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 In this thesis we deal with the organization of the memory that encodes the knowledge 

about two arithmetic operations: multiplication and addition. The interest about how 

arithmetic operations are performed takes shape in the early history of experimental 

psychology. For example, in the “prehistory” of the experimental psychology, Francis Galton 

studied if “arithmetic may be performed by the sole medium of imaginary smells” (Galton, 

1894). In the early 19th century,  most of the studies on arithmetic were performed in an 

education context, aimed to improve the performance of children that have to learn how to 

solve arithmetic problems (for an historical review see Zbrodoff & Logan, 2005). More 

recently, over the last decades, the researches mainly addressed the nature of the 

representation of the arithmetic knowledge and the cognitive architecture that allows its use. 

The arithmetic knowledge about the simple one-digit addition and multiplication problems 

(e.g., 3×7, 9×8, 4+7, 8+2, etc.) are considered to be encoded in memory structures known as 

“arithmetic facts” (Campbell & Epp, 2005). An arithmetic fact is the memory representation of 

a multiplication or addition problem, so that each problem is encoded in terms of  a specific 

arithmetic fact. For example, the problem 7×3 is encoded as an arithmetic fact in which the 

operands (7 and 3) are associated trough the operation (x) with the result of the problem 

(21). In this thesis we use the idiomatic expression “multiplication facts” when we refer to the 

arithmetic facts that encode one-digit multiplication problems, and “addition facts” for the 

arithmetic facts that encode one-digit addition problems, whereas “arithmetic facts” is used to 

refer to memory that encodes the arithmetic facts without distinguishing between the 

operations. 

 The arithmetic facts memory is a fundamental component of the three main cognitive 

models that describe number processing. The main difference between these models are 

about the kind of representation adopted to store the arithmetic facts. The abstract code 

model (McCloskey, 1992; McCloskey & Macaruso, 1995; Sokol, McCloskey, Cohen, & 

Aliminosa, 1991) assumes that the arithmetic facts are represented and retrieved by means 

of an abstract amodal code. The triple code model (Dehaene, 1992; Dehaene & Cohen, 
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1995) states that the arithmetic facts are encoded and retrieved in a verbal/linguistic format. 

The encoding complex model (Campbell, 1992; 1994; Campbell and Clark, 1988; 1992) 

assumes that different formats (e.g., verbal, Arabic-visual, etc.) contribute to encode the 

arithmetic facts and that in the retrieval process this formats communicate interactively rather 

than additively. 

 The triple code model (Dehaene, 1992; Dehaene & Cohen, 1995) assumes that the 

arithmetic facts are represented in a linguistic format. This hypothesis implies that the 

arithmetic facts are learned by rote memory in a passive way. Obviously, during the 

memorization of the arithmetic facts the verbal repetition of the problem is very important. It 

is common learn multiplication by reciting the problems as a series of fixed expressions 

(phrasal frequent collocations such as book/film titles, poetry verses, idioms, proverbs, etc.) 

like “one time two is two”, “two times two is four”, “three times two is six”, “four times two is 

eight”1, and so on. However, a sequence like “four times two is eight” is more than a simple 

meaningless expression in which the words “four” and “two” have to be associated with the 

word “eight”. These sequences of words, differently from idioms for which the meaning is 

conventional, includes a semantically complex literal meaning that concerns the “conceptual” 

arithmetic relations between the words (“times”, “is”) and the symbol (i.e., the Arabic format 

“1”, “2”, “3”, and so on) that represent the numbers. In the early stages of learning it is 

possible that the children learn multiplication as fixed expressions, like verses similarly to 

poetry, but this rote learning is supported also by the conceptual comprehension of the 

meaning of arithmetic operations. The children are taught what multiplication and addition 

are, which is the relation between multiplication and addition (4×2=4+4), which are their 

properties (e.g., commutative (4×2=2×4), associative (4×2)×3=4×(2×3), and distributive 

4×(2+3)=(4×2)+(4×3)), and so on. Therefore, learning multiplication is more than a simple 

                                                           
1
  This is an example of the 2 table in the English language. In Italian the 2 table has the name of the table in 

first position: “due per uno due”, “due per due quattro”, “due per tre sei”, “due per quattro otto” (“two time 

one is two”, “two times two is four”, “two times three is six”, “two times four is eight  ), and so on. This 

difference is more thoroughly discussed below in the thesis. 
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memorization of expressions or words/symbol association. This complex set of knowledge 

could contribute to organize the arithmetic facts memory, which therefore could be more than 

a simple verbal/linguistic storage. 

 According to the idea that the arithmetic facts memory is organized and shaped by the 

comprehension of the conceptual meaning of the operations, this thesis deals with the role 

that the commutative property of additions and multiplications has in the organization of the 

arithmetic facts memory. The commutative property states that by changing the order of the 

operands the result of the problem does not change. However, even if the result does not 

change, the two problems of a commuted pair (e.g., 7×3 and 3×7, 7+3 and 3+7) are not the 

same mathematical problem. It is not yet clear if in the arithmetic facts memory the 

commuted pairs are encoded as the same problem (in a single arithmetic fact representation) 

or as two different problems (in two separate representations). 

 In Italian 8×3 is learned as “otto per tre” (“eight by three”), whereas in English it is learned 

as “eight times three”. The meanings of the sentences in the two languages are different: 

“otto per tre” means “take eight and multiply it by 3” (8+8+8); “eight times three” means “take 

eight times the number 3” (3+3+3+3+3+3+3+3). Both languages have a way to express the 

multiplication in other way: in Italian “3 volte 8” that perfectly correspond to “3 times 8” can be 

used, as well as in English where “3 by 8” correspond to the Italian “3 per 8”. However the 

linguistic format that suggests the first operand is the base (“3 per 8”) is the preferred one in 

Italian educational system, while in English the preferred expression (“3 times 8”) suggests 

the second operand is the base. This linguistic difference is reflected by the name of the 

multiplication table. In Italian the 2 table is learned as “2 per 1”, “2 per 2”, “2 per 3”, “2 per 4”, 

and so on, In English the 2 table is “1 times 2”, “2 times 2”, “3 times 2”, “4 times 2”, and so 

on. Namely, in Italian the base is linguistically in first position (in “otto per tre” the base is 

“otto”) and the name of the table as well; in English the base is in second position (in “eight 

times three” the base is three) and the name of the table as well. Obviously, both Italian and 

English individuals solve the problems “otto per tre” and “eight times three” relying on the 
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symbolic problem 8×3. However, this linguistic difference, reflected by the education system, 

may induce a difference in the way the symbolic equation 8x3 is semantically interpreted. 

Moreover the order in which the two commuted pairs are learned are different in Italian and 

English in terms of order of the operands. Namely, in Italy 2×9 is learned before 9×2 

(because the former is in the 2 table and the latter in the 9 table), whereas in England 9×2 is 

learned before 2×9 (because the former is in the 2 table and the latter in the 9 table). The 

order in which the arithmetic problems are learned could influence the arithmetic facts 

memory. Since, for each commuted pair, one order of the operands (e.g., 2×9 in Italy) is 

learned before and then more practised than the inverse order (e.g., 9×2), the former could 

have an advantage. In the experiments reported in this thesis we test if such an advantage 

exists. Moreover, we investigate if order preferences are similar or different between Italian 

and English individuals.  

 The remainder of this chapter is organized in five sections. In the first section the models 

that describe the architecture of the arithmetic facts memory and that assume that both 

problems of each commuted pair are stored as arithmetic fact are briefly reviewed. In the 

second section the models that assume that only one arithmetic fact is represented for each 

commuted pair are introduced. In the third section empirical evidence showing that adults 

solve arithmetic problems not only by directly retrieving the result from memory, but also by 

adopting more complex procedures is illustrated. In the fourth section a review of the few 

studies showing that the order of the operands can affect the performance in the solution of 

arithmetical problems is reported. Finally, in the last section the aims of this thesis is 

presented. 
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1.1 MODELS ABOUT THE ARCHITECTURE OF THE ARITHMETIC FACTS 

MEMORY 

 

1.1.1 Counting Models 

 

 The counting models (Groen and Parkman, 1972) constitute one of the first approach to 

the arithmetical cognition. These models were proposed to explain the performance of 

children with simple addition problems. Groen and Parkman (1972) proposed five counting 

models: sum model, left model, right model, max model, and min model. All these models 

assume a main mechanism which requires to add unit by unit the operands to a base, that 

can be zero or one of the two operands. The basic assumption of this models was that the 

children, when they do not yet memorized the arithmetic facts, use counting algorithms to 

solve simple addition problems. The models have been conceived to explain the size effect 

(i.e., the time required to solve a problem is proportional to the size of the problem; e.g., 7+8 

is solved slower than 2+3). In this proposal the response times (RTs) are directly proportional 

to the number of increments needed to complete the counting procedure. The sum model 

states that the counting begins from zero and that the two operands are added unit by unit 

(e.g., 2+3=0(+1+1)(+1+1+1)=5). The RTs for this model are therefore directly related to the 

sum of the operands. The number of increments is in fact equal to the sum of the operands. 

The left model states that children start to count from the right operand and to add unit by 

unit the left operand (e.g., 2+3=3+1+1=5). The RTs in this model are related to the size of the 

left operand which determines the number of increments required to solve the problem. The 

right model is similar to the left model with the exception that the base is the left operand and 

the right operand is added (e.g., 2+3=2+1+1+1=5). In this case the RTs depend on the size 

of the right operand. The max model and the min model state that the base is the smaller 

operand (e.g., 2+3=2+1+1+1=5) and the larger operand (e.g., 2+3=3+1+1=5), respectively. 

Therefore, the RTs are associated with the size of the larger operand only (for the max 
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model) or with the size of the smaller operand only (for the min model). The results of the 

empirical study of Groen and Parkman (1972) showed that the best fit of children RTs was 

given by the min model, which is the most efficient counting procedure. The Authors 

concluded that children naturally learn to use the most efficient procedure to solve addition 

problems, a two-stages procedure that requires a comparison between the sizes of the two 

operands prior to counting. Nevertheless, the counting models were challenged by two other 

facts (Zbrodoff & Logan, 2005; see also Parkman, 1972; Parkman & Groen, 1971). First, tie 

problems (problems in which the same number is repeated two times: 2+2, 3+3, 4+4, and so 

on) were solved faster than all the other problems with similar size (tie effect). If children 

adopt the counting procedures of the min model (e.g., 2+3=3+1+1) the time required to solve 

the tie problems should depend on the size of the smaller operand, but this was not the case. 

Groen and Parkman (1972) suggested that tie problems could be memorized by children 

before other problems and for this reason then were not affected by the size of the operands 

since these were solved by mean of a direct retrieval procedure (that is retrieving the result 

of the problem directly from the memory). A second observation is that the size effect was 

also been found in adults, who are assumed to rely mainly on retrieval procedures and not 

on the use of counting models. The Authors argued that sometimes adults also could use 

non-retrieval procedures that require more time to solve the problem. Despite the historical 

interest in this early attempt to describe the cognitive procedures used to solve arithmetic 

problems during the childhood, it is interesting to note for the present purposes that Groen 

and Parkman (1972) considered order and/or reordering of arithmetic problems as a central 

topic in numerical cognition and already introduced the idea that adults solve arithmetic 

problems not only by using retrieval procedures but also by adopting more complex non-

retrieval procedures. 
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1.1.2 Table Search Model 

 

 Ashcraft and Battaglia (1978) proposed the table search model in which they delineated a 

cognitive architecture for the representation of addition problems in adults based on a 

structure similar to an array. Namely, each row and column of the array represents an 

operand and the result of the problem is the intersection of the row and the column 

representing the operands, see figure 1.1. In this model each operand activates the first node 

of the corresponding row or column and then the activation spreads from this node to the 

others, following the order of the nodes in the structure. For example, the operand 7 

activates the first node (i.e., 8) and then the activation spreads from the node 8 to the node 

9, from 9 to 10, from 10 to 11, and so on. The result node is the only one activated at the 

same time by both a row and a column. The RT required to identify the result is therefore 

directly proportional to the number of steps needed to reach the result node. Contrary to the 

counting models (Groen and Parkman, 1972), the table search model takes into account only 

a memory process. In fact, like the other models discussed below in this section, this model 

does not involve any non-retrieval procedure. 

 The main challenge of this model comes from the neuropsychological studies. In fact, if a 

node is damaged the following nodes cannot receive activation from it and then cannot be 

activated, and the result cannot be identified. For example, the problem 7+4 implies that the 

activation spreads from the node 7 to the node 11 by using the intermediate nodes (i.e., the 

nodes 8, 9, and 10). If the node 9 is damaged the activation cannot be spread to the nodes 

10 and 11. Therefore, a patient unable to solve 7+2 (for which the result node is 9) should 

not be able to solve  the problems 7+3, 7+4, 7+5, and so on, since the memory architecture 

has no way to activate the correspondent result nodes (i.e., 10, 11, 12).  Neuropsychological 

evidence about patients that can solve a large problem even if he/she is not able to solve a 

smaller problem for which the result is in the same row or column (see for example Sokol, 

McCloskey, Cohen, and Aliminosa, 1991), are very difficult to be explained within the frame 
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of the table search model. Moreover, the tie effect cannot be explained by this model, since 

the tie problems require a number of steps proportional to the size of the operands, and thus 

they could not be less time consuming than other problems with similar size. 

 

 

Figure 1.1: table search model (modified by McCloskey et al., 1991). 

 

 

1.1.3 Network Retrieval Model 

 

 The network retrieval model (Ashcraft, 1987) assumes an architecture in which the 

arithmetic facts memory is a network with three sets of interconnected nodes (figure 12). This 

model has been proposed in order to describe the cognitive processing of both 

multiplications and additions. Each of the two operands of a problem activates the 

corresponding operand node in the corresponding set. For example, the problem 7×3 (or 

7+3) activates the node 7 in the set of the first operands and the node 3 in the set of the 

second operands. The third set includes the nodes for the results of the problems. In the 
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previous example, the problem 7×3 (7+3) activates in the result set the node 21 (10). A 

relevant features of this model is that a same result associated with different problems is 

represented by different result nodes. For example, even if both the problems 6×4 and 8×3 

have as result 24, in the set of the result nodes there are two different 24 nodes, one for 

each problem.  

 

 

Figure 1.2: network retrieval model (modified by McCloskey et al., 1991). 

 

 Differently to the table search model, in the network retrieval model each operand is 

directly associated with all its sums or multiples without the mediation of intermediate sums 

or multiples. In the table search models the operand activates the first result node and then 

each result node activates the following one, whereas in the network retrieval model the 

operand activates at the same time all its sums or multiples. For example, given the problem 

7+3, in the table search model the operand 7 activates the node 8, then the node 8 activates 

the node 9, and so on. In the network retrieval model, on the contrary, the operand 7 



11 

 

activates at the same time the result nodes 8, 9, 10, 11, and so on. Nevertheless, the result 

nodes of the network retrieval model are also associated one to each other, that is a result 

node spreads activation to all its neighbourhood (i.e., the result nodes that share an 

operand). For example, the problem 7×3 activates the node 21 and the latter spreads its 

activation to all its neighbourhood, that is the result nodes of the problems like 7×N and N×3 

(i.e., 7, 14, 28, 35, etc. and 3, 6, 9, 12, etc., for the operand 7 and 3 respectively). However, 

a result node (e.g., 21) spreads more activation to the closer neighbourhood (e.g., 14, 28) 

than to the more distant ones (e.g., 35, 42). After the activation spreads from the operands to 

the results and between the results, the most activated result node is selected as the result 

of the problem. Therefore, the RT required to solve a problem depends on the strength of the 

association between the operands and the result nodes. Stronger is the association between 

operands and result, the higher is the activation of the result node and the faster the 

identification of the result is. 

 The size and the tie effects are both explained by means of the different strength of 

association between the operands and the results. The strength of association between the 

operands and the larger results is weaker than the association with the smaller result (e.g., 

the operand node 7 is mode associated with the result node 14 (7×2) than with 56 (7×8)). 

Therefore, since once presented the operands the larger results are less activated than the 

smaller ones, the former require longer RTs than the latter to be selected as the correct 

result of the problem. In the tie problems the association of the operands (e.g., 7×7, 7+7) 

with the result (e.g., 49, 14) is stronger than for the non-tie problems, therefore the result 

nodes of the tie problems are more easily activated and require shorter RTs. The fact that 

some operand–result associations are stronger than others is explained by means of the 

frequency with which the problems occur. Namely, according to the Author (Ashcraft, 1987), 

when the children are taught to solve addition and multiplication, in the textbook small 

problems are more frequent than large problems and tie problems are more frequent than 

non-tie problems. However, the frequency explanation encounter same difficulties if it is 
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considered through the entire life of an adult. In fact, even though the frequency could bias 

the children during the first years of school, it is not clear if a different frequency across 

problems also occurs in everyday life for adults (see McCloskey et al., 1991). 

 The network retrieval model introduces two innovative aspects about the arithmetic facts 

memory. First of all this model states that the arithmetic facts memory is an highly 

interconnected complex memory network. Which node is selected as the result of a sum or of 

a product depends on the dynamic of a spreading of activation inside the memory network. 

Second, some elements of the architecture of the model are shaped by the learning process. 

The strength of the connections between the operands and the result nodes is assumed to 

be modulated by the frequency at which  problems occur, and the connections may be 

reinforced by practicing the problems. 

 

 

1.1.4 Distribution of Association Model 

 

  The distribution of association model (Siegler and Shrager, 1984; Siegler, 1988) states 

that the operands of a multiplication problem are represented together in a single 

representation, which is associated with different result nodes, representing the correct and 

the incorrect results (figure 1.3). However, the strength of the association between the 

problem nodes and the correct results is stronger than the association between problem 

nodes and the incorrect results. For example, if the problem 7×3 is presented the 

corresponding problem node (which include both operands: {7×3}) is activated. This problem 

node is associated with different result nodes (e.g., 14, 21, 28, 18, 24), but the strength of 

association is higher between the problem node and the correct result (e.g., 21) than 

between the problem node and the incorrect results (e.g., 14, 28, 18, 24). The result node 

(correct or incorrect) that exceeds a given threshold level is selected to be produced as the 
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result of the problem. However, if no result nodes exceed the threshold level non-retrieval 

procedures are adopted to solve the problem. 

 

 

Figure 1.3: distribution of association model (modified by McCloskey et al., 1991). 

 

 This architecture is motivated by the assumption that children initially adopt non-retrieval 

procedures (e.g., repeated addition: 7×3=7+7+7) to solve multiplication problems. Each time 

the result is calculated by using a non-retrieval procedure the association between problem 

node and computed result is reinforced, even if the calculation  is wrong. For example, when 

a child uses a repeated addition procedure (7+7+7) to solve the problem 7×3, if the 

calculation is correct the result 21 is associated to the problem node, whereas if he/she 

makes an error in the procedures then the association with a wrong result (e.g., 23 or 24) 

increases. When the association between the problems and the correct (and incorrect) 

results reaches a sufficient unbalance the problem can be solved by means of direct retrieval 

of the result from the memory. In adults the association between problem nodes and result 

nodes is assumed to be so strong that the problems are nearly exclusively solved by means 

of retrieval. 

 The size effect is produced by the different association strength that exists between 

problem nodes and correct/incorrect result nodes. In fact, the non-retrieval procedures are 

more prone to error with large problems than with small ones, and then incorrect results are 

produced more often with large problems than with small problems. Therefore, the 
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association between problems and the incorrect result nodes is stronger for large problems 

than for smalle problems. Since the strength of the association between problem nodes and 

incorrect result nodes is higher for large problems, the time required to overcome a threshold 

and select the correct result is longer for the large problems. On the contrary, the tie effect is 

explained having recourse to the assumption that they are more frequent than non-tie 

problems and then the association between problems and correct result nodes can be more 

strongly reinforced by practice. However, this frequency explanation falls into the same 

criticism discussed above for the network retrieval model. 

 The distribution of association model introduces two interesting ideas. First, the model 

explicitly assumes that adults, when the retrieval procedure fails (i.e., no result nodes exceed 

the threshold level), switch to non-retrieval procedures. The non-retrieval procedures are 

considered to be very infrequent in adults, but if the system fails to identify a result these 

procedures are supposed to support the solving process. In children, instead, the retrieval 

fails more often and then the use of non-retrieval procedures is more common. Second, the 

Authors (Siegler and Shrager, 1982; Siegler, 1988) introduced the idea that the non-retrieval 

procedures adopted during the acquisition of the arithmetic knowledge shape the arithmetic 

facts memory system. In fact, unlike the network retrieval model which assumes that the 

associations between operands and result are simply shaped by the frequency of occurrence 

of problems, the distribution of association model assumes that the organization of the 

arithmetic facts memory is determined by the use of non-retrieval procedure during the 

acquisition of the problems. The strength of association between problem and (correct or 

incorrect) result nodes is in fact established by the outcomes of the non-retrieval procedures, 

that is each time a result is produced as result of a problem, the association between that 

result (correct or incorrect) and the problem node is reinforced. 
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1.1.5 Network Interference Model 

 

 The network interference model (Campbell, 1987a; 1987b; 1987c; 1995; Campbell & 

Clark, 1989; Campbell & Graham, 1985; Campbell & Oliphant, 1992; Graham, 1987) is a 

very complex architecture for multiplication, which assumes different kinds of highly 

interconnected  representations (figure 1.4). 

 

 

Figure 1.4: network interference model (modified by McCloskey et al., 1991). 

 

 Within this architecture each operand node is associated with all the result nodes 

representing its multiples but, unlike the network retrieval model (Ashcraft, 1987), the 

operands of different problems that produce the same result are associated with the same 

result node. Namely, the operands that share a multiple are connected with the same result 

node that represent that multiple. For example, the same result node 24  can receive 

activation from the operands 8 and 3 (3×8=24), and the operands 6 and 4 (6×4=24). 
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Therefore, if the problem 6×8 is presented, both the operand node 6 and the operand node 8 

are at the same time associated with 48 (6×8=48) and 24 (6×4=24, 8×3=24). Considering 

only the connections between operand and result nodes, this architecture cannot distinguish 

between the result nodes that a result of the problem presented (e.g., the result 48 for the 

problem 6×8) and the result nodes that simply are a multiple of both operands (e.g., 24 is a 

multiple of both 6 and 8 even if it is not the result of the problem 6×8). The selection of the 

correct result cannot be to performed only on the basis of the activation that spreads from the 

operands nodes to the result nodes. However, the network interference model assumes that, 

in addition to the connections between the operands and the results, the result nodes are 

also connected to nodes that represent the whole problem. For example, when the problem 

6×8 is presented, besides the nodes that represent each of the two operands, a node 

representing the whole problem ({6×8}) is also activated, and then the result node 48 

receives the activation from both the two operand nodes (e.g., 6 and 8) and the whole 

problem node (e.g., {6×8}). Therefore, the result node 48 can be selected since it receive 

more activation than the result 24 that receives activation only from two nodes (the operand 

nodes 6 and 8). The whole problem nodes assure that the correct result receives more 

activation than the other nodes representing multiples of the operands but that are not the 

result of the problem. The network interference model also assumes that a problem node can 

be connected with both correct and incorrect results (e.g., the problem 6×8 activates the 

correct result 48 but can also activate other results, like 24, 42, etc.). The architecture of the 

network interference model assumes other two kinds of connections. The first kind of 

connections is from the whole problem nodes to magnitude nodes (representing the 

approximate size of the problems) and from the magnitude nodes to the result nodes that are 

included within that size level. For example, the presentation of the problem 6×8 activate the 

corresponding problem node (i.e., {6×8}) and it activates a magnitude node representing the 

size of the problem (e.g., {large}); whereas the problem 3×2 activates the problem node 

({3×2}) and then a different magnitude node (e.g., {small}). The magnitude nodes in turn 
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spread activation to the result nodes and contribute then in the selection of the correct result 

of the problem. The second kind of connections is between the result nodes themselves, like 

in the network retrieval model (Ashcraft, 1987). For example, results that share a digit (e.g., 

24 and 28 share the decade digit “2”) could be associated each other and then could 

mutually spread activation. 

 The selection of the result node to select is therefore determined by the interaction of 

various connections and weights within this complex architecture. Namely, the presentation 

of a problem (e.g., 6×8) activates the operand nodes (e.g., 6 and 8) and the problem nodes 

(e.g., {6×8}), which in turn spread activation to the result nodes (e.g., 48, 24, etc.). Moreover, 

the problem nodes (e.g., {6×8}) spread activation also to the magnitude nodes (e.g., {large}), 

which in turn spread activation to the result nodes (e.g., 48, 54, 56, etc.). Therefore, the 

result nodes receive activation from operands, whole problem, and magnitude nodes. 

Moreover, once activated the result nodes, the activation spreads also between the result 

nodes (e.g., 48 spread activation to 42 because of they share the decade digit “4”), and the 

incorrect result nodes can interfere with and slow down the selection of the correct result. 

 Campbell & Graham (1985) attributed the size effect to the higher frequency of the small 

problems during the childhood. The frequency explanation falls however into the same 

criticism discussed above for the network retrieval model. More recently Campbell (1995) 

proposed another explanation of the size effect based on the activation of the magnitude 

nodes. Starting from the view that the representation of the numbers becomes more 

compressed as their magnitude increases (Dehaene, 1992), Campbell (1995) suggested that 

the magnitude nodes representing large problems could spread activation to more result 

nodes than what the magnitude nodes representing smalle problems do. Namely, the 

magnitude node {large} activates more result nodes than the magnitude node {small}, and 

then the activation of the competitors (incorrect result) and their interferences are higher for 

the large problems than for the small problems. The tie effect is explained by assuming that 

the tie problems have less competitors (incorrect result that are activated) and then less 
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interferences from non-tie problems because the tie problems are stored in a separate 

storage with respect to non-tie problems (Campbell 1995; Campbell, Dowd, Frick, McCallum, 

& Metcalfe, 2011). 

 To resume, the network interference model states that the arithmetic facts memory is an 

highly interconnected system in which the result selected as correct answer depends on the 

integration of different connections (operands to results, whole problems to results, 

magnitude nodes to results, and results to other results) that spread activation each other. 

However, the high complexity of the architecture could be seen as a weakness of the model. 

In fact, since the activation level of the result node that will be selected depends on the 

activation spreading from many other nodes it could be theoretically and computationally 

difficult to determine which connections or node sets affect the performance in the various 

experimental tasks and procedures. 

 

 

1.2 MODELS ASSUMING ONLY ONE ARITHMETIC FACT FOR EACH 

COMMUTED PAIR 

 

 The network retrieval model, the distribution of association model, and the network 

interference model described above share some common assumption about the arithmetic 

facts memory. First, the retrieval of the arithmetic facts is mediated by an associative network 

in which nodes representing the operands (that can be represented individually, like in the 

network retrieval model or in the network interference model, or together, like in the 

distribution of association model or in the network interference model) are connected and 

spread activation to nodes representing the results. Second, both the network retrieval model 

and the network interference model assume that the result nodes are interconnected. In the 

network retrieval model, the result nodes spread activation to all the other result nodes that 

share an operand with it (e.g., the result node 24 (=6×4) spreads activation to the result 
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nodes of the problem 6×N (12, 18, 30, and so on) and N×4 (8, 12, 16, and so on). However, 

the closer the results are the higher the amount of activation spreading is (e.g., the result 

node 24 spreads more activation to 18, 30, 20, and 28 than to 12, 36, 16, and 32). In the 

network interference model the activation spreads between the result nodes that share some 

structural features, like digits in the same decade or unit position (e.g., the result node 24 

spreads activation to the result 28 because of they share the digit “2” in the decade position). 

Third, both the distribution of association model and the network interference model assume 

that the problem nodes can also be associated with incorrect results (e.g., the problem 6×8 

can be associated with the incorrect result 42). Fourth, all the models described above 

assume that the commutative property of both multiplication and addition is not used by the 

cognitive system to organize the representation of the arithmetic facts. In fact these models 

assume that for each commuted pair (e.g., 7×3 and 3×7, 7+3 and 3+7) there are two different 

representations, one for each order of the operands. The three models that will be described 

in this section integrate the commutative property within the arithmetic facts memory. Unlike 

the models of the previous section, these models assume that for each commuted pair there 

is only a single arithmetic fact encoded in memory. However, these models approach 

commutativity in two different way. The identical elements model (Rickard, 2005; Rickard & 

Bourne, 1996; Rickard, Healy, & Bourne, 1994) assumes that “for commutative operations, 

the order of the numbers is not represented. Thus, for example, the two operand orders of a 

multiplication problem map on to the same unitary representation within the cognitive stage” 

(Rickard & Bourne, 1996, p. 1281). The assumption that the order of the numbers (operands) 

is not represented means that any kind of information about the order and the position of the 

operands of the problems is not encoded in the arithmetic facts memory. On the contrary, the 

interacting neighbors model (Verguts & Fias, 2005) and the COMP model (Butterworth, 

Zorzi, Girelli, & Jonckheere, 2001) assume that the arithmetic facts encode information about 

the order of the operands. Both models assume that the arithmetic facts are represented in a 

format that specifies the order of the operands. 
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1.2.1 Identical Elements Model 

 

 The identical elements model (Rickard, 2005; Rickard & Bourne, 1996; Rickard et al., 

1994; see also Campbell, 1999; Campbell, Fuchs-Lacelle, & Phenix, 2006) was proposed to 

explain the positive practise transfer that occurs between commutative operations 

(multiplication and addition), but not between non commutative operations (division and 

subtraction) or between commutative and  non commutative operations (multiplication to 

division, addition to subtraction). Namely, by practicing a multiplication or an addition 

problem (e.g., 7×3, 7+3) there is a positive transfer on the commuted problems (e.g., 3×7, 

3+7). After a training period on a problem (e.g., 7×3 or 7+3), the RTs needed to solve that 

problem (e.g., 7×3 or 7+3) and its commuted (e.g., 3×7 or 3+7) became faster to the same 

extent. Whereas, the practice on a division or subtraction problem (e.g., 21÷7, 10–7) does 

not have any positive transfer on the associated division or subtraction (e.g., 21÷3, 10–3). To 

explain this pattern of data, Rickard and Colleagues (Rickard, 2005; Rickard & Bourne, 1996; 

Rickard et al., 1994) proposed that for multiplication and addition there is only a single 

representation for each commuted pair, whereas for division and subtraction there are two 

different representations for the associated pair. For example, the problem 7×3 (7+3) and 

3×7 (3+7) are represented as a single arithmetic fact, whereas the problem 21÷7 (10–7) and 

21÷3 (10–3) are represented by two distinct arithmetic facts. The identical elements model 

does not make any assumption about the architecture of the arithmetic facts memory 

because it has only the aim to describe which kind of representation are encoded as 

arithmetic facts. For the purpose of this thesis, only the implications of the model for the 

commutative operation (multiplication and addition) are further discussed. For a more 

exhaustive description of the aspects of model that regard the non commutative operations 

see the original articles of Rickard and Colleagues (Rickard, 2005; Rickard & Bourne, 1996; 

Rickard et al., 1994). 
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 Even if the model states that there is only one arithmetic fact for each commuted pair, it 

does not assume that the order of the operands is encoded within the memory system. The 

arithmetic facts encode only the operands, the “conceptual arithmetic operation” (that is the 

kind of operation that has to be performed), and the result. For example, given the problems 

7×3 and 3×7, in the arithmetic facts memory there is a single representation, that is 

{3,7,×,21}2. Therefore, the model predicts that there should be no difference in the RTs for 

the two problems of each commuted pair (e.g., 7×3 vs 3×7). In fact, since the arithmetic facts 

representations do not contain any information about the order of the operands, the process 

that encodes the operands in the representation format used to access to the arithmetic facts 

should not preserve any information about the order in which the operands are presented. 

Any effect of the order of the operands on the performance on solving or verification tasks 

has thus to be explained within this model as due to non-retrieval procedures or at least as 

due to non-retrieval processing stages within of the whole cognitive process that allows to 

perform the task. 

 

 

1.2.2 Interacting Neighbors Model 

 

 Like the identical elements model, the interacting neighbors model (Verguts & Fias, 2005) 

assumes that for each commuted pair there is a single representation in the arithmetic facts 

memory. However, unlike the identical elements model, the interacting neighbors model 

states that the arithmetic facts representations preserve the information about the order of 

the operands. This model has been developed for multiplication and it involves four fields: 

input field, semantic field, decomposition field, and response field (figure 1.5). 

                                                           
2
  In this example the order in which the operands are written inside the brace brackets is only explicative 

and do not represent any information about a order of the operands. Moreover the operation sign (×) does not 

represent the symbol associated with the operation but the “operation” (multiplication in this case) in the 

mathematical sense. 
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 Like in the network retrieval model, the input field is organized with two separated sets of 

nodes, one for each operand. However, unlike the network retrieval model, the operands are 

selected with respect to their size before accessing and activating the node inside the input 

field. Namely, there is one set for the larger operand and one set for the smaller one. For 

example, the presentation of the problem 7×3 activates the node 7 in the larger operand set 

and the node 3 in the smaller operand set. The nodes of the input field activate then the 

semantic field, where the results of the problems are represented. 

 

 

Figure 1.5: interacting neighbors model (modified by Verguts & Fias, 2005). “Max operand” and “Min 

operand” sets of nodes represent in the input field the nodes for the larger and the smaller operand, 

respectively.  

 

 The interacting neighbors model states that in the semantic field only one half of the 

multiplication table is represented. Namely, only the results of the problem in the L×s3 order 

are represented. Moreover, the model assumes that the organization of the semantic field is 

based on the operands table, similarly to the organization described for the table search 

model. For example, if the problem 7×3 is presented the result 21 is activated, but also the 

                                                           
3
  Hereafter the string “L×s” means that the multiplication problems where the first operand is larger than 

the second one (e.g., 7×3); “s×L” means that the first operand is the smaller one; “L+s” means that in the 

addition problem the first operand is the larger one; “s+L” means that the first operand is the smaller one. 
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result 14 and 28 (14=7×2, 28=7x4; these result are close to the correct result in the 7 table) 

are activated. Moreover, it is assumed that the size of the result also affects the activation in 

the semantic field. In the previous example, other possible results of the operation, member 

of other tables, that are close to the result of the specific problem are activated, e.g., 24 

(=6×4) can be activated even if it is not a multiple of neither 7 nor 3. Nevertheless, the 

activation of the correct result (21 in the example) is higher of the activation of the other 

possible results (e.g., 14, 28, and 24). Then, the activation of the result nodes in the 

semantic field spreads to the decomposition field, in which the decade and the unit of the 

result are represented separately. Each result node spreads activation to the digit that 

constitute the result. For example, the result node 21 spreads activation to the node 20 in the 

decades set and to the node 1 in the units set, the node 24 spreads to the node 20 in the 

decades set and to the node 4 in the units set, the node 14 spreads to the node 10 in the 

decades set and to the node 4 in the units set, and so on. Since more results are activated in 

the semantic fields, different decade and unit nodes are activated in the decomposition field. 

Two different processes act in the decomposition field: cooperation and competition. Namely, 

the result nodes 21 and 28 “cooperate” in the decades set because they activate the same 

decade node (20), whereas the result node 14 and 21 “compete” because they activate 

different decade nodes (10 and 20, respectively). Finally, the activation is spread to the 

response field, where the results are holistically represented and the highest activated 

response node (in the previous example the highest activated response node should be 21) 

is selected as the result of the presented problem. 

 With respect to the aim of this thesis, it is relevant to underline two features of the model. 

First, in the semantic field only one half of the problems are represented, that is only one 

arithmetic fact is represented for each commuted pair. Second, in the input field the smaller 

and the larger operands are represented separately, that is the smaller operand of a 

presented problem activates the corresponding node in the smaller operand set, whereas the 

larger operand activates the corresponding node in the larger operand set. According to this 
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architecture, the order and the size of the operands have to be processed before accessing 

to both the input field. In other words, if the problem is presented in the stored order it can 

directly access to the input fields, whereas if it is not in the stored order it need to be 

reordered before to access to the input field. Verguts and Fias (2005) assumed that the 

multiplication facts are represented in the L×s order according to the result of a study of 

Butterworth and Colleagues (Butterworth, Marchesini, & Girelli, 2003), in which the order L×s 

order was solved faster than the s×L order (e.g., the problem 5×2 was solved faster than 

2×5). However, for the interacting neighbors model is not relevant which order is stored, but 

only that each commuted pair correspond to a single arithmetic fact. In fact, the prediction of 

the model are identical regardless to which the stored order is. Despite the assumption than 

only one order is stored and that the operands have to be reordered (when presented in the 

non-stored order) before accessing to the arithmetic fact, the Authors do not assume that the 

order of the operands can affect the performance. In fact, the reordering process “takes 

some time, but the time it takes cannot contribute substantially to the differences between 

problems with different operands” (Verguts & Fias, 2005, p. 5). Nevertheless, given the 

architecture of the model, it must necessarily be assumed that a reordering process exists 

and that this process takes (even if little) some time. 

 

 

1.2.3 COMP Model 

 

 Butterworth and Colleagues (Butterworth et al., 2001) proposed the COMP model (figure 

1.6) to describe how the addition facts are represented and organized in memory. This model 

is based on the observation that children use non-retrieval procedures before being able to 

solve arithmetic problem with the direct retrieval. According to the Authors, the use of non-

retrieval procedures during the acquisition of the arithmetic knowledge shapes the addition 

facts memory so that only the L+s order (e.g., 8+4) is stored as addition fact. In fact, like in 
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the interacting neighbors model, the COMP model assumes that for each commuted pair 

only the L+s order is represented in memory. The L+s order becomes privileged because of, 

“as experience of addition increases, counting on from the larger addend could serve as the 

basis of the organization of facts in memory” (Butterworth et al., 2001, p. 1009).  

 

 

Figure 1.6: COMP model (modified by Butterworth et al., 2001). 

 

 The procedure of starting to count from the larger operand is the most efficient way to 

solve an addition problem when the direct retrieval is not yet available as already proposed 

by the Groen and Parkma (1972) within the frame of counting models, discussed at the 

beginning of this chapter. The L+s order when read left to right is the abstract formal 

structure that in likely to represents the procedure of counting from the larger and thus could 

have a meaning like “take the operand L and add s to it”  (despite formally L+s does not deny 

the possibility to interpret it as the converse). Similarly the s+L order is likely to represent the 

inverse procedure for left to right readers: “take the operand s and add L to it”. Hence, the 

use of the procedure to count from the larger should privilege the L+s order, which could be 
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stored in memory as an addition fact within models that assumes only one order for each 

commuted pair is stored. 

 The COMP model states that the retrieval of addition facts is based on a comparison 

process that identify the relative size of the operands (but for evidence contrary to an 

comparison process see Robert & Campbell, 2008). The architecture of the model assumes 

in fact four stages. In the first stage the operands of the problem are identified and the 

“abstract number identities” are activated. These abstract number identities are 

representations of the cardinal magnitudes of the operands. Once abstract number identities 

are activated, the comparison stage compares them to identify which is the larger and the 

smaller operand (the tie are assumed to be in the L+L order). The output of the comparison 

stage is the representation of the problem in the L+s order (reordered if necessary). In the 

third stage this representation is used to retrieve the result of the problem. Finally, in the 

fourth stage the selected result is used to retrieve the form for which the result has to be 

produced (e.g., the spoken name or the arabic representation). 

 This model does not make any assumption about the internal organization of the 

arithmetic facts system, as for example if the result are associated one to each other or if a 

problem can also activate incorrect results. However, two aspects of this model are relevant 

for the aims of this thesis. First, it assumes that only the L+s order is stored as addition 

arithmetic facts, like for the interacting neighbors model. Since only one order is stored as 

arithmetic fact, it is necessary a reordering mechanism before accessing the result. Second, 

this model assumes that the addition facts memory is organized by the use of non-retrieval 

procedures during the childhood. Namely, the use of non-retrieval procedures reorganizes 

the addition facts memory so that the easier to solve order is the privileged. Therefore, like 

for the interacting neighbors model, the performance should be affected by the order of the 

operands, that is the stored order should be solved faster. 
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1.3 THE ROLE OF THE NON-RETRIEVAL PROCEDURES IN THE ARITHMETICAL 

COGNITION 

 

 The models described so far assume that adults solve multiplication and addition 

problems mainly (or even exclusively) by means of direct retrieval. In fact, these models 

states that only during the acquisition (when the children are learning multiplications and 

additions) the use of non-retrieval procedures is common, whereas skilled children and 

adults use retrieval only to solve the multiplication and addition problems. However, recent 

evidence showed that the percent of use of non-retrieval procedures is wider than it was 

thought previously (Campbell & Austin, 2002; Campbell & Xue, 2001; Grabner et al., 2009; 

Hecht, 1999; LeFevre, Bisanz, Daley, Buffone, Greenham, & Sadesky, 1996a; LeFevre, 

Sadesky, & Bisanz, 1996b; Smith-Chant & LeFevre, 2003; Thevenot, Fanget & Fayol, 2007; 

Zbrodoff & Logan, 2005). 

 LeFevre and Colleagues (Lefevre et al., 1996a) reported evidence that adults solve simple 

one-digit multiplications with a mixture of retrieval and non-retrieval procedures (for similar 

result with addition see LeFevre, Sadesky, & Bisanz, 1996b). The participants in the study 

had to solve one-digit multiplication problems producing verbally the answer. After each trial, 

the participants had to report the procedure they supposed to use to solve the problems. The 

results showed that a noteworthy percent of multiplication problems were solved by means of 

non-retrieval procedures (the percent of use of non-retrieval procedures was 12% and 18.6% 

in the experiment 1 and experiment 2, respectively). The analysis of the non-retrieval 

procedures also showed that the use of these procedures varied according to individual 

differences and problem properties. More skilled adults tended to base their solution more on 

retrieval than less skilled adults (for similar results see LeFevre et al., 1996b; Thevenot et al., 

2007). Moreover, the selection of the procedure was influenced by the kind of problem that 

has to be solved. For example, when solved by using non-retrieval procedures, problems 

with 2 as one of the two operands were often solved by means of rephrasing the problem in 
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terms of a tie addition (e.g., 5×2=5+5=10), the 5-problems were sometimes solved by means 

of table sequence procedures (e.g., 3×5=5, 10, 15), and the large problems were frequently 

solved by means of derived-fact procedures (e.g., 6×9=(6×10)−6=60−6=54). See also 

Campbell & Penner-Wilger (2006) for similar result on the differences in the use of non-

retrieval procedures between large and small problems. 

 LeFevre and Colleagues (LeFevre et al., 1996a) explained the results of their study within 

the context of the Adaptive Strategy Choice Model (ASCM) (Siegler & Shipley, 1995). The 

ASCM model was developed in order to explain the performance of children when they solve 

addition problems. According to this model, the procedure selected to solve a problem 

depends on the probability of success of that procedure has and the strength of association 

between the problem (the operands) and the result. Stronger is the association between the 

operands and the result higher is the probability to use retrieval procedures to solve the 

problem. Furthermore, if the strength of association is weak the use of non-retrieval 

strategies is more likely, and the strategy that is selected depends on the probability of 

success of that specific strategy with respect to others. LeFevre and Colleagues (LeFevre et 

al., 1996a) suggested to extend the ASCM to the adults. In fact, even though the original 

model assumes that the children use a variety of strategies, the prediction of the ASCM is 

that during the development the children switch from a mixture of retrieval and non-retrieval 

strategies to a pure retrieval procedure in the adulthood. However, the assumption that 

adults use exclusively retrieval procedures to solve one-digit problems does not fit with 

evidence supported by the studies in which the participants are required to report the 

strategies they used (Campbell & Austin, 2002; Campbell & Xue, 2001; Hecht, 1999; 

LeFevre et al., 1996a; LeFevre et al., 1996b; Smith-Chant & LeFevre, 2003; Thevenot et al., 

2007). Surely, the retrieval is a very common procedure used by the adults to solve simple 

arithmetic problems. Other procedures, however, are available and can be used in case the 

retrieval fails to identify the result or the individuals habitually rely on non-retrieval procedure 

to solve a particular problem. 
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1.4 THE OPERANDS-ORDER EFFECT 

 

 In the literature there is few evidence that order of operands can affect the way in which or 

the speed at which the cognitive system processes problems of commutative operations. 

This evidence comes mainly from studies on multiplications solution in Chinese population 

(LeFevre & Liu 1997; Zhou, Chen, Zhang, Chen, Zhou, & Dong, 2007). In Western countries, 

multiplication is usually learned by studying the whole table, which typically includes the 

problems from 1×1 to 9×9 in both orders. In the Chinese arithmetic teaching system only one 

half of the table is learned, pupils in fact learn only the problems in the s×L order (e.g., the 

problem 3×7 is learned, 7×3 is not). This peculiarity of the educational system is assumed to 

be the cause of an operands-order effect found in the adult Chinese population (LeFevre & 

Liu, 1997; Zhou et al., 2007). Studies showed that there are behavioural (LeFevre & Liu, 

1997) difference between the two orders of the operands with an advantage for the s×L order 

(e.g., 3×7) compared to the L×s order (e.g., 7×3); in an ERPs study Zhou et al. (2007) have 

shown that non-privileged order elicit a long lasting frontal negativity with respect to the 

privileged one with a very early onset (120 ms). LeFevre & Liu (1997), comparing Chinese 

and Canadian participants, found a clear operands-order effect in the formers and only 

weaker effect in the latters. In fact, the results showed that the Chinese participants solved 

the multiplication problems in the s×L order (948 ms) faster than in the L×s order (978 ms). 

Furthermore, at the end of the experiment when the participants were interviewed, the 60% 

of the Chinese participants (12 on 18) “spontaneously4 reported using a procedure of  

reversing  the digits" (LeFevre & Liu, 1997, p. 56) to solve the problems in the s×L order 

(e.g., they solved the problem 9×6 transforming it in the problem 6×9). The operands-order 

effect was stronger in the reverse group (participants that reported to use reverse strategy) 

than in the non-reverse group (participants that did not reported to use reverse strategy), 66 

                                                           
4
  Italic of the Authors (LeFevre & Liu, 1997). 
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ms and 14 ms, respectively. On the contrary, the Canadian participants showed an 

operands-order effect that varied in size and direction across the various problems. The 

effect was significant only with the problems were one of the operands was 4, 5, or 9 and 

consisted in a vantage for the problems in the L×s order (the mean RTs of the L×s and s×L 

orders were 1.186 ms vs 1.224 ms, 1.093 ms vs 1.152 ms, and 1.369 ms vs 1.418 ms, for 

the 4, 5, and 9 problems respectively). The results of the interviews to Canadians 

participants showed that the operands-order effect was significant only for participants that 

reported to use both retrieval and non-retrieval procedures to solve the multiplication. These 

results cannot discriminate however whether the operands-order effect has to be attributed to 

retrieval procedures or to non-retrieval procedures. In fact, for Chinese participants the effect 

can be due to both the fact that they learn only one half of the multiplication table (i.e., the 

influence of the learning experience on the retrieval process) and the fact that some of them 

explicitly adopt a reversing procedure before retrieval to solve the problems (i.e., the L×s 

problems are solved by reversing the order before retrieval, a procedure that takes some 

time). Similarly, it is not clear whether the effect of the order of the operands in Canadian 

participants was due to the non-retrieval procedure (and the selection of this specific 

procedure among possible others), to the retrieval procedures, or both. The operands-order 

effect could be more evident in the Chinese population because of they are “forced” by the 

educational system to base the acquisition of the one-digit multiplications knowledge mainly 

on the s×L order, and hence the effect can be easily found simple averaging across the two 

operands orders. On the contrary, since the Western populations learn the whole table, any 

putative operands-order effect could be more difficult to detect because the development of a 

preferred order can differ both across problems and participants and thus, by comparing s×L 

and L×s order overall, across problems and/or participants, can easily lead to small or, even 

worst, null results. Despite this, some evidence that the order of the operands can affect the 

performance also in Western populations are provided by a study of Butterworth and 

Colleagues (Butterworth, Marchesini, & Girelli, 2003). In this study, Italian children of the 
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third, four, and fifth grades (8, 9, and 10 years old, respectively) had to perform multiplication 

problems between 2×2 and 6×5. The Authors aimed to verify if one of the two orders of the 

operands were privileged in terms they are solved faster by children. In the Italian 

educational system, unlike England or USA, the name of the table is in first position (e.g., the 

2 table is 2×1, 2×2, 2×3, 2×4, and so on; the 3 table is 3×1, 3×2, 3×3, 3×4, and so on), then 

the s×L order is taught before the L×s order (e.g., 3×6 is learned before 6×3). The Authors 

taken into account two hypotheses about the privileged order. The first hypothesis is that the 

s×L order could be solved faster due to the larger learning experience. In fact, the s×L order 

is learned before and more practised than the L×s order, in according to models that assume 

frequency as a key factor in shaping activation weights within the arithmetic fact memory 

(distribution of association model and network retrieval model, see sections 1.1.3 and 1.1.4 

of this chapter). The second hypothesis is that the privileged order depends on a 

reorganization of the multiplication facts memory when new facts that correspond to the 

commutate of an already learned problem is learned. Moreover, based on the observation 

that the children often use procedures like repeated addition to solve multiplications, the 

privileged order should be the easier to solve with this procedure, that is the L×s order. To 

transform in a efficient way a multiplication in a repeated addition problem, the children must 

consider both the order and the size of the operands. In fact, the repeated addition procedure 

could be faster and easier to solve when the larger operand is in first position. For example, 

given the problems 3×6 and 6×3, the most efficient way to transform them in an repeated 

addition is repeat 3 time the larger operand (6+6+6) independently from the order of the 

operands, and the problem 6×3 could more often suggest the use of the larger operand than 

the problem 3×6. The results showed that the L×s order was solved faster than the s×L order 

(e.g., the problem 5×2 was solved faster than 2×5). Moreover, this operands-order effect was 

significant only for the fourth and the fifth grade, and it was significant for the 2 table, 

marginally significant for the 3 and 4 table, and non significant for the 5 table. In other words, 

the effect emerged only for the older children (the ones for which the Authors assume the 
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reorganization had have more time to shape the memory system) and for the earliest learned 

multiplications (that is, the problems “most susceptible to reorganization”). Butterworth et al. 

(2003) interpreted the effect as produced by a reorganization of the arithmetic facts memory 

due to both the use of the repeated addition procedure and the comprehension by the 

children of the commutative property.  

 

 

1.5 AIMS OF THIS THESIS 

 

 In this chapter we have briefly reviewed the main models that describe the architecture of 

the arithmetic facts memory and the retrieval processes. It was also showed that a 

noteworthy percent of the multiplication and addition problems are solved by the adults by 

means of non-retrieval procedures. Finally, some evidences have been reported that order of 

the operands can affect performance in arithmetic problem solving. 

 Despite the relevance of the commutative property in arithmetic and the important role of 

order assumed by early models of arithmetical cognition (Groen and Parkman, 1972), the 

following development of the field largely neglected the problem by assuming a symmetry 

between commuted pairs. Only in more recent models (i.e., the identical element model, the 

interacting neighbors model, and the COMP model) the problem of order of operands and 

the fact that the commutativity can contribute to shape the arithmetic facts memory is 

considered. Despite this renewed  interest, even models like that of Verguts and Fias (2005, 

interacting neighbors model) claim that an possible reordering process has not effect on the 

performance since the time it requires is very brief. Thus, despite their model assume only 

one order is store for each commuted pair, it is invariant with respect to which of the orders is 

stored. It is possible that this theoretical underestimation of operand order and of the 

cognitive processing of commutative property in general is due to the lack of strong empirical 

evidences. Nevertheless, there are both behavioural (LeFevre & Liu, 1997) and 
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electrophysiological (Zhou et al., 2007) evidences that the order of the operands can 

contribute to the organization of the multiplication facts memory in Chinese population. Some 

evidence show that the order of the operands can affect as well the performance in 

populations that learn the whole multiplication table, that is Canadian adults (LeFevre & Liu, 

1997) and Italian children (Butterworth et al., 2003). 

 The aim of this thesis is to provide new and clear empirical evidences of operand order 

effects. The lack of strong evidence of order effect in processing commutative problems by 

Western population that learn both orders of a commutative operation, can be due to several 

factors: a) the two orders are processed more or less in the same way (e.g. inversion is 

costless as Verguts and Fias assumes); b) the preferred order can differ from a problem to 

the other and the preferred order for each pair can be idiosyncratic (e.g. different for different 

individuals); c) there are systematic preferences in the population but not all problems in the 

table share the same preference of order; d) the effect emerges only with explicit production 

task and not with other simpler tasks used to study arithmetic cognition (e.g. verification task, 

implicit automatic activation of multiples and dividends, etc.). 

 For all these reasons this research started with an experiment where the paradigm was 

chosen in order to maximize the possibility to find any preference of order, both at group 

level and individual level. We chosen a production task (in which the participants have to 

produce the result of presented problems) with a sequential presentation of the operands of 

the problems. The sequential presentation should emphasize the order in which the 

operands are presented. Moreover, we asked to the participants to report the procedures 

they supposed to use when they solved the problems. The procedures reported could 

provide interesting information about the role of the order of the operands in the procedures 

selection. 

 Five experiments were conducted by using various methodologies and by collecting data 

from two different mother language groups. In the first experiment we tested the performance 

on both multiplication and addition of Italian participants. This experiment involved two tasks: 
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a chronometric production task, in which the participants were required to product the result 

of the presented problems; and a self-report production task, in which the participants were 

required to both product the result and to report the procedures they supposed to use to 

solve the problems. The result of this experiment has been used to expand the two 

hypotheses of this thesis and to schedule the following experiment. In the second experiment 

English participants performed exactly the same tasks used in the first experiment. This 

second experiment was conducted to test the possibility that linguistic and cultural 

differences could affect the result we found in the first experiment. In the third experiment we 

adopted a matching task and a new task expressly created to test our second hypothesis 

about the asymmetric activation spreading between the result nodes. However, due to 

methodological troubles we could not test our prediction. In the fourth experiment, we 

adopted a verification task in which the participants had to verify if the presented result of a 

multiplication problem was correct or incorrect. The result of this experiment have been used 

to improve the interpretation of the result of the first experiment and to test the asymmetric 

activation spreading hypothesis. Finally, in the fifth experiment, we adopted the event related 

potentials (ERPs) methodology to investigate the electrophysiological correlated of the 

operands-order effect we found in the previous experiments. 

 Despite the focus of the project is mainly empirical, to efficiently plan and interpret the 

results the models described in this introduction have to be ranked, at least in terms of 

working hypothesis. Clearly, given that our aim is to study possible asymmetries in the 

processing of two problems that constitute a commuted pair, models that consider order has 

to be chosen to describe the phenomena under study. Both the COMP model and the 

interacting neighbors model are considered to develop hypothesis and discuss the results. 

The results of this thesis are discussed in the last chapter in terms of new constrains to 

models of arithmetical cognition, coming from order effects in the processing of one digit 

commutative arithmetical problems. 
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Chapter 2 

 

 

The reorganization of arithmetic facts in memory affects the speed 

of resolution of arithmetic problems: a study of operand order 

effects in Italian and English 
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2.1 INTRODUCTION 

 

 As we have seen in the first chapter a fundamental property of arithmetic problems like 

multiplications and additions is the commutativity, which means that the product is the same 

regardless of the order of the operands. Despite this, the two orders of a commutative pairs 

are mathematically two distinct problems and may be processed differently. Within empirical 

studies the selection and statistical analysis of the experimental stimuli typically consider the 

commuted pairs as the same problem (see for example, Metcalfe, & Campbell, 2011; 

Campbell, & Austin, 2002; Kirk, & Ashcraft, 2001; Smith-Chant & LeFevre, 2003). This 

practice correspond to the assumption, either explicit or implicit, that the order of the 

operands does not affect the performance. 

 Both the interacting neighbors model (Verguts and Fias, 2005) and the COMP model 

(Butterworth et al., 2001) assume that only one order is represented as arithmetic fact for 

multiplication and addition, respectively (see chapter 1). The interacting neighbors model 

assumes that the multiplication facts are represented in the L×s order (e.g., 7×3) and the 

COMP model assumes that the arithmetic facts are encoded in the L+s order (e.g., 7+3). 

Therefore, the operands reordering process is a fundamental component for both models 

that allows to access to the arithmetic facts memory. This reordering process should affect in 

different way the performance on the problems of the commuted pairs. In fact, the retrieval of 

the result for the problem presented in the non-stored order should be more time consuming 

than for the problem in stored order due to the additional reordering process needed to 

access to the arithmetic fact. However, despite the theoretical relevance of the reordering 

process, only very few evidences have been so far collected that the order of the operands 

can affect the performance in multiplication and addition problems (see LeFevre & Liu, 1997; 

Zhou et al., 2007; and chapter 1).  

 The interacting neighbors model and COMP model assume that one-digit additions and 

multiplications are solved by means of retrieval. This very likely to happen for persons that 
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practice arithmetic in everyday life, however, the arithmetic problems can also be solved by 

means of non-retrieval procedure (see chapter 1). Non-retrieval procedures involve the use 

of abstract mathematical procedures, like rules (e.g., N×1=N), derived-fact (7×9=(7×10)−7), 

counting (13+2=13+1+1), repeated additions (5×3=5+5+5), etc. Retrieval and non-retrieval 

procedures are assumed to contribute to produce one of the most known effect in 

arithmetical cognition, that is the problem-size effect. This effect refers to the fact that small5 

problems (e.g., 3×4) are solved faster and are less prone to errors than the larger problems 

(e.g., 7×8). In fact, the problem size effect can be explained by three factors (Campbell and 

Xue, 2001): 1) retrieval procedures are more efficient for small problems than for large 

problems; 2) non-retrieval procedures are more efficient for small than for large problems; 3) 

the use of retrieval procedures (that are generally faster than non-retrieval procedures) may 

be more common for small than for large problems. Clearly the three explanations are not 

mutually exclusive. These factors could influence operands-order effects as well. Namely, 

like for the size effect, retrieval and non-retrieval procedures could concur into generating an 

asymmetry in the performance between the two orders of the commuted pairs. Therefore, the 

operands-order effect might also depend on an asymmetry in the selection of different 

procedures to solve the two orders (one of the two orders could rely on procedures that are 

slower than those used to solve the inverse order).  

 The use of non-retrieval procedures can vary as a function of the structural characteristics 

of a problem (LeFevre et al., 1996a; LeFevre et al., 1996b), that is the size of the problem 

influences the procedure adopted to solve it. In fact, retrieval procedures are generally more 

often adopted to solve small problems, whereas non-retrieval procedures are more often 

used with large problems (see for example LeFevre et al., 1996a; LeFevre et al., 1996b; 

Campbell & Austin, 2002). Therefore, the order of the operands (a structural characteristic of 

the problems) could also influence the selection of the procedures adopted to solve the 

                                                           
5
 Here small problems, differently from divisions or subtractions, refers to both small operands and small 

results, given the intrinsic correlation between size of operands and results for additions and multiplications. 
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problems. In other words, a problem (7×3) and its commuted (3×7) could urge or suggest 

individuals on to select different solving procedures. The different procedures selected to 

solve a problem and its commuted could generate a difference in the latency of response 

times (RTs) between the two orders because of one of the two procedures could be more 

time consuming than the other. 

 Our purpose is to evaluate if the order of the operands can also affect the selection of the 

procedures. For example, the order could suggest to adopt a particular derived-fact 

procedure, that is the inversion of the operands (e.g., to transform the problem 3×7 into the 

problem 7×3). The probability of success of a procedure and the strength of association 

between the operands and the result could in fact be affected by the order of the operands. 

Namely, the probability of success of a procedure and the strength of association could be 

different for the two problems of a commuted pair. For example, one of the two orders could 

make easier to access to the corresponding arithmetic fact than the inverse order. Therefore, 

one order could be stronger associated with retrieval procedure, whereas the other order 

could be urge the selection of slower non-retrieval procedures. 

 The aims of the experiment presented in this Chapter are: 1) to test if the order of the 

operands can affect the performance in a result production task with addition and 

multiplication problems; 2) to evaluate if the order of the operands can affect the selection of 

the procedures (retrieval and non-retrieval) that allow to solve these arithmetic operations. 

The second goal is not independent from the first one since it could aid in interpreting 

possible operands-order effects found in the RTs.  Differences found in the selection of the 

solving procedures across the two operands order could in fact inform whether the operands-

order effects in the chronometric data is due to retrieval or to non-retrieval procedures. To 

this end, we decided to adopt two production tasks: 1) a chronometric production task (under 

the instruction of both speed and accuracy); 2) a self-report in which the participants had to 

product the result of the problem and report the procedures they used (under only the 

instruction of accuracy). 
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 In a production task participants are usually presented with a problem and have to 

produce the associated result. For example, a participant has to produce the number 42 

when presented with the stimulus “7×6”. The production tasks, unlike the verification tasks 

(that requires to judge whether a presented equation, e.g. “7×6=42”, is true or false), involve 

the full identification of the result of the arithmetic problem (Zbrodoff & Logan, 1990; Zbrodoff 

& Logan, 2000). The verification task could be performed by solely retrieval procedures or by 

recognising of the whole presented equation, given that if the proposed result fits with one of 

the more active result representation a yes/no choice could be done, achieving a rather good 

accuracy, without having selected the result between the more active representations in 

advance to the presentation of the proposed result. Differently, in a production task, the 

explicit selection of the response needs the full identification of the result and this can make 

more likely the implementation of non-retrieval procedures in case the retrieval procedure 

takes too much time. Since our aim was to force the experimental paradigm in order to find 

operands-order effects, that could be due to the selection and/or implementation of non-

retrieval procedures the choice of a production task is favourite with respect to a verification 

task. Therefore, it would be interesting to understand if any asymmetry between the two 

orders, if it exists, is reflected not only on RTs but also on a difference on the procedures 

(retrieval and non-retrieval) that are self-reported by participants after having solved the 

problem. This would indicate that they are aware of a qualitative difference in the solution of 

a problem and its commutate. The procedures used by the participants during a production 

task are in fact typically collected by using a self-report (see for example, Campbell & Xue, 

2001; Hecht, 1999; LeFevre et al., 1996a; LeFevre et al., 1996b). In these studies the 

participants had to product the result of a problem and just after they had to immediately 

report the procedure they suppose they have used to solve that problem. However, this 

methodology has been criticized by Kirk & Ashcraft (2001). In this study the Authors found 

that instructions can significantly affect the procedures that are reported by the participants. 

Retrieval biased instructions induced participants to report retrieval more often, whereas non-
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retrieval biased instruction induced participants to report non-retrieval procedures more 

often. Moreover, Kirk and Ashcraft (2001) found that RTs were also affected by the 

instruction bias, that is participants non-retrieval biased solved the problems slower overall. 

However, some other studies (Campbell & Austin, 2002; Campbell & Penner-Wilger, 2006; 

Smith-Chant & LeFevre, 2003) have showed that, despite any possible biases, the self-report 

holds some validity and thus it can be used to collect information about which procedures the 

participants used. One possibility to avoid the problems associated with the bias in the on-

line self-report is the use an off-line self-report, that is to divide the chronometric and the self-

report production tasks into two different experimental sessions. In the first session 

(chronometric task) the participants have to product the result of the problems just giving the 

standard instruction of a RTs task, e.g. to be “as quick and accurate as possible”, and 

without asking them any report about procedures used; whereas in a second subsequent 

session (self-report task) the same participants have to solve again the problems without any 

time pressure and report, after the solution, the procedure they think they have used. This 

off-line self-report task has the disadvantage that the participants could use a different 

procedure in the chronometric task and in the self-report one, especially given that time 

pressure can induce a strategic difference in the way a problem is solved. On the other side 

the advantage of splitting the two tasks are that both task are more ecological, the 

chronometric task in fact is unbiased with respect to both the experiment aims and instruction 

biases, covering possible criticisms similar to that by Kirk & Ashcraft (2001). The second task 

(self-report) is also more ecological since, independently from how the problem was solved in 

the chronometric task, it  allows the participant, in absence of time pressure, to have time to 

think about which is the way he/she typically solves this problem in everyday life where 

calculations are typically performed without much time pressure and with more attention to 

accuracy. To be more precise, the self-report allows to collect indications about how the 

participants perceive they prefer to solve a given problem in order to gain maximal accuracy. 

For example, a possible use of the self-report data in aiding the interpretation of RTs data 
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would be the following rationale: an absence of asymmetry in the reported procedures across 

the two orders of a problem would be useful to exclude that possible operands-order effects 

found in the RTs can depend on the selection of procedures. If no differences would be 

found in the second session (self-report), possible effects on the first one (chronometric task) 

would be much likely attributed to the speed of retrieval only (i.e. the dynamic of activation of 

the arithmetic facts in long term memory).  

 A second possible interplay between self-report and chronometric data would be that in 

absence on an overall order effect on RTs it is nevertheless possible that idiosyncratic order 

differences exists (e.g. some order for some specific problems are preferred in the population 

or in single participant). In this case the self-reports can be used to perform explorative 

analyses in order to select cells or groups of problems that are reported to be solved with 

specific non-retrieval procedure in an unspeeded, maximal accuracy, task and see if the 

same problems also show effects in the chronometric task. This kind of strategy has been 

already used to define experimental conditions in an fMRI study where physiological data 

were correlated with off-line self reports, showing a greater activation of the left angular gyrus 

when participants reported fact retrieval whereas the non-retrieval procedures were 

associated with a broad activation in the frontal and parietal areas (Grabner et al. 2009). 

 In this study we aimed to test the hypothesis that the order of the operands can affect the 

RTs and/or the selection of procedures. To this end, two experiments were conducted on two 

groups of participants both belonging to populations that learn the whole multiplication table. 

In fact, until now the stronger evidences found regard the Chinese population, that learn only 

one half of the multiplication table. In the first experiment Italian participants performed a 

chronometric task followed by a self-report one, whereas in the second experiment the same 

tasks were performed by English participants. These two groups differ in the order in which 

the multiplication table is learned. In the Italian learning system the s×L problems (e.g., 2×7) 

are taught before the L×s problems (e.g., 7×2), whereas in the English system the L×s 

problem are taught before the s×L problems. In fact, the Italian children learn the 2-table in 
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the order 2×1, 2×2, 2×3, 2×4, ..., 2×9, whereas English children learn it in the order 1×2, 2×2, 

3×2, 4×2, ..., 9×2. 

 

 

2.2 EXPERIMENT 1: ITALIAN PARTICIPANTS 

 

 The aim of the experiment 1 was to study if the order of the operands in commutative 

arithmetic operations (multiplication and addition) can affect the RTs and the selection of the 

procedures. Moreover, we would like to evaluate if the selection of procedures can aid us to 

explain an operands-order effect found in RTs. To this end we used two production tasks: a 

chronometric task (in which the participants had to simply product the result of the presented 

problems) and a self-report task (in which the participants had to product the result and 

report the procedures they supposed to use to solve the problems). 

 According to the  interacting neighbors model (Verguts & Fias, 2005) and he COMP 

model (Butterworth et al., 2001) behavioural advantages in solving the L×s order (in 

multiplication) and the L+s order (in addition) are expected in the chronometric task. 

Moreover, in the self-report we expect as well as that participants report more often retrieval 

for the orders that are supposed to be stored (i.e., L×s and L+s) than for the inverse orders 

(i.e., s×L and s+L). 

 Nevertheless, since we do not exclude in principle that different orders can be preferred 

for different problems and given that size of the problem is the main variable that typically 

affects RTs and thus reflects problem difficulty, the size factor have clearly to be taken in 

account within our experimental design. The arithmetic problems are usually divided into two 

categories: small and large problems (see for example, Campbell & Austin, 2002; Campbell 

& Penner-Wilger, 2006; Jost, Beinhoff, Hennighausen, & Rosler, 2004; Zhou et al., 2006). 

However, we divided the multiplication table into 3 partitions, according to the size of the 

single operands (for a similar division in 3 levels see Pauli et al., 1994; for a division in 4 
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levels see Kirk & Ashcraft, 2001; Smith-Chant & LeFevre 2003). Namely, we distinguished 

each operand in small and large: the operands between 2 and 5 (included) were considered 

small; whereas the operands between 6 and 9 (included) were considered large. In this way 

each problem is associated with two labels (one for each operand), which produce three 

possible combination: small-small, small-large, large-large. For example, the problem 2×4, 

where both operands are small, falls within the small-small category (hereafter small 

problems); the problem 3×8, where one operand is small and the other large, falls within the 

small-large category (hereafter medium problems); the problem 7×8, where both operands 

are large, falls within the large-large category (hereafter large problems). This 3-level 

classification of size was done since models that assume order asymmetries in arithmetic 

facts memory (interacting neighbors model and COMP model) assume an important role of 

operand sizes comparison as a preliminary stage to access to the nodes in the associative 

network that allow to retrieve the result of arithmetical problems. 

 

 

2.2.1 Method 

 

Participants. Twenty-four native Italian-speaking students (12 females; mean age: 28, sd: 

5.49) from the University of Trento participated in the experiment as volunteers. All 

participants had normal or corrected-to-normal vision. This experiment, like all the 

experiments reported in this thesis (excepted the experiment carried out in London), was 

approved by the Ethical committee of the University of Trento. 

 

Material. The participants had to perform two tasks: a chronometric task and a self-report 

task. In both tasks the stimuli were the same. Single-digit multiplication and addition 

problems were used during the experiment. The problems with 0 or 1 (e.g., 0×3, 0+5, 1×3, 

etc.) were excluded because they are likely solved by means of rules (LeFevre et al., 1996a). 
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Since we are studying the operand-order effect, the tie problems (e.g., 2×2, 3×3, 2+2, 3+3, 

etc.) were also excluded. Due to these constraints, there were 56 problems for each 

operation (a total of 112 problems). Each problem was presented once. 

 

Procedure. The two task were subsequently performed with the self report following the 

chronometric one, in a same experimental session with a small break between the two. In the 

chronometric task each operation (multiplication and addition) was presented in separated 

blocks (2 blocks of 56 problems each). In order to familiarize with the experimental 

procedure, before each block the participants performed some practice trials with problems 

with 0 and 1 as operands (e.g., 0×3, 0+5, 1×3, etc.). The order in which the addition and 

multiplication blocks were presented was counterbalanced across the participants. The 

problems were sequentially presented at the centre of a monitor of a PC: the first operand 

was presented for 300 ms, followed by the sign of the operation (“+” or “×”) for 300 ms, and 

finally the second operand for 300 ms. The second operand remained on the screen until the 

participants responded. However, if the participants did not responded within 9 seconds the 

second operand disappeared and the next trials started. The operands and the operation 

signs had a dimension of about 1 cm and the participants were at about 60 cm from the 

monitor. Each trial started with a briefly blinking fixation point (“#”). Participants were required 

to respond when the second operand was displayed with the right hand, by using the 

numeric keypad on the right of the PC keyboard, and they were instructed to be as quick and 

as accurate as possible. The participants had to press the keys corresponding to the digit of 

result of the problem (one key if the result was with one digit; two keys if the result was with 

two digits). The RTs and the accuracy of the keys pressed (one or two according to the 

number of digit of the result) were recorded. Between the two blocks the participants could 

take a little break. 

 After the chronometric task, the participants had to perform the self-report task on a 

notebook computer, in which they had to solve the same arithmetic problems. The order in 
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which the operations blocks were presented was the same as in the chronometric tasks. In 

this second task, the participants had to report for each problem the result, the procedure 

used to solve the problem, and the perceived difficulty. In this task the participants were 

required to be as accurate as possible without time pressure (they might take all time they 

need to solve the problem and report the difficulty and the strategy). Before starting the task 

a sheet with the description of the procedures was given to the participants, who could take 

the sheet during the task to remember the procedures description. There were 5 procedures 

among which the participants could choose: retrieval, transformation, counting, inversion, 

and other. On the sheet given to the participants the procedures were described as following: 

 

• Retrieval: “you remembered the solution of the problem, that is you retrieve the result 

directly from memory” 

• Transformation: “you solved the problem by using other problems that can be members 

of the same arithmetical operation or of another operation (e.g., you solve the 

problem 9×9=? by using 9×10=90–9 = 81)”. 

• Counting: “you solved the problem counting (maybe in a quiet voice) a certain number 

of times until you obtain the result of the problem (e.g., you solve the problem 4×4 by 

counting 4..8..12..16; or you solve the problem 13+4 by counting 13..14..15..16..17)”. 

• Inversion: “you reversed the two operands to be able to find the result of the problem 

(e.g., you solve the problem N1×N2 by using the problem N2×N1)”. 

• Other: “you solved the problem by using another procedure or you are not sure about 

the procedure used”. 

 

 The perceived difficulty was classified with a Likert scale from 1 (very easy) to 5 (very 

difficult). The problem, the procedures to select and the likert scale were presented together 

in the same screen. Therefore, unlike in the chronometric task, the operands and the sign of 

the problem were simultaneously presented, and they remained on the screen until the 
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participant reported the result, the strategy and the perceived difficulty. The participants were 

required to solve first the problem and then to select the used procedure and the perceived 

difficulty. The participants had to use the numeric key on the notebook keyboard to report the 

result and the mouse to select the strategies and the difficulty. The problems were presented 

on the screen with on the right a white space in which the participants had to report the result 

of the operation (the white space had been selected with the mouse before write the result). 

Below the problem there was the Likert scale of difficulty (form 1 to 5), and below this scale 

there was the strategies (5 options). Once the participant filled in all the information required 

they could go to the next trials by pressing the “Enter key”. If the participant forgot to fill in 

one or more information a message dialog appeared on the screen asking to complete all the 

sections. The participants were asked to report the procedure and the perceived difficulty 

associated to the problem solved during the self-report and not trying to remember how they 

solved the task during the chronometric experiment. 

 

Data analysis. We used the same statistical analysis for both multiplication and addition. 

The two operations have been analysed separately. For the chronometric task, for both RTs 

and accuracy (proportion of correct answers) a two-way repeated measures ANOVA was 

performed with size and order as within subject factors. The size factor included three levels: 

the problems with both operands larger than 5 were coded as “large” (e.g. 7×8); the 

problems with one operand larger and one smaller than 5 were coded as “medium” (e.g. 

7×3); the problems with both operands smaller than 5 were coded as “small”. Both orders of 

the problems 6×5, 7×5, 8×5, and 9×5 were coded as “medium”, whereas both orders of the 

problems 2×5, 3×5 and 4×5 were coded as “small”. The order factor had two levels: L×s (or 

L+s for addition) and s×L (or s+L). For each participant we calculated the mean RTs and the 

proportion of correct answers in the six experimental cells (order X size). In the analysis of 

the RTs the ANOVA was performed on the correct trials and for each participant outliers 

have been removed using the outlier procedure described in Van Selst and Jolicoeur (1994). 
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This procedure recursively remove the data points that beyond 3.5 standard deviation from 

the mean RTs of each participant (for technical detail refer to the paper of Van Selst and 

Jolicoeur). In order to interpret ANOVAs significant main effect or the interaction t-test 

corrected with the FDR method were performed between different cells of the design. 

ANOVAs were Greenhouse-Geisser corrected when the degrees of freedom of a factor 

exceeded one (uncorrected degrees of freedom and epsilon values are reported). 

 The self-report results have not been statistically analysed, but descriptive statistics are 

used to aid the interpretation of the effects found in the chronometric task. We aggregated 

the procedures reported by the participants in the same cells used for the ANOVAs. The 

results of the difficulty likert scale have not been used because of the participants reported 

almost only the value 1 (easy). 

 

 

2.2.2 Results 

 

Multiplications 

 Each of the 24 participants had to solve 56 multiplications (from 2×2 to 9×9, tie problems 

excluded). Participants made errors on 8% of the trials, 109 errors on 1344 trials (56 problem 

× 24 participants). A two-way repeated measures ANOVA with size (small, medium, and 

large) and order (L×s and s×L) as within factors was conducted on the accuracy for the 

multiplication problems. The ANOVA revealed only a main effect of the size, F(2,46)=22, 

εGG=0.61, p<0.001. Post-hoc analysis revealed that the participants made more errors in the 

large condition (77% of correct answer) than in both medium (94%) and small (98%) 

condition, t(23)=-4.49, p<0.001 and t(23)=-5.09, p<0.001 respectively. Moreover, the 

participants made more errors in the medium condition than in the small condition, t(23)=-

2.19, p<0.05. Neither the order factor nor the interaction reached the significance level. 
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 In the chronometric task the participants had to press one or two keys according to the 

number of digits of the results. The analysis of the RTs of the two keys showed a correlation 

of 0.98. Therefore, we analysed only the RTs associated with the first key pressed. A two-

way repeated measures ANOVA with size (small, medium, and large) and order (L×s and 

s×L) as within factors was conducted on the RTs of the first key for the multiplication 

problems (see figure 2.1). 
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Figure 2.1: Reaction times as function of size and order of the operands for the multiplication problems 

(Italians group). * p<0.05. 

 

 The ANOVA revealed the a significant main effect of the size, F(2,46)=51.65, εGG=0.56, 

p<0.001. Post-hoc comparison revealed that the participants responded faster in the small 

condition (1276 ms) than in both medium condition (1696 ms) (t(23)=8; p<0.001) and in large 

condition (2602 ms) (t(23)=7.72; p<0.001); and that they responded faster medium condition 

than in the large condition (t(23)=6.15; p<0.001). The ANOVA revealed also a significant 



49 

 

order by size interaction, F(2,46)=10.21, εGG=0.6, p<0.01. Post-hoc comparison revealed that 

when both operands were larger than 5 (large condition): the problems in the s×L order 

(2415 ms; e.g., 7×8) were solved faster than the problems in the L×s order (2799 ms; e.g., 

8×7), t(23)= 2.87, p<0.01. When one operand was larger than 5 and one smaller than 5 

(medium condition): the problems in the L×s order (1631 ms; e.g., 7×3) were solved faster 

than the problem in the s×L order (1761 ms; e.g., 3×7), t(23)=-2.63, p<0.05. When both 

operands were smaller 5 (small condition): the problems in the L×s order (1237 ms; e.g., 

4×2) were solved faster than the problem in the s×L order (1315 ms; e.g., 2×4), t(23)=-2.65, 

p<0.05.  

 For the multiplication trials, we qualitatively analysed the self-report data by aggregating in 

the same cells as in the ANOVAs the percent of use of each procedure (figure 2.2 and table 

2.1). 
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Figure 2.2: percent of use of the procedures for multiplication in each experimental cell; trans: 

transformation, retriev: retrieval, inver: inversion, count: counting (Italians group). 
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 For each procedure (“other” excluded) we calculated, in each experimental cell given by 

the two factors size (large, medium, small) and order (L×s, s×L), the percent of use reported 

by the participants. For each participants, we used only the problems that were solved 

correctly in the chronometric task (92%) to the end to have a measure of the procedure in the 

same set of problems. We also excluded the problems in which the participants made an 

error in the self-report (only 9 errors on 1344 multiplication) and we did not considered the 

“other” strategy (the participants reported “other” only 7 times over 1344). The self-report 

results mirrored the interaction between size and order emerged in the RTs data.  

 

 
% of retrieval 

 
% of transformation 

 
large medium small 

 
large medium small 

Lxs 23.9 54.9 88.9 Lxs 41.7 8.7 0.7 
sxL 41.6 38.0 63.2 sxL 36.6 6.7 1.5 

 
% of counting 

 
% of inversion 

 
large medium small 

 
large medium small 

Lxs 8.3 27.6 8.1 Lxs 22.9 9.3 2.2 
sxL 5.9 15.2 3.8 sxL 15.8 40.0 32.3 

Table 2.1: the percent of use of the procedures in each experimental cell for multiplication (Italians group). 

 

 As showed in table 2.1, for the large problems the participants reported more often 

retrieval in the s×L order with respect to L×s order, whereas in medium and small problems 

they reported to use more often retrieval in the L×s order with respect to s×L order. In other 

words, participants reported to use more often retrieval in the order they solved faster in the 

chronometric task. Transformation was mainly used to solve the large problems and did not 

show any strong difference between the two orders. The counting procedure was mainly 

used in the medium problems, and it was more used in the L×s order than for the s×L order, 

that is the order solved faster by the participants. Given the aim of the present study the most 

interesting debriefing variable is inversion and it relation with retrieval. The participants 

reported more often inversion for the order in which they reported less often retrieval. 

Moreover, inversion showed strong differences between the two orders in the medium and 
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small problems than in the large problems. The participants reported to use much more often 

inversion in the s×L order than L×s order in small and medium problems, that is the 

participants reported more often inversion for the orders solved slower in the chronometric 

task. The difference for the large problems was smaller than for the medium and small 

problems, and it showed that this procedure was reported more often for the order solved 

slower in the chronometric task (that is the L×s order). 

  

Additions 

 Each of the 24 participants had to solve 56 additions (from 2+2 to 9+9, tie problems 

excluded). Participants made errors on 3% of the trials, 40 errors on 1344 trials (56 problem 

× 24 participants). A two-way repeated measures ANOVA with size (small, medium, and 

large) and order (L+s and s+L) as within factors was conducted on the accuracy for the 

addition problems. The ANOVA revealed only a main effect of the size, F(2,46)=7.72, 

εGG=0.96, p<0.01. Post-hoc analysis revealed that the participants made more errors in the 

large condition (97% of correct answer) than in small condition (99%), t(23)=-2.91, p<0.01. 

Moreover, the participants made more errors in the medium condition (96%) than in the small 

condition, t(23)=-4.09, p<0.001. Neither the order factor nor the interaction reached the 

significance level. 

 The analysis of the RTs of the two keys showed a correlation of 0.97. Therefore, we 

analysed only the RTs associated with the first key pressed. A two-way repeated measures 

ANOVA with size (small, medium, and large) and order (L+s and s+L) as within factors was 

conducted on the RTs of the first key for the addition problems (see figure 2.3). The ANOVA 

revealed the significant main effect of the size, F(2,46)=52.4, εGG=0.63, p<0.001. Post-hoc 

comparison revealed that the participants responded faster in the small condition (1062 ms) 

than in both medium condition (1234 ms) (t(23)=4.93; p<0.001) and in large condition (1601 

ms) (t(23)= 7.82; p<0.001); and that they responded faster medium condition than in the 

large condition, t(23)= 7.32; p<0.001. The ANOVA revealed also a main effect of order, 
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F(1,23)=8.79, p<0.01. Post-hoc comparison revealed that the participants responded faster 

to the L+s order (1238 ms) than the s+L order (1307 ms), t(23)= -2.78, p<0.05. Moreover, the 

ANOVA revealed also a significant order by size interaction, F(2,46)=7.2, εGG=0.78, p<0.05. 

Post-hoc comparison revealed that the L+s order was solved faster than the s+L order in 

large and medium problems: with large problems the L+s order (1521 ms; e.g., 8+7) was 

solved faster than the s+L order (1683 ms; e.g., 7+8), t(23)= -3.11, p<0.01; with medium 

problems the L+s order (1199 ms; e.g., 7+3) was solved faster than the s+L order (1268 ms; 

e.g., 3+7), t(23)=-2.42, p<0.05. 
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Table 2.3: RTs as function of size and order of the operands for the addition problems (Italians group),                     

* p<0.05. 

 

 For the addition trials, we analyzed the self-report task by aggregating the percent of each 

procedure in the same cells as in multiplication (figure 2.4 and table 2.2). For each 
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participants, we used only the problem that were correctly solved in the chronometric task 

(97%) to the end to have a measure of the procedure in the same set of problems. We also 

excluded the problems in which the participants made an error in the self-report (16 errors 

over 1344 addition trials) and we did not considered the “other” strategy (the participants 

reported “other” 47 time over 1344 trials). 
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Figure 2.4: percent of use of the procedures for addition in each experimental cell; trans: transformation, 

retriev: retrieval, inver: inversion, count: counting (Italians group). 

 
 
 The percent of use of retrieval and inversion procedures was consistent with the RTs of 

the chronometric task. As showed in table 2.2, the participants reported to use more often 

retrieval in the L+s order (solved faster in the chronometric) than in the s+L order, whereas 

they reported more often inversion in the s+L order (solved slower) than in the L+s order. For 

transformation and counting were more often reported for the L+s order than for the s+L 

order, though for these procedures the differences between the two orders were smaller than 
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for retrieval and inversion. More important, differently than for multiplications, the participants 

reported to use inversion almost only to solve the s×L order regardless the size of the 

problem. Namely, inversion was used to solve only the problems in the order that takes more 

time to be solved in the chronometric task. 

 

 
% of retrieval 

 
% of transformation 

 
large medium small 

 
large medium small 

L+s 25.4 56.9 87.2 L+s 70.0 29.6 0.7 
s+L 11.2 45.6 73.1 s+L 67.2 23.2 0.7 

 
% of counting 

 
% of inversion 

 
large medium small 

 
large medium small 

L+s 3.8 9.8 3.8 L+s 0.8 0.9 0.0 
s+L 1.6 3.1 3.0 s+L 17.6 25.2 16.4 

Table 2.1: the percent of use of the procedures in each experimental cell for addition (Italians group). 

 

 

2.2.3 Discussion 

 

 We found an operands-order effect for additions and an interaction between operands-

order and size for multiplications. In the chronometric task for the multiplication trials the L×s 

order was solved faster than the s×L order in the small and medium size conditions; whereas 

the s×L order was solved faster in the large problems. The self-report of the participants was 

consistent with the RTs results. In other words, the retrieval (supposedly the fastest 

procedure) was reported more often in the order solved faster (s×L in the large size 

condition, L×s in the medium and small size conditions). On the contrary, inversion was 

reported more often for the order solved slower (L×s in the large condition, s×L in the 

medium and small conditions). In the chronometric task for the additions the L+s order was 

solved faster than the s+L order. Also in this case, the self-report was consistent with the 

RTs analysis. The retrieval (supposedly the fastest procedure) was reported more often in 

the order solved faster (L+s). On the contrary, inversion was reported more often for the 

order solved slower (s+L). 
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 The interacting neighbors model (Verguts and Fias, 2005) assumes that only one of the 

two operands-orders is stored as multiplication fact. However, we found that the order of the 

operands interacted with the size of the problems. We interpret this interaction as an 

evidence that the order stored could vary as a function of the size, that is, assuming the 

architecture of the Vergut and Fias (2005) model, one has to assume that the s×L order is 

stored for large problems and the L×s order is stored for the medium and small problems. A 

possible explanation of this order by size interaction can be attempted within the frame that 

assumes that the multiplication facts memory is shaped during the childhood. Two factors 

must be considered: the order of acquisition of the problems, and a possible reorganization 

of the memory due to the repeated use of non-retrieval procedure used to solve the 

multiplication (see Butterworth et al., 2003). In the Italian education system the problems in 

the s×L order are taught before the ones in the L×s order. Therefore, the order s×L should be 

acquired before and more practiced than the inverse order. If the s×L order is acquired 

before the L×s order, why is the s×L order privileged only for the large problems whereas for 

the medium and the small problems the privileged order is L×s? This interaction can be 

explained by the intervention of a reorganization process that reshape the multiplication facts 

memory according to the non-retrieval procedures adopted by the children during the 

acquisition of the multiplication table. In the study of Butterworth et al. (2003), Italian children 

(8, 9, and 10 years old) showed to solve faster the multiplication in the L×s order (in the study 

were tested only the problems form 2×2 and 6×5). The Authors assumed that their results 

were due to a reorganization of the multiplication facts memory produced by the use of 

particular non-retrieval procedures. Namely, the children use repeated addition (e.g., 

7×3=7+7+7) and table sequences (e.g., 7×3=7, 14, 21) to solve multiplication problems that 

are not yet stored in memory or which representation is not yet strongly acquired. The L×s 

order is easier/faster to solve with these kind of procedures, whereas the s×L order is likely 

to be reordered (e.g., 3×7 has to be reordered in 7×3) to be efficiently solved with these 

procedures. Therefore, the L×s order could became the privileged one, and the s×L order 
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could often be solved relying on the L×s order. This asymmetry between the two orders could 

arrange the memory in way that the L×s order becomes the one stored in the associative 

network that contains arithmetic facts. Again, the reorganization principle cannot alone 

explain our results because of it predicts that we would have to found a main effect of order, 

that is the L×s order would be solved faster than the inverse order for all problems. We 

propose that these two factors (order of acquiring and reorganization) work together to shape 

the multiplication facts memory. In fact, both repeated addition and table sequence are really 

efficient with small and medium problems, but they are not for the large problems. It is highly 

unlikely that children (or adults) use repeated addition or table sequence procedures to solve 

large multiplication. For example, given the problem 7×8, the procedure 7+7+7+7+7+7+7+7 

(repeated addition) or 7, 14, 21, 28, 35, 42, 49, 56 (table sequence) are very inefficient and 

difficult, and the use of the other order (8×7=8+8+8+8+8+8+8) is as well as inefficient and 

difficult. Therefore, the use of procedures can reorganize the small and medium problems 

(giving an advantage to the L×s order) but has no effect on the large problems that are 

shaped by the only order of acquisition, maintaining the original advantage for the early 

learned s×L order.  

 The above explanation accounts for RTs difference only in term of retrieval within 

arithmetic facts memory since it is likely that this procedure should be the preferred for rather 

competent adults when speeded solutions are required, we cannot however exclude that, at 

least part of these differences, are also due to the use of the non-retrieval procedure the 

participant reported they used in the unspeeded task where maximal accuracy was required. 

There are some evidences in fact that adults solve multiplication by using both retrieval and 

non-retrieval procedures (see chapter 1). The asymmetries we found in the self-report were 

consistent with the results of the RTs, therefore it is not unlikely that also the non-retrieval 

procedures could have a role in the differences found between the two orders in the 

chronometric task. Since we asked to the participants to report the procedures they were 

using during the self-report and not to try to remember the procedures used in the 
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chronometric task, we cannot assume that the participants used the same procedures to 

solve the problems in the two tasks. Moreover, in the chronometric task the speed was 

stressed whereas in the self-report it was not and only the accuracy was stressed. Smith-

Chant & LeFevre (2003) showed that instruction of speed can bias the procedures reported 

by the participants, that is they reported more often to use retrieval. Therefore, it was likely 

that our participants relied more on retrieval in the chronometric task than in the self-report. 

So, what can the self-report tell us about the effect of the order of the operands we found in 

RTs? The self-report could give information about what the participants do when they have to 

solve problems in a context in which it is required only to be “as accurate as possible”. In the 

chronometric task the order of the operands affected the RTs also for small problems (e.g. 

4x2), that are very likely to be solved by using retrieval procedures only. Therefore, we are 

confident to assume that the RTs effects we found are at least partially due to the retrieval 

process in terms of speed of access to arithmetic facts in long term memory. Nevertheless, 

the self-report suggests that also the non-retrieval procedures play a role in the effect we 

found. The self-report results suggest that the order of the operands can affect the RTs in 

two ways: 1) one of the two orders is easier/faster to retrieve because of it is the stored one; 

2) the two order can be solved with different procedures that could be require different time 

to be performed. 

 With respect to additions the COMP model (Butterworth et al., 2001) assumes that only 

the L+s order is stored in the addition facts memory. Butterworth and Colleagues asserted 

than the preference for the L+s order could be due to the fact that the children use non-

retrieval procedures that are simple to solve with the L+s order. Our results are consistent 

with the this hypothesis. We found that the L+s order is solved faster than the s+L order in 

the large and small problems. Like in multiplication, our result can be explained by the 

reorganization of the addition facts memory due to the use of non-retrieval procedures when 

the children learn the addition. The L+s order is easier to solve with non-retrieval procedures, 

therefore it could be privileged and then stored in memory. However, unlike multiplication, in 



58 

 

addition the non-retrieval procedures could reshape also the large problems because of the 

use of procedures like “counting for the larger” could be efficient with large problems as well 

as with smalls. Therefore, the L+s order could be privileged during the acquisition and then 

stored in memory. 

 The self-report showed that also for addition problems the use of non-retrieval procedures 

could play a role in the differences we found between the two orders. Like for the effect found 

with multiplication, we hypothesized that both retrieval and non-retrieval procedures could 

work together to generate the operands-order effect we found. On the one hand, the L+s 

order could be easier/faster to retrieve than the s+L order, because of the former is the 

stored one. On the other hand, when the participants adopted non-retrieval procedures the 

L+s order could be easier to solve than the inverse order. 

 The explanation described above is based on the architectures of the interacting 

neighbors model and the COMP model. However, we propose a second possible explanation 

based on the network retrieval model and network interference model (see chapter 1), which 

assume that both orders of the operands are stored as arithmetic facts. We suppose than the 

use of non-retrieval procedures plays a important role in either producing or at least 

determining (by shaping the arithmetic facts memory) the order by size interaction we found. 

Nevertheless, the role of the non-retrieval procedures is assumed to be different for additions 

and multiplications. Some evidence suggests that the use of non-retrieval procedures is 

more common in addition whereas multiplication mainly solved by means of retrieval 

(Campbell & Xue, 2001). If multiplication is mainly solved by retrieval the order by size 

interaction we found could depend on the spreading of activation inside the architecture of 

the multiplication facts memory rather than the learning experience or the use of non-retrieval 

procedures. There are many evidence that suggest that the presentation of a problem 

automatically activates the closer problems (Galfano, Rusconi, &Umiltà, 2003; Galfano 

Penolazzi, Vervaeck, Angrilli, & Umiltà, 2009; Niedeggen & Rösler, 1999; Rusconi, Galfano, 

Speriani, Umiltà, 2004; Rusconi, Galfano, Rebonato, & Umiltà, 2006). For example, when the 
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problem 7×8 is presented the problems 7×6, 7×7, 7×8, 6×8, 9×8, and so on are activated. 

Above we discussed the effect of the order of the operands by assuming that only one order 

is stored in memory as multiplication fact, coherently with the architecture proposed by 

Verguts and Fias (2005). However, the order by size interaction could be explained also 

within frames that  assume that both order are stored in memory. The use of non-retrieval 

procedures in the childhood could affect the association strengths between the results of the 

problems. In fact, the use of procedures like repeated addition or table sequence could 

produce an asymmetry in the association between the results of the problems (i.e., the 

multiples of the multiplication table). Both repeated addition or table sequence procedures 

could reinforce the association between a multiple and the following one more than the 

association between a multiple and the previous one. In the repeated addition procedure the 

multiplication is transformed in a series of addition, where the intermediate results are the 

sequence of multiples of the operand used as base for the additions. For example, when the 

problem 7×4 is solved with repeated addition, it is transformed in the sequence 

(((7+7)+7)+7)=((14+7)+7)=(21+7)=28, where the results 14, 21, and 28 are the multiple of the 

number 7 in the small to large direction. Therefore, when a child use this procedure, a 

multiple could be used to identify the following one in the table, that is 14 is used as base to 

identify 21 (after 7 is added). The association between a multiple and the following one could 

be reinforced also by the use of a table sequence procedure. For example, in the procedure 

3×4= 7, 14, 21, 28 each multiple could be used as a cue to find the following one. This two 

procedures could reinforce exclusively the association between a multiple and the following 

one. Therefore, once activated a result (e.g., 21) could spread more activation in the forward 

direction (e.g., 28, 35) than in the backward direction (e.g., 14). Moreover, these two 

procedures could reinforce the association between an operand and the begin of its table 

because of the first problems and result of the table are often used as starting point to 

perform the repeated addition and the table sequence procedures. It is assumed that when a 

problem is presented, the activation inside the arithmetic facts memory spreads also to the 



60 

 

closer problems (see chapter 1). In our experiment the presentation of the operands were 

sequential, that is the first operand were presented 600 ms before the second operand. 

When it is presented a small or medium problem the first operand (e.g., 7) could strongly 

activate the problems associated with the begin of its table (e.g., 7×2, 7×3, 7×4). Therefore, 

the difference between 7×3 and 3×7 is that when the former is presented first operand (7) 

could activate the problem 7×2, 7×3, 7×4 before the second operand (3) is presented; 

whereas 3×7 is presented the first operand activate the problem 3×2, 3×3, 3×4 before the 

second operand is presented (7). Therefore, when the second operand is presented for the 

problem 7×3 the problem associated with the result is already activated (7 has been 

presented 600 ms before and it has activated 7×2, 7×3, 7×4). On the contrary, when the 

second operand of the problem 3×7 is presented the problem associated with the result is 

not activated (3 has been presented 600 ms before and it has activated 3×2, 3×3, 3×4, but 

only weakly 3×7). This hypothesis could explain why the L×s order is solved faster than the 

s×L order. However, the result with the large problems cannot directly be explained by this 

hypothesis. In fact, the large problems are equally distant from the beginning of the table. 

Nevertheless, the tie effect (the fact that tie problems are solved faster than the other 

problems with similar size) could produce the inversion of the order effect with the large 

problems. Since the tie problem are solved faster, the association between the operands and 

the tie result could be stronger than for the other results (see for example network retrieval 

model in chapter 1). For example, 7 could be more strongly associated with 49 than with 42, 

56, 63. Therefore, when a large problem is presented the first operand could strongly 

activate the tie problem before the presentation of the second operand and the activation of 

the tie could be stronger than the activation of all the other problems. Once the tie problem is 

activated it could spread more activation in the forward direction than in the backward 

direction for the reasons above described, due to the use of repeated addition and table 

sequence procedures. Both the stronger activation of the tie and the stronger forward 

activation spreading can explain the advantage for the s×L with respect to the L×s order in 
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large problems. For example, when the first operand (7) of the problem 7×8 is presented, the 

tie problem (7×7) is activated and spreads activation mainly to the forward problems (7×8). 

When the first operand (8) of the problem 8×7 is presented, the tie problem (8×8) is activated 

and spreads activation mainly to the forward direction (8×9). Therefore, when the second 

operand is presented for the problem 7×8 the problem associated with the result is already 

activated (7 has been presented 600 ms before and it has activated 7×7, and then 7×8 and 

7×9). On the contrary, when the second operand of the problem 8×7 is presented the 

problem associated with the result is only weakly activated (8 has been presented 600 ms 

before and it has activated 8×8, and then 8×9, but only weakly 8×7). Therefore, with the 

problem 7×8 the result could be activated before the second operand is presented, whereas 

with the problems 8×7 the result would not be activated. This could explain why the s×L 

order is solved faster than the L×s order in the large problem. 

 Summarizing, we found that operands-order affects speed of solutions for both additions 

and multiplications. For additions the advantage for the L+s order can be explained within the 

COMP model in terms of reorganization of the addition facts memory. For multiplications the 

pattern is rather surprising since at our knowledge such an inversion of order preferences 

across problem sizes has never been reported in the literature and thus it is hard to be 

explained by any current model, independently it assumes that only one order or both are 

stored in the arithmetic facts memory. Despite part of the effect could be due to non-retrieval 

procedure we were able to offer two distinct explanations of the interaction in terms of speed 

of retrieval from memory (that is somewhat simpler than assuming the effect is driven only by 

non-retrieval procedures). One is framed within models that assume only one order is stored 

in arithmetic facts memory (Verguts & Fias, 2005) and depends on both order of acquiring 

and reorganization of the memory, the other is framed within models that assume both 

orders are stored in memory and the strength of the association with the correct result 

depends on the usage of non-retrieval procedures that we used to hypothesise that 

activation of multiples spreads stronger from left to right starting from both the beginning of 
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the table and from the tie. Crucially, the two explanation differ with respect to the role of the 

order of acquisition during childhood learning. The former strongly depends on this, 

capitalizing on the Buttterworth et al. (2003) original idea of reorganization, the latter is 

completely independent from the order of acquisition. In the next experiment we try to 

disentangle between these two hypotheses by testing a population where the order in which 

the problems are acquired is inverse with respect to the Italians. 

 

 

2.3 EXPERIMENT 2: ENGLISH PARTICIPANTS 

 

 We decided to test a population that learn the multiplication table in the inverse order with 

respect to the Italians since one of the explanation given for the results of the previous 

experiment predicts a different pattern as a function of learning order. In England the name 

of the table is in second position, whereas in Italian is in first position. For example, the 2-

table is 2×1, 2×2, 2×3, ..., 2×9 in Italian education system, and 1×2, 2×2, 3×2, ..., 9×2 in the 

English system. Therefore, in Italy children learn s×L before L×s (e.g. “2 per 9” before “9 per 

2”); whereas in England children learn L×s before s×L (“9 times 2” before “2 times 9”). Given 

the explanation of the interaction between size and order of experiment 1 (this chapter), the 

preferred order for large multiplication problems should be due to order in which the 

multiplication are learned, and therefore we expect opposite preferences in the two groups, 

Italians and English. 

 In fact, if the multiplication facts memory is shaped by reorganization and order of 

acquiring we expect an advantage for the L×s order in the large problems, because of in 

England the L×s order is learned before the s×L order. Therefore, we should not found any 

interaction order by size but a main effect of the order, that is the L×s order should be solved 

faster than the s×L order regardless the size of the problems. If the effect we found with 

multiplication in the Italian group is due to the asymmetric forward activation spreading in the 
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multiplication facts memory we expect to find the in the English group same result found in 

the Italian group, that is an order by size interaction. 

 For addition there should not be differences between Italians and English, because of the 

two hypotheses have the same prediction, that is an advantage for the L+s order. 

 

 

2.3.1 Method 

 

Participants. Twenty-eight native English-speaking students (13 females; mean age: 26, sd: 

6.16) from the University College of London (UCL) participated in the experiment as 

volunteers. All participants had normal or corrected-to-normal vision. This experiment was 

approved by the Ethic committee of UCL. Six participants were excluded because of low 

performance in the experiment. 

 

Material, Procedure, and Data analysis. The material, the procedure, and the data analysis 

were was exactly the same as in experiment 1. 

 

 

2.3.2 Results and Discussion 

 

 Each participant had to solve 56 multiplications (from 2×2 to 9×9, tie problems excluded). 

Participants made errors on 8% of the trials on average, 96 errors on 1232 trials (56 problem 

x 22 participants). A two-way repeated measures ANOVA with size (small, medium, and 

large) and order (L×s and s×L) as within factors was conducted on the accuracy for the 

multiplication problems. The ANOVA revealed only a main effect of the size, F(2,42)= 26.68, 

εGG=0.71, p<0.001. Post-hoc analysis revealed that the participants made more errors in the 

large condition (81% of correct answer) than in both medium (94%) and small (97%) 
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condition, t(21)=-5.65, p<0.001 and t(21)=-5.74, p<0.001 respectively. The order factor did 

not reach significance level but the interaction between order and size was significant, 

F(2,42)=3.92, εGG=0.63, p<0.05. Post-hoc analysis revealed that the participants tended to 

make more errors in the L×s order (77%) than in the s×L order (86%), t(21)=2.08, p<0.1. For 

the large multiplication problems the English participants seem to have better performance 

for the s×L order, that is the same order privileged by the Italian group. in England the L×s 

order is taught before the s×L order, therefore, this result is consistent with the asymmetric 

forward spreading activation hypothesis. However, the accuracy differences are based on 

very few errors (the participants made errors on only the 8% of the trials) and the post-hoc 

analysis reveal only a tendency toward significant for the large problems. Hence, we think 

this result is not strong enough to discriminate between the two hypotheses. 
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Figure 2.5: RTs as function of size and order of the operands for the multiplication problems (English group). 
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 The analysis of the RTs of the two keys showed a correlation of 0.96. Therefore, we 

analysed only the RTs associated with the first key pressed. A two-way repeated measures 

ANOVA with size (small, medium, and large) and order (L×s and s×L) as within factors was 

conducted on the RTs of the first key for the multiplication problems (see figure 2.5). The 

ANOVA revealed the a significant main effect of the size, F(2,42)= 30.02, εGG=0.53, p<0.001. 

Post-hoc comparison revealed that the participants responded faster in the small condition 

(937 ms) than in both medium condition (1346 ms) (t(21)=-7.2; p<0.001) and in large 

condition (2198 ms) (t(21)=5.89; p<0.001); and that they responded faster in the medium 

condition than in the large condition (t(21)=4.87; p<0.001). Neither the order factor nor its 

interaction with size were significant. 
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Figure 2.6: percent of use of the procedures for multiplication in each experimental cell; trans: 

transformation, retriev: retrieval, inver: inversion, count: counting (English group). 
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 For the multiplication trials, we qualitatively analyzed the self-report task by aggregating in 

the same cells as in the ANOVAs the percent of use of each procedure (figure 2.6 and table 

2.3). For each participants, we used only the problems that were solved correctly in the 

chronometric task (92%) to the end to have a measure of the procedure in the same set of 

problems. We also excluded the problems in which the participants made an error in the self-

report (only 29 errors on 1232 multiplication) and we did not considered the “other” strategy 

(the participants reported “other” 28 times over 1232 multiplication trials of the self-report 

task). Unlike for the Italians, the self-report results showed very small differences between 

the two orders of the operands. However, contrary what we expected, the participants 

reported little more often retrieval for the s×L order than for the L×s order; whereas inversion 

was reported little more often for the L×s order than for the s×L order. Therefore, unlike in the 

Italian group the self-report did not show any strong asymmetry. 

 

 
% of retrieval 

 
% of transformation 

 
large medium small 

 
large medium small 

L×s 42.3 73.1 87.1 L×s 30.1 5.8 0.0 

s×L 44.2 79.7 90.8 s×L 34.2 6.4 0.8 

 % of counting  % of inversion 

 
large medium small 

 
large medium small 

L×s 18.7 12.3 6.8 L×s 7.3 8.2 3.8 

s×L 21.7 11.0 6.9 s×L 3.3 3.8 1.5 
Table 2.3: the percent of use of the procedures in each experimental cell for multiplication (English group). 

 

 Unfortunately, for both chronometric task and self-report task the results with multiplication 

problems do not show any relevant effect of the order of the operands. Therefore, they 

cannot be used to disentangle between our two hypotheses. 

 Each of the 22 participants had to solve 56 additions (from 2+2 to 9+9, tie problems 

excluded). Participants made errors on 3% of the trials, 36 errors on 1232 trials (56 problem 

× 24 participants). A two-way repeated measures ANOVA with size (small, medium, and 

large) and order (L×s and s×L) as within factors was conducted on the accuracy for the 
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multiplication problems. The ANOVA revealed only a main effect of the size, F(2,42)=4.05, 

εGG=0.78, p<0.05. Post-hoc analysis revealed that the participants tended to make more 

errors in the large condition (95% of correct answer) than in small condition (98%), t(21)=-

2.32, p<0.1. Neither the order factor nor the interaction reached the significance level. 

 

 

Figure 2.7: RTs as function of size and order of the operands for the addition problems (English group). 

 

 The analysis of the RTs of the two keys showed a correlation of 0.97. Therefore, we 

analysed only the RTs associated with the first key pressed. A two-way repeated measures 

ANOVA with size (small, medium, and large) and order (L+s and s+L) as within factors was 

conducted on the RTs of the first key for the addition problems (see figure 2.7). The ANOVA 

revealed the a significant main effect of the size, F(2,42)= 16.03, εGG=0.57, p<0.001. Post-

hoc comparison revealed that the participants responded faster in the small condition (866 

ms) than in both medium condition (965 ms) (t(21)=2.93; p<0.01) and large condition (1308 

ms) (t(21)=4.17; p<0.001); and that they responded faster in the medium condition than in 

the large condition, t(21)=3.88; p<0.001. The ANOVA revealed also a trend toward the 
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significance for order, F(1,21)=3.74, p<0.1. The participants tended to respond faster to the 

L+s order (993 ms) than the s+L order (1037 ms). 
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Figure 2.8: percent of use of the procedures for addition in each experimental cell; trans: transformation, 

retriev: retrieval, inver: inversion, count: counting (English group). 

 

 For the addition trials we also analyzed the self-report task by aggregating the frequency 

of report of each procedure in the same cells as done for multiplications (figure 2.8 and table 

2.4). For each participants, we considered only the problems that were solved correctly in the 

chronometric task (97%) to the end to have a measure of the procedure in the same set of 

problems. We also excluded the problems in which the participants made an error in the self-

report (10 errors over 1344 addition trials) and we did not considered the “other” strategy (the 

participants reported “other” 33 time over 1344 trials in the self-report task). As for the 

multiplication the differences between the two orders are smaller in the English group than in 

the Italian group. However, the participants reported little more often retrieval for the L+s 

order than for the s+L order; whereas they reported inversion little more often for the s+L 
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order than for the L+s order. Like for multiplication, the self-report did not show any strong 

asymmetry between the two orders. 

 To resume addition results, the participants tended to solve faster the L+s order than the 

s+L order. Moreover, they reported to use retrieval a little more often in the L+s order than in 

the s+L order, and inversion a little more often in the L+s order than in the s+L order. The 

results for addition problems show a tendency consistent with the results of the Italian group. 

However, as for multiplication, these results are weaker than in the Italian group. 

 

 
% of retrieval 

 
% of transformation 

 
large medium small 

 
large medium small 

L+s 58.0 72.2 78.3 L+s 9.9 2.9 1.5 

s+L 50.7 72.0 77.9 s+L 13.6 1.7 0.0 

 
% of counting 

 
% of inversion 

 
large medium small 

 
large medium small 

L+s 22.9 21.5 17.0 L+s 4.6 1.7 2.3 
s+L 25.8 18.8 15.3 s+L 9.8 6.8 4.6 

Table 2.4: the percent of use of the procedures in each experimental cell for addition (English group). 

 

 The results of the experiment 2 for both addition and multiplication with English 

participants do not show any relevant effect of the order in both RTs and self-report. This null 

results could be due to the different competences of the participants within English group6. 

 

 

2.4 GENERAL DISCUSSION 

 

 The aim of the present study was to evaluate if the order of the operands could affect the 

RTs and the selection of procedures (retrieval and non-retrieval) in both multiplication and 

                                                           
6
 In analyses not reported here we did a median split analysis dividing the participants in two different group 

according to the median of the RTs (low skill participants: with RTs below the median RTs of the whole group; 

high skill participants: with RTs below the median RTs of the whole group). These analyses showed that the 

privileged order varied in the two groups. However, the number of participants in each groups was too small to 

make inferences. 
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addition. To this end, we adopted a chronometric production task with speed and accuracy 

stressed and a self-report task with only accuracy stressed. In the chronometric task we 

found in the Italians group an operands-order by size interaction in both multiplication and 

addition. The participants solved faster the multiplication in L×s order than in s×L order in 

small and medium problems; whereas they solved faster the multiplication in s×L order than 

in L×s order in large problems. Moreover, the addition in L+s order were solved faster than in 

s+L order in medium and large problems. Finally, in both multiplication and addition, we 

found that retrieval was more often reported for the problems in the order solved faster, 

whereas inversion was reported more often for the problems in the order solved slower. 

 In this study we provide clear evidence that the order of the operands can affect the RTs 

in the production of the result of multiplication and addition problems.  We propose two 

hypothesis to explain the results. The first hypothesis (hereafter, reorganization hypothesis) 

states that only one arithmetic facts is stored as arithmetic facts, and that which is the stored 

order is determined by the order is which the problems are learned and by the reorganization 

due to the use of non-retrieval procedures during when the problems are learned. The 

second hypothesis (hereafter, asymmetry hypothesis) states that both order are stored as 

arithmetic facts and the effect of order is due to the activation spreading inside the 

multiplication facts memory. 

 The results from the self-report suggest that the procedures selection could play a 

relevant role in the operands-order effect we found in the RTs. The self-report used in this 

study could have biased the procedures reported by the participants (Kirk & Ashcraft, 2001), 

since we asked the participants to select between a range of procedures proposed by us. 

Nevertheless, the relevant result is that the participants reported different procedures for the 

commuted pairs. This result suggest that the individuals could use different procedures to 

solve the two orders of the operands. However, since we are not sure that the participants 

used the same procedures in both chronometric and self-report task, we cannot exclude that 
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the order by size interaction in the chronometric task was mainly due to retrieval and to the 

asymmetric activation spreading (asymmetry hypothesis). 

 The reorganization hypothesis is consistent with the interacting neighbors model (Verguts 

and Fias, 2005) and the COMP model (Butterworth et al., 2001), which state that only one 

order of the operands is stored as arithmetic fact for multiplication and addition, respectively. 

A fundamental process in this two models is the reordering of the operands when the 

presented problem is not in the stored order. According to these two models, the 

reorganization hypothesis explains the RTs differences between the two order of the 

operands by means of the operands reordering process. In fact, the reordering process 

should occur only if the presented problem is not in the stored order, and then this 

supplementary process could explain the difference found between the two orders. The 

asymmetry hypothesis explains the RTs differences in terms a different amount of activation 

of the result when the second operand is presented. 

 Crucially the two hypothesis differ in that the former (reorganization hypothesis) assumes 

a central role of learning order during acquisition of arithmetical knowledge and the latter 

(asymmetry hypothesis) does not. For these reason we tested a group of English speaker 

with the same paradigm. Two different predictions were developed: one on the basis of the 

reorganization hypothesis predicted an overall preference for the L×s order in English 

speakers, independent form size; the other on the basis of the asymmetry hypothesis 

predicted the same interaction of order and size found for Italians. The second experiment 

however gave a null result on RTs  and an interaction for accuracy without a strong support 

from debriefing. In both cases this can be interpreted as a failure to replicate the effects of 

order in the solution of arithmetical problems and thus suggest further studies in order to 

confirm the interaction found in experiment 1, possible with different paradigms in order to 

gain at the same time a better understanding of the phenomena that we hope can be 

replicated. 
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 A crucial point of the asymmetry hypothesis is that the tie problem spreads more 

activation in the forward direction than in the backward direction. Therefore, a second way to 

evaluate the asymmetry hypothesis within the same group of participants (Italian speakers) is 

to test for asymmetries in the amount of activation spread by the tie. The experiments 

reported in the next two chapters will test the assumption that the tie problems spread the 

activation asymmetrically. Moreover, in the experiment of the chapter 4, the two assumptions 

of the asymmetry hypothesis have been tested separately. Namely, we tested both if the 

activation generally spreads more in the forward direction than in the backward direction and 

if the activation spreading around the tie problems is asymmetric. 
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Chapter 3 

 

 

 

Asymmetric activation spreading around the tie 

problems: matching and multiples tasks 
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3.1 INTRODUCTION 

 

 In this chapter we will test a critical assumption of the asymmetry hypothesis (see chapter 

2). Namely, we aim to verify if the tie problems spread more activation to the result of the 

table in the forward direction than to the result of the table in the backward direction. 

 An important question about the architecture of the multiplication fact memory is which 

kind of association exists between the operands and the results. The network retrieval model 

(see chapter 1) states that the arithmetic facts memory includes three sets of nodes: one set 

for the first operand; one set for the second operand; one set for the corresponding result. 

For example, when the problem 7×8 is presented, the node 7 and the node 8 are activated in 

the sets of the first and the second operands respectively. Furthermore, in the set of the 

results the node 56 is activated. This model assumes that each operands pair is associated 

with a specific results. For example, the problem 6×4 and 3×8 activate two different result 

nodes (both corresponding to the number 24). According to this model the presentation of a 

number (an operand) could be able to activate its multiples (the result of the multiplication 

table associated with that number). Moreover, this model assumes that the result nodes are 

associated each other and spread activation to their neighbourhood. The network 

interference model (see chapter 1) assumes a similar association between operands and 

result, with the exception that the result nodes are unique regardless the problem. The 

operand nodes that share the result (e.g., 24 is the result of both 6×4 and 3×8) are 

associated with the same result node (e.g., the same result node 24 is activated by both 6×4 

and 3×8). Moreover, the result nodes are associated with magnitude information that identify 

the approximate size of the problem (e.g., the problem 2×7 is associated with “small” and 

8×9 with “large”). Like the network retrieval model, also the network interference model 

assumes that the result nodes are interconnected each other. 

 An relevant distinction between the two models regards the tie effect (i.e., the tie problem, 

e.g. 6×6, are solved faster than other problems with similar size). The network retrieval 
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model explain the tie effect by assuming that tie problems are more frequent than the other 

problems with similar size and then the strength of association between operands and tie 

result is higher than between operands and non-tie problems. On the contrary, the network 

interference model assumes that the tie problems are easier to retrieve because of they are 

stored separately from the other problems. When a tie problem is presented the non-tie 

problem are weakly activated (since they are stored separately). Therefore, the presentation 

of a non-tie problem actives more competitors than the presentation of a tie problem. The 

smaller number of competitors produces an advantage in the identification of the result for 

the tie problems. 

 Both models agree that operand nodes are associated with the result nodes and that the 

result nodes are associated one to each other. There is a clear empirical evidence (Galfano 

et al., 2003; Galfano et al., 2009; Niedeggen & Rösler, 1999; Rusconi et al., 2004; Rusconi et 

al., 2006) that the presentation of a number automatically activates the multiples associated 

to that number (that is the results of the multiplication table of that number). However, the 

asymmetry hypothesis require that the tie and the non-tie problems are stored together and 

that they can spread activation to the other results of a table. Therefore, according to the 

network retrieval model, we assume that the tie effect is due to the higher association 

between operands and tie result. We hypothesize that the stronger association between 

operands and tie results is ascribable to the structural characteristics of the tie problems 

rather than to the frequency factor. In the non-tie problems the activation of the result is given 

by the contribute of both operands, whereas in the tie problems a single operand repeated 

twice has to activate alone the result. For example, the multiple 36 is the result of the tie 

problem 6×6, then the result 36 is associated only with the operand 6. Hence the activation 

of 36 is exclusively given by its association with the operand 6. However, the operand 6 is 

associated also with the other multiples that constitute its multiplication table. Therefore, to 

allow the memory to discriminate between the other multiples and the tie result, the 
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association between an operand (e.g., 6) and its tie multiple (e.g., 36) has to be particularly 

strong, that is the operand activate the tie multiple more than the other non-tie multiples. 

 The fact that the presentation of a problem can activate both the result of the problem and 

as well the other multiples of the operands around the result is provided by various studies. 

For example, Niedeggen & Rösler (1999), in an ERPs study, adopted a verification task to 

investigate the spread of activation in the memory network that encodes the multiplication 

facts. The task of the participants was to verify if the proposed solution was correct or 

incorrect. The incorrect solution could be table related to one of the operands (e.g., 5×8=32, 

24, or 16) or not related (e.g., 5×8=34, 26, or 18). Furthermore, the distance of the proposed 

solution from the correct result (e.g., 5×8=40) could be small (e.g., 32 or 34; for the not-

related and related condition respectively), medium (e.g., 24 or 26), or large (e.g., 16 or 18). 

The Authors found a larger N400 for the incorrect trials with respect to the correct ones, and 

that this effect was modulated by the distance between the actual and the presented result, 

but only in the trials where the wrong response was in the table of one of the operands. The 

amplitude of the N400 effect was attenuated for the small and medium problems with respect 

to large problems. From studies on language processing, the amplitude of the N400 effect is 

supposed to be associated with the (semantic) relation between a preceding context (e.g. the 

operands) and the target (the proposed result). Namely the stronger is the association 

between the context and the target, the smaller is the amplitude of the N400 (Kutas, Van 

Petten, & Kluender, 2006). The results of this study has been interpreted as an evidence that 

the activation spreads from the actual result of the presented problem mainly to the multiples 

of the operands that are close to the actual result. 

 Two different hypotheses about the architecture of the multiplication facts network are 

consistent with the result of Niedeggen & Rösler (1999). The first hypothesis (indirect 

activation) claims that the product is activated by the operands and the multiples are 

indirectly activated via product, namely the activation inside the network spreads from the 

product (Galfano et al., 2003). In other words, two operands (e.g., 6×4) activate their product 



77 

 

(e.g., 24) and then the activation spreads from the product to the closer members of the table 

of the two operands (e.g., considering the operand 4 the activation spreads from 24 to 20, 

28, 16, 32, and so on). The second hypothesis (direct activation) claims that the operands 

can directly activate both the product and the multiples at the same time (Galfano et al., 

2009). To disentangle between these two hypothesis, Galfano and Colleagues (2009) carried 

out a ERPs study adopting the number-matching task (LeFevre et al., 1988; see also 

Galfano et al., 2003; Rusconi et al., 2004; Rusconi et al., 2006). In the number-matching task 

the participants are presented with two numbers (cue) displayed together followed by a third 

number (probe). The task of the participants was to decide whether the probe number 

matched or not with one of the two cue numbers. For example, given the cue numbers 3 and 

7, the probe could be 7 (matching trials) or 16 (no-matching trials). Since arithmetic 

knowledge is not required to accomplish the task, this paradigm allows to implicitly study the 

strength of the associations between a number and its multiples. In fact, in the no-matching 

trials the probe can be arithmetically related to the cue numbers (e.g., given the cue numbers 

3 and 7, the probe can be the product (21) or a multiple (28)) or not-related (e.g., the probe 

23 is neither the product nor a multiple). Adopting this paradigm, Galfano et al. (2009) 

analysed the brain activity evoked by the presentation of product probes, multiple probes, 

and no-related probes. The results showed that the brain activity are consistent with the 

direct activation architecture. Immediately after the presentation of the probe stimulus, the 

activity evoked by the product probes and by the multiple probes is similar, then the activity 

evoked by the multiples decay and became similar to the activity evoked by the not-related 

probes. These results suggest that the presentation of two numbers automatically activates 

the nodes associate with both the product and other multiples of that numbers. 

 The direct activation architecture states that a single number (an operand) can directly 

activate its multiples. However, it does not specify whether an operand activates all its 

multiples with the same strength or whether some multiples receive more activation than 

others. What we are interested to test in the present experiment is if tie multiples receive a 



78 

 

stronger activation and is results following ties receive a larger activation than multiples 

preceding ties. In fact, this is a critical assumption of the asymmetry hypothesis (see chapter 

2). Namely, we aim to test if the tie multiples (the results of the problems 2×2, 3×3, 4×4, and 

so on, that is the multiples 4, 9, 16, 25, and so on) receive a particular strong activation. This 

assumption is supported by the evidence that the advantage of the tie problems relative to 

the non-tie problems is likely due to the easier access of the formers to the result nodes in 

the multiplication facts network (Campbell & Gunter, 2002). 

 The network retrieval model and the network interference model state that the result 

nodes are interconnected. Therefore, once activated a result nodes the activation should 

spread at least to the closer results node (see Niedeggen & Rösler, 1999). According to this 

kind of architecture, we hypothesize that the activation spreading between the result nodes 

could follow the forward direction (that is the small to large numbers direction). We claimed 

that the forward direction is privileged because of when the people use the number system 

they typically adopt the forward direction: when the people have to enumerate a set of object 

they enumerate in the forward direction (1, 2, 3, 4, ...); when the people try to remember a 

multiplication table they “count” in the forward direction (e.g., the 7 table is remembered by 

using the series 7, 14, 21, 28,...); etc. Moreover, the adults report sometime to use the 

repeated addition procedure (e.g., 6×3=6+6=12+6=18) and the table sequence procedure 

(e.g., 6×3=6, 12, 18) to solve multiplication problems (LeFevre et al., 1996a; Smith-Chant 

and LeFevre, 2003; Hecht, 1999). These two strategies should consolidate the association of 

the multiples to each others, and in particular they should strengthen the association 

between a multiple and its subsequent one inside the multiplication table. In other words, 

since when the numbers are used they are typically ordered in the forward direction, we 

assume that this practice could have effects on the network that encodes the arithmetic facts, 

and in particular it should produce an asymmetry during the spread of activation between the 

result nodes. 
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 To summarize, we assume that each number is associated with its multiples (the results 

of its multiplication table) and that the tie multiples have a particularly strong activation. 

Moreover, according to the network retrieval model and the network interference model, we 

assume that the result nodes are associated each other and then that the activation 

spreading inside the result nodes. The hypothesis that we would like test in this study is the 

asymmetric spread of activation across multiples. Namely, we think that inside the result 

nodes set the activation spreads mainly to the forward direction. To test this hypothesis we 

decided to evaluate the activation spreading around the tie results because of it is a critical 

assumption of the asymmetry hypothesis. To this end, we had conceived two paradigms: a 

modified matching task and a multiples task. The matching task we used is similar to the task 

used in the experiment described above used by Galfano and Collaborators (2009; see also 

LeFevre et al., 1988; Galfano et al., 2003; Rusconi et al., 2004; Rusconi et al., 2006). In this 

task the participants were presented with two numbers sequentially presented (a cue 

followed by a probe) and they had to decide if the cue and the probe matched. For example, 

after presenting the cue 6, in the matching condition the probe was 6, whereas in the non-

matching condition the probe could be 42 (multiple trial) or 34 (neutral trial). The multiple 

trials were divided into tie-1 and tie+1 conditions. In the tie-1 condition the probe was the 

multiple before the tie (e.g., the cue was 6 and the probe was 30=36–6), whereas in the tie+1 

condition the probe was the multiple after the tie (e.g., the cue was 6 and the probe was 

42=36+6). Our prediction is that the multiple after the tie (tie+1) should generate more 

interference than the multiple before the tie (tie-1). This larger interference should affect the 

RTs, that is the participants should respond no slower in the tie+1 condition than in the tie-1 

condition. The larger interference of the tie+1 multiple would be a direct test of the 

asymmetric activation, spreading from the tie to the closer multiples. In the matching task the 

cues in the target trials are typically two one-digit numbers (see Galfano et al., 2009; Galfano 

et al., 2003; LeFevre et al., 1988; Rusconi et al., 2004; Rusconi et al., 2006). However, due 

to our specific purpose we presented only one one-digit number as cue. This choice was 
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made to avoid possible confound due to the presentation of two numbers. In fact, the 

presentation of two one-digit numbers would have activated the product of that numbers 

(e.g., the presentation of 6 and 7 as cues actives the representation of 42). The activation of 

other problems could interfere with the activation spreading around the tie that we aim to 

study. Therefore, we decided to present only one one-digit number as cue. 

 In the multiples task the participants were simply asked to report if in a sequence of two 

numbers, sequentially presented, the second one was a multiple of the first one. For 

example, the participants had to respond “yes” if the sequence presented was “6 42” 

(multiple trial), “no” if the sequence was “6 45” (non-multiple trial). The multiple trials included 

tie-1 condition (e.g., “6 30”), tie condition (e.g., “6 36”), and tie+1 condition (e.g., “6 42”). 

According to the asymmetric activation spreading we expected that the participants 

responded faster to the tie+1 condition (easier to access) than to the tie-1 condition (more 

difficult to access). In this task the tie multiples were part of the set of stimuli, then their 

representations were activated more time during the experiment. 

 

 

3.2 METHOD 

 

Participants. Seventeen students of the University of Trento participated in the present 

experiment as volunteers (6 females; mean age: 29.8; sd: 3.11). All participants were native 

Italian speakers and had normal or corrected-to-normal vision. This experiment was 

approved by the Ethic committee of the University of Trento. Each participant performed the 

matching task followed by the multiples task. The data of the matching task for the first three 

participants will not be analysed due to technical problems. Therefore, we analysed the data 

of 14 participants for the matching task and 17 participants for the multiple task. 
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Matching task 

 

Material. The stimuli used in the matching task are reported in Appendix 1. Each trials 

consisted in the presentation of a sequences of two numbers, that is a cue followed by a 

probe. Since we wanted to test the hypothesis of an asymmetry in the activation spreading, 

we decided to present as cues the number 4, 5, 6, 7, 8, and 9 and as probes the multiples 

around the tie multiples of the cue numbers (e.g., if the cue was 6 the probe were 30 (tie–1) 

and 42 (tie+1)). For the cues 4 and 9 we presented only the tie+1 and tie–1 multiples 

respectively. In the matching trials the cues and the probes were the same number (e.g., 

cue=6, probe=6); in the non-matching trials the cue and the probe was two different numbers 

(e.g., cue=6, probe=42). In the non-matching trials there were 6 conditions: tie+1, tie–1, 

neutral+1, neutral-1, and fillers. In the tie-1 condition the probe was the multiple before the tie 

in the multiplication table of the cue (e.g., cue=6, probe=6×(6–1)=30); whereas in the tie+1 

condition the probe was the multiple after the tie (e.g., cue=6, probe=6×(6+1)=42). In the 

neutral+1 and neutral-1 conditions the cues were the same numbers used in the tie+1 and 

tie–1 conditions, but the probes were numbers that are not member of any multiplication 

tables (e.g., cue=6, probe=34). Since, each probe was presented in both tie–1 and tie+1 

conditions with two different cues (e.g., 20 was presented as probe of 4 in the tie+1 condition 

and as probe of 5 in the tie–1 condition), the probes of the neutral+1 and neutral–1 

conditions were presented twice (once in each neutral condition). Moreover, the cues that 

shared the same probe in the tie condition shared the same probe also in the neutral 

conditions. For example, the number 20 was presented in both the tie+1 and the tie–1 

conditions with the cues 4 and 5, the probe 38 as well as were presented in both the 

neutral+1 and neutral–1 conditions with the cues 4 and 5. The mean of the probe numbers in 

the tie+1 and tie–1 conditions was 44.0 and the mean of the probe numbers in the neutral+1 

and neutral–1 conditions was 42.4. In the fillers condition both cue and probe were numbers 

that were not members of any multiplication table. 
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 In the matching trials there were 6 conditions: cue-balancing+1, cue-balancing–1, probe-

matching multiple, probe-matching neutral, and fillers. The cue-balancing+1 and the cue-

balancing–1 conditions had as cues and probes the same cues used in the tie+1 and tie–1 

conditions of the non-matching trials. The probe-matching multiple and the probe-matching 

neutral conditions presented as cues and probes the same probes used in the tie and neutral 

conditions of the non-matching trials. The fillers condition presented as cues and probes 

some of the numbers used in the non-matching fillers condition. 

 The total number of cue-probe pairs in the matching task was 50: 5 (stimuli per condition) 

× 5 (conditions) × 2 (matching or non-matching sequences). Each trial stimulus was repeated 

12 times with a total of 600 trials in the whole experiment. The participants were presented 

with the same number of matching and non-matching trials. 

 

Procedure. The stimuli were presented in white on a black background. The procedure we 

used was similar to the procedure of Galfano et al. (2009), with the exception that we 

presented one cue instead of two. The 600 trials (50 stimuli repeated 12 times) were divided 

in 10 blocks of 60 trials each. Between the blocks the participants could take a short break. 

The order in which the stimuli were presented was randomized for each participants. Each 

trials started with a fixation point (“#”) shown for 400 ms at the centre of the screen. After this 

time the cue replaced the fixation point. The cue was presented for 60 ms and was 

immediately followed by a mask frame consisting of the “####” string presented for 40 ms. 

After the mask frame a black screen was presented for 20 ms and after the black screen the 

probe was presented until the participants responded. The interval between the onset of the 

cue and the onset of the probe (stimulus onset asynchrony) was 120 ms. Between the trials 

there were intervals of 1100 ms. The participants had to respond by pressing the Z keyboard 

key  with the left hand for yes answers and the M key for no answers. Contrarily to what we 

planned response hand was not counterbalances across participants, due to an error in the 

program used for the presentation of the stimuli. 
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 The matching task was preceded by 12 practice trials (6 matching and 6 non-matching), in 

which both cues and probe were numbers that were not member of any multiplication table. 

The matching task required about 30 minutes. After the matching task the participants could 

take a short break. When the participants were ready they could start the multiple task. 

 

 

Multiples task 

 

Material. The stimuli used in the matching task are reported in Appendix 2. Each trials 

consisted in the presentation of a sequences of two numbers, that is a one-digit number 

(cue) followed by a two-digit number (probe). Cues were the numbers 4, 5, 6, 7, and 8 and  

the probes were the multiples around the ties and tie multiples of the cues (e.g., if the target 

cue was 6 the target probe were 30 (tie–1), 36(tie), and 42 (tie+1). In the table trials the 

probe was a multiple of the cue (e.g., cue=6, probe=36); in the non-table trials the probe was 

a number that was not in the table of the cue (e.g., cue=6, probe=39). In the table trials there 

were 3 conditions: tie–1, tie, and tie+1. In the tie–1 condition the probe was the multiple 

before the tie, in the tie condition the probe was the tie, and in the tie+1 condition the probe 

was the multiple after the tie (e.g., given the cue 7, the tie–1 probe was 42, the tie probe was 

49, and the tie+1 probe was 56). 

 In the non-table trials there were 4 conditions: below tie–1, below tie, above tie, and above 

tie+1. The probes in the below tie condition were the number in the middle between the tie 

and the tie–1. The probes in the above tie condition were the number in the middle between 

the tie and the tie+1. In both below tie and above tie conditions the probes were rounded off 

towards the tie. The distance between the tie probe and the below tie probe was subtracted 

to the tie–1 multiple or added to the tie+1 multiple to generate the below tie–1 and above 

tie+1conditions respectively.  
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 Each cue-probe pair in the table set was repeated 12 times, whereas the stimuli in the 

non-table was repeated 9 times each. The total number of table trials was 180: 5 operands 

(4, 5, 6, 7, and 8) × 3 condition (tie–1, tie, and tie+1) × 12 repetitions. The total number of 

non-table trials was 180: 5 operands (4, 5, 6, 7, and 8) × 4 condition (below tie–1, below tie, 

above tie, and above tie+1) × 9 repetitions. The participants were presented with the same 

number of table and non-table trials (360 trials in the experiment). 

 

Procedure. The stimuli were presented in white on a black background. The 360 trials were 

divided in 8 blocks of 45 trials each. Between the blocks the participants could take a short 

break. The order in which the stimuli were presented was randomized for each participants. 

Each trials started with the presentation of the cue for 600 ms followed by a black screen 

presented for 200 ms. After the black screen the probe was presented until the participants 

responded. The interval between the onset of the cue and the onset of the probe (stimulus 

onset asynchrony) was 800 ms. Between the trials there were intervals of 1000 ms. The 

participants had to respond by pressing the keys “M” and “Z” on the keyboard. All the 

participants were required to press “Z” with the index finger of the left hand if the cue and the 

probe matched, and “M” with the right index of the right hand if the cue and probe did not 

match. Like in the matching task and for the same reasons, we did not balance the key to 

press across the participants. 

 The matching task was preceded by 10 practice trials (5 table trials and 5 non-table trials), 

in which each cue was repeated twice (1 table and 1 non-table trials) and the probes were 

either multiple numbers or non-multiple not used in the experiment. The matching task 

required about 15 minutes. 
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3.3 RESULTS 

 

Matching task 

 The accuracies for each experimental cell are reported in table 3.1. The table shows that 

the participants made more errors in the matching conditions than in the non-matching 

conditions. Contrarily to what we expected, these results suggest that the participants found 

easier to respond when the cues and the probes were not the same number (non-matching 

condition). 

 

matching no matching 
condition acc.  acc. condition 

cue-balancing+1 0.82 0.97 tie+1  
cue-balancing-1 0.81 0.96 tie-1  

probe-balancing M 0.81 0.94 neutral+1  
probe-balancing N 0.79 0.95 neutral-1  

filler 0.81 0.95 filler 
Table 3.1: the accuracies in each experimental cell in matching and non-matching conditions. 

 
The figure 3.1 shows the RTs aggregated across participants and congruence (that is 

matching trials vs non-matching trials). The participants responded faster in the non-

matching condition (578 ms) than in the matching condition (623 ms), t(13)=2.04, p=0.06. 

Both the smaller number of errors and the faster RT in the non-matching condition suggest 

that the participants found easier to respond in the non-matching conditions than in the 

matching condition. 

 The following analysis have been performed on the RTs for the correct responses. For 

each participant outliers  were removed using the Van Selst and Jolicoeur (1994) procedure. 

We recursively removed the RTs that beyond 3.5 standard deviation from the mean of each 

participant. Then, we calculated the mean RTs for each participant for both tie-1 and tie+1 

conditions. The analysis showed that there was no differences in the RTs between the two 

conditions (541 ms for both conditions). 
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Figure 3.1: mean RTs in milliseconds as function of the congruence (matching vs non-matching trials). 

 

 A further analysis was conducted on the cues that were presented in both conditions (the 

cues 5, 6, 7, and 8 were used in both tie-1 and tie+1 conditions; see Appendix 1). The cues 

5, 6, 7, and 8 were presented followed by probe numbers that were either tie-1 multiple or 

tie+1 multiple of the cues. For example, the cue 6 was presented once in the tie-1 condition 

followed by the probe 30 (6×6=36–6=30) and once in the tie+1 condition followed by 42 

(6×6=36+6=42). A repeated measure ANOVA was conducted on the RTs with condition (tie-

1 and tie+1) and cue (5, 6, 7, and 8) as within factors. Again, no significant effects emerged. 

In an exploratory view, it is interesting to have a look to the means reported in table 3.2 and 

figure 3.2. 

 

 cues 

conditions 5 6 7 8 
tie-1 545 541 524 550 
tie+1 530 540 549 523 

Table 3.2: mean RTs in milliseconds for the cues 5, 6, 7, and 8 in the tie-1 and tie+1 conditions. 
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 The mean RTs in each experimental cell show that, even though not significant, there are 

some asymmetries comparing the multiples. In the trials in which the cues were 5 and 8 the 

probes in the tie+1 (30 an 72, respectively) category showed an advantage with respect to 

the probe in the tie-1 category (20 an 56, respectively); whereas the cue 7 showed the 

inverse pattern, the tie-1 probe (42) showed an advantage with respect to the tie+1 probe 

(56). 

 

 

Figure 3.2: mean RTs in milliseconds as function of the cues (5, 6, 7, and 8) and conditions (ties-1 and ties+1). 

 

 

Multiples task 

 

 The accuracies for each experimental condition are reported in table 3.3. Unlike than for 

the matching task, the number of errors were similar in the conditions. Furthermore, the 

participants made less errors in the table conditions (that is the conditions in which the probe 
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was a multiple of the cue), and tended to respond faster to the table trials (the probe is a 

multiple of the cue, 763 ms) than to the non-table trials (the probe is not a multiple of the cue, 

817 ms), t(16)=–2, p<0.1 (figure 3.3). 

 

condition accuracy 
below tie-1 0.87 
below tie 0.9 
above tie 0.85 

above tie+1 0.86 
tie 0.94 

tie-1 0.94 
tie+1 0.92 

Table 3.3: the accuracies in each experimental cell in the multiple task. 

 

 

Figure 3.3: mean RTs in milliseconds as function of the congruence; in the table trials the probe was a 

multiple of the cue,  in the non-table trials the probe was not a multiple of the cue. 

 

 The following analysis have been performed on the RTs for the correct responses. The 

outliers have been removed with the same method used for the matching task ( Van Selst 

and Jolicoeur, 1994 with a threshold 3.5 standard deviations). Since we were interested to 

the differences between multiples, we carried out the analysis only on the table trials (that is, 
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the trials where the probe was multiple of the cue). We performed an repeated measure 

ANOVA on the RTs for the correct trials with condition (tie-1, tie, and tie+1) and cue (4, 5, 6, 

7, and 8) as within factors (see figure 3.4). 

 

 

Figure 3.4: mean RTs in milliseconds as function of cue and condition. 

 

 The main effect of condition was significant, F(2,32)=3.65, p<0.05. Post-hoc analysis 

showed that the participants tended to respond faster in the tie condition (672 ms) than in 

tie+1 condition (752 ms), p<0.1. Moreover, contrarily what we expected, the participants 

tended to be faster in tie-1 condition (721 ms) than in tie+1 condition (752 ms), p<0.1. The 

difference between tie and tie-1 conditions was however  not significant. The main effect of 

cue was significant, F(4,64)=8.07, p<0.001. The effect of the cue likely reflected the problem 

size effect (Zbrodoff & Logan, 2005). In fact, the RTs were modulated by the size of the cues 

(621, 562, 741, 854, and 839 for the cue 4, 5, 6, 7, and 8 respectively), that is the recognition 

of the multiples was more difficult for the larger cues. The condition by cue interaction was 
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also significant, F(8,128)=3.79, p<0.001. The post-hoc analysis showed a tendency to 

respond faster in the tie+1 (529 ms) condition than in the tie-1 condition (568 ms) when the 

cue was 5, p<0.1; whereas, contrarily what we expected, the tie-1 condition (655 ms) tended 

to be response faster than the tie+1 condition (979 ms) when the cue was 6, p<0.1. No 

others comparisons were significant. 

 

 

3.4 DISCUSSION 

 

 This study was based on the assumption that there is a strong association between a 

number (e.g., 6) and its tie multiple (e.g., 36). The aim of this study was to investigate the 

possibility that the activation spreading around the tie result nodes in the arithmetic facts 

memory would have an asymmetry. Namely, we hypothesized that the activation spreads 

more in the forward direction (i.e., from tie to larger multiples) than in the backward direction 

(i.e., from tie to smaller Multiples). 

 The data collection was interrupted after 17 participants when, after a first analysis of the 

data, we discovered that in the matching task  the “no” responses for non-matching trials 

were faster and more accurate than the “yes” responses for matching trials.  Going back to 

check the paradigm we discovered a possible cause of it, the lack of counterbalancing of the 

response hand across participants. The response criteria in the matching task, as well as in 

similar paradigms (e.g. lexical decision), is typically biased trough a “yes” response and a 

time limit criteria is typically used by participants to balance accuracy and speed (e.g. if after 

a given time there is no positive evidence for a match do respond “no”). In fact previous 

studies that implemented a paradigm similar to the one here used (Galfano et al., 2009; 

Galfano et al., 2003; LeFevre et al., 1988; Rusconi et al., 2004; Rusconi et al., 2006) typically 

found more accurate and fast answer in the match condition. One possible explanation of our 

results is that the “yes” response was associated with the left, non dominant hand, however 
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accuracy in the second task (where the same behavioural confound was present) was better 

for “yes” answers and thus this can be not the whole story. We cannot disregard another 

possible explanation of the faster and more accurate responses to the non matching trials in 

the first task. One other difference from the original paradigm (Galfano et al., 2009; Galfano 

et al., 2003; LeFevre et al., 1988; Rusconi et al., 2004; Rusconi et al., 2006) was the use of a 

single cue instead of two. The procedure to replace the probe in the same position of the cue 

could have lead participants to adopt a specific strategy: given that cues and targets were 

presented in fast sequence at the same point of the screen, the use of simple perceptive 

features (or even just the number of digits) to check whether the two numbers were the same 

or not could have been used. This can have affected our data and explain a null result, since 

the activation of abstract numeric representations needed to accomplish the task could have 

been very weak. 

 Despite this, the qualitative analysis of the first task (see figure 3.2) showed numerical 

asymmetries that do not show a global tendency as expected by our hypothesis (a right 

skewed activation around ties) but different tendencies to an asymmetry that depend on 

specific cues. 

 In the second task, where the confound of the use of mere perceptual strategies in order 

to solve the task does not apply, the condition by cue interaction provided little evidence for 

an asymmetry, but the direction of this asymmetry again depended on the specific of cue. 

For example, the direction of the asymmetry is inverted between the cue 6 and 8. 

 Despite the null results obtained with this two paradigms, the qualitative results suggest 

that the presentation of a single number could not lead to the activation spreading we was 

looking for. In the literature in the matching task are usually used two cue numbers (see for 

example Galfano et al., 2003). Given our interest in the spreading of activation from the ties 

the presentation of the same number repeated twice as cues could have been used. 

However, the multiples above or below the tie presented as probe (e.g., 6 6 as cue and 42 as 

probe; 6 6 as cue and 30 as probe) could have made the task too easy.  
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 The first task tested whether the implicitly activation of multiples within a task that does 

not require multiplication knowledge give rise to the asymmetry of spreading of activation 

around ties that could explain our results of chapter 1. The second task requires the 

activation of nodes in the associative memory for arithmetic facts. In both cases numerical 

asymmetries were found but without any overall direction. Therefore we think that it could be 

possible that in order to obtain an asymmetry inside the arithmetic facts memory may be 

necessary to present both operands of a problem in an arithmetic context, namely a context 

for which the problems nodes are also activated within the arithmetic facts memory. 

Therefore, we decided to test the asymmetry hypothesis in a result verification task that will 

be described in the next chapter.  
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Chapter 4 

 

 

 

The operands-order effect and the asymmetric 

spreading activation inside the multiplication facts 

memory: a study with verification task 
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4.1 INTRODUCTION 

 

 In this Chapter we report a verification task experiment, in which the whole components of 

the arithmetic facts memory, including problem nodes and not only multiples of single digits 

(operands) are directly involved. In the verification task the participants are presented with an 

equation (two operands and a result) that can be correct (e.g., 2×9=18) or incorrect (e.g., 

2×9=23). The participants have to judge if the presented result is correct or not.  

 The experiment here presented has two aims: the first is to evaluate if the operands-order 

by size interaction we found for Italians participants in the production task (see chapter 2) 

affects also the performance when the participants have to judge if a presented equation is 

correct (e.g., 6×4=24) or incorrect (e.g., 6×4=18). First of all, given that the results of the first 

experiment reported in this thesis were not replicated with English speakers it is interesting to 

replicate the results with a different pool of participants. Instead of running a second 

production experiment we however decided to test if the same interaction emerges also in a 

verification task. The two tasks differ for a number of reasons, first of all a difference between 

production and verification is that while in the former an explicit selection of the correct result 

within a pool of active result nodes is necessary to achieve the task (Zbrodoff & Logan, 1990; 

Zbrodoff & Logan, 2000). In a verification task this selection may come from an interplay with 

the representation of the presented result that largely facilitates to achieve a rather good 

accuracy with a lesser effort. For this reason in a verification task is more likely than in a 

speeded production task that the participants rely mainly on retrieval procedures. Thus, 

finding the same results could help us in attributing the interaction between order and size as 

a property of the internal organization of arithmetic facts memory, despite being shaped by 

learning and use of non-retrieval procedures. 

 The second aim of using a verification task is to evaluate, by carefully manipulating the 

trials where the result is incorrect (e.g., 6×4=18), whether the activation spreads 

asymmetrically between the multiples that constitute the multiplication table. The second aim 
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is interesting for three reasons. First, it can be used to test the asymmetry hypothesis (see 

chapter 2), that is to evaluate if in the multiplication facts memory the activation of a tie result 

spreads more to the larger multiple (forward direction) than to the smaller multiple (backward 

direction). Second, it can be evaluated if the asymmetric activation spreading is a general 

feature of the associations between result nodes in the associative memory that is assumed 

to store multiplication facts. Third, the asymmetric activation spreading of the tie results, if 

exist, can be compared with the asymmetric activation spreading of non-tie results. 

 In the production task experiment (chapter 2), we found a size by order interaction. 

Namely, for small and medium problems the L×s order (e.g., 4×3, 7×3) was solved faster 

than the s×L order (e.g., 3×4, 3×7); whereas, for large problems the s×L order (e.g., 7×8) 

was solved faster than the L×s order (e.g., 8×7). We proposed two possible explanations: 

reorganization hypothesis and asymmetry hypothesis. The reorganization hypothesis states 

that the interaction is due to both the order in which the multiplication problems are learned 

and the reorganization of the memory due to the use of non-retrieval procedures in the 

childhood. The asymmetry hypothesis explains the interaction with a different amount of 

activation of the result when the second operand is presented. The order by size interaction 

has been found in a production task, in which the participants had to identify the result of the 

problem by accessing to the arithmetic facts. In other words, the production task requires the 

full identification of the result of the arithmetic problem in the multiplication facts memory 

(Zbrodoff & Logan, 1990; 2000). On the contrary, in the verification task the participants use 

the all the element of the equation (operands and result) to judge whether the equation is 

correct (Zbrodoff & Logan, 1990; 2000). According to Zbrodoff and Logan (1990; 2000), 

verification and production are two different processes that rely on the same “arithmetic 

knowledge base”. If we consider the multiplication facts memory as the “arithmetic 

knowledge base” on which the verification and the production tasks operate, then the 

organization of the multiplication facts memory should affect in a similar way the performance 

in both tasks with respect to the operands-order by size interaction. In fact, both the 
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reorganization hypothesis and the asymmetry hypothesis state that the order by size 

interaction is produced by specific features of the “arithmetic knowledge base”. According to 

the reorganization hypothesis only one of the two orders of the operands is stored in 

memory, and then both product the result and verify the result (or the whole equation) should 

be easier/faster for the stored order. According to the asymmetry hypothesis the activation 

spreading advantage one of the two orders, and then, as well as for the reorganization 

hypothesis, the advantage should be the same across production and verification. Therefore, 

we expect to find in the verification a similar order by size interaction we found in the 

production task discussed above. 

 The second aim of this experiment is to evaluate whether the activation of the result (e.g., 

21) generated by the operands of a problem (e.g., 7×3) spreads in an asymmetric way 

around the result. Various studies (Galfano et al., 2003; Galfano et al., 2009; Rusconi et al., 

2004; Rusconi et al., 2006) showed that the simple presentation of two one-digit numbers in 

a matching task (in which the arithmetic knowledge are not required) is able to activate the at 

least the two multiples around the result of the multiplication problem with that numbers as 

operands (e.g., 4 and 6 activate 20 (below the product 24) and 28 (above 24)). For example, 

the presentation of the two numbers 4 and 6 is able to activate the multiple 20, 28, 18, and 

30, which are around the product 24. One explanation of this result could be that the multiple 

are associated one other (see the network retrieval model and the network interference 

model in chapter 1). Namely, once presented the two numbers, their product is automatically 

activated and then this activation spread at least to the closer multiples (but see Galfano et 

al., 2009, for a different architecture with a direct activation not mediated by the true result). 

In the verification task, when the presented result is incorrect, the two operands could 

activate the correct result and this result could spread the activation to the multiples that are 

close to the results. However, we hypothesized that this activation spreading is not 

symmetric. More precisely, we hypothesized that the activation spreads more in the forward 

direction (from the result to the larger multiples) than in the backward direction (from the 
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result to the smaller multiples). This assumption is based on the observation that when 

people try to remember a table they typically “count” from the smaller multiple to the larger 

(e.g., remembering the 7-table “counting” 7, 14, 21, 28, and so on). Therefore, the multiples 

could be more associated with the subsequent multiple than to the previous one because for 

producing the multiple list correctly each multiple has to be associated with the next one and 

not with the previous one. Moreover, the non-retrieval procedures like repeated addition 

(e.g., 6×3=6+6=12+6=18) and table sequence (e.g., 6×3=6, 12, 18) reinforce only the 

association between a multiple and the next one, and not vice versa. Therefore, we expected 

that, when presented a incorrect equation, a incorrect result above the correct result (e.g., 

7×3=21) would produce more interference than a incorrect result below (e.g., 7×3=14). In 

fact, the above multiple (that is in the forward direction) should be more activated than the 

below multiple (backward direction) due to the asymmetric activation spreading. To test this 

hypothesis, in the incorrect equations we used as incorrect results only the multiple above 

and below the correct results. This should also make the task more difficult (all the incorrect 

results are the correct result for another multiplication) and then it is more unlikely that the 

participants would base their responses on a generic familiarity judgement. 

 

 

4.2 METHOD 

 

Participants. Twenty-two students of the University of Trento participated in the present 

experiment as volunteers (11 females; mean age: 21.8; sd: 6.3). All participants were native 

Italian speaker and had normal or corrected-to-normal vision. This experiment was approved 

by the Ethic committee at the University of Trento. 

 

Material. We use as stimuli the multiplication problems from 3×3 to 8×8 (overall 36 

problems). For each problem we presented 4 correct equation (e.g., 7×3=21) and 4 incorrect 



98 

 

equation (e.g., 7×3=28) in order to balance the number of yes and no responses. The result 

of each incorrect problem was one of the multiples around the correct solution of the problem  

and this was done for each of the two operands. Namely, given a problem (e.g., 7×3) the 4 

incorrect solution were: 1) the multiple of the first operand above the result (e.g., 7×3=28); 2) 

the multiple of the first operand below the result (7×3=14); 3) the multiple of the second 

operand above the result (e.g., 7×3=24); 4) the multiple of the second operand below the 

result (7×3=18). Therefore, each problem was presented  8 times (4 correct and 4 incorrect). 

The participants performed 4 blocks with 72 problems each (36 correct and 36 incorrect) and 

in each block there were a correct result and a incorrect one for each problems. In each 

block the participants were presented with all the 4 incorrect multiple conditions and the 

order in which the 4 incorrect solution of a problem were presented in the 4 blocks varied 

randomly for each participant. Therefore, given the problem (e.g., 7×3), the order in which 

the incorrect solutions of the problem (14, 18, 24, 28) were presented varied randomly 

across the participants. Totally, the participants performed 288 problems, 144  was 

presented with the correct solution and 144 with the incorrect one. In each block was 

presented 72 problems, 36 correct and 36 incorrect. All the incorrect results were a multiple 

of one of the two operands and were close (above or below) to the correct result. 

 

Procedure. During the experiment the participants sat alone in a partially sound-proof room. 

In order to familiarize with the experimental procedure the participants performed a block of 

practice in which they were presented 10 trials which problems had 2 or 9 as operand. The 2 

and 9 tables were not used as experimental trials given that multiples below and above the 

correct results were trivial (1 and 10 table). After the practice the experimenter made sure 

that the procedure was clear to the participants. The problems were sequentially presented 

at the centre of a monitor of a PC. Each trial started with a fixation point (“#”) presented for 1 

second. The first operand, the sign (“×”), and the second operand were presented for 300 ms 

each. After the second operand the proposed result was presented until the participants 
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responded. Once one stimulus disappear the next one was immediately presented on the 

screen without any interstimulus interval. The operands, the sign, and the results had a 

dimension of about 1 cm and the participants were at about 60 cm from the monitor. 

Participants were required to judge whether the presented result was correct or not and to 

respond with the keys “Z” and “M” of the keyboard with the left and right hand respectively, 

as quick and accurate as possible. One half of the participants had to respond “Z” to the 

correct result and “M” to the incorrect ones, whereas the other half had to respond with the 

inverse keys response code. The participants had to perform 4 experimental blocks and 

between one block and the other they could take a little break. 

 

 

4.3 RESULTS 

 

 One participant was excluded from the analysis due to extremely slow reaction times 

(RTs). The mean RTs of that participant (2162 ms) was beyond 2 standard deviation from 

the mean of the group (1138 ms). Moreover, in the following analysis, for the reaction times 

we removed the outlier values for each participant by using the outlier elimination procedure 

of Van Selst and Jolicoeur (1994). We recursively removed the RTs that beyond 3.5 standard 

deviation from the mean of each participant. Furthermore, ANOVAs were Greenhouse-

Geisser corrected when the degrees of freedom of the numerator exceeded one 

(uncorrected degrees of freedom and epsilon values are reported). 

 First, we analysed the performance of the participants between the correct solution and 

the incorrect solution trials (see figure 4.1). The accuracy (the proportion of correct response) 

and the mean reaction times were calculated for each participant in each of the two 

correctness condition (correct trials vs incorrect trials). The participants made more errors in 

the incorrect condition (8% of error; 248 error on 3024 total trials) than in the correct 

condition (5%; 146), t(20)=3.91, p<0.01. Moreover, the participants were faster to judge the 
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correct trials (1021 ms) than the incorrect ones (1194 ms), t(20)=–5.64, p<0.001. Therefore, 

the correct trials were easier to judge than the incorrect ones. In the following analysis the 

correct and incorrect trials have been analysed separately to test the different hypotheses 

outlined in the introduction. 

 

 

Figure 4.1: the accuracy (on the left) and the mean RTs (in millisecond, on the right) for the correct and 

incorrect presented result conditions. *p<0.05. 

 

 The trials in the correct condition were analysed to evaluate if the order by size interaction 

we found in the production task (see Chapter 2 of this thesis) affects a verification task as 

well. For the correct condition, the accuracy and the mean RTs were calculated for each 

participants in each of the six experimental cells given by the two factors size and order. The 

problems were classified in three size category: small, medium, and large. The problems with 

both operands larger than five were classified as “large” (e.g., 7×8); the problems with one 

operand larger and one smaller than 5 were classified as “medium” (e.g., 7×3); the problems 

with both operands smaller than 5 were classified as “small” (e.g., 3×4). The problems 6×5, 
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7×5, 8×5, and their commuted were classified as “medium”; whereas the problems 3×5, 4×5, 

and their commuted were classified as “small”. The tie problems (e.g., 3×3) were excluded 

from the analysis. The order factor involved two levels: L×s problems (larger operand in first 

position, e.g. 7×3) and s×L problems (smaller operand is first position, e.g. 3×7). 

 On the trials in the correct condition, a 2x3 repeated measure ANOVA was performed on 

the accuracies with size and order as within factors. Only the main effect of size was 

significant, F(2,40)=10.11, εGG=0.69 , p<0.01. Post-hoc t-test7 analysis revealed that the 

participants made more errors in the large condition (89% of correct answers) than in both 

medium (95%) and small conditions (97%), t(20)=–3.00, p<0.05 and t(20)=–3.58, p<0.01, 

respectively. 

 On the trials in the correct condition, a 2x3 repeated measure ANOVA was performed on 

the RTs with size and order as within factors. The main effect of size was significant, 

F(2,40)=33.13, εGG=0.61, p<0.001. Post-hoc t-test analysis revealed that the participants 

were slower in the large condition (1274 ms) than in both medium (1029 ms) and small 

conditions (746 ms), t(20)=4.51, p<0.001 and t(20)= 6.08, p<0.001, respectively. Moreover, 

the participants were slower in medium condition than in small condition, t(20)=6.11, 

p<0.001. The ANOVA revealed also a significant order by size interaction (figure 4.2), 

F(2,40)=6, εGG=0.99, p<0.01. Post-hoc t-test analysis showed that in the small condition the 

participants responded faster in the L×s order (703 ms) than in the s×L order (788 ms), 

t(20)=–2.95, p<0.01; likewise, in the medium condition the participants responded faster in 

the L×s order (991 ms) than in the s×L order (1066  ms), t(20)=–3.14, p<0.01; whereas, in 

the large condition the participants showed a tendency to respond faster in the s×L order 

(1242 ms) than in the L×s order (1305 ms), t(20)=1.56, p<0.1. These results confirm the 

results of the production task discussed above (chapter 2) and provide further evidences that 

the order of the operands can affect the performance in multiplication. 

                                                           
7
  All the p-value of the post-hoc t-test reported in this experiment have been corrected with the FDR 

method. 
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Figure 4.2: the mean RTs for the size by order interaction. Above each bar is presented an example of a 

multiplication of that size and order. ° p<0.1; *p<0.05. 

 

 The trials in the incorrect condition were analysed to evaluate if the activation inside the 

multiplication facts memory spread asymmetrically, that is the activation spread more in the 

forward direction (i.e., to the activated result to the larger multiples) than in the backward 

direction (i.e., to the activated result to the smaller multiples). The asymmetry has been 

compared between tie and non-tie problems. For the incorrect condition, the accuracy and 

the mean RTs were calculated in the eight experimental cells given by the three factors 

direction (below: the presented result was below the correct result, e.g. 7×3=18; above: the 

presented result was above the correct result, e.g. 7×3=24), position (first: the presented 

result was a multiple of the first operand, e.g. 7×3=28, second: the presented result was a 

multiple of the second operand, e.g. 7×3=24), and type (tie, e.g. 4×4; non-tie, e.g. 4×7). 

 On the trials in the incorrect condition, a 2x2x2 repeated measure ANOVA was performed 

on the accuracies with direction, position, and type as within factors. The ANOVA revealed 
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an direction by type interaction, F(1,20)=8.75, p<0.01. In the non-tie condition, the 

participants made more errors when the incorrect result where above (89%) than when it was 

below (94%), t(20)=–3.38, p<0.01. No differences emerged in the tie condition. Contrary to 

what we expected, the direction factor affected more the performance in the non-tie condition 

than in the tie condition. 

 

 

Figure 4.3: mean RTs (in millisecond) for the direction by type interaction. *p<0.05. 

 

 On the trials in the incorrect condition, a 2x2x2 repeated measure ANOVA was performed 

on the RTs with direction, position, and type as within factors. The ANOVA revealed a main 

effect of type, F(1,20)=25.36, p<0.001, given that wrong result of tie problems were rejected 

faster (935 ms) than that of the non-tie problems (1180 ms),. More interesting given  the aims 

of this experiment, the ANOVA showed a direction by type interaction (figure 4.3), 

F(1,20)=13.85, p<0.01. Post-hoc analysis reveal that in the non-tie condition the participants 

responded slower when the incorrect result was above (1230 ms) then when it was below 

(1130 ms), t(20)=2.77, p<0.01. On the other side no differences emerged between above 

incorrect results (915 ms) and below incorrect result (955 ms) for the tie problems. This result 
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is not consistent with the critical assumption of the asymmetry hypothesis, that is the 

activation around the ties spread more in the forward than in the backward direction. 

However, this result shows that the direction factor affects the performance on non-tie 

problems. Therefore, we made a further analysis on the non-tie problems to better describe 

this effect. Since the direction factor does not affect the performance on the tie problems, in 

the following analysis the tie problems are excluded. 

 For the incorrect condition (only non-tie problems), the accuracy and the mean RTs were 

calculated in each of the eight experimental cells given by the three factors direction (below: 

the presented result was below the correct result, e.g. 7×3=18; above: the presented result 

was above the correct result, e.g. 7×3=24), distance (small: the presented result was a 

multiple of the smaller operand, e.g. 7×3=18; large: the presented result was a multiple of the 

larger operand, e.g. 7×3=14), and position (first: the presented result was a multiple of the 

first operand, e.g. 7×3=28, second: the presented result was a multiple of the second 

operand, e.g. 7×3=24). 

 On the trials in the incorrect condition, a 2x2x2 repeated measure ANOVA was performed 

on the accuracies with direction, distance, and position as within factors. The main effect of 

direction was significant, F(1,20)=11.42, p<0.01 (figure 4.4 on the left). The participants 

made more errors when the incorrect result was above (89% of correct answers) the correct 

result than when it was below (94%). This result suggest that the participants found more 

difficult to judge the equations when the incorrect result was a multiple above the correct 

result of the problem. Moreover, the main effect of position was also significant, 

F(1,20)=4.89, p<0.05 (figure 4.4 on the right). The participants made more errors when the 

incorrect result was a multiple of the second operand (93% of correct answers) than when it 

was a multiple of the first (90%). 
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Figure 4.4: the accuracy in the direction factor (on the left) and position factor (on the right). *p<0.05. 

 

 On the trials in the incorrect condition, a 2x2x2 repeated measure ANOVA was performed 

on the RTs with direction, distance, and position as within factors. Like for the accuracy 

analysis, the main effect of direction was significant, F(1,20)=8.04, p<0.05 (figure 4.5). The 

participants responded slower when the presented result was a multiple above (1230 ms) the 

correct result than when it was below (1130 ms). Consistently with the accuracy analysis, this 

result show that the participants found more difficult to judge the equation when the 

presented incurred result was above the correct result. This suggests that, in the non-tie 

problems, the multiples above the correct results made more interference than the multiples 

below, and that the former could be more activated than the latter providing a evidence that 

the activation spread from the correct result of the problem mainly to the forward direction. 
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Figure 4.5: the mean RTs for the two levels of the direction factor. *p<0.05. 

 

 

Figure 4.6: the mean RTs (in millisecond) for the position by distance interaction. Above each bar is 

presented the order of the operands (L×s: the first operand is larger than the second one; s×L: the first 

operand is smaller than the second one). ° p<0.1; *p<0.05. 
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 Moreover, the position by distance interaction was significant, F(1,20)=5.21, p<0.05 

(figure 4.6). When the incorrect result was a multiple of the second operand the participants 

tended to respond slower in the large distance condition (e.g., 3×7=14 or 28; 1229 ms) than 

in the small distance condition (e.g., 7×3=18 or 24; 1130 ms), t(20)=2.03, p=0.06; when the 

incorrect result was a multiple of the smaller operand the participants responded slower in 

the first position condition (e.g., 3×7=18 or 24; 1203 ms) than in the second position 

condition (e.g., 7×3=18 or 24; 1130 ms), t(20)=3.13 ,p<0.05.  

 

A   position   

  distance first second   

  small 
3 × 7 = 24 

(s×L) 
7 × 3 = 24 

(L×s) 
  

  large 
7 × 3 = 28 

(L×s) 
3 × 7 = 28 

(s×L) 
  

          

B   position   

  distance first second   

  small 1203 1130   

  large 1158 1229   

          

Table 4.1: A: an example of the position by order interaction. The incorrect result is a multiple of the 

underlined operand. Below the equation is reported the order of the operands in which the problem is 

presented. In this example are reported only the incorrect result above the correct result, but the effect is 

the same with the incorrect result below. B: the mean RTs (in millisecond) in each experimental cell. 

 

 This interaction can be interpreted as the fact that the order of the operands affects the 

time required to judge the correctness of the equation. In other words, the two factor position 

and direction can be to trace back to the order of the operands. When in the presented 

equation the incorrect result was a multiple of the first operand and the first operand was 

smaller than the second one the equation was in the s×L order; whereas when the incorrect 

result was a multiple of the first operand and the first operand was larger than the second 
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one the equation was in the L×s order (see first column of the table 4.1). When in the 

presented equation the incorrect result was a multiple of the second operand and the second 

operand was smaller than the first one the equation was in the L×s order; whereas when the 

incorrect result was a multiple of the second operand and the second operand was larger 

than the first one the equation was in the s×L order (see second column of the table 4.1).  In 

table 4.1an example the problems in which the operands were 7 and 3 is reported. As 

showed in the table, the s×L order was judged slower than the L×s order regardless the 

position or the distance of the operand which multiple was presented as incorrect result. This 

result is another strong evidence than the order of the operand affects the performance with 

multiplication problems and that the interference product by an incorrect result is stronger for 

the s×L order than for the L×s order. Unfortunately, although it would be interesting, it has 

not been possible to statistically evaluate whether there was an interaction with the size of 

the problems, that is to investigate if the distance by position interaction changes across 

small, medium, and large problems like the operands-order effect we found in the production 

task discussed in the chapter 2 and in verification task (for the correct results) discussed 

above in this chapter, or if this interaction is stable across the size. In fact, adding to the 

ANOVA the size factor the number of trials in the experimental cells would be too small. 

 The ANOVA revealed also a trend toward the significance for the three-way interaction 

(i.e., direction, distance, position), F(1,20)=3.46, p<0.1 (figure 4.7). The mean RTs in the 

experimental cells and the difference in RTs between the two levels of the direction factor are 

reported in the table 4.2. As showed in the box B of the table, the effect of the direction factor 

tended to be stronger for the s×L order than for the L×s order regardless the levels of the 

position and distance factors. This three-way interaction suggests that the s×L order was 

much more sensitive to the interference produced by the manipulation of the incorrect results 

than the L×s order. 
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Figure 4.7: mean RTs for the three-way interaction. On the left there are the mean RTs for the first position 

condition (when the incorrect result was a multiple of the first operand). On the right there are the mean RTs 

for the second position condition (when the incorrect result was a multiple of the second operand; on the 

right). Both graphic show also the mean RTs across direction and distance factors. Above each bar is 

presented the order of the operands (L×s: the first operand is larger than the second one; s×L: the first 

operand is smaller than the second one) 

 

 Finally, in table 4.3.A the differences between the mean RTs of the two orders for the 

correct result condition are reported. The mean difference between the privileged and the 

not-privileged order is 74.3 ms. Table 4.3.B shows the difference between the mean RTs of 

the two orders for the incorrect result condition. The difference between the two orders is 72 

ms. The differences between the two orders are very similar in the two conditions (74,3 vs 

72). Adopting a strong subtractive logic and according to the assumption that only one 

operands order is stored in memory for each commuted pair, this last result suggests that a 

reordering process that could allow to access to arithmetic fact acts in both correct and 

incorrect result conditions and that this process could need (at least in our sample) about 70 

ms to reorder the operands. 
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A     position   

    first second   

    direction direction   

    above below above below   

  
distance 

small 
1285 

(s×L) 

1121 

(s×L) 

1149 

(L×s) 

1112 

(L×s) 
  

  

large 
1186 

(L×s) 

1131 

(L×s) 

1301 

(s×L) 

1157 

(s×L) 
  

                

B   position   

    first second   

    direction direction   

    above - below above - below   

  
distance 

small 
164 

(s×L) 

37 

(L×s) 
  

  

large 
55 

(L×s) 

144 

(s×L) 
  

                

Table 1: A: mean RTs (in milliseconds) for the position by direction by distance interaction. B: the differences 

of the mean RTs  (in milliseconds) between the two conditions of the direction factor (above – below). In 

both tables the incorrect result is a multiple of the underlined operand, and below the RTs is reported the 

order of the operands in which the problem is presented. 

 

A   order       

  
size 

not-

privileged 
privileged difference mean difference 

  

  small 788 703 85 

74.3 

  

  
medium 1066 991 75 

  

    large 1305 1242 63 

              

B             

  
 

mean of 

s×L order 

mean of 

L×s order 
difference  

  

   1216 1144 72    

              

Table 4.3: A: for each size are presented the mean RTs (in milliseconds) for the privileged and the not-

privileged orders, the differences between the RTs of the two order, and the mean of the differences (correct 

result condition). B: the mean of the mean RTs for the orders reported in the table 4.1.B and the difference 

between them (incorrect result condition). 
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4.4 DISCUSSION 

 

 The experiment here presented had to aims: 1) to evaluate if the order by size interaction 

affects the verification task in the same way it affects the production task; 2) to evaluate if 

inside the arithmetic facts memory the activation spread asymmetrically privileging the 

forward direction. The second aim concerns also the test on the critical assumption of the 

asymmetry hypothesis about the asymmetric activation spreading around the tie problems. 

The results show that when the presented result was correct the L×s order was solved faster 

than the s×L order with small (e.g., RT(4×3=12)<RT(3×4=12)) and medium problems (e.g., 

RT(8×3=24)<RT(3×8=24)); whereas the s×L order was solved faster than the L×s order with 

large problems (e.g., RT(7×8=56)<RT(8×7=56)). Thus replicating the results of the 

production task of Chapter 2 with a different paradigm. 

 Moreover, when the result was incorrect we found that the multiples above the correct 

result were rejected with a greater difficulty than the multiples below (e.g., 

RT(7×3=28)>RT(7×3=14)). However, the lack of an effect of direction on the tie problems 

(RT(7×7=42)=RT(7×7=56)) is not consistent with the asymmetry hypothesis. Finally, in the 

incorrect result condition the position by distance interaction (and the distance by position by 

direction tendency) revealed that the s×L order was more difficult to reject than the L×s order 

(i.e., RT(s×L)>RT(L×s)). 

 There are at least five interesting inferences that the results of this experiment allow. First, 

the order by size interaction we found in this experiment is consistent with the result of the 

experiment of the chapter 2. Second, the lack of an effect of direction in the tie problems 

shows that the asymmetry hypothesis we proposed in the discussion of the results of the 

production experiment (Chapter 2) cannot explain the order by size interaction, because of 

the results here reported invalidate the critic assumption than the activation is asymmetric 

around the ties. On the contrary, according to the network interference model (see chapter 

1), this results suggest that the tie problems are stored in memory separately by the non-tie 
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problems. The separate representation could explain why the direction effect we found with 

the multiple around the non-tie problems does not shows up for tie problems. In fact, it could 

be possible that the activation does not spread from the tie results to the closer multiples 

(which are non-ties) because of they are stored separately. Therefore, we reject the 

asymmetry hypothesis in favour of the reorganization hypothesis (see chapter 2).  

 Third, the order of the operands and the size of the problem interact in the same way in 

the production and in the verification tasks. This suggests that both tasks rely on the same 

“arithmetic knowledge base” (Zbrodoff and Logan, 1990; 2000). Moreover, similar results in 

both tasks suggest that the order by size interaction in due to the multiplication facts 

memory, because of this interaction occur independently by the task used (at least in the 

production and verification tasks). 

 The fourth, the multiples are asymmetrically associated. There are various studies 

suggesting that a number is associated with its multiples (Galfano et al., 2003; Galfano et al., 

2009; Niedeggen & Rösler, 1999; Rusconi et al., 2004; Rusconi et al., 2006). We can 

introduce here a new hypothesis about the association between the multiples, that is each 

multiple is more associated with its above multiple than with its below multiple. The results 

provide evidence for the asymmetry of activation spreading. Once presented two operands 

they automatically activate their product, which is associated with the other multiple. 

However, the asymmetry of this association causes a stronger activation in the multiple 

above the product than in the one below. Therefore, when presented two operands the 

multiple above the product is more difficult to reject than the multiple below because of the 

former is more activated than the later. For example, given the operands 7 and 5, the product 

35 is automatically activated; then, since the activation spreads more in the forward direction, 

the multiple 42 (above) is more activated than the multiple 28 (below). Therefore, the 

equation 7×5=42 is more error prone and slower to reject than the equation 7×5=28.  

 Finally, the order of the operands is relevant also when the presented equation is 

incorrect. The s×L order is more difficult to reject than the L×s order regardless the type of 
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multiple presented as incorrect result. This can be explained by assuming a different strength 

of association between the two orders and the correct result. The result of both production 

task and verification task (in the correct result condition) suggest that the L×s order is 

privileged for the most of the multiplication problems (medium and small problem); whereas 

the s×L order is privileged only for the large problems. Therefore, the privileged order could 

activate the correct result more and therefore make it easier to recognize that the presented 

incorrect result is not the product of the operands. If only one order is stored as arithmetic 

facts, when the incorrect equation is presented in the stored operands-order (e.g., 7×3=28) 

the incorrect result (28) can be detected either comparing the whole equation with the 

multiplication fact or comparing the stored result with the presented result. When the 

incorrect equation is presented in the non-stored order (e.g., 3×7=28) it could be more 

difficult to reject the incorrect result because of the operands of the equation do not match 

with the arithmetic fact and then it could be needed to reorder them in the stored order. 

Comparing the order effect found in the correct and in the incorrect result conditions we 

found that the differences between the two order were very similar (74.3 ms and 72 ms, 

respectively). This could suggest that this reordering mechanism is automatically activated 

before judging the equation and that it requires about 70 ms to reorder the operands in the 

stored order before to access to the multiplication facts, differently to what assumed by 

Verguts and Fias (2005) that state reordering could be done with no behavioural cost. 
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Chapter 5 

 

 

 

ERPs correlate of size-dependent reordering 

preferences 
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5.1 INTRODUCTION 

 

 In this Chapter we will present a production task experiment by using the ERPs (event-

related potentials) methodology. ERPs can in fact be used to better interpret the effects 

found in the behavioural experiments of the previous chapters, and especially the interaction 

between size and order of operands we found for multiplications in Chapters 2 and 4. First, 

the ERPs methodology has a high temporal resolution which allows us to study the time 

course of the reordering process we proposed to explain the RTs effects found in the 

previous chapters. Second, the comparison of the qualitative nature of the effects of size and 

order, in terms of topography, latency and polarity can aid in disentangle between a same or 

a different locus of size and order effects. Different ERPs correlates for size and order effects 

would in fact suggest the existence of a reordering process explicitly different from a mere 

order preference in terms of weighs between nodes within the associative memory for 

arithmetic facts. 

 Only two studies in the ERPs literature on numerical cognition studied order of operands 

effects in multiplications. Both of them adopted a delayed verification task, one (Zhou et al. 

2007) testing a group of Chinese participants (that learn only one half of the multiplication 

table) and one  (Kiefer and Dehaene, 1997) a group of American participants (that learn all 

the multiplication table). Zhou et al. (2007) compared Mainland Chinese with Hong Kong and 

Macao Chinese, since only the former  study one half of the multiplication table at school 

whereas the latter study as the Western population all the table. Both the operands and the 

result were auditorily presented. The participants heard the first operand, then after 50 ms of 

silence they heard the second operand, and finally after 2300 ms the result was  presented. 

Only the Mainland Chinese group showed an effect of the order of the operands on the ERPs 

waveform. In this group the L×s order (not taught at school) evoked a large negativity 

compared to the s×L order (taught). This negativity was evident between 120 and 750 ms 

after the presentation of the second operand. The topography of the effect varied during this 
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interval: broad distributed on the whole scalp in the early stage, 120-500 ms, and centro-

frontal in a second stage, 500-750 ms interval. The Authors interpret this negativity for the 

not taught order as the ERPs correlated of the “reversal of the operands” mechanism. 

Moreover, they suggest that the broad distribution of this negativity was due to multiple 

neural sources involved in the “reversal of the operands” mechanism. Nevertheless, we think 

that the broad distribution and the fact that the effect lasted from 120 ms to 750 ms suggests 

not only that multiple neural sources are involved in the effect they found, but that also 

multiple processes could be involved in the effect described by Zhou et al. (2007) such as, 

for example, the processing of the size of operands, the comparison of the size of the 

operands, and the operand reversal mechanism. 

 In the second and only ERPs study (Kiefer and Dehaene, 1997) that faced the operands 

order effect in a Western population both a visual and an auditory presentation where 

adopted. The operands of multiplication problems were sequentially presented with the same 

timing procedure: the first operand was presented for 150 ms followed by an interstimulus 

interval of 350 ms, then the second operand was presented for 150 ms followed by an 

interstimulus interval of 1250 ms, and finally the proposed result was presented. Kiefer and 

Dehaene (1997) used as stimuli only the multiplications that we classify as small (both 

operands equal to or smaller than 5) and large (both operands larger than 5). An order effect 

was found only when the problem was presented in auditory modality. In the 270-397 ms 

interval after the second operand the s×L problems were more positive than the L×s 

problems on the temporal sites (bilaterally), whereas on the frontal sites the s×L problems 

were more negative than the L×s problems. Then, in the 630-1399 ms time interval the s×L 

problems were more negative than the L×s problems on central sites. The Authors concluded 

that the operands order effect was likely due to “strategy of reordering the operands” (Kiefer 

and Dehaene, 1997, p. 25) and distinct from effect of size that is mainly due to a posterior 

long lasting positivity for larger problems with respect to small ones preceded by a negativity 

at the same sites. The Authors explain the results within the context of the triple code model 
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(Dehaene, 1992; Dehaene & Cohen, 1995) by assuming that multiplications are stored in the 

verbal memory only in a given order, without making hypothesis about which order could be 

the stored one even if they implicitly assume the stored order is L×s since they discuss the 

effects with this condition as a baseline. According to the Authors the triple code model can 

explain why the effect was present only in the auditory format and not in the visual format. In 

fact, according to the triple code model the reordering process is different between auditory 

and visual presentation. In the auditory presentation the process is: 1) the operands are 

compared; 2) if not presented in the stored order they are reordered; 3) the reordered 

sequence can access to the rote verbal memory for the arithmetic facts. In the visual 

presentation (and assuming for example than the multiplication facts are stored in the s×L) 

the process is: 1) the operands are compared; 2) convert the smaller operand into a verbal 

representation; 3) convert the larger operand into a verbal representation; 4) access to the 

rote verbal memory. Since with a visual presentation the operands have to be converted into 

a verbal code regardless the order in which they are presented, the order has not effect on 

the processes that allow to retrieve the result. 

  Zhou et al. (2007) found that the non-privileged order evoked negativity compared to the 

privileged order in the Chinese group they tested. Despite there is no clear evidence of a 

preferred order for English speakers, following the implicit assumption that the L×s order is 

the privileged, Kiefer and Dehaene (1997) also found a negativity at central sites (in the 630-

1399 time window) and at frontal sites (in the 270-390 time window) that was interpreted to 

be the ERPs signature of a reordering process. According to these studies we expect to find 

that in an Italian group the non-privileged order (solved slower in the experiment reported in 

Chapter 2 and 4) to exhibit a central-frontal negative effect.  

 Differently from Zhou et al. (2007) and Kiefer and Dehaene (1997) we have however used 

a delayed production task instead of a verification task. Despite the fact that we were able to 

replicate the interaction size by order found in production (see Chapter 1) in a verification 

task (see Chapter 4), the effect was larger and more clear with the former task. The logic 
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behind delayed tasks is that ERPs deflections cannot be clearly interpreted if response 

preparation and execution potentials are superimposed with cognitive potentials. For this 

reason, especially when large differences in RTs can be expected across participants and 

conditions (size effect), a delayed paradigm is very useful in distinguishing early perceptual  

and medium latency, cognitive potentials from potentials linked to task execution. However, 

differently from a verification task where the response cannot be prepared or anticipated until 

the result is presented, in a production task the motor preparation can affect the ERPs even 

before the presentation of a cue. We thus decided to ask participants to respond in different 

modalities, typing versus speaking, depending on the cue appearing after the delay. This 

allows implementing a delayed production task in which the participants cannot prepare the 

motor response before the cue is presented. Moreover a variable time interval between 

problem and cue can also aid in avoid superimposition of problem processing stage and 

response selection and execution. 

A further difference with respect to the literature is the use of self-report that we have seen 

in Chapter 2, which can give reliable information in line with behavioural data. Moreover, we 

can use the self-report in order to select the problems for which participants report to use 

inversion of the operand as an explicit and aware strategy, and compare the waveforms 

elicited by this condition with all the others. In our knowledge, this kind of analysis has not 

been used as far in ERPs research on arithmetical cognition  but it has been efficiently used 

by Grabner et al. (200) in a fMRI study. 

 Before presenting our experiment we will briefly review some other ERP studies that have 

investigated the electrophysiological correlated of cognitive arithmetic, especially those 

studies that used a delayed paradigm. Since, beside order we will also manipulate the 

operation (additions vs multiplications) and clearly the size, given our interest in size by order 

interaction in multiplications.  

  Two experiments (Zhou et al., 2006; Zhou et al., 2011) compared additions and 

multiplications by adopting a verification task. In Zhou et al. (2006) addition, subtraction, and 



120 

 

multiplication problems were presented, while in the experiment of Zhou et al. (2011) only 

addition and multiplication were presented8. In both experiment participants had to judge if a 

visually presented equation was correct (e.g. 7×4=28) or not (e.g., 7×4=35). In Zhou et al. 

(2006) the proposed result (e.g., 28 or 35) was showed to the participants only 1300 ms after 

the presentation of the operands (e.g., 7 and 4), while in the experiment of Zhou et al. (2011) 

the operands and the results were presented at the same time. Despite this differences both 

study showed similar results, that is multiplication problems elicited frontal left negativity 

compared to addition problems, in the 275-334 ms interval after the presentation of the 

operands in Zhou et al. (2006) and in the 400-900 ms interval after the presentation of the 

whole problems in Zhou et al. (2011). In both studies the Authors interpreted the effect as an 

evidence that verbal processes are more involved in solving multiplication than in additions. 

 The problem-size effect (i.e., the large problems are slower to solve and more prone to 

errors than small problems) is one of the more (if not the most) debated effect in literature 

about the arithmetical cognition. Therefore, we have compared also problems with different 

size in both additions and multiplications. The size effect, as well in the other studies 

reported above, has been mainly investigated adopting a verification task. With respect to 

addition problems, various studies have found a than the large problems elicit positivity 

compared to small problems at the centro-parietal sites (El Yagoubi, Lemaire, & Besson, 

2003; Kong et al., 1999; Núñez-Peña, Cortinas & Escera, 2006; Núñez-Peña & Escera, 

2007; Núñez-Peña, Gracia-Bafalluy, & Tubau, 2011). This positivity for large problems has 

been interpreted as associated to more demanding process and to the procedures selection. 

Namely, according to this interpretation large addition problems are more often solved with 

non-retrieval procedures which are associated with a greater mental effort. 

                                                           
8
 Given the aim of our experiment we report only the result of Zhou et al. (2006) about multiplication and 

addition. In the study of Zhou et al. (2001) participants were both adults and children. Here we will report only 

the result of the adult group. 
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 With respect to multiplications, a study of Jost, Hennighausen & Rosler (2004b), in which  

a delayed verification task with sequential presentation of the operands was used, large 

problems evoked a right lateralized negativity with respect to small problems between 400 

ms and 510 ms. The Authors interpreted this negativity as associated to the use of different 

procedures between large and small problems, given that it is likely that large problems rely 

more on non-retrieval procedures than small problems. In another experiment Jost and 

Colleagues (Jost, Beinhoff, Hennighausen, & Rosler, 2004a) adopted a implicit production 

task in which the participants were sequentially presented with two one-digit numbers. Three-

thousand ms after the second number a third one-digit number was presented, the 

participants had to add that number to the product of the first two numbers and to judge if the 

following proposed result was correct or not. Between 900 ms and 2700 ms after the 

presentation of the operands of the multiplication, the large multiplications evoked a long 

lasting negativity with respect to small multiplications localized mainly bilaterally at frontal 

sites and over right temporal sites. The Authors interpret the larger negativity as associated 

with the larger mental load and with the more frequent use of non retrieval procedures in 

large multiplication. 

 Another study that is worthwhile to cite is Pauli et al. (1994) that used a production task in 

which participants had to perform multiplications in different sessions, thus manipulating 

practice. A central-parietal positivity was associated with practice. The participants had to 

perform four sessions in different days and the EEG was recorded in each session. The 

Authors found a frontal-central positivity diminishing with the practice, that is the positivity 

became smaller from session to session. Moreover, the focus of the positivity move on the 

centro-parietal regions in the last sessions. This pattern of brain activity was interpreted as 

the fact that two different processes are involved in the earlier and the later sessions. In the 

earlier sessions, when the performance in less automatized, the role of the frontal lobe 

(supposed to have a relevant role in generating the fronto-central positivity) is stronger, 

whereas in the later session the centro-parietal regions (supposed to be the area associated 
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with the arithmetic facts memory) show stronger positivity because the performance rely 

more on automatic procedures that involve the “retrieval of arithmetic facts from the cortical 

network” (Pauli et al., 1994, p. 28). Capitalizing on these results and interpretation, one can 

expect different topographies associated with the two macro-areas (frontal vs centro-parietal) 

distinguishing effects that are due to less automatized process (frontal areas) or to more 

automatized process (centro-parietal areas). 

 To summarize, a difference between multiplications and additions has found in terms of a 

frontal left negativity for the former with respect to the latter, and this effect is interpreted as 

an indication that multiplications rely more on verbal processes than addition problems. Size 

effects are different for multiplications and additions but typically start after 300 ms and show 

a long lasting time development. Large multiplications typically show a larger negativity 

mainly on anterior and right temporal area, while large additions  show posterior positivity 

with respect to small ones. In both cases the effects have been interpreted to the use of non-

retrieval procedures in large problems compared to small problems. Specifically the posterior 

positivity for large additions as a correlate of the selection of non-retrieval procedures 

(Núñez-Peña et al., 2011), while anterior negativities for large multiplications to memory load 

or more generically mental effort (Jost et al., 2004a).  

 Despite the relevance of the finding of these studies in the arithmetical cognition, it has 

completely been underestimated the role of the retrieval procedure both in producing the size 

effect (see the models reported in the Chapter 1) and in generating the ERPs differences 

found. ERPs correlates of spreading of activation within the retrieval process have been 

instead addressed by a number of studies, not reviewed here, that looked at ERPs elicited by 

the presentation of the result in verification tasks (see for example Niedeggen, Rosler; & 

Jost, 1999; Niedeggen & Rosler, 1999; Prieto-Corona Prieto-Corona, Rodríguez-Camacho, 

Silva-Pereyra, Marosi, Fernández, & Guerrero; 2010) where an N400 effect proportional to 

the association between the problems and the results was found. Even for the ERPs elicited 

by problems it is possible that some of the effects could be also due to differences within 
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retrieval procedures in terms of the difficulty to activate and select the result within the 

associative network that stores arithmetic facts memory. Despite the non-retrieval 

procedures play a relevant role in the process of solution of the arithmetic problems (see 

Chapter 1), classical models assume in fact that the direct retrieval is likely to be the most 

used procedure adopted by adults to solve simple one-digit arithmetic problems.  

 Our predictions, based on the literature are thus that reordering processes will elicit a 

central (Kiefer and Dehaene, 1997) or frontal (Zhou et al, 2007) negativity. As well, possibly 

at a later latency, effects of this type should also distinguish between additions and 

multiplication, and size effects for multiplications (possibly with a more broad, right lateralized 

focus). Size effects for additions should elicit a larger posterior positivity for larger problems.  

 

 

5.2 METHOD 

 

Participants. Twenty-three (14 females; mean age: 26.5, sd: 4.71) from the University of 

Trento participated in the experiment. All participants were native Italian speakers and had 

normal or corrected-to-normal vision. All  the participants were right-handed and were refund 

20 euro on their participation in the experiment. 

 

Material. The participants were asked to perform two tasks: a delayed chronometric task and 

a self-report task. During the delayed chronometric task the EEG of the participants was 

recorded. In both tasks the stimuli were the same. Single-digit multiplication and addition 

problems were used during the experiment (tie problems included). The problems with 0 or 1 

(e.g., 0×3, 0+5, 1×3, etc.) were excluded because they are likely solved by means of rules 

(LeFevre et al., 1996a). Therefore, there were 64 problems for each operation. In order to 

have a sufficient number of trials for the EEG analysis, in the delayed chronometric task each 

problem was presented three times. Therefore, there was a total of 192 problems for each 
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operation (384 problems in the whole chronometric task). Problems of different operations 

were presented in different blocks (see below), half of the participants performed additions 

before multiplications, half the converse. Block order in the self-report was the same as in the 

chronometric task. In both the delayed chronometric task and in the self-report tasks the 

order in which the problems were presented within each block was randomized for each 

participant. 

 

Procedure. In the delay chronometric task each operation (multiplication and addition) was 

presented in separated blocks (6 blocks of 64 problems each). In order to familiarize with the 

experimental procedure, before each block the participants performed some practice trials 

with problems with 0 and 1 as operands (e.g., 0×3, 0+5, 1×3, etc.). There were six blocks, 

three for each operation. In each block only one operation was presented. The order in which 

the operations (addition and multiplication) were presented was alternated and balanced 

across participants. For example, the first participant performed the operation in the following 

order: multiplication (block 1), addition (block 2), multiplication (block 3), addition (block 4), 

multiplication (block 5), addition (block 6). The second participant performed the operation in 

the following order: addition (block 1), multiplication (block 2), addition (block 3), 

multiplication (block 4), addition (block 5), multiplication (block 6). The problems were 

sequentially presented at the centre of a monitor of a PC. Each trial started with a fixation 

point (“#”). The fixation point lasted on the monitor until the participant pressed a key on the 

keyboard. Once pressed the key the first operand was presented for 300 ms, followed by the 

sign of the operation (“+” or “×”) for 300 ms, and by the second operand for 300 ms. After the 

second operand, the equal symbol (“=”) was presented. The equal symbol was used to help 

the participant to do not move the eyes and to maintain the fixation on the centre on the 

screen during the delay. The equal symbol could have lasted on the monitor for 1700, 2000, 

2250, or 2500 ms. This four delay intervals were used to reduce the expectation of the cue at 

a fixed time after the equal symbol. Each interval was used the same number times in each 
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block. After the equal symbol, a cue was presented on the monitor. We used two cues: one 

representing a finger and one representing a mouth. The participants had to respond by 

using the keyboard when the “finger” cue was presented and by spelling the result verbally 

when the “mouth” cue was presented. When the answer had to be performed with the 

keyboard, the participants were required to respond with the right hand, by using the numeric 

keypad on the right of the PC keyboard just after the presentation of the “finger” cue. The 

participants had to press the keys corresponding to the digit of result of the problem (one key 

if the result was with one digit; two keys if the result was with two digits). When the answer 

had to be performed verbally it was recorded with a microphone, the participants were 

required to verbally respond just after the presentation of the “mouth” cue. The use of two 

different response type (verbal or manual) was implemented to avoid any motor preparation. 

In fact, with this delay double response procedure the participant did not know how to 

respond until the cue was presented. This was done to avoid that participants could prepare 

their response in advance since this can generate ERPs deflections due to motor preparation 

brain activity. The participants were instructed to be “as quick and accurate as possible”, and 

the response cue lasted on the screen until the participants responded. However, if the 

participants did not responded within 9 seconds the cue disappeared and the fixation point of 

the next trials was showed on the screen. The operands and the operation signs had a 

dimension of about 1 cm and the participants were at about 80 cm from the monitor. RTs and 

accuracy of the keys pressed  (one or two according to the number of digit of the result) and 

the voice response were recorded. Between the blocks the participants could have taken a 

little break. 

 After the delayed chronometric task, the participants had to perform the self-report task on 

a notebook computer in which they had to solve the same arithmetic problems. The self-

report was similar to that performed after the behavioural experiment done after the 

production experiment described in chapter 2. The order in which the operations blocks were 

presented was the same as in the previous tasks. In this task each problem of both operation 
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was presented only once. The participants had to report for each problem the result and the 

procedure used to solve the problem, and they were required to be “as accurate as possible” 

without time pressure (they might take all time they need to solve the problem and report the 

strategy). Before starting the task a sheet with the description of the procedures was given to 

the participants, who could take the sheet during the task to remember the procedures 

description. There were 5 procedures among which the participants could choose: retrieval, 

transformation, counting, inversion, and other. On the sheet given to the participants the 

procedures were described as following: 

 

• Retrieval: “you remember the solution of the problem, that is you retrieve the result 

directly by the memory”. 

• Transformation: “you solve the problem by using other problems that can be members 

of the same arithmetical operation or of another operation (e.g., you solve the 

problem 9×9=? by using 9×10=90–9 = 81)”. 

• Counting: “you solve the problem counting (maybe in a quiet voice) a certain number of 

times until you obtain the result of the problem (e.g., you solve the problem 4×4 by 

counting 4..8..12..16; or you solve the problem 13+4 by counting 13..14..15..16..17)”. 

• Inversion: “you reverse the two operands to be able to find the result of the problem 

(e.g., you solve the problem N1×N2 by using the problem N2×N1)”. 

• Other: “you solve the problem by using another procedure or you are not sure about 

the procedure used”. 

 

 The problem and the procedures to select were presented together in the same screen. 

Therefore, unlike in the chronometric task, the operands and the sign of the problem was 

simultaneously presented, and they remained on the screen until the participant reported the 

result and the strategy. The participants were required to solve first the problem and then to 

select the used procedure. The participants had to use the numeric keys on the notebook 
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keyboard to report the result and the mouse to select the strategies. The problems were 

presented on the screen with on the right a white space in which the participants had to 

report the result of the operation (the white space had been selected with the mouse before 

write the result). Below the problem there was the strategies (5 options). Once the participant 

filled in all the required information they could go to the next trials by pressing the “Enter 

key”. If the participant forgot to fill in one or more information a message dialog appeared on 

the screen asking to complete all the sections. The participants were asked to report the 

procedure associated to the problem solved during the self-report and not trying to remember 

how they solved the task during the delay chronometric experiment. 

 

 

5.2.1 Behavioural data analysis 

 

 The statistical analysis we used were the same for both multiplication and addition. The 

two operations have been analysed separately. For the chronometric task, on RTs a three-

way ANOVA was separately performed with size, order, and response type as within factors. 

The size factor included three levels: the problems with both operands larger than 5 were 

coded as “large” (e.g. 7×8); the problems with one operand larger and one smaller than 5 

were coded as “medium” (e.g. 7×3); the problems with both operands smaller than 5 were 

coded as “small”. Both orders of the problems 6×5, 7×5, 8×5, and 9×5 were coded as 

“medium”, whereas both orders of the problems 2×5, 3×5 and 4×5 were coded as “small”. 

The order factor had two levels: L×s (or L+s for addition) and s×L (or s+L). The response 

type factor had two levels: manual (the participant had to respond with the keyboard) and 

vocal (the participant had to respond with the microphone). For each participant we 

calculated the mean RTs in the twelve experimental cells (order X size X response type). 

The analysis of the RTs was performed on the correct trials. In case the main effects or the 

interactions were significant, the post-hoc analysis were performed by using t-test corrected 
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with the FDR method. ANOVAs were Greenhouse-Geisser corrected when the degrees of 

freedom of a factor exceeded one (uncorrected degrees of freedom and epsilon values are 

reported). The accuracy (proportion of correct answers) has been only qualitatively analysed 

in order to evaluate the participants performed the task with an adequate accuracy. 

 The self-report results have not be statistically analysed, but they have been used only to 

evaluate the use of the inversion procedure in the EEG analysis (see below). 

 

 

5.2.2 EEG recording and data analysis 

 

EEG recording 

 The EEG was recorded using a 64 channels BrainAmp amplifier (Brainproducts, gmb).  

Sixty-two electrodes were placed on scalp sites (Fpz, Fp1, Fp2, AF7, AF3, AF4, AF8, F7, F5, 

F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, 

C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, A2, P7, P5, P3, P1, Pz, 

P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2,  F9, F10, Cz) according to the 10% 

system with the aid of an elastic cap (Easycap, Gmb). Additional electrodes were also placed 

on left and right mastoids (A1, A2), below the left eye (Ve1). The ground site was placed 

frontal to Fz (AFz site). Data, referenced to the left mastoid (A1), were amplified and filtered 

with a band-pass filter with a high pass time constant of 10s and a 100 Hz low-pass cut-off, 

and digitalized at 250 Hz (amplitude resolution 0.1 µV). Impedance was kept below 10kΩ 

and for most of the channels it was below 5kΩ. Trigger were sent from the stimulation 

program to the EEG recoding system trough a parallel port for the onset of each operand, the 

operation symbol, the equal symbol, and the response cue. 
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ERPs waveform extraction 

 Data were analysed using the EEGLAB (Delorme & Makeig, 2004), an open source 

Matlab© toolbox. After the recording, data were re-referenced to the linked mastoids and 

further filtered with band pass filter (0.08Hz – 30Hz). Noisy channels, detected by visual 

inspection, were interpolated using spherical interpolation (15 channels in the whole pool of 

23 participants). Marker information for the second operand was enriched by integrating all 

the useful information extracted from the output of the stimulation program, allowing selective 

averages of epochs in different experimental conditions, for 3 participants (1, 16, 19) this was 

not possible given a misalignment of marker information, probably due to pauses or 

interruptions of the EEG recording during the experiment. 

 Epochs, from 500 ms before to 1600 ms after the onset of the second operand, were 

extracted after an automatic artifacts rejection procedure. This procedure rejected epochs 

where the amplitude of the EEG, after a pre-stimulus baseline correction, exceeded +/- 70µV 

for channels on sites around eyes (F9, F10, Fp1, Fp2, Ve1) and +/- 90µV for all the 

channels. 

 Data from 4 participants (17, 18, 20, 23) were excluded from subsequent analysis given 

the high number of epochs affected by artifacts (mainly blinks). Within the resulting pool of 

data from 16 participants the average number of residual epochs were 192 (mean 84.47%, 

median 91.02%). Single participant average waveforms in the different experimental cells of 

interest (see below) were computed for grandaverage calculation and statistical analysis. 

 

ERPs analysis 

 Single participant averages were calculated for each experimental cell of interest (see 

below) and then the statistical analysis was performed using the software R-project and the 

library Ez. Data were clustered by averaging single channel data on 10 groups of sites (see 

table 5.1) to simplify graphical representation and reduce the number of degrees of freedom 

in the statistical analysis. The resulting 10 virtual sites (hereafter, called simply 'sites') can in 
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fact be used for two separate analyses. The first analysis considered midline sites with a 

single topographic factor (Longitude, 4 levels: FP, FC, CP, PO), while the 6 lateralized sites 

can be organized into 2 topographic factors (Longitude, 3 levels: F, C, P; Lateralization, 2 

levels: L, R) as shown in table 5.2. 

 

FP FC CP PO AL AR CL CR PL PR 

Fp1 FC1 CP1 PO3 F9 F10 FT7 FT8 TP7 TP8 
Fpz FCz CPz POz F7 F8 FC5 FC6 CP5 CP6 
Fp2 FC2 CP2 PO4 F5 F6 FC3 FC4 CP3 CP4 
F1 C1 P1 O1 F3 F4 T7 T8 P7 P8 
Fz Cz Pz Oz AF7 AF8 C5 C6 P5 P6 
F2 C2 P2 O2 AF3 AF4 C3 C4 P3 P4 

Table 5.1: table reporting the groups of channels used for graphic display and statistical analysis. Top column 

names in bold are the names of the new sites  (FP: prefrontal, FC: fronto-central, CP: central-parietal, PO, 

parietal-occipital, AL: anterior-left, AR: anterior right, CL: central left, CR: central right, PL: posterior left, PR: 

posterior right),  the new sites were computed as the average for each time point of the event related 

potential values of the sites reported in each column. 

 

ch lat long 

AL L A 
AR R A 
CL L C 
CR R C 
PL L P 
PR R P 

Table 5.2: definition of the two topographic factor used for the analysis of the lateral clusters defined in 

table 5.1:  Lateralization (L:left, R:right) and Longitude (A: anterior, C: central, P: posterior) 

 

 Repeated measure ANOVAs have been performed using as dependent variable the mean 

voltage amplitudes in specific time intervals selected on the basis of qualitative analysis of 

the grand-averages plots. The qualitative analysis was performed both on clustered plots and 

on original single channel plots (not reported here) for the specific comparisons of the 

experimental manipulations under study (i.e., operation type, size, and order). These 

experimental manipulations, together with the topographical factors described above, 

constitute the independent variables for the ANOVAs. Greenhouse-Geisser corrections for 
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deviations from the sphericity of variance were computed when numerator degrees of 

freedom were larger than one, uncorrected degrees of freedom are reported with the 

Greenhouse-Geisser epsilon value and corrected p-values. In order to make the results more 

readable the effects involving only topographic factors have not been reported. 

 Given the large number of experimental conditions we proceed by analyzing first the 

overall comparisons between Additions and Multiplications9, followed by the comparisons of 

Size and Ties effects for each operation independently from the order of the operands. The 

aim of these first analyses is to understand overall main effects in the ERPs waveforms 

elicited during the interval between the presentation of the second operand and the response 

cue before analyzing the specific conditions of interest for the present work, that is the order 

by size interaction (especially for multiplications for which the experiments reported in 

chapters 2 and 4 allow specific hypotheses described in the introduction). This analysis 

scheme with multiples ANOVAs performed on the same sets of data may be considered 

incorrect from a strictly statistical way. However, we consider the separate ANOVAs for 

multiplications and additions (with order and size as factors) to verify the hypotheses of the 

previous experiments (order by size interaction), whereas the other comparisons are 

performed just to qualitative compare the present results with previous ERPs studies, where 

Size and Order variables have never been manipulated together.  

 

 

 

 

 

 

                                                           
9
  The italic is used to distinguish between the arithmetic operation (multiplication and addition) and the 

factors used in the ANOVAs (Additions and Multiplications). The same typography rule is used for the other 

factors of the ANOVAs. 
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5.3 RESULTS 

 

5.3.1 Behavioural results 

 

 The following analysis has been performed by calculating the accuracy and the RTs only 

for the participants for which the data was used in the EEG analysis (16 participants, see 

above). In the chronometric task, the participants are very accurate in both multiplication 

(mean: 95% of correct responses; median: 97%; range: 84-100%) and addition (mean: 98%; 

median: 98%; range: 92-100%), and in both manual condition (mean: 96%; median: 96%; 

range: 83-99%) and vocal condition (mean: 97%; median: 98%; range: 93-100%). Table 5.3 

shows the accuracy for all the experimental cells given by the three factors: size, order, and 

response type. 

 

A      

   response type  

 Size order manual vocal  

 Large Lxs 0.91 0.89  

 medium Lxs 0.95 0.97  

 small Lxs 0.98 0.99  

 Large sxL 0.85 0.94  

 medium sxL 0.97 0.97  

 small sxL 0.99 0.99  

 Tie tie 0.92 0.97  
      

B      

   response type  

 Size order manual vocal  

 Large Lxs 0.98 0.97  

 medium Lxs 0.97 0.98  

 small Lxs 0.97 0.98  

 Large sxL 0.95 0.95  

 medium sxL 0.98 0.99  

 small sxL 0.99 0.97  

 Tie tie 0.96 0.99  
      

Table 5.3: the accuracy in the experimental cells for both multiplication (A) and addition (B). 
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 For both multiplications and additions we performed a repeated measure ANOVA on the 

RTs with size, order, and response type as within factors10. For multiplication the ANOVA 

revealed that the participants responded faster in the vocal condition (729 ms) than in the 

manual condition (1236 ms), F(1,15)=54.13, p<0.001. The main effect of size was also 

significant (F(2,30)=27.74, εGG=0.55, p<0.001): large (1166 ms), medium (911 ms), and small 

problems (871 ms). Finally, the size by response type interaction was significant, 

F(2,30)=15.88, εGG=0.70, p<0.001. This interaction is given by the fact that the size effect 

was larger in the manual condition (large: 1500 ms, medium: 1122 ms, small: 1086 ms) than 

in the vocal condition (large: 832 ms, medium: 699 ms, small: 655 ms). The presence of the 

size effect after the presentation of the cue can be just due to the fact that larger results 

require more motor planning to be produced (both in the manual and verbal conditions) even 

if we cannot exclude that the problems were not all completely solved before the cue 

presentation. 

 For additions the ANOVA reveals that the participants solved faster the problems in the 

L+s order (855 ms) than in the s+L order (882 ms), F(1,15)= 6.38, p<0.05. This result 

suggests that the order of the operands is also relevant in a delay production task. The 

difference between the two orders however is very small (only about 30 ms) with respect to 

the differences that emerged in the non-delayed production task (about 130 ms, see chapter 

1). Moreover, the participants responded faster in the verbal condition (682 ms) than in the 

manual condition (1055 ms), F(1,15)=38.33, p<0.001. Finally, the size by response type 

interaction was significant, F(2,30)=4.95, εGG=0.84, p<0.05. This interaction is given by the 

fact that in manual condition the medium problems (995 ms) were solved faster than large 

(1089 ms) and small problems (1082 ms); whereas in vocal condition small problems (644 

ms) were solved faster than large (702 ms) and medium problems (700 ms). This interaction 

                                                           
10

  Each problem was repeated three times in the different blocks. The block factor (three levels: “first block”, 

“second block”, and “third block”) has been analysed in ANOVAs not reported here. These ANOVAs showed 

that, even if the block factor was significant (participants solved the problems in the third block faster than in 

the first block), it did not interact with the other variables. 
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is given by the bizarre fact that for manual responses medium problems were solved faster 

than smalls. We have no explanation for this difference that is likely to be due to the delayed 

procedure we used. 

 For the self-report task we simply qualitatively analysed the proportions of use of the 

inversion procedures reported by the participant in the trials used in the EEG analysis (see 

below). Table 5.4 report the proportion in the experimental cell given by the size and order 

factors in the two operations. As we expected the participant reported to use inversion much 

more often in the non-privileged orders than in the privileged orders.  

 

order size N tot. prop. operation 

sxL large 62 126 0.49 addition 

Lxs large 7 126 0.05 addition 

sxL medium 158 336 0.47 addition 

Lxs medium 6 336 0.02 addition 

sxL small 42 126 0.33 addition 

Lxs small 0 126 0 addition 

sxL large 48 288 0.17 multiplication 

Lxs large 92 288 0.32 multiplication 

sxL medium 291 768 0.38 multiplication 

Lxs medium 56 768 0.07 multiplication 

sxL small 54 288 0.19 multiplication 

Lxs small 0 288 0 multiplication 
Table 5.4: for each experimental cell the proportion of use of the inversion procedure is reported. N: number 

of times the participants report to use inversion; tot.: the total number of trials in the cell used in the EEG 

analysis; prop.: the proportion of the use of the inversion procedure. 

 

5.3.2 EEG results 

 

 We first compared ERPs for additions and multiplications for an overall qualitative 

analysis. Then, we compared for each operation the effect of size along the three levels of 

the Size factor used in the previous behavioural experiments (Small, Medium, Large) and 

keeping Ties separate. Finally, given our hypothesis and the results of the previous 

behavioural experiments, we compared the combined effect of operand order and size. 
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 The comparison between Additions and Multiplications (see figure 5.1) shows an early 

deflection between 250 ms and 350 ms on central-frontal sites where Multiplications elicit a 

larger bilateral negativity. This early effect is followed by a long lasting sustained slow wave 

for the whole epoch, where Multiplications show a larger positivity with respect to Additions. 

The latter effect emerges mainly on posterior parietal sites and appears to be slightly larger 

over the left hemisphere (especially when the effect on PL and PR sites are visually 

compared). 

 

 

Figure 5.1: Grandaverage plot for the comparison between additions (A_all), in black, and multiplications 

(M_all) in red. Vertical lines are plotted at the onset of the second operand, and after 250ms, 350ms and 

1400ms. 
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 For midline sites, the ANOVA in the 250-350 ms time window shows a marginally 

significant interaction between Longitude and Operation (2 levels: Additions, Multiplications), 

F(3,45)=2.85 , εGG=0.5, p<0.1. No significant effects emerge for lateral sites. The ANOVA in 

the 350-1400 ms interval shows for the midline sites a significant Longitude by Operation 

interaction, F(3,45)=7.33, εGG=0.5, p<0.05. In the same time window, the analysis on lateral 

sites shows significant Longitude by Operation interaction (F(2,30)=4.84, εGG=0.54, p<0.05), 

and Longitude by Lateralization by Operation interaction (F(2,30)=6.25, εGG=0.74, p<0.05), 

confirming the posterior and left lateralized nature of the described effects. 

 

 

Size effect for Multiplications 

 

 Figure (figure 5.2) shows the grandaverages for the three levels (Small, Medium, and 

Large) of the Size factor for multiplications. The Ties are plotted separately, independently 

from size. A large positivity for Ties with respect to all the other three Size levels is evident 

between 300 and 500 ms, indicating a very different processing of ties problems. The 

comparison between the three levels of Size factor shows a long lasting positivity for larger 

problems starting from about 300 ms. This lasting positivity for larger problems is initially 

focused on parietal sites, but at later latency it is more widely distributed on the scalp for 

Large problems with respect to Small ones. The Medium problems elicited a waveform 

somewhat in the middle between Large and Small, but more closer to those elicited by the 

Small problems. Starting from about 800 ms post-stimulus, a sustained frontal negativity for 

Small problems relatively to both Medium and Large problems emerges. Even if both slow 

waves can be interpreted as parts of the slow-waves family of components, the different 

topography suggests that the latter effect, despite the polarity differences are always in terms 

of a larger positivity for Large (more difficult) problems, is likely to be distinguished from the 

positivity previously discussed. 
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 The statistical analysis of the so far described effects were preformed into two stages. 

First, we analysed the 300-500 ms interval with the aim to statistically assess the difference 

between Ties and the other Size levels (small, medium, and large). Second, given the clear 

difference between Ties and the other Size levels in the ERPs, we proceeded by analyzing 

Size factor without considering Ties anymore in three time windows: 300-500 ms, 500-800 

ms, and 800-1400 ms. 

 

 

Figure 5.2: Grandaverage plot for the size and ties comparison for multiplications. Ties problems (M_ties) are 

plotted in black dashed, Small problems (M_min5) in black, Medium problems (M_mm) in red, and Large 

problems (M_mag5) in green. Vertical lines are plotted at the onset of the second operand, and after 300ms 

,500ms ,800ms ,1400ms. 
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 The ANOVA in the 300-500 ms for midline sites gives a main effect of four levels 

Size+Ties factor (F(3,45)=19.41, εGG=0.60, p<0.01), and an interaction of the same factor 

with Longitude (F(9,135)=3.98, εGG=0.39, p<0.01). Similarly, the ANOVA in the same time 

window on lateral sites shows a main effect of Size+Ties (F(3,45)=12.60, εGG=0.67, p<0.01). 

However, the Size+Ties factor does not interaction with the two topographical factors 

(Longitude and Lateralization). To compare the Ties with the three levels of the Size factor 

we performed post-hoc t-test analysis with FDR correction for each site of both midline and 

central line. All differences were significant with the only exception of the difference between 

Ties and Large problems in the PO cluster (difference 0.45uV, t(15)=1.61, p>0.1). For all the 

other comparisons the difference between Ties and the other three Size levels was between 

0.54uV and 3.27uV (median 1.73uV), with all t(15)>2.19 and all p<0.05. 

 After having confirmed the large widespread positivity for Ties with respect to all other 

three Size levels, we considered the effect of Size only. In the 300-500 ms time windows, 

both ANOVAs on midline and on lateral sites restricted to the Size factor did not give any 

significant results, but only a marginal significant effect of Size in the midline analysis 

(F(6,90)=1.52, εGG=0.72, p<0.1). In the 500-800 ms interval a main effect of Size emerges in 

the midline site analysis (F(2,30)=9.23, εGG=0.82, p<0.01), and in the lateral sites analysis 

(F(2.30)=8.21, εGG=0.85, p<0.01). The post-hoc t-tests FDR corrected for all sites (see table 

5.5) show that the effect is mainly due to a difference between Large problems and the other 

two levels (Medium and Small) widespread in all the scalp. The Large-Small comparison 

reaches significance at AL, FC, CL, CP, CR, PL, PO sites. The Large-Medium comparison 

reaches significance at AL, AR, CP, CR, PO, PR sites. The Medium-Small comparison 

reaches significance only at the CL site. In the last part of the interval between the 

presentation of the second operand and the response cue (800-1400 ms) an effect of Size 

emerges only in the lateral sites analysis, F(2,30)=7.78, εGG=0.85, p<0.01. However, despite 

the effects appears more larger at frontal and right sites, no interaction with Lateralization or 

Longitude reaches significance. Moreover, post-hoc t-tests with FDR correction (see table 
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5.6) were performed as an explorative analysis. This t-tests suggest that, like in the 500-800 

ms interval, the effect is mainly driven by the comparison of Large problems with the Small 

ones. Even if a difference between Small and Medium problems reaches significance at the 

AL site, the absence in the ANOVA of an interaction of the Size factor with topographical 

factors does not allow to infer strong implications. 

comparison ch diff t df p.value p.adj sign 

large-small AL 1,34 3,06 15 0,008 0,037 * 

large-small AR 1,07 2,24 15 0,041 0,069 . 

large-small CL 0,99 2,58 15 0,021 0,048 * 

large-small CP 1,51 3,03 15 0,008 0,037 * 

large-small CR 0,95 2,92 15 0,010 0,037 * 

large-small FC 1,32 2,55 15 0,022 0,048 * 

large-small FP 1,25 2,23 15 0,042 0,069 . 

large-small PL 0,81 2,90 15 0,011 0,037 * 

large-small PO 1,11 3,88 15 0,001 0,015 * 

large-small PR 0,67 2,22 15 0,042 0,069 . 

large-medium AL 0,82 2,72 15 0,016 0,043 * 

large-medium AR 0,89 2,97 15 0,010 0,037 * 

large-medium CL 0,40 1,46 15 0,165 0,206   

large-medium CP 1,07 2,76 15 0,015 0,043 * 

large-medium CR 0,70 4,20 15 0,001 0,012 * 

large-medium FC 0,88 2,20 15 0,044 0,069 . 

large-medium FP 0,92 2,47 15 0,026 0,052 . 

large-medium PL 0,47 1,61 15 0,129 0,181   

large-medium PO 0,84 4,21 15 0,001 0,012 * 

large-medium PR 0,59 3,25 15 0,005 0,037 * 

medium-small AL 0,53 1,73 15 0,105 0,157   

medium-small AR 0,18 0,39 15 0,706 0,730   

medium-small CL 0,60 2,54 15 0,022 0,048 * 

medium-small CP 0,44 1,55 15 0,142 0,185   

medium-small CR 0,25 0,75 15 0,468 0,520   

medium-small FC 0,44 1,14 15 0,270 0,319   

medium-small FP 0,33 0,69 15 0,503 0,539   

medium-small PL 0,34 1,59 15 0,132 0,181   

medium-small PO 0,27 1,13 15 0,276 0,319   

medium-small PR 0,09 0,33 15 0,743 0,743   

Table 5.5: post-hoc t-tests comparison FDR corrected for all sites and condition. The column “comparison” 

reports the conditions between the t-test was performed; the column “ch” reports the channels; “diff” is the 

difference between the conditions in uV; “t” is the t-value; “df” is the degrees of freedom; “p.value” is the 

uncorrected p-value; “p.adj” is the corrected p-value; “sign” report if the t-test was significant (*) or 

marginally significant (.). [multiplication: 500-800 ms interval] 
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comp ch diff t df p p.adj sign 

large-small AL 1,55 3,77 15 0,002 0,019 * 

large-small AR 1,45 2,80 15 0,013 0,051 . 

large-small CL 0,99 2,56 15 0,022 0,073 . 

large-small CP 0,75 1,01 15 0,331 0,499   

large-small CR 1,31 4,10 15 0,001 0,014 * 

large-small FC 1,38 2,45 15 0,027 0,081 . 

large-small FP 1,71 3,27 15 0,005 0,039 * 

large-small PL 0,50 1,00 15 0,333 0,499   

large-small PO -0,05 -0,07 15 0,946 0,946   

large-small PR 0,34 0,69 15 0,504 0,676   

large-medium AL 0,57 1,83 15 0,088 0,219   

large-medium AR 0,79 2,87 15 0,012 0,051 . 

large-medium CL 0,17 0,58 15 0,568 0,687   

large-medium CP 0,36 0,66 15 0,518 0,676   

large-medium CR 0,71 4,17 15 0,001 0,014 * 

large-medium FC 0,66 1,47 15 0,163 0,305   

large-medium FP 0,67 1,64 15 0,122 0,244   

large-medium PL 0,07 0,19 15 0,852 0,913   

large-medium PO -0,09 -0,22 15 0,829 0,913   

large-medium PR 0,13 0,44 15 0,665 0,767   

medium-small AL 0,98 3,07 15 0,008 0,046 * 

medium-small AR 0,66 1,39 15 0,186 0,312   

medium-small CL 0,82 2,84 15 0,013 0,051 . 

medium-small CP 0,39 0,90 15 0,384 0,548   

medium-small CR 0,60 1,66 15 0,118 0,244   

medium-small FC 0,73 1,78 15 0,096 0,221   

medium-small FP 1,03 2,21 15 0,043 0,117   

medium-small PL 0,43 1,38 15 0,187 0,312   

medium-small PO 0,04 0,11 15 0,912 0,944   

medium-small PR 0,21 0,58 15 0,573 0,687   

Table 5.6: post-hoc t-tests comparison FDR corrected for all sites and condition. The column “comparison” 

reports the conditions between the t-test was performed; the column “ch” reports the channels; “diff” is the 

difference between the conditions in uV; “t” is the t-value; “df” is the degrees of freedom; “p.value” is the 

uncorrected p-value; “p.adj” is the corrected p-value; “sign” report if the t-test was significant (*) or 

marginally significant (.). [multiplication: 800-1400 ms interval] 

 

 To summarize, the most clear effect of Size for multiplications can be described in terms 

of a broad distributed positivity in the whole interval. In the early time window (300-500 ms), 

this broad distributed positivity is only marginally significant. From 500 ms after the 

presentation of the second operand to the presentation of the response cue, the broad 
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distributed positivity reaches significance for Large problems compared to Medium and Small 

ones, and it has a peak in the 500-800 ms interval. 

 

 

Size effect for addition 

 

 Figure (figure 5.3) shows the grandaverages for the three levels (Small, Medium, and 

Large) of the Size factor for addition. The Ties are plotted separately, independently from 

size. The pattern appears more complicated than for the size effects in multiplication 

described above. Ties again show an early positive deflection with respect to all other 

conditions. Similarly to multiplications the positivity seems to start at around 300 ms post-

stimulus. However, differently from multiplications, in additions the positivity starts with a 

anterior-right focus (see sites FP and AR compared to AL) and only subsequently spreads to 

the whole scalp. The comparison between the three levels of Size factor seems to show a 

biphasic pattern. There is an early anterior negativity for Large problems with respect to 

Medium and Small, peaking at around 400ms. However, in the following slow waves a more 

positive trend at centro-parietal right sites appears for Large and Medium problems with 

respect to the Small in the 500-700 ms time window, and for Large with respect to Medium 

and Small in the 900-1200 ms time window. Overall, in line with what found for 

multiplications, the pattern for addition can be resumed as a larger posterior positivity for 

larger problems. 

 Similarly to what we have done for multiplications, we performed the analysis in two 

stages. First, we analyzed the difference between Ties and the other Size levels (Size+Ties: 

4 level factors) in an adequate time window (i.e., 300-500 ms). Second, we analyzed the 

effect of Size only in the time windows where the differences above described are evident in 

the grandaverage plot: the interval 400-500 ms for the frontal negativity; the intervals 700-

900 ms and 900-1200 ms for the following positivity. 
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Figure 5.3: Grandaverage plot for the size and ties comparison for additions: Ties problems(A_ties) are 

plotted in black dashed, Small problems (A_min5) in black, Medium problems (A_mm) in red and Large 

problems (A_mag5) in green. Vertical lines are plotted at the onset of the second operand, and after 

300,400,500,700,900,1200ms. 

 

 The ANOVA in the 300-500 ms for midline sites showed a main effect of four levels 

Size+Ties factor (F(3,45)=10.12, εGG=0.55, p<0.01), and an interaction of the same factor 

with Longitude (F(9,135)=3.42, εGG=0.30, p<0.05). Similarly, the ANOVA in the same time 

window on lateral sites shows a main effect of size (F(9,135)=10.23, εGG=0.70, p<0.01), but 

no interaction with the two topographical factors. Post-hoc t-tests with FDR correction were 

performed for each site of both midline and central line. The t-tests compared Ties with the 
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three levels of the Size factor. Similarly to multiplications, the differences were significant for 

most sites and comparisons (see table 5.8). 

 

comp ch diff t df p p.adj sign 

ties-small AL 0,99 1,59 15 0,133 0,138   

ties-small AR 1,59 3,10 15 0,007 0,014 * 

ties-small CL 1,00 1,77 15 0,098 0,105   

ties-small CP 2,48 3,75 15 0,002 0,008 ** 

ties-small CR 1,42 3,61 15 0,003 0,008 ** 

ties-small FC 2,01 2,98 15 0,009 0,016 * 

ties-small FP 1,49 2,14 15 0,049 0,061 . 

ties-small PL 0,95 1,85 15 0,085 0,094 . 

ties-small PO 1,93 2,67 15 0,017 0,027 * 

ties-small PR 1,37 3,57 15 0,003 0,008 ** 

ties-medium AL 1,22 2,47 15 0,026 0,036 * 

ties-medium AR 1,73 4,56 15 0,000 0,003 ** 

ties-medium CL 1,44 3,20 15 0,006 0,012 * 

ties-medium CP 2,62 3,46 15 0,003 0,009 ** 

ties-medium CR 1,65 4,73 15 0,000 0,003 ** 

ties-medium FC 2,63 3,85 15 0,002 0,008 ** 

ties-medium FP 1,80 2,87 15 0,012 0,019 * 

ties-medium PL 1,19 2,27 15 0,038 0,050 * 

ties-medium PO 1,60 2,10 15 0,053 0,064 . 

ties-medium PR 1,33 2,54 15 0,023 0,032 * 

ties-large AL 1,69 3,34 15 0,004 0,010 * 

ties-large AR 1,89 4,83 15 0,000 0,003 ** 

ties-large CL 1,55 3,22 15 0,006 0,012 * 

ties-large CP 2,57 3,49 15 0,003 0,009 ** 

ties-large CR 1,87 4,98 15 0,000 0,003 ** 

ties-large FC 3,09 4,40 15 0,001 0,003 ** 

ties-large FP 2,32 3,67 15 0,002 0,008 ** 

ties-large PL 0,92 1,97 15 0,068 0,078 . 

ties-large PO 1,01 1,42 15 0,176 0,176   

ties-large PR 1,29 2,66 15 0,018 0,027 * 

Table 5.8: post-hoc t-tests comparison FDR corrected for all sites and condition. The column “comparison” 

reports the conditions between the t-test was performed; the column “ch” reports the channels; “diff” is the 

difference between the conditions in uV; “t” is the t-value; “df” is the degrees of freedom; “p.value” is the 

uncorrected p-value; “p.adj” is the corrected p-value; “sign” report if the t-test was significant (*) or 

marginally significant (.).  [addition: 300-500 ms interval] 
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 The only the exceptions are: the difference between Ties and Large problems in the PL 

and PO sites; the difference between Ties and Medium problems in the PO site; and the 

difference between Ties and Small problems in the PO, AL, CL, FP, and PL site. For all other 

comparisons the difference between Ties and the other three conditions was between 

1.13uV and 3.10uV. 

 To test the apparent frontal negativity for Large problems in the 400-500 ms time 

windows, we performed an ANOVA restricted to Size on both midline and lateral sites. 

However, this ANOVA did not show any significant effect. The ANOVA in the 700-900 ms 

time window showed an interaction between Laterality and Size for lateral sites 

(F(2,30)=5.45, εGG=0.79, p<0.05), but no effect involving Size in the midline sites analysis. 

Despite no one of the post-hoc t-test on single sites reaches significance after FDR 

correction, the interaction can be easily interpreted on the basis of grandaverage plot (see 

figure 5.3). The grandaverage plot shows that Medium and Large problems are more positive 

than Small at lateral right sites (AR, CR, PR). No effects for ANOVAs in the 900-1200 ms 

time windows was found. 

 

 

Size and Order effects in multiplication 

 

 In figure 5.4, 5.5, and 5.6 the grandaverages for the two operands orders (s×L in black 

and L×s in red) are reported in separate plots for the three Size levels (Small, Medium, 

Large). The effects, as predictable on the basis of the interactions found in the behavioural 

experiments of Chapter 2 and 4, are rather different. First of all, we must notice that the 

effects are rather large in amplitude with respect to the effects of problem size previously 

described. Moreover, this effects start very early (at around 300ms), similarly to the effect of 

Ties that we attributed to the perception of the problem (repetition priming on the second 

operand). 
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Table 5.4: Grandaverage plot for the two orders for Small problems: sxL (M_min5_sL) waveforms are plotted 

in black and Lxs (M_min5_Ls) in red. Vertical lines are plotted at the onset of the second operand, and after 

300,400,500,1000,1400ms 

 

Figure 5.5: Grandaverage plot for the two orders for Medium problems: sxL (M_minmag5) waveforms are 

plotted in black and Lxs (M_magmin5) in red. Vertical lines are plotted at the onset of the second operand, 

and after 300,400,500,1000,1400ms. 
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Table 5.6: Grandaverage plot for the two orders for Large problems: sxL (M_mag5_sL) waveforms are plotted 

in black and Lxs (M_mag5_Ls) in red. Vertical lines are plotted at the onset of the second operand, and after 

300,400,500,1000,1400ms. 

 

 We first describe the effects and then report the statistical analysis performed on 

appropriate time windows. For the Small problems the effect appears as a broad distributed 

negativity, more evident at central sites, for the s×L order (non-privileged order) with respect 

to the L×s11. The effect starts at about 300 ms post-stimulus and last until about 800 ms. 

Both waveforms in this interval show a negative peak more frontally distributed at around 450 

ms, followed by a positive peak at parietal sites at around 550 ms. For Medium problems the 

negativity for s×L order (non-privileged order) with respect to L×s order is restricted to the 

peak at 450ms in the interval 300-500 ms, with no clear effect in the earlier time window. 

However, the effect is inverted in the later interval (from about 600 to 1000 ms), with L×s 

                                                           
11

 Here and in the following analysis we prefer to interpret order effects in terms of negativity. In fact, Zhou et 

al. (2007) reported a widely distributed negativity more evident on frontal sites as the putative ERPs correlate 

of a operands reordering operation for the unprivileged order. In the ERPs study of Zhou and Colleagues, 

Chinese participants had to solve multiplication problems. The Chinese population learn only one half of the 

multiplication table (i.e., only the s×L order is learned). 
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order more negative than s×L order but rather focal in topography since it is evident only on 

the CP site. For Large problems a negativity for s×L order (privileged order) with respect to 

L×s , similar to Small problems, is widespread distributed between 300 ms and 400 ms. 

However, the opposite pattern abruptly develops between 400 ms and 500 ms, with the L×s 

order (non-privileged order) more negative than the s×L order (mainly at parietal sites CP, 

PO). In the 600-1000 ms time window, a negative deflection for L×s order seems to persist 

until around 800 ms only at posterior left sites, whereas in the last period (between 1000 ms 

and 1400 ms) an anterior positivity for L×s order is evident. 

 Given the complexity of the design and of the effects (both topographically and in terms of 

the experimental design), and the fact that the data comes from a limited number of trials and 

are thus more noisy than the previous comparisons, our statistical analysis needs to be firmly 

grounded on a priori hypotheses. One hypothesis comes from Zhou and Colleagues (2007) 

who reported a widely distributed negativity for non-privileged order with Chinese 

participants. The other comes from the behavioural experiments (see chapters 2 and 4), 

where we found that in the Italian adult population the L×s order is privileged with Small and 

Medium problems, whereas the s×L order is privileged with Large. From the qualitative 

analysis reported above at least four time windows of interest may be selected. The first time 

window is between 300 ms and 400 ms. In this time window, since the s×L order shows a 

negativity with respect to L×s order in both Small and Large problems but not in the Medium 

ones, this effect cannot be interpreted in terms of a reordering process toward the privileged 

order. The second time window is between 400 ms and 500 ms. In this time window the 

Small and Medium problems show a larger negativity for s×L order (non-privileged) than for 

L×s order, and Large problems shows a larger negativity for L×s order (non-privileged) than 

for s×L order. This effect is in line with a possible interpretation in terms of a reordering 

process because of the non-privileged orders show a negativity for all three levels of the Size 

factor. The effects following 500 ms are rather confusing and it is not clear which time 

windows to choose in order to compare different deflections in the different conditions in an 
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overall ANOVAs with both Size and Order as factors. It is likely that after 500 ms for some 

problems and/or participants the result of the problem is obtained soon, whereas for others a 

memory search or an alternative procedures are implemented by the cognitive system. 

Moreover, different effects such as the early stage of the CNV, slow posterior positive waves, 

and negativities due to inversion or other explicit symbolic transformations of the problem 

may superimpose. This is not unusual in ERPs research, especially for slow wave and for 

data with a rather low SNR (signal to noise ratio). In fact, in the “Psychophysiology 

Guidelines for using human event-related potentials to study cognition: Recording standards 

and publication criteria” under the subsection  “Mean Amplitude Measurements Over a 

Period of Time Should Not Span Clearly Different ERP Components”, Picton and Colleagues 

underline that “when measuring slow or sustained potentials the latency range can span 

several hundred milliseconds. However, if the scalp distribution of the ERP changes 

significantly during the measurement period, the resultant measurements may become 

impossible to interpret” (Picton et al., 2000, p.143). Despite the grandaverages with Size only 

as factor were interpretable (see above), the patterns after 500 ms with both Size and Order 

above described are very difficult to be attributed to a single latent component or effect. This 

patterns do not match with any hypotheses developed in the introduction and thus have not 

been analyzed. In fact, the ERP differences due to order in the first stages after 500 ms at 

posterior sites is similar in terms of polarity for Large and Medium (s×L more positive that 

L×s) problems, and opposite for the Small ones (L×s more positive that s×L); whereas in the 

previous behavioural experiments Small and Medium always showed a similar pattern with 

respect to order of operands. 

 The ANOVA on midline sites in the 300-400 ms reveals a main effects of both Size 

(F(2,30)=3.94, εGG=0.78, p<0.05)  and Order (F(1,15)=14.95, p<0.01). Moreover, the ANOVA 

reveals an Order by Longitude interaction, F(3,45)=4.99, εGG=0.52, p<0.05. The ANOVA on 

lateral sites for the same interval shows an effect of Order (F(1,15)=17.53, p<0.01) and a 

marginal significant interaction between Longitude and Size (F(4,60)=2.98, εGG=0.51, p<0.1). 
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The Size effect is due to the positivity for Large problems with respect to Small and Medium 

problems described above, that emerged just as a tendency in the larger 300-500 ms time 

window. The interaction of Order and Longitude in the midline sites and the main effect of 

Order on lateral sites is due to the broad distributed large positivity for L×s problems with 

respect to s×L, which is more evident on the posterior areas of the scalp. The effect is 

numerically larger for Small and Large problems with respect to Medium problems, but the 

fact that there is no interaction involving Order and Size does not allow us to speculate on 

this point. Despite possible differences in the amplitude of the effect, all three levels of size 

show the same pattern that is not likely to be the frontal negativity due to inversion of 

operand discussed by Zhou and Colleagues (2007). Since does not mirror behavioural 

preferences in the order of operands and it is mainly posteriorly distributed. For these 

reasons the effect is more likely to be attributed to the processing of the second operand, 

that may differ as a function of the fact that the first operand is smaller or larger. 

 The ANOVA in the 400-500 ms interval on midline sites shows an effect of Order, 

(F(1,15)=15.45,  p<0.01), a Longitude by Order interactions (F(3,45)=4.36, εGG=0.55, 

p<0.05), and a Size by Order interaction (F(2,30)=5.48, εGG=0.99, p<0.01). The ANOVA in 

the same latency interval on lateral sites gives an effect of Order (F(1,15)=8.83, p<0.01), and 

a four-way Lateralization by Longitude by Size by Order interaction (F(4,60)=4.52, εGG=0.72, 

p<0.01). In figure 5.6 the means in the different conditions for midline sites are reported 

showing that the Order effects are larger posteriorly, and the Size by Order interaction is due 

to the fact that for Small and Medium problems s×L are more negative that L×s, whereas for 

Large problem the opposite pattern emerge. 

 It is worthwhile to note that despite amplitudes in the L×s order is very similar for all 

conditions this does not allow to assume that the effect for Large problems has to be 

interpreted as a positivity for s×L conditions, since already in the previous time windows 

Large problems were globally more positive than Medium and Small and thus it is possible a 

superimposition of a long lasting order-independent positivity for Large problem and a 
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negativity for the non-privileged order. Similar pattern emerges for the lateral sites (see figure 

5.7 and 5.8). Despite the interpretation of a four-way interaction is always complex, it is likely 

to be due to the fact that both Order effect and the inversion of the effect for Large problems 

is more evident over the left hemisphere. 

 

 

Figure 5.6: mean voltage amplitudes in the different conditions for midline sites. 

 

 Summarizing, the analysis aimed to study operands order effects for multiplication 

provides easy to interpret effects in the early development of the problem-cue interval, 

whereas later effects appear to be due to the interplay of different components that make the 

data very difficult to interpret. In the first interval we analyzed (300-400 ms) Size and Order 

do not interact and a large posteriorly distributed negativity for s×L order with respect to L×s 

order emerges, independently from Size. A broad distributed effect of Size is as well present 

with Large problems waveforms being more positive than Medium and Small.  In the 

following time window (400-500 ms) a similar pattern persists for Medium and Small 

problems, for which the more positive potential is for the preferred order, whereas an 

inversion of the effect, especially on posterior left sites, emerges for Large problems. 
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Figure 5.7: mean voltage amplitudes in the different conditions for left sites. 

 

 

Figure 5.8: mean voltage amplitudes in the different conditions for right sites. 
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Size and Order effects in addition 

 

 In figure 5.9, 5.10, and 5.11 the grandaverages for the two operand orders (s+L in black 

and L+s in red) are reported in separate plots for the three Size levels (Small, Medium, 

Large). Both Medium and Large problems show a larger negativity frontally distributed after 

300 ms for the non-privileged order (s+L), short lasting for Large and longer for Medium. On 

the other side Small problems show just a small negativity for L+s in an earlier time window. 

The two effects seem clearly different in latency and topography. Moreover, we know that 

additions with both operand equal/smaller than 5 are very easy and in the behavioural 

experiment reported in Chapter 2 no effect of order emerged. For these reasons we will 

analyze Order and Size effects only for Medium and Large problems, given no unique time 

interval can be chosen for all the three level of size encompassing similar effects12. The 

ANOVAs were performed in the 300-500 ms time interval, containing the whole time course 

of the anterior negativity, with two factors: Order and the reduced-Size (two levels: Medium 

and Large), hereafter Size for this paragraph. 

 The ANOVA in the 300-500 ms interval for midline sites shows a main effect of Order, 

(F(1,15)=8.39, p<0.01), an interaction Longitude by Order (F(3,45)=4.00, εGG=0.49, p<0.05), 

and by Order interactions (F(3,45)=3.05, εGG=0.51, p<0.1). Similarly for the lateral sites 

analysis we obtained an effect of Order (F(1,15)=14.8, p<0.01), an Laterality by Longitude by 

Size interaction (F(2,30)=5.36, εGG=0.64, p<0.05), and again just a tendency for the 

Longitude by Size by Order interaction (F(2,30)=3.76, εGG=0.56, p<0.1). Both analyses 

confirm the effect of order and its anterior distribution. Despite the effect for Medium is 

numerically larger and seem to last longer interaction with both Order and Size factor are 

                                                           
12

 At explorative level an analysis not reported here, restricted at the Small problem only, did not show any 

effect or interaction of Order in the interval 200-400 ms, thus the early negativity in the L+s waveform peaking 

at about 300 ms is likely to be just noise.  
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only marginally significant13. The ERPs correlate of the order of the operands preferences in 

addition can thus be described in terms of a frontal bilateral negativity for non-privileged 

order (s+L), evident only for problems with at least one operand larger than 5 (Medium and 

Large). 

 

 

Figure 5.9: Grandaverage plot for the two orders for Small problems: s+L (A_min5_sL) waveforms are plotted 

in black and L+s (A_min5_Ls) in red. Vertical lines are plotted at the onset of the second operand, and after 

250,350,450,800,1400ms 

                                                           
13

 In order to check for possible differences in the amplitude and time development we also tested separate 

time windows (300-400 ms and 400-500 ms) with other analyses not reported here, but we found no direct 

evidence in favour of a larger effect for Medium with respect to Large problems. 
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Figure 5.10: Grandaverage plot for the two orders for Medium problems: s+L (A_minmag5_sL) waveforms 

are plotted in black and L+s (A_magmin5_Ls) in red. Vertical lines are plotted at the onset of the second 

operand, and after 250,350,450,800,1400ms 

 

 

Figure 5.11: Grandaverage plot for the two orders for Large problems: s+L (A_mag5_sL) waveforms are 

plotted in black and L+s (A_mag5_Ls) in red. Vertical lines are plotted at the onset of the second operand, 

and after 250,350,450,800,1400ms 
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Self-report based analysis 

 

 We decided to consider also a different approach to analyze the data, by splitting the 

epochs not according to stimuli properties (the kind of problem) but based on the self report 

of participant about the procedures they reported to use. In particular, we decided to pool all 

the trials remaining, after artifact rejection procedure above described, where participants 

explicitly indicated they used the “Inversion” procedure (e.g., to solve the problem 3×7 by 

reordering it in the 7×3 order) to solve the problem. The “Inversion” trials have been 

compared with all the other trials. This approach, somewhat unusual in the ERPs research, 

but already efficiently used in an fMRI study on arithmetical cognition (Grabner et al., 2009), 

lead to a largely unbalanced design since size and difficulty of the problems are not balanced 

both in terms of the stimuli (the problems) and the other self-report information we collected 

during the structured debriefing. Moreover, since Inversion is not reported very frequently, we 

compared waveforms coming from a very different number of epochs and thus with different 

SNR (signal to noise ratio). However, ANOVAs are typically robust enough to deal with this 

kind of unbalance design (e.g., P3 studies typically compare waveforms elicited by frequent 

target with infrequent standards). The aim of this analysis is to compare the order effect we 

identified for additions and multiplications with the Zhou et al. (2007) findings in the Chinese 

population. In fact, in this analysis ERP signature can be attributed to an explicit and aware 

cognitive process of inversion of the operands. The frequency of reporting the use of 

inversion procedure to solve the problems was not homogeneous across participants. We 

selected for subsequent analysis only the participants for which more than 10 epochs for 

each type of problem (Addition and Multiplication) that the participants reported to solve with 

explicit inversion in the self-report. For multiplications all 16 participants fulfilled the criteria, 

the resulting averages were formed by an average number of 33.3 epochs (min=12, max=59) 

in the Inversion condition and by an average number of 124.3 epochs (min=68, max=164) in 

the Non-Inversion condition. For additions only 7 participants fulfilled the criteria, the resulting 
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averages were formed by an average number of 36.6 epochs (min=11, max=65) in the 

Inversion condition and by an average number of 124.3 epochs (min=61, max=169) in the 

Non-Inversion condition. The data averaging, the statistical analysis, the topographical 

design, and the method were the same as in the previous analyses based on Size and Order 

classification. Before analyzing the ERPs it is interesting to see which problems forms the 

Inversion condition, that is which was the overall proportion of times for which the inversion 

procedure was used within the cells defined by the Order and Size factors used in the 

previous analyses (see table 5.9). 

 

order size epoch count prop operation 

s+L medium 158 336 0.47 addition 

L+s medium 6 336 0.02 addition 

s+L large 62 126 0.49 addition 

L+s large 7 126 0.06 addition 

s+L small 42 126 0.33 addition 

L+s small 0 126 0 addition 

Lxs large 92 288 0.32 multiplication 

sxL large 48 288 0.17 multiplication 

Lxs medium 56 768 0.07 multiplication 

sxL medium 291 768 0.38 multiplication 

sxL small 54 288 0.19 multiplication 

Lxs small 0 288 0 multiplication 
Table 5.9: the trials used to make the average in the self-report analysis. The column “order” reports the 

order of the problem; “size” the size of the problem; “epoch” the number of epochs used in the analysis in 

each Order and Size condition; “count” the total number of epoch in each Order and Size condition; “prop” 

the proportion of epoch used; “operation” the operations. 

 

 Gradaverage plots for Multiplication and Additions are reported respectively in figure 5.12 

and figure 5.13. The grandaverage of the condition for which participants reported to have 

used the procedure of Inversion is plotted in red and the Non-Inversion condition is plotted in 

black. For both Multiplications and Additions a large negativity is evident bilaterally at frontal 

site in the interval between 300 ms and 500 ms. The pattern is very similar for Additions and 

Multiplications, despite the differences in the processing of the two operations which ERPs 
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correlate is mainly visible on posterior sites as already seen in the previous analysis. Given 

the participants considered for Additions and Multiplications are different, separate repeated 

measure analysis with Inversion only as factor have been reported. 

 

 

Figure 5.12: Grandaverage plot for the two Inversion condition for multiplication: the waveforms of the trials 

where the participants reported to use inversion (inv) are plotted in red and the waveforms of the trials 

where the participants did not report to use inversion (no-inv) are plotted in black. Vertical lines are plotted 

at the onset of the second operand, and after 300 and 500ms. 

 

 ANOVA on midline sites in the 300-500 ms for Multiplications shows an Longitude by 

Inversion interaction, F(3,45)=5.87, εGG=0.68, p<0.01. The analysis in the same time interval 

on lateral sites shows a main effect of Inversion (F(1,15)=6.06, p<0.05) and a marginal 

Longitude by Inversion interaction (F(2,30)=4.11, εGG=0.59, p<0.1). The analysis on the same 

time interval for Additions shows a marginal significant Longitude by Inversion interaction, 

F(3,18)=3.87, εGG=0.48, p<0.1 in the midline analysis, whereas no significant effect emerges 

from the analysis on lateral sites. Given the small number of participants in the Addition 

condition (7) and the fact that the effect that we attribute to the cognitive process of explicit 

reordering of the operands is very similar to that of Multiplications, we think the interpretation 
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of the marginal significant effect is very likely to be confirmed with a larger participant pool. 

We also want to notice that the numerical amplitude of the effect (more than 1µV on the 

average on the whole time window for both Additions and Multiplications) overcame all the 

other effect previously described (different operations, size of the problem). 

 

 

Figure 5.13: Grandaverage plot for the two Inversion condition for addition: the waveforms of the trials 

where the participants reported to use inversion (inv) are plotted in red and the waveforms of the trials 

where the participants did not report to use inversion (no-inv) are plotted in black. Vertical lines are plotted 

at the onset of the second operand, and after 300 and 500ms. 
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5.4 DISCUSSION 

 

 The behavioural analysis showed that in the verbal response condition the participants 

responded faster than in the manual condition for both operation. Moreover, in multiplication 

the size effect was significant, despite this can be due just to the fact that larger results are 

harder to represent and produce both verbally and manually, it is also possible that 

participants did not solve the problems before the presentation of the response cue. No order 

effect or interactions with size emerged for multiplications, while in additions a very small 

order effect emerged since participants responded faster for the L+s order than with the s+L 

order, again suggesting that participants could have waited the cue to complete the 

calculation. 

 The ERPs elicited by addition and multiplication problems in the interval between the 

problem presentation (i.e. second operand onset) and the response cue show a long lasting 

left lateralized positivity for multiplications with respect to additions mainly distributed on 

central-parietal sites with an onset at about from 350 ms after the problem presentation. The 

left lateralization can suggest a larger involvement of verbal memory in the retrieval of 

multiplication facts with respect to additions. Differently from the hypothesis we developed on 

the basis of the literature we did not find a frontal negativity for multiplications with respect to 

additions. 

 The following comparisons of problem size and ties showed a clear differences of the 

waveforms elicited by ties with respect to all other problems (independently from size) for 

both additions and multiplications. Even if the effect appear slightly different (numerically 

larger in case of multiplications and with some difference in the topography of the early stage 

of the effect) for both multiplications and additions, the effect can be described as a broad 

distributed positivity between 300 ms and 500 ms after the onset of the second operand of 

the problem. This effect is not easy to be interpreted but can be classified either as an 

extremely suppressed N400 or as a P3. In both cases it is difficult to decide whether this 
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effect has to be attributed to the processing of the second operand per se or to the fact that 

ties are stored in a separate repository within the arithmetic facts memory as some models 

assumes (network interference model, see chapter 1). The results of the experiment reported 

in Chapter 4 suggest that the tie problems are stored separately. However, the fact that the 

same effect shows up for both operations favours a simpler interpretation of the effect in 

terms of an extremely suppressed N400, reflecting the easier processing of the second 

operand when it is the same of the first operand. This effect could be similar to a repetition 

priming effect that largely facilitates the recognition of the  number and the activation of all 

the relevant nodes within the arithmetic fact memory. 

 Problem size effects on ERPs waveforms are rather smaller than one could have been 

expected on the basis of the literature and of the large differences that typically emerge in 

behavioural experiments. For multiplication a large bilateral broadly distributed positivity is 

present mainly for Large problems with respect to both Medium and Small with onset at 

about 500 ms post-stimulus and lasting for some hundreds on ms; for addition a smaller 

effect between 700 ms and 900 ms over the right hemisphere with Small problems more 

negative that Medium and Large ones. With addition the effect we found, even if smaller than 

in literature, is consistent with more demanding processes required to solve Medium and 

Large additions compared to Small ones. Within this frame it is possible that the right-sided 

negativity for small additions is likely to be due to the fact that the response is early selected 

given the problem is very easy, releasing memory load at around 700 ms from problem 

presentation. The more surprising result is that, while we basically replicated the slow 

positive wave effect for large additions, also for multiplications a similar pattern emerges 

instead of the expected frontal negativity (Jost et al., 2004a; 2004b).  

 The mismatch between our findings and the literature is very likely to be due to the 

specific paradigm we used: delayed production task with a modality response cue. This 

mismatch could be due to different macro-processes involved in the two tasks. In fact, 

production and verification have been supposed to be performed by means of two different 
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macro-processes that rely on the same “knowledge base” (Zbrodoff and Logan, 1990; 

Zbrodoff and Logan, 2000). The different ERPs patterns could therefore be due to the 

different neural sources involved in these two macro-processes. More than the difference 

between production and verification, given that frontal negativities were found also with 

implicit production tasks (Jost et al., 2004a), the fact the participants did not know which will 

be the response modality makes it even less likely that they complete the calculation before 

the cue appears. In fact, if they select the response in a given format (arabic versus verbal) it 

is possible that the response has to be then converted in the requested modality. 

Behavioural data also enforce this explanation: RTs of post-cue response still show large 

effects of size in multiplications. Despite larger problems have larger results that could 

require more time for programming a motor response both in the typing and the vocal trials, 

differences of about 295 ms between large and small multiplication problems may make 

suppose that at least for some operations the selection of the response was not performed in 

the problem-cue interval but only after the presentation of the cue. Therefore, the frontal 

negativity expected for large multiplications could be diluted in time windows following the 

interval we analysed or even after the cue presentation. Despite all these observations that 

makes it difficult to drive strong theoretical implication for the findings on size effects with the 

present paradigm it is worthwhile to comment the effects we found. 

 The paradigm of delayed response with a response-modality cue, that we implemented in 

this study, is very useful to have clean psychophysiological data since the fact the 

participants does not know which response modality will be required in each trial guarantees 

that the ERPs elicited by the problem are not affected by motor response preparation 

potentials. This preparation potentials can be a strong confound especially when large RT 

differences between experimental cells are present. On the other side our delayed paradigm 

could lead the participants to postpone the selection of the response. However given the 

aims of this study that are more inclined to the study of the processing of the problem than 
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the selection of the response the lack of replication of strong size effects could be regarded 

as an advantage rather than a problem. 

 With respect to the main findings of this experiment regarding order of operands, two 

kinds of analysis were conducted. One using the traditional approach that splits problems on 

the basis of their intrinsic properties (Order and Size), the other that defined the experimental 

cells on the basis of self-reports (Inverted and Non-Inverted). Despite possible confound and 

problems in terms of unbalance of stimuli the latter analysis gave more consistent and clearly 

interpretable results and will be thus discussed as first. 

 A bilateral central-frontal effect was found associated both to trials in which the 

participants report to adopt the “Inversion” procedure in both multiplications and additions. 

The effect is compatible in terms of polarity and topography with what predicted on the basis 

of the limited literature on this topic (Kiefer and Dehaene, 1997; Zhou et al, 2007). The effect 

was similar to what found in the traditional analysis (see below) for additions presented in the 

non-privileged order. Therefore, this effect could be due to an explicit, somewhat aware, 

process of operands reordering in working memory. The frontal effect could be produced by 

a process of reordering of the operands that involve abstract representation of the numbers 

and requires a working memory load. Interesting the effects has a more clear time 

development than in the previous studies, being concentrated in the 300-500 ms interval, 

returning promptly to baseline. The Zhou et al. (2007) effect was more long lasting and with a 

variable topographic development and for Kiefer and Dehaene (1997) there was also an 

inversion of polarity in an earlier time window. As Zhou et al. (2007) also admit it is likely that 

the effect in the previous studies were spurious given the superimposition of different neural 

sources (and thus of different cognitive processes). 

 In the traditional analysis based on intrinsic properties of problems two time intervals were 

analysed. In the 300-400 ms interval we found a large posteriorly distributed positivity for s×L 

order with respect to the L×s order, independently from size that thus, given our hypothesis 

cannot be interpreted as the correlate of reordering that reverses for large problems. We 
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interpret this effect as due to process that compare the size of the operands before the 

reordering process. In fact, the operands prior to be reordered have to be compared to 

establish the relative size. The fact that this effect is not present in addition could be 

explained with the fact that the privileged order change across the size for multiplication but 

not for addition. In addition problems the L+s order is always privileged with respect to the 

s+L order, whereas in multiplication the privileged order change across the size. In both 

operation the comparison process has to detect the larger and the smaller operands. 

However, in addition it is sufficient to identify the larger operand and to order it in first 

position, whereas in multiplication the identification of the larger operand is not sufficient to 

reorder the problem in the stored order. In fact, with multiplication the reordering of the 

operand is based not only on the comparison of the operands but also on the size of the 

problems. The operands have to be reordered in the L×s order if the multiplication is small or 

large, whereas they have to be reordered in the s×L order if the multiplication is large. This 

further problem size checking could explain why in the 300-400 ms time window we found an 

effect only for multiplication but not for addition. 

 In the 400-500 ms time window we found and Order by Size interaction in multiplication in 

line with our predictions, namely an inversion for large problems with respect to both medium 

and small ones. For Small and Medium problem the s×L (non-privileged) order was more 

negative than the L×s order, whereas for Large problems the L×s (non-privileged) order was 

more negative than the s×L order. This effect was most pronounce on the posterior left sites. 

Differently, for Large and Medium additions we found in the same 300-500 ms time windows 

that the s+L order (non-prileged) was more negative than the L+s order. This effect involved 

the frontal bilateral sites and was very similar to the effect found in the self-report based 

analysis and thus can be interpreted in terms of an explicit reordering process.  

 We interpret these results above presented as due to two distinct effects. The first was left 

posterior between 400 and 500 ms, and was present only for multiplication. The second one 

was bilateral frontal between 300 and 500 ms, and was present for addition and in the self-
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report analysis for both operation. It is worthwhile to note that in multiplication both effects 

are elicited with similar latencies (300-500 vs 400-500 ms), whereas in addition only the 

frontal effect is present (again with a similar latencies). 

 The left posterior effect for multiplication has a topography similar to that of size effect. 

The effect at centro-parietal sites have been associated with the difficulty and the size of the 

problems in additions (see for example Kong et al. 1999; Núñez-Peña et al., 2006; Núñez-

Peña & Escera, 2007; Núñez-Peña et al. 2011; El Yagoubi et al., 2003) and typically 

interpreted in terms of selection of retrieval versus non-retrieval procedures. This 

interpretation was however developed mainly on the basis of additions problems in which 

non-retrieval procedures are probably more frequently used than for multiplications. We thus 

prefer in this case to adopt a more generic interpretation without excluding the effect could 

arise from a stronger competition between the nodes in the associative network that encodes 

arithmetic facts and that this can cause the cognitive system to choose a non-retrieval 

procedure. Therefore, we propose to interpret this effect as a correlate of a difficulty in 

accessing to the arithmetic facts memory when the problem is presented in the non-

privileged order. Moreover, the frontal effect could be associated with less automatized 

processes, whereas the posterior effect could be associated with an automatized process of 

retrieval of the result (Pauli et al., 1994). The fact that two different processes are involved in 

the operand order effect is consistent with the encoding complex model which assumes than 

various representations are involved in the arithmetic solving process (see Campbell, 1992; 

1994; Campbell and Clark, 1988; 1992). 

 Interesting the two analyses for multiplications order of operand effects allows us to 

individuate two distinct effects that are carried out contemporaneously: the negativity effect 

from self-report and the posterior positivity for large non-privileged order both arise around 

400 ms. This is not contradictory since, from a methodological point of view, one analysis 

(self-report) mediates across different sizes and problem difficulty, while the other (intrinsic 

property) mediates across different solution procedures. On the other side, from a theoretical 



165 

 

point of view, multiple mechanisms may contribute to the size and order effect we described 

in this thesis. 

 The result of ERPs study presented in this Chapter are consistent with the assumption 

that the order of the operands affect the process require to solve an multiplication or addition 

problem. We found a complex ERPs pattern associated with two different effects that 

suggests that different processes, different neural areas, and different representations are 

involved in the operands-order effect. Future researches are needed to better characterize 

the effects we found by using both the traditional stimulus-based way to analyse ERPs data 

and the method of defining experimental cells on the basis of self-reports. 
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Chapter 6 

 

 

 

General Discussion 
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 The starting point of this thesis was to use the commutative property of additions and 

multiplications as a tool to study some of the properties of the memory system that encodes 

the arithmetic facts, namely to evaluate if the arithmetic facts memory is organized according 

to the commutative property, and then if the order of the operands has an effect on the 

performance in solution of arithmetic problems. 

 In the first experiment, a production task where participants were presented with one-digit 

additions and multiplications (Chapter 2, Experiment 1), we found an effect of the order of the 

operands for additions and an interaction between the order of the operands and the size of 

the problem for multiplications. This indicated that commutative pairs are processed 

differently for the two operations. For additions the problems in which the first operand is the 

larger (L+s) were solved faster than the commuted problem (s+L). For multiplications we 

found an extremely surprising result, that could not have been predicted by any of the current 

models of arithmetical cognition: larger-first problems (L×s) were easier to solve than 

smaller-first problems (s×L) only for small and medium size problems (with at least one of the 

operands below 5) while the opposite pattern of preference emerged for large problems 

(when both operands are above 5). This interaction may also explain why in the literature 

there is no strong evidence of order effect in multiplication given that if the effects are not in 

the same direction for different sizes they could have been difficult to be detected. 

 We offered two possible explanations of the effect based on two very different 

assumptions within the models of the arithmetic facts memory. Some of these models in fact 

assume that both orders are encoded as independent nodes in the associative network that 

stores arithmetic facts, others that only one of the two commuted problems is represented. 

The two explanations were the reorganization hypothesis and the asymmetry hypothesis. 

 The  reorganization hypothesis capitalizes on Butterworth et al. (2003) proposal of a 

reorganization of the memory during the childhood. Butterworth and Colleagues suggested 

than during the acquisition of the multiplication problems the use of non-retrieval procedures 

and the comprehension of the commutative principle contribute to organize the multiplication 
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facts memory so that only the L×s order is stored as arithmetic facts in the adulthood. 

According to the Authors “the child learning multiplication facts is not passive, simply building 

associative connections between problems and solutions as they are experienced in 

recitation or in problem presentation. Rather, the facts in memory seem to be reorganised in 

a principled way that takes account of a growing understanding of the commutativity, and 

perhaps other properties of multiplication” (Butterworth et al., 2003, p. 15 of the pre-

publication draft of the 1999). In Italy the children learn the problems in the s×L order before 

the ones in the L×s order, then the s×L order should have an advantage with respect to the 

L×s order. However, following Butterworth et al. (2003), the use by children of repeated 

additions procedure should favour, in later acquisition stages, the L×s order since it 

correspond directly to the more convenient way of using repeated addictions (7×3 is easier to 

be transformed in 7+7+7 than 3x7 that is more likely to be represented as 3+3+3+3+3+3+3). 

The Butterworth et al. (2003) empirical data was limited to small and medium problem since 

they came from a study that was conducted during first years of schools, however the 

Authors concluded an overall L×s preference should arise in the adult Italian population. Our 

data can be however explained by assuming that reorganization does not happen when both 

operand are larger than 5. For these problems in fact the procedure of repeated additions is 

not efficient at all and thus the preference for s×L order due to primacy during learning 

remains. 

 The asymmetry hypothesis explains the interaction in a completely different way, by 

assuming that both orders are stored in memory and that the effect arises from an 

asymmetrical spreading of activation from the operands and the problem nodes to the correct 

and incorrect results. All models in fact assume, on the basis of strong empirical evidence, 

that during the solution of a problem other related multiples of the operands are also 

activated. A number of models assume that the strength of association between nodes is 

shaped by experience (e.g. the frequency at which a problem is solved by means of non-

retrieval procedures) and that result nodes can transmit activations one each other. Our 
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pattern of data can be explained by assuming an asymmetric spreading in the multiplication 

table around two key points: the beginning of the table (N×1) and the tie (N×N) that is 

typically much easier to solve than other problems of similar size. The asymmetry should 

favour the transmission of activation in the direction of larger multiples than in the direction of 

smaller ones, given that tables are typically recalled serially from the smaller multiple to the 

larger. 

 The other experiments reported in this thesis were planned to answer to two basic 

questions that arise from the above discussion. The first is, clearly, to discriminate between 

the two explanations we offered, the second to better understand the nature and the locus of 

the RT differences due to the interplay of order and size in the solution of multiplications. 

 To answer to the first question we first replicated the production study with English 

participants that learn multiplication problems in the opposite way than Italians. Learning 

order should be irrelevant for the asymmetry hypothesis but for the reorganization hypothesis 

it predicts the absence of an order by size interaction for English. This experiment however 

gave a null result that we discussed in Chapter 2. Independently from the possible reasons of 

the absence of any order effect in this experiment we believe that an order effect should 

emerge also for English speakers and thus further studies are necessary to clarify this point.  

 After this failure we decided we needed to replicate the result with Italians. To this end we 

adopted a different strategy to disentangle between the two hypotheses: to directly verify the 

key assumption of the asymmetry hypothesis that is the asymmetric spreading of activation 

around ties. The verification task in Chapter 4 allowed us to replicate the interaction and at 

the same time by analyzing non-matching trials to exclude the asymmetry hypothesis since 

no directional effect in the activation of multiples around the ties emerged. This replica is also 

informative with respect of the second main question of this thesis, the locus of the effects. A 

verification task is in fact more likely to be performed by using retrieval procedures only, with 

respect to production for which non-retrieval procedures are more frequently used. By finding 
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the same effect in production and verification is in favour of the hypothesis that the effect is 

not likely to arise only because of explicit inversion or other non-retrieval procedures. 

 The experiments reported in Chapter 3 were aimed to see if asymmetries between the 

more active multiples and size can develop also outside the domain of problem resolution 

and thus be clearly attributed to the internal organization of the arithmetic fact memory. 

Despite some methodological problems with the first task we used, a paradigm (matching 

task) that did not require the multiplication knowledge, we did not find any systematic size-

dependent asymmetry in the activation of multiples in both that matching task and the 

second one (multiple verification task). The second task did require the knowledge of 

multiplication facts. However, it did not present problems but just a number for which the 

participants had to decide if another number was a multiple. For this reason only a subset of 

the associative network that store multiplication knowledge could be activated, namely only 

the associations between operands and multiples but not the whole problem nodes. The 

absence of systematic asymmetries in this task suggests that, in case the effect we found in 

the production and verification task have to be attributed to a longer retrieval time, the 

asymmetries are driven by the activation of the whole problem in the arithmetic facts 

memory.  

 As we noted above, the behavioural results so far discussed cannot be explained by any 

model of the arithmetic facts memory. The models that are more suited to be adapted to 

explain our results are the ones that assume only one order is represented in the associative 

network that encodes arithmetic facts. Despite the RT costs can be either interpreted in 

terms of longer time to retrieval or to the use of non-retrieval procedures, the order for which 

the performance is the best has clearly to be assumed as the one that is represented in the 

arithmetic facts memory. The interacting neighbors model (Verguts and Fias, 2005) assumes 

that only half of the table is stored. Despite the model assumes the L×s order is the one 

represented, the Authors do not make a strong claims about this since they assume 

reordering process can be performed with no behavioural cost and thus predictions of the 
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model would be the same even if the other order would be represented. First of all our results 

show that reordering do have a cost and also exhibit clear ERPs correlates, moreover the 

fact that order and size interacts make it necessary that the comparison of the size of the 

operands is not sufficient to decide whether the problem has to be inverted or not but an 

evaluation of the whole problem size has also to be considered. Clearly our effect can be 

explained by other models that as well would need similar or even larger extra assumptions 

to explain our complex pattern of data. 

 If we feel confident in the answers we gave to the first of the two main questions of this 

thesis (explanation of the interaction order by size in multiplications), much less clear is the 

interpretation of the locus of the effect and the mechanism that favours the performance for 

one of the two orders. The main problem both in interpreting behavioural data and even more 

crucially in interpreting the ERPs components is whether these can be attributed to retrieval 

only procedures, to non-retrieval procedures or both of them. This problem plagues all 

empirical literature on arithmetical cognition. Just as an example, in most of the modelling 

literature the assumption that adults solve one digit problems by means of retrieval only is 

widely diffused, on the other side most ERPs papers interpret the effects in terms of 

selection/activation of non retrieval procedures. The truth, as usually happens, seems to stay 

in the middle. Both self-reports, that clearly patterned chronometric data in Chapter 2, and 

especially our ERPs results suggest that the order preferences and their interaction with size 

cannot uniquely be attributed to either retrieval or non-retrieval procedures and that it is likely 

that both explicit inversions and implicit reordering contribute to the effects we found. Our 

ERPs study however clearly showed that the paradigm we used, with a delayed response 

with a modality cue, can be useful to study the early stages of arithmetic problem parsing. 

Moreover the use of both self reports and stimulus based analyses can furnish 

complementary data and thus we think that by applying this methodology could successfully 

lead of a better understanding of the role and the mechanisms of retrieval and non-retrieval 

procedures used to solve arithmetical problems. 
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APPENDIX 

 

                

  

 

non-matching trials   

    Tie+1 Tie-1 Neutral+1 Neutral-1 Filler   

  cues 4 5 4 5 33   

  probe 20 20 38 38 51   

  cues 5 6 5 6 44   

  probe 30 30 22 22 65   

  cues 6 7 6 7 62   

  probe 42 42 34 34 39   

  cues 7 8 7 8 69   

  probe 56 56 52 52 46   

  cues 8 9 8 9 75   

  probe 72 72 66 66 58   

  

      

  

  

 

matching trials   

    

Cue 

balancing 

+1 

Cue 

balancing 

-1 

Probe 

balancing 

 Multiple 

Probe 

balancing 

Neutral 

Filler 

  

  cues 4 5 20 38 33   

  probe 4 5 20 38 33   

  cues 5 6 30 22 65   

  probe 5 6 30 22 65   

  cues 6 7 42 34 39   

  probe 6 7 42 34 39   

  cues 7 8 56 52 46   

  probe 7 8 56 52 46   

  cues 8 9 72 66 75   

  probe 8 9 72 66 75   

                

Appendix 1: stimuli adopted in the matching task (see chapter 3). 

 

Cue Tie-1 Tie Tie+1 
Below 

Tie-1 

Below 

sotto 

Tie 

Above 

Tie 

Above 

Tie+1 

4 12 16 20 10 14 18 22 

5 20 25 30 18 23 27 32 

6 30 36 42 27 33 39 45 

7 42 49 56 39 46 52 59 

8 56 64 72 52 60 68 76 

Appendix 2: stimuli adopted in the multiple task (see chapter 3). 
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