reason it is also 
alled spa
etaper) [4℄. Statisti
ally designed density-tapered arrays are useful when the number ofelements is large and when it is not pra
ti
al to employ an amplitude taper to a
hieve lowsidelobes. A density taper has advantages over an amplitude taper in 
ertain appli
ations.Transmitting arrays, for example, with individual power ampli�ers at ea
h element areeasier to design and to build and more e�
ient to operate if ea
h ampli�er delivers fullrated power [4℄. The density-tapered array permits the system designer to employ equal-power ampli�ers at ea
h element and still a
hieve low sidelobes. Re
eiving antennas 
analso bene�t from density tapering. In 
on
lusion, this te
hnique is to be 
onsidered forthe design of large array antennas where good sidelobes are important and where it is not
onvenient to use an amplitude taper a
ross the aperture [4℄.29



In [6℄ Steinberg derived a formula for the PSL of a thinned array where the elements arerandomly lo
ated. In a random array, the lo
ation of ea
h radiating element is a randomvariable drawn from a population des
ribed by a probability density fun
tion (e.g.uniformpdf). Sin
e an a-priori des
ription of a random array 
an only be given statisti
ally, it islogi
al to seek an estimator of the peak sidelobe in terms of a probability or 
on�den
elevel that the predi
ted value will not be ex
eeded. Steinberg obtained a probabilisti
estimator of the peak sidelobe of uniform random array with equally weighted elements.This theoreti
al result was tested by measurement of the peak sidelobe of several hundredMonte Carlo 
omputer-simulated random arrays [6℄.During the 1960's many thinning algorithms were 
reated. The methodologies to thinarrays fall into the following 
ategories: algorithmi
-spe
i�
 aperiodi
 designs; random-element lo
ations 
hosen at random; random removal-holes 
hosen at random; dynami
programming-quasi-trial-and- error. In [6℄, Steinberg 
ompared algorithmi
 design ofthinned aperiodi
 arrays tested by 
omputer simulations with random arrays. The dis-tribution is 
ompared to that of a set of 170 random arrays [6℄[6℄. Both distributions arefound to be nearly log normal with the same average and median values. They markedlydi�er in their standard deviations. However, the standard deviation of the random arraydistribution is approximately half that of the algorithmi
 group. The author showed thatalgorithmi
ally thinned arrays rarely o�er enough 
ontrol of the far radiation pattern tobe superior to random arrays. Furthermore the 
ompa
tness of the random distributionalmost guarantees against sele
tion of a random array with 
atastrophi
ally large peaksidelobes. The only pro
edure that gives superior performan
e is dynami
 programming-quasi trial-and-error method of sidelobe 
ontrol, a highly 
onstrained approa
h. More indetail, the �rst element is lo
ated at random. The se
ond lo
ation is that whi
h givesthe best 
ombination. The third lo
ation is that whi
h gives the best trio based on the�xed lo
ations of the �rst two elements, et
. Despite dynami
 random design method is
ommonly 
onsidered as the referen
e strategy for the synthesis of thinned arrays be
auseof its simpli
ity (does not require any 
omputational pro
edure), its good performan
e(quasi trial-and-error method gives a slight improvement) and �exibility [6℄[6℄.In order to improve performan
e of thinned arrays respe
t to random arrays, di�erentways have been used. The �rst is based on the use of optimization algorithms and these
ond on parti
ular kind of 
ombinatorial sequen
es.Assuming, like in the previous methodologies, the number of radiators is a �nite num-ber and ea
h radiator 
an have two values on and o� (thinning may also be thought ofas quantized amplitude taper where the amplitude at ea
h element is represented by one30



bit), the number of possible 
ombinations, where Q is the number of array elements, is
2Q. Thinning a large array for low sidelobes involves 
he
king a rather large number ofpossibilities in order to �nd the best thinned aperture. Exhaustive 
he
king of all possi-ble element 
ombinations is only pra
ti
al for small arrays [13℄. Optimization algorithmsrepresent an alternative to exhaustive sear
h. Most optimization methods (in
ludingdown-hill simplex, Powell's method, and 
onjugate gradient) are not well suited for thin-ning arrays. They 
an only optimize a few 
ontinuous variables and get stu
k in lo
alminima [14℄. Also, these methods were developed for 
ontinuous parameters, whereas thearray-thinning problem involves dis
rete parameters. The dynami
 programming method
an optimize a large parameter set (many elements), but it is also vulnerable to lo
alminima [15℄. Simulated annealing and geneti
 algorithms (GA) [14℄[16℄[17℄ are optimiza-tion methods that are well suited for thinning arrays. There is no limit to the number ofvariables that 
an be optimized. Although quite slow, these algorithms 
an handle verylarge arrays. These methods are global sin
e they have random 
omponents that testfor solutions outside the 
urrent minimum, while the algorithm 
onverges. The globalnature of the algorithms and the la
k of derivative information 
ause a very slow 
onverge
ompared to other non-global methods. If the array is symmetri
, then the number ofpossibilities is substantially smaller and the GA 
onverges faster.In [18℄, Haupt presents an example of thinning strategy based on Geneti
 Algorithms(GAs) used to �nd a thinned array that produ
es the lowest PSL allowing us to improvethe performan
e of large arrays. A Geneti
 Algorithm is a global method for optimiza-tion inspired by the Natural Sele
tion Prin
iple whose main 
on
epts are 
ompetition andadaptability [14℄. The paper [18℄ shows that the on/o� stru
ture of the thinned array(linear or planar) is 
odi�ed into the 
hromosomes of the GA. After en
oding the param-eters in binary strings 
alled genes, GA performs the geneti
 operations of reprodu
tion,
rossover, natural sele
tion, and mutation to arrive at the optimum solution. During ea
hiteration, the trial solution provides by the GA is given in input to the �tness fun
tion.The �tness is de�ned in [18℄ as the PSL and the purpose of the GA is to �nd out the array
on�guration minimizing this fun
tion. A geneti
 algorithm 
an be used to numeri
allyoptimize both linear and planar arrays and arrives at better thinning 
on�gurations forarrays than previous optimization attempts or statisti
al attempts. Previous methods ofarray thinning used statisti
al methods may fail to produ
e an optimum thinning whilethe geneti
 algorithm sear
hes in a smart way for the best thinning that produ
es lowsidelobes [18℄.A di�erent approa
h to obtain low PSL large arrays is to use parti
ular kind of 
om-31



binatorial sequen
es. With this approa
h Leeper des
ribes in [5℄[19℄ a 
lass of massivelythinned linear and planar arrays that shows well-behaved sidelobes in spite of the thinning.The Geneti
 sear
h algorithms 
an obtain better performan
e but this method is notappropriate for very large or very highly thinned arrays and the improvements that thismethodology o�ers are di�
ult to predi
t a-priori. Rather than using a sear
h algorithm,the approa
h in [5℄[19℄ atta
ks dire
tly the sidelobe 
ontrol problem by applying the prop-erties of Di�eren
e Sets (DSs) [2℄, to the pla
ement of antenna elements within a regularlatti
e. In parti
ular Leeper uses the 
lass of Cy
li
-Di�eren
e Sets (CDS) sequen
es asfun
tion that des
ribes the position of a
tive elements in arrays [20℄. The property thatmakes CDS an e�e
tive pres
ription for the design of the thinned array is that the auto-
orrelation of CDS (and generally all kind of DSs) is a two-valued fun
tion. It is possibleto demonstrate [5℄ that this kind of auto
orrelation allows 
ontrolling the PSL of an arraybuilt with CDS geometry. The CDS method guarantees more e�e
tive suboptimal arraysynthesis in terms of PSL with respe
t to random elements pla
ement. 2D-CDSs havesimilar auto
orrelation property of 1DCDSs [2℄[5℄[19℄[20℄.The deterministi
 pla
ements of DS 
reate an isophori
 array (�isophori
� means �uni-form weight�) with attendant uniformity of spatial 
overage. The uniformity 
onsistentlyprodu
es, with no sear
hing required, a redu
tion in PSL when 
ompared to random el-ement pla
ement. More spe
i�
ally, in any linear array of aperture half-wavelengths, theNyquist sampling theorem shows that the array power pattern 
an be 
ompletely deter-mined from uniformly spa
ed samples of the pattern. In an isophori
 array, the even-numbered samples will ne
essarily be �lo
ked� to a 
onstant value less than 1/K timesthe main-beam peak, where K is the number of elements in the thinned array. Whilethe odd-numbered samples are not so 
onstrained, the net e�e
t is to produ
e patternswith mu
h lower PSL than are typi
al with 
ut-and-try random pla
ement. Obviously,isophori
 arrays 
an be planar as well linear [5℄.In [21℄, Kopilovi
h suggests another method for synthesizing a planar aperiodi
 thinnedarray antenna with a low peak sidelobe level. Instead of using the previous CDS, Kopilovi
hshows the implementation of 
ombinatorial 
onstru
tions 
alled non-Cy
li
 di�eren
e sets.The most important 
lass of the non-Cy
li
 2D-DSs is represented by the sets of Hadamardtype (HDSs). In the same way of the previous Leeper method, Kopilovi
h uses the fa
tthat when the elements of an equi-amplitude array antenna are arranged a

ording toa DS law, its pattern takes 
onstant value in the net of uniformly lo
ated spa
e pointsin the sidelobe region, and this value is less than 1/K, where K is the a
tive elementnumber. In distin
tion to the method using Cy
li
 DSs developed by Leeper [5℄[21℄, that32



enables one to build planar antenna arrays only on re
tangular grids with 
o-prime sidelengths, the des
ribed method omits su
h a 
onstraint. Based on su
h sets, re
tangularand square aperiodi
 roughly half-�lled array antennas 
an be built. Kopilovi
h uses thisstrategy to obtain square array antennas, with the element number in the array up to300.The de�nition of binary sequen
es of length with suitable auto
orrelation properties,for whi
h DSs are not available, has been 
arefully investigated in information theoryand 
ombinatorial mathemati
s. It has been found that it is often possible to determinesequen
es with a three-level auto
orrelation fun
tion by taking into a

ount the so-
alledalmost di�eren
e sets (ADSs) [22℄[23℄. ADSs are a resear
h topi
 of great interest in
ombinatorial theory with important appli
ations in 
ryptography and 
oding theory.Moreover, although ADS generation te
hniques are still subje
t of resear
h, large 
olle
-tions of these sets are already available. In su
h a framework, the whole 
lass of ADSsseem to be a good 
andidate for enlarging the set of admissible analyti
 
on�gurationswith respe
t to the DS 
ase. From this viewpoint, ADSs allow to obtain low PSL andpredi
table results in a very e�e
tive. With respe
t to DSs, ADSs have the advantage ofhaving a larger set of admissible sequen
es [22℄[23℄.Finally, the last approa
h des
ribed to improve large arrays performan
e is based onmerging the 
ombinatorial and sto
hasti
 methods in order to take advantage from theirgood 
hara
teristi
s and to 
ompensate for their drawba
ks [5℄.One of the �rst attempts to exploit this idea was developed by Caorsi et al. [24℄.The ripples formation 
aused by CDS 
ould be 
orre
ted in some way by GA sear
h
apabilities, while the uniform spatial 
overage of CDS-optimized arrays 
ould be helpfulto speed up the 
onvergen
e of the geneti
 pro
edure. One possible way of implementingthis approa
h is to 
onsider CDS based arrays as a-priori knowledge to be inserted in thegeneti
 sear
h pro
ess in order to improve its e�
ien
y. To this end, the steps aimedat transferring good CDS-derived s
hemata into the GA population are the following.At the initialization step, the GA population is 
omposed by a sele
ted CDS D0 and
V 
y
li
 shifts of the D0 di�eren
e set, while the remaining 
hromosomes of the initialpopulation are randomly mutated 
y
li
 shifts. Moreover, during the iterative loop ofthe GA, the mutation o

urs in order to introdu
e new unexplored solutions into thesear
h spa
e. In order to keep higher order CDS-derived s
hemata, trial solutions havingbinary 
on�gurations belonging to higher order s
hemata are mutated only in 
hromosomepositions out of the s
hemata lo
ations [24℄. These me
hanisms are aimed at 
onstrainingthe GA to synthesize array 
on�gurations similar to CDS-based ones, but with limited33



ripple amplitudes thanks to evolutionary 
apabilities [24℄.
In the same way Donelli et al. make use of a hybrid te
hnique based on HDS and binaryPSO [25℄[26℄. PSO is a sto
hasti
 multiple agents optimization algorithm extensivelyapplied in the framework of antenna array optimization [25℄[26℄[27℄. By imitating theso
ial behaviour of groups of inse
t and animals in their food sear
hing a
tivities, PSOis based upon the 
ooperation among parti
les. The ensemble of the parti
les, referredto as swarm, explores the solution spa
e to �nd out the best position (i.e., the optimumof a suitably de�ned 
ost fun
tion). HSs-based arrays generate the initial trial solutionsof this hybrid method that then is optimized by binary PSO. Integrating the HS-basedmethod developed by Kopilovi
h [21℄ with PSO optimization strategy gives an importantimprovement in thinned array performan
e.In the framework of the antenna array for spa
e systems, we have a parti
ular appli-
ation where the previous synthesis te
hniques were applied. Arrays are used in radioastronomy to estimate the brillian
e [9℄[29℄[30℄. Astronomers are interested in designing
orrelator arrays that properly sample the spatial distribution they observe. The designof 
orrelator (also known as interferometri
) arrays is essentially an optimal samplingproblem [9℄[29℄[30℄ in whi
h the positions of the antennas are 
hosen in order to ensureoptimal performan
e regarding all possible observation situations (sour
e positions anddurations of observation), s
ienti�
 purposes (single �eld imaging, astrometry, dete
tion,...) and 
onstraints (
ost, ground 
omposition and pra
ti
ability, operation of the instru-ment, ...) [31℄[32℄. In order to obtain su
h features, high performan
e 
orrelator arrayshave to show either a maximal 
overage in the spatial frequen
y (or u − v) domain, ora minimum peak sidelobe level (PSL) in the angular (or l −m) domain [8℄[31℄. Towardsthis end, many di�erent design prin
iples have been proposed, in
luding minimum redun-dan
y [33℄, pseudo-randomness [34℄, power laws [35℄, di�eren
e set arrangements [36℄, andminimization of the holes in the sampling [37℄. Ruf in [16℄ uses simulated annealing tooptimize low-redundan
y linear arrays while Jin [31℄ makes use of PSO. Well-establishedoptimization based sum-array design te
hniques 
annot be dire
tly applied, sin
e, unlikein traditional sum arrays, the responses in both the u − v and the l − m domains haveto be 
onsidered in the design pro
edure [31℄. As a 
onsequen
e, design te
hniques haveto in
lude the array spatial 
overage evaluation, the Earth rotation e�e
ts and the l−mbeam 
al
ulation in the synthesis pro
edure.34



3.2 Random Arrays [6℄3.2.1 Introdu
tionThe 
ost of a large phased array whi
h is designed primarily for high angular resolutionrather than for weak signal dete
tion may be redu
ed manifold through thinning , i.e.,redu
ing the number of elements in the aperture below that of the �lled array in whi
hthe inter element spa
ing is nominally one half-wavelength. In
reasing the inter elementspa
ing has another salutary e�e
t; a separation of a few wavelengths redu
es mutual
oupling to negligible proportions. Thinning, therefore, is attra
tive from both pointsof view. But these bene�ts are not free of penalty. Unless the element lo
ations arerandomized or made otherwise non periodi
, grating lobes appear. Also, the redu
tionin the number of elements redu
es the designer's 
ontrol of the radiation pattern in thesidelobe region, whi
h in turn in�uen
es the level of the largest, or peak, sidelobe. In this
hapter the peak sidelobe of random arrays is studied (N.B.: The random array ([6℄)is 
hara
terized by element lo
ations 
hosen by some random pro
ess. Conversely in astatisti
al array ([4℄) a 
onventional �lled array is designed and a given fra
tion of theelements is removed at random).3.2.2 Linear Random ArrayConsider an array of N unit, isotropi
 and mono
hromati
 radiators at lo
ations xn. The
xn are 
hosen from a set of independent random variables des
ribed by some �rst proba-bility density distribution, initially assumed to be uniform over the interval [−L/2, L/2]where L is the array length. It is assumed that ea
h element, irrespe
tive of its lo
ation,is properly phased so that a main lobe of maximum strength is formed at θ0, whi
h ismeasured from the normal to the array. The redu
ed angular variable u = sin θ − sin θ0,
ontains the beam steering information. The 
omplex far-�eld radiation pattern f(u) isthe Fourier transform of the 
urrent density. Sin
e the latter is a set of delta fun
tions,
f(u) is proportional to the sum of unit ve
tors having phase angles kxnu, k = 2π/λ be-ing the wavenumber asso
iated with the wavelength λ. The array fa
tor is the Fouriertransform of the 
urrent density i(x). The 
urrent density i(x) of a random array of Nequally ex
ited isotropi
 elements is the sum of delta fun
tions at the lo
ations xn andthe 
omplex far-�eld radiation pattern be
omes

f(u) = F
{

N
∑

n=0

δ (x− xn)
}

=

N
∑

n=0

exp (jkxnu) (3.1)35



3.1 
an be rewritten as
f(u) =

∑N
n=0 cos (kxnu) + j

∑N
n=0 sin (kxnu)

= a(u) + b(u)
(3.2)Sin
e u is de�ned over the interval [−1, 1], it follows that |f(−u)| = |f(u)|. Therefore, itis su�
ient to 
onsider the radiation pattern |f(u)| only over the interval [0, 1].The radiation pattern f(u) as given by (3.2), is a 
omplex random pro
ess. For thespe
ial 
ase where element lo
ations are independent and uniformly distributed over theinterval [−L/2, L/2], the expe
ted values of the pro
esses a(u) and b(u) are

E {a(u)} = N sin(πuL/λ)

πuL/λ
= Nsinc(uL/λ) (3.3)and

E {b(u)} = 0 (3.4)The pro
ess a(u) and b(u), for a given value of u, are sums of N independent, identi
allydistributed random variables. When N is large, the 
entral the 
entral limit theoremjusti�es approximating a(u) and b(u) as Gaussian random variables. The mean of a(u),as given by (3.3), is approximately zero for u greater than a few beam widths (the nominalbeamwidth is λ/L). Furthermore, for imaging problems in whi
h high angular resolution isdemanded, λ/L≪ 1. Thus in most of the sidelobe region, the two orthogonal 
omponentsof f(u) are approximately zero-mean wide sense stationary Gaussian random pro
esses.For a given u, the magnitude of f(u) is known to be Rayleigh distributed [?℄. Letus denote the magnitude pattern as A(u)∆ |f(u)|. The probability density fun
tion of
A(u) will be given by [6℄

p (A) =
2A

N
exp

(

−A2/N
) (3.5)It follows that the mean square value A2, whi
h is the average sidelobe power level,is N (and 
onsequently the rms amplitude is √N). The power ratio of the averagesidelobe to the main lobe is N/N2 = 1/N . The average is A =

√

πN/2. Hen
e, thevarian
e is σ2 = A2 −
(

A
)2

= N (1− π/4).The integral [6℄
α =

∫ ∞

A0

p (A) dA = exp
(

−A2/N
) (3.6)is the probability that the magnitude of an arbitrary sample of the radiation pattern, awayfrom the region of the main lobe, ex
eeds some threshold A0. Its 
omplement, 1 − α, isthe probability that su
h a sample is less than A0. If n independent samples are taken [6℄

β =
[

1− exp
(

−A2
0/N

)]n (3.7)36



is the probability that none ex
eeds A0. From (3.3), A2
0 = −N ln

(

1− β1/n
). It is 
on-venient to normalize this expression to N , the average sidelobe level, and to give thedimensionless power ratio A2

0/N a new symbol, B. Thus [6℄
B = − ln

(

1− β1/n
)

≈ ln (n)− ln
(

ln
(

β−1
)) (3.8)

B may be interpreted as a statisti
al estimator of the power ratio of the peak-to-averagesidelobe of a set of n independent samples. B is a 
on�den
e level; it is the probabilitythat none of n independent samples of the sidelobe power pattern ex
eeds the mean valueby the fa
tor B. n is an array parameter, whi
h is a fun
tion of all the relevant arrayproperties other than N . It is proportional to the number of sidelobes in the visibleregion. It maybe 
al
ulated in several ways. An interesting method utilizes the Nyquistsampling theorem. The 
omplex radiation pattern of a random array is su
h a band-limited fun
tion, the �limit� being due to the �nite length of the array. The far-�eld
omplex radiation pattern f(u) is related to the radiating element positions a

ording to(3.1). From (3.1) we 
an de�ne the expression for the power pattern of an array of unitradiators
f(u)f ⋆(u) =

N
∑

m=0

N
∑

n=0

exp (jk (xn − xm)u) (3.9)The visible domain is−1−sin θ0 ≤ u ≤ 1−sin θ0. The length of the non-redundant portionis 1 + |sin θ0|. Consequently, the number of independent samples needed to spe
ify the
omplex radiation pattern is 2 (L/λ) (1 + |sin θ0|). Half this number may be asso
iatedwith the amplitude of the array fa
tor and half with its phase. Therefore, the powerpattern is uniquely spe
i�ed by [6℄
n =

(

L

λ

)

(1 + |sin θ0|) (3.10)independent samples, the average angular interval between samples being λ/L. n isdominated by the length of the array in units of wavelength and se
ondarily in�uen
edby the beam steering angle.Equations (3.8) and (3.10), however, are insu�
ient to provide an unbiased estimateof the peak sidelobe. The probability is zero that any �nite set of samples ofa power pattern falls exa
tly upon the 
rest of the largest sidelobe. Hen
esu
h estimation is downward biased. A 
orre
tion to (3.8) may be obtained by
al
ulating the di�eren
e between the largest of a set of samples and the height of thelobe from whi
h the sample is taken. The approximate mean in
rement redu
es to 1+2/B,and the estimator of the normalized peak be
omes (for details [6℄)
Bp = B + 1 +

2

B
(3.11)37



The power ratio of the peak sidelobe to the main lobe is [6℄
peak sidelobe

main lobe
=
peak sidelobe

avg
· avg

main lobe
= Bp ·

(

1

N

)

=
B + 1 + 2/B

N
(3.12)Experimental data indi
ate that the estimator 
losely mat
hes the data when B & 3. Thefa
t that the mat
h is satisfa
tory for B as small as 3 implies that (3.12) is useful evenfor small arrays. Using B = 3 in 3.8 gives the smallest array for whi
h the estimator issatisfa
tory.The minimum number of elements for whi
h the theory is satisfa
tory ([6℄) is the largerof 15 or 2B (n, β), or

Nmin = max {15, 2B} (3.13)

Figure 6. Random Arrays - Pattern of 70-wavelength random array of 30 isotropi
 elements [6℄.

Figure 7. Random Arrays - Probabilisti
 estimator of peak sidelobe of random array. N is the isnumber of array elements, PSL/ML is power ratio of peak sidelobe to main lobe, β is probability or
on�den
e level that no sidelobe ex
eeds ordinate, L is array length, λ is wavelength, θ0 is beamsteering angle [6℄. 38



3.2.3 Planar ArrayExtension of the peak sidelobe theory to two and three dimensional arrays requires onlya reevaluation of the array parameter n. Consider as an example a re
tangular planararray having sides L1 and L2 and uniform pdf of element lo
ation. The angular intervalfor independent sampling of the pattern amplitude in these orthogonal planes is λ/L1and λ/L2. The area in the u1 − u2 plane asso
iated with ea
h sample point is on theorder of λ2/ (L1L2). The visible area of the plane, whi
h is a 
ir
le of unit radius, is π.Hen
e the maximum number of independent samples over the hemisphere is approximately
πL1L2/λ

2. The same result pertains to a three-dimensional array in whi
h L1L2 is theproje
ted area upon a plane perpendi
ular to the axis of the main lobe of the elementfa
tor. Symmetry in the pattern redu
es the number of independent samples. With thearray steered to the zenith (θ0 = 0) ea
h lobe in every polar 
ut has an image lobe in thesame plane [6℄. Thus the range of variation of n with θ0 is a fa
tor of two. The logarithmi
relation (3.8) between peak sidelobe and the array parameter minimizes the importan
eof the detailed variation. The dominant feature is the approximate squaring of n when a�xed number of elements N is spread from a linear array to a planar array of the samelength and width. The result is (approximately) a doubling, or 3 − dB in
rease, in thepeak sidelobe [6℄.

(a) (b)Figure 8. Random Arrays - Examples of (a) a 50× 50 elements square random array and (b) a
100× 100 elements square random array [6℄. 39



3.2.4 Comparison between the Peak Sidelobe of the Random Ar-ray and Algorithmi
ally Designed Aperiodi
 Arrays [12℄3.2.4.1 DatabaseIn [12℄, a database of 170 random arrays with various parameters were 
reated by 
om-puter, their antenna patterns 
al
ulated, and the peak sidelobe of ea
h measured. Approx-imately half that number algorithmi
ally designed aperiodi
 arrays were 
olle
ted fromthe literature. For ea
h, the peak sidelobe was measured and the pertinent, parameterstabulated.The aperiodi
 designs fall into the following 
ategories:� algorithmi
: spe
i�
 aperiodi
 designs� random: element lo
ations 
hosen at random� random removal: holes 
hosen at random� dynami
 programming: quasi-trial-and errorThe random arrays were developed for an earlier study of the peak sidelobe of su
h arrays[6℄. The elements were lo
ated on a line by random numbers drawn from a populationhaving uniform probability density.3.2.4.2 ResultsAlgorithmi
 design of thinned aperiodi
 arrays rarely o�ers enough 
ontrol of the farradiation pattern to be superior to random lo
ation of the array elements. A study of70 algorithmi
 arrays and 170 random arrays showed their peak sidelobes, when suitablynormalized to permit, 
omparison, to be indistinguishable in the mean and median [12℄.A quasi-trial-and-error pro
edure 
alled dynami
 programming was found to be 3.5dBsuperior in the mean. The distribution of the normalized peak sidelobe of the 170 randomarrays found to be log normal with a standard deviation of 1.1dB. The 
ompa
tness ofthe distribution pre
ludes the use of trial-and-error pro
edures to a
hieve a peak sidelobematerially below the population mean. The same 
hara
teristi
 almost, guarantees againstsele
tions of element lo
ations whi
h produ
e unexpe
tedly large sidelobes [12℄.
40



3.3 Statisti
al Removal (Random Removal) [4℄3.3.1 Introdu
tionThis 
hapter 
onsiders the design of �thinned� planar array antennas in whi
h the densityof elements lo
ated within the aperture is made proportional to the amplitude of theaperture illumination of a 
onventional ��lled� array. (A �thinned� array is one that
ontains less elements than a ��lled� array of equally spa
ed elements lo
ated a halfwavelength apart). The sele
tion of the element lo
ations to provide the desired densitytaper is performed statisti
ally by utilizing the amplitude taper as the probability densityfun
tions for spe
ifying the lo
ation of the elements. In a �thinned� array all the elementsare assumed to radiate equal power if a transmitting array, or equal amplitude weightingif a re
eiving array. It is further assumed that the element spa
ings of a �thinned� arrayare not equal [4℄.An unequally spa
ed, thinned array may be used to� a
hieve a narrow main lobe with redu
ed number of elements� a
hieve a wide s
an angle or operate over abroad frequen
y band without the ap-pearan
e of grating lobes� a
hieve desirable radiation patterns without amplitude taper a
ross the aperture.3.3.2 Analysis of Statisti
al Density-Tapered ArraysThe usual method for designing dire
tive antennas to a
hieve low sidelobes is to taper theamplitude of the aperture illumination so that the re
eived (or radiated) energy is greaterat the 
enter than at the edges.A density taper has advantages over an amplitude taper in 
ertain appli
ations. Trans-mitting arrays, for example, with individual power ampli�ers at ea
h element are easier todesign and build and more e�
ient to operate if ea
h ampli�er delivers full rated power.The density-tapered array does not su�er any of amplitude taper in
onvenien
es andpermits the system designer to employ equal-power ampli�ers at ea
h element and stilla
hieve low sidelobes. Re
eiving antennas 
an also bene�t from density tapering.The theory of the design of density-tapered arrays is not on as �rm a foundation asthat of amplitude tapered arrays. The design te
hniques of Dolph ([10℄) and Taylor ([11℄)whi
h are based on the properties of polynomials and whi
h are widely used for amplitudetapered antennas do not seem appli
able to unequally spa
ed arrays.41



There are two basi
 methods for mat
hing a density taper to an amplitude taper. Inone te
hnique the density is mat
hed deterministi
ally to the desired amplitude taper bytrial and error pla
ement of the elements or by 
ertain approximation te
hniques appliedto the integral of the aperture illumination. The other design te
hnique, and the one whi
his the subje
t of this paper, is a statisti
al method whi
h utilizes the desired amplitudeillumination as a probability density fun
tion for determining whether or not an elementshould be lo
ated at a parti
ular point within the aperture.Consider an array antenna with some arbitrary arrangement of N elements. Theex
itation at ea
h element is assumed to be of equal amplitude. The �eld intensitypattern (array fa
tor) assuming the elements to be isotropi
 radiators is [4℄
E (θ, φ) =

N
∑

n=1

exp (jψn) (3.14)where θ and φ are angular 
oordinates des
ribing the pattern and ψn, is the phase of thesignal at the n − th element measured with respe
t to some referen
e. The phase ψn, isa fun
tion of θ and φ and the lo
ation of the n − th element on the aperture. The Nelements may be lo
ated on any type of aperture.

(a)Figure 8. Statisti
al Arrays - Geometry of an M by M element array arranged on a square grid.Angular 
oordinates are also shown [4℄.If elements are removed from the array the �eld intensity pattern may be written [4℄
E (θ, φ) =

N
∑

n=1

Fn exp (jψn) (3.15)42



where Fn, is either zero or unity a

ording as the element is removed or left in pla
e.The quantity Fn thus has only the values of 0 and 1. In a statisti
ally designed array,
Fn is sele
ted randomly and independently from element to element by a random numbergenerator in su
h a way that its average value (ensemble average over many sele
tions) is[4℄

Fn = An (3.16)where An, is the amplitude of the ex
itation that would normally be applied to the n− thelement if it were designed with an amplitude taper a
ross the aperture. The �eld intensityof the equivalent amplitude-tapered array used as the model is [4℄
E0 (θ, φ) =

N
∑

n=1

An exp (jψn) (3.17)The radiation pattern of (3.15) is statisti
al sin
e Fn is statisti
al. By the Central LimitTheorem of statisti
s, the distribution of the quantity E (θ, φ) for a given θ and φ will beapproximately Gaussian, if N is large.The mean of the statisti
al pattern of (3.15) is found using the fa
t that the mean ofthe sum is the sum of the means,
E (θ, φ) =

N
∑

n=1

Fn exp (jψn) =

N
∑

n=1

An exp (jψn) = E0 (θ, φ) (3.18)Thus the mean or average pattern is identi
al with the �eld-intensity pattern of the am-plitude tapered array used as the model. This array fa
tor (3.17) will be referred to asthe model array fa
tor. The 
oe�
ients An are sele
ted by standard design pro
edures[10℄-[11℄ for amplitude-tapered arrays to obtain a desired mean pattern. Sin
e the quan-tities An, are the mean values of a random variable with values 0 and 1, we must alwayshave 0 ≤ An ≤ 1. This may be obtained by properly s
aling the original amplitude taperof the model-array design.The square of the �eld-intensity pattern is the power pattern and is written
|E (θ, φ)|2 = E (θ, φ) · E⋆ (θ, φ)

=

N
∑

n=1

N
∑

m=1

FnFm exp (j (ψm − ψn))
(3.19)where E⋆ (θ, φ) denotes the 
omplex 
onjugate. There is a theorem whi
h states that themean of a produ
t of statisti
ally independent random variables is equal to the produ
t ofthe means of those random variables. The variables Fm and Fn in (3.19) are independent if43



and only ifm 6= n. If m = n they are of 
ourse identi
al. Therefore the double summationis separated into terms with m = n and terms with m 6= n, and the average is taken asfollows:
|E (θ, φ)|2 =

∑

n

F 2
n +

∑

n

∑

m

FnFm exp (j (ψm − ψn))

∣

∣

∣

∣

∣

m6=n

(3.20)Sin
e the values of Fn, are either 0 or 1, F 2
n = Fn, and the �rst summation of (3.20)be
omes

∑

n

F 2
n =

∑

n

F 2
n =

∑

n

Fn =
∑

n

An (3.21)Using the theorem mentioned above, the se
ond summation of (3.20) involving terms with
m 6= n be
omes

∑

n

∑

m

AnAm exp (j (ψm − ψn))

∣

∣

∣

∣

∣

m6=n

(3.22)This is simply the power pattern 
orresponding to the model-array pattern E0 (θ, φ) of(3.17), ex
ept that the terms with m = n are missing. When these terms are restoredand subtra
ted from the result, the following is obtained
|E (θ, φ)|2 =

∑

n

An + |E0 (θ, φ)|2 −
∑

n

A2
n

= |E0 (θ, φ)|2 +
∑

n

An (1−An)
(3.23)where |E0 (θ, φ)|2 is the power pattern of the model array with "equivalent" amplitudetaper An, applied to ea
h element.The fra
tion of elements removed is 
ontrolled by the amplitude taper 
hosen for themodel array. The exa
t number of elements after the elimination pro
edure is

NE =
∑

n

Fn (3.24)On the average, the number of elements left in the array is [4℄
NE =

N
∑

n=1

Fn =

N
∑

n=1

An = NAn ≤ N (3.25)and the varian
e is
σ2
N = N2

E −
(

NE

)2
=

N
∑

n=1

An (1− An) (3.26)44



If it is assumed that the degree of element removal is su
h that the omnidire
tional
omponent [se
ond term of (3.23)℄ of the power pattern is larger than the sidelobes of themodel amplitude-tapered array pattern, then the average value of the sidelobes is
average statistical sidelobes = SL

=

N
∑

n=1

An −
N
∑

n=1

A2
n

(3.27)Substituting NE from (3.25)
SL = NE −N2

E/Ga = NE

(

1− NE

Nρa

) (3.28)where ρa is the aperture e�
ien
y of the model amplitude taper given by An ([4℄). Sin
e
ρa is of the order of unity, (3.28) states that the average sidelobe level approa
hes NE ,the number of elements left within the array, when the fra
tion of elements removed
(1−NE/N) is large. The average sidelobe level relative to the peak value of the mainbeam after the elimination of elements is

average relative sidelobe =

= ρ ≈

∑

n

An(1−An)

|E(0,0)|2

(3.29)From (3.23),
|E (0, 0)|2 =

(

∑

n

An

)2

+
∑

n

An (1− An)

≈
(

∑

n

An

)2 (3.30)Therefore, (3.29) be
omes
ρ ≈

∑

n

An (1−An)

|E (0, 0)|2
=

1−
∑

nA
2
n

∑

nAn
∑

nAn

(3.31)and after elaboration
ρ ≈

1− NE

Nρa

NE

(3.32)and
ρ ≈ 1

NE

for
NE

N
≪ 1 (3.33)45



where Ga, is the gain of the model amplitude-tapered array, Gs, is the average gain ofthe statisti
al designed density-tapered array. If one starts with an N element arrayand remove elements a

ording to the above statisti
al pro
edure, the average number ofelements that remain is given by (3.25). The N-element array is said t o be �thinned� andthe degree of thinning, or per
entage of elements removed, is
degree of thinning = 100

(

1− NE

N

)

% (3.34)A given amplitude taper therefore has a 
ertain natural degree of thinning. If it is desiredto remove more elements than the natural number, so that the number remaining Nr =

kNE , where k < 1, an examination of (3.25) shows that this may be a

omplished bymultiplying the amplitudes An, by the fa
tor k ([4℄). Thus
Nr = kNE =

N
∑

n=1

kAn (3.35)The above analysis 
an be repeated for Nr = kNE elements. In a statisti
ally designedarray Fn, is sele
ted randomly and independently from element to element so that itsensemble average is Fn = kAn. When k = 1, the array is said to be �naturally� thinned.The average �eld intensity (ensemble average over many sele
tions) is
|E (θ, φ)| = kE0 (θ, φ) (3.36)whi
h is similar to that of the model amplitude-tapered array. The average power pattern,or radiation pattern is

|E (θ, φ)|2 = k2|E0 (θ, φ)|2 +
N
∑

n=1

kAn (1− kAn) (3.37)The �rst term of the radiation pattern is proportional to the radiation pattern of the modelamplitude-tapered array. When k = 1, it is equal to it, 
orresponding to a naturallythinned array. The se
ond term is independent of angle. Thus the average statisti
alsidelobes whi
h dominate the pattern outside the vi
inity of the main beam (and thenear-in sidelobes) may be written [4℄
SL =

N
∑

n=1

kAn (1− kAn) (3.38)The equation (3.38) shows that the statisti
al sidelobes of a thinned array are determinedby the model aperture amplitude distribution An, and by k, the fa
tor whi
h determinesthe number of elements removed. The near in sidelobes are also determined by An.46



(a) (b)Figure 9. Statisti
al Arrays - In (a) the solid 
urve is the 
omputed radiation pattern of a statisti
allydesigned array naturally thinned using as a model the 30dB Taylor 
ir
ular aperture distribution whosepattern is shown by the dashed 
urve. In (b) the lo
ations of the elements for the 30dB design withnatural thinning [4℄.

(a) (b)Figure 10. Statisti
al Arrays - In (a) there is the 
omputed radiation pattern of a statisti
allydesigned array using as a model the 25dB Taylor design but with approximately 90 per 
ent of theelements removed. In (b) the 
orresponding lo
ations of the elements [4℄.47



3.4 Optimization Algorithms Approa
h3.4.1 Introdu
tionThinning an array means turning o� some elements in a uniformly spa
ed or periodi
array to 
reate a desired amplitude density a
ross the aperture. An element 
onne
tedto the feed network is on, and an element 
onne
ted to a mat
hed or dummy load iso�. Thinning an array to produ
e low sidelobes is mu
h simpler than the more generalproblem of non uniform spa
ing the elements. Non uniform spa
ing has an in�nite numberof possibilities for pla
ement of the elements. Thinning has 2Q possible 
ombinations,where Q is the number of array elements. If the array is symmetri
, then the numberof possibilities is substantially smaller. Thinning may also be thought of as a quantizedamplitude taper where the amplitude at ea
h element is represented by one bit. Thinninga large array for low sidelobes involves 
he
king a rather large number of possibilitiesin order to �nd the best thinned aperture. Exhaustive 
he
king of all possible element
ombinations is only pra
ti
al for small arrays. Most optimization methods (in
ludingdown-hill simplex and 
onjugate gradient) are not well suited for thinning arrays. They
an only optimize a few 
ontinuous variable sand get stu
k in lo
al minima. Also, thesemethods were developed for 
ontinuous parameters, where as the array thinning probleminvolves dis
rete parameters. Dynami
 programming 
an optimize a large parameter set(many elements), but it is vulnerable to lo
al minima.Simulated annealing ([38℄), geneti
 algorithms ([18℄), ant 
olony ([39℄) andother sto
hasti
 algorithms ([14℄[28℄[27℄) are optimization methods that are well suitedfor thinning arrays. There is no limit to the number of variables that 
an be optimized.Although quite slow, these algorithms 
an handle very large arrays. These methods areglobal in that they have random 
omponents that test for solutions outside the 
urrentminimum, while the algorithm 
onverges. The global nature of the algorithms and thela
k of derivative information 
auses them to 
onverge very slowly 
ompared to othernon-global methods. The purpose of this method is to �nd a thinned array that produ
esthe lowest maximum relative sidelobe level (rsll).3.4.2 Geneti
 Algorithm [18℄3.4.2.1 GA - AlgorithmA geneti
 algorithm ([14℄) is used to numeri
ally optimize both linear and planar ar-rays. Geneti
 algorithms are modeled after geneti
 re
ombination and evolution. The48



algorithms en
ode parameters in binary strings 
alled genes and perform the geneti
operations of reprodu
tion, 
rossover, natural sele
tion, and mutation to arrive at theoptimum solution. These algorithms arrive at better thinning 
on�gurations for arraysthan previous optimization attempts or statisti
al attempts. Other optimization methods
annot be applied to large arrays, while statisti
al methods 
annot �nd optimum solutions([14℄[18℄).The goal of the geneti
 algorithm is to �nd a set of parameters that minimizes theoutput of a fun
tion. Geneti
 algorithms di�er from most optimization methods, be
ausethey have the following 
hara
teristi
s1. They work with a 
oding of the parameters, not the parameters themselves.2. They sear
h from many points instead of a single point.3. They don't use derivatives.4. They use random transition rules, not deterministi
 rules.Fig. 11 is a �ow 
hart of a geneti
 algorithm. Steps are labeled as A through F for easyreferen
e.Values for all the parameters are represented by a binary 
ode (step A). Ea
h en
odedparameter is pla
ed side by side to form a long binary string 
alled a gene. Every gene hasan asso
iated output 
orresponding to the fun
tion evaluated at the quantized parameters.Thus, the geneti
 algorithm has a �nite, but possibly very large, number of parameter
ombinations to 
he
k. A gene with N , B − bit parameters has a total of 2NB possiblegenes. If the parameters are 
ontinuous, then the geneti
 algorithm limits performan
edue to quantization errors asso
iated with the binary en
oding of the parameters. Onthe positive side, geneti
 algorithms are ideally suited for optimization of fun
tions withdis
rete parameters.A thinned array has dis
rete parameters. One bit represents the element state as
on = 1 or off = 0. For example, a six element array may be represented by 101101, whereelements 2 and 5 are turned off . Assuming the linear array is symmetri
 about its 
enterallows the 2N element array to be represented by a gene with N bits. Our six-elementarray example 
an then be represented by the gene 101. The �tness asso
iated with thisgene is the maximum relative sidelobe level (rsll) of its asso
iated far-�eld pattern. Thefun
tion in this paper is the relative far-�eld pattern of an array of point sour
es. Itsoutput to be minimized is the maximum rsll. The parameters a�e
ting the output arewhether an antenna element is on or o� ([18℄).49



Geneti
 algorithms model geneti
 re
ombination and evolution in nature. As in nature,the gene is the basi
 building blo
k. Geneti
 algorithms start with a random sampling ofthe output spa
e. Many of the genes from this list have terrible maximum rsll's. Genesthat produ
e a superior output survive, while genes that produ
e a weak output die o�.Usually initial population and genes are randomly generated (step B). Then genes areranked from best to worst, (step C) a

ording to their rsll. The most 
ommon suitability
riterion is to dis
ard (step D) the genes with the worst performan
e. After this �natural�sele
tion takes pla
e, the genes mate (step E) to produ
e o�spring. Mating takes pla
eby pairing the surviving genes. On
e paired, their o�spring 
onsist of geneti
 materialfrom both parents. One last step is to introdu
e a random mutation in the list of genes(step F). A mutation 
hanges a zero to a one or a one to a zero. The mutation helps thealgorithm avoid a lo
al minimum. over again with the parents and the o�spring (step C). Mutation usually doesn't improve the solution. It is a very ne
essary part of geneti
algorithms, though. Without it, geneti
 algorithms are more likely to get stu
k in a lo
alminimum. Natural sele
tion, mating, and mutation will take pla
e with these genes. Thealgorithm 
ontinues this pro
ess until a suitable stopping point is rea
hed. Eventually,all the genes will be identi
al ex
ept for the single mutated gene ([18℄).3.4.2.2 GA Optimization for the design of Linear ArrayFor linear array synthesis problem, ea
h gene has an asso
iated rsll 
al
ulated from
FF (u) = max

∣

∣

∣

∣

∣

2
N
∑

n=1

an
cos (2πndu+ δs)

FFmax

elpat (u)

∣

∣

∣

∣

∣

c0
2Nd
≤ u ≤ 1

(3.39)where� 2N is the number of elements in the array� an is the amplitude weight of element n =

{

1 on

0 off� d is the spa
ing between elements� u = cos (φ)� φ is the angle measured from line passing through antenna elements� δs = −2πdus is the steering phase 50



� elpat (u) is the element pattern� c0 is 
onstant� FFmax is the peak of main beamThe region of u for whi
h FF is valid ex
ludes the main beam. The �rst null for a uniformarray o

urs at u = 1
2Nd

. Thinning an array 
auses the null to move, so a 
onstant, c0, isneeded in the formula to adjust for the �rst null lo
ation ([18℄).3.4.2.3 GA Optimization for the design of Planar ArrayFor planar N ×M element array synthesis problem, ea
h gene has an asso
iatedrsll 
al
ulated from
FF (θ, φ) =

M
∑

m=1

N
∑

n=1

amn cos [(2m− 1)πdy sin θ cosφ]× cos [(2n− 1) πdx sin θ sinφ] (3.40)where� M is the number of elements in the array in the y−dire
tion� N is the number of elements in the array in the x−dire
tion� dx is the spa
ing between elements in the x−dire
tion� dy is the spa
ing between elements in the y−dire
tion

Figure 11. Thinned Arrays with Geneti
 Algorithms - Flow 
hart of a geneti
 algorithm [18℄.51



3.4.3 Simulated Annealing [38℄In the past few years, three-dimensional (3-D) a
ousti
 imaging has been one of the maininnovations in both underwater and medi
al appli
ations. To obtain 3-D ele
troni
 fo
us-ing and beamforming (i.e., 3-D imaging 
apabilities), a two-dimensional (2-D) apertureshould be used to generate and/or re
eive an a
ousti
 �eld. When su
h an aperture isspatially sampled, the adoption of a 2-D-array antenna (also 
alled planar array) is as-sumed. To prevent grating lobes (i.e., aliasing e�e
ts due to spatial under sampling), ahalf-wavelength (λ/2) spa
ing between the elements of the array should not be ex
eeded.At the same time, in order to obtain a �ne lateral resolution, the array should have awide spatial extension. The λ/2-
ondition with the �ne resolution requirement often willresult in a 2-D array 
omposed of some thousands of elements. As an a
quisition 
hannelis asso
iated with ea
h array element, the 
ost of a 2-D array of this type (i.e., a fullysampled array) is prohibitive ([38℄).One of the most promising approa
hes to redu
ing the number of array elements (forboth linear and planar arrays) is based on the 
on
ept of aperiodi
 arrays. A fully sampledarray is thinned by removing a fra
tion of the original set of elements, thus obtaining asparse array. Aliasing e�e
ts are avoided be
ause there are no periodi
ities at the positionsof the sparse array elements. The main drawba
k of the thinning operation is an oftenuna

eptable high level of the side lobes present in the beam pattern (BP) (i.e., the spatialresponse of the array). Therefore, the thinning should be an optimization operation aimedat redu
ing the number of elements, while maintaining adequate BP properties for theaddressed appli
ation ([38℄).In this method, a synthesis method is proposed that is aimed at designing a sparse andaperiodi
 array to be used as a planar antenna for a narrow-band beamforming pro
essor,mainly for underwater appli
ations. The purpose of the method is to minimize the numberof elements able to generate a BP that fulls some a priori �xed 
onstraints by a
ting onthe positions and weights of the elements. The sto
hasti
 method proposed in this paperis based on simulating annealing (SA) and is an evolution of the method for the synthesisof linear arrays. The main features, whi
h represent improvements over other methods,are the following:� very large 2-D arrays 
an be modeled� both weights and positions 
an be optimized� the number of elements 
an be minimized52



� asymmetri
 arrays 
an be synthesized, thus a larger number of degrees of freedom
an be exploited� the overall extent of the 3-D BP 
an be 
onsidered.3.4.3.1 SA - AlgorithmInitially, simulated annealing (SA) aimed to simulate the behavior of the mole
ules of apure substan
e during the slow 
ooling that results in the formation of a perfe
t 
rystal(minimum energy state). The use of this te
hnique to solve other types of problems isbased on the analogy between the state of ea
h mole
ule and the state of ea
h variable thata�e
ts an energy fun
tion to be minimized. This fun
tion is 
alled the energy fun
tion,
f (Y), Y being the ve
tor of state variables. The algorithm is iterative: at ea
h iteration,a small random perturbation is introdu
ed into the 
urrent state 
on�guration Yl (l beingthe iteration). If the new 
on�guration, Yn, 
auses the value of the energy fun
tion tode
rease, it is a

epted (Yl+1 = Yn). Instead, ifYn 
auses the value of the energy fun
tionto in
rease, it is a

epted with a probability dependent on the system temperature, ina

ordan
e with the Boltzmann distribution. The higher the temperature, the higher theprobability that the state 
on�guration whi
h 
aused the energy fun
tion to in
rease willbe a

epted. In short, the probability that Ynmay be a

epted as a new 
on�guration,
Pr {Yl+1 = Yn}, 
an be expressed as:

Pr {Yl+1 = Yn} =
{

exp(f(Yl)−f(Yn)),
kT

if f (Yl) < f (Yn)

1, otherwise
(3.41)where k is the Boltzmann 
onstant and T is the system temperature. As the iterations goon, the temperature T is gradually lowered, following the re
ipro
al of the logarithm of thenumber of iterations, until the 
on�guration freezes in a 
ertain �nal state. This methodis very useful to minimize an energy fun
tion that has many lo
al minima as, thanks to itsprobabilisti
 nature, it represents a notable improvement over 
lassi
al methods of lo
aldes
ent (despite being 
omputationally demanding). The repetition of the pro
ess, usingdi�erent initial 
on�gurations, in
reases the relian
e on the quasi-optimality of results,even though a full optimality 
annot be proved ([38℄).3.4.3.2 Optimization Pro
edure for Linear and Planar ArraysThe 
on
eptual me
hanisms and the pe
uliarities of the SA implementation that havebeen applied to obtain an e�
ient minimization of the energy fun
tion are presented.Fig. 12 shows a �ow-
hart of the optimization pro
edure. One 
an start the synthesis53



by 
onsidering a fully sampled array, i.e., a planar array 
omposed of N λ/2-equispa
edelements. Then, a

ording to the pro
ess behavior, the elements are divided into two sets:an a
tive set (i.e., having weights di�erent from zero) and an ina
tive set (i.e., havingweights equal to zero). The number of a
tive elements is M and the relation M ≤ N isalways veri�ed. The initial temperature, T start, is 
hosen high enough and su
h that the�rst 
on�guration perturbations may almost always be a

epted, even though they leadto a sharp in
rease in energy. When one starts the iteration l, one 
hooses an element irandomly (both a
tive and ina
tive elements are visited a

ording to a random sequen
ethat does not in
lude any further visit to the same element before all the elements havebeen visited on
e). If the 
hosen element is a
tive, one 
an move it to an ina
tive 
onditionby following �xed death probability; whereas, if the 
hosen element is ina
tive, one 
ana
tivate it (with a random weight) by following a resurre
tion probability. On the basisof the temperature T (l), su
h state transitions 
an be a

epted or not. If one of thesetransitions is a

epted, the number of a
tive elementsM must be updated. If the element
i is a
tive and its death does not o

ur, the weight wi is perturbed and, on the basis ofthe temperature T (l), the perturbation 
an be a

epted or not ([38℄).During the optimization pro
edure, a 
onstraint is imposed to limit to low values the
urrent taper ratio (CTR), whi
h is the ratio between the maximum and minimum weight
oe�
ients. This 
onstraint makes it possible to avoid any 
onsequen
es of possible un-foreseen o

urren
es regarding the elements with the largest weight 
oe�
ients. To limitthe CTR value, one should perturb ea
h weight 
oe�
ient in a random and 
ontinuousway; but one should make sure that the 
oe�
ient value is in
luded in an a priori �xedrange [wmin;wmax].The number of iterations, l, is in
reased every time all the N elements have beenperturbed on
e. The pro
ess terminates when a state of persistent blo
k (freezing) isrea
hed due to the slow temperature redu
tion. Alternatively, a

ording to previousexperien
es, one 
an perform a number of iterations whi
h is large enough to ensure thata blo
k state will be rea
hed ([38℄).Owing to the probabilisti
 nature of SA, di�erent temperature s
hedulings and randominitial 
on�gurations may lead to di�erent �nal results. However, if a logarithmi
 s
hedul-ing is 
hosen, almost all the pro
ess runs give slightly di�erent results in terms of bothenergy values and array 
hara
teristi
s. This means that the resulting array 
on�gurationis stable and 
lose to the optimal one ([38℄).54



Figure 12. Thinned Arrays with Simulated Annealing - Flow-
hart of the optimization pro
edure [38℄.3.4.4 Ant Colony [39℄It is known that with aperiodi
 arrays it is possible to get low sidelobe levels in alldire
tions or only at some regions. The advantage of uniform amplitude ex
itation is 
learfrom the point of view of the feeding network. However, the synthesis problem is 
omplexand 
annot be solved with analyti
al methods. Therefore, global optimizationmethods area good option to a�ord these problems. Among them, geneti
 algorithms (GA), parti
leswarm optimization (PSO), and simulated annealing (SA) have already been used inarray synthesis for di�erent requirements.The purpose of using an algorithm based on ant
olony optimization (ACO) to synthesize thinned arrays with low SLL without pretendingto 
ompare ACO neither with PSO nor with GA or any other optimization te
hnique.The main advantage of ACO algorithms 
ould 
ome from the impli
it lo
al sear
h thatthey perform and also from their simpli
ity. Of 
ourse, it still depends on the problemand in the parti
ular implementation of the algorithm, be
ause all these algorithms haveparameters heuristi
ally 
hosen that 
an have a strong in�uen
e on the algorithm behaviorfor a parti
ular problem. Moreover, the same algorithm with same parameters appliedto the same problem 
an �nd di�erent solutions in the same number of iterations ([39℄).This is a 
onsequen
e of their intrinsi
 randomness.3.4.4.1 ACO - AlgorithmThe ACO is a global sear
h optimization method that is based on the behavior of ant
olonies in obtaining food and 
arrying it ba
k to the nest. It is a �short path� based55



algorithm. When the ants walk around in sear
h for food, they give o� pheromone on theground. Ants sele
t paths a

ording to pheromone level. The shorter the trail from thenest to the food sour
e, the higher the pheromone level and thus the probability of ants
hoosing that path. Furthermore, ants use this to remember the path to the food, and ithelps to add new ants to that trail, getting more food from that pla
e to the nest. Thesepheromone also evaporate slowly with time. This de
reases the probability of taking pathstoward �nished food sour
es ([39℄).The implementation of an algorithm based on this natural behavior is well suitedfor dis
rete problems (although 
odi�
ation using real numbers is also possible). In our
ase, we have implemented ant 
olony pro
edure as follows (having two working modes:forward when the ants sear
h food, and ba
kward when they 
arry the food to home).De�ne pheromone 
on
entration fun
tion and desirability fun
tion and 
hoose param-eters: Number of ants, α, β, ...Initialize I1,I2,...,InFor ea
h iterationFor ea
h antFor ea
h adjoining nodeCal
ulate pheromone fun
tion and desirabilityEnd forChose one nodeIf food is foundMode 0: Come ba
k homeElse-if ant is at homeMode 1: Sear
hing foodEnd ifUpdate pheromoneEnd forEnd forSolution is I1,I2,...,In with best resultWe have N bits, thus 
orresponding to an N-dimensional spa
e of solutions. In this
ase, every ant means an array solution, i.e., a ve
tor withN bits. Ants des
ribe paths thatare divided into nodes. They move from one node to another through the N-dimensionalspa
e of solutions by 
he
king the desirability and the pheromone 
on
entration levelof their neighboring nodes before making a probabilisti
 de
ision among all of them. Aneighboring node is 
al
ulated by toggling the state of only one element of the array. This56



means that every ant has N neighboring nodes and has to de
ide whi
h one among themto move toward, in a probabilisti
 manner. One of the most 
ommon and suitable formfor 
ombining the two parameters used to 
al
ulate the probability of 
hoosing one nodein a path is
pi,j (t) =

[τj (t)]
α · [ηj]β

∑

l∈θi

[τj (t)]
α · [ηj ]β

(3.42)where pi,j is the is the probability of 
hoosing node j at iteration t from node i, τj (t)is the pheromone level of node j at iteration t, ηj is the desirability of node j, α is theparameter 
ontrolling the relative importan
e of pheromone in the de
ision pro
ess while
β does the same with the desirability. θi is the set of nodes available at de
ision point i([39℄).There are di�erent implementations of the fun
tion τj . This fun
tion 
ontrols the
hange in pheromone level in nodes with time. This in
ludes the in
rease when ants visitthat node but also the evaporation with time. We 
an use, for example,

τj (t + 1) = τj (t) + ∆τj (t)− d (t) (3.43)where ∆τj (t) is is the pheromone addition on node j, and dj (t) is the pheromone persis-ten
e
d (t) =







ρ, if mod
(

t
γ

)

= 0

0, if mod
(

t
γ

)

6= 0
(3.44)where γ is the period of pheromone elimination, and is the 
oe�
ient of pheromoneelimination by period ([39℄).3.4.4.2 Optimization Pro
edure for Linear and Planar ArraysThere are di�erent methods to synthesize a suitable solution using aperiodi
 arrays. Themost 
ommon one entails varying the position of the elements symmetri
ally. However,when the number of array elements is large, another option is to use the 
on
ept of thinnedarrays. In this work the positions of the elements will be �xed, but with ea
h elementbeing able to present two states: �on� (when the element is fed) and �o�� (when theelement is passively terminated in an impedan
e equal to the sour
e impedan
e of the fedelements) ([39℄).For a linear array where there are 2N elements pla
ed symmetri
ally along the

x−axis, the far �eld pattern is
AF (φ) = 2

N
∑

n=1

In cos [π (2n− 1) · cos (φ)] (3.45)57



where In is the ex
itation amplitude of the n−th element. In our 
ase, In is 0 if the stateof the n−th element is �o�� and 1 if it is �on�. The distan
e between elements is 0.5λ andall them have identi
al 
urrent phase. In this 
ase, we sear
h the lowest value of SLL withisotropi
 elements. The desirability ηjis de�ned as the absolute value of the normalizedSLL (dBs)
ηj = |SLL (dB)| (3.46)For a planar array stru
ture of elements, the array fa
tor is given by

AF (θ, φ) = 4
N
∑

n=1

M
∑

m=1

Inm cos [π (2n− 1) · sin (θ) cos (φ)]·

cos [π (2m− 1) · sin (θ) sin (φ)]
(3.47)Therefore, the obje
tive is to �nd out whi
h array elements should be enabled or disabled(Inm = 1 or Inm = 0) to get the desired radiation pattern 
hara
teristi
s. In this se
tion,we will deal with the design of a thinned planar array. The SLL level will be 
he
ked inthe two main planes of the array ([39℄)

ηj = min (|SLLφ=0° (dB)| , |SLLφ=90° (dB)|) (3.48)
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3.5 Di�eren
es Sets [5℄[19℄3.5.1 Introdu
tionTradition �lled phased arrays have an element pla
ed in every lo
ation of a uniformlatti
e with half wavelength spa
ing between the latti
e points. Massively thinnedarrays have fewer than half the elements of their �lled 
ounterparts. Su
h drasti
thinning is normally a

ompanied by loss of sidelobe 
ontrol. This 
hapter des
ribes a 
lassof massively thinned linear and planar arrays that show well behaved sidelobes in spiteof massive thinning. Isophori
 arrays derive their sidelobe 
ontrol from a deterministi
pla
ement of elements that a
hieves a uniform weighting of spatial 
overage. The termisophori
 is based on the Greek roots that denote uniform weight [5℄[19℄.For a given aperture size, massive thinning o�ers redu
tions in element 
ount, 
ost,weight, power 
onsumption, and heat dissipation, albeit with an attendant redu
tion inantenna gain.For a given element 
ount, thinning o�ers narrowed beamwidth by making largerapertures possible.Rather than using a sear
h algorithm, the approa
h in this 
hapter atta
ks the side-lobe 
ontrol problem dire
tly by applying the properties of di�eren
e sets, a topi
 from
ombinatorial mathemati
s, to the pla
ement of antenna elements within a regular lat-ti
e. These deterministi
 pla
ements 
reate an isophori
 array with attendant uniformityof spatial 
overage. The uniformity 
onsistently produ
es, with no sear
hing required,a redu
tion in peak sidelobe level (PSL) when 
ompared to random element pla
ement[5℄[19℄.More spe
i�
ally, in any linear array of aperture V half wavelengths, the Nyquistsampling theorem shows that the array power pattern 
an be 
ompletely spe
i�ed from
2V uniformly spa
ed samples of the pattern. In an isophori
 array, the even-numberedsamples will ne
essarily be �lo
ked� to a 
onstant value less than 1/K times the main-beampeak, where K is the number of elements in the thinned array. While the odd-numberedsamples are not so 
onstrained, the net e�e
t is to produ
e patterns with mu
h lowerPSLs than are typi
al with 
ut-and-try random pla
ement [5℄[19℄.Isophori
 designs apply to linear or planar arrays, whether large or small. While thispaper fo
uses on arrays with 50% thinning, isophori
 arrays in
lude arrays thinned to theextent that the number of elements is approximately the square root of the number ofelements in their �lled 
ounterparts.Some proposed modern arrays use tens, hundreds, or even thousands of elements59




ombined with digital beam forming (DBF) to produ
e multiple simultaneous beams.For these arrays, this paper shows how a �lled DBF-based array 
an be operated as two�interwoven� isophori
 arrays, thereby redu
ing the 
omputational 
omplexity in ea
h. Inaddition, by simple 
y
li
 shifting of the element assignments overtime, it is possible toprodu
e power patterns for whi
h the entire sidelobe region is approximately a 
onstantvalue of 1
2
K relative to the main beam, where K is the number of elements in the original�lled array. In other words, the �peaks� in the sidelobe region virtually vanish [5℄[19℄.3.5.2 NotationThis se
tion introdu
es some de�nitions and notation needed in later se
tions.The array fa
tor for a linear array of identi
al isotropi
 radiators is de�ned as

f (u) =
V−1
∑

m=0

am exp (j2πmx0u) (3.49)where am = 1 if an element exists at distan
e mx0 wavelengths from the origin and
am = 0, otherwise u = sin (θ) is the 
ommonly used dire
tion parameter with θ measuredo� of a normal to the array, and the latti
e has V possible element lo
ations numbered 0to V − 1, uniformly spa
ed at x0 intervals of wavelengths.The 
orresponding array fa
tor for a planar array on a uniform x, y latti
e with
x0, y0 wavelength spa
ing is

f (u, v) =

Vx−1
∑

m=0

Vy−1
∑

n=0

am,n exp (j2π (mx0u+ ny0v)) (3.50)where am,n = 1 if an element exists at lo
ation (mx0, ny0) wavelengths relative to theorigin and am,n = 1, otherwise u = sin (θ) cos (φ), and v = sin (θ) sin (φ) are the 
ommonlyused dire
tion parameters and the array latti
e has V = VxVy possible element lo
ationsnumbered (0, 0) to (Vx − 1, Vy − 1). The angle θ is measured o� of a normal to the arrayplane and φ is measured o� of the x-axis of the array plane.To simplify both expressions, steering angles have, without loss of generality, been setto zero. As usual, applying an appropriate linear phase variation a
ross the elements willallow the main beam to be steered.Array power patterns for linear and planar arrays are represented as
ff ∗ (u) = f (u) · f ∗ (u) = |f (u)|2

ff ∗ (u, v) = f (u, v) · f ∗ (u, v) = |f (u, v)|2 (3.51)60



Sin
e the array fa
tor and power pattern are periodi
 as well as band limited, a�nite number of samples, taken from a single period, are su�
ient to regenerate the entirefa
tor or pattern over all u. The derivations of the sampling theorem for f (u) and ff ∗ (u)are straightforward. For linear and planar arrays are ([5℄[19℄):
f (u) =

V−1
∑

n=0

f

(

n

V x0

) sin
[

πV x0

(

u− n
V x0

)]

V sin
[

πx0

(

u− n
V x0

)] (3.52)
ff ∗ (u) =

2V −1
∑

n=0

ff ∗
(

n

2V x0

) sin
[

2πV x0

(

u− n
2V x0

)]

2V tan
[

πx0

(

u− n
2V x0

)] (3.53)The form (3.52) for f (u) is valid for V an odd integer. When V is even, the sine fun
tionin the denominator must be repla
ed by a tangent fun
tion. Note that while it takes
2V samples to spe
ify the power pattern ff ∗ (u), it takes only V samples to spe
ify thearray fa
tor f (u). The reason is that the samples of f (u) are 
omplex, while those of
ff ∗ (u) are real. Having both a real and imaginary part, ea
h sample of f (u) 
ontainstwi
e the information of ff ∗ (u) sample. Thus, f (u) both ff ∗ (u) and are 
ompletelyspe
i�ed by 2V numbers. The sampling theorem shows that at least 2V numbers arerequired to spe
ify either f (u) or ff ∗ (u). Conversely, both have, at most, 2V degreesof freedom in that one 
an arbitrarily spe
ify only 2V sample points in the power pattern.In parti
ular, 
ontrol over the power pattern is equivalent to and limited to 
ontrolof the 2V sample points ([5℄[19℄).The 
orresponding forms for planar arrays are

f (u, v) =

Vx−1
∑

m=0

Vy−1
∑

n=0

f

(

m

Vxx0
,
n

Vyy0

) sin
[

πVxx0

(

u− m
Vxx0

)]

Vx sin
[

πx0

(

u− m
Vxx0

)]

sin
[

πVyy0

(

v − n
Vyy0

)]

Vy sin
[

πy0

(

v − n
Vyy0

)](3.54)
ff ∗ (u, v) =

2Vx−1
∑

m=0

2Vy−1
∑

n=0

f

(

m

2Vxx0
,

n

2Vyy0

) sin
[

2πVxx0

(

u− m
2Vxx0

)]

2Vx tan
[

πx0

(

u− m
2Vxx0

)]

sin
[

2πVyy0

(

v − n
2Vyy0

)]

2Vy tan
[

πy0

(

v − n
2Vyy0

)](3.55)3.5.3 Di�eren
e SetsDi�eren
e sets and their asso
iated blo
k designs are a bran
h of 
ombinatorial theory.This se
tion 
ontains a brief introdu
tion to the theory and properties of di�eren
e sets[5℄[19℄. 61



By de�nition, a (V,K,Λ) di�eren
e set is a set of K unique integers
D = {d0, d1, ..., dK−1} , with 0 ≤ di ≤ (V − 1) (3.56)su
h that for any integer 1 ≤ α ≤ (V − 1)

di − dj = αmod (V ) , i 6= j (3.57)has exa
tly Λ solution pairs (di, dj) from the set {D}, where mod V means the di�eren
esets is to be taken modulo V .While three parameters are used to des
ribe a di�eren
e set, only two of the parametersare independent. Sin
e there are K (K − 1) possible di�eren
es (di − dj) with i 6= j andsin
e ea
h of the (V − 1) possible unique di�eren
es is to appear exa
tly Λ times, it followsthat
K (K − 1) = Λ (V − 1) (3.58)As an example, 
onsider the above set D2 = {0, 3, 5, 6} for whi
h V = 7, K = 4,Λ = 2.As shown in Table I, ea
h of the V − 1 = 6 possible unique di�eren
es appears exa
tly

Λ = 2 times and sin
e K = 4, (3.58) is also satis�ed.Given a (V,K,Λ) di�eren
e set D, the set
D′ = {d0 + s, d1 + s, d2 + s, ..., dk−1 + s} = D + s (3.59)where ea
h element is taken modulo V , will also be a (V,K,Λ) di�eren
e set. In this
ase, D′ is 
alled a 
y
li
 shift of D. If Dp and Dq are two di�eren
e sets with the sameparameters (V,K,Λ) and Dp = tDq + s for any integers t and s with t prime to V (thatis, t and V have no 
ommon fa
tors), then and are 
alled equivalent di�eren
e sets.If D is a (V,K,Λ) di�eren
e set, then its 
omplement D∗ will be a di�eren
e set withparameters (V, V −K, V − 2K + Λ) [5℄[19℄.For any parti
ular (V,K,Λ) satisfying (3.58) there may be no di�eren
e sets, one dif-feren
e set (disregarding equivalent sets), or several nonequivalent di�eren
e sets. Proofsof existen
e and nonexisten
e are of great 
on
ern to theoreti
ians. For now, it is su�
ientto note that the sets are abundant, that tables of the sets exist, and that 
onstru
tion al-gorithms 
an be used to 
reate them. In parti
ular, 
onstru
tion algorithms exist for setswith K/V ≈ 1

2
, 1
4
, 1
8
, where K/V is de�ned herein as the thinning fa
tor. It is also pos-sible to 
onstru
t very highly thinned Singer di�eren
e sets for whi
h K is approximatelythe square root of V [5℄[19℄. 62



3.5.4 Di�eren
e Sets, Auto
orrelations, and Linear ArraysFrom a di�eren
e set D, we may 
onstru
t a sequen
e or �array� of ones and zeros
AV = {aj} , i = 0, 1, ..., V − 1 (3.60)where aj = 1 if j is in D and aj = 0 if j is not in D. For example, set D3 above gives riseto AV = {1101000001000}. If we 
reate an in�nite array of ones and zeros

AI = {.., a−2, a−1, a0, a1, a2, ...} , i = 0, 1, ..., V − 1 (3.61)by periodi
ally repeating AV , we may de�ne an auto
orrelation for AI given by
CI (τ) =

V−1
∑

n=0

anan+τ (3.62)It follows that if and only if AI is formed from a di�eren
e set, then
CI (τ) =

{

K, if τ (mod V ) = 0

Λ, otherwise
(3.63)In other words, the auto
orrelation fun
tion is two-valued. Ultimately, it is thisproperty that makes the di�eren
e set an e�e
tive pres
ription for the design of thinnedarrays. As shown in the next se
tion, by tying the one's and zero's to element lo
ationsin a latti
e, a periodi
ally repeating element pla
ement sequen
e di
tated by di�eren
esets ne
essarily has an array power pattern with all sidelobe peaks 
onstrained to beat an identi
al �xed level that is less than 1/K times the main lobe peak. When thein�nite sequen
e is trun
ated to a single period, these same �xed levels remain, tyingdown half the sample points of the power pattern. The PSL of the resulting pattern isthen determined by the remaining sample points [5℄[19℄.3.5.5 Linear Isophori
 ArraysFrom any sequen
e of one's and zero's we 
an 
onstru
t a 
orresponding linear phasedarray by starting with an empty latti
e of element lo
ations spa
ed 1

2
−wavelength apart,pla
ing an element at ea
h lo
ation where the sequen
e has a �1�, and skipping ea
hlo
ation where the sequen
e has a �0�. From su
h a 
onstru
tion we 
an form an arrayelement lo
ation fun
tion

AI (x) =

∞
∑

n=−∞
anδ (x− nx0) (3.64)63



for an in�nite length array, where δ (x) is the usual Dira
 delta fun
tion, and x0 is theinter element spa
ing ([5℄[19℄). Typi
ally, x0 = 1
2
wavelength.While an in�nite length array is of no pra
ti
al interest, a study of its properties willlead to the 
entral result for isophori
 arrays. As with any array, the power pattern forthis array will be the Fourier transform of the auto
orrelation fun
tion of the lo
ationfun
tion. From (3.63), the auto
orrelation fun
tion of isophori
 array is given by

CI (χ) = (K − Λ)

∞
∑

n=−∞
δ (χ− nV x0)

+Λ
∞
∑

n=−∞
δ (χ− nx0)

(3.65)This sum represents an in�nite train of impulses at χ = 0,±x0,±2x0, .... All theimpulses have area Λ ex
ept for those at χ = 0,±V x0,±2V x0, ..., whi
h have area
(K − Λ) + Λ = K.We re
all that the Fourier transform of an in�nite train of unity-area impulses at x =

0,±x0,±2x0, ... is itself an in�nite train of impulses in u, ea
h with area 1/x0 lo
ated at
u = 0,±1/x0,±2/x0, .... From this it follows that the Fourier transform of auto
orrelation
CI (χ) is

ff ∗
I (u) = (K − Λ) 1

V x0

∞
∑

n=−∞
δ
(

u− n
V x0

)

+Λ 1
x0

∞
∑

n=−∞
δ
(

u− n
x0

)

(3.66)Using (3.58) we 
an eliminate Λ and 
reate a normalized ff ∗
I (u) by writing

ff ∗
I (u) =

ff∗

I
(u)

K2 = ρ

[

1
V x0

∞
∑

n=−∞
δ
(

u− n
V x0

)

]

+ (1− ρ)
[

1
x0

∞
∑

n=−∞
δ
(

u− n
x0

)

] (3.67)where
ρ =

1

K

[

1− (K − 1)

(V − 1)

] (3.68)This normalized power pattern has a �main-lobe� impulse with an area of 1 at u =

0,±1/x0,±2/x0, ..., and identi
al �sidelobe� impulses with area ρ lo
ated at u = ±1/ (V x0) ,±2/ (V x0) , ...([5℄[19℄).A �nite-length isophori
 array will have element lo
ation fun
tion
AT (x) =

V−1
∑

n=0

anδ (x− nx0) (3.69)64



AT (x) is therefore a single �trun
ated� 
y
le of the in�nite length array in (3.64). Let
ff ∗

I (u) and ff ∗
T (u) be array power patterns for the in�nite and �nite arrays, respe
tively.Then a basi
 property of the Fourier transform permits us to write

ff ∗
I (u) = ff ∗

T (u)
1

V x0

∞
∑

n=−∞
δ

(

u− n

V x0

) (3.70)This expression shows that ff ∗
I (u) and ff ∗

T (u) are �tied together� at u = 0,±1/x0,±2/x0, ....It is sometimes said that ff ∗
T (u) forms an �envelope� for the ff ∗

I (u) impulse train. There-fore, the power pattern ff ∗
T (u) for an isophori
 array must ne
essarily pass through the�xed points pres
ribed by (3.66).It follows that for an isophori
 array

ff ∗
T (n/ (V x0)) =

{

1, for n = 0,±V,±2V, ...
ρ, for all other n

(3.71)Fig. 13-(a) shows the normalized power pattern for a parti
ular isophori
 linear arrayof 32 elements on a 63-slot latti
e with uniform x0 =
1
2
-wavelength spa
ing. The regularlyspa
ed, dotted points lo
ated at u = 2/63, 4/63, 6/63, ... are the sample points referred toin (3.70). At ea
h of these �even numbered� sample points ff ∗ (u) = 10 log10 (ρ)−18.06dB,illustrating the e�e
ts predi
ted by (3.70) and (3.71).Note that in Fig. 13-(a), the peak at u = 2 is simply a repetition of the mainbeam. From (3.49), it is straightforward to show that any array in whi
h the elementsare 
onstrained to be lo
ated at the �xed points of a uniform latti
e will ne
essarily havea power pattern that is periodi
 in u with period u0 = 1/x0 as well as being symmetri
about any integer multiple of u = 1/ (2x0), where x0 is the spa
ing between adja
entlatti
e points measured in wavelengths. For 
omparison, Fig. 13-(b) shows a powerpattern for a random array of 32 elements on the same aperture. Note that: 1) thereis no regularity evident in the dotted points and 2) the PSL for this parti
ular array isapproximately 6 dB higher than that for the isophori
 array. In this 
hapter, the termrandom array refers to an array in whi
h an element may appear anywhere with anaperture with equal likelihood. A latti
e array is an array in whi
h elements may onlyappear at uniformly spa
ed points in the aperture. A random latti
e array is an array inwhi
h the elements are lo
ated at randomly 
hosen latti
e points [5℄[19℄.65



(a) (b)Figure 13. Isophori
 Array - (a) Isophori
 linear array power pattern. Number of elements = 32.Aperture size = 62 half-wavelengths. (b) Random linear array power pattern. Number of elements = 32.Aperture size = 62 half-wavelengths [5℄.More generally, the expe
ted PSL of the isophori
 array will be lower than that of a
orresponding random array by
Isophoric PSL Reduction (linear array)

≈ 3 + 10 log10 (1−K/V )−1 dB
(3.72)The 3-dB portion of the PSL redu
tion 
omes from 
onstraining the lo
ations tothose determined by di�eren
e sets. The remainder of the improvement 
omes fromsimply 
onstraining the elements lo
ations to the points of a �xed latti
e. Note that thislatter improvement be
omes vanishingly small with in
reased thinning; that is, as K/Vapproa
hes zero. However, the 3-dB improvement remains even for highly thinned arrays[5℄[19℄.The theory of the random array shows that

ff ∗ (u) = 10 log10 (1/K) dB (3.73)is the average power in the sidelobe region of a random array. Both �gures show a referen
eline at this average level for these arrays, namely at 15.05dB.3.5.6 Expe
ted Power Pattern of a Linear Isophori
 ArrayIsophori
 array PSLs in the pre
eding se
tion 
ould be redu
ed still further by tryingvarious 
y
li
 shifts of the di�eren
e set that was used to generate the initial array. A
y
li
 shift of a di�eren
e set {D} simply adds an integer s to ea
h member of {D} andthen redu
es ea
h result modulo V . Clearly, there are V unique su
h shifts possible for66



s = 0, 1, ..., V − 1. This is a relatively small number to apply in a �
ut-and-try� attemptat lowering PSL.More importantly, as shown in this se
tion, the average power pattern of an isophori
array, taken over all V 
y
li
 shifts of the underlying di�eren
e set, is exa
tly the sameas the average power pattern of all the possible arrays that one 
ould 
reate by pla
ing
K elements on a latti
e with V slots.The expe
ted (average) power pattern of a linear isophori
 array is de�ned as

E [ff ∗ (u)] = ff ∗
E (u) =

1

V

V−1
∑

s=0

ff ∗
s (u) (3.74)where ff ∗

s (u) is the power pattern generated by an array whose underlying di�eren
e sethas undergone a 
y
li
 shift of s units.As shown below,
ff ∗

E (u) = ρ+ (1− ρ) sin (πuV x0)

V 2 sin2 (πux0)
(3.75)The derivation of this result is straightforward but lengthy. To 
onserve spa
e, we simplyoutline the steps as follows:1. Note that as with any power pattern, ea
h ff ∗

s (u) is the Fourier transform of theauto
orrelation of the element lo
ation fun
tion of the array built from a 
y
li
 shift
s of the underlying di�eren
e set.2. By substituting the Fourier transform expression for ea
h ff ∗

s (u) in (3.74) andinter
hanging the order of summation and integration, the average Fourier trans-form of the power patterns be
omes the Fourier transform of the average of the Vauto
orrelations.3. Fundamental properties of di�eren
e for
e the average auto
orrelation to be
CE (τx0) =











kδ (0) , τ = 0

(V − |τ |) k(k−1)
v(v−1)

δ (x− τx0) , for 0 < |τ | < V

0, |τ | ≥ V

(3.76)4. The (normalized) Fourier transform of CE (τx0) is ff ∗
E (u), as given by (3.75).Note that for a moderately large V , (say, greater than 30), K/V < 1

2
and u not 
loseto zero (that is, the sidelobe region), the 
ontribution to be made by the se
ond term in(3.75) is quite small. Under these 
onditions

ff ∗
E (u) ≈ ρ =

1

K

[

1− (K − 1)

(V − 1)

] (3.77)67



In the spe
ial 
ase K = V , the array is �lled and the expression redu
es to the well-known power pattern of a �lled array. The �lled array is in fa
t a spe
ial 
ase of anisophori
 array [5℄[19℄.(3.75) also represents the grand average power pattern of all possible pla
ements of Kelements on a V -slot latti
e. One way of viewing the V 
y
li
 shifts of an isophori
 arrayis that they represent a small set of arrays whose average power pattern is the same as theaverage pattern of the mu
h larger set of all possible of K elements on a V -slot latti
e. Inthe example used thus far, the 63 
y
li
 shifts of Array 1 have an average power patternidenti
al to that of the 9.16× 1017 possible pla
ements of 32 elements on a 63-slot latti
e.

Figure 14. Isophori
 Array - Expe
ted power pattern of isophori
 array with V = 63 and K = 32 [5℄.Note also that while the average sidelobe power of a random array is 1/K, the averagepower of a random latti
e array is ≈ (1/K) (1−K/V ). Thus, simply 
onstrainingthe element pla
ements to latti
e positions redu
es sidelobe levels to some ex-tent, although the improvement be
omes vanishingly small with in
reased thinning. Asstated previously, further 
onstraining the element pla
ements to be those di
tated by adi�eren
e set produ
e another 3 dB of expe
ted PSL redu
tion. This 3-dB redu
tion isindependent of how mu
h the array has been thinned [5℄[19℄.3.5.7 Extension to Planar ArraysIsophori
 arrays, both stati
 and spatially hopped, 
an be planar as well as linear. Theprin
ipals are the same. We seek a deterministi
 pla
ement of K elements in a re
tangularlatti
e su
h that the element lo
ation fun
tion has a two-level auto
orrelation fun
tion intwo dimensions [5℄[19℄.The element lo
ation fun
tion for a planar array is de�ned by
AT (x, y) =

Vx−1
∑

m=0

Vy−1
∑

n=0

am,nδ (x−mx0, y − ny0) (3.78)68



where the array has dimensions VxVy, δ (x− g, y − h) is interpreted as a unit impulse atlo
ation (x, y) = (g, h), and the 
oe�
ients form a Vx-by-Vy matrix of ones and zeros thatdesignate the presen
e or absen
e of an array element at (mx0, ny0).Analogous to (3.62), we form a two-dimensional auto
orrelation for an in�nitely re-peated version AI (x, y)of AT (x, y) as
CI (p, q) =

Vx−1
∑

m=0

Vy−1
∑

n=0

am,nam+p,n+q (3.79)We let the number of ones in the am,n 
oe�
ients equalK and assume that we 
an dis
overa pla
ement of ones and zeros su
h that
CI (p, q) =

{

K, if Vx divides p and Vy divides q

Λ, otherwise
(3.80)That is, AI (x, y) has a two-level auto
orrelation fun
tion. If this 
an be done, then weknow that all the VxVy sample point sin the sidelobe region of f (u, v) (3.54,3.55) willne
essarily have magnitude K. We also know that the even-numbered samples from thesidelobe region of ff ∗ (u, v) will have magnitude K2. The odd-numbered samples will bethe ones that determine the PSL [5℄[19℄.Results from Monte Carlo simulations show that 
ompared to a random (nonlatti
e)pla
ement of elements on the same aperture, a stati
 (not spatially hopped) isophori
array will have an expe
ted improvement in PSL of

Isophoric PSL Reduction (planar array)

≈ 1.5 + 10 log10 (1−K/V )−1 dB
(3.81)where V = VxVy . This improvement is 1.5dB smaller than it was for linear arrays.As with linear arrays, if we 
an �nd a pla
ement algorithm with the property des
ribedby (3.80), then we 
an spatially hop the array element assignments as we did for lineararrays, thereby guaranteeing a �xed low-sidelobe power pattern for ff ∗ (u, v) as we didfor ff ∗ (u) ([5℄[19℄).Assume we have a linear sequen
e of V ones and zeros

AV = {ai} , i = 0, 1, ..., V − 1di
tated by a di�eren
e set as in (3.57). Then the assignment
am,n = ai where m = i (modVx)

n = i (modVy) i = 0, 1, ..., V − 1
(3.82)69



will 
reate a re
tangular array of ones and zeros
AVxVy

= {am,n}
m = 0, 1, 2, ..., Vx − 1, n = 0, 1, 2, ..., Vy − 1

(3.83)that has the desired two-level auto
orrelation fun
tion.For example, the (63, 32, 16) di�eren
e set would be pla
ed in a 9×7 array as shown inTable II. As shown, a0 is pla
ed in the �southwest� 
orner of the array and ea
h su

eeding
oe�
ient is pla
ed in the slot to the �northeast�, 
ontinuing from the other side wheneveran edge is rea
hed until the entire V = VxVy = (9)(7) = 63 
oe�
ients have been pla
ed.The table shows the pla
ement of the �rst 18 
oe�
ients. An antenna element will bepla
ed in ea
h lo
ation where ai = 1 and not pla
ed where ai = 0.With the approa
h above, we 
an 
reate a stati
 isophori
 array with expe
ted powerpattern
ff ∗

E (u, v) = ρ+ (1− ρ) sin2 (πuVxx0)

V 2
x sin2 (πux0)

sin2 (πuVyy0)

V 2
y sin2 (πuy0)

(3.84)As with linear arrays, on
e we move into the sidelobe region (that is, u and v not too
lose to 0,±2,±4, ...), the expe
ted normalized pattern is approximately the 
onstant ρ,where ρ is given by (3.67). Fig. 15 shows for a ff ∗
E (u, v)-slot latti
e, with128 elements.Note that for the spe
ial 
ase V = K, ρ be
omes zero and ff ∗

E (u, v) be
omes thepower pattern of the familiar �lled re
tangular-latti
e array. Note also that the beamwidthimplied by (3.84) is independent of the thinning fa
tor β = K/V . Even a very highlythinned isophori
 array will have the same beamwidth as a �lled array.Again, as with linear arrays, if we begin with a �lled latti
e and operate it as twoindependent interwoven isophori
 arrays with spatially hopped element assignments, we
an a
tually a
hieve two independent patterns obeying ff ∗
E (u, v) on a time-averaged basis.
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Figure 15. Isophori
 Array - Expe
ted power pattern of isophori
 planar array with
V = VxVy = 15× 17 half-waves and K = 128 elements. this exa
t pattern is realizable with �spatialhopping�. Note pattern �oor at 10 log10 ρ = −24dB [5℄.
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3.6 Almost Di�eren
e Sets [22℄3.6.1 Introdu
tionMassive thinning of arrays (i.e., the redu
tion of the number of the array elements belowhalf of its �lled 
ounterpart) is of great importan
e in pra
ti
al appli
ations be
ause ofthe redu
tion of the array 
osts, weight, power 
onsumption, HW and 
omputational
omplexity.However, su
h advantages usually 
ome at the 
ost of a loss of sidelobe level (SLL)
ontrol and gain 
ompared to the �lled arrangement. In order to over
ome these draw-ba
ks, several thinning te
hniques have been proposed. Deterministi
 thinning has been�rst studied, but no signi�
ant improvements of SLL 
ontrol 
ompared to a random ele-ment pla
ement have been obtained. More re
ently, dynami
 programming and sto
hasti
optimization te
hniques, su
h as simulated annealing (SA) and geneti
 algorithms (GAs)have been su

essfully applied. Despite the satisfa
tory results, statisti
al methodologieshave not an easy appli
ation to large arrays be
ause of the 
omputational burden and
onvergen
e issues. Moreover, due to their sto
hasti
 nature, it is often di�
ult to a-prioriestimate the expe
ted performan
es for a given aperture size and thinning fa
tor.The synthesis of massively thinned arrays has been fa
ed in a very promising fashionby 
onsidering equally-weighted arrays. Su
h an approa
h is based on the use of binarysequen
es derived from di�eren
e sets (DSs), whi
h are known to possess two-level peri-odi
 auto
orrelations. In di�erent works it has been shown that, if the element ex
itationsare 
hosen a

ording to the binary distribution derived from DSs, the peak sidelobe level(PSL) of the synthesized linear array is 3-dB lower than that of the 
orresponding randomdistribution. Su
h a result has been su

essfully exploited for the design of both linearand planar arrays, although the PSL redu
tion is about 1.5-dB smaller when planar ar-
hite
tures are dealt with. The appli
ation of DSs has also allowed some improvementsin thinned-array design pro
edures based on GA optimization [22℄.Re
ently, the de�nition of binary sequen
es of length N with suitable auto
orrelationproperties, for whi
h DSs are not available, has been 
arefully investigated in informationtheory and 
ombinatorial mathemati
s. It has been found that it is often possible todetermine sequen
es with a three-level auto
orrelation fun
tion by taking into a

ountthe so-
alled almost di�eren
e sets (ADSs). ADSs are a resear
h topi
 of great in-terest in 
ombinatorial theory with important appli
ations in 
ryptography and 
odingtheory. Moreover, although ADS generation te
hniques are still subje
t of resear
h, large
olle
tions of these sets are already available. As regards the array synthesis, a prelimi-72



nary appli
ation, although limited to a parti
ular subset of ADSs. In su
h a framework,the whole 
lass of ADSs seem to be a good 
andidate for enlarging the set of admissibleanalyti
 
on�gurations with respe
t to the DS 
ase, despite a redu
tion of expe
ted per-forman
es. From this viewpoint, it is of interest to 
arefully detail the ADS features forantenna arrays synthesis [22℄.In this 
hapter, the exploitation of ADSs properties for the design of linear thinnedarrays is dis
ussed and analyze in depth through a solid mathemati
al des
ription. Theproposed ADS based te
hnique is aimed at synthesizing arrays with performan
es 
loseto those with DSs, but enhan
ing the set of admissible array 
on�gurations. It is alsoworth while to point out that the paper is not aimed at de�ning an optimal method forthe design of thinned arrays, but its purpose is to propose some guidelines to the arraydesigners who, whether by ne
essity or 
hoi
e, are synthesizing a thinned array without
onsidering sto
hasti
 optimizations or a random pla
ement, but using a deterministi
strategy with predi
table results [22℄.3.6.2 Almost Di�eren
e Sets - De�nitions and PropertiesLet us provide just some basi
 de�nitions and main properties of ADSs.A K-subset D = {dk ∈ [0, N − 1] , dh 6= dl; k, h, l = 0, ..., K − 1} of an Abelian group
G of orderN is 
alled a (N,K,Λ, t)-almost di�eren
e set if the multisetM = {mj = (dh − dl) ,
dl 6= dk; j = 0, ..., K × (K − 1)− 1} 
ontains nonzero elements of G ea
h exa
tly Λ times,and the remaining N−1−t nonzero elements ea
h exa
tly Λ+1 times. As a 
onsequen
e,DSs are ADSs for whi
h t = N − 1 or t = 0. 1. An Abelian group is a group satisfyingthe requirement that the produ
t of elements does not depend on their order. In additionto the other axioms of a group, the produ
t operation is asso
iative, G has an identityelement, and every element of G has an inverse [22℄.If G ≡ Z and D is a (N,K,Λ, t)-ADS of G, then the 
y
li
 repetition of the binarysequen
e A = {an ∈ [0, 1] ;n = 0, ..., N − 1}of length N , whose nth element is

an =

{

1, if n ∈ D
0, otherwise

(3.85)de�nes the 
hara
teristi
 sequen
e S = {sn, n ∈ Z} of D, where
sn =

{

1, if modN (n) ∈ D
0, otherwise

(3.86)The 
orresponding auto
orrelation fun
tion, Cs (z), is a periodi
 fun
tion de�ned as fol-73



lows
Cs (z) =

N−1
∑

n=0

snsn+1 z ∈ Z (3.87)and equal to
CADS

s (z) =











K, z = 0

Λ + 1, z ∈ L

Λ, otherwise

, K ≥ Λ + 1 (3.88)in the period z ∈ [0, N − 1], L being a set of N − 1 − t elements (i.e. L = {lp ∈ Z;

p = 1, ..., N − 1− t}). For illustrative purposes, let us 
onsider the examples of ADSsreported in Table I together with the 
orresponding binary sequen
es and auto
orrelationfun
tions. For 
ompleteness, the plots of CADS
s (z) are shown in Fig. 16 [22℄.

Table I. Linear Thinned Arrays based on Almost Di�eren
e Sets - Examples of ADSs and theirdes
riptive fun
tions [22℄. 74



Figure 16. Linear Thinned Arrays based on Almost Di�eren
e Sets - Auto
orrelation fun
tion
CADS

S (z) of D1 and D2 in Table I [22℄.It is worth noting that the auto
orrelation fun
tion CADS
s (z) of a (N,K,Λ, t)-ADS is
lose to that of the (if any) 
orresponding (N,K,Λ)-DS

CDS
s (z) =

{

K, z = 0

Λ, otherwise
(3.89)In fa
t, the di�eren
e is limited to just a unity in N − 1− t points where CADS

s (z) =

Λ + 1. Moreover, the ADSs share several other properties with the DSs. In parti
ular,neither DS nor ADS 
an be de�ned for every value of N , K, Λ, and t . Indeed, for
(N,K,Λ, t)-ADSs in an Abelian group, the following existen
e 
ondition holds true

K (K − 1) = tΛ + (N − 1− t) (Λ + 1) (3.90)being K ≥ Λ + 1, 0 ≤ K ≤ N , and 0 ≤ t ≤ N − 1.On the other hand, if D is an ADS, then the set
D =

{

d
(σ)
k = modN (dk + σ) , dk 6= dl;

k, h, l = 0, ..., K − 1}
(3.91)where σ ∈ Z, is still an ADS. Therefore, starting from an (N,K,Λ, t)-ADS, it is possibleto build di�erent (N,K,Λ, t)-ADSs by applying a 
y
li
 shift to its elements (i.e., a 
y
li
shift on the asso
iated binary sequen
e A). Mathemati
al proofs of existen
e or non-existen
e of ADSs for di�erent 
hoi
es of are 
urrently topi
 of resear
h in the frameworkof 
ombinatorial theory and suitable te
hniques for the generation of new families of ADSsare still in progress. However, several ADSs has been already found and their properties
an be pro�tably exploited for array synthesis [22℄.75



3.6.3 ADS-Based Linear Arrays - Mathemati
al Formulation3.6.3.1 ADS-Based In�nite ArraysAn in�nite thinned array 
an be de�ned from whatever binary sequen
e A of length Nby introdu
ing the array element lo
ation fun
tion Ψ∞ (x)

Ψ∞ (x) =
∞
∑

n=−∞
snδ (x− nd) (3.92)where δ (.) is the Dira
 delta fun
tion, d and x are the latti
e spa
ing and the spatial
oordinate along the linear array, respe
tively (both expressed in wavelength). In pra
ti
e,the in�nite thinned array is de�ned by lo
ating the array elements along a uniform latti
ewith spa
ing d at those positions where Ψ∞ (x) =∞ [22℄.As with any array, the power pattern of the ADS-based in�nite linear array turns outto be the Fourier transform of the auto
orrelation fun
tion of Ψ∞ (x), CADS

Ψ (z), that is
PP∞ (u) = F

{

CADS
Ψ (z)

} (3.93)where F {.} denotes the Fourier transform operator, u = sin (θ), u ∈ [−1, 1], and
CADS

Ψ (z) = Λ
∞
∑

n=−∞
δ (z − nd)

+

N−1−t
∑

p=1

{ ∞
∑

n=−∞
δ (z − ndN − lpd)

}

+ (K − Λ)
∞
∑

n=−∞
δ (z − ndN)

(3.94)
where the index lp satis�es the 
ondition Cs (lp) = Λ + 1 [22℄.By substituting (3.94) in (3.93) and re
alling the Fourier transformation properties ofan in�nite train of pulse fun
tions, one 
an show that

PP∞ (u) =

∞
∑

n=−∞
PP∞,nδ

(

u− n

Nd

) (3.95)where, see equation
PP∞,n =























Λ
d
+ 1

Nd

(

K − Λ +
N−1−t
∑

p=1

exp (j2πlpn/N)

)

, n = 0,±N,±2N, ...

1
Nd

(

K − Λ +

N−1−t
∑

p=1

exp (j2πlpn/N)

)

, otherwise

(3.96)76



However, unlike DSs, further simpli�
ations of (3.95) are not trivial sin
e the followingterm of PP∞,n

(

K − Λ +
N−1−t
∑

p=1

exp (k2πlpn/N)

)

=

(

K − Λ +
N−1−t
∑

p=1

exp (k2πlpn/N)

)

, l0 = 0(3.97)
annot be evaluated in 
losed form. In fa
t, the set L depends on the ADS at handand PP∞ (u) has to be evaluated on a 
ase-by-
ase basis instead of in a general fashion.However, it is still possible to provide an a-priori estimate of the peak sidelobe level ofthe in�nite array, PSL∞, de�ned as
PSL∞ = max

n 6=0

PP∞,n

PP∞,0

(3.98)A
tually, it turns out that PSL∞ is limited by the following upper
PSLMAX

∞ =
K − Λ− 1 +

√

t (N − t)
(N − 1) Λ +K − 1 +N − t (3.99)and lower

PSLMIN
∞ =

K − Λ− 1−
√

t(N−t)
(N−1)

(N − 1)Λ +K − 1 +N − t (3.100)respe
tively. Moreover, for �xed values of η = t/ (N − 1) and of the thinning per
entagefa
tor ν, (ν = K/N), the range of variation of PSL∞ redu
es as N in
reases until athreshold. Su
h a behavior is pointed out in a study on the dependen
e of the 
on�den
erange index ∆∞ = PSLMAX
∞ /PSLMIN

∞ , whi
h by (3.90), (3.99), and (3.100) turns out tobe, see the following equation
∆∞ =

N2 (ν − ν2)− ηN + η + (N − 1)
√

N2 (η − η2) +N (2η2 − η)− η2
N2 (ν − ν2)− ηN + η − (N − 1)

√

N (η − η2) + η2
(3.101)On N for di�erent values of the ADS-parameters. The asymptoti
 threshold of ∆∞appears to be equal to

lim
N→∞

(∆∞) =
ν − ν2 +

√

η (1− η)
ν − ν2 (3.102)As expe
ted, the 
ondition ∆∞ is asymptoti
ally veri�ed when η = 1 (i.e., t = N − 1and the ADS 
oin
ides with a DS), sin
e PSL∞ = PSLDS

∞ . Su
h a 
on
lusion identi
allyholds true for η = 0 (i.e., t = 0), whatever the admissible value of ν [22℄.77



Let us also noti
e from (3.101) that the following property ∆∞ (ν) = ∆∞ (1− ν) holdstrue. Moreover, the analysis and the 
orresponding plots are limited to the range of Nvalues for whi
h an ADS sequen
e 
an exist [i.e., (3.90), K ≥ Λ + 1, 0 ≤ K ≤ N , and
0 ≤ t ≤ N − 1℄. As it 
an be observed, the value of the 
on�den
e index de
reases when
|ν − 0.5| → 0 and it attains its minimum value when ν = 0.5. In su
h a 
ase, ∆∞ →
[

1 + 4
√

η (1− η)
] asymptoti
ally with a maximum value equal to maxn {∆∞⌋ν=0.5} ≈

4.77dB for η = 0.5 [22℄.
3.6.3.2 ADS-Based Finite ArraysAs regards �nite arrays, sin
e the array element lo
ation fun
tion Ψ (x)

Ψ (x) =

N−1
∑

n=0

snδ (x− nd) (3.103)is now a trun
ated version of Ψ∞ (x) , then it 
an be easily shown that PP∞ (u) and thepower pattern of the �nite 
on�guration, PP (u), are related by the following relationship
PP∞ (u) = PP (u)

∞
∑

n=−∞
δ
(

u− n

Nd

)

Nd
(3.104)A

ordingly, PP (u) ne
essarily satis�es the sampling 
ondition at ea
h 
oordinate u =

un = n/Nd, that is
PP (un) = NdPP∞,n n = 0, ...,

⌊

N
2

⌋ (3.105)In order to illustrate su
h a behavior, Fig. 17 shows the plots of PP (u) and of the
oe�
ients PP∞,n for the thinned array of K = 22 elements on a N = 45-lo
ations latti
e(d = 1/2) de�ned from the ADS D4. It is worth noting that, sin
e Ψ (x) is real-valued,the beam pattern is symmetri
 with respe
t to u = 0 and only the range u ∈ [0, 1] is
onsidered [22℄. 78



Figure 17. Linear Thinned Arrays based on Almost Di�eren
e Sets - Normalized PP (u) derived fromthe ADS derived from the ADS D4 (D4 = D
(σ)
4

⌋

σ=0
) and its 
y
li
 shifts D(σ)

4 (σ = 17, σ = 24).Number of elements: N = 45-Aperture size: 22λ [22℄.Starting from (3.104), it is then possible to estimate the PSL of a �nite array
PSL =

max
u∈[UM(D(σ)),1]

{PP (u)}

PP (0)
(3.106)where UM is the width of the main lobe region, by using the asso
iated in�nite arraypower pattern PP∞ (u). It is worth noting that (see Fig. 4) the PSL value is determinedby the behavior of the power pattern at u = um+ 1

2
= (m+ 1/2)Nd

PSL =
max
m

{

PP
(

um+1/2

)}

PP (0)
, m = 1, ...,

⌊

N

2

⌋ (3.107)being um+1/2 = (m+ 1/2) /Nd.To evaluate PP (um+1/2

), let us 
onsider the sampling theorem and (3.104). It followsthat
PP (u) =

∣

∣

∣

∣

∣

N−1
∑

n=0

√

NdPP∞,n exp (jφn)
sin
[

πNd
(

u− n
Nd

)]

N sin
[

πd
(

u− n
Nd

)]

∣

∣

∣

∣

∣

2 (3.108)where φn, n =, ..., N − 1, are the phase terms of the sampled array fa
tor (φ0 = 0), whi
hare known quantities only when the ADS at hand is spe
i�ed. By evaluating (3.108) in
u = 0 and u = um+1/2 and substituting in (3.107), we obtain

PSL =

max
m







∣

∣

∣

∣

∣

∣

N−1
∑

n=0

√

PP∞,n exp (jφn)
sin [π (m− n+ 1/2)]

N sin
[

π(m−n+1/2)
N

]

∣

∣

∣

∣

∣

∣

2





PP∞,0

m = 1, ...,
⌊

N
2

⌋

(3.109)79



Consequently, the PSL of an ADS-based �nite array is fully spe
i�ed from the knowledgeof PP∞,n and φn, n = 0, 1, ..., N − 1. However, sin
e the PP∞,n 
oe�
ients of ADSsequen
es neither 
an be expressed in 
losed-form (as for RDSs) nor have equal expressions(as for DSs), it is not available (although approximated) a threshold value for the PSL asfor DSs. Nevertheless, it is possible to yield the following set of inequalities
PSLMIN ≤ PSLDW ≤ PSLopt ≤ PLSUP ≤ PSLMAX (3.110)where PSLopt = min
σ∈[0,N−1]

{

PSL
(

D(σ)
)}, PSLMIN = PSLMIN

∞ , PSLDW = max {PSL∞, PSL
min},

PSLUP = E {Φmin
N }PSL∞, and PSLMAX = E {Φmin

N }PSLMAX
∞ , being E {Φmin

N } ≈
0.8488+1.128 log10N and PSLmin = E {Φmin

N }min
n

(PP∞,n) /PP∞,0. It should be pointedout that PSLDW and PSLUP are determined when the ADS sequen
e is available sin
ethey require the knowledge of the 
oe�
ients PP∞,n. On the 
ontrary, PSLMIN and
PSLMAX 
an be always a-priori 
omputed from (3.100) and (3.99), respe
tively [22℄.
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Figure 18. Linear Thinned Arrays based on Almost Di�eren
e Sets - Comparative Assessment - Plotsof the PSL bounds of the ADS-based �nite arrays and of the estimator of the PSL of the random arrays(RND - random array, RNL - random latti
e array) when ν = 0.489 versus (a) the array dimension, N ,and (c) the index η. Normalized generated from Dopt
4 and estimated PSL values of the 
orrespondingrandom sequen
es (b) [22℄. 81



3.7 Basi
 Theory of Interferometry for Radio Astron-omy [8℄[9℄[30℄[31℄3.7.1 Introdu
tionThe parti
ular interest in 
orrelator antenna arrays for radio astronomy appli
ations 
anbe tra
ed ba
k to 1960s, and it was a

ompanied by drasti
 instrumental advan
es ininterferometry te
hniques. Compared to 
onventional sum arrays, the enhan
ed datagathering e�
ien
y of a 
orrelator array is 
losely related to its spatial-�lter-like behaviorand the unique signal 
ombination s
heme by pair-wisely 
orrelating output signals fromall antenna elements. Unlike the well-established synthesis te
hniques for sum arrays,determining an appropriate 
on�guration of a 
orrelator array is essentiallyan optimal sampling problem. In order to obtain a 
lear image of a distant radiosour
e, an ideal 
orrelator array is desired to have either the maximum 
overagein the spatial frequen
y domain (the u − v domain) or the lowest sidelobe level(SLL) in the angular domain (the l −m domain) [31℄.
3.7.2 Problem De�nitionFig. 19 depi
ts the measurement of a distant radio sour
e using a 
orrelator antennaarray. The sour
e has a brightness distribution I (l, m) in the angular domain and the
osmi
 signal is 
olle
ted by the ground-based array with a 
on�guration of f (x, y). Thevisibility of the sour
e, V (u, v), is de�ned in a plane perpendi
ular to the dire
tion ofsour
e and this plane is referred as the u − v domain. Here x and y are measured inkilometers; u and v are unitless quantities and uλ (or vλ) has a unit of kilometer, where
λ is the freespa
e wavelength. l and m are dire
tional 
osines of a point in the angulardomain with respe
t to the u− and v− axes, respe
tively. They are measured in radiansby applying the small-angle assumption sin
e the desired �eld of view (FOV) in manypra
ti
al 
ases is usually no more than a few degrees. It is worthwhile to mention thatthe de�nition of the u− v domain is similar to that of the �u− v domain� in 
onventionalantenna language, whi
h is often used to des
ribe the far �eld of an antenna. In this thesis,the notion of �u − v domain� follows the radio astronomy nomen
lature and representsthe spatial frequen
y domain instead of the angular domain [8℄[9℄[31℄.82



Figure 19. Radio Astronomy - Con
eptual sket
h of a radio astronomi
al measurement using a
orrelator antenna array. The brightness distribution I (l,m) in the angular domain is retrieved by theinverse Fourier transform of the samplings of its visibility V (u, v) in the spatial frequen
y domain. Thesampling points are determined by auto
orrelating the array 
on�guration f (x, y) in the spatial domain[31℄.The parti
ular importan
e of introdu
ing the 
on
epts of visibility and the u − vdomain stems from the Fourier transform relationship between and given in
I (l, m) =

∫ ∞

−∞

∫ ∞

−∞
V (u, v) exp [j2π (ul + vm)] dudv (3.111)that applies to most radio sour
es with the spatially in
oherent feature in their emissions.In other words, the visibility represents the spatial frequen
y spe
trum of a radiosour
e. The radio astronomi
al measurement des
ribed in Fig. 19, therefore, resemblesthe mi
rowave holographi
 imaging in the sense that I (l, m) 
an be retrieved by theinverse Fourier transform of the sampled 
omponents of V (u, v).Fig. 20 provides a quantitative des
ription of the measurement and summarizes allFourier transformation pairs between the u− v domain and the l−m domain. Similar tothe transient response of a system in signal pro
essing, the point sour
e responses of thearray in the u− v domain and the l−m domain are 
hara
terized by the u− v 
overage

W (u, v) and the synthesized beam b0 (l, m), respe
tively. This spatial-�lter-like behavioris only valid when the output signals from antenna elements are pair-wisely pro
essed,83



whi
h makes 
orrelator arrays a better option than 
onventional sum arrays for the sakeof signal-to-noise ratio (SNR) and data gathering e�
ien
y [8℄[9℄[31℄.In general, a uniform u− v 
overage is preferable if the array is aimed to observe verybright and 
ompli
ated sour
es, and a synthesized beam with a low SLL might fun
tionbetter in extra
ting images out of noisy data. Although W (u, v) and b0 (l, m) are relatedas one of the Fourier transformation pairs in Fig. 20, there is not a rigorous proof thatthe most 
omplete u−v 
overage leads to the optimal synthesized beam. The sele
tion ofan appropriate array 
on�guration f (x, y) has to be a

omplished via the optimizationsof W (u, v) and b0 (l, m) in di�erent domains separately [8℄[9℄[31℄.

Figure 20. Radio Astronomy - Relationship among antenna quantities for an in
oherent �eld.3.7.3 The U-V CoverageFirst let us 
onsider how the array 
on�guration f (x, y) is related to the u− v 
overage,
W (u, v). Here we assume that two antenna elements are separated by a baseline ve
tor

−→
B = x̂uλ+ ŷvλ (3.112)and the antenna dimensions are mu
h smaller than the length of baseline, ∣∣

∣

−→
B
∣

∣

∣
. It has beenshown that for a snapshot observation at zenith, the output signals of the 
orrelator that
onne
ts the antenna pair are the sampled visibilities at symmetri
 spatial frequen
ies84



(u, v) and (−u,−v). Thus for an N-element 
orrelator array with the ith element lo
atedat (xi, yi) and a 
on�guration of
f (x, y) =

N
∑

i=1

δ

(

x− xi
λ

,
y − yi
λ

) (3.113)
W (u, v) 
an be lo
ated by sear
hing all baseline ve
tors via the auto
orrelation of thearray's 
on�guration

W (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f (x, y) f (x− uλ, y − vλ) dxdy

=
N
∑

i=1

N
∑

j=1,j 6=i

∏

(

u− xi − xj
λ

, v − yi − yj
λ

) (3.114)Here ∏ (u, v) is a 2D unit impulse fun
tion de�ned by
∏

(u, v) =

{

1; u = v = 0

0; elsewhere
(3.115)The summation in (3.114) does not in
lude i = j terms sin
e ea
h antenna is not 
orre-lated with itself. The origin (u, v) = (0, 0) is therefore not in
luded in the u−v 
overage,while all other spatial frequen
ies satisfying (u, v) = ((xi − xj) / (λ) , (yi − yj) / (λ))aresampled. Theoreti
ally an N-element array should have N (N − 1) samplings in the u−vdomain for a snapshot observation, however, the a
tual number of samplings is often lessthan that due to the redundan
y in the array 
on�guration. An appealing solution toin
rease the number of sampling points is to apply a tra
king observation in whi
h theEarth rotation e�e
t is in
orporated [8℄[9℄[31℄.3.7.4 The Earth-Rotation E�e
tIn a tra
king observation, ea
h baseline ve
tor tra
ks an ar
 of an ellipse in the u − vdomain due to the rotation of the Earth. The axial ratio of ellipse and the length of ar
 aredetermined by the sour
e de
lination δ, the elevation E , the latitude L and the azimuth

A of baseline, along with the observation time duration 2h (h ∈ [0, 12], unit: hours).For ea
h instant hour angle H ∈ (− (hπ) / (12) , (hπ) / (12)) (unit: radians) during theobservation, the parti
ular sampling spatial frequen
y (u, v) at that instant is spe
i�edby a matrix equation
[

u

v

]

=

[

sinH cosH 0

− sin δ cosH sin δ sinH cos δ

]







Xλ

Yλ

Zλ






(3.116)85



where






Xλ

Yλ

Zλ






=
∣

∣

∣

−→
B
∣

∣

∣







cosL sin E − sinL cos E cosA
cos E sinA

sinL sin E + cosL cosE cosA






(3.117)Assume the time interval between taking two samplings is ∆h, the total number of u −

v samplings is in
reased by a fa
tor of (h) / (∆h) 
ompared to a snapshot observation[8℄[9℄[31℄.

Figure 21. Radio Astronomy - The geometry of an interferometer. The baseline interse
ts the 
elestialsphere at B, whi
h has de
lination d and the lo
al hour angle h. The sour
e is at point S, with
oordinates δ and H . The proje
tion of the baseline on the interse
tion of the plane SOB and a planetangent to the 
elestial sphere at S is D cos θ.3.7.5 The Synthesized BeamAs shown in Fig. 20, the synthesized beam b0 (l, m) is 
al
ulated by the inverse Fouriertransform of the u− v 
overage W (u, v). This relationship applies to both snapshot andtra
king observations in whi
h W (u, v) is obtained using (3.114) and (3.116)-(3.117), re-spe
tively. Typi
ally b0 (l, m) is 
al
ulated by inverse fast Fourier transformation (IFFT),in whi
h the u−v domain is dis
retized into Nu×Nv re
tangular grids ea
h with a dimen-sion of ∆u×∆v. Multiple u− v samplings lying in ea
h grid are averaged and relo
atedat the 
enter of the grid [8℄[9℄[31℄.The maximum FOV in the l−m domain, Lmax andMmax (in radians), are determinedby the grid size ∆u and ∆v

Lmax = 1/∆u, Mmax = 1/∆v (3.118)Under the assumption that the antenna dimension is mu
h smaller than the length ofbaseline, the maximum FOV is far less than the half-power beamwidth (HPBW) of ea
h86



antenna element. The e�e
t of element pattern in the synthesized beam is just multiplyinga 
onstant, whi
h 
an be omitted when investigating a normalized pattern. The resolutionof the beam plot is given by:
Rl = Lmax/Nu, Rm =Mmax/Nv (3.119)By applying zero-padding in the u− v domain, the resolution 
an be improved to obtainmore detailed sidelobe features of b0 (l, m).Similar to applying amplitude tapering in low-sidelobe aperture antennas, a weight-ing fun
tion w (u, v) is often imposed in the u − v domain to suppress sidelobes of thesynthesized beam. Therefore the beam 
al
ulation has a general form
b0 (l, m)⇔W (u, v)w (u, v) (3.120)where ⇔ represents the Fourier transformation pair [8℄[9℄[31℄.3.7.6 Image RetrievalOperating as a spatial �lter, the response of a 
orrelator array to an extended sour
e isobtained by a multipli
ation in the u− v domain

Vmea (u, v) = W (u, v)w (u, v)V (u, v) (3.121)or a 
onvolution in the l −m domain
Imea (l, m) = I (l, m) ⋆ b0 (l, m) (3.122)as shown in Fig. 20. Sin
e the RHS's of (3.121) and (3.122) are related by the Fouriertransformation, the sour
e image Imea (l, m) 
an be retrieved by the IFFT of sampledvisibility Vmea (u, v)

Vmea (u, v)⇔ Imea (l, m) (3.123)For a better assessment of the array's performan
e, the image retrieval pro
ess 
an besimulated by spe
ifying a sour
e with a known brightness distribution I (l, m) obtainedfrom an a
tual astronomi
al measurement. In this paper, however, due to the la
k ofmeasured raw-data, the sour
e is spe
i�ed in the u − v domain by applying ben
hmarkvisibility fun
tions provided. For instan
e, the visibility of a 2-D Gaussian sour
e isde�ned by
V (u, v) =

1√
2πσ

exp
[

−
(

u2 + v2
)

/2σ2
] (3.124)where σ2 is the varian
e that modulates the angular width of the sour
e. With thisanalyti
al form of V (u, v), the exa
t value of sampled visibility Vmea (u, v) at an arbitraryspatial frequen
y is 
al
ulated by (3.121) [8℄[9℄[31℄.87



3.7.7 Basi
 Two-Elements InterferometerAn interferometer system 
an be expressed s
hemati
ally in a fairly general way in Fig.22. Two antennas, ea
h with its amplifying system, are 
onne
ted to a 
orrelator (or mul-tiplier), whi
h in
ludes an averaging or integrating 
ir
uit with a spe
i�ed time 
onstantthat is mu
h longer than the re
ipro
al of the frequen
y bandwidth of the system, so thatmany voltage impulses are averaged in a simple observation [8℄[9℄[31℄.The interferometer is assumed to observe an extended sour
e of in
oherent and sta-tisti
ally radiation. The antennas are pointed in the same dire
tion. For these 
onditionsthe output of the 
orrelator is
r (τ) =

∫ ∞

−∞

∫ ∞

−∞
Γ̂ (ξ′, ν)A1 (ν)A

∗
2 (ν) Ĝ1 (ξ

′ − ξ, ν) Ĝ∗
2 (ξ

′ − ξ, ν) exp (j2πντ)dνdξ′(3.125)in whi
h� r (τ) is the output of the 
orrelator� Γ̂ is the line-integrated brightness distribution of an isolated, �nite sour
e� Â is the frequen
y response of the ampli�er� Ĝ is the antenna voltage gain� ν is the frequen
y (Hz)� τ = τg − τi is the di�eren
e between in transit time from a plane wavefront in spa
eto the 
orrelator via the two possible paths� τg is the geometri
al 
omponent of τ� τi is the instrumental 
omponent of τ� ξ = sin θ 88



Figure 22. Radio Astronomy - Basi
 
orrelator interferometer system.This formula is quite general. In the 
ase of two identi
al antennas with identi
al,band-limited ampli�ers it redu
es to
r (τ) =

∫ ∞

−∞
dξ′
∫ ν0+∆ν/2

ν0−∆ν/2

dνΓ̂ (ξ′, ν) |A (ν)|2
∣

∣

∣
Ĝ (ξ′ − ξ, ν)

∣

∣

∣

2

exp (j2πντ) (3.126)The time delay τ is the di�eren
e between the geometri
al delay τg and is the instrumentaldelay, τi. The instrumental delay is adjusted to the value Dξ1/c, so that
τ =

D (ξ′ − ξ1)
c

(3.127)where D is the separation of the antennas in meters and c is the velo
ity of the wave inspa
e. If the ampli�er passband ∆ν is su�
iently small, so that the antenna pattern andthe brightness distribution do not vary signi�
antly over the band, Equation 3.126 
an bewritten
r (ξ0, ξ1, D) =

∫ ∞

−∞
Γ̂ (ξ′, ν) P̂ (ξ0, ξ

′, ξ1) dξ (3.128)where ξ0 is the dire
tion in whi
h the antennas are aimed and ξ1 is the dire
tion forwhi
h τ = 0. The fun
tion P̂ (ξ0, ξ
′, ξ1) is the produ
t of the antenna power pattern

∣

∣

∣
Ĝ (ξ0 − ξ′, ν0)

∣

∣

∣

2, the bandwidth pattern (or delay pattern)
B (ξ1 − ξ′,∆ν,D) =

∫ ∆ν/2

−∆ν/2

|A (ν)|2 exp [−j2πν (ξ1 − ξ′)D/c] dν (3.129)and the interferen
e pattern
F (ξ1, ξ

′, D) = exp [−j2πν0 (ξ1 − ξ′)D/c] (3.130)89



The bandwidth pattern has a peak in the dire
tion ξ1. When the sour
e and the antennabeamwidth are of small angular extent, the integrand in Equation (3.129) is nonzero overonly a small range of θ 
entered at θ0. The instrumental delay 
an be adjusted to thevalue Dξ0/c so the delay pattern also has a peak at ξ. Now let θ′ be de�ned as θ0 − θ;then θ is small and
ξ ≃ sin θ0 − cos θ0 sin θ = ξ0 − ξ cos θ0De�ne u as (D cos θ0) /λ0 . This is the spatial frequen
y and is the 
omponent of thebaseline (in wavelengths) in the dire
tion normal to θ0.Equation (3.128) 
an be rewritten
r (u) =

∫ ∞

−∞
Γ̂ (ξ, ν0) P̂ (ξ, u,∆ν) dξ (3.131)Now let us examine the form Equation (3.131) assumes when the bandwidth is narrowenough so that for all baselines the bandwidth pattern is mu
h wider than the antennapattern, and when sour
e being observed is, in turn, small 
ompared with the antennapattern. In this 
ase

r (u) =

∫ ∞

−∞
Γ̂ (ξ, ν0) exp (−j2πξu)dξ = γ̂ (u, ν) (3.132)This will be 
alled the �fringe fun
tion�. It is the Fourier transform of the brightnessdistribution, and it is apparent, therefore, that the interferometer 
an be used to make aFourier analysis of the stru
ture. This is the basis of aperture synthesis. It is seen from(3.132) and the de�nition of u that the spatial frequen
y measured with a given baselineis the baseline length, in wavelengths, proje
ted on a plane tangent to the 
elestial sphereat the lo
ation of the sour
e. By using a su�
ient number of di�erent baselines, enoughFourier 
omponents 
an be measured to permit the re
onstru
tion of the sour
e by Fouriertransformation [8℄[9℄[31℄.It has been assumed that the sour
e is �nite, in fa
t, that is small 
ompared withthe antenna beam. A sour
e of extent ∆ξ 
an be 
ompletely represented by sampling itsspatial frequen
y spe
trum at intervals u = 1/∆ξ. This follows from the basi
 propertiesof the Fourier series representation of a fun
tion with a �nite base. Furthermore, if thesmallest detail to be measured is ∆ξm. Thus, the number of baselines needed to perform a
omplete, one-dimensional analysis on a sour
e is equal to the width of the sour
e dividedby the width of the �nest detail that is to be resolved. A two-dimensional analysis requiresa number of baselines equal to the square of the number for one dimension.A Fourier series with dis
rete, uniform spa
ing of the terms in the frequen
y domainis a periodi
 fun
tion of the spatial 
oordinate. If one-dimensional antenna is synthesized90



by means of a series of interferometers whose baselines in
rease su

essively in length bya uniform interval, the response to a point sour
e is a 
omb-shape series of evenly spa
edspikes in the ξ dimension. In an a
tual observation, an isolated single sour
e 
an bemapped a

urately by this means. If there are other sour
es present, however, the mapof the sour
e under investigation may be seriously distorted by their intera
tions withthe higher-order responses, whi
h are usually termed �grating lobes�. The spa
ing of theresponses in the ξ domain is inversely proportional to the in
rement of the baseline spa
ingin the u domain; therefore, it is important to plan the observing program a

ording to thenature of the sour
e under investigation. In a two-dimensional synthesis operation, therewill be a two-dimensional array of grating lobes, of whi
h examples will be seen [8℄[9℄[31℄.In the Fourier-series method of aperture synthesis, it is ne
essary to measure ea
h
omponent of the series only on
e. If several antennas are available, together with thene
essary ele
troni
s to permit simultaneous operation of several baselines, the most e
o-nomi
al arrangement of the antennas is one whi
h provides the largest number of ne
essarybaselines with the minimum number of dupli
ations. It is possible to arrange four anten-nas on a straight line in su
h a way that there are no redundant baselines; but for largernumber of elements and for two-dimensional arrays redundan
ies are inevitable [40℄.The aperture illumination is the distribution of the ele
tri
 �eld in the plane of theantennas. In a synthesis array 
onsisting of a small number of antennas, for example,the illumination would 
onsist of a number of dis
rete points in the aperture plane. Theauto
orrelation fun
tion of the illumination is 
alled the transfer fun
tion. The Fouriertransform of the brightness distribution (in spatial 
oordinates) is the brightness spe
trum(in spatial frequen
y terms), and the produ
t of the brightness spe
trum and the transferfun
tion is the output in terms of spatial frequen
ies: that is, the observed brightnessspe
trum, whose Fourier transform is the 
onventional radio teles
ope output. Onlythose spatial frequen
y 
omponents are present in the output whi
h are also present inthe transfer fun
tion; thus, the performan
e of the syntheti
 teles
ope 
an be investigatedby examinating its transfer fun
tion. The transfer fun
tion has the same 
on�gurationas the diagram of the antennas in the u dimension, or in the u− v plane in the 
ase of atwo-dimensional array.3.7.8 Comparison between Conventional Sum Arrays and Corre-lator ArraysIn early radio astronomi
al measurements in 1940s, 
onventional two-element sum arraysare used as an alternative for 1-D and 2-D image retrieval of radio sour
es. Di�erent spatial91



frequen
ies are sampled by varying the baseline between two antenna elements. On theother hand, multi element sum arrays are usually used as a probe for dire
tly mapping thesour
e in the angular domain, and the dire
tion of probe is steered by applying phasedarray te
hniques. Here we 
ompare both types of sum arrays to 
orrelator arrays, and itwill be shown that 
orrelator arrays have unique advantages in both noise redu
tion anddata gathering e�
ien
y [9℄[31℄.Fig. 23(a) shows a s
hemati
 diagram of a two-element sum array. The voltage signalsfrom both antennas are summed and squared by a square-law dete
tor, and the outputof the dete
tor is low-pass �ltered before being re
orded. Assume the signal voltage fromantenna I is V sin (2πf0t). The output of antenna II is therefore delayed by τ =
(−→
B · −→s

),where −→B is the baseline ve
tor, −→s is the unit ve
tor pointed to the sour
e and c is the wavevelo
ity in free spa
e. Noti
ing that u =
(−→
B · −→s

)

/ (λ) . The output of the square-lawdete
tor is
W ′ (u) =

{

V sin (2πf0t) + V sin

[

2πf0

(

t− uλ

c

)]}2 (3.133)By �ltering harmoni
s of 2πf0t, whi
h represent radio frequen
ies, the output of the sumarray is
W (u) = V 2

[

1 + cos

(

2πf0uλ

c

)] (3.134)For a 
ertain radio sour
e, the 
osine term in (3.134) is a fun
tion of u only and representsthe spatial frequen
y to whi
h the array responds. It is not �ltered out sin
e varies slowlyas the Earth rotates. However, due to the noise power whi
h is typi
ally several ordersof magnitude greater than the signal from the sour
e, the large o�set represented by the
onstant term in (3.134) is desired to be removed.In the two-element 
orrelator array shown in Fig. 23(b), output signals of two an-tenna elements are multiplied and time-averaged, namely, 
orrelated. Using the sameexpressions as those in (3.133), the output of the multiplier is
W ′ (u) = V 2 sin (2πf0t) sin

[

2πf0
(

t− uλ
c

)]

= V 2

2

[

cos
(

2πf0uλ
c

)

+ cos (4πf0t) cos
(

2πf0uλ
c

)

+ sin (4πf0t) sin
(

2πf0uλ
c

)]

(3.135)The se
ond and the third terms in (3.135) vanish after being time averaged. Thereforethe output of the 
orrelator is
W (u) =

V 2

2
cos

(

2πf0uλ

c

) (3.136)92



with the 
osine term remains only [9℄[31℄.For a sum array with elements, sin
e the output signals of all elements are summed up,it is not feasible to identify the u− v domain response of the array. Using su
h a multielement sum array, a radio sour
e is usually mapped in l −m domain by 
onvolving itspower pattern and the brightness distribution of the sour
e, and only one data is obtainedat any instant. In this 
ase, what 
ontributes most to the 
onvolution is the brightnessdistribution within a small angular region determined by the narrow beam formed by thearray. In order to a
hieve a radio map within a reasonably large angular region, the mainbeam of the array must be phase-steered. On the other hand, a 
orrelator array respondsto the entire FOV by sampling multiple spatial frequen
y 
omponents simultaneously. Itis therefore more e�
ient than a sum array in gathering data for mapping purpose [9℄[31℄.

Figure 23. Radio Astronomy - Comparison between the signal pro
essing s
hemes of a 2-element: (a)sum array and (b) 
orrelator array.
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3.8 Parti
le Swarm Optimization for Radio Astronomy[31℄3.8.1 Introdu
tionCompared to 
onventional deterministi
 and pseudodynami
 programming te
hniques dis-
ussed in other works, the PSO optimizer provides more �exibilities to optimize the arrayperforman
e in both the u − v domain and the l −m domain, by performing statisti
alexplorations in high-dimensional, non-linear solution spa
es. Ben
hmark examples arepresented to illustrate its e�e
tiveness in designing 
orrelator arrays with typi
al open-ended and 
losed 
on�gurations su
h as the �Y� and the Reuleaux triangle, by obtainingoptimal arrays that outperform uniform arrays and representative existing designs [31℄.
3.8.2 A Numeri
al Example: A Uniform Y-Shaped ArrayBy utilizing basi
 formulations (3.113)-(3.123), an analyzer is developed to 
al
ulate the
u−v 
overage and the synthesized beam of a 
orrelator array with an arbitrary 
on�gura-tion f (x, y). Let us take a 27-element array is 
onstru
ted on a Y-shaped rail tra
k, whi
his a representative open-ended 
on�guration similar to the Very Large Array (VLA) atSo
orro, New Mexi
o (L = 34°, E = 0°). The entire array is rotated by 5° from the north-south dire
tion to a
hieve a better u − v 
overage for observations at low de
linations.Ea
h arm of the �Y� extends up to 21 km and ea
h antenna element is a 25m-diameterparaboli
 re�e
tor. The ratio between the maximum baseline (Bmax = 21

√
3km) and thedimension of ea
h individual antenna element is approximately 1400.A Gaussian sour
e with the visibility spe
i�ed in (3.124) is used to test the imageretrieval 
apability of the array. The varian
e of the Gaussian fun
tion is sele
ted as

σ = (Bmax) / (8λ)and the original sour
e image I (l, m) is plotted in Fig. 24(a) by theinverse Fourier transform of (3.124) at 128 × 128 FFT grids. The image plot is s
aledfrom −30dB to 0dB [31℄. 94



Figure 24. Radio Astronomy - (a) Original sour
e image with the visibility spe
i�ed by the Gaussianfun
tion in (3.124). (b) Image retrieved by the uniform Y-shaped array shown in Fig. 4(a).3.8.3 Optimization of Y-Shaped Arrays3.8.3.1 The Parti
le Swarm Optimization Te
hniquePSO is a re
ently proposed evolutionary algorithm that addresses both 
ontinuous anddis
rete optimizations by applying the swarming behavior in the nature. The basi
 prin-
iple of PSO is to iteratively explore the solution spa
e using a swarm 
onsists of multipleagents. Ea
h agent represents a 
andidate design and its performan
e is quanti�ed bya �tness fun
tion representing the goal of optimization. At ea
h iteration, all agents in-ter
hange the information of the best design that has ever been found. Ea
h agent isnavigated by its own experien
e and the knowledge from other agents. This pro
edurerepeats until the swarm 
onverges to the global optimum. Being applied to a large varietyof pra
ti
al ele
tromagneti
 appli
ations, a robust PSO optimizer has been developed [31℄.The PSO algorithm is applied in this se
tion to optimize element positions on ea
harm of the �Y� in order to redu
e the redundan
y in the u− v 
overage and suppress thesidelobes in the synthesized beam. The number of antenna elements in ea
h optimization is�xed to be 27, and the 
andidate design has a three-fold symmetry (i.e., the nine elementson ea
h arm have the same distribution) to guarantee a good azimuthal -distribution. Tomaintain the same Bmax of 21√3km, it is also assumed that there is always an elementlo
ated at the end of ea
h arm. Therefore the array 
on�guration is represented by aneight-dimensional real ve
tor
−→x = [x1, x3, .., x8] (3.137)in whi
h xi ∈ (0, 21) (unit: kilometers) represents the radial displa
ement of the ith95



element from the 
enter of the array. The optimization is performed over −→x and minimizesthe �tness fun
tions dis
ussed in following subse
tions depending on di�erent optimizationgoals [31℄.3.8.3.2 Optimizing the U-V CoverageThe �rst-order requirement of optimizing the snapshot u − v 
overage is to redu
e theredundan
y while maintaining the uniformity of u− v samplings.The �tness fun
tion 
an be therefore de�ned as
f = −Nsampled (3.138)to maximize the number of sampled grids. The negative sign is used due to the defaultsetting of PSO as a minimizer.The optimization is exe
uted using a 10-agent swarm for 500 iterations. The optimizedarray (denoted by Y1) and its u−v 
overage are plotted in Fig. 25(a) and (b), respe
tively.The radial displa
ements of nine elements on ea
h arm are tabulated in Table II. The �xedelement at the end of ea
h arm is denoted x9 as and it has a 
onstant radial displa
ementof 21 km. Compared to the uniform Y-shaped array, the u− v samplings are distributedin 558 grids with 24 more sampled grids obtained. More importantly, there are no moreoverlapping samplings in the arm dire
tions due to the slight perturbation indu
ed intothe uniform element distribution.In order to verify the robustness of the optimizer, 10 independent optimizations areperformed using the �tness fun
tion de�ned in (3.138). All these trials 
onverge to thesame optimal design shown in Fig. 25(a) and the u− v 
overage with 558 sampled gridsis the best result that 
an be a
hieved. It is worthwhile to mention that, although theideal number of 702 sampled grids is used as the target for optimizing element positions,it is not possible to a
hieve this exa
t number sin
e there is not su
h a fun
tion f (x, y)whose auto
orrelation is 
ompletely �at in the u− v domain [31℄.A similar 
riterion is applied to optimize the u − v 
overage for an 8-hour tra
kingobservation, with the only di�eren
e in sele
ting the value of Ngrid de�ned in (??). Underthe same observation 
ondition previously mentioned (h = 8 hours, ∆t = 5 minutes), thetotal number of u− v samplings is in
reased by a fa
tor of (h) / (∆t) = 96. Ideally Ngridshould be in
reased by a fa
tor of √96, however, the number of FFT grids (128 × 128)in the mapping pro
edure is 
omparable to the number of u − v samplings in this 
ase.A Ngrid = Nu = Nv = 128 is therefore sele
ted to a
hieve more sampled FFT grids. The�tness fun
tion is de�ned to be similar to (3.138). The same optimization setup of 1096



agents and 500 iterations is applied. By in
orporating the analysis of Earth rotation e�e
tin ea
h �tness evaluation, the total optimization time is in
reased to about 20 minutes[31℄.The 
on�guration of optimized array (Y2) and its tra
king u− v 
overage are plottedin Fig. 26(a) and (b), respe
tively. The optimized element lo
ations are also tabulated inTable I. In order to represent the number of sampled grids in a 
on
ise manner with su
ha large Ngrid, we de�ne the �lling ratio of the u− v domain as
R =

As

Ac
(3.139)where As is the total sampled area and Ac is the area of the big 
ir
le of the six-pointstar. Compared to the uniform array, the �lling ratio of array Y2 is in
reased from 68.9%to 86.5% by non-uniformly lo
ating antenna elements on ea
h arm [31℄.

Figure 25. Radio Astronomy - (a) Con�guration of the optimized 27-element Y-shaped array (Y1) forthe maximum snapshot u− v 
overage. (b) Snapshot u− v 
overage of Y has 558s sampled grids.97



Figure 26. Radio Astronomy - (a) Con�guration of the optimized 27-element Y-shaped array (Y2) forthe maximum tra
king u− v 
overage. (b) Tra
king u− v 
overage of Y2 has a �lling ratio of 86.5%, asde�ned in (3.139).3.8.3.3 Optimizing the Synthesized BeamIn order to suppress the sidelobes in the synthesized beam, the peak sidelobe in the 2-Dbeam plot is identi�ed and a �tness fun
tion is de�ned as:
f = max [b0 (l, m)] in sidelobe region (3.140)The beam is 
al
ulated based on the u−v 
overage of the 8-hour tra
king observation, anda −15dB Gaussian tapering is applied to the u−v samplings as previously mentioned. Fig.27(a) and (b) plot the optimized array 
on�guration (Y3) and its synthesized beam using10 agents for 500 iterations. The element lo
ations of the optimal design are presented inTable II.Array (Y3) also has good sidelobe features for other sour
e de
linations. As shown inFig. 28, the optimized array outperforms the uniform Y-shaped array in a wide rangeof sour
e de
linations from +30° to +80° with SLLs around or lower than −18 dB. Thedeteriorated SLL when tra
king a sour
e at +90° is possibly due to the redundan
y re-sulted by the three-fold symmetry. A better SLL at +90° 
an be a
hieved by optimizingan array with asymmetri
al element distributions on ea
h arm [31℄.
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Table II. Radio Astronomy - Radial Element Displa
ement of Optimized Y-Shaped Arrays (Unit:Kilometers).

Figure 27. Radio Astronomy - (a) Con�guration of the optimized 27-element Y-shaped array (Y2) forthe lowest SLL. (b) Synthesized beam of Y has a peak SLL of −20.3 dB.

Figure 28. Radio Astronomy - Comparison between a uniform array, a power-law array (α = 1.7) andthe optimized array Y3 for SLLs in 8-hour tra
king observations with di�erent sour
e de
linations.99



3.8.3.4 Ben
hmark ComparisonsTable II 
ompares performan
es of the uniform and three optimized Y-shaped arrays. Itis quite obvious that ea
h of (Y1), (Y2) and (Y3) only outperforms other designs in thesnapshot u− v 
overage, the tra
king u− v 
overage and the peak SLL of the synthesizedbeam [the peak SLL referred in Tables II and IV 
orresponds to the maximum of b0 insidelobe region, as de�ned in (3.140)℄, respe
tively. By realizing that these design goalsare not dire
tly interrelated to ea
h other, it is appropriate to justify here the advantageof applying PSO to 
orrelator antenna array designs.First of all, PSO provides a �exible optimization platform to a

ommodate di�erent
ir
umstan
es that might be en
ountered in pra
ti
al astronomi
al measurements. Sin
ethe only input required by the optimizer is the �tness value, a large variety of design goals
an be approa
hed by simply applying di�erent �tness fun
tions without signi�
antlymodifying the optimizer itself. On the other hand, in some 
onventional optimizationmethods su
h as the gradient-based method, antenna lo
ations are dire
tly manipulateda

ording to the distribution density fun
tion of snapshot u− v samplings, whi
h makesthe methodology not as e�e
tive for optimizing the synthesized beam.Se
ondly, the �tness fun
tions elaborated in (3.138) and (3.140) enable the optimizerto be more e�e
tive in obtaining the desired u − v 
overage and synthesized beam. Forinstan
e, the snapshot u − v 
overage of a 
ir
ular array is optimized by maximizingthe summation of u − v separations using simulated annealing (SA). In order to test itsappli
ability in designing Y-shaped arrays, we did four 
omparative optimizations in PSOusing the same �tness fun
tion of
f =

MB
∑

j,k;j 6=k

∣

∣

∣

−→
B j −−→B k

∣

∣

∣
(3.141)and di�erent element numbers of N = 9, 12, 18 and 27. Here −→B j and −→B k represent the

jth and the kth baseline ve
tor, respe
tively; and MB = (N (N − 1)) / (2) is the totalnumber of baselines [31℄.Finally, let us 
onsider the a
tual VLA 
on�guration designed by the power-law, inwhi
h the ith element's position is de�ned by (unit: kilometers)
xi = 21×

(

i

9

)α (3.142)where α = 1.7. In PSO-optimized arrays dis
ussed above, it is interesting to noti
e that Y2resembles a �reversed� version of the power-law design, whi
h has more antenna elements
on
entrated near the 
enter rather than near the edges. In fa
t, the power-law-based100



design is sele
ted largely for reasons of e
onomy. By sele
ting a proper α, the total numberof antenna stations along the rail tra
k is signi�
antly redu
ed by sharing some stationsbetween multiple array 
on�gurations with di�erent s
ales. However, under the parti
ularobservation 
onditions 
onsidered in this 
hapter, the highly-
ondensed elements near theedge in the 
on�guration of Y2 
ompensate the Earth-rotation e�e
t more e�
iently. Itis observed in Table II that the �lling ratio of the power-law design is only 59.8%, whi
his even worse than the uniform Y-shaped array. Moreover, its synthesized beam is alsooutperformed by the optimized low-SLL design Y3 in a wide range of sour
e de
linations,as shown in Fig. 29 [31℄.

Figure 29. Radio Astronomy - (a) Original image of a Gaussian sour
e and retrieved images by (b)array Y1, (c) array Y2 and (d) array Y3 . The best image is retrieved by optimized array Y2.
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Chapter 4Re
tangular Thinned Arrays Based onM
Farland Di�eren
e Sets
4.1 Introdu
tionARRAY systems for frequen
y-modulated 
ontinuous-wave (FMCW) radars and SAR ap-pli
ations usually have to exhibit di�erent total main beam widths (TMBWs) in azimuthand elevation and low PSLs [41℄, [15℄. To meet these requirements and provide suitable res-olutions, large re
tangular layouts are needed [41℄, [15℄. Sin
e large fully-populated re
tan-gular arrangements 
an yield to una

eptable high 
osts, weight, power 
onsumption, andfeeding network 
omplexity [1℄, [42℄, ar
hite
tural solutions with a redu
ed number of ele-ments over large apertures with satisfa
tory PSLs and TMBWs values are often preferred.Towards this end, thinning te
hniques are generally exploited [1℄, [42℄ even though theirmain drawba
k is a lower sidelobe 
ontrol when 
ompared to their �lled 
ounterparts [1℄,[42℄. In order to over
ome su
h a limitation, several approa
hes have been proposed in
lud-ing the random displa
ement of the array elements [3℄, [6℄, the dynami
 programming [43℄,and the sto
hasti
 optimization [44℄-[45℄. In su
h a framework, analyti
al te
hniques seemto be promising tools be
ause of their numeri
al e�
ien
y and the PSL 
ontrol [19℄, [5℄.By exploiting the auto-
orrelation properties of binary sequen
es, su
h as di�eren
e sets(DSs) [19℄-[21℄ or almost di�eren
e sets (ADSs) [22℄-[46℄, a regular and a-priori predi
tablebehaviour of the sidelobes is guaranteed [47℄. Unfortunately, only spe
i�
 geometries andarray sizes 
an be synthesized [5℄, [25℄, [48℄. Despite the availability of quite large DS-ADS repositories [49℄-[50℄, planar arrays based on DSs and ADSs are usually square [21℄,[48℄ or almost square [5℄, [48℄, while few examples of DS-based re
tangular arrangementswith di�erent azimuth and elevation TMBWs are a
tually used (Following the approa
h103



dis
ussed in [19℄, [5℄, a re
tangular DS array of size N1 × N2 
an be generated only if a1D DS is available with length N = 2r1r2 − 1 su
h that N1 = 2r1 − 1 and N2 = N/N1 are
oprime and greater than one. A

ordingly, only 6 of su
h sequen
es exist for N1 < 30
orresponding to N = {15, 63, 255, 511, 1023} [49℄, and only 3 these exhibit strongly dif-ferent azimuth and elevation TMBWs [i.e. (N1 ×N2) = {(3 × 85), (3× 341), (7× 73)}]).[41℄, [5℄. In this paper, thinned re
tangular arrays based on M
Farland sequen
es [51℄,whi
h are a parti
ular 
lass of DSs, are analyzed for the �rst time to the best of the au-thors' knowledge, and a suitable synthesis pro
edure based on a binary Geneti
 Algorithm(GA) [44℄ is proposed (M
Farland sequen
es, likewise two-dimensional DSs [5℄, exhibit atwo-level auto
orrelation fun
tion). It is worthwhile to point out that the exploitation ofsu
h a 
lass of DSs enables the extension of the design approa
h proposed in [19℄, [5℄ tore
tangular layouts of size (being a prime number) with di�erent azimuth and elevationTMBWs.The outline of the 
hapter is as follows. Se
tion 4.2 introdu
es M
Farland sequen
esand their appli
ation to array thinning. Afterwards, the GA-based synthesis te
hnique fordesigning M
Farland arrays is presented (Se
tion 4.3) and a set of representative numeri
alresults 
on
erned with di�erent apertures and thinning fa
tors is provided (Se
tion 4.4)to show features, potentialities, and limitations of the proposed thinning strategy. AnAppendix is present in Se
tion 4.5.4.2 Mathemati
al FormulationLet us 
onsider a two-dimensional regular latti
e of P × Q positions spa
ed by sx and
sy wavelengths along x and y, respe
tively. The array fa
tor of a thinned arrangementde�ned over su
h a latti
e is equal to [42℄

F (u, v) =
P−1
∑

p=0

Q−1
∑

q=0

d (p, q) exp [j2π (psxu+ qsyv)] (4.1)
u = sin (θ) cos (φ) and v = sin (θ) sin (φ) being the dire
tion 
osines. Moreover, d (p, q) isthe M
Farland binary thinning sequen
e[48℄

d (p, q) =

{

1 (p, q⌋P , q⌋P+2) ∈M

0 otherwise
p = 0, ...., P − 1, q = 0, ..., Q− 1 (4.2)where P is a prime number, Q = P (P + 2), M is a M
Farland DS [51℄ with indexes

N = P 2(P + 2), N = P (P + 1) and Λ = P . Furthermore, ·⌋Pand ·⌋P+2 stand for the104



reminder of division by P and P + 2, respe
tively. It is now worth noti
ing that severalM
Farland arrays 
an be generated for ea
h P value. From the M
Farland generationte
hnique in the Appendix, it follows that a distin
t DS,D = {d (p, q) , p = 0, ..., P−1, q =
0, ..., P (P+2)−1}, 
orresponds to (a) ea
h value of the integer k in [0, ..., P+1], (b) the setof P +1 ve
tors (at, bt) (t = 0, ..., P +1, t 6= k), and (c) the P +1 elements (ŵ(t+1)

1 , ŵ
(t+1)
2 )

(t = 0, ..., P +1, t 6= k) used for deriving M. As a result, up to (P +2)!×P 2P+2 di�erentM
Farland sets 
an be generated for ea
h prime P . In turn, ea
h M
Farland set de�nesup to P 2(P + 2) di�erent layouts by performing 
y
li
 shifts of the thinning matrix [5℄
D

(σx,σy) (p, q) =
{

d
[

(p+ σx)⌋P , (q + σy)⌋P (P+2)

]

p = 0, ...., P − 1, q = 0, ..., P (P + 2)− 1

p = 0, ...., P − 1, q = 0, ..., P (P + 2)− 1}

σx and σy being the shift indexes along the array axes. In 
on
lusion, the total numberof di�erent M
Farland arrangements generated for ea
h P turns out to be
Ψ (P ) = (P + 2)2 × (P + 1)!× P 2P+4 (4.3)where (·)! indi
ates the fa
torial.As for the power pattern, a M
Farland array de�ned over a re
tangular grid of P ×

P (P + 2) lo
ations satis�es the following sampling property [5℄
∣

∣

∣

∣

F

(

k

sxP
,

l

syP (P + 2)

)
∣

∣

∣

∣

2

=

P−1
∑

m=0

P (P+2)−1
∑

n=0

χ (m,n)× exp

[

j2π

(

mk

P
+

ml

P (P + 2)

)] (4.4)where χ(m,n) ,
P−1
∑

m=0

P (P+2)−1
∑

n=0

d (p, q) d
[

(p,+m)⌋P , (q + n)⌋P (P+2)

] is the two-valued pe-riod auto
orrelation fun
tion of D [51℄ whose values are
χ (m,n) = (K − Λ) δ (m,n) + Λ

m = 0, ..., P − 1, n = 0, ..., P (P + 2)− 1 (4.5)
δ (m,n) being the delta fun
tion [i.e δ (m,n) = 1 ifm = n = 0 and δ (m,n) = 0 otherwise℄.As an example, Fig. 30(a) shows a M
Farland array obtained for P = 3, while the
orresponding auto
orrelation reported in Fig. 30(b). From 4.4 and 4.5, it follows thatthe samples of the power pattern of M
Farland arrays are a-priori known. Moreover, ithas been proved in [5℄ that they produ
e patterns with mu
h lower PSLs that are typi
alwith 
ut-and-try random pla
ement. More in detail, Monte Carlo simulations have shownthat 
ompared to a random (nonlatti
e) pla
ement of elements on the same aperture, aDS array has an expe
ted PSL improvement of ≈ 1.5 + 10 log10(1− (K/N))−1[dB℄ [5℄.105



In order to fully exploit the features of M
Farland sequen
es for array thinning, asuitable synthesis pro
edure is presented in Se
tion 4.3.

Figure 30. M
Farland Re
tangular Arrays - Example of (a) a M
Farland array and (b) the asso
iated(two-level) auto
orrelation fun
tion (P = 3).4.3 M
Farland Array Synthesis Pro
edureIn order to �nd the optimal (i.e., with the lowest PSL) M
Farland layout for every P value,all Ψ(P ) dedu
ible arrays should be, in prin
iple, analyzed. Unlike other 2D DS-basedthinned ar
hite
tures [21℄, an exhaustive pro
edure is here 
omputationally unfeasibledue to the extremely wide number of layouts even for small P values. As an example,more than Ψ(P ) ≈ 2.15 × 1014 M
Farland arrays 
an be de�ned over a latti
e of size106



P × Q = 5 × 35 ( P = 5 - Table I). As a 
onsequen
e, a di�erent and more e�
ientsele
tion approa
h is mandatory to analyze the PSL properties of these arrangementsfor identifying the optimal layout.Towards this end, the problem of �nding the optimalM
Farland array among all existing Ψ(P ) layouts for a given is re
ast as an optimizationone where the �tness fun
tion to be minimized is de�ned as follows
Φ(D) , PSL{D} (4.6)where

PSL{D} ,
max

(u,v)∈Ω
|F (u, v)|

|F (0, 0)|2
(4.7)

Ω being the sidelobe region [21℄.Be
ause of the dis
rete nature of the des
riptors of the M
Farland sets [i.e., σx, σy, k,
(at, bt) and (ŵ(t+1)

1 , ŵ
(t+1)
2

) for t = 0, ..., P + 1, t 6= k℄, a binary GA-based approa
h [24℄,[44℄ is exploited. More spe
i�
ally, the following pro
edure is iteratively applied.1. Initialization (i = 0) - A randomly-
hosen initial population of C trial solutions(or individuals), ρc(i), c = 1, ..., C is de�ned;2. Coding - Ea
h individual ρc(i) en
odes the values of the M
Farland integer de-s
riptors σx ∈ [0, P − 1], σy ∈ [0, P (P + 2) − 1], k ∈ [0, P + 1], (at, bt) (at ∈
[0, P − 1], bt ∈ [0, P − 1], t = 0, ..., P + 1, t 6= k) and (ŵ(t+1)

1 , ŵ
(t+1)
2

)

∈ Vt+1
(

ŵ
(t+1)
1 ∈ [0, P − 1], ŵ

(t+1)
2 ∈ [0, P − 1], t = 0, ..., P + 1, t 6= k)

) into a binary string(or 
hromosome);3. GA-Evolution - At ea
h i-th iteration, the geneti
 evolution takes pla
es throughsele
tion, 
rossover, reprodu
tion, mutation and elitism operators [24℄, [44℄ takinginto a

ount the �tness values Φc = Φc{ρc(i)}, c = 1, ..., C of 
urrent trial solutions;4. Termination - The iterative optimization terminates when the optimal �tnessvalue, ΦPOP (i) = minc Φc{ρc(i)}, is smaller than an user-de�ned threshold or whena maximum number of iterations Imax has been rea
hed. Then, the �ttest trial in-dividual ρ̄ = argρ {mini (minc [Φc{ρc(i)}])} is assumed as the optimal solution (i.e.,the optimal setup for the M
Farland des
riptors). Otherwise, the iteration index isupdated (i→ i+ 1) and goto 3.It is worth to point out that, unlike [18℄, [24℄, the obje
tive of the GA pro
edure is herenot to design an optimally thinned array, but the sear
h of the �ttest arrangement interms of PSL among all available M
Farland layouts for a given P .107



4.4 Numeri
al Results and Dis
ussionThis se
tion is aimed at (a) numeri
ally assessing the features and the potentialities of theM
Farland re
tangular layouts and (b) validating the GA-based synthesis approa
h forgenerating optimal PSL arrangements when dealing with both small and large apertures.The GA-based sear
h has been applied with the following setup: 
ross-over probabilityequal to 0.7, mutation probability equal to 10−2, maximum number of iterations Imax =

5 × 103, population size C = 10. Moreover, has been assumed sx = sy = 0.5. It isworth remarking that, although dedu
ed for a broadside steering, the �nal layouts will beoptimal for sx = sy = 0.5 whatever the steering dire
tion [thanks to 4.4℄. Moreover, sin
ein most 
ases the highest se
ondary lobes appear near the main lobe in DS planar arrays[19℄, su
h layouts are expe
ted to represent the optimal ones also for most other steeringdire
tions and inter-element spa
ings.The �rst numeri
al experiment is 
on
erned with the M
Farland sequen
e with P = 3for whi
h an exhaustive analysis, although 
omputationally 
umbersome, 
an be stillperformed in a reasonable amount of time. The plot of the PSL values of the whole setof Ψ(P )⌋P=3 = 3.54 × 107 M
Farland arrays indi
ate that several DS layouts exhibitPSLs equal or very 
lose to the optimal one PSLopt = −9.3dB [Fig. 31(a)℄. This is also
on�rmed by the index ∆(η) given by
∆(η) ,

Ψ(P )⌋PSL≤ηPSLopt

Ψ(P )
(4.8)and de�ned as the fra
tion of M
Farland layouts that exhibit a PSL equal or below ηtimes the optimal value PSLopt (Fig. 32). As a matter of fa
t, although the optimal
on�gurations are quite rare [∆(η = 1.0) ≈ 5.5×10−4- Fig.32℄, a non-negligible portion ofthe randomly-generated layouts exhibits a PSL 
lose to PSLopt [∆(η = 0.9) ≈ 0.01℄. Thissuggests that the GA-based sear
h method should qui
kly �nd a sub-optimal 
on�gura-tion, while a larger number of iterations may be required to a
tually rea
h 
onvergen
e tothe global optimum. Su
h a behaviour is pointed out by the plot of the evolution of theoptimal GA solution within the solution spa
e of M
Farland arrays in Fig. 31(b) wherethe blue 
rosses identify the elements of the GA solution set at the i-th GA iteration, whilethe red line is 
on
erned with the overall (ordered) M
Farland solution set as a fun
tionof the sequen
e index. Indeed, less than 300 iterations are su�
ient to �nd a M
Farlandarrangement with PSL ≈ −8.6dB, while the 
onvergen
e is rea
hed after Iconv = 1693steps. Su
h an out
ome 
on�rms that the GA-based synthesis is able to e�e
tively samplea large solution spa
e �nding the optimal M
Farland layout 
hara
terized by a low PSLvalue despite only 12 a
tive elements over a latti
e of 45 positions [Fig. 30(a)℄.108



Figure 31. GA-Based M
Farland Synthesis - Plots of (a) the PSL values of the whole set ofM
Farland arrays and (b) evolution of the PSL of the GA solution during the iterative (i being theiteration index) sampling of the M
Farland solution spa
e.Similar 
on
lusions 
an be drawn from the analysis (non exhaustive, but limited to aper
entage of the whole set of M
Farland 
on�gurations) 
arried out for P = 5 and P = 7[Figs. 33(a) and (b)℄, even though a faster 
onvergen
e of the GA-sear
h is expe
ted whendealing with larger dimensions as suggested by the values of ∆(η) [e.g., ∆(η = 0.9) ≈ 0.1for P = 5 vs. ∆(η = 0.9) ≈ 0.01 for P = 3 - Fig. 32℄. This is further 
on�rmed bythe evolution of the GA solutions in Fig. 33. As a matter of fa
t, only Iconv = 52 and
Iconv = 47 iterations are ne
essary to rea
h the 
onvergen
e when P = 5 [Fig. 33(a)℄ and
P = 7 [Fig. 33(b)℄, respe
tively. 109



(a)Figure 32. M
Farland Re
tangular Arrays - Behaviour of ∆(η) versus P when η ∈ {0.7, 0.8, 0.9, 1.0}.

Figure 33. GA-Based M
Farland Synthesis - Evolution of the PSL of the GA solution during theiterative (i being the iteration index) sampling of the M
Farland solution spa
e when (a) P = 5 and (b)
P = 7. 110



For 
ompleteness, Fig. 34 gives the 
orresponding arrangements and power patterns.As expe
ted from DS theory, the optimal layouts at 
onvergen
e [ P = 5 - Fig. 34(a);
P = 7 - Fig. 34(
)℄ exhibit 
ontrolled and regular sidelobes [ P = 5 - Fig. 34(b); P = 7 -Fig. 34(d)℄ despite the massive thinning (ν , K/N = (P+1)/(P (P+2)) ≈ 0.17 for P = 5,
ν ≈ 0.13 for P = 7 - Table III). Moreover, thanks to the M
Farland distribution, the
orresponding ar
hite
tures give di�erent resolutions in ea
h angular domain as indi
atedby the lo
ations of the �rst nulls of the beam pattern (see zuvs. zv in Table III).
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P (N,K,Λ) Array Size Ψ(P ) ν zu zu PSLopt[dB℄
3 (45, 12, 3) 3× 15 3.54× 107 0.2667 6.66× 10−1 1.33× 10−1 −9.28
5 (175, 30, 5) 5× 35 2.15× 1014 0.1714 4.10× 10−1 5.74× 10−2 −10.41
7 (441, 56, 7) 7× 63 5.31× 1021 0.1270 2.85× 10−1 3.17× 10−2 −12.04
11 (1573, 132, 11) 11× 143 9.64× 1037 0.0839 1.81× 10−1 1..34× 10−2 −15.56
13 (2535, 182, 13) 13× 195 5.14× 1046 0.0718 1.53× 10−1 1.02× 10−2 −15.54
17 (5491, 306, 17) 17× 323 1.32× 1065 0.0557 1.17× 10−1 6.19× 10−3 −15.61
19 (7581, 380, 19) 19× 399 5.47× 1074 0.0501 1.05× 10−1 5.01× 10−3 −15.63
23 (13225, 552, 23) 23× 575 4.73× 1094 0.0417 8.69× 10−2 3.47× 10−3 −15.50
29 (26071, 870, 29) 29× 899 1.18× 10126 0.0334 6.89× 10−2 2.22× 10−3 −15.02Table III. M
Farland Re
tangular Arrays (P ≤ 29) - Features and Performan
e Indexes.
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(a) (
)

(b) (d)
Figure 34. GA-Based M
Farland Synthesis - Optimal M
Farland layouts (a), (
) and the
orresponding power patterns (b), (d) when P = 5 (a), (b) and P = 7 (
), (d).

In order to assess the performan
es of M
Farland thinned arrays also when impra
ti
al(for an exhaustive analysis) apertures are at hand, the next experiments are 
on
ernedwith 11 ≤ P ≤ 29. The results of the GA-based synthesis when P = 11 and P = 13 areprovided in Figs. 35 and 36. Despite the de
reasing thinning fa
tor (νP=11 ≈ 8.4× 10−2,
νP=13 ≈ 7.2 × 10−2 - Table I), high sidelobe do not appear sin
e PSLP=11 = −15.56dBand PSLP=13 = −15.54dB (Table I). Moreover, the power patterns in Fig. 36 [P = 11 -Fig. 36(a); P = 13 - Fig. 36(b)℄ show the sidelobe regularity expe
ted from the two-levelauto
orrelationM
Farland layouts notwithstanding the highly-sparse element distribution[P = 11 - Fig. 35(a); P = 13 - Fig. 35(b)℄.113



(a)
(b)Figure 35. GA-Based M
Farland Synthesis - Optimal M
Farland layouts (a) P = 11 and (b) P = 13.

(a) (b)Figure 36. GA-Based M
Farland Synthesis - Power patterns of the optimal M
Farland layoutsdedu
ed for (a) P = 11 and (b) P = 13. 114



Previous 
on
lusions 
an be also extended to wider M
Farland layouts ( P ≤ 29 -Table III). As it 
an be noti
ed, low PSL values are obtained whatever the P dimension(PSL ∈ [−15.61dB, −15.0]dB for P ∈ [17, 29] - Table III), despite the sharp redu
tion ofthe thinning fa
tor (ν < (1/P ) - Table III).As a �nal numeri
al validation, a 
omparison between the performan
es of the bestM
Farland array and those of the best sparse array with the same size and thinningfa
tor found by means of a traditional GA-based approa
h [51℄, [50℄ is provided. TheGA methodology is applied by assuming standard �binary� des
riptors of the geometry[24℄, [50℄, rather than the M
Farland des
riptors introdu
ed above. As a 
onsequen
e,the obtained design will not be a DS layout. More in detail, a state-of-the-art randomlyinitialized GA method (see [24℄, [50℄ for the implementation details) is employed fordesigning a thinned re
tangular array of size P ×Q = 7×63 with K = 56 a
tive elements.The sto
hasti
 optimization has been 
arried out by 
onsidering a GA population of size
10, a mutation probability equal to 10−2 and a 
rossover probability of 0.7. The maximumnumber of GA iterations has been set to 5×103 [24℄, [50℄. By 
omparing the performan
esobtained by the GA-optimized layout [Fig. 37(a)℄ with those of the M
Farland one [Fig.34(
)℄, it turns out that the sto
hasti
ally optimized ar
hite
ture does not to rea
h a PSLvalue [Fig. 37(b)℄ as low as that of the proposed layout [Fig. 34(d)℄ [PSLGA = −10.76dBvs. PSLMcFarland = −12.04dB℄ even though also non-DS layouts 
an be synthesized inthe former 
ase. Su
h a result is due to the size of the sear
h spa
e that has to be exploredby the standard GA methodology (i.e., 2441), whi
h is extremely larger than that de�nedby the M
Farland des
riptors (Ψ(P = 7) ≈ 5.31× 1021 - Table III).
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Figure 37. Comparison with Standard GA-Thinned Re
tangular Arrays - Optimal layout (a) and the
orresponding power pattern (b) obtained by GA when P = 7, Q = 63 and K = 56.
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4.5 AppendixIn this se
tion, a pro
edure for the generation of a M
Farland Sets is presented.Let be P a prime number and let us de�ne V0 = {(w1, w2) : 0 ≤ w1 ≤ P −1, 0 ≤ w2 ≤
P − 1, w2, w2 ∈ N}, H0 = {(0, 0)}and M0 = ∅. Sele
t an integer k ∈ [0, ..., P + 1] and
hoose P + 2 (not ne
essarily di�erent) ve
tors (at, bt) ∈ V0 with o ≤ t ≤ P + 1, t 6= k.For every t ∈ [0, ..., P + 1], let Vt+1 = Vt\Ht and determine the set Mt+1as follows:

Mt+1 = Mt, Ht+1 = ∅














Ht+1 =
{[(

pŵ
(t+1)
1

)⌋

P
,
(

pŵ
(t+1)
2

)⌋

P

]

, p = 1, ..., P − 1
}

if t 6= k

Mt+1 = Mt ∪
{[(

pŵ
(t+1)
1 + at+1

)⌋

P
,
(

pŵ
(t+1)
2 + bt+1

)⌋

P
, p = 0, ..., P − 1

]}where (ŵ(t+1)
1 , ŵ

(t+1)
2

) is randomly pi
ked element in Vt+1.From [51℄, it follows that MP+2 is a M
Farland DS (i.e. M , MP+2) with indexes
N = P 2(P + 2), K = P (P + 1), and Λ = P .
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Chapter 5Hybrid ADS-Based Te
hniques forRadio Astronomy Array Design
5.1 Introdu
tionThe design of 
orrelator (also known as interferometri
) arrays has been a topi
 of re-sear
h sin
e the1960s for appli
ations in radio astronomy [1℄-[52℄. The e�
ien
y of thedata gathering of 
orrelator arrays is related to their spatial �ltering properties [31℄, [8℄.Therefore, the design of a 
orrelator array essentially 
onsists in solving an optimal sam-pling problem [31℄ where the positions of the array elements are 
hosen to ensure optimalperforman
es in all possible observation situations (i.e., sour
e positions and durationsof the observation), for whatever s
ienti�
 purpose (e.g., single �eld imaging, mosai
ing,astrometry, dete
tion), and di�erent 
onstraints (i.e., 
ost, ground 
omposition and pra
-ti
ability, operation of the instrument) [31℄, [53℄, [54℄. In order to rea
h these obje
tivesand unlike traditional sum arrays, 
orrelator arrays have to generate either a maximal
overage in the spatial frequen
y (or ) domain or a minimum peak sidelobe level (PSL)in the angular (or ) domain [31℄, [8℄, [53℄ as detailed in Se
tion 5.2. Towards this end,many and 
ustomized strategies have been proposed in
luding minimum redundan
y [55℄,[40℄, [33℄, pseudo randomness [34℄, power laws [35℄, di�eren
e set arrangements [36℄, andminimization of the holes in the sampling [37℄. As regards optimization-based sum-arraydesign te
hniques [1℄, [56℄-[59℄, they also 
annot be dire
tly applied sin
e the array spa-tial 
overage evaluation, the Earth rotation e�e
ts [60℄, [29℄, and the beam 
al
ulationmust be taken into a

ount in the synthesis pro
edure as pointed out in [31℄ and [54℄.However, optimization-based design te
hniques 
an still represent an important tool forfuture planned instruments, espe
ially when the underlying ar
hite
ture is me
hani
ally119



re
on�gurable (as for the future planned ALMA [57℄ and SKA [58℄).In su
h a framework, valuable results have been obtained in [62℄, [31℄ thanks to theintegration of a tool for the systemati
 analysis of 
orrelator arrays and an e�e
tive par-ti
le swarm optimizer (PSO). However, despite the good performan
es, su
h a te
hniquedoes not exploit the available analyti
al knowledge on interferometri
 arrays [31℄. Usu-ally, introdu
ing a priori information in sto
hasti
 optimizers is known to improve theirperforman
es in terms of both rate of 
onvergen
e and �nal design properties [24℄, [25℄.This is expe
ted to hold true also for the synthesis of 
orrelator arrays. Therefore, thispaper is aimed at introdu
ing and numeri
ally validating a set of hybrid te
hniques thattake advantage of the a priori information on suboptimal analyti
ally derived 
orrela-tor arrangements. The proposed methodologies are based on re
ently introdu
ed binarysequen
es with almost ideal auto
orrelation properties, named Almost Di�eren
e Sets(ADSs) [61℄-[63℄. Su
h sequen
es are exploited in three di�erent ways: (i) as a 
odebookin an exhaustive sear
h approa
h; (ii) as initial trial solutions for a binary optimizationpro
ess (ADS -hybridized GA); (iii) as a-priori information for a real-
oded optimizationte
hnique (ADS-enhan
ed PSO). The main motivations of these re
ipes are:� ADSs seem to be good 
andidates for the synthesis of 
orrelator arrays sin
e theyexhibit 
orrelation properties very similar to those of DSs [5℄, [64℄, whose e�e
tive-ness in su
h a framework has been already shown [36℄, but they are available in awider set of admissible 
on�gurations [61℄[65℄[63℄;� GAs are highly e�
ient tools for dis
rete optimization problems [44℄ potentiallysuitable for the e�e
tive design of 
orrelator arrays whose elements lie on a regularlatti
e;� PSO [59℄ has already shown its e�e
tiveness and reliability when dealing with 
or-relator arrays [31℄;� the a-priori information 
an be straightforwardly integrated in sto
hasti
 optimiza-tion tools and it has proven to be e�e
tive in enhan
ing performan
es and 
on-vergen
e in array synthesis [24℄, [25℄. Indeed, a good initial population (based onsome a priori known sub-optimal solutions) 
ontains good �s
hemata� [66℄ whi
h 
anevolve through geneti
 operators to improve the GA speed of 
onvergen
e towardsthe global minimum (similar 
onsiderations apply to PSO, as well).The outline of the 
hapter is as follows. After a short review on 
orrelator arrays and ades
ription of the key problems in synthesizing interferometri
 arrangements (Se
tion 5.2),120



the performan
es of the design methodology (i) are analyzed to point out potentialitiesand limitations of the analyti
 ADS-based approa
h (Se
tion 5.3). Afterwards, the GA-(ii) and PSO-based (iii) hybrid methodologies are presented and numeri
ally validateddealing with ben
hmark problems (Se
tion5.4).5.2 Mathemati
al Formulation and Problem StatementThe interferometer beam, whi
h des
ribe the spatial �ltering features of a 
orrelator array,is de�ned as [8℄
S (l, m) = IFT {W (u, v)× a (u, v)} (5.1)where IFT {·} denotes the Inverse Fourier Transform operator, a (u, v) is a taperingfun
tion devoted to suppress the sidelobes in the domain [8℄, and W (u, v) is the u − v
overage fun
tion

W (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f (x, y) f (x− uλ, y − vλ) dxdy (5.2)where λ is the wavelength and f (x, y) is the element lo
ation [8℄.As far as tra
king observations are 
on
erned, the e�e
ts of the Earth rotation mustbe introdu
ed in the 
overage fun
tion (5.2), and the interferometer beam in (5.1) turnsout modi�ed as [8℄

ST (l, m) = IFT {WT (u, v)× a (u, v)} (5.3)
WT (u, v) being the tra
king u− v 
overage fun
tion [8℄ whi
h is a fun
tion of the sour
ede
lination D, the elevation E , the latitude L, the azimuth of the baseline A, and thetime angle during the observation Tk = kHπ

24(K−1)
. Moreover, H is the total tra
king time(in hours) and the number of snapshots 
olle
ted during the observation.As for the arising interferometer beam (5.3), the 
omputation of the inverse Fouriertransform is usually 
arried out by means of an IFFT pro
edure [8℄. Towards this end,the u− v domain is partitioned in Nu×Nv 
ells of size ∆v×∆u and the IFFT pro
edurelimits the l −m domain within the range − 1

∆u
≤ l ≤ 1

∆u
and − 1

∆v
≤ m ≤ 1

∆v
, while thebeam pattern ST is sampled at ( 1

ZNu∆u
, 1
ZNv∆v

), Z being the IFFT zero-padding fa
tor[31℄.For illustrative purposes, the element lo
ation fun
tion of an Y-shaped array with
N = 27 elements (L = 21 [km℄ and ϕ = 5 [deg℄) is shown in Fig. 38(a), while theasso
iated ST (u, v) pattern is reported in Fig. 38(b) in 
orresponden
e with a working121



frequen
y of 3.6 GHz and for the following setup: D = 34°, E = 0, L = 34°, H = 8 hours,
K = 97, Nu = Nv = 128, and ∆u = ∆v = 6.82×103. Analogously to [31℄, the plot in Fig.38(b) has been generated by applying an all-over Gaussian weighting a (u, v) with an edgetapering of −15dB. Moreover, Z has been set to 8 for visual purposes and only the angularrange within ±01 ar
 se
onds is displayed to highlight the near-in sidelobes. The design ofa 
orrelator array requires the optimization of the features ofW (u, v), WT (u, v), S (l, m),and/or ST (l, m) depending on the problem at hand. Standard ben
hmark synthesis prob-lems are stated in the following subse
tions and, for 
omparison purposes, the referen
eY-shaped arrangements in [31℄ similar to the Very Large Array (VLA) at So
orro, NM[8℄, [67℄, will be 
onsidered unless otherwise stated.

Figure 38. Y -shaped Arrays [P = 18, Q = 9, Λ = 4, r = 13, Equal-unequal arms ℄ - Plots of thearrangement (a) and asso
iated ST (u, v) (b) for the array Y3 [31℄; optimal ADS geometry with equal(
) or unequal (e) arms, and asso
iated synthesized beams (d),(f ).122



5.2.1 Problem A - Optimization of ST (u, v)The �rst ben
hmark problem is 
on
erned with the suppression of the sidelobes of theinterferometer beam during tra
king observations. Towards this end, the following metri
[31℄.
FA = PSL =

max
(l,m)∈R

ST (l, m)

ST (l0, m0)
(5.4)has to be minimized, R and (l0, m0) being the main lobe region and the main beamsteering dire
tion, respe
tively.5.2.2 Problem B - Optimization of the u−v Coverage in SnapshotObservationThe optimization of the snapshot u−v 
overage is the se
ond referen
e problem. In orderto redu
e the redundan
y of the 
orrelator array , while keeping a uniform sampling, the

u − v domain is partitioned in Ngrid × Ngrid square 
ells of equal size ∆grid × ∆grid andthe following 
ost fun
tion, to be minimized, is then de�ned
FB =

1

B
(5.5)where B [B ≤ (Ngrid)

2℄ is the number of di�erent 
ells sampled by the snapshot 
overagefun
tion W (u, v) given by
B =

Ngrid−1
∑

i=0

Ngrid−1
∑

i=0

G (i, j) (5.6)where G (i, j) = 1 if W (u, v) 6= 0 when (−Ngrid

2
+ i
)

∆grid < u <
(

−Ngrid

2
+ i+ 1

)

∆grid,
(

−Ngrid

2
+ j
)

∆grid < v <
(

−Ngrid

2
+ j + 1

)

∆grid, and G (i, j) = 0 otherwise.5.2.3 Problem C - Optimization of the u−v Coverage in Tra
kingObservationIn the third problem, the maximization of the tra
king u− v 
overage is at hand. As forProblem B and analogously to [31℄, the domain is still dis
retized, but in a �ner grid of
Nu ×Nv 
ells of size ∆u×∆v, to de�ne the following 
ost fun
tion to be maximized:

FC =
1

ν
(5.7)123



ν being the �lling index de�ned as the ratio between Ac (e.g., the number of 
ells belongingto the 
ir
le around the �six point star� auto
orrelation when dealing with a uniformlyspa
ed array [31℄) and AS [i.e., the number of 
ells sampled by the tra
king 
overagefun
tion WT (u, v) given by (5.6) with WT instead of W ℄.5.3 ADS-Based Y-Shaped Correlator ArraysADSs have been introdu
ed in 
ombinatorial mathemati
s and 
ode theory to over
omesome limitations of DSs while providing similar properties [61℄[65℄[63℄. Although su

ess-fully applied in several �elds ranging from 
ryptography up to antenna array synthesis[22℄[47℄[48℄[69℄[70℄, they have never been 
onsidered (to the best of the authors' knowledge)in the framework of 
orrelator arrays as proposed in the following exhaustive pro
edure:1. Initialization - Given a target number of a
tive elements N and an arm length L,sele
t from [68℄ a referen
e-ADS D (for de�nition and properties, see [61℄, [65℄) with
Q = N

E
, E being the arm number (E = 3 for an Y layout). Set σe = 0 (σe being the
y
li
 shift applied to the e−th arm of the array) and lo
ate the i−th array elementof the 
orrelator array at















xi = sin
(

πe
3
+ ϕ

) L[1+(dq+σe)|modP ]
P

yi = cos
(

πe
3
+ ϕ

) L[1+(dq+σe)|modP ]
P

i = Qe+ q, q = 0, ..., Q− 1, e = 0, ..., E − 1

(5.8)
2. Evaluation - Evaluate the degree of ��tness� to a design problem of the 
urrenttrial arrangement by 
omputing the 
ost fun
tion in (5.4), or (5.5), or (5.7);3. Iteration - Update σe (σe ← σe + 1) and use the same shifted ADS-based elementdistribution on ea
h arm of the 
orrelator (�equal � 
on�guration) or a di�erent shiftone ea
h arm by iteratively repeating Step 2 and Step 3 (�unequal � 
on�guration);4. Termination - Stop when (�equal � 
on�guration) or PE (�unequal � 
on�guration)trial designs have been evaluated. Set the �optimal � ADS design to the arrangementwith the highest ��tness�.It is worth to noti
e that su
h a pro
edure is very simple and 
omputationally e�
ientsin
e just up to PE evaluations are required for a 
orrelator array with N a
tive elements.124



Moreover, the array elements are displa
ed on a regular latti
e of P positions on ea
h armallowing an easier realization with respe
t to arbitrary displa
ements.In order to evaluate the performan
e of the ADS-based analyti
 approa
h as well asto 
ompare the arising 
on�gurations with state-of-the-art arrangements [31℄, the designof the Y-shaped 
orrelator des
ribed in Se
tion 5.2 has been 
onsidered as �rst test 
ase.Be
ause of the design requirements (Q = 9), the (18, 9, 4, 13)-ADS D1 [68℄ (see TableIV) has been adopted as referen
e sequen
e.As far as Problem A is 
on
erned, Fig. 39(a) shows the behavior of the PSL as afun
tion of the shift number σe for both the �equal � and �unequal � arrangements. The�gures of merit at the 
onvergen
e (Table V) indi
ate that ADS-based designs signi�
antlyimprove the performan
e of referen
e uniform ( PSLunf = −13.1[dB℄) and power-law(PSLpl = 16.2[dB℄) arrays. Moreover, the arising PSL values turn out to be 
lose to thatof sto
hasti
ally optimized arrays (PSL3 = −20.3[dB℄) [31℄, even though the 
onvergen
ehas been rea
hed after few evaluations of the 
ost fun
tion when the same σe is applied toevery arm. As expe
ted and be
ause the in
reased number of degrees-of-freedom (DoFs),a smaller PSL 
an be yielded by setting di�erent shifts on the arms, but more evaluationsare ne
essary [σun = 2708 vs. σeq = 7℄.On the other hand, it is worthwhile to observe [Fig. 39(b)℄ that di�erent ADS layoutspresent performan
es 
lose to that of the optimal one pointing out an interesting fea-ture of the ADS synthesis to be exploited when �
ompromise� problems with 
on�i
tingrequirements are at hand.Con
erning Problems B and C, similar 
on
lusions on the 
omputational e�
ien
y ofthe analyti
 ADS-based synthesis arise (Table V). However, the behaviors of B and ν ver-sus σe [Fig. 39(
) and (e)℄ as well as the 
hara
teristi
s of the 
onvergen
e designs (TableV) indi
ate that (a) the ADS strategy rea
hes results with performan
es 
omparable orbetter than those of power-law arrays in Problem B (Beq
ADS = 408 and Bun

ADS = 430 versus
Bpl = 428) and signi�
antly better for the Problem C (νeqADS = 0.828 and νunADS = 0.831versus νpl = 0.598); (b) the 
overage of ADS-based arrays worsens when 
ompared touniform arrays [Fig. 39(
), Bunf = 534℄, while they outperform uniform arrangementsin Problem C [νunf = 0.689℄; (
) as expe
ted, the PSO-based synthesis gives better per-forman
es than the ADS-based strategy in both Problem B (B1 = 558) and Problem C(ν2 = 0.865) thanks to the un
onstrained displa
ement of the array elements.125



ADS P Q Λ r d0, ..., dQ−1

D1 18 9 4 13 0, 1, 5, 6, 7, 8, 10, 12, 15

D2 88 44 21 22

3, 4, 5, 7, 8, 9, 10, 11, 1215, 16, 17, 18, 20,

22, 23, 25, 27, 30, 33, 34, 36, 37, 39,

43, 47, 52, 53, 54, 57, 58, 59, 66, 67,

68, 69, 70, 72, 75, 76, 78, 80, 84, 87

D3 180 90 44 45

0, 4, 8, 9, 10, 11, 12, 14, 15, 18, 19, 22, 23, 24, 25, 28, 30, 33, 34,

40, 42, 45, 48, 52, 53, 54, 55, 57, 61, 63, 65, 68, 71, 73, 76, 77,

78, 79, 80, 82, 84, 89, 93, 95, 96, 97, 98, 99, 100, 102, 104, 105,

111, 112, 113, 121, 126, 128, 129, 131, 132, 133, 137, 138, 139,

140, 141, 143, 145, 146, 149, 150, 151, 152, 153, 156, 158,

159, 162, 163, 166, 167, 168, 170, 172, 173, 175, 176, 177, 179

D4 42 21 10 31 0, 3, 4, 5, 6, 8, 9, 12, 14, 17, 19, 27, 28, 29, 30, 31, 34, 35, 36, 38, 41

D5 30 15 7 22 5, 6, 8, 9, 10, 14, 16, 17, 19, 20, 22, 23, 24, 27, 29

Table IV. ADS D1, D2,D3, and D4 and des
riptive parameters.126



Equal arms Unequal armsDesign Problem PSL [dB℄ B ν σ Ξ PSL [dB℄ B ν σ ΞUniform - −13.1 534 0.689 - 0.41 - - - - -Power-law - −16.2 428 0.598 - 0.44 - - - - -
Y3 [31℄ A −20.3 412 0.751 - 0.29 - - - - -
Y1 [31℄ B −17.3 558 0.719 - 0.22 - - - - -

Y2 [31℄ C −16.7 366 0.865 - 0.39 - - - - -A −19.34 388 0.758 7 0.33 −19.98 400 0.807 2708 0.29

ADS B −15.84 408 0.688 1 0.40 −19.00 430 0.767 2094 0.26C −17.76 396 0.828 9 0.32 −17.65 398 0.831 2781 0.32Table V. Numeri
al results - YADS Arrays [P = 18, Q = 9, Λ = 4, r = 13℄ - Comparison of ADS-based Y -shaped arraysand some representative designs (bold numbers identify optimized quantities).
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On
e again, the plots of B and ν versus the 
y
li
 shift [Fig. 39(d), (f )℄ further 
on�rmthat multiple ADS designs with 
lose sub-optimal performan
es 
an be synthesized start-ing from a single ADS with the potential of providing good trade-o� solutions in terms ofPSL, B, and ν despite negligible 
omputational e�orts. To investigate su
h an issue, Fig.40 pi
torially summarizes the performan
es of the whole set of trial ADS arrays generatedby D1. For 
omparisons, the representative points of the solutions in [31℄ are reported, aswell. As expe
ted, good trade-o� ADS arrays are available espe
ially in the spa
e [Fig.40(b)℄. They positively 
ompare also with optimized designs and most of them over
omeboth uniform and power-law ar
hite
tures [Fig. 40(b)℄. In order to quantitatively esti-mate the e�e
tiveness of the ADS �
ompromise� solutions, let us analyze the normalizedtrade-o� performan
e index Ξ de�ned as follows:
Ξ =

{

[

(PSL−PSLopt)×H(PSL−PSLopt)
PSLopt

]2

+

[

(B−Bopt)×H(B−Bopt)
Bopt

]2

+

[

(ν−νopt)×H(ν−νopt)
νopt

]2
}1/2

(5.9)
where H (·) is the Heaviside fun
tion and the �optimal � values (i.e., PSLopt = −20.3[dB℄,
Bopt = 558 and νopt = 0.865) have been set to those of the layouts Y3, Y1, and Y2 in [31℄.As it 
an be noti
ed (Fig. 41), the Ξ indexes of several ADS designs turn out to be betterthan power law (Ξpl = 0.44), uniform (Ξunf = 0.41), and Y2 (Ξ2 = 0.39) ar
hite
tures.Moreover, ADS layouts with di�erent shifts on the array arms also improve the resultsfrom Y3 (Ξ3 = 0.29). On the 
ontrary, no bare ADS design outperforms Y1 (Ξ1 = 0.22).As a matter of fa
t, the arising number of ADS baselines turns out to be signi�
antlysmaller than that of the optimized design in [31℄ and of the uniform arrangement [Fig.39(b)-(
)℄.Summarizing, the obtained results suggest that (a) ADS layouts provide ν, PSL and
Ξ values whi
h are 
lose to or better than those of state-of-the-art globally optimizedar
hite
tures when dealing with Problems A and C ; (b) the �bare� ADS approa
h 
annotbe pro�tably applied when Problem B is of interest and suitable hybridization and/or anin
reasing of the DoFs (e.g., no position 
onstraints) is mandatory.128



Figure 39. YADS Arrays [P = 18, Q = 9, Λ = 4, r = 13, Equal-unequal arms ℄ - Behavior of optimal(a) PSL, (
) , and (e) ν versus evaluated shift for ADS-based Y arrays, and 
omparison with referen
edesigns from [31℄. Plots of (b) PSL, (d) B, and (f ) versus evaluated shift for ADS-based Y arrays.

Figure 40. YADS Arrays [P = 18, Q = 9, Λ = 4, r = 13, Equal-unequal arms ℄ - Behavior of (a) Bversus PSL, (b) ν versus PSL, and (
) ν versus for all YADS arrays derived from D1 , and 
omparisonwith referen
e designs from [31℄. 129



Figure 41. YADS Arrays [P = 18, Q = 9, Λ = 4, r = 13, Equal-unequal arms ℄ - Behavior of for Ξ all
YADS arrays derived from D1 , and 
omparison with referen
e designs from [31℄.5.4 ADS-Based Hybrid MethodologiesA �rst attempt to improve the performan
e of ADS-based designs while keeping theirfavorable properties (i.e., the 
omputational e�
ien
y of the synthesis pro
ess and thegeometri
 simpli
ity of the latti
e ar
hite
ture) is aimed at de�ning an iterative hybridGA-ADS (in the following, ADSGA) approa
h. The iterative approa
h is based on astandard GA implementation where the positions of Q a
tive elements over a latti
e of Ppositions are en
oded in a binary string of length P , thus de�ning a 
hromosome of length
E × P . To exploit the ADS properties, the initial GA population of dimension is deter-mined by �rst sorting the shifted versions of the referen
e ADS arrangement a

ording totheir �tness values and sele
ting the �rst αVGA highly ranked sequen
es (α being the hy-bridization fa
tor,0 ≤ α ≤ 1) as trial array solutions. The remaining of the population israndomly 
hosen within the range of admissibility of the problem unknowns. As regardsthe GA operators, both 
rossover and mutation are applied with 
rossover probability
PC and mutation probability PM a

ording to standard binary implementations [44℄, but
onstraining to Q the number of a
tive elements on ea
h arm of the 
orrelator.The �rst numeri
al assessment is still 
on
erned with the Y -shaped 
orrelator and itdeals with Problem A (i.e., the PSL minimization) by �xing the following setup: VGA =

10, α = 0.5, PC = 0.9, PM = 0.01, and a maximum number of iterations equal to
IMAX = 400. �Equal � and �unequal � arrangements on ea
h arm have been simulatedand a standard GA (RNDGA) has been also applied for evaluating in a 
omparativefashion the impa
t of the ADS initialization. The results reported in Table VI indi
atethat the ADSGA array [Fig. 40(b)℄ outperforms the bare ADS-based geometries bothin the �equal � (PSLeq

ADSGA = −19.84[dB℄ versus PSLeq
ADS = 19.34[dB℄) and �unequal �(PSLun

ADSGA = −20.93[dB℄ versus PSLun
ADS = −19.98[dB℄) 
on�gurations.130



Equal arms Unequal armsDesign Problem PSL [dB℄ B ν I Ξ PSL [dB℄ B ν I ΞA −19.57 400 0.770 90 0.31 −20.14 460 0.794 331 0.29GA B −13.55 534 0.737 279 0.37 −15.00 534 0.748 1719 0.30C −16.40 394 0.838 244 0.35 −16.14 412 0.841 399 0.33A −19.84 424 0.769 175 0.27 −20.93 404 0.773 231 0.30ADSGA B −13.55 534 0.737 203 0.37 −14.75 534 0.742 1799 0.31C −16.01 400 0.839 283 0.35 −18.11 396 0.845 432 0.31A −20.83 457 0.763 407 0.21 −21.25 453 0.781 414 0.22PSO B −16.88 550 0.768 186 0.20 −17.97 552 0.759 96 0.17C −17.57 407 0.878 260 0.30 −17.94 387 0.881 464 0.32A −20.91 457 0.800 312 0.20 −21.35 489 0.781 493 0.16ADSPSO B −17.80 554 0.747 222 0.18 −18.44 554 0.787 269 0.13C −17.48 379 0.879 245 0.35 −17.94 415 0.882 288 0.28Table VI. Numeri
al results - Comparison of optimized Y -shaped arrays (bold numbers identify optimized quantities).
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On the other hand, the PSL value in 
orresponden
e with the �unequal � ADS ar-ray turns out to be lower than that for GA-based �equal � arrangements (PSLeq
ADSGA =

−19.84[dB℄, PSLeq
RNDGA = −19.57[dB℄). Su
h a result further 
on�rms that unequallydispla
ing the array elements over the 
orrelator arms 
an provide non-negligible per-forman
e improvements independently of the synthesis te
hnique. However, �unequal �layouts usually require a larger number of iterations to rea
h the 
onvergen
e due to theadditional DoFs (IeqADSGA = 175 vs. IunADSGA = 231, IeqRNDGA = 190 vs. IunRNDGA331).As a further observation, it is worth noting that the ADSGA array outperforms the
orresponding RNDGA solution both in terms of �tness (PSLeq

ADSGA = −19.84[dB℄ versus
PSLeq

RNDGA = −19.57[dB℄, PSLun
ADSGA = −20.93[dB℄ versus PSLun

RNDGA = −20.14[dB℄)and 
onvergen
e rate [Fig. 42(a) and Table VI℄ assessing the e�e
tiveness of an ADSinitialization to improve the GA optimization. Thanks to the properties of �unequal �layouts and the e�e
tiveness of an ADS initialization, the hybrid GA-based approa
h iseven able to improve the state-of-the-art PSO solution [31℄ ( PSLun
ADSGA = −20.93[dB℄versus PSL3 = −20− 30[dB℄), despite the wider set of DoFs of this latter.Con
erning the reliability of the ADSGA and RNDGA layouts as �
ompromise� solu-tions, it is note worthy (Table VI) that they exhibit trade-o� indexes very 
lose or betterthan Y3 (e.g., Ξeq

ADSGA = 0.27 versus Ξ3 = 0.29). Su
h a behavior seems to assess theability of the approa
h to intrinsi
ally provide good 
ompromise solutions also withoutdire
tly optimizing the �
ompromise index � Ξ.Dealing with the appli
ation of ADSGA to the other ben
hmark problems, even thoughthe positive e�e
t of the ADS integration still holds true, it results that (Table VI) both
B and ν indexes, as well as the 
orresponding �
ompromise� performan
es, 
annot beimproved signi�
antly without resorting to non-regular designs (i.e., avoiding regular lat-ti
es) as for PSO-based state-of-the-art solutions [31℄.Towards this aim, an hybrid real-valued multiple-agent optimization approa
h basedon a standard iterative PSO method [31℄, [59℄, [25℄ is then investigated. Likewise theADSGA, the initial set of trial solutions is generated by exploiting the ADS sequen
es.Otherwise, the positions of the N a
tive elements of the array are en
oded in a PSOparti
le by setting ea
h unknown as the distan
e between two adja
ent array elements.Be
ause of the limitations of the ADS and ADSGA approa
hes in dealing with ProblemB and Problem C, su
h ben
hmark tests will be �rst 
onsidered for validating the AD-SPSO. Towards this end, the following setup for the PSO parameters has been adopted:
VPSO = 10, c1 = c2 = 2, w = 0.4, and IMAX = 500. For a 
omplete 
omparison, a PSOapproa
h with a random initialization (RNDPSO) has been implemented, as well. Thenumeri
al simulations related to Problem B and whose results are illustrated in Fig. 43132



indi
ate that the hybrid ADSPSO pro
edure is able to rea
h higher �tness values thanADS and ADSGA te
hniques (Bun
ADSPSO = 554 versus Bun

ADSGA = 534 and Bun
ADS = 430)and very 
lose to [31℄ (B1 = 558), while signi�
antly outperforming uniform and powerlaw layouts (Bunf = 534, Bpl = 428) thanks to the additional DoFs of the real-valuedformulation (i.e., arbitrary element positions over ea
h arm).

Figure 42. Problem A [Equal-unequal arms , N = 27℄ - Synthesis results for the GA and ADSGAapproa
hes: (a) behavior of the optimal PSL versus the iteration number i, and 
omparison withreferen
e designs from [31℄, (b) optimal YADSGA array arrangement, and (
) asso
iated synthesizedpattern.Moreover, as for the GA-based approa
hes, the hybrid ADS implementation exhibitsimproved performan
es (Beq
RNDPSO = 550 vs. Beq

ADSPSO = 554, Bun
RBDPSO = 552 vs.

Bun
ADSPSO = 554) and 
onvergen
e properties (IeqRNDPSO = 286 vs. IeqADSPSO = 222,

IunRNDPSO = 296 vs. IunADSPSO = 269) with respe
t to the randomly initialized PSO also133



when real-
oded unknown are at hand. Moreover, the PSO-based hybrid te
hnique alwaysguarantees the best �
ompromise� performan
es (Table VI). As a matter of fa
t, it turnsout that Ξeq
ADSPSO = 0.18 and Ξun

ADSPSO = 0.13, while Ξ1 = 0.22.

Figure 43. Problem B [Equal-unequal arms , N = 27℄ - Synthesis results for the RNDPSO andADSPSO approa
hes: (a) optimal YADSPSO array arrangement and (b) asso
iated u− v 
overagefun
tion.The improvements allowed by the ADSPSO are even more evident when addressingProblem C (Fig. 44), as 
on�rmed by the indexes in Table VI (e.g., νunADSPSO = 0.882versus ν2 = 0.865). As far as the trade-o� index Ξ is 
on
erned, one 
ould noti
e that theADSPSO solution for the Problem C still over
omes the 
orresponding ADSGA design(Ξun
ADSPSO = 0.28 versus Ξun

ADSGA = 0.31), but it does not rea
h the optimal value yieldedby the ADSPSO when applied to Problem B (Table VI). Su
h results, together with thatfrom the bare ADS (Ξun
ADS = 0.32) indi
ate that, whatever the design te
hnique, the
on�gurations suitable for Problem C are not reliable 
ompromise solutions.For 
ompleteness and further veri�
ation of the positive e�e
t of the in
reased numberof DoFs of the real-valued optimization, the ADSPSO has been applied to Problem Aas well (Fig. 45), although the ADSGA was already able to improve state-of-the-artperforman
es. The �exibility of the real-valued en
oding used in the ADSPSO allows afurther redu
tion of the array PSL with respe
t to the ADSGA (and obviously Y3) in boththe equal 
ase (PSLeq

ADSPSO = −20.91[dB℄ versus PSLeq
ADSGA = −19.84[dB℄) and unequalone (PSLun

ADSPSO = −21.35[dB℄ versus PSLun
ADSGA = −20.93[dB℄), but at the expense ofthe geometri
 regularity of the GA or bare ADS latti
e-based solution [Fig. 45(b) versusFigs. 42(b) and 38(
)℄. 134



Figure 44. Problem C [Equal-unequal arms, N = 27℄ - Synthesis results for the RNDPSO andADSPSO approa
hes: (a) optimal array arrangement and (b) asso
iated tra
king u− v 
overagefun
tion.

Figure 45. Problem A [Equal-unequal arms , N = 27℄ - Synthesis results for the RNDPSO andADSPSO approa
hes: (a) Behavior of the optimal PSL versus the iteration number i, and 
omparisonwith referen
e designs from [31℄, (b) optimal YADSPSO array arrangement, and (
) asso
iatedsynthesized pattern. 135



As it 
an be observed, the ADS initialization allows an improvement of the opti-mization te
hnique performan
e whatever the problem at hand [Table VI℄. Moreover,from previous out
omes, the real-valued ADS hybrid approa
h seems to always yieldbetter performan
e than the GA-based te
hnique (Table VI). Su
h a 
on
lusion 
ouldbe misleading sin
e it has been drawn for arrays with a small number of a
tive ele-ments (N = 27) [31℄. In order to evaluate the performan
e of the ADS-based methodswhen dealing with larger N , the Problem A is still addressed, but 
onsidering medium(large) N . More in detail, Problem A is formulated by assuming L = 100 (210) Km,
∆u × Nu = ∆v × Nv = ∆grid × Ngrid = 4.16×105

λ

(

4.2×105
√
3

λ

), and Z = 2. Consequently,the hybrid solvers have been applied with the following setup: VGA = VPSO = 20,
IMAX = 400 and Q = N

E
= 44 (90). Moreover, the referen
e ADS sequen
e is the(88,44, 21, 22)- ADS D2 [(180, 90, 44, 45)- ADS D3℄ [68℄. In order to point outthe e�
ien
y of binary-valued te
hniques, Fig. 46 shows the optimization of the PSLduring the iterative minimization. As it 
an be observed, the GA-based approa
hesoutperform the 
orresponding PSO implementations when dealing with both mediumand large arrays (PSOeq

ADSGA⌋N=132 = −15.86[dB℄ vs. PSLeq
ADSGA⌋N=132 = −17.54[dB℄,

PSLeq
ADSPSO⌋N=270 = −18.35[dB℄ vs. PSLeq

ADSGA⌋N=270 = −20.15[dB℄). Su
h a behavioris mainly related to the greater e�
ien
y of the binary optimizers in sampling very largesolution spa
es as those when is medium/large. On the other hand, it is worthwhile topoint out the more signi�
ant e�e
t of the ADS initialization on the arising PSL and the
onvergen
e rate of the optimization when applying GA-based approa
hes (Fig. 46),whilethe improvement turns out to be less important using real-valued PSO approa
hes.
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Figure 46. Problem A - Behavior of the optimal PSL versus the iteration number i for the RNDGA,ADSGA, RNDPSO, and ADSPSO approa
hes for (a) N = 132 (equal and unequal arms) and (b)
N = 270 (equal arms).In order to provide further insights on the expe
ted improvements over existing ap-proa
hes, the next experiment deals with a design example for the 12-m Ata
ama LargeMillimeter/Sub millimeter Array (ALMA) [57℄ (Problem A has been 
onsidered). In this
ase, a Y-shaped (E = 3) layout with L = 9000[m℄, N = 63, φ = π/6, L = D = −23° and
E = 0 [57℄ has been optimized at 300GHz assumingNu = Nv = 256, ∆u×Nu = ∆v×Nv =

∆grid × Ngrid = 3.2 × 107, and Z = 2. The results obtained starting from the (42,21,10,31)-ADS D4 (Table IV) indi
ate that PSO-based approa
hes over
ome GA-based te
h-niques (Table VII), as expe
ted be
ause of the moderate value of [Fig. 47(a)℄, by a
hieving137



PSLun
ADSPSO = −18.55[dB℄ [Fig. 47(b)℄. Moreover, it is worth noti
ing that the �unequal �layouts always guarantee non-negligible improvements over their equally spa
ed 
oun-terparts (e.g., PSLeq

ADSGA = −17.25[dB℄ versus PSLun
ADSGA = −17.56[dB℄ - Table VII).Furthermore, the 
omparisons with uniform and power law analyti
al designs (Table VII)further assess the e�e
tiveness of the proposed approa
hes (e.g., PSLun

ADS = −15.57[dB℄versus PSLpl = −11.01[dB℄ - Table VII).
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Equal arms Unequal armsDesign Problem PSL [dB℄ B ν I PSL [dB℄ B ν IUniform - −12.40 2766 0.712 - - - - -Power-Law - −11.01 2479 0.610 - - - - -ADS A −15.48 2412 0.731 - −15.57 2372 0.721 -GA A −16.82 998 0.550 207 −17.02 1618 0.716 370ADSGA A −17.25 1044 0.511 87 −17.56 1544 0.671 282PSO A −17.58 931 0.607 233 −17.61 779 0.501 309ADSPSO A −18.08 893 0.562 152 −18.55 877 0.596 266Table VII. Numeri
al results - Comparison among optimized ALMA 
on�guration(bold numbers identify optimized quantities).
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Figure 47. ALMA - Problem A [Equal-unequal arms , N = 63 ℄ - Synthesis results for the ADSPSOapproa
h: (a) optimal array arrangement and (b) asso
iated ST (u, v).
Finally, the last example is aimed at analyzing the hybrid approa
hes when appliedto the synthesis of a di�erent geometry and set of parameters. Let us 
onsider a �Cross�geometry (E = 4) at 1.42GHz 
hara
terized by L = 189[m℄, N = 60, φ = 0, Nu = Nv =

256, ∆u×Nu = ∆v×Nv = ∆grid×Ngrid = 4000, Z = 2, D = −33.8°, E = 0, L = −33.8°(i.e., similar to the �Chris-Cross� array [8℄[60℄). The results from the synthesis pro
essstarting from the referen
e sequen
e (30,15,7,2)-ADSD5, indi
ate that, as expe
ted, PSO-based approa
hes provide better layouts [Fig. 48(a)℄ than GA-based te
hniques be
ause ofthe relatively small dimension of the solution spa
e (i.e., low number of a
tive elements).Moreover, the improvement 
aused by �unequal � element pla
ement is more signi�
antthan for the Y geometry. This is due to the highest redundan
y of the Cross geometrythat 
an be more easily broken by an unequal arm displa
ement [e.g., Fig. 48(b)℄. For
ompleteness, a summary of the performan
e indexes is given in Table VIII. These resultsfurther 
on�rm the e�e
tiveness of an ADS initialization to enhan
e the e�
ien
y of theoptimization pro
edures (e.g., PSLRNDPSO − PSLADSPSO ≈ 1.4[dB℄ - Table VIII).140



Equal arms Unequal armsDesign Problem PSL [dB℄ B ν I PSL [dB℄ B ν IGA A −14.21 201 0.572 157 −14.69 283 0.763 397ADSGA A −14.90 261 0.692 159 −15.16 283 0.756 389PSO A −16.29 265 0.905 387 −17.83 339 0.873 328ADSPSO A −17.69 265 0.912 324 −21.10 301 0.847 266Table VIII. Numeri
al results - Comparison of optimized Cross arrays (bold numbers identify optimized quantities).
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Figure 48. Cross arrays - Problem A [Equal-unequal arms , N = 60℄ - Synthesis results for theRNDGA, ADSGA, RNDPSO and ADSPSO approa
hes: (a) behavior of the optimal PSL versus theiteration number i, (b) optimal ADSPSO array arrangement and (
) asso
iated ST (u, v).
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Chapter 6Hybrid Almost Di�eren
e Set(ADS)-based Geneti
 Algorithm (GA)Method for Planar Array Thinning
6.1 Introdu
tionIn the framework of antenna arrays for 
ommuni
ation and spa
e appli
ations, su
h asradars for remote sensing, arrays for mi
rowave imaging or satellite and ground 
ommu-ni
ations one of the most important requirements is represented by high dire
tivity andlow peak sidelobe level (PSL) [1℄. To satisfy these requirements an interesting solution isrepresented by large thinned arrays. Thinned arrays, as put in eviden
e in [6℄ are a goodsolution sin
e thinning o�ers redu
tion in element 
ount, 
ost, weight, power 
onsump-tion, and heat dissipation, albeit with an attendant redu
tion of the antenna gain. Ins
ienti�
 literature ([5℄[6℄[12℄) it is showed that the main drawba
k asso
iated to thinningis the loss of sidelobe 
ontrol. Several di�erent te
hniques have been proposed and devel-oped to over
ome su
h a problem: e.g. random te
hnique [3℄[12℄, algorithmi
 approa
hes[12℄, dynami
 programming [71℄, geneti
 algorithms [18℄[44℄, simulated annealing [38℄, andparti
le swarm optimisers [25℄. One of the more interesting approa
hes is based on theuse of deterministi
 
ombinatorial sequen
es 
alled di�eren
e sets (DSs) that have beensu

essfully employed to analyti
ally determine thinned arrangements with well 
ontrolledsidelobes [5℄. This approa
h generate arrays that have element lo
ations 
onstrained by analgorithm based on di�eren
e sets. These 
onstraints produ
e arrays with PSLs demon-strably better than those obtainable with simple 
ut-and-try pla
ement te
hniques, aswell as many previously published algorithmi
 te
hniques. Sin
e only a limited number143



of DS sequen
es exists, re
ently a new analyti
al approa
h have been proposed. Su
h ananalyti
al approa
h has been extended to a wider 
lass of geometries by exploiting themathemati
al properties of almost di�eren
e sets (ADSs) [61℄[65℄. ADSs are 
hara
ter-ized by a three-valued auto
orrelation fun
tion that allows to obtain deterministi
 arrays
on�guration with a 
ontrolled and predi
table PSL [50℄. Moreover, the reliability of theanalyti
 ADS-based thinning has been analysed also taking into a

ount the mutual 
ou-pling e�e
ts among array elements [46℄. However, despite several interesting features andadvantages, the use of ADS sequen
es for array thinning has some limitations. In moredetail� arrays based on ADS sequen
es usually provide sub-optimal and not optimal PSLperforman
e;� although large repositories of ADSs are available [16℄, the possible array 
on�gu-rations are limited. ADS arrays with arbitrary aperture sizes and thinning fa
tors
annot be designed, sin
e ADS sequen
es exist only for spe
i�
 sets of des
riptiveparameters;� a general purpose ADS 
onstru
tion te
hniques do not exist at present. The expli
itforms of ADS sequen
es has to be determined on a 
ase by 
ase basis using suitable
onstru
tion theorems [61℄[65℄ or other approa
hes.The aim of this 
hapter is to introdu
e a way to improve and enhan
e the ADS-baseddesign te
hnique and to over
ome the above limitations [50℄. The main idea is to exploit aGA-based pro
edure, that is parti
ularly suitable for these appli
ations for the following
onsiderations1. GAs are able to deal with binary optimisation problems;2. GAs have been used and applied to thin antennas arrays [18℄;3. GA optimization pro
edure 
an integrate information and 
onstraints of ADSs [44℄.In other words the method that is proposed in this 
hapter is a GA-enhan
ed ADS te
h-nique, 
alled hereinafter ADSGA. Di�erently from other works published about exploitingADS to thin antenna arrays [22℄[46℄, as well as other array design problems (su
h as inter-leaved arrays [69℄), the proposed approa
h does not rely on a analyti
 te
hnique but ona hybrid one. Consequently it is not possible to determine a priori performan
e bounds.The main obje
tives of this 
hapter are not only to propose a hybrid te
hnique to designlinear thinned arrays, but also to proposed an approa
h useful when either the ADS-based144



array performan
e do not 
omply with the radiation requirements of the appli
ation athand or no ADS is available for the geometry (aperture size or thinning fa
tor) understudy [50℄.The stru
ture of the 
hapter is as follows. First of all a review of ADS design te
hniquesfor planar array thinning is presented. Then a GA-enhan
ed methodology is proposedto address three di�erent problems 
on
erned with ADS-based planar arrays (Se
tion6.2). In Se
tion 6.3, the hybrid te
hnique is applied to the three problems and validatedby means of several numeri
al simulations. Representative results 
on
erned with bothsmall and large arrays as well as di�erent thinning fa
tors are dis
ussed to point out itsreliability.6.2 Problem statement and mathemati
al formulationLet us 
onsider a planar arrangement de�ned over a latti
e of P×Q positions (N = P×Qbeing the total number of elements) [23℄. The array fa
tor of is equal to
W (u, v) =

P−1
∑

p=0

Q−1
∑

q=0

s (p, q) exp [2πi (pdxu+ qdyv)] (6.1)where s (p, q) is the array weight of the (p, q)th element, dx and dy are the latti
e spa
ingsalong the x and y dire
tions (in wavelengths), u = sin (θ) cos (φ), and v = sin (θ) sin (φ)(u2 + v2 ≤ 1) [23℄. Dealing with equally weighted thinned arrays, s (p, q) = 0, p =

0, ..., P − 1, q = 0, ..., Q − 1, 
an either assume the value 1 or 0 when an element ispresent or not at the (p, q)th latti
e position. In ADS-based thinning te
hniques thelatti
e weights are sele
ted as follows
s (p, q) =











1 if (p, q) ∈ D

0 otherwise

(6.2)whereD is a (N,K,Λ, t)-ADS, where N is the array size, K the number of a
tive elements,and Λ and t are parameters whi
h de�ne the auto
orrelation properties of the 
onsideredADS [23℄. A (N,K,Λ, t)-ADS is de�ned as a K-subset D = {dk ∈ G, k = 0, ..., K − 1} ofthe Abelian group G of order P ×Q (G = Z
P⊗ZQ, P and Q being 
hosen a

ording theKrone
ker De
omposition Theorem) for whi
h the multiset

M = {mj ∈ (dh − dl) ,dh 6= dl; j = 0, ..., K (K − 1)− 1}145




ontains t nonzero elements of G ea
h exa
tly Λ times and the remaining PQ − 1 − tnonzero elements ea
h exa
tly Λ+1 times [23℄. Therefore, an ADS satis�es the followingexisten
e 
ondition
K (K − 1) = tΛ + (PQ− 1− t) (Λ + 1) (6.3)where K ≥ Λ+1, 0 ≤ K ≤ PQ, and 0 ≤ t ≤ PQ−1. Moreover, it is worth noti
ing thatDSs and ADSs for whi
h t = PQ−1 or t = 0. ifD is a (N,K,Λ, t)-ADS, then it is possibleto de�ne the two dimensional binary sequen
e S = {s (p, q) = 1 (0) , if (p, q) ∈ (/∈)D;

p = 0, ..., P − 1, q = 0, ..., Q− 1} [23℄.In more detail, by exploiting the properties of the auto
orrelation fun
tion, ξ (τx, τy) =
P−1
∑

p=0

Q−1
∑

q=0

s (p, q)s
[

(p+ τx)|modP , (q + τy)|modQ

] (being P × Q its period), of ADS binarysequen
es, whi
h is known to be the three-level fun
tion
ξ (τx, τy) =











K (τx, τy) = 0

Λ for t values of (τx, τy)

Λ + 1 otherwise

(6.4)it turns out that the power pattern |W (u, v)|2 of an ADS-based array satis�es the following
onstraint
∣

∣

∣
W
(

k
sxP

, l
syQ

)
∣

∣

∣

2

= Υ (k, l)

k = 0, ..., P − 1, l = 0, ...., Q− 1

(6.5)i.e., the samples of the power pattern are equal to the inverse dis
rete Fourier transform(IDFT) of the auto
orrelation fun
tion ξ (τx, τy),
Υ (k, l) =

P−1
∑

p=0

Q−1
∑

q=0

ξ (τx, τy) exp [2πi ((τxk) /P + (τyl) /Q)] ,whi
h, from (6.4), turns out to be equal to
Υ (k, l) = K − Λ +NΛδ (k, l) + Ψ (k, l) (6.6)In (6.6), δ (k, l) is the dis
rete impulse fun
tion [δ (k, l) = 1 if k = l = 0, and δ (k, l) =

0℄ otherwise Ψ (k, l) = IDFT {ψ (τx, τy)}, where ψ (τx, τy) =
N−1−t
∑

r=1

δ
(

τx − τ rx , τy − τ ry
),and (τ rx , τ ry ), r = 1, ..., N − 1 − t, are the indexes at whi
h ξ

(

τ rx , τ
r
y

)

= Λ + 1 [23℄.A

ording to (6.4), the ADS sequen
e exhibits a three-level auto
orrelation fun
tion.146



Thanks to (6.5), the following a priori bounds have been derived for the one-way PSLs ofADS-based thinned arrays [23℄:
PSLINF ≤ PSLMIN ≤ PSLOPT ≤ PSLMAX ≤ PSLSUP (6.7)where PSLOPT = min

σx,σy

{

PSL
[

D
(σx,σy)

]}, σx = 0, ..., P − 1, σy = 0, ..., Q− 1,
PSL

[

D
(σx,σy)

]

=

max
(u,v)/∈M

∣

∣W (σx,σy) (u, v)
∣

∣

2

|W (σx,σy) (0, 0)|2where (u0, v0) is the main lobe steering dire
tion, M is the main lobe region [23℄, and
|W (σx, σy) (u, v)|2 is the power pattern [23℄ of the layout generated from the 
y
li
al shiftsequen
e of the referen
e ADS, D(σx,σy),

D
(σx,σy) =

{(

(p+ σx)modP , (q + σy)modQ

)

; (p, q) ∈ D; σx, σy ∈ Z

}

.The analyti
 expressions of the bounds in (6.6) state the peak sidelobe level of ADS-basedarrays is 
onstrained by the a priori known quantities PSLINF , PSLMIN , PSLMAX ,
PSLSUP [23℄:� PSLINF =

K−Λ−
√

(t+1)(N−t−1)
(N−1)

K2� PSLMIN =

[

min
(k,l)∈H0

{Υ (k, l)}
]

[0.5+0.8 log10(N)]

K2� PSLMAX =

[

max
(k,l)∈H0

{Υ (k, l)}
]

[−0.1+1.5 log10(N)]

K2� PSLSUP =

(

K−Λ+
√

(t+1)(N−t−1)
)

[−0.1+1.5 log10(N)]

K2These 
onstrains on PSL indi
ate that ADS-based thinned arrays exhibit a sidelobe levelwhi
h 
an be predi
ted either from the knowledge of the features of the ADS sequen
e(PSLINF and PSLSUP only depend on N , K, Λ and t) or from the expression of Υ (k, l)(ne
essary for 
omputing PSLMIN and PSLMAX and returning higher a

ura
y of esti-mation) [23℄. 147



(a)

(b)
(
)Figure 49. Example from [23℄ of Planar Array based on D

opt
3 - ADS . Number of elements:

P ×Q = 7× 11. Plots of the PSL bounds versus η = t
PQ−1 (PQ = 77, ν = 0.4805) (a). Plot of thenormalized array fa
tor (b) generated from D

opt
3 - ADS array arrangement (
) (
ourtesy from [23℄).As put in eviden
e in the Introdu
tion, the ADS-based approa
h for array thinning islimited, despite of the advantages of random thinned arrays and 
omputational e�
ien
y.Therefore a methodology able to over
ome these limitations while exploiting the ADSanalyti
 features seems to be of some interest in view of 
ommuni
ation and spa
e appli-
ations [50℄. A

ordingly, the ADSGA hybrid approa
h is presented. This methodologytries to exploit the advantages asso
iated to both ADS and GA-based te
hniques [50℄.148



Con
erning the iterative ADSGA optimisation, the standard stru
ture of the GA ismodi�ed to exploit the positive key features of the ADSs. The stru
ture of the Geneti
Algorithm (GA) 
onsidered in this work are brie�y des
ribed [44℄[50℄:1. Initialisation: The Initial (i = 0) population is randomly 
hosen. A set of M trialsolutions, ρm (i) , m = 1, ...,M is de�ned. The way to de�ne this set of trial solutionallows to de�ne ADSGA method instead of standard GA.2. Coding : Ea
h Individual ρm (i) 
odes the values of an unknown set of parametersinto a binary string (
alled Chromosome);3. GA-Evolution: At ea
h iteration i, the geneti
 evolution exploit suitable binaryoperators of evolution and natural sele
tion (sele
tion, 
rossover, reprodu
tion, mu-tation and elitism [6, 9℄) applied in a probabilisti
 fashion and taking into a

ountthe �tness values Fm = F {ρm (i)} , m = 1, ...,M of 
urrent trial solutions;4. Termination: The iterative pro
edure ends when one of the following stop 
riteriais satis�ed. The optimal �tness value, FPOP = min
m
{Fm}, is smaller than an user-de�ned threshold or the maximum number of iterations Imax has been rea
hed. The'�nal solution' is the �ttest trial solution determined throughout the whole iterativepro
ess, ρconv = arg

{

min
i

(

min
m

[F {ρm (i)}]
)}.The initial population (i = 0, i being the iteration index) is generated as follows forADSGA method [50℄. The N = P × Q shifted versions of a referen
e ADS are rankeda

ording to their PSL values. Then, half-trial solutions (M being the dimension of theGA population) are 
hosen with 
hromosomes equal to the binary sequen
es of the �rst

M/2 highly ranked shifted ADSs
ρm (i) =

{

bm (n) = w(m) (p, q) ; p = 0, ..., P − 1, q = 0, ..., Q− 1, n = 0, ..., N − 1
}

1 ≤ m ≤ M
2 (6.8)where bm (n) is the nth digit of the mth trial solution and s(σx,σy) (p, q) = s(m) (p, q) =

1 (being m = σx + (P × σy − 1) = f (σx, σy)) if (p, q) ∈ D
(σx,σy) and s(σx,σy) (p, q) =

s(m) (p, q) = 0, otherwise. Con
erning the remaining of the population, the trial solutionsare 
hosen randomly within the range of admissibility of the problem at hand
ρm (i) = {bm (n) = rm (n) ;n = 0, ..., N − 1}

1 ≤ m ≤ M
2

(6.9)149



rm (n) being a random digit and N = P ×Q. Su
h an initialisation allows the �transfer�into the GA 
hromosomes of the good ADS-based s
hemata also providing a su�
ientvariability within the population to avoid the stagnation [6℄. As regards the GA operators,both 
rossover and mutation are applied following the standard binary implementations[6℄, but also guaranteeing the updated trial solutions be admissible and 
omply withthe problem 
onstraints (e.g.�xed thinning fa
tor ν = K/N) [50℄. Towards this end, the
rossover operation is repeated until the new 
hromosomes satisfy the solution 
onstraints,while a 
onditioned mutation is applied. More spe
i�
ally, let ν be the user-de�nedthinning fa
tor, then the bit-mutation probability is de�ned as follows [50℄
PBM (n) =

[

N × ν −
n−1
∑

h=0

b (h)

]

N − n × [1− 2b (n)] + b (n) (6.10)The set of parameters of he GA-based pro
edure are: PC = 0.9 (
rossover), PM = 0.01(mutation rate) and N = P ×Q (population size) if not otherwise stated.6.2.1 Problem I - PSL minimisation in array synthesisIn order to determine an optimal thinned 
on�guration starting from the (usually) sub-optimal ADS arrangement with a given aperture size NADS = PADS×QADS and thinningfa
tor νADS, let us formulate the following 
onstrained optimisation problem, similarly to[50℄Problem I : Minimise F {ρ} = max
(u,v)/∈RM

{

|W (u, v)|2
}

/ |W (0, 0)|2, RM the main loberegion as
RM =







(u, v) ∈ [−1, 1]× [−1, 1] : u2 + v2 ≤ 1, uv ≤ K

4PQsxsy max
(k,l)∈H0

{Υ (k, l)}







,subje
t to K = KADS and N = NADS (namely P = PADS and Q = QADS).to be solved through ADSGA. In Su
h a 
ase, the GA �tness fun
tion is de�ned as thePSL of the array while the 
onstraints for
e the array to kept its des
riptive parameters(i.e. original dimension, N = NADS , and thinning, ν = νADS).150



6.2.2 Problem II - extension of the range of ADS appli
ability inarray synthesisThe use of an ADS-based te
hnique for array synthesis is sometimes limited to �xedarray dimensions and thinning values be
ause of the limited, although quite large, set ofavailable ADS sequen
es. In order to design a thinned 
on�guration with arbitrary valuesof N = P × Q and ν, still exploiting the properties of the existing ADS arrangements,the following problem is at hand (in a similar way to [50℄)Problem II : Minimise F {ρ} = max
(u,v)/∈RM

{

|W (u, v)|2
}

/ |W (0, 0)|2, RM the main loberegion as
RM =







(u, v) ∈ [−1, 1]× [−1, 1] : u2 + v2 ≤ 1, uv ≤ K

4PQsxsy max
(k,l)∈H0

{Υ (k, l)}







,are subje
t to K = K̂ and N = N̂ , being K̂ 6= KADS and/or N̂ 6= NADS (namely
P̂ 6= PADS and Q̂ 6= QADS).Su
h a 
onstrained optimisation problem is quite similar to that in previous Se
tion,but, in this 
ase, no ADS-based array is available in 
orresponden
e with the array pa-rameters (N̂ , K̂) [50℄.6.2.3 Problem III - de�nition of a general purpose ADS 
onstru
-tion te
hnique for array synthesisWith referen
e to the potential limitation (III) outlined in the Introdu
tion, the aim isnow to �nd the expli
it forms of ADSs sequen
es (i.e. binary sequen
es with a three-level auto
orrelation fun
tion) for arbitrary values of N . Towards this end, let us denotewithL {ρ} and R {ρ} the number of levels of the auto
orrelation fun
tion ξ (τx, τy) of atrial solution ρ and the number of (τx, τy) values for whi
h ξ (τx, τy) di�er from 6.4. Then,the sear
h for admissible (but not available in ADS repositories) ADS sequen
es is re
astas the solution of the followingProblem III : Minimise F {ρ} = α [L {ρ} − 3] + βR {ρ} subje
t to N = N̂ , where
N̂ 6= NADS (namely P̂ 6= PADS and Q̂ 6= QADS) and α and β are suitable user-de�nedweight 
oe�
ients [47℄. 151



In su
h a 
ase, the optimisation at hand turns out to be di�erent from that in ProblemI and Problem II. As a matter of fa
t, it is de�ned and performed with the ADSGA withinthe �auto
orrelation spa
e� instead of in the �pattern spa
e�, while the 
onstraints are stillon the set of parameters de�ning the ADS as well as the 
orresponding array arrangement[50℄.6.3 Numeri
al analysis6.3.1 Appli
ation to Problem IAs suggested in [5℄, the 
ombinatorial and the sto
hasti
 methods are 
ombined in in orderto take advantage from their good 
hara
teristi
s and to 
ompensate for their drawba
ks.The ripples 
aused by ADS sequen
es 
an be 
orre
ted by GA 
apabilities, while the
ontrolled PSL of ADS-based arrays is useful to speedup the 
onvergen
e of the geneti
pro
edure and get optimal PSL for planar arrays. The inter element distan
es are assumed
dx = dy =

1
2
hereinafter.In parti
ular, now we 
onsider when the appli
ation deals with Problem I: obtain anoptimal thinned 
on�guration starting from the ADS arrangement and 
omparing it withstandard GA approa
h.As stated in previous se
tion, to determine an optimal thinned 
on�guration startingfrom the (usually) sub-optimal ADS arrangement with a given aperture size NADS =

PADS × QADS and thinning fa
tor νADS, let us formulate the following 
onstrained op-timisation problem, that is to minimise F {ρ} = max
(u,v)/∈RM

{

|W (u, v)|2
}

/ |W (0, 0)|2, RMthe main lobe region, subje
t to K = KADS and N = NADS (namely P = PADS and
Q = QADS). The 
onstraints for
e the array to kept its des
riptive parameters (i.e.original dimension, N = NADS , and thinning, ν ≈ νADS).The experiments deal with the 2D ADSs des
ribed in the following Table

N P Q K Λ t ν

49 7 7 25 12 24 0.555

121 11 11 61 30 60 0.502

289 17 17 145 72 144 0.501

529 23 23 265 132 264 0.500Table IX: Properties of the ADS sequen
es 152



6.3.1.1 Array arrangement P ×Q = 7× 7In this example we have used to initialize the population at step i = 0, the (7× 7, 25, 12, 24)-ADS (NADS = 49, νADS = 0.555). Fig 1 shows the behaviour of the optimal �tness valueagainst the iteration number i in 
orresponden
e with the ADSGA and the standard GAminimization pro
edure.The results 
an be summarized in the following
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Figure 50: Problem I- PSL minimisation in array synthesis : Behaviour of the optimal �tness value,
PSL(i), against the number of iteration number, i.
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) (d)Figure 51. Numeri
al validation - Problem I -PSL minimisation in array synthesis: Power patterns
|W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes. (
) and (d) show the 
orresponding arrayarrangements with ADSGA and GA-based methods, respe
tively.
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6.3.1.2 Array arrangement P ×Q = 11× 11In this example we have used to initialize the population at step i = 0, the (11× 11, 61, 30, 60)-ADS (NADS = 121, νADS = 0.502). Fig 1 shows the behaviour of the optimal �tness valueagainst the iteration number i in 
orresponden
e with the ADSGA and the standard GAminimization pro
edure.The results 
an be summarized in the following Figures.
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Figure 52. Numeri
al validation - Problem I - PSL minimisation in array synthesis : Behaviour of theoptimal �tness value, PSL(i), against the number of iteration number, i.
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al validation - Problem I - PSL minimisation in array synthesis: Power patterns
|W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes. (
) and (d) show the 
orresponding arrayarrangements with ADSGA and GA-based methods, respe
tively.
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6.3.1.3 Array arrangement P ×Q = 17× 17In this example we have used to initialize the population at step i = 0, the (17× 17, 145, 72, 144)-ADS (NADS = 289, νADS = 0.501). Fig 1 shows the behaviour of the optimal �tness valueagainst the iteration number i in 
orresponden
e with the ADSGA and the standard GAminimization pro
edure.The results 
an be summarized in the following Figures.
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Figure 54. Numeri
al validation - Problem I - PSL minimisation in array synthesis : Behaviour of theoptimal �tness value, PSL(i), against the number of iteration number, i.
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) (d)Figure 55. Numeri
al validation - Problem I - PSL minimisation in array synthesis: Power patterns
|W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes. (
) and (d) show the 
orresponding arrayarrangements with ADSGA and GA-based methods, respe
tively.
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6.3.1.4 Array arrangement P ×Q = 23× 23In this example we have used to initialize the population at step i = 0, the (23× 23, 265, 132, 264)-ADS (NADS = 529, νADS = 0.500). Fig 1 shows the behaviour of the optimal �tness valueagainst the iteration number i in 
orresponden
e with the ADSGA and the standard GAminimization pro
edure.The results 
an be summarized in the following Figures.
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Figure 56. Numeri
al validation - Problem I - PSL minimisation in array synthesis : Behaviour of theoptimal �tness value, PSL(i), against the number of iteration number, i.
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al validation - Problem I - PSL minimisation in array synthesis: Power patterns
|W (u, v)|2 for ADSGA (a) and for GA (b) approa
hes. (
) and (d) show the 
orresponding arrayarrangements with ADSGA and GA-based methods, respe
tively.
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6.3.1.5 Summary
Iconv ν PSL[dB℄

P ×Q ADSGA GA ADSGA GA ADS ADSGA GA ADS

7× 7 1445 920 0.428 0.489 0.555 −16.13 −14.40 −9.69
11× 11 4366 1125 0.496 0.487 0.502 −16.50 −16.03 −12.63
17× 17 208 3512 0.480 0.494 0.501 −17.74 −17.50 −13.88
23× 23 1418 2800 0.484 0.482 0.500 −18.74 −18.35 −13.90Table X. Numeri
al validation - Problem I - PSL minimisation in array synthesis: Summary of theresults obtained. Comparing the results of the new proposed ADSGA te
hnique with the standard GAmethodology, we obtain a redu
tion of PSL that goes from 1.73[dB℄ to 0.24[dB℄.
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Figure 58. Numeri
al validation - Problem I - PSL minimisation in array synthesis: Graphi
al
omparison of the PSL of di�erent array 
on�gurations (the side P on the horizontal axis) for ADSGAan GA methodologies. We 
an observe that the PSL improvement of the ADSGA method redu
es
ompared with standard GA as the dimension of the array in
reases.
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6.3.2 Appli
ation to Problem IIIn this se
tion the aim, a

ording to Problem II, is to design antenna arrays with arbitraryvalues of elements N = P × Q and thinning ν, still exploiting the existing (and limited)ADS arrangements. In other words, starting from an ADS-based array 
on�guration(with NADS = PADS × QADS elements, νADS) used as initial guess of the optimizationiterative pro
edure, we want to synthesize a new array 
on�guration with N 6= NADS and
ν 6= νADS.For the sake of 
omparison of the performan
e of the proposed approa
h, the array
on�gurations are 
hosen among the state-of-the-art examples, su
h as [25℄ and [18℄.6.3.2.1 ADSGA method 
ompared with [25℄In order to 
ompare the results of the optimization pro
edure with [25℄, we have thede�ne the following problem:Problem II : Minimise F {ρ} = max

(u,v)/∈RM

{

|W (u, v)|2u=0 + |W (u, v)|2v=0

}

/ |W (0, 0)|2,
RM the main lobe region as previously de�ned. The problem is subje
t to K = K̂and N = N̂ , being K̂ 6= KADS and/or N̂ 6= NADS (namely P̂ 6= PADS and Q̂ 6= QADS).
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6.3.2.2 P ×Q = 6× 6 Array Con�guration
Starting ADS NADS Array Geometry [18℄ N̂

(5× 5, 13, 6, 12) 25 6× 6 36
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Figure 59: Problem II- extension of the range of ADS appli
ability: Behaviour of the optimal �tnessvalue, PSL(i), against the number of iteration number, i.
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) (d)Figure 60: Problem II- extension of the range of ADS appli
ability: Power patterns |W (u, v)|2 forADSGA (a) and for GA (b) approa
hes. (
) and (d) show the 
orresponding array arrangements withADSGA and GA-based methods, respe
tively.
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6.3.2.3 P ×Q = 8× 8 Array Con�guration
Starting ADS NADS Array Geometry [18℄ N̂

(7× 7, 25, 12, 24) 49 8× 8 64
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Figure 61: Problem II- extension of the range of ADS appli
ability: Behaviour of the optimal �tnessvalue, PSL(i), against the number of iteration number, i.
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) (d)Figure 62: Problem II- extension of the range of ADS appli
ability: Power patterns |W (u, v)|2 forADSGA (a) and for GA (b) approa
hes. (
) and (d) show the 
orresponding array arrangements withADSGA and GA-based methods, respe
tively.
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6.3.2.4 P ×Q = 12× 12 Array Con�guration
Starting ADS NADS Array Geometry [18℄ N̂

(11× 11, 61, 30, 60) 121 12× 12 144
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Figure 63: Problem II- extension of the range of ADS appli
ability: Behaviour of the optimal �tnessvalue, PSL(i), against the number of iteration number, i.
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) (d)Figure 64: Problem II- extension of the range of ADS appli
ability: Power patterns |W (u, v)|2 forADSGA (a) and for GA (b) approa
hes. (
) and (d) show the 
orresponding array arrangements withADSGA and GA-based methods, respe
tively.
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6.3.2.5 P ×Q = 16× 16 Array Con�guration
Starting ADS NADS Array Geometry [18℄ N̂

(13× 13, 85, 42, 84) 169 16× 16 256
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Figure 65: Problem II- extension of the range of ADS appli
ability: Behaviour of the optimal �tnessvalue, PSL(i), against the number of iteration number, i.
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ability: Power patterns |W (u, v)|2 forADSGA (a) and for GA (b) approa
hes. (
) and (d) show the 
orresponding array arrangements withADSGA and GA-based methods, respe
tively.
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6.3.2.6 Summary
Array −Dimesion ν

P̂ × Q̂ ADSGA GA SPSO [25℄ HSPSO [25℄ DS [21℄
6× 6 0.583 0.555 0.50 0.42 0.583

8× 8 0.546 0.500 − − 0.562

12× 12 0.541 0.534 0.44 0.48 0.542

16× 16 0.500 0.515 − − 0.531

Table XI: Problem I- PSL minimisation in array synthesis: Summary of the results obtained.Comparing the results of the new proposed ADSGA te
hnique with the standard GA methodology, theSPSO, the HSPSO [25℄ and DS [21℄, we obtain that ADSGA is able to improve PSL performan
e alsowhen N̂ 6= NADS .
Array −Dimesion PSL[dB℄

P̂ × Q̂ ADSGA GA SPSO [25℄ HSPSO [25℄ DS [21℄
6× 6 −14.16 −13.23 −12.72 −13.06 −12.55
8× 8 −16.55 −15.92 − − −13.71
12× 12 −16.90 −16.53 −15.54 −16.74 −15.47
16× 16 −17.45 −17.67 − − −15.17

Table XII: Problem I- PSL minimisation in array synthesis: Summary of the results obtained.Comparing the results of the new proposed ADSGA te
hnique with the standard GA methodology, theSPSO, the HSPSO [25℄ and DS [21℄, we obtain that ADSGA is able to improve PSL performan
e alsowhen N̂ 6= NADS .
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Figure 67: Problem I- PSL minimisation in array synthesis: Graphi
al 
omparison of the PSL ofdi�erent array 
on�gurations (the side P on the horizontal axis) for ADSGA an GA methodologies. We
an observe that the PSL improvement of the ADSGA method redu
es 
ompared with standard GA asthe dimension of the array in
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6.3.2.7 ADSGA method 
ompared with [18℄In order to 
ompare the results of the optimization pro
edure with [18℄, we have the de�nethe following problem:Problem II : Minimise F {ρ} = max
(u,v)/∈RM

{

|W (u, v)|2u=0 + |W (u, v)|2v=0

}

/ |W (0, 0)|2,
RM the main lobe region as de�ned in [18℄. The problem is subje
t to K = K̂ and
N = N̂ , being K̂ 6= KADS and/or N̂ 6= NADS (namely P̂ 6= PADS and Q̂ 6= QADS).The two examples that are 
onsidered are the followings

Starting ADS NADS Array Geometry [18℄ N̂

(7× 11, 37, 17, 36) 77 10× 20 200

(37× 37, 685, 342, 684) 1369 40× 40 1600
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6.3.2.8 P ×Q = 10× 20 Array Con�guration
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Figure 68: Problem II- extension of the range of ADS appli
ability: Graphi
al 
omparison of the PSLagainst the iteration i of ADSGA, GA and Haupt [18℄ approa
hes along the two main dire
tions φ = 0°(a) and φ = 90° (b). Sli
es of the amplitude pattern obtained after optimization pro
edure along thetwo main dire
tions φ = 0° (
) and φ = 90° (d).
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ability: Power patterns |W (u, v)|2 forADSGA (a) and for GA (b) approa
hes. (
) and (d) show the 
orresponding array arrangements withADSGA and GA-based methods, respe
tively.
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6.3.2.9 P ×Q = 40× 40 Array Con�guration
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Figure 70: Problem II- extension of the range of ADS appli
ability: Graphi
al 
omparison of the PSLagainst the iteration i of ADSGA, GA and Haupt [18℄ approa
hes along the two main dire
tions φ = 0°(a) and φ = 90° (b). Sli
es of the amplitude pattern obtained after optimization pro
edure along thetwo main dire
tions φ = 0° (
) and φ = 90° (d).
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) (d)Figure 71: Problem II- extension of the range of ADS appli
ability: Power patterns |W (u, v)|2 forADSGA (a) and for GA (b) approa
hes. (
) and (d) show the 
orresponding array arrangements withADSGA and GA-based methods, respe
tively.
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6.3.2.10 Summary
ν

P Q ADSGA GA GA− [Haupt] [18℄
10 20 0.455 0.515 0.54

40 40 0.485 0.491 0.81Table XIII: Problem II- extension of the range of ADS appli
ability: Summary of the results obtainedabout thinning fa
tor ν. Comparing the results of the new proposed ADSGA te
hnique with thestandard GA methodology and [18℄.
BWφ=0 BWφ=90

P Q ADSGA GA GA− [Haupt] [18℄ ADSGA GA GA− [Haupt] [18℄
10 20 0.2412 0.2460 0.2480 0.1289 0.1289 0.1289

40 40 0.0546 0.0546 0.0546 0.0546 0.0546 0.0546Table XIV: Problem II- extension of the range of ADS appli
ability: Summary of the results obtainedabout main lobe dimension BW . Comparing the results of the new proposed ADSGA te
hnique withthe standard GA methodology and [18℄.
PSLφ=0[dB] PSLφ=90[dB]

P Q ADSGA GA GA− [Haupt] [18℄ ADSGA GA GA− [Haupt] [18℄
10 20 −20.93 −20.74 −20.07 −23.45 −21.87 −19.76
40 40 −19.24 −18.97 −17.20 −19.28 −19.12 −17.20Table XV: Problem II- extension of the range of ADS appli
ability: Summary of the results obtained.Comparing the results of the new proposed ADSGA te
hnique with the standard GA methodology and[18℄. We obtain with ADSGA a redu
tion of PSL in both examples.
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6.3.3 Appli
ation to Problem IIIAs stated in the Introdu
tion and in the des
ription of the Problem III, several 
onstru
-tion te
hniques to obtain ADS sequen
es have been already developed and even largerepositories are now [61℄[65℄ available. However, the fa
t that the ADS sequen
es of ar-bitrary length are, at present, not available is a limitation for their use in real-worldproblems. As a matter of fa
t, sin
e ADS synthesis te
hniques are usually based on the
y
lotomy property, they generate sequen
es 
hara
terized by spe
i�
 
y
lotomi
 numbersand not with arbitrary length [47℄.As proposed in the des
ription of Problem III, here a new method is proposed for thesynthesis of sequen
es of arbitrary length. The approa
h reformulates the ADS design interms of a 
ombinatorial optimization problem where the 
ost fun
tion quanti�es the mis�tbetween the auto
orrelation of a binary sequen
e and the three valued fun
tion of the DSs.The binary geneti
 algorithm (GA) is used to minimize su
h a 
ost fun
tion be
ause ofits �hill-
limbing� features and its ability to e�e
tively sample the binary solution spa
e[47℄. The parameters of the 
ost fun
tion have been set α = 10−2 and β = 10−4. Thenumber of iterations Imax depends on how large is the sear
h spa
e.
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6.3.3.1 (36, 32, 28, 23)-ADS
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Figure 72. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level auto
orrelationfun
tion of the 
onvergen
e (36, 32, 28, 23)-ADS arrangement, (
) Final 2D ADS layout.
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Figure 73. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: Plot of thepower pattern asso
iated to the antenna array built with the (36, 32, 28, 23)-ADS arrangement.
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6.3.3.2 (60, 6, 0, 29)-ADS
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Figure 74. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level auto
orrelationfun
tion of the 
onvergen
e (60, 6, 0, 29)-ADS arrangement, (
) Final 2D ADS layout.
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Figure 75. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: Plot of thepower pattern asso
iated to the antenna array built with the (60, 6, 0, 29)-ADS arrangement.
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6.3.3.3 (64, 59, 54, 43)-ADS
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Figure 76. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level auto
orrelationfun
tion of the 
onvergen
e (64, 59, 54, 43)-ADS arrangement, (
) Final 2D ADS layout.
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Figure 77. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: Plot of thepower pattern asso
iated to the antenna array built with the (64, 59, 54, 43)-ADS arrangement.
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6.3.3.4 (100, 5, 0, 79)-ADS
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Figure 78. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level auto
orrelationfun
tion of the 
onvergen
e (100, 5, 0, 79)-ADS arrangement, (
) Final 2D ADS layout.
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Figure 79. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: Plot of thepower pattern asso
iated to the antenna array built with the (100, 5, 0, 79)-ADS arrangement.
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6.3.3.5 (144, 137, 130, 101)-ADS
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Figure 80. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level auto
orrelationfun
tion of the 
onvergen
e (144, 137, 130, 101)-ADS arrangement, (
) Final 2D ADS layout.
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Figure 81. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: Plot of thepower pattern asso
iated to the antenna array built with the (144, 137, 130, 101)-ADS arrangement.
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6.3.3.6 (192, 184, 176, 135)-ADS
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Figure 82. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level auto
orrelationfun
tion of the 
onvergen
e (192, 184, 176, 135)-ADS arrangement, (
) Final 2D ADS layout.
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Figure 83. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: Plot of thepower pattern asso
iated to the antenna array built with the (192, 184, 176, 135)-ADS arrangement.
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6.3.3.7 (196, 7, 0, 153)-ADS
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Figure 84. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level auto
orrelationfun
tion of the 
onvergen
e (196, 7, 0, 153)-ADS arrangement, (
) Final 2D ADS layout.
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Figure 85. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: Plot of thepower pattern asso
iated to the antenna array built with the (196, 7, 0, 153)-ADS arrangement.
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6.3.3.8 (225, 8, 0, 168)-ADS
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Figure 86. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: (a)Behaviour of the optimal �tness, FPOP , against the iteration number i, (b) Three-level auto
orrelationfun
tion of the 
onvergen
e (225, 8, 0, 168)-ADS arrangement, (
) Final 2D ADS layout.
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Figure 87. Numeri
al validation - Problem III - GA designed ADS 
onstru
tion te
hnique: Plot of thepower pattern asso
iated to the antenna array built with the (225, 8, 0, 168)-ADS arrangement.
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6.3.3.9 SummaryA GA-based te
hnique has been proposed as a new methodologi
al tool for designing 2DADS sequen
es of arbitrary length. As put in eviden
e in the Introdu
tion Se
tion 6.1,although large repositories of ADSs are available, ADS arrays with arbitrary aperturesizes and thinning fa
tors 
annot be designed, sin
e ADS sequen
es exist only for spe
i�
sets of des
riptive parameters. Moreover, even for admissible aperture sizes and thinningfa
tors, general purpose ADS 
onstru
tion te
hniques do not exist at present and theexpli
it forms of ADS sequen
es has to be determined on a 
ase by 
ase basis usingsuitable 
onstru
tion theorems.To over
ome this problem, the original synthesis has been reformulated as a 
ombina-torial optimization. Towards this end, a suitable �tness fun
tion exploiting the auto
or-relation properties of ADSs has been introdu
ed and minimized by means of a GA-basediterative pro
edure. In other words, the aim is now to �nd the expli
it forms of ADSssequen
es for arbitrary values of N . In su
h a 
ase, the optimisation at hand turns out tobe di�erent from that in Problem I and Problem II. The GA works within the �auto
or-relation spa
e�, while the 
onstraints are still on the set of parameters de�ning the ADSas well as the 
orresponding array arrangement.In the following Table, the (N,K,Λ, t)-ADS sequen
es that have been found by meansof GA pro
edure are des
ribed.
N P Q K Λ t ν

36 6 6 32 28 23 0.888

60 6 10 6 0 29 0.10

64 8 8 59 54 43 0.921

100 10 10 5 0 79 0.50

144 12 12 137 130 101 0.951

192 12 16 184 176 135 0.958

196 14 14 7 0 153 0.35

225 15 15 8 0 168 0.35Table XVI: Properties of the ADS sequen
es that have been designed by the proposed GA-basedte
hniques. Neither of these (N,K,Λ, t)-ADS sequen
es 
an found in [61℄ or [65℄.All the sequen
es in Table XVI are not des
ribed by the available theorems and thisshows that the proposed ADS-synthesis te
hnique 
orre
tly works. It is mandatory toput in eviden
e that, as expe
ted, the GA-based ADS synthesis te
hnique requires mu
h196



more iterations to determine the three-level auto
orrelation binary sequen
e for a givengeometry for larger sear
h spa
es. Anyway the proposed method assessed its reliabilitywhatever the dimension athand.As a �nal observation, it is worthwhile to point out that the new ADSs determinedsolving di�erent instan
es of Problem III 
an be dire
tly used to de�ne new thinned arraysor as starting points for di�erent formulations of Problem I or Problem II. Indeed, thepower patterns of di�erent new ADS-based arrays have been plotted.
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Chapter 7Con
lusionAs des
ribed in the Abstra
t, this Thesis has presented innovative guidelines for the syn-thesis of antenna arrays for 
ommuni
ation and radioastronomy systems and appli
ations.In more detail in the �rst part of the Thesis a new family of analyti
ally-designed thinnedarrays with di�erent azimuth and elevation TMBWs has been proposed. Thanks to theproperties of M
Farland DSs, several massively thinned isophori
 ar
hite
tures have beendedu
ed and the PSLs of the arising layouts, de�ned over grids of size P × P (P + 2) (Pbeing a prime number), have been numeri
ally analyzed. Towards this end, a GA-basedsear
h pro
edure has been exploited due to the extremely large number of admissibleM
Farland sequen
es.The numeri
al results point out the following issues� the design of M
Farland arrays is highly e�
ient whatever P , sin
e up to Ψ(P )layouts 
an be obtained by simply sele
ting the asso
iated des
riptors ,σx, σy, k,
(ai, bi) and (ŵ(i+1)

1 , ŵ
(i+1)
2

) for i = 0, ..., P + 1;� unlike traditional binary en
odings used for thinned array designs [44℄, the GA-based pro
edure is able to more e�
iently identify optimalM
Farland layouts thanksto the dis
rete nature of the M
Farland des
riptors and also the large number ofoptimal solutions available within the sear
h spa
e (Fig. 3);� despite the extremely low number of a
tive elements (ν < (1/P )), M
Farland ar-rays exhibit well-
ontrolled sidelobes espe
ially for large dimensions. This suggeststheir exploitation for the design of extremely light large arrays as well as of ar
hi-te
tures with interleaved fun
tionalities (e.g., multi-fun
tion radar arrays in whi
hea
h fun
tion 
orrespond to a highly sparse sub-array [41℄).199



Further studies will be devoted to analyze the e�e
ts of the presen
e of real array elementsand/or mutual 
oupling. Furthermore, it is still a work in progress the exploitation ofM
Farland sequen
es for designing interleaved ar
hite
tures.In the se
ond part of this Thesis ADS sequen
es have been exploited to design 
orre-lator arrays for radio astronomy appli
ations in a 
omputationally e�
ient and reliablefashion. Three strategies have been presented that exhibit di�erent features, 
omputa-tional 
omplexity and �exibility. More spe
i�
ally: (a) a fully analyti
 te
hnique based onADS layouts to provide sub-optimal designs with extremely redu
ed 
omputational 
osts;(b) an ADSGA hybrid te
hnique that employs a binary des
ription of the 
orrelator arrayto obtain optimized 
on�gurations with interesting geometri
 properties and improvedPSL performan
es; and (
) an ADSPSO strategy devoted to enhan
e the �exibility of thelatti
e-based approa
hes and exploiting a real-
oded des
ription of the geometry at hand.An extensive numeri
al validation has been 
arried out to analyze features and advan-tages of the proposed approa
hes, also in 
omparison with state-of-the-art methodologies,in several working 
onditions, in
luding design examples for future planned instruments(i.e., the ALMA ar
hite
ture [57℄).The obtained results have pointed out the following key issues:� ADS-based analyti
 layouts outperform equally spa
ed or power-law state-of-the-artdesigns in terms of PSL 
ontrol and snapshot or tra
king 
overage (e.g., νunADS =

0.831 versus νpl = 0.598 - Table II);� the analyti
 ADS te
hnique synthesizes arrays with sub-optimal performan
es if
ompared to state-of-the-art sto
hasti
ally optimized arrangements (e.g., PSL3 =

−20.3[dB℄ versus PSLun
ADS = −19.98[dB℄ - Table II), but it is extremely e�
ient interms of 
omputational 
osts and the generation of reliable 
ompromise solutions(versus Ξ1 = 0.22 vs. Ξun
ADS = 0.26 - Fig. 4);� ADS-based hybrid approa
hes outperform 
orresponding standard randomly initial-ized GA and PSO te
hniques for both 
onvergen
e rate and array features whateverthe synthesis obje
tive and the array geometry (e.g., PSLun

RNDGA = −20.14[dB℄versus PSLun
ADSGA = −20.93[dB℄ for Problem A - Table II);� the ADSPSO turns out to be more e�
ient and e�e
tive than the ADSGA whendealing with small arrangements, while the ADSGA outperforms the other hy-bridizations when medium/large arrays are at hand (Se
tion IV);200



� the �unequal-arms� geometry usually guarantees �tter solutions than the state-of-the-art �equal-arms� displa
ements, espe
ially when is small (e.g., PSLun
ADSPSO =

−21.35[dB℄ versus PSL3 = −20.3[dB℄ - Tables II and III).Future e�orts will be devoted to assess the advantages, potentialities, and limitations ofthe proposed methodologies when dealing with more realisti
 s
enarios (e.g. dire
tiveelements or wideband behavior) and/or 
onsidering other geometri
 ar
hite
tures su
has Reuleaux triangles [31℄. Towards this end, the exploitation of linear ADSs in openand 
losed-ended 
on�guration as well as 2D ADSs [48℄ will be 
arefully analyzed. Asan additional resear
h topi
 in future papers, the design parameter spa
es for whi
h
omputational e�
ien
y is a pra
ti
al limitation will be explored. Indeed, this 
ould allowto dis
riminate when optimization is impra
ti
al even with modern 
omputers and ADS-based te
hniques are best-in-
lass or when a full-sto
hasti
 approa
h is more e�e
tive.Finally the third part of this Thesis has been devoted to a hybrid ADSGA-basedmethodology for planar antenna arrays. This synthesis te
hnique has been presented anddeveloped to improve performan
e of large thinned arrays. These results 
an be veryuseful to design and enhan
e the features in the far-�eld and for narrow-band signals ofADS-based binary sequen
es for planar array thinning. To over
ome the main limitations(i.e. �exibility and performan
e) of ADS-based thinned arrays, while taking advantageof their properties, an innovative methodologi
al approa
h that, unlike the ADS thinningte
hniques des
ribed in [48℄, does not rely on purely analyti
al design method, has beenproposed. An extensive numeri
al analysis has been performed by addressing di�erentkinds of problems, ea
h one 
on
erned with a spe
i�
 ADS limitation. The obtainedresults have pointed out the following out
omes:1. thanks to the ADS initialisation, the ADSGA provides improved performan
e withrespe
t to a standard GA approa
h when dealing with linear array thinning, eventhough the improvements are not always very signi�
ant;2. ADSGA-
onstrained designs are usually advantageous sin
e they avoid both quasi-dense layouts of limited pra
ti
al importan
e as well as large main lobe widths,unlike un
onstrained ar
hite
tures;3. the knowledge of ADS referen
e sequen
es and the a priori information on theperforman
e of the 
orresponding arrays turn out to be useful even for synthesisingantenna arrangements with di�erent (also when ADSs do not exist) thinning fa
torsor sizes; 201



4. the hybrid approa
h 
an be pro�tably employed to determine the expli
it form ofnew ADS sequen
es of desired length beyond those already available, thus extendingthe range of appli
ability of the ADS-based array thinning.
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