
PhD Dissertation

International Doctorate School in Information &
Communication Technologies

DISI - University of Trento

REQUIREMENTS ENGINEERING FOR

SELF-ADAPTIVE SOFTWARE:
BRIDGING THE GAP BETWEEN DESIGN-TIME

AND RUN-TIME

Nauman Ahmed Qureshi

Advisor:

Prof. Anna Perini

Fondazione Bruno Kessler, Trento

November 2011

[To my family]

2

Acknowledgments

First of all I am extremely thankful to my supervisor Prof. Anna Perini for
her kind guidance, advice and support that kept my spirits and gallantry high
during my PhD research. I am honored to be her PhD student. Thank you!!

I also wish to acknowledge and position on record the deep sagacity of
gratitude to Prof. John Mylopoulos, Prof. Carlo Ghezzi, Prof. Franco Zam-
bonelli and Dr. Nelly Bencomo for accepting to be in my thesis committee,
evaluating my work and providing valuable suggestions and comments.

Special thanks are due to Prof. John Mylopolous for providing me the
opportunity to visit his research group at University of Tronto, Canada. During
this visit I came across several colleagues to whom I would like to thank
especially Neil A. Ernst, Daniele Barone for useful discussions and support
during my visit.

I would like to thank Dr. Angelo Susi, Dr. Ivan Jureta, Dr. Norbert
Seyff, Prof. Sotirios Liaskos and Dr. Alessandro Marchetto for their valuable
suggestions on my work and collaborating with me during my PhD research
work. You all have been a great source of inspiration.

I also would like to thank all my fellow colleagues and great friends
especially Cu D. Nguyen, Chiara Di Francescomarino, Mirko Morandini,
Alberto Siena, Andrea Avancini in the software engineering research group at
FBK and many other friends and colleagues Adbul Qader, Tahir, Komminist,
Gianluca, Nevena, Lucilla, Marc, Itzel, Sepideh and Raian who kept my spirits
high, their suggestions & support provided me the courage to carry out my
research.

Last but not the least, I would like to thank my family especially my parents,
brothers and sister who have been a great source of motivation for me, their

constant encouragement, prayers and devotion towards me and my studies
enabled me throughout my PhD research. Thank You!!.

Nauman Ahmed Qureshi

Abstract

Self-Adaptive Software systems (SAS) adapt at run-time in response to
changes in user’s needs, operating contexts, and resource availability, by re-
quiring minimal to no involvement of system administrators. The ever-greater
reliance on software with qualities such as flexibility and easy integrability,
and the associated increase of design and maintenance effort, is raising the
interest towards research on SAS.

Taking the perspective of Requirements Engineering (RE), we investigate
in this thesis how RE for SAS departs from more conventional RE for non-
adaptive systems.

The thesis has two objectives. First, to define a systematic approach to
support the analyst to engineer requirements for SAS at design-time, which
starts at early requirements (elicitation and analysis) and ends with the spec-
ification of the system, which will satisfy those requirements. Second, to
realize software holding a representation of its requirements at run-time, thus
enabling run-time adaptation in a user-oriented, goal-driven manner.

To fulfill the first objective, a conceptual and theoretical framework is
proposed. The framework is founded on core ontology for RE with revised
elements that are needed to support RE for SAS. On this basis, a practical and
systematic methodology at support of the requirements engineer is defined. It
exploits a new aggregate type of requirement, called adaptive requirements,
together with a visual modeling language to code requirements into a design-
time artifact (called Adaptive Requirements Modeling Language, ARML).
Adaptive requirements not only encompass functional and non-functional
requirements but also specify properties for control loop functionalities such
as monitoring specification, decision criteria and adaptation actions. An
experiment is conducted involving human subjects to provide a first assessment

on the effectiveness of proposed modeling concepts and approach.
To support the second objective, a Continuous Adaptive RE (CARE) frame-

work is proposed. It is based on a service-oriented architecture mainly adopt-
ing concepts from service-based applications to support run-time analysis
and refinement of requirements by the system itself. The key contribution
in achieving this objective is enabling the CARE framework to involve the
end-user in the adaptation at run-time, when needed. As a validation of this
framework, we perform a research case study by developing a proof of concept
application, which rests on CARE’s conceptual architecture.

This thesis contributes to the research on requirements engineering for SAS
by proposing:

1. a conceptual core ontology with necessary concepts and relations to
support the formulation of a dynamic RE problem i.e. finding adaptive
requirements specification both at design-time and run-time.

2. a systematic methodology to support the analyst for modeling and opera-
tionalizing adaptive requirements at design-time.

3. a framework to perform continuous requirements engineering at run-time
by the system itself involving the end-user.

Keywords Requirements Engineering (RE), Self-Adaptive Software (SAS),

Goal-Oriented Requirements Engineering (GORE), Service-Based Applica-

tions (SBA)

Contents

1 Introduction 1
1.1 Motivation and Problem 1

1.2 Research Objectives . 2

1.3 Case Study: Travel Companion 3

1.4 Approach Overview and Contribution 5

1.5 Structure . 7

1.6 List of Published Papers 10

2 State of the Art 13
2.1 Overview . 13

2.2 Design Approaches for Self-Adaptive Software Systems . . 14

2.2.1 Component-Based Approaches 14

2.2.2 Middleware-Based Approaches 15

2.2.3 Agent-Oriented Approaches 17

2.2.4 Service-Oriented Approaches 18

2.2.5 Self-Adaptive and Self-Organizing Systems (SASO) 20

2.3 Requirements Engineering for Self-Adaptive Software Systems 21

2.3.1 Goal-Oriented Approaches 22

2.3.2 Requirements Monitoring Approaches 23

2.3.3 Recent Vision for RE for SAS 24

2.4 Final Remarks . 26

i

3 Requirements Problem for Self-Adaptive Software Systems 27
3.1 Overview . 27
3.2 Requirements Problem and Core ontology for RE 28
3.3 Defining Run-time Requirements Adaptation Problem 34
3.4 RE for SAS and its Core Ontology 35
3.5 Run-time Requirements Adaptation Problem: Illustration . . 51
3.6 Benefits & Related Work 55
3.7 Final Remarks . 57

4 CARE Framework 59
4.1 Overview . 59
4.2 RE levels and Adaptation Types 60
4.3 RE at Design-Time Vs RE at Run-Time 64

4.3.1 RE at Design-Time 64
4.3.2 RE at Run-Time 69

4.4 Conceptual Architecture of CARE 75
4.4.1 Service Request Acquisition 78
4.4.2 Service Lookup . 79
4.4.3 Service Selection 80
4.4.4 Update Specification 81
4.4.5 Feedback Control Agents 81

4.5 Related Work . 82
4.6 Final Remarks . 84

5 Engineering Adaptive Requirements 85
5.1 Overview . 85
5.2 Adaptive Requirements . 86
5.3 Definition of Adaptive RML 91

5.3.1 Concepts & Relations 92
5.3.2 Adaptive RML Visual Notations 94

5.3.3 Systematic Modeling in Adaptive RML 96
5.3.4 Requirements Modeling with Adaptive RML 100
5.3.5 Analyzing Adaptive Requirements 102

5.4 Operationalizing Adaptive Requirements 104
5.4.1 In Practice . 108

5.5 Related Work . 109
5.6 Final Remarks . 113

6 Application of the CARE Framework 115
6.1 Overview . 115
6.2 Description of the Travel Companion 116
6.3 Design-Time Modeling of Requirements 117

6.3.1 Specifying Adaptive Requirements 120
6.4 Instantiating CARE at Run-Time 123
6.5 Analyzing Run-Time Adaptation 125
6.6 In Practice . 127
6.7 Final Remarks . 130

7 Evaluation 133
7.1 Overview . 133
7.2 Evaluation of Design-Time Tool 134

7.2.1 Environment of the experiments 134
7.2.2 The parameters of the study 134
7.2.3 Experiment 1: Time to load the variants in the tool . 134
7.2.4 Experiment 2: Time to generate the monitor specifi-

cation . 135
7.2.5 Experiment 3: Time to configure the monitors 137

7.3 Qualitative Evaluation of Adaptive RML 138
7.3.1 Requirements Modeling with i* 139
7.3.2 Requirements Modeling with Tropos 141

7.3.3 Requirements Modeling with ARML 146
7.3.4 Summary . 149

7.4 Empirical Survey on ARML 149
7.4.1 Goal of the Study and Research Questions 149
7.4.2 Hypothesis . 150
7.4.3 Subjects . 152
7.4.4 Survey Design . 152
7.4.5 Survey Procedure 155
7.4.6 Data Analysis and Interpretation 157

7.5 Final Remarks . 166

8 Conclusions and Future Work 169
8.1 Conclusions and Summary of Contributions 169

8.1.1 Generality and Limitations 173
8.2 Future Works . 174

8.2.1 Integrating Adaptive Requirements and Preferences-
based Reasoning for Run-time 174

8.2.2 Online Requirements Engineering 175
8.2.3 Towards the framework for Evolving Requirements . 177
8.2.4 3T process integrating concepts from Agent systems

and Testing in RE for SAS 178
8.2.5 Analyzing Intentional Interoperability Requirements 180
8.2.6 Towards a case tool for operationalizing Adaptive

Requirements . 181
8.2.7 Empirical Study on ARML 182
8.2.8 Continuous Refinement of Requirements at Run-time 182

Bibliography 185

A Empirical Survey Material 201

List of Tables

7.1 Aggregated Results of Three Tasks (Modeling, Reasoning,
Visual Notations Analysis) 159

7.2 Aggregated View of the Results (Design-Time Modeling) . . 160
7.3 Modeling Tasks-Questions Mapping to Aspects and Comments161
7.4 Aggregated View of the Results (Run-Time Reasoning) . . . 163
7.5 Reasoning Tasks-Questions Mapping to Aspects and Comments164
7.6 Aggregated View of the Results (Visual Notation Analysis) . 165
7.7 Visual Notation Analysis Tasks-Questions Mapping to Moody

et al Principles [MHM09]) 166

v

List of Figures

1.1 Thesis outline . 8

3.1 New concepts (Context and Resource) and relations (Relegation
and Influence) related to the concepts of the Core ontology
for RE. 36

3.2 System Adaptation Sequence in Time 52

4.1 RE process at Design-time and Run-time 65

4.2 Run-time Requirement Artifact (RRA) 70

4.3 User Specified RRA. 76

4.4 System Generated RRA. 76

4.5 Conceptual Architecture of CARE 77

5.1 Visual guide for concepts and relations in Adaptive RML. . . 95

5.2 Requirements Refinement Pattern in Adaptive RML. 99

5.3 Modeling using Adaptive RML Concepts and Relations. . . 100

5.4 Design-time process for deriving and configuring Monitor,
Analyzer and CARE Application 105

5.5 Design-time process for Annotating the Tasks 108

5.6 Deriving Monitoring Specification Document 109

6.1 A Goal Model in ARML 118

6.2 Run-time Process. 124

6.3 Sequence flow of the Scenario. 125

vii

6.4 Runtime Adaptation Sequence of SAS. 126
6.5 “iComp” GUI Screen . 128
6.6 “iComp” Preference Screen 129
6.7 “iComp” Adaptation in the Scenario 130

7.1 Time to load variants in the tool 135
7.2 Time to generate monitoring specifications 136
7.3 Time to configure monitors 137
7.4 Modeling using iStar Concepts and Relations only. 139
7.5 Modeling using Tropos Concepts and Relations (R) and An-

notated Goal model with domain properties modeled using
Domain Ontology (L) . 141

7.6 Example of Plan description 144
7.7 Modeling using ARML Concepts and Relations. 147
7.8 Survey Design . 153
7.9 Survey Material Snapshot 154
7.10 Averaged Results of Three Tasks 158
7.11 Aggregate Results of Modeling Questions 160
7.12 Aggregate Results of Modeling Questions. 162
7.13 Aggregate Results of Visual Notations Questions. 164

8.1 Continuous Reasoning Process at Run-Time 174
8.2 Online RE process . 176
8.3 Wheel of Evolution . 177
8.4 3T AS development cycle 179
8.5 Analysis Framework for Interoperability 181

Chapter 1

Introduction

Contemporary Internet-enabled software applications are increasingly im-
mersed in the fabric of our daily life. This surge in using software by the
end-users with volatile needs has increased the computational complexity and
maintenance problem for such software systems. The increasing reliance on
software has led to growing interest in research on Self-Adaptive Software

systems (SAS) [CGI+08], which have been proposed as a possible solution to
overcome such problems.

1.1 Motivation and Problem

Following recent research agendas [CGI+08, DNGM+08, ST09, SBW+10], in
this thesis, we define self-adaptive software systems as: software systems that

adapt their behavior at run-time in response to changing user’s requirements,

operating contexts, and resource availability.

Engineering of self-adaptive software is challenging and influences all the
phases of software development ranging from requirements engineering, to
design, implementation and maintenance. Ongoing research on software engi-
neering for self-adaptive software proposes novel design-time methods and
techniques to support run-time adaptation mainly exploiting architecture based
on MAPE (Monitor, Analyze, Plan, Execute) control loop [KC03]. Common

1

CHAPTER 1. INTRODUCTION

to these approaches is the adoption of component-based [KM07], middleware-
oriented [HFS04], service-oriented [DNGM+08], agent-oriented [TCW+04]
designs to develop self-adaptive software systems while anticipating run-time
changes. On the other hand, Requirements Engineering (RE) for self-adaptive

software is still in its fledgling stages. In RE literature, requirements-driven
approaches have motivated the need to monitor system’s requirements to vali-
date their compliance at run-time [FF95]. However, in case of self-adaptive

software systems, RE activities need to be performed at various levels of
abstractions, as it is envisioned in [BCZ05].

Along this vision, recent approaches to engineer self-adaptive software

advocate the role of the requirements along the later stages of the software de-
velopment to support run-time adaptation [MPP08, DGM09]. Unfortunately,
in these approaches it is difficult to accommodate new or changed require-
ments. In reality, change is inevitable. End-user requirements change with
respect to the dynamic environment in which applications are executed and
used. RE activities are needed to be performed at design-time with more
explicit constructs to specify requirements for SAS, but are also needed at
run-time. Existing approaches are limited to cope with this. This manifests a
gap between design-time and run-time requirements engineering.

1.2 Research Objectives

In this thesis, we investigate how RE for SAS departs from more conventional
RE for non-adaptive systems, focusing on two concrete objectives:

Obj1 To define a systematic methodology at support of the system analyst to
engineer the requirements of SAS at design-time, which starts at early
requirements (elicitation and analysis) and ends with the specification of
the system satisfying the requirements.

2

1.3. CASE STUDY: TRAVEL COMPANION

Obj2 To enable software holding a representation of its requirements at run-
time, and support goal- and user-oriented adaptation at run-time.

We elaborate the above objectives with respect to the following research
questions:

RQ1 What concepts and abstractions are needed to formulate the “require-
ments problem” for SAS? [Obj1]

RQ2 How to systematically engineer requirements for SAS at design-time?
[Obj1]

RQ3 How to enable SAS to perform RE at run-time and support goal- and
user-oriented adaptation? [Obj2]

To support the discussion at best, a travel domain case study is exploited.
Travel Companion is a software for travel planning and monitoring, which
is an adaptive service-based application. It is able to adapt with respect to
changes that occur in the end-user needs, operating context and availability
of resources. Other exemplar case studies have been considered during the
research, mainly representative of service-based applications e.g. adaptive
anti-virus, adaptive Personal Media Server (PMS), adaptive meeting sched-
uler, service-based laundry collection scenario (Intentional Interoperability),
adaptive GPS navigation software, and cleaner agent exemplar case study.

In this thesis description we focus on Travel Companion since it shows
the main adaptivity properties such as change in context conditions, changes
in end-user needs, availability of resources and of solutions (i.e. available
services). Below, we give an overview of the case study.

1.3 Case Study: Travel Companion

Travel Companion is a service-based application that is aware of end-users’
goals and preferences and by monitoring the usage context (location, device

3

CHAPTER 1. INTRODUCTION

and operating environment) it tries to help them accomplishing their goals.
New requirements emerge and that can be operationalized with respect to
existing or available services. It relies on third party services that are assumed
to be available over the Internet. It provides access to end-users’ to get on
the fly information as they require through available services (e.g. weather
forecast). It also allows them to specify their travels and meeting schedules.

Moreover, Travel Companion manages end-users profile and respective
preferences for a particular travel itinerary. It monitors the flight schedules and
notifies the end-users’ about their travel updates (e.g. flight status changes),
meeting reminders (e.g. when, and where meeting is) and in case of situations
where the goals and preferences of the end-users’ are not met, it looks for
alternative solutions (e.g. flight is canceled, look for trains, or rent a car) and
tries to involve the end-users’ by asking their relevant feedback. It tries to
keep track of the available resources (e.g. availability of the Internet, device
battery level, social contacts and agenda etc.). It searches for alternatives to
operationalize the task (e.g. completing services) that may requires a particular
resource (e.g. contacts are needed to inform in case of emergency, agenda is
needed to reschedule meetings).

In addition, it provides relevant information (e.g. news, weather updates)
that are necessary to keep Travel Companion informed about the external
events. At run-time it can act as an analyst by acquiring user input about new
or changed requirements and search for available services as alternative ways
to operationalize these requirements involving the user. In case of goals and
preferences that it is not able to meet, it creates a log for the off line evolution.
This case study is exploited to derive proof of concepts on solutions elaborated
for the two problems below.

Adaptation at Design-time. Adaptive requirements are elicited and require-
ments problem is formulated and adapted by finding the adaptive requirements
specification. Along this systematic process, monitoring specification and

4

1.4. APPROACH OVERVIEW AND CONTRIBUTION

decision criteria are elaborated with the space of alternative tasks that are
needed to enable run-time adaptation.
Adaptation at Run-time, which is performed at various level of details. Key
facets that trigger adaptation are: contextual information of the end-user
and/or the system, resource availability, relevant service availability, and new
or emerging needs that an end-user can specify.

1.4 Approach Overview and Contribution

The approach adopted to address the identified objectives, consists in revisiting
core concepts, which were introduced in well known foundational work,
for defining the software requirements problem. In addition, we propose
systematic methods and proof of concept tools to realize solutions solving the
problem of requirements engineering for self-adaptive software systems, both
at design-time and run-time.

• We start with establishing the theoretical and conceptual basis. The idea
is that some elements in the definition of the requirements problem for
self-adaptive software systems, expressed along the classical require-
ments problem formulation by Zave & Jackson in [ZJ97b] and its recent
reformulation [JMF08] at design-time, may change at run-time. This de-
mands for a new requirements problem formulation and a corresponding
set of candidate solutions. We propose a formulation of the requirements
problem for self-adaptive software systems as a dynamic problem. This
dynamic requirements problem definition is supported by a revised core
ontology for requirements engineering, which includes new concepts and
relations.

• To put these concepts into practical use, we propose a new composite
requirement type, called Adaptive Requirements, that can help analysts
to understand requirements for self-adaptive software systems. Such

5

CHAPTER 1. INTRODUCTION

requirements not only encompass functional and non-functional require-
ments but also specify properties for control loop functionalities such as
monitoring specification, decision criteria and adaptation actions. We
exploit the core ontology to perform requirements engineering for self-

adaptive software systems and propose a modeling language, called
Adaptive Requirements Modeling Language (ARML), along with the
guidelines to perform early requirements engineering for self-adaptive

software systems. Following these guidelines, an analyst at design-time
can capture and analyze requirements for the target self-adaptive system
thereby formulating the requirements problem and finding the adaptive
requirements specification.

• This specification provides input to a framework for performing re-
quirements engineering at run-time. We call it Continuous Adaptive
Requirements Engineering (CARE) framework. The framework provides
a systematic way to continuously refine requirements specification that
is made available to the system. At run-time, the system instantiating
CARE acts as an analyst and exploits information gathered through
monitoring or explicitly given by the end-user, for deciding and select-
ing a candidate solution (e.g. using available services) to resolve the
requirements problem by itself.

Preliminary evaluations of the proposed ideas are provided. A proof of
concept tool for supporting the operationalization of adaptive requirements
at design-time has been realized. This prototype tool has been applied to
an exemplar case study to evaluate the system performance. A prototype
application has been developed that instantiates CARE framework at run-time
involving the end-user. An empirical evaluation on the effectiveness of the
proposed ARML, through an empirical survey with human subjects, is also
presented.

6

1.5. STRUCTURE

In summary, this thesis contributes to the research in requirements engi-
neering for SAS by proposing:

1. a conceptual core ontology with necessary concepts and relations to
support the formulation of a dynamic requirements problem i.e. finding
adaptive requirements specification both at design-time and run-time.

2. a systematic approach to support the analyst for modeling and opera-
tionalizing adaptive requirement at design-time.

3. a framework to perform continuous requirements engineering at run-time
by the system itself involving the end-user.

1.5 Structure

The thesis is organized in chapters with their corresponding dependency links
as shown in the Figure 1.1. The aspects covered in each chapter are briefly
recalled here below.

Chapter 2, presents the state of the art requirements engineering and design
approaches for developing self-adaptive software systems. In particular, we
distinguish architecture centric approaches including service-oriented, agent-
oriented and RE approaches including goal-oriented methods, requirements
monitoring and more recent works on RE for self-adaptive software systems.

Chapter 3, defines the conceptual and theoretical framework in which we
propose a formulation of the requirements problem for self-adaptive software

systems as a dynamic RE problem that a self-adaptive software should be
engineered to solve. At run-time, a self-adaptive software may move from
one requirements problem to another thereby finding solutions to satisfy the
requirements. To support such a dynamic requirement problem formulation
for self-adaptive software systems, we revise the core ontology for RE and
define new concepts (such as context and resource) and relations (such as

7

CHAPTER 1. INTRODUCTION

Chapter 1: Introduction & Own Publication List

Chapter 2: State-of-the-Art

Chapter 3:

Requirements Problem for Self-Adaptive Software Systems

Chapter 5:

Continuous Adaptive RE (CARE)

Framework

Chapter 4:

Engineering Adaptive Requirements

Chapter 6:

Application of CARE Framework

Chapter 8:

Conclusions and Future Works

Chapter 7: Evaluation

LENGEND
Chapters

Logical Flow

Bibliography &

References

Figure 1.1: Thesis outline

8

1.5. STRUCTURE

relegate and influence) to support dynamic problem formulation.

Chapter 4, introduces the Continuous Adaptive RE (CARE) framework,
that supports continuous RE at run-time involving the end-user. To provide a
clear distinction between RE at design-time and RE at run-time, adaptation
types are defined in light of CARE, revisiting the four levels of RE proposed
by Berry et al. [BCZ05]. Concepts and artifacts needed by the self-adaptive

software itself at run-time to perform continuous RE involving the end-user
are introduced. A conceptual architecture of an application is proposed, which
instantiates CARE at run-time.

Chapter 5, defines the concept of Adaptive Requirements for self-adaptive

software systems, which are requirements that make explicit the feedback loop
functions such as monitoring specification, decision criteria and alternative
adaptation tasks. To elicit and specify the adaptive requirements, a system-
atic approach is proposed with guidelines to support the analyst/designer at
design-time. In this approach, modeling adaptive requirements helps in iden-
tifying monitoring specification that are operationalized using a monitoring
framework to validate their usability at run-time, respectively. Exploiting
the concepts and relations proposed in the revised core ontology of RE for
self-adaptive software systems, to formulate the requirements problem at
design-time, this chapter proposes visual notations to model adaptive require-
ments for SAS. An Adaptive Requirements Modeling Language (ARML) for
self-adaptive software systems is proposed, which is based on a recently pro-
posed abstract requirements modeling language, Techne [JBEM10b]. ARML
provides basis for modeling the requirements problem with convenient visual
notations.

Chapter 6, illustrates the application of CARE framework to a travel case
study introduced earlier. Continuous RE is supported by the proof of concept
application that instantiates CARE involving the end-user.

Chapter 7, provides initial evaluation along three aspects. First, it provides

9

CHAPTER 1. INTRODUCTION

preliminary results about measuring scalability and performance of the design-
time tool. Second, a qualitative assessment on modeling requirements for
self-adaptive software is presented. Third, an empirical survey study with
subjects is conducted to evaluate the effectiveness of the modeling concepts,
visual notations and modeling guidelines for ARML.

Chapter 8, presents the conclusions and summary of contributions. Future
research directions which are identified during this thesis work are presented.
On some of the ideas initial exploration has been conducted.

1.6 List of Published Papers

Most parts of this thesis have been published in international conferences and
workshops. Below, is a list of papers, which is classified as: published along
the years, submitted and in preparations or future work.

List of Published Papers

2011

• Nauman A. Qureshi, Ivan Jureta, Anna Perini. Towards a Requirements Modeling Language for
Self-Adaptive Systems. in 18th International Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ’12) [Accepted for publication].

• Marc Oriol, Nauman A. Qureshi, Xavier Franch, Anna Perini, Jordi Marco. Requirements
Monitoring for Adaptive Service-Based Applications in 18th International Working Conference
on Requirements Engineering: Foundation for Software Quality (REFSQ’12) [Accepted for
publication].

• Nauman A. Qureshi, Ivan Jureta, and Anna Perini, “Requirements engineering for self-adaptive
systems: Core ontology and problem statement”, in 23rd International Conference on Advanced
Information Systems Engineering (CAiSE’11), pp. 33-47, ser. LNCS, vol. 6741. Springer, 2011.

• Nauman A. Qureshi, Norbert Seyff, Anna Perini, “Satisfying User Needs at the Right Time
and in the Right Place: A Research Preview”, in 17th International Working Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ’11), pp. 94-99, vol.6606,
Springer (LNCS), March 2011.

10

1.6. LIST OF PUBLISHED PAPERS

• Nauman A. Qureshi, Sotirios Liaskos, Anna Perini, “Reasoning About Adaptive Require-
ments for Self-Adaptive Systems at Runtime”, in Second International Workshop on Require-
ments@Runtime (RRT’11) at RE’11, pp. 16-22, August 2011.

• Anna Perini, Nauman A. Qureshi, Luca Sabatucci, Alberto Siena, Angelo Susi, “Evolving
Requirements in Socio-Technical Systems: Concepts and Practice”, in 30th International
Conference on Conceptual Modeling (ER 2011), pp. 440-447, LNCS, Springer, Oct. 2011.

2010

• Nauman A. Qureshi, Anna Perini, “Requirements Engineering for Adaptive Service Based
Applications”, in 18th IEEE International Requirements Engineering Conference (RE’10), pp.
108-111, September 2010.

• Nauman A. Qureshi, Anna Perini, Neil A. Ernst, John Mylopoulos, “Towards a continuous
requirements engineering framework for self-adaptive systems”, in First International Workshop
on Requirements@Runtime (RRT’10) at RE’10, pp. 9-16, September 2010.

• Nauman A. Qureshi, Anna Perini, “Continuous adaptive requirements engineering: An ar-
chitecture for self-adaptive service-based applications”, in First International Workshop on
Requirements@Runtime (RRT’10) at RE’10, pp. 17-24, September 2010.

• Nauman A. Qureshi, Cu D Nguyen, Anna Perini, “Analyzing Interoperability Requirements for
Adaptive Service-based Applications”, in Fourth IEEE International Workshop on Requirements
Engineering for Services (REFS’10) at COMSPAC’10, pp. 239-244, July, 2010.

• Alessandro Marchetto, Cu D. Nguyen, Chiara Di Francescomarino, Nauman A. Qureshi, Anna
Perini, Paolo Tonella, “A Design Methodology for Real Services”. in Second International
Workshop on Principles of Engineering Service-Oriented Systems (PESOS’10) at ICSE’10, pp.
15-21, May 2010.

• Chiara Di Francescomarino, Chiara Leonardi, Alessandro Marchetto, Cu D Nguyen, Nauman A
Qureshi, Luca Sabatucci, Anna Perini, Angelo Susi, Paolo Tonella, Massimo Zancanaro, “A bit
of Persona, a bit of Goal, a bit of Process ... a recipe for Analyzing User Intensive Software
System”, in Fourth International i* Workshop (iStar2010) at CAiSE’10, pp. 36-40, June 2010.

2009

• Nauman A. Qureshi, Anna Perini, “Engineering Adaptive Requirements”, in Workshop Software
Engineering for Adaptive and Self-Managing Systems (SEAMS’09) at ICSE ’09, pp. 126-131,
May 2009.

11

CHAPTER 1. INTRODUCTION

2008

• Nauman A. Qureshi, Anna Perini, “Towards Seamless Adaptation: An Agent-Oriented Ap-
proach”, in Second IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO ’08), pp.471-472, 20-24 Oct. 2008.

• Nauman A. Qureshi, Anna Perini, “An Agent-Based Middleware for Adaptive Systems”, in
Eighth International Conference on Quality Software (QSIC ’08), pp.423-428, 12-13 Aug. 2008.

12

Chapter 2

State of the Art

2.1 Overview

The topic of self-adaptive software systems is calling for investigation in
several research areas along many facets of software engineering as stated
in Cheng et al. [CdLG+09]. Many open issues have been identified and
acknowledged by revisiting the current efforts in the field of software engineer-
ing (in particular requirements engineering, analysis and modeling, design,
engineering and assurance). Currently, the emphasis of research is more
on design-time solutions to provide run-time adaptation. Despite ongoing
research, requirements engineering for self-adaptive software systems has
received less attention so far1. This results in a gap between design-time
and run-time adaptation activities. Self-adaptive software systems need to be
aware of their own requirements and able to monitor their end-user’s goals and
preferences, domain conditions, operating context, available resources and
the multiple tasks they are able to perform at run-time. However, engineering
such systems is challenging.

In this chapter, we recall state of the art works from software engineering
areas where our research develops, namely, architecture-based design ap-
proaches (Section 2.2) and requirements engineering approaches (Section 2.3).

1This was even more remarkable at the time this thesis started.

13

CHAPTER 2. STATE OF THE ART

For the sake of ease in reading, we categorize design approaches along mid-
dleware or service-oriented or software agents based approaches, while for
requirements engineering works we distinguish goal-oriented, variability mod-
eling, formal and informal approaches for self-adaptive software.

2.2 Design Approaches for Self-Adaptive Software Systems

So far, considerable work in realizing self-adaptive software is architecture
driven and based on middleware approaches. Architecture based approaches
abstract the adaptation decision from code level to component level supporting
if there is consistency between the code and the architectural model. The main
idea is to address adaptation needs at design-time defining a set of different
architectures, each one appropriate for specific environment conditions.

2.2.1 Component-Based Approaches

In [OGT+99], two complementary processes are introduced to enable self-

adaptive software, namely, adaptation management i.e. for changing the
application over time upon monitoring, evaluating, planning; and evolution
management, which focuses on the mechanisms that are used to change the
application through system artifacts, also taking into account consistency issue.
These two processes can have humans in the loop, or they can be automated,
through the use of software agents.

Run-time and design-time adaptation are considered in RAINBOW by
Garlan et. al. [CHG+04]. The main idea behind run-time adaptation in
RAINBOW2 is to provide generic externalized adaptation mechanisms based
upon a monitoring-reasoning-adapting loop, using probes and gauges. As for
design-time adaptation, the authors highlight architecture based adaptation
challenges like accurate decompositions and issue of latency at run-time.

2http://www.cs.cmu.edu/ able/research/rainbow/

14

2.2. DESIGN APPROACHES FOR SELF-ADAPTIVE SOFTWARE SYSTEMS

Furthermore, it is well argued in [KM07] that the architectural approaches
are promising for developing self-managing systems. This is due to the gen-
erality and the level of abstractions, which helps in satisfying the challenges
posed by self-* systems. Kramer et al. has discussed their component based
reference architecture based on three layers namely - component control layer,
change management layer and goal management layer. Subsequently, deal-
ing with challenges like reconfiguration, ensuring application consistency
and avoiding undesirable transient behaviors at component layer. At change
management layer, a fault-tolerant state management and decentralized con-
figuration management is tackled. Lastly, at higher-level, constraint based
planning activity is carried out by aligning “Online” the goals and of the
system. This approach provides suitable arguments for architecture based ap-
proach but require more comprehensive approaches to be integrated in order to
sort out critical system properties. This will help in dealing with the emergent
behaviors.

2.2.2 Middleware-Based Approaches

In [HSSF06] product line engineering techniques are used to mask the user
and resource variability in an ubiquitous environment by proposing a platform
based on MADAM middleware. Its further extension is MUSIC3, which is
an open source platform for building adaptive mobile applications. In this
approach a prototype platform is developed as a collection of components
that supports a generic adaptation mechanism. However, this approach seems
to be simple in terms of adaptation and needs to be improved in terms of
performance.

In [HFS04], FAMOUS4 - an adaptation middleware is used as compo-
nent framework to dynamically select an architecture variant for applications

3http://ist-music.berlios.de/site/platform.html
4FAMOUS is a strategic research project founded by the Research Council of Norway. The goal of FAMOUS

is to create a framework for building adaptive mobile ubiquitous services.

15

CHAPTER 2. STATE OF THE ART

to adapt in the context of mobile environments by exploiting the reflective
architecture, which is a run-time representation of its application framework.

Similar approach is pursued in [GEL+06] but the focus was on using a
middleware to manage self-adaptivity by mirror-based reflections and using a
QuA5 middleware to support services by behaviors. In this, a video streaming
example was demonstrated supported by QuA middleware for observing QoS
parameters using goal-oriented and utility function approaches to quantify the
suitability about adaptation. The main idea was to separate the adaptation
concerns from the application concerns.

In [FHS+06] emphasis was on separation of adaptation concerns from
application concerns by using architectural models generated at run-time
leaving the decision on middleware (MADAM) to reason. The application
variants and their properties are addressed in terms of coarse-grained and
fine-grained variability. Moreover, the focus is on application of architecture
models at run-time providing more consistency. The main idea is on separate
the adaptation concerns from the application concerns as advocated by D.
Garlan et al. [CHG+04].

Most of the work analyzed so far is mainly inspired by middleware ap-
proach using architectural models inherently based on closed-loop control.
This concept of separating the adaptation concerns from the application con-
cerns seems promising in terms of reusability. The approaches discussed so far,
abstract the adaptation decision from code level to component level providing
the specification of a set of alternative architectures that better fit with quality
factors, and take into account environment conditions, at design-time. How-
ever, the link between architecture and requirements for self-adaptive software

is not fully addressed. Moreover, managing the continuously changing needs
of end-users is limited in these works, which makes these approaches more
strict and system architect dependent. Whereas, run-time adaptation requires

5http://simula.no/research/networks/projects/QuA

16

2.2. DESIGN APPROACHES FOR SELF-ADAPTIVE SOFTWARE SYSTEMS

more flexible and requirements aware approach.

2.2.3 Agent-Oriented Approaches

Architecture-based approaches employ agents as their core component. Ac-
cording to Perini in [Per09] agent-based approaches are gaining much popular-
ity as due to their natural compatibility for satisfying the visions of autonomic
computing by Kephart et al. in [KC03]. Several agent-oriented methodologies
(e.g. Tropos [BPG+04] and Gaia [ZJW03]) has been proposed providing
abstractions to engineer distributed systems, where an agent can be viewed
as a computational system situated in an environment, capable of performing
autonomous actions and presenting flexible behaviors to fulfill the goals for
which it has been designed.

To achieve its intended purpose, it requires some infrastructural support
for the provisioning of its services, called Multi-Agent Systems (MAS), as
a flourishing software engineering paradigm to develop distributed systems.
In addition, they can be employed to provide flexible infrastructure i.e. to
automate the process-oriented tasks, by Oreizy et al. in [OGT+99].

A well grounded discussion can be seen on the adoption of seamless agent
middleware technology as part of large software systems by Omicini et al.
in [OR04]. This integration of MAS-as-subsystem is discussed in light with
respect to three dimensions of technology transfer by investigating JADE
agent platform. This stimulates the use of agents to provide flexibility not at
infrastructure level but also at conceptual level. In [SR07], the suitability of
agents has been the key focus, because agents are used as a core artifact to
model system dynamics. The approach entails a requirements driven approach
by expressing adaptivity and to develop self-organizing MAS.

Tesauro et al. in [TCW+04] discuss the IBM’s Unity platform for auto-
nomic computing as an example of how MAS can be used in practice for
enabling self-* properties. This architectural model adopts software agents

17

CHAPTER 2. STATE OF THE ART

implemented in Java, using the Autonomic Manager Toolkit2. The proposed
infrastructure is a composition of agents as autonomic elements including
policy elements (policies to be applied), sentinel elements (ensure monitoring)
and system elements (ensuring resources), supported by autonomic managers
for predicting changes. An exciting part of this work is its application to
perform goal-driven self-assembly, that is a self-configuring autonomic ele-
ment by knowing its high-level goals can contact the registry to get required
services by others to fulfill its goals.

Following the AOSE perspective, [PPSM07a] uses the TROPOS method-
ology to model variability in user’s needs and preferences, in terms of alter-
natives for goal achievement at requirements-time. The modeled variability
reflects into the design and coding of Belief-Desire-Intention (BDI) agents,
which are able to switch from a behavior to a most appropriate one, depend-
ing on the perceived environment conditions (including users preferences)
at run-time. In this work, goal alternatives represented in the requirements
models map to software agents goal models in the design and code artifacts.
However, the intentional abstractions are very much close to the agent-oriented
approaches to design self-adaptive software [MPP08], but at run-time it is not
evident that such approaches are adequate enough for managing changes in
the requirements during the adaptation process.

2.2.4 Service-Oriented Approaches

Service-oriented architectures (SOA) are based over the concept of decoupled
services as their functional unit. SOA as another form of software architecture
providing much better facilities for business concerns to abstract the users
(consumers) from the internal implementation. The idea of using services in
the context of self-adaptive software seems promising.

In [DPT07] highlights the use of service-oriented concepts in designing a
self-adaptive software. The idea rests on the combination of traditional control

18

2.2. DESIGN APPROACHES FOR SELF-ADAPTIVE SOFTWARE SYSTEMS

loop for adaptation and service invocation. They highlights the importance
of separation of adaptation, fault taxonomy and standard libraries for loosely
coupled application and adaptation modules.

In [IMW07], the authors promote the use of dynamic aspect oriented
programming (d-AOP) in SOA platform in order to reuse the existing services
and adapting it to the new requirements. The main idea is to leveraging the
“Hot-Deployment” feature of the existing Open Gateway Initiative (OSGi)
framework published by Eclipse foundation and by integrating the d-AOP
to realize the dynamic run-time adaptation by deploying aspects as bundles
to provide seamless integration of both by supporting the claim for run-time
adaptation.

Analogously, in the context of service engineering, Papazoglou [Pap08]
proposes a theoretical approach for structural changes of services, which
focuses on service compatibility, compliance, and conformance. This approach
builds upon a detailed analysis of the possible sources of change.

This work inspires our research that focuses on the more specific (although
ambitious) objective concerning software evolution that requires minimal
human intervention. Moreover, in our approach we tend to follow an artifact-
centric approach, similar to that proposed in [BGH+07].

Hence, it seems evident that the choice of using services as the motivating
artifact for the intended self-adaptive software. Based on the concepts like
separation of concern, the services themselves are not able to reason about
“What, Why and How”. Therefore, they need an explicit mechanism like
agents to automate their use at run-time in order to overcome the user’s needs.

Architecture driven approaches provide good abstraction by answering
WHAT to monitor, HOW to evaluate and WHEN to adapt. These design-time
decisions enable run-time adaptation. Taking the perspective of requirements
engineering, these approaches treat requirements at later stages, where the key
artifact is the application component, agent, service description or a program

19

CHAPTER 2. STATE OF THE ART

code. This treatment leads to strict rules and functions that can aid adaptation
as reconfiguration of components, services or agent behaviors. The core issue
remains open i.e. how to manage changing requirements at run-time.

2.2.5 Self-Adaptive and Self-Organizing Systems (SASO)

To pursue the goal of building autonomic systems, a unified view of the sys-
tem is well articulated in terms of a generic framework in [SFRG08]. The
presented framework supports both self-adaptive software and self-organizing
characteristics promoting that a system not only has hierarchical top-down
view - as in case of self-adaptive software but also is decentralized (in terms
of variety of components) by having a bottom-up view - as in case of self-
organizing systems. Design-time techniques and architecture supporting
run-time infrastructures are the main focus in this work, hence by enabling a
system with self-adaptive software and self-organizing capabilities. Moreover,
supporting the need to have reliable and controllable SASO system, the emer-
gent behavior by respecting the dependable properties such as trustworthiness
in case of security, safety and performance. In contrast to traditional approach
for building resilient and predictable systems, some engineering requirements
are presented. A generic framework is also articulated, which supports the
development of trustworthy, resilient, controllable and self-reconfigurable
SASO systems.

However, argued framework [SFRG08] is under ongoing investigation
by evaluating it on variety of case studies but still it provides some engineer-
ing guidelines for building SASO systems. This exploits the concepts of
dynamic reconfiguration and keeping systems resilient to threats. Furthermore,
this framework advocates the use of enforcement of policies service, which
controls the adaptation and organization feature by operating on the meta
data. Here, meta data represents the information about components and the
environment.

20

2.3. REQUIREMENTS ENGINEERING FOR SELF-ADAPTIVE SOFTWARE SYSTEMS

2.2.5.1 Bio-Inspired Self-Adaptive Systems

Recently, there has been a considerable research that is currently being pursued
by relating computing systems with biological systems. In [Bru08], a view on
building bio-inspired self-adaptive software is presented. The main proposal
revolves around the notion of modeling the biological system, which can be
understood and then using that model by reiterating through it to generate a
software design tool. Such tool yields quality of service such as fault-tolerance,
robustness, security. In particular, software architecture and architectural styles
extends such design tools. In this paper, tiled architectural style is adopted to
support self-assembly model supporting the QoS as fault-tolerance.

2.3 Requirements Engineering for Self-Adaptive Software
Systems

In particular, requirements engineering has been recognized as the seed activity
in the whole software development life-cycle. Requirements engineering
embraces sequential activities including elicitation, analysis, specification
and validation [NE00]. Requirements are not only changed by the business
level, but also emerge at run-time due to changes in the user needs, resource
variability and environment. In this, the notion of requirements management is
the key activity which prevails along all these activities. Requirements change
management is an important activity when dealing with adaptive software.

Berry et al. in [BCZ05] identify four-level model for engineering dynamic
adaptation requirements. It ranges from traditional RE activities, done by
system analyst (level 1), to adaptation requirements the system responds to
at run-time (level 2) and RE done by the analyst to determine adaptation
mechanisms which enable the system to adapt (human-in-the loop adaptation
scenario, level 3) and finally adaptation requirements associated to the specific
adaptation solutions proposed by software engineering research (level 4).

21

CHAPTER 2. STATE OF THE ART

2.3.1 Goal-Oriented Approaches

Likewise, to analyze adaptation requirements, goals have been acknowl-
edged and used as a useful abstraction in many requirements engineering
approaches [vL01b, LLY+06]. The goal-oriented approach is also widely
adopted for variability modeling, and has been well acknowledged in (early)
requirements engineering for eliciting, specifying, analyzing, and document-
ing software requirements. The overall idea of goal-oriented modeling and
analysis revolves around the notion of goal, which allows to capture functional
and non-functional aspects of the system-to-be from stakeholder’s perspec-
tive. At this point, the goal is decomposed into sub goals using AND/OR
decompositions. Later a special attention is given to represent the refinements
of various viewpoints considering the variability concerns. In this way, it
is possible to reason about alternatives based on AND/OR decompositions.
High-level goals are said to be satisfied when the sub goals have been fulfilled.

Penserini et al. in [PPSM07a] uses the TROPOS methodology to model
variability in user’s needs and preferences, in terms of alternatives for goal
achievement at requirements-time. The modeled variability reflects into the
design and coding of Belief-Desire-Intention (BDI) agents, which are able to
switch from a behavior to a most appropriate one, depending on the perceived
environment conditions (including user preferences) at run-time. In this work,
goal alternatives represented in the requirements models map to software
agents goal models in the design and code artifacts. This helps answering the
question of “HOW”, as well as “WHAT and WHY” for run-time adaptation.
self-adaptive software requirements expressed as goal models can be mapped
to BDI architecture resulting into an agent-based design framework to capture
the said adaptivity requirements by Morandini et al. in [MPP08], which seems
promising step towards an agent-oriented self-adaptive software research.

Liaskos et al. in [LLW+05] follows a requirements driven approach to

22

2.3. REQUIREMENTS ENGINEERING FOR SELF-ADAPTIVE SOFTWARE SYSTEMS

address the problem of variability by configuring software using goal-oriented
approach. High-level user preferences are modeled as goal alternatives and
by matching them with the intended system configuration. Thus supports
reasoning about overlaying goal models to achieve an automatic system con-
figuration. This appears to be a very useful approach to describe the behavior
of autonomic elements based on goals.

More recently, goal models are used to derive autonomic element patterns
by Zhu et al. in [ZLKM08]. Goal-oriented requirements engineering approach
and attribute-based architectural style is used to articulate various autonomic
element patterns. These patterns are organized from least to most flexible ones,
mainly, characterizing maintainability concerns for self-adaptive software.
This approach argues the reification of requirements using goal models, which
constitutes a framework to reason about maintainability impact.

Along the perspective of goal-oriented requirements engineering, the core
requirements ontology is redefined by Jureta et al in [JMF08]. This core
ontology is based on goal-oriented concepts, mentalistic notions (belief, desire,
intention) called modalities and the speech acts. Mainly, this ontology helps in
articulating and understanding the requirements problem in a precise way. But,
in order to build self-adaptive software, this ontology is not sufficient to deal
with requirements change aspect and the adaptive nature of the requirements.

2.3.2 Requirements Monitoring Approaches

Nonetheless, goal-oriented approaches provide basis for refinement of require-
ments and architecture at run-time. Feather et al. in [FFLP98] use KAOS
goal models to monitor requirements violations to reason for run-time behav-
ior of a system and adapt dynamically using pre-defined adaptation tactics
(parametric or choosing alternative actions). Moreover, KAOS models are
formalized using temporal logic to provide traceability to verify. However,
it could be useful, if the system can be made aware of its requirements (i.e.

23

CHAPTER 2. STATE OF THE ART

Goal contributions +/-).

Similarly, Robinson [Rob09] proposed a comprehensive review of require-
ments monitoring approaches. A monitoring framework named REQMon
(new Name EEAT i.e. Event Engineering and Analysis Toolkit) is proposed to
monitor web service requirements using KAOS[DvLF93a]. His approach is
based on identify potential requirements obstacles in order to monitor them.
To do so, for each obstacle, an analyst is required to define a monitor that
would retrieve the needed data. A version of OCL (object constraint language)
for temporal logic is used to specify monitors.

Salifu et al. in [SYN07a] argue that monitoring is essential for require-
ments variations / violations and aids in composing switching behaviors in a
context. This approach deals with the specification of monitoring problems
and switching behaviors of core requirements, considered as invariants, us-
ing state charts to analyze the dynamicity and support elicitation. It differs
from Feather et al. [FFLP98] approach in terms of monitoring the problems
variations in a context besides the core requirements. Furthermore, this ap-
proach helps in deeper understanding of contextual variability and its impact
on monitoring and switching problems, but it is limited, to scenarios, when
considering an adaptive system.

2.3.3 Recent Vision for RE for SAS

Considering the software engineering road map for building self-adaptive

software by B. Cheng et al. in [CGI+08], there has been considerable em-
phasis given on various aspects of software engineering mainly requirements,
modeling and design, engineering and assurance. This study brings forth
many interesting challenges and above all emphasizes more on requirements
engineering for self-adaptive software. The significant issues include having
a requirements specification language, flexible techniques for mapping re-
quirements to architectures, requirements reflection and traceability and lastly

24

2.3. REQUIREMENTS ENGINEERING FOR SELF-ADAPTIVE SOFTWARE SYSTEMS

online goal refinement. There has been significantly less emphasis given to
requirements engineering in general for building self-adaptive software.

Recently, a language for specifying requirements for self-adaptive software

called “Relax” has been proposed by Whittle et al. in [WSB+10]. Relax
language guides the analyst at design-time to model the requirements via
goal refinements adopting a goal modeling language i.e. KAOS [DvLF93b].
Temporal operators e.g. “as soon as possible”, “until” etc. are used to specify
requirements which can be relaxed without compromising the original goals.
Obstacle analysis is used to identify potential threats to the requirements satis-
faction at design-time. Relax uses the traditional RE to specify requirements
at early stages and then uses the proposed modifiers (modal verbs) to relax
SAS requirements. The main aim is to deal with uncertainty when specifying
requirements in a flexible way so that a trade off or satisfaction of the goals can
be reached. It helps in capturing the requirements and addressing the question:
how stakeholders requirements can be relaxed? The proposed language serves
as a first step towards requirements specification language for self-adaptive

software.

It has been emphasized that traditional requirements engineering method
and techniques are not enough to deal with the engineering of self-adaptive

software. In this work, we follow the perspective of requirements engineering
for building self-adaptive software, enabling not only the analyst to carry out
adaptive requirements engineering but empowering the software to reason
for adaptations at run-time. This will enable the software to achieve its
user’s goals and maintain them in case of any changes in the environment or
due to resource variability. Requirements engineering is considered as the
prime activity in the whole software development life-cycle, which must be
performed at run-time by the self-adaptive software itself.

25

CHAPTER 2. STATE OF THE ART

2.4 Final Remarks

In summary, existing approaches attempt to anticipate run-time changes at
design-time, which limits them to accommodate new or changed requirements
of end-users at run-time. Conceptualization used in these approaches vary
depending upon the choice of the architecture their solution adopts. Therefore,
there is a need for a requirements engineering (RE) framework that provides
conceptual foundations by providing concepts that are needed to elicit and
specify requirements for self-adaptive software, independent of any architec-
ture. Also, to enable self-adaptive software to perform continuous requirement
engineering activities to manage their requirements and solution to satisfy
them at run-time involving the end-user.

In this thesis, we take the perspective of a requirements engineering, which
has received less attention so far. Recent vision papers and road maps have
identified several challenges for the field of RE for self-adaptive software.
Among them, the need for SAS to hold representation of requirements at run-
time and delaying the design decisions until run-time have been the foremost.
Likewise, requirements engineering activities must also focus on methods
and techniques that enables the system to perform RE at run-time. For this
aim, revisiting conceptual frameworks for the elicitation and specification of
requirements for self-adaptive software is needed.

26

Chapter 3

Requirements Problem for Self-Adaptive
Software Systems

3.1 Overview

In this chapter we present the core concepts that are necessary to formulate
the requirements problem for self-adaptive system. By requirements problem,
we mean finding the specification that is composed of tasks and domain
assumptions that are suitable in a given context and as per resource availability
thus satisfies all the mandatory goals (functional goals and quality constraints)
and also as much optional once. This problem formulation forms the basis of
our approach that we are going to use throughout the thesis. We also present
the interpretation of these concepts and discuss ways in which we exploit
them for deriving the requirements specification for self-adaptive systems. To
show the purpose of this problem definition, we show in subsequent chapters
how this helps in systematically deriving the specification for self-adaptive
systems (SAS) at design-time, thus enabling the SAS-to-be to exploit its own
specification for monitoring and adaptation reasoning at run-time.

The chapter is organized as follows. In Section 3.2 we briefly recall the
general requirements problem definition and its recent revision by using the
revisited Core ontology for Requirements Engineering (RE). In Section 3.3 we

27

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

present the our definition of requirements problem for self-adaptive software.
In Section 3.4 we introduce new concepts and relations in the existing Core
ontology for RE. In Section 3.5 we illustrate with the help of the running
example how this requirements problem definition can be seen as a dynamic
RE problem at run-time. Finally, in Section 3.6 we discuss the benefits of these
proposed concepts in the Core ontology for RE and requirements problem for
SAS considering the design-time and run-time. We summarize this chapter in
Section 3.7.

3.2 Requirements Problem and Core ontology for RE

Our work builds upon problem definitions and ideas developed in studies
pertaining to specific, although related areas, namely engineering of SAS, as
well as in works on RE methods and specifically on foundations of RE. Basic
concepts are recalled below.

The overall aim of RE is to identify the purpose of the system-to-be and to
describe as precisely and completely as possible the properties and behaviors
that the system-to-be should exhibit in order to satisfy that purpose. This is
also a rough statement of the requirements problem that should be solved
when engineering requirements for any system.

Zave & Jackson [ZJ97b] formalized the requirements problem as finding a
specification (S) in order to satisfy requirements (R) and does not violate do-
main assumptions (K), and thereby ensuring that K,S ` R. This formulation
highlights the importance of the specification to be consistent with domain
assumptions, and that requirements should be derivable from K and S. It was
subsequently argued that there is more to the requirements problem than this
formulation states [JMF08]. Namely, a new core ontology for requirements
(Core) was suggested along with a new formulation of the requirements prob-
lem to recognize that in addition to goals and tasks, different stakeholders have

28

3.2. REQUIREMENTS PROBLEM AND CORE ONTOLOGY FOR RE

different preferences over requirements, that they are interested in choosing
among candidate solutions to the requirements problem, that potentially many
candidate solutions exist (as in the case of service-/agent-oriented systems,
where different services/agents may compete in offering the same functions),
and that requirements are not fixed, but change with new information from
the stakeholders or the operational environment. In absence of preferences, it
is (i) not clear how candidate solutions to the requirements problem can be
compared, (ii) what criteria (should) serve for comparison, and (iii) how these
criteria are represented in requirements models.

New concepts suggested in Core led to the revised formulation of the re-
quirements problem: Given the elicited domain assumptions, goals, quality
constraints, softgoals, tasks, some of which are optional, mandatory, and/or
preferred over others, find tasks and domain assumptions which satisfy all
mandatory goals, quality constraints, and ideally also satisfy at least some
of the preferred and/or optional goals and quality constraints. A candidate
solution to this problem will be a consistent set of tasks and domain assump-
tions which satisfy all mandatory goals and quality constraints. Candidate
solutions are compared on the basis of which preferred and/or optional goals
and quality constraints they satisfy, so as to select one solution among the
candidates, and engineer the system-to-be according to the requirements and
other information in that solution.

Techne [JBEM10b], an abstract requirements modeling language was re-
cently introduced as as a starting point for the development of new require-
ments modeling languages that can be used to represent information and
perform reasoning needed to solve the requirements problem. Techne is
abstract in that it assumes no particular visual syntax (e.g., diagrammatic
notation such as those present in i-star [Yu95] and Tropos [PPSM07b]), and
it includes only the minimum concepts and relations needed to formalize
the requirements problem and the properties of its solutions. Techne is con-

29

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

sequently a convenient formalism to formalize the run-time requirements
adaptation problem. It is simple and adapted to the concepts, such as goal,
task, domain assumption, and relations (e.g. Techne consequence, Preference,
Is-mandatory, Is-optional) that remain relevant for the RE of SAS. However,
in order to address the challenge of engineering requirements for SAS, Techne
does not offer answers to the following questions:

• What are the important aspects to express adaptivity?

• What will happen if requirements evolve at run-time and demand the
software to adapt?

• What kind of characterization is required to identify adaptive require-
ments with respect to other types?

• How to express the adaptive requirements in more flexible way?

To enable a simple and convenient formalism, we argue that requirements
and other information is available in propositional form, so that every proposi-
tion is nothing but a natural language sentence. We briefly overview below
the requirements problem formulation using parts of Techne that we consider
are relevant for our problem formulation.

Definition 1 Techne language: The language L is a finite set of expressions,

in which every expression φ ∈ L satisfies the following BNF specification:

x ::= k(p) | g(p) | q(p) | s(p) | t(p) (3.2.1)

y ::=
n∧
i=1

xi → x |
n∧
i=1

xi → ⊥ (3.2.2)

φ ::= x | k(y) (3.2.3)

remark 1 Uppercase Greek letters ∆, Π, Φ, Ψ denote sets of expressions, i.e.,

∆ ⊆ L. Lowercase Greek letters φ, ψ, α, β, γ denote individual expressions,

30

3.2. REQUIREMENTS PROBLEM AND CORE ONTOLOGY FOR RE

i.e., members of L. We index or prime symbols as needed. → reads “if–

then” and ∧ reads “and”. Lowercase Latin alphabet letters p, q, r, s denote

propositions.

Labels on propositions and expressions refer to concepts in the core ontol-
ogy for requirements, and are assigned as follows:

• Domain assumptions: k(p) if p is an instance of the Domain assumption

concept in the Core ontology, refers to conditions that are believed to hold
(e.g., legal norms, assumptions about how some part of the environment
behaves, what properties it has, and so on).

• Goals: g(p) if p is an instance of the Goal concept, i.e., p refers to
conditions, the satisfaction of which is desired, binary, and verifiable
(e.g., desired functionalities of the system-to-be).

• Quality constraints: q(p) if p is an instance of the Quality constraint con-
cept, that is, refers to conditions that constrain the desired values of
non-binary measurable properties or behaviors (e.g., the length of the
encryption key, the response time of a software module).

• Softgoals: s(p) if p is an instance of the Softgoal concept, i.e., refers to a
vague condition that constrains desired values of (potentially) not directly
measurable properties or behaviors (e.g., software should respond quickly,
interface should be usable).

• Tasks: t(p) if p is an instance of the Task concept, and thereby refers to
behaviors of the system-to-be and/or within its operating environment
(e.g., find, transform, produce information, manipulate objects).

The language we have is simply a sorted propositional language in which
only conjunction and implication connectives are allowed, and are used in
a restricted way, as the BNF specification makes clear. The ontology lets us
define a sorting function as follows.

31

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

Definition 2 Sorting function: Sort : L −→ O, where O is the set of sort

labels, one for each of the following concepts: Strict domain assumption, Defeasible

domain assumption, Goal, Quality constraint, Softgoal and Task.

remark 2 To simplify notation, we will abbreviate Sort(φ) = g by gφ, to

say that φ is a goal. This abuses the notation somewhat, since the BNF

specification tells us that φ = g(p).

In Techne consequence relation is defined as follows.

Definition 3 Techne consequence relation: Let Π ⊆ L, φ ∈ L, and z ∈
{φ,⊥}, then:

• Π |vτ φ if φ ∈ Π, or

• Π |vτ z if ∀1 ≤ i ≤ n, Π |vτ φi and k(
∧n
i=1 φi → z) ∈ Π.

remark 3 The consequence relation |vτ is sound w.r.t. standard entailment in

propositional logic, but is incomplete in two ways: it only considers deducing

positive atoms, and no ordinary proofs based on arguing by contradiction go

through, thus being paraconsistent [JBEM10b].

Techne includes three relations that remain outside the formal Techne
language, as they do not participate in the definition of the consequence
relation in Techne. These relations are as follows.

Definition 4 Preference relation: The preference relation �⊆ L × L is an

irreflexive binary relation read as follows: if ensuring that φ ∈ L holds is

strictly more desirable than ensuring that ψ ∈ L holds, then we say that φ is

strictly preferred to ψ and denote this φ � ψ.

remark 4 We do not require the preference relation to be complete, transitive,

or have other specific properties, other than that it is irreflexive. The appropri-

ate choice of these additional properties will depend on, e.g., the automated

32

3.2. REQUIREMENTS PROBLEM AND CORE ONTOLOGY FOR RE

reasoning framework chosen to compute the most preferred requirements

given a set of preference relations.

Definition 5 Is-mandatory relation: The is-mandatory relation is a unary

relation on a requirement to indicate that the requirement must be satisfied,

or equivalently, that every candidate solution must include the mandatory

requirement.

Definition 6 Is-optional relation: The is-optional relation is a unary relation

on a requirement to indicate that it would be desirable for a candidate solution

to include that requirement, but that doing so is not mandatory, or equivalently,

that if two candidate solutions differ only in one optional requirement, then

the candidate solution which includes that optional requirement is strictly

preferred to the candidate solution which does not include that optional

requirement.

The consequence relation leads us to the following conception of the
candidate solution concept.

Definition 7 Requirements problem in Techne: Given the elicited or oth-

erwise acquired: domain assumptions (in the set K),tasks in T,goals in G,

quality constraints in Q, softgoals in S, and preference, is-mandatory and

is-optional relations in A, find all candidate solutions to the requirements

problem and compare them using preference and is-optional relations from A
to identify the most desirable candidate solution.

remark 5 A is a set that includes all preference relations, all is-optional, and

all is-mandatory relations.

Definition 8 Candidate solution: A set of tasks T∗ and a set of domain as-

sumptions K∗ are a candidate solution to the requirements problem if and

only if:

33

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

1. K∗ and T∗ are not inconsistent,

2. K∗,T∗ |vτ G∗,Q∗, where G∗ ⊆ G and Q∗ ⊆ Q,

3. G∗ and Q∗ include, respectively, all mandatory goals and quality con-

straints, and

4. all mandatory softgoals are approximated by the consequences of K∗∪T∗,
so that K∗,T∗ |vτ SM, where SM is the set of mandatory softgoals.

We start below from the Core ontology and problem formulation in Techne,
and add concepts specific to the RE for SAS, which leads us to an ontology
for requirements in SAS and the formulation of the requirements problem

in context for SAS. We subsequently show how to formulate the run-time

requirements adaptation problem as a dynamic problem of changing (e.g.
switching, re-configuring, optimizing) the SAS from one requirements prob-
lem to another requirements problem, whereby the changing is due to change
in requirements, context conditions, and/or resource availability.

3.3 Defining Run-time Requirements Adaptation Problem

Various definitions of SAS have been offered in the literature. We remain
aligned with the usual conception, namely, that a SAS is a software system
that can alter its behavior in response to the changes that occur dynamically in
its operating environment. The operating environment can include anything
that is observable by the software itself including context, end-user’s input and
resource variabilities. Such continuously running systems requires flexibility
in managing themselves by exercising autonomic properties called as Self-
*[KC03] in response to the changing requirements at run-time.

We start by describing how we identify the kinds of information that pertain
to requirements, as well as relations between such information, of which a
SAS needs to have an internal representation in order to ensure that it satisfies

34

3.4. RE FOR SAS AND ITS CORE ONTOLOGY

as best as feasible its users requirements even when there are changes in its
operating context and/or in the resources available to it.

To this aim, we formally define a minimal set of concepts and relations
needed to formulate the requirements problem, its solutions, the changes in
its formulation that arise from changes in the operating context, requirements,
and resource availability. We thereby answer the following research questions
in the RE for SAS:

1. What concepts and relations capture the requirements-related information
that a SAS needs to have an internal representation of in order to satisfy
users’ requirements, and their change across changing operating contexts
and/or resource availability?

2. How do these concepts and relations come together in the formulation of
the requirements problem that SAS need to solve?

3. What relationships should be maintained in case of changes that occur
dynamically at run-time (unanticipated, or initiated by users)?

This leads us to precisely define the run-time requirements adaptation prob-

lem as a Dynamic RE problem that a SAS should be engineered to solve. We
thereby suggest concepts and relations that are necessary to deal with while
eliciting and analyzing requirements for SAS and are important to take adap-
tation decision at run-time by the system itself. To fulfill this aim, we describe
to make explicit the dynamic parts in the requirements problem formulation
based on the Core ontology[JMF08].

3.4 RE for SAS and its Core Ontology

Building upon the above considerations, we argue that concepts such as user
context e.g. profile, location, operational) and resource (e.g. tangible, in-
tangible including money, social-relations) must be considered as first class

35

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

citizens in the existing Core ontology to engineer requirements for SAS. We
add two new concepts, Context and Resource on top of the Core ontology
to accommodate the changes that might occur at run-time, which not only de-
mands adaptation (i.e. dynamically changing from one requirements problem
to another) but also requires an update to the specification (i.e. refinement of
requirements). Moreover, these concepts can enhance the tool set for eliciting
and analyzing requirements at run-time.

Influence

Relegate

Communicated

information

Context (c)

Goal

Task (t)

Domain assumption (k)

Evaluation

Depend-on

Comparative evaluation

(“Preference” in Techne)
Individual evaluation

Is-optional relation

(Techne)

Is-mandatory

relation (Techne)

Is-a

Is-a

Resource (r)

Refer-to

Quality constraint (q)

Softgoal (s)

Functional goal (g)

Is-a

Is-a

Figure 3.1: New concepts (Context and Resource) and relations (Relegation and Influence)
related to the concepts of the Core ontology for RE.

The revised taxonomy of the concepts is proposed taking into account the
necessary concepts proposed in Techne [JBEM10c] to support the definition
of run-time “run-time requirements adaptation problem”. In Fig. 3.1, new
concepts (Context and Resource) and relations (Relegation and Influence)
related to the concepts of the Core ontology for RE are proposed (for details,
see [JMF08]). Below, we introduce the concept of requirements database.

Definition 9 Requirements database: A requirements database, denoted ∆

is the set of all information elicited or otherwise acquired during the RE of a

36

3.4. RE FOR SAS AND ITS CORE ONTOLOGY

system-to-be.

remark 6 Firstly, ∆ ⊆ L, i.e., every member of ∆ is an expression in L.

Secondly, since ∆ should include all information elicited or otherwise acquired

in RE, it should include all instances of domain assumptions, goals, softgoals,

quality constraints, and tasks that we elicited, found through refinement or

otherwise identified during RE. Thirdly, one can view ∆ as a repository

of information that is usually found in what is informally referred to as a

“requirements model”. We use the concept of requirements database as a

machine readable form of “requirements model”. Finally, in the notation used

in the definition of the requirements problem, note that ∆ = K∪T∪G∪Q∪S.

remark 7 Below, we will use the term requirement to abbreviate “member

of the requirements database ∆”. I.e., we will call every member of ∆ a

requirement.

To get to the definition of the run-time requirements adaptation problem, we
start introducing the Context concept. We are aware of the existing definitions
and use of Context in the existing AI and RE literature, for instance [McC93,
Dey01, SYN07b, ADG08].

Definition 10 Context: An instance C of the Context concept is a set of infor-

mation that is presupposed by the stakeholders to hold when they communicate

particular requirements. We say that every requirement depends on one or

more contexts to say that the requirement would not be retracted by the stake-

holders in every one of these contexts.

remark 8 Firstly, we need a language to write this information that is pre-

supposed, and is thereby in the set of information that we call a particular

context. We develop that language below. Secondly, the dependence of a

requirement on a context means that every requirement is specific to one or

more contexts, and thus, requirements need to be annotated by contexts, which

begs additional questions on how the engineer comes to determine contexts.

37

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

The term context can be interpreted in various ways, for example, an
object, an entity, a surrounding, an environment (operational, external to the
system), a set of conditions, a location, a situation. Generally context is a very
imprecisely defined concept, it can be defined as surrounding, circumstances,

environment, background, or settings which determine, specify, or clarify the

meaning of an event.1

The concept of context has been used in AI and RE literature to characterize
information internal or external to the system-to-be. For instance, in AI
literature, the term context has been characterized and formalized to make

systems reason on either the circumstances where particular propositions

holds or at a certain time instance where the particular proposition might hold

by McCarthy in [McC93]. In RE literature context and context-aware systems

are defined as an abstraction of location, an event, environment or as a set

of conditions that may change overtime in [SYN07b, FS01, FFLP98, ADG09,
SS07]. For instance, another most common and well accepted definition of
context to date is by Dey in [Dey01] i.e. Context is any information that can

be used to characterize the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves.

Alternatively, a context C refers to any information that helps in character-

izing a perceived state of the world. A context can be characterized as an event
or a state of the entity (involving the user) and the operational environment in
which the system operates.

Example: The user is traveling, during transit, the context of the user has
changed from traveling to stay at airport.
Example: Studying indoor or outdoor, with a profile setting silent or airport

or normal, all refers to the perceived state of the world.

At this point, we revise the Techne language to allow information that is

1http://en.wikipedia.org/wiki/Context

38

3.4. RE FOR SAS AND ITS CORE ONTOLOGY

included in contexts. This results in adding one more sort.

Definition 11 Language for SAS: The language LSAS is a finite set of ex-

pressions, in which every expression φ ∈ LSAS satisfies the following BNF

specification:

x ::= k(p) | g(p) | q(p) | s(p) | t(p) (3.4.4)

q ::= c(p) (3.4.5)

w ::= x | q (3.4.6)

y ::=
n∧
i=1

wi → w |
n∧
i=1

wi → ⊥ (3.4.7)

φ ::= w | k(y) | c(y) (3.4.8)

remark 9 We used (indexed/primed p, q, r) as an arbitrary atomic statement,

every φ an arbitrary complex statement, and every x an arbitrary label to

represent Techne labeled propositions i.e. domain assumption (k(p)), a goal

(g(p)), etc. to distinguish from these basic labeled propositions the context

propositions (i.e., propositions about context), c(p) is added separately in the

BNF specification, via q, and every w can either be x or q. Every y represents

a complex statement as a formula with conjunction and implication such that

y can be either w or ⊥, where w is some requirement in a context propositions

and ⊥ refers to logical inconsistency. We can then rewrite φ as a complex

statement consists of either w or k(y) or c(y).

Definition 12 Consequence relation of Techne in context: Let Π ⊆ LSAS,

φ ∈ LSAS, and z ∈ {φ,⊥}, then:

• Π |vcτ φ if φ ∈ Π, or

• Π |vcτ z if ∀1 ≤ i ≤ n, Π |vcτ φi and k(
∧n
i=1 φi → z) ∈ Π.

39

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

remark 10 The consequence relation |vcτ is sound w.r.t. standard entailment

in propositional logic. It deduces only positive statement by being paracon-

sistent, thus all admissible candidate solutions are found via paraconsistent

and non-monotonic reasoning. Reasoning is paraconsistent because an in-

consistent ∆ or C should not allow us to conclude the satisfaction of all

requirements therein; it is non-monotonic in that prior conclusions drawn

from a ∆ or a C may be retracted after new requirements are introduced.

We also need a function that tells us which contexts a requirement applies
to.

Definition 13 Contextualization function: Let C be the set of all contexts.

C : ℘(LSAS) −→ ℘(C) (where ℘ returns the powerset) is called the contextu-

alization function that for a given set of formulas returns the set of contexts to

which these formulas apply to. By “apply to”, we mean that C ∈ C(φ) iff the

following conditions are satisfied:

1. C, φ 6|vτ ⊥, i.e., φ is not inconsistent with context C,

2. C is such that ∃X ⊆ ∆ such that C,X |vτ φ, i.e., the context C together

with some requirements X from ∆ lets us deduce φ.

remark 11 Several remarks are in order.

Firstly, withLSAS, we now have a new sort for expressions that are members

of a set that defines a context. Recall that we defined an instance C of Context

as a set of information, so that now LSAS tells us that one member of that

set can either be a proposition p, denoted c(p), or can be a formula with

implication, denoted c(y) in the BNF specification.

E.g., if the engineer assumes that the stakeholders wants that her goal

g(p) for “arrive at destination” be satisfied both in the context C1 in which

the context proposition “c(q): flight is on time” holds (i.e., c(q) ∈ C1), and

in the context C2 in which the context proposition “c(r): flight is delayed

40

3.4. RE FOR SAS AND ITS CORE ONTOLOGY

but not more than 5 hours” holds (i.e., c(r) ∈ C2), then C1 ∈ C(g(p)) and

C1 ∈ C(g(p)).

Secondly, observe that the BNF specification lets us write formulas in which

we combine context propositions and requirements, e.g.:

k(p) ∧ c(q)→ ⊥

which the requirements engineer can use to state that the domain assumption

k(p) that was communicated by the stakeholder does not hold in contexts in

which the context proposition c(q) holds. The formula k(p) ∧ c(q)→ ⊥ itself

can be a context formula – we state this by writing c(k(p) ∧ c(q)→ ⊥) – in

order to capture the idea that it is presupposed that c(q) and k(p) cannot hold

together. Observe that if we write c(k(p) ∧ c(q)→ ⊥), then by the definition

of the contextualization function C, we can see that c(q) 6∈ C(k(p)), which

informally tells us that we cannot ensure k(p) in contexts in which we have

c(q).

Since we can combine context formulas and requirements, we can state very

useful relations, such as that some requirements conflict with some contexts,

by saying that these requirements are inconsistent with some of the context

formulas in these contexts.

Thirdly, we could have been more demanding in the definition of the con-

textualization function C. In the above definition, C(φ) will be the set of all

information consistent with φ, which is usually too much: that set will have

information which is not used to derive φ, even though it is consistent with φ.

We leave this definition as it is, however, mainly because it covers the said and

other more specific cases and we do not need to focus on minimizing the set

C(φ). Given that problems of automated reasoning e.g. in case of reasoning

over multiple context are outside of the scope in the present discussion.

As an aside, rules that connect requirements and context formulas need not

be specified in a definite way by the requirements engineer. It is possible to

41

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

learn them by asking feedback to the user. For example, if the system asks the

user a question of the form:

Your flight is delayed by 5 hours or more. Do you wish to rebook a

flight for the next day?

This question can be reformulated as a question on which of these two formulas

to add to the current context of the user (the context in which we asked the

user that question):

c(c(p) ∧ g(q1)→ ⊥) (3.4.9)

c(c(p) ∧ g(q2)→ ⊥) (3.4.10)

where c(p) is for “flight delayed by more than 5 hours”, g(q1) is for the goal

“keep the booked flight”, and g(q2) is for the goal “rebook the same flight for the

next day”. If the user answers “yes”, then add formula c(c(p) ∧ g(q1))→ ⊥
to the context in which we asked the user that question; if the user answers

“no”, then we add c(c(p) ∧ g(q2))→ ⊥ to the current context.

We now add the Resource concept. The formal language that we use is
propositional, we will keep the resource concept out of it.

Definition 14 Resource: An instance R of the Resource concept is an entity

either tangible or intangible referred to by one or more instances of Commu-
nicated information.

The concept of resource R has been well supported in RE methods such
as in goal-oriented approaches [vL01b, Yu95, BPG+04]. Generally resource
can be defined as: “A resource is any physical or virtual entity of limited

availability that needs to be consumed to obtain a benefit from it”.2 It can be
either natural resource, human resource or tangible/intangible resource.

2http://en.wikipedia.org/wiki/Resource

42

3.4. RE FOR SAS AND ITS CORE ONTOLOGY

We refer to tangible/intangible resources in our work e.g. resources that can
be consumed or used by the system for the sake of information processing. To
be precise, in our case we refer them as physical/tangible entities e.g. mobile
phone, ticket itinerary. Whereas, they can also be intangible i.e. user assets i.e.
social relations or contacts. Alternatively, a resource R can be characterized

as tangible entity in the world or an intangible entity.

Example: The user is boarding for the flight. At the check-in counter the
itinerary represents an informational resource. It can be either printed or kept
in a digital format.
Example: User can view itinerary on her mobile devices. In this case, itinerary
represents a digital information resource, where as mobile device refers to a
physical resource. Another case is that user can view her agenda, personal
contacts or information about their Money balance. Here, we refer to three
assets (intangible resources) i.e. Agenda, Personal Contacts/Social relations
and Money. All these can be modified at user’s discretion.

In order to introduce resources in the definition of the requirements adapta-
tion problem, we need a function that tells us which resources are referred to
by a task, domain assumption, or a context proposition, as these resources will
need to be available and used in some way in order to ensure that the relevant
domain assumptions and context propositions hold, and that the tasks can be
executed.

Definition 15 Resource selector function: Let C be the set of all contexts.

Given a set of tasks, domain assumptions, and/or context propositions, the

resource selector function returns the identifiers of resources necessary for

the domain assumptions and/or context propositions to hold, and/or tasks to

be executed:

R : ℘(T ∪ K ∪
⋃

C) −→ ℘(R) (3.4.11)

remark 12 The domain ofR are domain assumptions, context propositions,

43

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

and tasks. The reason that goals, softgoals, and quality constraints are ab-

sent is that the resources will be mobilized to realize a candidate solution to

the requirements problem, and the candidate solution includes only domain

assumptions and tasks. Since these domain assumptions and tasks are contex-

tualized, we need to ensure the availability of resources that are needed in the

context on which these domain assumptions and tasks depend on.

Note also that we have
⋃

C because C is a set of sets, so that we need to

get the union of all of the sets in C.

We can now formulate the requirements adaptation problem for SAS.

Definition 16 Runtime requirements adaptation problem: Given a candi-

date solution S(C1) in the context C1 ∈ C to the requirements problem

RP(C1) in context C1 ∈ C, and a change from context C1 to C2 6= C1, find

1. the requirements problem RP(C2) in context C2 ∈ C and

2. choose among candidate solutions to RP(C2) a solution S(C2) in the

context C2 to the requirements problem RP (C2) in the context C2 ∈ C.

remark 13 The definition of the requirements adaptation problem reflects the

intuition that by changing the context, the requirements problem may change

– as requirements can change – and from there, a new solution needs to be

found to the requirements problem in the new context.

We now reformulate the requirements problem so as to highlight the role
of context in it, as well as of the resources.

Definition 17 Requirements problem RP(C) in contextC: Given the elicited

or otherwise acquired:

• domain assumptions in the set K,

• tasks in T,

44

3.4. RE FOR SAS AND ITS CORE ONTOLOGY

• goals in G,

• quality constraints in Q,

• softgoals in S,

• preference, is-mandatory and is-optional relations in A,

• a context C on which K ∪ T ∪ G ∪ Q ∪ S and A depend on,

the requirements problem inC” by ”find all candidate solutions S1(C), . . . , Sn(C)”.

Definition 18 Candidate solution S(C1) in the context C: A set of tasks T∗

and a set of domain assumptions K∗ are a candidate solution in the context
C to the requirements problem RP(C) in context C if and only if:

1. K∗ and T∗ are not inconsistent,

2. C,K∗,T∗ |vcτ G∗,Q∗, where G∗ ⊆ G and Q∗ ⊆ Q,

3. G∗ and Q∗ include, respectively, all mandatory goals and quality con-

straints,

4. all mandatory softgoals are approximated by the consequences ofC,K∗∪
T∗, so that K∗,T∗ |vcτ SM, where SM is the set of mandatory softgoals, and

5. resourcesR(C ∪ K∗ ∪ T∗) needed to realize this candidate solution are

available.

We can define the relegation relation via the inference and preference
relations in Techne.

Definition 19 Relegation relation: A relegation relation (Rel) is an n + 1-

ary relation that stands between a requirement φ ∈ ∆ and n other sets of

requirements Π1,Π2, . . . ,Πn ⊆ ∆ if and only if the following conditions are

satisfied:

45

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

1. ∀1 ≤ i ≤ n, Πi |vcτ φ, i.e., there is an inference relation from every Πi to

φ;

2. there is a binary relation: �φ⊆ {Πi | 1 ≤ i ≤ n} × {Πi | 1 ≤ i ≤ n}
such that, for any three different Πi,Πj,Πk ∈ {Πi | 1 ≤ i ≤ n}:

(a) �φ is irreflexive, i.e., it is not the case that Πi �φ Πi;

(b) �φ is transitive, i.e., if Πi �φ Πj and Πj �φ Πk, then Πi �φ Πk;

and

(c) �φ is connected, i.e., for any two Πi and Πj, either Πi �φ Πj or

Πj �φ Πi.

whereby Πi �φ Πj if it is strictly more desirable to satisfy φ by ensuring

that Πi holds, than to satisfy φ by ensuring that Πj holds.

remark 14 The inference relations required by a relegation relations indicate

that a relegation relation can only be defined for requirements that we know

how to satisfy in different ways. For example, if we have a goal g(p), and we

have two ways to satisfy that goal, e.g.:

Π1 = {t(q1), b(t(q1)→ g(p))} (3.4.12)

Π2 = {t(q2), b(t(q2)→ g(p))} (3.4.13)

then we have satisfied the first condition from the definition of the relegation

relation, since Π1 |vcτ g(p) and Π2 |vcτ g(p).

The second condition in the definition of the relegation relation says that we

need to define a preference relation �g(p) between different ways of satisfying

g(p). Observe that we define �g(p) between sets of information, not pieces

of information. The Techne preference relation defines preference between

individual pieces of information, so we can use preference relations between

members of Π1 and Π2 to define �g(p).

46

3.4. RE FOR SAS AND ITS CORE ONTOLOGY

Suppose that t(q1) � t(q2), i.e., that we prefer to execute task t(q1) to exe-

cuting the task t(q2). We can define�g(p)= f(�), that is, from the information

that the preference relation already includes. Namely, in this example it is

appropriate to say that, if t(q1) � t(q2), then Π1 �g(p) Π2. Since we have only

Π1 and Π2, it is enough to know that Π1 �g(p) Π2 to know everything we need

to define the relegation relation.

Namely, the relegation relation (g(p),Π1,Π2,�g(p)) tells us that, if we

cannot satisfy g(p) through Π1 then we will relegate to Π2, i.e., satisfy g(p)

through Π2.

The purpose of Relegation relation Rel is twofold. First, it facilitates at
design-time to analyze requirements (including Goals, quality constraints,
preferences) and relegate their associated conditions (e.g. pre/post, achieve-
ment, trigger conditions) by anticipating run-time failures scenarios. Second,
it enables SAS at run-time to analyze requirements (including Goals, quality
constraints, preferences) in case of changes that can occur dynamically e.g.
change in user’s context, violation of domain assumption, resource usage or
change in user’s need or preference, either through sensing the operational
environment or explicitly given by the end-user. A Rel is applied to counter
uncertainties (e.g. unanticipated event) by flexibly relegating some of the
requirements, if needed, to achieve critical ones.

We take an example of SAS running on user’s mobile phone and monitors
user’s itinerary during her travel. It observes a prolonged delay in the flight due
to Icelandic volcanic eruptions. Satisfying user’s high level goal at run-time
e.g. “Travel for Business Meeting” equates to the execution of a plans e.g.
“Book Flight”, “Meeting Scheduled”, along with their specific parameters and
conditions e.g. “flight origin and destination”, “flight schedules”, “meeting
location”, “time of meeting”. In this case, SAS must re-evaluate the goal
conditions and plans parameters and decide to relegate some conditions or
preference criteria to formulate a solution that helps achieving the high level

47

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

goal of the user. SAS may decide to relegate the goal achievement condition
by adding another auxiliary goal “Travel for Business 2 days after” taking into
account the available information, i.e. “flight schedules delayed for 2 days”,
user’s current context is “at airport”. The instance of the goal i.e. “Travel for
Business” is linked with the new goal “Travel for Business 2 days after” using
Rel by operationalizing it with a similar solution with changed parameters i.e.
“Book flight after 2 days”. This solution is recommended to the end-user. Upon
acceptance, the resource i.e. Travel itinerary will be changed subsequently.
Alternatively, end-user could change her itinerary by explicitly providing the
input to the SAS. Rel does not manifest the original goal of the user to be
compromised rather relegate it as per the changes in the operational context.

Qualitative Example of Relegation Relation:

Goal “Meeting scheduled” with a subsequent quality constraint as “Meeting
scheduling will be done in 1 day”. For instance, at run-time while the user is
traveling encounters a flight delay. It does not mean that the goal becomes
invalid, rather the conditions to achieve the same goal requires to be relaxed.
This means, evaluating the new available information i.e. context conditions i.e.
“At airport” and “Flight Delayed”, the goal of the user e.g. “Meeting scheduled”
cannot be achieved with the existing solution i.e.“Flight to Destination”, so it
must be relaxed.

In this case by applying Rel, either the solution needs to be replaced
that operationalizes the goal or an instance of the same goal with revised
conditions is linked using Rel with the original goal e.g. “Meeting scheduled
in the Morning” relaxing the quality constraint it has i.e. “Meeting scheduling
will be done in < 1 but > 2 days” such that the preference of the end-user is
not disturbed i.e. “prefer morning meetings”. In this example, the instance
of the original goal is not compromised rather relegated to a new goal with
different conditions to achieve it. An alternative plan is generated i.e. “Book
flight in morning” to operationalize this new auxiliary goal that stands justified

48

3.4. RE FOR SAS AND ITS CORE ONTOLOGY

to the previous solution i.e. “Book flight”, thus changing the parameters in the
solution.

Finally, we define the influence relation. Note that it is simple here, since
we have no numerical values, so we cannot speak about influence as correlation.
We can only that some information influences some other information if the
absence of the former makes it impossible for us to satisfy the latter.

Definition 20 Influence relation: An influence relation (Inf) is a binary rela-

tion from ψ ∈ LSAS to φ ∈ LSAS, iff either

1. ∃Π ⊆ ∆ ∪ C, Π |vcτ φ and Π \ ψ 6|vcτ φ, or

2. ∀Π ⊆ ∆ ∪ C, Π |vcτ φ and Π \ ψ 6|vcτ φ.

In the first case above, we say that ψ weakly influences φ, denoted ψ wi−→ φ. In

the second case above, we say that ψ strongly influences φ, denoted ψ si−→ φ.

remark 15 If ψ si−→ φ, then we have no way to satisfy φ if ψ is not satisfied.

If ψ wi−→ φ, then some ways of satisfying φ cannot be used to do so if ψ is not

satisfied.

The purpose for Influence relation is to assess the impact of change in
existing concepts and their relationships. An influence relation (Inf hereafter)
is needed to analyze the impact of change on the instance of concepts with
in Core. This means, if change in the operational environment or in end-
user need at run-time causes a change in the instances of the Core, SAS
at run-time needs to be able to ascertain the impact of this change on the
existing specification before adapting to an alternative solution. This idea of
introducing this relation has been initially argued in our recent work on design
methodology for real services [MNF+10], where the dynamic semantics of
process activities is specified as OCL constraints to analyze the impact of their
execution in modifying assets (a type of intangible resource).

49

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

Making explicit influence relationship type provides analysis capability to
ascertain the impact of change either motivated by the operational environ-
ment, system itself, or by the end-user. At design-time, an engineer performs
this analysis as per their expertises by anticipating the dynamic changes that
could lead a change in run-time behavior. For instance, soft-goal contribution
links provides analyst to score the alternatives and to determine to which level
that are able to satisfy the goal. This form of analysis is however qualitative.
We stand independent of this, and provide influence relation, that later can
be formalized using any formal definition to quantify the impact. For exam-
ple, goal “Payment for Travel Ticket” strongly influence the goal “Generate
Itinerary”. To formalize this, one can either link softgoal contributions or
could add inhibition relation among goal that can be validated once the system
is built and deployed. Moreover, this has also favorable consequences at
run-time. Enabling SAS with this analysis capability could result in justifying
the adaptation and providing meaningful feedback to the end-user by deriving
conclusions on user’s goal satisfaction.

Qualitative Example of Influence Relation:

Influence relation (Inf) determines the process of internal assessment over
the dependencies among the concepts in core ontology. For example, if the
user books the business flight to attend the meeting and confirms her travel
itinerary, any subsequent change has consequences over the existing instances
(e.g. goals). The change e.g. change in leg of the flight must not invalidate
the satisfaction of goal “Book Itinerary” and on a higher level goal “Travel
for business”. The SAS needs to ascertain the impact of user’s request i.e.
“Change flight leg” on the existing goal “Book Itinerary” and on the resource
“Travel Itinerary” and asset “Money”.

In this case, the new goal “Change Itinerary” must be analyzed with respect
to new information i.e. change in operational context, existing goals, resources
and their operationalizations. In this scenario, it can be ascertain by the SAS

50

3.5. RUN-TIME REQUIREMENTS ADAPTATION PROBLEM: ILLUSTRATION

taking into account the dependencies exist in the specification e.g. goal
tree. Identifying the potential dependencies, it can associate consequences in
achieving this new goal e.g. “flight change is eligible” or not by taking into
account the domain assumptions associated with the goal “Book Itinerary” i.e.
ticket change implies to a charge of amount 100 Euros. Similar dependencies
can be collected and subsequent consequences are ascertain by the SAS to
analyze the impact of changed solution. Moreover, in doing this what impact
of the new solution that operationalize the new goal will have on the resources
i.e. “Travel Itinerary” and asset “Money” e.g. how much compensation has
to be paid to change the flight. Similarly, in case of removal of an instance
the impact of this change on the specification can be derived. Inf is, however,
critical to ascertain the quality of the adaptation process and evaluating the
satisfaction of the user’s needs.

3.5 Run-time Requirements Adaptation Problem: Illustra-
tion

We now revisit the above definitions and using scenarios from travel exemplar
case study to illustrate how SAS, instantiating CARE and running on user’s
mobile phone, resolves the “run-time requirements adaptation problem” at
run-time. Given the requirements problem in [JMF08, JBEM10b]

K∗,T∗ |vτ G∗,Q, SM

Where K∗ is the believed content of the specification, G∗,Q, SM are desired

contents in the specification as communicated by the stakeholders, such that
to arrive to a specification T∗, which brings about the state of the world in
which G∗ are satisfied without violating K∗, and by assuring Q. The reason
for having a non-monotonic consequence relation is that the acquisition of new
knowledge at run-time requires revision of solution space, so that inference is

51

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

Time

CS(C1) = (K *
C1

; T *
C1

)

Change to

context

C1

System works according to solution:

Change to

context

C2

C1

That solution

solves:

RP(C1)

Current

context:

CS(C1) = (K *
C1

; T *
C1

)

System still works according to

solution:

But that solution is inadequate,

because problem is now:

RP(C2)

C2

Current

context:

Time during Adaptation as per change

in context from to

CS(C2) = (K *
C2

; T *
C2

)

System works according to solution:

That solution

solves:

RP(C2)

Time before Adaptation in

 Context C1 C1 C2

Time after Adaptation to satisfy

context C2

Figure 3.2: System Adaptation Sequence in Time

defeasible and existing specification T∗ (solutions) must be revised as per new
information.

For example, user arrives at the airport to avail her flight from Italy to
Canada via Paris for a business meeting. While at the airport after the boarding,
user want to connect to the Internet using her mobile phone to check emails
and flight details before checking in for the plane. Moreover, user wants to be
informed about any flight delay.

Taking the above example, we now present SAS adaptation sequence at
run-time in case of change in context C along the time T = t1,tn as shown
in the Fig.3.2. Let CS be a set of candidate solution, thereby determining
the run-time requirements adaptation problem as a combination of instances
of the tasks T∗) and domain assumptions K∗ such that G∗,Q∗ and SM are
satisfied. In case of changes in the context C = C1,Cn overtime for which
CS needs to be re-evaluated by the system and R is required to be used or
identified in a given context C to realize CS. By re-evaluation we mean that
system at run-time exploits its monitored information, evaluate all the possible
alternative CS or search for new ones (i.e. exploiting available services) that

52

3.5. RUN-TIME REQUIREMENTS ADAPTATION PROBLEM: ILLUSTRATION

can satisfy the run-time adaptation problem in response to changes in the C
therefore adapting to the candidate solution CS. At this SAS may perform
at sub-optimal level and can exploit automated reasoning techniques such
as planning could be applied to sort and select the candidate solutions with
respect to given preferences. We present three scenarios to illustrate how the
SAS can adapt at run-time by resolving the run-time requirements adaptation
problem.

Before Adaptation: Lets consider that at time t1, to satisfy the user’s goals
G∗ are to connect to the Internet for checking details of itinerary and inform

about the flight delays with the quality constraint Q is to have the Internet

connectivity not less than 256Kbps, SAS is exercising its candidate solution
CS i.e. set of tasks T∗, e.g. search for available connection, enable Wifi, get

itinerary details and show flight itinerary, in the current context i.e. C1 is at

the airport, and the domain assumption i.e. K∗t1 e.g. Internet must be available

at the airport, is not violated. This implies that, CS(C1) = (K∗C1, T
∗
C1) and

CS(C1) satisfies the run-time requirements adaptation problem i.e. RP (C1).
We can rewrite this as:

C1,K∗C1
,T∗C1

|vcτ G∗C1
,Q∗C1

whereR(C1 ∪K∗C1
∪ T∗C1

) identifies the set of resources R available e.g.
(Airport WiFi hotspot, Mobile Phone of the user) to perform T∗C1

.

During Adaptation: SAS while executing CS(C1), monitors a change in
context i.e. the airport WiFi connection becomes unavailable at time t2.
Due to this change in context from C1 to C2, the existing candidate solution
CS(C1) might be valid but is not adequate to satisfy the current context C2.
As a consequence, the SAS needs to re-evaluate its candidate solutions CS
by searching in its solution base i.e. ∆ or looking for solutions that can be
realized through available services. For instance, a new candidate solution
CS(C2) could be e.g. connect to the Internet using data services either 3G or

53

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

Edge on mobile phone R; or recommending user to move to the area where

the signal strength is stronger; or avail the Internet on the free booths. At this
stage, SAS may use relegation relation to infer, if the G∗ with a Q is to have

the Internet connectivity not less than 256Kbps can be relegated. After re-
evaluating the possibilities, SAS finds CS(C2) i.e. set of tasks T∗ e.g. enable

3G or Edge service and connect to the Internet with a refined Q i.e. Internet

connectivity greater than 256Kbps for the user. At this stage the influence
relation is also used to ascertain the influence of CS(C2) on user’s goals and
preference e.g. Hi-speed Internet is preferred than no Internet connection.
SAS can derive conclusions that adapting to CS(C2) will not affect K∗C2 i.e.
Any flight information must be communicated to the customer and goal G∗ i.e.
to connect to the Internet to view itinerary and inform about the flight delays

will be satisfied. Therefore, CS(C2) = (K∗C2, T
∗
C2); satisfying the run-time

requirements adaptation problem i.e. RP (C2). We can rewrite this as:

C2,K∗C2
,T∗C2

|vcτ G∗C2
,Q∗C2

whereR(C2 ∪K∗C2
∪ T∗C2

) identifies the set of resources R available e.g.
(Access 3G or Edge data services, Mobile Phone of the user) to perform T∗C2

.

In Fig.3.2, the initial solution CS(C1) becomes invalid due to change in the
user’s context (e.g. Home to Airport) or change in the environment (e.g. Swear
rain caused all the flights to be delayed), i.e. ¬ CS(C1) (e.g. flight service
becomes unavailable), and the system requires to re-evaluate other instances of
the specification. At this stage, relegation relation can be exploited to analyze
the alternative ways to satisfy the user’s goals, thus the new information is
observed to relegate the requirement to another with an alternative solution
(CS(C1) with different set of T∗) to achieve the same goal.
During Adaptation (Alternative Scenario): At time t2, during the adap-
tation phase the SAS re-evaluates its CS solution based (or requirements
database i.e. ∆), to find a solution set that satisfies the user’s goals. A can-
didate solution could be CS(C2): to provide a directed map to the user for

54

3.6. BENEFITS & RELATED WORK

shopping at airport; or CS(C3): a possibility to stay at courtesy lounge of

the airline. In other case, S4: user flight from Paris to Amsterdam can be

changed/canceled and a new itinerary is created using Thaly’s train online

reservation. The system re-evaluates the most candidate solution by ranking
them taking into account the user’s preferences i.e. A. For example, CS(C4)

� CS(C3) � CS(C2). At this stage the influence relation is used to ascer-
tain the influence on changing the itinerary (R) on goals and/or on the set of
quality constraints or preferences. For instance, SAS can derive conclusions
that adapting to CS(C4) leads to change in R (i.e. Itinerary) in case of C2(i.e.
user at Airport), where (K∗C2 (i.e. Any Euro-flight ticket can be transferable
to any Euro-rail economy or first class ticket) does not violates and affects of
CS(C4) to be the candidate solution for the achievement of G∗ (i.e. Travel
for Business) and Q∗ quality constraint (i.e. reach destination not later than
3 hours) and S∗ (preference i.e. Hi-speed train is preferred than waiting at
airport).

After Adaptation: At time t3, SAS adapts to the candidate solution CS(C2)

taking into account the context C2 and available resources R i.e. Access 3G
or Edge data services, Mobile Phone of the user, thus not violating the K∗C2.
Adaptation is performed dynamically at run-time by changing (e.g. switching,
re-configuring, optimizing) SAS from one requirements problem to another
i.e. RP (C1) to RP (C2), in response to changes in the context, user’s needs or
resource variabilities.

3.6 Benefits & Related Work

Engineering of SAS aims to resolve run-time requirements adaptation prob-
lem by finding a candidate solution in response to changing context, resource
variabilities and emerging end-user’s needs. Intuitively, resolving such prob-
lem amounts to an optimization problem, where admissible set of candidate

55

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

solutions (e.g. realized through available services) need to be stored in the
requirements database such that at run-time they can be made available at
run-time when SAS identifies potential changes in the external environment.
This enables SAS to first, monitor its available information characterized as
the core elements such that it is able to reason on them taking into account the
contextual changes and existing requirements.

The introduced concepts (context and resource) and relations (relegate and
influence) are general enough to help the analyst at design-time to formulate
competing set of requirements with supported candidate solutions in the
requirements database, thereby we could call them configurations or set of
alternative specifications.

Our point is not to show that we do something more efficiently than others,
but to give a general framework in which we can represent and understand
the key concepts, relations, and problems to be solved in the RE of SAS. For
instance, in comparison with RELAX [WSB+10], which was introduced as
a formalism for the specification of requirements in a way that allows their
relaxation (deidealization) at run-time, our Relegate relation is a more general
relation than the RELAX operators, since we do not commit to fuzzy logic:
we only ask for a way to represent alternatives and to compare them. RELAX
is a particular way to relax requirements (a particular way to implement the
Relegate relation), that obtains a straightforward interpretation in the language
we used here, and thereby, the RELAX operators cannot capture information
other than that which we can capture in the formalism presented. There are
other ways to handle uncertainty and relaxation of requirements, and our aim
is to remain independent of particular approaches. RELAX adopts a particular
approach, and our argument is that we should first understand the general
problem, and then focus on developing particular requirements modeling
languages to handle it.

At run-time, after development of the intended SAS-to-be, it starts exercis-

56

3.7. FINAL REMARKS

ing the monitoring functions and decision making modules that are built and
defined using requirements specification, SAS could reason on its own infor-
mation at run-time. However, practical methods that SAS requires to perform
non-monotonic reasoning at run-time to find candidate solutions are needed to
support such kind of reasoning. It is obvious that using our general framework
or defining the requirements problem for SAS provides more information to
the SAS itself to reason on and to take into account while deciding for an
adaptation action at run-time. There are various ways in which to search for
candidate solutions e.g. search based RE and AI planning techniques, which
are also promising in this regard. For instance, planning can be applied to sort
candidate solutions, once the context conditions are stable and resources are
identified.

3.7 Final Remarks

The problem formulation we proposed makes no assumptions and imposes
no constraints on how the information used in the problem formulation is ac-
quired. We thereby recognize that not all information can be collected during
requirements engineering, or at design time, but that this will depend on the
technologies used to implement the system. For example, the information
about the context, the formulas in C may – if the implementation technology
allows – be obtained by recognizing patterns in the data that arrives through
sensors, then matching patterns of data to templates of proposition or implica-
tions. We stayed in the propositional case, since this was enough to define the
main concepts and relations, and subsequently use them to formulate the run-
time requirements adaptation problem. The actual system will operate using
perhaps more elaborate, first-order formalisms to represent information, so as
to make that information useful for planning algorithms applied to identify
candidate solutions. However, regardless of the formalism used, the system

57

CHAPTER 3. REQUIREMENTS PROBLEM FOR SELF-ADAPTIVE SOFTWARE
SYSTEMS

still needs to be designed to ensure the general conditions and relations that the
problem formulation states: e.g., that the system needs an internal representa-
tion of information pertaining to contexts, domain assumptions, tasks, goals,
and so on, that goals and quality constraints are satisfied through consistent
combinations of C, K and T , among others. In other words, we may change
the formalism, but the principles on what information we will be dealing with,
and what relations it should stand in, when engineering SAS does not change:
we will still have goals to satisfy, preferences to take into account, domain
assumptions, and context conditions that we should not violate.

58

Chapter 4

Continuous Adaptive Requirements
Engineering (CARE) Framework

4.1 Overview

In this chapter we introduce the Continuous Adaptive Requirements Engineer-
ing (CARE) Framework. The CARE framework is proposed to support con-
tinuous requirements engineering by the system itself involving the end-user
at run-time. The rationale behind CARE is that changes occur continuously in
the operational environment in which the system and end-user is part of. The
only way to understand what changes are acceptable in a system is with re-
spect to its requirements, and more specifically, end-user’s intentions. For this
reason, CARE prescribes continuous refinement of requirements at run-time to
support the dynamic RE problem defined in the previous chapter. We provide
a clear distinction between RE performed at design-time involving the human
user i.e. analyst/designer, and RE performed at run-time by the SAS itself
involving the human user i.e. end-user (if needed). Actually, CARE prescribes
adaptation types that are defined with respect to the level’s of RE for SAS
envisioned by Berry et al. in [BCZ05], which provides a way to reason about
adaptation at design-time and run-time. A conceptual architecture is defined
to support this method in CARE. The architecture is general to the extent that

59

CHAPTER 4. CARE FRAMEWORK

it is not intertwined with any specific technology or technique.

In fact, CARE is thought for software-intensive systems specifically that
are expected to operate continuously, such as service based applications
(SBA) [DNGM+08]. SBA are one particular kind of SAS as they operate in
an open environment (i.e. the Internet) and relies on the available services
(built by third party). These services are used to operationalize not candidate
solution at design-time (i.e. during the specification of requirements) but also
to furnish end-user needs at run-time (i.e. when new service is preferred over
another to resolve a new requirements problem). In this context, SBA need
to adapt continuously in response to dynamic changes either mediated by the
environment or through end-user needs. Thus, CARE is proposed to bridge the
gap between RE activities that are performed at design-time and at run-time.

The rest of the chapter is organized as follows. In Section 4.2, we present
key underlying adaptation types that are defined in line with the four levels
of RE for SAS by Berry et al. in [BCZ05]. In Section 4.3, we distinguish
between RE at design-time and RE at run-time clarifying the role of the
human user, nature of the requirements and type of analysis. In Section 4.4,
we define the conceptual architecture based on SBA discussing the CARE
framework at run-time. In Section 4.5 we compare our proposed framework
with the existing proposed frameworks to highlight the potential benefits of
CARE. Finally, in Section 4.6 we summarize the key contributions of CARE
framework that extend the state of the art.

4.2 RE levels and Adaptation Types

We elaborate the distinction between RE activities at design-time and at run-
time with the help of adaptation types. These types are defined based on the
levels of RE proposed by Berry et al. in [BCZ05]. Traditionally, RE activities
are performed by the analyst/designer at design-time taking into account the

60

4.2. RE LEVELS AND ADAPTATION TYPES

end-user’s needs. In these activities, design decisions are taken anticipating
the run-time. This limits the scope of the SAS under construction, when
it is deployed in real environment. Changes in the operating environment
are expected to occur continuously, which may or may not happen in an
unanticipated and uncertain way. Thus, SAS while running must be able to
cope with these changes and adapt to the new candidate solution that resolves
the dynamic requirements problem. To fulfill this aim, CARE prescribes
adaptation types that are defined enabling SAS to perform RE activities by
itself involving the end-user (if needed) at run-time.

The classification discussed in [BCZ05] proposes four level of RE for
SAS (called dynamically adaptive systems in that paper). Consider (after
[BCZ05]) a system realized in (alternative) programs S ∈ S for a given set
of (anticipated) domains D ∈ D. Level 1 RE is performed by the designers
to produce a set of programs S, anticipating a set of possible domains D.
Level 2 RE is performed by the system itself, at run-time, to select between
programs as the operating environment changes. Level 3 RE is done to update
the requirements themselves in response to unanticipated changes. Finally,
Level 4 RE refers to research on RE in DAS (as proposed in this chapter).
Aside: the difference between autonomic or SAS and requirements-aware
systems [SBW+10] is that the former does not consider requirements explicitly,
while the latter always makes reference to a consistent and contemporaneous
requirements model.

We believe there are three different tasks involved in requirements-aware
systems: one, how to change the current S to a new S ′, with respect to the
system requirements – i.e., the mechanics behind switching programs; two,
how to select which new S ′ to choose, with respect to the requirements – i.e.,
the decision problem; and three, corresponding to Level 3, how to update the
requirements themselves when there is no available S ∈ S which responds to
the new D – the requirements problem.

61

CHAPTER 4. CARE FRAMEWORK

Based on this we introduce our classification of adaptation types that
CARE prescribes (i.e. an adaptive SBA, which instantiates CARE) to use for
adaptation reasoning at run-time. For simplicity sake, we use SAS to refer to
adaptive SBA.

Type 1 consists of changes which are anticipated at design-time and for
which alternatives candidate solutions already exist in the specification, and
the best alternative is obvious. This type conforms to Level 1 in [BCZ05].

Example: During the World Cup, Twitter’s servers become unresponsive.

The manager service automatically offloads jobs to an Amazon content dis-

tribution network. Type 1 events are familiar and anticipated. This is the
classical autonomic computing scenario.

Type 2 consists of changes in the environment e.g. context, preferences
etc. The SAS must monitor such changes; after evaluating the change (e.g.
variation in operating or user context, or availability of the resources, or change
in end-user preference) it adapts to the most feasible alternative solution
(which might not be in existing specification) using different available services.
Here, the SAS mainly exploits the alternative candidate solutions by being
aware of its user’s goals and preference. Alternatively, it looks for similar
solutions, that can satisfy the change per se. This type relates to Level 2
in [BCZ05].

Example: A SAS knows the user wants a four-star hotel near the beach

(monitor e.g. preferences), but cannot optimize both variables simultaneously.

It tries to book the cheaper three-star hotel near the beach, which also satisfies

the user’s cost preference, or it proposes to her a four-star near the city center.

Type 3 consists of changes which are unanticipated by the designer, due
to partial or uncertain knowledge about the environment. The events are also
unfamiliar to the end-user. However, the system can query the end-user for
new requirements and attempt to replan dynamically to accommodate them.
The SAS relies on a shared ontology to infer similarity and techniques to find

62

4.2. RE LEVELS AND ADAPTATION TYPES

the appropriate service satisfying the new or emerged requirement. This type
relates to the Level 3 in [BCZ05].

The main difference with respect to Level 3 in [BCZ05] is that our frame-
work involves the end-user in specifying new requirements (where end-user is
seen as distinct from the analyst/designer). The system itself analyzes the end-
user’s context variation as a refinement of existing requirements or an entirely
new requirement. Once an appropriate solution is found, this new requirement
is updated in the original specification at run-time. When there is no solution
found, the system opts for Type 4. In Berry et. al.’s classification [BCZ05],
Level-3 RE is performed before Level-2, but the order can be changed. In our
case, we perform both Level-2 and Level-3 concurrently unless we have to do
offline maintenance or evolution (our Type-4).

Example: Julia reaches Oslo, but all hotels are full, and the system specifi-

cation does not include the alternative of searching for home-stays. At this

point, the system prompts Julia to say that there is no suitable itinerary, and

asks for possible work-around. Julia informs the system that a home-stay (a

sub-concept of Accommodation) is possible, and the system attempts to

find a service which can handle this (e.g, using swoogle.umbc.edu).

In the above example, user specifying an option of “Home-Stay” is consid-
ered as a new requirement for the system to operationalize. Such requirement
is an alternative to users’ high level goal “Find Accommodation”. In service-
oriented RE (SORE) [TJWW07], user requirements are used to discover
services either at design-time or at run-time to operationalize them. The
requirements analysis is conducted with a pre design-time knowledge about
the existing available services. Requirements model requires a continuous
revision as new services are discovered to operationalize them, differently as
in case of object oriented analysis and design.

Type 4 consists of Type 3 events for which there is no possible addition or
simple refinement. A new specification and the relative new SAS function-

63

CHAPTER 4. CARE FRAMEWORK

alities are generated. In our view of requirements-aware systems, this is the
worst-case scenario.

We term Type 4 changes system evolution, as distinct from system adap-

tation (Types 1-3). As a further investigation on Type 4 changes, which is
described in the future work, we have investigated a framework for dealing
with evolving requirements. A proposed framework is presented in [PQS+11].
This is roughly analogous to biological systems, where adaptation reflects the
ability of an individual to cope with environmental variance, while evolution is
a widespread genetic change to prolonged stimuli. One should be careful not
to over-extend this metaphor, however, as biological systems are not designed
nor does evolution progress towards ‘better’ designs.

4.3 RE at Design-Time Vs RE at Run-Time

The two RE processes supported by CARE both at design-time and run-time
with their interdependencies respectively are shown in Fig. 4.1. At design-time,
the analyst/designer exploits the stakeholders needs and performs analysis
to formulate the requirements problem i.e. finding the specification that can
resolve the requirements. At run-time, we propose that RE must be performed
by the SAS itself involving the end-user to cope with the continuous changes.
The conceptual difference between these processes are based on: (1) the
involvement of human user, (2) role of the SAS itself and (3) the nature of the
requirements that are kept “alive” both at design-time and at run-time.

4.3.1 RE at Design-Time

While designing SAS, the role of the analyst/designer (human) is critical to
perform RE activities starting from the elicitation of stakeholder’s intentions
(or from market studies in case of a market-driven development), and later to
specify the requirements of SAS (see Fig. 4.1, upper part). Additional input

64

4.3. RE AT DESIGN-TIME VS RE AT RUN-TIME

Figure 4.1: RE process at Design-time and Run-time

to the RE process at this stage is domain knowledge or domain assumptions,
represented as K in Fig. 4.1, upper part. The core ontology of RE for SAS
(introduced in previous chapter) is instantiated using the domain knowledge
(e.g. Travel domain). Below we present the nature of the requirements at
design-time.

Requirements at Design-Time

Requirements are expressed as Goals and quality constraints that may be
mandatory or optional, and preference relations can be defined over them (A).
A requirement problem is represented as a goal model with labeled nodes and
edges, which captures instances of the concepts and relationships of the core
ontology of requirements for SAS. A solution consists of a collection of tasks
and domain assumptions that are valid in a context, such that, when the tasks
are executed they entail the satisfaction of all mandatory goals and maximize
satisfying the optional ones.

Different solutions can be associated to a requirements database (∆). They
may be classified in terms of preference and optionality requirements. We
use LSAS (defined in Chapter 3) to support expressing stakeholder goals and
preferences, combined with a solution repository.

65

CHAPTER 4. CARE FRAMEWORK

Design-Time RE process

An analyst follows a systematic approach to model requirements and
specify requirements of SAS using the concepts and relations introduced in
LSAS language. The core concepts of LSAS are described in the previous
chapter. Below we describe the conceptual process to highlight the key aspects
of CARE’s design-time activities as shown in the Fig. 4.1 upper part.

Elicitation: is performed using our LSAS language constructs (defined in the
previous chapter), which represents the core concepts defined in the core
ontology of requirements for SAS. The analyst captures the relevant informa-
tion from the stakeholders. Following our requirement problem definition,
design-time requirements are elicited and formalized into a set of goals, quality
constraints and preferences (optional requirements) and domain assumptions
that determine the stakeholder needs.

Analysis: is performed to analyze the requirements. Here the relations defined
in the core ontology of requirements for SAS are used. Mandatory and optional
goal and quality constraints are refined into tasks that operationalize the high-
level goals using inference relation. This results into a goal graph where
multiple goal refinements are analyzed with respect to their satisfaction criteria.
Information about the softgoals is added to analyze competing requirements
that can influence or be influenced by each other.

Elaboration: is performed to further extend the requirements model with
more precise information. With this premise, the requirements in requirements
problem are used to describe system’s properties. They include not only
functional or non-functional requirements but also monitoring specification,
evaluation criteria and adaptive actions specified as tasks. In fact, tasks are
specified to ensure that the system’s behavior meets them when operating in a
dynamic environment. The dynamic information pertaining to the system or
end-user is added using the concepts: context and resources. Relations among
requirements are refined to avoid any conflicts. The domain knowledge is

66

4.3. RE AT DESIGN-TIME VS RE AT RUN-TIME

used to elaborate the terms used to specify context and resources. This done
when the core ontology is instantiated by the domain information.

Specification: is performed by the analyst by finding sets of tasks and domain
assumptions which can make mandatory requirements hold. Design-time
requirements are represented in a goal model after performing the goal analysis
and elaboration resulting into a specification of requirements. A specification
P (also known as a ‘solution’ to the requirements problem) is found and
stored in the requirements database ∆. Such specification can be used by the
systems at run-time as a Live Artifact to reason for adaptation and to re-plan,
if necessary. Each requirement encompasses maximum possible alternatives
that are considered at design-time, i.e. it defines Type 1 adaptation. Also
an incremental revision can be applied, enables managing Type 3 adaptation
situations.

Example

Here we use the example from the Travel companion case study introduced
in Chapter1. The mandatory goals of the end-user are Travel on Business
and Business Successful, where as Provide Assistance Service for the
SAS. Below we present the kind of RE performed by the analyst to structure
the requirements for the SAS-to-be.

Given the elicited information or otherwise acquired, an analyst struc-
tures this information as goals e.g. Travel Companion SBA. The resulting
goal-model reveals the main goal of supporting its end-user Provide Service

Assistance is AND-decomposed (using inference relation) into the subgoals
Service Request Created, Service Data Collected, Service Selection Made,
Update Specification, Service Delivery Ensured, which have been in turn
be further decomposed. For instance, the goal Service Request Created has
been OR-decomposed (using inference relation) into two alternative subgoals:
Service Request Created by User and Service Request Created by SBA. This
captures the fact that a new requirement at run-time can be either gather from

67

CHAPTER 4. CARE FRAMEWORK

the user or by the SBA itself, due to either a context change or an event.

The goal Service Request Created by User has been further OR-decomposed
(using inference relation) into two sub goals: Preferences Changed and Re-

quired Service Searched, both contributing positively to the soft goal Conve-

nience. This makes clear that the new requirement can be constructed using the
change in users’ preferences or by looking up for a required service. Similarly,
the goal Service Request Created by SBA is OR-decomposed (using inference
relation) into two sub goals: Due to Change in Context and Due to Change in

Events, both contributing positively to the soft goal Timely Information. Here
the new requirement is generated by the information coming from the change
in the context or by the occurrence of any unanticipated event.

To lookup for the service based on the new requirement, the goal Ser-

vice Data Collected is AND-decomposed (using inference relation) into two
subgoals: Candidate Service Selected and Check Available Services with a
positive contribution to the soft goal Efficiency. The service availability is
conditional, as the required services may not be available when the look up is
performed. The service selection can be performed automatically, depending
upon the context or it can be selected by the user, thus the goal Service Se-

lection Made is OR-decomposed into two subgoals: Automatic Selection and
Manual Selection contributing positively to the soft goal Timely Information.

Finally, upon selection of an appropriate service, goal Update Specification,
AND-decomposed (using inference relation) into two subgoals: Refine Exist.

Req. and Add New Req. subsequently contributing positively to soft goal
Flexibility. The update is either refining the existing requirement of adding
new service request into the initial specification. The goal Service Delivery

Ensured is OR-decomposed into two subgoals: Service Composed and Service

Orchestrated, both contributing positively to the soft goal Availability. As the
composition or orchestration is performed the service delivery must ensure
the availability or the existing services, thus making the SBA more robust.

68

4.3. RE AT DESIGN-TIME VS RE AT RUN-TIME

4.3.2 RE at Run-Time

At this stage the main difference is the role of the analyst, which is played
by the SAS itself. The key stakeholders are end-user and the SAS itself, as
depicted in the Fig. 4.1, lower part. At run-time, SAS performed the RE
activities to cope with the dynamic changes (e.g. change in end-user needs
and preference, context variations and availability of resources). The process
is dynamic as it takes place at run-time. Below we clarify the nature of the
requirements at run-time.

Requirements at Run-Time

At run-time, new requirements are captured or acquired, given by the user
or otherwise gathered as an information by the SAS while monitoring the
environment or the end-user. Requirements at run-time are defined as service
requests. The dynamic aspect at run-time are captured by the system through
monitoring or new requests may be raised by the end-users. Service request
includes: functional goals of the user, quality constraints or preferences, con-
text information (user or operational), resource information and other facets
as shown in Fig. 4.2. The concept of Service Requests has been introduced to
manage “requirements at run-time”. To use this, we define a machine-readable
format to express such requests in XML. Fig 4.2 shows such a Run-time
Requirements Artifact (RRA, hereafter). RRA can be expressed by the user
(switching to Type 3 adaptation) or it can be generated by the system taking
into account the dynamic changes in the environment through monitoring
(switching to Type 2 adaptation).

The RRA is evaluated at run-time to look for available solutions (e.g.
competing services) to the requirements problem from the ∆. In case, there
are not solution in ∆, SAS looks up for a relevant service that can best
satisfy the intended RRA. This RRA is stored and used to update the initial
specification, if new requirements are identified or new competing services

69

CHAPTER 4. CARE FRAMEWORK

Figure 4.2: Run-time Requirement Artifact (RRA)

are selected.

The key benefit of translating and acquiring a end-user’s requests (RRA)
as requirement is two-fold. First, the end-user is involved in the RE process
enabling the SAS to (1) get new requirements (new services to make use of,
existing services to drop); (2) refining existing requirements, which just re-
quires an alternative solution to be added with the existing one to satisfy them;
(3) to accommodate user’s preferences over time by refining the selection of
services for quality reasons. Secondly, the SAS (e.g. Travel Companion) does
RE on its own for the user. It provides an optimal solution to the user based on
her preference e.g., minimum cost and convenience, context (profile, location,
operational) and resource variability e.g. mobile device; or changes that might
occur due to unanticipated events e.g. flight delays.

Run-Time RE process

We now describe the CARE’s key RE activities that are performed by SAS
at run-time. It includes: Service Request Acquisition, Service Lookup, Service

70

4.3. RE AT DESIGN-TIME VS RE AT RUN-TIME

Selection and Update Specification along with their respective input/output
operations, i.e. Srequest, Savailability, Sconfirmation and Specupdate as shown in
lower part of the Fig. 4.1. We instantiate an specification instance i.e. P ′ of P
from ∆, which is an input to the CARE activities.

Service Request Acquisition (Srequest): is performed to acquire service
request either as a result of monitoring users’ context and/or preferences or
expressed as a search query in natural language (using keywords or a whole
phrase) by end-user. Once the service request (RRA) is acquired from the user,
the existing specification P ′ is compared with the given request to identify the
operation to be performed (switch to Type 3). Specific operations are defined
to enable the SAS to reason for refining its requirements. For example, add
a new goal; add a new task; substitute, or relegate an existing goal or task
that satisfies the existing goal – these operations are defined in the following
Chapter 6. Note, that each operation has consequences such as looking up a
new service or reconfiguring the existing ones. Alternatively SAS generates a
service request on its own as a result of monitoring, if any change in context
conditions or violation of a goal achievement condition is detected (switch
to Type 2). In this case, SAS opt to take corrective actions or propose set of
actions to the user in case of error interpreting her input (switch to Type 3). A
run-time requirement artifact (RRA) is filled to lookup relevant services that
operationalize the given request.

Example: In the scenario, the main goal of the user is Find Accommoda-

tion. Due to a flight delay in reaching Amsterdam, the hotel booking has been

canceled. The SAS propose some alternative accommodations which are not

satisfactory. The user then generates a RRA Stay at friend’s Place by providing

her friend’s address. This option was not perceived during designtime and

is treated as new requirement, which requires an update to the original goal

specification.

At run-time, SAS looks for more than just a single optimal solution to

71

CHAPTER 4. CARE FRAMEWORK

a requirements problem. It instead presents a set of solutions, which helps
managing uncertainty. Possible alternatives candidate solutions are specified
for the SAS, which enables it to try them in case of possible changes at
run-time. Actually, uncertainty is resolved by monitoring and switching
tasks. In the above example, we describe a case where the user changed her
accommodation goals to stay with a friend. This new requirement is added
to the model as a RRA at run-time, and the corresponding implication for
the specification is either explicitly given (“I will call her”) or obtained from
a service registry (“Amsterdam White Pages”). The solution with the task
Reserve Online is removed and returned to the repository, and the new task
added to the specification P ′.

Service Lookup (Savailability): This activity is initiated after analyzing the
RRA (switch to Type 3) or as a result of monitoring the performance of an
existing service (switch to Type 2). Lookup is performed either in the existing
pool of services of the SAS or using a web service search, e.g. Woogle or
Seekda. The lookup operation tries to match/compare user’s keywords and
service descriptions to locate available services by showing a list of possible
services to the user or choose the most relevant competing service taking into
account the users’ preferences.

Example: Arriving at Amsterdam airport, the SAS proposes alternative

hotels nearby taking into account the current location context of the end-user

and using Google places it shows possible hotels with respect to her cost

preferences. Alternatively, it displays hotels using a service e.g. Booking.com

Service Selection (Sconfirmation): The SAS actively involves the end-user
where necessary (switch to Type 3). The RRA is populated with a resulting
list of services, which is shown to the user for selection and confirmation. In
case SAS is proposing a service based on user’s preferences e.g. LowCost

or based on the competing advantage of an existing service performance e.g.
Response Time (switch to Type 2), the best possible service is shown to the

72

4.3. RE AT DESIGN-TIME VS RE AT RUN-TIME

user for the confirmation. At this step, the user confirmation is used to refine
the current request (RRA) i.e. adding details about the selected services that
operationalizes the service request (RRA).

Example: The system attempts to update the itinerary to accommodate

flight cancellations. It proposes to the user a bus trip from Austria to Amster-

dam. The user reject this and selects a train via Paris instead.

Update Specification (Specupdate): Once the RRA has been completely
filled using the users’ input (switch to Type 3) or monitored information
(switch to Type 2), this activity is triggered as a consequence. An update to
the initial specification P ′ is ensured either through refinement of existing or
addition of new requirements.

Example The alternative sub goal is added Stay at friend’s Place, which is

operationalized by looking up services e.g. Google maps, and transportation

service, motivated by the user’s preference e.g., taxi is more convenient than

bus and metro. This changes the cost preference. In this case, an alternative

to the goal FindAccommodation is added, a change in preference e.g. Taxi �
Bus �Metro is accommodated considering Convenience � Cost. This then

implies new services might be selected.

To summarize, CARE framework’s run-time process is performed by the
SAS that instantiates it. Requirements model is reappraised and reconfigura-
tion to SAS behavior is reasoned based on the adaptation types involving the
user, where needed.

Illustration of Example
At design-time, analyzing the end-user’s goals: Travel on Business and

Business Successful. A combination of tasks and domain assumptions is a
candidate solution for the problem of satisfying the mandatory goals. There
are possibly many candidate solutions. For example, the set S1: {Receive
(Tickets) via Email, Book Plane, Reserve Online} is a candidate solution.
An alternative is to replace Receive (Tickets) via Email with Receive

73

CHAPTER 4. CARE FRAMEWORK

(Tickets) by Mail to produce S2.

To sort candidates, we use a decision procedure for ranking them, taking
into account the number of preferences satisfied and the number of options
included. A candidate solution with strictly more of either satisfied preferences
or included options is a preferred solution. Returning to the solution S1, we
see that since Receive via Email is preferred to Receive via Mail, S1

dominates S2. S1 has one satisfied preference and one optional goal achieved
(Convenience) while S2 has none.

Preferences and options are incomparable, so this is a multi-criteria decision
problem, and there may be a Pareto-front of equally acceptable solutions (e.g.,
solutions which satisfy one preference and two options, or two preferences and
one option, respectively, are incomparable). One such solution is chosen by
the system, and used as our initial specification P . The remaining candidate
solutions are stored in a requirements repository (∆). The idea is that as our
SAS detects changes in the situation, other solutions (alternatives) become
applicable, and another might be more suitable. Consider the case where a
user is offline. In this case, the task Receive via Email is no longer possible,
and the system will have to switch to another task to achieve the goal Obtain
Tickets.

At run-time, the solution repository is searched by SAS (e.g. Travel
Companion), and a solution which matches the current situation is selected
(P). The system monitors the environment for changes (such as a delayed
flight), and then makes system adaptations according to which Type the change
impacts. In Types 1 and 2 adaptation, the existing solutions in the repository
suffice for adaptation or in some cases (Type 2 adaptation) it can look for
available services as per the service request (RRA). In Type 3 adaptation, the
user can add requirements, including preferences, and SAS exploiting ∆ re-
evaluates the set of solutions incrementally. In Type 4 adaptation, the system
is taken offline and we begin at the CARE’s ‘design-time’ phase, so to speak.

74

4.4. CONCEPTUAL ARCHITECTURE OF CARE

There are two components to the run-time reasoning. In one, we use retrieval
methods to find and retrieve requirements solutions from the repository. In
the other, the system works with the user to identify new requirements or
modifications to the model, which are then fed back into the model reasoner.

For instance, while the SAS is in operation, it detects that the user’s flight
was canceled. The system attempts to update the itinerary to accommodate
flight cancellations. It cannot automatically shift plans (Type 1), since there is
no obvious choice. It proposes to the user a train trip via Austria to Amster-
dam. Since a (Type 2) event occurred, it attempts to replan using an existing
alternative. Since the optional goal Ease of Travel is not satisfied, and yet the
train will increase the price of the trip (π2), the user reject this. As there are no
remaining alternatives, the system shifts to (Type 3), and prompts the user for
a run-time requirement. The user suggests booking a bus. Choosing to go by
bus satisfies the Minimize Cost goal, although Ease of travel is not satisfied.

It should be noted that this example is similar to examples in the AI
planning domain. Planning is a lower-level operation using goal operational-
izations, devising a plan to satisfy them. Our RE reasoning is more high
level, and involves design decisions about the system to be, maintaining a
separation between the problem space and the solution space. In a low-level
implementation, of course, both AI planning and RE reasoning are both search
problems.

4.4 Conceptual Architecture of CARE

In Fig. 4.5, we present the architecture of a SAS, which realizes our CARE

framework. We describe the key aspects and activities of the architecture
using Travel companion case study examples as described below:

Example 1 In Fig. 4.4, the system while monitoring users’ itinerary detects

that the flight has been delayed for 1 day in Paris. Having no other alternative

75

CHAPTER 4. CARE FRAMEWORK

Figure 4.3: User Specified RRA. Figure 4.4: System Generated RRA.

to choose in its existing P ′, it looks for another possible solution using existing

repository of specification (i.e. P) to select another P ′, which might satisfies

users’ goals. It generates an RRA with a goal Find Accommodation along

with its operational plan Find Hotel and operationalize it with the candidate

services (e.g. Booking.com) taking into account users’ preferences (¬ Far

from Airport, Cost⇐70 Euros) with a quality constraint (e.g. Cost effective)

and context (Paris Airport) and resources (e.g. credit card) information. Since,

user opts to book a hotel and this RRA is updated in the initial specification

P ′.

Example 2 Subsequently, taking into account users’ context (location)

information, it proposes list of options e.g. places to eat, visit museums

or watch movie along with alternative ways to commute based on users’

preferences (i.e. Cost or Convenience). User rejecting these options, propose

to Go for Shopping and input Find Shopping Malls. System, upon acquiring

this new requirements, tries to operationalize it searching and providing the

user with a list of Malls along with possible routes to reach them using Map

service (e.g. Google Maps). It also propose transport service taking users’

preferences i.e. Bus � Taxi � Metro, along with quality constraints i.e. Good

Places, as shown in Fig. 4.3.

Companion SBA includes a User Agent; Control Agents i.e. monitor,
evaluator, adaptation agent; Reasoner Agent; Service Monitor Agent and Ser-

76

4.4. CONCEPTUAL ARCHITECTURE OF CARE

Figure 4.5: Conceptual Architecture of CARE

vice Integrator Agent that helps performing the CARE run-time RE activities
i.e. Service Request Acquisition, Service Lookup, Service Selection and Up-

date Specification. A set of available services (e.g. Maps, Calender, Travel,
Weather and News Services) are used to accommodate end-users’ needs and
preferences. Service can be added, removed or modified with new ones.

Each activity is represented by a square box with a loop symbol meaning
that each activity is performed continuously. Agents supporting these activities
are represented with square boxes inside relevant activity. Solid arrow head
lines represents coordination among activities along with input/output opera-
tions specified over them. Dotted single arrow head lines represent Lookup
and update operations over repositories as shown in Fig. 4.5. The underlying
implementation tier is service-oriented, rest we are agnostic about how the
underlying services are implemented.

77

CHAPTER 4. CARE FRAMEWORK

4.4.1 Service Request Acquisition

is performed by two agents: 1) User Agent, whose role is to provide an
interface to its user enabling her to express service requests (Srequest) as RRA.
RRA can be either expressed by the user or Companion itself. This agent
also helps the user to manage her travel itineraries, set preferences, manage
personal contacts and to add services by searching them e.g. Weather, News
etc.; 2) User Monitor Agent is focused on detecting changes in the existing
requirements (i.e. goals, preferences), user context and change or new service
requests.

This activity is mainly responsible for eliciting the new requirements or
refining existing requirements in the form of service requests (i.e. RRA). The
existing specification P ′ in the specification repository is compared with the
given request (i.e. RRA) by performing Lookup<O,P> operation, where O
represents shared ontology and P represents specification repository. This
operation compares the RRA (XML fields) with the existing specification P ′

(represented in XMI format) by pattern matching using regular expressions
and identifies a corresponding action from the ontology to populate the RRA.

Companion SBA upon monitoring the contextual changes (e.g. changing in
user profile, location) in the environment (e.g. events) may identify a violation
of a goal or an unexpected performance of a service leading to generate a
service request (RRA) on its own and opt to take corrective actions or proposes
actions to the end-user in case of error interpreting her input. Note, that each
operation has consequences e.g. looking up a new service or reconfiguring the
existing ones.

Subsequently, RRA is passed as (Srequest) (RRA) to the Feedback control
agents for identifying suitable operationalization by looking for alternative
or new services that can satisfy the users’ intentions. Later, an update to
the service request repository tagged with (RRA) is made using operation

78

4.4. CONCEPTUAL ARCHITECTURE OF CARE

i.e. SUpdate<RRA>. At this stage RRA is updated in the repository with the
identified actions and specified new/changed requirements.

Example: The main goal of the user is Travel For Business. We refer

to the Example 2, where user provide input as Go for Shopping and Find
Shopping Malls, Companion SBA operationalize it by searching for shopping

malls by monitoring users’ context (i.e. Paris Airport) evaluating the change

in itinerary (i.e. Flight Delay in Paris) and providing a list of malls to

visit asking user for preferences to commute (i.e. Bus is preferred over taxi

and metro), by being aware of her softgoal Minimize Cost. These options

were not perceived during designtime and are treated as new requirements

(additional goals/tasks), which are operationalized by selecting available

services. Working in conjunction with the end-user, Companion SBA search

for optimal solutions (e.g. Maps Service: Google Maps, Transport Service:

Paris Bus) and simultaneously RRA is generated acquiring users’ input and in

parallel system fill it based on monitored information.

4.4.2 Service Lookup

is performed once the RRA is created. Feed back Control Agents - Main
Monitor Agent collects input acquired from User Agent, feeds to Service
Monitor Agent to perform this activity. RRA is filled with users’ input and
monitored information e.g. context (location) and events - flight delay. Service
Monitor Agent performing this activity, discover services by looking up using
e.g. Seekda or Woogle web service search engines. In case of requirements
refinement, competing services are replaced with related ones, where as in case
of requirements addition new services are searched by performing SLookup
operation using search engines. Correspondingly, operation SAvailability is
returned with list of services along with service signatures e.g. Map Service -
Google Maps.

Current service description and discovery standards i.e. WSDL and UDDI

79

CHAPTER 4. CARE FRAMEWORK

rely on structured format (e.g. XML) to describe services (i.e. service sig-
natures). The search is performed based on the keywords in RRA. Service
Monitoring Agent, matches keywords in RRA with the Service descriptions
to help discovering the services, collecting information about existing service
QoS by matching given users’ preferences.

Example: Arriving at Paris airport, the Companion SBA monitors a delay

in flights using Weather Service, and Lufthansa Itinerary Update Service. It

then proposes the user to book a hotel using Booking.com by asking her to

specify preferences i.e 3 Star, ¬ Far from Airport, Cost⇐70 Euros) with a

quality constraint (e.g. Cost effective), see Example 1

4.4.3 Service Selection

is performed by Integrator Agent based on an input received from Service
Lookup activity as SRequest,Description and from Adapt Agent as SSelection. For-
mer holds the candidate services along with their service signatures (e.g.
WSDL) and latter provides the criteria for selection of service. This activity
relies on Integrator Agent, which helps in orchestrating or composing the new
services. It selects the candidate service that best operationalize the users’
service request (RRA). Correspondingly, the Adapt Agent seeks confirmation
from the user as SConfirmation. Once the confirmation is given, the RRA is
filled with the selected service, which completes it. Later RRA is updated by
performing SUpdate<RRA> operation.

Example: The system attempts to update the itinerary to accommodate

flight cancellations. It proposes the user to stay at Hotel, providing a list of

Hotels through Booking.com, providing routes to hotels using Google Maps

and propose commute with Bus or Taxi by using Airport Shuttle Service or

Airport Limo-Taxi Service to Hotel. User confirm by selecting the proposed

hotel as per her preference i.e. 3 Star hotel, ¬ Far from Airport, Cost⇐70

Euros, and selects the Airport Shuttle as per her cost preference

80

4.4. CONCEPTUAL ARCHITECTURE OF CARE

4.4.4 Update Specification

activity ensures an update to the repositories as shown in Fig.4.5. A Reasoner
Agent performs update operations e.g. lookup, plan, re-plan and update to ex-
isting repositories e.g. Requirements specification P , shared ontology O and
service request repository RRA. The reasoning rules and details about refine-
ment operations we have identified e.g. AddGoal, AddTask, SubstituteGoal,
SubstituteTask, RelegateGoal, RelegateTask, DeleteGoal, DeleteTask; pro-
vides support for continuous management (refinement) of requirements at
run-time.

Example The new alternative goal is added Go for Shopping along

with its operational plan Find Shopping Malls, which is operationalized by

looking up services e.g. Map, and Transportation service, based on user’s

given preferences e.g., Bus is convenient than metro and cheaper than taxi.

In this case, an alternative to the goal Travel for Business is added, new set

of preference e.g. Bus � Metro � Taxi is accommodated considering Cost �
Convenience and a quality constraint i.e. Good Places. Correspondingly, set

of services operationalizing this goal are also updated.

4.4.5 Feedback Control Agents

are responsible for being aware of end-user’s goals and preferences and new
service requests SRequest(RRA) through monitoring, evaluating such changes
and adapting to a suitable alternative that can satisfy them.

• Main Monitor Agent is responsible for getting feed back from User

Monitor Agent and Service Monitor Agent as SRequest(RRA). It collects
information about the external events, changes in end-user’s context,
goals and preferences and provides a timely information to the Evaluator
Agent by logging the changes.

• Evaluator Agent evaluates the events, perform Lookup<O,P> on the

81

CHAPTER 4. CARE FRAMEWORK

repositories if needed and decide about the appropriate behavior (i.e.
changing the service based on improved QoS criteria), thus letting the
Adapt Agent to select and enforce the candidate plan to invoke the service
that operationalizes the RRA. The candidate refinement operations to
refine the specification artifact e.g. AddGoal, AddTask, SubstituteGoal,
SubstituteTask, RelegateGoal, RelegateTask, DeleteGoal, DeleteTask;
along with service selection criteria are decided by this agent.

• Adapt Agent takes input as the decision criteria for the service selec-
tion. It shares the criteria with the Integrator Agent as SSelection(RRA)
and subsequently seek confirmation from the user for candidate ser-
vice as SConfirmation(RRA). Later, this agent also performs an update
SUpdate<RRA>. Moreover, the candidate operation to update the specifi-
cation is also selected based on given input from Evaluator Agent and
subsequently added in the (RRA).

4.5 Related Work

In this chapter we presented a novel CARE framework for continuous refine-
ment of requirements at run-time by the SAS itself involving the end-user.
A conceptual architecture for SAS is described that realizes CARE’s RE ac-
tivities at run-time. A classification of adaptation types is presented that is
prescribed by the CARE framework to reason for adaptation at run-time.

Various approaches has recently presented frameworks for realizing self-
adaptive systems. For instance, Morandini et al. [MPP08] presented a goal-
oriented framework for developing SAS. In this framework Tropos method-
ology has been extended to incorporate different extended models for goal
type, environment and failure. Concepts associated with these models are
also proposed such as goal types, conditions and failure types. The approach
followed is strictly intertwined with the agent-oriented BDI framework. A tool

82

4.5. RELATED WORK

has been implemented to derive the code definitions. In this case, designer has
to be involved through the process and agent’s behavior is explicitly coded at
design-time. The positive point in this approach is preservation of goals, but
on the other hand new and changed requirements cannot be accommodated at
run-time, thus (Type 1, 4 adaptation supported).

Similarly, a conceptual architecture for reconfiguration is proposed by
Daliaz et al. in[DGM09]. This architecture guides provides necessary com-
ponent details while designing SAS. Key principles are defined for this ar-
chitecture and a variant of Tropos goal models is proposed which represents
contextual variabilities. The proposed architecture is targeted for a multi-
agent environment, e.g. socio-technical system. Contextual goal models and
explicit social variability is considered along with policies to guide reconfig-
uration of SAS. The limiting feature is that variants of possible adaptations
are already thought at design-time. Social interactions among the interacting
agents are formalized using commitments and time. In fact, this form is more
restrictive, as SAS requires flexibility in their design. However, in case of
socio-technical system its a valid choice adopted in this work. Overall, this
approach is more focused on designing SAS in context of socio-technical
systems, where domain knowledge is required to prior to designing the system.
Likewise, this work also limited as accommodating new or changed require-
ments by involving end-users are not considered, thus (Type 1, 2, 4 adaptation
supported).

Baresi et. al. [BP10] has proposed the concept of “Adaptive goals” as
an abstraction to represent adaptation strategies, and countermeasures to ad-
dress goal violations and conflicts by extending KAOS [DvLF93b] method,
which are then operationalized as to compose services operationalized as
an executable BPEL. Adaptation goals are responsible for the for the evo-
lution/adaptation of the goal model. Adaptation goals represent strategies
operationalized as a supervision model. They are responsible for substituting

83

CHAPTER 4. CARE FRAMEWORK

the weaker notion of goal when a violation is detected. Conditions to identify
obstacles are transform into the native language of a monitoring systems Dy-
namo which is used to evaluates formal properties of a BPEL process. This
work has been extended in[BPS10], where they represent a framework FLAGS
(Fuzzy Live Adaptive Goals for Self-adaptive systems) in which KAOS goals
are further categorized as crisp and fuzzy goals. Crisp goals determines the
functionality of the system (i.e. representing a functional model). The satisfac-
tion scale of these goals is boolean. Satisfaction of fuzzy goals is represented
using a fuzzy scale, formalized using fuzzy logic. In this work, the designer
needs to express all the required constraints and identify constraints when a
particular may be violated to trigger adaptations, thus (Type 1, 2, 4 adaptation
supported).

Altogether, CARE provides a more flexible approach for engineering SAS.
It bridges the gap between design-time and run-time RE activities be clearly
identifying the role of human users and of SAS. Moreover, CARE support
adaptation types, which provides a clear distinction with respect to the state of
the art approaches.

4.6 Final Remarks

In this chapter, we presented our novel CARE framework, which bridges
the gap between RE activities performed at design-time and at run-time. It
identifies the role of human user and specifically the role of SAS at run-time.
End-user involvement is critical to the success of SAS performing adaptation
at run-time, thus enabling it to support a seamless evolution of its specification.
This facet distinguish CARE from the state of the art approaches. Moreover,
CARE support the dynamic RE problem at run-time. In line with the recent
vision of the RE community for self-adaptive systems, CARE provides run-
time process and requirements that can be kept alive to support RE at run-time.

84

Chapter 5

Engineering Adaptive Requirements

5.1 Overview

In this chapter, we focus on the RE at design-time for SAS and propose a
systematic approach to engineer requirements. We introduce a new form
of requirements for SAS called “Adaptive Requirements”1, which is not a
primitive concepts but it aggregate requirements. We investigate the need of
these that are used to specify flexible requirements of SAS. We exploit the
core ontology of RE for SAS defined in Chapter 3 to elaborate the concept of
adaptive requirements. We introduce a modeling language, called Adaptive
RML, to systematically model adaptive requirements to represents require-
ments for SAS. The language has graphical primitives in line with classical
goal modeling languages and is formalized via a mapping to Techne. Such
models enable the analyst to formulate and analyze the requirements problem
during early RE, before moving to detailed specification. Early validation
is performed by modeling the same case study in an established goal mod-

1Note that this term has been introduced in [HED93] as: “Adaptive requirements are requirements for change
to be an inherent and on-going capability of the delivered system”. We extend this view in case of SAS that
adaptive requirements does not only express functional or non-functional requirements but also encompass
requirements for feedback functionalities i.e. monitoring specification, evaluation criteria and adaptation actions,
thus enabling the change to be managed by SAS using these adaptive requirement that are aggregate set of
requirements.

85

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

eling language and in Adaptive RML. The results suggest that context and
resource concepts, as well as relegation and influence relations should be part
of graphical modeling languages used to make early requirements models
for SAS and to perform analysis over them. Later we introduce a convenient
way to operationalize adaptive requirements using Event-Condition-Action
pattern and to derive monitoring specification, evaluation criteria and action
specification.

The rest of the chapter is organized as follows. In Section 5.2, we present
key concept of adaptive requirements using examples from the Travel com-
panion case study. In Section 5.3, we introduce the visual model language to
systematically model adaptive requirements. In Section 5.4, We present the
operationalization of adaptive requirements and elaborate on the proof of con-
cept tool to support the specification of adaptive requirements and process to
derive monitoring specification, evaluation criteria and action specification. In
Section 5.5 we compare our proposed approach with existing works. Finally,
in Section 5.6 we summarize the key contributions of this chapter.

5.2 Adaptive Requirements

Requirements for self-adaptive systems must reflect uncertainty about the
run-time environment [WSB+10]. It is due to the changes motivated by the
variability in the operational context, availability of the resources and in end-
user’s needs. Traditionally, software requirements are usually characterized
along the functional and non-functional classification [NE00]. While eliciting
and specifying them, the analyst first attempts to classify the stakeholders’
needs that may be elicited through interviews or domain documents, both
using natural language, to characterize these requirements. For instance, I

need a user friendly confirmation message after I book the flight, can be
an example of need expressed by the end-user for a travel booking service.

86

5.2. ADAPTIVE REQUIREMENTS

Here, we can classify the requirement according to the functional and non-
functional perspective i.e. answering questions like, What the system should
do? and possibly How (well) should it do?. Two functional requirements can
be identified from the above requirement e.g. Booking Flight, and Sending
Confirmation Message, and one non-functional requirement e.g. Send a User
Friendly Message.

Adopting a goal-oriented requirements engineering [vL01a] approach al-
lows us to answer also Why the user wants this?; Why in this way?, questions
that result in providing a rationale (i.e. stakeholders goals) behind the func-
tional requirements e.g. confirmation to be notified. While analyzing the
non-functional, we can see that requirements that does not mandate a pre-
cise criteria for their satisfaction are softgoals e.g. user friendliness. Quality

constraints on the other hand are requirements with a precise criteria e.g.
confirmation must be sent in less than 5 minutes. Another facet that has been
recently identified in the core ontology for RE[JMF08], is preferences. They
express the attitude of the stakeholder towards a particular requirement e.g.
user friendliness can mean short message, differently for other stakeholder it
can be format of the message such as html or text. Further analysis of software
requirements may lead to more interesting questions i.e. Where and When
the requirement can be achieved or satisfied, to answer. Thus, leading to a
complete specification.

In context of self-adaptive systems, we need such kind of analysis that can
provide basis to engineer SAS as a requirements-aware system [SBW+10].
Although, the variability provides alternative ways for the SAS to exploit at
run-time (i.e. switching between alternative solutions, Type 1 adaptation), but
the rationale to guide its behavior comes from the requirements. Another key
requirement for engineering SAS is to equip them with a feedback control
loop [BSG+09] mechanism, which enables them to monitor changes in the
environment, evaluate theses changes and finally adapt it behavior accordingly

87

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

(i.e. re-configuration, or adopt an alternative new behavior). Therefore, at
requirements level, we need to make explicit the alternatives in goal achieve-
ment, i.e. variability in What and How, which may be further enhanced by the
variability in Where and When due to the openness of the operational environ-
ment. Addressing these question, we also need to make explicit the feedback
loop functionalities by answering to the questions i.e. what to monitor, what
to evaluate and how to adapt.

To this aim, we explore and define requirements that specify properties of
an self-adaptive systems, that are not only functional or non-functional but
also includes requirements for monitoring that is to observe the variability in
the operational context, evaluation criteria that is to check where system is
not respecting the expected values and alternative solutions that are behaviors

to be adopted at run-time by the SAS to ensure the achievement of its intended
end-users’ goals. We define such requirements as adaptive requirements,
defined in short as:

Requirements that encompass the notion of variability associated to either a

functionality or a system quality constraint along with monitoring specification,

evaluation criteria and alternative solutions.

Requirements specification of SAS must include the notion of adaptivity

as proposed by Berry et al. [BCZ05]. To support this vision, we propose
“adaptive requirements”.

Illustrative Example
Lets consider the following example requirement of an end-user:

For instance, A user friendly confirmation message, after booking is pro-

cessed, must be communicated to the user on his current device with proper

representation.

The analyst may describe it with the following statement and identify from
this the requirements for Travel Companion Application. For instance, by
understanding the domain information, an analyst may identify four functional

88

5.2. ADAPTIVE REQUIREMENTS

requirements namely book a flight ticket, send confirmation message, message

communication to an available device and format representation of message

by answering the questions i.e Why and What is required. Further with
this analysis, one non-functional requirement is identified i.e. user-friendly

message by addressing How well it should send.

The analyst can now make explicit the variability in user’s devices (implicit
in the above requirement statement) and re-phrase it as follows:

A user friendly confirmation message, after booking is processed, shall be

communicated to the user on her current available (device) e.g. smartphone,

Laptop by seamlessly observing (monitor) the (events) e.g. flight status is

confirmed, or delayed, (quality constraints) e.g. inform in less than 10 min-

utes and her (context) e.g. profile, location, device, taking into account her

preferences (pref) e.g. Send SMS when outdoor, in order to deliver required

personalized contents to her current device.

The availability of end-user’s device (e.g. smartphone, Laptop) ad variation
in her context (e.g. location, profile settings) demands monitoring at run-time.
To make SAS aware of the current operational events (e.g. flight status not
confirmed), it needs to evaluate conditions – quality constraints (if any) and
exploit at best its available alternatives such as send the confirmation message
in a proper (formatted) way to the end-user’s available device, so to meet her
original goals.

Certainly, unanticipated events – may occur with significant probability,
should also be considered. For instance, message is not delivered correctly
or the Internet connection is lost. As a consequence, a new requirement must
be added i.e. SAS must degrade gracefully or involve the end-user to acquire
more knowledge to take corrective actions. This refers to the adaptation types
described in Chapter 4.

In addition, to cope with such level of uncertainty (what might happen
or when it happen), the analyst need to ensure at design-time that while

89

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

addressing previous questions the requirements shall also try to address When
and Where uncertainty. Returning to the analysis, the above example can be
re-stated as follows:

A confirmation message for booking is generated as soon the booking is

processed, and required to possibly communicate the message to the end-

user on her current available (device) e.g. smartphone, by seamlessly ob-

serving (monitor) the (events) e.g. flight status is confirmed, or delayed,

(quality constraints) e.g. inform in less than 10 minutes and her (context) e.g.

profile, location, device until the message is delivered in a correct format e.g.

scaling it, size, and with personalized representation (e.g. html, text) and as

per her preferences i.e. (pref) e.g. Send SMS when outdoor, to her current

available device i.e. smartphone, PDA or a different way to notification is

applied.

Note that we have added temporal operators to relax the above exam-
ple. This is one of the way that has been recently proposed in Relax Lan-
guage [WSB+10]. This is a particular way to relax requirements. In Chapter 3,
we introduce a more general relation i.e. relegation, which can be considered
at this stage to analyze which requirements can be relegated with respect to
others. Although, there might be situations in which there is no possibility to
find a candidate solution at run-time. For example, the message could not be
confirmed as delivered either due to wrong message delivery or connection
lost. Then, using for instance end-users’ contact info that SAS, is aware of,
can either send an email to her secretary or notify her stared contacts e.g. a
friend.

The key essence of this analysis is to show that in context of SAS, classical
RE departs from its traditional ways of analyzing requirements. Further
information is needed to make the implicit knowledge through explicit analysis.
Moreover, in stating requirements for SAS, flexibility has to be considered
e.g. requirements can be optional i.e. “nice to have” [LMM10a]. In this sense,

90

5.3. DEFINITION OF ADAPTIVE RML

precise requirements may need to be relaxed depending upon the changes.
For this we state the requirements problem as a dynamic RE problem, when
SAS has to move from one requirements problem to another by changing
its candidate solutions with respect to the context conditions at run-time by
involving the end-user. For example, in the above example, it is not made
precise when the message will be delivered or it must be delivered, but it has
to be delivered.

In this case, flexibility is in When aspects where requirements can be
relegated by other requirements, though they may not be most preferred by
providing a way to satisfy the high level goals. With this view, availability of
end-users’ resources (e.g. smartphone, contacts) addresses (Where) questions.
Also, end-users’ preferences over goals – What, Why helps in finding the
candidate solution – tasks and domain assumptions in a context gives answers
to How and uncertainty in the environment can be reduced by monitoring and
evaluating the system and end-user context must be considered (see Chapter 3
for details).

To this end, we have discussed the need to identifying adaptive require-
ments, which makes explicit the feedback functionalities such as monitoring,
evaluation criteria and candidate solutions, while analyzing the end-user needs.
Below we define a language using the necessary elements as introduced in our
core ontology of RE for SAS – defined in Chapter 3, to support this analysis.
We thereby capture and identify “adaptive requirements” at the early stages of
RE process.

5.3 Definition of Adaptive RML

In RE, early requirements phase results in the information gathered from
the stakeholders. An RML supports this activity enabling the analyst to
structure and relate this information meaningfully by modeling it therefore

91

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

formulating a requirements problem and later conduct analysis to resolve the
requirements problem by finding candidate solutions. This results into an
adaptive requirements specification.

We start by defining an RML, we call it Adaptive RML, along the concepts
and relations defined in Chapter 3. A visual syntax, modeling guidelines,
refinement patterns and analysis that can be performed over models build using
Adaptive RML is presented. In particular to model adaptive requirements and
provide a systematic modeling approach using Adaptive RML.

5.3.1 Concepts & Relations

We now present the necessary concepts and relationships that are required
to represent adaptive requirements in order to formulate the requirements
problem for SAS. Addition of these concepts and relations leads us to an
ontology of requirements for SAS and the formulation of the run-time require-

ments adaptation problem as a dynamic problem of changing (e.g. switching,
re-configuring, optimizing) – SAS move from one requirements problem to
another requirements problem, with respect to the changes in requirements,
context conditions, and/or resource availability. We revisit the two new con-
cepts, Context and Resource as well as relations Relegation and Influence
that are added to enhance the tool set for the proposed Adaptive RML to model
and analyze adaptive requirements and requirements for SAS in general.

Context: This concepts allows modeling information that the stakeholders
assume to hold when they communicate particular requirements. We say that
every requirement depends on one or more contexts to express the fact that
the requirement would not be retracted by the stakeholders in every one of
these contexts. This information needs to be made explicit in the early stages
of requirements modeling for SAS. For instance, in our example we modeled
“context” as information about location (e.g. Office or Market), which are
defined as concepts in a specific domain ontology (e.g. travel), and we link

92

5.3. DEFINITION OF ADAPTIVE RML

them to tasks via an inference relation. In Fig.5.3, context is shown as e.g.
“C1 [Cx: @Market]” where “@Market” is an instance of a concept term (i.e.
Location) defined in a domain ontology. Combining requirements and context
reveals interesting cases, where we can see requirements may result in conflict
or an becomes inconsistent. In this case, preferences play a critical role to
connect this information, where an end-user can specify in which context,
they require a particular task to be executed e.g. notify about message through
SMS while she is in an outdoor location.

Resource: The concept of resource has been well supported in RE methods
such as in goal-oriented approaches [DvLF93a, Yu97, PPSM07b]. In our
case, we define it as an entity that is referred to by the requirements, e.g.,
physical/tangible entities such as mobile phone, ticket itinerary; e.g., intangible
entities, such as user assets (social relations or contacts). In order to introduce
resources in the definition of the requirements problem for SAS, we need to
elicit a resource availability function that tells us which resources are available
and used in some way, in order to ensure that the relevant domain assumptions
and context propositions hold, and that the tasks can be well executed. Here
again we may exploit ontology definitions of user-assets and asset modifiers
that represents tasks effects on their resources, as proposed in [MNF+10]. In
the modeled example shown in Fig.5.3, we introduced “Mobile Phone” and
“Laptop” as resources available in different contexts.

Relegation relation: The purpose of the Relegation relation (Rel for short)
is twofold. First, it facilitates engineer at design-time to analyze requirements
(including goals, quality constraints, preferences) and relegate their associated
conditions (e.g. pre/post, achievement, trigger conditions) by anticipating
run-time change scenarios. Secondly, it enables SAS at run-time to analyze
requirements problem in case of changes that can occur dynamically e.g.
change in user’s context, violation of domain assumption, resource usage or
change in user’s need or preference, either through sensing the operational

93

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

environment or explicitly given by the end-user.

A Rel is applied to manage unanticipated events, by flexibly relegating
some of the requirements, with the aim to avoid failure in achieving the critical
ones. In this case by applying Rel, either the solution that operationalizes
a goal needs to be replaced, or an instance of the same goal with revised
conditions is linked using Rel with the original goal e.g. in Fig.5.3, candidate
solution “Send via SMS” is relegated by “Place Call”, when context conditions
changes. In this example, the instance of the original goal is not compromised
rather relegation is considered by replacing the preferred solution with an
optional one.

Influence relation: An influence relation (Inf) is introduced to analyze the
impact of changes in model elements that define different, mutual dependent
requirements. This means, if change in the operational environment or in
end-user requirements happens at run-time it might cause a change in another
requirement. This chain of dependency needs to be identified, since along them
we may identify changes consequences such as violation of a goal or a invalid
solutions. For example, in Fig.5.3, if no candidate solution is possible to
achieve the goal “Message Transfer Method Selected” due to invalid context
and domain conditions, then this goal will fail, which causes a violation
in satisfying the corresponding goal i.e. “Message Composed”. Similar
dependencies can be collected and subsequent consequences are determined
by analyzing the impact of changed solution.

5.3.2 Adaptive RML Visual Notations

The Adaptive RML language provides a graphical notation, which is in line
with classical goal modeling languages and is formalized via a mapping to
Techne. A detailed guide on visual elements is presented in the Table shown in
Fig. 5.1: each row contains a graphical symbol and a short description of it’s
intended meaning. For the elements that map the Techne core ontology, the

94

5.3. DEFINITION OF ADAPTIVE RML

Visual Notation Concepts & Relations

Goal

Definition: A Goal represents a desired state of affairs, the achievement of which can be measured and is definitively concluded. Example:
“Meeting to be Scheduled”

Definition: A Soft goal represents a desired state of affairs, the achievement of which can only be estimated, not definitively concluded.
Example: “Convenience”, “Easy”

Task/

service

Definition: A Task corresponds to an activity, an action whose achievement leads to the definitive conclusion of its means. Example:
“Download music”, “Show song listed as most viewed”

Definition: A Quality constraint is desired value of non-binary measurable properties of the system-to-be that constrains a goal or a soft
goal. Example: “Music download speed must not be less than 128kbps/sec”

Definition: A Domain assumption is a condition within which the system-to-be will be performing tasks in order to achieve the goals,
quality constraints, and satisfy as best as feasible the soft goals. Example: “Subscribers can download the music from the online database”

inference

relation
I

Definition: An <Inference> relation stands between a requirement that is the immediate consequence of another set of requirements, the
former is called the conclusion, the latter the premises. Alternatively, inference relation can be used to connect the refined requirement to
the requirements that refine it. Example: “Generate revenue from the audio player” has <inference> relation with two requirements: “Music
is available to subscribers”, “Display ads in the player”.

Definition: A <Conflict> relation stands between all members (two or more) of a minimally inconsistent set of requirements. Example:
“Req1: Music is available to subscribers” is in <Conflict> with “Req2: Music is available to users”

Definition: A <Preference> is a binary relation that exists between two requirements and it defines the stakeholder evaluations of
requirements that determine the desirability of a requirement. Example: “The bitrate of music delivered via the online audio player should be
at least 256kb/s” is <Preferred> over “the bitrate of music delivered via the online audio player should be at least 128kb/s”

Definition: An <is-Optional> relation is unary that states the evaluation of stakeholder of requirement, which may be desirable.
Functional requirements, which are “nice to have”. Example: “Color printing of a meeting schedule” <is-Optional>.

Definition: An <is-Mandatory> relation is unary that states the evaluation of stakeholder of requirement, which must be satisfied.
Functional requirements. Example: “Each Participant must have meeting schedule available” <is-Mandatory>.

Definition: An <Association> link is used to define a link between two elements. Example: “High level Context (e.g. Outdoor)” is
<associated> to “an ontology concept (e.g. place)”.

Definition: A <Relegation> relation is n-array relation that stands between one or more requirements, to relax or to suspend conditions
imposed over them. A mandatory requirement can have a <relegation> relation with an optional requirement. Example: “download the
music” has <Relegation> relation with the “stream the song online”.

Definition: An <Influence> relation is said to exist between a set of requirements, where satisfaction of one requirement warrants the
satisfaction of the other. This determines the satisfaction of the requirements set. There are two types, weak-influence (where partial
satisfaction is possible) and strong-influence (when there is no way to satisfy the requirement). Example: “subscribe and pay” have
<Strong-Influence> over the “download the music”. “subscribe and make payment” have <weak-Influence> over the “listen music online”

Definition: A Resource is an entity either tangible or intangible referred to by one or more instances of the information communicated
during elicitation by the stakeholder. Example: Tangible Resource: “Physical e.g. Mobile phone” Intangible Resource: “Data e.g. Agenda”

Definition: A <Requires> relation is a binary relation that exists between a task and a resource. Example: “Task: Download song”
<requires> “Resource: internet connection”

C Context[]1

Definition: A Context is defined as a set of information (condition) that is presupposed (or believed to be true) by the stakeholders to hold
when they communicate a particular requirements. Example: “System states (e.g. searching a song)”, “User states (e.g. Listening to music)”,
“User Location (e.g. at home)”, “Device Status (e.g. Battery is low)”

@
Ontology

Concept{ }

Definition: An Ontology Concept defines an entity and its characteristics or essential features in a particular domain of discourse.
Example: “Frame rate in Music Ontology”

Figure 5.1: Visual guide for concepts and relations in Adaptive RML.95

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

corresponding semantics is given in [JBEM10b], while the formal semantic
of the additional concepts is defined in Chapter 3.

Worth to be mentioned is that recent research evaluated weaknesses of
widely used goal-oriented modeling notations with respect to principles for
cognitively effective visual notations [MHM09]. The proposed visual notation
consider two among the principles discussed in [MHM09]. The first is visual
expressiveness: notation must comprise of color, shape and brightness instead
of shape only. Second is Semiotic clarity, which postulates that each graphical
symbol must have a 1:1 correspondence with its semantic definition i.e. the
concept which they refer to. Our proposed notation takes as much as possible
these principles into account.

5.3.3 Systematic Modeling in Adaptive RML

Adaptive RML makes no assumptions and imposes no constraints on how
the information is acquired while modeling the requirements for SAS. At
modeling time a requirements model in Adaptive RML is constructed by
recording and structuring relevant information obtained through elicitation.
As a result, the run-time requirements adaptation problem is formulated for
the SAS-to-be. New pieces of information are gathered during modeling time
to refine the problem iteratively. At analysis time, all candidate solutions to
that problem are sought along with their differences to each other and are
compared with respect to varying context situations and resource availability.

The modeling process develops by performing iterations of the following
activities.

1- Modeling Mandatory and Optional Goals:

We start modeling goals, optative statements that defines the desired prop-
erties of the SAS-to-be, via inference relation (i.e. symbol (I)). We use (I)
node to depict refinements (e.g. AND/OR decomposition, or means-end rela-
tion). Each (I) node connects the model element to be refined to simpler or

96

5.3. DEFINITION OF ADAPTIVE RML

more concrete elements that refine it. In this way it is concluded that if the
requirement is defined by the concrete elements then they can satisfy the more
abstract one.

Further, we add softgoals that depicts vague properties of SAS-to-be, which
are approximated in terms of quality constraints determining the criteria to
measure them.

2- Modeling Domain Assumptions:

While modeling goals we discover domain assumptions that are statements
in the domain which are assumed to be always true. We add them via (I)
node and add (if any) to each goals or tasks. Subsequently, during refinement,
quality constraints can be inferred. We add criteria to measure the goal
satisfaction via (I) node. During this, new pieces of information are discovered
such as conflicts and preferences among the goals and tasks.

3- Modeling Conflicts and Preference Relations:

Conflicts and preferences are identified during refinement. We discover
conflicts between inconsistent/contradictory requirements or tasks node be-
tween conflicting set of requirements/tasks. Further, we identify preferences
taking into account stakeholder’s evaluations about different requirements. We
add preference relation between requirements where satisfying one is strictly
more desirable than satisfying the other.

4- Modeling Mandatory or Optional Tasks:

Likewise, we model tasks as further refinement of goals. Task modeling
can be seen as an analysis activity, where we add tasks via (I) node to oper-
ationalize goal. This means, if the tasks will be successfully completed, the
goal will be achieved. Goals can be either mandatory or optional (i.e. (M)) or
(O) respectively), we model this by adding these unary relation over goals.

5- Modeling Context and Resources:

Once the requirements model is constructed, we further anticipate the
various situations in which requirements or tasks can be either achieved or

97

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

not. We add context node to each requirement/task. Context refers to any
information, which is presupposed by the stakeholder and we make it explicit,
e.g. a location etc.. A domain ontology compliments this context information
by precisely defining the terms (instances of context). We link context with
an ontology annotation (shown as @) via an association link. As we can
distinguish many contexts, we add precise context, where the definition of that
is given in a domain ontology to avoid nesting or hierarchies of context.

While discovering tasks and context that can satisfy requirements, we may
also identify resources that the tasks requires or need to use. We add resource

node via (Requires) relation with each task. Note that resource concept is also
available in other RML, however, we distinguish it as not only tangible e.g.
mobile phone, Fax machine, but also intangible e.g. assets such as money,
time, agenda. In our model, each resource may have domain assumptions or
quality constraint attached to it via (I) node.

6- Modeling Influence and Relegation Relations:

Finally, identify during refinement requirements/tasks may have influence
on the achievement of each other. Influence relation is added between a set of
requirements/task, where the achievement of the former becomes critical due
to the achievement of others (strong influence i.e. s-inf). If achievement of the
latter is not critical, it will be modeled as weak (w-inf). However, it becomes
interesting in case of tasks, where execution of one tasks may have influence
of other tasks.

Finally, we look for conflicting context conditions, resource availabili-
ties, quality criteria which may helps to determine requirements/tasks whose
achievement can be delayed or relaxed. We add relegation relation between
requirements/task that are less critical to the requirements/task more criti-
cal/preferred to in corporate uncertainty about changes in context or resource
availability.

98

5.3. DEFINITION OF ADAPTIVE RML

Goal 0

Goal 1 Goal 2

I

Goal 0

Goal 1 Goal 2

I I

AND-Inference (High Variability) OR-Inference

Goal 0

Goal 1

I

Simple-Inference

Task 1

Task 1.2Task 1.1

I

Task 1

Task 1.2Task 1.1

I I

AND-Inference

Task 1

Task 1.2

I

Simple-Inference

I I

Task 1

I

Task1.1 Task 1.2 Task 1.3

pref

I

QC

(Condition)

Softgoal

I

Preferred Task w.r.t Quality Constraint (QC) and

Soft goal (SG)

QC 1

I

QC 2

I

pref

Conflict

Conflicting Tasks (Inconsistent Tasks)

Requirement Refinement Patterns in ARML and Use of Visual Notation

pref

Rel

Relegation Relation

Goal 1 Goal 2
MM

S-Inf

Influence Relation

Resource
C Market[]

1

@
Market is a

Location{ }

Requires
I

Task 1 Task 2

O

Requires Relation

Task 1
Task 1

Task inferring Context which is defined in an Ontology

Task 1 Task 2

Domain

assumption

I Domain

assumption

I

Domain

assumption

I

(High Variability) OR-Inference

Domain

assumption

I

Domain

assumption

I

Figure 5.2: Requirements Refinement Pattern in Adaptive RML.

99

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

Travel Itinerary

Booked

Flight

Booked Payment

Made

Confirmation

Message Sent

Message Transfer

Method Selected
Message

Composed

Booking confirmation

is sent after the

payment is assured

All Flight Options

must be available

to All Users

M
M M

M

M

I

I

Standard Credit

Card Option Must

be Displayed

I

I

II I

I

Updates

Instantly <

5 mins

User

Checks

Email

Every

Customer Has

Bank Account

I

Convenience

Quick

I

User has

Mobile and

Laptop

Secure

Payment

Data

Encryption

Standard

(DES)

I
Updates in

1 Business

Day

I

Updates

Instantly in

realtime

I

I

Mobile

Phone

I

pref

pref

C

Show Cheap

Flight Option

FirstI
Payment

daytime < 3

Laptop

I

Battery

 Time < 3

hrs

I

Battery

 Time > 24

hrs
pref

pref

C Cx: getLocation()

= @Market[]
1

C Cx: getLocation()

= @Home[]
2

I I

pref

M

I

pref

pref

@
Market is a

Location{ }
@

Home is a

Location{ }

Rel

I

Size &

Scaling

is Easy

O

I

I

I

All Secretaries

have landline

Phone

Travel

Itinerary

Message sent in

< 1 hour after

the Payment

Itinerary is not

valid before an

after the date of

travel

Date of

Travel is

not Today

I

I
Easy to

Produce

Confirmation

Message

I

I

I

Contact

List

Travel

Dates

I S-Inf

I

C Cx: getLocation()

= Null[]3

Place

Call

O
Send via

SMS

Send via

Email

Send via

PostMail

Send via

Fax

Select

Message

Type

Select

Message

Format

Get Flight

Options

Select

Flight Option

Pay by

Credit Card

Pay by Bank

Transfer

Fax

Machine

I

C Cx: getLocation()

= @Office[]
4

@
Office is a

Location{ }

Html Text

Notify User

I

Figure 5.3: Modeling using Adaptive RML Concepts and Relations.

5.3.4 Requirements Modeling with Adaptive RML

For modeling requirements, we rest on our revised core ontology of RE for
SAS. The proposed modeling language for SAS, called Adaptive RML, builds
on Techne by adding two new concepts, namely, context and resource, and
two relations, i.e. relegation and influence. Adaptive RML has its own visual
notation. In the rest of this section we illustrate an Adaptive RML model of
iComp with the aim to provide a preliminary qualitative evidence about its
support in overcoming the limits mentioned above in modeling requirements
for SAS. A detailed account of Adaptive RML will be given in the ensuing
sections.

100

5.3. DEFINITION OF ADAPTIVE RML

Fig.5.3, shows a requirements model for iComp in Adaptive RML. Its
root level goal Travel Itinerary Booked is modeled as a mandatory node
(modeled as M node, a unary relationship). It is decomposed via an infer-
ence relation into the other mandatory goals: Flight Booked, Payment Made

and Confirmation Message Sent (modeled as black I node with a arrow, a

binary relation), to represent the fact that it will be satisfied through the joint
satisfaction of these three goals.

Let’s focus on the goal: Confirmation Message Sent (i.e. the shaded part
of the model), which is decomposed into two goals: Message Transfer Method

Selected and Message Composed via inference relation. We can add here in-
formation, i.e. the domain assumption Booking Confirmation is sent after

the payment is assured (modeled as rounded rectangle) and the quality con-
straint Message sent in < 1 hour after the payment (modeled as diamond

shape) connecting them through the same inference node.

An influence relation is added among the two decomposed goals: Message
Transfer Method Selected and Message Composed (modeled as dotted green

line with arrowhead) to account for the prevailing context conditions and re-
source availability that influences the achievement of goal: Message Composed.
For example, if the context conditions support to choose Email as a candidate
transfer method, the ways to satisfy goal:Message Composed is by selection a
correct format that is either text or html.

The analysis of the Message Transfer Method Selected proceeds by link-
ing via inference nodes task-rooted subgraphs, which defines candidate so-
lutions. For instance, the goal is decomposed into task e.g. Notify User via
inference relation. Beside tasks e.g. Send via SMS (modeled as hollow motion

arrow), each candidate solution includes domain assumptions e.g. User has

mobile and laptop, context e.g. Market, Home (labeled as C with its number,

associated to @ symbol 2), and resources e.g. Mobile Phone (modeled as a

2@ labels a concept defined in domain ontology e.g. travel ontology.

101

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

rectangle). Preferences (dotted line with doubled empty arrow heads) are
used to compare requirements in candidate solutions, and thereby compare
candidate solutions; e.g., Send via SMS is preferred over Send via Email. Re-
quirements can be in conflict (e.g. Send via Email is in conflict with Send

via PostMail (dotted line with C in the middle with red color). Conflict is
shown due to the difference in quality constraint (e.g. Email updates in >5
mins, whereas post mail updates in 1 business day).

Optional solutions, in case of problems (e.g. user is not accessible, as
mentioned in the scenario) can be identified via a relegation relation (modeled

as dotted light red line with arrowhead between two possible candidate solu-
tions). For instance, Place Call relegates Send via SMS. This allows to take
into account the situation in which a user’s context changed resulting in being
not accessible (e.g. Context: getLocation()= Null), and to describe as pre-
ferred the solution to make the user able to access the resources Confirmation
Message and Ticket Itinerary, via contacting her secretary. The Place Call

task is inferred via a domain assumption (e.g. All secretaries has landline

phone) and a resource (e.g. contact list) and the context (e.g. Context: get-
Location()= Null).

5.3.5 Analyzing Adaptive Requirements

Analysis in Adaptive RML suggests which candidate solutions are relevant
in the prevailing context conditions and resource availability. A requirements
model defines the requirements problem for a SAS-to-be, along with can-
didate solutions. This model is used by the analyst to discover “Adaptive
requirements” by looking at differences between candidates solutions that are
modeled.

Adaptive requirements are requirements that not only hold the definition of
functional or non-functional requirements but encompass the notion of vari-
ability, by having monitoring specification, evaluation criteria and adaptation

102

5.3. DEFINITION OF ADAPTIVE RML

alternatives. To discover them detailed analysis is performed on the available
information represented in the early requirements model. We analyze the
candidate solutions that remain valid in a particular situation. We look at the
context nodes and domain assumptions, we anticipate changes as we move to a
different context and this leads to different resource availability requirements.
Alternative solutions can be inferred during this process.

Adaptive requirements help specifying alternative ways to adapt to context
and resource changes via a pattern, details of which are shown in Fig.5.2.
Consider, while monitoring run-time changes, SAS moves across different
contexts by altering the requirements problem that leads to change in candidate
solutions. At run-time, several solutions get activated based on context and
based on resource availability. Mechanisms for adaptation are triggered,
therefore, reasoning over the adaptive requirement leads SAS moves (i.e.
enact adaptation) to the candidate solution which is appropriate to the new
current context.

For example, an adaptive requirement can be defined as AR1: Message

must be composed by selecting an appropriate format. From this we determine
that appropriate format i.e. HTML or Text, needs to be selected as modeled in
Fig.5.3. But to select the candidate solution, we need to monitor the user’s
context (e.g. Office, Home) and resources (e.g. Mobile phone or Laptop) and
domain assumptions with quality preferences. Along monitoring specification,
we need also to specify evaluation criteria to check the difference between
two tasks. Based on this criteria, among the possible candidate solutions
that are adaptation actions e.g. tasks and domain assumptions in a context, a
possible candidate solution will be selected. For instance, while monitoring
the user context, resource, any change can lead to change the selected format,
i.e. either html or text format.

So far, we argued on the need of a requirements modeling language (RML)
for SAS that enable the analyst to capture and analyze requirements for

103

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

SAS by incorporating the above core properties of SAS at early stages of
RE. Below we present how the adaptive requirement are operationalized. By
operationalizing we mean, how conveniently we specify adaptive requirements

such that monitoring specification, evaluation criteria and actions that are
needed to support adaptation can be derived from them. Given that, SAS at run-
time tries to resolve a run-time requirements adaptation problem, by finding
and comparing a candidate solution in response to changing context, resource
variability using its own requirements model and detailed specification i.e.
adaptive requirements.

5.4 Operationalizing Adaptive Requirements

So far, we have introduced the concept of “adaptive requirements” and showed
how to model them. In this section, we define the process to operational-
ize these requirements into a monitoring specification, which can be used
to configure monitors for a running SAS. Aside this, evaluation criteria are
needed to check weather SAS is violating its requirements or if parameters
are changed, for which adaptation is needed by selecting a feasible action. We
have developed a prototype tool that formalizes the process to operational-
ize the adaptive requirements as shown in the Fig.5.4. In our case we have
chosen a monitoring system to support this is SALmon [OFMA08]. It is a
framework that focuses on monitoring the quality of service (QoS) of web
services, evaluate them accordingly to stated conditions, and notify violations
to the interested parties. For operationalizing adaptive requirements – deriv-
ing monitors from the requirements, SALMon has been extended with new
measurement capabilities, such as monitoring the change of status of a service,
which goes beyond QoS. SALMon is able to combine both passive monitoring
and testing approaches accordingly as per the preference. The framework has
been implemented as a SBA itself, providing hence easy integration with other

104

5.4. OPERATIONALIZING ADAPTIVE REQUIREMENTS

frameworks. It provides the following two services: the Monitor, responsible
to retrieve the data of the target services; and the Analyzer, responsible for the
evaluation of conditions.

Design-Time Tool

CARE App.

SALmon

Configure
the

Analyzer

Annotate Tasks
with Service
Descriptions

Specify
Tasks for

Monitoring

Specify
Conditions
to Evaluate

2.1 2.2 2.3

Requirements
Model

Specify Adaptive Requirements
{Events, Conditions, Actions}

Generate
Monitoring

Specification
Document

1. 2.

3.

Generate
Conditions
Evaluation
Document

Generate
Actions to

Trigger

Configure
the

Monitors

Configure
the

 App.

4.

5.
Specify

Actions to
Trigger

2.4

Figure 5.4: Design-time process for deriving and configuring Monitor, Analyzer and CARE
Application

In addition, we adopt a convenient Event-Condition-Action pattern to spec-
ify adaptive requirements. For instance,

MON : event ∧ EV AL : conditions→ TRIGGER : actions

Below we describe this pattern using travel scenario examples and describe
how we use this pattern to specify adaptive requirements from the requirements
model.
Specifying Events:

The analyst can include either goals or tasks to monitor (i.e. MON). The
analyst navigates through the given defined elements in the requirements
model until it reaches the leaf tasks that implement the functionality i.e. tasks,
when executed generates events to observe. For instance, from a high-level
goal changes over the flight itinerary being monitored, the task to Get Flight

105

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

Status, which is operationalized with a flight booking service, need to be
monitored. We specify events pertaining to task e.g. Flight Status Changed.
Events can be represented in a domain ontology, which is defined or can be
reused (e.g. travel domain ontology). Subsequently, to specify the monitoring
behavior and to configure the monitor in SALmon, we define a low-level task:
invoke flight service. The current tool prototype supports the generation of
monitors for web services that the SAS is aware of. In order to automate the
generation of monitors, the analyst annotates these tasks with the required
information (i.e. endpoint, WSDL and SOAP action). The invocation of
task:Get Flight Status generates events to monitor. The concrete properties of
the monitor on each event are obtained from the requirements model through
quality constraints defined via inference to the tasks e.g. response time of the
service. Regarding the time interval for monitoring, it is up to the analyst to
set it, or acquired through end-user preferences e.g. Notify flight status every
20 minutes. Such preferences helps in determining the behavior of the monitor.
SALmon facilitate the strategy to monitor either actively i.e. invoking the
service every time-interval or passively i.e. observing the interaction between
the system and the end-user. Given this information, monitoring specification
document is automatically generated i.e. an XML file that describes what is
to be monitored, and is used in order to generate and configure the monitors
accordingly.

Specifying Conditions:

Conditions provides the precise criteria that must be evaluated to check
if there are violations. In the requirements models, conditions are specified
via quality constraints that are linked to other elements via inference relation.
In fact, quality constraints are the requirements with a precise metric to
evaluate or a property with a defined value to be checked otherwise. After
specifying the events to monitor, the analyst can specify (EVAL) with the
relevant conditions that need to be checked based on the monitored data.

106

5.4. OPERATIONALIZING ADAPTIVE REQUIREMENTS

The current tool prototype provides a way to generate condition evaluation
document that is used by the analyzer in SALMon to detect if the behavior
of the system fulfills the expected functionality with the desired constraints.
Conditions are specified using a tuple of <variable, operand, value >. In this
tuple, a variable: is either a quality metric or the result of a service method.
A quality metric can be either a basic metric or a derived metric based on an
aggregation function (i.e. average, maximum, minimum). An operand: is a
simple mathematical symbol expressing the comparative rule (i.e. <, <= , = ,
>= , >). The value: is a numerical, boolean or string value.

This information is used to automatically generate of the condition evalua-
tion document, which is in XML format that describes what the analyzer has
to evaluate.

Specifying Actions:

This part consists the execution of an action over the defined elements
in the model. There are several kind of actions that can be performed in
order to correct or mitigate the malfunction of the system. Currently we
have focused on two kind of actions to perform over the requirements model.
Namely, SELECT and INVOKE. Operationalizing the SELECT(task): the
element included as a parameter in the SELECT function is a composite task
that can be met by several alternatives. This action defines the preferred
alternative to execute at run-time. For instance, in the given scenario, there is
a task ’Notify User’ composed of several alternatives (e.g. Send via Email,
Send via SMS,etc). When a condition over these tasks is not met, the action
SELECT(Notify User) is triggered, which updates the selection of the most
convenient and available device to notify the user. INVOKE(task): the element
included in the INVOKE function is a task that is executed by the system as
a result of the failure of the condition. For instance, if the flight has been
delayed, INVOKE(Notify User) notifies the user to his most convenient and
available device (e.g. Mobile phone) that the flight has been delayed. The set

107

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

of defined actions are used to generate the actions specification.

5.4.1 In Practice

Figure 5.5: Design-time process for Annotating the Tasks

At design-time, the analyst can conveniently import the requirements model
(step 1) into the design-time tool. The tool loads the elements of the model
in the GUI and presents a categorized view of the elements. Using the above
ECA pattern the analyst then specify adaptive requirements (step 2). The first
step is to annotate the leaf tasks with the requires service descriptions (step
2.1). A snapshot of the tool for annotating the tasks with service descriptions
is shown in Fig.5.5. The tasks are added in the ECA pattern for monitoring i.e.
specifying events to be monitored (step 2.2). Correspondingly, a monitoring
specification document can be generated automatically, which is then used to
configure monitors in SALMon (step 3). A snapshot of the tool for deriving
the monitoring specification document is shown in Fig.5.6. Next to this, is to
specify conditions, where an analyst can add quality constraints relating to the
tasks. This determines which criteria has to be evaluated and the associated

108

5.5. RELATED WORK

property (step 2.3). After adding this information in the ECA pattern, the
condition evaluation document can be generated to configure the analyzer
in SALMon (step 4). Finally, to specify actions, the analyst can browse
the elements in the requirements model i.e tasks to be triggered in case the
conditions are not met (step 2.4). This generates and action specification,
which is then used to enable adaptation decisions in the running SAS (step
5). The outcome of this process is a set of adaptive requirements that are

Figure 5.6: Deriving Monitoring Specification Document

operationalized to configure monitors, analyzer of SALMon framework and
for the SAS-to-be, instantiating CARE framework. We discuss the initial tool
developed for this and present some initial preliminary results gathered on the
tool performance and scalability in Chapter 7.

5.5 Related Work

Recent works on software engineering for SAS have identified several open
research challenges in [CdLG+09]. Along the engineering perspective Burn et
al. [BSG+09] recognize the need for making explicit the feedback control loop

109

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

at a higher level of abstraction. A recent proposal on awareness requirements
has been argued recently in [SLRM10], which focuses on the the requirements
for feedback loops. In this case, our proposal of adaptive requirements and the
process to operationalize them makes explicit the feedback loop functionalities
– monitoring specification, evaluation criteria and adaptation actions, not only
at the requirements level but also at the operational level supporting the analyst.

Along the well recognized issues in RE for SAS, which includes: four
levels of RE for SAS [BCZ05], adaptive requirements are engineered at
design-time to identify and specify requirements for run-time adaptation –
conforming to level 1 and 3. In a recent proposal, a requirements language
(RELAX) is proposed to deal with uncertainty in requirements with respect
to the environment conditions [WSB+10]. The language provides temporal
operators to handle uncertainty. The semantics of these operators are formal-
ized in Fuzzy Branching Temporal Logic. A set of analysis methods are then
provided to support goal modeling refinement towards detailed design, which
exploits mitigation strategies based on obstacle analysis, and lead eventually
to relax constraining conditions (i.e. our quality conditions) [CSBW09a]. In
this case our proposal of adaptive requirements and its modeling in Adaptive
RML provide the Relegate relation, which is more general than the RELAX
operators. Since we do not commit to fuzzy logic, we only ask for a way to
represent alternatives and to compare them. In this sense, RELAX can be seen
as a particular way to relax requirements (a particular way to implement the
Relegate relation).

Taking requirements modeling perspective, Sawyer et al. [SBH+07] pro-
pose four levels of LoREM. In this work, alternative configurations for dynam-
ically adaptive systems (DAS) are modeled using softgoals and dependencies
among different components of the DAS using i* by different categories of de-
signers/developers. Our proposal is near to this proposal, however, we focus of
modeling adaptive requirements using a rich set of concept, where variability

110

5.5. RELATED WORK

in the goal model is considered along domain assumptions, quality constraints,
context and resources. Thus, specifying adaptive requirements makes more ex-
plicit the feedback functionalities. Analogously, in the approach by Morandini
et al. in [MPP08], requirements for adaptation are modeled using an existing
goal-modeling language with proposed extension (e.g. goal types, conditions
and failure modeling) and later transforming goal models as an agent capa-
bilities using BDI architecture. In this case, our proposal is similar in respect
of modeling explicit information relevant to requirements for SAS, but we
provide more extended ontology with more explicit concepts and relations
than them. Moreover, specification of adaptive requirements is different in a
sense that they target the feedback functionalities.

In addition, the dimension of context in RE for SAS is important. It
has been argued that alternative behaviors must be supplied to the system
enabling them to switch from one to another by overcoming the changes
in the environment, while monitoring the context [SYN07b]. To capture
the contextual variability, explicit knowledge about the domain is required.
In [ADG09] proposed variation points as a way to annotate the goal models
to represent pre-defined contexts and alternative behavior to be exploited
while reasoning over them. To use this approach, a requirements driven
reconfiguration architecture is proposed leveraging the concept of context
and monitor-diagnosis-compensate loop in [DGM09]. However, the notion
of context is trickier and brings newer requirements to be analyzed while
specifying requirements for SAS.

In ARML, we provided an explicit graphical notation, where context prop-
erties can be modeled taking into account the domain ontology, which defines
the domain concepts and their instances. Moreover, our Adaptive require-
ments, follow similar ideas, but go beyond the above mentioned approaches
by making explicit domain assumptions and requirements for feedback loops.

On the basis of recent works, we recognized issues in requirements mod-

111

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

eling for SAS that provides premise to the proposal of Adaptive RML. For
instance requirements monitoring [FF95, FFVLP98, Rob09], where the run-
ning systems must be monitored during its execution as per its own require-
ments model, any run-time deviation or violation leads to the modification to
reconcile its behavior to its requirements. In case of SAS this is critical, as
it operates in an open environment where changes can occur dynamically in
the operating context, availability of resources and end-user needs can change
over time. For this reason, we adaptive requirements are modeled explicitly
in Adaptive RML, in which we model requirements for SAS that guides the
detailed specification, which will eventually include monitoring specification,
evaluation criteria and adaptation action.

Requirements reflection is another issue, where ideas from computational
reflection has been borrowed to provide SAS the capability to be aware of its
own requirements [SBW+10]. Similarly, online goal refinement [KM07] is
of prime importance considering the underline architecture of the intended
SAS. To support run-time reasoning of requirement by SAS itself, adaptive
requirements are identified at an early stage and modeling them with explicit
concepts supports the formulation of the run-time requirements adaptation
problem for SAS (discussed in Chapter 3). This leads to more detailed
specification which is operationalized in terms of concrete feedback loop
functionalities. Thus, providing ample support for online refinement and
requirements awareness.

More recently, emerging communities such as requirements@run-time and
models@run-time have started to focus on the issues such as run-time manage-
ment of the requirements, their representation and determining the boundary
between design-time and run-time. Our proposal of adaptive requirements is
in line with these ideas.

112

5.6. FINAL REMARKS

5.6 Final Remarks

In this chapter we introduce a new aggregate type of requirement has been
proposed, adaptive requirements, which are relevant for RE for SAS. We
proposed a visual requirements modeling language – Adaptive RML that
provides necessary concepts and relations in line with the core ontology of RE
for SAS (see Chapter 3). In contrast to recent proposals [MPP08, CSBW09b,
BPS10] that rest on well established goal-oriented modeling languages (i.e. i*,
Tropos, Kaos), Adaptive RML builds on the abstract requirements modeling
language Techne [JBEM10b], which provides a richer set of concepts, along
the core ontology for RE defined in [JMF08], and supports requirements
analysis leading to sets of candidate solutions for the stated requirements
problem. Additional concepts and relationships are used in Adaptive RML
(i.e. context, resource, relegation and influence) to model and represent the
run-time requirements adaptation problem and perform analysis using these
models.

In addition, we provide a tool supported process to operationalize adaptive
requirements. A prototype tool in support of the analyst is built that provides
a convenient way to process to derive monitoring specification, evaluation
criteria and adaptation actions using the requirements models. Adaptive re-
quirements are specified adopting the Event-Condition-Action pattern, which
provide an easy way to operationalize them. Focusing on RE for SAS, work
on a RE case tool will be the further steps of this research.

113

CHAPTER 5. ENGINEERING ADAPTIVE REQUIREMENTS

114

Chapter 6

Application of the CARE Framework

6.1 Overview

The objective of this chapter is to study the application of CARE framework to
a travel case study, realizing a small proof of concept application to illustrate
the process. The resulting prototype application provides initial results on re-
alizing the CARE architecture and to acquire further improvements identified
during the implementation. We refer to our CARE’s conceptual architecture
(in Chapter 4.4) and the concepts and artifacts that CARE framework pre-
scribes. We first illustrate the description of the system using the case study
scenario. Following our design-time approach we model the requirements (us-
ing ARML) and then specify adaptive requirements. For run-time, we discuss
the prototype developed to execute the given scenario under discussion. With
this we show in practice that how CARE can be applied and to justify to some
extent that continuous RE can be realized involving the end-user. We then
discuss the lesson learned from this experience and propose further steps.

The rest of the chapter is organized as follows. In Section 6.2, we dis-
cuss the description of the scenario adopted from the travel companion case
study. In Section 6.3 we model the requirements acquired using the system
description and specify adaptive requirements. In Section 6.4, we present the
prototype that instantiates CARE’s conceptual architecture at run-time. In

115

CHAPTER 6. APPLICATION OF THE CARE FRAMEWORK

Section 6.6, we discuss our experience and propose further steps. Finally, in
Section 6.7 we summarize this chapter.

6.2 Description of the Travel Companion

Travel Companion (hereafter, iComp) is a self-adaptive software. It manages
end-users travel and meeting schedules while on the go. It supports the
end-user to specify their preferences and receive timely information about
their booking status (e.g., confirmed, canceled, in progress). The booking
preference is collected using the iComp GUI. Once end-user has specified her
travel itinerary (e.g. itinerary number, time of the flight, origin, destination and
service source etc.), iComp starts to monitor the relevant service for checking
the flight status (e.g. flight service). The notification message about the flight
status must be sent to the end-user as per her preferences i.e. via Email, or Call,
or SMS (i.e. most preferred method) instantly (i.e. in less than an hour before
the flight) on her device (i.e. laptop or mobile) depending on her context
(i.e. home or market or office etc.) and system context (e.g. the Internet is
available, service is available etc.). The notification message must be sent to
end-users device by selecting a suitable message format (i.e. size, scaling,
format) depending as per her device context (e.g. smart phone). In case there
are some problems (i.e. user is not accessible, network is not available, or
device is not reachable), the notification message must be ensured as sent by
adopting an alternative method e.g. sending to alternative contact (if given) e.g.
office secretary, or apply a retry strategy (e.g. attempt to resend the message
after every 5 minutes than 10 minutes etc.) until the message is confirmed to
be delivered.

The “iComp” will ideally be deployed on the mobile phone of the end-user
as a thin client. The main goal of “iComp” is to support the end-user’s by
adapting to new candidate solutions (e.g. using the available services) in

116

6.3. DESIGN-TIME MODELING OF REQUIREMENTS

response to changes in their requirements or preferences. The case described
above demands iComp to adapt while monitoring the “flight status” of a
itinerary with a specified “booking reference”, which the end-user provide
while customizing the travel details in “iComp”. In case of any changes, e.g.,
any event caused during service invocation, change in user flight status etc.
the “iComp” chose at best the candidate solutions (e.g. Notify user via SMS
or Email using the available services). In case the mobile battery is going
down, it notifies the thick client host to adopt an alternative mean to notify
end-user in case of changes.

For example, while the end-user is traveling, i.e., her current context is
identified by gathering data about her location using the location sensing in
the her smartphone. Conversely, if she is indoor e.g. office, the “iComp” has
to adapt itself (making the mobile silent or if there is any event to be notified
it notifies via email, etc.) to be able to accurately inform the end-user about
changes in her itinerary.

6.3 Design-Time Modeling of Requirements

We have adopted and revised the scenario from the travel case study. Here
we add more details with respect to the specific scenario mentioned above.
First, we need to represent explicitly the knowledge about the domain of
discourse. For this reason we make explicit in our requirements model this
information, which may appear redundant or trivial, but this is necessary
when a running SAS needs to reason on this artifact. For instance, the user
requirement is summarize as: The notification message about the flight status

must be sent to the end-user as per her preferences i.e. via Email, or Call, or

SMS (i.e. most preferred method) instantly (i.e. in less than an hour before

the flight) on her device (i.e. laptop or mobile) depending on her context

(i.e. home or market or office etc.) and system context (e.g. the Internet is

117

CHAPTER 6. APPLICATION OF THE CARE FRAMEWORK

Itinerary

Number

Set

Itinerary

Get Service

Details

Requires

Monitor and

Analyze Itinerary

Changes

Requires

Invoke

Service

I

Invoke

every 5

mins

I

Get Event Details

Invocation

Log

Requires

Requires

Reliable
I

Travel Itinerary

Booked

Flight

Booked Payment

Made

Confirmation

Message Sent

Message Transfer

Method Selected

Message

Composed

Booking

confirmation is sent

after the payment is

assured

All Flight

Options

must be

available to

All Users

M
M M

M

M

I

I

Standard Credit

Card Option Must

be Displayed
I

I

II I

I

Updates

Instantly < 5

mins

User

Checks

Email

Every Customer

Has Bank

Account

I

Convenience

Quick

I

User has Mobile

and Laptop

Secure

Payment

Data

Encryption

Standard

(DES)

I

Updates in 1

Business Day

I

Updates

Instantly in

realtime

I

I

Mobile

Phone

I

pref

pref

C

Show Cheap

Flight Option

First

I

Payment

daytime <

3

Laptop

I

Battery

 Time < 3 hrs

I

Battery

 Time > 24 hrs

pref

pref

C Cx: getLocation() =

@Market[]
1

C Cx: getLocation() =

@Home[]2

I I

pref

M

I

pref

pref

@
Market is a

Location{ }
@

Home is a

Location{ }

Rel

I

Size &

Scaling is

Easy

O

I

I

I

All Secretaries have

landline Phone

Travel

Itinerary

Message sent in < 1

hour after the Payment

Itinerary is not valid

before an after the

date of travel

Date of Travel

is not Today

I

I
Easy to

Produce

Confirmation

Message

I

I

I
Contact

List

Travel

Dates

I

S-Inf

I

C Cx: getLocation() = Null[]3

Place

Call

O

Send via SMS
Send via

Email

Send via

PostMail

Send via

Fax

Select Message

Type

Select Message

Format

Get Flight

Options
Select

Flight Option

Pay by

Credit Card

Pay by Bank

Transfer

Fax

Machine

I

C Cx: getLocation() =

@Office[]
4

@
Office is a

Location{ }

Html Text

Notify User

I

M

Conflict pref

O MSoft goalGoal
Quality

constraint

Domain

assumption

Relegation

Relation

Resource

C Context[]1W-InfS-Inf
@

Ontology

Concept{ }Association

Link

Is-Optional Is-Mandatory

inference

relation
I

Legend

Requires

Task/

service

Internet is

Available

Figure 6.1: A Goal Model in ARML

available, service is available etc.). We model this case and discuss how
ARML help in modeling this scenario and then we discuss how adaptive
requirements can be specified through this model. In Fig. 6.1, we present a
the high-level goals of “iComp” that are refined using the ARML concepts
and notations. Following the guidelines described in Chapter 5. We start by
eliciting information from the domain description, or the system details to
identify domain assumptions, specific entities and conditions pertaining to the
specific scenario under discussion. We represent this knowledge in a domain
ontology, where all the domain concepts are defined e.g. Travel ontology.

Fig. 6.1, shows a requirements model for “iComp” in Adaptive RML. Its
root level goal Travel Itinerary Booked is modeled as a mandatory node

118

6.3. DESIGN-TIME MODELING OF REQUIREMENTS

(modeled as M node, a unary relationship). It is decomposed via an in-
ference relation into the other mandatory goals: Flight Booked, Payment

Made, Monitor and Analyze Itinerary Changes and Confirmation Message

Sent (modeled as black I node with a arrow, a binary relation), to represent
the fact that it will be satisfied through the joint satisfaction of these three
goals.

Let’s focus on the goal: Monitor and Analyze Itinerary Changes, which
is refined into three tasks: Set Itinerary and Get Service Details and
Invoke Service via inference relation. We can add here information, i.e. tasks:
Set Itinerary and Get Service Details, requires a resource i.e. Itinerary
Reference (Itinerary Number – shown as a resource in the model). Further
we add information related to the softgoals. Notice, task: Invoke Service

has a precise quality constraint Invoke service every 5 minutes linked via
inference node. This quality constraints satisfice the softgoal i.e. Reliable

through an inference node. This means that task: Invoke Service, is reliable
if it satisfies the quality constraint. During the invocation of the service, the
task: Invoke Service logs the service invocation events and for this it requires
a resource i.e. Invocation Log.

The analysis of the Message Transfer Method Selected is critical here,
which is refined into two tasks: Get Event Details and Notify User. Subse-
quently, the task:Notify User is decomposed into tasks: Send via SMS (mod-

eled as hollow motion arrow), each candidate solution includes domain as-
sumptions e.g. User has mobile and laptop, context e.g. Market, Home (la-

beled as C with its number, associated to @ symbol 1), and resources e.g.
Mobile Phone (modeled as a rectangle). Preferences (dotted line with doubled

empty arrow heads) are used to compare requirements in candidate solutions,
and thereby compare candidate solutions; e.g., Send via SMS is preferred over
Send via Email. Requirements can be in conflict (e.g. Send via Email is in

1@ labels a concept defined in domain ontology e.g. travel ontology.

119

CHAPTER 6. APPLICATION OF THE CARE FRAMEWORK

conflict with Send via PostMail (dotted line with C in the middle with red

color). Conflict is shown due to the difference in quality constraint (e.g. Email
updates in >5 mins, whereas post mail updates in 1 business day).

Optional solutions, in case of problems (e.g. user is not accessible, as
mentioned in the scenario) can be identified via a relegation relation (modeled

as dotted light red line with arrowhead between two possible candidate solu-
tions). For instance, Place Call relegates Send via SMS. This allows to take
into account the situation in which a user’s context changed resulting in being
not accessible (e.g. Context: getLocation()= Null), and to describe as pre-
ferred the solution to make the user able to access the resources Confirmation
Message and Ticket Itinerary, via contacting her secretary. The Place Call

task is inferred via a domain assumption (e.g. All secretaries has landline

phone) and a resource (e.g. contact list) and the context (e.g. Context: get-
Location()= Null).

6.3.1 Specifying Adaptive Requirements

To manage the uncertainty, once we model the requirements and perform
an early analysis of them, we need to specify adaptive requirements that
aggregates primitive concepts and make explicit the feedback functionalities
e.g. monitoring specification, evaluation criteria and adaptation tasks (see
the model in Fig. 6.1). We adopt event-condition-action patterns to specify
adaptive requirements. For instance, we take the example of the task: Invoke
Service. Note that, when this task is invoked there may be several events that
needs to be monitored triggering other tasks. Returning to the specification of
adaptive requirements, we refer to the following ECA pattern:

MON : event ∧ EV AL : conditions→ TRIGGER : actions

In the given scenario, we identified the “Adaptive Requirements” that an
analyst can specify with the above pattern: For instance, task:Invoke Service

120

6.3. DESIGN-TIME MODELING OF REQUIREMENTS

is executed every 5 minutes to satisfice the softgoal Reliable. The execu-
tion of this task requires a service description, which is annotated using the
design-time tool (see Section 5.4, for details). Here we are interested to show,
how adaptive requirements will aggregate other requirements and are makes
explicit the monitoring specification and evaluation criteria. Note that in the
requirements model, evaluation conditions are derived through quality con-
straints. Adaptation actions are specified as triggers (e.g. INVOKE, SELECT
functions) over tasks specified in the model. If the boolean result of EVAL is
false, the consequence is to trigger the tasks as per user’s preference. Actually,
adaptive requirements can also aggregate other adaptive requirements, e.g.
AR1 must hold in order AR3 not to be violated. Below we state the adaptive
requirements related to the goal:Monitor and Analyze Itinerary Changes:

AR 0:

MON : onEvent(checkInternet()) ∧ EV AL : (DA : Internet(isAvailable))→ TRIGGER :

(INV OKE : NotifyUser(inform.immediate == False) ∧ SELECT : LogInfo())

In the above adaptive requirement, we use a domain assumption i.e. “Inter-
net is Available” to specify a monitoring requirement. This requirement helps
in the implementation to code the behavior of the monitoring component. In
this case, we introduced a condition to be evaluated and an event to log the
information. The monitor at run-time will not trigger task: Notify User, but
just logs the information in this case.

AR 1:

MON : onEvent(SetItinerary()) ∧ EV AL : (currentT ime⇐

PreferredT ime ∧ PreferredCommunicationMethod ==

SMS ∧Reasource.ItineraryReference(isAvailable))→ TRIGGER : (INV OKE :

NotifyUser(inform.immediate == False) ∧ SELECT : LogInfo())

Here, we introduce a condition while executing task:Set Itinerary prefer-
ences and conditions to evaluate that are notification time, method to notify

121

CHAPTER 6. APPLICATION OF THE CARE FRAMEWORK

and availability of resource. These preferences provide requirements, which
are helpful to derive monitoring specification and also to specify behavior of
the evaluator component.

AR 2:

MON : onEvent(GetServiceDetails() ∧AR1) ∧ EV AL : (Service(isAvailable))→

TRIGGER : (INV OKE : NotifyUser(inform.immediate == False) ∧ SELECT :

LogInfo())

In this adaptive requirement, we introduce a condition about the availability
of the service. Monitor component can log information while invoking the
service time to time. Further to specify this behavior we may also specify the
time to invoke the service and get details about its availability and response
time. For this reason, we rely on SALMon framework, which defines these
metric to evaluate while monitoring a service.

AR 3:

MON : onEvent(InvokeService() ∧GetEventDetails() ∧AR2) ∧ EV AL :

(invocationT ime ≤ 5min ∧ FlightStatus 6= LiveStatus)→ TRIGGER : (INV OKE :

NotifyUser(inform.immediate == true) ∧ SELECT :

SendV iaSMS(isPreferred)‖SendV iaEmail(isPreferred)‖PlaceCall())

This adaptive requirement aggregates another adaptive requirement (AR2),
which is also monitored while invoking the service for getting the flight status.
In face, the current flight status does not match with the “Live status”, the
task:Notify user is invoked and one of the candidate solution i.e. SendviaSMS
or SendviaEmail is executed depending upon the context conditions.

Specifying adaptive requirements in ECA pattern provides benefits in many
ways. First, it raises the level of abstraction from low level if-then-else pro-
viding more reasoning capabilities. Second, it enables us to write adaptive
requirements in a convenient way to express adaptive requirement by making
explicit the monitoring specification, evaluation criteria and adaptation tasks.

122

6.4. INSTANTIATING CARE AT RUN-TIME

Third, we can represent multiple instances of adaptive requirements as a solu-
tion to the requirements problem in the requirements database (∆). Moreover,
situations where a change in context demands change in the solution to the
requirements problem can be well specified with adaptive requirements repre-
sented in ECA pattern. In addition, a self-adaptive software can overcome the
uncertainty in the environment by reasoning over these adaptive requirements
and performs adaptations with respect to adaptation Type 1,2 and 3.

6.4 Instantiating CARE at Run-Time

The requirements obtained through modeling process in the previous step are
used to realize a prototype application (“iComp”) that instantiates the CARE
framework. For initial prototype we implement these requirements directly.
We are interested in the adaptive behavior of the prototype application enabling
us to gain first assessment on realizing CARE framework. In Fig. 8.1, we
present the design-time view and the run-time view of the prototype. Design-
time view depicts the approach we followed while modeling and specifying
adaptive requirements. At run-time software agents exploits web services
that a available to fulfill the service request (i.e. represented as RRA, see
Section 4.3) given by the end-user.

The run-time view shows the actual working of the “iComp” as a set of
interacting agents. Following the CARE architecture, we concentrated on
the UIAgent, which provides a graphical user interface to the end-user to
customize “iComp” and provide service requests as preferences. UIAgent
then interacts with the Monitor−Agent, which is responsible for monitoring
the web services to fulfill the end-user service request. It looks up in the
Delta for checking Goal axioms and concepts axioms from the ontology to
better match the end-user request with the available web services. Service
invocation events are logged and Evaluator − Agent is informed if there

123

CHAPTER 6. APPLICATION OF THE CARE FRAMEWORK

Figure 6.2: Run-time Process.

are any violations. Evaluator − Agent is responsible for deciding about the
best candidate solution to select. It looks up the Delta for the instances of
adaptive requirements that provides the rules to guide the selection. In case
of any change or violation events detected by the Monitor − Agent it sends
execute commands to the Adapt−Agent. Note that this prototype is a limited
version of the CARE architecture. Once acquiring execute command from
Evaluator − Agent, the Adapt − Agent notifies the UI − Agent agent to
provide feedback to the end-user.

In this prototype implementation, we acquired the service descriptions
WSDLs and Evaluator − Agent is aware of their methods. The core agents
in this setting form the Monitor-Eval-Adapt control loop, which is guided
by the adaptive requirements and end-user service requests. Each agent send

124

6.5. ANALYZING RUN-TIME ADAPTATION

Figure 6.3: Sequence flow of the Scenario.

messages to provide feedback among themselves based on a common shared
ontology of the domain i.e. Travel ontology.

To further understand the sequence of the execution at run-time, we formal-
ize the scenario under discussion using the sequence diagram as shown in the
Fig. 6.3. In this sequence diagram, we mainly elaborate the actual execution
flow and interactions among the agents that are developed.

6.5 Analyzing Run-Time Adaptation

To perform continuous reasoning and refinement by iComp itself, it requires
end-user customizations e.g. preferences new knowledge or input from the
stakeholders (e.g. end-user) to refine its specification. To give an intuition
about how the requirements specification can support run-time adaptation, in

125

CHAPTER 6. APPLICATION OF THE CARE FRAMEWORK

S1

t1

¬S1 S4 S4

t2

t3

Before Adaptation After AdaptationDuring Adaptation

¬S1 ^ S4 S3 S2 S1: Context: (C1),
Resource: (Mobile Phone),

Task: (Send via SMS),
Domain Assumption:

(All Users have Mobile Phone & Laptop)

S4: Context: (C3),
Resource: (Contact List),

Task: (Place Call),
Domain Assumption:

(All Secretaries have landline Phone)

Time

S4 -- Rel --> S1

¬C1 ^ ¬C2

Figure 6.4: Runtime Adaptation Sequence of SAS.

Fig.6.4, an adaptation sequence is shown along the time dimension, where the
SAS operates as per the candidate solution (S1) selected to satisfy the particular
context and resource variation. At this time (t1) the SAS, while monitoring,
evaluates the user’s current situation and attempts to satisfy a given set of goals
(e.g. Confirmation Message Sent, Message Transfer Format Selected) and
quality constraints via its candidate solution. A candidate solution is composed
of tasks, domain assumptions that hold valid for a context and available
resources to achieve such tasks.

E.g., candidate solution S1: Context: (@Market), Resource: (Mobile

Phone), Task: (Send via SMS), Domain Assumption: (All Users have Mobile

Phone & Laptop) was selected, but due to traveling, the context is not recog-
nized anymore. Therefore the SAS has to reason about this change at time
(t2) by looking at the difference in candidate solutions with respect to context
conditions, resource availabilities and user preferences. SAS performs the
reasoning based on the differences among the alternative candidate solutions,
which states a comparison and ranking of the solutions based on criteria e.g.

126

6.6. IN PRACTICE

(S1) Send via SMS is not valid, (S2) Send via Email is not feasible as user’s
context is not recognized. Thus the change in requirements problem, changes
the candidate solution in different contexts and with different resources. The
adaptive requirements play critical role here, as they operationalize the mech-
anisms for adaptation i.e. monitor and evaluating the difference between
candidate solutions and provides criteria to compare and rank them. To reason
on adaptive requirements, automated reasoning techniques (e.g. AI Planning)
or efficient rule engines can be provide more deductive reasoning capabilities.

Finally SAS selects a candidate solution e.g. “Place Call” by evaluating the
relegation relation, specified earlier in the adaptive RML model and detailed
in adaptive requirements e.g. S4 � S3 � S2. The new candidate solution
S4: Context: (Null), Resource: (Contact List), Task: (Place Call), Domain

Assumption: (All Secretaries have landline Phone).

Although there might be situations where there is no possible candidate
solution is available by searching the requirements model. In this case, they
SAS can involve end-user to gain feedback or acquire new knowledge per-
taining to the specific requirements problem. Once acquired new information,
the SAS need to refine its existing specification per se. In parallel, it tries to
look for a possible solution (e.g. searching for a relevant service). This leads
SAS to move from one requirements problem to another, while monitoring
the end-user context and resource availability.

6.6 In Practice

In this section, we describe the prototype application that is developed. To
guide the process of implementation, we mainly refer to the CARE’s concep-
tual architecture that guide the realization of this proof of concept application.
To fulfill this aim, we have used the existing framework JADE2 as a can-

2http://jade.tilab.com/

127

CHAPTER 6. APPLICATION OF THE CARE FRAMEWORK

Figure 6.5: “iComp” GUI Screen

didate development platform and existing web services (e.g. Google Map,
Weather.com) and also our own web services mainly developed in Java to
simulate the flight booking service. The agents that are developed preforms
CARE activities.

At the start of the application, the UIAgent displays the graphical in-
terface of “iComp” as shown in the Fig.6.5. End-User can customize the
application by setting meeting agenda and travel schedules by entering in-
formation pertaining to travels (e.g. travel itinerary). Preferences related to
the meeting agenda and travel schedules can be set, which provides input to
the Monitor − Agent to observe them (e.g. services that are required to be
invoked or acquire live feed etc.). For instance, in Fig. 6.6, preferences related
to travel can be set i.e. the method for communication and time to notify.
Monitor − Agent take these setting and start monitoring the service, in this
case it is travel flight information service.

128

6.6. IN PRACTICE

Figure 6.6: “iComp” Preference Screen

A thin client is also developed using Android OS3. This concept application
is a service-based application which relies on the external services to meet
the end-user expectations. For instance, in the given scenario, end-user set
the preference method for communication as SMS, and to be notified quickly.
The details about the travel itinerary provided by the end-user (e.g. Itinerary
Number) are matched with the relevant web service, which we developed and
was running on a local server. The application match the provided “Flight
Status” with the actual “Live Status”. If the status is not matched (see AR 3),
the Monitor − Agent detect the event and identify violation and notify the
Evaluator − Agent, it lookup AR 3, and evaluation condition returns false,
which means the “Flight Status == Canceled”. It looks for the preference of
the end-user and get the context details (e.g. location). It then issues a execute
message to the Adapt− Agent to perform the required action i.e. Send SMS.
The final notification is received by the end-user on her device i.e. smartphone.

3http://code.google.com/android/

129

CHAPTER 6. APPLICATION OF THE CARE FRAMEWORK

Figure 6.7: “iComp” Adaptation in the Scenario

This implementation provided us initial improvements that we have identi-
fied during the implementation of this application. However, in the current
implementation, the run-time refinement of requirements (i.e. update require-
ments specification activity in CARE) is not presented. The current prototype
does not support these actions. Further steps in this research are aimed at
providing a more refined version.

6.7 Final Remarks

So far, we have introduced a working prototype application, which instantiates
the CARE framework. In fact, the prototype is limited in functionality and
reasoning capabilities. It supports (adaptation Types 1-3), however, more inter-
esting scenarios for adaptivity can provide better assessment. As a qualitative
evaluation of this prototype, current version of the prototype can be easily
evolved by adding more capabilities and agents e.g. new web services. In

130

6.7. FINAL REMARKS

each iteration new functionality or mechanism can be introduced, although
implementation effort is required and cannot be ignored. With respect to
performance, the current version performs well. Actually it depends upon
many factors e.g. complexity of the algorithm and number of constraints and
requirements to satisfy in a given domain of discourse. Therefore, further
evaluation along scalability and performance is needed in the future.

While developing this application, we have identified several directions
for improvement, such as (i) continuous refinement of requirements specifi-
cation; (ii) specification of end-user preferences e.g. priorities and ratings
about requirements and environment that can change over-time; (iii) on-line
reasoning for contextual changes e.g. user’s situational information which
includes location-awareness and relevant information about user’s surround-
ing to provide meaningful support for decision making at run-time; and (iv)
efficient methods for service discovery. We aim to consolidate the CARE
framework with them.

Expanding on this experience, as an ongoing future work we are focusing
on (i) defining a method for continuous refinement of requirements. We are
interested in minimal changes to the specification at run-time, mainly, to know
what to change and what are the consequences of this change. To this aim,
we are defining an ontology of actions that helps SAS to evolve and manage
requirements by itself by involving the end-user. In fact, SAS at run-time
exploits it’s requirements database – a machine readable form of requirements
model and reasoning rules that guide the evolution process.

131

CHAPTER 6. APPLICATION OF THE CARE FRAMEWORK

132

Chapter 7

Evaluation

7.1 Overview

In this chapter we present the evaluation of our design-time framework. First
we check the scalability and performance of the prototype tool presented in
Chapter 5. The results shows the applicability of the tool with respect to
models of increasing size. Second, we present our modeling experience on a
travel case study. We report our qualitative assessment to show the differences
between the proposed ARML and existing state of the art goal modeling
languages. Third, we present in detail the evaluation from an empirical survey
on ARML to collect initial feedback on the effectiveness of ARML (modeling,
reasoning and visual notation). These initial evaluation results discussed below
provides promising results. However, improvements are critical, which are
the focus of further steps of this research.

The rest of the chapter is organized as follows. In Section 7.2, we report
the results obtained from performance evaluation of the design-time tool. In
Section 7.3, we present a qualitative assessment on modeling requirements
for SAS using state-of-the-art goal modeling languages. In Section 7.4, we
report results from an empirical survey performed on the effectiveness of the
proposed ARML. In Section 7.5, we summarize this chapter.

133

CHAPTER 7. EVALUATION

7.2 Evaluation of Design-Time Tool

To evaluate the feasibility of the proof of concept tool, we have performed a set
of experiments to provide early assessment on the scalability and performance.

7.2.1 Environment of the experiments

The following experiments were conducted in a Intel Core 2 DUO 2.40 Ghz
with 4 GB of RAM, running windows Vista 32 bits.

7.2.2 The parameters of the study

We have constructed 500 variants of a Goal Model. Starting from an initial goal
model of just 10 elements (goals, softgoals, task, resource, context, preferences
and quality constraint), we have built a set of 500 variants adding on each
variant 10 more elements randomly (e.g. model250 has 2500 elements). All
generated goal models are stored as XMI files (see Appendix B//to be added).

7.2.3 Experiment 1: Time to load the variants in the tool

These variants of the model are implemented in eclipse. As a first step they are
imported into the tool, so the analyst can annotate the elements and generate
the specifications. The time it takes to import a goal model depends with
respect to the number of elements this model has. The time to load a variant
includes parsing time of the xmi file i.e. retrieve the data and store it into the
database of the tool in a convenient structure. The graph shown in the Fig.7.1
represents the load time of the variants.

In order to better analyze the results over these data points we have applied
curve fitting techniques to infer which the function that better fits the given
results is. The most accurate and convenient function is: 0.0000008x2 +

0.0016x+ 0.473.

134

7.2. EVALUATION OF DESIGN-TIME TOOL

Figure 7.1: Time to load variants in the tool

As we can see in the graph shown in Fig.7.1, although being a quadratic
function, the term in x2 is significantly small compared to the term in x. We
can observe that even for a goal model of 5000 elements, this process takes
less than 30 seconds to import the model to the tool. A medium-size goal
model of 200 elements takes around 1 second.

7.2.4 Experiment 2: Time to generate the monitor specification

Once the goal models are imported to the tool and the analyst has annotated all
the elements with the required information, the analyst can automatically gen-
erate the monitoring specification documents. As stated previously, each task
in the model is instrumented by a service description. A related monitoring
specification is generated automatically for each annotated task (e.g. a goal
model with 15 tasks instrumented by services, will generate 15 monitoring

135

CHAPTER 7. EVALUATION

specifications). The time to generate the monitoring specification depends on
the number of model elements. Mainly, parsing and transformation has been
taken into account.The graph shown in Fig.7.2 shows the time to generate the
monitoring specification.

Figure 7.2: Time to generate monitoring specifications

In order to better analyze the results over the data points gathered in the
graph, we have applied curve fitting techniques to infer which the function
that better fits the given results is. The most accurate and convenient function
is: 0.0009x− 0.0432

As we can see, the results in this stage of the process are even more
promising. For a goal model of 5000 elements, this process takes less than 5
seconds to generate the different set of monitoring specifications. A medium-
size goal model of 200 elements takes around 0,3 seconds.

136

7.2. EVALUATION OF DESIGN-TIME TOOL

7.2.5 Experiment 3: Time to configure the monitors

The generated monitoring specifications are the input to configure SALMon
to start monitoring. The time it takes to configure SALMon from a set of
monitoring specifications derive from a goal model variant is represented in
the graph as shown in Fig.7.3. The graph shows the performance in seconds
with respect to the size of the initial goal model.

Figure 7.3: Time to configure monitors

In order to better analyze the results over these data points we have applied
curve fitting techniques to infer which the function that better fits the given
results is. The most accurate and convenient function is: 0.0141x+ 1.0994.

As we can see, configure the monitors is the most time-consuming step
of the process, although being a linear function, the term in x is significantly
bigger than the main terms in the other functions. Nevertheless, we can see
that for a goal model of 5000 elements, this process takes around 1 minute

137

CHAPTER 7. EVALUATION

and 10 seconds. A medium-size goal model of 200 elements takes around 5
seconds, which demonstrates the feasibility of our approach, with respect to
the performance and scalability.

7.3 Qualitative Evaluation of Adaptive RML

Requirements modeling in the early steps of RE aims to establish in a rough
way the overall purpose of the system, how well it should achieve that purpose,
how it would achieve it, and what resources it needs to mobilize in order
to do so. This requires the elicitation of requirements from stakeholders,
their interpretation, restructuring, refinement, classification as instances of
concepts, the identification of relations between them, and their representation
in models.

Most of the ongoing works on modeling requirements for SAS falls within
goal-oriented modeling, since the goal abstraction provides an intuitive way to
capture high level criteria the system should fulfill in order to meet end-users
expectations. In this section, we focus on a simple scenario for a travel booking
application. We model it with the i* and Tropos1 requirements modeling
language and identify key elements that are missing in these languages to
modeling requirements for SAS. Here we describe an excerpt of a scenario
from a travel companion case study introduced earlier, in which self-adaptive
properties of the system are illustrated.

Scenario:The iComp application is a self-adaptive system that aids business

travelers while on the move. It supports them in booking their travels, making

payment and receiving timely updated information about their booking con-

firmation (e.g., confirmed, canceled, in progress). The booking confirmation

messages must be sent to the user (customer) via Email or SMS (i.e. most

preferred method) instantly (i.e. in less than an hour or maximum less than

1Modeling tool for Tropos methodology is used i.e. TAOM4e.

138

7.3. QUALITATIVE EVALUATION OF ADAPTIVE RML

iComp

User Schedule

Travel

Travel

Booked

Low

Cost
Quick

Book

Flight

BookFlight

ThroughiComp

HurtH
u
rt

H
el

pHelp

Travel

Booked

D

D

Enter Flight

Date Range

D

D

Get Flight

Options

Select Flight

Option

Travel Itinerary

Booked

Flight

Booked
Payment

Made

Confirmation

Message Sent

Pay by

Credit Card

Pay by Bank

Transfer

Less

Costly

HelpH
el

p

Quick
H
urt

H
el

p

H
e
lp

Select

Message

Format

Message

Transfer Method

Selected

Send Via

SMS

Message

Composed

Send Via

Email

Send Via

PostMail

Send

Via Fax

Hurt
Help

Break

Help

Travel

Itinerary

Mobile

Phone

Travel

Dates

DD

Select

Html
Select

Text

Easy to

Produce

Make

H
e
lp

Make

Select

Message

Type

Place

Call

Some +

Convenience

H
e
lp

Figure 7.4: Modeling using iStar Concepts and Relations only.

1 day) on their device (i.e. laptop or mobile) and depending on their context

(i.e. home or market). Payment must be ensured before iComp sends the

message (i.e. composing the message) by selecting a suitable message format

(i.e, size, scaling, format) to adapt to the device from which they will be read.

Finally, in case there are some problems (i.e. user is not accessible) and the

message cannot be delivered to the user then iComp must send the message to

an alternative recipient (e.g., the customer’s secretary).

7.3.1 Requirements Modeling with i*

Figure 7.4 shows i* strategic dependency and rationales models for the travel
booking scenario. In the main scenario, the user and the system are repre-
sented by circles, whereby the content of the dashed ovals (strategic rationales)
represents their goals, tasks, and resources. We can see in this model that
what leads the user to chose the iComp for travel booking results from the
analysis of the root task of Schedule Travel, which is decomposed into the
goal of Travel Booked and the softgoals of Low Cost and Quick. These soft-

139

CHAPTER 7. EVALUATION

goals are negatively influenced (shown with contribution links) by the subtask
of BookFlight. The task Book Flight through iComp, however, partially sat-
isfices the Low Cost and Quick softgoals. This task in turn depends on the
iComp Actor, since the associated goal Travel Itinerary Booked has been
assigned to the system. The strategic rationales model of iComp reveals a de-
composition of goal Travel Itinerary Booked into three main goals Flight

Booked, Payment Made and Confirmation Message Sent. For example, we can
now reason about Confirmation Message Sent, which is decomposed into two
goals i.e. goals: Message Transfer Method Selected and Message Composed.
Along their subsequent means of accomplishing tasks, and assess their contri-
butions towards softgoals Quick and Easy to produce, which helps in ranking
a particular solution. For example, tasks: Send via SMS and Send via Email

with means to use resources: Travel Itinerary and Mobile Phone contributes
fully and partially to the softgoal Quick, which in turn satisfices softgoal
Convenience. The aim of this analysis is to identify one particular solution
that satisfies the high level goals and optimally satisfies the softgoals.

Modeling iComp in i* lead us to identify some limitations of the language
when used for SAS. i* does not provide concepts for the modeling of alter-
native solutions to the requirements problem, which are feasible in different
contexts. For instance, in context (e.g. Home) the candidate solution should
be Send Message via Email and in another context, e.g. Market, Send mes-

sage via SMS should be more appropriate in case no 3G or no smartphone is
available for the user, and so on. That is we were not able to model the fact
that the context of the user may change as well as resources availability, and
ultimately to capture monitoring conditions and evaluation criteria that should
characterize the dynamically adaptive behavior of the system. Also, in i* it is
not possible to model quality constraints, such as send the message within one

hour after the payment, and domain assumptions that need to be made explicit
during the analysis as they contribute to the definition of the requirement

140

7.3. QUALITATIVE EVALUATION OF ADAPTIVE RML

problem, such as standard Credit Card Options must be Displayed.

Figure 7.5: Modeling using Tropos Concepts and Relations (R) and Annotated Goal model
with domain properties modeled using Domain Ontology (L)

7.3.2 Requirements Modeling with Tropos

Following the Tropos – software development methodology [PPSM07a], we
move from a goal-oriented model of the domain’s stakeholders (including
end-users of the system-to-be) to the specification of the system requirements
by delegating end-user goals to the system. Hard-goals represent the rationale
behind functional requirements (depicted as ovals in fig. 7.5, right side) and
soft-goal (cloudy shape) represent non-functional aspects of the system-to-be.

Elaborating the example, we analyze the a variant of the requirements in
the above scenario in terms of hard-goals and soft-goals thus addressing the
(Why) question along with the (What).

141

CHAPTER 7. EVALUATION

The goal Booking Confirmed has been delegated by the end-user to the
system, represented by the actor “iComp”, and it is analyzed as a sub-goal of a
more general goal of the system, namely Itinerary Managed, through AND-
decomposition. Following the details of the Booking Confirmed analysis,
we may found that this goal is achieved through a plan 〈SendMessage〉,
depicted in terms of means-end relation in fig. 7.5. This plan specifies the
action of sending a confirmation message to the user device as soon the
booking is processed. This plan can be realized by alternative behaviors,
namely 〈SendEmail〉 , 〈SendSMS〉 and 〈SendFax〉, represented by the
plan OR-decomposition. These three alternative plans address the variability
in the operational context, which affect (How) the goal of confirming booking
can be achieved by the system.

Criteria for selecting the right alternative are represented by contribution
relationships (arrows labeled with “+” or “-”) to soft-goals. For instance,
the selection of the plan 〈SendSMS〉 should be performed when the user’s
device is a smartphone/PDA, as it contributes (++) positively to the users’
soft-goal {Convenience} as compared to 〈SendFax〉, which contributes (–)
negatively to it.

Information needed to drive the plan selection are collected at run-time
by the system following monitoring requirements expressed in the analysis
of the goals e.g. Itinerary Monitored and User Context Identified. For
instance the plan 〈DetectEvent〉 that is part of the means-end analysis of the
Itinerary Monitored goal contains specification of how to detect unforeseen
events, as message delivery error or connection lost, and provide criteria for
the system to switch to a behavior in which the end-user’s contact info are
used to inform colleagues or friends about the confirmed booking. In Fig.7.6,
we present a plan specification that depicts the adaptive requirements for the
plan 〈SendMessage〉.

So far, exploiting goal modeling reveals the high-variability that is needed

142

7.3. QUALITATIVE EVALUATION OF ADAPTIVE RML

in the adaptive requirements for SAS. However, to better specify these require-
ments information pertaining to the domain assumptions and facts must be
made explicit. This information provides a better way to the analyze vari-
ability. Recent research on the use of ontology techniques for requirements
engineering has proven their effectiveness. For instance, an integration of
goal models and ontologies has been recently proposed by Shibaoka et al.
in [SKS07]. This approach employs goal-oriented modeling complemented
by knowledge representation technique (ontologies) to solve difficulties in
refining goal models, thus facilitating the analyst to elicit requirements. This
approach makes an important step, thus provides a starting point for our inves-
tigation, where we use goal-models and ontologies to elicit requirements for
self-adaptive software with the further objective to allow the software system,
at run-time, to reason on them. Returning to our analysis, we introduce another
step for modeling adaptive requirements in Tropos.

Domain Modeling:

Representing the knowledge about the domain using ontology provides a
way to elicit domain assumptions. We model application domain and opera-
tional context properties in the ontology as shown on the left side of the fig. 7.5.
For example, in the ontology we identify the common concepts used in travel
domain such as Itinerary, Accommodation, Means of transportation (by
plane or by train etc.). After identifying the concepts, we define relationships
between these concepts. It helps in understanding the said domain assumptions
that remains true in a domain of interest. To express these assumptions we use
concept properties and inference rules, which represents them. For example,
one possible domain assumption can be: Customer’s itinerary is valid not

before and not after the departure date. Moreover, concepts that describe the
operational context are represented in our ontology, such as Context, Device,
Event having a property (Message deliver error) and Customer having a
concept property such as (Contact Info) etc.

143

CHAPTER 7. EVALUATION

//Plan Model(〈SendMessage〉) to accomplish Goal (BookingConfirmed)
begin procedure Plan Model(〈SendMessage〉)
do triggerGoals [UserContextIdentified,ItineraryManaged];

begin
for Goal [UserContextIdentified]
do executePlan 〈DetectDevice〉; //@param: phone type, phone setting
return; //@result: device

end;
begin

for Goal [ItineraryManaged]
do executePlan 〈DetectChanges〉; //@param: msg delivery err, conn err
return;//@result: eventMessage

end;
decision = decision on AltP lans(device, eventMessage);
case decision:

- Select case:〈SendSMS〉; //if device = PDA, eventMessage = null
- Select case:〈SendEmail〉; //if device = Laptop, eventMessage = null
- default case: 〈SendFax〉; //if device = null, eventMessage = null

ifnot [decision]
then lookupContact; //@param: cust name, contact info

alt decision = decision on AltP lans(cust name, contact info);
case alt decision:

- Select case: 〈SendEmail〉; //contact info
- default case: 〈SendFax〉; //contact info

end procedure;

Figure 7.6: Example of Plan description

The analyst after adopting a domain ontology or building it explicitly needs
to link it with the goal models. This leads to the further step of annotating the
goal model with the ontology concepts and their respective properties.

Linking Ontology to Goal Model:

The links between domain concepts and their properties (represented in the
ontology) to the plans and goals (represented in the goal model) are shown in
the Fig. 7.5 (see label 1 to 5). For instance, the concept Phone Device in the
ontology is linked with the plan Detect Device in the goal model (with the
label 2 and 3). These labels associate the properties phone type (smartphone,
PDA etc.) and phone setting (e.g. Operating system, memory etc.) with
the plan Detect Device to provide an additional information to the plan’s
specification. Similarly, the concept Event is associated with plan Detect
Events, which provides the plan to detect events such as msg delivery err as

144

7.3. QUALITATIVE EVALUATION OF ADAPTIVE RML

shown in the fig. 7.5 as label 4.

This helps analyst in detailing software behaviors that encompass not
only the actions to satisfy (functional) goals, but also monitoring and evalu-
ation actions. Fig. 7.6 describes the plan 〈SendMessage〉, which provides
the means to achieve the (functional) goal Booking Confirmed. This plan
requires to trigger monitoring goals that are pursued in parallel, providing
data for the evaluation actions that drive the selection of the right alternative
e.g.〈SendSMS〉 to send confirmation message to the users’ device (assuming
the device is identified as smartphone or PDA).

Based on the experience we earned in modeling adaptive requirements
using existing goal modeling approaches, we see that similar efforts has
been made to capture requirements for SAS by extending i*/Tropos [MPP08,
ADG09]. The main idea behind these extensions is to annotate goal models.
For instance, in [MPP08] goal achievements conditions and environment mod-
eling (using UML class diagrams) is used to annotate the i*/Tropos goal model,
and transform them for use with an implementation architecture (e.g. BDI).
Similarly in [ADG09] location abstraction is used to formalize context and
annotating the variation point (e.g. AND/OR decomposition) with in a goal
model. This approach provides a systematic design-time approach to build
context models based on locations concepts (e.g. using UML class diagrams).
Common to both approaches is the use of UML notation to formalize the
concept of environment and context hierarchies. Both approaches are focused
on finding a single best solution in case of adaptation.

In summary, both of these approaches and our modeling efforts using i*

and Tropos are limited to show how the system can move across contexts
(with changing domain assumptions, resource availability) by altering the
requirements problem with respect to the variety of candidate solutions. We
now move to model the same scenario in ARML to reveal its potential edge
over the existing approaches.

145

CHAPTER 7. EVALUATION

7.3.3 Requirements Modeling with ARML

Differently from the previously mentioned extensions of goal-oriented mod-
eling languages for SAS, we rest on Techne [JBEM10b], an abstract mod-
eling language for early requirements, which adopts the core ontology for
RE [JMF08]. This core ontology extends the goal-oriented perspective al-
lowing to model optional requirements, preferences, and to treat fully non-
functional requirements in terms of approximations and quality constraints.
The basic elements of Techne models are requirements, modeled as propo-
sitions that are labeled as domain assumptions, goals, quality constraints, or
tasks. A requirement can be mandatory or optional. Connections between
model elements are used to represent how the satisfaction of an element may
impact the satisfaction of the other, through inference and conflict. Preferences
are used to compare requirements in terms of desirability. Performing the
analysis of a requirements problem specified in Techne, results in finding
candidate solutions in terms of tasks and quality constraints that together
satisfy all mandatory goals and cover, as much as possible, optional ones.

The proposed modeling language for SAS, called ARML, builds on Techne
by adding two new concepts, namely, context and resource, and two relations,
i.e. relegation and influence. ARML has its own visual notation. In the rest of
this section we illustrate an ARML model of iComp with the aim to provide
a preliminary qualitative evidence about its support in overcoming the limits
mentioned above in modeling requirements for SAS. A detailed account of
ARML will be given in the ensuing sections.

Fig.7.7, shows a requirements model for iComp in ARML. Its root level
goal Travel Itinerary Booked is modeled as a mandatory node (modeled as

M node, a unary relationship). It is decomposed via an inference relation into
the other mandatory goals: Flight Booked, Payment Made and Confirmation

Message Sent (modeled as black I node with a arrow, a binary relation), to

146

7.3. QUALITATIVE EVALUATION OF ADAPTIVE RML

Travel Itinerary

Booked

Flight Booked
Payment Made

Confirmation

Message Sent

Message Transfer

Method Selected

Message

Composed

Booking confirmation is

sent after the payment is

authrorized

All Flight Options

must be available to

All Users

M M M

M

M

I

I

Standard Credit

Card Option Must

be Displayed

I

I

II I

I

Updates

Instantly <

5 mins

User

Checks

Email

Every Customer

Has Bank

Account

I

Convenience

Quick

I

User has

Mobile and

Laptop

Secure

Payment

Data

Encryption

Standard

(DES)

I Updates in

1 Business

Day

I

Updates

Instantly in

realtime

I

I

Mobile

Phone

I

pref

pref

C

Show Cheap

Flight Option

First
I

Payment

daytime < 3

Laptop

I

Battery

 Time < 3 hrs

I

Battery

 Time > 24 hrs pref

pref

C Cx: getLocation() =

@Market[]
1

C Cx: getLocation() =

@Home[]
2

I I

pref

M

I

pref

pref

@
Market is a

Location{ }
@

Home is a

Location{ }

Rel

I

Size &

Scaling is

Easy

O

I

I

I

All Secretaries

have landline

Phone

Travel

Itinerary

Message sent in

< 1 hour after

the Payment

Itinerary is not valid

before an after the

date of travel

Date of

Travel is not

Today

I

I
Easy to

Produce

Confirmation

Message

I

I

I
Contact

List

Travel

Dates

I S-Inf

I

C Cx: getLocation() =

Null[]
3

Place

Call

O
Send via

SMS

Send via

Email

Send via

PostMail

Send via

Fax

Select

Message

Type

Select

Message

Format

Get Flight

Options

Select

Flight Option

Pay by

Credit Card

Pay by Bank

Transfer

Fax

Machine

I

C Cx: getLocation() =

@Office[]
4

@
Office is a

Location{ }

Html Text

Conflict pref

O MSoft goal
Goal

Quality

constraint
Domain

assumption

Rel

Resource

C Context[]1W-InfS-Inf @
Ontology

Concept{ }Association

Link

Is-Optional Is-Mandatory

inference

relation
I

Legend
Task/

Service

Figure 7.7: Modeling using ARML Concepts and Relations.

represent the fact that it will be satisfied through the joint satisfaction of these
three goals.

Let’s focus on the goal: Confirmation Message Sent (i.e. the shaded
part of the model), which is decomposed into two goals: Message Transfer

Method Selected and Message Composed via inference relation. We can add
here information that were missing in i* model, i.e. the domain assump-
tion Booking Confirmation is sent after the payment is assured (mod-

eled as rounded rectangle) and the quality constraint Message sent in <

1 hour after the payment (modeled as diamond shape) connecting them
through the same inference node.

An influence relation is added among the two decomposed goals: Message
Transfer Method Selected and Message Composed (modeled as dotted green

line with arrowhead) to account for the prevailing context conditions and re-
source availability that influences the achievement of goal: Message Composed.

147

CHAPTER 7. EVALUATION

For example, if the context conditions support to choose Email as a candidate
transfer method, the ways to satisfy goal:Message Composed is by selection a
correct format that is either text or html.

The analysis of the Message Transfer Method Selected proceeds by link-
ing via inference nodes task-rooted subgraphs, which defines candidate so-
lutions. Besides tasks e.g. Send via SMS (modeled as hollow motion arrow),
each candidate solution includes domain assumptions e.g. User has mobile

and laptop, context e.g. Market, Home (labeled as C with its number, associ-

ated to @ symbol 2), and resources e.g. Mobile Phone (modeled as a rectangle).
Preferences (dotted line with doubled empty arrow heads) are used to compare
requirements in candidate solutions, and thereby compare candidate solutions;
e.g., Send via SMS is preferred over Send via Email. Requirements can be in
conflict (e.g. Send via Email is in conflict with Send via PostMail (dotted

line with C in the middle with red color). Conflict is shown due to the dif-
ference in quality constraint (e.g. Email updates in <5 mins, whereas post
mail updates in 1 business day). Notice that it was not possible to model these
information with i*.

Optional solutions, in case of problems (e.g. user is not accessible, as men-
tioned in the scenario) can be identified via a relegation relation (modeled as

dotted light red line with arrowhead between two possible candidate solutions).
For instance, Place Call relegates Send via SMS. This allows to take into ac-
count the situation in which a user’s context changed resulting in being not
accessible (e.g. Context: getLocation()= Null), and to describe as preferred the
solution to make the user able to access the resources Confirmation Message

and Ticket Itinerary, via contacting her secretary. The Place Call task
is inferred via a domain assumption (e.g. All secretaries has landline

phone) and a resource (e.g. contact list) and the context (e.g. Context:
getLocation()= Null).

2@ labels a concept defined in domain ontology e.g. travel.

148

7.4. EMPIRICAL SURVEY ON ARML

7.3.4 Summary

Gain in expressiveness of ARML with respect to i* and Tropos models are
summarized below:

• we can model information about context, resources and domain assump-
tions that need to be monitored by the SAS in order to enable adaptation;

• softgoals evaluation in i* and in Tropos is subjective and provides no
clear evidence to rank a solution. In ARML, candidate solutions can be
ranked and evaluated via quality constraints over measurements that may
be collected by the SAS;

• candidate solutions can be associated with contexts.

• candidate solutions can be associated with resources that are needed.

On the visual modeling notation, a further effort is needed to fit with the
proposed recommendation set out in [MHM09], for improving usability and
communicative effectiveness of visual notations in RE modeling. To this aim,
we have conducted an initial survey involving the subjects. Results of this
empirical survey are summarized in the next section.

7.4 Empirical Survey on ARML

7.4.1 Goal of the Study and Research Questions

In order to provide first assessment on the effectiveness of ARML (model-
ing, reasoning, and visual notations), we performed a (pilot) survey to gain
confidence on the proposed language. In the study, we ask some expert require-
ments engineers to exercise with ARML and then fill some questionnaires,
(using a Likert scale, see below), to express their opinion about several aspects

149

CHAPTER 7. EVALUATION

of ARML. The aim is to gain an early feedback with a clear goal of acquiring
the expert perceived judgment.

In particular, we are interested to answer the following research questions:

• RQ1: Are the concepts and relations proposed in ARML effective to
model requirements for SAS at design-time?

• RQ2: Are the concepts and relations proposed in ARML useful for
reasoning by the SAS itself at run-time?

• RQ3: Are the visual modeling notations in ARML adequate for modeling
requirements for SAS?

These questions let us investigate the effectiveness and usefulness of the
concepts and relations along with the adequacy of the visual notations pro-
posed in ARML to model requirements for SAS.

7.4.2 Hypothesis

Based on the above stated research questions, we now describe our null
hypothesis that we use to evaluate our candidate method.

RQ1 is related to the effectiveness of the modeling notations proposed in
ARML. Below we state the following null hypothesis and alternative hypothe-
sis for RQ1:

• H0
1 : Concepts and relations proposed in ARML are not effective to model

requirements of SAS by the analyst at design-time.

• Halt
1 : Concepts and relations proposed in ARML are effective to model

requirements of SAS by the analyst at design-time.

RQ2 is related to the usefulness of the modeling notations proposed in
ARML to perform reasoning over them at run-time by the SAS itself. Below
we state the following null hypothesis and alternative hypothesis for RQ2:

150

7.4. EMPIRICAL SURVEY ON ARML

• H0
2 : Concepts and relations proposed in ARML are not useful to reason

on them by the SAS itself at run-time.

• Halt
2 : Concepts and relations proposed in ARML are useful to reason on

them by the SAS itself at run-time.

RQ3: is related to the adequacy of the visual modeling notations that are
proposed in ARML for modeling requirements for SAS. Below we state the
following null hypothesis and alternative hypothesis for RQ3:

• H0
3 : Visual Modeling notations representing the concepts and relations

in ARML are not adequate to model requirements of SAS.

• Halt
3 : Visual Modeling notations representing the concepts and relations

in ARML are adequate to model requirements of SAS.

We formulate each hypothesis with a clear direction (i.e, they are one-
tailed) since we assume that the new concepts and relations proposed by
ARML provide better support for dynamic changes to be taken into account
while modeling requirements for SAS, with respect to the more traditional
methods (e.g., standard i* or Tropos).

Hypothesis testing
Each research question is investigated by means of questionnaires having

the aim of collecting the expert judgment and feedback. In such questionnaires,
the subjects are asked to express their opinion and judgment by means of
the Likert scale [1-5], where 1 means “Strongly agree”, 5 means “Strongly
disagree” while 3 represents the “Undecided” (the “medium” value between
positive and negative opinion/judgment). Hence, for each question X, by using
the Wilcoxon test we check if the score obtained by the questionnaire is <3,
this means that X is adequate (positive evaluation is given by the subject). For
instance,

151

CHAPTER 7. EVALUATION

• Question: Is the evaluation of ’X’ perceived as adequate by subjects?

• H0: ’X’ is negatively perceived (score >3)

• Halt: ’X’ is positively perceived (score ≤ 3)

In other terms, for the interpretation of the data acquired from the survey,
we adopt the following tests and evaluation measures:

• (A) Regarding the analysis of survey questionnaires, we evaluate each
question by verifying that the answers is either “Strongly agree” (i.e.,
1 in our Likert scale) or “Agree” (i.e., 2 in our Likert scale). We test
medians of the distributions, using a the Wilcoxon test for the null
hypothesis Qm >3 where 3 corresponds to “Undecided”, and Qm is the
median for question Q.

• (B) Having a p-value <0.05, which means confidence of 95% and 5%
of probability of giving an error in rejecting a true null hypothesis (i.e.,
Type-I-error).

7.4.3 Subjects

In the first run of the survey, we involved 9 subjects, mainly experienced
researchers with a good knowledge about the goal modeling in general, es-
pecially modeling with Tropos [BPG+04]. All subjects are working at FBK3

conducting research in information systems or related discipline to have bal-
ance in the subject’s expertise.

7.4.4 Survey Design

For the design of the survey, inspirations have been taken from Goal-Question-
Metric (GQM) approach [BCR02]. Following this approach, the survey design

3http://www.fbk.eu

152

7.4. EMPIRICAL SURVEY ON ARML

is structured using a goal graph. Below in Fig 7.8, we present this design.
Main goal of the survey is to: Acquire Perceived Judgment, from a set of
experienced subjects. The research questions are formulated to help satisfying

Figure 7.8: Survey Design

this goal i.e. RQ1, RQ2 and RQ3. These questions are further refined into
respective factors: Effectiveness, Usefulness and Adequacy. Each of this factor
is then refined into two hypothesis H0 and Halt (in the same way of those
described above). To gain confidence which hypothesis to accept or reject,
we refined the factors into several aspects e.g. usefulness, difficulty, effort,
relevance, adequacy. Related to these aspects, specific tasks (e.g. Task # 1)
and questions (e.g. T1q2, T1q5 for Task # 1) are designed.

We designed three main tasks: Modeling of requirements, Reasoning over
the requirements model, and Visual Notations Analysis of ARML. In each

153

CHAPTER 7. EVALUATION

task, subjects are asked to perform small exercises and answer a questionnaire
related to their perceived experience about using the concepts and notations of
ARML.

Itinerary to be

Managed

Notification

Message Sent

M

I I

I

Updates

Instantly <

5 mins

User Checks

Email

Quick

I

Updates

Instantly in

realtime

I

Mobile

Phone

pref

Laptop

C @Market[]
1

C @Home[]
2

@
Market is a

Location{ } @
Home is a

Location{ }

S-Inf

I

Send via SMS Send via Email

Requires

I

Requires

II

I I

Requires

Get Event Details

GPS

Coordinates

Inform User

Itinerary

Number

Requires

Compose

Message

Requires

GPS

Coordinates

User has

Mobile Phone

I

“iComp” Partial Model

TASK 1.1 (Read the Model and Answer the Following Questions)

Questions:

Which resources are used to quickly notify the user in case of flight status is
(“Cancelled”)?

Resources: __

In which context the user is notified more quickly about the change in flight
status?

Contexts: __

Feedback Questionnaire

Figure 7.9: Survey Material Snapshot

RQ1 is related to modeling with ARML. The subjects are asked to conduct
some comprehension exercise, answer some comprehension questions about
an ARML model describing a SAS system, and use ARML to evolve the
model for modeling some new scenarios about the SAS system. Fig.7.9 (Left)
shows, as example, a partial screen shot of the model given to the subjects and
few comprehension questions we asked (Right Top). Then subjects are asked
to fill the questionnaire related to their perceived experience in modeling with
ARML. Fig.7.9 (Right bottom) shows, as example, some questions we asked
in the questionnaire for collecting the expert feedbacks.

RQ2 is related to a reasoning task. The subjects are asked conduct some
reasoning activities using an ARML model and then fill the questionnaire

154

7.4. EMPIRICAL SURVEY ON ARML

related to their perceived experience.

For RQ3 and corresponding hypothesis, aspects have been mapped to
Moody et al. [MHM09] principles. Here the task of subjects is visual notations
analysis by answering a set of questions the ARML notation, where each
question corresponds to a specific principle.

In this survey, we ask the subjects to play the role of an analyst, system
(SAS) and analyst/novice user to perform modeling, reasoning and visual
notations analysis tasks respectively. This is important because the type of
feedback we expect requires the subject to play these roles while performing
the tasks.

As a matter of design refinement, a pilot with one subject (who is an
experienced researcher), is performed. Based on the acquired results, we
refine our design and execute it with 8 subjects in one lab session. The
candidate treatment of the survey that we use to evaluate our hypothesis is:
ARML concepts and relations, modeling guidelines and visual notation.

We use a self-adaptive software system with requirements for adaptivity
belonging to travel companion application (“iComp”, hereafter) that support its
user’s in planning, organizing, monitoring, deciding and managing information
pertaining to their travels. The material given to the subjects includes:

• Visual Notations Guide

• Requirements of “iComp”

• A partial requirements model of “iComp”

• Scenario

7.4.5 Survey Procedure

One lab session is performed. A 15 minutes tutorial on ARML, its purpose,
concepts, visual notations, modeling guidelines is given to the subjects in

155

CHAPTER 7. EVALUATION

order to be sure that subjects have understood the key elements of ARML. In
addition, description is provided in the material given to the subjects and the
tasks they are required to perform. The procedure for the survey is as follows:

Pre-Questionnaire: Questions about the experience of the subjects

Task 1: Modeling the requirements of SAS.
TASK 1.1:

- Read the given requirements of iComp system
- Read the given partial requirements model of iComp system mod-

eled in ARML
- We ask the subjects to fill the questionnaire regarding the compre-

hension of the requirements model
TASK 1.2:

- Change the given model as per the given requirement
- Read the given partial requirements model of iComp system in

ARML
- We ask the subjects to fill the questionnaire about their modeling

experience
TASK 1.3:

- We ask the subjects to fill a Post-Modeling Feedback question-
naire to collect their modeling experience and overall judgment about the
effectiveness of modeling in ARML.

Task 2: Reasoning over the requirements model using a given scenario

TASK 2.1:
- Read the partial requirements model of iComp system
- Read the given scenario
- We ask the subjects to answer the question on the usefulness of

the concepts in the requirements model for reasoning over a given scenario,
answers are expected to be descriptive

TASK 2.2:

156

7.4. EMPIRICAL SURVEY ON ARML

- Read the partial requirements model of iComp system
- Read the given scenario
- we ask the subjects to answer the question on usefulness of the

concepts in the requirements model for reasoning over a given scenario,
answers are expected to be multiple-choice

TASK 2.3:
- We ask subjects to fill a Post-Reasoning Feedback questionnaire to

collect their reasoning experience and overall judgment about the usefulness
of the concepts in requirements model on which a system (SAS) can reason.

Task 3: Visual Notations Analysis

TASK 3.1:
- Read the given visual notations guide

TASK 3.2:
- We ask the subjects to fill the Post-Visual Notation Analysis Feed-

back questionnaire to collect their judgment about the adequacy of the no-
tations in ARML based on their experience in performing previous tasks
(modeling, reasoning) and in general.

Task 4: We ask the subjects to fill a Post-Survey Feedback questionnaire to
collect their perceived judgment and experience related to Tasks (1–3). Latter
we classify these questions to the relevant RQ they are referring.

7.4.6 Data Analysis and Interpretation

In this section, we statistically analyze the results of the survey. First we
present the aggregated results gathered through descriptive statistical methods.
For the statistical analysis we use the R tool4.

Aggregated Results of RQ1, RQ2, RQ3
In Fig.7.10, the boxplots reports the results of the three research questions.

4R is a language and environment for statistical computing and graphics. It is available at http://www.r-
project.org.

157

CHAPTER 7. EVALUATION

We decide to use the Wilcoxon test, to accept or reject the hypothesis. The
feedback is collected using a Likert scale [1-5]. Subject answers to the
questions asked for each task ranges between “Strong Agree” and “Strong
Disagree” . The distributions of the values are spread around low values of
the Likert scale. In Table 7.1, we show the median of the subject answers and

Figure 7.10: Averaged Results of Three Tasks

the respective p-Value for each RQ. The p-Values (i.e. <0.05) statistically
confirm the observed positive trend. For instance, the distribution of the results
for RQ1 i.e. effectiveness of the modeling, is quite balanced. The obtained
p-Value is significantly less <0.05 i.e (4.803e-09). In this case the perceived
judgment by the subject ranges between “strong agree” and “agree”. Whereas,
the distribution of the results for RQ2 i.e. on the usefulness of concept
for reasoning by the system on the requirements model, shows a positive

158

7.4. EMPIRICAL SURVEY ON ARML

trend with a p-Value <0.05 (i.e. 8.578e-05), which statistically confirms
the positive trend. In fact, the perceived judgment by the subject ranges
between “strong agree” and “medium” on a Likert scale. Likewise, for RQ3,
the distribution shows a positive trend with a p-Value <0.05 (i.e. 3.407e-09),
which statistically confirms a positive trend. Actually, the perceived judgment
of the subject in this case ranges between “strong agree” and “medium” on a
Likert scale.

Finally, we reject the three null hypothesis related to the three RQs i.e.
H0

1 :, H0
2 :, H0

3 :.

Research Questions Median P-value Hypothesis Reason

RQ1 2 4.803e-09 reject H0
1 Agree

RQ2 2 8.578e-05 reject H0
2 Agree

RQ3 2 3.407e-09 reject H0
3 Agree

Table 7.1: Aggregated Results of Three Tasks (Modeling, Reasoning, Visual Notations
Analysis)

Below, we present the detailed analysis of the results obtained for each
research question. We use boxplots to represent the distribution of the results
and tables to report the obtained statistical values. Finally, in the detailed
summary table, we showed the mapping of task-questions we asked from
subjects.

Detailed Analysis of RQ1
Fig.7.11 depicts the boxplots for the RQ1. We investigate the effectiveness

of the modeling concepts proposed in the ARML. The distribution of the
results for each task-question we asked from the subjects is balanced and the
values range from “Strong Agree” to “Agree” on a Likert Scale.

For instance, in Table 7.2, for (T1q5) the obtained p-Value (i.e. 0.008831)
statistically confirms the perceived judgment as “Strong Agree”. This means
that subject’s comprehension about the concepts such as “Context” and “Re-
source” are valid for modeling requirements for SAS. For this reason, we

159

CHAPTER 7. EVALUATION

Figure 7.11: Aggregate Results of Modeling Questions

reject the H0
1 , which means the concepts are effective. However, in case of

(T1q6), the obtained perceived judgment is “Uncertain” and this result is not
statistically confirmed by the p-Value (i.e. 0.07446). This means that the sub-
ject’s comprehension about the relations such as “influence” and “Relegation”
were either not clearly understood or they are not sure, if they are valid enough
for modeling the requirements for SAS. For this reason, we could not reject
the H0

1 , which means the concepts are not effective. This means, we need to
improve or make it clear to the subjects about the correct use of these relations.

Modeling Questions Median P-value Hypothesis Reason

T1q2 3 0.2858 not reject H0
1 Uncertain

T1q5 1 0.008831 reject H0
1 Strong Agree

T1q6 3 0.07446 not reject H0
1 Uncertain

T4q1 2 0.01313 reject H0
1 Agree

T4q2 2 0.005139 reject H0
1 Agree

T4q3 2 0.02667 reject H0
1 Agree

T4q4 2.5 0.1397 not reject H0
1 Agree/Uncertain

T4q5 3.5 0.6817 not reject H0
1 Uncertain/Not-

Agree)
T4q6 2 0.05991 not reject H0

1 Agree
T4q8 1 0.005139 reject H0

1 Strong Agree

Table 7.2: Aggregated View of the Results (Design-Time Modeling)

160

7.4. EMPIRICAL SURVEY ON ARML

In the Table 7.3, we summarize the interpretations of the statistical results
we obtained. The questions we ask from the subjects (as a feedback) are linked
with a particular aspect, as shown in the Fig.7.8. These aspects are linked
with the hypothesis related to the “effectiveness”. We observe in Table.7.2 the
question (T4q6) shows that we could not reject the H0

1 , this could be because
the modeling effort is high as shown in the summary Table.7.3. It means that
we need to either improve the modeling guidelines or the subject were not
able to follow completely the modeling guidelines. Whereas, in Table.7.2,
for the question (T4q8) we reject H0

1 . In this case, the subject’s perceived
judgment about the effectiveness of the modeling concepts show a promising
feedback with a value of “Strong Agree” on the Likert scale. The reason for
this is that the modeling concepts were clear to the subjects while performing
the modeling task.

Modeling Questions Aspects Comment

T1q2 Difficulty in Modeling Uncertain
T1q5 Useful Concept for Modeling Strong Agree
T1q6 Useful Relations for Modeling Uncertain)
T4q1 Clarity of Modeling Guidelines Agree
T4q2 Concepts and Relations are Useful for Mod-

eling
Agree

T4q3 Adequacy of Modeling Concepts and Rela-
tion

Agree

T4q4 Difficulty in using Modeling Concepts Agree/Uncertain
T4q5 Difficulty in using Modeling Relations Uncertain/Not-

Agree
T4q6 Effort in Modeling Agree
T4q8 Relevant and Useful Concepts for Modeling Strong Agree

Table 7.3: Modeling Tasks-Questions Mapping to Aspects and Comments

Detailed Analysis of RQ2
Fig.7.12 depicts the boxplot for the RQ2. We investigate the usefulness

of the modeling concepts in the requirements model for reasoning by the
system (SAS) itself. In this case, we asked the subjects to play the role of
a running system. The distribution of the results for each task-question we
asked from the subjects is between and the values range from “Medium” to

161

CHAPTER 7. EVALUATION

“Agree” on a Likert scale. For instance, in Table 7.4, for (T2q4) the obtained

Figure 7.12: Aggregate Results of Modeling Questions.

p-Value (i.e. 0.00577) confirms the perceived judgment with a value “Strong
Agree” on Likert scale. The reason is that subject’s were able to reason on the
requirements model using concepts such as “Context” and “Resource”. As
per their perceived judgment we reject the H0

2 , which means the concepts are
useful. However, in case of (T4q7), the perceived judgment is “Not Agree”
on a Likert scale. This means that the subject’s effort to reason on the given
scenario using the requirements model is high. Moreover in case of (T4q7) the
obtained p-Value >0.05 (i.e. 0.7213), hence we could not reject the H0

1 . To
interpret this trend, the justification is that the task we asked from the subject
is to reason on the requirements model by playing the role of a running SAS.
In fact this task is more effectively performed by the SAS in reality. Since
there are many constraints and properties to consider by the system to perform
this kind of reasoning. In short, the overall perceived judgment of the subjects
on the usefulness of the concepts for reasoning shows a positive trend.

In the Table 7.5, we summarize the interpretation of the obtained statistical

162

7.4. EMPIRICAL SURVEY ON ARML

Reasoning Questions Median P-value Hypothesis Reason

T2q1 3 0.5562 not reject H0
2 Uncertain

T2q2 3 0.2858 not reject H0
2 Uncertain

T2q3 2 0.008831 reject H0
2 Agree

T2q4 1 0.00577 reject H0
2 Strong Agree

T2q5 2 0.01601 reject H0
2 Agree

T4q7 4 0.7213 reject H0
2 Not Agree)

T4q9 2.5 0.04449 reject H0
2 Agree/Uncertain

Table 7.4: Aggregated View of the Results (Run-Time Reasoning)

results. The questions we ask from the subjects (as a feedback) are linked
with a particular aspect, as shown in the Fig.7.8. These aspects are linked
with the hypothesis related to the “usefulness”. We observe in Table.7.4 the
question (T4q9) shows that we reject the H0

2 . The obtained p-Value (0.04449)
is <0.05. Whereas, the distribution of the results range between the values
“Agree” and “Uncertain” on the Likert scale. We observe this trend in the
summary Table.7.5, where we see that the subjects agree that the concepts are
useful for reasoning, however, requires high effort to reason (e.g. the case of
T4q7). This shows that concepts in the requirements model are clear to the
subjects. Actually, the reasoning task is not trivial for human subjects, as it
requires several parameters to consider (e.g. concepts and relations checking)
to perform reasoning. Therefore, the results obtained in this particular case
shows a values i.e. “Not Agree” on the Likert scale.

Detailed Analysis of RQ3
Fig.7.13 depicts the boxplots for the RQ3. We investigate the adequacy of

the visual modeling notation proposed in ARML. We asked the subjects to
analyze the visual notations following the visual notation guide given to them
(the guide shows the visual notations, the definition of the concept they refer
to and some examples).

The distribution of the results for each task-question we asked from the
subjects ranges between the values “Medium” to “Agree” on a Likert scale.
For instance, in Table 7.6, for (T3q2) the obtained p-Value (i.e. 0.01264)

163

CHAPTER 7. EVALUATION

Reasoning Questions Aspects Reason

T2q1 Difficult to Reason on Concept and Relations
in Requirements Model

Uncertain

T2q2 Sufficient Concepts and Relations in Re-
quirements Model to Reason

Uncertain

T2q3 Relevant Concepts and Relations in Require-
ments Model for Reasoning

Agree

T2q4 Useful Concepts in Requirements Model for
Reasoning

Strong Agree

T2q5 Useful Relations in Requirements Model for
Reasoning

Agree

T4q7 Effort in Reasoning over Requirements
Model

Not Agree

T4q9 Useful to Reason on Requirements Model Agree/Uncertain

Table 7.5: Reasoning Tasks-Questions Mapping to Aspects and Comments

Figure 7.13: Aggregate Results of Visual Notations Questions.

<0.05, which statistically confirms the perceived judgment as “Strong Agree”
on the Likert scale. Reason for this is that the subjects read the visual notations
guide and are able to distinguish between each notation clearly. The aspect
we link to this question is one of the Moody et al’s [MHM09] principle i.e.
Perceptual Discriminability, which states that graphical symbols should be
clearly distinct from each other. However, in case of (T3q8), the obtained
p-Value (i.e. 0.536), which does not statistically confirms the results. It results
into values “Agree/Uncertain” on the Likert scale. This question is linked
with the Moody et al. principle i.e Complexity management, which states

164

7.4. EMPIRICAL SURVEY ON ARML

that graphical symbol must posses explicit way to deal with complexity. The
question relates to the increased complexity of the model using these visual
notations. The results reveal a positive trend, however some of the subject
were uncertain about this. For this reason, we could’t reject H0

3 . Overall,
the perceived judgment about the adequacy of the visual notations shows a
positive trend.

VN Questions Median P-value Hypothesis Reason

T1q3 2 0.258 not reject H0
3 Agree

T1q4 2 0.03249 reject H0
3 Agree

T3q1 2 0.01601 reject H0
3 Agree

T3q2 1 0.01264 reject H0
3 Strong Agree

T3q3 2 0.05991 not reject H0
3 Agree

T3q4 2 0.008831 reject H0
3 Agree

T3q5 2 0.05991 not reject H0
3 Agree

T3q6 3 0.2858 not reject H0
3 Uncertain

T3q7 2 0.005139 reject H0
3 Agree

T3q8 2.5 0.536 not reject H0
3 Agree/Uncertain)

T3q9 2 0.05991 not reject H0
3 Agree

T4q10 2 0.03249 reject H0
3 Agree

Table 7.6: Aggregated View of the Results (Visual Notation Analysis)

In the Table 7.7, we summarize the statistical results to better interpret
them. The questions we ask from the subjects are linked with the Moody
et al. principles as shown in Fig. 7.8. These principles are linked with the
hypothesis, which enables us to accept or reject based on the feedback of the
subject about the “adequacy” of the visual notations in ARML.

We observe in Table.7.4 the question (T3q6) shows that we could not reject
the H0

3 , this is because the obtained p-Value (i.e. 0.2858) is >0.05, however
the distribution of the feedback is around the values “Uncertain” on a Likert
scale. In Table.7.7, we show the interpretation based on the results obtained.
The justification is that we asked the question: is it easy to remember the visual

notations, which is linked the principle: “Symbol Redundancy”. Following
newer notation is not so easy to remember, however the trend is towards the
positive values, but we could’t reject the hypothesis. Finally, we conclude

165

CHAPTER 7. EVALUATION

VN Questions Moody’s Principle Comment

T1q3 Semantic Complexity Uncertain
T1q4 Relevant to Model Requirements for SAS

(not a Moody’s Principle)
Agree

T3q1 Symbol Deficit agree
T3q2 Perceptual Discriminability Agree
T3q3 Semantic Transparency Uncertain
T3q4 Visual Expressiveness Agree
T3q5 Symbol Overload Uncertain
T3q6 Symbol Redundancy Uncertain
T3q7 Helpful for purpose (not a Moody’s Princi-

ple)
Agree

T3q8 Complexity Management Agree/Uncertain
T3q9 Cognitive Effectiveness Agree
T4q10 Cognitive Effectiveness Agree

Table 7.7: Visual Notation Analysis Tasks-Questions Mapping to Moody et al Princi-
ples [MHM09])

from this result that subject were able to understand the visual notations, their
meaning and the concepts attached to these notations. Our overall hypothesis
about the adequacy of the visual notations is positive.

7.5 Final Remarks

Summarizing the contributions of this chapter, we first reflect on the set of
experiments conducted on evaluating the performance and scalability of the
design-time tool for specifying adaptive requirements and later following
the process as described in (Section5.4), we derive monitoring specification
pertaining to each task that conforms to a candidate solution in a service-based
application setting (we operationalize each task through an available service
description). The initial results obtained show better performance with respect
to increasing number of model size.

The second evaluation is on the qualitative assessment of the requirements
models. We modeled the example scenario taken from the travel companion
case study. First we modeled it with i* and then with Tropos. We then modeled
the same with ARML. Comparing the models we provide an initial assessment

166

7.5. FINAL REMARKS

that existing goal modeling languages such i* and Tropos lacks modeling
constructs to model the properties of a SAS-to-be e.g. domain assumptions,
context etc. While modeling in ARML using its visual notations, which
have graphical mapping with the revise core ontology of RE for SAS and
Techne, we were able to represent the required properties of SAS-to-be. This
assessment is based on the modeling elements and requirements modeled.

To collect test our hypothesis that ARML provides better modeling con-
structs to model requirements for SAS in comparison with existing goal mod-
eling languages, we performed an empirical survey experiment. We involved
with a small number of expert people with experience ranging between 2-11
years (on the average 6 years) working in requirements engineering especially
requirements modeling using e.g. standard Tropos. The main motivation of
conducting this empirical survey was to collect feedback. Fig. 7.8 shows the
survey design and the factors we investigated. The survey was subdivided in
three tasks with small exercises with accompanied questionnaires to collect
feedback. With this survey the involved subjects tried modeling requirements
and reasoning over the requirements model of a SAS using ARML. The feed-
back collected based on the with the perceived judgment of the subject after
performing the given tasks e.g. modeling requirements (playing the role of
an analyst), reasoning over requirements model (playing the role of a SAS)
and analyzing visual notations of ARML. We acquired this feedback such that
the subjects implicitly compare ARML with their experience, e.g., in Tropos.
To be sure that the subjects have adequate/sufficient knowledge to give us
feedback, we: (i) gave a tutorial on ARML; and (ii) asked the subjects to do
some exercises related to the tasks given to them. We collected their feedback
using the Likert scale (1-5) questionnaires.

The results achieved are promising. We can accept our alternative hypoth-
esis related to each tasks with statistical evidence i.e. modeling in ARML
is effective (RQ1), reasoning over ARML models by the systems is useful

167

CHAPTER 7. EVALUATION

(RQ2) and visual notation proposed in ARML are adequate for modeling
requirements for SAS (RQ3). With detailed analysis we can conclude that
some improvements in ARML modeling concepts and relations such as fur-
ther clarification on their use or explanation can help subjects to model more
effectively.

168

Chapter 8

Conclusions and Future Work

8.1 Conclusions and Summary of Contributions

The motivation of this thesis work roots in the need of a deeper investigation
of key challenges raised in ongoing research on requirements engineering for
self-adaptive software systems, which can be stated as:

• traditional design-time decision (e.g. selection of the appropriate system
behavior) has to be delayed as much as possible; and

• requirements artifact of self-adaptive software systems need to be kept
alive at run-time [SBW+10].

While approaching these research problems, we investigated how require-
ments engineering for self-adaptive software departs from conventional re-
quirements engineering and ultimately how to bridge the gap between design-
time and run-time requirements engineering.

We introduced core concepts that are needed to perform RE for self-

adaptive software, thus providing a conceptual basis for formulating the
requirements problem as a dynamic problem. In our opinion, this approach
goes beyond state-of-the art works, which address requirements engineering
for self-adaptive software proposing methods to anticipate at design-time
situations (conditions) for run-time adaptation and to analyze them in terms of

169

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

alternative solutions to be instantiated at run-time. In fact, our framework aims
at realizing “continuous RE”, also enabling SAS to perform continuous RE by
itself i.e. continuous reappraisal of its requirements at run-time involving the
end-user.

We now summarize the core contributions of this thesis work:

1. Conceptual and Theoretical Framework:

We introduced a theoretical framework that provides conceptual ground-
ing for the concepts needed to perform RE for self-adaptive software.
Using this framework the requirements problem for SAS can be formu-
lated as a dynamic problem. Dynamicity is due to changes in the end-user
needs (e.g. goal, preferences), context and availability of the resources
thereby finding a candidate solution that resolves it. This conceptual
framework rests on and extends the recently revisited core ontology for
RE that is founded on the concepts from belief, desire, intentions, goal-
oriented modeling and foundational ontology. We revised the revisited
core ontology and added concepts: “Context and Resource” and relations:
“Influence and Relegation”. This contributes to the first objective of this
thesis (outlined in Section 1.2). Although, the conceptual framework
is general and takes no assumptions or bound to specific implementa-
tion constraints, concretely, operationalization of the concepts proposed
requires implementation issues to be taken into account. More sophis-
ticated mechanisms could be used e.g. machine learning, automated or
probabilistic reasoning that may provide more formal support to these
concepts and relations proposed in this framework.

2. Engineering Adaptive Requirements:

The revised core ontology for RE for self-adaptive software systems

provide necessary concepts to model their requirements and perform
early analysis over these models. An analyst could acquire information

170

8.1. CONCLUSIONS AND SUMMARY OF CONTRIBUTIONS

from the end-user or domain analysis or through conventional inquiry
method (e.g. interview, market studies etc.), where the core concepts
supports in structuring this communicated information. To fulfill our
first objective (outlined in Section 1.2), the analyst at design-time, which
starts at early requirements (elicitation and analysis) and ends with the
specification of the system satisfying the requirements, could model
and perform early analysis over the requirements in terms of adaptive

requirements. Adaptive requirements are not a primitive concept but they
aggregate dynamic information about requirements making explicit the
feedback functionalities i.e. monitoring specification, evaluation criteria
and adaptation actions.

To represent these requirements we proposed a requirements modeling
language, called Adaptive RML (see Section 5.3). We introduced a
systematic modeling guidelines and visual modeling notations, which
has graphical mapping to Techne - an abstract and formal RML. We
adopted a convenient formalism based on event-condition-action pat-
tern to operationalize adaptive requirements. This provides a way to
derive monitoring specification, which are used to configure an adap-
tive service-based application (Section 5.4). We developed a proof of
concept tool to support the process of specifying adaptive requirements
(from the requirements model) and deriving the monitoring specification
automatically from the adaptive requirements specification.

3. CARE Framework:

Continuous changes occur in the real context, which maybe caused
due to change in end-user needs or preference, variation in context and
availability of resources demanding change in the requirements problem
formulated for self-adaptive software at design-time. Thus, to enable
self-adaptive software to be aware about its own requirements and to

171

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

adapt in response to continuously to these changes, we introduced a
continuous adaptive requirements engineering (CARE) framework. It
provides support for continuous refinement of requirements by the self-

adaptive software itself involving the end-user at run-time. New or
changed requirements requires new solutions (i.e. available services)
to be searched, thus leading to refinement of the existing specification.
At this stage self-adaptive software acts as an analyst. We described
it’s details in Chapter 4. In fact, CARE operates based on the defined
adaptation types to determine the level of RE it has to perform. We
defined four adaptation types (see Section 4.2). Concepts and artifacts
that could be used at design- time or at run-time were defined. SAS
while in operation, instantiating CARE, exploits these artifacts which
are based on the revised core ontology of RE for self-adaptive software

systems. For self-adaptive software operating in an open environment
i.e. the Internet and services, we defined a conceptual architecture that
instantiates CARE at run-time (see Section 4.4).

Contributing to the second objective of this thesis outlined in Section 1.2,
CARE provides a way for self-adaptive software systems to perform
continuous RE involving the end-user at run-time by being aware of the
dynamic changes. Taking into account the wide land- scape of research
on method and techniques on software engineering of self-adaptive soft-

ware systems, and more recently on requirements-aware systems, CARE
framework provides a novel approach by keeping the representation of
the requirements at run-time, enabling the self-adaptive software systems

to perform RE by itself involving the end-user. As per our knowledge,
no existing work argues this form of RE to support run-time adaptation.
More sophisticated mechanisms for web service composition or orches-
tration and a easy natural language approach to search and add web
services could improve CARE framework for requirements acquisition

172

8.1. CONCLUSIONS AND SUMMARY OF CONTRIBUTIONS

and solution provisioning at run-time.

We evaluated our CARE framework through application to the case study
(see details in Chapter 6). For design-time approach we performed perfor-
mance and scalability tests for the proof of concept design-time tool and a
empirical survey study on the effectiveness of the proposed ARML involving
the experienced subjects (see details in Chapter 7).

8.1.1 Generality and Limitations

The types of applications that were considered in this thesis work involves
the end-user mainly representatives of service-based applications and mobile
softwares e.g. health-care, e-commerce, productivity softwares. In that sense,
goals, contexts and preferences of human actors as well as information on what
activities they perform cannot be assumed to be fully observable. Adaptation
may take an unpredictable amount of time to produce a result i.e. a revised
solution to the changed requirements problem. In this context, formulation of
the requirements problem is not intended to support the automated solution
as a satisfiability problem [GMNS03], rather as an optimization problem,
where satisfiability may be exponential. For instance, when the model size ex-
ceeds a minimum size its may be problematic for many practical applications.
Therefore, adopting classical AI planning could provide a candidate approach
for performing the reasoning task at run-time by the SAS itself. A further
investigation of systematic and accessible approaches for structuring domain
theories for efficient yet meaningful computation is strongly motivated by
recent results [LMM10b, QLP11].

Furthermore, expanding on the run-time adaptation, CARE framework
provides a novel approach to overcome the dynamic RE problem i.e. find-
ing solutions to the changed requirements problem taking into account the
contextual changes, resource availability and end-user preference by the sys-
tem itself involving the end-user. Thus, a seamless synchronization with

173

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

human-accessible requirements models of goals and domains is necessary.
Requirements model expressed exploiting the concepts in revised CORE on-
tology of RE for SAS and specified as adaptive requirements provides ample
tool set for the SAS at run-time to reason on its own requirements.

8.2 Future Works

Several interesting directions have been identified during this thesis work. On
some of the ideas initial exploration has been conducted, providing preliminary
results that we summarize in the rest of this chapter, together with future
research directions.

8.2.1 Integrating Adaptive Requirements and Preferences-based Rea-
soning for Run-time

System are becoming more and more pervasive, where end-user needs and
preference plays a critical role in customizing and adapting at run-time. In
this thesis, we introduced a new class of requirements, adaptive requirements,
to specify properties for SAS. In our view, we see the requirements problem

Figure 8.1: Continuous Reasoning Process at Run-Time

at run-time as an optimization/planning problem. Therefore, methods that
support runtime reasoning of adaptive requirements are needed. Recently
in [LMM10b] Liaskos et al. have proposed preference requirements expressed

174

8.2. FUTURE WORKS

as preference goals, which plays a critical role in customizing software solu-
tions exploiting preference based AI planning. The role of end-user is critical
(as proposed in this thesis) while reasoning about the adaptive requirements
and run-time adaptivity. Thus, integrating preference goals in adaptive re-
quirements can play an important role. We plan to investigate the usefulness
of recently proposed techniques for automated reasoning with requirements
goal and preference models [LMM10b] to support runtime adaptivity. As a
first step, we extend adaptive requirements by integrating preference-based
reasoning and automated planning to enable a continuous adaptive reasoning
of requirements at runtime (see Fig.8.1). We have presented this vision using
a navigation system example and highlighted challenges for further research
in [QLP11]. We investigated how reasoning about user goal and preference
models, supported by state-of-the-art AI planning techniques, can effectively
play this decision-making role, through recursively revising goal, preference
and contextual models to reflect real world change and subsequently reason-
ing about new solutions in the revised situation. The major benefits of this
approach are that the decision making mechanisms of SAS align directly
with human-accessible requirements models, facilitating thereby systematic
engineering and accessibility both at design-time and at run-time. They are
also based on well-studied automated reasoning technologies that have demon-
strated significant progress over the past years. To support explore on this
idea, we aim to exploit a real case study where we can exercise this approach
and provide empirical evidence.

8.2.2 Online Requirements Engineering

Self-adaptive software systems can manage dynamic events occurring at
run-time, such as unavailability of services, hardware and platform changes
as well as the change of a users preferences and needs. Engineering such
applications significantly challenges the role of requirements engineering (RE).

175

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Usually, RE activities are carried out at the outset of the whole development
process, but in the context of self-adaptive SBA, they are also needed at run-
time thus enabling a seamless SBA evolution. This also includes that SBA
should be able to capture, understand and satisfy end-user needs while they
emerge. The end-user involvement has been recognized important during the
requirements elicitation in situ. Seyff et al. proposed a requirements blogging
tool (iRequire) to support end-user to express needs in situ [SGM10]. In
this thesis, we extended this view where SAS while performing continuous
RE involves the end-users supporting goal- and user-oriented adaptation.
Integrating iRequire and CARE framework, we aim to investigate an On-line
RE approach (see Fig.8.2) i.e. requirements acquisition by involving the end-
user and the system itself. To fulfill this aim, Online RE can be performed
on the fly using iRequire and CARE to provide requirements capturing and
analysis capabilities enabling the end-users to communicate (new) needs,
which are then turned into new (or changed) requirements. These requirements
have to be satisfied through a combination of available services or left as new
requirements to be addressed off-line within a software evolution process. We

Figure 8.2: Online RE process

presented our planned research aiming at investigating the above described
idea in [QSP11]. We envision to combine and extend our recent work to come
up with a tool-based approach that involves end-users in the realization of
their needs using self-adaptive SBA. As a further step in this direction, we are
investigating novel techniques for the provisioning of end-users feedback so
that mobile vendors can exploit this feedback to improve their applications and
services. Apart from this, we are also investigating knowledge representation

176

8.2. FUTURE WORKS

techniques to better represent the concept of “personal space”.

8.2.3 Towards the framework for Evolving Requirements

In this thesis work, we presented continuous RE framework and defined adap-
tation types (1–4), where online evolution is supported by the SAS itself
involving the end-user. Offline evolution is recognized as a type of system’s
adaptation that usually needs to be realized offline, involving human interven-
tion (analyst/designers and other stakeholders) [QP10, QPEM10]. Extending

Figure 8.3: Wheel of Evolution

this view, we envisioned a framework which provides concepts and analysis
techniques to support an evolutionary and “participatory” process for require-
ments evolution in STS (a socio-technical system, which involves human
end-users). Incorporating ideas from participatory design[Nie04, LSSZ10]

177

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

and law compliance [SMPS09], we investigated methods that can be used to
support the analysis of these types of requirements changes and ultimately
on system evolution, with the involvement of key stakeholders. adopt a par-
ticipatory design approach as process backbone, to enable the participation
of stakeholders in design activities [CRC07, Nie04], including the software
systems (within the STS). Participatory design provides peculiar techniques
for engaging participants, such as scenarios and of “persona” (sort of fic-
tional user) or ethnographic study techniques. We analyzed the integration
of specialized techniques, which are suitable for the analysis of particular
concerns, as for instance law-compliance. To support the whole process of
analysis, we proposed a wheel of evolution that guides our whole framework
(see Fig 8.3). We reported our experience and preliminary investigation us-
ing this framework in [PQS+11]. Along this direction, we aim to provide
a taxonomy of changes that can guide analysis while evolving the software.
Moreover, decision making theories could play a critical role in this work, we
are interested to provide a library of decision mechanisms at support of the
system and also for the analyst to evolve requirements.

8.2.4 3T process integrating concepts from Agent systems and Testing
in RE for SAS

Along the direction of a tool-supported development process supporting multi-
level feedback during the development life cycle of SAS is needed. We
proposed 3T process, a systematic requirements-driven approach, to develop
adaptive systems by combining goal-oriented and agent-oriented design con-
cepts in [QP08]. Extension to this work, we involve an automated testing
paradigm that compliments this process to provide a tool supported process
preserving requirements along the development process to ensure traceabil-
ity, and providing early feedback on the design revisions gathered through
automated continuous testing performed at runtime once an executable ver-

178

8.2. FUTURE WORKS

sion of the system is available (see Fig.8.4). Preliminary results showing

Figure 8.4: 3T AS development cycle

improvement in adaptivity properties of the system applied to an exemplar
case study are discussed in [QMNP10]. We envision to further extend this
work providing a unified process that can support the development of adaptive
systems in a process-oriented way. Recently, Ghezzi has presented an invited
talk at SEAMS 20111, where in this talk, he has identified the key differences
between development-time and run-time with respect to the classical problem
formulation of Zave et al. [ZJ97a]. Summarizing this, Ghezzi argues that clas-
sical software engineering practices must be shifted to run-time, this results
in feature-rich functionalities and monitoring and reasoning capabilities to
the systems. Thus, the boundary between development-time and run-time
is diminishing. This thesis work supports this idea. Though, we take the

1http://www.hpi.uni-potsdam.de/giese/events/2011/seams2011/keynoteGhezzi.html

179

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

perspective of requirements engineering, where changes in the external envi-
ronment (e.g. contextual or resource availability) motivates the SAS to adapt
and continuously refine its requirements. Contributions presented in this thesis
work address the problem to bridge the existing gaps between design-time to
run-time. A further consolidated effort is needed, which is an ongoing work to
provide a process-oriented approach realizing the goal of seamless adaptation.

8.2.5 Analyzing Intentional Interoperability Requirements

Service-based Applications (SBA) for the future Internet of Services exploit
existing web services, to enable end-users accessing real services. This makes
the role of the specific end-user even more crucial and demands that SBA
are aware of their users’ goals and preferences and that they ensure seamless
inter operation among the heterogeneous services, accordingly. In the light
of the adaptivity property of SBA, we investigate in this work a systematic
requirements engineering approach to analyze intentional interoperability
requirements, resulting from the analysis of the individual prosumers’ goals
and preferences while acting in the Internet of Services, and the social de-
pendencies to satisfy them i.e. what we call “intentional interoperability”. In
this context, goal-oriented and process modeling techniques provides ample
support. We envision a framework that rests on a set of concepts, models and
analysis steps that guides the software engineer to investigate interoperability
requirements by following a top-down approach. Fig. 8.5 attempts at giving a
unified picture of concepts, models and analysis steps of the framework. The
analysis output will be a set of intentional interoperability requirements char-
acterized in terms of intentions (social dependencies), services and resources
interoperability needs, and service qualities. Recently, Dalpiaz [DGM12]
has proposed social variability in context of socio-technical systems, where
agent-based interactions are formalized using commitments. We are near to
this purpose, however we target more open and feature rich environments (e.g.

180

8.2. FUTURE WORKS

!"

!#

!$!"

!%
!&!'

!" !#

!$!%

!&

!(
!'()

*+',,-./01
231450667

8
!'(,-./01,

2*9:09:;4967

('!<
8
(+',

-./01,
2!/6:0=

7

*>?(@!A(8+A8(',-@B'(

*9:09:;49.C
).1;.D;C;:/

(064E150
).1;.D;C;:/

!01F;50
).1;.D;C;:/

!01F;506,G,
@HHI

!096416,G,
@5:E.:416

8601,G,
<1JI

8" 8#

)*+,-./,-01232+4

Figure 8.5: Analysis Framework for Interoperability

the Internet and service-based systems) with an aim to analyze intentional
interoperability. As a further step in this direction, we aim to link this frame-
work to more practical techniques e.g natural language processing and feature
modeling.

8.2.6 Towards a case tool for operationalizing Adaptive Requirements

Approaches addressing these challenges adopt existing requirements methods,
modeling languages and techniques to specify requirements monitoring for
SAS. A convenient and easy approach to specify requirements monitoring
for SAS is still missing. We presented preliminary tool to specify adaptive
requirements that leads to monitoring specification. As an ongoing work, we
focus on this issue. In fact, we aim to develop a more integrated case tool,
where requirements are expressed using the tool set presented i.e. Adaptive
RML, and later device operational adaptive requirements specification such
that monitoring specification and configurations can be derived automatically.

181

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Initial ideas has been summarized along this line in [OQF+11]. Further steps
to consolidate and experimentation are ongoing.

8.2.7 Empirical Study on ARML

Adoption of goal-oriented languages to model requirements for SAS is evident
in recent research works [SBW+10]. Common in all such proposals is the use
of available RML such as iStar / Tropos and KAOS, the most widely used
goal-oriented modeling languages for requirements modeling. However, there
has been limited consensus on the necessary concepts needed to perform RE
for SAS. To this aim, in this thesis work we presented a visual requirements
modeling language – visual RML, Adaptive Requirements Modeling language
(ARML), based on the revised core ontology of RE for SAS presented in
our recent work [QJP11]. This language has graphical primitives in line
with classical goal modeling languages and is formalized via a mapping to
Techne [JBEM10a], an abstract formal RML. We presented results from an
empirical survey study on the effectiveness and usefulness of this language
in this thesis involving experienced subjects. Along this direction, a further
step is to conduct an empirical experiment on a larger scale involving subjects
from academic institutes.

8.2.8 Continuous Refinement of Requirements at Run-time

The need of continuous RE motivated in this thesis work provides further
investigation in this direction. Extending the work on CARE framework, we
are investigating a method to support continuous refinement of requirements at
run-time. In this we work we have identified that continuous changes requires
re-formulation of the requirements problem. For this reason, our proposed
revised core ontology of RE for SAS needs to be instantiated at run-time
by the SAS itself. To put into practice we are studying the metaphor of
“schema evolution”, that has been long investigated in database and knowledge

182

8.2. FUTURE WORKS

representation research. The key idea behind this continuous refinement of
requirements is to exploit at best the representation of requirements that a
self-adaptive software holds with itself at run-time. Change operators needs
to be defined along with rules that determines when or where to refine the
requirements and who has to be involved e.g. end-user. We adopt ontologies as
a convenient practical modeling and reasoning tool to represent requirements
that at run-time. Using this representation enables to analyze change not
only at instance level but also at concepts level. During operation changes are
detected by self-adaptive software and correspondingly reasoning is performed
over requirements (represented as ontologies) to evaluate the change. As a
result, if there is a change in requirements, the self-adaptive software itself
evolve (refine) them using the change operator involving the end-user. During
this continuous refinement, self-adaptive software maintains the consistency
of its requirements.

183

Bibliography

[ADG08] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Location-based
software modeling and analysis: Tropos-based approach. In
Qing Li, Stefano Spaccapietra, Eric S. K. Yu, and Antoni Olivé,
editors, ER, volume 5231 of Lecture Notes in Computer Science,
pages 169–182. Springer, 2008.

[ADG09] R. Ali, F. Dalpiaz, and P. Giorgini. A goal modeling frame-
work for self-contextualizable software. In 14th International

Conference on Exploring Modeling Methods in Systems Analy-

sis and Design (EMMSAD09), Amsterdam, The Netherlands,
08/06/2009 2009. Springer, Springer.

[BCR02] V. Basili, G. Caldiera, and H. Rombach. The Goal Question Met-
ric Approach. Encyclopedia of Software Engineering, 1:578–
583, 2002.

[BCZ05] D. M. Berry, B. H. Cheng, and J. Zhang. The four levels of
requirements engineering for and in dynamic adaptive systems.
In 11th International Workshop on Requirements Engineering:

Foundation for Software Quality (REFSQ05), pages 95–100,
2005.

[BGH+07] Kamal Bhattacharya, Cagdas Evren Gerede, Richard Hull, Rong
Liu, and Jianwen Su. Towards formal analysis of artifact-centric
business process models. In Gustavo Alonso, Peter Dadam, and

185

BIBLIOGRAPHY

Michael Rosemann, editors, BPM, volume 4714 of Lecture

Notes in Computer Science, pages 288–304. Springer, 2007.

[BP10] Luciano Baresi and Liliana Pasquale. Live goals for adaptive
service compositions. In SEAMS ’10: Proceedings of the 2010

ICSE Workshop on Software Engineering for Adaptive and Self-

Managing Systems, pages 114–123, New York, NY, USA, 2010.
ACM.

[BPG+04] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto
Giunchiglia, and John Mylopoulos. Tropos: An agentoriented
software development methodology. Autonomous Agents and

Multi-Agent Systems, 8(3):203–236, 2004.

[BPS10] Luciano Baresi, Liliana Pasquale, and Paola Spoletini. Fuzzy
goals for requirements-driven adaptation. In 18th IEEE Int.

Requirements Eng. Conf., pages 125–134, Sydney, Australia,
2010.

[Bru08] Yuriy Brun. Building biologically-inspired self-adapting sys-
tems. In Software Engineering for Self-Adaptive Systems, num-
ber 08031 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl,
Germany, 2008.

[BSG+09] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek,
Holger M. Giese, Holger Kienle, Marin Litoiu, Hausi A. Mller,
Mauro Pezz, and Mary Shaw. Engineering self-adaptive systems
through feedback loops. Software Engineering for Self-Adaptive

Systems, 5525:48–70, 2009.

[CdLG+09] Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola In-
verardi, and Jeff Magee. Software Engineering for Self-Adaptive

186

BIBLIOGRAPHY

Systems: A Research Roadmap, pages 1–26. Springer-Verlag,
lncs 5525 edition, 2009.

[CGI+08] Betty H. C. Cheng, Holger Giese, Paola Inverardi, Jeff Magee,
and Rogério de Lemos. Software engineering for self-adaptive
systems: A research road map. In Software Engineering for

Self-Adaptive Systems, volume 08031 of Dagstuhl Seminar

Proceedings. Schloss Dagstuhl, Germany, 2008.

[CHG+04] ShangWen Cheng, AnCheng Huang, David Garlan, Bradley R.
Schmerl, and Peter Steenkiste. Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure. In ICAC, pages
276–277. IEEE Computer Society, 2004.

[CRC07] A. Cooper, R. Reimann, and D. Cronin. About Face 3. Wiley,
2007.

[CSBW09a] Betty Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle.
A Goal-Based Modeling Approach to Develop Requirements
of an Adaptive System with Environmental Uncertainty. In
Andy Schürr and Bran Selic, editors, International Conference

on Model-Driven Engineering Languages and Systems, volume
5795 of Lecture Notes in Computer Science, pages 468–483,
Denver, Colorado, 2009.

[CSBW09b] Betty H. C. Cheng, Peter Sawyer, Nelly Bencomo, and Jon
Whittle. A goal-based modeling approach to develop require-
ments of an adaptive system with environmental uncertainty. In
MoDELS, volume 5795 of Lecture Notes in Computer Science,
pages 468–483. Springer, 2009.

[Dey01] Anind K. Dey. Understanding and using context. Personal

Ubiquitous Comput., 5(1):4–7, 2001.

187

BIBLIOGRAPHY

[DGM09] Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. An ar-
chitecture for requirements-driven self-reconfiguration. In Pas-
cal van Eck, Jaap Gordijn, and Roel Wieringa, editors, CAiSE,
volume 5565 of Lecture Notes in Computer Science, pages
246–260. Springer, 2009.

[DGM12] Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Adap-
tive Socio-Technical Systems: a Requirements-driven Ap-
proach. Requirements Engineering, 2012. To appear.

[DNGM+08] Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Pa-
pazoglou, and Klaus Pohl. A journey to highly dynamic, self-
adaptive service-based applications. Automated Software Engg.,
15(3-4):313–341, 2008.

[DPT07] Giovanni Denaro, Mauro Pezzè, and Davide Tosi. Designing
self-adaptive service-oriented applications. In ICAC, page 16.
IEEE Computer Society, 2007.

[DvLF93a] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas.
Goal-directed requirements acquisition. Sci. Comput. Program.,
20(1-2):3–50, 1993.

[DvLF93b] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas.
Goal-directed requirements acquisition. Sci. Comput. Program.,
20(1-2):3–50, 1993.

[FF95] S. Fickas and M. S. Feather. Requirements monitoring in dy-
namic environments. In RE ’95: Proceedings of the Second

IEEE International Symposium on Requirements Engineering,
page 140, Washington, DC, USA, 1995. IEEE Computer Soci-
ety.

188

BIBLIOGRAPHY

[FFLP98] M. S. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard.
Reconciling system requirements and runtime behavior. In
IWSSD ’98: Proceedings of the 9th international workshop on

Software specification and design, page 50, Washington, DC,
USA, 1998. IEEE Computer Society.

[FFVLP98] M. S. Feather, S. Fickas, A. Van Lamsweerde, and C. Ponsard.
Reconciling system requirements and runtime behavior. In
IWSSD ’98: Proceedings of the 9th international workshop on

Software specification and design, page 50, Washington, DC,
USA, 1998. IEEE Computer Society.

[FHS+06] Jacqueline Floch, Svein O. Hallsteinsen, Erlend Stav, Frank
Eliassen, Ketil Lund, and Eli Gjørven. Using architecture mod-
els for runtime adaptability. IEEE Software, 23(2):62–70, 2006.

[FS01] Anthony Finkelstein and Andrea Savigni. A framework for
requirements engineering for context-aware services. In In Proc.

of 1st International Workshop From Software Requirements to

Architectures (STRAW 01), pages 200–1, 2001.

[GEL+06] Eli Gjørven, Frank Eliassen, Ketil Lund, Viktor S. Wold Eide,
and Richard Staehli. Self-adaptive systems: A middleware
managed approach. In Alexander Keller and Jean-Philippe
Martin-Flatin, editors, SelfMan, volume 3996 of Lecture Notes

in Computer Science, pages 15–27. Springer, 2006.

[GMNS03] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani.
Formal reasoning techniques for goal models. J. Data Seman-

tics, 1:1–20, 2003.

[HED93] S. D. P. Harker, K. D. Eason, and J. E. Dobson. The change
and evolution of requirements as a challenge to the practice

189

BIBLIOGRAPHY

of software engineering. In Proc. Int. Symp. Req. Eng., pages
266–272, 1993.

[HFS04] Svein O. Hallsteinsen, Jacqueline Floch, and Erlend Stav. A
middleware centric approach to building self-adapting systems.
In Thomas Gschwind and Cecilia Mascolo, editors, SEM, vol-
ume 3437 of Lecture Notes in Computer Science, pages 107–
122. Springer, 2004.

[HSSF06] Svein O. Hallsteinsen, Erlend Stav, Arnor Solberg, and Jacque-
line Floch. Using product line techniques to build adaptive
systems. In SPLC, pages 141–150. IEEE Computer Society,
2006.

[IMW07] Florian Irmert, Meyerhöfer, and Markus Weiten. Towards
runtime adaptation in a soa environment. In Proceedings of

(ECOOP’2007) Workshop on Reflection, AOP and Meta-Data

for Software Evolution (RAM-SE’07), pages 17–26, Berlin, Ger-
many, July 2007.

[JBEM10a] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos. Techne:
Towards a New Generation of Requirements Modeling Lan-
guages with Goals, Preferences, and Inconsistency Handling.
In 18th IEEE Int. Requirements Eng. Conf., 2010.

[JBEM10b] Ivan J. Jureta, Alex Borgida, Neil A. Ernst, and John My-
lopoulos. Techne: Towards a new generation of requirements
modeling languages with goals, preferences, and inconsistency
handling. In 18th IEEE Int. Requirements Eng. Conf., pages
115–124, Sydney, Australia, 2010.

[JBEM10c] Ivan J Jureta, Alex Borgida, Neil A Ernst, and John Mylopou-
los. Techne: Towards a New Generation of Requirements

190

BIBLIOGRAPHY

Modeling Languages with Goals, Preferences, and Inconsis-
tency Handling. In International Conference on Requirements

Engineering (RE), Sydney, Australia, September 2010.

[JMF08] I. J. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the core
ontology and problem in requirements engineering. In 16th

IEEE Int. Requirements Eng. Conf., pages 71–80, 2008.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of auto-
nomic computing. IEEE Computer, 36(1):41–50, 2003.

[KM07] J. Kramer and J. Magee. Self-managed systems: an architectural
challenge. Future of Software Engineering, 2007. FOSE ’07,
pages 259–268, May 2007.

[LLW+05] Sotirios Liaskos, Alexei Lapouchnian, Yiqiao Wang, Yijun
Yu, and Steve M. Easterbrook. Configuring common personal
software: a requirements-driven approach. In 13th IEEE In-

ternational Conference on Requirements Engineering, (RE’05),

Paris, France, pages 9–18, 2005.

[LLY+06] Sotirios Liaskos, Alexei Lapouchnian, Yijun Yu, Eric Yu, and
John Mylopoulos. On goal-based variability acquisition and
analysis. In 14th IEEE Int. Requirements Eng. Conf., pages 79
–88, 2006.

[LMM10a] S. Liaskos, S. McIlraith, and J. Mylopoulos. Goal-based Prefer-
ence Specification for Requirements Engineering. In 18th IEEE

Int. Requirements Engineering Conf., 2010.

[LMM10b] Sotirios Liaskos, Sheila A. McIlraith, and John Mylopoulos.
Integrating preferences into goal models for requirements en-

191

BIBLIOGRAPHY

gineering. In 18th IEEE Int. Requirements Eng. Conf., pages
135–144, Sydney, Australia, 2010.

[LSSZ10] Chiara Leonardi, Luca Sabatucci, Angelo Susi, and Massimo
Zancanaro. Ahabs leg: Exploring the issues of communicating
semi-formal requirements to the final users. In Barbara Pernici,
editor, Advanced Information Systems Engineering, volume
6051 of LNCS, pages 455–469. Springer, 2010.

[McC93] John McCarthy. Notes on formalizing context. In Proceedings

of the 13th international joint conference on Artifical intelli-

gence, volume 1, pages 555–560, San Francisco, CA, USA,
1993. Morgan Kaufmann Publishers Inc.

[MHM09] Daniel Laurence Moody, Patrick Heymans, and Raimundas Mat-
ulevicius. Improving the effectiveness of visual representations
in requirements engineering: An evaluation of i* visual syntax.
In 17th IEEE Int. Requirements Eng. Conf., pages 171–180,
2009.

[MNF+10] Alessandro Marchetto, Cu D. Nguyen, Chiara Di Francesco-
marino, Nauman A. Qureshi, Anna Perini, and Paolo Tonella. A
design methodology for real services. In PESOS ’10: Proceed-

ings of the 2010 ICSE Workshop on Principles of Engineering

Service Oriented Systems, 2010.

[MPP08] Mirko Morandini, Loris Penserini, and Anna Perini. Towards
goal-oriented development of self-adaptive systems. In ICSE

Workshop on Software Engineering for Adaptive and Self-

Managing Systems (SEAMS’08), pages 9–16, New York, NY,
USA, 2008. ACM.

192

BIBLIOGRAPHY

[NE00] Bashar Nuseibeh and Steve M. Easterbrook. Requirements
engineering: a roadmap. In ICSE - Future of SE Track, pages
35–46, 2000.

[Nie04] L. Nielsen. Engaging personas and narrative scenarios. A

study how a user-centered approach influenced the perception

of the design process in the e-business group at AstraZeneca.

Copenhagen Business School Editor, Fredriksberg, Denmark,
2004.

[OFMA08] Marc Oriol, Xavier Franch, Jordi Marco, and David Ameller.
Monitoring adaptable soa-systems using salmon. In Workshop

on Service Monitoring, Adaptation and Beyond (Mona+), pages
19–28, 2008.

[OGT+99] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. Rosenblum, and A. Wolf. An
architecture-based approach to self-adaptive software. IEEE

Intelligent Systems, 14(3):54–62, 1999.

[OQF+11] Marc Oriol, Nauman A. Qureshi, Xavier Franch, Anna Perini,
and Jordi Marco. Requirements monitoring for adaptive service-
based applications, 2011.

[OR04] Andrea Omicini and Giovanni Rimassa. Towards seamless
agent middleware. In WETICE, pages 417–422. IEEE Computer
Society, 2004.

[Pap08] Mike P. Papazoglou. The challenges of service evolution. In
Zohra Bellahsene and Michel Léonard, editors, CAiSE, vol-
ume 5074 of Lecture Notes in Computer Science, pages 1–15.
Springer, 2008.

193

BIBLIOGRAPHY

[Per09] Anna Perini. Wiley Encyclopedia of Computer Science

and Engineering, chapter Agent-Oriented Software Engineer-
ing. Hoboken: John Wiley & Sons, Inc., January 2009.
dx.doi.org/10.1002/9780470050118.ecse006.

[PPSM07a] Loris Penserini, Anna Perini, Angelo Susi, and John Mylopou-
los. High variability design for software agents: Extending
Tropos. TAAS, 2(4), 2007.

[PPSM07b] Loris Penserini, Anna Perini, Angelo Susi, and John Mylopou-
los. High variability design for software agents: Extending
Tropos. TAAS, 2(4), 2007.

[PQS+11] Anna Perini, Nauman A. Qureshi, Luca Sabatucci, Alberto
Siena, and Angelo Susi. Evolving requirements in socio-
technical systems: Concepts and practice. In Conceptual Mod-

eling (ER’11), 2011.

[QJP11] Nauman A. Qureshi, Ivan Jureta, and Anna Perini. Require-
ments engineering for self-adaptive systems: Core ontology and
problem statement. In 23rd Intl. Conf. on Advanced Information

Systems Engineering (CAiSE’11), volume 6741 of LNCS, pages
33–47. Springer, 2011.

[QLP11] Nauman A Qureshi, Sotirios Liaskos, and Anna Perini. Rea-
soning about adaptive requirements for self-adaptive systems at
runtime. In Second Int. Workshop on Requirements@Run.Time

(RE@RunTime), held at (RE’11), Trento, Italy, 2011.

[QMNP10] Nauman A. Qureshi, Mirko Morandini, Cu D. Nguyen, and
Anna Perini. Tool-supported development process for adaptive
systems, 2010. SE Research Group Technical Report (TR-FBK-

194

BIBLIOGRAPHY

SE-2010-2), FBK, Trento, Italy. http://se.fbk.eu/files/TR-FBK-
SE-2010-2.pdf.

[QP08] Nauman A. Qureshi and Anna Perini. Towards seamless adap-
tation: An agent-oriented approach. In Proceedings of the

2008 Second IEEE International Conference on Self-Adaptive

and Self-Organizing Systems, pages 471–472, Washington, DC,
USA, 2008. IEEE CS.

[QP10] Nauman A. Qureshi and Anna Perini. Requirements engineer-
ing for adaptive service based applications. In 18th IEEE Int.

Requirements Eng. Conf., pages 108–111, Sydney, Australia,
2010.

[QPEM10] Nauman A Qureshi, Anna Perini, Neil A Ernst, and John My-
lopoulos. Towards a continuous requirements engineering
framework for self-adaptive systems. In First Int. Workshop

on Requirements@Run.Time (RE@RunTime), held at (RE’10),
pages 9–16, Sydney, Australia, 2010.

[QSP11] Nauman A. Qureshi, Norbert Seyff, and Anna Perini. Satisfying
user needs at the right time and in the right place: a research
preview. In Proceedings of the 17th international working con-

ference on Requirements engineering: foundation for software

quality, REFSQ’11, pages 94–99, Berlin, Heidelberg, 2011.
Springer-Verlag.

[Rob09] William Robinson. A Roadmap for Comprehensive Require-
ments Monitoring. Computer, 43(5):64–72, 2009.

[SBH+07] Pete Sawyer, Nelly Bencomo, Danny Hughes, Paul Grace,
Heather J. Goldsby, and Betty H. C. Cheng. Visualizing the

195

BIBLIOGRAPHY

analysis of dynamically adaptive systems using i* and dsls. In
REV ’07: Proceedings of the Second International Workshop on

Requirements Engineering Visualization, page 3, Washington,
DC, USA, 2007. IEEE Computer Society.

[SBW+10] Pete Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier,
and Anthony Finkelstein. Requirements-aware systems a re-
search agenda for re for self-adaptive systems. In 18th IEEE

Int. Requirements Eng. Conf., pages 95–103, Sydney, Australia,
2010.

[SFRG08] Giovanna Di Marzo Serugendo, John Fitzgerald, Alexander
Romanovsky, and Nicolas Guelfi. A generic framework for
the engineering of self-adaptive and self-organising systems.
In Organic Computing - Controlled Self-organization, number
08141 in Dagstuhl Seminar Proceedings. Schloss Dagstuhl,
Germany, 2008.

[SGM10] N. Seyff, F. Graf, and N. Maiden. Using mobile re tools to give
end-users their own voice. In International Conference on Re-

quirements Engineering (RE), pages 37–46, Sydney, Australia,
2010.

[SKS07] Masayuki Shibaoka, Haruhiko Kaiya, and Motoshi Saeki.
Goore: Goal-oriented and ontology driven requirements elicita-
tion method. In Advances in Conceptual Modeling - Foun-

dations and Applications, pages 225–234, Auckland, New
Zealand, Nov. 2007. Springer. LNCS 4802.

[SLRM10] Vitor E. S. Souza, Alexei Lapouchnian, William N. Robinson,
and John Mylopoulos. Awareness requirements for adaptive sys-

196

BIBLIOGRAPHY

tems, 2010. Technical Report DISI-10-049, DISI, Universit‘a
di Trento, Italy.

[SMPS09] A. Siena, J. Mylopoulos, A. Perini, and A. Susi. Designing
law-compliant software requirements. In Conceptual Modeling

(ER’09), pages 472–486, 2009.

[SR07] Jan Sudeikat and Wolfgang Renz. Toward requirements engi-
neering for self - organizing multi- agent systems. In SASO,
pages 299–302. IEEE Computer Society, 2007.

[SS07] Wassiou Sitou and Bernd Spanfelner. Towards requirements en-
gineering for context adaptive systems. In COMPSAC ’07: Pro-

ceedings of the 31st Annual International Computer Software

and Applications Conference, pages 593–600, Washington, DC,
USA, 2007. IEEE Computer Society.

[ST09] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software:
Landscape and research challenges. ACM Trans. Auton. Adapt.

Syst., 4:14:1–14:42, May 2009.

[SYN07a] M. Salifu, Yijun Yu, and B. Nuseibeh. Specifying monitoring
and switching problems in context. 15th IEEE International

Requirements Engineering Conference (RE ’07), pages 211–
220, Oct. 2007.

[SYN07b] M. Salifu, Yijun Yu, and B. Nuseibeh. Specifying monitoring
and switching problems in context. In 15th IEEE Int. Require-

ments Eng. Conf., pages 211–220, 2007.

[TCW+04] Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi
Das, Alla Segal, Ian Whalley, Jeffrey O. Kephart, and Steve R.

197

BIBLIOGRAPHY

White. A multi-agent systems approach to autonomic com-
puting. In AAMAS, pages 464–471. IEEE Computer Society,
2004.

[TJWW07] W.T. Tsai, Z. Jin, P. Wang, and B. Wu. Requirement engineering
in service-oriented system engineering. In e-Business Engineer-

ing, 2007. ICEBE 2007. IEEE International Conference on,
pages 661–668, Oct. 2007.

[vL01a] A. van Lamsweerde. Goal-oriented requirements engineering:
A guided tour. In Proc. 5th IEEE Int. Symposium on Require-

ments Eng., page 249. IEEE Computer Society, 2001.

[vL01b] Axel van Lamsweerde. Goal-oriented requirements engineer-
ing: A guided tour. In 5th IEEE International Symposium on

Requirements Engineering, page 249, 2001.

[WSB+10] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty Cheng, and
Jean-Michel Bruel. Relax: a language to address uncertainty in
self-adaptive systems requirement. Requirements Engineering,
15:177–196, 2010.

[Yu95] E. Yu. Modelling Strategic Relationships for Process Reengi-

neering. PhD thesis, University of Toronto, Department of
Computer Science, University of Toronto, 1995.

[Yu97] E. Yu. Towards modeling and reasoning support for early re-
quirements engineering. In Proc. 3rd IEEE Int. Symposium on

Requirements Eng., pages 226–235, 1997.

[ZJ97a] P. Zave and M. Jackson. Four dark corners of requirements
engineering. ACM T. Softw. Eng. Methodol., 6(1):1–30, 1997.

198

BIBLIOGRAPHY

[ZJ97b] Pamela Zave and Michael Jackson. Four dark corners of re-
quirements engineering. ACM Trans. Softw. Eng. Methodol.,
6(1):1–30, 1997.

[ZJW03] Franco Zambonelli, Nicholas R. Jennings, and Michael
Wooldridge. Developing multiagent systems: The gaia method-
ology. ACM Trans. Softw. Eng. Methodol., 12(3):317–370,
2003.

[ZLKM08] Qin Zhu, Lin Lei, Holger M. Kienle, and Hausi A. Muller.
Characterizing maintainability concerns in autonomic element
design. IEEE International Conference on Software Mainte-

nance (ICSM 2008), pages 197–206, 28 2008-Oct. 4 2008.

199

Appendix A

Empirical Survey Material

Below we provide the material we used for the empirical survey study.

201

SURVEY INTRODUCTION

INTRODUCTION:

What are self-Adaptive Systems (SAS)?
Software Systems which are able to alter their behavior in response to changes in the external
environment such as: change in end-user needs, variation in operational context and resource
availability. Software engineering for such system is complex. In particular, requirements engineering
(RE) for SAS requires attention to specify requirements and perform analysis over them.

Example:
Consider music download software (e.g. a juke box). It accepts a variety of users requests with
different parameters (bandwidth, format) and preferences about the choice of music (e.g. rock,
instrumental etc.). The software manages the incoming request by being continuously available
thereby balancing the load with respect to its scalability i.e. by adding more memory and disk space
from a pool of servers.

Objective of the Survey:
The aim of this survey is to solicit feedback on the need of having a visual requirements modeling
language to model requirements of self-adaptive systems.

We ask you to do the following tasks:

1- Modeling Task: You are asked to play the role of an analyst.
2- Reasoning Task: You are asked to play the role of a running SAS.
3- Visual Notation Analysis Task: You are required to analyze the visual notations based on your

experience.
4- Final Feedback:

VISUAL NOTATION GUIDE

ADAPTIVE REQURIEMENTS

MODELING LANGUAGE (ARML)

Quick guide to notations:

Visual Notation Concepts & Relations e.g.

Goal

Definition:
A Goal represents a desired state of affairs, the achievement of
which can be measured and is definitively concluded.
Example:
“Meeting to be Scheduled”

See
Fig.1,2,3

on Page 7

Definition:
A Soft goal represents a desired state of affairs, the achievement of
which can only be estimated, not definitively concluded.
Example:
“Convenience”, “Easy”

See
Fig.7

on Page 7

Task/

service

Definition:
A Task corresponds to an activity or an action whose achievement
leads to the definitive conclusion of its means. A service can
operationalize task.
Example:
“Download music”, “Show song listed as most viewed”

See
Fig.4,5,6

on Page 7

Definition:
A Quality constraint is a desired value of non-binary measurable
properties of the system-to-be that constrains a goal or a soft goal.
Example:
“Music download speed must not be less than 128kbps/sec”

See
Fig.8

on Page 7

Definition:
A Domain assumption is a condition within which the system-to-be
will be performing tasks in order to achieve the goals, quality
constraints, and satisfy as best as feasible the soft goals.
Example:
“If the user has paid the subscription she can download the music
from the online database”

See
Fig.4,5,8

on Page 7

inference

relation
I

Definition:
An <Inference> relation stands between a requirement that is the
immediate consequence of another set of requirements, the former
is called the conclusion, the latter the premises. Alternatively,
inference relation can be used to connect the refined requirement to
the requirements that refine it.
Possible Operationalization:
AND – Inference (Conjunctions) Fig. 1
OR – Inference (Disjunctions) Fig. 2
Simple – Inference (Refinement) Fig. 3
Means-End (as in case of i*/Tropos) Fig. 3, 6
Example:
“Req1: Generate revenue from the audio player” has <inference>

See
Fig. ALL

on Page 7

relation with two requirements: “Req1.1: Music is available to
subscribers”, “Req1.2: Display ads in the player”.

Definition:
A <Conflict> relation stands between all members (two or more) of a
minimally inconsistent set of requirements.
Example:
“Req1: Music is available to subscribers” is in <Conflict> with “Req2:
Music is available to users”
Rationale: Since it is not possible to maintain the player free to all
users and make music available to subscribers only.

See
Fig.8

on Page 7

Definition:
A <Preference> is a binary relation that exists between two
requirements and it defines the stakeholder evaluations of
requirements that determine the desirability of a requirement.
Possible Operationalization:
Ranking/Priorities (0---10)
Fuzzy Scale (0.1 ---- 1.0)
Example:
“The bitrate of music delivered via the online audio player should be
at least 256kb/s” is <Preferred> over “the bitrate of music delivered
via the online audio player should be at least 128kb/s”

See
Fig.9

on Page 7

Definition:
An <is-Optional> relation is unary that states the evaluation of
stakeholder of requirement, which may be desirable. Functional
requirements, which are “nice to have”.
Operationalization:
Boolean (T/F) (Yes/No)
Example:
“Color printing of a meeting schedule” <is-Optional>.

See
Fig.9

on Page 7

Definition:
An <is-Mandatory> relation is unary that states the evaluation of
stakeholder of requirement, which must be satisfied. Functional
requirements.
Operationalization:
Boolean (T/F) (Yes/No)
Example:
“Each Participant must have meeting schedule available” <is-
Mandatory>.

See
 Fig.10

on Page 7

Definition:
An <Association> link is used to define a link between two elements.

Example:
“High level Context (e.g. Outdoor)” is <associated> to “an ontology
concept (e.g. place)”.

See
Fig.11

on Page 7

Definition:
A <Relegation> relation is n-array relation that stands between one
or more requirements, to relax or to suspend conditions imposed
over them. A mandatory requirement can have a <relegation>
relation with an optional requirement.
Operationalization:
Chaining Rules
Fuzzy Temporal Branching Logic functions (e.g. as in case of Relax
Language)
Relegation function: responsible to relax the conditions of the
constraints over the requirements or to suspend it.
Example:
“Req1: to download music” has <Relegation> relation with the “Req2:
to Stream the Song online”.
Rationale: Since download music is for subscribers and to reduce load
on the server it can relax streaming of songs.

See
Fig.9

on Page 7

Definition:
An <Influence> relation is said to exist between a set of
requirements, where satisfaction of one requirement warrants the
satisfaction of the other. This determines the satisfaction of the
requirements set. There are two types, weak-influence (where partial
satisfaction is possible) and strong-influence (where there is no
possibility to satisfy the latter requirement).
Possible Operationalizations:
Priority (Quantitative Rankings)
Cost (possibly with a cost function)
Probabilistic (using Statistical method)
Contribution links (++,--, -, +) as in case of i* / Tropos
Example:
“Req: to subscribe and make payment” have <Strong-Influence> over
the “Req to download the music”.
“Req: subscribe and make payment” have <weak-Influence> over the
“Req: to listen music online”

See
Fig.10

on Page 7

Definition:
A Resource is an entity either tangible or intangible referred to by
one or more instances of the information communicated during
elicitation by the stakeholder.
Classification:
Tangible
Intangible
Example:
Tangible Resource: “Physical e.g. Mobile phone”
Intangible Resource: “Virtual or Data e.g. Bank Balance, Agenda”

See
Fig.12

on Page 7

Definition:
A <Requires> relation is a binary relation that exists between a task
and a resource.
Possible Operationalization:
Resource Locator Function that determines all the required resources
needed by the tasks in a particular context.
Example:
“Task: Download song” <requires> “Resource: internet connection”

See
Fig.12

on Page 7

C Context[]1

Definition:
A Context is defined as a set of information (condition) that is
presupposed (or believed to be true) by the stakeholders to hold
when they communicate particular requirements.
Possible Operationalization:
Class Diagrams
Conditions
States
Explicit specification of the states and conditions represented in the
requirements model to be monitored.
Contextualization Function: which tells the specific states or
conditions to be true, which describes a situation in an environment
Classification:
Information related to particular user’s and system’s environment
states, conditions or assumptions
Example:
“System states (e.g. searching a song)”, “User states (e.g. Listening to
music)”, “User Location (e.g. at home)”, “Device Status (e.g. Battery is
low)”

See
Fig.11

on Page 7

@
Ontology

Concept{ }

Definition:
An Ontology Concept defines an entity and its characteristics or
essential features in a particular domain of discourse.
Example:
“Frame rate in Music Ontology”

See
Fig.11

on Page 7

Fig. 1 Fig. 2 Fig. 3

Fig. 4 Fig. 5 Fig. 6

Fig. 7 Fig. 8

Fig. 9
Fig. 10

Fig. 11 Fig. 12

A graph of modeling notations (overall picture):

Legend:

PRE-QUESTIONNAIRE

Please State your Previous Experience:

Software modeling experience in general (specify in years) _____

Software requirements modeling using any goal modeling language (specify in years) _____

MATERIAL & TASKS

FOR

MODELING

Modeling Task: You are asked to play the role of an analyst:

a. TASK # 1:

i. Answer the Questions
- Read the given requirements of “iComp” system
- Read the given partial Model of “iComp” system in ARML

b. TASK # 2:

i. Change the given model as per the given requirement

ii. Answer the questions
- Read the given partial Model of “iComp” system in ARML

c. Feedback: Post-Modeling Questionnaire

Modeling Task:

iComp: System Requirements:

An “Intelligent Travel Companion” (hereafter, iComp) is a self-adaptive system. It manages end-user’s

travel tasks. It supports the end-user to specify their preferences and receive timely information

about their booking confirmation (e.g., confirmed, canceled, in progress). The booking preference is

collected using the iComp GUI. Once end-user has specified her travel itinerary (e.g. booking

reference number (BKRef#), time of the flight, origin, destination and service source etc.), iComp

starts to monitor the relevant service for checking the flight status. The notification message about

the flight status must be sent to the end-user as per her preferences i.e. via Email, or Call, or SMS (i.e.

most preferred method) instantly (i.e. in less than an hour before the flight) on her device (i.e. laptop

or mobile) depending the user context (i.e. home or market or office etc.) and system context (e.g.

the Internet is available, service is available etc.). The notification message must be sent to end-users

device by selecting a suitable message format (i.e. size, scaling, format) depending as per her device

context (e.g. smart phone). In case there are some problems (i.e. user is not accessible, network is

not available, or device is not reachable), the notification message must be ensured as sent by

adopting an alternative method e.g. sending to alternative contact (if given) e.g. office secretary, or

apply a retry strategy (e.g. attempt to resend the message after every 5 minutes than 10 minutes

etc.) until the message is confirmed to be delivered.

Partial Model of “iComp” in ARML:

A – Task # 1: (Act as an Analyst)

Start time _________ End time __________

See the model of “iComp” given on the previous Page (page 14).

Answer the following questions:

Which resources are used to quickly notify the user in case of flight status is (“Cancelled”)?

Resources: ___

Which tasks are involved in notifying the user when the flight status is changed (“Cancelled”)?

Tasks: ___

In which context the user is notified more quickly about the change in flight status?

Contexts: __

Partial Model of “iComp” in ARML:

B – Task # 2: (Act as an Analyst)

Start time _________ End time __________

Try to change the given model as per the following requirement. (See page 16)

Requirement: “User prefers to be notified via Tweeter service.”

HINT: Use the visual modeling notations guide if needed (on Page4-7).

Answer the following questions:

Which task is influenced by adding the new task to “send via tweeter”?

Influence Relation among tasks: __

What are the resources added by you?

Resources: ___

In which context the notification method “send via tweeter” will be more preferred?

Contexts: ___

What are the new ontology concepts you added?

Ontology Concepts: ___

C – Feedback: Post-Modeling Questionnaire:

According to your modeling experience (Task: A, B). Answer the following questions:

Start time _________ End time __________

SCALE: 1 – Strongly agrees, 2 – Agree, 3 – Not certain, 4 – Disagree, 5 – Strongly disagree

 1 2 3 4 5

Modeling task is clear

Modeling in ARML is difficult

Using the visual notations is difficult

Visual notations are adequate to model the requirements of SAS

It is useful to explicitly model context, resource, ontology concepts

It is useful to model influence, relegation and requires relations among
modeling elements

General Comments (If any):

--

--

--

MATERIAL & TASKS

FOR

REASONING

Reasoning Task: You are asked to play the role of a running SAS.

a. TASK # 1:

i. Answer the question (descriptive)
- Read the given scenario

ii. Answer the questions(multiple-choice)

- Read the given scenario

b. Feedback: Post-Reasoning Questionnaire

A – Task # 1: (Act as a running SAS)

Read the following scenario; use the “iComp” model on page (16), if required.

Start time _________ End time __________

Scenario [Flight Changed]:

If the flight is “Cancelled” and there is no option to fly the same day; iComp must reason and adapt to

the candidate solution to inform the user as soon as possible.

(i) Answer the following question:

What elements from the requirements model are required by iComp to reason in such a situation?
(Consider yourself as iComp, and textually describe the reasoning to be performed).

--

--

--

--

--

--

--

--

(ii) Answer the following question:

Start time _________ End time __________

Read the above scenario [Flight Changed], and select the most relevant option to the following
question.

Which option describes reasoning by iComp about a particular concept? (select multiple, if applies)

1. Context (Answer :_______)
a. User Context is: Outdoor (e.g. User is at the airport)
b. System Context is: Checking Preference and Services to Notify
c. Communication services are limited (e.g. Internet is slow at airport)
d. User Context is: Indoor (e.g. User is at home)
e. System Context is: Service invocation failed.

2. Resource (Answer :_______)

a. Wifi
b. Itinerary
c. Mobile Device
d. GPS coordinates
e. Laptop

3. Influence Relation (Answer :_______)

a. Service invocation task has <weak-influence> Send via SMS task
b. Get user context task has <strong-influence> on inform user task
c. Preferred message format has <strong-influence> on inform user task
d. Read log task has <weak-influence> on send via email task.

4. Relegation Relation (Answer :_______)

a. Send via SMS task <relegate> compose message task
b. Inform user task <relegate> get user context task
c. Get system context task <relegate> get user context task

Any other concepts you think are relevant for reasoning (please specify):

--

--

B – Feedback: Post-Reasoning Questionnaire:

According to your reasoning experience (Task A (i), A (ii)), answer the following questions:

Start time _________ End time __________

SCALE: 1 – Strongly agrees, 2 – Agree, 3 – Not certain, 4 – Disagree, 5 – Strongly disagree

 1 2 3 4 5

It is difficult by SAS to reason on concepts and relation depicted in the
model

Concepts and relations are sufficient enough to reason on by SAS

Concepts and relations are relevant for reasoning by SAS

It is useful for SAS to reason on context, resource, ontology concepts

It is useful for SAS to reason on influence, relegation and requires relations

General Comments (If any):

--

--

--

TASK

FOR

VISUAL NOTATIONS ANALYSIS

TASK # 3: Visual Notations Analysis Task:

Read above the quick guide to the notations (on page 4-7). After reading the definitions and the
associated notation, you are required to answer the following questions.
(Act as a novice user to analyze the visual notations to judge their effectiveness)

Start time _________ End time __________

SCALE: 1 – Strongly agrees, 2 – Agree, 3 – Not certain, 4 – Disagree, 5 – Strongly disagree

 1 2 3 4 5

The Visual notation represents the concept they refer

State your opinion: Why is it so? [Optional]

--

Visual notations are visually distinct from one and other

State your opinion: If you think they are not distinct, why? [Optional]

--

Visual notations help in expressing the intended meaning

State your opinion: If not, give reason, Why? [Optional]

--

The visual notations are of ample visual expressiveness (e.g. color, size and
dimensions)

State your opinion: Why visual notations are not visually expressive? [Optional]

--

Visual notations proposed are not overloaded (i.e. used to represent
multiple concepts)

State your opinion: If you think they are overloaded, please give reason, why? [Optional]

--

The visual notations proposed are easy to remember

State your opinion: If not, please give reason, why? [Optional]

--

The proposed visual notations are helpful in modeling requirements of SAS

State your opinion: If not helpful, Why? [Optional]

--

The visual notations does not increase too much the complexity of the
model

State your opinion: If you think complexity of the model increases, give reason, why? [Optional]

--

The visual notations are easy to use

State your opinion: Which of the proposed visual notation is not easy to use? [Optional]

--

Post-visual notation analysis questions:

How much % of the time did you approximately spend in?

Reading the ARML concepts and relations _____%
Understanding the use of visual notations _____%
Reasoning on answering the questions _____%

General Comments (If any):

--

--

--

FINAL FEEDBACK

QUESTIONNAIRE

Final Feedback Questionnaire:

Start time _________ End time __________

SCALE: 1 – Strongly agrees, 2 – Agree, 3 – Not certain, 4 – Disagree, 5 – Strongly disagree

 1 2 3 4 5

The modeling guidelines are clear enough to me

Concepts and relations in ARML are useful enough to model requirements
of SAS

Concepts and relations in ARML are adequate enough to model
requirements of SAS

I had no problem in modeling Context and Resources using ARML notations

I had no problems in modeling Influence and Relegation relations using
ARML notations

The modeling effort to change the model is high

The reasoning effort using in practice is high

Concepts like context and resources are useful in modeling requirements of
SAS

The obtained model is useful enough to guide the running SAS to reason
about execution situations

Visual notation are effective to model the requirements for SAS

Your Experience with ARML (Cross out the relevant):

Time was enough to perform the required tasks YES () / NO ()
I understand what I have to do and guidelines were clear enough YES () / NO ()

	Introduction
	Motivation and Problem
	Research Objectives
	Case Study: Travel Companion
	Approach Overview and Contribution
	Structure
	List of Published Papers

	State of the Art
	Overview
	Design Approaches for Self-Adaptive Software Systems
	Component-Based Approaches
	Middleware-Based Approaches
	Agent-Oriented Approaches
	Service-Oriented Approaches
	Self-Adaptive and Self-Organizing Systems (SASO)

	Requirements Engineering for Self-Adaptive Software Systems
	Goal-Oriented Approaches
	Requirements Monitoring Approaches
	Recent Vision for RE for SAS

	Final Remarks

	Requirements Problem for Self-Adaptive Software Systems
	Overview
	Requirements Problem and Core ontology for RE
	Defining Run-time Requirements Adaptation Problem
	RE for SAS and its Core Ontology
	Run-time Requirements Adaptation Problem: Illustration
	Benefits & Related Work
	Final Remarks

	CARE Framework
	Overview
	RE levels and Adaptation Types
	RE at Design-Time Vs RE at Run-Time
	RE at Design-Time
	RE at Run-Time

	Conceptual Architecture of CARE
	Service Request Acquisition
	Service Lookup
	Service Selection
	Update Specification
	Feedback Control Agents

	Related Work
	Final Remarks

	Engineering Adaptive Requirements
	Overview
	Adaptive Requirements
	Definition of Adaptive RML
	Concepts & Relations
	Adaptive RML Visual Notations
	Systematic Modeling in Adaptive RML
	Requirements Modeling with Adaptive RML
	Analyzing Adaptive Requirements

	Operationalizing Adaptive Requirements
	In Practice

	Related Work
	Final Remarks

	Application of the CARE Framework
	Overview
	Description of the Travel Companion
	Design-Time Modeling of Requirements
	Specifying Adaptive Requirements

	Instantiating CARE at Run-Time
	Analyzing Run-Time Adaptation
	In Practice
	Final Remarks

	Evaluation
	Overview
	Evaluation of Design-Time Tool
	Environment of the experiments
	The parameters of the study
	Experiment 1: Time to load the variants in the tool
	Experiment 2: Time to generate the monitor specification
	Experiment 3: Time to configure the monitors

	Qualitative Evaluation of Adaptive RML
	Requirements Modeling with i*
	Requirements Modeling with Tropos
	Requirements Modeling with ARML
	Summary

	Empirical Survey on ARML
	Goal of the Study and Research Questions
	Hypothesis
	Subjects
	Survey Design
	Survey Procedure
	Data Analysis and Interpretation

	Final Remarks

	Conclusions and Future Work
	Conclusions and Summary of Contributions
	Generality and Limitations

	Future Works
	Integrating Adaptive Requirements and Preferences-based Reasoning for Run-time
	Online Requirements Engineering
	Towards the framework for Evolving Requirements
	3T process integrating concepts from Agent systems and Testing in RE for SAS
	Analyzing Intentional Interoperability Requirements
	Towards a case tool for operationalizing Adaptive Requirements
	Empirical Study on ARML
	Continuous Refinement of Requirements at Run-time

	Bibliography
	Empirical Survey Material

