Optimization of nanostructured materials towards gas sensing

Tonezzer, Matteo (2011) Optimization of nanostructured materials towards gas sensing. PhD thesis, University of Trento.

[img]
Preview
PDF (Matteo Tonezzer, PhD in Physics) - Doctoral Thesis
5Mb

Abstract

As its title announces, the general aim of this doctoral thesis is to investigate the growth and use of nanostructured materials in order to make them suitable for sensoristics. Sensors applications have become very important in the last years because of a new sensibility towards pollution of the urban world and its effects on human health. Only very recently people and countries discovered the importance of environment preservation and monitoring. After a period of fast and uncontrolled industrial progress, we are now aware of this danger. Thus we need to monitor the environment and the changes which are happening directly or indirectly because of human presence. During the last decades, solid-state gas sensors have played an important role in environmental monitoring and chemical process control. The strong investigation which followed, made clear that the field of science and sensor technology cannot search for new sensor materials which are ideal, because different applications (e.g. different transformations of energy and different goals for sensors) require different materials. However materials are important drivers in sensor technology. The combination of the right materials (new or existing) to the right application can result in smarter, cheaper, or more reliable sensors. In order to give a contribution to this important evolving situation, during these three years the PhD candidate investigated two of the most important areas related to nanostructured materials used in sensing applications. On one side, the recent interesting field of metal oxide nanowires has been studied, both in terms of fundamentals (growth mechanism and structural properties) and sensor properties towards different gases. On the other side, the less exploited (in terms of sensor devices) field of organic thin films has been investigated, in terms of growth and fundamental properties (charge carriers mobility) which are required to use them as sensors. While nanostructured metal oxides are already in use in commercial sensors (usually in the form of porous thick or thin films), organic materials are still in a prototypal phase, and need further investigation in order to be effectively used. This different evolution step is reflected also in the present thesis: in which zinc and tin oxide nanowires are characterized as gas sensing devices, while molecular materials are only optimized towards a better order and a higher carrier mobility, which is one of the bottlenecks towards a higher response. For this reason, the chapters concerning metal oxide nanowires will give a wide picture, from their growth mechanism to their structure until their use (in different architectures) in sensing applications. Oxide nanowires have been used as passive (resistive) sensors (they have been used also as active sensors, but such data are still under analysis) both in order to develop new real sensors, and to better understand the sensing mechanism behind the high response of such nanostructured materials. Their nanoscale dimensions, comparable to the depletion layer, makes them almost ideal intrinsic on-off devices, and this can be exploited to fabricate a new generation of sensors characterized by a huge response. The problems of metal oxide sensors are however their poor selectivity and high working temperature. In this direction goes the investigation of the molecular materials. Concerning the organic complement in this thesis, the aim of the experimental work was the optimization of the overall field effect mobility of carriers (holes) along the whole device, which means several microns (tens of microns, due to the impossibility to use standard lithography techniques on organic delicate materials). This meant the minimization of grain boundaries, that are one of the steps hindering the charge carrier mobility, and even the recently found domain boundaries. Exploiting the high kinetic energy achievable by SuMBD, we found that it is partially transformed in surface mobility, increasing the order of the fundamental building blocks inside each monolayer, and decreasing the grain and domain boundary density (because of wider and less fractal grains). At the end of the thesis we will show a first combination of the two families of materials, just as a sample of what the exploitation of the best features of each family (high response for metal oxides and good selectivity for organic materials) can provide.

Item Type:Doctoral Thesis (PhD)
Doctoral School:Physics
PhD Cycle:XXIV
Subjects:Area 02 - Scienze fisiche > FIS/01 FISICA SPERIMENTALE
Area 02 - Scienze fisiche > FIS/03 FISICA DELLA MATERIA
Repository Staff approval on:29 Nov 2011 18:21

Repository Staff Only: item control page