
 

 

 

DOCTORAL SCHOOL IN COGNITIVE AND BRAIN SCIENCES XXIV CYCLE 
 

 

 

Spatiotemporal aspects in 
audiovisual interaction 

 

Thesis submitted for the degree of Doctor of Philosophy by 

Stefano Targher 

 

 

Supervisor: Prof. Massimiliano Zampini 

 

 

 

 

ACADEMIC YEAR 2010/2011 

  



 

  



 

Acknowledgements 

 

First and foremost, I wish to thank my supervisors Massimiliano Zampini for his 

patience and support provided during my PhD and for the tenacious work on revising 

the present dissertation. 

I would like to thanks also Professors David Melcher and Francesco Pavani for 

their collaboration and suggestion in two of the presented studies. I particularly wish to 

thank my colleague Alessio Fracasso for his help, advices and fruitful collaboration for 

my academic work and for the achievement of both the studies conducted with 

Professors Melcher and Pavani. I wish to thank Valeria Occelli for her collaboration and 

support with the studies on low vision. 

Many thanks also to Angelika Lignau for her help and for the project we 

conduct together, to Silvia Savazzi and Leonardo Ricci for the data analysis suggestions 

and to Massimo Vescovi for his help with Matlab and all the hardware I used for my 

studies.  

A particular thanks to all the low vision patients that took part to the studies and 

all the staff of the Italian Union of the Blind and Visually Impaired (UIC), the local 

section of the Institute for Research Training and Rehabilitation (IRiFoR), and the 

Presidium of Ophthalmology Hospital Santa Chiara in Trento for their collaboration 

with the Center for Maind/Brain Sciences. 

Finally, thanks to all the staff in the Department of Cognitive Sciences and in 

particular to al my colleagues who have made my daily life a good one for these three 

years. 

 

Last but not least, thanks to my family. 

  



 

  



 

 

 

 

 

 

 

Stefano Targher has been supported by a grant provided by ‘Fondazione Trentino 

Università’ (FTU). All the studies have been realized also thanks to the support from the 

‘Provincia autonoma di Trento’ and the ‘Fondazione Cassa di Risparmio di Trento e 

Rovereto’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



Index      Spatiotemporal aspects in audiovisual interaction 

 

 

Index 
	
  
Outline	
  of	
  the	
  Thesis	
  ......................................................................................................................	
  1	
  

The	
  multisensory	
  brain	
  .......................................................................................................	
  3	
  
Introduction	
  .....................................................................................................................................	
  3	
  
Multisensory	
  interaction	
  in	
  the	
  Superior	
  Colliculus	
  ..........................................................	
  9	
  
Multisensory	
  integration	
  in	
  the	
  cortex	
  ................................................................................	
  14	
  
Stimulus	
  reliability,	
  optimal	
  integration	
  and	
  the	
  unity	
  assumption	
  .........................	
  21	
  

Introduction	
  to	
  the	
  studies	
  .............................................................................................	
  34	
  

Eye	
  movements	
  and	
  sounds	
  ...........................................................................................	
  36	
  
Background	
  introduction	
  .........................................................................................................	
  36	
  
Eye	
  movements	
  and	
  spatial	
  acoustic	
  cognition	
  .................................................................	
  42	
  
Introduction	
  Experiment	
  1	
  ...................................................................................................................	
  42	
  
Material	
  and	
  methods	
  ..............................................................................................................................	
  47	
  
Results	
  ............................................................................................................................................................	
  55	
  
Discussion	
  .....................................................................................................................................................	
  59	
  

Eye	
  movements	
  in	
  the	
  sound	
  induced	
  visual	
  motion	
  illusion	
  ......................................	
  63	
  
Introduction	
  Experiment	
  2	
  ...................................................................................................................	
  63	
  
Material	
  and	
  Methods	
  ..............................................................................................................................	
  67	
  
Apparatus	
  and	
  stimuli	
  .............................................................................................................................	
  67	
  
Results	
  ............................................................................................................................................................	
  72	
  
Discussion	
  .....................................................................................................................................................	
  74	
  

Multisensory	
  interaction	
  and	
  low	
  vision	
  ...................................................................	
  78	
  
Background	
  introduction	
  .........................................................................................................	
  78	
  
Low	
  vision	
  ......................................................................................................................................	
  78	
  
Introduction	
  to	
  the	
  experiments	
  ............................................................................................	
  86	
  
Audiovisual	
  interaction	
  in	
  low	
  vision:	
  Spatial	
  disparity	
  factors	
  .................................	
  89	
  
Introduction	
  Experiment	
  3	
  ...................................................................................................................	
  89	
  
Material	
  and	
  methods	
  ..............................................................................................................................	
  89	
  
Results	
  ............................................................................................................................................................	
  96	
  
Discussion	
  ..................................................................................................................................................	
  100	
  

Audiovisual	
  interaction	
  in	
  low	
  vision:	
  Temporal	
  disparity	
  factors	
  I	
  .......................	
  104	
  
Introduction	
  Experiment	
  4	
  ................................................................................................................	
  104	
  
Material	
  and	
  methods	
  ...........................................................................................................................	
  105	
  
Results	
  .........................................................................................................................................................	
  110	
  
Discussion	
  ..................................................................................................................................................	
  112	
  

Audiovisual	
  interaction	
  in	
  low	
  vision:	
  Temporal	
  disparity	
  factors	
  II	
  ......................	
  116	
  
Introduction	
  Experiment	
  5	
  ................................................................................................................	
  116	
  
Material	
  and	
  methods	
  ...........................................................................................................................	
  117	
  
Results	
  .........................................................................................................................................................	
  120	
  
Discussion	
  ..................................................................................................................................................	
  122	
  

General	
  discussion	
  on	
  low	
  vision	
  .........................................................................................	
  125	
  
General	
  discussion	
  ...........................................................................................................	
  130	
  
References	
  ...........................................................................................................................	
  137	
  
 

 

 

 



Index      Spatiotemporal aspects in audiovisual interaction 

 

 

 

 



Outline of the Thesis     Spatiotemporal aspects in audiovisual interaction 

 

 1 

Outline of the Thesis 
 

How humans perceive everyday reality is one of the most fascinating and 

enduring interest of different scientific disciplines. The aim of the present dissertation is 

to investigate - from both a theoretical and an empirical perspective - some aspects 

concerning the crossmodal interactions between hearing and vision. In the first part of 

the introduction special attention is given to the cortical and subcortical neural substrate 

involved in integrating different sensory modalities, and more specifically, audiovisual 

stimuli. Experimental studies in the literature designed to empirically investigate 

different aspects of audiovisual interaction and the potential existence of a sensory 

dominance between hearing and vision will be presented. In the last part, the 

introduction will be focalized to discuss some of the principal models aimed to predict 

the outcome of audiovisual integration and its relation with sensory dominance.  

The following chapters present the experimental studies designed to empirically 

investigate different aspects of audiovisual interactions and the role of eye movements 

in auditory cognition. 

In a first study, the effects of eye movements on auditory spatial representation 

will be explored. The aim is to disentangle controversial results in the literature 

emerged in two studies that used different type of sounds (i.e., free field sounds 

provided through loudspeakers vs. sounds provided intracranially through headphones) 

and different tasks.  

In a second study, the disputed relation between perception and action will be 

investigated in presence of a crossmodal audiovisual illusion. The aim is to verify 

whether participants’ visuo-motor behaviour might be biased by the visual illusion as 

emerged for perception, and eventually, whether perceptive and motor biases are 

correlated.  
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The last study presented in this dissertation will explore the effects of 

crossmodal audiovisual stimulation in low vision patients and the relation between the 

visual pathology. More precisely, the possible visual detection enhancement provided 

by a sound coupled with a visual stimulus will be investigated. To this purpose, in a first 

experiment, the effect of spatial disparity between audiovisual stimuli will be deepened 

while the last two experiments will be focalized on the effects of temporal audiovisual 

disparities of crossmodal stimuli. 

The results of the studies described in the present dissertation provide evidence 

of an effect of eye movements in the auditory spatial cognition and a relation between 

the perceptive and visuo-motor systems in presence of an illusion induced by a sound. 

Moreover the presented findings report for the first time a significant crossmodal effect 

of audition on visual perception in low vision patients 
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The multisensory brain  
 

Introduction 
 
 

Human individuals continuously interact with an environment that provides a 

large amount of sensory information. Research has widely documented that inputs 

delivered by different sensory channels tend to be bound together by our brain. The 

process by which the human nervous system tends to merge together the available parts 

of different information in a unique event is commonly known as ‘multisensory 

integration’ (see Calvert, Spence & Stein, 2004, for a review). 

A real event is often multisensory, thus, carried to the brain by different sensory 

channels (e.g., Alais, Newell & Mamassian, 2010). Neuroscientists trying to understand 

how the mind/brain works have also tended to focus on attempting to figure out how 

each of our senses operates in isolation first, before considering how the senses interact 

with one another to give rise to the rich multisensory precepts of everyday life. This 

reductionists approach was motivated primarily by the practical assumption that to 

understand such a complex structure as the brain one needs to take a modular approach 

(e.g., Fodor, 1983), breaking down perception, or any other cognitive process into its 

component parts. It may also partially reflect the fact that so much of our 

phenomenology is unisensory. For example, when people try to understand what 

another person is saying they typically think that all the information they get comes 

from what they hear, but as we will see shortly, research now shows that a lot of it 

actually comes from vision as well.  

The idea that each sensory modality is processed independently through its own 

pathway and then is fused with the other sensory modalities in a later stage on the 
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associations areas of the brain in a hierarchical fashion (e.g., Felleman & Van Essen, 

1991) has progressively been abandoned. To date, the knowledge of physiological and 

cognitive mechanisms characterizing each single sensory modality has improved 

enormously. Nevertheless, it is not sufficient to know how information from each 

sensory modality is transduced and processed along its own pathway to explain how the 

final ‘brain computation’ will affect the behaviour. The growing amount in 

understanding unisensory processing and the evidences that multisensory interaction 

occurs much earlier than had been previously supposed, leaded neuroscientist to 

develop a multisensory approach of perception (e.g., Pavani, Murray & Schroeder, 

2007). Indeed, a sensory modality is very often influenced by other sensory modalities 

and the final percept may vary significantly in relation to the weight that our brain will 

assign to each involved modality (e.g., Alais & Burr, 2004; Ernst & Banks, 2002). To 

perceive a real event, the brain has to sort through massive multiple streams of 

information and to find which information is related with another as parts of the same 

event. Furthermore, the brain has to discard information that is unrelated to the event of 

interest. Our different senses are designed to interact and enhance quantitatively and 

qualitatively the information characterizing physical phenomena in the surrounding 

environment. Redundancy of information through different sensory channels enhances 

the probability that an event will be detected (more rapidly and accurately; Calvert et 

al., 2004; Rowland, Quessy, Stanford & Stein, 2007) thus enhancing, from an 

evolutionary point of view, the probability to survive. A striking example of the 

potential benefits that efficient multisensory integration can hold comes from our ability 

to hear someone speaking in a noisy environment, such as a cocktail party situation. 

Under such noisy conditions, the ability to see the speaker’s lips can enhance our ability 

to hear what the person is saying by an amount equivalent to a 15 dB increase in the 

sound intensity level (e.g., Sumby & Pollack, 1954).  
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Meredith and Stein (1990) established some key principles of sensory 

integration for a new approach in which ‘early’ interaction between different sensory 

modalities was the prominent view. Meredith and Stein (1990) demonstrated that visual, 

auditory and somatosensory information is integrated in the superior colliculus (SC) 

before to reach primary sensory cortices. In the SC there are neurons that respond to 

different sensory modalities (i.e., multisensory neurons). Furthermore, time and space 

seems to be two physical constrains for multisensory interaction taking place in SC’s 

multisensory cell (Meredith & Stein, 1990). Research suggests that spatial coincidence 

and temporal synchrony are the two key factors determining whether multisensory 

integration will take place to give us the rich multisensory perceptual objects of 

everyday life (cf. Driver & Spence, 2000; Slutsky & Recanzone, 2001; Stein & 

Meredith, 1993). 

Another peculiarity in the SC’s multisensory neurons is the phenomenon called 

‘superadditivity’. Superadditivity is characterized by higher neuron responses to visual 

and auditory stimulation presented together than the algebraic summation of the single 

responses when the stimuli are presented individually (see Stein & Meredith, 1993 for 

an extensive coverage of this topic). Furthermore, superadditivity has been found to be 

proportionally higher to weak unimodal sensory stimuli, the so called principle of 

inverse effectiveness (Stein & Meredith 1993; Stein, London, Wilkinson & Price, 

1996). Moreover, superadditivity disappears in case of high unimodal stimulation (i.e., 

in this case the multisensory response often may vary between the best unisensory 

response and the algebraic summation of both the unisensory responses). Both, spatial 

and temporal constrains make sense in a world in which an event (very often 

multisensory) is spatially and temporally well defined, while superadditivity avoid weak 

stimuli being neglected.  
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At behavioural level, the final result of this multisensory interaction seems to be 

the ‘product’ of two main factors; first, an online cortical modulation built through 

direct experience and second, the stimuli reliability (Alais & Burr, 2004; Ernst & 

Banks, 2002; Ernst, & Bülthoff, 2004; Shams & Kim, 2010 for a review). Concerning 

the cortical modulation on low-level multisensory interaction it has been observed that 

when descending cortical afferences to the SC are blocked (e.g., by deactivation of 

visual anterior ectosylvian sulcus, AES; Jiang, Wallace, Jiang, Vaughan & Stein, 2001), 

cat’s multisensory SC neurons will respond with the same intensity for both 

multisensory or unisensory stimulation. That is, SC multisensory neurons, in this case, 

lose their superadditive response property (Jiang et al., 2001). Furthermore, 

multisensory cells in the SC are either absent at birth or are not able to integrate 

multisensory input in both the cat and the monkey (Wallace, Carriere, Perrault, 

Vaughan, & Stein, 2006; Wallace & Stein, 2001). This means that the direct experience 

with real multisensory events is necessary to develop and calibrate temporal register and 

spatial maps in different sensory modalities on SC’s multisensory neurons (Ernst, & 

Bülthoff, 2004; Wallace & Stein, 2001, 2007). Finally, only perceptually coherent 

events may elicit a multisensory response. Indeed, we build our knowledge of the world 

through experience. Causality is an example of an important ‘rule’ used by all the living 

being organisms to learn world physical effects. If to an action often corresponds the 

same effect or to a particular sound is often associated to a particular visual scene, this 

relation will be learned and ‘stored’ in the brain. Subsequently, this memory will be 

more likely recalled if all, or some of, the constituents are experienced (e.g. visual and 

acoustic constituents of an events already experienced like a barking dog will be more 

likely integrated in respect to those of a barking cat; Barraclough, Xiao, Baker, Oram & 

Perrett, 2005).  
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During the past decades visual perception has been considered as the dominant 

modality, highly modular, with separate brain areas and mechanisms involved in 

processing different information (e.g., motion, colour, form, location). The view of 

vision as the dominant sensory modality has been reinforced by classic studies of 

crossmodal interactions in which experimenters artificially imposed a conflict between 

visual information and other sensory modalities. For example, evidences of this visual 

sensory dominance view emerged in the ventriloquist effect in which the perceived 

sound’s location is strongly biased towards the location of the visual stimulus (Thurlow, 

1973; Warren, Welch & McCarthy, 1981). Not only, the dominance of vision has been 

reported also in relation to the tactile modality (Rock & Victor, 1964) and even in 

speech perception with the well known McGurk effect (McGurk & MacDonald, 1976). 

Despite vision is the sensory modality that provides more reliable spatial 

information, it seems that visual perception can be strongly altered by sound or touch 

(see Shams & Kim, 2010 for a review). That is, stimulus reliability seems to be one of 

the important properties that lead multisensory perception. In fact, for instance, if in an 

audiovisual stimulation spatial visual cues are more reliable than auditory cues, then 

vision will lead multisensory perception. Thus, in case of integration of the two spatially 

disparate visual and auditory cues, the acoustic stimulus will be spatially shifted 

towards the visual stimulus and the crossmodal event will be perceived to come from 

the spatial position provided by the visual modality. Conversely, the dominance of 

vision over audition will be compromised in case of least reliable visual spatial cues 

(e.g., by blurring the visual target over a large region of space; see Alais & Burr, 2004). 

Not only, in some circumstances, spatial visual cues can be illusorily shifted towards the 

position cues provided by the sound (e.g., Hidaka et al., 2009). 

A large amount of neurophysiological studies has shown that the integration 

between different sensory inputs occurs in various brain structures such as the superior 
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temporal sulcus and prefrontal cortex (e.g., Alais et al., 2010; Andersen, Snyder, 

Bradley & Xing, 1997; Barth, Goldberg, Brett, & Di, 1995; Calvert & Thesen, 2004; 

Duhamel, Colby, & Goldberg, 1998; Falchier, Clavagnier, Barone & Kennedy, 2002; 

Macaluso & Driver, 2005; Wallace, Meredith, & Stein, 1992). The extreme complexity 

of the multisensory integration network and the mutual effects of the involved cortical 

and subcortical structures support the involvement of cognitive and attention-like (i.e., 

top-down) factors over early sensory integration outcomes (i.e., bottom-up). Wallace 

and colleagues (Wallace, Roberson, Hairston, Stein, Vaughan & Schirillo, 2004) found 

that the spatial bias of auditory stimuli towards the light was highly modulated by the 

participant’s perception (judgment) of a unique visual-acoustic event (i.e., the ‘unity 

assumption’; Welch & Warren, 1980; see p. 21 for more details). Unity assumption 

refers to the process of crossmodal binding in which observers will be more likely to 

assume that sensory inputs from different modalities have a common spatiotemporal 

origin (i.e., they originate from a common event) and hence will be more likely to bind 

them into a single unified percept. Conversely, in case of crossmodal segregation, the 

different sensory inputs will be perceived as different unimodal events.  

If at the level of the SC structural constrains (i.e., spatial and temporal) seem to 

play a fundamental role, it is still a matter of debate whether cognitive components are 

also involved (i.e., behaviourally). For example, the experience with spatially or 

temporally disparate stimuli seems also to provide integration benefit (Wallace & Stein, 

2007). Furthermore, the time necessary to learn new associations between different 

modalities or to disrupt old ones, seem to be very short (Lippert, Logothetis, & Kayser, 

2007) and the principle of inverse effectiveness seems not to be so clear on cortical 

areas as on the SC (see Holmes, 2007; 2009). 
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Multisensory interaction in the Superior Colliculus  
 
 

The superior colliculus (SC) is one of the most frequently investigated brain 

structures located in the vertebrate midbrain (Stein & Meredith, 1993). The SC is a 

structure that mediates orienting movements of the eye, the head and the ears towards 

the source position of visual, acoustic and somatosensory stimuli (e.g. Stein & 

Clamann, 1981). The SC is structured with different layers to which converge visual, 

auditory and somatosensory information. Neurons in the superficial layers are purely 

visual while those in the deep layers are often characterized by bimodal visual-auditory 

or visual-somatosensory inputs but may be even trimodal. Visual, acoustic and somatic 

spaces are topographically represented in the intermediate and deep layers 

(Middlebrooks & Knudsen, 1984). Multisensory neuron’s receptive fields (RF) overlap, 

and for this reason multisensory cells respond to stimuli from the same external region 

of space despite the sensory modality input. Moreover, RFs are arranged to provide a 

functional map of the external space so that SC’s multisensory neurons receptive fields 

are in ‘spatial register’ (Meredith & Stein, 1990). SC has also a pivotal role in saccade 

generation (e.g., Stein & Clamann, 1981). The deeper layers of the SC are presaccadic; 

they are also called visuo-motor as they exhibit small visual bursts before the actual 

motor bursts. They are also topographically organized: the neurons discharge before a 

saccade directed to a specific region of the visual field which is in register with the 

visual fields of the visual neurons situated in the superior layers. Different study 

highlights the effect of different sensory modalities on the same SC multisensory motor 

neuron involved in saccade generation (e.g., Stein & Clamann, 1981; Groh & Sparks, 

1996a, b). This organization pattern characterizes the SC ‘premotor map’ allowing 

transducing different sensory cues into common motor responses. Indeed, SC’s 

premotor map structure allows orienting eye movements towards the spatial position 
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provided by one or more sensory information that take place in the same external 

position. Integrations of different sensory modalities allow, for example, orienting the 

visual system towards auditory or somatosensory stimulation that take place where the 

eyes cannot see (e.g., on the rear space or behind obstacles). 

Neural recordings at the single unit level of SC have highlighted several 

peculiarities governing the multisensory interaction (see Stein & Meredith, 1993 for an 

extensive coverage of this topic). A first characteristic is that the neurons of the SC have 

spatially corresponding receptive fields that map different modalities (i.e., vision, touch 

and audition; see Stein, 1998; Stein & Meredith, 1993; Stein, Stanford, & Rowland, 

2009). The so-called ‘spatial principle of multisensory integration’ postulates that the 

neural response enhancement produced by multisensory stimuli is dependent on the 

spatial alignment and/or overlap of the excitatory receptive fields of their individual 

sensory components (e.g., Stein & Meredith, 1993; Wallace et al., 1992). Therefore, for 

instance, visual and auditory stimuli originating from the same spatial position are more 

likely to be bound together, thus enhancing the neuronal responses and facilitating their 

detection at a behavioural level (e.g., Andersen & Mamassian, 2008; Doyle & Snowden, 

2001; Frassinetti, Bolognini, Bottari, Bonora, & Làdavas, 2005; Frassinetti, Bolognini, 

& Làdavas, 2002; Frassinetti, Pavani, & Làdavas, 2002; Hairston, Laurienti, Mishra, 

Burdette, & Wallace, 2003; Marks, Szczesiul, & Ohlott, 1986). However, facilitatory 

multisensory interaction (i.e., neuronal response enhancement) can be observed even 

when the stimuli are spatially misaligned in their external positions, provided that the 

relevant neurons contain sufficiently large RFs, such that each stimulated position falls 

within their excitatory zones (Wallace & Stein, 2007). If this is not the case, no 

facilitation or even a response depression can be observed (Kadunce, Vaughan, 

Wallace, Benedek, & Stein, 1997; Meredith, Nemitz, & Stein, 1987). In case of 
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response depression the intensity of the multisensory response may be below the weaker 

unimodal response.  

A second principle driving multisensory interaction concerns the relative timing 

of the two sensory events. For example, at the level of the SC, the multisensory ‘spatial’ 

enhancement is maximized when the peak activities of the auditory and visual inputs 

overlap. It typically happens when the stimuli are presented simultaneously, although 

sensory integration can take place also between stimuli that are not temporally 

coincident but fall within the ‘temporal window’ of integration (e.g., Spence & Squire, 

2003). Indeed, at the level of SC, multisensory enhancement may emerge also in case of 

temporally disparate audiovisual stimuli. Despite the asynchronous onset of the two 

modalities, the evoked responses in multisensory neurons can have significantly more 

impulses than those evoked by the strongest of the individual stimuli (Meredith et al., 

1987). Differences in physical propagation of acoustic and visual information (i.e., 

visual speed is 900000 times faster) and transduction times together with neural 

latencies, may also explain this flexibility of the brain to integrate acoustic and visual 

stimuli. In fact, it has been shown that the temporal window of integration operates up 

to a distance of around 10 meters, a distance in which our brain my compensate 

physical with transduction speed differences between visual and acoustic stimuli (Sugita 

& Suzuki, 2003). Furthermore, other mechanisms like the temporal ventriloquism effect 

(e.g., Bertelson & Aschersleben, 2003; Morein-Zamir, Soto-Faraco, & Kingstone, 2003) 

in which the onset of a visual stimulus is shifted toward the onset of an acoustic 

stimulus may play a fundamental role to account of multisensory temporal perception. 

Temporal ventriloquism reflects the higher reliability of the auditory modality on the 

temporal domain. 

Another feature of multisensory interaction is that the related neuronal response 

is proportionally greater when unimodal stimuli are less effective (i.e., the principle of 
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inverse effectiveness; Rowland & Stein, 2008; Stein et al., 1996). In particular, the 

principle of inverse effectiveness, originally proposed by Stein and colleagues, states 

that the strength of multisensory integration increases as the neural response to stimuli 

presented in isolation decreases (see Stein & Meredith 1993 for an overview; though see 

Holmes 2007, 2009). Whereas the co-occurrence of weak stimuli contributes to the 

increase of the multisensory neural activity, a little increase can be observed when 

stimuli coming from different modalities are highly effective. Multisensory neuron 

response is often categorized as subadditive, additive or superadditive. Additive, when 

response intensity is around the algebraic summation of responses to unimodal stimuli, 

subadditive when response intensity is below to the algebraic summation of responses 

to unimodal stimuli, superadditive in case of response intensity above the algebraic 

summation of responses to unimodal stimuli (often associated to weak unimodal 

stimuli). Stanford and colleagues (Stanford, Quessy & Stein, 2005) provided a clear 

quantification of enhancement effects of visual acoustic stimulation in multisensory 

SC’s neurons. Their results show that the majority of bimodal combinations yielded 

additive responses while superadditivity was observed in only 24% of neurons and 

subadditivity in 7% of neurons.  

A very interesting issue is that SC’s multisensory integration/segregation 

properties seem to develop through experience. In fact, multisensory cells are either 

absent at birth or are not able to integrate multisensory input (Wallace & Stein, 2000, 

2001). Different inputs from the cortex to the SC seem to be fundamental for the 

multisensory development. For example, in absence of inputs from the association 

cortex, multimodal cells in the cat’s SC are unable to integrate different sensory inputs 

(Stein et al., 2009). There are two main areas in the cat’s association cortex that are 

involved in the multisensory development: the anterior ectosylvian sulcus (AES) and 

the lateral suprasylvian sulcus (rLS). The SC is a primary site of converging inputs from 
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different senses (Meredith & Stein, 1986; Stein & Meredith, 1993) and it receives 

sensory inputs from many unisensory structures (Wallace, Meredith & Stein, 1993). For 

example an audiovisual multisensory neuron receives descending visual afferences from 

the anterior ectosylvian visual area (AEV) and auditory inputs from the auditory field of 

the anterior ectosylvian region (FAES) while the output of this multisensory visual 

acoustic neuron project mostly to motor related areas of the brainstem and spinal cord 

involved in the control of orientation behaviours (Moschovakis & Karabelas, 1985; 

Peck, 1987; Stein & Meredith, 1993). Consequently, the principles that govern the 

multisensory interaction of unimodal visual and acoustic stimuli at the level of the 

single SC’s neuron (i.e., inputs) seem to be reflected in orientation behaviours (i.e., 

output; Jiang, Jiang & Stein, 2002; Jiang, Jiang, Rowland & Stein, 2007; Stein, 

Meredith, Huneycutt & Mc Dade, 1989; Wilkinson, Meredith & Stein, 1996).  

Another interesting question is whether in the same multisensory neuron the 

computation for the integration of stimuli of the same modality is the same as for 

different modalities. It seems that at least for some SC’s multisensory neurons of the 

cat, the computation is very different (Alvarado, Vaughan, Stanford & Stein, 2007; 

Wallace & Stein, 1994). In fact, while the integration of different modalities can 

provide a multisensory cell response that can be additive, subadditive, superadditive or 

depressed as a function, for instance, of the spatiotemporal characteristic of the involved 

different modalities, integrating stimuli from the same sensory modality seems to 

provide a response which is very close to the lowest of the two (i.e., subadditive; Stain 

& Stanford, 2008 for a review; Wallace & Stein, 1994). The computation of inputs from 

different receptive fields providing information from different modalities seems to be 

one key factor to obtain enhancement of the multisensory neuron response. In fact, in 

case of unisensory stimulation, the excited multisensory neuron’s receptive field is the 

same for both unisensory stimuli. These representative samples are exemplary of the 
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characteristic differences between the neural computations that underlie multisensory 

and unisensory integration in multisensory neurons.  

 

 

Multisensory integration in the cortex 
 
 

Multisensory interaction seems to characterize most of the cerebral cortex 

despite of the hierarchical process of information view characterizing cognitive science 

of few decades ago (e.g., Felleman & Van Essen, 1991). Recent imaging studies show 

that multisensory interaction may be present in the association areas but also in primary 

sensory and motor areas (see Klemen & Chambers, 2011 for a recent review). Indeed, in 

primary sensory areas inputs from the sensory modality have the major weight on the 

information processing, nevertheless, other sensory modalities can exert a relevant 

influence. Non-human primates constitute a good model to study the neuronal 

mechanisms of multisensory interaction. Anatomical and electrophysiological 

approaches have been developed to assess whether crossmodal influences can occur at 

early stages of sensory processing. A recent animal anatomical study revealed the 

presence of direct links between the primary visual area (V1) and auditory areas 

(Cappe, Rouiller & Barone, 2009). Recording of single unit activity in the primary 

visual cortex of the monkey does not reveal pure auditory responses but, in line with the 

principle of inverse effectiveness, a modulation (i.e., reduction) in neuronal response 

latencies when visual and auditory stimuli are at middle intensity but not when are at 

high intensity (Wang, Celebrini, Trotter & Barone, 2008). The primary striate visual 

cortex V1 of the monkey is highly connected with the extra-striate visual cortex V2 and 

V3. Furthermore, few inputs converge to V1 from multisensory areas like the superior 
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temporal polisensory region (STP) and areas of the posterior parietal cortex (PPC) more 

precisely from lateral and ventral intraparietal areas (Kaas & Collins, 2004).  

In humans and non-human primates studies have focused on the posterior 

parietal cortex (PPC) where visual, vestibular, tactile and auditory sensory information 

converges to constitute a common multisensory spatial map (Graziano, 2001). Indeed, 

in PPC sensory signals are coded in common coordinate frames, such as auditory-visual 

or visual-somatosensory maps in eye-centred coordinates (Cohen & Andersen, 2000). 

Lateral intraparietal (LIP), anterior intraparietal (AIP), medial intraparietal (MIP) and 

ventral intraparietal (VIP) areas are different PPC subregions involved in various 

aspects of spatial attention and action. For example, the LIP neurons encode visual and 

auditory stimuli with respect to current eye position, requiring auditory receptive fields 

dynamically realign with changes in gaze direction (Avillac, Deneve, Olivier, Pouget & 

Duhamel, 2005; Cohen & Andersen, 2000; Schlack, Sterbing-D’Angelo, Hartung, 

Hoffmann & Bremmer, 2005). Also in MIP neurons, a subregion that seems to be 

involved in limbs reaching movements, visual and auditory targets are encoded in a 

common eye-centred coordinate map (Batista, Buneo, Snyder, Andersen, 1999; Cohen 

& Andersen, 2000). By using single cells recording, Avilac and colleagues (Avillac et 

al., 2005; Avillac, Ben Hamed, & Duhamel, 2007) found that in the macaque VIP area 

the majority of neurons perform visual tactile multisensory integration following the 

general multisensory interaction principles (e.g., spatial and temporal coincidence) that 

are closely similar to those described in other cortical and subcortical regions. 

Surprisingly, the response direction is not as that observed in the SC. In fact, visual and 

tactile stimuli presented in the same position of space mainly produce response 

depression (i.e., the magnitude of the multisensory response is lower than that of the 

response to the best unisensory stimulus). Furthermore, multisensory integration occurs 

most often when the visual and tactile stimuli are spatially aligned but some neurons 



Introduction     Spatiotemporal aspects in audiovisual interaction 

 

 16 

combine multisensory events for incongruent stimuli and few show multisensory 

integration for stimuli that are either spatially congruent or incongruent. Moreover, 

integration produced by spatially incongruent stimuli could provide either response 

enhancement or depression with the same probability. Avillac and colleagues (2007) 

also found that most of the unisensory neurons response in macaque VIP area is 

influenced by another modality even if cells do not respond directly to that modality as 

found more recently by Wang and colleagues (2008).  

In humans, electric functional imaging studies (event-related potential, ERP and 

the magnetoencephalography, MEG) providing high temporal resolution, highlighted 

changes in primary sensory areas of early-evoked potentials related to crossmodal 

stimulation (i.e., between 50 and 200 ms after stimulus onset). Indeed, it has been found 

enhancement of auditory evoked responses when an additional somatosensory stimulus 

was applied to the hand (Murray, Molholm, Michel, Heslenfeld, Ritter, Javitt, Schroeder 

& Foxe, 2005), while another crossmodal visual acoustic crossmodal study reported 

early multisensory effects in visual, auditory and fronto-temporal areas (Giard & 

Peronnet, 1999; Fort, Delpuech, Pernier & Giard, 2002). In another audiovisual 

crossmodal study Molholm and colleagues (Molholm, Ritter, Murray, Javitt, Schroeder 

& Foxe, 2002) found that RTs to crossmodal stimuli, when presented simultaneously, 

were significantly faster than when stimuli were presented alone. Furthermore, EEG 

studies for the McGurk illusion (McGurk & MacDonald, 1976) show visual modulation 

over classical auditory areas (Colin, Radeau, Soquet, Demolin, Colin & Deltenre, 2002; 

Mottonen, Krause, Tiippana & Sams, 2002). 

Single cells recording in animals and non-human primates clearly indicate that 

interaction between sensory modalities is spread in the brain also at early stages of 

sensory processing (e.g., Kaas & Collins, 2004; Cappe et al, 2009). These results are 

absolutely not in line with a hierarchical view of sensory information processing. 
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Indeed, recent evidence highlights that multisensory interactions occur in a richly 

interconnected system (Klemen & Chambers, 2011). To further underline these results, 

electrophysiological studies in humans provide evidences of much similar early 

interaction in different multimodal tasks (e.g., Fort et al., 2002; Molhom et al. 2002; 

Murray at al., 2005).  

Humans’ neuroimaging studies (e.g., functional magnetic resonance imaging, 

fMRI) report multisensory interaction in various cortical areas (see Klemen & 

Chambers, 2011 for a recent review) however, most of such studies did not find 

superadditivity maybe due to low temporal resolution constrains of this method and a 

small population of multisensory neurons involved in the process of sensory 

information. Furthermore, interpretation of the crossmodal sensory signal obtained 

during human brain imaging studies might be attributed to the presynaptic inputs from 

different sensory systems (i.e., both excitatory and inhibitory presynaptic activity) rather 

than the resulted sensory output (see Logothetis, Pauls, Augath, Trinath & Oeltermann, 

2001). For this reasons activations observed in imaging studies after multisensory 

stimulation might be not considered as a real multisensory response.  

Despite fMRI methodology difficulties and data interpretation issues, this 

methodology seems to be widely used and prominent to provide very good insights.  

First, because for the recent developments in multivoxel pattern analysis (MVPA) and 

second, because multimodal neuroimaging technique provides results of more than one 

measurement technique acquired on the same task, from the same participants at the 

same time (see Klemen & Chambers, 2011). Kayser and coworkers highlighted 

crossmodal modulation effects of somatosensory and visual stimuli in the auditory 

cortex in two different studies (Kayser, Petkov, Augath, Logothetis, 2005; Kayser, 

Petkov, Augath & Logothetis, 2007). Ghanzanfar and colleagues also found a 

modulation of most cells in primary auditory cortex (A1) provided by visual stimuli 
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(Ghazanfar, Maier, Hoffman & Logothetis, 2005). Furthermore, Lakatos and colleagues 

also found auditory and somatosensory interactions at nearly every recording site in A1 

(Lakatos, Chen, O’Connell, Mills & Schroeder, 2007). Subadditive multisensory 

response in STS has been found with acoustic and tactile stimuli (Beauchamp, Lee, 

Argall & Martin, 2004) and with both audiotactile and visuotactile stimuli (Beauchamp, 

Yasar, Frye & Ro, 2008). 

In a recent study, Stevenson and colleagues (Stevenson, Geoghegan & James, 

2007) by varying signal strength of audiovisual stimuli found clearly superadditive 

responses for weak stimuli showing the effects of principle of inverse effectiveness in 

the superior temporal sulcus (STS). Foxe and colleagues (Foxe, Wylie, Martinez, 

Schroeder, Javitt, Guilfoyle, Ritter & Murray, 2002) by presenting to the participants 

tactile and auditory stimuli found that unimodal tactile stimulation activated areas of 

auditory association cortex and left superior temporal gyrus (STG). Moreover, when the 

auditory and haptic stimuli were presented simultaneously, superadditivity was 

observed in the left STG. Calvert and colleagues (Calvert, Campbell & Brammer, 2000) 

presented participants with audiovisual speech. Compared to unimodal stimulation 

responses, simultaneous audiovisual speech produced superadditive response while 

asynchronous presentation provided subadditive response in the left STS.  

Reaction times facilitation for audiovisual multisensory stimuli compared to 

unisensory stimuli reported also in macaque monkeys (Cappe, Murray, Barone & 

Rouiller, 2010) has been recently confirmed in humans (Senkowski, Saint-Amour, 

Höfle & Fox, 2011). This facilitation has been observed only with subthreshold but not 

with suprathreshold auditory stimuli. Similarly, Noesselt and colleagues (Noesselt, 

Boehler, Budinger, Heinze & Driver, 2010) have shown that the simultaneous 

presentations of auditory stimuli enhance the behavioural visual detection for low 

intensity visual stimuli but not for high intensity visual stimuli. Furthermore, Noesselt 
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and colleagues’ results indicate that multisensory enhancement of detection sensitivity 

for low-contrast visual stimuli by co-occurring sounds reflects a brain network 

involving not only established multisensory STS and sensory specific cortex but also 

visual and auditory thalamus. These very recent psychophysical and behavioural results 

provide further evidences consistent with the principle of inverse effectiveness. 

Furthermore, these results highlighting the same behavioural facilitation mechanisms in 

humans and non-human primates, allow to better interpreting human imaging studies 

due to the evidence of similarities between human’s and non-human’s primate brain 

structure.  

Taken together, single cells recording, electrophysiological and fMRI imaging 

studies highlight the extreme complexity of interaction between different modalities 

indicating the presence of both feedback and feedforward connections between early 

processing of sensory information (i.e., subcortical structures and primary sensory 

cortices) and high-level association areas (e.g., FEF, STS, STG, LIP, VIP). However, 

the outcome of this complex multisensory interaction network is not easily predictable 

because of the interaction between environmental sensory information and their online 

interpretation that highly depend to the past recipient experience. Thus, the outcome 

behaviour may differ significantly among different recipients explaining why it is 

possible to obtain highly different outcomes from the same physical event. While at the 

level of the SC multisensory interaction clearly seem to obey to structural constrains 

(i.e., spatiotemporal and stimulus intensity), this is not so clear if cognitive components 

are also involved (i.e., behaviourally). Is undeniable that many cortical regions exhibit 

crossmodal interactions, however, some principles very clear at the level of the SC are 

not so pronounced at the level of cortical areas (Holmes, 2007; 2009). One of the 

possible explanations may be hypothesized by observing results of experiments in 

which ‘particular’ spatiotemporal relation characterizes external crossmodal events.  For 
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example, the experience (i.e., adaptation) with spatially or temporally disparate stimuli 

seems also to provide integration benefit (Wallace & Stein, 2007). Wallace and 

colleagues reared cats in an altered sensory environment in which visual and auditory 

stimuli were temporally coupled but originated from different locations. Neurons in the 

superior colliculus of those cats developed a form of multisensory integration in which 

spatially disparate visual-auditory stimuli were integrated. The animals learned to 

associate disparate stimuli because those were the environmental constrains. The data 

suggest that the principles governing multisensory integration are highly plastic and that 

there is no a priori spatial relationship between different modalities for their integration. 

Not only, the time necessary to learn new associations between different modalities or 

to disrupt old ones, seem to be very short (Lippert et al.,2007). Lippert and colleagues 

were able to eliminate in just one experimental section, the enhancement effect provide 

by the sound in a synchronous crossmodal audiovisual stimulation in a visual detection 

task. In a first experiment in which the sound was always synchronous with the visual 

stimulus, the authors found visual enhancement in the crossmodal stimulation in respect 

the unimodal visual condition. With another group of participants, by varying the 

stimulus onset asynchrony between sound and target in the crossmodal conditions (i.e., 

−400, −150, 0, +150 and +400 ms), the authors were able to eliminate the visual 

detection enhancement effect provided by the sound even in the synchronous condition. 

Taken together, Wallace and Stein (2007) and Lippert et al. (2007) findings indicate that 

our cognitive system seems to learn and adapt very fast to different associations 

between modalities in a useful way to optimize task demands (i.e., environmental 

constrains). The outcome of such adaptation may exploit crossmodal integration 

enhancement only if there is a stable relation between spatial and temporal cues of 

different modalities. In this way, integrations principles governing early stages of 

sensory processing (e.g., at the level of the SC) are likely to be established by the 
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modulation (e.g., by means of feedforward connection) of high-level association 

cortices that have to ‘find’ the useful (i.e., constant) relation to learn and exploit in the 

future. How fast may be this plasticity, how match well established relation might be 

modified and what kind of limits there are in establishing new relations is still to be 

deepened. It is likely that differences between single cells recording results at the level 

of subcortical and associations areas may be due just because in the latter are mostly 

involved aware flexible decision factors and such factors are the basis to establish new 

relations at early integration levels. 

An important difference in multisensory integration between subcortical and 

cortical areas seems to be that in the latter, multisensory events have to be coherent or 

already experienced in a way that the event can be recognized by means of all its 

constituents (i.e., experienced association between modalities). In this multisensory 

context, coherence means that a sound stimulus, for instance, should be an ecologically 

valid match to a given visual object (e.g., a ‘barking’ sound would be coherent with an 

image of a dog while a ‘meowing’ sound would not). This issue, concerning which 

particular inputs from one sense should be jointly weighted together with which 

particular selection of inputs from other senses, refer to one of the most discussed actual 

topic of ‘unity assumption’ (Welch & Warren, 1980). 

 

 

Stimulus reliability, optimal integration and the unity assumption  
 
 

How the cognitive system is able to bind information from different modalities 

and which are the rules governing such phenomenon is still debated. Different models 

have been proposed to predict the outcome of crossmodal stimulations in relation to 
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physical information provided by the constituent unimodal stimuli (i.e., reliability of 

each modality cues).  

The ‘modality precision hypothesis’ proposed by different authors (Choe, 

Welch, Guilford & Juola, 1975; Fisher, 1968; Kaufman, 1974; Howard & Templeton, 

1966) states that the more precise information cues provides one modality, the more it 

will bias the integration outcome towards those cues. For instance, in normal conditions, 

vision dominates audition for spatial tasks, and audition dominates vision for temporal 

tasks. In the well know audiovisual ‘ventriloquist effect’ in which the movements of the 

dummy’s mouth alter the perceived location of the ventriloquist’s voice (Howard & 

Templeton 1966) it seems that such crossmodal localisation bias depends on the spatial 

and temporal relationships between the stimuli, with bias declining as a function of 

increasing temporal and spatial disparity (e.g., Hairston, Wallace, Vaughan, Stein, 

Norris & Schirillo 2003; Lewald & Guski 2003; Lewald, Ehrenstein & Guski, 2001; 

Radeau & Bertelson 1987; Slutsky & Recanzone 2001; Welch & Warren 1980). Despite 

the general agreement on this issue, the degree of tolerated disparity and the amount of 

elicited bias, range widely, probably reflecting the substantial differences between the 

used experimental paradigms.  

The ‘modality appropriateness hypothesis’ proposed by Freides (1974) is not 

very different to some extent to the ‘modality precision hypothesis’ as it states that each 

modality provide different information cues but is the more appropriate to provide a 

particular type of cue (e.g., spatial or temporal). For example, vision is the more 

appropriate sensory modality to provide spatial information. However, while the 

precision hypothesis seems to be more flexible in a way that as less is the precision of 

one modality in a particular situation, as less will bias multisensory integration, the 

appropriateness hypothesis seems do not admit exceptions. For the modality 

appropriateness hypothesis, the visual modality is always the best to provide spatial 
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cues and for this reason, in all spatially incongruent crossmodal tasks, the resulting 

percept will be biased toward the visual stimulus location. However, both the reported 

hypotheses cannot explain why in some circumstances the behavioural bias is toward 

the least precise/appropriate modality. Visual dominance can be reversed in spatial tasks 

when visual signals are degraded (inverse ventriloquism; Alais & Burr, 2004) and other 

‘reversing’ dominance effects can be obtained by manipulating unimodal stimuli 

reliabilities in other sensory modalities (e.g., visual-haptic estimation of height; Ernst & 

Banks, 2002).  

A model that formalizes the effect of modalities reliability is the maximum 

likelihood estimation (MLE; Ernst & Banks, 2002) or optimal combination model 

(Alais & Burr, 2004) two models based on the ‘stimulus reliability hypothesis’. 

Conceptually this two models works with the same mechanisms; they are a weighted 

linear sum that combines two or more signals that are weighted by their reliability. 

Thus, the modalities with reliable cues receive a high weight, while those with less 

reliable cues receive a low weight. The combination rule is considered statistically 

optimal because it provides a result that is the most reliable (i.e., most probable or least 

variable). Results provided by visuotactile (Ernst & Banks, 2002) and audiovisual 

integration (Alais & Burr, 2004) studies provide evidences to the MLE model. 

Furthermore, other studies have shown that human crossmodal perception closely 

matches predictions from the MLE model even in trimodal contexts (Wozny, Seitz, & 

Shams, 2008), as well as between independent cues within a single modality (Hillis, 

Ernst, Banks & Landy, 2002). Thus, the MLE seems to be a good predictor for the 

behavioural outcome or, in case of ambiguity, for the direction of the bias.  

Other studies have been focalized on the role of audition in crossmodal 

integration. Audition is more accurate than vision to provide temporal information. A 

sound presented in close temporal proximity to a visual stimulus can alter the perceived 
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temporal dimensions of the visual stimulus (temporal ventriloquism; Aschersleben & 

Bertelson, 2003; Bertelson & Aschersleben, 2003; Burr, Banks & Morrone, 2009; 

Morein-Zamiret al., 2003). In a first study, Bertelson & Aschersleben (2003) asked to 

participants to judge the order of occurrence of sound bursts and light flashes separated 

in time with different stimulus onset asynchronies (SOAs) and delivered either in the 

same or in different locations. Results pointed out significant longer SOAs needed by 

participants to correctly respond which of the two stimuli (i.e., flash or sound) were 

delivered first when the two stimuli where delivered in the same spatial location (i.e., at 

fixation) in respect to different positions (i.e., one at fixation and the other in the 

periphery). This result highlights the strong effect of the sound in a temporal judgment 

task while emphasize the role of congruent spatial cues that seem to have a particular 

role in the crossmodal binding. The temporal dominance of the sound was effective 

only when acoustic and visual stimuli were presented in the same spatial position. 

In a second sensory motor study Aschersleben & Bertelson (2003) asked to 

participants to produce tapping movements in synchrony with a sequence of repeated 

reference signals. In a first experiment, the reference signals were light flashes, each 

one preceded or followed with different stimulus onset asynchronies (SOAs) by an 

auditory stimulus that the participant was instructed to ignore. Results show that the 

timing of the tap was strongly biased toward the occurrence time of the sound (i.e., 

distractor that had to be ignored). In a second experiment, the reference signals were 

auditory while light flashes have to be ignored (i.e., distractors). The timing of the taps 

was biased significantly toward the flash distracters, but the effect was far weaker than 

that provided by the sounds distractors in the first experiment indicating that the sound 

seems to lead vision in the temporal domain by strongly biasing the time of occurrence 

of visual perception. However, the differences between the instructions in the two 
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experiments seem to provide different results biased towards the modality to be ignored. 

This is not explainable by just the MLE model.  

In temporal order judgment task (TOJ) were participants have to report which 

light between two is presented first, Morein-Zamir and colleagues (2003) for instance, 

show that a sound trailing the second visual stimulus provide an improvement in the 

visual temporal accuracy as compared to the baseline condition in which two temporal 

disparate visual stimuli are presented with two synchronous sounds. That is, it seems 

that the effect of the sound associated to the second visual stimulus (delayed in respect 

the visual stimulus) provides a temporal shift of the visual perception towards the 

occurrence time of the associated sound (i.e., the second light is temporally 

ventriloquized by the second sound). Conversely, two sounds presented between the 

two visual stimuli worsened performance but the temporal modulation of the first sound 

associated to the first visual stimulus have no effect. Only the effect of the second sound 

seems to increase the temporal disparity between the two lights thus providing a 

significant benefit to report the correct visual stimuli sequence. The stimulus reliability 

alone seems not to justify the results of the Morein-Zamir et al’s study (2003). 

Temporal dominance of the sound can be overcome by providing even an 

auditory illusion in which a visual event affects the perceived duration of an 

accompanying sound. Schutz and Lipscomb (2007) discovered an illusion in which a 

visual event affects the perceived duration of an accompanying sound. They made 

several videotapes of a professional percussionist playing single notes. The performer 

played each note using long and short gestures. Participants were asked to judge the 

durations of sounds and to ignore visual information when judging the duration 

produced with these two gestures. In the absence of visual information, participants 

judged the durations of the notes to be equal. However, when they heard the sound 

while watching the video, they judged notes produced by long gestures to be longer than 
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notes produced by short gestures. The authors concluded that although longer gestures 

do not produce tones with longer acoustic durations, they do create an illusion in which 

tones sound longer because of audiovisual integration. In this last study, the temporal 

dominance of the sound is biased by the visual stimulation that seems to spatially 

ventriloquize the ‘duration of the sound’ along the duration of the long movement. In 

this case stimulus reliability and stimulus appropriateness provides different 

expectations. It seems that the reliability of different stimuli is not provided only by the 

mere stimulation per se. How our brain can decide that the more appropriate modality 

(i.e., the acoustic modality in the temporal domain) is less reliable than the less 

appropriate (i.e., the visual modality)? How our brain assigns the weight to each 

modality? Different factors like the prior knowledge (i.e., experience) of the stimulation 

can be highly relevant. This could be the reason why different results have been 

obtained with similar experimental design that used different stimuli and might also 

accounts for the high variability between participants. For instance, the aforementioned 

audiovisual illusion (Schutz & Lipscomb, 2007) in which the length of the gesture used 

to produce a sound altered the perception of that sound’s duration is at odd with the 

temporal ventriloquism (e.g., Shams, Kamitani & Shimojo, 2000) in which auditory 

superior temporal acuity prevails. The stimulus reliability hypothesis does not explain 

behavioural bias toward the least reliable modality and one of the reasons may be 

because it does not contemplates the effect of the previous knowledge (i.e., experience 

of causality, prior probability) that seems to exert a fundamental role in multisensory 

integration. All the aforementioned studies can be predicted by one or more (or a 

combination) of de described models. But any of the models seems, at least partially, to 

predict the outcome of all the studies.  

More than thirty years ago Welch and Warren (1980) reviewed the literature on 

intermodal bias with the aim to find a model able to explain the mechanisms of such 
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bias in crossmodal integration. Welch and Warren’s idea of the ‘unity assumption’ 

considered a very complex model in which different factors were contemplated: 

stimulus properties (i.e., modality appropriateness), modality characteristics (i.e., the 

way in which each sensory information is acquired, transmitted and finally perceived 

from a biological structural point of view), prior participant knowledge and task 

instructions (i.e., primary and secondary attentional factors in the model). All this 

variables are supposed to have a significant effect on whether the perceiver will 

perceive a unitary event, the extent of this unity binding, and thus the resulted outcome 

(i.e., direction of the perceptual bias). 

The effects of high-level decision components seem to play a fundamental role 

in multisensory integration outcome. In Bertelson and Aschersleben (2003) study, the 

role of the sound was significant only when acoustic and visual stimuli were presented 

in the same spatial position supporting the hypotheses that the influence of the sound on 

vision emerged only when the two modalities were perceived as a unique crossmodal 

event. In Aschersleben and Bertelson (2003) study, the resulted bias direction was 

modulated by the modalities to be ignored. In Schutz and Lipscomb (2007) study, the 

temporal dominance of the sound was biased towards the duration of the visual gesture 

supporting the prior knowledge of causality in visual acoustic events. 

 In other studies as, for example in Wallace and colleagues’ study (Wallace et 

al., 2004) it has been found that the spatial bias of auditory stimuli towards the light was 

highly modulated by the participant’s perception (judgment) of a unique audiovisual 

event (i.e., the assumption of unity). More precisely, participants performed an auditory 

localisation task in which they were also asked to report whether they perceived the 

auditory and visual stimuli to be perceptually unified. The auditory and visual stimuli 

were delivered at a variety of spatial (0°, 5°, 10°, 15°) and temporal (200, 500, 800 ms) 

disparities. Result show that regardless of their disparities, whenever participants 
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reported perception of unity, the acoustic stimulus was biased towards the visual 

stimulus position. Perceptual unity occurred even with substantial spatial (i.e., 15°) and 

temporal (i.e., 800 ms) disparities. In contrast, when the stimuli were perceived as not 

unified, auditory localisation was often biased away from the visual stimulus even if 

acoustic and visual stimuli share the same spatial position. 

Another study in which the cognitive component seem to exert a fundamental 

role in audiovisual interaction is that of Lippert et al. (2007) discussed earlier in which 

by varying the stimulus onset asynchrony between sound and target in the crossmodal 

conditions (i.e., −400, −150, 0, +150 and +400 ms), the authors were able to eliminate 

the visual detection enhancement effect provided by the sound in the synchronous 

spatially congruent condition. That is, the absence of a stable relation between sound 

and visual stimulus led to the perception of independent stimulations from the two 

modalities. Therefore, the audiovisual stimulation was not perceived as a unique 

crossmodal event, thus eliminating even the enhancement in the synchronous 

crossmodal condition. The synchronous crossmodal condition provided visual detection 

enhancement in a previous experiment in which crossmodal stimulation was always 

synchronous. The authors suggest that the participants’ belief about the relation between 

sound and visual targets is a crucial factor that determines the resulting response. Thus, 

also in this case, cognitive factor seems to have a prominent role on sensory interaction. 

Not only, surprisingly, participants’ belief about the relation between the two stimuli 

has been changed very fast. In one experimental section, the lack of a constant relation 

between visual and acoustic stimuli (i.e., the sound could have been randomly delivered 

before or after the visual stimulus) deleted the crossmodal sensitivity (d’) enhancement 

previously founded. This result indicates a very fast cognitive plasticity modified by the 

relation between sensory modalities as highlighted by the participants’ change in the 

decision criterion (logβ). 
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In general, it is undeniable that both perceptual and cognitive factors play a 

crucial role in such a complex interaction between modalities. Studying how people 

resolve these conflict situations (i.e., how people weight the various sensory cues when 

they disagree) helps scientists to understand the rules that normally govern multisensory 

integration. An example may be the study of Sanabria and colleagues (Sanabria, Spence 

& Soto-Faraco, 2007) in which they measured the perceptual sensitivity (d’) in two 

different tasks regarding the direction of auditory apparent motion streams presented in 

noise. In the critical conditions, a visual motion distractor, moving either leftward or 

rightward, was presented together with the auditory motion. The results demonstrated a 

significant decrease in sensitivity in reporting the direction of the auditory targets in the 

crossmodal conditions as compared to the unimodal baseline conditions in which there 

was not visual distractor. In addition, they observed significant shifts in response 

criterion (c), which were dependent on the relative direction of the distractor apparent 

motion. Due to the dissociation between criterion direction and performance sensitivity, 

the authors claim that perceptual and decisional factors are both involved in their 

crossmodal task but the two components seems to be highly independent. The presence 

of trials in which the visual stimulus was not informative (i.e. in 50% of the trials the 

visual stimulus direction was incongruent with the auditory apparent motion direction to 

be detected) eliminates the crossmodal enhancement also in the congruent condition like 

found by Lippert and colleagues (2007). Result of Sanabria and colleagues’ (2007) 

study supports the high influence of cognitive factors on participants’ response. 

Another interesting example is an audiovisual illusion produced when a single 

flash of light is presented interposed between two brief auditory stimuli separated by 

60-100 ms (Shams et al., 2000). Participants typically report perceiving two flashes. On 

the basis of their results, Shams et al. suggested the ‘discontinuity hypothesis’ stating 

that the influence of the discontinuous modality (i.e., the sounds) on the continuous 
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modality is stronger than vice versa. That is, because audition has much better temporal 

resolution and the fact to have two temporally very close sounds, the sound 

discontinuity produce a fission (i.e., separation) of the unique (i.e., continuous) visual 

stimulus into the illusory perception of the occurrence of two visual stimuli. 

Interestingly, by providing two visual stimuli temporally close and only one sound 

between them, participants did not report the fusion (i.e., unification) illusion of the two 

visual stimuli in one unique visual perception.  Shams and colleagues’ claim was that 

the modality appropriateness hypothesis does not explain their results because the more 

‘appropriate’ modality (i.e., the sound in this case) did not lead the direction of the 

crossmodal interaction both in fission and fusion. 

By using the same experimental paradigm used by Shams et al. (2000), 

Andersen and colleagues (Andersen, Tiippana & Sams, 2004) were able to find also a 

fusion illusion despite it was weaker than the fission one. They modulate the intensity of 

the sound (i.e., sound reliability) in two different blocks and found that the effect of the 

sound induced visual illusion was stronger when the beeps were at a clearly audible 

level than when they were near subjects’ auditory threshold, in accordance with the 

information reliability hypothesis. However, Andersen et al. (2004), by manipulating 

task instructions, were able to reverse the effect of the illusion by obtaining a visual 

induced auditory illusion. That is, the authors found an effect of the visual modality on 

the acoustic modality by asking participants to count the beeps instead of the flashes. 

Andersen and colleagues’ results highlight the contribution of the instruction (i.e., count 

the flashes or beeps) on the direction of the resulted illusory bias. Indeed, the effect of 

the instructions on participants’ response is contemplated only in the unity assumption 

hypothesis. 

Another particular and very popular example of an illusion in the language 

comprehension domain (i.e., in terms of meaning of a spoken syllabus) is called the 
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McGurk Effect (McGurk  & MacDonald, 1976). Watching a speaker’s face helps us 

understand what is being said because integrating congruent sight (i.e., lip movements) 

and sound of speech enhances the brain activity that underlies speech perception 

(Sumby & Pollack, 1954; Sams, Aulanko, Hämäläinen, Hari, Lounasmaa, Lu & Simola, 

1991). In McGurk and McDonald’s classical example of this effect, lip movements  

(i.e., a video of a face uttering /ga/) and sound of speech (i.e., a voice saying /ba/) are 

not congruent. This results in an auditory percept of hearing /da/. Language is a high-

level cognitive function and a particular field of study in which multisensory integration 

of visual and acoustic stimuli play a fundamental role. Different factors are involved to 

language comprehension. That is, the experience with the speech word include the 

knowledge of its sound, the meaning, and the lip movements needed to uttering it 

together with the emotional content that a moving face induce in the listener. Moreover, 

visual and acoustic information seem to interact ad early level of perception ((Kayser et 

al., 2005; 2007; Sams et al., 1991) leading to a comprehension bias effect of vision on 

audition. Tuomainen and colleagues (Tuomainen, Andersen, Tiippana & Sams, 2005) 

trained subjects to categorize sine-wave speech tokens in two arbitrary categories but 

subjects were not aware of the speech like nature of the stimuli. Then the authors used 

audiovisual stimuli consisting of the sine-wave speech tokens dubbed onto the face 

uttering the speech tokens and found a weak McGurk effect in the incongruent 

audiovisual stimulation. Afterwards, subjects were trained in perceiving the sine-wave 

speech tokens as speech and to categorize them phonetically. When the same 

crossmodal task was then tested the authors found a very strong McGurk effect. 

Tuomainen and colleagues (2005) interpreted this result as “evidence of a speech 

specific mode of audiovisual perception which can be manipulated by cognitive 

factors”. Again, instructions and prior knowledge about speech stimuli (i.e., cognitive 

factors) seems to have a fundamental role in crossmodal interactions. 
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Bayesian models seem to adapt to different crossmodal paradigms and predict 

very well interactions between modalities. This model encompassing the prior 

knowledge of the perceiver in addition to the reliability of the single modalities is a 

mathematical formalization very close to what is stated by the unity assumption model 

and seems to be a very good predictor of the resulting bias. A model based on Bayesian 

inference has been proposed by Sato and colleagues (Sato, Toyoizumi & Aihara, 2007). 

In this model, the Bayesian observer adopts the maximum a posteriori approach to 

estimate the physically delivered positions or timings of presented stimuli (i.e., 

perceptual reliability), while adaptively changes the inner representation of the Bayesian 

observer in terms of experience (i.e., cognitive factors). By means of this Bayesian 

model, the authors were able to reproduces perceived spatial frame shifts due to the 

audiovisual adaptation known as the ventriloquism aftereffect (Recanzone, 1998). In 

this adaptation phenomenon, after a prolonged exposure to simultaneous audiovisual 

stimuli with spatial disparity, the spatial unity perception shifts toward the presented 

disparity. Bayesian models seem to be very promising for the formalization of 

multisensory interaction mechanisms. 

Taken together results of the aforementioned studies highlight the complexity of 

the network to process different information and the articulation of different factors 

involved in the process of bind or segregate different cues coming from the same or 

different modalities. The above reported studies provide evidences that both low-level 

perceptual (i.e., stimulus reliability) and high-level cognitive factors (i.e., prior 

experience and instructions) are involved in crossmodal integrations. Furthermore, 

cognitive factors and task instructions seem to characterize crossmodal sensory bias 

mostly in case of uncertainty, that is, when different modalities provide incongruent 

cues. Thus, maximum likelihood estimation and stimulus reliability hypothesis by 
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lacking in encompassing cognitive factors seem not to be the best formalization to 

describe multisensory interaction.  
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Introduction to the studies 
 
 

The introduction purposed to provide a multisensory general overview by 

describing structural and behavioural cognitive aspects of multisensory perception. The 

discussion will be now restricted to the visual and acoustic interaction field by 

considering the role of eye movements auditory spatial representation. Since eye 

position plays a fundamental role in visual and acoustic spatial discrimination (e.g., 

Knudsen & Brainard, 1995), the aim of the first study presented in this dissertation will 

be focused to disentangle controversial results of two previous studies (see Kopinska & 

Harris, 2003; Pavani, Husain & Driver, 2008). Pavani and colleagues found a 

significant effect of voluntary eye movements in an acoustic localisation task. By 

contrast, Kopinska and Harris (2003) found no effect of eye movements. Indeed, the 

two studies have different methodological aspects. For instance, Pavani et al. used a 

setup constituted by external speakers (i.e., free field sounds) in different positions 

while Kopinska and Harris used intracranial sounds delivered through headphones. To 

possibly disentangle these two controversial results and clarify the role of eye 

movements in a spatial acoustic discrimination task, in the study reported here 

participants were presented with different type of sounds (i.e., free field vs. intracranial 

sounds) in two experiments by using the same experimental procedure (within subject 

design).  

The second study will investigate a recent described audiovisual illusion. Hidaka 

and colleagues (Hidaka et al., 2009) demonstrated that a visual stimulus blinking at a 

fixed location is perceived to move laterally when its flash onset is synchronized to an 

alternating left-right sound. The authors called this effect ‘sound induced visual motion’ 

(SIVM) an illusory effect in which the auditory signal can induce motion perception of 

a static visual stimulus. Hidaka and colleagues (2009) asked to the participants to report 
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the motion direction of the visual stimulus (left or right) and measured the participant’s 

response bias towards the position of the sound. Starting from Hidaka and colleagues’ 

study, in addition to measure the perceptual response bias, the aim of the reported study 

was to check whether eye movements landing positions towards the illusory visual 

position were also biased by the sound. 

Finally the last study will present data of three experiments purported to 

investigate the possibility of using auditory information to induce a visual detection 

improvement in patients with deteriorated visual functions not caused by brain injuries 

(i.e., patients suffering from low vision). The enhancing effect of a sound paired with a 

visual stimulus already emerged in other studies with normal sighted participants 

(Andersen & Mamassian, 2008; Doyle & Snowden, 2001; Hairston et al., 2003a; Marks 

et al., 1986; Frassinetti et al., 2002a) and patients with visual deficit (Frassinetti et al., 

2002b, 2005). Results of three experiments in which spatial and temporal disparities 

between audiovisual stimuli has been manipulated will be described.  
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Eye movements and sounds 

 

Background introduction 
 
 

Humans and animals in general quickly learn to ignore irrelevant stimuli (e.g., 

sounds) in their environment, while ‘motivation to survive’ avoids missing those stimuli 

cues that provides information about dangerous situations (e.g., predators). Beyond the 

evolution of this important behaviour there are subtle mechanisms in which different 

sensory information interact to provide an appropriate outcome like, for instance, to 

gaze towards the external spatial position of an acoustic cue. Indeed, auditory and visual 

modalities are strongly linked in spatial localisation processes (e.g., Dufour, Després, & 

Pebayle, 2002). Along the primary sensory pathways, signals coding the spatial location 

of auditory, visual and somatosensory targets are based on distinctly different 

coordinate systems. For instance, the location of a sound source can be deduced from 

differences in monaural spectral cues, in sound arrival time (i.e., interaural time 

difference) and pressure level (i.e., interaural intensity difference). Acoustic localisation 

cues are affected by the position of the head and external parts of the ears (Blauert, 1997 

for review) and thus acoustic location is processed in head centred coordinates. Visual 

stimuli location instead, is processed into retinotopic coordinates (Warnking et al., 

2002). These different coordinate systems converge firstly in the superior colliculus 

(SC). The SC is also a key structure in binding different sensory modalities and for this 

reason accurate sound localisation can also enhance responses to visual scenes by 

means of multisensory integration (e.g., Calvert, et al., 2004; Knudsen & Brainard, 

1995; Spence & Driver, 2004; Stein & Meredith, 1993). Indeed, the SC is structured 

with different layers to which converge visual, auditory and somatosensory information. 
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Neurons in the superficial layers are purely visual while those in the deep layers are 

often characterized by bimodal visual-acoustic or visual-somatosensory inputs but may 

be even trimodal. Visual, acoustic and somatic spaces are topographically represented in 

the intermediate and deep layers (Middlebrooks & Knudsen, 1984). Multisensory 

neuron’s receptive fields (RFs) overlap, and for this reason multisensory cells respond 

to stimuli from the same external region of space despite the sensory modality input. 

Moreover, RFs are arranged to provide a functional map of the external space so that 

SC’s multisensory neurons RFs are in ‘spatial register’ (Meredith & Stein, 1990). SC 

has also a pivotal role in saccade generation (e.g., Stein & Clamann, 1981). Neurons in 

the deeper layers of the SC are visuo-motor as they exhibit small visual bursts before 

the actual motor bursts. They are also topographically organized: the neurons discharge 

before a saccade directed to a specific region of the visual field which is in register with 

the visual fields of the visual neurons situated in the superior layers. This organization 

pattern characterizes the SC ‘premotor map’ allows transducing different sensory cues 

into common motor responses with the goal to gaze towards the spatial position 

provided by one or more sensory information that take place in the surrounding 

environment. Studies concerning different modalities highlight their relation with SC’s 

multisensory motor neuron involved in saccade generation like for instance movements 

of cat’s pinnae (Stein & Clamann, 1981), and saccades towards somatosensory targets 

(Groh & Sparks, 1996b). Jay and Sparks (1984) highlighted a relation between 

modalities to constitute a common external spatial map of the environment at the level 

of the SC. The authors found that the auditory receptive fields in the SC shifted with 

changes in eye position even when the head and ears remain stationary. Their 

hypothesis was that this might be a mechanism allowing auditory and visual maps to 

remain in register. More recently, modulations of neural responses to sound location as 

a function of eye position have been confirmed in the SC (Groh, Kelly & Underhill, 
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2003; Groh, Trause, Underhill, Clark & Inati, 2001; Zwiers, Versnel, Van Opstal, 

2004). 

Beyond the high relevance of the convergence of different sensory information 

to the SC cortical structures are also involved in constituting a common spatial frame of 

reference for different sensory modalities. Guo and Li (Guo & Li, 1997) found an effect 

of eye position on half of the neurons in the primary visual cortex (V1) of the monkey 

suggesting that such modulation is used to constitute a head-centred frame of reference 

from a retinotopic input. A modulation of neural responses to sound locations as a 

function of eye position has also been described within the auditory cortex (Werner-

Reiss, Kelly, Trause, Underhill & Groh 2003). Translation of visual stimuli to a head-

centred frame of reference may be at the basis to the convergence of visual and auditory 

stimuli to a shared spatial map. Indeed, with each eye/head movement, stationary 

objects in the world change position on the retina and thus to perceive the world as 

stable retinotopic coordinates as to be remapped (e.g., Merriam, Genovese, Colby, 

2007; Nakamura & Colby 2002). Russo and Bruce (1994) provided evidences that in 

primate frontal eye fields, the neural response related to saccades towards auditory 

target is modulated by direction of gaze starting position. 

Stricanne and colleagues (Stricanne, Andersen & Mazzoni, 1996; see also 

Bremmer, Pouget, Hoffmann, 1998, for similar findings) provided evidences that 

neurons of the lateral intraparietal association area (LIP) of the monkey, known to be 

involved in planning saccades towards visual stimuli, seem to process spatial cues 

independent to the modality involved (i.e. either visual or auditory). Indeed, this was 

one of the first studies to demonstrate that the auditory receptive fields of LIP neurons 

can be coded in an eye-centred reference frame. The authors suggest that area LIP may 

be involved in transformation of auditory cues in an eye-centred reference frame for 

visuo-motor responses. Middlebrooks and colleagues (Middlebrooks, Clock, Xu & 
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Green, 1994) found that single neurons in the cat's anterior ectosylvian sulcus cortical 

area (AES) can code for sound locations throughout 360° of azimuth. 

Beyond the physical evidence regarding a common frame of reference between 

different sensory modalities and the relation with eye movements, extensive literature 

highlights the relation between visual attention (e.g., Chelazzi, Biscaldi, Corbetta, Peru, 

Tassinari, & Berlucchi, 1995; Crovitz & Daves, 1962; Hoffmann & Subramaniam, 

1995; Kowler, Anderson, Dosher, & Blaser, 1995; Posner, 1980) and auditory attention 

(Rorden & Driver, 1999). 

In light of this background, to deepening the understanding of the relation 

provided by common mechanisms between eye movements and audition, two 

experiments will be presented.  

In the first study, the effect of a forced eye movement in an acoustic 

discrimination task was investigated. The aim of this study was to try to disentangle 

results of two studies that report conflicting results. In particular, Pavani and colleagues 

(2008) did found a significant effect of a forced eye movement in an acoustic spatial 

discrimination task. More precisely, while eccentrically fixating a point at 25 degree on 

the left or on the right, participants heard a first sound. The position of this sound was 

kept as target for a subsequent comparison. In between the two sound participants were 

either asked to keep the same eccentric fixation (i.e., static eccentric condition) or to 

switch to the opposite side (i.e., eye movement condition, from left to right or vice 

versa). Then, after around 2.5 seconds (thus after that the eventual eye movement was 

terminated) a second sound was delivered either in the same external spatial position or 

in a different position (i.e., 10 degrees on the left or right in respect the position of the 

target). Participants’ task was to decide whether the first and the second sound came 

from the same external spatial position or not (i.e., same/different task). Results 

highlight a significant decrement of the performance when participants made an eye 
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movement but only when the apparent motion of the sound (i.e., different trials in which 

the sound moved from one spatial position to another) was in the opposite direction in 

respect to that of the eye movement. Conversely, Kopinska and Harris (2003) by using a 

different experimental paradigm reported no evidence of an eye movement effect in 

coding the sound location. They asked participants to remember the location of an 

auditory target presented intracranially through headphones, and then move their eyes, 

their head and eyes, or their body (beneath a stationary head). Sounds’ spatial 

virtualization was obtained by varying the binaural intensity difference (for instance, a 

sound in front of the participant at 0° of azimuth was obtained by providing the same 

intensity to the two ears). Afterwards, participants were asked to repositioning (by 

adjusting the binaural intensity difference) an auditory probe to match the remembered 

location of the previous target. Sound localisation was modulated by head-on-body 

position, but they did not found effect of eye movements alone. However, it is worth 

noting that in their study Kopinska and Harris (2003) presented all sounds intracranially 

through headphones. Thus, difference in spatial sounds’ cues (i.e., free field sounds vs. 

intracranial sounds) and difference in the two tasks paradigms highlight the need to 

disentangle such difference in the results. To this aim, all participants in the presented 

study underwent with both the experimental conditions. That is, the same experimental 

procedure used by Pavani and colleagues (2008) was used with both free field and 

intracranial sounds lateralised by varying only the interaural intensity difference like in 

Kopinska and Harris’ (2003) study. 

In the second study related to eye movements and sounds the aim was to further 

understand the relation between perception and action. More precisely, the purpose was 

to verify how the perception of an illusory movement (i.e., left /right) of an actual static 

visual stimulus induced by an alternating sound (i.e., left /right) might affect eye 

movements towards the position of the visual stimulus. In Hidaka and colleagues’ 
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(2009) work the authors provide evidences of the existence of a spatial illusory visual 

movement provided by a moving sound. The authors called this effect sound induced 

visual motion (SIVM). While fixating a point participants were provided with a 

flickering static vertical bar on the visual field periphery. In some trials, the onset of the 

flickering bar was synchronously coupled with an alternating sound (left/right) provided 

through headphones. In this conditions participants’ perception of the static bar position 

was illusorily biased towards the actual side of the sound (i.e., left/right movement). 

Results highlight the effect of the illusory SIVM effect on participants’ judgment of the 

visual stimulus position towards the side (i.e., left or right) of the last occurring sound. 

The aim of this study was to replicate Hidaka and colleagues’ (2009) findings by 

asking participants to report a left/right judgment about the spatial position of the bar. 

Moreover, to check the relation between perception and action in such illusory 

condition, the same participants underwent a second experiment in which he/she was 

asked to gaze towards the position of the last ‘illusory’ moving bar while eye movement 

were recorded. 

Results of these two experiments will be discussed to deepening the knowledge 

of the relation between eye movements and sound localisation. 
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Eye movements and spatial acoustic cognition 
Thi work was done in collaboration with Alessio Fracasso and Professor Francesco Pavani. 
 

 

Introduction Experiment 1 
 

Experience plays a critical role in establishing and maintaining congruent visual-

auditory associations, so that the different sensory cues associated with targets that can 

be both seen and heard are synthesized appropriately. For stimulus location, visual 

information is normally more accurate and reliable and provides a reference for 

calibrating the perception of auditory space (King, Parsons & Moore, 2000). The 

relation between vision and audition and the transformation between one and another 

spatial coordinates system relies on complex mechanisms (for a review on this topic see 

King, 2009, for a review on this topic). In humans, acoustic localisation cues refer to a 

head-centred reference frame because of interaural time and intensity difference is 

related to ears’ position. Therefore, any possible change of head position will affect 

auditory localisation. In the present study, it will be investigate whether changes of just 

the position of the eye may also affect auditory spatial cognition.  

Accurate eye movements towards sounds require a coordinate transformation of 

the acoustic target into eye-centred motor commands, which necessitates information 

about eye position in the head (Jay & Sparks, 1984, 1987). Furthermore, in everyday 

life, eye and head positions change continuously, both relative to the target sound and to 

each other. To ensure accurate acoustic orienting of eyes and head, the motor system 

should account for these changes. A few studies used double-step visuo-auditory 

paradigms, in which participants were instructed to make a combined eye-head 

movement towards an auditory target, after a previous eye-head shift towards a visual 

target (Goossens & Van Opstal, 1999; Vliegen, Van Grootel, & Van Opstal, 2004). 

Regardless of whether the target sound was presented before an eye-head movement 
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(Goossens & Van Opstal 1999; Vliegen et al. 2004), or during the first eye-head shift 

towards the visual target (Vliegen et al. 2004), participants were accurate to point with 

head-gaze movements towards the sound. Presumably, the intervening eye and head 

movements were on average fully compensated for also when the sound was presented 

during the eye-head movement. This result suggests that the brain is capable of 

constructing a stable representation of auditory space across eye and head movements, 

at least when planning and executing sound-directed spatial motor actions (i.e., a motor-

related representation). Vliegen and colleagues (2004) suggest that the human auditory 

system is able to process online the dynamically varying acoustic cues that result from 

head movements. Results show that the eyes and head are both driven by a common 

gaze-displacement signal, created by integrating head-centred target location with head 

orientation in space, with the goal to construct a stable representation of the target in 

world coordinates. This signal is subsequently translated in their own appropriate 

reference frame in two different motor commands for the eyes and the head to accurate 

localisation motor responses.  

In contrast with these results of motor response to auditory stimuli (i.e., eye 

movements), psychophysical studies in humans that have examined the consequences of 

deviated static eye position (i.e., orbital deviation) on sound localisation highlight the 

presence of miss-localisation of the sound spatial position. Lewald and colleagues (e.g., 

Lewald, 1997, 1998; Lewald & Ehrenstein, 1996a, b) provide useful information 

regarding the effects of statically deviated eye position on auditory space perception. 

When eyes were directed to one eccentric side, participants reported consistent shifts of 

apparent sound location in the opposite side on the order of 2-3 degrees of azimuth in 

magnitude. Results are consistent through various types of presented sounds (e.g., 

dichotic or free field) and different measures of sound localisation (e.g., by pointing to 

sounds or with the verbalization of the position in respect to the egocentric midline or a 
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central visual reference). For instance, in a study in which participants were instructed 

to aim at a central sound source using a hand-controlled swivel-pointer rotating on a 

central axis, participants pointed further to the right of the actual location of the sound 

when their eyes were directed in a fixed manner towards the left (Lewald, 1998). On 

average, the mean sound localisation error in respect to the left or right of the body 

midline was 2.7 degrees to the right when eye position was 45 degrees to the left, and 

3.5 degrees to the left when eye position was 45 degrees to the right (Lewald, 1998). In 

some cases interpretation of related findings on effects of static eye deviation can be 

complicated by the possibility that eye deviation might affect some reference point that 

is required for the requested judgment (e.g., subjective midline, or central visual 

reference; cf. Lewald & Ehrenstein, 2000), rather than affecting only sound perception 

per se. Indeed, Doufour and colleagues (2002) provided evidences that despite the type 

of stimulus used as reference (i.e., a visual or an auditory stimulus positioned straight 

ahead to the participant fixation) acoustic localisation improves significantly in respect 

to the ‘no reference’ condition. Nevertheless, when taken together, these studies do 

indicate that static eye deviation towards one particular eccentric side tends to shift 

perceived sound location slightly in the opposite direction, particularly when eye 

position deviates substantially from sound sources located near the medial plane (e.g., 

Lewald, 1998; Lewald & Ehrenstein, 1998a, b).  

In another study, Kopinska and Harris (2003) measured the lateralization 

perception of dichotic auditory targets in a contest in which eye and head position 

changed dynamically during the task. They asked participants to remember the location 

of an auditory target presented intracranially through headphones by modulating the 

interaural intensity difference. After presentation of the first sound, participants were 

asked to move their eyes, or their head and eyes, or their body (beneath a stationary 

head), before repositioning the memorized sound location in the head by adjusting the 
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binaural level difference. Results show that sound localisation was modulated by head-

on-body position (i.e., head orientation on the body, and body orientation with the head 

fixed), but no by the eye movement alone. The authors concluded that acoustic stimuli 

are expressed in a body-centred frame of reference. 

Pavani and colleagues (2008) examined further the role of eye movements in an 

acoustic task. The authors presented sounds pairs in free field while participants had to 

maintain the head fixed and fixate 25 degrees either to the left or right of the egocentric 

midline. Each trial started with the eccentric fixation on one of the two sides and then 

the first sound was delivered. Only after the offset of the first sound participants were 

requested to either keep the same eccentric fixation or to move their eyes to the opposite 

eccentric fixation. The second sound was delivered with a 2.4 seconds SOA, thus 

allowing participants to easily complete the eye movement before the second sound 

stimulus was presented. The second sound was played either from the same speaker as 

the first (i.e., same condition) or from a different speaker (i.e., different condition). The 

participant’s task was to produce a same/different response. Results showed that 

performance significantly decreased in all the eye movement conditions (i.e., same or 

different). Moreover, performance decreased further in the ‘different’ trials when the 

apparent motion of the sound occurred in the direction opposite the eye movement, with 

respect to the when the apparent motion of the sound and eye movement directions 

corresponded. This study described a highly specific effect from intervening eye 

movement during an acoustic task that required a same/different perceptual comparison 

(across a delay) rather than a spatial motor response towards the sound spatial location. 

As mentioned earlier, evidences in the literature report an acoustic spatial miss-

localization in the direction opposite to the deviated gaze (e.g., Lewald & Ehrenstein 

1998a, b; Lewald 1998). For this reason, Pavani at al. (2008) expected to found a worst 

performance when the sound apparent motion moved in the same direction of the eye 
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movement. Indeed, in this case, the representation of the actual spatial disparity (i.e., 10 

degrees in the experiment) is reduced by the summation of the miss-localization 

provided by the deviated gaze in the two opposite fixations. This, in turn, render the 

judgement more difficult in respect the condition in which the sound moves in the 

direction contrary to the eye movement because in this case the representation of the 

actual disparity increased. Contrary to their prediction, Pavani and colleagues (2008) 

found a greater reduction when the sound apparent motion moved in the opposite 

direction in respect the intervening eye movement. The authors explained their results in 

terms of an effect of the eye movement on the internal representation of the first 

auditory stimulus location. 

The aim of the present study is to disentangle the role of eye movement in 

spatial acoustic perception firstly because of the contrasting results reported in the 

previously described studies (i.e., Kopinska & Harris, 2003; Pavani et al., 2008). One 

reason could be that different paradigms (e.g., pointing motor response vs. repositioning 

the remembered sound position or the way the sounds were presented, that is, free field 

vs. intracranially through headphones) have been used. Second, only Kopinska and 

Harris study isolated eye from head movements, however, all sounds were presented 

intracranially through headphones. As suggested by Pavani and colleagues (2008) it is 

possible that an impact of an eye movement on sounds spatial representation might be 

more pronounced for free field auditory stimuli than for intracranial auditory stimuli.  

As mentioned in the introduction of the present study, the relation between 

vision and audition and the transformation between one and another spatial coordinates 

system relies on complex mechanisms in which experience seems to play a critical role 

in establishing and maintaining congruent visual-auditory associations (King, 2009). 

Our everyday experience is highly associated with ecological external acoustic cues that 

share the same spatiotopic map since low-level structures as the superior colliculus 
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which is also involved in saccade generation (Jay and Sparks, 1984, 1987). Despite the 

lack in the auditory domain, there is evidence of peri-saccadic bias effects on visual 

cognition (e.g., Ross, Morrone, Goldberg & Burr, 2001), and trans-saccadic effects 

when pointing to visual targets after an eye movement either with the arm or with the 

gaze (Henriques & Crawford 2000; Henriques, Klier, Smith, Lowy & Crawford, 1998). 

In light of this background the next study will try to disentangle different results 

obtained in Pavani et al. and Kopinska and Harris’ studies. To this aim, the same 

experimental procedure used by Pavani and colleagues (2008) was used with both free 

field and intracranial sounds like used by Kopinska and Harris (2003). All the 

participants underwent with both the experimental conditions (free field vs. intracranial 

sounds) in two different experimental sections. Due to evidence of the effect of the 

deviated static gaze founded also for dichotic acoustic stimuli (e.g., Lewald & 

Ehrenstein 1996a, b; Lewald 1997, 1998) is reasonable hypothesise an eye movement 

effect with intracranial sounds (if any), when the apparent motion of the sound is in the 

direction of the saccade. 

 

 

Material and methods  
 

Participants	
  	
  
 
 Twelve participants took part in the study (2 left-handed, 6 female; mean age 27 

years; range from 19 to 46 years). Participants, mostly students of the university of 

Trento, reported normal hearing and had normal or corrected-to-normal vision. 

Participants were naïve as to the purpose of the experiment and varied in their previous 

experience with psychophysical testing procedures. The experiment was conducted in 

accordance with the ethical standards laid down in the 1964 Declaration of Helsinki 
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(most recently amended in 2008, Seoul), as well as the ethical guidelines laid down by 

the University of Trento. All participants gave their informed consent prior to their 

inclusion in the study. 

 

Apparatus	
  and	
  stimuli	
  
 

The apparatus consisted of a semicircular plastic structure (64 cm length) 

covering around 52 degrees of visual angle when positioned at 70 cm from the 

participants. Five loudspeakers were mounted on this structure at ±20, ±10 (negative 

values indicate that the loudspeakers was on the left of participant’s body midline, 

whereas positive values indicate that the loudspeakers on the right of participant’s body 

midline) and 0 degrees (see Figure 1, p. 50). Furthermore, at the two ends of the 

semicircular structure at ±25 degrees were mounted two light emitting diodes (i.e., two-

colour LEDs, with a diameter of 0.4 mm) that could be switched between green and red 

colour. The two LEDs acted as eccentric left and right fixation positions. The entire 

semicircular structure was covered with an acoustically transparent black curtain to 

avoid the visual information about the number and position of the speakers, while 

allowing vision of the LEDs. A laptop PC (Dell Precision M6300) and a Matlab script 

(The MathWorks, Inc.) were used to deliver the stimuli and collect participant’s 

response. Participants provide the responses by pressing the two main buttons of a 

mouse connected to the laptop. The same setup was used both in the condition with free 

field sounds (i.e., by using the 5 external speaker mounted on the semicircular structure) 

and in the condition in which the sounds were delivered intracranially through 

headphones (in this case, only the two external fixation at ±25 degrees were used). Both 

free field and intracranial auditory stimuli consisted of the presentation of 251 ms white 

noise burst (60 dB as measured from the participants’ head position). A sine wave 
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(25Hz) was superimposed to the white noise signal to obtain a 5 peaks of white noise 

burst to increase the spatial cues to sound localisation (i.e., 15 ms of sound signal and 

44 ms of silence). By using the integrated sound card of the laptop computer connected 

to an external loudspeaker the sounds’ signal were amplified. The amplified signal was 

then switched between 5 relays (NEC MR62-4.5 USB) by using the digital outputs of a 

data acquisition boards (National Instruments, NI USB 6259). The same data 

acquisition board was used to control the two LEDs at the eccentric fixations. By 

activating the desired relay, the sound signal was played by the associated speaker. 

Speakers were round-shaped (5 cm diameter of Mylar; Pro Signal ABS-210-RC range 

350-20000 Hz, 8 Ω, 1 W RMS Power).  

The sounds provided through headphones were lateralised by varying the 

intensity of the two headphones’ channels. For example, to obtain a sound source 

position on the centre (at the position 0 degrees), the same sound intensity was delivered 

to the two ears (i.e. 58 dB). To lateralise the other four experimental conditions (i.e., 

±10 and ±20 degrees) intensity on one ear was decreased while on the other ear 

intensity was increased by the same amount (see Table 1, p. 54). To obtain the right 

parameters for sounds delivered intracranially through headphones, a pilot study to 

equal the difficulty for the two tasks (i.e., intracranial vs. free field sounds) was run (see 

Pilot study p. 53 for more details). 

Participants’ eye movements were recorded by means of an eye tracker 

(EyeLink 1000 Desktop Mount, SR Research). 
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Figure 1  Schematic representation of a trial. In the reported example the first sound (S1) is 
played in central spatial position. Then after S1 offset, the colour of the fixation LED instruct participants 
whether to keep the gaze either on the same previous fixation or gaze towards the opposite fixation. At 
this point, the second sound (S2) is played either in the same or a different spatial location. In the 
example, the correct participants’ possible responses are reported for the ‘same’ or both the ‘different’ 
conditions. The two possible ‘different’ conditions are related to the direction of the apparent movement 
of the sound either ‘away’ from, or ‘towards’ to, the initial fixation position. The same procedure was 
used with intracranial sounds but the sounds were delivered through headphones. 
 

 

Procedure	
  and	
  experimental	
  design	
  
 
 Participants sat at 70 cm in front of the semicircular structure in a dimly lit room 

(average luminance 30 cd/m²). At the start of each block, participants were asked to 

undergo a brief calibration procedure to record the two fixation positions indicated by 

the two LEDs at the two ends (i.e., left and right) of the setup that have to be fixated 

during the experiment. During this calibration, participants were asked to keep their 

head straight ahead towards the centre of the apparatus, rest their chin on a support and 

move only their eyes first towards the left fixation at -25 degrees and then towards the 

fixation on the right at 25 degrees. Participants were instructed to maintain fixation on 
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each LED until the experimenter recorded eyes position. Each fixation position 

coordinates were obtained using the average position recorded during 1000 ms of eye 

recording. Afterwards, a tolerance rectangle of 4 by 4 degrees of visual angle was 

computed around each fixation position using the obtained average fixation coordinates 

(i.e., X and Y), to allow for small deviations from the expected positions. 

During the actual experimental task, each trial started with the two LEDs turned 

on with a steady green colour. Then, one of the two green LEDs was turned off for 1000 

ms and then turned on again to instruct the participant to gaze towards that fixation 

position. Participants had to maintain the fixation on that LED until other instructions 

were provided. At this point, if the participant was actually looking towards the 

indicated fixation the target sound (i.e., S1) was played. This control was achieved by 

using an online procedure to check whether the effective participant’s gaze position was 

inside the tolerance rectangle during the 500 ms before S1 onset. S1 could be delivered 

from any of three different spatial positions at -10, 0 and 10 degrees. Then, 1000 ms 

after the offset of S1, the participant was either instructed to maintain the same fixation 

position or to move the eyes towards the fixation point on the other side of the 

apparatus. To instruct participants to maintain the same fixation, the green LED (that 

the participant had to fixate) was turned off for 100 ms and then turned on again. By 

contrast, to instruct the participants to move their eyes to the opposite side, the green 

LED was switched to the red colour for 100 ms and then green again. After further 1400 

ms, the test sound (i.e., S2) was delivered only if the participant was able to follow the 

instructions (i.e., by moving the eyes or by keeping the same fixation). If the participant 

failed to follow the instructions the trial was repeated from the beginning. S2 had the 

same physical characteristics (e.g., duration, number of peaks) as S1 and was delivered 

from either the same spatial position as the target sound (i.e., the same physical speaker) 

or at ±10 degrees with respect the location of S1 (i.e., the closest speaker to S1 on the 
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left or right). It is worth noting that due the online control gaze procedure and the very 

wide temporal interval between S1 and S2, sounds were always delivered when 

participants had a stable fixation and never when they were moving the eyes. After the 

offset of S2, the participants’ task was to report whether the sound came from the same 

spatial position as S1 or not by pressing the left or the right button of the mouse (i.e., 

same/different task). Participants handled the mouse horizontally with one hand while 

responses were provided with the other hand. The hand used to provide the response 

was balanced between participants in a way that half of the participants used the left 

index to respond ‘same’, the test sound originated from the same position as the target 

sound and the left middle finger for the ‘different’ response, while the other half used 

the right middle finger for the ‘same’ response and the right index finger to respond 

‘different’. Participants were also stressed to concentrate their judgment on spatial cues 

thus avoiding just intensity discrimination while enhancing the spatial discrimination 

task. 

The experimental design comprised 36 different conditions: 3 different target 

(S1) positions (-10, 0, +10 degrees), 3 different test (S2) positions (same as S1, 10 

degrees left, 10 degrees right), 2 gaze conditions (fixation or eye movement) and 2 

starting sides (left or right). Initial fixation side of each block was randomised between 

left or right fixation but, when an eye movement to the other side was requested, the 

subsequent trial had to start by fixating the position on which the eyes were moved to. 

That is, if the first trial started with the fixation on the left side, and then an eye 

movement was requested towards the right side, the subsequent trial always had to start 

with the fixation on the right side and vice versa. This was thought to limit the 

occurrence of the shifting of the gaze positions from one fixation to the other as adopted 

by Pavani and colleagues (2008).  
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To verify that the procedure was clear, before the actual experimental section, 

the participants were asked to undergo a brief practice (12 trials). 

The same procedure was used with the sounds delivered intracranially through 

headphones. That is, participants had to look towards the same apparatus while wearing 

the headphones, thus, calibration, instructions to maintain the fixation or move the eyes 

(i.e., LEDs colours coding) and response collection were the same.  

The whole experiment was divides in two experimental sections, each 

constituted by 4 blocks for each of the two sound conditions (i.e., free field and 

intracranial sounds) and run in two different days. Each block consisted of 72 trials (i.e., 

36 different conditions repeated twice presented in random order) for a total of 288 

trials. These consisted of 96 ‘same trials’ (S1 and S2 presented from the same speaker) 

and 192 ‘different trials’ (S1 and S2 presented from different speakers). S1 and S2 

position were unpredictable on every trial, and the sequence of ‘same’ or ‘different’ 

trials was randomised between participants. Each experimental session (i.e., 288 trials) 

lasted around 45 minutes with a rest between blocks. 

 

 

Pilot	
  Study	
  
 

To compare performance on free field and intracranial sounds when participants 

were asked either to maintain fixation or to perform an eye movement, the two tasks 

were preliminary equated in terms of sensitivity to provide a stable baseline condition 

and avoid possible confounds in terms of differences between the two sounds 

conditions. To this aim, a pilot study was run on 7 participants aimed to find the right 

parameters from which the correspondent value in dB for each ear was derived and used 

to lateralize intracranial sounds’ spatial positions.  
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The procedure was identical to the one described above with the following 

exceptions. The pilot experiment comprised two blocks of 72 trials, one with free field 

sound and the other with intracranial sounds (task order was randomised across 

participants). In this pilot study only performance in trials at the two eccentric fixations 

were equated. The overall proportion of correct response (i.e., same and different 

responses) was computed and compared between the two experimental setups (i.e., free 

field vs. intracranial sounds).  

The chosen step that equated performance on the two tasks was around 0.8 

dB/degree and was kept fixed for the intracranial condition for all participants in the 

experiment (see Table 1 p. 54).  

 

 -20° -10° 0° 10° 20° 
Right (dB) 44 51 58 65 72 
Left (dB) 72 65 58 51 44 

 

Table 1  Values obtained in the pilot study referred to the sound intensity (dB sound pressure) 
for the spatial ‘virtualization’ of intracranial sounds in relation to the 5 experimental spatial positions. 

	
  

 

Data	
  analysis	
  
 
 Participants’ performance in detecting changes in auditory spatial location both 

for ‘fixation’ and ‘eye movement’ conditions where examined.  

As in Pavani et al. (2008) study, different location trials in which S2 appeared at a 

location towards initial fixation than S1 itself (i.e., S2 shifts towards initial fixation), 

and different location trials in which S2 appeared at a position further away from initial 

fixation than S1 (i.e., S2 shift away from initial fixation) were analysed separately. 

 The dependent measure was sensitivity (d’). Sensitivity was computed using 

signal detection procedures modified for same/different designs (Macmillan & 



Eye movements and spatial acoustic cognition  Spatiotemporal aspects in audiovisual interaction 

 

 55 

Creelman, 1991). Sensitivity was calculated based on the hit rate for detecting a sound 

location change (i.e., ‘different’ response produced in a true different location trial), 

separately for each specific S1 location (i.e., at  -10, 0 and 10 degrees), and the false 

alarm rate for the corresponding S1 location (i.e., ‘different’ response produced when 

the two sounds were in fact presented from the same position). 

 

 

Results 
 

A within participants’ analysis of variance (ANOVA) was performed on the d’ 

data, with three factors namely: gaze condition (i.e., fixation or eye movement), 

direction of auditory change on different trials (i.e., S2 shifting towards, or away from, 

initial fixation) and sound condition (i.e., free field vs. intracranial sounds) as variable. 

The results showed a significant difference between gaze conditions F (1, 11) = 20.4, p 

< .001 indicating that there was a cost in the participants’ ability to respond caused by 

worse overall performance when the eyes moved compared to when they remained 

fixed. A significant interaction between direction of auditory change and sound 

conditions was also found F (1, 11) = 15.6, p < .01 indicating that direction of auditory 

change influenced participants performance differently in the two sound condition. The 

graphic representation (see Figure 2 p. 56) shows that for free field sounds there is a 

cost in the different trials when S2 moves toward the initial fixation, whereas for 

intracranial sounds the effect is surprisingly reversed. Finally, the ANOVA showed a 

three level interaction F (1, 11) = 11.7, p < .01 meaning that the 2 way interaction 

between direction of auditory change and gaze condition differs in the two levels of 

sound condition in terms of magnitude.  
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The lack of a significant effect for the main factor sounds condition provides 

further evidences that the two tasks (i.e., free field vs. intracranial sounds) were indeed 

equated. 

 
 
Figure 2  Averaged participants’ performance (d’) in the two sound conditions in relation to the 
two ‘different’ conditions of the apparent motion direction of the sound (i.e., away/towards) and the gaze 
conditions (i.e., fixation/eye movement). On the left, the performance in free field sounds condition. On 
the right, the performance in the intracranial sounds condition. 

 

 

To better highlighting the results showed by the previous analysis of variance, 

two further ANOVAs were run on the two different sound conditions. The first 

ANOVA on free field sounds showed a significant difference between gaze condition F 

(1, 11) = 13, p < .01, confirming that there was a cost in the participants’ ability to 

respond when an eye movement was performed. A significant difference has also 

emerged between directions of auditory change F (1, 11) = 6, p < .05, highlighting the 

cost of an eye movement independently from the direction of the auditory change (i.e., 

towards or away from the initial fixation). Furthermore, the interaction between 

direction of auditory change and gaze conditions was significant F (1, 11)= 15.6, p < .01 

indicating that the cost in the participants’ ability to respond when an eye movement 
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was performed was significantly larger when the sound moves towards than when it 

moves away from the initial fixation. A post-hoc t-test revealed that in comparison to 

the ‘fixation’ condition, an aye movement affects participants’ response significantly in 

both the direction of the auditory change (towards, d’(fixation) = 2.05 vs. d’(eye 

movement) = 1.03, p < .05; away, d’(fixation) = 2.16 vs. d’(eye movement) = 1.66, p < 

.05). The difference between directions of the auditory change in the eye movement 

condition was also significant (d’(towards) = 1.03 v.s. d’(away) = 1.66, p < .05). 

In line with results of Pavani and colleagues (2008) an eye movement 

significantly impairs participants’ performance when the sound moved towards the 

initial fixation. However, unlike Pavani and colleagues’ results, in the present study a 

significant cost of the eye movement in participants’ performance was found also when 

the sound moved away from the initial fixation.  

The ANOVA on intracranial sounds showed a significant difference between 

gaze condition F (1, 11) = 12.9, p < .01, confirming that there was a cost in the 

participants’ ability to respond when an eye movement was performed. However, no 

difference between directions of the auditory change has been found (i.e., towards vs. 

away from the initial fixation, p = .16). The interaction between direction of auditory 

change and gaze conditions was significant F (1, 11)= 6.4, p < .05 indicating a 

significant cost in the participants’ ability to respond when an eye movement was 

performed in the condition in which the sound moved away from the initial fixation. 

This results contrasts with previous findings of Kopinska and Harris (2003) in which no 

effect of eye movement was emerged in an acoustic task with intracranial sounds.  

Despite to the lack in the literature regarding quantitative effects of an eye 

movement neither on the spatial localisation with free field sounds, nor for intracranial 

sounds, some information may be exploited from the visual domain. Different studies 

report peri-saccadic effects on visual spatial representation (e.g., Ross et al. 2001), as 
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well as studies showing that directional biases may be observed when pointing to visual 

targets after an eye movement either with the arm or with the gaze (e.g., Henriques & 

Crawford 2000; Henriques et al., 1998). Henriques and colleagues (1998) measured this 

trans-saccadic error in pointing or gazing towards the spatial location previously seen, 

in the opposite direction of the eye movement with a magnitude related to the amplitude 

of the saccade. The mean reported error is around 13% of the saccade amplitude. In 

light of this framework, one hypothetical explanation of the different cost emerged in 

the ‘towards’ conditions between the two sound conditions, may derive by the 

summation of the deviated gaze and eye movement effects.  

Due to the close relation between the visual and acoustic systems in spatial 

representation, the first assumption is that a trans-saccadic effect might take place also 

for auditory spatial representation with a similar magnitude as that observed for the 

visual spatial representation. If the first assumption is true, the trans-saccadic miss-

localisation on auditory representation in the present experiment should be around 6 

degrees considering the requested 50 degrees eye movement. The second assumption is 

that for intracranial sounds there is not (or is very low) trans-saccadic effect on auditory 

representation. Although there is no specific evidence in the literature, trans-saccadic 

remapping of sounds may particularly apply for more ecologically acoustic stimuli that 

have to share together with the visual information a common spatial reference frame 

(see King, 2009 for a review on this topic). If the two aforementioned assumptions hold, 

the hypothesized major cost of an eye movement on the acoustic spatial representation 

in the ‘away’ condition in case of the sole deviated eye effect is reversed. That is, the 

higher miss-localisation effect of an intervening eye movement with respect of the 

deviated gaze, would provide a higher cost in the ‘towards’ condition. Furthermore, this 

effect would be present mostly in the free field sound condition as pointed out by the 

lack of a significant trans-saccadic effect in the ‘towards’ condition with intracranial 
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sounds. For example, when the participant look to the left fixation (i.e., -25°) and a S1 is 

presented in the central position (i.e., 0°) the perceived position of S1 is shifted at +2° 

because of the static deviated gaze effect. Then, the participant is instructed to make an 

eye movement towards the fixation at +25° (i.e., rightwards eye movement). The trans-

saccadic displacement of S1 representation is shifted in the opposite direction of the eye 

movement and for this reason now S1 is represented at -4°. In the ‘away’ condition, S2 

is presented at +10° but is perceived at +8° because the static deviated gaze on the new 

fixation. In this case the difference between S1 and S2 positions is 12°. In the ‘towards’ 

condition instead, S2 is presented at -10° but because of the effect of the static gaze 

deviation on the right, S2 is miss-localised toward left at -12°. In this case the difference 

between the two perceived spatial positions is 8°. At the end, S1 and S2 spatial 

representations are closer in the ‘towards’ (i.e., 8°) than in the ‘away’ (i.e., 12°) 

condition and for this reason is more likely that participants respond incorrectly ‘same’ 

when actually is a ‘different’ trial in the ‘towards’ conditions. 

 

 

Discussion 
 
 The aim of the present study was to disentangle contrasting results in the 

literature on the effects of dynamic changes in eye position on sound localisation. 

Compared to the deviated static gaze condition performance, the present study provides 

evidence of the cost of an intervening eye movement in a task in which two sound 

source positions have to be judged (same/different task) when the stimuli were 

delivered in free field. The results confirmed the findings of Pavani and colleagues’ 

(2008) in which a significant performance decrement emerged when the sound moved 

in the opposite direction with respect the intervening eye movement. In the present 
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study, the cost of an eye movement when the sound moved towards the initial fixation 

was significantly larger with respect that measured when the sound moved away from 

the initial fixation. Interestingly, a significant cost of an eye movement emerged also in 

the ‘away’ condition in comparison to the gaze ‘fixation’ condition.  

When the acoustic stimuli were presented intracranially, results of the present 

study reveal a significant trans-saccadic cost in the ‘away’ condition and it does not 

differ significantly from that in the ‘away’ condition with free field sounds. This results 

contrast with previous findings of Kopinska and Harris (2003) in which no effect of eye 

movement was found in an acoustic task with intracranial sounds. However, it is worth 

noting that three main differences between the present and Kopinska and Harris’ study 

might have contributed to provide different conclusions. In fact the apparatus, the 

experimental design and the task’s response differed substantially. More precisely, in 

Kopinska and Harris’ study, participants were presented with an intracranial sound 

lateralized by varying the binaural intensity. After an eye movement they had to 

repositioning the memorized sound location in the head by adjusting the binaural level 

difference.  

The present study has been designed to disentangle the differences between the 

experimental procedure used in Pavani et al.’s (2008) and Kopinska and Harris’ (2003) 

studies. The results highlight the presence in both sound conditions of the cost of an eye 

movement with the same magnitude in the same experimental condition (i.e. when the 

sound moved away from the initial fixation).  

It is important to note that the trans-saccadic effect on sound localisation in the 

‘away’ conditions emerged with both sounds conditions (i.e., free field and intracranial 

sounds) is compatible with the localisation bias of sound sources with static deviated 

eyes (Lewald and Ehrenstein 1996a, b; Lewald 1997, 1998). These studies provide 

evidence that for either type of sounds, when participants are asked to localize a 
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centrally presented sound while fixating a peripheral target, usually they tend to report 

the perceived position of the sound biased towards the opposite direction of the current 

static deviation. As pointed out by Pavani and colleagues (2008), the static deviation of 

the eyes would predict a decrease in sensitivity on those trials in which S2 apparently 

moves in the same direction of the eye movement, thus away from the initial fixation. 

For free field sounds, the trans-saccadic magnitude of the cost in the ‘towards’ 

condition is significantly larger with respect that in the ‘away’ condition. For sound 

presented intracranially instead, the ‘towards’ condition do not differ in relation to the 

gaze condition. A possible explanation for the cost of an intervening eye movement 

emerged in the ‘toward’ condition only with free field sounds seems to be attributable to 

a trans-saccadic effect which disrupts the auditory spatial representation of the target 

sound (i.e., S1). Evidence in the literature shows a trans-saccadic effect on visual spatial 

representation (e.g., Henriques & Crawford 2000; Henriques et al., 1998). Despite the 

lack of evidences of such effect in the auditory domain, the assumption is that a trans-

saccadic error on auditory spatial representation might particularly apply with free field 

sounds. Thus, the results with intracranial sounds seem to be explained mainly by the 

effect of the deviated gaze (i.e. the significant effect only in the ‘away’ condition). For 

free field sounds the effect of the static deviated gaze seem to be overcompensated by a 

trans-saccadic effect on auditory spatial representation of the target sound (S1). The 

remapping of S1 spatial representation determine a cost in both the direction of auditory 

change conditions with a greater magnitude of performance decrement in the ‘towards’ 

condition (see example at the end of Results p. 55 for more details). 

The hypothesis of a higher trans-saccadic effect on free field auditory spatial 

representation is supported by evidence in the literature of a close relation between 

visual and auditory spatial representation since the level of the superior colliculus (e.g., 

Middlebrooks & Knudsen, 1984; King, 2009). The superior colliculus is also a key 
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structure involved in saccade generation (Groh & Sparks, 1996a; Jay & Sparks, 1984, 

1987; Stein & Klamann, 1981). Moreover, Pavani and colleagues (Pavani, Husain, 

Ladavas & Driver, 2004) suggested that visual and auditory spatial cognition in spatial 

neglect might be more closely tied for extrapersonal space (i.e., free field sounds).  

Results of the present study supports Pavani and colleagues’ (2008) findings and 

provide evidence of a significant cost in participants’ judgment irrespectively to the 

sound apparent motion with free field sounds. Furthermore, results extend the eye 

movement effect also to acoustic spatial representation with intracranial sounds thus 

contrasting with Kopinska and Harris’ (2003) results. As suggested by Pavani and 

colleagues (2008), it is likely that the auditory sound location (S1) held in memory 

might be ‘remapped’ eye-centrically further to the left when a rightward eye movement 

follows it, or further to the right after a leftward eye movement. The higher magnitude 

of the eye movement remapping effect seems to compensate and revers the effect of the 

static deviated gaze. Eye movements can thus influence auditory spatial cognition 

especially for free field sounds and for judgments that do not require a spatial motor 

response.  
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Eye movements in the sound induced visual motion illusion  
Thi work was done in collaboration with Alessio Fracasso and Professor David Melcher. 
 

 

Introduction Experiment 2 
 

Vision provides the most appropriate/precise cues in optimal viewing 

circumstances regarding stimulus location several studies have demonstrated that the 

visual modality dominates over the auditory modality when dealing with spatial 

attributes of multisensory stimuli (e.g., Battaglia, Jacobs & Aslin, 2003; Bertelson & 

Aschersleben, 1998). The phenomenon of ventriloquism (Howard & Templeton, 1966), 

in which movements of the mount of a puppet create the illusion that the performer’s 

voice is shifted towards the puppet’s moving mouth, is a classical example of how 

vision influences audition over spatial disparity. Interestingly, crossmodal ventriloquism 

as described above, does not appear to be confined to situations involving a static visual 

and auditory event. For instance, adaptation in response to the apparent motion of 

moving visual stimuli provides a motion aftereffect in the auditory modality as shown 

by Kitagawa and Ichihara (2002) highlighting the great influence of vision over audition 

in audiovisual tasks. Multisensory contributions to motion perception are most 

pronounced when moving stimuli in different sensory modalities occur at the same 

spatial locations and at approximately the same time following the classical principles 

of multisensory interaction governing superior colliculus multisensory neurons (e.g., 

Stein & Meredith, 1993). For instance, in a typical crossmodal dynamic capture study 

visual and auditory apparent motion streams are presented. Each stream consists of pairs 

of stimuli presented in sequence from two different spatial locations. The participants’ 

task involves trying to discriminate the direction of motion of the target sensory 

modality whilst simultaneously trying to ignore the apparent motion of the distractor 

stimuli presented in the task-irrelevant sensory modality. The results of numerous 
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studies have now shown that although direction discrimination performance is near 

perfect when the two (i.e., the target and the task-irrelevant) streams are congruent, 

auditory motion is captured by the direction of visual motion when the direction of the 

two streams is congruent. Crucially, the direction of the visual task-irrelevant stream 

leads participants to incorrectly report the direction of the auditory target stream on a 

certain proportion of trials. However, the sensory bias magnitude is greatly reduced 

when the motion signals did not share common paths or were not presented at the same 

time (see Soto-Faraco & Kingstone, 2004, for a review). As with static ventriloquism, 

this dynamic ventriloquism effect can occur for other modality combinations, for 

instance, with visual motion capturing tactile motion, and auditory and tactile motion 

capable of capturing one another (Occelli, Spence, & Zampini, 2009; Sanabria, Soto-

Faraco, & Spence, 2005; Soto-Faraco, Spence & Kingstone, 2004a, b). 

Recent findings suggest that multisensory interactions involving dynamic 

stimuli might occur at early processing stages that involve the way in which motion 

stimuli are experienced. In an fMRI study it has been found a modulatory effect of 

auditory motion on visual motion cortical area (MT) responses (Alink, Singer, & 

Muckli, 2008).  This might be one of the neurophysiological sources of the inverse 

ventriloquist effect. Indeed, as suggested by the appropriateness and stimulus reliability 

models (Ernst & Banks; 2002; Alais & Burr, 2004, see also p. 21 of the present 

dissertation), as vision provides less detailed spatial cues (i.e., visual cues no more 

provide the most reliable spatial information), vision will lose his spatial biasing effect 

(i.e. its ventriloquist effect; Alais & Burr, 2004).  

Cognitive factors (i.e., prior knowledge/decisional factors), as proposed by the 

unity assumption model, may also play an important role in multisensory interactions of 

motion information (Meyer & Wuerger, 2001; Sanabria, Lupiáñez & Spence, 2007; 

Sekuler, Sekuler, & Lau, 1997). If one look on a computer screen at two identical 
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objects (e.g. two black discs) moving toward each, overlapping, and then moving apart, 

two different events can be perceived. Either the objects can be perceived to follow the 

same trajectory (i.e. to cross each other’s trajectory), or else to reverse their direction 

(i.e. to collide and bounce back). The situation can be made less ambiguous by 

presenting a sound at the exact moment of overlap (Sekuler et al., 1997). In that case, 

the number of time that people report that the two objects are bouncing off one another 

significantly increases. This audiovisual effect clearly shows that auditory information 

(not necessarily a realistic collision-like sound) can influence the perception of a visual 

event when presented at a significant moment. In this case, the presence of a sound in 

the same physical visual stimulation often might provide the perception of a collision, 

highlighting the presence of a high-level cognitive modulation due to the previous 

experience (i.e., when two object bounce together the impact produces a sound). Our 

brain has to integrate spatial and temporal congruent cues into the same physical object 

while disambiguate incongruent cues. As suggested by the aforementioned models, in 

case of incongruent cues, the brain seems to keep as reference the most reliable sensory 

modality. However, the most reliable modality is not always the most appropriate to 

disentangle the physical incongruence, thus the perceived outcome might be an illusory 

perception. For this reason, a well discriminable visual stimulus can illusorily alter the 

perception of an acoustic source (that provides less reliable spatial cues) as in the 

ventriloquism effect.  

Auditory bias effect has also been reported for well discriminable visual stimuli 

(Shams et al. 2000) in the temporal domain, were temporal acoustic cues are most 

reliable. Shams and colleagues results highlights the auditory bias effect by inducing the 

illusory visual perception of two flashes when actually only one flash was provided 

coupled with two beeps.  
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In a recent study Hidaka and colleagues (2009) demonstrated that when visual 

cues are degraded, a moving sound might induce illusory visual motion perception of a 

static stimulus. This phenomenon has been called sound induced visual motion (SIVM). 

In the SIVM, a flickering static bar is perceived to illusorily move left and right when 

its onset is synchronized with an alternating left-right sound source. The SIVM is 

clearly observed when the bar is presented at least at 10 degrees from a fixation point. 

Indeed, in the peripheral visual field visual acuity is less reliable than in the fovea and in 

line with stimulus reliability hypothesis, in such situation auditory information prevails 

on vision in a way to induce visual motion perception.  

In another recent study, Teramoto and colleagues (Teramoto, Hidaka & Sugita, 

2010) highlighted the aftereffect of sounds on visual motion perception providing 

evidences that the aftereffect produced by the visual modality on the auditory modality 

(Kitagawa & Ichihara, 2002) can be reversed. Teramoto and colleagues (2010) 

demonstrated that sounds containing no motion or spatial cues could induce illusory 

visual motion perception for static visual objects. In an adaptation phase, observers 

were exposed to visual apparent motion for 3 min. In that phase, two white circles were 

presented in alternation side by side and two different tones (e.g., A and B) were 

synchronously associated to each visual circle’s onset. In the test phase, a white circle 

was physically presented twice in the same spatial position. Results show that when the 

onset of the first circle was synchronized to the tone ‘A’ and the onset of the second 

circle with the tone ‘B’, the circle appeared to move in the same direction of the 

adaptation phase. 

In light to the aforementioned evidences, the aim of the second study of the 

present dissertation is to verify whether participants’ visuo-motor behaviour might be 

biased by the SIVM illusion (as emerged for perception). More precisely, starting from 

Hidaka and colleagues’ (2009) experimental paradigm the purpose is to check how the 
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SIVM illusion might affect eye movements towards the position of the illusory visual 

stimulus. Since the fundamental work of Milner and Goodale (1995) the dissociation 

between perception and action systems is still debated. This study aims to deepening the 

knowledge on the relation between perception and action by comparing participants’ 

perceptual and visuo-motor responses in presence of the SIVM illusion.  

 

 

Material and Methods 
 

Participants	
  
 
 Twelve participants (7 female; mean age of 25 years; range from 20 to 46 years) 

took part in the study. Participants were all students of the university of Trento, reported 

normal hearing and had normal or corrected-to-normal vision. The experiment was 

conducted in accordance with the ethical standards laid down in the 1964 Declaration of 

Helsinki (most recently amended in 2008, Seoul), as well as the ethical guidelines laid 

down by the University of Trento. All participants gave their informed consent prior to 

their inclusion in the study and were naïve as to the purpose of the experiment. 

 

 

Apparatus and stimuli 
 
 Participants sat at a table in a dimly lit room (average luminance 40 cd/m²), 60 

cm from an LCD 22-inch screen (HP Compaq LA 2205 WG at 60Hz) used for 

presenting the visual stimuli. Their head movements were fully restrained by an 

adjustable chin rest, which included two lateral, adjustable stands to hold the head rig- 

idly near the temples, and thereby keep head-direction constant. Visual stimuli were 
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characterized by a static flickering white vertical bar (high 10 and width 0.4 degrees of 

visual angle) with 400 ms duration and 500 ms of stimulus onset asynchrony (SOA) 

synchronized with an auditory stimulus (a white noise burst, with 75 ms duration) 

provided through headphones (Sony MDR-XD200). The bar might be presented at three 

different eccentricities (15, 16 and 17 degrees of visual angle) with respect to the 

fixation point that might be eccentrically positioned either on the left or right of the 

display midline (at 4 degrees of visual angle). Fixation point and flickered bar were 

always on the opposite sides in relation to the display midline (see Figure 3 p. 69). Both, 

eccentricities values and fixation point side were balanced and varied randomly across 

trials. The bar might flicker 5 or 6 times (i.e., repetitions) in a balanced fashion across 

trials. The number of repetitions provided the direction of the illusion for the data 

analysis (left vs. right). In crossmodal trials, the sound moved from one ear to the other 

synchronously with the flickering bar for inducing the visual illusion (i.e., the SIVM) in 

the direction of the sound movement. However, a preliminary pilot study revealed that 

there was not a clear one-to-one matching between sound direction and bar illusory 

motion direction. That is, on some trials a left to right sound direction could induce a 

coherent left to right bar motion, while on other trials the same left to right sound could 

induce an opposite right to left bar motion. This alternating stochastic direction of the 

illusion could not be controlled a priori and would have pose a serious problem in the 

analysis phase. To overcome this burden, a physical displacement of the bar (i.e., 

physical inducer) was implemented at the start of each trial to match the direction of the 

apparent motion of the sound. More precisely, from the first to the second bar onset, the 

spatial position of the bar was physically displaced (i.e., 1 degree of visual angle) 

towards the side were the first sound would have been played. The first sound was 

presented simultaneously with the second bar onset. It is important to note that 

subsequent repetitions of the bar would have been presented always in the same spatial 
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position, without any further displacement. In this way it was possible to match the first 

bar physical displacement with the first sound apparent direction and to establish a 

unique expected participant’s response for each trial, according to the bar (sound) 

repetitions (5 or 6, see above).  

Irrespectively to the task type (i.e., perceptual or visuo-motor) an eye tracker 

(EyeLink 1000 Desktop Mount, SR Research) has been used to control participants’ 

gaze on fixation during each trial and/or to record eye motor response at the end of each 

trial in the visuo-motor task. 

 

 

 

 

Figure 3  Schematic representation of a trial. In the example, fixation is 4° on the left side of the 
screen midline. Participants fixated the red dot while the bar flickered peripherally at one of the different 
eccentricities (i.e., 15°, 16° or 17°) in respect the fixation. The empty bar indicated the actual static 
position while the white bar represents the perceived illusory position related to the sound side. ‘C’ and 
‘F’ stand respectively for ‘close’ and ‘far’ position in relation to the fixation point. At the end of the bar’s 
flickering repetitions (i.e., 5 or 6), participants were asked to either press the left/right mouse button to 
report the last perceived direction of the last bar movement (perceptual task), or to gaze towards the last 
perceived position of the bar (visuo-motor task).  
Demo at http://www.rikkyo.ne.jp/web/souta_hidaka/SIVM.html. 
 

 

Procedure	
  and	
  experimental	
  design	
  
 

Participants were asked to undergo a calibration procedure for the eye tracker 

system at the start of each block. Then, participants were instructed to maintain their 

fixation on the fixation point until the end of the trial. When the participant was actually 
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looking to the fixation, the trial started. The repetitions of the bar (i.e., 5 or 6) were all 

statically presented in the spatial position corresponding to the eccentricity condition 

value (i.e., 15, 16 or 17 degrees). In the perceptual task, after the offset of the last 

repetition of the flickering bar, participants were asked (by showing a message on the 

screen) to press a left or right mouse button to report the last perceived movement 

direction of the bar. Participants provided the response by using their dominant hand. In 

the visuo-motor task, in which an eye movement was requested, the fixation point 

disappeared 50 ms before the offset of the last presented bar (see Figure 3 p. 69). The 

participants were instructed to move their eyes towards the last perceived position of the 

bar at the offset of the fixation point. The trial was repeated whenever the participants 

moved their eyes before the fixation offset (or before the presentation of the last bar in 

the perceptual task).  

The experimental design was constituted by 12 different conditions namely, 3 

eccentricity positions of the bar (i.e., 15, 16, or 17 degree), 2 fixation positions (i.e., 4 

degrees either on the left or on the right from the screen midline) and 2 flickering 

repetition values (i.e., 5 or 6 repetitions). Conditions were repeated 4 times on each 

experimental block. Four blocks with a perceptual response and four blocks with the 

eye motor response constituted each session (i.e., 192 trials). Each participant 

underwent sessions with or without sound (i.e., sound condition) in two different days 

(i.e., two sections with a within participant experimental design). Response conditions 

within the same day (i.e. perceptual or visuo-motor) and sound/no-sound sessions 

sequence in different days were balanced across participants. To verify that the 

procedure was clear, before the actual experimental section the participants were asked 

to undergo a brief test (12 trials).  
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Data	
  analysis	
  
 
 For the perceptual task, proportions of ‘far’ responses were computed for sound 

and no sound conditions. Performance for the two different fixation positions and for 

the three different eccentricities was averaged. In this way, the left/right coding of 

participants’ response for the position of the last perceived bar has been coded in 

relation to the distance between the last position of the illusory perceived bar and the 

fixation position. More precisely, leftwards movement of the last bar with fixation on 

the right and rightwards movement of the last bar with fixation on the left were 

clustered as ‘far’ (because the bar was suppose to be perceived to move away from 

fixation). Conversely, leftwards movement of the last bar with fixation on the left and 

rightwards movement of the last bar with fixation on the right were clustered as ‘close’ 

(because the bar was suppose to be perceived to move towards the fixation, see Figure 3 

p. 69 for an example). The same procedure has been used for the analysis of eye 

movements in the visuo-motor task. In this case, the difference between the executed 

eye movement amplitude and the expected eye movement amplitude (i.e., the actual 

eccentricity between the fixation and the position of the static bar) was computed for all 

experimental conditions. This variable transformation was applied in order to obtain 

comparable values, independent of the actual bar eccentricity. It is important to note that 

the ‘far’ and ‘close’ coding of trials holds either for the ‘sound’ or the ‘no sound’ 

conditions. Even in the absence of sound, the presence of the direction specific physical 

inducer allowed to derive an expected perceptual as well as motor response, according 

to the bar repetitions. 
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Results 
 
 An analysis of variance (ANOVA) on the proportion of ‘far’ response in the 

perceptual task with factor distance (far vs. close) and sound (sound vs. no-sound) show 

a significant difference between ‘far’ and ‘close’ clusters F (1,11) = 90.9, p < .001, 

indicating that there was a greater number of responses in the ‘far’ cluster than in the 

‘close' cluster. The visual illusion direction was indeed in the direction of the auditory 

apparent motion as found by Hidaka and colleagues (2009). Furthermore, a significant 

interaction between the two factors has been found F (1,11) = 25.8, p < .001, indicating 

that the presence/absence of the sound influenced participants performance differently 

in the two levels of the distance condition. That is, the visual illusion was greater when 

the sound was presented as emerged in the graphic representation reported in Figure 4 

(p. 73). The main effect of sound condition was not significant (F (1,11) = .01, p = .9). 

 The ANOVA of the expected landing position of eye movements in the visuo-

motor task with factor distance (i.e., far/close) and sound (i.e., sound/no-sound) show a 

significant difference between ‘far’ and ‘close’ clusters F (1,11) = 13.7, p < .01, 

indicating that the eye landing position was indeed biased by the direction of the visual 

illusion. That is, when the direction of the last repetition of the bar was perceived to 

move away from the fixation, participants overshot the actual static position of the bar. 

Vice versa, when the direction of the last repetition of the bar was perceived to move 

towards the fixation, participants undershot the actual static position of the bar. Note 

that participants had a tendency to undershoot the requested saccadic amplitude, as 

shown clearly by the negative values on the plot summarizing visuo-motor results. This 

general tendency can be explained by the nature of the task, participants started to move 

their eyes after the last bar offset and were actually performing a blind saccade. 

However, neither a main effect of sound condition nor interaction between sound and 

distance conditions is emerged. This result indicates that the visual illusion effect is 
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present also in the condition without the sound as for the perceptual response task. The 

graphic representation (see Figure 4, p. 73) shows the magnitude of the visuo-motor 

response in the two sound conditions. 

 

  

Figure 4  On the left side, the perceptual response. The graph shows the averaged proportion of 
responses (far) in respect the two clusters of directions (far/close) in the two sound conditions (sound/no-
sound). On the right side, the visuo-motor response. The graph shows the averaged amplitude of the 
expected landing position. Reported values represent the difference between the eye movement landing 
position and the effective eccentricity of the bar.  
 
  

 

 A further analysis considering perceptual effects of the sound factor show that 

the magnitude of the illusory effect in the two conditions is correlated across 

participants (R = .32, t = 2.2, p = .05). That is, the magnitude of the illusion effect in the 

crossmodal condition increase as the magnitude of the illusion effect in the absence of 

the sound gets larger. Moreover, despite the high variability between subjects in the 

illusory magnitude in both sound conditions, it is worth nothing the stronger magnitude 

of the illusion in the crossmodal condition compared to that in the unimodal condition 

(i.e., average of 44.9 %, the value of the regression line intercept, see Figure 5, p. 74).  
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 Finally a marginally significant linear relation across participants’ (R = .37, t = 

1.96, p = .07) of the magnitude effect of the illusion in the two different response 

conditions (i.e., perceptual and visuo-motor) has been found (see Figure 5, p. 74). This 

result indicates that the magnitude of the illusory effect in the visuo-motor task 

increased as the magnitude of the illusory effect increased in the perceptual task. Thus, 

it seems possible to predict the amount of visuo-motor illusory effect from the 

magnitude of the perceptual illusion (and vice versa) in support to a close relation 

between perception and action systems. 

 

  

Figure 5  Scatter plot of correlations for the 12 participants. On the left, the correlation between 
the SIVM magnitude in the two sound conditions (sound/no-sound) for the perceptive tasks. On the right, 
the correlation between the SIVM magnitude in the perceptive and visuo-motor tasks in presence of the 
sound. 
 

 

Discussion 
 

The aim of this study was to verify whether participants’ oculomotor behavior 

might be biased by the SIVM illusion. Starting from Hidaka and colleagues’ (2009) 

experimental paradigm, the purpose was to investigate whether the perception of an 

illusory visual left/right movement of a static bar induced by an alternating left/right 
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sound affects eye movements landing position when requested to gaze towards the 

position of the bar. The present study provide evidences of a positive correlation 

between perceptual and action systems in the SIVM illusion. The marginally significant 

correlation of the illusion in the two different response conditions (i.e., perceptual and 

visuo-motor) in presence of the sound shows the predictability of the amount of visuo-

motor illusory effect from the magnitude of the perceptual illusion and vice versa. Due 

to the high variability of the illusory effect between participants it is likely this effect 

could reach significance by collecting more data. 

In the perceptual task, despite a significant modulation of participants’ response 

also in absence of the sound, the magnitude of the illusion was significantly stronger in 

presence of the sound (i.e., average of 44.9 % stronger) supporting Hidaka and 

colleagues’ (2009) results. The analysis of the expected landing position of eye 

movements shows that the visuo-motor system is significantly affected by the illusion, 

in the same direction as in the perceptual response task. Indeed, only a main effect of 

expected landing position emerged but neither effect of sound condition nor interaction 

has been found, indicating that the motor response is affected either with or without the 

sound. This could be due by a number of factors but a possible explanation could rely 

on the nature of the adopted measure. Eye movement amplitude is a continuous 

variable, moreover participants were asked to perform a saccade towards an offset target 

(the bar), thus increasing the variability in saccadic landing positions Furthermore, a 

between participants positive significant correlation in the perceptual task in respect to 

the sound conditions has been found. That is, the magnitude of the illusion effect in the 

crossmodal condition increase as the magnitude of the illusion effect in the absence of 

the sound gets larger providing evidences of the subjectivity effects of the illusion. 

One explanation for the modulation of participants’ response in absence of the 

sound in both the response modalities may depend on the effect of the physical inducer 
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(see Apparatus and stimuli section for more details, p. 67) used to match the direction of 

the visual illusion with the direction of the apparent motion of the sound. Indeed, 

without the inducer, the SIVM did not always match the acoustic apparent motion 

direction and it could not have been possible to have an accurate measure to the 

direction of the illusion. However, it is important to note that the illusory effect driven 

by the mere presence of the physical inducer in the absence of the sound is sufficient to 

influence either motor behaviour or perceptual judgments in a consistent way. 

The distinction between perception and action seem to be supported by Milner 

and Goodale (1995) conclusions. The authors suggest that the ventral pathway provides 

the visual information required for the object recognition (i.e., vision for perception) 

while, the dorsal pathway processes the visual information necessary for the control of 

movements (i.e., vision for action) highlighting the dissociation between the two 

systems. However the two visual systems hypothesis has been challenged by, the view 

that the ventro-dorsal pathway has both motor and perceptive functions has been further 

confirmed by the discovery of mirror neurons (i.e., sensorimotor neurons) in both, the 

ventral premotor cortex and in the rostral part of the inferior parietal lobe of monkeys 

(Di Pellegrino, Fadiga, Fogassi, Gallese, & Rizzolatti, 1992; Gallese, Fogassi, Fadiga & 

Rizzolatti, 2002). Mirror neurons seem to code specific motor acts and not single 

movements. Moreover, they fire both when the monkey performs a given action and 

when it sees someone performing a similar action. The action and perception properties 

of mirror neurons suggest that their characterizing mechanism process the visual content 

of an action and its corresponding motor execution, playing a fundamental role in 

understanding the meaning of actions performed by others (Rizzolatti, Fogassi, & 

Gallese, 2001).  

In the present study it is not possible to make any claim about the 

neurophysiological substrate of the tasks involved however, results seem to support the 
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correlation between perception and action systems providing psychophysical evidence 

of such relation.  

Evidences of the effects of the reliability of each sensory modality in 

multisensory interaction have been provided in both neurophysiological (e.g., Stein & 

Meredith, 1993), behavioural (e.g., Alais & Burr, 2004; Ernst & Banks, 2002) and 

neuroimaging studies (Noesselt et al., 2010 for a review). Thus, the alternation of sound 

location can induce an illusory visual motion where the visual sensory signal is less 

reliable (i.e., at large retinal eccentricities at which visual acuity degrades) highlighting 

an inverse ventriloquist effect. Results of the present study confirmed the previously 

found perceptive illusory effect of the SIVM and provide evidence of a correlation with 

motor response highlighting the involvement of multisensory integration in such visual 

illusion and its relation with stimulus reliability in both the cognitive domains.  
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Multisensory interaction and low vision 
 

Background introduction 
 

Visual deficits may be caused by different pathologies or traumatic events that 

can endanger structures at different levels of visual information processing. They are 

firstly classified in relation to the level in which the visual pathway is damaged. When 

the peripheral visual structures are highly compromised (i.e., structures of the eye, the 

optic nerve or the optic chiasm) the resulted visual deficit is classified as a peripheral 

visual deficit (i.e., low vision). In all the other cases, when the damage is related to the 

post-chiasmatic visual pathway, the resulted visual deficit is classified as a central 

visual deficit as the deficit is related to cortical or subcortical structures (e.g., 

hemianopia, neglect).  

 

 

Low vision 
 

Low vision is a condition of permanent reduction of visual field and visual 

acuity, not correctable by glasses, due to several eye diseases, varying in severity and 

nature (World Health Organization, 2009). Low vision is very heterogenic between 

patients because for the many different pathologies’ aetiology with the associated visual 

field type and locus of the deficit. The possible visual deficit may cover the entire visual 

field with some spared parts or it may also be focalized mostly in the central or in the 

peripheral visual field in relation to the pathology. Moreover the visual acuity in the 

spared/damaged visual field areas may also be characterized by very defined boundaries 

so that very close areas can show very different levels of visual acuity.   
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Before to a brief description of the most common low vision pathologies, it is 

helpful to summarily understand how the visual information are converted in electric 

impulses that can be interpreted by subcortical and cortical structures.  

 

 

Eye	
  Anatomy	
  
 

The eye is a spherical structure about an inch in diameter (see Figure 67, p. 80). 

It has a clear protuberance on the front side, which is the cornea. Beyond the cornea 

there are other three tissue layers respectively the sclera, a protective layer that connects 

to the transparent cornea at the front of the eye, the choroid, a vascular layer that is 

continuous with the ciliary body and the iris on the front side of the eye, and finally, the 

retina, a light-sensitive tissue constituted by different types of photoreceptors and that 

cover all the back wall of the inner eye. The eye is a very complex structure but it may 

be thought to work as a camera. An external object reflects light rays that enter the eyes 

through the cornea a transparent external membrane that covers the eye. From the 

cornea the light has to pass through a round hole, the pupil. The size of the pupil can 

vary by means of the dimension of the iris (the coloured portion of the eye that 

surrounds the pupil) moved by the ciliary muscles. In this way, the amount of light that 

pass through the pupil is maintained constant to avoid damaging photoreceptors on the 

retina. The next step of the light is to pass through the lens that bends the light rays by 

focusing them on the retina. The retina contains millions of light-sensing nerve cells 

called rods and cones. Cones are concentrated in the centre of the retina, in an area 

called the macula, a part of the fovea that provides the highest resolution. Indeed, in 

bright light conditions, cones provide clear, sharp central vision and detect colours and 

fine details useful for instance for reading. Rods are located outside the macula and 
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extend towards the outer edge of the retina where are maximally concentrated and allow 

the eyes to detect motion and to see in dim light and at night. These cells in the retina 

convert the light into electrical impulses conveyed through the optic nerve that sends 

these impulses to the primary visual area in the brain where the image starts its path that 

will end with the awareness of what we are seeing. 

 

 

 

Figure 6  Schematic diagram of the vertebrate eye. Image: Courtesy Wikipedia 
 

 

Cataract	
  
 

The most common cause of vision impairment and blindness worldwide is 

cataract. Since as most of visual diseases, cataract is usually associated with ageing, the 

magnitude of the problem in western countries seems to be destined to grow in the next 

years, due to the progressive increase of the percentage of elderly people (World Health 

Organization, 2009). Cataract is caused by a progressive lens opacisation that modifies 

the light flow on the retina (see Figure 7, p. 85 for an example). In addition to ageing, 

different reasons may lead to the loss of the lens transparency as for instance 

pathologies like the diabetes, prolonged use of drugs or medicines and family history. 
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Cataract is relatively easily to tract in developed countries by means of surgery and the 

substitution of the lens. 

 

 

Macular	
  Degeneration	
  
 

Macular degeneration (MD) is a visual pathology that progressively destroys the 

macula, the central portion of the retina, impairing central vision. It rarely causes 

blindness because only the centre of vision is affected. Macular pathologies impair the 

ability to see straight ahead clearly and very often make it difficult to read, drive, or 

perform other daily activities that require fine central vision (see Figure 7, p. 85 for an 

example). Macular degeneration might be caused by different factors like, for example, 

the family history (i.e., genes), high blood pressure, high fat intake, smoking, or just 

ageing. There are different forms of macular degeneration depending of the aetiology. 

The most common form of inherited juvenile macular degeneration is the 

Stargardt's disease (e.g., Weleber, 1994). It is usually diagnosed under the age of 

twenty. It causes a progressive loss of central vision and, in the early stages patients 

may experience difficulty with reading and seeing in dim lighting. Other common 

symptoms include blurriness and distortion. Patients with early Stargardt's disease 

appear to have simple macular degeneration. When the disease progresses, lipid rich 

deposits accumulate in the retinal pigment epithelium, a tissue that lies between the 

retina and the choroid. In advanced Stargardt's disease, the buildup of lipid deposit 

causes atrophy of the macula because of the lack of photoreceptor cell nutrition.  

Differently from Stargardt’s disease, age-related macular degeneration is a 

visual pathology related to ageing (AMD; e.g., De Jong, 2006; Varma, Fraser-Bell, Tan, 

Klein, & Azen, 2004). Nowadays, with the increase of life expectancy in developing 
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countries, AMD is getting more common. Usually, it affects people after the age of 60 

with a rate of about 10% of elderly between age 65 and 75, increasing to 30% after age 

75.  

There are two types of AMD: the dry type, and the more frequent wet type. In 

both dry and wet AMD, the person may notice a blind spot. In the wet AMD, there is a 

rapid loss of central vision while in the dry form this effect occurs slowly. The wet form 

is caused by the fast proliferation of new blood vessels leak fluid under the macula that 

is raised from its normal position thus distorting vision. An early symptom of wet AMD 

is that straight lines appear undulate. 

Despite the aforementioned pathologies are the most common other causes 

seems to be related to life style and type of nutrition. Smoking and obesity raise the 

likely of macular degeneration to occur. Furthermore, race and gender factors highlight 

differences of macular degeneration incidence. Caucasians are much more likely to lose 

vision from macular degeneration than African Americans are (Varma et al. 2004), 

while women tend to be mostly affected than men. 

 

 

Glaucoma	
  
 

Glaucoma is a common eye disease that can endanger the optic nerve and other 

parts of the eye, causing the loss of vision or even blindness. The common cause of 

glaucoma is the rise of the fluid pressure inside the eyes because of slowed fluid 

drainage from the eye (e.g., Salmon, 1999). It usually affects people after age 40 and it 

is the second cause of blindness after the cataract. Other causes of glaucoma may be 

ageing, family history (i.e., genes) and other form of optical affection that can involve 

the optic nerve. In all cases, the progress of the optic nerve damage is related with the 
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progressively reduction of the visual field starting from the periphery (see Figure 7, p. 

85 for an example). There are mainly three types of glaucoma, all linked to the draining 

defect of the aqueous humor flow. The most common is the open-angle glaucoma, in 

which the eye pressure rises because the aqueous humor cannot freely drain through the 

Schlemm’s channel. In the acute angle-closure glaucoma, instead, it is the iris that 

reduces the aqueous humor flow thus raising the internal eye pressure. It is a less 

common form of glaucoma but it can rapidly impair vision. The last type of glaucoma is 

the congenital form in which there is a congenital defects in the aqueous humor flow.  

The ocular hypertension is an increase in the pressure in the eyes that is above 

the range considered normal with no detectable changes in vision or damage to the 

structure of the eyes (e.g., Gordon et al., 2002). The term is used to distinguish people 

with elevated pressure from those with glaucoma, for whom ocular hypertension is the 

cause of their pathology. Not all people with ocular hypertension will develop glaucoma 

because it can be controlled, however, there is an increased risk of glaucoma to occur. 

 

 

Retinits	
  Pigmentosa	
  
 

Retinitis pigmentosa is a inherited visual pathology in which abnormalities of 

the photoreceptors (i.e., mainly the rods but also cones) in the retina lead to progressive 

visual loss (e.g., Bird, 1995). It may manifest with ageing but also in young people with 

a degenerative cycle that can endure also years. People affected by retinitis pigmentosa 

first experience defective dark adaptation (i.e., night blindness), then a progressive 

reduction of the visual field (i.e., tunnel vision; see Figure 7, p. 85 for an example) and 

eventually loss of central vision. Retinitis pigmentosa may be inherited in a number of 

different ways, more than 30 different genes are known to cause it.  
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Diabetic	
  Retinopathy	
  
 

Diabetic retinopathy is a common complication of diabetes affecting the blood 

vessels in the retina (e.g., Frank, 1995). It begins without any noticeable change in 

vision, but often there are extensive changes in the retina visible to an ophthalmologist. 

There are mainly two classes of diabetic retinopathy, non-proliferative and proliferative. 

Non-proliferative retinopathy is the earlier stage in which there may be hemorrhages 

(i.e., bleeding retinopathy) in the retina with leakage of blood causing deposits of 

protein (i.e., exudative retinopathy) in the retina. As a consequence in both cases, the 

retina does not receive enough nutrition. The second stage is the gravest. In proliferative 

retinopathy new abnormal vessels develop in the retina and grow towards the centre of 

the eye (i.e., towards the macula; see Figure 7, p. 85 for an example) producing very 

often fibre tissue that may contract itself and let large scars on the retina. The 

contraction of this fibre tissue may even cause the underlying retina to detach (i.e., 

retinal detachment).  
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Figure 7  Examples of different low visual impairments (column to the right) in respect to the 
normal vision (column to the left). On the right column starting from the top, myopia, cataract, age 
related macular degeneration, diabetic retinopathy, glaucoma and retinitis pigmentosa. Images: Courtesy 
NIH National Eye Institute. 
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Several studies have investigated unisensory mechanisms of visual perception in 

low vision individuals. However, previous research has focused on the visual modality 

and, more precisely, on reading performances (Cheong, Legge, Lawrence, Cheung, & 

Ruff, 2008), fixation stability (Falkenberg, Rubin, & Bex, 2007), colour recognition 

(Naïli, Despretz, & Boucart, 2006), eye movements (Crossland & Rubin, 2006) and 

visual search paradigms (Liu, Kuyk, & Fuhr, 2007).  

The studies presented here are the first attempt to investigate possible 

multisensory interactions in low vision disease. 

 

 

Introduction to the experiments 
 

The environment we continuously interact with provides a large amount of 

sensory information, which is processed by our different senses. These inputs are bound 

together by our brain, and used to construct spatial maps of the external world through 

the process commonly known as ‘multisensory integration’ (e.g., Alais et al., 2010). A 

considerable body of empirical research investigates the three fundamental principles of 

sensory interaction (e.g., see Calvert et al., 2004, for a review; Stein & Meredith, 1993; 

Wallace et al., 1992). Spatial and temporal coincidences of sensory modalities that have 

to be bound together seem to be at the basis of neuronal mechanisms of integration. 

Integrative effects have been reported in audiovisual (e.g., Frassinetti et al., 2002a, b, 

2005; Hairston et al., 2003a, b; Harrington & Peck, 1998; Hughes, Reuter-Lorenz, 

Nozawa & Fendrich, 1994; Teder-Sälejärvi, Di Russo, McDonald & Hillyard, 2005) 

and visuotactile (e.g., Forster, Cavina-Pratesi, Aglioti & Berlucchi, 2002) detection 

tasks, as well as in the case of auditory-somatosensory localisation judgments (e.g., 
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Caclin, Soto-Faraco, Kingstone & Spence, 2002; Occelli, Spence & Zampini, 2011). 

However, at the behavioural level, these principles seems to be more flexible because of 

the contribution (i.e., modulation) of high-level polisensory areas involved in the 

complex cognitive perceptual-decisional network (see Klemen, Chambers, 2011, for a 

review). Indeed, a more recent electrophysiological study provide evidences that 

neuronal response enhancement can be observed even when the stimuli are spatially 

misaligned in their external positions (Wallace & Stein, 2007). Studies from humans 

indicate that multisensory effects occur over spatial and temporal separations (Spence & 

Squire, 2003; Wallace et al., 2004) and are not limited to stimulus presentations within 

the same hemispace. The principle of inverse effectiveness is another principle of 

multisensory integration. It states that the enhancement in the stimulus detection is 

proportionally greater when unimodal stimuli are less effective (e.g., Rowland & Stein, 

2008; Stein et al., 1996). In a recent fMRI study Noesselt and colleagues (Noesselt et 

al., 2010) provided evidence of this proportional enhancement effect. A number of 

audiovisual behavioural studies have reported crossmodal enhancement in relation to 

stimulus intensity (Andersen & Mamassian, 2008; Frassinetti et al., 2002a, b, 2005; 

Hairston et al. 2003a, b; Marks et al.,1986). In particular, a series of studies pointed out 

the facilitatory effect of auditory stimuli in visual detection tasks, performed by either 

neurologically-intact people with normal vision (with masked subthreshold visual 

stimuli; Frassinetti et al., 2002a) in conditions of induced myopia (Hairston et al., 

2003a) or brain-damaged patients with visual deficit (Frassinetti et al., 2002b, 2005). 

Frassinetti and colleagues (2005) for instance, showed that in patients affected by 

hemianopia or neglect, the audiovisual interaction could improve visual perception in 

the damaged/neglected visual hemifield (i.e., where visual stimuli presented in isolation 

were less effective) consistently with the principle of inverse effectiveness (e.g., Stein & 

Meredith, 1993). Moreover, the visual detection enhancement emerged only when 
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auditory and visual stimuli originated from the same spatial position (i.e., crossmodal 

congruent condition), supporting the spatial rule of multisensory integration (e.g., Stein 

& Meredith, 1993).  

In accordance with the aforementioned evidence, the next three studies reported 

here aim for the first time to investigate possible multisensory interactions in low 

vision, by using auditory information to induce a visual detection improvement. The 

following studies were designed to investigate whether co-occurring sounds, not 

carrying any information about the presence of the visual target (note that sounds could 

also be presented alone), could improve visual target detection in low vision individuals 

(i.e., yes/no task). In the first study, the effect of spatial disparity between synchronous 

audiovisual crossmodal stimuli was examined. In the second and third study instead, the 

temporal disparity between spatially coincident audiovisual crossmodal stimuli was 

manipulated. The hypothesis is that the simultaneous and colocalized presentation of 

task irrelevant sounds should produce the best benefit for detecting visual stimuli 

presented in those spatial positions where visual acuity is highly compromised 

(according to the principle of inverse effectiveness; e.g., Stein & Meredith, 1993). By 

contrast, participants’ performance should not be improved for those spatial positions 

where visual acuity is not impaired. Moreover, in line with spatial and temporal 

principles of multisensory integration (Stein & Meredith, 1993; Wallace et al., 1992), as 

the spatial or temporal disparity between the two modalities increases, the enhancement 

produced by the disparate sound has to decline. 
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Audiovisual interaction in low vision: Spatial disparity factors 
Thi work was done in collaboration with Valeria Occelli PhD 

 
 

Introduction Experiment 3  
 

The aim of this first experiment was to verify whether a sound synchronously 

coupled with a visual stimulus might improve the detection of the visual stimulus in 

respect to the condition in which the visual stimulus was provided alone. Furthermore, it 

was aimed to check whether the presumed enhancement might depend to the spatial 

disparity between the two sensory modalities. Indeed, as stated by the principle of the 

inverse effectiveness (e.g., Stein & Meredith, 1993), in the conditions in which visual 

information is sufficient for the task demands (i.e., the visual positions in which the 

visual deficit is less pronounced) coupling the visual stimulus with a sound should not 

provide any benefit. Indeed, Frassinetti and colleagues (2005), for instance, showed that 

in patients affected by hemianopia or neglect, the audiovisual interaction could improve 

visual perception in the damaged/neglected visual hemifield (i.e., where visual stimuli 

presented in isolation were less effective) but not in the spared visual hemifield. 

To this aim, crossmodal conditions might vary in spatial disparity while a 

unimodal visual condition was kept as visual performance baseline. Moreover, a 

unimodal acoustic condition was thought to act as catch trial (i.e., the ‘yes’ response 

when actually any visual stimulus was delivered).  

 

Material and methods 
 

Participants	
  
 

Thirty-one low vision participants (14 female; mean age of 55 years; range from 

19 to 82 years; two left handed and two with no hand preference; see Table 2, p. 90 for 
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details) took part in the study. Participants were mostly members of the “Unione dei 

Ciechi e degli Ipovedenti” (Italian Association for Blindness and Low Vision) of 

Trento. All the experiments reported in this study were conducted in accordance with 

the ethical standards laid down in the 1964 Declaration of Helsinki (most recently 

amended in 2008, Seoul), as well as the ethical guidelines laid down by the University 

of Trento. All participants gave their informed consent prior to their inclusion in the 

study and were naïve as to the purpose of the experiment. 

 

Patient Age Visus Visual pathology Duration 
1 30 1/10 Stargardt Disease 20 
2 65 1/10 Macular Distrophy 15 
3 25 1/20 Acute Maculopathy 20 
4 64 1/20 

 
Corneal Opacity (Left eye OFF) 54 

 5 66 1/20 Maculopaty, Acute Glaucoma (Left eye OFF) 11 
 6 51 1/10 Glaucoma, Keratoconus 18 
 7 70 1/10 Acute Degenerative Maculopathy 34 

8 66 1/10 Maculopathy 23 
9 55 1/10 Macular Distrophy 25 

10 56 1/10 Restricted Maculopathy, Optical Neuritis 7 
11 52 1/20 Bilateral Congenital Glaucoma 47 
12 69 1/20 Retinal Degeneration, Angioid Streaks 16 
13 73 1/10 Exudative Maculopathy 5 
14 57 1/20 Stargardt Disease, Inverted Retinitis Pigmentosa 37 
15 72 1/20 Myopic Choroiditis, Incipient Cataract 22 
16 72 1/10 Retinal scar, Strabismus, Cataract 64 
17 73 1/10 Albinism, Acute Myopia 5 
18 24 1/10 Nistagmus, Degenerative Retinopathy 24 
19 72 1/20 Chorioretinopaty, Angioid Streaks 42 
20 60 1/10 Maculopathy 33 
21 68 1/20 Myophic Choroiditis 24 
22 68 1/10 Diabetic Retinopathy 20 
23 25 1/20 Optic Chiasm Aneurysm 3 
24 59 1/10 Maculopathy 6 
25 54 1/20 Corneal Opacity 24 
26 39 1/10 Maculopathy 29 
27 61 1/10 

 
Myophic Maculopathy 19 

 

Table 2  Participants’ age and information about clinical pathology. 

 

 



Multisensory interaction and low vision   Spatiotemporal aspects in audiovisual interaction 

 

 91 

Apparatus	
  and	
  stimuli	
  
 

The setup was a semicircular plastic structure (130 cm length) covering around 

112 degree of visual angle and positioned at 70 cm from the participants. Eight LEDs 

(light emitting diodes) and eight speakers were mounted on this support, resulting in a 

symmetric arrays of 8 overlying acoustic and visual positions at 8, 24, 40 and 56 

degrees of visual angle in either hemifields (see Figure 8, p. 92). All the semicircular 

structure was covered with an acoustic permeable black curtain so that only the 8 LEDs 

were visible. A laptop pc (Dell Precision M6300) and a Matlab script (The MathWorks, 

Inc.) have been used to deliver the stimuli and collect participant’s response. A 

keyboard was positioned in front of the participants to allow them to provide the 

responses. 

Auditory stimuli consisted of the presentation of a 100 ms white noise burst (80 

dB as measured from the participants’ head position). Sounds were played by using the 

integrated sound card of the laptop computer connected to an external loudspeaker to 

amplify the signal. The signal was then switched between 8 relays (N4100F-2) by using 

the digital outputs of an Interface Board Module (Velleman Extender USB VM140) to 

activate the desired speaker. Speakers were round-shaped (5 cm diameter of Mylar; Pro 

Signal ABS-210-RC range 350-20000 Hz, 8 Ω, 1 W RMS Power). A between-trials 

balanced random amplitude modulation of the generated signal was introduced (values 

of 85, 90, 95 or 100% of the whole signal amplitude) to compensate for the minor 

speakers’ difference in propagating the acoustic stimuli. Visual stimuli consisted of the 

presentation of a 100 ms (i.e., same duration as the auditory stimuli) green visual targets 

(LED, Avago Technologies model HM65-Y30DD). The luminance of each LED 

associated to each speaker has been calibrated to 80 cd/m² set in a dark environment. 

LEDs were oval-shaped with a diameter of 5 mm (0.4 degrees of visual angle) and a 

viewing angle of 100° (i.e. the angle from which the 80 cd/m² luminance was 
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maintained constant), so that the visual stimulus has a constant luminance despite its 

position on the setup (i.e. minor difference in the direction towards the participant’s 

position). The onset of visual and auditory stimuli was synchronized by using a digital 

oscilloscope (Agilent Technologies MSO 6054A).  

 

 
 
Figure 8  Schematic representations of the experimental apparatus. The viewing distance is 70 
cm. Each speaker is placed symmetrically at an eccentricity of 8, 24, 40 and 56 degrees from the centre, 
in either hemifield. In the central panel, the initial trial is represented with LEDs and loudspeakers turned 
off. In the surrounding panels, the five conditions are represented in a clockwise orientation starting from 
the top: unimodal visual (UV), crossmodal congruent (CC), crossmodal incongruent with 16 degrees of 
audiovisual disparity (CI16), crossmodal incongruent with 32 degrees of audiovisual disparity (CI32), and 
unimodal acoustic (UA; i.e., catch trial). 
 

 

Procedure	
  and	
  experimental	
  design	
  
 

Participants sat at 70 cm in front of the semicircular structure in a dimming room 

(average luminance 40 cd/m²). The chosen ratio between LED (80 cd/m²) and room 

luminance calibration was thought to reduce any possible flash light reflection. 

Participants were asked to keep their head and their eyes as steady as possible by 

looking straight ahead to the central position of the apparatus. The experimenter sat in 
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front of the participant (behind the apparatus) to check whether head and eyes were 

always in the requested (constant) position. Each trial started automatically after the 

participant response. It is worth noting that crossmodal trials were always synchronous 

thus reducing the possibility that the sound acted as a cue for any possible eye 

movement that could affect visual detection performance. 

Participants were requested to detect the presence - not the spatial position - of 

the visual stimuli and ignore the sound. The participants were not informed about the 

number and spatial locations of the speakers. For each trial, participants were presented 

with five different conditions: Visual stimulus alone (i.e., unimodal visual condition, 

UV), acoustic stimulus alone (i.e., unimodal acoustic condition, UA or catch trials), and 

simultaneous presentation of a visual and auditory stimulus (i.e., crossmodal condition). 

Crossmodal condition were three, namely; trials in which the visual and the auditory 

stimuli were presented from the same spatial position (i.e., crossmodal congruent 

condition, CC) and trials in which the two different modalities were presented from 

different spatial positions (i.e., crossmodal incongruent condition, CI) either at 16 (i.e., 

CI16) or 32 (i.e., CI32) degrees of visual angle.  

The participants were instructed to use both the hands to press two buttons on a 

keyboard placed in front of them (‘F’ key for ‘Yes, I saw the light’ and ‘J’ key for ‘No, 

I did not see the light’) using, respectively, the left and the right index finger. Response 

mapping was not counterbalanced between participants. The whole experimental 

section was divided in 8 blocks. Each block consisted of 72 trials (i.e., 8 UV trials, one 

for each visual position; 24 UA trials/catch trials, 3 for each of the 8 acoustic positions; 

and 8 CC trials, visual and acoustic stimuli presented synchronously from each of the 8 

positions). Finally, there were 32 CI trials (4 for each visual position) in which acoustic 

stimuli were presented to the left or to the right of the visual stimulus at either 16 or 32 

degrees of disparity. The proportion of conditions in the experimental design has been 
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chosen for different reasons: to respect the same design used by Frassinetti and 

colleagues (2005) and to shortening as much as possible the duration of the 

experimental section because of the very high patients’ mean age. Each participant was 

presented with 576 trials in total.  

To verify that the procedure was clear, before the actual experimental section, 

the participants were asked to undergo a brief test with the same experimental 

conditions (i.e., 10 to 20 trials randomly chosen from the sequence of a block). The 

whole experimental section lasted around 90 minutes with a rest between each of the 8 

blocks. 

 

 

Data	
  analysis	
  
 

Participants’ performance was analysed by computing the proportion of ‘yes’ 

responses. In relation to the 8 spatial positions, 50 values have been obtained namely: 8 

values for the UA condition (catch trial), 8 values for the UV condition, 8 values for the 

CC condition, and 26 different values for each CI condition corresponding to left and 

right performance at 16° or 32° of disparity. Indeed, CI values were 26 instead of 32 

because of the ‘lack’ of some positions. For example, for the visual spatial position at -

56° on the left visual hemifield, there were no sounds on the left neither at 16° (i.e., at -

72°) nor at 32° (i.e., at -88°). In this case, conditions on the right at 16° (i.e., at -40°) 

and 32° (i.e., at -24°) were presented two times. Next, CI positions were clustered and 

averaged according to the side (i.e., right or left) and the distance of the sound from the 

reference visual position (i.e., 16° and 32°), giving rise to four CI values for each 

participant (i.e., CI16L, CI32L, CI16R and CI32R). Finally, proportion values for UA, 

UV, CC, CI16 and CI32 (the last two were calculated by averaging the values for left 



Multisensory interaction and low vision   Spatiotemporal aspects in audiovisual interaction 

 

 95 

and right sides) related to each of the eight spatial positions have been ordered starting 

from the lowest to the highest as measured by the performance in the UV condition (i.e., 

ascending order).  

After ordering the data in such described way, the first position (i.e., the one in 

which the proportion of correct responses in the UV condition was the lower, that is, the 

most impaired visual position) could have been either in the periphery or in the center, 

depending on the participant’s visual deficit (see Table 3, p. 96 for details). Four 

participants have been discarded from the subsequent analysis because they had a very 

high UV performance in the first spatial position (i.e., in the most impaired spatial 

position the UV performance was above 95% of correct responses).  
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 Unimodal visual performance p(y) and spatial position 
Patient 

 
Most Impaired positions (MI) Less Impaired positions (LI) 

1 .01 (5) .01 (6) .13 (7) .38 (4) .88 (1) .99 (2) .99 (3) .99 (8) 
2 .38 (5) .63 (4) .88 (8) .99 (1) .99 (2) .99 (3) .99 (6) .99 (7) 
3 .01 (3) .13 (4) .13 (5) .25 (6) .38 (8) .63 (1) .75 (2) .99 (7) 
4 .01 (1) .25 (2) .75 (8) .88 (5) .99 (3) .99 (4) .99 (6) .99 (7) 
5 .50 (3) .63 (4) .88 (1) .88 (5) .88 (8) .99 (2) .99 (6) .99 (7) 
6 .01 (1) .01 (2) .13 (3) .99 (4) .99 (5) .99 (6) .99 (7) .99 (8) 
7 .75 (5) .88 (2) .88 (3) .99 (1) .99 (4) .99 (6) .99 (7) .99 (8) 
8 .75 (5) .99 (1) .99 (2) .99 (3) .99 (4) .99 (6) .99 (7) .99 (8) 
9 .25 (8) .88 (7) .99 (1) .99 (2) .99 (3) .99 (4) .99 (5) .99 (6) 

10 .88 (1) .88 (3) .88 (6) .88 (7) .88 (8) .99 (2) .99 (4) .99 (5) 
11 .25 (1) .63 (6) .63 (7) .75 (8) .99 (2) .99 (3) .99 (4) .99 (5) 
12 .01 (5) .13 (3) .13 (4) .13 (6) .25 (7) .88 (1) .88 (2) .99 (8) 
13 .88 (3) .88 (5) .99 (1) .99 (2) .99 (4) .99 (6) .99 (7) .99 (8) 
14 .63 (4) .63 (8) .75 (2) .88 (1) .88 (5) .99 (3) .99 (6) .99 (7) 
15 .01 (5) .13 (3) .25 (4) .38 (6) .88 (1) .88 (2) .99 (7) .99 (8) 
16 .38 (1) .38 (5) .63 (3) .63 (4) .63 (8) .75 (6) .75 (7) .88 (2) 
17 .88 (2) .88 (5) .99 (1) .99 (3) .99 (4) .99 (6) .99 (7) .99 (8) 
18 .50 (4) .99 (1) .99 (2) .99 (3) .99 (5) .99 (6) .99 (7) .99 (8) 
19 .25 (4) .25 (5) .25 (6) .50 (3) .88 (7) .99 (1) .99 (2) .99 (8) 
20 .13 (4) .99 (1) .99 (2) .99 (3) .99 (5) .99 (6) .99 (7) .99 (8) 
21 .01 (1) .01 (5) .13 (4) .13 (6) .88 (2) .88 (7) .99 (3) .99 (8) 
22 .25 (1) .25 (6) .25 (8) .38 (7) .50 (5) .63 (2) .75 (3) .75 (4) 
23 .01 (6) .01 (7) .01 (8) .50 (5) .75 (1) .75 (3) .99 (2) .99 (4) 
24 .50 (5) .75 (1) .75 (3) .88 (6) .99 (2) .99 (4) .99 (7) .99 (8) 
25 .01 (7) .01 (8) .13 (6) .50 (4) .50 (5) .75 (2) .88 (3) .99 (1) 
26 .01 (5) .25 (4) .38 (6) .99 (1) .99 (2) .99 (3) .99 (7) .99 (8) 
27 .13 (1) .25 (5) .88 (6) .88 (8) .99 (2) .99 (3) .99 (4) .99 (7) 

 

Table 3  For each participant, the spatial positions have been ordered as a function of the 
performance in the Unimodal Visual (UV) condition. ‘MI’ indicates the cluster of the most impaired four 
positions; ‘LI’ the cluster of the least impaired four positions. 

 

 

Results 
 

A first analysis was conducted to assess whether there was a difference between 

side of the sound (left or right) and disparity (16 or 32 degrees) with respect to the 

visual stimulus position in the CI condition. Greenhouse-Geisser correction was applied 

to the within participants analysis of variance (ANOVA) with factors disparity and side 

of the sound. The results showed a significant difference between spatial disparity 16° 
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(proportion of ‘yes’ responses, p(y) = .75) and 32° (p(y) = .71), F (1, 26) = 28.2, p < 

.001, indicating that the integration enhancement effect decreases as a function of the 

increasing spatial disparity between the sound and the visual stimuli (see Figure 9, p. 

97). This result is in line with the spatial rule of multisensory integration (e.g., Stein & 

Meredith, 1993). Neither the effect of side of the sound (left side: p (y) = .74 vs. right 

side: p (y) = .72), F (1, 26) = 1.12, p = .30, nor the interaction between side of the sound 

and spatial disparity, F (1, 26) = .09, p = .76, were significant.  

 

 

Figure 9  Mean proportions of ‘yes’ responses, for each sound-LED spatial disparity (i.e., 16 and 
32 degrees) and side of presentation (i.e., sounds presented to the left or to the right of the LED). 
Performance for the two sound disparities (averaged for left and right side) differs significantly (p < 
.001). 
 

 

Given that there was no difference between incongruent conditions as a function 

of the side of the sounds (i.e., on the left or on the right of the visual stimulus), mean 

proportion of correct responses were collapsed for the left and right incongruent 

positions (i.e. for each spatial position, CI16L with CI16R and CI32L with CI32R were 

averaged) to obtain only two different CI values for each participant in relation to the 

spatial disparity (i.e., CI16 and CI32). Then, proportion of correct responses 

corresponding to the four most impaired positions (i.e., MI positions, namely the first 
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four ordered positions) and the proportion of correct responses for the least-

impaired/spared four positions (i.e., LI positions, namely the ordered positions from the 

fifth to the eighth) were clustered for each participant and condition (see Table 3, p. 96 

for an example for the UV performance). A within participants ANOVA with the 

factors cluster of positions (i.e., MI vs. LI) and condition (i.e., UV, CC, CI16 and CI32) 

revealed a significant effect of condition, F (3, 78) = 4.5, p = .006, a significant effect of 

cluster of positions F (1, 26) = 48.6, p < .001, and a significant interaction between 

condition and cluster of positions, F (3, 78) = 3.2, p = .03. As expected, results show a 

difference between the stimulation conditions, while the emerged interaction show that 

this differences may be present only in one of the two clusters of positions (i.e., MI vs. 

LI, see Figure 10, p. 98). 

 
 

 

Figure 10 Mean proportions of ‘yes’ responses, reported for each cluster of positions (i.e., most 
impaired four positions, MI; less impaired four positions, LI), and each experimental condition (i.e. 
unimodal visual, UV; crossmodal congruent, CC; crossmodal incongruent at 16 and 32 degrees of 
disparity, respectively CI16 and CI32; unimodal acoustic, UA). Performance comparisons UV vs. CC and 
CC vs. CI32 differ significantly (p < .05). Difference between UV and CI16 is marginally significant (p = 
.06). Proportions of UA (catch trials) in the two clusters of positions (i.e., MI vs. LI) did not differ 
significantly. 
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The post-hoc comparisons pointed out a significant difference in the MI cluster 

of positions between UV and CC (p(y) = .52 vs. p(y) = .59, p = .03) indicating that the 

CC condition provided a significant performance improvement with respect the UV 

condition. As expected, a sound in the same spatial position of the visual stimulus 

provides a significant improvement in the visual detection task, but, this improvement is 

no longer present when the sound is at 32° from the visual stimulus (UV, p(y) = .52 vs. 

CI32, p(y) = .55, p = .46). Surprisingly, a sound at 16° from the visual stimulus also 

provided a marginally significant enhancement in the visual detection task performance 

as compared to the unimodal visual condition (UV, p(y) = .52 vs. CI16, p(y) = .57, p = 

.06). Furthermore, the performance was significantly better in the congruent position 

than in the one with a audiovisual disparity of 32° (CC, p(y) = .59 vs. CI32, p(y) = .55, 

p = .015). Finally, performance at 16° was not different from the one observed in the 

congruent position (CC, p(y) = .59 vs. CI16, p(y) = .57, p = .32), indicating that for low 

vision patients there could be visual acoustic integration also with such relatively wide 

disparity. No difference between conditions has been found in the LI cluster of positions 

(for all comparisons p = 1; UV, p(y) = .93, CC, p(y) = .93, CI16, p(y) = .94 and CI32, 

p(y) = .93). Taken together, these results support the principle of inverse effectiveness, 

given that the multisensory enhancement has been found in the MI cluster of positions 

(i.e., where visual stimuli are less reliable) and not for the LI cluster of positions (i.e., 

where stimuli were highly effective; see, e.g., Frassinetti,et al., 2002a, b, 2005; 

Hairston, et al., 2003a; Noesselt et al., 2010, for similar results). 

Finally, responses to catch trials were analysed to examine whether participants 

were less able to ignore the sounds presented alone in the MI than in LI cluster of 

positions. A pairwise comparison t-test did not reveal any significant difference (MI, 

p(y) = .053 and LI, p(y) = .047, t(26) = .86, p = .39). 
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Discussion 
 

Results of the present study show that a synchronous sound presented from the 

same spatial position significantly enhances the performance of low vision individuals 

in a yes/no visual detection task as compared to the condition where the visual stimulus 

was presented in isolation. Moreover, a significant acoustic crossmodal effect is 

observed for the most impaired visual positions (i.e., MI cluster), but not for those in 

which the visual sensory signal is still reliable (i.e., LI cluster). That is, a significant 

enhancement is observed in the spatial positions in which the unimodal visual 

performance is mostly deteriorated. This result is in line with previous behavioural 

studies highlighting the role of the visual stimulus reliability in visual acoustic 

crossmodal tasks (Frassinetti, et al., 2002a, b, 2005; Hairston, et al., 2003a; see Noesselt 

et al., 2010, for both behavioural and neuroimaging evidence).  

The visual detection performance in the crossmodal congruent condition and at 

16 degrees of disparity does not differ significantly, while when the sound is presented 

at 32 degrees of disparity performance does not significantly differ from that in the 

unimodal visual condition. Therefore, the absence of any difference between unimodal 

visual condition and audiovisual pairs separated by 32 degrees of disparity shows that 

the enhancement effect cannot be attributed to a general unspecific alerting effect 

induced by the mere presence of auditory stimuli on bimodal trials (e.g., Posner, 1978, 

1980). 

To our surprise, the results showed a marginally significant performance 

enhancement as compared to the unimodal visual condition also in case of a sound 

disparity of 16 degrees, regardless of whether the visual stimulus was central or 

peripheral. This pattern is, however, partially consistent with the performance observed 
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by Frassinetti and colleagues in neglect patients without hemianopia (Frassinetti, et al., 

2002b, 2005), who showed an enhancement of visual detection when the sound was at 

16 degrees in the peripheral visual field. The authors argued that this effect could be due 

to the presence of an attentional deficit that may enlarge the size of the area where the 

crossmodal integration occurs. However, Frassinetti and colleagues (2002a) found an 

analogous effect also in neurologically-intact people with normal vision, in which 

attentional deficit can be likely excluded. These authors have explained this spatial 

disparate enhancement effect by referring to electrophysiological evidence, showing 

that auditory receptive fields in multimodal neurons are larger than visual receptive 

fields (Middlebrooks & Knudsen, 1984). 

A second possible explanation for the enhancement effect of the sound at 16 

degrees may refer to the inverse ventriloquism effect, in which the sound leads the 

fusion process by providing a most reliable spatial cue. For instance, Alais and Burr 

(2004) asked participants to localize the spatial position of a visual stimulus or a sound 

(i.e., left/right judgment) presented either in unimodal or crossmodal fashion. The 

authors found that when the visual stimulus is well discriminable, an acoustic stimulus 

has no influence on the performance. By contrast, the more the visual stimulus is 

blurred, the more participants’ judgment is biased towards the source position of the 

sound. This interesting result suggests that the spatial ventriloquism effect seems to be 

determined by the contribution of both modalities, in a simple model of optimal 

combination, in which the most reliable sensory signal will provide the highest 

contribution (e.g., Ernst & Banks, 2002). Thus, the marginally significant effect of the 

sound found also at 16 degrees in the present study may be the result of a lack in the 

reliability of the visual information that constitute, together with the sound, an unique 

crossmodal event (e.g., Hairston et al. 2003b). As a consequence, multisensory 

enhancement may be observed not only when the low reliable visual stimulus and the 
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sound’s spatial position coincide, but also when the disparity between the two stimuli is 

around 16 degrees. Wallace and colleagues (Wallace et al., 2004) found that the 

audiovisual interaction effects were modulated by the participant’s perception (i.e., 

judgment) of the unity of the event. In that study, localisation bias (i.e., sound 

localisation towards the visual stimulus) and reports of perceptual unity occurred even 

with substantial spatial (i.e., 15 degrees) and temporal (i.e., 800 ms) disparities. 

Similarly, one could suggest that the multisensory enhancement in the CC and CI16 

emerged in the present study because low vision participants perceived acoustic and 

visual stimuli as being originated from the same event. By contrast, the sound at 32 

degrees of disparity does not provide a significant enhancement, supporting the 

existence of a spatial boundary in which visual acoustic fusion effect breaks off (cf. 

Wallace et al., 2004). Other studies have nevertheless reported substantial localisation 

biases with similarly large disparities (e.g., Bermant & Welch, 1976; Bertelson & 

Radeau, 1981) despite values emerged in this study seem large in comparison with 

some previous reports of crossmodal interaction (e.g., Lewald & Guski, 2003; Lewald 

et al., 2001). 

Irrespectively of the causal explanation for the effect of the disparate sound on 

visual detection highlighted in the present study, the enhancement seems to be 

consistent throughout the visual field. In fact, the MI cluster of positions is constituted 

by positions either in the peripheral or in the central visual field in relation to the 

patients’ pathology. Thus, it is unlikely that it has been determined just by the effect of 

those particular positions in the periphery (like found by Frassinetti et al. 2002a in 

healthy participants), where acoustic RFs have temporal borders which extend to the 

peripheral space more than the nasal borders (i.e., RFs are elongated towards the 

periphery; Middlebrooks & Knudsen, 1984; Stein et al., 1989).  
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In the present study, audiovisual stimuli were always presented simultaneously. 

However, in line with Wallace and colleagues study (Wallace et al., 2004), the marginal 

enhancement at 16 degrees of disparity emerged in the present study might be due to the 

fact that low vision participants perceived acoustic and visual stimuli as being 

originated from the same event. Furthermore, as in Wallace et al. (2004) it has been 

demonstrated that sensory integration can take place also between stimuli that are not 

temporally coincident, but which fall within the ‘temporal window’ of integration 

(Meredith et al., 1987; Spence & Squire, 2003). Therefore, in the next experiment the 

aim is to investigate whether the behavioural enhancement effect found for spatial 

disparities in the present experiment might result for temporal disparities as well. 

Furthermore, it would be possible to try to define the temporal window boundaries for 

the audiovisual enhancement effect found in low vision participants. 
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Audiovisual interaction in low vision: Temporal disparity factors I 
Thi work was done in collaboration with Valeria Occelli PhD 

 

Introduction Experiment 4 
 

Results of Experiment 3 show that a sound synchronously coupled with a visual 

stimulus provides a significant enhancement in detecting the presence of the visual 

stimulus when compared with the unisensory visual presentation. As expected, this 

effect is present only in the visual positions where visual information is compromised. 

Moreover, surprisingly, beyond the expected enhancement in the crossmodal spatially 

congruent condition, the enhancement effect is marginally significant also when the 

sound is disparate of 16 degrees in respect the visual stimulus, and this enhancement 

does not differ significantly from that in the spatially congruent condition. While this 

result does not match with some previous studies (e.g., Frassinetti, et al., 2002b, 2005), 

it is in line with other crossmodal studies in which spatial or temporal disparities seem 

to extent the spatial and temporal window of integration between modalities (e.g. 

Wallace et al., 2004; Meredith et al., 1987; Spence & Squire, 2003 for temporal 

disparities). 

Thus, the aim of the present experiment was to verify the role of temporal 

factors in audiovisual integration in low vision individuals. More precisely, whether the 

enhancement effect of a sound provided in the same spatial position of the visual 

stimulus might depend to the temporal disparity between the two sensory modalities. 

Furthermore, is possible to hypothesize that, as found in Experiment 3, in the visual 

positions in which the visual deficit is less pronounced, coupling the visual stimulus 

with a sound should not provide any benefit. 

To this aim, in the present experiment, crossmodal conditions might vary in 

temporal disparity while a unimodal condition was kept as baseline. As in Experiment 3 
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design, a unimodal acoustic condition was thought to act as catch trial to check the 

proportion of false alarms (i.e., the ‘yes’ response when actually any visual stimulus 

was delivered).  

 

Material and methods 
 

Participants	
  
 

Fifteen low vision participants (7 female; mean age of 50 years; range from 20 

to 73 years; see Table 4, p. 105 for details) took part in the study. Participants were 

mostly members of the “Unione dei Ciechi e degli Ipovedenti” (Italian Association for 

Blindness and Low Vision) of Trento.  

 

 

Patient Age Visus Visual pathology Duration 
1 73 1/10 Exudative Maculopathy 5 
2 60 1/10 Myophic Maculopathy (Right eye OFF) 50 
3 74 1/20 Acute Degenerative Maculopathy 10 
4 65 1/10 

 

Optical neuritis 17 
5 42 1/10 

 

Myophic Maculopathy 25 
6 66 1/10 Maculopathy 23 
7 65 1/20 

 

Diabetic Maculopathy 13 
8 39 1/10 Maculopathy 29 
9 25 1/20 Acute Maculopathy 20 

10 61 1/10 

 

Myophic Maculopathy 19 
11 66 1/20 Maculopaty, Acute Glaucoma (Left eye OFF) 11 

 
12 24 1/10 Nistagmus, Degenerative Retinopathy 24 
13 20 1/10 

 

Stargardt Disease 10 
14 52 1/20 Bilateral Congenital Glaucoma 47 

 

Table 4 Participants’ age and information about clinical pathology. 
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Apparatus	
  and	
  stimuli	
  
 

The apparatus and the stimuli were as in the Experiment 3 (see Figure 8, p. 92) 

with the following exceptions. In this experiment participants provided the responses by 

pressing a button on a Wii Remote (the primary controller for Nintendo’s Wii game 

console, Nintendo, Inc. Figure 11, p. 108) connected to the laptop by means of the 

Bluetooth connection. Furthermore, participants’ fixation was controlled by means of an 

eye tracker (EyeLink 1000 Desktop Mount, SR Research).  

An accurate calibration of the onset of crossmodal stimuli was verified by using 

a digital oscilloscope (Agilent Technologies MSO 6054A).  

 

 

Procedure	
  and	
  experimental	
  design	
  
 

Participants sat at 70 cm in front of the semicircular structure in a dimly 

illuminated room (average luminance 40 cd/m²). The chosen ratio between LED (80 

cd/m²) and room luminance calibration was thought to reduce any possible flash light 

reflection. Participants were asked to keep their head and their eyes as steady as 

possible by looking straight ahead to the central position of the apparatus. The 

experimenter sat in front of the participant (behind the apparatus) to check that the 

participant respected all the instructions. Furthermore, the experimenter had to record 

the fixation position to be maintained by the participant throughout the whole 

experimental block by mean of an eye tracker. To this aim, when the experimental 

block started, the experimenter verified the participant’s head and gaze directions (i.e., 

experimental posture). When the participant’s posture was correct, the experimenter 

started a procedure to record participant’s gaze position for around 2 seconds. During 

this time interval, the eye tracker (with a sampling rate of 1000 Hz) recorded around 
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2000 gaze positions (i.e., X/Y coordinates in a bi-dimensional external space). Then, the 

mean gaze position X and Y coordinates of the recorded sampled points were used to 

obtain a single mean fixation point corresponding to the centre of the setup. Finally, a 

fixation confidence area was built on the obtained mean fixation point (i.e., around 3 

degrees of tolerance on the left, right, up and down directions from the mean fixation 

point). This relatively large fixation confidence area was necessary because most of the 

participants had visual damage in the central visual field and thus they had to fixate 

something that they could not see.  

During each trial, on the screen of the laptop used to run the experiment, the 

experimenter was able to see where the participant was fixating within the confidence 

area and if necessary provided the participants with suggestions in order to adjust their 

gaze. Once the participants’ gaze was within the confidence area for at least 50 ms, the 

trial started automatically. Because the sound was provided always before the visual 

stimulus (or synchronously), the onset of the sound provided additional information 

regarding the spatial position of the subsequent visual stimulus. Thus, in order to avoid 

a cueing sound effect on gaze direction in crossmodal trials with longer SOAs (i.e. 250 

and 400 ms), a further online control procedure of the participant’s gaze position has 

been used. In fact, only when participant was able to maintain the gaze inside the 

fixation confidence area during the whole SOA duration, the visual stimulus was turned 

on. Conversely, if the participant gazed towards the sound’s cued spatial positions (i.e., 

the spatial position in which the visual stimulus would be appeared), the visual stimulus 

was not delivered, and the same trial started again. This further gaze check procedures 

was used neither for synchronous crossmodal stimulation nor in the 100 ms SOA 

conditions because the SOA duration was not enough for programming and executing a 

saccade towards the sound’s cued position.  
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The participants were naïve to the purpose of the experiment and not informed 

about the number and the spatial locations of the speakers. They were nevertheless told 

that in some trials visual and acoustic stimuli were not synchronized. For each trial, 

participants were presented with six different conditions: Visual stimulus alone (i.e., 

unimodal visual condition, UV), acoustic stimulus alone (i.e., unimodal acoustic 

condition, UA or catch trials), and the crossmodal conditions. Crossmodal conditions 

were four, namely; a synchronous condition with SOA equal to 0 ms, and three 

conditions in which the visual stimulus was delayed by100, 250 and 400 ms (SYNC, 

AV100, AV250 and AV400 respectively).  

The participants were requested to detect the presence - not the spatial position - 

of the visual stimulus (i.e., yes/no task) and to ignore the sound. By using the preferred 

hand, the participants had to press two buttons on the Wii Remote by using the index 

and the thumb fingers to provide the response (respectively the ‘A’ key for ‘Yes, I saw 

the light’ and ‘B’ key for ‘No, I did not see the light’, see Figure 11, p. 108).  

 

 
 
Figure 11 The remote control (Wii Remote, Nintendo, Inc.) used by participants to provide the 
response. In the figure, the ‘A’ button is on the top of the remote just below the thumb finger, while the 
‘B’ button is opposite to the ‘A’ button on the back of the remote. The ‘B’ button was pressed with the 
index finger. 

 

 

The whole experimental section was divided in 5 blocks and lasted around 90 

minutes with a rest between blocks. Each block consisted of 96 trials (i.e., 48 different 
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conditions repeated twice). Namely, 8 UV trials, one for each visual position; 8 UA 

trials, catch trials, one for each of the 8 acoustic positions, and 32 CC trials, visual and 

acoustic stimuli presented ones from each of the 8 positions for the four different SOAs. 

At the end of the whole experiment, each participant was presented with 480 trials in 

total.  

To verify that the procedure was clear, before the actual experimental section, 

the participants were asked to undergo a brief test with the same experimental 

conditions (i.e., 10 to 20 trials randomly chosen from the sequence of a block).  

 

 

Data	
  analysis	
  
 

Participants’ performance was analysed by computing the proportion of ‘yes’ 

responses. As in Experiment 3, for each of the eight spatial positions, 48 values, 

separately for the six experimental conditions (i.e., UV, SYNC, AV100, AV250, 

AV400 and UA/catch trials) were obtained. Moreover, proportion values related to each 

condition and each of the eight spatial positions have been ordered starting from the 

lowest to the highest as measured by the performance in the UV condition (i.e., 

ascending order). After ordering the data in such described way, the first position (i.e., 

the one in which the performance in the UV condition was the lower, that is, the most 

impaired visual position) could have been either in the periphery or in the centre, 

depending on the participant’s visual deficit (see Table 5, p. 110 for details). Finally, 

proportion of correct responses corresponding to the four most impaired positions (i.e., 

MI positions, namely the first four ordered positions) and the proportion of correct 

responses for the least impaired/spared four positions (i.e., LI positions, namely the 
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ordered positions from the fifth to the eighth) were clustered for each participant and 

condition (see Table 5, p. 110 for an example for the UV performance). 

One participant has been discarded from the subsequent analysis because his UV 

performance in the first spatial position was very high (i.e., in the most impaired spatial 

position the UV performance was above 95% of correct responses).  

 

 Unimodal visual (UV) performance p(y) and spatial position 
Patient 

 
Most Impaired positions (MI) Less Impaired positions (LI) 

1 .60 (4) .80 (2) .80 (7) .90 (8) .99 (1) .99 (3) .99 (5) .99 (6) 
2 .01 (3) .10 (4) .30 (5) .30 (8) .50 (6) .99 (1) .99 (2) .99 (7) 
3 .20 (1) .20 (8) .40 (2) .40 (6) .60 (5) .70 (7) .80 (3) .90 (4) 
4 .40 (4) .99 (1) .99 (2) .99 (3) .99 (5) .99 (6) .99 (7) .99 (8) 
5 .30 (8) .70 (1) .80 (3) .90 (2) .90 (4) .90 (6) .99 (5) .99 (7) 
6 .10 (5) .60 (6) .80 (8) .90 (2) .90 (4) .99 (1) .99 (3) .99 (7) 
7 .60 (1) .80 (2) .80 (3) .80 (7) .90 (4) .90 (5) .90 (6) .90 (8) 
8 .01 (5) .01 (6) .10 (4) .99 (1) .99 (2) .99 (3) .99 (7) .99 (8) 
9 .01 (3) .01 (4) .01 (5) .01 (8) .20 (1) .70 (6) .90 (2) .90 (7) 

10 .01 (1) .10 (5) .90 (2) .99 (3) .99 (4) .99 (6) .99 (7) .99 (8) 
11 .20 (4) .40 (5) .50 (3) .80 (8) .99 (1) .99 (2) .99 (6) .99 (7) 
12 .60 (4) .90 (7) .90 (8) .99 (1) .99 (2) .99 (3) .99 (5) .99 (6) 
13 .40 (5) .60 (8) .70 (4) .90 (2) .99 (1) .99 (3) .99 (6) .99 (7) 
14 .01 (1) .10 (6) .60 (7) .90 (5) .90 (8) .99 (2) .99 (3) .99 (4) 

 
Table 5  For each participant, the spatial positions have been ordered as a function of the 
performance in the Unimodal Visual (UV) condition. ‘MI’ indicates the cluster of the most impaired four 
positions; ‘LI’ the cluster of the less impaired four positions. 

 

 

Results 
 

A within participants analysis of variance ANOVA with the factors cluster of 

positions (i.e., MI vs. LI) and condition (i.e., UV, SYNC, AV100, AV250 and AV400) 

revealed a significant effect of condition, F (4, 52) = 13.3, p < .0001, a significant effect 

of cluster of positions F (1, 13) = 21.3, p < .001, and a significant interaction between 

condition and cluster of positions, F (4, 52) = 9.8, p < .0001. As expected, results show 

a difference between the stimulation conditions, while the emerged interaction show 
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that this differences may be present only in one of the two clusters of positions (i.e., MI 

vs. LI, see Figure 12, p. 108).  

 

 

Figure 12 Mean proportions of ‘yes’ responses, reported for each cluster of positions (i.e., most 
impaired four positions, MI; less impaired four positions, LI), and each experimental condition (i.e. 
unimodal visual, UV; synchronous, SYNC; crossmodal temporal disparate AV100, AV250 and AV400 
with the sound always leading the visual stimulus respectively by 100, 250 and 400 ms; unimodal 
acoustic, UA). In the MI cluster of positions performance comparisons UV versus all the crossmodal 
conditions differ significantly. Proportions of UA (catch trials) in the two clusters of positions (i.e., MI 
vs. LI) did not differ significantly. 

 

 

The post-hoc comparisons pointed out a significant difference in the MI cluster 

of positions between UV and SYNC (p(y) = .52 vs. p(y) = .69, p < .001) indicating that 

the SYNC condition provided a significant performance improvement with respect the 

UV condition. Surprisingly, the post hoc t-test analysis on the MI cluster of positions, 

pointed out a significant enhancement in the visual detection performance in all the 

other temporally disparate crossmodal conditions. In fact in respect to the UV 

performance (p(y) = .52) a significant difference has been found with AV100 (p(y) = 

.69, p < .01), AV250 (p(y) = .64, p < .05) and AV400 (p(y) = .65, p < .01). Furthermore, 

all the other t-test comparisons did not show a significant difference (.4 < p < 1) 

indicating that the multisensory enhancement provided by the sound in the synchronous 
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condition does not differ from that emerged in the other temporally delayed conditions. 

No difference between conditions has been found in the LI cluster of positions (.2 < p < 

1; UV, p(y) = .93, SYNC, p(y) = .96, AV100, p(y) = .95, AV250, p(y) = .93 and 

AV400, p(y) = .91). 

Taken together, these results support the principle of inverse effectiveness, given 

that the multisensory enhancement has been found in the MI cluster of positions (i.e., 

where visual stimuli are less reliable) and not for the LI cluster of positions (i.e., where 

stimuli were highly effective; see, e.g., Frassinetti, et al., 2002a, b, 2005; Hairston, et 

al., 2003a, b; Noesselt et al., 2010, for similar results). Finally, responses to catch trials 

were analysed to examine whether participants were less able to ignore the sounds 

presented alone in the MI than in LI cluster of positions. A pairwise comparison t-test 

did not reveal any significant difference (MI, p(y) = .045 and LI, p(y) = .034, t(13) = 

1.13, p = .28).  

 

 

Discussion 
 

The present study provides evidence of an audiovisual integration effects in low 

vision individuals with crossmodal delayed audiovisual stimuli. Results show that a 

synchronous sound presented from the same spatial position significantly enhances the 

performance of low vision individuals in a yes/no visual detection task as compared to 

the condition where the visual stimulus was presented in isolation. Moreover, the 

significant enhancement is observed only in the spatial positions in which the unimodal 

visual performance is mostly deteriorated (i.e., only in the MI cluster of positions) 

highlighting the role of the visual stimulus reliability in visual acoustic crossmodal tasks 

(e.g., Noesselt et al., 2010). To our surprise, the results showed a significant 
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performance enhancement as compared to the unimodal visual condition in all the 

temporally delayed crossmodal conditions with the sound lagging the visual stimulus by 

various SOAs (i.e., AV100, AV250 and AV400).  

It has been demonstrated that sensory integration can take place also between 

stimuli that are not temporally coincident, but which fall within the ‘temporal window’ 

of integration (Meredith et al., 1987; Spence & Squire, 2003). Although these values 

seem large in comparison with some previous reports of crossmodal interaction (e.g., 

Lewald & Guski, 2003; Lewald, Ehrenstein & Guski 2001), other studies have 

nevertheless reported substantial crossmodal effects with similarly large disparities 

(e.g., Bermant & Welch, 1976; Bertelson & Radeau, 1981; Wallace et al., 2004). 

Wallace and colleagues found that the audiovisual interaction effects were modulated 

by the participant’s perception (i.e., judgment) of the unity of the event. In that study, 

localisation bias (i.e., sound localisation towards the visual stimulus) and reports of 

perceptual unity occurred even with substantial spatial (i.e., 15 degrees) and temporal 

(i.e., 800 ms) disparities supporting results in low vision patients when spatial and 

temporal disparities are manipulated. As proposed by different authors (e.g., Alais & 

Burr, 2004; Ernst & Banks, 2002), the most reliable sensory signal (i.e., acoustic) seems 

to provide the highest contribution in the integration mechanisms found in low vision 

patients. In Experiment 3, results show a marginal significant effect also for spatially 

disparate stimuli (i.e., at 16 degrees). Wallace and colleagues (2004) found crossmodal 

integration with such disparity (i.e. 15 degrees) as well. They also found a significant 

crossmodal effect with temporally disparate audiovisual stimuli (i.e. even with a delay 

of 800 ms). The enhancement effect emerged for low vision patients in the spatial and 

temporal disparate conditions, may be the result of a lack in the reliability of the visual 

information that is perceived, together with the sound, as an unique crossmodal event as 

found by Wallace and colleagues’ (2004) study (see also Hairston, et al., 2003b).  
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In this framework, the unity assumption model, in which both stimuli reliability 

and prior knowledge affects the participants’ perception, seems to be a good candidate 

to explain the results. It might be that high-level multisensory association mechanisms 

(i.e., prior knowledge or the learned association between sound and visual stimulus) 

may have an influence on low-level interaction (i.e., at the perceptual level; Stein, 

Wallace, Stanford & Jiang, 2002). The association of the visual and acoustic modalities 

to a unique event provided by the information carried by the sound (in both 

Experiments 3 and 4 the sound was synchronous or leads the visual stimulus) may be at 

the basis of the multisensory enhancement observed with spatial and temporal 

disparities.  

Lippert and colleagues (2007) demonstrated that the time necessary to learn new 

associations between different modalities or to disrupt old ones, seem to be very short. 

The authors were able to eliminate the enhancement effect provided by the sound found 

previously with another group of participants by varying the stimulus onset asynchrony 

between sound and target in the crossmodal conditions. In a first experiment, 

crossmodal audiovisual stimuli were always provided synchronously thus providing a 

significant enhancement in the visual detection. In a second experiment the sound might 

lead or lag the visual stimulus and the enhancement in the synchronous condition 

disappears. Lippert and colleagues interpreted the results as a shift in the decision 

criterion determined by the lack of information provided by the sound (i.e., high-level 

modulation determined by the learned dissociation between modalities). It is worth 

noting that participants in Lippert et al. study learned this dissociation very fast (i.e., in 

one experimental section). Furthermore, there is evidence that cat reared (i.e., adapted) 

with spatially or temporally disparate stimuli show integration enhancement with such 

disparate stimuli (Wallace & Stein, 2007). These findings indicate that our cognitive 

system seems to learn and adapt very fast to different associations between modalities in 
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a useful way to optimize task demand (i.e., environmental constrains) and as a 

consequence, crossmodal integration enhancement take place if there is a stable relation 

between spatial and temporal cues of different modalities.  

Indeed, the fact that all the temporal delayed crossmodal conditions provide a 

significant enhancement in respect the unimodal visual condition cannot rule out a 

general unspecific alerting effect induced by the mere presence of the auditory stimulus 

on bimodal trials (e.g., Posner, 1978, 1980). Thus, the aim of the next experiment is to 

prevent participants to construct a fixed rule of association between visual and acoustic 

modalities by introducing crossmodal trials in which the visual stimulus would be 

provided first (thus, the acoustic stimulus conveyed information would be not always 

present as in Lippert et al., 2007 study). If the enhancement effect found in the present 

experiment will disappear or change significantly, the hypothesis of a general unspecific 

alerting effect induced by the mere presence of the auditory stimulus on bimodal trials 

(e.g., Posner, 1978, 1980) could be ruled out.  
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Audiovisual interaction in low vision: Temporal disparity factors II 
Thi work was done in collaboration with Valeria Occelli PhD 

 

Introduction Experiment 5 
 

Results of the Experiment 4 shows that for low vision patients, a spatially 

congruent crossmodal stimulation, either synchronous or with a delay between acoustic 

and visual stimuli, always provides a significant enhancement in the proportion of 

correct responses as compared to the performance for the unimodal visual condition. 

Surprisingly, there is a significant improvement in the performance also with a 

relatively large temporal disparity (i.e., in the AV400 condition, where the visual 

stimulus is 400 ms delayed in respect the sound).  

As mentioned in the discussion of the results, this wide temporal window of 

integration might be determinate by the perception of a unique crossmodal event due to 

the constant spatial cue information and congruency provided by the sound. This might 

lead to the stabilization of a constant relation between the two modalities that, in turn, 

provides the crossmodal enhancement (e.g., cognitive high-level association and a 

consequent modulatory effects on low-level integration mechanisms).  

It does not seem to be the mere presence of the sound to lead the participants to 

respond ‘yes’ in the crossmodal trials. Indeed, the proportion of catch trials (in both 

Experiment 3 and 4) in the two clusters of spatial positions (i.e., least impaired and the 

most impaired clusters, respectively MI and LI clusters) was very low, and most 

importantly, it did not differ significantly between the two clusters (thus, it was not 

related to the reliability of the visual stimulus; i.e., magnitude of the visual deficit). 

However, in the present experiment the aim was to prevent participants to construct a 

fixed rule of association between visual and acoustic modalities. To this aim, by 

balancing trials in which the acoustic stimulus conveyed information for the occurrence 
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of the subsequent visual stimulus (i.e., the conditions used in the previous experiment) 

and trials in which this information was not present (i.e., visual stimulus first), it might 

be possible to reduce or eliminate the enhancement effect provided by the sound as 

found by Lippert and colleagues (2007). 

 

 

Material and methods 
 

Participants	
  
 

Twelve low vision participants (5 female; mean age of 53 years; range from 19 

to 73 years; see Table 6, p. 117) took part in the study. Participants were mostly 

members of the “Unione dei Ciechi e degli Ipovedenti” (Italian Association for 

Blindness and Low Vision) of Trento.  

 

 

Patient Age Visus Visual pathology Duration 
1 73 1/10 Exudative Maculopathy 5 
2 72 1/10 Diabetic Retinopathy 8 
3 52 1/20 Bilateral Congenital Glaucoma 47 
4 55 1/10 Optical neuritis 22 
5 72 1/20 Chorioretinopaty, Angioid Streaks 42 
6 25 1/20 Acute Maculopathy 20 
7 60 1/10 Maculopathy 33 
8 70 1/10 Acute Degenerative Maculopathy 34 
9 24 1/10 Nistagmus, Degenerative Retinopathy 24 

10 65 1/20 
 

Diabetic Maculopathy 13 
11 39 1/10 Maculopathy 29 

 

Table 6  Participants’ age and information about clinical pathology. 
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Apparatus,	
  stimuli,	
  procedure	
  and	
  experimental	
  design	
  
 

The apparatus, materials, design, and procedure were as in the Experiment 3 and 

4 (see Figure 8, p. 92) with the following exceptions. Two SOAs in which the visual 

stimulus was provided first were added (symmetrically chosen 250 and 400 ms, 

respectively VA250 and VA400). As in Experiment 4, to avoid a cueing sound’s effect 

on gaze direction in the crossmodal conditions in which the sound was provided first 

(i.e., AV250 and AV400) an online control procedure of the participant’s gaze position 

during the whole SOA has been used. For trials in which the visual stimulus was 

provided first or synchronously with the acoustic stimulus (i.e., VA250 and VA400 and 

SYNC) no further gaze control procedure was adopted in addition to that used to verify 

the fixation position at the start of each trial. Indeed, in trials in which the visual 

stimulus was provided first or synchronously with the acoustic stimulus, the acoustic 

stimulus did not provide any further information to be used by the participants to gaze 

towards a particular spatial position thus enhancing the detection of the visual stimulus.  

On each trial, participants could have been presented (randomly and balanced in 

each block) with seven different conditions: a visual stimulus alone (i.e., unimodal 

visual condition, UV), an acoustic stimulus alone (i.e., unimodal acoustic condition, UA 

or catch trials), and the presentation of both visual and auditory stimuli (i.e. the five 

crossmodal condition with different SOAs, that is, VA400, VA250, SYNC, AV250 and 

AV400). The whole experimental section was divided in 10 blocks and lasted less than 

2 hours with a rest between blocks. Each block consisted of 56 trials (i.e. for each visual 

position there were one UV trial, one UA trial, and one trial for each of the five 

different crossmodal conditions for a total of 56 trials for each block). At the end of the 

whole experiment each participant was presented with 560 trials in total.  
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To verify that the procedure was clear, before the actual experimental section, 

the participants were asked to undergo a brief test with the same experimental 

conditions (i.e., 10 to 20 trials randomly chosen between the conditions of one block).  

 

Data	
  analysis	
  
 

Participants’ performance was analysed by computing the proportion of ‘yes’ 

responses by following the same procedure as in the previous two experiments (i.e., 3 

and 4). Thus, in relation to the 8 spatial positions, 56 values of proportions have been 

obtained, namely 8 values respectively for the UV, SYNC, VA400, VA250, AV250, 

AV400 and UA (catch trials) conditions. Finally, as in the previous experiments, 

proportion values related to each condition and each of the eight spatial positions have 

been ordered starting from the lowest to the highest as measured by the performance in 

the UV condition (i.e., ascending order). After ordering the data in such described way, 

the first position (i.e., the one in which the performance in the UV condition was the 

lower, that is, the most impaired visual position) could have been either in the periphery 

or in the centre, depending on the participant’s visual deficit (see Table 7, p. 120 for 

details). Finally, proportion of correct responses corresponding to the four most 

impaired positions (i.e., MI positions, namely the first four ordered positions) and the 

proportion of correct responses for the least impaired/spared four positions (i.e., LI 

positions, namely the ordered positions from the fifth to the eighth) were clustered for 

each participant and condition (see Table 7, p. 120 for an example for the UV 

performance).  

One participant has been discarded from the subsequent analysis because his UV 

performance in the first spatial position was very high (i.e., in the most impaired spatial 

position the UV performance was above 95% of correct responses).  
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 Unimodal visual (UV) performance p(y) and spatial position 
Patient 

 
Most Impaired positions (MI) Less Impaired positions (LI) 

1 .60 (4) .70 (5) .90 (1) .99 (2) .99 (3) .99 (6) .99 (7) .99 (8) 
2 .01 (5) .99 (1) .99 (2) .99 (3) .99 (4) .99 (6) .99 (7) .99 (8) 
3 .20 (1) .20 (7) .30 (6) .50 (8) .90 (4) .99 (2) .99 (3) .99 (5) 
4 .60 (6) .70 (7) .70 (8) .80 (4) .80 (5) .90 (1) .99 (2) .99 (3) 
5 .01 (4) .01 (5) .60 (6) .90 (7) .90 (8) .99 (1) .99 (2) .99 (3) 
6 .01 (1) .01 (4) .01 (5) .01 (8) .10 (3) .40 (6) .70 (7) .90 (2) 
7 .01 (4) .70 (6) .90 (2) .99 (1) .99 (3) .99 (5) .99 (7) .99 (8) 
8 .10 (5) .90 (1) .90 (8) .99 (2) .99 (3) .99 (4) .99 (6) .99 (7) 
9 .80 (4) .99 (1) .99 (2) .99 (3) .99 (5) .99 (6) .99 (7) .99 (8) 

10 .80 (7) .90 (2) .90 (8) .99 (1) .99 (3) .99 (4) .99 (5) .99 (6) 
11 .01 (4) .01 (5) .01 (6) .90 (3) .99 (1) .99 (2) .99 (7) .99 (8) 

 

Table 7  For each participant, the spatial positions have been ordered as a function of the 
performance in the Unimodal Visual (UV) condition. ‘MI’ indicates the cluster of the most impaired four 
positions; ‘LI’ the cluster of the less impaired four positions. 
 

 

Results 
 

A within participants analysis of variance ANOVA with the factors cluster of 

positions (i.e., MI vs. LI) and condition (i.e., UV, SYNC, VA400, VA250, AV250 and 

AV400) revealed a significant general effect of condition, F (5, 50) = 3.35, p < .01, a 

significant effect of cluster of positions F (1, 10) = 15.8, p < .01, and a significant 

interaction between condition and cluster of positions, F (5, 50) = 3.1, p < .05. Results 

show a difference between conditions, while the emerged interaction show that this 

differences may be present only in one of the two clusters of positions (i.e., MI vs. LI, 

see Figure 13, p. 121) as found in the previous two experiments.  
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Figure 13 Mean proportions of ‘yes’ responses, reported for each cluster of positions (i.e., most 
impaired four positions, MI; less impaired four positions, LI), and each experimental condition (i.e. 
unimodal visual, UV; crossmodal temporal disparate VA250 and VA400 with the sound lagging the 
visual stimulus respectively by 250 and 400 ms; synchronous, SYNC; crossmodal temporal disparate 
AV250 and AV400 with the sound leading the visual stimulus respectively by 250 and 400 ms; unimodal 
acoustic, UA). In the MI cluster of positions performance comparison between UV and SYNC conditions 
differ significantly (p < .05). Proportions of UA (catch trials) in the two clusters of positions (i.e., MI vs. 
LI) did not differ significantly. 
 

 

The post-hoc comparisons show a significant difference in the MI cluster of 

positions between UV and SYNC (p(y) = .58 vs. p(y) = .65, p < .05) indicating that the 

SYNC condition provided a significant performance improvement with respect the UV 

condition. Moreover, a marginal significant enhancement effect provided by the sound 

has also been found between UV and VA250 (p(y) = .58 vs. p(y) = .62, p = .062) and 

between UV and AV250 (p(y) = .58 vs. p(y) = .66, p = .067).  

As expected results show a reduction of the enhancement effect provided by the 

sound found in Experiment 4 in which the difference between UV and AV250 was 

significant. Surprisingly, there is the same magnitude of visual enhancement 

(marginally significant) also in the VA250 condition when the sound is delivered 250 

ms after the visual stimulus. No significant enhancement effect between UV and the 
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two conditions in which the delay was 400 ms has been found (VA400 (p(y) = .61, p = 

1 and AV400 (p(y) = .63, p = .9).  

In line with the experimental hypothesis and with Lippert et al.’s (2007) 

findings, adding conditions in which the sound does not provide spatial cue information 

lead to an overall reduction in the visual detection enhancement. All the other t-test 

comparisons did not show any effect (.8 < p < 1) indicating that the effect provided by 

the sound in the crossmodal conditions did not differ. No difference between conditions 

has been found in the LI cluster of positions (.35 < p < 1; UV, p(y) = .94, SYNC, p(y) = 

.95, VA400, p(y) = .90, VA250, p(y) = .92, AV250, p(y) = .94 and AV400, p(y) = .91). 

As found in Experiment 3 and 4, this results support the principle of inverse 

effectiveness, given that the multisensory enhancement has been found in the MI cluster 

(i.e., where visual stimuli are less reliable) and not in the LI cluster of positions (i.e., 

where stimuli were highly effective; see, e.g., Frassinetti, et al., 2002a, b, 2005; 

Hairston, et al., 2003a, b; Noesselt et al., 2010, for similar results). Finally, responses to 

catch trials were analysed to examine whether participants were less able to ignore the 

sounds presented alone in the MI than in LI cluster of positions. A pairwise comparison 

t-test did not reveal any significant difference (MI, p(y) = .061 and LI, p(y) = .053, t(10) 

= 1.26, p = .23).  

 

 

Discussion 
 

As hypothesized, the introduction of crossmodal trials in which the acoustic 

stimulus did not conveyed any information because delivered after the occurrence of the 

visual stimulus (i.e., VA400 and VA250) seems to prevent participants to construct a 

stable rule of association between the two modalities. This happened despite the fact 
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that in three out of five crossmodal conditions the sound was provided synchronously or 

before the visual stimulus (i.e., same crossmodal conditions used in Experiment 4 

namely; SYNC, AV250 and AV400).  

The results of this study shows that only the performance in the synchronous 

condition provided a significant effect in respect to the unimodal visual condition, while 

both the two temporally delayed conditions with 250 ms SOA (i.e. VA250 and AV 250) 

provided a marginal significant enhancement. Surprisingly, there is the same magnitude 

of visual enhancement (marginally significant) also in the VA250 condition when the 

sound is delivered 250 ms after the visual stimulus. However, this result is compatible 

with evidences in the literature that highlight differences in time to process visual and 

acoustic stimuli. In fact, due to these differences, it seems that the magnitude of the 

integration effect is higher when the acoustic stimulus is provided around 100 ms after 

the visual stimulus in respect to the synchronous condition (e.g., Lewald & Guski, 

2003). Furthermore, results of Experiment 4 highlight the wide temporal window of 

integration in low vision patients that might be hypothesized to extend and to allow 

integration also when the sound lag the visual stimulus of around 250 ms (as found in 

the present experiment).  

Unlike the results of Experiment 4 in which there was a significant detection 

enhancement in respect to the UV condition also in the condition in which the sound 

lead the visual stimulus of 400 ms (i.e., AV400), now this enhancement is no more 

significant. Furthermore, the magnitude of the crossmodal integration in AV400 

condition did not differ significantly from that in the VA400 condition in which the 

sound lagged the visual stimulus of 400 ms. Indeed, for the VA400 condition, the 

enhancement was not expected because the visual stimulus has been provided too much 

early in respect to the sound (i.e., 400 ms).  
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A reduction of the enhancement effect provided by the sound was expected due 

to the fact that the lack of a constant relation between sensory modalities was 

hypothesized to lead to the suppression of the enhancement also in the synchronous 

condition. Thus, if this is the correct interpretation of the results, differences between 

the Experiments 4 and 5 are mainly due to the difference in the information provided by 

the sound and in turn, differences in participants’ knowledge (e.g., decisional criterion).  

Results of this study support previous finding (Wallace et al., 2004; Lippert et 

al., 2007) in which high-level associations between modalities seem to modulate 

participants’ performance (e.g., the constant relation that leads to the perception of a 

unique event).  

In conclusion, the results seem to mitigate the hypothesis of a general unspecific 

alerting effect induced by the mere presence of the auditory stimulus on bimodal trials 

(e.g., Posner, 1978, 1980) that in turn, do not explain the results.  
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General discussion on low vision 
 
 

Taken together, the results of the three experiments with low vision patients 

show that a spatial and temporal coincident crossmodal audiovisual stimulation 

significantly improves the patients’ ability to correctly detect the presence of the visual 

stimulus in respect the condition in which the visual stimulus is provided alone. 

Moreover, in all the three studies, the enhancement effect provided by the sound is 

significant only in the external spatial positions corresponding to the visual field 

positions in which patients’ vision is mostly impaired (i.e., only in the MI cluster of 

positions). These results are in line with neurophysiological studies highlighting the 

three principles of multisensory interaction at the level of the superior colliculus  (i.e., 

spatial, temporal and inverse effectiveness principles; e.g., Stein & Meredith 1993; 

Stein et al. 1996). Furthermore results support previous behavioural and neuroimaging 

results highlighting spatial and temporal constrains and the role of the visual stimulus 

reliability in visual acoustic crossmodal tasks (e.g., Bolognini et al., 2005; Frassinetti, et 

al., 2002a, b, 2005; Hairston, et al., 2003a, b; Noesselt et al., 2010). 

Surprisingly, compared to the unimodal visual performance, results of 

Experiment 3 show a visual marginal significant detection enhancement for spatially 

disparate stimuli (i.e., 16 degrees of disparity), while results of Experiment 4 show a 

significant effect of the sound for all the temporal disparate crossmodal conditions in 

which the sound always lead the crossmodal stimulation (i.e., 100, 250 and 400 ms of 

SOA). These results suggest that for low vision patients both spatial and temporal 

boundaries of crossmodal integration are wider than those found in the majority of the 

behavioural studies reported in the literature (e.g., Lewald & Guski, 2003; Lewald, 

Ehrenstein & Guski 2001). Other studies have nevertheless reported substantial 
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crossmodal effects with similarly large disparities (e.g., Bermant & Welch, 1976; 

Bertelson & Radeau, 1981; Frassinetti, et al., 2002a, b; Wallace et al., 2004).  

One possible explanation for these results could be an inverse ventriloquism 

effect in which the less reliable visual stimulus is captured by the most reliable acoustic 

spatial/temporal cue as suggested by Alais and Burr (2004) and Ernst and Banks (2002). 

The inverse ventriloquism effect might be stronger in low vision patients than that 

observed in other less ‘ecological’ conditions (i.e., in which visual stimulus reliability 

has been manipulated artificially). However, results of Experiment 5 in which 

information provided by the sound was lowering down (because not always the sound 

was leading the crossmodal stimulation), highlight the effect of the manipulation of 

such association magnitude between modalities attributed by the participants. Indeed, a 

significant reduction in the enhancement magnitude between Experiment 4 and 5 has 

been found. However, results did not show a dramatic change as found by Lippert et al. 

(2007), where the reduction of sound information (i.e., weight of associations with the 

visual stimulus) eliminated the crossmodal enhancement in the synchronous condition. 

A model of optimal combination could explain this effect because, as hypothesized, in 

Experiment 5 the reliability of the sound was lower than in the Experiment 4. However, 

this effect seems to be better explained by a more complex model that contemplates 

both stimulus reliability and cognitive factors (e.g., prior knowledge and task 

instruction).  

Wallace and Stein (2007) show that cats reared with spatially disparate 

crossmodal stimuli learn to bind them onto the same external event and this 

modification affects integration mechanisms at the level of the SC. Lewald and Guski 

(2003) found an effect of task instructions on crossmodal binding, adding evidence to a 

high-level cognitive modulation on participants’ response supporting the unity 

assumption model in which the effect of task instructions is encompassed.  



Multisensory interaction and low vision   Spatiotemporal aspects in audiovisual interaction 

 

 127 

Lippert et al. (2007) together with Wallace et al. (2004) findings indicate that 

our cognitive system seems to learn and adapt very fast to different associations 

between modalities in a useful way to optimize task demand (i.e., environmental 

constrains). Furthermore, the outcome of such adaptation may exploit crossmodal 

integration enhancement only if there is a stable relation between spatial and temporal 

cues of different modalities that lead the perceiver to bind the single modalities in a 

unique external event. This framework suggests that high-level association cortices 

seem to looking for a useful constant relation between sensory modalities to be learned 

(i.e. causality) and exploit it to optimize task demands (i.e., stimulus reliability and task 

instructions) and thus the behaviour. This in turn, is likely to exert a modulation of the 

integrations mechanisms governing early stages of sensory processing (e.g., at the level 

of the SC, see Stein et al. 2002; Wallace & Stein, 2007) by means for instance, of a feed 

forward connection. How fast may be this plasticity, how match well established 

relation might be modified or generalized and what kind of limits there are in 

establishing new relations is still to be deepened.  

The present studies cannot provide information regarding whether the 

enlargement of spatial and temporal windows of integration effects found in the three 

experiments with low vision patients might be due to a fast learning of a new rule to 

bind visual and acoustic stimuli (Lippert et al., 2007; Wallace et al., 2004) or to an 

inverse ventriloquism effect (Alais & Burr, 2004) or a combination of the two. Further 

studies are needed to better clarify whether participants actually learn a new rule and 

eventually how fast can be built this new association rule thus shading lights on the 

influence of different aspects of multisensory integration in low vision patients.  

Results of the three experiments highlight the low rate of catch trials and the 

lack of a significant difference between catch trials in relation to the magnitude of the 

patients’ visual impairment. This result indicates that participants did not report to have 
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seen the visual stimulus just because the presence of the sound and suggests that 

participants’ response strategy was unrelated from the visual stimulus reliability (i.e., 

patients’ impaired/least-impaired spatial positions). Furthermore, the lack of a 

significant difference between unimodal visual condition and crossmodal stimulation 

with 32 degrees of disparity in Experiment 3 together with the lower enhancement 

provided by the sound in Experiment 5 in respect Experiment 4 due to the manipulation 

of acoustic stimulus reliability suggest that the hypothesis of a general unspecific 

alerting effect induced by the mere presence of the auditory stimulus on bimodal trials 

(e.g., Posner, 1978, 1980) can be likely ruled out. 

The results of the present study might provide useful insight for future 

audiovisual training rehabilitation programs for recovering visual impairments also in 

low vision patients. Passamonti and colleagues found that an audiovisual training could 

produce long lasting visual improvements in hemianopic patients (Passamonti, Bertini 

& Làdavas, 2009). By allowing eye movements, Passamonti and colleagues asked 

participants to gaze towards the spatial positions from which the sound was delivered. 

Participants were informed that visual stimulus would be presented later in the same 

positions. In this way, sounds were used as cues to inform the participants to gaze in the 

right spatial position thus improving visual detection. The learned visual strategy was 

then generalized also to the unimodal visual condition providing an improvement also 

for visual stimuli in isolation. Furthermore, this advantage was also transferred to other 

activity as visual search, reading, and in general to activity of daily life and was stable 

after one year follow-up. 

Until now, the majority of low vision rehabilitation has focused only on the 

visual modality (Liu et al., 2007; Markowitz, 2006; Nilsson, Frennesson, & Nilsson, 

2003). The multisensory crossmodal effect emerged in this study, provides new insights 
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on multisensory integration mechanisms in patients with visual deficit and seems to 

have good chances to provide a further step forward for low vision rehabilitation. 
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General discussion 
 

The findings emerged in the present dissertation bring new insights to deepen 

understanding the complexity of the cognitive mechanisms involved in audiovisual 

interaction.  

Results of the first study show that the trans-saccadic effect influenced 

participants’ performance in a different way in relation to the two sound conditions. The 

spatial miss-localization effect of the static deviated gaze highlighted in different studies 

(Zwiers et al. 2004; Bulkin & Groh 2006; Lewald and Ehrenstein 1996a, b; Lewald 

1997, 1998) seems likely to be one factor to explain the results. However, it is likely 

that with free field sounds the spatial representation of the first sound held in memory 

might be ‘remapped’ eye-centrically. Despite the lack of the evidences of such trans-

saccadic effect in the auditory domain, this possible interpretation of our results is in 

line with two studies that quantify this error in the visual domain (Henriques & 

Crawford 2000; Henriques et al., 1998).  

The hypothesis is that (mainly) in the free field condition, both trans-saccadic 

and static deviated gaze effects interact. Indeed, ecological acoustic stimuli have to 

share together with the visual information a common spatial reference frame starting 

from low-level structures as the SC (e.g., Jay & Sparks, 1984, 1987; Meredith & Stein, 

1990) involved in saccade generation (e.g., Stein & Clamann, 1981; Groh & Sparks, 

1996). Eye movements can thus influence auditory spatial cognition especially for free 

field sounds and for judgments that do not require a spatial motor response.  

Results of the second study confirm Hidaka and colleagues’ (2009) perceptual 

participants’ bias in reporting the direction of the sound induced visual motion (SIVM) 

illusion. Furthermore, when participants were asked to gaze towards the position of the 
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bar (instead to report the direction), a significant effect of the expected eye landing 

position has been found. The correlation between perceptual and visuo-motor SIVM 

illusion add some evidence to the debated issue regarding the relation between 

perception and action (e.g., Giorello & Sinigaglia, 2007 for a review) indicating that, at 

list in the SIVM illusion, the two cognitive domains are affected very similarly. From 

this point of view, illusions might be a good field of study to disentangle the relation 

between perception and action because the motor response is likely to be unaffected (or 

affected in a minor way) by decisional processes that are not linked to the perception 

that guide motor responses.   

Results of the three experiments of the last study with low vision patients show 

for the first time an auditory crossmodal enhancement on visual detection. Spatial and 

temporal coincident crossmodal audiovisual stimulation significantly enhances the 

visual stimulus detection compared to the unimodal visual condition. Furthermore, all 

the three studies consistently highlight the relation between the enhancement effect 

provided by the sound and the visual stimulus reliability. These results are in line with 

behavioural and neurophysiological studies highlighting the principles of multisensory 

interaction (i.e., spatial, temporal and inverse effectiveness principles; e.g., see Noesselt 

et al., 2010; Stein & Meredith 1993; Stein et al. 1996).  

The marginal significant enhancement at 16 degrees of spatial disparity in the 

Experiment 3 and the significant improvement for all the temporal disparities (even 

with 400 ms SOA) in Experiment 4 suggest the presence of high-level cognitive 

modulation on low-level perceptual processes (Wallace et al., 2004). Results of 

Experiment 5 supports the latter hypothesis by showing that a significant reduction of 

the enhancement provided by the sound emerged in Experiment 4. Indeed introducing 

trials in which the sound lead (or lagged) the visual stimulus provided a reduction of 

sound’s enhancement in line with Lippert and colleagues (2007) findings. This 
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hypothesis of high-level cognitive modulation on low-level perceptual processes is in 

line with neurophysiological studies reporting SC’s modulation exerted by cortical 

afferences (e.g., Jiang et al. 2001; Stein et al. 2002, 2009).  

Evidences in the literature highlight the striking relation of visual and auditory 

information at the whole levels of information processing (see Klemen & Chambers, 

2011 for a recent review) starting from primary sensory areas (e.g., Cappe et al. 2009; 

Ghazanfar et al., 2005; Kaas & Collins, 2004; Lakatos et al. 2007) and the SC (e.g., 

Meredith & Stein, 1990; Middlebrooks & Knudsen, 1984), which has a pivotal role in 

saccade generation (e.g., Groh & Sparks, 1996; Stein & Clamann, 1981). The 

involvement of the cortex in such complex multisensory network emerges by 

neurophysiological evidences showing modulation of cortical areas on the SC (e.g., 

Stein et al., 2002, 2009), and the presence of superadditivity in the superior temporal 

sulcus (Calvert et al., 2000; Stevenson et al., 2007) and left superior temporal gyrus 

(Foxe et al., 2002). Furthermore, in the posterior parietal cortex sensory signals are 

coded in common coordinate frames, such as auditory-visual or visual-somatosensory 

maps in eye-centred coordinates (Avillac et al., 2005; Battista et al., 1999; Cohen & 

Andersen, 2000; Schlack et al., 2005). Multisensory interaction has been recently found 

also in visual and auditory thalamus (Noesselt et al., 2010). 

The high interconnection between different structures in the brain seem to be 

shaped the respond to the environment constrains and to provide a coherent ecological 

reppresentation of the external world. 

The difference between free field and intracranial sounds founded in the study 

on auditory spatial representation might be related to the lack of most of the auditory 

spatial cues information of intracranial sounds. Intracranial sounds have not an 

ecological correspondence as that of free field sounds for the brain spatial 

representation. Modulation of neural responses to sound locations as a function of eye 
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position has been described within the auditory cortex (Werner-Reiss et al., 2003), in 

the SC (Groh et al., 2001, 2003; Zwiers et al., 2004), and in the primary visual cortex of 

the monkey (Guo & Li, 1997). Translation of visual stimuli to a head-centred frame of 

reference may be at the basis to the convergence of visual and auditory stimuli to a 

shared spatial map (see King, 2009 for a review on this topic). Indeed, with each 

eye/head movement, stationary objects in the world change position on the retina and 

thus to perceive the world as stable retinotopic coordinates as to be remapped (e.g., 

Merriam et al., 2007; Nakamura & Colby 2002). It is possible that due to the plasticity 

of our cognitive system, an improvement in the conditions in which performance was 

mostly degraded due to the trans-saccadic effect, might be reduced by means of exercise 

with such ‘artificial’ conditions. However, the reported results highlight how differently 

an eye movement might affect naïve participants’ auditory spatial representation in an 

acoustic perceptual judgement. 

Results of the SIVM and those with low vision patients highlight the effect of 

spatial, temporal and the reliability of sensory modalities in multisensory interaction. 

Results of both the studies are in line with a number of studies showing that the 

interaction effects depend to visual stimuli reliability (e.g., Noesselt et al., 2010; 

Rowland & Stein, 2008; Stein et al., 1996).  

Results of the experiment with low vision patients suggest that the principles 

governing multisensory integration are highly plastic and that there is no a strict a priori 

spatial relationship between different modalities for their integration. Direct experience 

with real multisensory events is necessary to develop and calibrate temporal register and 

spatial maps in different sensory modalities on SC’s multisensory neurons (Ernst, & 

Bülthoff, 2004; Wallace & Stein, 2001, 2007). Causality is an example of an important 

‘rule’ used by all the living being organisms to learn world physical effects. The brain 

seems to be able to store associations between modalities constituting a unique event. 
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However, a stable relation between spatial and temporal cues of different modalities is 

necessary because enhancement might occur. Subsequently, this memory will be more 

likely recalled if all, or some of, the constituents are experienced (Barraclough et al., 

2005).  Wallace and Stein (2007) and Lippert et al. (2007) findings indicate that our 

cognitive system seems to learn and adapt very fast to different associations between 

modalities in a useful way to optimize task demands (i.e., environmental constrains). 

Furthermore, different studies highlight the role of task instructions and prior 

knowledge on the interaction outcomes (e.g., Andersen et al., 2004; Aschersleben & 

Bertelson, 2003; Schutz & Lipscomb, 2007; Tuomainen et al., 2005). All these very 

complex cognitive mechanisms seem not to be accounted by the sole effect of stimulus 

reliability or optimal integration models (Alais & Burr, 2004; Ernst & Banks, 2002). 

The unity assumption model instead (Welch & Warren, 1980), accounts for stimulus 

properties, the way in which sensory information is acquired, prior participant 

knowledge and task instructions. Models based on Bayesian inference (e.g., Sato et al., 

2007) encompassing the prior knowledge of the perceiver in addition to the reliability of 

the single modalities are a mathematical formalization very close to the unity 

assumption model and seems to be a very good predictor of the resulting integration 

outcome. 

The audiovisual interaction observed in the SIVM seems more driven by low-

level mechanisms and thus more robust to the high-level influences. To verify whether 

the SIVM effect is least influenced by cognitive modulation it would be possible 

decrease the reliability of the acoustic stimulus (for instance by adding to the reported 

SIVM experimental paradigm half of the trials in which the sound moves up/down vs. 

left/right). In this way, as found with low vision patients, it would be possible to 

decrease the weight of association attributed by participants to the audiovisual event, 

and to find a magnitude decrement in the left right direction of the SIVM illusion. It 
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would be also interesting to check what will happen if, instead to use the headphones, 

acoustic stimuli would be delivered with free field loudspeakers very close to the 

external spatial position in which the visual stimulus is delivered. It is likely that the 

SIVM illusion would be stronger in magnitude due to the effect of the principle of 

spatial congruency. 

For low vision patient instead, it would be very useful to know whether 

virtualized 3D sounds provided through headphones might also enhance visual stimuli 

detection. By using subjective head related transfer functions to virtualize the sounds it 

might be possible to maximise the conveyed spatial cues information. This point is not 

trivial due to the fact that an audiovisual rehabilitation paradigm for low vision patients 

might be based on ecological visual stimuli in a large field of view. In this framework, 

headphones would be the easiest way to cover a wide visual field of view allowing 

testing the patients in everyday life. 

Future studies have also to be addressed to further investigate audiovisual 

interactions in low vision patients by using the functional magnetic resonance imaging 

(fMRI). It would be interesting to verify whether the crossmodal effect of a 

rehabilitation paradigm might induce cerebral plasticity behind patients’ visual 

improvements and well being. 

Results of the experiments here presented, far to constitute an exhaustive 

investigation, add some insights to still partial evidence on the considered topics. As 

always in the progress of science, new results open the door to new questions and 

highlights the limits of the experimental paradigms used in the previous investigations 

suggesting new way to better clarify and disentangle the results.  

The cognitive mechanisms characterizing all the topics discussed in this 

dissertation are still inadequately explored suggesting the necessity of further 

investigations to provide a more extended and satisfactory assessment. 
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