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Abstract

Nowadays owners and users of software systems want their executions to be reliable and se-

cure. Runtime enforcement is a common mechanism for ensuring that system or program

executions adhere to constraints specified by a security policy. It is based on two properties:

the enforcement mechanism should leave legal executions without changes (transparency)

and make sure that illegal executions are amended (soundness).

From the theory side, the literature proposes the precise characterization of legal ex-

ecutions that represent a security policy and thus is enforced by mechanisms like security

automata or edit automata. Unfortunately, transparency and soundness do not distinguish

what happens when an execution is actually illegal (the practical case). They only tell that

the outcome of an enforcement mechanism should be “legal”, but not how far the illegal

execution should be changed.

In this thesis we address the gap between the theory of runtime enforcement and the

practical case. First, we explore a set of policies that represent legal executions in terms

of repeated legal iterations and propose a constructive enforcement mechanism that can

deal with illegal executions by eliminating illegal iterations. Second, we introduce a new

notion of predictability, that puts a restriction on the way illegal executions are modified by

an enforcement mechanism. Third, we propose an automatic construction of enforcement

mechanisms that is able to tolerate some insignificant errors of the user and we prove it

to have a sufficient degree of predictability.

The main case study of this thesis is a business process from a medical organization.

A number of discussions with the partners from this organization shows the validity of the

approaches described in this thesis in practical cases.
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Chapter 1

Introduction

1.1 The Importance of Execution Monitoring

Nowadays owners of business processes want their executions to be secure and compliant

with different regulations, including privacy; mobile device users want their private infor-

mation to stay on their devices; the users of web applications want to be protected from

the hackers’ attacks. Unfortunately the features of those applications are at odds with

the current security models.

The first problem is that the developers of largely used applications such as mobile

games or social network applications claim to be compliant with the privacy policies of

their company, but they are not obliged to be compliant with security policies of the end

users. However, the end users start having more and more security requirements.

The second problem is that once an application is installed, there is no general control

over what the application is doing at its runtime. It can potentially collect some amount

of private information and send it to the remote server. For example, BGR (Boy Genious

Report weblog, a pioneer in breaking news within the mobile gadget sector) have revealed

the fact that the Facebook application once it is installed on a smartphone, synchronizes all

phone numbers from the smartphone contact list and stores them on Facebook server [32].

Model carrying code [60] or Security-by-Contract [11] claims that there is a solution to

this problem. These approaches propose to equip the code with security claims that are

later matched against the platform security and privacy policies. This matching checking

is done when the program is going to be deployed on the mobile device. However, there

are some properties of programs that cannot be checked at deployment time.

3



CHAPTER 1. INTRODUCTION

To overcome these drawbacks, a number of authors have proposed to enforce the

compliance of applications with security policies by execution monitoring. The idea is

to monitor the execution of the program at runtime and control its compliance to the

security policies. Traditional security automata [59] were essentially sequence recognizers

that stopped the execution as soon as an illegal sequence of actions (not compliant with the

policy) was on the eve of being performed. They were proven to enforce safety properties.

In the following years a number of refinements have been proposed, for example

Hamlen’s work on rewriting [45] and Ligatti et al. works on edit automata [7, 51]. The

latter work proposes a model of mechanisms that are not only recognizing the correct

behavior of applications, but are also capable of transforming their behavior. This power

gives edit automata the capability of enforcing more than safety properties and it was

proven that they are able to enforce a richer class of properties, called renewal properties.

The fact that an edit automaton provably and effectively enforces a given security

policy was formalized by two notions: soundness (all transformed executions comply

with the policy) and transparency (the semantics of compliant executions should not be

changed).

1.2 Problem Statement

Transformation of non-compliant executions We started our research by trying to

formally show “as an exercise” that the running example of edit automaton from [7]

provably enforces a given security policy by applying the effective enforcement theorem

(Theorem 8) from the very same paper. Unfortunately, we failed.

As a result of this failure, we decided to make a deeper investigation and discovered

that the impossibility of reconciling the running example with the theorem on the very

same paper is a consequence of a gap between the edit automata that one can possibly

write and the edit automata that can be constructed by existing techniques (Theorem 8

from [7], Theorem 3.3 from [51] or by Talhi et al. [61]).

Issue 1 Two edit automata are effectively enforcing the same security property. Can we

formally capture what makes them different?

Automatic construction of enforcement mechanism When an enforcement mech-

anism is specified manually (as in many state-of-the-art papers and as in the example of

edit automaton from [7]), a number of mistakes can be made, since one should precisely

define how the illegal executions are transformed into the legal ones and the notions of

soundness and transparency do not help to define this transformations.

4



1.2. PROBLEM STATEMENT

Issue 2 There is no generic algorithm to construct an enforcement mechanism from the

given security property, such that this mechanism enforces the property in question in a

desirable way.

Notions of soundness and transparency are not sufficient We have found out

that different mechanisms provide different enforcement for the same security policy, even

though these mechanisms are sound and transparent. In the current theory of runtime

enforcement there is no notion that gives at least some information on how the non-

compliant execution sequences should be modified by an enforcement mechanism.

Issue 3 Soundness and transparency only describe what happens to legal executions. A

new notion should be able to discriminate execution transformers on the basis of what

happens to the illegal executions.

Toleration of user insignificant errors In practice a security policy is a description

of the compliant behavior of the given system. When applied to business processes, it

describes the desirable behavior of a business process, for example, in compliance with

applicable rules and regulations. Runtime enforcement mechanisms in these systems

would observe the actual executions of the processes and control their compliance.

In this particular setting, a policy representing the compliant behavior of the system

can be seen as a protocol that the system should follow. Enforcing such a policy means

insuring that the system behaves according to the predefined protocol. Since this thesis

focuses on building runtime enforcement mechanisms in this thesis, we will use notions

from the runtime enforcement theory; hence the notion of “policy” will be used also to

describe the “official protocol” of the system behavior.

There are two main requirements to the enforcement mechanisms: 1) the resulting pro-

cesses must be compliant with the desired behavior (“policy”); 2) the end users should

not be disturbed in their primary mission (for example doctors and nurses in the hospital

should deliver drugs to the patients) even if an insignificant deviation from the desired

process happened. These possible insignificant deviations are difficult to write, to check

and to communicate to the users. Hence we think that the runtime enforcement mech-

anism should be able to tolerate such deviations and manage them as automatically as

possible.

Issue 4 There is no generic construction of runtime enforcement mechanism that can

tolerate insignificant deviations from the specified policy.

5



CHAPTER 1. INTRODUCTION

Figure 1.1: Hierarchy of edit automata

1.3 Contributions

The work in this thesis focuses on runtime enforcement mechanisms, their models and

properties. The investigation started with the gap found in the runtime enforcement

theory and a number of solutions have been proposed. The thesis is structured in a way

to reflect several main contributions.

1.3.1 Classification of Enforcement Mechanisms

We start with presenting the first result of our investigation. We address Issue 1 by

analyzing the examples from [7]. We have built a hierarchy of several kinds of edit

automata and found a relation between them.

Figure 1.1 shows the relation between the classes of edit automata that we have es-

tablished. All-Or-Nothing automata output the whole execution sequence or suppress

the next incoming action. The notion of effective=enforcement comprises soundness and

transparency. Late automata are a particular kind of edit automata that always output

some prefix of the input. Longest-valid-prefix automata for P are automata constructed

according to the proof of Theorem 8 of [7]. We give more details in the main body of the

thesis. This contribution has led to the following workshop and follow-up international

journal publication:

• N. Bielova and F. Massacci. Do you really mean what you actually enforced? In

Proceedings of the 5th International Workshop on Formal Aspects in Security and

6
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Figure 1.2: Relationships between security properties

Trust, volume 5491 of Lecture Notes in Computer Science, pages 287-301. Springer-

Verlag Heidelberg, 2008. [12]

• N. Bielova and F. Massacci. Do you really mean what you actually enforced? Inter-

national Journal of Information Security, pages 239-254, 2011. DOI: 10.1007/s10207-

011-0137-2. [14]

1.3.2 Automatic Construction of Enforcement Mechanisms and

Iterative Properties

We propose an algorithm for the automatic construction of enforcement mechanisms given

a security policy represented as an automaton that combines the acceptance conditions

of a finite-state automaton and a Büchi automaton. The construction is given for two

types of mechanisms. The first one always outputs the longest valid prefix of a tentative

execution sequence. We call it Longest-valid-prefix automaton.

The second mechanism, called Iterative Suppression automaton, is a novel runtime en-

forcement technique. It outputs the biggest subpart of the tentative execution sequence,

assuming that a legal execution is usually a repeating concatenation of some “default”

sequences, that we call iterations. This mechanism is also proven to be as sound and

transparent as any other existing mechanism. Iterative Suppression automata make it

possible to distinguish between different types of enforcement for the same security prop-

erty. When proposing the construction, we use our assumption that compliant executions

7
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Table 1.1: Properties of enforcement mechanism.

Name Pre-Condition Post-Condition

Soundness for every trace the output is always some

valid trace

Transparency if input is a valid trace output is the same valid trace

Predictability if input is within δ

from a valid trace

output is within ε from the same valid

trace

consist of iterations and prove that Iterative Suppression automata are capable of enforc-

ing a new class of security properties, called iterative properties. By this contribution we

propose two solutions to Issue 2.

We have established the relations between iterative properties and safety, liveness and

renewal properties. We show our results in Figure 1.2 and discuss it in more details in

the thesis. This work has led to the following conference and journal publications:

• N. Bielova, F. Massacci, and Andrea Micheletti. Towards practical enforcement

theories. In Proceedings of The 14th Nordic Conference on Secure IT Systems,

volume 5838 of Lecture Notes in Computer Science, pages 239-254. Springer-Verlag

Heidelberg, 2009. [17]

• N. Bielova and F. Massacci. Iterative enforcement by suppression: Towards practical

enforcement theories. Journal of Computer Security, 2011. To appear. [15]

1.3.3 Predictability

We address Issue 3 and argue that what distinguishes enforcement mechanisms is not what

happens when the executions comply with the policy (because nothing should happen

according to transparency), but what happens when they are not compliant. We propose

a notion of predictability that puts a restriction on enforcement mechanisms so that they

should not change the non-compliant executions in an arbitrary way.

The idea behind this new notion is defined in the spirit of continuity in real-functions.

In Table 1.1 we show a comparison of this new notion with soundness and transparency.

This work has led to the following publication:

• N. Bielova and F. Massacci. Predictability of enforcement. In Proceedings of the

International Symposium on Engineering Secure Software and Systems 2011, volume

6542 of Lecture Notes in Computer Science, pages 73-86. Springer-Verlag, 2011. [16]
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Figure 1.3: Original approach and a novel approach to construction of enforcement mech-

anisms.

1.3.4 Error-toleration

We build upon the works of automatic policy generation and runtime enforcement to

propose a semi-automatic way to generate enforcement mechanisms that can tolerate up

to k errors, given a “default” workflow and a specification of a simple list of errors and

possibly their corrections. In this way we address Issue 4.

We have proposed an algorithm to construct a particular kind of edit automata that

perform this transformation in a well-defined way. This mechanism extends the classical

default-deny policy, considering the type and number of deviations from the policy that

the edit automaton can allow or amend. Differently from original approach, where the

runtime enforcer is constructed from the given security policy, we propose a novel approach

to build a runtime enforces that tolerates up to k deviations. We present the difference

between the approaches in Figure 1.3. This work has led to the following international

conference publication:

• N. Bielova and F. Massacci. Computer-aided generation of enforcement mechanisms

for error-tolerant policies. In Proceedings of the International Symposium on Policies

for Distributed Systems and Networks (POLICY’11), IEEE Computer Society Press,

2011. [13]
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1.3.5 Other Contributions

Besides the contributions described in this thesis, the author of the thesis contributed to

several other research results during her PhD studies:

Implementation and evaluation of Security-By-Contract In the Security-by-

Contract framework the code of the third-party application carries with itself the contract

that describes the security relevant behavior of the application; the security policy of the

platform is deployed on the mobile device.

We have implemented the contract-policy matching, which is one of the key steps

of the overall Security-by-contract framework. Contracts and policies are specified in

ConSpec [1]. The first description of the implementation appeared in [9], with more

results on testing in [18]. The major result is published in [11].

Reactive non-interference for a Browser Model We have worked on enforcing

non-interference in the model of the web browser called Featherweight Firefox [19]. Taking

the notion of reactive non-interference[20] specifically designed for the models of the web

browsers, we developed a new enforcement mechanism [10] based on the idea of secure

multi-execution [30].

1.4 Structure of the Thesis

The thesis consists of the following chapters:

Chapter 2 surveys the related work in theoretical aspects of runtime monitoring and

enforcement of security policies.

Chapter 3 introduces the gap found in the theory of runtime enforcement between the

security policies and their corresponding enforcement mechanisms. The main issues

that will be solved in this thesis are introduced. While defining the problem, we

present several running examples that will be used in the other Chapters of this

thesis.

Chapter 4 presents the relation among different types of security policies and establishes

a new classification of enforcement mechanisms. This classification is useful to define

a relation between two enforcement mechanisms that enforce the same security

policy in different ways.

Chapter 5 provides two main constructions of enforcement mechanisms given a security

policy. Longest-valid-prefix automaton outputs the longest valid prefix of the given

10
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system execution and Iterative Suppression automaton suppresses the illegal parts

of the execution. We also discuss how the enforcement is done for the running

examples defined in Chapter 3.

Chapter 6 introduces a new notion of predictability that defines how the enforcement

mechanism should behave when the system executions do not comply with the given

policy. This Chapter also presents a construction of a new runtime enforcement

mechanism that can tolerate a number of insignificant errors.

Chapter 7 presents a concluding discussion.
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Chapter 2

State of the Art

This chapter presents the state of the art techniques for runtime enforcement of

security policies. We describe here two main types of enforcement mechanisms:

first type are only able to recognize whether the system execution satisfies the

desired policy (sequence recognizers) and second type are also able to transform

the system executions at runtime (sequence transformers).

2.1 Systems, Policies and Properties

At the highest level of abstraction we will model the system execution with traces, where

a trace is a sequence of actions emitted by the execution. Usually in the state of the

art literature the executing system being monitored is called the target. The targets can

be objects, processes, subsystems or entire systems. The actions being monitored are

execution steps of the target that may range from low level operations (such as memory

access actions) to high level operations (such as method calls).

The security policy defines expected (or correct according to some security concerns)

behavior of the target and is usually represented in terms of set of possible execution traces

of the target. In order to ensure that the target behaves according to the security policy,

the runtime enforcement mechanism is deployed. It monitors the target execution and

enforces the security policy by terminating or modifying the original executions when they

violate the security policy. Originally, runtime monitor was named Execution Monitor

(EM) by Schneider [59].

A security policy defines an expected behavior of the target. As it was originally

proposed by Schneider [59], security policy is specified as a predicate P on sets of (finite-

or infinite-length) execution sequences. A target satisfies security policy P if and only if

13



CHAPTER 2. STATE OF THE ART

the set of all its execution sequences satisfies this policy.

As it is defined by Schneider [59] and refined by Ligatti et al [51], security properties

are a strict subset of security policies and they are distinguished as follows. A security

policy P is a property if there exists a characteristic predicate P̂ over individual execution

sequences. Then whenever a security policy P holds for a set of execution sequences, its

corresponding predicate P̂ holds for every sequence in that set.

Not every security policy is a security property. Since the property is only defined

in terms of single execution sequences, it cannot specify the relations between different

sequences. For example, it is a known fact that an information flow policy is not a security

property since it is defined in terms of sets of target execution sequences and relations

between them.

In the state of the art there are several classes of security properties. The property

describing behavior such as ”nothing bad ever happens” is called safety property [2, 49].

Safety means that whenever an execution sequence is valid, all its prefixes are valid as

well. More intuitively, safety means that when a violation happens (meaning a sequence

is invalid), there is no way to remediate it (there is no suffix that can make it valid again).

Additionally to safety, there is another class of properties called liveness [2]. These

properties describe the behavior such as ”something good eventually happens during any

execution”. In other words, this means that any finite execution sequence has a valid

continuation.

Not all the properties are pure safety or pure liveness. Some properties may allow an

execution sequence to alternate between satisfying and violating the property. As it was

shown by Alpern and Schneider [3], all the properties can be described as a combination

of safety and liveness.

When analyzing the enforcement capabilities of different mechanisms, Ligatti et al. [51]

defined a new class of properties, called infinite renewal properties. According to this

property, every valid infinite-length sequence has infinitely many valid prefixes, and every

invalid infinite-length sequence has only a finite number of valid prefixes. For example, let

τ range over finite sequences of legal transactions. Then a transaction policy accepting

τ∞ is a renewal property: any valid infinite-length sequence satisfying the transaction

policy τ∞ has infinitely many valid prefixes of the form τ ∗. Any invalid infinite-length

sequence that does not satisfy the transaction policy is of the form τ ∗;σ, where σ is not

a prefix of τ , which means that this sequence has only a finite number of valid prefixes.

Given this classification of security properties, different authors started to propose

enforcement mechanisms that are capable of enforcing particular types of properties.

14
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2.1.1 Hyperproperties

Later Clarkson and Schneider [28] introduced hyperproperties that are sets of properties, or

sets of sets of execution traces. Hence, hyperpoperties are able to describe security policies

that are not properties, such as information-flow policies. The authors also propose a

notion of hypersafety and hyperliveness, that are also hyperproperties and are specified in

a similar way as safety and liveness, with the only difference that instead of traces they use

sets of traces. Interestingly, the authors generalize the result of Alpern and Schneider [2]

that every security property is the intersection of safety property and liveness property.

Clarckson and Schnieder prove that every hyperproperty is the intersection of hypersafety

and hyperliveness.

Another interesting result from [28] is that noninterference, as defined by Goguen and

Meseguer [41], can be written as a particular type of hypersafety called k-safety hyperprop-

erty. The idea behind k-safety is that the “bad thing” defining that the continuations of

system executions will not satisfy this hyperproperty, never involves more than k traces.

Since Goguen and Meseguer’s definition of noninterference compares two traces, it is a

2-safety hyperproperty. In [28] the authors also suggest a relatively complete verification

technique for k-safety hyperproperties.

The hyperproperties, especially hypersafety and k-safety hyperproperty, are very in-

teresting for investigation of their enforcement techniques, however this thesis is covers

the area of enforcement for security properties that can be specified with a single predicate

on executions traces.

2.2 Runtime Enforcement Mechanisms as Sequence

Recognizers

The first idea of modeling an enforcement mechanism for security properties belongs to

Schneider who proposed to think about runtime monitors as sequence recognizers.

2.2.1 Security Automata

Schneider introduced the notion of enforceable security policies and Execution Monitoring

(EM) in 2000 [59]. He was the first proposing the notion of security properties and

trying to analyze security policies enforceable by execution monitoring. In his paper,

Schneider fairly claims that a security policy must be a property in order for a policy to

have an enforcement mechanism is EM. This statement is correct since a runtime monitor
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makes decision about a single execution at runtime and is incapable of comparing different

executions between themselves. Having that in mind, all the follow-up work that has been

done in the area discusses only runtime enforcement mechanisms for security properties.

Also, the author tried to restrict the obtained result stating that “If the set of exe-

cutions for a security policy P is not a safety property, then an enforcement mechanism

from EM does not exist for P .” This statement, however, is not true. The problem

with this statement is that the terms used in it do not correspond to the notions that

the author obviously had in mind. By Execution Monitors the author means sequence

recognizers that can only conclude whether the execution satisfies the property or not.

These mechanisms have the power of accepting a single action at runtime or terminate

the whole execution. Having that in mind, the statement becomes true, hence one could

rewrite it as “If the set of executions for a security policy P is not a safety property, then

an enforcement mechanism modeled as sequence recognizer does not exist for P .”

Schneider proposed a first runtime enforcement mechanism modeled as sequence rec-

ognizer, called Security Automata (SA). It monitors the execution of the target and halts

it as soon as it violates the property. In this way the proposed mechanism naturally

enforces safety properties.

2.2.2 Shallow History Automata

Fong [38] provided a new approach to classify enforceable security properties. First, he

proposed to investigate an open question raised by Bauer et. al in [6]: whether it is possible

to further classify the space of EM-enforceable policies by constraining the capabilities of

the execution monitor.

Fong successfully found the way to prove that this is possible by classifying the space

of EM-enforceable policies according to the information consumed by an execution mon-

itor. He proposed a new mechanism called Shallow-History automata (SHA) that keeps

as a history the access control events occurred in the past, and does not contain any in-

formation about the order of their arrival. By doing so, Fong proved that SHA is strictly

less expressive than SA.

To show the practicality of his mechanism, Fong showed how some well known security

policies such as Chinese wall policy [21], low-water-mark policy [8] or one-out-of-k autho-

rization policy [31] can be enforced by SHA. Later he proved that the class of policies

enforceable by SHA is less expressive than the general class of EM-enforceable policies.

Fong proposed to use the generalization of his technique to define a lattice of security

policy classes, in which member classes are ordered by the amount of information that
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must be tracked by an execution monitor. However, this classification applies only to

safety properties.

2.2.3 Computational power of Execution Recognizers

Viswanathan, Kim et al. [48, 62] decided to investigate the computational power of run-

time monitoring mechanisms, in particular they limited their work on execution recogniz-

ers enforcing safety properties in finite time. They introduced computability constraints

and showed that the monitors recognizing invalid executions enforce the set of computable

safety properties.

Hamlen et al. [45] revised the classifications given by Schneider [59] taking into account

work done by Viswanathan and Kim et al. In order to analyze the computational power

of runtime enforcement mechanisms, Hamlen et al. first give a set of assumptions that are

relevant for all the preceding and subsequent works on runtime monitors. In particular,

since runtime enforcers should present security policy violations before they occur, they

always must have a power of predicting target’s behavior on any given input. For example,

a security automaton must be able to look ahead at least one computational step in order

to intercept bad events before they occur.

They also analyzed the properties that can be enforced by static analysis and program

rewriting. This taxonomy leads to a more accurate characterization of enforceable security

policies.

2.3 Runtime Enforcement Mechanisms as Sequence

Transformers

2.3.1 Edit Automata

Later Ligatti, Bauer, and Walker [7, 51] have introduced edit automata, a new mechanism

that is capable of enforcing a class of security properties strictly bigger than a class

of safety properties. The authors could achieve such a result because, differently from

Schneider that considers runtime enforcement mechanisms as sequence recognizers, they

propose to view them as sequence transformers.

Remark 2.3.1 Notice that before appearance of runtime enforcement mechanisms as ex-

ecution transformers, runtime enforcement was often done by runtime monitoring. In
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other words, monitors were considered ”enforcers” as they were able to observe the sys-

tem executions and halt them as soon as they violate the given security properties. With

the appearance of sequence transformer techniques, runtime monitoring and runtime en-

forcement are two distinctive notions.

Edit automata was a first enforcement technique that proposed not only to monitor and

halt the system executions but also to transform them: edit automata are able to insert

new actions to the execution of suppress them (with a possibility to memorize them for

later use). Having this power of modifying program actions at run time, edit automata are

provably more powerful than security automata and enforce a class of renewal properties

that is shown to be strictly bigger than the class of safety properties.

It was proved in [51] that every decidable renewal property can be enforced by a kind of

edit automaton that outputs the longest legal prefix of the input. The renewal property,

similar to the liveness property, implicitly assumes that if an infinite sequence is legal

then for every prefix of this sequence the liveness holds, or “nothing irremediably bad

happens in any finite prefix”. It is obviously implied by the fact that an infinite-length

legal execution must have an infinite number of legal prefixes. Therefore if an infinite-

length execution has something irremediably bad happened in a finite prefix, then the

number of valid prefixes is finite, and hence this execution is invalid.

2.3.2 Bounded History Automata

The next attempt to characterize the security policies enforceable by runtime monitors

depending on the information stored in the memory of the monitor was done by Talhi et

al. [61]. They proposed Bounded history automata (BHA) that bounds the automata by

the limited history. As such, they distinguish two subclasses of BHA: bounded security

automata (BSA) and bounded edit automata (BEA). We will cover the latter case here,

since it is a sequence transformer.

The states of BEA represent a bounded history of valid execution sequences: more

concretely, every state contains a prefix of the execution sequence already accepted by the

automaton and a suffix that is currently suppressed. When a maximum size of history is k,

respected BEA is called k-BEA, and the enforcement power of Bounded Edit Automata

is bounded by this number. The authors have also proved that for k, k′ ∈ N, when

k < k′ : k′-BEA are more powerful than k-BEA.

Chabot et al. [23] proposed to synthesize security automata from the security proper-

ties expressed as Rabin automata. They provide a construction from safety properties in

general case and more than safety in case when additional information about the program
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is obtained by a static analysis. However, the comparison of enforceable properties with

other (renewal, liveness) properties is left aside.

An interesting direction was also taken by Khoury and Tawbi [47, 46]. The authors

proposed to define an equivalence relation between the original execution of the target and

the result of the transformation of that execution by the enforcement mechanism. Their

definition of equivalence relation is very generic and cannot guide the user to synthesize

better enforcement mechanism.

2.3.3 Synthesis of Enforcement Monitors

Another line of work is concerned the synthesis of runtime enforcement monitors. A

great part of the work in this direction is done by Martinelli and Matteucci [54]. They

have shown how to synthesize such execution monitors. Given the system and a security

policy represented as a µ-calculus formula the user can choose the controller operator

(truncation, suppression, insertion or edit automata). Then he can generate a program

controller that will restrict the behavior of the system to those specified by the formula. In

a later work [55] the authors generalize the approach in the context of real-time systems.

2.3.4 Generic Enforcement Monitors

Falcone et al. proposed a technique to produce an enforcement monitor given a security

property specified as Streett automaton [34, 35]. Parameterizing this automaton, the

authors specify four different types of security properties according to safety-progress (SP)

classification of properties [25, 24]: safety, guarantee, response and persistence. They give

informal definition of these properties[35]:

• safety properties are the properties for which whenever a sequence satis-

fies a property, all its prefixes satisfy this property.

• guarantee properties are the properties for which whenever a sequence

satisfies a property, there are some prefixes (at least one) satisfying this

property.

• response properties are the properties for which whenever a sequence

satisfies a property, an infinite number of its prefixes satisfy this property.

• persistence properties are the properties for which whenever a sequence

satisfies a property, all its prefixes continuously satisfy this property from

a certain point.
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As we can see, safety properties are exactly those that we described earlier in Sec-

tion 2.1. Since response property guarantees that whenever a sequence is valid, it should

have an infinite number of valid prefixes, we can conclude that response property coin-

cides with the renewal property. This is our observation, however the authors of the paper

did not explicitly compare their properties with renewal and liveness properties. We will

not try to make this comparison but rather pay our attention to the construction of the

enforcement mechanism and its way to enforce given properties.

The safety-, guarantee-, and response-transformations describe the semantics of the

enforcement mechanisms. All these mechanisms are sequence transformers that always

output the longest valid prefix of the original execution sequence. In the Chapter 4 we will

discuss the relation between these kinds of enforcement mechanisms and other sequence

transformers.

In their next work [36] the authors propose an upper-bound of the set of enforce-

able properties. They get this bound by characterizing properties independently from

the enforcement mechanisms that only should comply with soundness and transparency.

However, the authors define a property to be enforceable only if each incorrect infinite

sequence has a finite number of correct prefixes, and this is a definition of renewal property.

2.3.5 Enforcement Mechanisms for Usage Control

Pretschner et. al. [57] have provided a model of consumer-side enforcement mechanisms

for distributed usage control. This model can be used to formally check if a set of mecha-

nisms is able to enforce a given obligation and to check interference of mechanisms. The

four classes of mechanisms were presented: inhibition, delay, modification and execution.

Inhibition prevents specific events from happening, which is similar to the suppression op-

eration of edit automata. Delay mechanism postpones the decision about the sequence of

events for a fixed number of steps. Modification mechanism is able to make a replacement

of events, which is similar to two steps of an edit automaton: suppression and insertion.

The difference is that the modification mechanism is claimed to be able to cater for con-

current events by replacing one event by the set of events. Execution mechanisms can

add some events to the execution so that the resulting execution will satisfy the given

policy. The ability of adding events is similar to the insertion operation of edit automaton.

Hence, they preserve the notion of soundness. However it is not clear how the property

of transparency can be checked. The execution mechanism can add arbitrary events, as

long as respective properties are not violated. The authors require the effect of applying

their mechanisms to be minimal.
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2.3.6 A (hidden) assumption

Runtime enforcement mechanisms as sequence transformers (including those that will

be presented in this thesis) use one important assumption that all the actions can be

suppressed or modified at runtime. In practice this is not always possible.

Let us consider a system that executes actions that depend on the results of previous

actions. For example, we can consider a Service-oriented architecture (SOA) where ser-

vices are exchanging messages, for example one service can invoke another service. All the

intercommunications between the services are happening through the Enterprise Service

Bus (ESB) [26].

In order to enforce some security policies in SOA, an enforcement mechanism is needed

to intercept the messages and decide whether the behavior of the system complies with the

security policies. One way to implement such an enforcement mechanism is xESB [40],

an enhanced version of an ESB. xESB intercepts the messages and makes a decision,

whether to accept, delay or modify the messages depending on the security policy. Let

us show one motivating example of security policy from the original paper [40], where a

hypothetical company “Foo.uk”, providing VoIP-based services using a communication

platform implemented as a SOA is using an ESB.

Example 2.3.1 Process collect calls only after destination has agreed to pay. The VoIP

destination must have accepted to pay for the call before replying to collect call request.

The relevant messages on ESB for this policy are:

• ip for invocation of payment

• rp for positive response on payment

• ic for invocation of the collect call

• rc for positive response of the collect call

The policy specifies that these messages are allowed to be sent in a particular order,

that can be described as a regular expression (ip, rp, ic, rc)∗ (only after the destination gave

a positive response on payment, the collect call can be invoked). This particular scenario

requires that all invocation messages are accepted by the enforcement mechanism because

if the enforcement mechanism blocks them, the response to those invokations will never

arrive. Generally speaking, whenever an acceptance of some messages depends on the

acceptance of previous messages, the policy has the form (in the example above n=2):

(i1, r1), (i2, r2), . . . , (in, rn)
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Then the enforcement mechanism should accept all sequences of messages the form

(i1, r1), (i2, r2) . . . , ij for all 1 ≤ j ≤ n

However, this output does not satisfy the security policy being enforced, which contradicts

the meaning of enforcement.

In this thesis we make an assumption that holds for all the other state-of-the-art

runtime enforcement mechanisms mentioned above:

Assumption 1 All the actions intercepted by the enforcement mechanism can be sup-

pressed or modified, and this will not influence the other actions emitted by the system

2.4 Runtime Enforcement Mechanisms for Informa-

tion Flow Security

There is a large body of related work on information flow security enforcement mecha-

nisms. There are two major approaches to information flow security enforcement: static

techniques and dynamic techniques. In particular, we will describe the main approaches

to enforcement of a particular information flow security policy, called noninterference.

Noninterference for programs means that a variation of confidential (high) input does not

cause a variation of public (low) outputs.

2.4.1 Static Information Flow Analysis

Sabelfeld and Myers [58] survey static techniques for information flow enforcement. One of

the main static techniques is to build a security type system for a particular programming

language. A security type system is a set of typing rules that describe what security

type is assigned to a program. Whenever a given program is typable with respect to

this security type system, the program is proven to be noninterferent. Another static

technique is based on programming language semantics. It defines relations on the states

of the program execution with respect to the security level: at high security level all the

variables are visible to an observer of program execution, and at low security level only low

(public) variables are visible to an observer. Noninterference defines that whenever two

program states agree on low level variables (are not distinguished by a low level observer),

then the outputs of this program are also not distinguishable by a low level observer.

22



2.4. RUNTIME ENFORCEMENT MECHANISMS FOR INFORMATION FLOW
SECURITY

2.4.2 Dynamic Information Flow Analysis

Static analysis techniques have one major drawback: they accept the program only if all

its executions ensure noninterference. In this thesis we are more interesred in dynamic

techniques, since runtime enforcement mechanisms are dynamic and that should obey

similar formal properties.

Automata-based Condentiality Monitoring Work by Le Guernic et al. [44, 43]

proposes a monitor that analyses only actual executions of the program. The model

of a monitor is an automaton that produces outputs on an input sequence formed by

program execution. This automaton is a kind of edit automaton which is able to enforce

non-interference of a program with high and low program variables. The states of this

automaton contain information about variables that may have been influenced by the

initial values of high variables and tracks variety in the context of the execution.

Secure multi-execution Another novel dynamic technique is secure multi-execution

proposed by Devriese and Piessens [30]. This enforcement method is able to enforce non-

interference for a security lattice containing any amount of security levels. The idea of

this technique is to execute the original program one time per each security level, while

filtering the inputs and outputs of the program in a particular way such that no higher

inputs can actually flow into lower outputs.

Formal Properties Similar to the fact that an edit automaton can potentially enforce

the same security property in different ways, different dynamic techniques can enforce

non-interference in different ways as well. To make a brief discussion, we compare the

techniques by Le Guernic et al. and Devriese and Piessens. Formally, we can compare

the properties of these mechanisms that were proven in the corresponding papers.

Both of the approaches are proven to be sound, meaning that the output of the two

mechanisms form only non-interferent executions. Transparency is a more interesting no-

tion: it means that if the original program execution is non-interferent, then after applying

enforcement techniques, the resulting execution is preserved. The problem of noninter-

ference is neither dynamically nor statically decidable. Hence, there is no enforcement

mechanism that is transparent, a weaker notion of precision can be proven for mechanisms

enforcing noninterference.

Le Guernic et al. [44, 43] proposed a pseudo-trasparency, using a security type system

similar to the one of Volpano et al. [63]. The executions of type-safe programs are not

modified by the monitoring mechanism, but moreover, other non-interferent executions

are not modified by the monitoring mechanism, even though it was not proven formally.

Here we quote Le Guernic [43]:
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To show that the inclusion is strict, consider the following program: x := h; x

:=0; output x. h is the only secret input. Every execution is noninterfering.

But as the type system is flow insensitive, this program is ill-typed. However,

the monitoring mechanism does not interfere with the outputs of this program

while still guaranteeing that any monitored execution is noninterfering.

Devriese and Piessens [30] have proven a more interesting result: their enforcement tech-

nique is precise in the sense that terminating runs of every termination-sensitive noninter-

ferent program is not modified by an enforcement mechanism. The authors claim that the

set of termination-sensitive noninterferent programs strictly includes all programs which

are type-safe according to the type system by Volpano et al. [63].

Practically speaking, the monitoring mechanism by Le Guernic et al. seem to be more

efficient in practice since it evaluates only one execution at time, while the technique

by Devriese and Piessens uses several executions of the program together. On the other

hand, the monitoring mechanism operates only with two security levels, while secure

multi-execution can handle an arbitrary number of security levels and hence, it is possible

that two-execution of the original program can have comparable performance with respect

to the monitor of Le Guernic et al.

2.5 Summary

In this chapter we have described several types of runtime enforcement mechanisms: exe-

cution sequence recognizers are able only to accept of reject the execution sequence based

on the security policy they are enforcing, hence they are only able to halt the execution;

execution sequence transformers are more powerful enforcement mechanisms because they

are able not only halt, but also modify the tentative execution at runtime. However, these

mechanisms make one important and hidden assumption about the original system (see

Assumption 1) that all the actions of the system can be suppressed or modified and this

does not influence the rest of the system execution.

Runtime enforcement mechanisms as execution transformers are also capable of enforc-

ing more complex security policies, like information flow security policy. In this chapter

we also discuss the state of the art literature on the dynamic techniques for information

flow analysis.
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Chapter 3

Concrete Problems of Runtime

Enforcement

In this chapter we discuss the gap that we found in the theory of security policy

enforcement mechanisms. We will present several examples of security policies

and describe how existing mechanisms can enforce them at runtime.

Different security properties can and should be enforced in different ways. As we know

from the state-of-the-art (see Chapter 2), safety property (“nothing bad ever happens”)

can be enforced by a security automaton, which is a sequence recognizer. This property

cannot be enforced in any other better way, since whenever the execution sequence is

invalid, it means that all its continuations are invalid as well. So halting the execution as

soon as it violates the property is the best way to enforce safety properties.

As we have also discussed in the state-of-the-art, sequence transformers are able to

enforce more than safety properties. In particular, edit automata was proven to be able

to enforce renewal properties by modification of the execution sequences. In this case it is

much more interesting to investigate how exactly the property can be enforced, in other

words, what kind of modification should be made to the original execution sequence.

3.1 A Simple Example from the Literature

We use an example from [7] to show the existence of the problem that has not been

addressed by other authors.

25



CHAPTER 3. CONCRETE PROBLEMS OF RUNTIME ENFORCEMENT

3.1.1 Market Policy

Example 3.1.1 (Verbatim from [7]) To make our example more concrete,

we will model a simple market system with two main actions, take(n) and

pay(n), which represent acquisition of n apples and the corresponding pay-

ment. We let a range over all the actions that might occur in the system (such

as take, pay, window-shop, browse, etc.). Our policy is that every time an

agent takes n apples it must pay for those apples. Payments may come before

acquisition or vice versa, and take(n); pay(n) is semantically equivalent to

pay(n); take(n). The edit automaton enforces the atomicity of this trans-

action by emitting take(n); pay(n) only when the transaction completes. If

payment is made first, the automaton allows clients to perform other actions

such as browse before committing (the take-pay transaction appears atom-

ically after all such intermediary actions). On the other hand, if apples are

taken and not paid for immediately, we issue a warning and abort the trans-

action. Consistency is ensured by remembering the number of apples taken or

the size of the prepayment in the state of the machine. Once acquisition and

payment occur, the sale is final and there are no refunds (durability).

3.1.2 Possible Executions

Looking at the example in English we propose several execution sequences in Table 3.1:

some satisfy the policy and some do not. When the sequence is not allowed by the policy,

the enforcement mechanism should change the sequence in such a way that it becomes

legal. In this table we partition the sequences in several groups. In the group “Temporarily

illegal sequences that can become good”, sequences are not yet finished so that we cannot

define whether they are legal (which means satisfy the policy from Example 3.1.1) or not,

because they could become good later on. For example, in sequence 1 the take(1) action

can be followed by a pay(1) action that can make the whole sequence legal; on the other

hand it can be followed by browse that will make the sequence illegal.

The group “Legal sequences” contains sequences that satisfy the policy, for example

take(1); pay(1).

The initially illegal sequences are divided into two groups. The first group contains

the sequences with an initially bad prefix but the suffix can become legal later. For

example, sequence 6 has an illegal prefix take(1) browse, however the suffix pay(2)

can be extended to legal sequence since it can be a beginning of sequence 5: pay(2);

take(2). The second group contains sequences that have an illegal prefix followed by a
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Table 3.1: Sequences of actions for market policy

Temporarily illegal sequences that can become good

No Sequence of actions Expected output

1 take(1) ·
2 pay(2) ·
3 pay(2); browse browse

Legal sequences

No Sequence of actions Expected output

4 take(1); pay(1) take(1); pay(1)

5 pay(2); take(2) pay(2); take(2)

Initially illegal sequences, but a later suffix can become good

No Sequence of actions Expected output

6 take(1); browse; pay(2) warning

7 take(1); pay(2) warning

Initially illegal sequences with legal continuation

No Sequence of actions Expected output

8 take(1); browse; pay(2); take(2) warning; browse; pay(2); take(2)

9 take(1); pay(2); take(2) pay(2); take(2)

10 pay(1); browse; pay(2); take(2) browse; pay(2); take(2)

legal continuation, such as sequence 8: it has an illegal prefix take(1); browse, but its

suffix is a legal (sequence 5).

There are some other sequences like pay(1); browse; pay(2); take(2); take(1) that

we could not add to neither of the groups. This happens because the text leaves open a

number of interpretations. It is clear that good sequences must have a pair of take(n)

and pay(n) as the text implies, but it is not clear whether we allow interleaving of pay(n)

and pay(m). The text seems to imply that this is not possible.

27



CHAPTER 3. CONCRETE PROBLEMS OF RUNTIME ENFORCEMENT

3.1.3 Problems in Enforcement

The original edit automaton proposed in Figure 2 of [7] is shown in this thesis in Figure 3.1.

The graphical notation used in this figure is the same as in [7] with only one addition: for

readability we underline the output at the transition. The nodes in the picture represent

the automaton states and the arcs represent the transitions. The action that is above the

arc defines an input action. Output actions are underlined and placed below the arcs.

Arcs with no underlined sequence represent transitions where there is no output. If there

is no transition for the given state and action, then the automaton halts.

Let us look at sequence 4 from the Table 3.1: take(1); pay(1). The edit automaton

starts in the initial state q0. When it reads the first action take(1), it moves to the

corresponding state −n and waits for the next input action to arrive. When the action

pay(1) arrives, the automaton moves back to the state q0 while outputting the take(1);

pay(1) sequence (as indicated at the output of the arc from −n to q0).

The policy given in Example 3.1.1 can be enforced by edit automata in different ways.

One of the notions that guarantees enforcement of the policy is called effective=enforcement.

This notion ensures that all legal sequences are not changed by the edit automaton, while

all illegal sequences are changed to some legal sequences or to empty sequences. The

automaton in Figure 3.1 provides effective=enforcement of the given policy since it does

not change the legal sequences and always changes illegal sequences to some legal ones. In

the following, we will use the predicate called property that decides whether the sequence

is legal or not.

Theorem 8 [7] says that any renewal property can be effectively=enforced by an edit

automaton. The proof of this theorem presents a construction of an edit automaton from

a given renewal property. We briefly sketch the main idea of the construction from the

proof of Theorem 8 [7] in the following steps:

• States of the edit automaton contain two finite sequences: sequence of actions seen

so far and the sequence of actions that were suppressed

• Consider processing a new input action:

– in case the sequence seen so far becomes valid, the automaton inserts the

suppressed sequence followed by a new input.

– in case the sequence seen so far does not become valid, the automaton sup-

presses the current input action and adds it to the suppressed sequence in the

next state.
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This edit automaton was originally presented in Figure 2 of [7] and it is effectively=enforcing the market
policy.

Figure 3.1: Edit automaton verbatim from [7].

This edit automaton is constructed following the proof of Theorem 8 [7]. It is easy to see that this
automaton effectively=enforces the market policy, but has an infinite number of states and provides
different kind of enforcement for the same policy.

Figure 3.2: Edit automaton reconstructed by the proof of Theorem 8 from [7].
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Table 3.2: Difference in output for edit automata

No Input Output

Edit automaton from Fig-

ure 2 of [7]

Constructed edit

automaton by

Theorem 8 [7]

4 take(1); pay(1) take(1); pay(1) take(1); pay(1)

6 take(1); browse; pay(2) warning ·
8 take(1); browse; pay(2); take(2) warning; pay(2); take(2) ·
9 take(1); pay(2); take(2) warning ·
10 pay(1); browse; pay(2); take(2) browse ·

We will give a more detailed construction verbatim from the proof of Theorem 8 [7]

in Section 4.3.

For sake of simplicity, we show a constructed edit automaton only partially, for the set

of actions {take(1), take(2), pay(1), pay(2), browse}. Here we use a browse action

just to present some other actions that the user can do after paying before taking the

apples. According to the text, an action warning is considered to be an output action in

the edit automaton in Figure 2 of [7] (see Figure 3.1). As the cardinality of input language

is 5, every state will have five outcoming arcs for all possible actions. We will present

here only some of them in order to let the reader see the output sequences for particular

input sequences. In Figure 3.2 we follow the construction from the proof of Theorem 8 in

order to build the edit automaton.

The edit automaton from Figure 2 of the original paper (Figure 3.1) and the one

constructed by the proof of Theorem 8 of the same paper (Figure 3.2) actually produce

different output for the same input. In Table 3.2 we show some cases of input and output

of both automata.

Sequence 4 is legal, hence it is not changed by both automata. Sequence 6 has illegal

prefix and not yet legal suffix, hence both automata halt (let us ignore the warning action

since it can be easily added to the construction from Theorem 8). However, for other bad

sequences that have different nature, the automata behave differently. The output set

of the automaton from Figure 2 of [7] is larger than the output of the automaton from

Theorem 8 [7].

The ”strange” behavior begins when we take the sequences from the group “Initially

illegal sequences with legal continuation”, like sequence 8. The edit automaton from

Figure 2 of [7] can skip the illegal prefix take(1); browse and output the legal suffix
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Grey area is the area of invalid traces, white area shows valid traces. Edit automaton originally from
Figure 2 [7] (that we show in Figure 3.1) and edit automaton constructed following the proof of Theorem
8 from the same paper produce different output for the same invalid execution sequences.

Figure 3.3: Relation between input and output for edit automaton originally from Figure

2 [7] and Theorem 8 [7].

pay(2); take(2). However, the automaton from Theorem 8 halts as soon as an illegal

prefix does not have a legal continuation. In case of sequences 9 and 10 both automata

produce a strange output in a sense that the agent has paid but never got any apple.

Analyzing Table 3.2, we find out that the transformed sequences of actions are not

always the ones expected from the edit automaton. So the question arises: Why the

output is predictable in some cases and unpredictable in the others? The answer to this

question is:

1. When the input sequence is legal both edit automata produce the expected output

(e.g. sequence 4).

2. When the sequence is illegal the output of both edit automata is unexpected and

potentially different for each automaton.

3. The edit automaton constructed following the proof of Theorem 8 [7] is a very

particular kind of the edit automaton.

In Figure 3.3, we show the relation between input and output for edit automaton from

Figure 2 of [7] and edit automata from Theorem 8 [7] with respect to the “good” and

“bad” traces. By 4;8 we mean the concatenation of the sequence 4 with the sequence 8.
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By 8out we mean an output sequence of Figure 2 automaton when processing sequence 8

as input. It is shown in Table 3.2.

As we can see, both automata from Figure 2 of [7] and Theorem 8 [7] are edit automata,

and they both effectively=enforce the market policy. Why these two edit automata are

producing different outputs?

We shall investigate this question in this thesis and by doing so we will solve Issue 1.

We will analyze different classes of edit automata that explain the behavior of the edit au-

tomata from Figures 3.1 and 3.2 and formally define relation between them in Section 4.3.

Another question is How to construct a runtime enforcement mechanism that enforces

given security policy in a desirable way?

We raise this question because as we have seen on the example of market policy,

outputting the longest valid prefix is not always the best way of enforcing the security

property. We shall address this question to solve Issue 2.

Before proceeding to the classification and rigorous formal analysis of security proper-

ties and their enforcement in later chapter, let us present the main example from industry

that we will use in this thesis.

3.2 A Case Study from Industry

This example also represents a property that is neither pure safety, nor liveness and allows

sequences to alternate between being valid and invalid.

3.2.1 Drug Dispensation Process

We propose an example based on a healthcare process of drug dispensation. In Italy

hospitals accredited with the Public National Health Service are in charge of administering

drugs and providing diagnostic services to patients. Usually in these (public or private)

hospitals there is a generic dispensation process description that allows hospitals to refund

the drugs administered and/or supplied in the hospitals’ outpatient departments to the

patients that are not hospitalized. In particular, there is a process called File F that

allows refunding of the drugs for specific critical and chronic diseases. This refunding is

usually done by the public authority. As another example, if the patient is using a specific

drug for the research program purposes (i.e. the patient has been enrolled for the clinical

trial for the testing of that drug) then the reimbursement should be done by the clinical

trial funds.
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Drug dispensation process is a high level business process. It involves human partici-

pants as well as IT technologies. Some of contained tasks are completely human activities

without any interaction with IT system (e.g. all patients tasks, or delivering drugs from

stock to patient (physically) by doctor or nurse). Hence, some of the activities may be

done in a different way than described in the default process, and we will make a precise

distinction between the actual execution of the process and the official default process.

The described model of drug dispensation assures that if all the activities adhere to it,

they comply with the encoded rules (e.g. File F process) and the drugs will be refunded.

In Figure 3.4 we present a simplified version of the BPMN (Business Process Model

Notation) diagram of drug dispensation process.1. We show the whole drug selection

process in the upper part of the figure and emphasize its drug selection subprocess in the

lower part of the figure. We will discuss this subprocess in more details in the sequel.

The drug dispensation process starts when the Patient brings his prescription sheet

to Doctor or Nurse (we will say Doctor from here on). We will describe this process

step-by-step:

1. The first step of the process is “Retrieve Doctor’s Data”. The Doctor authenticates

himself by entering his ID. The system identifies Doctor’s operational unit and

enables Patient identification.

2. Next the Doctor runs the subprocess “Identify Patient”, we will not describe the

details of this subprocess since they are not important for this running example.

3. When Doctor made an identification, he asks the Patient whether Patient requires

anonymization of his personal health records (“Check Anonymization”).

4. The Doctor marks that it should be anonymized it if required (“Mark Anonymiza-

tion Flag”).

5. The system retrieves all necessary data for selecting the drugs for dispensation and

offers the option to select drugs to the Doctor (“Retreive Dispensation Info”).

6. “Drug Selection” is a special subprocess that we will describe in details later.

7. After drug selection the Doctor performs a number of steps. He verifies candidate

drug list (for dispensation) and continues or restarts the process of drug selection.

Then Doctor registers the dispensation request, takes the drugs physically from the

1We would like to thank ANECT (http://www.anect.com/en/) for developing original BPMN dia-
grams of the full drug dispensation process.
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The upper part of the figure shows the BPMN diagram for drug dispensation process. Subprocess “Drug
selection” represents the sequence of actions when doctor selects a drug for a patient.

Figure 3.4: BPMN diagram drug dispensation process

stock, prints dispensation sheet, brings drugs to the Patient and archives copy of

dispensation sheet, signed by Patient.

This process was implemented in the MASTER project and more details of the process
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can be found at [53].

As a running example for this thesis, we will use the drug selection subprocess. Ex-

ecution of this subprocess is repeated by the Doctor for every drug in the prescription.

We describe it step-by-step:

1. The Doctor selects one drug from the candidate drug list for his Patient (“Drug is

selected”).

2. If the drug is highly sensitive, reviewing therapeutical notes is needed (“Review

Therapeutical Notes”). In this case they will be shown to the Doctor.

3. The system checks drug’s submission to Research program and in case the drug

is registered shows the notification to the Doctor. In case Doctor receives such

notification, he should insert the research protocol number, a number of the protocol

according to which the drug can be given to the Patient (“Insert Research Protocol

Number”).

4. The Doctor performs “Insert prescription details” for the drug he selected for his

Patient.

5. The system checks drug availability in stock and eventually notifies the Doctor.

6. If the drug is not available in stock Doctor checks the physical existence in the ward

and then decides to continue or cancel the dispensation process (“Check Drugs

Physical Existence in the Ward”).

To ease the comparison with other papers on runtime enforcement [7, 61] and to the

example we have described in Section 3.1, we present the BPMN process using finite state

automaton. This representation is natural, since from a point of view of the Doctor a

workflow described above is a sequence of actions that should be performed. To simplify

the translation we assume that each choice in BPMN diagram corresponds to the action in

resulting process execution that communicates the choice, e.g., if the drug is for research

then the corresponding action is “Drug is for research”, if the drug is highly sensitive,

then an action “Therapeutical notes needed” will be shown. Not only in our example

but in many practical cases the policy is given implicitly by describing the workflow

corresponding to the legal executions, that can be repeated several times. This is precisely

the case when we represent a process description using automaton. Formal definition and

a corresponding automaton will be given later in Chapter 5.
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The security policy P described desired sequences of actions that should be done for

drug dispensation. We will use the following notations for the actions in the process:

Dis Drug is selected

Tnn Therapeutical notes needed

Rtn Review therapeutical notes

TnNn Therapeutical notes Not needed

Dr Drug is for research

Irpn Insert research protocol number

DNr Drug is Not for research

Ipd Insert prescription details

DNas Drug is Not available in the stock

Dpew Drug physically exists in the ward

Das Drug is available in the stock

The execution sequences consist of combinations of these actions, and the security

policy specifies only those sequences that do not violate the process description. To

simplify the description, Dpres is either equal to Ipd; Das or to Ipd; DNas; Dpew.

Example 3.2.1 The security policy P consists of the following traces:

SimpleRun Dis; TnNn; DNr; Dpres,

NoteRun Dis; Tnn; Rtn; DNr; Dpres,

ResearchRun Dis; TnNn; Dr; Irpn; Dpres,

NoteResearchRun Dis; Tnn; Rtn; Dr; Irpn; Dpres,

and their closure under concatenation: for every σ, σ′ ∈ P : σ;σ′ ∈ P . Notice that an

empty trace NoRun also satisfies the policy.

3.2.2 Possible Executions

Here we present several executions of the drug selection subprocess and analyze the kind

of enforcement that the up to date techniques can propose.

Let us assume the following execution of the process, where 3 different drugs are in

the prescription list, hence the execution will consist of 3 parts, that we call an iteration,

for each drug:
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1. The first drug is selected and it is not highly sensitive, so therapeutical notes are

not needed; the drug is for research, so the Doctor inserts research protocol number;

then he inserts prescription details; and the drug is available in stock. The sequence

of actions for this iteration is: Dis; TnNn; Dr; Irpn; Ipd; Das, which is a sequence

denoted by ResearchRun, and it is compliant with to the policy P .

2. Then for the second drug: the Doctor selects it; the drug is not highly sensitive

so therapeutical notes not needed; the drug is for research but the Doctor inserts

prescription details only; the drug is available in stock. The sequence of actions for

this iteration is: Dis; TnNn; Dr; Ipd; Das, which is a sequence not accepted by the

policy P . Indeed, in this part of the process execution the drug is for research but

the research protocol number is not inserted.

3. The third part of the execution consists of actions: the Doctor selects a highly sen-

sitive drug, so therapeutical notes needed; the Doctor reviews therapeutical notes;

the drug is not for research; Doctor inserts prescription details, and the drug is

available in stock. The sequence of actions for this iteration is: Dis; Tnn; Rtn; DNr;

Ipd; Das. This iteration is denoted by NoteRun and is compliant with the policy.

Hence, this part is correct.

3.2.3 Problems in Enforcement

Let us discuss how the drug dispensation process can be enforced by existing runtime

enforcement techniques. We had a long discussion about the problems specified in this

section with the colleagues from the Hospital San Raffaele (HSR), Milan, Italy. Some

issues are discussed in a joint publication [17]2.

More than the longest valid prefix

The execution consisting of three iterations has to be changed in order to become com-

pliant. The only construction we have seen in the state-of-the-art papers is in the proof

of Theorem 8 in [7]. The idea behind this construction is to monitor the actions of the

target one by one and suppress them in case the sequence seen so far is invalid. As soon

as the target is going to execute a new action that validates the sequence seen so far,

the constructed edit automaton will insert all the suppressed actions and this new action.

2Disclaimer: The views expressed in this thesis are those of the author and do not reflect the official
policy of the Hospital San Raffaele
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Hence, the result of this construction is an edit automaton that always outputs the longest

valid prefix of the tentative target execution.

Such edit automaton for our drug dispensation process example will suppress the

actions of the first iteration until the last action arrives, i.e. actions Dis, TnNn, Dr, Irpn

and Ipd will be suppressed. As soon as the action Das arrives, the sequence of actions

seen so far will comply with the policy P and so the edit automaton will output this

suppressed sequence that we denoted by ResearchRun. After that the automaton will

suppress the actions of the second iteration: Dis, TnNn, Dr, Ipd, Das. The automaton

is constructed in such a way that it will wait for arrival of a new action that validates

this iteration. However, such action does not exist because the doctor already made an

irremediable error: he did not insert the research protocol number (corresponding action

Irpn) when the drug is for research (action Dr happened). The third iteration, that is valid

by itself, will never be output by this automaton because it will suppress all the following

actions after the second iteration waiting for this iteration to become valid, which will

never happen.

Even if we accept the idea that an incorrect execution should be dropped, the accept-

able behavior for the administrators of the e-health system is just to drop the second part

of the execution. We are going to propose the solution to this problem in Chapter 5 and

will address in this way Issue 2.

More than effective=enforcement

Similar to drug dispensation process, italian hospitals must guarantee the compliance of

many business processes involving large amounts of money (reimbursements from public

health authorities for drugs dispensation), significant privacy concerns (drugs can be

related to HIV or other serious illnesses), major safety considerations (drugs might have

serious side-effects), and compliance with many regulations. These regulations can change

frequently and a runtime enforcement mechanism could guarantee the compliance of each

process with minor efforts.

Unfortunately, an enforcement mechanism must offer some guarantees to the hospital

on what happens when things are not according to the policy. At present the only offered

formal guarantees is called effective=enforcement that comprises the notions of soundness

and transparency. The latter two notions are currently used in the state of the art

literature on runtime enforcement [22, 35, 52, 61, 64]. As we have seen in the example

of market policy, this notion is necessary but not sufficient. It is also not sufficient in

case of drug dispensation process since it allows outputting the longest valid prefix of the
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execution when another kind of enforcement is preferred.

If we think about practical aspect of enforcement, what the risk manager of the hos-

pital wants to know is “What the enforcement mechanism normally does when a doctor’s

action does not respect the policy?” Does it abort the whole transactions if a research

protocol number is not entered (like Security Automata [59])? Does it alert the head of

the department if we are prescribing a drug out of stock (Usage control enforcement mech-

anism [57])? Does it wait till the doctor opens the therapeutical notes before committing

the transaction to the audit logs (Longest-valid-prefix automaton [51])?

These questions show again that Issue 3 is an important problem. There is no general,

principled guarantee that the illegal executions are transformed in a way that the end

users expect. The notion of effective=enforcement does not provide such guarantee. We

will address this problem in Section 6.1.

Error toleration

Another challenge in policy enforcement is the trade-off between writing simple policies

and enforcing complex run-time behaviors. This is particularly important for workflows

like the drug dispensation process, in which human actors must interact with the policy

enforcement mechanism.

The actual execution of the process must comply with File F process (so that drugs will

be reimbursed by correct parties), as well as with other health and privacy regulations.

Hence, from the perspective of the runtime enforcer, it is a better case if the policy

describes all the rules and regulations that the process executions should be compliant

with.

Unfortunately, from the perspective of policy management, detailed policies are diffi-

cult to write, are difficult to check for consistencies, and de facto impossible to commu-

nicate to the end users. So, the simpler the policy the better. In our case a policy is a

simple drug dispensation process that is, in its essence, a linear sequence of steps (with few

loops for stock replenishing). This is easily understood by doctors and nurses. However

each and every step might be subject to many exceptions or common errors (for example

closing a window instead of pressing the button done). Detailing and representing all

these exceptional steps in a graphical form would make the protocol unreadable.

In our domain there is a further difficulty: our users would definitely insist that there

is only one policy, i.e. the “official” protocol workflow. There is no such a thing as a

policy including all exceptions (this would require validation by the risk manager and the

responsible person for the pharmacy and dispensation process).
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There is another problem in the enforcement of processes. During the executions

doctors, nurses, and pharmacists would not like to be disturbed in their primary mission

(delivering the right drug to the right patient) because an insignificant deviation from

the default workflow has taken place. In the current mechanisms, runtime exceptions and

the consequent additional workload needed to complete the execution distract users and

convince them that “The system doesn’t work”. If such disruptions occur too often users

will increasingly try to bypass the runtime enforcer.

Given this official protocol workflow, the state of the art literature does not propose a

construction of enforcement mechanism that can tolerate some number of exceptions or

common errors that the users may make during the process executions. Up to now, the

runtime enforcement theory provides only strict mechanisms that would not allow any

deviations from the original protocol and rather stop the process execution than tolerate

any error.

Hence there should be a generic algorithm for constructing runtime enforcement mech-

anisms for such systems, where insignificant errors can take place. This problem corre-

sponds to Issue 4 that we will address in Section 6.2.

3.3 Summary

In this chapter we have presented two case studies that will be used in the rest of this

thesis to compare different enforcement mechanisms.

A case study from the literature is a market policy, that was originally presented in [7].

This is a simple policy, but even for this policy the problem of enforcement is important.

We have also presented a case study from industry: a drug dispensation process from

the hospital describes correct actions that should be done by a doctor in order to comply

with the regulations and File F process, such that the drugs in the end are reimbursed

by the correct parties. The enforcement of this policy also requires discussion and will be

presented later in the next chapters of this thesis.
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Chapter 4

Classification of Properties and

Mechanisms

This chapter provides two major contributions. First, we present the existing

classification of security properties and provide a formal definition for a new

kind of security property. This new property is discussed and the relations

to the other properties are shown. Second, we address the problem defined in

previous chapter and show the relations between enforcement mechanisms that

are enforcing the same security property in different ways.

4.1 Notations

In all the formalizations we will use the standard notation in the theory of runtime

enforcement mechanisms [7, 38, 59]. The target is specified at a high level of abstraction,

where Σ is the set of all possible target actions that are relevant for the security policy

(also known as security-relevant actions). An execution sequence, or a trace, is a finite

or infinite sequence of actions; a finite sequence indicates a terminating target execution,

while the infinite one indicates the nonterminating execution of the target. The set of all

finite sequences over Σ is denoted by Σ∗, the set of all infinite sequences is Σω, and the

set of all (finite and infinite) sequences is Σ∞. Execution sequences are denoted by σ or

τ .

The symbol · denotes an empty sequence. By σ[i] we denote the ith action in the

sequence; σ[..i] denotes the prefix of σ involving the actions σ[1] through σ[i]; and σ[i+1..]

denotes the suffix of σ involving all other actions beside σ[..i]. We use the notation τ ;σ

for concatenation of two sequences, where τ must have a finite length.
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The notation τ � σ, or σ � τ denotes that τ is a finite prefix of (possibly infinite)

sequence σ. When τ is a strict prefix of σ (i.e. τ � σ and τ 6= σ), we write τ ≺ σ. We

write ∀τ � σ as an abbreviation for ∀τ ∈ Σ∗ : τ � σ and ∃τ � σ for ∃τ ∈ Σ∗ : τ � σ.

Similarly, we write ∀σ � τ as an abbreviation for ∀σ ∈ Σ∞ : σ � τ and ∃σ � τ for

∃σ ∈ Σ∞ : σ � τ .

4.2 Classification of Security Properties

We first give the formal definitions of the security properties in the state of the art that

we informally described in the Section 2.1. Then we introduce a new class of security

properties and show its relation to the other existed classes.

4.2.1 Formal Definitions of Security Properties

As we have discussed, security property is a predicate P̂ for a security policy P . Formally,

for all execution sequences Π ⊆ Σ∞, the following is true:

P (Π) ⇐⇒ ∀σ ∈ Π : P̂ (σ) (4.1)

When a property P̂ holds for an execution sequence, we will say that the sequence is

legal or valid, and when the property does not hold, we will call the sequence illegal or

invalid. We say that an execution sequence σ is irremediable with respect to the property

P̂ when the following holds:

¬P̂ (σ) ∧ ∀τ � σ : ¬P̂ (τ) (4.2)

There is a one-to-one correspondence between the security property P and its charac-

teristic predicate P̂ , hence we will use notation P̂ to refer to the security property and to

its characteristic predicate.

There are three major properties in the literature of runtime enforcement mechanisms:

safety, liveness and renewal properties.

The safety property defines behavior as “nothing bad ever happens”, it means that as

soon as something bad happens, this is irremediable: if the execution became illegal, it

can never become legal again. More formally:

Definition 4.2.1 (Safety property) A property P̂ is a safety property if and only if

∀σ ∈ Σ∞ : (¬P̂ (σ)⇒ ∃σ′ � σ : ∀τ � σ′ : ¬P̂ (τ)) (4.3)
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Additional to safety properties, there are liveness properties that claim that every

illegal trace of finite length is not irremediable. In the other words any finite execution

can always be extended to satisfy the property.

Definition 4.2.2 (Liveness property) A property P̂ is a liveness property if and only

if

∀σ ∈ Σ∗ : ∃τ � σ : P̂ (τ)) (4.4)

For example, consider a property P̂ specifying that an execution is legal if eventually

an audit is performed which corresponds to an action a in the trace. P̂ is a liveness

property since for every illegal finite-length sequence σ there exists a legal continuation

τ = σ; a.

Ligatti et al. [51] defined a new class of properties called infinite renewal properties.

Formally, a property P̂ is an infinite renewal property on a target with an action set Σ if

and only if the following is true:

Definition 4.2.3 (Infinite renewal property) A property P̂ is an infinite renewal prop-

erty if and only if

∀σ ∈ Σω : P̂ (σ)⇐⇒ (∀σ′ � σ : ∃τ � σ : σ′ � τ ∧ P̂ (τ)) (4.5)

According to renewal property, every infinite-length sequence is valid if and only if it

has infinitely many valid prefixes. This intuition is written above in this way: an infinite

sequence σ is valid iff for all its prefixes there exists a valid continuation within σ. Notice

that these valid continuations τ are always finite prefixes of σ. For brevity we will call

them “renewal properties” in the rest of this thesis.

Having found out that the same security property can be enforced by different edit

automata and this enforcement can be done in different ways, we decided to investigate

this problem on the example of the security policy in a healthcare domain. Let us come

back to the example of drug selection process and define which kind of security property

it corresponds to. Here the description of the process is actually a default protocol that

the doctor should follow in order to be compliant with the requirements imposed on the

drug selection subprocess. A property P̂ that describes this behavior has a particular

structure: the execution is legal if it consists of iterations that are in turn valid according

to P̂ . We generalize this class as iterative properties (assuming that empty trace is always

valid), a new property introduced in this thesis.

Definition 4.2.4 (Iterative property) A property P̂ is an iterative property if and

only if

∀σ ∈ Σ∗ : ∀σ′ ∈ Σ∞ : P̂ (σ) ∧ P̂ (σ′) =⇒ P̂ (σ;σ′) (4.6)
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Legend

1 Nontermination 7 Transaction property

2 Resource availability 8 Termination + file access control

3 Stack inspection 9 Trivial

4 Log out and never open files 10 Increasingly longer sequences

5 Property 4 on system without file-open actions 11 At most 100 SMS messages

6 Eventually audits 12 At most 100 SMS and eventually audit

13 After k transactions send a report

Figure 4.1: Relationships between security properties

4.2.2 Relations Between Security Properties

Figure 4.1 (extending Figure 1 from [51]) represents the relationship between safety, live-

ness, renewal properties and iterative properties from the point of view of good executions.

The original version of this figure contains 9 examples of security properties, while we ex-

tend it by adding a new class of iterative properties and by adding one more example to

every new intersection of existing classes of properties.

Property 1 is a property of nontermination. It is a liveness property since it holds

for all infinite-length traces and it is not a safety property because all the finite prefixes

of the good traces always have good continuations. However, since no finite-length traces

are valid, they will always satisfy the definition of iterative property: the condition on the

left-hand side of the implication will never hold, and hence (even if it’s counterintuitive)

nontermination can be considered an iterative property.

Property 2 originally described in [51] is a liveness and iterative property. Assume
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that the system opens some resource i with action oi and closes it with action ci. The

property 2 claims that all the opened resources must be eventually closed. This property

is a liveness property because any illegal sequence can be made legal by adding all the

necessary closing actions. However, it is not a renewal property because a valid infinite

sequence like o1; o2; c1; . . . oi; ci−1; · · · (where oi corresponds to an opening action and ci

corresponds to a closing action) does not have any valid prefixes. This property is however

iterative, because for any two sequences (where the first one should be finite) that satisfy

this property, their concatenation also satisfies it.

Property 3 is a stack-inspection policy that is a particular kind of an access-control

policy: an access is granted or denied based on the current nesting of function calls. We

will consider a simplified model of stack inspection [39, 42].

Consider the following example: function g has permission to access resource R, but

function f does not have this permission. Function f calls function g and g requests

resource R. The access should not be granted because f does not have required permis-

sions. In order to decide whether the access should be granted or not, the whole chain of

function calls should be examined.

At every function call a new stack frame is created. Each frame contains the local

state of the function and the permissions directly granted to it. One of the simplest way

to calculate the effective permissions is to take an intersection of the permissions of all

functions on the call stack. In the example above, the effective permissions is equal to

perm(f) ∩ perm(g).

We will say that an execution of the program satisfies the stack inspection policy, if

every function call has effective permissions to access the required resource, and at the

end of execution the call stack is empty.

The stack inspection policy is definitely a safety property because once the access

is not granted based even on primitive stack inspection, it cannot be granted later on

because the function in the call stack does not have required permissions. On the other

hand, stack inspection policy is an iterative property because whenever all the functions

in two call stacks of two executions have required permissions and the first execution

finished with an empty call stack, then the concatenation of these two executions again

satisfies the stack inspection policy.

Property 4 “Log out and never open files” is a renewal property. Assume the system

has the following actions: a3 ranges over actions for opening files, a2 over actions for

logging out and a1 over all other actions. The policy says that the user must eventually

log out and never open files. So, this property can be written as (a∗1; a2)ω. It is not a

safety property because there exists an illegal sequence of only a1 actions that can be
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extended to a legal one by adding a2. It is not a liveness property, because there is an

illegal sequence containing a3 that can never be extended to a legal one. However, it is a

renewal property and also an iterative property because the concatenation of every pair

of legal sequences produce a legal sequence.

Property 5 is the same as property 4 but on a system that only performs actions a1

and a2. The property claims that only sequences of the form (a∗1; a2)ω are valid. Hence,

this property is a liveness property because every invalid finite-length sequence (that

apparently is a sequence of the form a∗1) can be extended to a valid one by adding a2. It is

also a renewal property because every valid infinite-length sequence has an infinite number

of valid prefixes of the form (a∗1; a2)∗. This property is iterative since the concatenation

of two valid sequences is always valid.

Property 6 specifies that an execution is good if eventually an audit is performed

which corresponds to an action a in the trace. It is obviously a liveness property since every

invalid sequence can be extended to a valid one by adding action a in the end. It is not a

safety property because an invalid sequence (not containing one) has a valid continuation

(containing a). It is a renewal property because an infinite-length valid execution must

have infinitely many prefixes in which a appears, and an innite-length invalid execution

has no valid prex because a never appears. This property is also iterative, because by

concatenating two sequences in which a eventually appears, we get a valid sequence.

Property 7 is called ”transaction property”. Let τ range over finite sequences of

single, legal transactions. A transaction policy is τ∞ and a legal execution is the one

containing any number of valid transactions. This property is not liveness because an

invalid transaction (that is different from τ) can never become valid again. It is a renewal

property because every valid infinite-length sequence of the form τ∞ has infinite number

of valid prefixes τ ∗. It is an iterative property because every concatenation of two valid

sequences of the form τ ∗ and τ∞ produces a valid sequence.

Property 8 is a combination of a termination property and a property ”never access

private files”. Termination by itself is a liveness property because all finite sequences

are valid. The property ”never access private files” is by itself a safety property because

once a private file was accessed, the sequence can not become valid again. However,

the combination of these two properties is neither safety nor liveness. It is also not a

renewal property because invalid infinite sequences (where private files are never accessed)

have infinitely many valid prefixes. However, property 8 is an iterative property. If we

concatenate two legal sequences that are terminated and never access private files then

the resulting sequence is also be legal.

Property 9 is a trivial property that considers all sequences legal. This property is

46



4.2. CLASSIFICATION OF SECURITY PROPERTIES

an iterative property as well.

All the properties mentioned so far are iterative properties. We know describe the

properties that are not iterative.

Property 10 “Increasingly longer sequences” states that the sequence is legal if and

only if it is infinite or its length belongs to the following set of numbers {Fi}: F0 = 1,

Fi+1 = 2Fi+1. Every illegal finite sequence can be prolonged such that its length will be-

long to the defined set of numbers, so this is a liveness property. It is also renewal because

every legal infinite-length sequence has an infinite number of legal prefixes. However, this

property is not iterative: by concatenating two legal sequences a new illegal sequence is

always obtained.

Property 11 “at most 100 SMS messages per application run can be sent by a mobile

device.” This property is useful in practice when the use of communication resources has

to be bounded. This property is non-iterative. It is a safety property – if the sequence is

illegal (the application sends more than 100 messages) then there is exists a prefix such

that any continuation of this prefix is an illegal sequence.

Property 12 combines a safety property 11 and a liveness property 6, but as a whole

is neither of them. It states that at most 100 SMS messages can be sent during an

application run and eventually a particular audit action has to be done (for example

making a backup of the application state). This property is not a safety property because

of the eventual audit action, it is also not a liveness one since if the application sent more

than 100 SMS, the trace can never become valid again. It is also not an iterative property

because a concatenation of two runs that sent 100 SMS each does not produce a valid

trace. But this property is a renewal one for the same reason why properties 11 and 6 are

renewal.

Property 13 Assume a repeating process (like a transactional one) where after every

k transactions a report should be sent. In case the report is not sent on time, a letter

with explanations should eventually be sent. This is a liveness property but it is not

iterative because the property holds for 1 transaction and for k−1 transactions, but their

concatenation is not valid because the report for the k transactions is not sent.

These properties above are paradigmatic of the distinction between iterative and non-

iterative properties. Intuitively speaking, iterative properties are properties in which the

number of times a legal sequence is repeated does not matter. We call this repeating se-

quence an iteration. Of course, within the iteration itself the number of times a particular

action is repeated might make a difference between being legal and being illegal, but once

an iteration is legal, it can be repeated as many times as one wishes.
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4.3 Classification of Enforcement Mechanisms

4.3.1 A Model of Enforcement Mechanisms

Let us first introduce enforcement mechanisms as a sequence transformers E : Σ∞ → Σ∞.

We consider a particular form of enforcement mechanism proposed by Bauer et al. and

called edit automaton [7, 51]. Edit automata have a power of inserting and suppressing

actions from the executions. As an example, they can wait until the illegal execution

becomes legal again by suppressing its actions and then insert all the suppressed actions.

They also can behave like a security automata [59] and simply suppress the suffix of the

execution that makes it illegal.

We present our own definition of this automaton that is slightly different from the

original definition in [7] and the refined definition in [51]. Intuitively, we have just sim-

plified the original notions by enucleating the notions of output and memory and always

forced the enforcement mechanism to progress in the processing of the input. We later

show that our actions are identical to the combinations of atomic actions (read symbol

but no output, output symbol but don’t read input) from [51] on every non-diverging

computation (a diverging computation is a computation where the edit automaton will

run forever without reading any input while keeping outputting data). We first present

our own definition of edit automaton.

Definition 4.3.1 (Edit Automata) An edit automaton E is a 5-tuple of the form

〈Q, q0, δ, γo, γk〉 with respect to some target with action set Σ. Q specifies the possible

states, and q0 ∈ Q is the initial state. The total function δ : Q × Σ → Q specifies the

transition function; the total function γo : Q× Σ∗ × Σ→ Σ∗ defines the output according

to the current state, the sequence of actions kept so far and the current input action; the

total function γk : Q×Σ∗×Σ→ Σ∗ defines the sequence that will be kept after committing

the transition.

In order for the enforcement mechanism to be effective all functions δ, γk and γo should

be computable.

When the automaton proceeds with one more input action, the function γo specifies

the output of the automaton at this transition and the function γk specifies the memory

containing the actions that are processed by the automaton but not output yet. The

keep function will add the input action to the memory or will ignore the input action.

In general case the keep function can perform more actions on the current memory, for

example it can add arbitrary actions to it.
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Definition 4.3.2 (Run of Edit Automaton) Let E = 〈Q, q0, δ, γo, γk〉 be an edit au-

tomaton. A run of automaton E on an input sequence of actions σin = a1; a2; . . . is

a sequence of pairs
〈
(q0, ε), (q1, σ

k
1), (q2, σ

k
2), . . .

〉
such that qi+1 = δ(qi, ai+1) and σki+1 =

γk(qi, σ
k
i , ai+1). The output of E on input σin is sequence of actions σo = σo1;σo2; . . . such

that σoi+1 = γo(qi, σ
k
i , ai+1).

We will use the following notation for a finite run of n steps as

(q0, σ)
σo A(qn, σ[n+ 1..])

which means that the automaton A with initial state q0 on input sequence σ processes a

prefix σ[..i] of this input and finishes in state qn while producing output σo.

Now we present the definition of edit automata from [51]. Every execution of an edit

automaton is specified using a labeled operational semantics. The basic single-step has

the form

(q, σ)
τ−→ (q′, σ′)

where q is the current state of the automaton, σ is the sequence of actions that is in the

input, q′ and σ′ are the state and sequence of actions after the automaton takes a step,

and τ is an output sequence. The definition of edit automaton verbatim from [51] is as

follows:

An edit automaton E is a triple (Q, q0, δL) defined with respect to some system

with action set Σ. As with truncation automata, Q is the possibly countably

infinite set of states, and q0 is the initial state. In contrast to truncation au-

tomata, the deterministic and total transition function δ of an edit automaton

has the form δL : (Q×Σ)→ Q× (Σ ∪ {·}). The transition function specifies,

when given a current state and input action, a new state to enter and either an

action to insert into the output stream (without consuming the input action)

or the empty sequence to indicate that the input action should be suppressed

(i.e., consumed from the input without being made observable).

σ = a;σ′ δL(q, a) = (q′, a′)

(q, σ)
a′
−→ (q′, σ)

(E-Ins)

σ = a;σ′ δL(q, a) = (q′, ·)
(q, σ)

·−→ (q′, σ′)
(E-Sup)

Remark 4.3.1 In the original paper [51] the transition function δL was defined as an

arbitrary function of the signature mentioned above in the quotation.
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In [51] Ligatti et al. argue that this single-step semantics can easily simulate multi-

step semantics. In the rest of this section we denote the edit automaton defined in [51]

by the wording single step edit automaton.

This automaton allows diverging computation. Formally, it means that after some

action i of some finite input, the automaton will not read any more input symbols and

will only output symbols.

Definition 4.3.3 (Diverging computation) A diverging computation starting in the

state q1 of the single step edit automaton (Q, q0, δL) and triggered by σ ∈ Σ∗ is a sequence

〈q1, q2, . . .〉 ∈ Qω, where Qω is an infinite sequence of states from the set Q, and (qi, σ)
a′

i−→
(qi+1, σ) for some a′i ∈ Σ for all i ≥ 1,

Definition 4.3.4 (Effectively diverging computation) A single step edit automaton

E = (Q, q0, δL) has an effectively diverging computation if there exists a finite sequence

σ ∈ Σ∗ and there exists a finite sequence of states 〈q1, q2, . . . , qn〉 such that

1) σ0 = σ, and

2) for all i ≤ n

• either (qi, σi)
a′

i−→ (qi+1, σi) for some a′i ∈ Σ

• or σi = a;σi+1 and (qi, σi)
·−→ (qi+1, σi+1) for some a ∈ Σ and σi ∈ Σ∗, and

3) there exists a diverging computation starting in qn and triggered by σn.

While it was theoretically useful in [51], the very idea that an enforcement mechanism

could possibly produce output without any input is not acceptable by the end users from

our industrial e-health case study. In contrast, the idea that the enforcement mechanism

could spend a lot of time in order to process an input and eventually report a long sequence

of follow-up actions was considered impractical but possible.

So our standpoint is that the only way to produce an infinite output should be to get

an infinite input. Therefore, differently from the original definition in [51], our automaton

consumes an input action a at every transition.

Proposition 4.3.1 For all enforcement mechanisms without effectively diverging compu-

tations edit automata from Definition 4.3.1 and single step edit automata [51] are identical.

Proof. We show how to construct an edit automaton from Definition 4.3.1 given an

edit automaton from the original definition [51]. For all a, σ′, q
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1) if (q, a;σ′)
·−→ (q′, σ′) then δ(q, a) = q′ and for all σk the output and keep functions

are γo(q, σk, a) = · and γk(q, σk, a) = ·

2) if (q, a;σ′)
a′
−→ (q′, a;σ′) then one of the two following cases holds:

(a) let 〈q1, . . . qn〉 ∈ Q∗ be the longest sequence such that q = q1 and (qi, a;σ′)
a′

i−→
(qi+1, a;σ′) for all 0 < i < n and (qn, a;σ′)

·−→ (qn+1, σ
′) then δ(q, a) = qn+1

and for all σk the output and keep functions are γo(q, σk, a) = a′1; . . . a′n−1 and

γk(q, σk, a) = ·

(b) let 〈q1, . . . qn〉 ∈ Q∗ be the sequence such that q = q1 and (qi, a;σ′)
a′

i−→ (qi+1, a;σ′)

for all 0 < i < n and then the automaton stops proceeding the input and out-

putting, because there are no successors from the state qn, then δ(q, a) = qn

and for all σk the output and keep functions are γo(q, σk, a) = a′1; . . . a′n−1 and

γk(q, σk, a) = ·.

3) otherwise let δ(q, a) = q⊥ and for all σk the output and keep functions are γo(q, σk, a) =

· and γk(q, σk, a) = ·.

It is easy to show that both automata have the same I/O relation. For example, for

the case 2(b): even though the constructed automaton will proceed with the input action

a, since the automaton stops executing the input, the observed behavior (outputting

a′1; . . . a′n−1) is still the same. The only difficult part is to show that we can never reach a

state q⊥. Since the edit automaton has no effectively diverging computations this means

that either q⊥ is not reachable by a finite prefix (condition (2) of Definition 4.3.4) or there

cannot be a diverging computation starting in q (condition (3) of Definition 4.3.4). So

the state qn in the construction must exist and thus q⊥ is not reachable.

�

In the proof of Proposition 4.3.1 the keep function γk always returns an empty se-

quence. This is because γk is an internal function to the automaton: it defines a new

value of the suspended sequence σk that is not used in the proof.

4.3.2 A New Classification of Edit Automata

As we showed in Chapter 3, the same security policy can be enforced by an edit automaton

in different ways. Both edit automata that we have seen in that chapter do enforce the

same market policy, but they are different. We will propose a fine grained classification

of edit automata according to the way they enforce security properties.
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Figure 4.2: Relation between the classes of edit automata

In Figure 4.2 we anticipate the main results of this section by showing the hierarchy of

different kinds of edit automata that we explain and prove later in this section. Later in

Figure 4.7 we will pictorially describe the precise relations among different kinds of edit

automata.

We start with a wide class of edit automata called Late automata. They simply output

some prefix of the input. This class will be the container of other less trivial cases when

the property P̂ will be taken into account.

Definition 4.3.5 (Late automata) A Late automaton A is an edit automaton A =

〈Q, q0, δ, γo, γk〉 with the restriction that it always outputs some prefix of the input:

∀i ∈ N : ∃j ≤ i : ∃q′ ∈ Q : (q0, σ)
σ[..j]
 A(q′, σ[i+ 1..]) (4.7)

Property (4.7) means that for every processed prefix σ[..i] of the input sequence there

exists a run of edit automaton A such that it outputs some prefix σ[..j] of the processed

input sequence σ[..i]. We call this property output latency since it means that at every

step of execution automaton outputs some prefix of the input.

The example of Late automaton is shown in Figure 4.3. This automaton simply

outputs the first action of the input after reading the second one and then outputs second

and third actions after reading the third action.

In order to give a formal definition of the automata from Theorem 8 [7] for any

property P̂ we present also a wider class of automata called All-Or-Nothing automata.
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Figure 4.3: Example of Late automaton.

Figure 4.4: Example of All-Or-Nothing automaton.

These automata always output some prefix of the input (hence it is a particular kind of

Late automata). Moreover, on every transition they either output all suspended input

actions or suppress the current action.

Definition 4.3.6 (All-Or-Nothing automata) An All-Or-Nothing automaton A is

an edit automaton A = 〈Q, q0, δ, γo, γk〉 with the following restrictions:

• This automaton outputs a prefix of the input: property (4.7) holds.

• At every step of the transition either it outputs the whole suspended sequence of

actions (the input symbols read by the automaton but not in the output yet) or

suppresses the current action:

(γo(q, σk, a) = σk; a and γk(q, σk, a) = ·) or

(γo(q, σk, a) = · and γk(q, σk, a) = σk; a)
(4.8)

An example of All-Or-Nothing automaton is given in Figure 4.4.

The next step is the refinement of this class towards what we call Longest-valid-

prefix Automata for P̂ 1. These automata always output a prefix of the input (hence

it is a particular kind of Late automata) and they are particular kind of All-Or-Nothing

1In the previous papers [12, 17, 14] we called it Ligatti automaton.
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automata. Moreover, they output the longest valid prefix. The definition of Longest-valid-

prefix automaton for property P̂ given below was made according to the construction of

edit automaton given in the proof of Theorem 8 [7].

Definition 4.3.7 (Longest-valid-prefix automata for property P̂ ) A Longest-valid-

prefix automaton E for property P̂ is an edit automaton E = 〈Q, q0, δ, γo, γk〉 with the

following restrictions:

• The automaton outputs a prefix of the input (4.7).

• Either it outputs the whole suspended sequence of actions or suppresses the current

action (4.8).

• Output is valid at every transition (here σ′ is an already output sequence)

P̂ (σ′; γo(q, σk, a)) (4.9)

• If in the state q the current sequence σ′;σk; a is valid then it outputs the whole

sequence:

If P̂ (σ′;σk; a) then

γo(q, σk, a) = σk; a and γk(q, σk, a) = ·.
(4.10)

At every state a Longest-valid-prefix automaton for property P̂ keeps the sequence

that was read till the current moment (and consists of already output sequence σ′ and

kept but not yet output sequence σk) in order to decide whether P̂ (σ′;σk; a) holds. A

possible way of implementing this is Q= Σ∗. In our definition a Longest-valid-prefix

automaton for property P̂ is obviously a particular kind of edit automaton. We will show

that this statement holds in the original definition as well.

Let us now remind the constructive proof of Theorem 8 [7] and show that the edit

automaton constructed following this proof is a Longest-valid-prefix Automaton for P̂ .

The proof of Theorem 8 in [7] constructs an edit automaton as follows:

- States: q ∈ Σ∗ × Σ∗ × {+,−} [the sequence of actions seen so far, the actions seen

but not emitted, and +(−) is used to indicate that the automaton must not (must)

suppress the current action]

- The initial state q0 = 〈·, ·,+〉.

- Consider processing the action a in state q.
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(A) If q = 〈σ, τ,+〉 and ¬P̂ (σ; a) then suppress a and continue in state 〈σ; a, τ ; a,+〉.

(B) If q = 〈σ, τ,+〉 and P̂ (σ; a) then insert τ ; a and continue in state 〈σ; a, ·,−〉.

(C) Otherwise, q = 〈σ, τ,−〉. Suppress a and continue in state 〈σ; a, ·,+〉.

Proposition 4.3.2 The edit automaton constructed following the proof of Theorem 8

in [7] for property P̂ is a Longest-valid-prefix automaton for P̂ .

Proof. Consider processing the action a, σo is the output so far, σk is a suppressed

sequence of actions. Let us have a look at two main steps of the construction:

• if ¬P̂ (σo;σk; a) then suppress a , σ′k = σk; a.

• if P̂ (σo;σk; a) then insert σk; a.

Since at every step the output is empty or σk; a then the automaton obeys the property

(4.8); it always outputs prefix of the input, hence statement (4.7) holds as well. Con-

structed automaton outputs the sequence only if it is valid, hence statement (4.9) holds.

It outputs all the suppressed actions if the sequence becomes valid, therefore statement

(4.10) holds as well. Since all the conditions of Longest-valid-prefix automaton for P̂ are

satisfied, we conclude that automaton constructed following the proof of Theorem 8 in [7]

for property P̂ is Longest-valid-prefix automaton for P̂ .

�

Proposition 4.3.2 also holds for the construction in the proof of Theorem 3.3 in [51].

In a nutshell, the difference between edit automata and Longest-valid-prefix automata

for property P̂ is the following:

• edit automata can suppress arbitrary actions from the input without inserting them

later and can insert arbitrary actions in the output.

• Longest-valid-prefix automata for property P̂ can only insert those actions that

were read before; suppressed actions either will be inserted when the input sequence

becomes valid or all subsequent actions will be suppressed (in other words, it outputs

the longest valid prefix of the input).

Since the automaton constructed according to the proof of Theorem 8 in [7] is a

Longest-valid-prefix automaton for property P̂ while the automaton given in [7] (Fig-

ure 3.1) is not a Longest-valid-prefix automaton, the difference between their behaviors

is clear.
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Figure 4.5: Example of Late automaton for property P̂ .

Still, the automaton of Figure 3.1 is not a completely arbitrary edit automaton and

we propose a notion of Late automaton for property P̂ . If the sequence is valid, it outputs

a valid prefix of the input, otherwise it can output some valid sequence (i.e. fixing the

input).

Definition 4.3.8 (Late automata for property P̂ ) A Late automaton A for P̂ is an

edit automaton A = 〈Q, q0, δ, γo, γk〉 with the following restrictions (σ′ is with the following

restrictions (σ′ is a sequence that is in the output already, σk is a sequence of an input

symbols read by the automaton but not in the output yet):

If P̂ (σ′;σk; a) then

• Output is a prefix of the input (4.7), and

• Output is always valid (4.9).

The example of Late automaton for property P̂ is shown in Figure 4.5. This automaton

is similar to the one given in Figure 3.1 with the only difference that it delays the output

of the first take-pay transaction.

4.3.3 Relations between the Edit Automata Classes

Many authors [7, 33, 45, 51] have noted the importance of enforcement mechanisms obey-

ing two abstract principles, called soundness and transparency.

Definition 4.3.9 (Soundness) The enforcement mechanism that enforces property P̂ is

sound if all the outputs are legal according to the property:

∀σ ∈ Σ∞ : P̂ (E(σ)) (4.11)
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Definition 4.3.10 (Transparency) An enforcement mechanism is transparent if it does

not change the executions that already obey P̂ :

∀σ ∈ Σ∞ : P̂ (σ)⇒ E(σ) ≈ σ (4.12)

In the original papers [7, 51] notation τ ≈ σ means that τ and σ are semantically

equivalent. However, the authors did not impose any restrictions on semantic-equivalence

relation except that it should be an equivalence relation (reflexive, symmetric, and transi-

tive), and that the security property of interest does not distinguish between semantically

equivalent executions. More precisely, we take a notion of Indistinguishability from [51]:

∀σ, σ′ ∈ Σ∞ : σ ≈ σ′ ⇒ (P̂ (σ) ⇐⇒ P̂ (σ′)) (4.13)

Since the semantic-equivalence relation is not precisely defined, we will be more in-

terested and can be different for each target application, we will use the identity ”=”

relation.

One of the definition of enforcement in [7] is precise enforcement, that obeys both

soundness and transparency.

Definition 4.3.11 (Precise Enforcement) An automaton A with starting state q0 pre-

cisely enforces a property P̂ on the system with action set Σ if and only if ∀σ ∈ Σ∗ ∃q′

∃σ′ ∈ Σ∗ such that

1. (q0, σ)
σ′
 A(q′, ·), and

2. P̂ (σ′), and

3. P̂ (σ)⇒ ∀i ∈ N : ∃q′′ ∈ Q : (q0, σ)
σ[..i]
 A(q′′, σ[i+ 1..])

According to this definition, the automaton in question outputs program actions in

lock-step with the target program’s action stream if the action stream σ is valid. Suppose

that at the current moment the automaton reads i-th action in the sequence, and the

sequence σ[..i+ 1] is not valid. Then the automaton will not output any other actions.

There is another notion of enforcement called “effective = enforcement” [7] (with later

refinement in [51]) that obeys the properties of soundness and transparency and output

production (for any input there is an output).

Definition 4.3.12 (Effective=Enforcement) An automaton A with starting state q0

effectively=enforces a property P̂ on the system with action set Σ if and only if ∀σ ∈ Σ∗ ∃q′

∃σ′ ∈ Σ∗ such that

57



CHAPTER 4. CLASSIFICATION OF PROPERTIES AND MECHANISMS

1. (q0, σ)
σ′
 A(q′, ·), and

2. P̂ (σ′), and

3. P̂ (σ)⇒ σ = σ′

Then we introduce a refinement of effective=enforce-ment, where an automaton can

suppress some actions and later insert them when the sequence turns out to be legal. We

name it Late effective=enforcement.

Definition 4.3.13 (Late Effective=Enforcement) An edit automaton A with starting

state q0 lately effectively=en-forces a property P̂ on the system with action set Σ if and

only if ∀σ ∈ Σ∗ ∃q′ ∃σ′ ∈ Σ∗ such that

1. (q0, σ)
σ′
 A(q′, ·), and

2. P̂ (σ′), and

3. P̂ (σ)⇒ σ = σ′, and

4. ∀i ∈ N : ∃j ≤ i : ∃q′ ∈ Q : (q0, σ)
σ[..j]
 A(q′, σ[i+ 1..]).

The definition above obeys four properties of enforcement: output production (1),

soundness (2), transparency (3) and output latency, which is originally presented in equa-

tion (4.7).

Notice that edit automaton that lately effectively=en-forces a property P̂ will always

output some valid prefix of the input. This conclusion is obvious because soundness

ensures that all output is valid and output latency ensures that output is always a prefix

of the input.

We show an example of edit automaton that lately effectively=enforces a property P̂

in Figure 4.6.

It is easy to see from the definitions that edit automata that lately effectively=enforce

a property P̂ are a proper subset of edit automata that effectively=enforce P̂ . An example

is the edit automaton in Figure 3.1 that effectively=enforces property P̂ . From an illegal

input sequence take(1); browse; take(2); pay(2) it produces warning; take(2); pay(2)

while automaton in Figure 4.6 that lately effectively=enforces P̂ outputs nothing.

As it is said in [7] edit automaton from Figure 3.1 effectively=enforces the market

policy (Example 3.1.1). But since the market policy is given only in natural language and

the predicate P̂ is not given, statements such as “An edit automata effectively enforces

the market policy” are a bit stretching the definition.
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Figure 4.6: Edit automaton that lately effectively=enforces property P̂ .

Proposition 4.3.3 Late automata and Late automata for property P̂ are not a proper

subset of each other.

Proof. First we prove that if an edit automaton A is a Late automaton, then it is not

necessary that A is a Late automaton for property P̂ . By σ we denote an input sequence

of the automaton and σ′ is an output sequence. A Late automaton A obeys only one

property: it always outputs some prefix of the input (4.7). Hence, even if the overall

input sequence σ is valid, A can output an invalid prefix of the input (¬P̂ (σ′)), while

Late automaton for property P̂ will always output a valid sequence (4.9).

Next we prove that if edit automaton A is a Late automaton for property P̂ then it

is not necessary that A is a Late automaton. In case of invalid input sequence the Late

automaton for property P̂ can output another sequence which is not necessarily a prefix

of the input, while a Late automaton will always output a prefix of the input (4.7). �

For example, for input sequence σ = take(1); browse the Late automaton from Fig-

ure 4.3 will output take(1) action which is not valid while the Late automaton for

property P̂ from Figure 4.5 will output warning action.

From Proposition 4.3.3 we can conclude that classes of Late automata and Late au-

tomata for P̂ have some common subclass but none of them include the other.

Theorem 4.3.1 Edit automata that effectively=enforce property P̂ are a proper subset of

Late automata for P̂ .

Proof. First we prove that if an edit automaton A effectively=enforces property P̂

then A is a Late automaton for property P̂ . By σ we denote an input sequence of the

automaton and σ′ is an output sequence. The automaton A that effectively=enforces P̂

obeys the properties P̂ (σ′) and P̂ (σ)⇒ σ = σ′. If σ is valid it outputs the whole sequence,
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so automaton A is a Late automaton for P̂ because it outputs a valid prefix (σ is a valid

prefix of itself). If σ is invalid, automaton A can output an arbitrary valid sequence while

Late automaton for property P̂ can output any arbitrary sequence (valid or invalid).

Next we have to prove that if an edit automaton A is a Late automaton for property

P̂ then it is not necessary that A effectively=enforces property P̂ . In case of a valid input

the Late automaton for P̂ will output some valid prefix of the input and not necessary

the whole input, hence the property of effective=enforce-ment P̂ (σ) ⇒ σ = σ′ will not

hold. �

For example, the Late automaton for P̂ from Figure 4.5 for a valid input take(1);

pay(1) will output nothing while the automaton from Figure 3.1 that effectively=enforces

property P̂ will output the whole input take(1); pay(1).

Proposition 4.3.4 Edit automata that effectively=enforce property P̂ are not a subset of

Late automata.

Proof. We prove that if an edit automaton A effectively=enforces property P̂ then it

is not necessary that A is a Late automaton. By σ we denote an input sequence of the

automaton and σ′ is an output sequence. The automaton A that effectively=enforces P̂

obeys the properties: P̂ (σ′) and P̂ (σ)⇒ σ = σ′. In case of invalid input, the automaton

A will output some valid sequence (according to soundness), which is not necessary a

prefix of the input. Therefore it is not necessarily a Late automaton. �

For example, the automaton from Figure 3.1 that effectively=enforces property P̂ for

an invalid input take(1); browse will output the warning action which is not possible

for a Late automaton that has to output some prefix of the input.

Theorem 4.3.2 Edit automata that lately effectively=enforce a property P̂ are exactly

those Late automata that effectively=enforce property P̂ .

Proof. Similarly to the definitions of late effective=enforcement and effective=enforcement

by σ we denote an input sequence of the automaton and σ′ is an output sequence.

(If Direction). If edit automaton A lately effectively=enforces property P̂ then it obeys

the property of output latency (4.7) and hence A is a Late automaton. According to defi-

nitions 4.3.12 and 4.3.13, since A lately effective-ly=enforces P̂ it also effectively=enforces

P̂ .

(Only-if direction). If A is a Late automaton that effectively=enforces property P̂ then it
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always outputs some valid prefix of the input (since it obeys soundness and output latency)

and in case of valid input it outputs the whole input sequence (property of transparency).

Hence, first three conditions of late effective= enforcement hold. The 4rd property holds

as well because A is a Late automaton. Hence A lately effectively=enforces P̂ . �

It is immediate from the definitions the following results:

Proposition 4.3.5 Edit automata that precisely enforce property P̂ are a proper subset

of edit automata that effectively=enforce property P̂ .

Proof. If an edit automaton precisely enforce property P̂ then for the valid input

sequence it will output in a lock-step mode the whole sequence, hence the property of

transparency holds. All the other properties of effective=enforcement hold as well.

If an edit automaton effectively=enforces property P̂ then it is not necessary that it

precisely enforces P̂ . For an invalid input σ that has a valid prefix σ′ � σ, it can output

some valid sequence which does not necessarily have a prefix σ′. �

Proposition 4.3.6 Edit automata that precisely enforce property P̂ are not a subset of

Late Automata.

Proof. The proof is straightforward: for an illegal input edit automaton that precisely

enforce property P̂ can output a sequence that is not necessarily a prefix of the input,

however a Late Automaton always outputs some prefix of the input. �

Proposition 4.3.7 All-Or-Nothing automata are a proper subset of Late automata.

Proof. First we show that if A is All-Or-Nothing automaton then A is a Late automa-

ton. Since (4.7) holds for All-Or-Nothing automaton A, then A is a Late automaton.

Next we show that if A∗ is a Late automaton then it is not necessary that A∗ is an All-

Or-Nothing automaton. A∗ can output some prefix of the input that can be some prefix

of all suppressed actions. In this case A∗ is not an All-Or-Nothing automaton because 4.8

does not hold. �

For example, the Late automaton from Figure 4.3 for an input sequence take(1);

browse will output only take(1) action. The given Late automaton can not be an
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All-Or-Nothing automaton because it can output some non-empty prefix of the input

sequence.

Proposition 4.3.8 All-Or-Nothing automata are not a subset of Late automata for prop-

erty P̂ .

Proof. We show that if A is an All-Or-Nothing automaton, then it is not necessary

that A is a Late automaton for property P̂ . An All-Or-Nothing automaton A can output

some invalid prefix of the valid input which is not possible for a Late automaton for P̂ .

�

For example, the All-Or-Nothing automaton shown in Figure 4.4 for the input sequence

take(1); pay(1); take(2) outputs an invalid prefix of this sequence (in this case the

whole sequence) while this is not possible for a Late automaton for property P̂ .

Proposition 4.3.9 Edit automata that lately effectively=enforces property P̂ and All-Or-

Nothing automata are not a proper subset of each other.

Proof. First we prove that if an edit automaton A lately effectively=en-forces property

P̂ then it is not necessary that A is an All-Or-Nothing automaton. By σ we denote an

input sequence of the automaton and σ′ is an output sequence. Automaton A can output

some valid prefix of the input which is not necessarily all the suppressed actions, hence

A is not All-Or-Nothing automaton.

Next we prove that if edit automaton A∗ is an All-Or-Nothing automaton then it is not

necessary that A∗ lately effectively=enforces P̂ . At some step A∗ can output some invalid

prefix of the input while automaton that lately effectively=enforces P̂ always outputs only

valid prefix of the input. �

For example, the automaton given in Figure 4.6 that lately effectively=enforces prop-

erty P̂ for an input sequence take(1); pay(1); take(2) outputs the sequence take(1);

pay(1). The given automaton cannot be an All-Or-Nothing automaton because after

take(2) action it outputs non-empty prefix of the suppressed sequence.

On the other hand, for the input sequence take(1); pay(1); take(2) the All-Or-

Nothing automaton from Figure 4.4 outputs the whole input sequence, which is invalid.

This automaton cannot be considered as automaton that lately effectively=enforces prop-

erty P̂ because it produces illegal output.
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Theorem 4.3.3 All-Or-Nothing automata that lately effectively=enforce a property P̂ are

exactly Longest-valid-prefix automata for property P̂ .

Proof. We show that All-Or-Nothing automaton A lately effectively=en-forces a prop-

erty P̂ if and only if A is a Longest-valid-prefix automaton for property P̂ .

(If Direction). If automaton A is All-Or-Nothing automaton then equations (4.7)

and (4.8) hold. Since A lately effectively=enforces property P̂ then it obeys the prop-

erties of soundness (condition 2 of Definition 4.3.13) and transparency (condition 3 of

Definition 4.3.13). Notice that soundness means that the output is always valid, which

is exactly what equation (4.9) describes; transparency means that if input is valid then

output is equal to the input, which is shown in equation (4.10). Hence, all the conditions

of Longest-valid-prefix automaton for P̂ are satisfied.

(Only-if direction). If A is a Longest-valid-prefix automaton for property P̂ then

• It obeys properties (4.7) and (4.8) hence A is an All-Or-Nothing automaton, and

then according to Proposition 4.3.7 it is also a Late automaton;

• It obeys properties (4.9) and (4.10) and as we noticed, they mean soundness and

transparency which correspond to the conditions 2 and 3 of Definition 4.3.12. Hence,

A effectively=enforces P̂ .

Therefore sinceA is Late automaton that effectively=enforces P̂ then it lately effectively=en-

forces P̂ according to Theorem 4.3.2 and it is an All-Or-Nothing automaton. �

4.3.4 Discussion

In this Section we have shown that the difference between the running example from

Figure 2 of [7] and the edit automata that are constructed according to Theorem 8 of

the same paper is due to a deeper theoretical difference. In Figure 4.7 we summarize

the relations among the different kinds of edit automata that we have introduced. When

drawing two boxes separated by a space we mean that inclusion is probably not proper.

We have proven the correctness of this classification earlier in this section.

Now we clarify which type of edit automaton is constructed following the proof of

Theorem 8 in [7] for property P̂ and which type of edit automaton is the one in [7]

(Figure 3.1). As the Proposition 4.3.2 states, the edit automaton constructed following

the proof of Theorem 8 in [7] for property P̂ is a Longest-valid-prefix automaton for P̂ . The

edit automaton given in Figure 3.1 [7] is an edit automaton that effectively=enforces P̂ :
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A new classification of edit automata. Here point “Thm. 8” represents an edit automaton constructed
following the proof of Theorem 8 [7] and point “Fig. 2” represents an edit automaton from Figure 2
originally from [7]. We can see that both of them effectively=enforce the given property, but the Longest-
valid-prefix automaton from Theorem 8 is just a particular type of edit automata.

Figure 4.7: The classes of edit automata.

it obeys soundness (the automaton always outputs the valid sequence) and transparency

(in case of valid input it always outputs all the sequence). The edit automaton given in

Figure 3.1 [7] is not a Late automaton because it does not always output some prefix of

the input (see examples 8 and 10 in Table 3.2)

Therefore we can conclude that both automata from Theorem 8 [7] and from Fig-

ure 3.1 [7] are edit automata that effectively=enforce property P̂ . But when one wants

to construct such an automaton and follows the proof of Theorem 8 [7], he obtains a

Longest-valid-prefix automaton for P̂ that lately effectively=enforces P̂ .

In other words the intuition behind the classification is the following one: Late au-

tomata always output some prefix of the input while Late automata for P outputs only

valid prefixes. It is maybe surprising, but Late automata for P are not a proper subset

of Late Automata precisely because of their behavior in case of non-compliant input (See

Proposition 4.3.3).

The whole characterization of the automata in this classification is based on the idea

that some of them depend on the policy P and hence, the behavior of the automata in the

class is the same only for compliant inputs. In case of non-compliant inputs the automata

only convert the inputs to compliant ones. This is exactly the case for the automaton
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from Figure 2 in [7]: it is a Late automaton that effectively=enforces P .

An edit automaton constructed following the proof of Theorem 8 [7] is the Longest-

valid-prefix automata for P , that modifies non-compliant execution in a particular way

because it can only suppress the invalid input and wait until it becomes valid in the future.

4.4 Summary

In Section 4.2 have proposed a new notion of iterative security property and defined

relations between the security properties from the state of the art (safety, liveness and

renewal) and iterative property. The result of this contribution is presented in Figure 4.1.

We have presented a classification of particular types of edit automata in Section 4.3.

From this classification and examples of edit automata, we can conclude that the main

difference between different edit automata effectively=enforcing the same policy is in the

way they convert non-compliant sequences into compliant ones. We have proposed a

solution to Issue 1, but leads us to Issue 2.
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Chapter 5

Construction of Enforcement

Mechanisms

As we have seen, an edit automaton constructed following the proof of Theo-

rem 8 [7] is actually a Longest-valid-prefix automaton, a specific kind of edit

automaton. In this chapter we will show how given a security property we can

build a Longest-valid-prefix automaton. Later, we find out how an iterative

security property can be enforced by another particular kind of edit automaton

and show how to construct it.

5.1 Additional Notations

First we need to present some additional notations we will use in all the constructions

of this and later chapters. It is simpler to represent the memory of the edit automaton

rather than defining the keep function. The notation (q, σi, σk) represents the current

configuration of edit automaton, where q is the current state, σi is the current input

sequence, and σk is the current memory containing suspended actions. A transition of an

edit automaton is denoted by

(q, σi, σk)
σo
↪→ (q′, σ′i, σ

′
k) (5.1)

where σo is the output produced, and respectively q′, σ′i and σ′k are the new state, the

input sequence left to read and the updated memory. Notice that since we do not allow

diverging computations, it is always that case that ∃a ∈ Σ : σi = a;σ′i.

In the sequel we will show the graphical representation of an automaton. Every tran-

sition of the form: (q, a;σ′i, σk)
σo
↪→ (q′, σ′i, σ

′
k) we will represent as it is shown in Figure 5.1.
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Figure 5.1: Representation of a transition of edit automaton.

We will also use the following notation. Whenever σo = σk; a, we will show it graphi-

cally as ∗; a representing the current memory by ∗. Similarly, whenever σ′k = σk; a we will

show it as ∗; a.

Before proposing the constructive procedure for edit automata we first need to formally

define an input to that procedure, hence we now specify how the security property is

represented in our framework.

5.2 Property Representation

In practice desired behavior of an application is often described as a workflow. We rep-

resent workflows and security properties by a new kind of finite state automaton. In our

model we assume both finite and infinite execution sequences, hence we need another

notion of automaton that can represent a “default” workflow.

Definition 5.2.1 (Policy automaton) A Policy automaton is a tuple 〈Σ, Q, q0, δ, F 〉,
where Σ is a finite nonempty set of security-relevant actions, Q is a finite set of states,

q0 ∈ Q is the initial state, δ : Q × Σ → Q is a labeled partial transition function. In the

following, for q, q′ ∈ Q, a ∈ Σ we will write q
a−→ q′ whenever δ(q, a) = q′. F ⊆ Q is a set

of accepting states.

Definition 5.2.2 (Run of a Policy automaton) Let A = 〈Σ, Q, q0, δ, F 〉 be a pol-

icy automaton. A run of A on a finite (respectively infinite) sequence of actions σ =

〈a0, a1, a2, . . .〉 is a sequence of states q|σ| = 〈q0, q1, q2 . . .〉 such that qi
ai−→ qi+1. A fi-

nite run is accepting if the last state of the run is an accepting state. An infinite run is

accepting if the automaton goes through some accepting states infinitely often.

The Policy automaton combines the acceptance conditions of Büchi automata and

finite state automata.

Definition 5.2.3 (Property represented as Policy automaton) Some property P̂ is

represented as a Policy automaton A if and only if:

∀σ ∈ Σ∞ : P̂ (σ)⇐⇒ A accepts σ (5.2)
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Figure 5.2: Policy automaton for a market policy.

Remark 5.2.1 We assume that an empty sequence that corresponds to no execution of

the target is always accepted by the security property (P̂ (·) holds) and hence the initial

state of the Policy automaton is always accepting: q0 ∈ F .

Notice that the set of infinite traces accepted by a Policy automaton represents a

renewal property since a valid infinite trace corresponds to a run that goes infinitely often

through an accepting state, and hence this trace has an infinite number of valid prefixes.

More formally:

Proposition 5.2.1 The set of infinite traces accepted by a Policy automaton is a renewal

property.

Proof. Let us prove the theorem by contradiction. Suppose that there exists a string

σ ∈ Σω such that Policy automaton A accepts σ but σ does not satisfy a definition of

renewal property (4.5).

Then there exists a sequence σ′, σ′ � σ such that ∀τ. τ � σ. σ′ � τ.¬P̂ (τ). In this

case there exists a run s = 〈s0, s1, . . . , sd, . . .〉 for a sequence of actions σ = 〈a1, . . . , ad, . . .〉
such that sd is not an accepting state. Since σ is accepted by A there must be a successor

state of sd that is accepting (otherwise s would have only finitely many accepting states),

i.e., a subsequence of s = 〈s0, s1, . . . , sd, . . . , sl〉 such that at least sl is accepting then the

corresponding sequence of actions τl = 〈a1, . . . , ad, . . . , al〉 is such that σ′ � τl � σ∧ P̂ (τl)

which is a contradiction. �

In Figure 5.2 we present a Policy automaton for the market policy from Example 3.1.1.

We have noticed that the text of the example leaves open a number of interpretations.
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Remark 5.2.2 Notice that the set of security relevant actions Σ is finite, and a number

of apples in the market, that one can take or pay for, is finite as well. Hence, the Policy

automaton in Figure 5.2 has finite number of transitions.

It is clear that good sequences must have a pair of take(n) and pay(n) as the text

implies, so the automaton accepts these sequences. Otherwise if after take(n) action

there were some action different from pay(n) then the policy would be violated and the

automaton would halt. If after pay(n) action there are some other actions different from

pay and take (like browse) then the automaton simply waits for the take(n) action. It

is not clear whether another take(m) action is allowed by example at this point, so that

the resulting sequence of actions can be pay(n); take(m); pay(m); take(n). The text

seems to imply that this is not possible, so the automaton will halt whenever take(m)

appears after pay(n) and m 6= n.

Similarly, in Figure 5.3 we present an automaton corresponding to the BPMN descrip-

tion of the drug selection subprocess (Figure 3.4). This example precisely defines all the

possible valid sequences of actions and is easily represented as an automaton.

5.3 Longest-valid-prefix Automata

We have seen in Chapter 4 the classification of edit automata and the Longest-valid-prefix

automata in particular. This automata are constructed from the security policy following

the proof of Theorem 8 of [7], and, as we have defined, they always output the longest

valid prefix of the execution.

5.3.1 Construction

According to Definition 5.2.1, the security policy is represented by a finite-state Policy

automaton AP =
〈
Σ, QP , qP0 , δ

P , F P
〉
. We construct the Longest valid prefix automaton

in Figure 5.4.

Let us describe the idea behind this construction. Suppose the current state of the

automaton is q, the next incoming action is a. If there is a transition in the Policy

automaton from the state q on an action a to an accepting state, then the input read

so far is accepted by the Policy Automaton. Therefore, we output all the actions read

so far followed by the current action (we output σk; a in rule [Good-Out]). If the next

state is non-accepting, it means that possibly there is a path to the accepting state, so

the sequence read so far can become good. Therefore we simply keep the current action

in the memory (we put in the memory σk; a and output nothing in rule [Good-Wait]).
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Abbreviations

Dis = Drug is selected DNr = Drug is Not for research

Tnn = Therapeutical notes needed Ipd = Insert prescription details

Rtn = Review therapeutical notes DNas = Drug is Not available in stock

TnNn = Therapeutical notes Not needed Dpew = Drug physically exists in the ward

Dr = Drug is for research Das = Drug is available in stock

Irpn = Insert research protocol number

Figure 5.3: Policy automaton for a drug selection subprocess.

If there is no transition from state q on action a, it means that there is no path to some

accepting state of the Policy automaton, and the sequence can never become valid again.

So the next state in the automata has to be a new error state q⊥, the Longest-valid-prefix

automaton will output nothing but keep all the input, and this corresponds to the rule

[Errorkeep].

The behavior of the constructed Longest-valid-prefix automaton is exactly the same

as of one constructed by the proof of Theorem 8 of [7]: it always outputs the longest

valid prefix of the input. The only difference is that in the proof Theorem 8 the state

of automaton contains all the read actions and if the trace can never become good again

there will be as many states as the length of the trace. In our construction, as soon as the

trace cannot become good again, the next state will be an error state and all following

input actions will be kept. To optimize the construction we can also skip all the following

inputs once the automaton is in the error state. Then the rule [Error] can be rewritten
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Good-Out
q

a−→ q′ q′ ∈ F P

(q, a;σi, σk)
σk;a
↪→ (q′, σi, ·)

Good-Wait
q

a−→ q′ q′ /∈ F P

(q, a;σi, σk)
·
↪→ (q′, σi, σk; a)

Errorkeep

Otherwise

(q, a;σi, σk)
·
↪→ (q⊥, σi, σk; a)

Figure 5.4: Semantics for Longest-valid-prefix automaton constructed from the Policy

automaton.

as follows:

Error
Otherwise

(q, a;σi, σk)
·
↪→ (q⊥, σi, ·)

In the sequel an enforcement mechanism that outputs the longest valid prefix will be

called ELP , where LP stands for “the longest prefix”.

5.3.2 Formal Properties

According to our construction, the resulting Longest-valid-prefix automaton for security

property P̂ is sound sine all it’s outputs are valid prefixes, and it is transparent since the

longest valid prefix of a valid input is this input.

Proposition 5.3.1 A Longest-valid-prefix automaton with the semantics from Figure 5.4

for a renewal property P̂ represented by Policy automaton AP is sound and transparent

enforcement mechanism according to P̂ . This automaton always outputs the longest valid

prefix of the input.

Proof. Given a Policy automaton AP we construct a Longest-valid-prefix automaton

E following according to the semantics from Figure 5.4. Let us show that automaton E

always outputs the longest valid prefix of the input according to the property P̂ .

Let us denote the state of E after executing sequence σ with q, and a is the next

incoming action. Let us show that this automaton maintains the invariant InvL(σ) that
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σ is the input seen so far and σo has been output, where σo is the longest valid prefix

of σ according to P̂ . Initially InvL(·) holds because P̂ (·) and automaton has not output

anything so far. Let us assume that InvL(σ) holds and prove that InvL(σ; a) holds as

well in any action a.

1) If P̂ (σ; a), then there is an accepting run of AP on σ; a. It corresponds to the rule

[Good-Wait]. In this case the output of E is σk; a. The memory was obtained in a

following way. Every time when the non-accepting state is reached, the action is kept

in the memory (rule [Good-Wait]) and when finally the sequence becomes valid, a

corresponding state of AP is accepting and the memory of E contains all the read

actions. Hence, the output in this case will be σ; a and InvL(σ; a) holds.

2) If σ; a is not irremediable1, then it may become legal again in the future. It means

that while executing σ the path in E will correspond to the path in AP , to be more

precise, for every transition q
σ[i]−−→ q′ of the policy automaton, there will be a transition

(q, σ[i, ..], σk)
τo
↪→ (q′, σ[i + 1, ..], τk), where τo, τk are either a pair ·, σk;σ[i] or a pair

σk;σ[i], ·. Therefore, only statements premises of rules [Good-Out] and [Good-

Wait] will be satisfied. Hence E outputs the longest valid prefix and the memory

contains all the not yet output actions that make a trace bad and InvL(σ; a) holds.

3) If σ; a is irremediable then there was an action σ[j] (or a) in the input such that there

was no transition in AP from the state where the run σ[..j − 1] (or σ) arrived on the

input action σ[j]. At that point a premise for rule [Error] was satisfied, after which

no output can be produced. Therefore, if there exists a valid prefix, then it was output

when the corresponding accepting state of AP was reached before the sequence became

irremediable. It means that E outputs the longest valid prefix and InvL(σ; a) holds.

Therefore, in all the cases the invariant InvL(σ; a) is maintained and hence the Longest-

valid-prefix automaton E with the semantics from Figure 5.4 always outputs the longest

valid prefix. Therefore, in case of valid input the automaton will not change the in-

put (transparency maintained) and in case of invalid input it will output a valid trace

(soundness maintained). �
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Figure 5.5: Policy automaton for market policy

Figure 5.6: Edit automaton for market policy verbatim from [7]

Figure 5.7: Longest-valid-prefix automaton constructed for market policy
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5.3.3 Enforcement of the Market Policy

We remind the representation of the market policy as a Policy automaton in Figure 5.5,

the Longest-valid-prefix automaton with the semantics from Figure 5.4 in Figure 5.7, and

the original edit automaton from [7] is in Figure 5.6. To ease the comparison we represent

the original edit automaton with our new notation.

It is easy to see that these automata enforce the same policy in different ways. This is

due to the fact that the Longest-valid-prefix automaton from Figure 5.7 always outputs

the longest valid prefix of the execution sequence while the edit automaton from Figure 5.6

enforces the given property in some other way. Even if we look in more detail at legal

sequences, we already can see the difference. The legal sequence pay(n); browse; take(n)

is not transformed by the Longest-valid-prefix automaton (transparency holds), but the

edit automaton from [7] transforms it to browse; take(n); pay(n). In our opinion, it is

more desirable to leave the execution sequence without changes when it is valid.

Let us compare the transformation of illegal sequences, for example pay(n); take(m);

take(m); pay(m). The Longest-valid-prefix automaton from Figure 5.7 will not produce

any output because this sequence does not have a valid prefix. On the other hand, the

edit automaton from Figure 5.6 will produce some output: take(m); pay(m). We can see

that this automaton has a power of “restarting” (it is coming back to the initial state as

if no error occured) and that is why in some cases it can produce more output.

5.4 Iterative Suppression Automata

For iterative properties that are represented by a Policy automaton we propose a better

enforcement than outputting the longest valid prefix. We call it Iterative Suppression.

Since the property enforced is iterative, it describes good traces that consist of independent

parts, called “iterations”. The idea is that this enforcement mechanism is able to recognize

when a new good iteration can start, so it can suppress all the bad actions that happen

between the good iterations of a tentative execution.

5.4.1 Construction

A new semantics shown in Figure 5.8 is obtained from the previous construction (Fig-

ure 5.4) by changing the condition for the traces that cannot become good again, to be

1As we have defined on page 42, it is a sequence of actions such that there is not suffix that can make
it legal again.
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more precise we add new rules [Iteration-Out and Iteration-Wait] that can recog-

nize a beginning of a new iteration.

We start with the Policy automaton A = 〈Σ, Q, q0, δ, F 〉 representing the security

property. The states of Iterative Suppression automaton are composed from two states

of the Policy automaton: Q = {(q, qF )|q ∈ QP ∪ {q⊥}, qF ∈ F P}, where q = qF if q ∈ F P ,

or q 6= qF if there exists a run σ such that qF is the last accepting state before reaching q.

According to our assumption (see Remark 5.2.1), the initial state of the Policy automaton

is accepting, hence the initial state of the Iterative Suppression automaton is (q0, q0).

We propose this construction of the state because an edit automaton has to “remem-

ber” the last accepting state visited during the run and compare the tentative execution

to the new iterations starting only from that last visited accepting state.

Premises of the rules [Iteration-Out and Iteration-Wait] correspond to the case

when the next action a is not an action recognized by the Policy automaton but this action

can start a new iteration from the last visited accepting state qF . Then, if transition on

(qF , a) brings to an accepting state q′ of the Policy automaton, then a is immediately

output and the memory is empty; next state is (q′, q′). If next incoming action a is not

accepted, then the memory is cleaned and only a is added to the memory. If a is not

starting a new iteration (rule [Error]), then there is a transition to an error state and

action a is not kept in the memory.

The main difference with Longest-valid-prefix automaton is that our automaton is able

to recognize new good iterations and suppress only actions that caused violation of the

property. We will show how the Longest-valid-prefix automaton enforces a market policy

from Section 3.1 and a drug selection process from the case study of Section 3.2.

In our previous work [17] we required that all good iterations must have a unique start-

ing action – an action that never repeats again in the iteration. We have then explained

in our follow-up work [15] that even if there is no unique starting action, the iterative

suppression automaton still soundly and transparently enforces iterative properties. If an

action a can start a new iteration and also appears in the middle of another iteration,

our construction will first build the transitions that repeat the Policy automaton (rules

[Good-Out] and [Good-Wait]) and for the rest of the cases will check whether a can

start a new iteration.

Even though it is not necessary to have unique starting actions, we think it is interest-

ing to compare our mechanism for the properties with and without it. In both cases the

mechanism is sound and transparent (as we prove below), but the modification of the in-

valid sequences will be done somewhat differently. Imagine a property where all the good

traces match the pattern (a; b; a; c)∗. Now consider a tentative execution a; b; (a; b; a; c).
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Good-Out
q

a−→ q′ q′ ∈ F P

((q, qF ), a;σi;σk)
σk;a
↪→ ((q′, q′), σi, ·)

Good-Wait
q

a−→ q′ q′ /∈ F P

((q, qF )a;σi, σk)
·
↪→ ((q′, qF ), σi, σk; a)

Error
Otherwise

((q, qF ), a;σi, σk)
·
↪→ ((q⊥, qF ), σi, ·)

Iteration-Out
q

a−→ ⊥ qF
a−→ q′ q′ ∈ F P

((q, qF ), a;σi, σk)
a
↪→ ((q′, q′), σi, ·)

Iteration-Wait
q

a−→ ⊥ qF
a−→ q′ q′ /∈ F P

((q, qF ), a;σi, σk)
·
↪→ ((q′, qF ), σi, a)

The semantic rules in the upper part of the figure are those from the Longest-valid-prefix automaton
construction and we keep them without changes. Two rules in the lower part of the figure represent

recognition of iterations. Here and in the next similar figures the [Error] rule should be the last one in
the list of rules, but we keep it in the upper part of the figure to underline the similarity with other

constructions in this thesis.

Figure 5.8: Semantics for Iterative Suppression automaton constructed from the Policy

automaton.
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After processing a; b; a, on the next input action b our mechanism will make a transition

to the error state (since it is expecting c to arrive) and exit this state only on the third

action a. So the output will be empty. If the pattern did not have the second a inside (for

example, a; b; d; c) and an execution would be a; b; (a; b; d; c) then our mechanism would

recognize that the second a actually starts a new iteration, so the output will be a; b; d; c.

However, we did not find in practice the repetition of initial actions. This is somewhat

obvious: different execution patterns corresponds to execution of different macro-processes

in real life and thus different starting points: starting an HIV drug dispensation process

to an outpatient or a transplant process are different and the eventual dispensation of

a drug in a transplant process to an inpatient is intrinsically a different action for our

stakeholders.

Interestingly, this observation is not always true for other actions in the process.

The doctor can repeat some actions because a process in the medical organization, may

contain different sub-processes that can be repeated. Even if this observation is valid

in some particular cases of particular processes, we do not discuss it later in the thesis

because we do not want an enforcement mechanism to find a first half of an iteration A

separately from the last part of an iteration B and concatenate them. This concatenation

can bring liability if, for example, the first half of one iteration A was not finished and

done by a nurse, and another iteration B was not done correctly in the first half of B,

but was complaint in its second half and B was done by a doctor.

5.4.2 Formal Properties

We now prove the properties of the enforcement mechanism that we propose to construct

following the semantics from Figure 5.8.

Proposition 5.4.1 An Iterative Suppression automaton with semantics from Figure 5.8

for an iterative property P̂ represented by Policy automaton AP is sound and transparent

enforcement mechanism according to P̂ .

Proof. Given a Policy automaton AP let us construct an edit automaton E with se-

mantics from Figure 5.8. Now let us show that automaton E satisfies soundness and

transparency according to property P̂ .

Let us assume that state q is a state of the automaton AP after executing sequence

σ, and a is the next incoming action. Let us assume that invariant Inve(σ) stating that

P̂ (E(σ)) and if P̂ (σ) then E(σ) = σ holds and prove that Inve(σ; a) holds for any action

a.
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Initially Inve(·) holds because automaton has not output anything so far and · is valid.

Let us assume that Inve(σ) holds and prove that Inve(σ; a) holds as well in any possible

case.

1) If P̂ (σ; a), then there is an accepting run of AP on σ; a. In this case the output of E

is σk; a (rule [Good-Out]). The memory σk was obtained in a following way. Every

time when the non-accepting state is reached, the action is kept in the memory (rule

[Good-Wait]), and when finally the sequence becomes valid, a corresponding state

of AP is accepting and is reached thus the memory of E contains all the read actions.

Hence, the output in this case will be σ; a and Inve(σ; a) holds.

2) If σ; a is invalid but not irremediable then while executing σ the path in E will corre-

spond to the path in AP , to be more precise, for every transition q
σ[i]−−→ q′ of the policy

automaton, there will be a transition (q, σ[i, ..], σk)
τo
↪→ (q′, σ[i + 1, ..], τk), where τo, τk

are either a pair ·, σk;σ[i] or a pair σk;σ[i], ·. Therefore, only rules [Good-Wait] and

[Good-Out] will be used. By doing so E will output the longest valid prefix and

memory of E will contain all the not yet output actions that make a trace bad. Hence

Inve(σ; a) holds.

3) If σ; a is irremediable then let E(σ; a) = σo. According to the semantics, E outputs a

sequence of actions σk; a only when a corresponding state of the Policy automaton is

reached (rule Good-Out), otherwise it does not produce any output. Since property

P̂ is iterative, the good sequences consist of repeated iterations, and in our construction

the only way to produce an output, is to keep in the memory all the actions that are

accepted by an iteration in the Policy automaton (that starts in the initial state). This

means that an output σo consists of valid iterations, hence, Inve(σ; a) holds.

Therefore, in all the cases the invariant Inve(σ; a) is maintained and hence the edit

automaton E with semantics from Figure 5.8 satisfies soundness and transparency. �

5.4.3 Enforcement of the Market Policy

Let us show the difference in the enforcement done by the Longest-valid-prefix automaton

and the Iterative Suppression automaton for market policy. We have presented the policy

automaton for the market policy from Section 3.1 in Figure 5.2 and the Longest-valid-

prefix automaton in Figure 5.7. Now we will build an Iterative Suppression automaton

for this policy following the semantics from Figure 5.8.
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Figure 5.9: Resulting Iterative Suppression automaton for the Policy automaton for mar-

ket policy.

The resulting edit automaton is shown in Figure 5.9. For the sake of readability we

show an Iterative Suppression automaton for the subset of the original set of actions:

{take(1), pay(1), take(2), pay(2), browse}. We demonstrate all the outgoing transi-

tions only from the state q1 and only some of the transitions from other states for the

same reason.

Now we can see that the sequences 4, 6, 8, 9, and 10 from the Section 3.1 can be

transformed in a more desirable way. In Table 5.1 we show the difference in the output of

Longest-valid-prefix automaton that we have constructed from the previous section and

the Iterative Suppression automaton.

We can see that the output produced by Iterative Suppression automaton is more

desirable since whenever the amount of paid items and taken items is the same, this part

of the execution is output. Both automata obey the properties of soundness and trans-

parency. This example shows again that soundness and transparency are not sufficient to

distinguish between the execution sequence transformer, as we have stated in Issue 3.
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Table 5.1: Difference in enforcement of market policy by Longest-valid-prefix automaton

and Iterative Suppression automaton

No Input Output

Longest-valid-prefix au-

tomaton from Figure 5.7

Iterative Sup-

pression au-

tomaton from

Figure 5.9

4 take(1); pay(1) take(1); pay(1) take(1); pay(1)

6 take(1); browse; pay(2) · ·
8 take(1); browse; pay(2); take(2) · pay(2); take(2)

9 take(1); pay(2); take(2) · pay(2); take(2)

10 pay(1); browse; pay(2); take(2) · pay(2); take(2)

5.4.4 Enforcement of the Drug Selection Process

In Figure 5.3 we have shown the policy automaton for the drug selection process. We will

use it in the construction of Iterative Suppression automaton for this example.

We will show the difference between the enforcement by a Longest-valid-prefix au-

tomaton and Iterative Suppression automaton. We have constructed a Longest-valid-

prefix automaton with the semantics from Figure 5.4. It is partially shown in Figure 5.10

(we show all transitions from the states q4, q6, q⊥). It is easy to see that this automaton

outputs the longest valid prefix: as soon as some wrong action happens (e.g. after defined

that drug is for research Dr, no research protocol number is inserted !Irpn in state q4) the

automaton leads to an error state and there are no outcoming transitions from that state.

While running the drug selection process, a tentative execution consists of 3 iterations,

one per each drug.

1. The first iteration is Dis; TnNn; Dr; Irpn; Ipd; Das, which is legal. We denote this

iteration by ResearchRun.

2. The second iteration is Dis; TnNn; Dr; Ipd; Das, which is illegal. It means that

the drug is submitted to Research program (Dr action) but the research protocol

number is not inserted (there is no Irpn action after Dr action). We denote this

iteration by SkipResearchProt.

3. The third iteration in Dis; Tnn; Rtn, DNr; Ipd; Das, which is a legal iteration. We

denote this iteration by NoteRun.
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Figure 5.10: Longest-valid-prefix automaton constructed from the Policy automaton for

drug selection process.

Figure 5.11: Iterative Suppression automaton constructed from the Policy automaton for

drug selection process.
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Table 5.2: Difference in enforcement of the drug selection process by Longest-valid-prefix

automaton and Iterative Suppression automaton

No. Input Output

Longest-valid-prefix

automaton from Fig-

ure 5.10

Iterative Suppression

automaton from Fig-

ure 5.11

1 ResearchRun ResearchRun ResearchRun

2 SkipResearchProt · ·
3 NoteRun NoteRun NoteRun

1;

2;

3

ResearchRun;

SkipResearchProt;

NoteRun

ResearchRun ResearchRun; NoteRun

The resulting trace is illegal since it has an irremediably bad second part. How can the

mechanism modify such execution? In Table 5.2 we show the results of transformation of

these iterations and their concatenation.

5.4.5 Enforcement of an Anonymization Policy

We here show the difference between the constructions of enforcement mechanisms used

in this chapter by means of enforcing some practical security policies. We discuss two

examples of rather intuitive anonymization policy.

Example 5.4.1 No non-anonymized personally identifiable data (pid) may leave the sys-

tem without notification.

Example 5.4.2 No non-anonymized personally identifiable data (pid) may leave the sys-

tem.

Even though these to policies look similar, they have a completely different semantics.

The first policy says that some non-anonymized pid is still allowed to leave the system,

but the notification must be shown to the user. The second policy forbids any sending

of non-anonymized pid. In our case study our colleagues from HSR would have a strong

preference over these two policies: they rather prefer to have a policy that does not

allow any leakage of non-anonymized pid (Example 5.4.2). We refer an interested reader

to [37], where File F framework requires that the patients’ data must be anonymized if
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previously requested by the patient. Then, the report containing anonymized data can

be sent outside the hospital.

Let us first simplify the model of the system and its events just to give a brief example.

Assume that the only events that are relevant to the security policies are:

SendA Send anonymized data

SendN Send non-anonymized data

Notif Execution of notification

Enforcement of Example 5.4.1 policy

This policy can be enforced in different ways. One way is suppressing of events corre-

sponding to sending non-anonymization data (SendN); another way is a modification of

these events (for example, by anonymizing the data); and another way is an insertion

of an event corresponding to the execution of a notification (Notif) as soon as the non-

anonymized data is sent. All alternatives are possible, however not all of them are equally

acceptable by the stake holders.

The security policy of Example 5.4.1 specifies that only sequences of a particular form

((SendN; Notif)|SendA)∗ are valid, hence sequences SendN; Notif and SendA are valid itera-

tions. Assume that once a non-anonymized left the system without the notification (that

violates the policy) and then the next data left the system anonymized. The sequence of

actions corresponding to this example is SendN; SendA.

The Longest-valid-prefix automaton will output the longest valid prefix, which in this

case is an empty trace. The Iterative Suppression automaton will recognize that the first

event SendN is an unfinished trace, while the second event SendA is a trace itself, hence

it will output SendA.

We can see from this example that Iterative Suppression automaton provides better

enforcement of the given policy than the Longest-valid-prefix automaton, still we do not

claim that this enforcement result is the optimal one. Another way to enforce the given

policy is substitute sending of non-anonymized data by first anonymizing pid, and then

sending it. In order to provide such an enforcement, our mechanism should be able to add

events that were not in the original system beforehand, such as Anonym, which means

“Anonymize the personally identifiable data”. Then, an enforcement mechanism as a

sequence transformer can potentially replace SendN with Anonym; SendA.
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Figure 5.12: Output of the Longest-valid-prefix automaton (LA) and Iterative Suppression

automaton (EA) on the same tentative execution sequence.

Enforcement of Example 5.4.2 policy

This policy can also be enforced in two ways: by suppression of SendN events, or by

modification of these events (substitute SendN with Anonym; SendA). The security policy

of Example 5.4.2 specifies that only sequences of the form SendA∗ are valid. Like in

previous example, the invalid sequence SendN; SendA will be transformed by a Longest-

valid-prefix automaton into an empty sequence and by Iterative Suppression automaton

into a sequence of one action SendA. Similarly to previous case, there is another way to

enforce this policy by replacing SendN with Anonym; SendA. We shall come back to this

example in the next chapter.

5.4.6 Discussion

In Figure 5.11 we partially show the result of the Iterative Suppression automaton con-

struction for the same Policy automaton according to the semantics from Figure 5.8. For

an easier comparison, we also emphasize the outcoming transitions from the states q4, q6

and q⊥. This automaton also leads to an error state as soon as something bad happens,

however it is able to recognize the beginning of a new good iteration which gives this

automaton the power of producing more output for the same bad input.

Let us show in Figure 5.12 the output of the Longest-valid-prefix automaton and itera-

tive suppression automaton for the same policy that is represented by a Policy automaton

in Figure 5.3. The input contains 5 iterations corresponding to the drug selection process.

The reader is already acquainted with the first 3 of them - they are the same as in the

Section 5.4.4. Iterations 1, 3 and 5 are valid, and iterations 2 and 4 are invalid, hence
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the whole input is not valid and is irremediable. However, for iterations 1, 3 and 5 the

Doctor managed to proceed successfully so there are three legal substrings: iterations 1,

3 and 5.

The Longest-valid-prefix automaton shown in Figure 5.10 outputs only the first iter-

ation. It means that Doctor will successfully complete selection process only for the first

drug. The Iterative Suppression automaton shown in Figure 5.11 will output all three

successful iterations.

Future direction

As a more general approach, we can consider the case of actions that cannot be corrected.

We call these actions observable actions. For instance, in a business processes they cor-

respond to outsourced services, where actions can only be logged. It is possible to have

observable actions also within an organization; for example when a doctor is preparing

a set of drugs for a specific patient, he takes a wrong drug from a stock, and it is not

possible to delete this physical action. It could be modeled as a special kind of Iterative

suppression automaton that cannot suppress observable actions.

We can also consider the case of multiple users and define behavior of enforcement

mechanism in that case. Indeed, many doctors may try to dispense drugs at the same

time, and construction of enforcement mechanism can be different. We also leave this

problem for future work.

5.5 Summary

In this chapter we first introduced additional notations and assumptions about the rep-

resentation of the security policy made in this thesis: the security policy is presented as

a Policy automaton, which is an automaton that combines the acceptance conditions of

finite-state automaton and Büchi automaton.

We proposed a construction of the Longest-valid-prefix automaton from the security

policy represented as a Policy automaton. The Longest-valid-prefix automaton is a par-

ticular kind of edit automaton that always outputs the longest valid prefix of the tentative

execution sequence.

We have presented a construction of a new kind of edit automaton, called Iterative

suppression automaton, that is able to recognize valid iterations of the tentative executions

and suppress the actions between the valid iterations.

By providing these two constructions, we have addressed Issue 2: we have a new generic
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construction for two kinds of edit automata: one outputs the longest valid prefix of the

input and another one outputs more than the longest valid prefix in case the execution

sequence is invalid.
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Chapter 6

Predictable Enforcement and

Error-Toleration

The current theory of runtime enforcement is based on two notions: sound-

ness and transparency. Soundness defines that the output is always good and

transparency defines that good input is not changed. In this chapter we pro-

pose a new notion of predictability that ensures that there are ”no surprises

on bad input”. We address the problem policy of enforcement when the users

make insignificant errors and would like to continue the process execution. We

present a novel approach for constructing enforcement mechanism that tolerate

user errors.

6.1 Predictability of Enforcement

As we have seen in the example of market policy from Section 3.1, on the example of

drug dispensation process from Section 3.2, and later example of simple anonymization

policy from Section 5.4.5, the same security property can be enforced in different ways.

Currently, the only formal notions that describe the behavior of enforcement mechanism

are soundness and transparency (that together form a notion of effective=enforcement).

In our opinion a new notion should be proposed that describes the behavior of runtime

enforcer when the execution sequence is invalid (in case it’s valid, it should not be changed

according to transparency). In this section we propose a new notion that addresses Issue 3.

Recall the example of drug selection process from Section 3.2. The set of expected

execution sequences corresponding to this process that were presented on page 36 form a

security policy P .
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SimpleRun Dis; TnNn; DNr; Dpres,

NoteRun Dis; Tnn; Rtn; DNr; Dpres,

ResearchRun Dis; TnNn; Dr; Irpn; Dpres,

NoteResearchRun Dis; Tnn; Rtn; Dr; Irpn; Dpres,

and their closure under concatenation: for every σ, σ′ ∈ P : σ;σ′ ∈ P . Notice that an

empty trace NoRun also satisfies the policy.

Let us now make some examples of invalid traces with respect to the policy P .

Example 6.1.1 The doctors might forgot to click the “I have read the Therapeutical

Note” button and rather close the window (Ctw). A similar event could happen for the

step in which research protocol numbers are not inserted (Cpw), or he might skip all steps

altogether. For example, these alternatives give us the following traces

CloseProt Dis; TnNn; Dr; Cpw; Dpres

SkipAll Dis; Dr; Dpres

CloseNoteProt Dis; Tnn; Ctw; Dr; Cpw; Dpres

Figure 6.1 graphically shows a behavior of enforcement mechanism that is sound and

transparent with respect to some security property P̂ . Execution sequences that are

intercepted by a runtime enforcer are shown on the left side of the figure and marked with

Σ∞. The resulting outputs of runtime enforcer are shown on the right side and marked

with T∞. The gray area denotes invalid sequences and the white area denotes valid ones

with respect to P̂ .

Transparency means that the traces in the white area of the input are mapped into

the same traces (at the same position) in the white area of the output. Soundness means

that all the traces shall be mapped into the white area. However, it is not specified where

exactly the points from gray area are mapped.

The valid traces ResearchRun and NoteResearchRun are mapped into the same traces

(numbers 1 and 4 in the figure), which corresponds to transparency. Invalid traces

CloseProt, SkipAll and CloseNoteProt (number 2, 3 and 5 in the figure) are mapped into

some good traces that can be chosen arbitrarily.

Notice that our definition of transparency uses a notion of identity relation instead

of semantic-equvalence relation that was originally proposed [7] (see Section 4.3.3 for

definitions of soundness and transparency). That is why valid traces are mapped into the
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Abbreviations

1 - ResearchRun

2 - CloseProt

3 - SkipAll

4 - NoteResearchRun

5 - CloseNoteProt

This mechanism is transparent since the valid executions ResearchRun and NoteResearchRun are not
modified – they are in the same point in the output space T∞. The mechanism is also sound, hence
all the remaining invalid executions can be transformed into any point in the white (good) part of the
output space.

Figure 6.1: Sound and Transparent enforcement mechanism.

same points in Figure 6.1. The reason for this decision is that it is not possible to define a

semantics that can be used in all application domains. Recently, Khoury and Tawbi [47]

discussed possible semantics of this relation, however they also proposed some concrete

definitions for concrete domains. Ligatti and Reddy [52] have proposed the notion of

completeness instead. It can be easily shown that transparency implies completeness and

since transparency is necessary here, we don’t discuss it further.

Figure 6.1 explicitly shows that the notions of soundness and transparency are not

sufficient to distinguish between different enforcement mechanisms and to identify whether

one mechanism provides a better enforcement than another one. We think that a new

notion will help to answer these questions.

6.1.1 Metrics and Distances

In order to introduce a new notion we recall the definitions of metrics and metric spaces.

These concepts in this thesis are adapted from [4, 29].

Definition 6.1.1 A metric on a set S is a function d : S × S → R ∪ {∞} such that

(a) non− negativity : d(σ, τ) ≥ 0,

(b) identity : d(σ, τ) = 0 if and only if σ = τ ,

(c) symmetry: d(σ, τ) = d(τ, σ),
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(d) triangular inequality: d(σ, τ) ≤ d(σ, σ′) + d(σ′, τ).

The pair (S, d) is called a metric space and the number d(σ, τ) is called the distance

between the elements σ and τ . If all conditions but symmetry hold, then d is called a

quasi-metric.

When a distance is a finite number we can compare how far two situations (some po-

tentially illegal traces) are from the legal situation. For medical staff these two situations

can be perceived as qualitatively similar with a different degree of gravity. The notion of

∞ can be used to represent distance between traces perceived so qualitatively different

that they are incomparable. An example: a trace containing a wrong action compromising

the health of a patient is incomparable to any legal trace.

We discuss here some concrete metrics and quasi-metrics that will be useful in com-

paring tentative execution sequences with the expected behavior of our running examples.

Definition 6.1.2 A suppressing distance dS(σ, σ′) between two finite traces σ and σ′ is

a number of actions that must be suppressed from σ in order to get σ′. The total function

dS : Σ∗ × Σ∗ → N ∪ {∞} is a quasi-metric, such that

dS(σ, σ′) =


∞ if σ = · and σ′ 6= ·
|σ| if σ′ = ·
dS(σa, σ

′
a) if σ = aσa and σ′ = aσ′a

1 + dS(σa, bσb) if σ = aσa and σ′ = bσb and a 6= b

(6.1)

Notice that the distance between sequences σ and σ′ is ∞ when |σ| < |σ′| because no

number of suppressions can transform σ into σ′. Another non-trivial rule is the last case

in the equation 6.1: if the first actions of the two sequences are different then the action

in the first sequence is suppressed and comparison continues.

The intuition behind suppression is that a bad trace is close to a good trace if the

actions we have to undo are few.

Let us come back to our case study of the drug selection process (more generically, we

can also consider other workflows of the hospital). The idea of suppression distance can

be explained to the operator in the hospital and can be acceptable for an administrative

procedure (albeit annoying for the operator involved). For example, the monitor could

block the process if the number of bad actions exceeds a given threshold or, preferably, it

could undo all bad actions bringing us back to the point where we started the transaction

that has gone awry. More concretely, see the following example.
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Example 6.1.2 A doctor is selecting a drug (Dis) for which therapeutical notes are needed

(Tnn). However at the time to review them, he is interrupted (e.g. in case of an emer-

gency, interruption by another colleague etc.). When he comes back, he has to start

running the process again because it timed out. The second time the doctor successfully

finishes the process (he executes the sequence NoteResearchRun). So, his tentative exe-

cution σ is Dis; Tnn; NoteResearchRun and the distance to one of the good traces σ′=

NoteRun is

dS((Dis; Tnn; NoteResearchRun),NoteResearchRun) = 2 (6.2)

Notice that the distance from the legal sequence NoteResearchRun to the illegal tentative se-

quence Dis; Tnn; NoteResearchRun is ∞ because no number of suppressions can transform

the legal trace into the illegal one.

Similarly, the distance between this tentative sequence and another legal sequence,

for example the distance between σ = Dis; Tnn; NoteResearchRun and σ′ = NoteRun=

Dis; Tnn; Rtn; DNr; Dpres, is also∞ because tentative execution is shorter than the expected

legal one.

In the next example we can see that even suppressing distance already discriminates

between different run-time enforcement mechanisms.

Example 6.1.3 If an enforcement mechanism used to enforce the drug selection process

is the Longest-valid prefix automaton (marked as ELA), then it will transform every ten-

tative execution sequence to its longest valid prefix, hence for tentative sequence Dis; Tnn;

NoteRun (from Example 6.1.2), we have ELA(Dis; Tnn; NoteRun) = ·. The expected be-

havior in this case is a sequence NoteRun, and ELA( NoteRun) = NoteRun. Hence, if

we compare the results of the Longest-valid-prefix automaton ELA for tentative execution

sequence and for an expected one, we have:

dS(ELA(Dis; Tnn; NoteRun), ELA(NoteRun)) = dS(·,NoteRun) =∞ (6.3)

An Iterative Suppression automaton (marked as EIS, see Section 5.4 for more details)

would have suppressed the illegal initial prefix and recognize a valid iteration NoteRun:

EIS(σ) = EIS(Dis; Tnn; NoteRun) = NoteRun, and the suppressing distance then is:

dS(EIS(Dis; Tnn; NoteRun), EIS( NoteRun)) = dS(NoteRun, NoteRun) = 0 (6.4)

To distinguish between more enforcement mechanisms we use another metric that

counts the number of replaced actions.
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Let us come back again to the example of drug dispensation process. While enforcing

a process in the hospitals, an enforcement mechanism could be entitled only to correcting

small errors without changing the protocol used by the operators (such as patient identifi-

cation, patient consent and blood sampling before blood transfusion). If the doctor forgot

to fill one field in the form, the mechanism can insert a default value. On the other hand,

insertions of new steps by the enforcement mechanism to compensate a bad event are not

be allowed because a different protocol might have different medical or legal consequences

and those can only be judged by an expert.

Definition 6.1.3 The replacing distance dR(σ, σ′) between two finite traces σ and σ′ is

a number of replacements that should be done in σ in order to get σ′. The total function

dR : Σ∗ × Σ∗ → N ∪ {∞} is a metric, such that

dR(σ, σ′) =


0 if σ = · and σ′ = ·
∞ if σ = · xor σ′ = ·
dR(σa, σ

′
a) if σ = aσa and σ′ = aσ′a

1 + dR(σa, σb) if σ = aσa and σ′ = bσb and a 6= b

(6.5)

Notice that the distance is∞ if the tentative execution sequence and the expected one

have different length (it is expected because they clearly belong to different protocols).

A more general definition of distance was originally proposed by Levenshtein [50].

Definition 6.1.4 The Levenshtein distance dL(σ, σ′) between two finite traces σ and σ′

is a number of insertions, suppressions and replacements needed to obtain σ′ from σ. The

total function dL : Σ∗ × Σ∗ → N is a metric, such that

dL(σ, σ′) =



|σ′| if σ = ·
|σ| if σ′ = ·
dL(σa, σ

′
a) if σ = aσa and σ′ = aσ′a

1 + min{dL(σa, σb), if σ = aσa and

dL(aσa, σb), dL(σa, bσb)} σ′ = bσb and a 6= b

(6.6)

Let us explain the difference between the Levenshtein distance and the replacing dis-

tance by means of example.

Example 6.1.4 Consider a case from Example 6.1.1, where the doctor forgot to read the

therapeutical notes and closed the window (he performed Ctw action instead of Rtn) and

the doctor did not insert the research protocol number (he performed Cpw instead of Irpn),

the corresponding tentative execution sequence is
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CloseNoteProt = Dis; Tnn; Ctw; Dr; Cpw; Dpres.

Suppose that an enforcement mechanism E leaves this sequence without changes. We

assume that E is transparent, so an already legal execution sequence

NoteResearchRun = Dis; Tnn; Rtn; Dr; Irpn; Dpres.

is not changed by E. Hence, if we compare the output of an enforcement mechanism E

by means of replacing distance dR and Levenshtein distance dL, we get:

dR(E(CloseNoteProt), E(NoteResearchRun)) = dR(CloseNoteProt,NoteResearchRun) = 2

dL(E(CloseNoteProt), E(NoteResearchRun)) = dL(CloseNoteProt,NoteResearchRun) = 2

Replacing distance in this case is equal to the Levenshtein distance.

Example 6.1.5 Let us consider the sequence CloseProt = Dis; TnNn; Dr; Cpw; Dpres(where

the doctor only did not insert a research protocol number). Assume that an enforcement

mechanism E does not change this execution sequence, and it is transparent, so it does

not change the legal execution NoteResearchRun = Dis; Tnn; Rtn; Dr; Irpn; Dpres.

Then,

dR(E(CloseProt), E(NoteResearchRun)) = dR(CloseProt,NoteResearchRun) =∞

because NoteResearchRun is simply longer than CloseProt (and belongs to another process

execution where theraperutical notes are not needed). But the Levenshtein distance counts

the inserted and replaced actions and the distance is

dL(E(CloseProt), E(NoteResearchRun)) = dL(CloseProt,NoteResearchRun) = 3

We present the Levenshtein distances between the execution sequences for our running

example of drug selection process in Table 6.1.

6.1.2 From Sound to Bounded Enforcement Mechanisms

Building on metrics over the sequences, we propose to use the notions from measure

theory for enforcement mechanisms. In the following definitions (Σ∞ ∪T∞, d) is a metric

space, a map E : Σ∞ → T∞ is an enforcement mechanism and a security policy is a

set P ⊆ Σ∞ ∩ T∞. As a starting point we assume that all runtime enforcers satisfy the

transparency property.

In the context of our running example, transparency of an enforcement mechanism has

the following meaning. The actions in the systems corresponds to actions of doctors and
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Table 6.1: The Levenshtein distances between some sequences

NoRun ResearchRun CloseProt SkipAll NoteResearchRun CloseNoteProt

NoRun 0 5 5 3 6 6

ResearchRun 5 0 1 2 2 3

CloseProt 5 1 0 2 3 2

SkipAll 3 2 2 0 3 3

NoteResearchRun 6 2 3 3 0 2

CloseNoteProt 6 3 2 3 2 0

NoteRun 5 3 3 3 2 3

nurses (or administrative staff), who are knowledgeable and accountable for their actions.

Their point of view is that the choice of a legitimate course of action is due to a contextual

knowledge not available to the system. A system that would change their decisions, when

those actions conform to the policy of the hospital, would be unacceptable.

The next step is generalizing the notion of soundness. We start from a classical

definition of bounded map that Figure 6.2 shows graphically. Even though the division

of traces into good and bad is not relevant for the definition of boundedness, we keep it

in the figure to ease the comparison with other notions.

Definition 6.1.5 A function E : Σ∞ → T∞ is bounded if the subset {E(σ) : σ ∈ Σ∞} ⊆
T∞ is bounded. Formally,

∃τ ∈ T∞ : ∃ε > 0 : ∀σ ∈ Σ∞ : d(E(σ), τ) ≤ ε (6.7)

Let us project this notion to the theory of enforcement mechanisms. We get a mech-

anism that transforms all sequences to some sequence close to τ . This is not what users

are expecting. The user’s policy usually contains several good sequences, hence we should

adapt the definition to map bad sequences to different good sequences in the policy.

Definition 6.1.6 An enforcement mechanism E : Σ∞ → T∞ is bounded within ε if and

only if

∃σP ∈ P : ∀σ ∈ Σ∞ : d(E(σ), E(σP )) ≤ ε. (6.8)

This notion says that an output of enforcement mechanism is always within the distance ε

from some good execution, for ε > 0 we are weakening the notion of soundness. Figure 6.3

shows the bounded within ε enforcement mechanism.

There is a fundamental difference between boundedness and boundedness within ε.

Boundness means that there is one single trace τ in the possible outputs such that all
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Abbreviations

1 - ResearchRun

2 - CloseProt

3 - SkipAll

4 - NoteResearchRun

5 - CloseNoteProt

6 - NoteRun

This enforcement mechanism is bounded because there exists a point 6 in the output space such that all
the outputs of the enforcement mechanism are within some radius from this point.

Figure 6.2: Bounded map.

Abbreviations

1 - ResearchRun

2 - CloseProt

3 - SkipAll

4 - NoteResearchRun

5 - CloseNoteProt

This mechanism is bounded within ε since for every execution of the process there exists some point in
the output space that is at distance ε from some valid point (in this case it’s either 1 or 4).

Figure 6.3: Bounded within ε enforcement mechanism.

the outputs of E are in the radius ε from τ . Boundedness within ε means that for every

possible output there is a valid trace such that the distance between them is smaller or

equal than ε.

Example 6.1.6 An enforcement mechanism E enforces the drug dispensation process in

the following way :

E(CloseNoteProt) = CloseNoteProt

E(SkipAll) = CloseNoteProt

E(CloseProt) = NoteRun
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Abbreviations

1 - ResearchRun

2 - CloseProt

3 - SkipAll

4 - NoteResearchRun

5 - CloseNoteProt

This mechanism is conditionally bounded within ε because only point 2 that is close to the valid point
1, is mapped into a point within ε from some valid point 4. Notice that this mapping is allowed by the
definition. The other points, that are not close enough to 1 or 4, can be mapped to arbitrary valid points
(just to satisfy soundness).

Figure 6.4: Conditionally bounded within ε enforcement mechanism.

The smallest distance from E(σ) to some good sequence is:

dL(CloseNoteProt,NoteResearchRun) = 2

dL(NoteRun,NoteResearchRun) = 2

Since the output of E is always at distance 2 from some good execution NoteRe-

searchRun then E is bounded within ε = 2.

We can refine the notion by imposing also that “almost valid traces” should be mapped

to some “almost valid traces”. We call it conditional boundedness within ε and show

graphically in Figure 6.4.

Definition 6.1.7 An enforcement mechanism E : Σ∞ → T∞ is conditionally bounded

within ε if and only if

∃δ > 0 : ∀σ ∈ Σ∞ : (∃σ′P ∈ P : d(σ, σ′P ) ≤ δ ⇒ ∃σP ∈ P : d(E(σ), E(σP )) ≤ ε). (6.9)

Example 6.1.7 An enforcement mechanism E transforms the sequences of actions in the

following way :

E(CloseNoteProt) = CloseProt

E(SkipAll) = NoRun

E(CloseProt) = NoteRun
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The smallest distance from E(σ) to some good sequence is:

dL(CloseProt,ResearchRun) = 1

dL(NoRun,NoRun) = 0

dL(NoteRun,NoteRun) = 0

Obviously, E is bounded within ε = 1. It is conditionally bounded within ε = 1 because

there is a δ = 3 such that for every sequence there is a valid trace at most at distance 3:

dL(CloseNoteProt,NoteResearchRun) = 2

dL(SkipAll,NoRun) = 3

dL(CloseProt,ResearchRun) = 1

Boundedness and conditional boundedness can refine soundness but are still unaccept-

able: when a doctor performs an execution CloseProt where he closes the window instead

of inserting the protocol (instead of executing ResearchRun), an enforcement mechanism

may transform his tentative execution CloseProt into another, completely different one

(execution NoteRun). The problem is that some actions in the outcome are not a direct

transformation of the actions of the doctors. Since actions carry liabilities it is impor-

tant that the modifications made by an enforcement mechanism are always linked to

corresponding actions by the doctor.

6.1.3 Predictability

Our notion of predictability within ε is inspired by the classical notion of continuous

functions. Let (Σ∞ ∪ T∞, d) and (Σ∞ ∪ T∞, d′) be metric spaces.

Definition 6.1.8 A map E : Σ∞ → T∞ is continuous if at every trace σ ∈ Σ∞ the

following holds:

∀ε > 0 : ∃δ > 0 : ∀σ′ ∈ Σ∞ : (d(σ, σ′) < δ ⇒ d′(E(σ), E(σ′)) < ε) (6.10)

In conditional boundedness we proposed to limit an output when an input is “almost

good”. But as we have seen from Figure 6.4, an input and its output should be compared

to the same valid trace.

Definition 6.1.9 An enforcement mechanism E is predictable within ε if for every trace

σP ∈ P the following holds:

∀ν ≥ ε : ∃δ > 0 : ∀σ ∈ Σ∗ : (d(σ, σP ) ≤ δ ⇒ d′(E(σ), E(σP )) ≤ ν) (6.11)
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Abbreviations

1 - ResearchRun

2 - CloseProt

3 - SkipAll

4 - NoteResearchRun

5 - CloseNoteProt

We graphically show an execution sequence transformer that is predictable within ε. Indeed, we have two
valid executions: 1 and 4. Whenever a tentative execution is within some range δ from a valid execution,
e.g. 2 is in the range of 1, it is transformed into an execution within ε from this valid execution, e.g. 2
is transformed into a sequence close to 1. If an execution is “too far” from being valid, e.g. execution 3,
predictability does not define the way in which it should be transformed.

Figure 6.5: Predictable within ε enforcement mechanism

Informally, it says that for every valid trace there always exists a radius δ, such that

all the traces within this radius are mapped into the circle with radius ε from this trace.

We show it in Figure 6.5.

6.1.4 Examples of Enforcement Mechanisms

Enforcement mechanisms for market policy

Let us come back to the example of market policy from Example 3.1.1 and two enforcement

mechanisms for it:

• Longest-valid-prefix automaton from Section 5.3 (we denote it by ELA);

• Iterative Suppression automaton from Section 5.4 (we denote it by EIS).

First we analyze whether the Longest-valid-prefix automaton ELA is predictable within

some bound k and then try to find k. Without loss of generality, we will use the Leven-

shtein distance in these examples.

Recall that valid iterations for this policy are of the form (take(n); pay(n)) , or

browse, or (pay(n); browse∗; take(n)).

Consider a tentative execution σ = take(1); (pay(2); take(2))n. The Longest-valid-

prefix automaton always outputs the longest valid prefix of its input, hence ELA(σ) = ·.

100



6.1. PREDICTABILITY OF ENFORCEMENT

By the shape of σ we can see that there exists a legal trace σP = (pay(2); take(2))n such

that

dL(σ, σP ) = dL(take(1); (pay(2); take(2))n, (pay(2); take(2))n) = 1 ≤ δ

and this statement holds for all δ > 0.

Then, according to the definition of predictability, if there exists a bound ε, then for

all ν ≥ ε the following should hold: dL(ELA(σ), ELA(σP )) ≤ ν. However,

dL(ELA(σ), ELA(σP )) =

dL(ELA(take(1); (pay(2); take(2))n), ELA((pay(2); take(2))n)) =

dL(·, (pay(2); take(2))n) = 2n

Since n is not bounded, there is no bound ε for this mechanism, so this mechanism is

not predictable. It also matches the intuition behind predictability: an input σ is close

(within δ) from a valid trace σP , but ELA(σ) is not close to the same valid trace.

Let us now consider an Iterative Suppression automaton EIS. The same tentative

execution σ = take(1); (pay(2); take(2))n, is transformed into its longest subpart that

is correct: EIS(σ) = (pay(2); take(2))n. Again, this execution is at distance 1 from a

valid trace σP = (pay(2); take(2))n, and dL(σ, σP ) = 1 ≤ δ for any δ > 0.

We can find a bound ε for this enforcement mechanism if we make one assump-

tion: we assume that the distance we are using counts only a number of different el-

ements that are outside of the valid iterations. Let us establish a bound ε = k, then

all the traces that have up to k invalid actions (k actions outside of the valid itera-

tions), like σ = take(1)1; . . . ; take(1)k; (pay(2); take(2))n, are transformed into σP =

(pay(2); take(2))n, therefore

d(EIS(σ), ELA(σP )) =

d(EIS(take(1)1; . . . ; take(1)k; (pay(2); take(2))n), EIS((pay(2); take(2))n)) =

d((pay(2); take(2))n, (pay(2); take(2))n) = 0

and hence, there always exists δ = ε = k such that equation (6.11) holds.
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Enforcement mechanism for drug selection process

Recall the enforcement mechanism E from Example 6.1.7:

E(CloseNoteProt) = CloseProt

E(SkipAll) = NoRun

E(CloseProt) = NoteRun

It was shown that this mechanism is conditionally bounded within ε = 1. However, it

is not predictable within ε = 1 because there exists σP = ResearchRun such that

∃ν = 2 : ∀δ > 0 : ∃σ = CloseProt :

(dL(σ, σP ) = dL(CloseProt,ResearchRun) = 1 ≤ δ ∧
dL(E(σ), E(σP )) = dL(E(CloseProt), E(ResearchRun)) =

dL(NoteRun,ResearchRun) = 3 > 2 = ν)

which means that

∃ν = 2 : ∀δ > 0 : ∃σ ∈ Σ∗ : (d(σ, σP ) ≤ δ ∧ d(E(σ), E(σP )) > ν)

Enforcement mechanism for an anonymization policy

Recall an anonymization policy from Example 5.4.2: “No non-anonymized personally

identiable data (pid) may leave the system.” Formally, we describe this policy as a set of

traces of the form SendA∗. We have proposed several enforcement mechanisms for this

policy:

1) whenever a non-anonymized pid is about to be sent, an enforcement mechanism sup-

pressed this event: the SendN event is suppressed. This can be done either by the

Longest-valid-prefix automaton (when the subsequent events are suppressed as well),

or by an Iterative Suppression automaton (subsequent events are not suppressed is

they are SendA).

2) whenever a a non-anonymized pid is about to be sent, an enforcement mechanism

suppresses this event, anonymizes the pid and then send it (SendN is substituted with

Anonym; SendA).

We denote the Iterative Suppression automaton with EIS. Consider a tentative exe-

cution sequence σ = SendN; SendA; SendA; SendN; ...; SendA with k actions SendN and m
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actions SendA. This sequence represents a general case for any illegal sequence since only

two actions SendA and SendN are relevant. For Iterative Suppression automaton we will

use the suppressing distance dS.

An Iterative Suppression automaton will suppress all bad iterations, i.e. all actions

SendN, hence

EIS(σ) = EIS(SendN; SendA; SendA; SendN; ...; SendA) = SendA; SendA; ...; SendA (6.12)

where the output sequence contains m actions SendA. Let us denote the output sequence

with σP . Then,

dS(EIS(σ), E(σP )) =

dS(EIS(SendN; SendA; SendA; SendN; ...; SendA), EIS(SendA; SendA; ...; SendA)) =

dS(EIS(SendA; SendA; ...; SendA), EIS(SendA; SendA; ...; SendA)) = 0

Therefore we conclude that

∀σ ∈ Σ∗ : (dS(σ, σP ) ≤ δ ⇒ dS(EIS(σ), EIS(σP )) = 0 ≤ ν) (6.13)

where ν is an arbitrary positive number, and we can pick any δ, this statement holds for

all δ.

However, we get a different result if we use Levenshtein distance dL. Since we suppress

all the actions SendN, the distance between the outputs of EIS(σ) and EIS(σ′) will not

be 0, but rather will be equal to the distance between the original sequences σ and σ′.

Now let us consider an enforcement mechanism E described in case 2). Any tentative

execution sequence of the form σ = SendN; SendA; SendA; SendN; ...; SendA with k actions

SendN and m actions SendA. We shall consider Levenshtein distance dL in this example.

Tentative sequence σ is transformed as follows by E:

E(σ) = E(SendN; SendA; SendA; SendN; ...; SendA) =

(Anonym; SendA); SendA; SendA; (Anonym; SendA)...; SendA

where the output sequence contains k actions Anonym and k +m actions SendA.

The biggest distance between the outputs of an enforcement mechanism in this exam-

ple is 2k. Assume that we compare the tentative execution σ with k actions SendN and m

actions SendA to a legal execution σP with only m actions SendA. Then, dL(σ, σP ) = k.

Our enforcement mechanism substitutes every SendN with Anonym; SendA, wich means
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Table 6.2: Properties of enforcement mechanism.

Name Pre-Condition Post-Condition

Soundness for every trace the output is always some

valid trace

Transparency if input is a valid trace output is the same valid trace

Bounded Map there is one valid trace such that output

is always within ε from that trace

Boundedness output is always within ε from some valid

trace

Conditional

Boundedness

if input is within δ

from some valid trace

output is within ε from some valid trace

Predictability if input is within δ

from a valid trace

output is within ε from the same valid

trace

that E(σ) contains k actions Anonym and k+m actions SendA, hence dL(E(σ), E(σ′)) =

2k.

Notice that E(σ) always contains some actions Anonym and some actions SendA, hence

this mechanism will always enlarge the tentative execution σ by k elements, whenever σ

contains k actions SendN. Therefore, we can conclude that for a given ε we can always

find δ = ε/2, so the enforcement mechanism discussed above is predictable.

6.1.5 Discussion

Table 6.2 shows all the notions so far and the new notion of predictability. The main dif-

ference is that predictability has a pre-condition and post-condition that compare invalid

traces to the same valid trace.

Limitations

An apparent limitation of our work is that we don’t deal with infinite traces. We have

actually considered some mathematical functions over infinite traces from [27] but we

found a practical obstacle: the end of the fiscal year effectively terminates any trace in

the eyes of our stakeholders.

Let us discuss an example of a natural distance from [27] that has a clear mathematical

intuition for our domain and allow to obtain finite numbers when comparing infinite traces.

We can use an economic approach and consider the discounted distance that discounts
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the remote differences in the sequence :

Definition 6.1.10 The discounted distance between two infinite traces is a number cal-

culated using a total function dD : Σω × Σω → N, such that

dD(σ, σ′) =


|σ| if σ′ = ·
|σ′| if σ = ·
dD(σa, σ

′
a) if σ = aσa and σ′ = aσ′a

1 + 1
k
dD(σa, σb) if σ = aσa and σ′ = bσb and a 6= b

(6.14)

In this definition k ∈ R, k 6= 0 is a discounting factor.

The first function can be acceptable from the perspective of a risk manager as later

events have less risk of being detected or of having consequences within the year. It is

less acceptable for doctors: a wrong drug is a wrong drug, no matter if delivered at the

beginning or the end of the fiscal year.

At the end the only acceptable metrics boils down to considering what happens during

a limited slot and project it to infinity. But then we could simply consider the finite slot.

Hence, the definition of mathematically simple and meaningful metrics for infinite traces

is still open for us (assuming we should consider them at all).

Sequence alignment in bioinformatics

In bioinformatics the comparison of two sequences of elements is called alignment. Se-

quence alignment compares sequences like DNA or RNA and identifies regions of similarity

that may be a consequence of functional, structural, or evolutionary relationships between

the sequences [56].

There is a large variety of alignment methods in bioinformatics. Exact alignment

methods done by dynamic programming are using constants of functions costs to the

following events: insertion, suppression, replacements and also matching between the two

elements of sequences. In these methods the distance between the sequences is a similarity

score between them (the higher the score, the better is matching). Another group of

alignment methods, called hybrid methods are used in cases when the downstream part

of one sequence overlaps with the upstream part of the other sequence. This case is not

useful in enforcement theory because we compare a valid sequence with invalid sequence

that contains some errors.

Suppression, replacement and even Levensein distance between the sequences is not

used in bioinformatics because these distances are purely syntactical (the cost of sup-

pressing one element of the sequence is exactly the same as the cost of suppressing any
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other element). In practice, to compute the similarity between two sequences like DNA

or RNA, either exact or hybrid methods are used with costs or functions that have some

semantics (for example, according to what has already been observed and statistically

measured between the organism(s) from which the sequences come from).

Other definitions of distances

So far we have used syntactical distances in our work. This approach is useful in case

when suppressing or replacing one action in the execution sequence has the same cost as

suppressing or replacing any other action. Our work can be extended using the constants

of functions costs assigned to actions. For example, in case of execution traces of business

processes, the risk manager can assign the costs to the action of her business process that

represent the risk associated with this action. In general, we think that it is possible to

assign costs to the actions in the execution trace depending on the context of the target

system, and we consider it one of the most natural extensions of our work.

As a very recent follow-up work, Banescu and Zannone [5] have proposed to use process

fitness metrics to assess the degree of compliance of an audit trial with a process model.

The authors revise the definition of Levenshtein distance with the metric Φ, representing

the severity of infringements. Given an element of a tentative execution sequence a and an

element of a valid trace b, Φ(a, b) defines the severity of the infringement that a happened

instead of b. Φ(a, b) depends on

• the reputation of the user performing the task a,

• the semantic distance between the task which is actually executed (task a) and the

task defined in the process specification (task b),

• is the semantic distance between the role of the user executing the task a and the

role associated to the task b in the specification, and

• the penalty due to unauthorized access to data during the execution of a task a.

The authors proposed to revise the Levenshtein distance as follows:

dΦ
L(σ, σ′) =



Φ(·, b) + dΦ
L(σ, σb) if σ = · and σ′ = bσb

Φ(a, ·) + dΦ
L(σa, σ

′) if σ′ = · and σ = aσa

dΦ
L(σa, σ

′
a) if σ = aσa and σ′ = aσ′a

Φ(a, b) +min{dΦ
L(σa, σb), if σ = aσa and

dΦ
L(aσa, σb), d

Φ
L(σa, bσb)} σ′ = bσb and a 6= b

(6.15)
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This revised notion of Levenshtein distance can be one of the choices of the future

extensions of our work, where the severity of infringement reflected in the distance can

distinguish better between different enforcement mechanisms.

Future direction

One future direction can be the analysis of existing mechanisms to identify which one is

predictable. The practically interesting question is whether an ε for predictability can be

extracted from a security policy expressed as an automaton.

The second issue revolves around edit automata as an enforcement mechanism and the

characterization of predictable policies. A key question is whether policies of a certain form

do have always (or never) have predictable enforcement mechanism. Under some definition

of convexity we could prove that convex policies always have predictable enforcement

mechanisms within a bound fixed on the border, but this definition, while mathematically

sound, is not intuitive enough.

6.2 Enforcement Mechanism for Error-Tolerant Poli-

cies

As we have discussed earlier, security policies describe the desired behavior of the system

or the workflow. The end users of the workflow would insist on the only one policy

describing the official protocol workflow. Hence, when an insignificant deviation from the

official protocol happens, the current runtime enforcer would block the execution of such

process (or a part of it in case of Iterative Suppression automatonfrom Section 5.4). As we

presented in Issue 4, currently there is no generic algorithm that can construct a runtime

enforcer that tolerates user errors.

In order to exit from this impasse, we build upon the works of automatic policy gener-

ation and run-time enforcement to propose a semi-automatic way to generate enforcement

mechanisms that tolerate up to k errors given a texted “default” workflow and a specifi-

cation of a simple list of errors and possibly their corrections.

We present our idea in Figure 6.6. Given a policy P and a maximum number of

errors/deviations k, we construct a subclass of edit automata that can provably enforce

the given policy by tolerating up to k errors and whose behavior is predictable (see

Section 6.1).

Remark 6.2.1 We have an aside but important note on the terminology. Most papers
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Figure 6.6: Original approach and a novel approach to construction of enforcement mech-

anisms.

on enforcement mechanisms use the words “violation” rather than “error”. We will use

them interchangeably. In the course of our many interactions with Hospital San Raffaele

(HSR) 1, it has become apparent that the word “error” is preferred for psychological rea-

sons. The term “violation” implies that a doctor would deliberately ignore the steps of the

protocol and this implies for the end users a deliberate mistrust in their behavior by the

evil security department. Of course doctors (as any user) could misbehave but in order

to gain acceptance of the mechanisms it is preferable to present enforcement as a way to

support honest users rather than to deter malicious users.

6.2.1 Venial and Amendable Errors

By “error” we mean two types of deviations from the desired behavior:

• venial errors are not explicitly “allowed” by the policy, but they are not harmful;

• amendable errors are possible to be corrected at runtime.

Let us explain these notions by means of our example of drug selection process from

Section 3.2. Consider an action of reviewing the therapeutical notes by the doctor. While

such notes are important (as they contain information about allergies, unwanted interac-

tions etc.) they are normally updated very rarely and for frequently used drugs doctors

might “forget” to actually review them and just skip them by closing the window of drug

1This collaboration was done within the EU project MASTER (www.master-fp7.eu)
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Table 6.3: A policy and possible errors

Policy Error Number

of errors

Error

type

Correction

Sequences satisfy-

ing the description

of the process from

running example

Instead of reviewing

therapeutical notes

close the window

k errors

per day

Venial No correction

Research protocol

number is not in-

serted

Can be

corrected

Insert special

number for

audit

prescription instead of clicking the “Done” button. From the point of view of the medical

process this can be considered a venial error : we can tolerate few deviations in which

the logs showed that the doctor clicked “Ignore” rather than reviewed some of the most

commonly prescribed drugs. More technically, a sequence of actions corresponding to this

example is denoted as:

CloseNote: Dis; Tnn; Ctw; Dr; Irpn; Dpres

In this execution sequence instead of reviewing the therapeutical notes (Rtn), the doctor

closes the therapeutical notes window (Ctw).

On the other hand, the doctor should not be allowed to violate the policy systemati-

cally, nor we want to overcomplicate the definition of the policy with all possible ways to

treat venial errors. From a usability perspective we would just like to have a high level

view, for example allowing to close the window (Ctw) instead of reviewing the therapeu-

tical notes (Rtn) k times per day.

The enforcement mechanism we propose in this section does the rest automatically.

It allows the user to make “almost” correct actions only a limited number of times and

only if the errors are venial. We present Table 6.3, that can be made by an expert in the

application domain. This table defines which errors can be allowed and what number of

times.

The second example is inserting the research protocol number in the protocol window.

A doctor has to complete this step in order to proceed with the drug selection. After she

fills in this number, the reimbursement of the drug will be done by the clinical trial funds.

For all the drugs that are not for research the reimbursement later on is done by the

public authority as described in the File F procedure (for more details on this procedure,
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see Section 3.2). However, it might happen that the doctor skips the insertion of this

number. Technically, this would mean that the doctor closes the protocol window (Cpw)

instead of inserting research protocol number (Irpn):

CloseProt: Dis; Tnn; Rtn; Dr; Cpw; Dpres

In this case the drug reimbursement process will be done by the public authority

which cannot be considered a venial error since the whole reimbursement process for this

drug will be wrong (reimbursement will be done by a wrong party). The enforcement

mechanism would therefore need to generate an alert and “correct” the wrong step i.e.

inserting another special number that later will be used during the audit2.

In practice, different doctors can prescribe different drugs to different patients and we

would like to avoid that a local infringement of the policy (e.g. a doctor forgot to click

“I have reviewed the therapeutical notes”) hangs the entire process while enforcing this

policy.

Notice that we need the concept of a global policy (or a “default” protocol) and we

cannot spawn an enforcement mechanism for each doctor and patient pair. At first the

notion of venial errors would be trivial: in the individual prescription process there is at

most one venial error that could be made. Second and foremost, the hospital is liable as

a whole if too many errors are present. If all doctors are allowed one venial error in the

individual prescription, the hospital might end up with all processes without therapeutic

notes checklist and thus the venial error would become a systematic error leading to

potential lawsuits.

So we want to define how the executions where “something locally bad may happen”

can be enforced by tolerating errors. The errors, which are neither venial, nor amendable,

are always present and cannot be fixed in practice. For example, when the process involves

the interactions of an organization with another one; for instance we can refer to the cases

of outsourcing services or to the cases in which some actions are done by external parties.

In practice the policy is given implicitly by describing the workflow corresponding to

legal executions (as we have shown in Example 3.2.1). Let us remind the good executions

according to the drug selection process.

SimpleRun Dis; TnNn; DNr; Dpres,

NoteRun Dis; Tnn; Rtn; DNr; Dpres,

2In the real implementation systems are not allowed to automatically perform certain actions as the
final liability must stay with a human, however they can support the human by suggesting the relevant
correction.
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Table 6.4: Examples of errors and their characteristics

# Deviation e Expected action ex(e) Correction c(e)

1 e a e

2 e a b

3 b a b

Table 6.5: Almost bad traces that can be corrected

# Trace Expected enforcement

1 Dis; Tnn; Ctw; Dr; Irpn; Dpres Dis; Tnn; Ctw; Dr; Irpn; Dpres

2 Dis; Tnn; Rtn; Dr; Cpw; Dpres Dis; Tnn; Rtn; Dr; InA; Dpres

3 Dis; Tnn; Ctw; Dr; Cpw; Dpres Dis; Tnn; Ctw; Dr; InA; Dpres

ResearchRun Dis; TnNn; Dr; Irpn; Dpres,

NoteResearchRun Dis; Tnn; Rtn; Dr; Irpn; Dpres

Recall the examples of illegal executions for this process from Example 6.1.1:

CloseNote Dis; Tnn; Ctw; Dr; Irpn; Dpres,

CloseProt Dis; Tnn; Rtn; Dr; Cpw; Dpres,

CloseNoteProt Dis; Tnn; Ctw; Dr; Cpw; Dpres

For every possible deviation/error from the legal behavior we propose the following

table with the following functions. A function ex(e) defines an expected action in the

legal trace when an error e occurred and a function c(e) defines a correction for an error

e. Assuming that action e is an error and action a is an expected action of the policy,

there are few alternatives summarized in Table 6.4.

Correction c(e) = e (line 1) means that e is a venial error and it can be tolerated by

an enforcement mechanism. A case when c(e) = b (where a 6= b in line 2) means that e is

not a venial error, but there is a possible correction b that is by itself a venial error (line

3).

Let us come back to the example of drug selection process. Table 6.5 contains traces

that can be slightly changed and then be accepted by the end users as good traces. It

can be done in two ways: by allowing a venial error to occur (meaning c(e) = e) and by
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correcting it (c(e) 6= e). Venial error can occur instead of an action defined by the policy

and is “harmless”, so in our example venial error is to close the therapeutical notes window

(Ctw) instead of reviewing the notes (Rtn), formally ex(Ctw) = Rtn and c(Ctw) = Ctw. In

sequence 1 of Table 6.5 the user makes this venial error and so our tolerant enforcement

mechanism does not change the tentative execution of the user.

If an error is not venial, it should be corrected. We show such an example in sequence

2. Closing the protocol number window (Cpw) instead of inserting the research protocol

number (Irpn) is an error that should be corrected, so we can replace this action by

inserting the special number for the audit (InA), formally ex(Cpw) = Irpn, c(Cpw) = InA

and InA is a venial error. When performing the reimbursement of the drug, this number

will mean that the drug is for research but the protocol number inserted will be some

default number. By doing so we assure that the drug reimbursement will be done by a

correct party (clinical trial funds). Sequence 3 contains both types of errors: a venial

error of closing the therapeutical notes window (Ctw) instead of reviewing these notes

(Rtn) and an error of closing the protocol number window (Cpw) instead of inserting the

research protocol number (Irpn). Only error Cpw should be corrected because Ctw is a

venial error.

We propose a quasi-metric based on the replacing distance that counts a number of

venial errors.

Definition 6.2.1 The replacing distance with venial and amendable errors between two

finite traces is number of replacements that should be done in σ to get σ′ whenever the

replacement is a venial or an amendable error. Total function dvaR : Σ∗ × Σ∗ → N ∪ {∞}
is a quasi-metric, such that

dvaR (σ, σ′) =



0 if σ = · and σ′ = ·
dvaR (σa, σ

′
a) if σ = aσa and σ′ = aσ′a

1 + dvaR (σ, σ′) if σ = aσa and σ′ = bσb and a 6= b and

ex(a) = b

∞ otherwise

For example, if we compare a tentative execution sequence CloseNoteProtand a le-

gal sequence NoteResearchRun, we get the following replacing distance with venial and

amendable errors:

dvaR (CloseNoteProt,NoteResearchRun) =

dvaR (Dis; Tnn; Ctw; Dr; Cpw; Dpres,Dis; Tnn; Rtn; Dr; Irpn; Dpres) = 2
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because ex(Ctw) = Rtn, ex(Cpw) = Irpn, and the rest of the actions in these two sequences

are equal.

We will use this distance when we compare a tentative execution sequence with the

legal sequence. For comparing the outputs of an enforcement mechanism we need another

distance, that calculates only venial errors:

Definition 6.2.2 The replacing distance with venial errors between two finite traces is

number of replacements that should be done in σ to get σ′ whenever the replacement is a

venial error. Total function dvR : Σ∗ × Σ∗ → N ∪ {∞} is a quasi-metric, such that

dvR(σ, σ′) =



0 if σ = · and σ′ = ·
dvR(σa, σ

′
a) if σ = aσa and σ′ = aσ′a

1 + dvR(σ, σ′) if σ = aσa and σ′ = bσb and a 6= b and

ex(a) = b and c(a) = a

∞ otherwise

By Ek we denote an enforcement mechanism can tolerate up to k venial errors and

correct amendable errors. For example, Ek can modify the illegal execution sequences in

this way:

Ek(CloseNoteProt) = Ek(Dis; Tnn; Ctw; Dr; Cpw; Dpres) = Dis; Tnn; Ctw; Dr; InA; Dpres

Ek(NoteResearchRun) = NoteResearchRun = Dis; Tnn; Rtn; Dr; Irpn; Dpres

Let us compare these outputs of an enforcement mechanism Ek using the distance

with venial errors:

dvR(Dis; Tnn; Ctw; Dr; InA; Dpres,Dis; Tnn; Rtn; Dr; Irpn; Dpres) = 2

because ex(Ctw) = Rtn and c(Ctw) = Ctw; ex(Cpw) = Irpn and c(InA) = InA, and the rest

of the actions in these two sequences are equal.

We will use the distance dvR to compare the outputs of enforcement mechanisms in

order to ensure that the outputs contain only venial errors, and no amendable errors.

6.2.2 Construction

In this section we present a construction of an enforcement mechanism in a form of edit

automaton. The input to our construction is a default security policy P , a maximum

number of venial errors k and two functions: function ex that defines an expected action

for a given invalid action and function c that defines a correction of this action. We will
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denote these inputs by I = 〈P, k, c, ex〉. The result is an edit automaton that transforms

the bad executions of the system by tolerating up to k errors.

Given the policy P represented as a Policy automaton AP =
〈
Σ, QP , qP0 , δ

P , F P
〉
, we

construct an edit automaton with the states (q, qF )]s,p, where q is a state of a Policy

automaton, qF is the last accepting state before reaching q in some run, s is a number of

venial errors so far (we write s to denote the measure of soundness) and p is a number of

corrections made to the original execution (we write p to denote the measure of precision).

Notice that p is not bounded, it only gets increased when we correct amendable error in

a tentative execution sequence and is reset when the iteration is over.

Similar to Iterative Suppression automaton from Section 5.4, the constructed automa-

ton in this section also recognizes an execution as a sequence of iterations. The idea

behind this construction is that all the good iterations are not changed and all the bad

iterations are corrected if they contain up to k venial errors. Iterations that have more

than k venial errors are suppressed as soon as (k + 1)st error arrives. The amount of

venial errors so far is controlled by the state variable s.

The set of states of edit automaton for a given k is

Q = {(q, qF )]s,p|q ∈ QP , qF ∈ F P , 0 ≤ s ≤ k} ∪ {(q⊥, qF )]k,0|qF ∈ F P}

and an initial state is q0 = (qP0 , q
P
0 )]0,0. We define the semantics of enforcement mechanism

in Figure 6.7. If a tentative execution sequence satisfies the policy, the edit automaton

“copies” the Policy automaton. If the sequence is accepted, it resets the counter of errors

[Good-Out]. If the sequence is not accepted, the automaton keeps counting the errors

[Good-Wait].

Otherwise a tentative execution sequence does not satisfy the policy. So, we check

whether more venial errors are allowed (s < k) and whether there exists a transition

starting at the state q on the expected action ex(e) that does not have to be corrected

(c(e) = e in [Venial-Out] and [Venial-Wait]). If such action has to be corrected, we

use c(e) that defines an appropriate correction (rules [Correct-Out] and [Correct-

Wait]). If none of the previous cases holds, we check whether this action can initiate a

new good iteration from the last visited accepting state qF (rules [Iteration-Out] and

[Iteration-Wait]). If there is no new iteration, we reach an error state (rule [Error]).

Notice that if there are no venial or amendable errors in the tentative execution, this

automaton behaves as an Iterative Suppression automaton. The first 5 rules define the

same semantics as the rules of Iterative Suppression automaton that we have defined in

Figure 5.8.

Even though this construction seems to be standard, it automatically generates an

114



6.2. ENFORCEMENT MECHANISM FOR ERROR-TOLERANT POLICIES

Good-Out
q

a−→ q′ q′ ∈ F P

((q, qF )]s,p, a;σi, σk)
σk;a
↪→ ((q′, q′)]0,0, σi, ·)

Good-Wait
q

a−→ q′ q′ /∈ F P

((q, qF )]s,p, a;σi, σk)
·
↪→ ((q′, qF )]s,p, σi, σk; a)

Error
Otherwise

((q, qF )]s,p, e;σi, σk)
·
↪→ ((q⊥, qF )]k,0, σi, ·)

Iteration-Out
q

a−→ ⊥ qF
a−→ q′ q′ ∈ F P

((q, qF )]s,p, a;σi, σk)
a
↪→ ((q′, q′)]0,0, σi, ·)

Iteration-Wait
q

a−→ ⊥ qF
a−→ q′ q′ /∈ F P

((q, qF )]s,p, a;σi, σk)
·
↪→ ((q′, qF )]0,0, σi, a)

Venial-Out
q

e−→ ⊥ q
ex(e)−−−→ q′ q′ ∈ F P c(e) = e s < k

((q, qF )]s,p, e;σi, σk)
σk;e
↪→ ((q′, q′)]0,0, σi, ·)

Venial-Wait
q

e−→ ⊥ q
ex(e)−−−→ q′ q′ /∈ F P c(e) = e s < k

((q, qF )]s,p, e;σi, σk)
·
↪→ ((q′, qF )]s+1,p, σi, σk; e)

Correct-Out
q

e−→ ⊥ q
ex(e)−−−→ q′ q′ ∈ F P c(e) 6= e s < k

((q, qF )]s,p, e;σi, σk)
σk;c(e)
↪→ ((q′, q′)]0,0, σi, ·)

Correct-Wait

if c(e) = ex(e) then s′ = s else s′ = s+ 1

q
e−→ ⊥ q

ex(e)−−−→ q′ q′ /∈ F P c(e) 6= e s < k

((q, qF )]s,p, e;σi, σk)
·
↪→ ((q′, qF )]s

′,p+1, σi, σk; c(e))

Figure 6.7: Semantics for Error-toleration mechanism constructed from the Policy au-

tomaton.
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enforcement mechanism from the policy P , number of errors k and functions that define

expected actions and corrections.

6.2.3 Formal Properties

Lemma 6.2.1 Given inputs I = 〈P, k, c, ex〉, an enforcement mechanism Ek with the

semantics from Figure 6.7 is transparent:

∀σ ∈ Σ∗ : P̂ (σ)⇒ Ek(σ) = σ (6.16)

Proof. For every sequence σ that satisfies the policy P , there exists an accepting run

in the policy automaton AP . Therefore, only rules [Good-Wait] and [Good-Out] are

used and the whole sequence σ is kept in the memory and is output upon reaching an

accepting state of the Policy automaton. Hence, Ek is transparent. �

Lemma 6.2.2 Given inputs I = 〈P, k, c, ex〉, an enforcement mechanism Ek with the

semantics from Figure 6.7 for every iteration σP ∈ P is such that

∀σ ∈ Σ∗ : (dvaR (σ, σP ) ≤ k ⇒ dvR(Ek(σ), Ek(σP )) ≤ k) (6.17)

Proof. From the definition of replacing distance with venial and amendable errors it

follows that dvaR (σ, σP ) ≤ k means |σ| = |σP | and among all indices 0 < i ≤ |σ| there

are up to k indices i1, ...in (n ≤ k) such that for all 0 < j ≤ n: σ[ij] 6= σP [ij] and

ex(σ[ij]) = σP [ij]. For all the other indices l, we have σ[l] = σP [l].

Therefore, for the actions σ[i1], ..., σ[in] one of the rules [Venial-Out], [Venial-

Wait], [Correct-Out] or [Correct-Wait] holds. Since ex(σ[ij]) = σP [ij], there is

always a transition on ex(σ[ij]) in the Policy automaton and it’s always true that s < k

since there are only up to k actions in σ that are different from σP .

For all the other indices l different from i1, ..., in we have σ[l] = σP [l]. Hence, only

rules [Good-Out] or [Good-Wait] will be used.

So all the rules, where the action of σ is transformed to another action, will be applied

up to k times. Therefore, for every iteration σP (that by definition brings a Policy

automaton to an accepting state) every sequence σ such that dvaR (σ, σP ) ≤ k will be

transformed to a sequence Ek(σ), such that dvR(σ,Ek(σP )) ≤ k. Then, according to

Lemma 6.2.1, Ek(σP ) = σP , therefore theorem is proven. �

Theorem 6.2.1 Given inputs I = 〈P, k, c, ex〉, an enforcement mechanism Ek with the

semantics from Figure 6.7
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Table 6.6: Errors and their characteristics for drug dispensation process

Deviation e Expected action ex(e) Correction c(e)

The doctor does not review

the therapeutical notes (Ctw)

The doctor reviews ther-

apeutical notes (Rtn)

The doctor does not re-

view the therapeutical

notes (Ctw)

The doctor does not insert

the research protocol number

for the research drug (Cpw)

The doctor inserts the re-

search protocol number

(Irpn)

Insert a special number

for auditing (InA)

• is transparent: ∀σ ∈ Σ∗ : P̂ (σ)⇒ Ek(σ) = σ,

• is predictable within k – for every iteration σP ∈ P :

∀ν ≥ k : ∃δ > 0 : ∀σ ∈ Σ∗ : (dvaR (σ, σP ) ≤ δ ⇒ dvR(Ek(σ), Ek(σP )) ≤ ν) (6.18)

Proof. Given enforcement mechanism Ek is transparent according to Lemma 6.2.1, it

is predictable since for every ν ≥ k there exists δ = k such that

∀σ ∈ Σ∗ : (dvaR (σ, σP ) ≤ k ⇒ dvR(Ek(σ), Ek(σP )) ≤ k ≤ ν)

according to Lemma 6.2.2 �

6.2.4 Enforcement of Drug Selection Process while Tolerating

Errors

Suppose k = 2 and the policy P represents a “default” protocol for a drug selection

process from Section 3.2. The functions for expected actions and corrected actions are

shown in Table 6.6.

Let us show how the illegal execution sequences for this process are modified by an

enforcement mechanism Ek constructed following the semantics from Figure 6.7.

The first sequence CloseNoteProt= Dis; Tnn; Ctw; Dr; Cpw; Dpres contains one venial

error: closing window action Ctw instead of reviewing therapeutical notes Rtn; and one

amendable error: closing a protocol window Cpw instead of inserting the research protocol

number Irpn.
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When we compare this tentative execution sequence and a valid sequence NoteRe-

searchRun = Dis; Tnn; Rtn; Dr; Irpn; Dpres, we have

dvaR (CloseNoteProt,NoteResearchRun) = 2

since ex(Ctw) = Rtn and ex(Cpw) = Irpn.

An enforcement mechanism Ek tolerates the venial error and corrects an amendable

error, so it modifies the sequence CloseNoteProt as follows:

Ek(CloseNoteProt) = Ek(Dis; Tnn; Ctw; Dr; Cpw; Dpres) = Dis; Tnn; Ctw; Dr; InA; Dpres

Now let us find the distance between the outputs of Ek given these two sequences:

dvR(Ek(CloseNoteProt), Ek(NoteResearchRun)) =

dvR(Dis; Tnn; Ctw; Dr; InA; Dpres,Dis; Tnn; Rtn; Dr; Irpn; Dpres) = 2

since ex(Ctw) = Rtn, c(Ctw) = Ctw, ex(InA) = Irpn and c(InA) = InA.

Notice that the behavior of Ek described in the example above corresponds to the

expected behavior that we described in Table 6.5.

6.2.5 Enforcement of an Anonymization Policy

Here we discuss one possible enforcement of an anonymization policy introduced in Ex-

ample 5.4.2. Recall that this policy allows only anonymized personally identifiable data

(pid) leave the system (corresponding pattern SendA∗).

In Section 5.4.5 we noticed that there is one more way to enforce anonymization policy

except for those provided in that chapter. We noticed that whenever a system attempts

to send non-anonymized pid, the enforcement mechanism can potentially substitute this

event to anonymization action followed by sending of previously anonymized data.

This modification corresponds to a case of amendable error: sending a non-anonymized

pid event SendN is an error, that is not allowed by the policy, however, it can be amended

by substituting SendN to a sequence of events Anonym; SendA. We can define a correction

function c(SendN) = Anonym; SendA, and use our Error-toleration mechanism automati-

cally constructed from a security policy SendA∗. For an action SendN the expected action

will be defined by a function ex(SendN) = SendA, and hence all the actions SendN will be

substituted by Anonym; SendA according to the rule Correct-Out from Figure 6.7.
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6.2.6 Discussion

In this section we used one assumption that k exists. We have made such conclusion after

several discussions with our partners from Hospital San Raffaele (HSR) in Milan, Italy.

According to these discussions, k exists, but it is not a single number for all the business

processes in the hospital, all the doctors and for all the years. In fact, it depends on a

number of parameters. Our discussions with HSR leads to a conclusion that the head of

the pharmacists and risk manager can agree on a particular k. For example, k can be

a number that depends on a particular doctor, a year, a particular business process, a

patient and a particular drug.

Our model considers one k and it is an abstraction of the reality that we have observed.

This is one of the assumptions we took based on our experience. In general case and in

other case studies, other assumptions can be made and they can influence the way the

enforcement of the security policies should be done. For example, in some legal system,

laws may not be specified very precisely to leave room for interpretation.

Let us come back to our original assumption about existence of k. On one hand,

specifying one policy and tolerating errors is easier to understand by users than the class

of situations in the legal system, where users would invite experts to “translate” the

meaning of this class of rules. On the other hand, specifying one policy and tolerating

errors is a particular case of the class of situations.

6.3 Summary

We have made two important contributions in this chapter.

First, we have discussed how to go beyond the (only) two classical properties used

to evaluate an enforcement mechanism: soundness and transparency. We have gradually

defined several notions that could describe predictable behavior and checked them against

the industrial case study on e-Health. The idea behind predictability is that there are “no

surprises on bad inputs”. In this way we have addressed Issue 3.

Second, we have addressed Issue 4 by constructing in a semi-automatic way an en-

forcement mechanism that can tolerate up to k errors given a “default” policy and a

specification of a simple list of errors and possibly their corrections.

We distinguished between two types of errors: venial and amendable errors. The

first group are simply not critical while the second group represents errors that can be

corrected. There is always yet another kind of actions called observable actions, that

cannot be changed but only observed. In order to avoid what auditors call ‘systematic
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errors” we limit the number of errors that the enforcement mechanism can tolerate.
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Chapter 7

Conclusions

This thesis has addressed several problems of runtime enforcement theory,

starting from the gap between the security policies one can write and the en-

forcement mechanisms built for them, finishing with constructing enforcement

mechanisms that can tolerate user errors. In this final chapter of the thesis

we summarize our primary contributions that improve the state of the art in

runtime enforcement theory.

We have presented a number of challenges in runtime enforcement theory in Sec-

tion 1.2. This section shows how all these challenges have been met by our contributions.

Classification of enforcement mechanisms We addressed the first challenge of

this thesis (Issue 1) by investigating relations between different kinds of edit automata.

As a result, we have discovered that what makes them different is not what they do when

an execution is valid (because nothing should happen according to transparency), but

what actually happens when an execution is invalid. The results of this contribution have

been published in [12, 14].

Automatic construction of enforcement mechanisms and iterative proper-

ties To the best of our knowledge, the state-of-the-art literature does not propose an

automatic construction of an enforcement mechanism from a given security policy (Is-

sue 2). In this thesis we provided several algorithms to construct an edit automaton

from a security policy represented as a Policy automaton (an automaton that combines

the acceptance conditions of a finite-state automaton and a Büchi automaton). We first

followed the idea of a construction found in the proof of Theorem 8 from [7], as a result

we obtained a particular kind of edit automata, that we call Longest-valid-prefix automa-
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ton, because it always outputs the longest valid prefix of the given tentative execution

sequence.

We also propose a construction of another particular kind of edit automaton that

is able to enforce a special kind of security properties in a more acceptable way than

it is done by a Longest-valid-prefix automaton. This new mechanism is called Iterative

Suppression automaton, it suppresses illegal parts of the invalid execution.

We have further investigated the class of policies enforceable by Iterative Suppression

automata and found that they are capable of enforcing a new class of properties called

iterative properties. We have also established a relation between iterative properties and

safety, liveness and renewal properties.

We showed the difference between the Longest-valid-prefix automaton and the Iter-

ative Suppression automaton by means of examples, representing simple policies and a

policy from our industrial case study. The results of this contribution have been published

in [17, 15].

Predictability We have found that there is a gap in the theory of runtime en-

forcement: two enforcement mechanisms can effectively enforce (i.e., while being sound

and transparent) a given security policy in completely different ways. In Issue 3 we have

stated that the notions of soundness and transparency are not sufficient.

We have proposed a new notion that characterizes the behavior of enforcement mecha-

nisms when they transform bad executions. This notion called predictability complements

the notions of soundness and transparency. We have presented several examples of pre-

dictable and not predictable enforcement mechanisms for our main case studies in this

thesis. The results of this contribution have been published in [16].

Error-toleration We have addressed Issue 4 by constructing in a semi-automatic

way an enforcement mechanism that can tolerate up to k errors. Given a “default” policy,

that describes a predefined behavior of the system, and a specification of a simple list of

errors with their possible corrections, we propose a novel construction of edit automata.

We have proven the formal properties of this kind of edit automata and explained how

this enforcement mechanism can enforce a “default” policy from our industrial case study.

The results of this contribution have been published in [13].

In summary, solutions to all the problems specified in this thesis are given. By the

main contributions indicated above, we have presented a number of improvements upon

the state of the art. Our contribution on the classification of enforcement mechanisms
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explains the gap in the theory of runtime enforcement; our construction of enforcement

mechanisms and error-toleration provides a new approach to make the theory of runtime

enforcement more constructive; finally, our notion of predictability proposes to make the

theory of runtime enforcement more predictable.
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[41] Joseph A. Goguen and José Meseguer. Security policies and security models. In

IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[42] Dieter Gollmann. Computer security (2. ed.). Wiley, 2005.

[43] G. Le Guernic. Confidentiality Enforcement Using Dynamic Information Flow Anal-

yses. PhD thesis, Kansas State University, 2007.

[44] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A. Schmidt.

Automata-based confidentiality monitoring. In Proceedings of the 11th Asian Com-

puting Science Conference (ASIAN’06), volume 4435, pages 75–89. Springer-Verlag

Heidelberg, 2006.

[45] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability classes for enforce-

ment mechanisms. ACM Transactions on Programming Languages and Systems,

28(1):175–205, 2006.

[46] R. Khoury and N. Tawbi. Corrective enforcement of security policies. In Proceedings

of the 7th International Workshop on Formal Aspects in Security and Trust, Lecture

Notes in Computer Science, pages 176–190. Springer-Verlag, 2010.

[47] R. Khoury and N. Tawbi. Using Equivalence Relations for Corrective Enforcement of

Security Policies. In Proceedings of the 5th International Conference, on Mathemati-

cal Methods, Models, and Architectures for Computer Network Security, volume 6258

of Lecture Notes in Computer Science, pages 139–154. Springer Berlin Heidelberg,

2010.

[48] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Computational

analysis of run-time monitoring: Fundamentals of java-mac. Electronic Notes in

Theoretical Computer Science, 70(4):80 – 94, 2002. Proceedings of the International

Workshop on Runtime Verification (FLoC Satellite Event).

[49] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions

on Software Engineering, SE-3(2):125–143, 1977.

129



BIBLIOGRAPHY

[50] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and re-

versals. Soviet Physics Doklady, 10(8):707–710, 1966. An English translation of the

“Physics Sections” of the Proceedings of the Academy of Sciences of the USSR.

[51] J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies.

ACM Transactions on Information and System Security, 12(3):1–41, 2009.

[52] J. Ligatti and S. Reddy. A theory of runtime enforcement, with results. In Proceedings

of the 15th European Symposium on Research in Computer Security, volume 6345 of

Lecture Notes in Computer Science, pages 87–100. Springer-Verlag Heidelberg, 2010.

[53] D. Marino, J.-J. Portal, M. Hall, C. Bastos Rodriguez, P. Soria Rodriguez, J. Sobota,

J. Miksu, and Y. Dwi Wardhana Asnar. Master scenarios. Public Deliverable of EU

Research Project D1.2.1, MASTER- Managing Assurance, Security and Trust for

Services, Report available at www.master-fp7.eu, 2008.

[54] F. Martinelli and I. Matteucci. Through modeling to synthesis of security automata.

In Proceedings of the Second International Workshop on Security and Trust Manage-

ment, volume 179 of Electronic Notes in Theoretical Computer Science, pages 31–46.

Elsevier Science Publishers B.V., 2007.

[55] I. Matteucci. Automated synthesis of enforcing mechanisms for security properties

in a timed setting. Electronic Notes in Theoretical Computer Science, 186:101–120,

2007.

[56] David W. Mount. Bioinformatics: Sequence and Genome Analysis, Second Edition.

Cold Spring Harbor Laboratory Press, 2nd edition, 2004.

[57] A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and T. Walter. Mechanisms for

usage control. In Proceedings of ACM Symposium on Information, Computer and

Communications Security (ASIACCS’08), pages 240–244. ACM Press, 2008.

[58] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communication, 21(1):5–19, 2003.

[59] F.B. Schneider. Enforceable security policies. ACM Transactions on Information

and System Security, 3(1):30–50, 2000.

[60] R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D.C. DuVarney. Model-

carrying code: a practical approach for safe execution of untrusted applications. In

130



BIBLIOGRAPHY

Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages

15–28. ACM Press, 2003.

[61] C. Talhi, N. Tawbi, and M. Debbabi. Execution monitoring enforcement under

memory-limitation constraints. Information and Computation, 206(2-4):158–184,

2007.

[62] Mahesh Viswanathan. Foundations for the Run-time Analysis of Software Systems.

PhD thesis, University of Pennsylvania, 2000.

[63] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.

Journal of Computer Security, 4(2-3):167–187, 1996.

[64] D. Yun, A. Chander, N. Islam, and I. Serikov. Javascript instrumentation for browser

security. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, pages 237–249. ACM Press, 2007.

131


	Introduction
	The Importance of Execution Monitoring
	Problem Statement
	Contributions
	Classification of Enforcement Mechanisms
	Automatic Construction of Enforcement Mechanisms and Iterative Properties
	Predictability
	Error-toleration
	Other Contributions

	Structure of the Thesis

	State of the Art
	Systems, Policies and Properties
	Hyperproperties

	Runtime Enforcement Mechanisms as Sequence Recognizers
	Security Automata
	Shallow History Automata
	Computational power of Execution Recognizers

	Runtime Enforcement Mechanisms as Sequence Transformers
	Edit Automata
	Bounded History Automata
	Synthesis of Enforcement Monitors
	Generic Enforcement Monitors 
	Enforcement Mechanisms for Usage Control
	A (hidden) assumption

	Runtime Enforcement Mechanisms for Information Flow Security
	Static Information Flow Analysis
	Dynamic Information Flow Analysis

	Summary

	Concrete Problems of Runtime Enforcement
	A Simple Example from the Literature
	Market Policy
	Possible Executions
	Problems in Enforcement

	A Case Study from Industry
	Drug Dispensation Process
	Possible Executions
	Problems in Enforcement

	Summary

	Classification of Properties and Mechanisms
	Notations
	Classification of Security Properties
	Formal Definitions of Security Properties
	Relations Between Security Properties

	Classification of Enforcement Mechanisms
	A Model of Enforcement Mechanisms
	A New Classification of Edit Automata
	Relations between the Edit Automata Classes
	Discussion

	Summary

	Construction of Enforcement Mechanisms
	Additional Notations
	Property Representation
	Longest-valid-prefix Automata
	Construction
	Formal Properties
	Enforcement of the Market Policy

	Iterative Suppression Automata
	Construction
	Formal Properties
	Enforcement of the Market Policy
	Enforcement of the Drug Selection Process
	Enforcement of an Anonymization Policy
	Discussion

	Summary

	Predictable Enforcement and Error-Toleration
	Predictability of Enforcement
	Metrics and Distances
	From Sound to Bounded Enforcement Mechanisms
	Predictability
	Examples of Enforcement Mechanisms
	Discussion

	Enforcement Mechanism for Error-Tolerant Policies
	Venial and Amendable Errors
	Construction
	Formal Properties
	Enforcement of Drug Selection Process while Tolerating Errors
	Enforcement of an Anonymization Policy
	Discussion

	Summary

	Conclusions
	Bibliography

