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Abstract

In the last decade the interest in radar systems for the exploration of planetary bodies and
for Earth Observation (EO) from orbit increased considerably. In this context, the main
goal of this thesis is to present novel methods for the automatic analysis of planetary
radar sounder (RS) signals and very high resolution (VHR) synthetic aperture radar
(SAR) images acquired on the Earth. Both planetary RSs and VHR SAR systems are
instruments based on relatively recent technology which make it possible to acquire from
orbit new types of data that before were available only in limited areas from airborne
acquisitions. The use of orbiting platforms allows the acquisition of a huge amount of
data on large areas. This calls for the development of effective and automatic methods
for the extraction of information tuned on the characteristics of these new systems. The
work has been organized in two parts.

The first part is focused on the automatic analysis of data acquired by planetary RSs.
RS signals are currently mostly analyzed by means of manual investigations and the topic
of automatic analysis of such data has been only marginally addressed in the literature.
In this thesis we provide three main novel contributions to the state of the art on this
topic. First, we present a theoretical and empirical statistical study of the properties of
RS signals. Such a study drives the development of two novel automatic methods for the
generation of subsurface feature maps and for the detection of basal returns. The second
contribution is a method for the extraction of subsurface layering in icy environments,
which is capable to detect linear features with sub-pixel accuracy. Moreover, measures
for the analysis of the properties of the detected layers are proposed. Finally, the third
contribution is a technique for the detection of surface clutter returns in radargrams.
The proposed method is based on the automatic matching between real and clutter data
generated according to a simulator developed in this thesis.

The second part of this dissertation is devoted to the analysis of VHR SAR images,
with special focus on urban areas. New VHR SAR sensors allow the analysis of such areas
at building level from space. This is a relatively recent topic, which is especially relevant
for crisis management and damage assessment. In this context, we describe in detail an
empirical and theoretical study carried out on the relation between the double-bounce
effect of buildings and their orientation angle. Then, a novel approach to the automatic
detection and reconstruction of building radar footprints from VHR SAR images is pre-
sented. Unlike most of the methods presented in the literature, the developed method
can extract and reconstruct building radar footprints from single VHR SAR images. The
technique is based on the detection and combination of primitive features in the image,
and introduces the concept of semantic meaning of the primitives.

Qualitative and quantitative experimental results obtained on real planetary RS and
spaceborne VHR SAR data confirm the effectiveness of the proposed methods.
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Introduction

In this chapter we introduce our PhD thesis work. In particular, an overview of the
present radar systems for the observation of the Earth and of other planetary bodies is
given. This allows us to highlight and discuss the motivation, the objectives and the novel
contributions of this thesis. Finally, the structure of the document is illustrated.

Background

In the last decade the interest in radar systems for the observation of the Earth (EO)
and of other planetary bodies from orbit increased considerably. The main reason for
this is the capability of radars to overcome the limitations of passive systems (e.g., the
dependence on sun illumination and weather conditions [1]) and the intrinsic properties of
the transmitted signals, which make it possible to retrieve information also from parts of
the targets which are even not visible (e.g., subsurface [2], structure of forest canopy [3]).
In this thesis we focus on the development of novel techniques for the automatic analysis
of data acquired by two particular types of radar instruments: radar sounders (RSs), and
very high resolution (VHR) synthetic aperture imaging radars (SARs). In the following
we give some background information on these two systems.

The use of radars for the analysis of the subsurface is a well-known technique exploited
for more than forty years on the Earth. Such investigations have been carried out by
means of surface-mounted ground penetrating radars (GPRs) and airborne RSs. The
main targets have been the Earth icy regions (i.e., Antarctica, Greenland, glaciers) and
arid environments (e.g., Sahara desert). The role of GPRs and RSs is very important.
Indeed, thanks to their nadir-looking geometry and the long wavelengths employed, these
can provide vertical profiles of the subsurface, showing the subsurface stratigraphy with
high detail and reaching several kilometers of depth [2,4,5]. GPRs and RSs are thus key
instruments for the study of the subsurface of icy and arid regions, which are nowadays of
high interest as they provide information about the past and present climate of our planet.
The characteristics of such instruments are also suited to achieve primary scientific goals of
planetary exploration mainly related to the detection and mapping of subsurface water or
ice reservoirs that can be indicators of life in the Solar System. Although future missions
foreseen the use of GPRs on landers [6], the use of ground-mounted platforms is very
difficult in the context of planetary exploration. In this scenario, RSs can be effectively
mounted on satellite platforms and probe the subsurface of planetary bodies from orbit.
Therefore, in the last six years three orbiting RSs operated at Mars and on the Moon.
These are: the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS),
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onboard the European Space Agency’s (ESA) orbiter Mars Express and operating since
August 2005 [7]; the Shallow Radar (SHARAD) mounted on the Mars Reconnaissance
Orbiter of the U.S. National Aeronautics and Space Administration (NASA) and active
since the end of 2006 [8]; and the Lunar Radar Sounder (LRS) of the Kaguya spacecraft
of the Japan Aerospace Exploration Agency (JAXA), which operated between the end
of 2007 and the beginning of 2009 [9]. These instruments followed after many years the
first orbital RS, the Apollo Lunar Sounder Experiments (ALSE) onboard the Apollo 17
spacecraft [10]. The high quality results obtained by these orbiting RSs further increased
the interest on such systems for new planetary exploration missions. In the context of
planetary exploration RSs have been proposed for the payload of future missions devoted
to the study of the moons of Jupiter and of Titan (which is a moon of Saturn). In
particular, one of the missions currently under study (but yet not finally selected for
launch) is the Europa Jupiter System Mission (EJSM). Such a mission is devoted to the
joint study of Jupiter and its moons using two orbiters, one leaded by ESA and the other
by NASA [11]. The payloads of each orbiter include a RS with the goal of probing the
subsurface of the icy moons Europa and Ganymede. During the PhD period, we have
been involved in the activities related to the definition of the Sub-Surface Radar (SSR) of
the ESA-lead Jupiter Ganymede Orbiter (JGO) [12]. Titan is also an interesting target
for radar sounding. Another joint ESA/NASA proposal was the Titan Saturn System
Mission (TSSM), where both an orbiter and a montgolfière were proposed to carry a RS
instrument [13]. The success of the aforementioned planetary RS instruments also pushed
for the development of orbital RSs for EO. Although such type of instrument has been
already proposed in the past [14, 15], no orbiting RSs have been launched around our
planet so far. However, the interest of the scientific community on this type of system
increased in the last few years [16]. This is due to the need to answer questions related to
the recent climate change and to predict its evolution in the near future. Indeed, an orbital
RS can provide important information on the state of Earth polar regions. Moreover, it
can probe Earth arid areas from space, thereby giving a new sight on the evolution of
such environments and mapping buried aquifers. The main advantages of orbital RSs
with respect to airborne and ground-based campaigns is that data acquired from orbit
can reveal the subsurface structure of the Earth with unprecedented coverage, sampling
and homogeneity. In 2010 we collaborated to the definition of the proposal to ESA of
the Glaciers and Icy Environments Sounding mission (GLACIES) [17]. At the time of
writing, another mission proposal is the Orbiting Arid Subsurface and Ice Sheet Sounder
(OASIS), leaded by the NASA’s Jet Propulsion Laboratory (JPL) in collaboration with
the Italian Space Agency (ASI) [18]. All the aforementioned missions, both for planetary
exploration and EO, provide/will provide a huge amount of data. This poses the problem
of the processing of such data, which in most cases is still carried out according to manual
visual inspection. In this context, it is mandatory to develop advanced techniques that
can automatically analyze and extract information from the data for properly supporting
the scientific community.

Another important type of radar system on which the interest has raised in the last
decade is the synthetic aperture radar for imaging. SARs have been used extensively for
EO since the early 80’s using airborne platforms, and then also with orbiting systems (e.g.,
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ERS-1 and 2, ENVISAT-ASAR, RADARSAT-1) [19]. In this scenario, starting from 2007
new generation SARs mounted onboard of satellites and capable to achieve a very high
resolution up to less than 1 m became available. These are the Italian COSMO-SkyMed
constellation (made up of four satellites) [20] and the German TerraSAR-X satellite [21].
In 2010 another German satellite was launched, TanDEM-X, with the goal of working
in pair with TerraSAR-X to create accurate digital elevation models (DEMs) of the
Earth [22]. Such systems permit to study the Earth surface with radars at a level of
detail which was previously possible only using airborne instruments. In particular, the
analysis and monitoring of urban areas benefits from the improved SAR resolution. This
allows the study of urban environments at scales smaller than the building size, opening
to new applications linked to SAR imagery (e.g., automatic building detection [23, 24],
change detection [25,26] and classification [27] at meter resolution or better). In particu-
lar, the capability of SAR systems to acquire data without the need of sun illumination
and clear sky makes VHR SAR data extremely important for rapid damage assessment
and emergency response after catastrophic events [28,29]. However, the improved resolu-
tion of spaceborne VHR SAR data makes it not feasible the application of data analysis
algorithms previously developed for low- and medium-resolution images. This thus calls
for the development of novel techniques tailored for such new data.

Objectives and Novel Contributions of the Thesis

The main goal of this thesis is to present novel methods for the automatic analysis of
planetary RS signals and VHR SAR images acquired on urban areas. As mentioned
above, both planetary RSs and VHR SAR systems are relatively recent instruments.
Both provide from orbit new type of data that before were available only in a limited way
from ground and airborne acquisitions. Indeed, the use of orbiting platforms allows the
acquisition of a huge amount of data having also different properties from those of data
acquired by aerial or terrestrial platforms. This calls for the development of methods for
the automatic extraction of information tuned on such new data. This is particularly
true for RSs. In fact, RS signals acquired by satellites are currently mostly analyzed
by means of manual investigations and the topic of automatic analysis of such data has
been only marginally addressed in the literature. Manual investigations are subjective
and time-consuming tasks, which may limit the scientific return of the data. Therefore,
automatic techniques can greatly support the planetary scientific community, ensuring
reliable, consistent and fast extraction of information from the data. Moreover, they
can be very useful in the perspective of new RS satellite missions for EO. Regarding the
analysis of VHR SAR images, as mentioned above one of the most important applications
is the extraction of information from urban areas. The development of techniques suited
to this goal capable to exploit the new spaceborne VHR SAR data is a recent and topical
subject. In particular, the development of methods capable to maximize the information
extracted on urban areas from single images can be very relevant for practical applications
related to crisis management and damage assessment.

In the framework of the development of automatic methods for the analysis of RS data
we mainly focused on the data acquired by the planetary RS instrument SHARAD at

3



Introduction

Mars. However, the proposed novel methods can be properly tuned for the analysis of
data acquired by other instruments (e.g., MARSIS, airborne and future spaceborne RS
data of the Earth). In this thesis we introduce three main novel contributions on this
topic:

1. a statistical analysis of RS signals aimed at the development of automatic methods
for the detection and characterization of subsurface features;

2. a technique for the automatic extraction and analysis of ice layering;

3. a method for the automatic detection of surface clutter returns through clutter sim-
ulation matching.

The part of the thesis related to the analysis of VHR SAR data is mainly focused
on information retrieval from built-up areas using the currently operating spaceborne
sensors, i.e., COSMO-SkyMed, TerraSAR-X, and TanDEM-X. In particular, in the thesis
we introduce two main novel contributions:

1. a study on the relation between the double-bounce effect of buildings and their
orientation angle, carried out by means of both empirical and theoretical analyses;

2. an automatic technique for the detection of building radar footprints from single
VHR SAR images.

In the following two subsections we describe in greater detail the main novel contribu-
tions of the thesis. The former is devoted to the analysis of RS signals, while the latter
refers to the contributions regarding the analysis of VHR SAR data.

Analysis of Radar Sounder Signals

The main novel contributions of the thesis related to the analysis of RS signals can be
summarized as follows.

Statistical analysis of radar sounder signals for the automatic detection and characterization
of subsurface features

As mentioned above, the topic of the automatic analysis of RS signals has not been ad-
dressed sufficiently in the literature. In this thesis we thus provide a first contribution to
fill this gap by presenting both i) a study of the theoretical statistical properties of RS sig-
nals, and ii) two novel techniques for the automatic analysis of sounder radargrams. The
main goal of the study is the identification of statistical distributions that can accurately
model the amplitude fluctuations of different subsurface targets. This is fundamental for
the understanding of signal properties and for the definition of automatic data analysis
techniques. The results of such a study drive the development of two novel techniques
for i) the generation of subsurface feature maps, and ii) the automatic detection of the
deepest scattering areas visible in the radargrams. The former produces for each radar-
gram a map showing which areas have high probability to contain relevant subsurface
features. The latter exploits a region-growing approach properly defined for the analysis
of radargrams to identify and compose the basal scattering areas. Experimental results
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obtained on SHARAD data acquired at Mars confirm the effectiveness of the proposed
techniques.

Extraction and analysis of ice layering

In the context of planetary exploration of icy environments, the analysis of the structure
of the ice stratigraphy is of primary importance for the study of their past history and for
the prediction of their evolution. This is a relevant topic for both the present missions at
Mars [30,31], and for future missions to other icy bodies [12]. Similarly, the possible launch
of Earth orbiting RSs in the future will allow the observation of the ice stratigraphy of
Earth’s poles, which is very important for the study of such regions [32,33]. In this thesis
we propose a novel method for the automatic detection of subsurface linear features from
RS data acquired in icy regions showing extended layering. The proposed method allows
the estimation of the position of the linear features with sub-pixel accuracy. Moreover,
each detected linear interface is treated as a single object which is completely described
by the position of its points, the estimated local width and the contrast. This allows
the direct measurement of geometrical and radiometric parameters (e.g., slope angle,
intensity) without the need of further post-processing steps. In the thesis we also propose
some measurements for deriving from the output of the proposed technique important
variables that can characterize quantitatively the properties of the detected linear features
(e.g., mean depth, mean intensity) and their distribution (e.g., number and density of
layers). The proposed method has been tested on several radargrams acquired by the
SHARAD instrument on the North Pole of Mars achieving very promising results.

Detection of surface clutter returns through clutter simulation matching

One of the most critical issues that affect the analysis of orbiting RS data is the the
presence of spurious surface clutter returns [2]. These are due to off-nadir echoes related
to surface topography which may be detected as (or mask) actual subsurface targets. The
detection of such returns is usually carried out manually by means of visual comparison
between actual radargrams and surface clutter simulations obtained using available DEMs
[34, 35]. This is an inherently subjective and time-consuming task that may reduce the
scientific return of the data. In this thesis we address this problem by proposing a novel
technique for the automatic detection of surface clutter returns in RS data. The proposed
method is made up of three steps: i) simulation of surface clutter returns using available
DEMs, ii) automatic coregistration of radargrams and simulations, and iii) extraction of
surface clutter returns from the coregistered radargrams. The coregistration is performed
in two phases: i) a coarse registration based on the detection of the first return line
on both the input radargrams, and ii) a fine registration based on B-spline deformation.
Such procedure is suited also to the coregistration of multitemporal radargram series. The
proposed technique is robust to radargram deformations (e.g., due to ionosphere effects)
and allows the generation of different types of outputs (e.g., coregistered simulations,
binary clutter maps, false-color compositions) pointing out the presence of clutter in the
radargrams. These can both greatly support the scientific community in manual analysis
of RS data and drive the development of reliable automatic methods for information
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extraction. The effectiveness of the proposed method is proven on two datasets acquired
on different areas of Mars by the SHARAD instrument.

Analysis of VHR SAR Data

In this subsection we briefly describe the main novel contributions of this thesis regarding
the analysis of VHR SAR data.

Study of the relationship between double bounce and orientation of buildings

Among the different scattering contributions present in meter-resolution VHR SAR data
from urban areas, the double-bounce effect of buildings (which is caused by the corner
reflector assembled by the front wall of the building and its surrounding ground area) is an
important scattering characteristic [36,37]. It indicates the presence of a building because
it appears as a linear feature in correspondence with its front wall. The double bounce
has been often exploited for the development of automatic methods for the detection and
reconstruction of buildings from multi-aspect [23] and interferometric SAR (InSAR) data
[24]. However, the relation between the double-bounce effect and the SAR illumination
conditions, and thus its reliability as a feature for building detection purposes, has not
been investigated to a sufficient extent in real VHR SAR images yet. In this thesis we thus
extend and refine the findings from [38], presenting a detailed study of the relation between
the double-bounce effect and the orientation angle. First, we investigate empirically a set
of industrial and residential buildings with two different ground materials (grass and
asphalt) in spaceborne meter-resolution TerraSAR-X images. Then we compare these
findings with state-of-the-art theoretical models in order to assess to which extent they
can predict the double bounce behavior. This is important to properly use these models for
information extraction purposes (e.g., building detection and reconstruction). In order
to deal with slightly rough surfaces such as asphalt, we developed a novel model for
double-bounce scattering based on the Small Perturbation Method (SPM).

Automatic detection and reconstruction of building radar footprints from single VHR SAR
images

As mentioned above, automatic information extraction methods are essential for the ex-
ploitation of new VHR SAR imagery. Focusing on the analysis of urban areas, which is of
prime interest of VHR SAR, in this thesis we present a novel method for the automatic
detection of buildings from VHR SAR scenes, which also reconstructs the 2D radar foot-
prints of the detected buildings. Unlike most of the literature methods (see e.g., [23,24]),
the proposed approach can be applied to single images. The method is based on the
extraction of a set of low-level features from the images and on their composition to more
structured primitives using a production system. Then, the concept of semantic meaning
of the primitives is introduced and used for both the generation of building candidates
and the radar footprint reconstruction. The semantic meaning represents the probability
that a primitive belongs to a certain scattering class (e.g., double bounce, roof, facade)
and has been defined in order to compensate for the lack of detectable features in single
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images. Indeed, it allows the selection of the most reliable primitives and footprint hy-
potheses on the basis of fuzzy membership grades. The efficiency of the proposed method
is demonstrated by processing a meter-resolution TerraSAR-X spotbeam scene containing
flat- and gable-roof buildings at various settings. The results show that the method has
a high overall detection rate and that radar footprints are reconstructed accurately.

Structure of the Thesis

This document is divided into six main chapters. Chapter 1 illustrates the fundamentals
and the background notions needed for the understanding of the thesis. The remaining
five chapters are divided in two parts.

The first part, which is organized in three chapters, is devoted to the developed novel
methods for the analysis of RS signals. Chapter 2 presents a study on the statistical
properties of RS signals. Moreover, it also describes two novel automatic methods for the
generation of subsurface feature maps, and for the detection of basal returns (both based
on the aforementioned statistical analysis). In this chapter we also define the reference
system and the notation used throughout this part of the thesis. Chapter 3 illustrates the
proposed novel method for the automatic detection of subsurface linear interfaces in icy
regions showing extended layering and presents a related set of measures for extracting
their properties. Chapter 4 describes the proposed novel technique for the automatic
detection of surface clutter returns through clutter simulation matching. In each chapter
an introduction to the specific topic and a review of the related state of the art is provided.

The second part of the thesis, which is divided in two chapters, is focused on the work
carried out on VHR SAR images. Chapter 5 describes the main scattering contributions
present in VHR SAR images of urban areas and reviews the state of the art regarding
the modeling of the double-bounce effect. This introduces the study carried out on the
relationship between double bounce and the orientation of buildings in VHR SAR images.
Chapter 6 presents the state of the art regarding the analysis of VHR SAR images focusing
on the study of urban areas, and in particular on building detection and reconstruction
techniques. Then, it describes in detail the proposed novel method for the automatic
detection and reconstruction of building radar footprints from single VHR SAR images.

Finally, in the last chapter the conclusions of the thesis are drawn along with proposals
for future research and developments.
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Chapter 1

Fundamentals and Background

In this chapter we review the fundamentals of radar in order to provide the concepts
and definitions needed throughout the thesis. In the first section we illustrate the basic
principles of radar, while in the following two sections we describe more in detail the
peculiarities of RSs and SAR systems.

1.1 Radar Basic Principles

The term radar is the acronym of Radio Detection and Ranging. Radars are active
systems that transmit electromagnetic pulses towards a target and measure its scattering
properties. The central frequency fc and the bandwidth Bw of the transmitted signals
depend on the type of radar and on the considered application. Nowadays radar systems
work in the range between few MHz and tens of GHz. The scattering characteristics of
a target depend mainly on its geometric and dielectric properties, the working frequency,
and the radar acquisition geometry. In the following we will consider only monostatic
geometries, i.e., the transmitting and receiving antenna are the same (or their relative
distance is negligible). In the next subsections we illustrate general concepts that are
relevant for this thesis. More details on specific characteristics of RSs and VHR SAR
systems will be provided in the dedicated sections.

1.1.1 Radar Equation

An example of monostatic geometry is shown in Fig. 1.1. The received signal power Pr
can be evaluated by using a classical radar equation for monostatic systems that expresses
the received power by the radar as a function of the transmitted power Pt, the antenna
gain ηant, the wavelength λc, the range between the radar and the target R, the one-way
medium losses ηloss (here losses introduced by the system are neglected), and the radar
cross section (RCS) σs [39], as follows:

Pr =ηradarσs, (1.1)

ηradar =
Ptλ

2
cη

2
ant

(4π)3R4η2loss
, (1.2)
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Radar antenna

R

Target

Pt
Pr

σs

Figure 1.1: Monostatic radar configuration.

where ηradar is a constant including the main radar system parameters, and σs can be
expressed by the product of the target backscattering coefficient σ0 and its effective area.
The target effective area depends on the radar parameters, the target shape and the
acquisition geometry.

An important factor for the assessment of the quality of radar measurements is the
Signal-to-Noise Ratio (SNR), which is calculated as:

SNR =
Pr · tpulse
kB · TN

, (1.3)

where kB is the Boltzmann constant, TN depicts the noise temperature and tpulse is the
transmitted pulse duration. The higher the SNR, the better is the performance of the
radar, as the signal can be distinguished from the background noise more clearly.

1.1.2 Effects of the Coherent Nature of Radar Signals

The signals transmitted by modern radars are characterized by waveforms described by
precise amplitude and phase variations in time, which can be modeled using complex
functions. The interaction of such waveforms with targets changes both the amplitude
and the phase of the signals [39]. Moreover, the propagation of the signals through
dispersive media (e.g., in the case of RSs) also modifies the shape of the transmitted
waveforms [2]. All these effects can represent an issue for the interpretation of radar
signals. In turn, they can be also exploited for retrieving accurate information on the
targets. As an example, Differential InSAR (DInSAR) and Persistent Scatterers (PS)
techniques use the small signal phase difference due to the motion of targets to measure
precisely their displacement.

One of the main effects due to the coherent nature of radar signals is the so-called
speckle. As the resolution cell of a radar is large compared to its wavelength, a number Q
of targets are present in one cell. Speckle is thus the result of constructive and destructive
interferences between the complex returns from such scatterers. Their individual scatter-
ing contributions sum up coherently resulting in a single complex value ξ · eiϕ measured
at the sensor (see Fig. 1.2):

ξ · eiϕ =

Q
∑

q=0

ξq · eiϕq , (1.4)
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ℜ
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ϕ

Figure 1.2: Speckle effect. Coherent sum of signals scattered by individual scatterers within a resolution
cell represented on the complex plane.

with ξ being the modulus and ϕ the phase [1]. Although speckle is not random as it
depends on the scatterers present in the scene, it is often modeled as random multiplicative
noise. It can be reduced by averaging correlated samples implying a reduction of the
spatial resolution. In the case of RSs and imaging radars (e.g., SARs) multilooking
techniques average samples directly during the formation of the final radar product [1].
Speckle filters have been also developed for the application to processed SAR images [40].

1.1.3 Synthetic Aperture Processing

A very important processing technique that led to the great improvement of the resolu-
tion of radar systems is the synthetic aperture processing, or Doppler filtering. Radars
exploiting such technique are thus called synthetic aperture radars. However, in the lit-
erature the term SAR is usually specifically referred to imaging radars. In this thesis we
adopt the same convention. Doppler processing is possible when there is relative motion
between the radar and the target and the resolution of the system can be improved only
in the motion direction through the analysis of the phase history of the target. As in this
thesis we focus on RSs and SARs, here we consider the case in which the target is not
moving and the radar is flying on a spaceborne (or airborne) platform. As the radar is
moving along its path, an ideal point target on the ground is illuminated by the radar
in a time interval ti called integration time. The space covered by the radar during ti
corresponds to a distance Ls. The considered geometry is illustrated schematically in Fig.
1.3. Ideally, the integration time and the covered distance are given by:

ti =
θ3dBR

Vs
, (1.5)

Ls =ti · Vs. (1.6)

where θ3dB is the 3 dB aperture of the radar antenna in the along-track (or azimuth)
direction, and Vs is the velocity of the radar. However, a shorter integration time can be
considered in particular cases (see, e.g., the RS case in Sec. 1.2).
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Ls = Ti · Vs

θ3dB

Vs

Figure 1.3: Principle of SAR. The point target is illuminated during the integration time ti, corresponding
to a distance Ls which represents the length of the synthetic aperture.

During the integration time the target response shows different Doppler shifts due
to the relative motion of the spacecraft with respect to the target. Therefore, although
different targets are present in the same antenna footprint, their returns have different
Doppler shifts. Coherent radars thus measure and record the phase history of the received
signals and this information is then exploited to resolve the ground targets in the Doppler
domain using a focusing algorithm, which analyzes the phases of a series of consecutive
echoes. As a result, an antenna length longer than the physical one is synthesized. For
this reason, the distance Ls is called synthetic aperture length. More details on focusing
techniques and on the resolutions achievable by RSs and SARs using Doppler filtering
will be given in the next sections.

1.2 Radar Sounder

In this section1 we review the main characteristics of RSs. After a brief overview on RS
systems, the acquisition process and geometry of RSs is illustrated. Then, the relation
between RS characteristics and geometrical resolution is described in detail. After this, the
concept of surface clutter is introduced. Finally, a description of the SHARAD instrument
is reported as an example of planetary RS instrument.

1.2.1 Overview

Radar sounding is a well-known nonintrusive technique which allows the investigation
of the structural and dielectric characteristics of the subsurface. This is performed by
transmitting waves in the MF, HF or VHF frequency ranges into the subsurface and

1Part of this section appears in:
[12] L. Bruzzone, G. Alberti, C. Catallo, A. Ferro, W. Kofman, and R. Orosei, “Subsurface radar sounding of the

Jovian Moon Ganymede,” Proc. IEEE, vol. 99, no. 5, pp. 837–857, 2011.
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10 µs

Figure 1.4: SHARAD radargram 1319502 acquired on the North Pole of Mars.

recording the signals scattered back from subsurface structures or dielectric discontinuities
[2]. RS data are usually stored as radargrams. Radargrams are 2D images that represent
the recorded echo power for a given range position as a function of time (or distance) on
one axis, and as a function of the instrument along-track position on the other. Therefore,
a radargram shows a sounding profile taken over a certain ground track. As an example,
Fig. 1.4 shows a radargram acquired by the SHARAD instrument on the North Pole of
Mars.

RSs are usually mounted on flying platforms, such as airplanes or satellites. As ice
is the most transparent material in the considered range of frequencies [41], airborne
RSs are widely used for the study of Earth’s poles and can provide local or regional
mapping on areas of interest [42]. Although interest has been shown by the glaciological
community for an Earth orbiting sounder [16], at the time of writing spaceborne RSs have
been used only for the exploration of other planets or moons. Examples are the Lunar
Radar Sounder (LRS) of the Japanese orbiter Kaguya [9], the Mars Advanced Radar for
Subsurface and Ionosphere Sounding (MARSIS) on the ESA’s Mars Express orbiter [7],
and the Shallow Radar (SHARAD) of the Mars Reconnaissance Orbiter of NASA [8]. The
latter two instruments are currently operating at Mars and are providing high quality data
which allow a detailed study of the subsurface of the Red Planet. In particular, these
instruments make it possible to reveal the ice stratigraphy of Mars’ poles [30,31,43], and
to detect fine linear interfaces in other areas of the planet [44]. In this thesis we will use
for our experiments data acquired by the SHARAD instrument. Its main characteristics
are reported in Sec. 1.2.5. As mentioned in the introduction of the thesis, new planetary
RS instruments are planned to be included in the payloads future missions devoted to the
study of other bodies, such as the moons of Jupiter [11,12] and Titan [13]. Activities for
the definition of an Earth orbiting sounder are also in progress [17, 18].

1.2.2 Acquisition Process and Geometry

Fig. 1.5 shows the typical acquisition geometry of a RS. A 2D schematic representation is
also shown in Fig. 1.6. The instrument is mounted on a platform, which flies at an altitude
h0 from the ground. We denote the nadir-ground point below the radar at a generic time
instant with the coordinates (x0, y0). The platform altitude depends on the mission profile
and can span between several hundreds of meters and several hundreds of kilometers,
depending on the type of platform (i.e., airplane or satellite). As an example, the orbital
RSs operating at Mars work in an altitude range of 250-300 km for SHARAD [8], and up
to 800 km for MARSIS [7].

At the beginning of defined pulse repetition intervals (PRIs), the transmitter emits an
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R(x, y)

h0

(x0, y0)

δact

δalt

h(x, y)

(x, y)

Figure 1.5: Acquisition geometry of a RS instrument. The radar nadir point is denoted with (x0, y0). h0
is the platform height. δalt and δact are the along- and across-track resolutions on ground, respectively.
The position of a generic ground point is denoted with (x, y) and its elevation is given by h(x, y). The
distance between the radar and a ground point is denoted with R(x, y).

electromagnetic pulse which travels from the radar to the surface and then penetrates
the subsurface. The pulse is attenuated by the medium and partially reflected from
the interior of the subsurface where the complex dielectric permittivity changes. The
reflected signals travel back to the receiving antenna and the complex signal is recorded
as a function of travel time of the transmitted radar pulse [2]. In the following we describe
more in detail the main factors describing the signal propagation in the medium: signal
attenuation, reflection and transmission, and wave propagation velocity.

Signal attenuation

The two-way power attenuation present in (1.1) depends on the characteristics of the
medium, in terms of dielectric properties (e.g., material, water content) and structure
(e.g., porosity) [2]. A simple model suited to the modeling of homogeneous layers considers
an exponential relation between attenuation and an attenuation factor ηloss,fact according
to the following law:

η2loss(z) = e4ηloss,factz, (1.7)

where z is the depth in the subsurface. The attenuation factor ηloss,fact is given by:

ηloss,fact = ω

√

µε′

2

√

√

√

√

√

1 +

(

ε′′

ε′

)2

− 1, (1.8)

where ω = 2πf , µ is the magnetic permeability of the medium, and

ε = ε0 · εr = ε′ − iε′′. (1.9)

The term ε represents the dielectric permittivity of the material, which is given by the
product of the vacuum permittivity ε0 and the material relative permittivity εr. From
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Figure 1.6: 2D representation of the acquisition geometry of a RS instrument.

(1.7) we deduce that attenuation is higher at higher frequencies, thereby resulting in a
minor penetration depth.

Reflection and transmission

At each dielectric interface the Snell’s law applies. Assuming that the subsurface is
characterized by a homogeneous stratigraphy, the reflection coefficient ρp,p+1 between the
layer p and the layer p+ 1 is given by:

ρp,p+1 =

∣

∣

∣

∣

√
εr,p −√

εr,p+1√
εr,p +

√
εr,p+1

∣

∣

∣

∣

2

, (1.10)

where εr,p is the relative dielectric constant of layer p. Assuming that no absorption loss is
generated by the interface, the fraction of energy that is transmitted through the interface
is given by the transmission coefficient τp,p+1, as follows:

τp,p+1 = 1− ρp,p+1. (1.11)

Wave propagation velocity

The knowledge of the velocity of propagation of the transmitted wave into the medium
is important in order to properly translate the recorded signals from the time domain to
the depth domain. The velocity of propagation in real dielectric media ν differs from the
speed of light νlight. In particular, ν depends on the dielectric properties of the medium,
as follows:

ν =
1√
µε

=
1√

µ0µrε0εr
=
νlight√
εr
, (1.12)

where µ0 is the magnetic permeability of vacuum and µr is the material relative perme-
ability (which can be considered equal to 1). From (1.12) it is possible to note that the
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1.2. Radar Sounder

propagation velocity of the waves through a real material is always smaller than the speed
of the wave propagating in vacuum. Therefore, the higher the dielectric permittivity of
the material εr, the lower the propagation speed through it.

The permittivity of the medium is thus the only parameter that relates depth z to
time delay t, according to the following equation:

z =
νt

2
. (1.13)

The time delay is computed from the transmission of the wave until its reception.
Thus, t is the two-way travel time of a pulse. The factor 2 at the denominator of (1.13)
is necessary in order to properly convert time to range.

1.2.3 Geometrical Resolution

The ground resolution in the along-track (across-track) direction describes the capability
of the RS to separate two closely spaced scatterers in the direction parallel (perpendicular)
to the motion vector of the sensor. These quantities are denoted with δalt and δact for the
along- and across-track resolution, respectively. The ground resolutions depend on the
instrument characteristics (e.g., bandwidth, antenna type and size), the surface roughness,
the adopted signal processing techniques, and the operational constraints (e.g., the orbiter
altitude) [2]. The range resolution is a function of the signal bandwidth and of the
dielectric properties of the subsurface. In the following more details about the calculation
of the resolution of a RS instrument will be given.

Range resolution

In most RSs, range resolution is not achieved through the transmission of the shortest
possible pulse, but rather through the use of a chirp, i.e., a long pulse linearly modulated in
frequency. In this case, thanks to range-compression techniques using matched filters [45]
the vertical (range) resolution of a RS δz depends on the signal bandwidth Bw and is
equal to:

δz =
νlight

2Bw
√
εr
. (1.14)

Thus, the effective resolution in the subsurface depends on the material in which the
wave is traveling. Usually, weighting is applied during the range compression in order
to reduce the sidelobes due to the signal processing [45]. As a result, the effective range
resolution worsens by a factor that depends on the applied weighting function (e.g., Han-
ning, Hamming). It is important to note that the bandwidth of the signal is a key factor
also for the gain of the system. Indeed, radar systems using chirp signals can achieve a
gain equal to the range compression factor ηz, given by:

ηz = tpulseBw, (1.15)

where tpulse represents the chirp duration.
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Along-track resolution

In the along-track direction it is possible to exploit the Doppler effect and thus a synthetic
aperture to improve the ground resolution. As a result, the surface contributions coming
from off-nadir in the along-track direction are reduced, thereby improving the so-called
Signal-to-Clutter Ratio (SCR). As described in Sec. 1.1.3, as the RS is moving along its
path, an ideal point target on the ground is illuminated by the radar in a time interval
ti called integration time, given by (1.5), in which the target response shows different
Doppler shifts. Such shifts can thus be processed in order to improve the along-track
resolution. The Doppler processing can be focused or unfocused. The choice of the
focusing strategy has to take into account the processing requirements, the data rate, the
SNR gain produced by each strategy, and the power consumption and supplementary mass
involved by additional onboard processing. These parameters are critical in the definition
of a planetary RS and will compete in a trade-off between the instrument constraints and
the scientific goals of the mission. For airborne instruments less strict constraints apply.
In the following we give more details on the focused and unfocused processing approaches.

Focused processing In the focused case the phase history of the signal is fully exploited
and the maximum theoretical along-track resolution that is achievable is in the order of
few meters. The result of the focusing algorithm is the synthesis of a long antenna (i.e.,
synthetic antenna or synthetic aperture) which length is equal to the space covered by the
orbiter during the integration time. As described in Sec. 1.1.3, in general the synthetic
antenna length Ls is given by (1.6). This is possible if the Doppler shifts are properly
sampled by the instrument. This condition if fulfilled if the pulse repetition frequency
(PRF), which is the inverse of the PRI, is greater than the lower limit given by the total
Doppler bandwidth BD, which is equal to [45]:

BD =
2V 2

s

h0λc
ti. (1.16)

The along-track resolution obtained after the focusing δfalt can be calculated as follows
[45]:

δfalt ≈
Vs
BD

=
h0λc
2Ls

. (1.17)

Equation (1.5) indicates the maximum ideal integration time. However, for spaceborne
RSs it is commonly assumed that the coherent scattering from the ground is limited by
the first Fresnel zone. The diameter of the Fresnel zone DF is given by:

DF =
√

2λch0. (1.18)

The integration time can be thus reduced to match a ground surface with a length
equal to DF , obtaining:

tfi,eff =
DF

Vs
, (1.19)

where tfi,eff is called effective integration time. From (1.6), this is equivalent to set a
synthetic aperture length Ls equal to DF . The along-track resolution calculated using
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the effective integration time is thus lower than the maximum value considering the ideal
case. The number necho of echoes that should be processed to obtain the fixed synthetic
aperture is:

n = tfi,effPRF. (1.20)

Generally, a PRF much higher than the lower limit imposed by the Doppler bandwidth
is used to improve the SNR. Indeed, such echoes are integrated to focus one resolution
cell. As a consequence, the SNR of the focused signal increases by a factor necho. This
gain is called along-track compression factor ηalt.

Despite the many advantages of the focused Doppler processing, it is highly resource
demanding. For this reason it is usually not implemented onboard the RS and it is per-
formed offline after the acquisition process. In the case of a planetary mission profile with
very limited downlink bandwidth, onboard focused processing can significantly reduce
the amount of data to be transmitted to the Earth (if the needed resources are avail-
able). However, this implies that raw data are not available for reprocessing anymore if
the focusing algorithm implemented onboard fails, or dedicated processing is required for
improving specific results (e.g., in the case of particular surface topography).

Unfocused processing The unfocused Doppler processing permits to reduce the compu-
tation effort of the onboard electronics with respect to the focused case at the cost of a
reduced along-track resolution. A typical approach is to keep the signal phase variation
during a synthetic aperture smaller than π/4 [7]. The phase compensation of the echoes
during the formation of a synthetic aperture is thus simpler and can be also performed
onboard in real time, as only a linear phase compensation of the echoes is required. Under
such condition, the maximum synthetic antenna aperture is:

Ls =

√

h0λc
2

, (1.21)

which, from (1.6), corresponds to an effective integration time tufi,eff given by:

tufi,eff =
1

Vs

√

h0λc
2

. (1.22)

Inserting (1.21) in (1.17) shows that the along-track resolution in the unfocused case δufalt
is equal to the synthetic antenna length Ls. Therefore, the algorithm needs to process only
one aperture per resolution cell and subsequent apertures do not overlap. This results in a
further reduction of the computation effort for the digital section of the instrument in the
case of onboard processing, at the cost of reduced along-track resolution and processing
gain.

Across-track resolution

For the across-track direction no Doppler processing is possible. In fact, in the across-
track plane the spacecraft has no relative motion with respect to the ground targets and
thus the backscattered signals have no Doppler shift. However, although the antenna
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radiation pattern may be very broad (e.g., in the case of a spaceborne RS using a dipole
antenna), the echoes coming from large off-nadir angles can be assumed to be sufficiently
weak to not affect the echoes coming from nadir direction when the surface is flat. On
the one hand, for smooth surfaces the across-track ground resolution δact is assumed to
be equal to the first Fresnel zone diameter (1.18). On the other hand, for the case of
incoherent scattering (rough surface) the ground resolution is commonly approximated
with the so-called first pulse-limited resolution cell Dpl. The first pulse-limited cell is
represented by a circle on the ground centered in the nadir point, which diameter is given
by the intersection of the wavefront with the ground surface when the transmitted wave
has penetrated into the ground to a depth equal to the range resolution δz. The diameter
of such a circle is given by:

Dpl = 2
√

2h0δz = 2

√

h0c

Bw
. (1.23)

1.2.4 Surface Clutter

When relevant topography is present within the ground swath (see Fig. 1.5 and Fig. 1.6),
lateral echoes coming from a generic position (x, y) of the surface [characterized by an
elevation h(x, y)] may appear in the range corresponding to the subsurface as they may
be recorded by the instrument at the same time of subsurface returns. The range R(x, y)
between the RS instrument [located at (x0, y0, h0)] and a generic position (x, y) of the
surface is given by (see Fig. 1.5):

R(x, y) =
√

(x− x0)2 + (y − y0)2 + [h0 − h(x, y)]2. (1.24)

Such returns become relevant on irregular (sloped) or rough surfaces, and their strength
depends on the system spatial resolution and on the relation between the radar wavelength
and the size of the surface irregularities. The presence of strong surface clutter may ham-
per the correct interpretation of radargrams. In fact, clutter returns may be interpreted
as or mask actual subsurface features.

Different techniques have been proposed in the literature to perform surface clutter
reduction. On the one hand, surface returns coming from the along-track direction are
usually suppressed by means of synthetic aperture processing, which is employed in all the
recent orbiting RSs [7–9]. On the other hand, across-track clutter can be reduced only
by using directive antennas or more complex techniques exploiting more antennas [7],
antenna sub-apertures [5] or different polarizations [46]. However, these solutions imply
to increase the complexity of the RS instrument (both in terms of design of the instrument
and of the required hardware and mechanical components) and have not yet been applied
successfully to planetary RSs due to the strict constraints related to the definition of
spaceborne instruments and platforms. As a result, planetary RS data (e.g., acquired
at Mars) usually show strong clutter returns which are detected through the comparison
of radargrams with clutter simulations (more details on this procedure will be given in
Chapter 4).
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Figure 1.7: Artist’s view of MRO and SHARAD at Mars. (© NASA/JPL-Caltech)

1.2.5 The SHARAD Radar Sounder

SHARAD (Shallow Radar) is a facility instrument of the NASA’s Mars Reconnaissance
Orbiter (MRO) provided by the ASI. MRO was launched in August 2005 and SHARAD
became operational in November 2006. An artist’s view of MRO and SHARAD is shown
in Fig. 1.7. The main goal of SHARAD is to map, in selected areas, dielectric interfaces
to several hundred meters depth in the Martian subsurface and to interpret these results
in terms of the occurrence and distribution of expected materials, including competent
rock, regolith, water and ice. In particular, SHARAD can search for and map liquid or
frozen water in the first hundred of meters of the Mars subsurface.

Its main technical characteristics are summarized in Tab. 1.1. SHARAD operates
at a central frequency of 20 MHz using a dipole antenna of 10 m. It can achieve a
maximum penetration depth of about 1 km in the icy regions of Mars (e.g., the North
Pole). The instrument uses chirp waveforms, with a bandwidth of 10 MHz. This gives
a range resolution of 15 m in free space, which corresponds to less than 10 m in ice.
The maximum along- and across-track resolutions are in the order of 300 m and 3 km,
respectively.

SHARAD is designed for performing the minimum amount of processing onboard.
The data are focused onground through range and Doppler focusing of the chirp signals.
Raw data are processed at the SHARAD Operations Center of Thales Alenia Space in
Rome, Italy, under the guidance and control of the SHARAD science team. Data are then
distributed to the community from the ASI’s Science Data Center in Frascati, Italy [47],
and from the Geosciences Node of the Planetary Data System (PDS) at Washington
University in St. Louis, USA [48].
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Table 1.1: Main parameters of SHARAD.

Orbiter altitude 255 – 320 km
Central frequency 20 MHz
Transmitted bandwidth 10 MHz
Antenna 10 m dipole
Transmitted power 10 W
Pulse length 85 µs
Pulse repetition frequency 700 or 350 Hz
Along-track resolution 0.3 – 1 km
Across-track resolution 3 – 7 km
Penetration depth <∼1 km
Vertical resolution 15 m (vacuum)

1.3 Synthetic Aperture Radar

In this section the main concepts related to SARs are described. In the first subsection a
brief overview of SAR systems is reported. The acquisition geometry and the geometrical
resolution of SARs is then illustrated. After a description of the main distortions occurring
in SAR imagery due to the acquisition geometry, an overview of the main characteristics
of present VHR SAR systems is given.

1.3.1 Overview

SARs represent an evolution of the so-called real aperture radars (RAR). The main dif-
ference between RARs and SARs is the much finer along-track (azimuth) resolution of
SARs, which is obtained by exploiting synthetic aperture processing (see Sec. 1.1.3).
Both systems share the side-looking geometry, which will be described in greater detail
in the following subsections. SARs date back to the 50’s, when the use of the Doppler
analysis as a mean to improve the azimuth resolution of radars was proposed. Since
then, SARs became a very important tool for the observation of the Earth. Examples
of SAR instruments that operated/are operating from orbit providing valuable images
of the Earth surface are ERS-1 and 2, ENVISAT-ASAR, and RADARSAT-1 [19]. As
mentioned in the introduction, starting from 2007 new VHR SAR systems achieving ge-
ometrical resolutions in the order of 1 m have been launched. These will be described in
more detail in Sec. 1.3.5. Future satellite SAR systems are also under development (e.g.,
ESA’s Sentinel [49]). SARs are also operated using airborne platforms. Examples are
the German PAMIR [50], and the French SETHI [51]. Airborne systems are usually used
to develop new technologies and to perform accurate measurement campaigns on specific
areas (e.g., full-polarimetric and/or multi-aspect acquisitions). New airborne systems can
achieve geometrical resolutions in the order of few centimeters [50].

All the mentioned SAR systems work in the microwave frequency spectrum. The main
frequencies used so far span from L-band to C-band, and X-band for most of the new
VHR SAR systems. In this frequency bands microwave signals penetrate cloud coverage,
enabling the acquisition of SAR images in almost all weather conditions. Recently, the
interest on the development of spaceborne SAR systems working at P-band is increasing.
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Figure 1.8: Side-looking geometry of SAR systems.

Indeed, such low frequencies allow a detailed study of vegetated areas and biomass [52].
Finally, high-frequency SARs working in the Ku-band have been also developed and
proposed for the monitoring of icy environments (see, e.g., [53]).

SAR imagery is used in a very broad field of applications. Thanks to the new gen-
eration VHR SAR systems, the monitoring of urban areas particularly benefitted from
the improved geometrical resolution. Indeed, urban environments can now be analyzed
at building and sub-building level. This allows new applications (e.g., building change
detection and classification) and, in combination with the independence of SAR on sun
illumination and weather conditions, make VHR SAR imagery an important source of
information for the monitoring of critical and emergency scenarios.

1.3.2 Acquisition Geometry

Airborne and spaceborne SAR systems illuminate the scene using a side-looking geometry
(see Fig. 1.8). The antenna of the radar system is mounted on a flying platform. Its hori-
zontal and vertical axes are parallel and orthogonal to the azimuth direction, respectively.
The angle between nadir and the radar beam direction is called incidence angle and will
be denoted with θ. The footprint of the main lobe of the radar beam on the ground can
be approximated by an ellipse with the principal axes given by:

wx = R · θ3dB,a =
h0 · θ3dB,a
cos(θ)

, (1.25)

wy =
R · θ3dB,e
cos(θ)

=
h0 · θ3dB,e
cos2(θ)

, (1.26)
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Figure 1.9: Angles and antenna footprint sizes of SAR systems. (a) Azimuth direction, (b) range direction.
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Figure 1.10: Geometry in slant- and ground-range projection.

where

θ3dB,a =
λc
La
, (1.27)

θ3dB,e =
λc
Le
. (1.28)

wx and wy represent the axes parallel and orthogonal to the flight trajectory, respec-
tively. La and Le are the antenna sizes (see Fig. 1.9).

Regarding the plane perpendicular to the flight direction, two reference systems are
usually used to define the position of a point. These are the slant range and the ground
range (see Fig. 1.10). The slant range is the direction identified by the conjunction
between a point target and the SAR system. The ground range is the projection of
the slant range on the ground (corresponding to the across-track direction of the RS
case). Therefore, the ground range depends on the incidence angle and on the surface
topography.

1.3.3 Geometric Resolution

In the range direction the definition of resolution follows the same principles explained for
the RS range resolution in Sec. 1.2.3. Also for SAR, pulse compression techniques with
matched-filter processing are used, achieving high range resolutions and high SNR at the
same time. With these techniques the slant-range resolution δslr and the ground-range
resolution δact are related to the frequency bandwidth Bw of the transmitted radar pulse
by:

δslr =
νlight
2 ·Bw

, (1.29)

δact =
νlight

2 ·B · sin(θ) . (1.30)
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As mentioned above, SAR systems can considerably improve the azimuth resolution
by processing the phase information of the complex signals (the basic principles of syn-
thetic aperture processing have been discussed in Sec. 1.1.3). Indeed, without the use
of synthetic aperture processing, the azimuth resolution of a SAR system would be the
same of a RAR sensor, that is equal to the azimuth antenna footprint size given by (1.26).
This corresponds to values that can reach the tens of kilometers for spaceborne systems.
Following the theory of Sec. 1.1.3, a point target is illuminated by the SAR beam during a
time span ti (integration time) depending on wx, in which the platform is moving. During
this time the SAR system records the phase history of the signal. Under the assumption
of fully focused processing, the synthetic aperture thus corresponds to a synthetic antenna
length Ls which is the distance traveled by the sensor while illuminating a target with its
beam:

Ls = wx =
h0 · λc

La · cos(θ)
. (1.31)

Similarly to the case of (1.17), the angular aperture in the azimuth direction of SARs
θalt is:

θalt =
λc

2 · Ls
. (1.32)

The azimuth resolution δalt of SAR is thus given by:

δalt ≈ R · θalt =
λc · h0

2 · Ls · cos(θ)
=
La
2
. (1.33)

Therefore, the azimuth resolution of a SAR sensor is theoretically only dependent on
the length of the actual antenna, but not on the distance between sensor and target.

1.3.4 Geometric Distortions in SAR Imagery

The side-looking geometry of SAR together with non-flat terrain causes geometric dis-
tortions, such as foreshortening, and relief displacement. Furthermore, it is source for
layover and shadow effects, which are visible as relatively bright and dark regions in SAR
imagery, respectively. These effects are visible in SAR images from areas with relevant
topography (e.g., mountains). Moreover, they are also visible in VHR SAR images of
urban areas (see Chapter 5). In the following, the main geometric distortion effects are
described.

Foreshortening In Fig. 1.11a we show the foreshortening phenomenon, which is a domi-
nant effect in mountainous areas. Inclined surfaces, which are oriented towards the sensor,
appear shortened in SAR imagery. For instance distance AB is much longer than its pro-
jection A′B′ on SAR slant-range image space. The slant-range compression results in a
brighter area A′B′, since it contains the entire energy scattered by the longer AB area.

Relief displacement SAR measures the distances between an object and the sensor.
Hence, if the inclination of the surface is larger than the incidence angle, the top of
the elevated structure is shifted in the image towards the sensor, as shown in Fig. 1.11b.
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Figure 1.11: Geometric effects of SAR. (a) Foreshortening, (b) relief displacement, (c) layover, (d) shadow.
.

Although A is located on the ground in front of the elevated point B, the projection on
the SAR slant range space results in a reversed order, i.e., B′ is closer to the sensor than
A′.

Layover The layover effect is related to the relief displacement. If a slope is steeper than
the radar beam, parts of the ground surface, the slope facing the sensor, and parts of the
slope turned away from the sensor are equidistant to the SAR antenna. Therefore, their
backscattering return to the sensor at the same time, causing the layover effect, whereas
the different signals cannot be separated anymore. For instance, in Fig. 1.11c, the slope
BC is steeper than the incidence angle of the radar beam so that AB, BC, and CD are
located within the same distance to the sensor. Hence, their backscattering overlays in
the area C ′B′ + A′B′ + C ′D′.

Shadow Shadows are areas where no backscattering is recorded at the sensor, because
they are occluded from the radar beam. This occurs when surfaces which are turned away
from the sensor are steeper than the SAR illumination, as shown in Fig. 1.11d. The area
between BD cannot be illuminated by the radar beam, since BC is steeper than the radar
beam, causing the shadow area B′D′.
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1.3.5 VHR SAR sensors

Until recently, SAR images with resolutions in the order of 1 m could only be obtained
by airborne sensors. The first spaceborne VHR SAR sensors became available with the
launch of the German TerraSAR-X satellite (Fig. 1.12a) and the Italian COSMO-SkyMed
constellation (Fig. 1.12b). TerraSAR-X has been recently complemented by the TanDEM-
X mission [22], which supports the acquisition of single pass InSAR data to produce
a global DEM according to the HRTI-3 specification. Instead, the COSMO-SkyMed
program consists of a constellation of four satellites. All the satellites have been launched
successfully so far.

The TerraSAR-X satellite is equipped with a high resolution polarimetric SAR that
operates in X-band (9.65 GHz) [21]. It acquires data with single or dual polarization
in four acquisition modes: High-resolution SpotLight (HS), SpotLight (SP), StripMap
(SM) and ScanSAR (SC). Furthermore, it can acquire fully polarimetric data using an
experimental high resolution mode. An overview of the main acquisition parameters of
TerraSAR-X is given in Tab. 1.2.

Similar to TerraSAR-X, the COSMO-SkyMed satellite constellation is equipped with
X-band sensors which support the SP, SM and SC modes [20]. Another fine SP acquisition
mode is dedicated to defense applications. It supports single and dual polarization modes
(the latter only in a special SM mode). Since COSMO-SkyMed consists of four satellites it
can provide images from the same region with a worst case response time of three days and
a short worst case revisit time of 12 hours. The main characteristics of COSMO-SkyMed
are summarized in Tab. 1.3.

Table 1.2: Main acquisition characteristics of TerraSAR-X.

Parameter HS SP SM SC

Coverage (azimuth ×
5 km × 10 km 10 km × 10 km < 1500 km × 30 km

< 1500 km ×
ground range) 100 km

θ 20° - 55° 20° - 55° 20° - 45° 20° - 45°
δalt 1 m 2 m 3 m 16 m
δact 1.5 m - 3.5 m 1.5 m - 3.5 m 1.7 m - 3.5 m 1.7 m - 3.5 m

Table 1.3: Main acquisition characteristics of COSMO-SkyMed.

Parameter SP SM SC

Coverage (azimuth ×
10 km × 10 km

30 km - 40 km × 100 km - 200 km ×
ground range) 30 km - 40 km 100 km - 200 km

θ 25° - 50° 25° - 50° 25° - 50°
δalt 1 m 3 m - 5 m 30 m - 100 m
δact 1 m 3 m - 5 m 30 m - 100 m
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(a) (b)

Figure 1.12: VHR SAR satellites. (a) TanDEM-X constellation (© Astrium). (b) COSMO-SkyMed
(© Telespazio.)
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Chapter 2

Statistical Analysis of Radar

Sounder Signals for the Automatic

Detection and Characterization of

Subsurface Features

In this chapter1 we present both i) a study of the theoretical statistical properties of RS sig-
nals, and ii) two novel techniques for the automatic analysis of sounder radargrams. The
main goal of the study is the identification of statistical distributions that can accurately
model the amplitude fluctuations of different subsurface targets. This is fundamental for
the understanding of signal properties and for the definition of automatic data analysis
techniques. The results of such a study then drive the development of two novel techniques
for i) the generation of subsurface feature maps, and ii) the automatic detection of the
deepest scattering areas visible in the radargrams. The former produces for each radargram
a map showing which areas have high probability to contain relevant subsurface features.
The latter exploits a region-growing approach properly defined for the analysis of radar-
grams to identify and compose the basal scattering areas. Experimental results obtained
on SHARAD data acquired at Mars confirm the effectiveness of the proposed techniques.

2.1 Introduction on the Automatic Analysis of Radar Sounder

Data

As mentioned in the introduction of this thesis, the automatic analysis of planetary RS
signals has not yet been addressed in the literature to a sufficient extent. The related
works present in the literature regard the analysis of ground-based or airborne GPR
and RS signals (e.g., [55, 56]), which operate in different frequency ranges and achieve a
better spatial resolution with respect to orbiting RSs. Moreover, Earth campaigns are

1Part of this chapter appears in:
[54] A. Ferro and L. Bruzzone, “A novel approach to the automatic detection of subsurface features in planetary

radar sounder signals,” in Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), 2011, pp.
1071–1074.
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often reduced to well defined areas with limited extension, for which the interpretation
of the radargrams can be performed manually, without the need of automatic techniques.
An exception is represented by anti-mines and unexploded ordnance (UXO) detection
campaigns, which make extensive use of GPR technology [57]. Different papers in the past
decade proposed the use of pattern recognition approaches to the analysis of GPR signals
(e.g., [55, 58–60]). However, they are mainly devoted to the detection of specific buried
objects, such as mines, pipes or tanks buried at small depths using ground-based GPRs.
Such objects present hyperbola-like signatures in the radargrams, which are completely
different from the signatures of buried structures present in RS images acquired by orbiting
platforms. The radargrams obtained by airborne acquisitions over the Earth’s polar areas
show similarities with spaceborne RS data acquired on icy bodies. The main features
present in such images are subsurface echoes coming from the interfaces present between
different subsurface ice layers and basal returns [61]. This is the typical situation shown in
the radargrams related to the Mars’ Poles [30,31] and other areas of the Red Planet [44].

Another approach to the analysis of RS measurements is to apply inversion techniques
to the signals in order to estimate the dielectric characteristics of the subsurface [62, 63].
In this context, the correct understanding of the radargrams and the development of any
information extraction technique need the knowledge of the propagation laws of the radar
signal into the matter in order to avoid errors in the physical interpretation of the returns
[2]. However, the inversion process is very complex and requires proper assumptions on
the investigated domain, e.g., on the ground composition [64].

This chapter provides a first contribution to fill the gap present in the literature on the
automatic analysis of planetary RS data by presenting a study of the theoretical statis-
tical properties of RS signals. The goal of this study is the identification of a statistical
distribution which can accurately model the amplitude fluctuations of different subsurface
targets. On the basis of the results of this study, we then propose two novel techniques
for the generation of subsurface feature maps, and the automatic detection of the deepest
scattering area visible in the radargrams.

The remaining of the chapter is organized as follows. Sec. 2.2 defines the radargram
reference system and the notation used throughout this chapter and also in the other
chapters of this part. In Sec. 2.3 we address the problem of the statistical modeling of RS
signals. The models presented are then tested on real SHARAD data in Sec. 2.4. Sec. 2.5
presents an automatic technique for the generation of subsurface feature maps. Sec. 2.6
addresses the automatic detection of basal returns and its application to the SHARAD
radargrams of the NPLD of Mars. Finally, Sec. 2.7 draws the conclusion of this chapter.

2.2 Radargram Reference System and Notation

In this section we fix the reference system and define the notation used throughout the
thesis for what concerns the chapters devoted to the developed techniques for the analysis
of RS data.

The acquisition geometry of a RS instrument is described in detail in Sec. 1.2.2. For
the sake of completeness, we recall that the RS position projected on the ground at a
generic time t has been depicted with (x0, y0), while h0 represents the altitude of the
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Figure 2.1: Radargram reference system and definition of the notation used in this thesis on a simplified
qualitative radargram.

instrument from the ground. Similarly, a generic ground point is located at (x, y), and
has a topographic elevation depicted by h(x, y) (see Fig. 1.5).

In this thesis radargrams will be considered as 2D images composed by I columns.
Each column i represents a radargram amplitude (or power) echo (or frame) which has
been recorded by the RS at a certain position (xi, yi) during its receiving time window.
Every frame is composed by J samples, which time separation depends on the instrument
sampling frequency. The value of the radargram sample (i, j) will be denoted with ξ(i, j)
and a radargram image will be identified with X . Fig. 2.1 shows the defined reference
system and notation on a simplified qualitative radargram. The spatial relation between
radargram frames and geographical locations can be reconstructed by matching the co-
ordinates i and (xi, yi). The translation of the range coordinates j into actual distances
is more complex. Indeed, such a process needs the knowledge of the dielectric properties
of the subsurface in order to properly convert time to depth [2]. It is noteworthy that
the time position of surface clutter returns does not depend on the subsurface dielectric
properties as the echoes generated by the surface propagate only in the free space.

2.3 Statistical Modeling of Radar Sounder Signals

In order to develop effective information extraction techniques from RS data, a precise
knowledge of the statistics of the analyzed signals is necessary. In this section we review
the main characteristics of the sounder signals and select three statistical models which
are likely to be appropriate to model the signal fluctuations. The validity of such models
will be tested on real SHARAD data in Sec. 2.4.

2.3.1 Background and Motivation

The analysis of radar signals is historically linked to statistics. This is due to the coherent
nature of the radar signals which makes the RCS of targets fluctuate when even slightly
changes in the viewing configuration or in the target orientation occur [1]. The effects
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of clutter and noise also greatly contribute to the fluctuations of the RCS. Radar signals
are thus modeled using probability density functions (pfd) under the assumption that the
signal amplitude (or intensity) is the realization of a random variable within each radar
resolution cell. Many statistical models have been developed in order to fit the radar
signals related to different target types. Such statistical models are based on theoretical
descriptions of the scattering effects, or on empirical fitting to sample data. Examples
of theoretical pdf commonly used in the analysis of radar signals are the Rayleigh, Rice,
negative exponential, Gamma and K distributions. The most important empirical pdf are
the Weibull and log-normal distributions [1].

The statistical approach has been extensively used in the analysis of SAR images for the
characterization of distributed targets such as agriculture fields, forests or water surfaces.
For this type of targets a single resolution cell does not provide sufficient information
about the scattering characteristics of the surface under investigation due to the signal
fluctuations, which depend on intrinsic fluctuations of the target RCS and on speckle.
In order to characterize the analyzed surface it is thus necessary to calculate statistical
parameters of the distribution of the radar signals coming from the area of interest.

In this context, statistical tools can be also exploited for the analysis of RS signals
for the detection and characterization of different types of subsurface features. This can
support the analysis of the radargrams, by automatically detecting the regions of interest
and extracting information which can drive subsequent feature extraction algorithms.
The goal of this section is thus to define a reference theoretical framework which can
be used for a reliable statistical analysis of the signals, taking into account the physical
characteristics of the targets.

2.3.2 Statistical Models

In order to perform an analysis of RS signals, it is necessary to describe the signal sta-
tistical properties taking into account the physical processes involved in the scattering
from subsurface features for a typical RS instrument mounted onboard an aerial or satel-
lite platform. Our goal is to describe statistically the distribution of the signals coming
from the subsurface by considering groups of adjacent samples in a predefined neighbor-
hood system extended both in range (vertical) and azimuth directions. As mentioned
previously, each radargram can be seen as a 2D image defined in the range and azimuth
directions. The signals measured by the radar during each acquisition window (frames)
correspond to the columns of the 2D image. Thus, pixels in the same neighborhood sys-
tem describe the geologic features in a given position of the subsurface. According to this
modeling, we can analyze radargrams with a 2D signal processing approach; this is im-
portant given that most of the subsurface features detected by a RS are not spot features
but show a certain extension, especially in the azimuth direction.

As a reference, Tab. 2.1 reports the main characteristics of the two RSs currently
operating at Mars: MARSIS [7] and SHARAD [8]. The resolutions of the radars are
comparable with the diameter of the corresponding Fresnel zone, from which the returns
are supposed to be coherent. However, the surface and especially the subsurface, which is
the target of our investigation, are far from being flat and always present a certain amount
of roughness, which introduces a significant non-coherent component in the scattering [65].
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Table 2.1: Main characteristics of the MARSIS and SHARAD RSs operating at Mars.

Instrument fc λc (εr = 4) Bw δz (εr = 4) δalt δact DF

MARSIS 1.8-5 MHz 83-30 m 1 MHz 75 m 5-10 km 10-30 km ∼10 km
SHARAD 20 MHz 7.5 m 10 MHz 7.5 m 0.3-1 km 3-7 km ∼3 km

Indeed, the amount of roughness drives the across-track resolution, which, for MARSIS
and SHARAD, is controlled only by their dipole antenna pattern as no synthetic aperture
processing is possible in the across-track direction. It is thus possible to consider the
radar footprints sufficiently wide to assume that many different independent scatterers
contribute to the scattering for each resolution cell.

In the following, we will focus on the statistical distribution of amplitude signals. The
analysis of amplitude data is preferred here with respect to intensity data due to the large
dynamic that characterize RS acquisitions, which is much more amplified in intensity data
and may affect the stability of the analysis.

Rayleigh pdf

The simplest pdf that describes the amplitude ξ of the returns from a large number Q of
independent scatterers is the Rayleigh distribution:

pR(ξ) =
2ξ

µξ2
exp

[

− ξ2

µξ2

]

, (2.1)

where ξ2 indicates the signal power, and µξ2 is the only parameter of the distribution and
represents the mean power of the signal [1]. Eq. (2.1) is valid for ξ ≥ 0 (this also holds for
the other pdfs which will be presented in the following) and the mean value of ξ is given
by µξ =

√
πµξ2/2. The corresponding distribution in the power (intensity) domain is the

negative exponential distribution. It is worth noting that the Rayleigh distribution is also
the ideal theoretical model for the amplitude when a zero mean additive white Gaussian
noise (AWGN) affects the in-phase and quadrature signals received by the radar in areas
of no subsurface scattering.

Nakagami pdf

The second model that we consider is the Nakagami pdf, which is a two-parameter function
given by [66]:

pN(ξ) = 2

(

vN
µξ2

)vN ξ2vN−1

Γ(vN)
exp

[

−vNξ
2

µξ2

]

, (2.2)

where vN is called shape or order parameter and Γ(.) depicts the gamma function. The
validity range of vN is (0; +∞). The Nakagami pdf for amplitude data corresponds in
the intensity domain to the Gamma pdf described by the shape parameter vΓ = vN and
the mean intensity µξ2 [66]. The Gamma pdf has been widely used for the modeling of
radar signals and is a generalization of other well-known distributions, such as the negative

35



2.3. Statistical Modeling of Radar Sounder Signals

exponential and chi-square [67]. In particular, when vΓ is an integer value, the Gamma pdf
can be derived as the sum of vΓ identical independent exponentially distributed random
variables. Similarly, in the amplitude domain the Nakagami pdf is a generalization of the
Rayleigh pdf, which can be obtained by setting vN = 1 in (2.2).

K pdf

The last distribution that we consider is the K distribution, defined as [1]:

pK(ξ) =
4

Γ(vK)

(

vK
µξ2

)(vK+1)/2

ξvKKvK−1

[

2ξ

√

vK
µξ2

]

, (2.3)

where KvK−1(.) is the modified Bessel function of the second kind of order vK − 1. The
parameter vK is also called shape (or order parameter), and its validity range is (0; +∞).
The K distribution has also been used for modeling sea clutter and distributed targets
of different types in SAR images. It is derived by assuming that the number of scatter-
ers within a resolution cell Q fluctuates being controlled by a birth-death-immigration
process, i.e., Q is a random variable that follows a negative binomial distribution [1].
The assumption that the number of scatterers varies between different resolution cells
is in agreement with the scenario represented by a RS acquisition, where within each
single radargram frame a different number of scatterers (e.g., subsurface interfaces) may
contribute to the scattering measured in different time samples.

The K distribution is also obtained by modeling the radar intensity ξ2 as a compound
pdf, also referred to as product model. This formulation expresses the radar intensity
as the product of two uncorrelated processes with different spatial scales: an underlying
RCS and a multiplicative speckle contribution. The mathematical representation of this
formulation is:

pK(ξ
2) =

∫ ∞

0

p1(ξ
2/u)p2(u)du, (2.4)

where p2(u) represents the pdf of the underlying RCS (which only depends on the physical
characteristics of the scatterers) and p1(ξ

2/u) is the speckle contribution, which arises as
a consequence of their random distribution and orientation. By assuming an underlying
RCS which is Gamma distributed and a speckle contribution modeled by a negative
exponential pdf, both the signal intensity and amplitude result K distributed [1].

The product model is thus suited to the modeling of spatially non-homogeneous tar-
gets. As proposed in [68] and [69], p1(ξ

2/u) can be interpreted as the density of the
returns from an incremental area of a surface which reflectivity varies spatially with mean
u, while p2(u) describes the bunching of scatterers in terms of spatial variations of the un-
derlying RCS, which are on a much larger scale than the variations described by p1(ξ

2/u).
Such a formulation has been effectively used to model sea clutter, where scatterers are
bunched by swell structure [69]. This situation to a certain extent resembles the measure-
ments performed by a RS in presence of subsurface layer stratigraphy, where the returns
are bunched at each interface. The K distribution has thus physical basis which are in
agreement with the characteristics of RS acquisitions.

Fig. 2.2 shows a comparison between the Rayleigh, Nakagami and K distributions for
a fixed µξ2 and varying shape parameters.
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Figure 2.2: Examples of pdf curves obtained using the models presented in Sec. 2.3. For all the curves
µξ2 = 5.

Other pdfs can be used to model radar data, e.g., Rice, log-normal, Weibull [1]. In
particular, for the analysis of RS signals, the Rice distribution is suited to the modeling
of surface returns from flat surfaces, allowing the estimation of the coherent scattering
for inversion purposes [70]. However, the pdfs selected for the analysis reported in this
dissertation cover the most important classes of theoretical distributions which are used
for the modeling of radar data, and have the advantage to allow us to describe the scat-
tering from subsurface features with a physical-based approach. As such, they represent
generalizations or approximations of many other distributions proposed in the literature.
It is worth noting that the research of the absolute best fitting pdf for RS signals is out
of the scope of this work.

2.4 Empirical Analysis of the Statistical Models on SHARAD

Radargrams

With the goal of studying the statistical distribution of real data, we analyzed different
subsurface target types and studied the statistical distributions of their returns by fitting
the theoretical pdfs described in Sec. 2.3 to the data. We selected as test data a set of
SHARAD radargrams of the North Pole Layered Deposits (NPLD) of Mars. Such radar-
grams show different target types, from very strong scattering linear interfaces (due to
ice stratigraphy) to smooth returns from the base of the NPLD. An example of SHARAD
radargram of the NPLD of Mars and its ground track overlayed on a DEM obtained from
Mars Orbiter Laser Altimeter (MOLA) [71] data are reported in Fig. 2.3.

2.4.1 Definition of Target Classes and Dataset Description

The target classes that we investigated are the following: no target (NT), strong layers
(SL), weak layers (WL), low returns (LR), basal returns (BR). The class no target cor-
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Figure 2.3: (a) Portion of the SHARAD radargram 1319502, and (b) its acquisition track highlighted on
an altimetric map of the NPLD of Mars derived from MOLA data. The radargram corresponds to the
solid line.

responds to areas of the radargram where no scattering is present. These are the upper
part of the radargram, before any surface return, and the areas in the subsurface where no
interfaces are detected. We define strong layers the areas of the radargram where dense
and strong scattering layering is present. This corresponds generally to areas in the upper
subsurface of the NPLD. The class weak layers corresponds to the subsurface scattering
related to less dense and less strong scattering layering, which usually occurs below the
areas described by the class strong layers. The class low returns includes the areas of
the radargram containing very weak scattering coming from deep structures. When these
are present, they are usually located between the areas of weak layers and basal returns.
Finally, the class basal returns is related to the scattering coming from the base of the
NPLD, which nature gives a diffuse scattering especially in correspondence of the so-called
basal unit [72]. Fig. 2.4 highlights such classes on the test radargram of Fig. 2.3.

The analysis has been carried out on 7 SHARAD radargrams of the NPLD of Mars.
The radargrams were stored in the Reduced Data Record (RDR) format [73], and have
been downloaded from the the Geosciences Node of NASA’s PDS [48]. We extracted the
amplitude information and aligned in time the echoes using the information contained
in the RDRs. As the data are highly oversampled, we applied a downsampling factor of
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Figure 2.4: Target classes used in the statistical analysis highlighted on the radargram showed in Fig.
2.3.

Table 2.2: SHARAD radargrams used in the analysis and number of samples per target class collected
for each radargram.

Radargram
NT SL WL LR BR

number

0371502 212,311 9,443 18,233 18,017 50,905
0385902 166,832 4,425 6,284 13,289 21,417
0681402 209,416 41,459 22,264 44,829 130,687
0794703 209,057 14,586 27,004 46,207 71,387
1292401 113,768 4,701 11,173 12,049 37,082
1312901 148,651 9,173 17,596 51,218 26,684
1319502 195,748 14,688 18,952 33,448 72,582

15. No multilooking has been performed in order to maintain the original statistics of the
signals. The acquisitions have been cut in order to consider only the NPLD area. The
resulting radargrams are made of a number of samples between 1,071,869 and 2,582,624.
On each radargram we selected manually the areas corresponding to the defined classes.
In Tab. 2.2 we report for each analyzed acquisition its identification number and the
number of samples per class we collected. It is worth noting that a very high number of
samples for each class in each radargram is considered in order to have a reliable statistical
analysis.

2.4.2 Procedure for the Estimation of pdf Parameters

In order to estimate the parameters of the theoretical statistical distributions different
approaches have been suggested in the literature. As an example, an interesting approach
based on second kind statistics has been proposed by Nicolas [74] for the analysis of SAR
images. In this thesis we estimated the parameters of the Rayleigh, Nakagami and K
distributions for each class type using a Maximum Likelihood (ML) estimation approach.
For the Rayleigh distribution the ML estimate µ̃ξ2 of the only parameter µξ2 is given by
the sample mean power [67]:

µ̃ξ2 =
1

nsmp

nsmp
∑

q=1

ξ2q , (2.5)

where ξq depicts an amplitude sample, and nsmp is the number of considered samples.
For the Nakagami distribution, the estimate µ̃ξ2 is obtained as for the Rayleigh dis-

tribution, and is given by (2.5). The calculation of ṽN has been performed using the
classical estimator proposed by Greenwood and Durand [75], which is considered in the

39



2.4. Empirical Analysis of the Statistical Models on SHARAD Radargrams

literature an accurate estimator for the shape parameter of the Nakagami distribution [76].
Therefore, ṽN has been derived by:

ṽN =







(0.5000876 + 0.1648852υ − 0.0544274υ2)/υ if 0 < υ ≤ 0.5772
8.98919 + 9.059950υ + 0.9775373υ2

υ(17.79728 + 11.968477υ + υ2)
if 0.5772 < υ < 17,

(2.6)

where

υ = ln

(

µ̃ξ2

F

)

(2.7)

and

F =

(

nsmp
∏

q=1

ξ2q

)
1

nsmp

. (2.8)

The ML estimation of the K distribution has been obtained retrieving the ṽK and µ̃ξ2
estimated values by the numerical maximization of the log-likelihood function, according
to [77], i.e.,

(ṽK , µ̃ξ2) = arg max
(vK ,µξ2 )

{

ln
[

lnsmp
(vK , µξ2; ξ1, ξ2, . . . , ξnsmp

)
]}

, (2.9)

where

ln
[

lnsmp
(vK , µξ2; ξ1, ξ2, . . . , ξnsmp

)
]

= vK

nsmp
∑

q=1

ln ξq +

nsmp
∑

q=1

ln

{

KvK−1

[

2ξq

√

vK
µξ2

]}

+ nsmp

{

vK + 1

2
ln

(

vK
µξ2

)

+ ln 4− ln Γ(vK)

}

, (2.10)

and lnsmp
(vK , µξ2; ξ1, ξ2, . . . , ξnsmp

) is the likelihood function for the K distribution. Due
to numerical constraints, the range of values of vK has been limited between 0.1 and 50.
However, this does not affect the generality of our analysis. Indeed, on the one hand,
the characteristics of the signals never require values of vK lower than 0.1. On the other
hand, for vK ≥ 50 the K distribution becomes nearly Rayleigh [77]. Therefore, the use
of values greater than 50 for vK is not significant for the comparison between the fitting
performance of the two pdfs. For the parameter µξ2 we only imposed a lower limit at 0.1,
which is well below the typical noise mean power of the SHARAD data.

2.4.3 Results

Tab. 2.3 and Tab. 2.4 report the results obtained for the different classes of targets for
each analyzed radargram. The fitting performances of the distributions are shown in Tab.
2.3. These performances have been evaluated in terms of root mean square error (RMSE)
and Kullback-Leibler divergence (KL) between the normalized histogram of the data and
the histogram obtained by the fitting of each distribution. The KL divergence is defined
as [78]:

KL(pdf, pdffit) =
∑

ξq

pdf(ξq) log
pdf(ξq)

pdffit(ξq)
, (2.11)
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where pdf and pdffit represent the probability distribution of the samples and of the
theoretical fit, respectively. The values of ξq depend on the size of the bins used for
the computation of the histograms. This size has been calculated for each target class
according to the method proposed in [79], which is suited for unknown distribution data
values, and has already been used for the computation of histograms of SAR images [80].
Tab. 2.4 reports the parameters derived for each fitting distribution. The parameter µ̃ξ2
obtained for the Rayleigh distribution is not reported, as it is equal to the corresponding
one of the Nakagami distribution. As an example, Fig. 2.5 shows the histogram and the
ML estimates for each target class for the test radargram of Fig. 2.3.

The results point out that the best fitting distribution is in almost all the cases the
K distribution. Such results agree with the physical basis of the K distribution, which
can describe effectively the cases where the scatterers are bunched (see Sec. 2.3). The
Nakagami distribution provides almost always a more accurate fit than the Rayleigh
distribution except for the case of the no target class. For the no target case, as expected
from the theory, the Rayleigh distribution is an effective estimate as it provides accurate
estimations using only one parameter. The Nakagami distribution has approximately
the same fitting performance using two parameters, but ṽN is always nearly 1, i.e., it
approximates the Rayleigh pdf. The K distribution shows lower fitting performances
for the no target case. This is due to the numerical limit imposed to ṽK . However, as
previously mentioned, the higher ṽK the more the distribution approximates the Rayleigh
pdf. The Rayleigh pdf can thus be considered the best fitting distribution for the no target
areas. This confirms that the background noise of the SHARAD data can be modeled as
a zero mean AWGN in both the in-phase and quadrature components.

Let us now focus on the computational complexity of the ML estimation for the three
considered distributions. Such issue becomes relevant when the statistical analysis of the
signals is propaedeutic to other processing steps, e.g., filtering or feature-extraction algo-
rithms. The calculations of the ML estimates for the Rayleigh and Nakagami pdfs are
performed analytically and their computational time is negligible on a standard work-
station. Instead, the maximization of (2.10) for the estimation of the parameters of the
K distribution must be performed numerically. Although the computational time in our
tests is still in the order of less than one minute, it may become not negligible when
analyzing a large series of radargrams. When the computational time becomes a limit in
practical analysis scenarios, one may consider to use the Nakagami distribution for the
modeling of the signal statistics in order to speed up the processing, at the cost of slightly
lower accuracy.
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Table 2.3: Fitting performances of the Rayleigh, Nakagami and K distributions to the sample amplitude data for each scattering class. The best
results are highlighted in bold.

Radargram
Distribution

NT SL WL LR BR
number RMSE KL RMSE KL RMSE KL RMSE KL RMSE KL

0371502
Rayleigh 0.0031 0.0067 0.0074 0.0381 0.0133 0.0516 0.0125 0.0108 0.0106 0.0243
Nakagami 0.0031 0.0067 0.0032 0.0108 0.0075 0.0186 0.0085 0.0043 0.0079 0.0146

K 0.0041 0.0068 0.0028 0.0060 0.0018 0.0021 0.0046 0.0028 0.0024 0.0033

0385902
Rayleigh 0.0032 0.0029 0.0118 0.1035 0.0147 0.0475 0.0161 0.0293 0.0108 0.0313
Nakagami 0.0031 0.0030 0.0068 0.0418 0.0103 0.0249 0.0121 0.0153 0.0092 0.0214

K 0.0047 0.0031 0.0026 0.0067 0.0046 0.0056 0.0059 0.0042 0.0045 0.0058

0681402
Rayleigh 0.0034 0.0045 0.0085 0.0707 0.0222 0.1258 0.0177 0.0247 0.0193 0.0675
Nakagami 0.0034 0.0045 0.0054 0.0285 0.0141 0.0503 0.0139 0.0136 0.0149 0.0362

K 0.0048 0.0046 0.0014 0.0031 0.0044 0.0054 0.0054 0.0033 0.0060 0.0064

0794703
Rayleigh 0.0041 0.0062 0.0027 0.0089 0.0188 0.0732 0.0122 0.0131 0.0155 0.0462
Nakagami 0.0040 0.0060 0.0021 0.0052 0.0120 0.0293 0.0090 0.0068 0.0126 0.0283

K 0.0052 0.0062 0.0014 0.0033 0.0039 0.0028 0.0031 0.0036 0.0052 0.0048

1292401
Rayleigh 0.0046 0.0041 0.0052 0.0288 0.0213 0.1016 0.0152 0.0108 0.0157 0.0343
Nakagami 0.0045 0.0043 0.0043 0.0225 0.0140 0.0456 0.0116 0.0060 0.0124 0.0190

K 0.0062 0.0042 0.0034 0.0110 0.0051 0.0074 0.0087 0.0025 0.0053 0.0058

1312901
Rayleigh 0.0058 0.0048 0.0039 0.0623 0.0253 0.1093 0.0174 0.0272 0.0178 0.0357
Nakagami 0.0058 0.0047 0.0043 0.0500 0.0164 0.0452 0.0149 0.0157 0.0125 0.0189

K 0.0068 0.0048 0.0035 0.0252 0.0057 0.0061 0.0072 0.0065 0.0038 0.0026

1319502
Rayleigh 0.0053 0.0091 0.0029 0.0135 0.0157 0.0540 0.0210 0.0202 0.0178 0.0585
Nakagami 0.0053 0.0089 0.0022 0.0105 0.0079 0.0151 0.0166 0.0109 0.0140 0.0346

K 0.0065 0.0091 0.0025 0.0082 0.0027 0.0029 0.0073 0.0035 0.0056 0.0070
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2.5 Proposed Technique for the Generation of Subsurface Fea-

ture Maps

The results presented in the previous section can be used to study the RS signals and
analyze the scattering signatures of different types of targets. However, they also open to
a wide range of applications for the automatic analysis of the radargrams. As mentioned
in the introduction of this thesis, planetary radar sounding missions have provided and
are still providing a large amount of data, which have been studied mostly by means of
manual investigations. In this framework, the automatic detection of radargrams con-
taining subsurface features from the whole available set of radargrams, and the automatic
identification of the subsurface areas containing relevant features within each radargram
become important tasks that can greatly support scientific investigations. In this section
we propose a novel automatic method for the generation of maps of the subsurface areas
containing relevant features within a radargram by analyzing the statistical distributions
of local parcels of the radargram.

2.5.1 Proposed Technique

As discussed in Sec. 2.4, the background noise of SHARAD radargrams is Rayleigh
distributed. The noise characteristics can be simply measured using the samples belonging
to the free space region of the radargram, i.e., before any surface echo. Therefore, the
statistical distribution of the noise can be determined precisely and in an automatic
way. By measuring the statistical difference between the histograms of subsurface parcels
and the noise distribution it is thus possible to discriminate in an unsupervised way the
areas containing only noise from the regions which contain subsurface features. Several
statistical indicators can be used to measure the difference between two distributions.
Here, we propose the use of the KL divergence between the histogram of the samples S
and the theoretical noise distribution N , i.e., KLSN = KL(S,N). The noise characteristics
can vary significantly between different acquisitions (see Tab. 2.4). This is mainly due to
different conditions of acquisition, e.g., in terms of solar activity or spacecraft attitude,
which may raise the background noise level. The proposed algorithm takes into account
this issue and adapts its behavior to the variations of the background noise level by
automatically detecting and measuring the statistical characteristics of the free space
region for each radargram.

A block scheme of the proposed technique is shown in Fig. 2.6. The main steps of
the technique are explained in the following using as reference example the SHARAD
radargram of Fig. 2.3.

1. First return detection: this step aims at automatically identifying the returns from
the surface for then discriminating in the radargram the parts belonging to the free
space and those associated with the subsurface. The former is used to estimate the
radargram background noise signal distribution in the next step. For each frame
(column) i of the radargram the algorithm detects the position of the first sample
which is statistically different from the frame background noise. We denote such a
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Table 2.4: Parameters of the fitted distributions for each test radargram.

Radargram Target Nakagami K
number class ṽN µ̃ξ2 ṽK µ̃ξ2

0371502

NT 0.999 3.379 50.000 3.381
SL 0.766 94.201 2.687 94.834
WL 0.742 33.159 2.313 33.152
LR 0.896 5.691 7.074 5.689
BR 0.860 9.769 4.535 9.719

0385902

NT 1.003 3.545 50.000 3.547
SL 0.673 97.087 1.702 95.763
WL 0.778 29.970 2.705 29.847
LR 0.834 6.647 3.958 6.615
BR 0.856 9.454 4.370 9.374

0681402

NT 1.000 2.897 50.000 2.899
SL 0.721 85.028 2.121 84.101
WL 0.643 27.466 1.539 26.781
LR 0.854 5.454 4.363 5.430
BR 0.755 10.954 2.524 10.753

0794703

NT 0.997 2.565 50.000 2.567
SL 0.921 86.080 8.735 86.045
WL 0.711 26.598 1.999 26.379
LR 0.901 4.451 6.676 4.446
BR 0.804 10.831 3.178 10.695

1292401

NT 1.006 2.390 50.000 2.392
SL 0.872 77.220 4.833 76.931
WL 0.680 18.658 1.803 18.276
LR 0.908 3.360 7.192 3.357
BR 0.830 6.405 3.860 6.357

1312901

NT 0.999 1.933 50.000 1.934
SL 0.850 87.901 4.297 86.165
WL 0.665 18.927 1.681 18.537
LR 0.867 3.143 4.766 3.125
BR 0.810 8.426 3.325 8.373

1319502

NT 0.998 1.930 50.000 1.931
SL 0.921 90.057 9.705 89.947
WL 0.725 29.366 2.115 29.538
LR 0.874 3.297 5.000 3.288
BR 0.782 7.747 2.908 7.609
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Figure 2.5: Empirical and ML distributions for each target class for the SHARAD radargram 1319502
(see Fig. 2.3): (a) no target, (b) strong layers, (c) weak layers, (d) low returns, (e) basal returns, (f)
summary of the fitted K distributions for each target class.
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position as j0(i) and calculate it as follows:

j0(i) = min {j : ξ(i, j) > µN + ̺1sN} ∀j, (2.12)

where ξ(i, j) is the amplitude of the sample of the frame i at the time step j; µN
and sN are the estimated frame noise mean amplitude and standard deviation, re-
spectively; ̺1 is a multiplicative factor. The detected samples are in the ideal case
representative of the nadir surface return. This is not true when lateral clutter
echoes arrive to the receiver before the nadir return. The local statistics of the noise
is estimated for each frame using its last 50 samples, which are in general free from
subsurface features as the signal loss is very high at the corresponding depth. If
no sample fulfills the condition, the value of ̺1 is decreased and the procedure is
repeated. At each iteration e the value of ̺e is calculated using a positive damping
factor df < 1, according to:

̺e = df · ̺e−1 ∀e = 2, . . . , E, (2.13)

where E is the maximum number of iterations. E, the initial value ̺1 and the
damping factor df are specified by the user. Note that from (2.12) the minimum
signal level necessary to perform a detection cannot be lower than the frame noise
mean µN . In the case that after E trials no sample fulfills the condition yet, the first
return position of the considered frame is estimated using the average position of the
first adjacent frames for which the detection was successfully. After the frame-based
detection, a smoothing function is applied in order to reduce the effects of both
outliers and missing detections. The smoothing function performs local regression
using weighted linear least squares and a first-degree polynomial model. Using this
approach, for each frame the algorithm detects the most reliable first return at the
first iteration (according to a user-defined minimum signal level dependent on ̺1).
The reliability of the detection decreases increasing the number of iterations. By
properly setting E and df the user can thus tune the reliability of the first return
detection. The result of the first return detection applied to the test radargram using
E = 3, ̺1 = 4.5, and df = 0.9 is shown in Fig. 2.7a.

2. Estimation of the noise statistics : in this step the algorithm uses all the samples of
the radargram belonging to the free space region Rfs to estimate the parameter µξ2
of a Rayleigh distribution, according to the ML approach (see Sec. 2.4.2). Rfs is
defined as the upper part of the radargram delimited by the line representing the
first returns identified in the previous step, i.e.,

Rfs = {(i, j) : 0 < j < j0(i)− wG} , (2.14)

where wG is a positive constant used in order to introduce a guard interval to take
into account possible uncertainty in the detection of the first returns. The selection
of the value of wG should be made according to the level of reliability achieved by
the first return detection. However, in our experiments the choice of the value of wG
has never been a critical issue. wG = 10 has been used in all our tests.

3. Calculation of KLSN : a map of KLSN is generated using a sliding window of wa×wr
samples (along-track × range), and a step of δwa and δwr samples in the along-track
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Figure 2.6: Block scheme of the proposed technique for the generation of subsurface feature maps.

and range direction, respectively. The distribution of N is the one estimated in the
previous step. The value of KLSN is averaged in the intersections of overlapping
windows. This process is applied only to the subsurface part of the radargram,
which is defined as the bottom part of the radargram delimited by the first return
line. The choice of the size and of the steps of the sliding window should be driven
by the characteristics of the considered targets, which are generally extended in the
azimuth direction but can present sharp variations in the range direction. Fig. 2.7b
shows the values of KLSN obtained on the test radargram using wa = 40, wr = 10,
δwa = 8, and δwr = 10.

4. Thresholding : in this step the algorithm produces a binary map which discriminates
between the presence and the absence of subsurface features by thresholding the
image of KLSN using the threshold thrKL. The value of thrKL can be chosen either
manually or automatically [81]. Fig. 2.7c shows the binary map obtained from Fig.
2.7b by using thrKL = 0.13.

2.5.2 Results and Discussion

The results presented in Fig. 2.7b show a description of the characteristics of the subsur-
face in the radargram of Fig. 2.3 in terms of statistical difference from the background
noise computed according to the values of the KLSN distance. Such a difference may
vary within the same scattering class. As an example, the statistical characteristics of
the scattering coming from the basal area are not uniform. Fig. 2.7c shows the map
of the subsurface features of the aforementioned radargram. A qualitative comparison
between Fig. 2.3 and Fig. 2.7c points out the high accuracy obtained by the proposed
technique in the detection of subsurface features. In order to measure quantitatively the
performance of the proposed algorithm, for each tested radargram we selected randomly
3000 reference samples from the regions where it was possible to state clearly whether
subsurface features were present or absent. Using such samples, we evaluated the number
of missed and false detections yielded by the proposed algorithm with the parameters
reported in the previous subsection. The obtained results (see Tab. 2.5) point out that
most of the subsurface features present in the radargrams are correctly detected. As it
is visible in Fig. 2.7c, the areas corresponding to the target classes strong layers, weak
layers and basal returns are mostly correctly detected by the algorithm, whereas the class
low returns is only partially detected. This can be explained by the simple sliding window
and averaging model adopted in this thesis. This acts as a low pass filtering and averages
the statistical characteristics of the classes low returns and no target, which are similar
from the statistical point of view (see Tab. 2.4). The choice of the parameters of the
algorithm should be driven by both the sensitivity needed for the detection and the type
of features which have to be detected.
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(a)

(b)

(c)

Figure 2.7: (a) Detected first returns on SHARAD radargram 1319502 (see Fig. 2.3). (b) Map of KLSN

obtained on the same radargram. Values of KLSN > 3 have been saturated to 3 for visualization purposes.
(c) Binary map obtained from (b) by thresholding KLSN at thrKL = 0.13.

The results of the proposed algorithm can be a starting point for a subsequent more
detailed analysis of the detected targets, which can be achieved by estimating the statis-
tical parameters of the local distributions, according to a given fitting model, e.g., the K
distribution.

From a more general point of view, the performance obtained by the proposed tech-
nique allows one to assess with very high reliability whether a radargram contains or
does not contain subsurface features. Thus, the technique can be effectively exploited
to discriminate from the huge set of acquisitions the radargrams with significant subsur-
face features (which should be object of further analysis) from those that do not have
subsurface features.

A possible extension of the proposed technique is to derive maps of the subsurface
features by calculating the KL divergence between a theoretical distribution fitted to the
local histogram (e.g., the K distribution) and the theoretical noise distribution. The use
of the fitted distribution in place of the sample histogram can be seen as an implicit
filtering of the signal aimed at discarding outliers.

It is worth noting that the presented approach cannot detect the difference between
real subsurface features and clutter returns coming from the surface topography. The
detection of clutter returns from single radargrams cannot be done automatically without
the use of topographic data or clutter simulations. However, the proposed method can
be simply integrated in a processing chain including a clutter detection step which masks
the clutter areas in the radargram according to available clutter simulations. In Chapter
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Table 2.5: Accuracy provided by the proposed technique for the generation of subsurface feature maps.

Radargram Feature Missed % missed Non-feature False % false Total % total

number samples alarms alarms samples alarms alarms error error

0371502 492 28 5.69 2,508 240 9.57 268 8.93

0385902 515 50 9.71 2,485 189 7.61 239 7.97

0681402 830 44 5.30 2,170 305 14.06 349 11.63

0794703 718 8 1.11 2,282 362 15.86 370 12.33

1292401 491 9 1.83 2,509 277 11.04 286 9.53

1312901 625 21 3.36 2,375 304 12.80 325 10.83

1319502 657 34 5.18 2,343 318 13.57 352 11.73

4 we address this problem by presenting a technique for the automatic detection of clutter
returns through simulation matching.

2.6 Proposed Technique for the Automatic Detection of Basal

Returns

In this section we propose an algorithm aimed at detecting the deepest scattering area of
a radargram. We applied such a technique to the detection of the basal returns coming
from the base of the NPLD in SHARAD radargrams. However, after proper tuning, it
can be adapted to other operational conditions (e.g., to the detection of the bedrock
returns in data acquired by airborne sounders on Earth’s polar regions). As mentioned
in Sec. 2.4, basal returns in the NPLD include the scattering from the so-called basal
unit. The basal unit is often described as sandy with varying amounts of volatiles [72].
Different hypotheses about its origin have been proposed in the literature [82]. SHARAD
is able to penetrate the basal unit only to a certain extent. As shown in Sec. 2.4, the
returns coming from the basal unit in SHARAD radargrams are mostly diffuse. The mean
amplitude of the signals varies spatially depending on the local geology of both the basal
unit and the overlying ice stratigraphy. However, the results obtained in the following
demonstrate that the statistical behavior of the signals is in average stationary at least
in single SHARAD acquisitions.

2.6.1 Proposed Technique

A block scheme of the proposed technique is shown in Fig. 2.8. The technique is based
on the statistical analysis carried out in Sec. 2.4. It composes the basal scattering area
using a region-growing approach. The obtained regions are kept or discarded according
to the statistical distribution of their samples, which has to be similar to the expected
distribution of the basal returns. The latter is estimated automatically by the algorithm.
The technique is made up of two main phases: i) definition of an initial map of the
basal scattering area, and ii) iterative refinement of the initial map. The two phases are
described in detail in the following along with example images showing the main outputs
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(see Fig. 2.9). As test case we use the radargram shown in Fig. 2.3.

Definition of an initial map of the basal scattering area

The algorithm selects seed regions that have a high probability to belong to the basal
scattering area. Then, it uses a region-growing approach which exploits a KLSN map
(calculated using the concepts introduced in Sec. 2.5) in order to produce a first initial
map of the basal returns. In the following we describe in detail each step of this phase of
the algorithm.� First return detection and calculation of KLSN : the radargrams are cut on the area

of interest and the procedure described in Sec. 2.5 is applied in order to detect the
surface line, estimate the noise statistics, and calculate the KL distance between the
local signal histogram and the estimated noise statistical distribution. The calculated
image of KLSN is used as basis for the next steps.� KLSN thresholding : the goal of this step is to extract the regions which have a
statistical distribution significantly different from that for the noise distribution.
Such regions will be used by the algorithm to select the seeds of the basal scattering
area in the next step. Therefore, the map of KLSN is thresholded using a threshold
thr1 in order to produce a binary image KL1, defined as:

KL1(i, j) =

{

1 if KLSN(i, j) ≥ thr1
0 otherwise.

(2.15)

The value chosen for thr1 should be high enough to identify only few small regions
of the basal scattering area, besides strong scattering areas belonging mostly to the
strong layers and weak layers classes. In our experiments a value equal to 1.2 fulfilled
this condition. The image of KL1 for the test radargram is shown in Fig. 2.9a.� BR seed selection: the binary image KL1 contains a set R1,0 of disjoint regions. Only
those which are likely to be related to the basal returns are kept. The selection is
performed on the basis of geometrical criteria, which take into account the usual
position of the basal returns in the radargrams, i.e., i) the regions should correspond
to the maximum ranges (depths); ii) the regions must not belong to the neighborhood
of the surface. Condition i) is verified by the subset of regions R′

1,0 defined as:

R′
1,0 =

{

q : q ∈ R1,0 ∧ ∃i : (i, j) ∈ q ∧ j = max
{

j̃ : KL1(i, j̃) = 1
}}

. (2.16)

The subset R′′
1,0 of regions of R1,0 which fulfill condition ii) is defined as:

R′′
1,0 = {q : q ∈ R1,0 ∧ q ∩ Rs = ∅} , (2.17)

where Rs is the subsurface neighborhood region of the first returns considering a
distance wss from the first returns. Formally, it is given by:

Rs = {(i, j) : j0(i) < j < j0(i) + wss} . (2.18)
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The selection of the value of wss should take into account the expected thickness of
the area of the NPLD that is investigated. The final set of selected regions R1 is
composed by the regions of R′′′

1,0 = R′
1,0 ∩ R′′

1,0 which fulfill the condition:

R1 =
{

q : q ∈ R′′′
1,0 ∧ j̄R′′′

1,0
− wup < j̄q < j̄R′′′

1,0
+ wdown

}

, (2.19)

where j̄R′′′

1,0
is the weighted mean range position of the regions contained in R′′′

1,0 (using

the areas of the regions as weights), j̄q is the mean range position of the region q, and
wup and wdown are tolerance thicknesses used to define the width of the range of the
expected basal position. wup is referred to the thickness toward the surface, while
wdown represents the thickness towards the bottom of the subsurface. On the one
hand, the choice of wdown is in general not critical as usually no returns are observed
after the basal scattering area. On the other hand, similarly to the discussion about
wss, the value of wup should be chosen according to the expected thickness of the
investigated NPLD region. The output of this step for the test radargram is shown
in Fig. 2.9b.� Region growing : the regions selected in the previous step are used as seeds for a level-
set algorithm. Such an algorithm stretches their contour to fit the basal scattering
area using the KLSN image. The algorithm describes the contour as the zero-level
set of the function given by the following differential equation:

d

dt
ι = [−β1P (i, j) + β2ϑ] |∇ι| , (2.20)

where β1P (i, j) drives the expansion of the contour, and the term β2ϑ affects its
curvature (and thus the “smoothness” of the detection). ϑ is calculated as the mean
curvature of the contour, and β1 and β2 are scalar values which define the weight of
each term of the equation. In the proposed approach, the term P (i, j) is calculated
as

P (i, j) =

{

KLSN(i, j)− thrL if KLSN(i, j) <
thrU−thrL

2
+ thrL

thrU −KLSN(i, j) otherwise,
(2.21)

where thrU and thrL define the upper and the lower thresholds of KLSN , respectively,
which limit the expansion of the contour. Using the definition in (2.21) the propaga-
tion term P (i, j) is positive (expansion) only when KLSN(i, j) ∈ (thrU , thrL). More
details on level sets can be found in [83]. The choice of the values of thrU and thrL
depends on the limit values of KLSN associated with the basal returns. The most
important parameter is thrL, as it defines the minimum statistical difference to the
background noise which makes the contour expand.

At the end of the region growing step, the algorithm has produced an initial map of
the basal scattering area composed by a set of regions R1,grow.

Iterative refinement of the initial map

An (mmax − 1)-step iterative procedure is started, which is aimed at detecting the weak
scattering areas of the basal returns and refining the previous detection. The steps of the
iterative loop performed for each iteration m (m = 2, . . . , mmax) are as follows.
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2.6. Proposed Technique for the Automatic Detection of Basal Returns� Estimation of BR statistics : in this step the algorithm uses the amplitudes of the
samples belonging to the regions of Rm−1,grow to estimate the parameters of a K
distribution. The estimation is performed using an ML approach (see Sec. 2.4). In
this way, the algorithm estimates the statistical distribution of the basal returns,
which will be exploited in the next steps.� KLSN thresholding : a binary map is produced by considering only the samples of
KLSN which belong to the range [thrm, thrm−1). For each iteration m, the binary
image KLm is thus created according to:

KLm(i, j) =

{

1 if thrm ≤ KLSN(i, j) < thrm−1

0 otherwise.
(2.22)

The binary map contains a set Rm,0 of regions. The value of each thrm and the num-
ber of iterations mmax should ensure that for each iteration the binary map contains
regions with significant areas. Moreover, the value of thrmmax

must be greater than
thrL to assure that the level-set algorithm can expand the region contours also in
the last iteration (m = mmax).� Selection of BR seeds and region growing : similarly to the previous steps, the binary
maps are used to select seed regions, which are likely to belong to the basal scattering
area, and the level-set algorithm is run starting from such seeds. The subset of seed
regions Rm is selected by means of geometrical constraints, i.e., the regions must
belong to a range neighborhood of the estimated basal mean range. This is formally
translated in a condition similar to (2.19):

Rm =
{

q : q ∈ Rm,0 ∧ j̄Rm−1,grow
− wup < j̄q < j̄Rm−1,grow

+ wdown

}

, (2.23)

where j̄Rm−1,grow
is the weighted mean range position of the regions contained in

Rm−1,grow (using their areas as weights), j̄q is the mean range position of the region
q, and wup and wdown are the same tolerance thicknesses as those used in (2.19).� Region selection: a subset of the regions obtained in the previous step is selected.
The selection is made mainly on a statistical basis. For each region the histogram is
computed and if its KL distance to the estimated basal return distribution is smaller
than an user-defined threshold thrG the region is kept, otherwise it is discarded. This
step is performed to discard the regions which grew on areas which are not related to
the basal scattering area. Therefore, the value of thrG should be small (e.g., on the
order of 0.1). Once the selection is performed, the provisional set of the basal return
regions Rm−1,grow is merged with the new regions obtaining the new set Rm,grow. Such
a set will be the input for the next iteration.

The result of the iterative phase is thus a binary map composed by the merging of the
whole set of regions produced during the different iterations.

Finally, small isolated regions are deleted and the final basal return map is created.
The resulting basal return area detected on the test radargram is shown in Fig. 2.9c.
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2.6.2 Results and Discussion

Fig. 2.10 reports the detected basal return areas of three radargrams. A qualitative
analysis of the results points out that the proposed technique is able to detect with high
accuracy the scattering areas related to the basal returns both in azimuth and in range
direction. The worst performance is related to the detection of the NPLD base interface
when layering is visible at close depths. As the subsurface layering is very close to the
basal scattering area, the statistics of the two target types are very similar; thus, the
algorithm may fail to discard the layered areas.

In order to measure quantitatively the performance of the algorithm, we followed an
approach similar to that used in Sec. 2.5. For each of the 7 radargrams analyzed in
this chapter, we considered 3000 reference samples randomly taken in the areas of the
radargrams for which it was possible to assess clearly the presence (or the absence) of
basal returns. The results regarding the detection performance are reported in Tab. 2.6
in terms of number of missed and false alarms calculated using the selected samples.
Taking into account that the proposed algorithm is automatic and unsupervised, the
overall accuracy can be considered high.

An additional note should be made about the choice of the parameters of the proposed
algorithm. As already discussed in the previous subsection, the algorithm is stable with
respect to several parameters as their choice is not critical and the same values can be
used for a large set of radargrams. The most sensitive parameters are thr1 and thrL.
Indeed, thr1 affects the definition of the initial seeds of the algorithm, while thrL defines
the minimum statistical difference that the basal returns must have with respect to the
background noise. Therefore, such parameters should be chosen taking into account the
average SNR of the analyzed radargram. This depends on the noise level, on the state
of the subsurface materials (which affects the signal propagation), and on the spacecraft
attitude (e.g., in certain configurations called rolled acquisitions the SHARAD antenna
gain is greater than that for standard spacecraft attitude). From the practical viewpoint,
this means that if the algorithm is run with the same parameters on a set of radargrams
with similar SNR characteristics, its performances are almost constant on the whole set
of radargrams. In addition, it is worth noting that almost all the parameters involved in
the algorithm have a clear physical meaning that represents a guide for a proper tuning.
For all the test radargrams considered in this chapter we used the following algorithm
parameters: wss = 20, mmax = 3, thr1 = 1.2, thr2 = 0.7, thr3 = 0.2, thrU = 100,
thrL = 0.13, β1 = 50, β2 = 10, wup = 50, wdown = 100, thrG = 0.10.

The output of the proposed algorithm can be used in scientific analysis for many pur-
poses. A first application is the estimation of the NPLD thickness (assuming a reasonable
dielectric constant for the icy materials of the NPLD) using a large set of acquisitions.
Given the resolution of SHARAD radargrams, it is possible also to extrapolate from the
detected basal topography local buried basins or impact craters. Another possible appli-
cation is the measurement of the mean power scattered by the basal unit at a certain 3D
position, which is useful to study local geology and radar bright (or dark) areas. Finally,
the proposed technique can also be used to study seasonal variations of the signal prop-
agation loss within the NPLD. This can be achieved by analyzing the amount of power
scattered by the basal area during different seasons on the same areas, and relating such
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Figure 2.8: Block scheme of the proposed technique for the automatic detection of the NPLD basal
returns.

Table 2.6: Accuracy provided by the proposed technique for the detection of the NPLD basal returns.

Radargram Feature Missed % missed Non-feature False % false Total % total

number samples alarms alarms samples alarms alarms error error

0371502 250 30 12.00 2,750 37 1.35 67 2.23

0385902 281 51 18.15 2,719 30 1.10 81 2.70

0681402 340 61 17.94 2,660 59 2.22 120 4.00

0794703 282 19 6.74 2,718 71 2.61 90 3.00

1292401 124 9 7.26 2,876 90 3.13 99 3.30

1312901 240 5 2.08 2,760 93 3.37 98 3.27

1319502 271 25 9.23 2,729 80 2.93 105 3.50

measurements to the absorption experienced by the signal within the NPLD.

2.7 Conclusions

In this chapter we presented both a study on the statistical properties of the sounder
signals and two novel automatic techniques for the extraction of subsurface features from
radargrams. In the study of the properties of sounder signals we analyzed different statis-
tical models from a theoretical point of view and then empirically tested them on different
real SHARAD data acquired on the NPLD of Mars. The obtained results show that the
statistical distributions of the amplitude signals related to different types of targets can
be modeled precisely using the K distribution, while, as expected, the background noise
follows a Rayleigh distribution. Exploiting the results of the aforementioned study, we
have then proposed two novel techniques for the automatic analysis of radargrams aimed
at: i) producing maps of the subsurface areas showing relevant features; and ii) identi-
fying and mapping the deepest scattering areas visible in the radargrams. The former is
based on the comparison of the distributions of local subsurface parcels with that of noise
adaptively estimated on each radargram. The latter exploits a specifically defined region-
growing method implemented in an iterative technique based on the level-set algorithm.
The results obtained by both the developed techniques are accurate and thus promising
for operational applications.
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(a)

(b)

(c)

Figure 2.9: Example of application of the proposed algorithm for the detection of the basal returns to
SHARAD radargram 1319502 (see Fig. 2.3). (a) Areas remaining after the first thresholding (thr1 = 1.2).
(b) Selected starting seed regions. (c) Final detection.

(a)

(b)

(c)

Figure 2.10: Detected basal scattering area on SHARAD radargrams (a) 0371502, (b) 1292401, and (c)
1312901.
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Chapter 3

Extraction and Analysis of Ice

Layering

In this chapter1 we propose a novel method for the automatic detection of subsurface linear
features from RS data acquired in icy regions showing extended layering. The proposed
method allows the estimation of the position of the linear features with sub-pixel accuracy.
Moreover, each detected linear interface is treated as a single object which is completely
described by the position of its points, the estimated local width and the contrast. This
allows the direct measurement of geometrical and radiometric parameters (e.g., slope an-
gle, intensity) without the need of further post-processing steps. The chapter also proposes
some measurements for deriving from the output of the proposed technique important vari-
ables that can characterize quantitatively the properties of the detected linear features (e.g.,
mean depth, mean intensity) and their distribution (e.g., number and density of layers).
The effectiveness of the proposed method is confirmed by the results obtained on several
radargrams acquired by the SHARAD instrument on the North Pole of Mars.

3.1 Introduction on Automatic Analysis of Ice Layering

One of the most important applications of RSs is the analysis of the subsurface in icy
regions (e.g., Greenland, Antarctica, poles of Mars). Indeed, ice is one of the most trans-
parent materials at the aforementioned frequencies, thus making the penetration of the
signals into the subsurface feasible even for several kilometers [41]. A salient charac-
teristics of icy regions is the presence of extended layering due to the deposition and
subsequent solidification of snow in different periods. The study of the structure of the
ice stratigraphy (e.g., position and density of the ice layers) is very important for many
reasons. Primarily, the analysis of the ice stratigraphy allows the estimation of ice age
and accumulation rate, and is necessary for constraining ice flow models [32, 33]. All the
aforementioned factors are key parameters for the study of the past history and for the
prediction of the evolution of icy environments. Focusing on the Earth, nowadays this

1Part of this chapter appears in:
[84] A. Ferro and L. Bruzzone, “Automatic detection and characterization of subsurface linear features in radar

sounder data acquired on icy areas,” in Synthetic Aperture Radar (EUSAR), 2012 9th European Conference
on, 2012.
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is of primary importance in the framework of the assessment of the impact of climate
changes on the Earth’s system.

On this topic, related works presenting automatic methods are mainly devoted to
the analysis of data acquired by surface-mounted GPRs showing linear and hyperbolic
returns [55, 58, 59, 85, 86]. Linear features are often detected by means of the Hough
transform or modeled as the limit of hyperbolas with no slope. These approaches are
suited for GPR radargrams containing clear straight lines, but they are not appropriate
for RS data in which linear features are not straight and change slope locally. In fact,
orbiting RS radargrams cover a much longer track than GPR acquisitions usually with
a much worse along-track sampling, thereby showing the large scale shape of subsurface
linear interfaces (e.g., due to topography). An attempt to the automatic detection of
shallow linear features in SHARAD radargrams was made by Freeman et al. [87]. In their
work the authors used a combination of image filterings followed by a threshold operation.
The goal of the filterings is to reduce background noise and highlight almost-horizontal
linear features. Prior to image filterings, a coordinate transformation is applied in order
to flatten the surface topography, and thus reduce the induced layer slopes. The output
of the processing is a binary image where the pixels belonging to linear interfaces are
highlighted.

In this chapter we propose a novel technique for the automatic detection of subsurface
linear features in layered media which allows the estimation of the position of the linear
features with sub-pixel accuracy. Moreover, each detected linear interface is treated as a
single object which is completely described by the position of its points, and its estimated
local width and contrast, thus allowing the direct measurement of geometrical or radio-
metric parameters (e.g., slope angle, intensity) without the need of further post-processing
steps (as necessary for simpler techniques based on image filtering and thresholding). The
chapter also proposes some measurements for deriving from the output of the proposed
technique variables that characterize quantitatively the properties of the detected lin-
ear features (mean depth, mean intensity, relative mean contrast) and their distribution
(number of features, density of layers). Despite the proposed technique is general, in this
chapter we evaluate its effectiveness by considering SHARAD radargrams of the NPLD
of Mars. The results show the effectiveness of the proposed method.

The remainder of the chapter is organized as follows. Sec. 3.2 defines the notation
regarding linear features used throughout the chapter. Sec. 3.3 presents the proposed
method for the automatic detection of linear features in RS radargrams. Sec. 3.4 shows
the experimental results obtained on real SHARAD radargrams of the NPLD of Mars.
Finally, Sec. 3.5 draws the conclusions of the chapter.

3.2 Definition of Linear Feature

A generic linear feature γp in a radargram acquired on a icy region will be described as a
set of four-element tuples as follows:

γp =
{

(i, j, w, c) : (i, j) ∈ Φp ∧ w = Ωγp(i, j) ∧ c = Cγp(i, j)
}

, (3.1)
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Figure 3.1: Definitions of linear feature parameters on a simplified qualitative radargram.

where Φp is the representation of γp in the image reference system, and Ωγp and Cγp
are operators which calculate the local width and contrast of γp at a given point (i, j),
respectively. The line contrast is defined as the difference between the line intensity and its
surrounding, assuming the simplifying assumption that each line section has a bar shape.
Note that Φp includes only the axis points of a linear feature, and does not provide any
information on its thickness. We define as Φwp the area of the radargram that is described
by the tube having as axis Φp. The local width of the tube is defined locally for each
point (i, j) ∈ Φp as w = Ωγp(i, j). Fig. 3.1 shows graphically the definitions given in this
paragraph.

It is worth noting that the definition of γp allows one to calculate for each linear feature
a set of derived measures which can be computed also locally by selecting a subset of the
elements composing γp (e.g., line total length, mean width, local mean contrast). For
the analysis of actual subsurface reflections, such measures can be then straightforwardly
translated in physical quantities (e.g., geographical length of a linear interface, mean
intensity of the reflection). In order to give the most general definition, in this chapter we
will use as unit for linear feature width and length the number of pixels of the radargrams.
In fact, radargrams of different sensors have different resolutions, both in range and along-
track. Moreover, even radargrams from the same instrument can be focused at different
resolutions. Therefore, the relation between the physical length and width of a reflection
and their representations in the image domain are not unique. Using physical quantities
for the definition of the parameters of the proposed technique would be thus not general,
but linked to a certain instrument and focusing approach.

3.3 Automatic Detection and Characterization of Linear Fea-

tures in Radar Sounder Data

In this section we describe the proposed automatic technique for the detection and char-
acterization of linear features in RS data. The proposed method is a four-step procedure
made up of: i) radargram denoising and enhancement, ii) line detection, iii) removal of
first returns, and iv) extraction of measures of interest. Fig. 3.2 shows a block scheme of
the proposed method. In the following we describe in detail each step of the algorithm
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and propose examples of derived measurements that can be calculated after the detection.

3.3.1 Radargram Denoising and Enhancement

The goal of this step is to reduce the background noise of the radargrams and enhance the
signature of linear features. Noise reduction and line enhancement are performed jointly
by exploiting the intrinsic correlation that linear features show on adjacent frames. As an
example, a linear feature covering several adjacent frames is expected to appear at adjacent
j positions. This holds independently from its intensity. A linear feature characterized
by low intensity can thus be masked by noise peaks in some echoes. However, as noise is
uncorrelated among the different frames, the linear feature can be preserved whereas noise
is reduced. To this end, we propose for the joint radargram denoising and linear feature
enhancement the use a non-local filtering technique. Different methods for non-local
filtering of optical and radar images have been recently proposed [88–90]. In this thesis
we propose to use the BM3D filter developed by Dabov et al. [88]. Fig. 3.3 summarizes
the operations performed by the filter. The first step is aimed at producing a so-called
basic estimate of the true image (i.e., the image with no noise). This is done by operating
in a non-local way. The filter searches the radargram space for similar parcels by means of
a block-matching procedure based on a square sliding window. The retrieved blocks are
then stacked together to form a 3D group, which is filtered by means of hard-thresholding
operated on the coefficients of a 3D transform applied to the group (for instance based
on Discrete Cosine Transform or Walsh-Hadamard). The inverse 3D transform is then
applied to the thresholded coefficients. Finally, the output block estimates are aggregated
together using weights calculated from the thresholded coefficients. Thus, at the end of
the first step a basic estimate of the denoised image is produced. Such image is used as
input to the second step. In the second step, the filter performs a procedure which is
similar to the one of the first step. The main difference is the use of a Wiener filter which
denoises the original input image using as reference the basic estimate derived in the first
step. For more details on the processing performed by the filter the reader is referred
to [88].

The BM3D filter has been originally developed for optical images affected by AWGN
noise, and for this type of images it represents the state of the art. The main parameter of
the BM3D filter is the estimated variance of the image background AWGN noise. Other
parameters tune the size of the blocks and the maximum number of blocks per group. In
the case of RS data the AWGN assumption is not valid. As shown in Chapter 2, noise
in amplitude radargrams appears as an additive and Rayleigh-distributed contribution
(when no multilooking is performed). Moreover, in correspondence of any reflection, the
speckle effect appears because of the coherent nature of a radar acquisition (see Chapter
1). The BM3D filter can be properly defined also for non-AWGN noise [88, 91]. It has
been also used with good results for despeckling of log-transformed SAR images [92].
As it will be described later, in our experiments we applied the original BM3D filter for
AWGN2 to stretched dB-power radargrams. In fact, the filter performance as a step prior
to line detection on this type of data is very good even using its original implementation.
It is worth noting that modified versions of the BM3D filter specifically devoted to the

2The implementation of the BM3D filter used in this thesis is that available at http://www.cs.tut.fi/~foi/GCF-BM3D/.
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Figure 3.2: Block scheme of the proposed method for the detection and characterization of linear features
in RS data.
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Figure 3.3: Block scheme of the BM3D filter: (a) generation of the basic estimate, (b) generation of the
filtered image through Wiener filtering (scheme adapted from [88]).

joint image denoising and edge sharpening have been proposed [88]. In our experiments
such methods exhibited good performance. However, the edge sharpening resulted in a
subsequent higher number of false line detections due to filtering artifacts. Moreover, edge
sharpening changes the line intensity, making thus more difficult to select the parameters
of the line detector according to values directly measurable on the original radargram.
For these reasons, in this thesis we use the BM3D filter without edge sharpening.

3.3.2 Line Detection

In order to extract linear features from the denoised radargrams we propose to use the
Steger filter [93]. The Steger filter has been originally developed for the detection of
linear features in optical images and exhibited good performance also on images affected
by significant noise [94]. Moreover, it has been successfully applied as a tool for primitive
segmentation aimed at building detection in VHR SAR images [24, 95].

The Steger filter assumes for linear features a bar-shape profile (see Fig. 3.1) and the
detection of lines is performed by analyzing the second derivative of the convolution of
such profile with a Gaussian smoothing kernel. In the 1-dimensional case, the function

61



3.3. Automatic Detection and Characterization of Linear Features in Radar Sounder Data

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

0.3 0.35 0.4 0.45 0.5

|r(
0,
s
,1
,1
)|

s

Figure 3.4: Example of response of the Steger filter. Value of |r(0, s, w, c)| calculated using w = 1 and

c = 1, and by varying s in the range
[

w

2
√
3
, w
2

]

.

evaluated by the filter is:

r(j, s, w, c) = a′′s(j) ∗ Φ(j) = c
[

a′s

(

j +
w

2

)

− a′s

(

j − w

2

)]

, (3.2)

where

as(j) =
1√
2πs

e−
j2

2s2 (3.3)

is the Gaussian convolution kernel. a′s(j) and a′′s(j) are its first and second derivatives,
respectively, and Φ(j) is the line representation in the 1-dimensional space. The line
response to the filter is calculated as |r(0, s, w, c)|, given by:

|r(0, s, w, c)| = wc√
2πs3

e−
w2

8s2 . (3.4)

According to [93], the value of s should belong to the range
[

w
2
√
3
, w
2

]

. However, the

maximum line response is obtained using the minimum value allowed for s, which is
s = w

2
√
3
. Therefore, in our experiments we will use this value for s. As an example, Fig.

3.4 shows the value of |r(0, s, w, c)| for the case w = 1 and c = 1 with s spanning its
domain range.

The mathematical description of the filter allows the unbiased calculation of the line
position with sub-pixel accuracy also in the case in which the line has background with
asymmetric intensities on its sides. This is important as it allows a precise estimation
of the position of the linear feature independently on the fixed pixel spacing. Moreover,
width and contrast can be estimated locally for each detected linear feature γp by properly
defined Ωγp and Cγp operators [93].
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For a given w (and thus s), the main parameter of the Steger filter which has to be
set is rup. rup is the minimum response to the filter that triggers the detection of a line
point. The algorithm also includes the possibility to link the detected line points into
lines. This is performed by searching the neighborhood of line points and adding new
points which have a second derivative greater than a third parameter rlow. The choice of
rup can be made by calculating the response of an ideal bar-shaped line with given width
w and contrast cup using (3.4) and choosing s = w

2
√
3
. This results in:

rup = 24

√

3

2π

e−
3
2

w2
cup. (3.5)

Similarly, the value of rlow can be calculated using in (3.5) a value clow which represents
the minimum contrast allowed for the linking of the detected line points.

3.3.3 First Return Removal

The output of the previous step is a set Λ of detected linear features γp. As the line
detector has been applied to the whole radargram, Λ contains linear features which are
caused by both surface and subsurface reflections. Therefore, in this step the algorithm
removes the linear features corresponding to the first returns and preserves only the lines
which are likely to belong to the subsurface. The detection of the first returns is carried
out by means of the algorithm proposed in Chapter 2. It is worth noting that in this step
only the surface reflections appearing as first returns in the radargrams are removed. In
order to completely remove surface clutter reflections that appear at the same range of
the subsurface it would be necessary to match the line detection with clutter simulations
and develop a finer line selection. To this end, the technique presented in Chapter 4 of
this thesis could be applied. Then, starting from registered simulations proper criteria
should be defined for the cancellation of the detected linear features which are likely to be
due to surface clutter. Such fine selection based on clutter simulations is a procedure that
deviates from the scope of this chapter. However, the development of such post-processing
step will be subject of future work.

3.3.4 Extraction of Measures of Interest

As described in the previous subsections, the output of the proposed method is a set of
detected linear features described as defined in (3.1). This description already provides
useful information, such as the linear feature position, thickness and contrast. As an
example, the contrast can be analyzed to extract from the detected features those which
have a significant intensity difference with their background. Further parameters asso-
ciated with the detected linear features can be also estimated. Such parameters can be
computed locally for each feature, or can be related to sets of features covering a certain
geographical area or belonging to the same depth range. For instance, measurements that
can be estimated independently for each detected linear feature are the mean intensity
and the mean depth. This type of parameters can be associated to a vector for each de-
tected linear feature, i.e., by extending the definition of (3.1) with new values calculated
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by proper operators. In the following we propose a set of measurements which can be
used to extrapolate further information from the detected linear features.

Mean depth

The mean depth of a linear feature is defined as:

j̄ss(γp) =
1

|Φp|
∑

(i,j)∈Φp

[j − j0(i)] , (3.6)

where j0(i) is the position of the first return in the frame i, as detected by the first
return detection described in the previous subsection, and the notation |.| indicates the
cardinality of a set.

Mean intensity

We define the mean intensity of a linear feature in the following way:

µ(γp) =
1
∣

∣Φwp
∣

∣

∑

(i,j)∈Φw
p

ξ(i, j), (3.7)

where Φwp has been defined in Sec. 3.2, and ξ(i, j) is the radargram intensity at the
position (i, j).

Relative mean contrast

The relative mean contrast c̄r of a linear feature γp is defined as the ratio between its
mean intensity and the mean intensity of its surrounding. The latter can be extracted
exploiting the feature contrast, which is estimated by the line detector. This results in:

c̄r(γp) =
µ(γp)

µ(γp)− c̄(γp)
, (3.8)

where

c̄(γp) =
1

|Φp|
∑

(i,j)∈Φp

Cγp(i, j) (3.9)

is the mean contrast of γp.

Number of detected features

This measure can be defined locally to a certain range of frames and samples. We define
as number of detected features the value

n(∆I,∆J) = |Λ(∆I,∆J)| , (3.10)

where
Λ(∆I,∆J) = {γp : (i, j) ∈ Φp ∧ ∃(i, j) : i ∈ ∆I ∧ j ∈ ∆J} . (3.11)
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∆I = [imin, imax] and ∆J = [jmin, jmax] define the range of frames and samples to be
considered, respectively. The calculation of n(∆I,∆J) can be performed by means of
a sliding window approach on the whole radargram portion related to the subsurface.
This gives a 2D map of the distribution of the linear features within the radargram. If
the computation is performed frame-by-frame (i.e., |∆I| = 1) on the whole J range, the
output is a 1D graph describing the number of detected subsurface linear features versus
the along-track direction. This is useful for detecting the portions of the track containing
the highest number of layers.

Layer density

The layer density is defined as:

Θ(∆I,∆J) =
n(∆I,∆J)

|∆J | . (3.12)

Similarly to the case of n(∆I,∆J), Θ(∆I,∆J) can be computed using a sliding window
approach. This measure expresses the number of linear features per sample in the range
direction. The definition takes into account the intrinsic correlation that linear features
show between adjacent frames. Indeed, the size of the window in the along-track direction
is not used in the denominator. The result is thus a 2D map of the density of the layers
in the range direction. The size of the sliding window should be determined depending on
the resolution of the data and on the size of the structures that have to be highlighted. In
general, large windows produce density maps with low detail but that are useful to infer
the general distribution of the features. On the contrary, small windows can highlight
better local feature patches at the cost of more visible blocking artifacts.

It is worth noting that mean depth, number of features, and density are defined in the
radargram image space. However, they can be related to geographic and time scales by
applying the appropriate conversion factors.

3.4 Experimental Results

In this section we present the results obtained by the proposed technique on real RS
data. First, we present the dataset used in the experiments. Second, we show the output
of the BM3D filter on sample radargrams and frames in order to discuss its denoising
capabilities. Third, we study qualitatively the influence of the parameters of the line
detector on its detection performance. Then, we measure quantitatively the detection
performance of the proposed method for a fixed set of parameters. Finally, we show
examples of measures extracted automatically from the radargrams.

3.4.1 Dataset Description

In order to assess the performance of the proposed technique we used many different
SHARAD radargrams taken on the NPLD of Mars. Since we obtained very similar results,
in the following we focus the attention on two radargrams. It is worth noting that the
presented method is general and can be applied to any radargram with a proper tuning
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Figure 3.5: DEM of the North Pole of Mars derived from MOLA data. The Gemina Lingula region is
highlighted with a black ellipse.

of parameters. The considered radargrams refer to the Gemina Lingula region of the
NPLD of Mars, which is mostly flat [30] (see Fig. 3.5). Therefore, surface clutter is
very limited and this allows us to focus on the detection of actual subsurface linear
features. We will consider only the upper part of the radargrams (i.e., the first 11 µs
after the first detected return for each frame), corresponding to a densely layered shallow
subsurface. The radargrams have been focused using the FPB processor [96] hosted at
the Southwest Research Institute of Boulder, CO, USA. The data have been converted to
dB and thresholded in the range [µN,dB−3,µN,dB+32] dB, where µN,dB is the mean noise
power measured on the radargram and expressed in dB. Finally, the radargrams have been
stretched in the range [0,255]. The spatial resolution of the radargrams is approximately
450 m × 3 km (along × across track) with an along-track sampling of about 115 m. The
range sampling is of 37.5 ns, corresponding to 5.63 m in free space and slightly more than
3 m in an icy subsurface (εss = 3.15). However, as described in Sec. 1.2.5, the range
resolution of SHARAD is about 10 m in ice.

3.4.2 Radargram Denoising and Enhancement

The two test radargrams and the relative output of the BM3D filter are presented in Fig.
3.6 and Fig. 3.7. The vertical dimension has been exaggerated by a factor 1.3 for better
visualization. The figures show the capability of the filter to flatten the noise background
while preserving, and enhancing, the linear features present in the radargrams. These
effects can be appreciated more in detail in Fig. 3.8. The figure shows one echo taken
from the test radargram of Fig. 3.6 before and after the application of the BM3D filter.
It is worth noting that the filter mostly preserves the actual intensity value of the linear
features, thus making the choice of the parameters of the line detector directly related to
the intensity of the features in the original radargram. In our experiments we fixed the
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(a)

(b)

Figure 3.6: SHARAD radargram 0520501 (a) before and (b) after the application of the BM3D filter.

size of the blocks used by the BM3D filter to 32 × 32, and set the maximum number of
blocks per group to 16. We obtained the best trade-off between denoising and feature
enhancing by setting the AWGN standard deviation parameter of the filter equal to the
background noise dynamic measured on the radargrams, which is on the order of 60 in
the considered dataset.

3.4.3 Selection of the Parameters of the Line Detector

In order to select the best parameters to be used as input to the proposed technique and
to understand the dependence of the results on the parameter values, we analyzed the
results obtained by the method with different input parameters. In particular, we studied
the dependence of the results on the choice of w and cup. The value of clow has been
fixed to 2 for all the experiments. Lines shorter than 10 pixels have been discarded both
in the reference and in the detected maps. In fact, the proposed technique is suited for
the analysis of subsurface areas showing extended layering where linear interfaces usually
appear for long distances. It is worth noting that our goal is to detect significant layers.
Thus, small lines are discarded as they can be associated with other features of ice. Lines
with a horizontal inclination greater than 45° have been also discarded. Such constraint
comes from the fact that standard RS focusing processing makes it difficult to detect
returns from surfaces with high slopes. Thus, inclined features have high probability to
be false alarms.

Dependence on w

Fig. 3.9 and Fig. 3.10 show the output of the proposed technique using three different
values of w (2, 4 and 6) on the test radargrams of Fig. 3.6 and Fig. 3.7. The value of
cmax has been fixed to 3. On the one hand, as expected the results show that increasing w
results in a lower sensitivity of the technique to thin linear features. On the other hand, in
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(a)

(b)

Figure 3.7: SHARAD radargram 0528401 (a) before and (b) after the application of the BM3D filter.

the radargrams linear features thicker than the selected value of w are still well detected.
The number of false alarm is in overall low and the detection accuracy of the algorithm is
high. A slightly greater number of false alarms is associated to higher values of w. This
can be explained by analyzing (3.5). Indeed, for a given value of cmax the maximum line
response ρmax decreases by increasing w, thus increasing the probability of false alarms.

Dependence on cmax

In this tests we fixed the values of w to 2. The value of cmax has been set to 3, 10 and 20.
Fig. 3.11 and Fig. 3.12 show the related results on the test radargrams. As expected, by
increasing the value of cmax the proposed technique detects only the most salient lines,
whereas linear features with low contrast are not detected. For the aim of this thesis low
contrast features are important. Therefore, low values of cmax will be considered in the
following.

3.4.4 Quantitative Performance Analysis

The qualitative analysis of the dependence of the results obtained by the proposed tech-
nique on its parameters allowed us to define a range of values that are appropriate for the
application of the technique to the test dataset. In particular, the values which gave the
best results are w = 2 and cmax = 3. This has been confirmed by applying the proposed
technique to other radargrams. Fig. 3.13 and Fig. 3.14 show the results obtained on
two additional tracks. Using those parameters, in this section we thus analyze quantita-
tively the performance of the proposed method on the two SHARAD radargrams used for
the qualitative analysis. Each radargram contains a large number of lines with different
lengths and widths. The detection performance is assessed by measuring i) the number of
correctly detected linear features and false alarms, and ii) the quality of the detections in
terms of length of detected linear features versus their actual length. In order to measure
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Figure 3.8: Sample frames taken from the radargram of Fig. 3.6 before (dotted green curve) and after
(solid red curve) the application of the BM3D filter.

such quantities we defined manually reference maps of the linear features present in the
radargrams and compared them to the results of the proposed method. The reference
maps drawn from the test radargrams are shown in Fig. 3.15. The reference maps do
not contain lines shorter than 10 pixels in order to be comparable to the output of the
proposed method.

Detection and false alarm rate

The number of lines present in the reference maps, the number of detected lines and the
number of false alarms produced by the proposed technique are summarized in Tab. 3.1 for
the two test radargrams. We consider a line detected if it overlaps with a line produced by
the algorithm. Similarly, we consider a line produced by the algorithm as a false alarm if it
does not overlap with any line contained in the reference map. The analysis of the results
points out that the proposed technique has good performance, especially considering that
it is automatic. In order to have a more detailed understanding of the detection rate of the
method, we studied the relation between the number of missed, detected and false alarms
and the line lengths. The results are reported in Fig. 3.16, which shows the histograms
representing the number of detected (green), missed (red) and false (yellow) lines versus
their length for the two test radargrams. The last column of the histograms includes the
lines that have a length equal or greater than 195 pixels. The histograms show that the
proposed method detected approximately all the linear features with a length greater than
about 30 pixels. For shorter lines the detection performance decreases, and false alarms
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(a)

(b)

(c)

Figure 3.9: Results obtained by the proposed technique on SHARAD radargram 0520501 by varying the
parameter w. The value of cmax has been fixed to 3. (a) w = 2, (a) w = 4, (a) w = 6.

arise. It is worth noting that this behavior is not an issue for the goal of the proposed
technique, which is the automatic analysis of subsurface areas showing extended layering.
It is expected that in such areas significant linear features have a long extension in the
radargram domain.

Quality of detection

In order to quantify the quality of the detection performed by the proposed method, we
measured for each retrieved line the length of the detected part. This measure has been
compared to the actual length of the line. Fig. 3.17 summarizes the results obtained on the
two test radargrams. The figure shows for each test radargram a histogram representing

Table 3.1: Accuracy provided by the proposed technique for the detection of linear features in RS data
on two SHARAD radargrams.

Radargram Number of Detected False
number lines lines alarms

0520501 777 636 63
0528401 768 601 52
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(a)

(b)

(c)

Figure 3.10: Results obtained by the proposed technique on SHARAD radargram 0528401 by varying
the parameter w. The value of cmax has been fixed to 3. (a) w = 2, (b) w = 4, (c) w = 6.

the number of detected lines versus the ratio between detected length and actual length.
The results point out that in most cases the algorithm is able to detect up to the 60-90%
of the length of the linear features.

3.4.5 Extraction of Measurements of Interest

In Sec. 3.3.4 we defined several measurements that can be derived from the output of
the linear feature detection. In this section we focus on the calculation of the number of
detected lines and their density in a given radargram area. Indeed, such measurements are
interesting as they can give a quick overview of the presence of subsurface linear features
and of their distribution, and become important when 3D maps of these parameters
should be obtained by interpreting radargrams acquired on parallel adjacent tracks in
global mapping applications. Fig. 3.18 shows the measured number of lines per frame for
the test radargrams of Fig. 3.6 and Fig. 3.7. Both the number of layers present in the
reference map and in the detected set are shown. The values have been averaged using a
10-wide moving window in order to reduce the effect of outliers. The graphs show that
the output of the proposed technique well approximates the values given by the reference
maps. In general the proposed technique slightly underestimates the number of linear
features. The largest gaps between the output of the algorithm and the reference map are
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(a)

(b)

(c)

Figure 3.11: Results obtained by the proposed technique on SHARAD radargram 0520501 by varying
the parameter cmax. The value of w has been fixed to 2. (a) cmax = 3, (b) cmax = 10, (c) cmax = 20.

due to low contrast linear features (low power at the interface) which are not detected.

Fig. 3.19 and Fig. 3.20 show the layer densities maps obtained for the two test
radargrams. Both the map obtained from the layer reference map and the detected map
are shown for each radargram. The densities have been calculated using a sliding window
of size 5 × 20 pixels (along-track × range) with a step of 1 pixel in both along-track and
range directions. The measures obtained from overlapping windows have been averaged.
The layer density is represented in terms of number of lines per samples. By considering
the range sampling of the considered SHARAD radargrams (which is 37.5 ns), this means
that the values shown in Fig. 3.19 and Fig. 3.20 correspond approximately to a range of
0 to 0.63 lines every 10 meters (using εss = 3.15). The choice of the size of the sliding
window has been driven by the much different resolution of the data in the along-track
and range direction. As commented in Sec. 3.3.4, the choice of a larger window would
have produced smoothed versions of the density maps. The density maps of Fig. 3.19 and
Fig. 3.20 present clearly how the linear features are distributed within the radargrams.
A visual comparison between the reference density maps and the detected density maps
shows that the proposed technique is able to approximate the reference map with good
accuracy in a completely automatic way.
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(a)

(b)

(c)

Figure 3.12: Results obtained by the proposed technique on SHARAD radargram 0528401 by varying
the parameter cmax. The value of w has been fixed to 2. (a) cmax = 3, (b) cmax = 10, (c) cmax = 20.

3.5 Conclusions

In this chapter we presented a novel technique for the automatic detection and charac-
terization of subsurface linear features in RS data. The method is suited to the analysis
of regions showing extended layering. The experimental results obtained on real plane-
tary RS data confirmed the effectiveness of the proposed method both qualitatively and
quantitatively.

In order to extract further information from the radargrams, we also proposed a set of
measurements which can be derived from the detected linear features. Such measures can
describe locally the properties of the single linear features and provide information about
their distribution within the radargram (and thus the geographical area of interest).
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(a)

(b)

(c)

Figure 3.13: Denoising and detection results obtained on the SHARAD radargram 0519701 using the
parameters w = 2 and cmax = 3. (a) original radargram, (b) denoised radargram, (c) detection result.
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(a)

(b)

(c)

Figure 3.14: Denoising and detection results obtained on the SHARAD radargram 1591701 using the
parameters w = 2 and cmax = 3. (a) original radargram, (b) denoised radargram, (c) detection result.

(a)

(b)

Figure 3.15: Reference maps used for the quantitative performance analysis: (a) radargram 0520501, (a)
radargram 0528401.
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Figure 3.16: Histograms representing the number of detected (green), missed (red) and false (yellow)
lines versus their length for the two test radargrams. (a) SHARAD radargram 0520501, (b) SHARAD
radargram 0528401.
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Figure 3.17: Histograms representing the number of detected lines versus the ratio between their de-
tected and actual lengths for the two test radargrams. (a) SHARAD radargram 0520501, (b) SHARAD
radargram 0528401.
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Figure 3.18: Number of detected lines per frame for the SHARAD test radargrams (a) 0520501, and (b)
0528401. The measured values have been averaged using a moving window of width equal to 10 frames.
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Figure 3.19: Layer density measured using a sliding window of 5 × 20 pixels (along-track × range) with
a step of 1 pixel in both along-track and range directions on (a) the reference map, and (b) the detected
linear features of SHARAD radargram 0520501. The measured values have been averaged on overlapping
windows.
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Figure 3.20: Layer density measured using a sliding window of 5 × 20 pixels (along-track × range) with
a step of 1 pixel in both along-track and range directions on (a) the reference map, and (b) the detected
linear features of SHARAD radargram 0528401. The measured values have been averaged on overlapping
windows.
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Chapter 4

Detection of Surface Clutter Returns

through Clutter Simulation

Matching

One of the most critical and time-consuming tasks related to the analysis of orbiting RS
data is the detection of surface clutter returns, which is usually carried out manually.
In this chapter we address this problem by proposing a novel technique for the automatic
detection of surface clutter returns in RS data. The proposed method is made up of three
steps: i) simulation of surface clutter returns using available digital elevation models, ii)
automatic coregistration between radargrams and simulations, and iii) extraction of surface
clutter returns from the coregistered radargrams. The coregistration step is performed in
two phases: i) a coarse registration based on the detection of the first return line on both
input radargrams, and ii) a fine registration based on B-spline deformation. The proposed
technique is robust to radargram deformations (e.g., due to ionosphere effects) and allows
the generation of different types of outputs (e.g., coregistered simulations, binary clutter
maps, false-color compositions) that can both greatly support the scientific community in
manual analysis of RS data and drive the development of reliable automatic methods. The
effectiveness of the proposed method is proven on two large datasets acquired on different
areas of Mars by the SHARAD instrument.

4.1 Introduction

One of the most critical problems which affects both manual and automatic analysis of
radargrams is the presence of surface clutter. Surface clutter has been introduced in
Chapter 1. Briefly, it is due to off-nadir returns caused by both surface topography and
roughness, which are detected by the radar at the same time of subsurface returns. These
produce in radargrams apparent false subsurface features that show similar characteristics
to real subsurface structures. Therefore, an operator (or a general automatic method) who
is not aware of the presence of such spurious scattering may extract information which
is biased by clutter returns. To our knowledge, the problem of the automatic detection
of surface clutter in detected radargrams has not been yet addressed in the literature.
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4.2. Proposed Method for the Automatic Detection of Surface Clutter Returns

As reported in Chapter 1, although different techniques have been proposed to perform
clutter reduction [7,46], radargrams acquired by orbiting RSs usually show strong residual
clutter returns. When DEMs of the surface of the area of interest are available, a widely
used approach for the detection of surface clutter is the comparison of radargrams to
surface clutter simulations [34,35,97,98]. This is performed manually for each radargram,
thus limiting the reliable analysis of datasets composed by many acquisitions, which would
require a very large amount of time.

In this chapter we address the above-mentioned problem by proposing a novel auto-
matic technique for the detection of surface clutter in radar sounding data. The proposed
method is made up of three steps: i) simulation of surface clutter returns, ii) automatic
coregistration between radargrams and simulations, and iii) extraction of surface clutter
returns from the coregistered radargrams. In order to simulate clutter returns we de-
veloped a fast clutter simulator suited to both user-oriented real-time investigations and
batch processing. The coregistration is performed in two phases: i) a coarse registration
based on the detection of the first return line on both the input radargrams, and ii) a
fine registration based on B-spline deformation. Such procedure can be used also for the
coregistration of multitemporal radargram series. The proposed technique is robust to
radargram deformations (e.g., due to critical variations of ionospheric delays) and allows
the generation of different types of outputs (e.g., coregistered simulations, binary clutter
maps, false-color compositions), which can both greatly support the scientific community
in manual analysis of RS data and drive the development of reliable automatic methods
for information extraction. The effectiveness of the proposed method is proven on two
large datasets acquired on different areas of Mars by the SHARAD instrument.

The remainder of the chapter is organized as follows. Sec. 4.2 presents the general ar-
chitecture of the proposed technique for the automatic detection of surface clutter returns
in RS data. The following sections illustrate the main steps of the proposed method in
greater detail. Sec. 4.3 presents the algorithm developed for simulating surface clutter
returns. Sec. 4.4 describes in detail the proposed automatic technique for the coregis-
tration of radargrams and clutter simulations. Sec. 4.5 addresses the problem of the
extraction of the clutter returns from coregistered radargrams and simulations. In Sec.
4.6 the results of the experiments carried out on real SHARAD data are presented and
discussed. Finally, the conclusions of the chapter are drawn in Sec. 4.7.

4.2 Proposed Method for the Automatic Detection of Surface

Clutter Returns

The proposed method for the automatic detection of surface clutter returns in RS data
is made up of three main steps: i) simulation of surface clutter returns, ii) automatic
coregistration of radargrams and simulations, and iii) extraction of surface clutter returns
from the coregistered radargrams. Fig. 4.1 shows the block scheme of the proposed
processing chain. The main inputs of the method are a real radargram and a DEM of
the area of interest. The input radargram should be correlated with ancillary information
describing the spatial position of the radar for each frame of the radargram. As it will
be described in greater detail in Sec. 4.3, the characteristics of the DEM should be
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Figure 4.1: Block scheme of the proposed method for the automatic detection of surface clutter returns
in RS data.

compatible with the spatial resolution of the RS in order to generate meaningful clutter
simulations.

The main output of the proposed method is a binary map indicating which features
appearing in the subsurface part of the input radargram have high probability to be due to
surface clutter. As it will described in Sec. 4.4, the proposed method for the coregistration
of radargrams and simulations is capable to correct for geometrical distortions due to
external factors (e.g., variations of ionospheric delay) which may affect the radargram
acquisition, and thus the clutter detection. The intermediate outputs of the method can
be also used for relevant scientific purposes. In particular, the coregistered simulations
given by the second step can be used as a starting point for further visual analyses
(e.g., false-color compositions with the real radargram). Moreover, the transformation
performed on the simulation in order to match it with the real radargram is known. This
can be used to generate further simulations with different parameters (e.g., roughness
values, scattering model) which can be straightforwardly coregistered with real data and
previous simulations without performing the coregistration process from the beginning.

In the following sections we describe more in detail the three steps of the proposed
method.

4.3 Simulation of Surface Clutter Returns

In this section we firstly give an overview of the literature on the topic of RS surface
clutter simulation. Then, we describe in detail the characteristics of the clutter simulator
used in this thesis.

4.3.1 Background

The simulation of surface clutter returns needs the knowledge of the surface topography
of the area under investigation. In order to generate accurate simulations, the topography
should be known at least at the scale defined by the Rayleigh criterion [99]. This allows one
to properly estimate the characteristics of surface roughness at the working wavelength
and to simulate its effect. However, this is not possible in many situations, especially
in the case of planetary RSs, where the knowledge of surface topography is limited or
not available at such high sampling rate. In the literature some works addressed the
topic of the development of clutter simulators for radar sounding applications, mainly
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focusing on the analysis of RS data acquired on Mars. The most common approach
exploited for clutter simulation is the so-called facet method [34]. The basic principle is
to locally approximate surface topography with flat facets and calculate scattering from
such facets using a proper surface scattering model. In [34] this approach was introduced
for the analysis of MARSIS data. The method allows one to simulate coherently the
signal, taking into account also the radiation pattern of each facet. In [97] an incoherent
simulator that also considers the azimuth SAR processing is proposed and used for the
analysis of SHARAD radargrams. A fast numerical model used for simulating SHARAD
radargrams is discussed in [98]. Such a model works in the frequency domain in order
to speed-up the required intensive calculations. Another approach to clutter simulation
is reported in [35]. The authors show examples of radargrams acquired at Antarctica by
an airborne sounder and discuss in detail the use of simulations for the discrimination of
clutter in data taken from an orbital RS with focus on Mars.

4.3.2 Fast Surface Clutter Simulation

In order to apply the techniques proposed in this chapter, we developed a fast imaging
simulator which is suited to the implementation of both user-oriented real-time analysis
and batch automatic processing chains. In the following we describe the basic principles
of such a simulator. However, it is worth noting that the techniques proposed in this
chapter are general and can work with any type of simulation.

The developed simulator generates surface clutter simulations frame-by-frame in the
time domain. It uses as input a DEM of the investigated region and the spatial position
of the radar for each frame that has to be simulated. In order to produce simulations that
match as much as possible with real radargrams, in our experiments we extracted the
radar position from the ancillary data which are distributed along with the considered
radargrams. However, the developed simulator can be used also as a tool to predict
the surface clutter behavior for any radar position even if no radargram has been actually
acquired. Fig. 4.4 shows the main steps involved in the clutter simulation. For each frame
that has to be simulated, the algorithm firstly determines the position of the radar using
the input ancillary data. Starting from such a position, the simulator calculates the local
radar ground footprint on the DEM according to the illuminated area that is expected to
give relevant surface reflections (which depends on the instrument characteristics and can
be automatically estimated or set manually by the user). This is carried out by locally
converting the DEM coordinates into a Universal Transverse Mercator (UTM) projection,
if necessary. Such a conversion makes the computations performed in the following steps
general, as they do not depend on the particular projection used for the DEM. Moreover,
in a UTM projection real distances are preserved and can be straightforwardly calculated
according to the Pythagoras’ theorem.

The goal of the developed simulator is to generate simulated radargrams showing the
main geometrical features due to clutter. Thus, simulations are suited for the comparison
with real radargrams and can be used as a starting point for the automatic detection
of surface clutter. Surface scattering is simulated through incoherent summation of the
contributions coming from each DEM resolution cell belonging to the considered ground
footprint. For every frame i to be simulated, the backscattered simulated power ξS in
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time t can be modeled using two simple power laws with increasing complexity:

ξ′S(i, t) =K
∑

(x,y)∈Ai

δ[t− 2R(x, y)]

R(x, y)4
, (4.1)

ξ′′S(i, t) =K
∑

(x,y)∈Ai

ρ(θ(x, y), εr(x, y)) cos(θ(x, y))
κ · δ[t− 2R(x, y)]

R(x, y)4
. (4.2)

The law of (4.2) differs from that of (4.1) for the fact that it takes into account the
dielectric contrast of the ground and the effective local incidence angle at every illuminated
position. The term Ai is the area on the ground which is expected to produce surface
clutter returns when considering the frame i. K is a constant which goal is to increase
the dynamic of the simulated intensity values. In this thesis, K is calculated in order to
rescale the 99.9% of the histogram of the intensity of the simulation in the range 0-255.
The function δ(.) indicates a Dirac impulse (which will be coded as a single pixel in the
simulated radargram through a proper conversion from time t to sample position j for
the considered frame i). The term R(x, y) represents the distance between the radar and
the ground position (x, y) (see Chapter 1). For the sake of completeness, we recall that
R(x, y) is calculated as:

R(x, y) =
√

(x− x0)2 + (y − y0)2 + [h0 − h(x, y)]2, (4.3)

where (x0, y0, h0) and [x, y, h(x, y)] are the 3D position of the radar and of a ground point,
respectively. For each considered ground point (x, y), its elevation h(x, y) is given by the
input DEM. In order to produce correct simulations, it is important that the altitude
of the radar and of the ground (given by the DEM) have the same zero-reference point.
The factor ρ(θ(x, y), εr(x, y)) depicts the relative Fresnel coefficient of the surface, given
by [12]:

ρ(θ(x, y), εr(x, y)) =

∣

∣

∣

∣

∣

cos θ(x, y)−
√

εr(x, y)− sin2 θ(x, y)

cos θ(x, y) +
√

εr(x, y)− sin2 θ(x, y)

∣

∣

∣

∣

∣

2

. (4.4)

ρ(θ(x, y), εr(x, y)) is thus a function of the local incidence angle θ(x, y) and the surface
dielectric constant εr(x, y). The local incidence angle is estimated by using the neighbor-
hood DEM resolution cells [34]. The value of εr(x, y) can be set according to available
dielectric maps of the surface of the area under investigation. If such maps are not avail-
able, it can be set to a fixed value indicating the expected dielectric constant of the
surface. Finally, the term κ is a user-defined constant which modulates the effect of the
local incidence angle on the simulated intensity. Fig. 4.2 and Fig. 4.3 show the compar-
ison between two simulations obtained with both (4.1) and (4.2), and the corresponding
real SHARAD radargrams related to two different areas of Mars.

The models of (4.1) and (4.2) do not allow a precise estimation of the scattered power
and do not take into account the SAR processing usually applied for improving the along-
track resolution of radargrams. The effect of SAR processing can be approximated by
setting the size of the illuminated area on ground in the along-track direction according to
the expected focused radar resolution. More complex scattering models (e.g., fully coher-
ent approach, PO [99], fractal [100]) can be used for the computation of the intensity of the
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(a)

(b)

(c)

Figure 4.2: (a) SHARAD radargram 0921802 acquired on the North Pole of Mars and the related
simulations obtained with (b) law (4.1), and (c) law (4.2) using a fixed εr = 3.15 and κ = 3000.

simulation instead of (4.1) and (4.2). However, such models would introduce dependence
on more parameters, in particular surface roughness. This poses additional constraints
on the input DEM in order to assure their validity, and increases the computational effort
required for simulation. As we will show in Sec. 4.6, the use of simple power laws as those
defined in (4.1) and (4.2) does not represent a limitation for the goal of detecting surface
clutter on real radargrams. Indeed, the simulations obtained according to such laws are
usually very conservative [for the case of (4.2) the conservativity depends on the factor κ],
showing surface clutter features at long ranges which are not visible in the corresponding
radargrams. The risk that clutter returns are underestimated due to wrong scattering
model parameters is thus reduced. Simulated features that do not appear in real data
can be detected by proper cross-comparison (see Sec. 4.5).

4.4 Automatic Coregistration of Radargrams and Clutter Sim-

ulations

In this section the proposed method for the automatic coregistration of radargrams and
clutter simulations is presented. After an overview of the technique, its main steps are
discussed in detail.
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(a)

(b)

(c)

Figure 4.3: (a) SHARAD radargram 0365601 acquired on the Elysium Planitia on Mars and the related
simulations obtained with (b) law (4.1), and (c) law (4.2) using a fixed εr = 5 and κ = 3000.
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Figure 4.4: Block scheme of the developed simulator.

4.4.1 Method Overview

The coregistration method proposed in this thesis is designed for the alignment between
radargrams and related clutter simulations. However, the method is more general and
can be used for the coregistration of multitemporal radargram series. As the topic of this
chapter is the automatic detection of clutter returns, in the following the focus will be on
the coregistration between radargrams and clutter simulations.

As mentioned before, orbital RS data can be affected by geometrical and radiometric
distortions due to external factors, such as the influence of ionosphere. The effect of such
distortions may be different within a single acquisition. As a result, the coregistration
between radargrams and simulations is a difficult task that needs both a proper definition
of the initial parameters and the use of deformable transformations.

The proposed technique for the automatic coregistration of radargrams is made up of
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Figure 4.5: Block scheme of the proposed method for the automatic coregistration of radargrams and
clutter simulations: (a) coarse registration, (b) fine registration.

two steps: i) a feature-based coarse registration based on the detection of the first return
line on both input radargrams, and ii) an area-based fine registration using B-spline de-
formation (see Fig. 4.5). This procedure allows the technique to match roughly the two
input radargrams in the first step and to refine the coregistration in the second step. The
proposed two-step approach thus mitigates the problem of the sensitivity to initial con-
ditions intrinsic of area-based registration techniques [101]. One of the two radargrams
acts as reference radargram and is not modified during the registration process. The
second radargram (moving radargram) is deformed in order to match with the reference
radargram. We denote the reference and moving radargrams with Xref and Xm, respec-
tively. Note that in the case of the coregistration between a real radargram and a clutter
simulation Xref = X and Xm = XS, where X and XS identify the real and the simulated
radargram, respectively. This allows to keep unaltered the radargram and to apply all
the processing related to the coregistration to the simulation. The method requires that
the input radargrams represent the same ground track, with the same extension and sam-
pling. This means that the number of frames I is the same for both radargrams. This
condition can be met by properly cutting the input radargrams or, in the case the moving
radargram is a clutter simulation, by simulating surface clutter using the ancillary data
provided along with the real radargram. In the following the two steps of the proposed
method will be described in greater detail.

4.4.2 Feature-based Coarse Registration

The coarse registration is a feature-based approach aimed at reducing the impact of unpre-
dictable vertical (range) shifts present in the input radargrams which may hamper their
correct coregistration. When the moving radargram is a clutter simulation, the correct
range alignment with the reference radargram can be obtained by simulating clutter using
the orbital parameters of the reference radargram. Indeed, orbital parameters include the
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spatial position of the orbiter for each radargram frame and this can be given as input
to the simulation process. However, in some cases the orbit knowledge is not precise
or other factors introduce delays in the real data which may be different even within a
same track (e.g., ionosphere effects in night/day transitions in polar regions). The coarse
registration step is thus aimed at estimating and removing these shifts globally from the
moving radargram. This is performed in three main steps (see Fig. 4.5a): i) first return
detection, ii) shift estimation, and iii) translation of the moving radargram.

The first step detects the first return line as reference to coarsely align the input
radargrams. Indeed, the most reliable feature in a radargram (and in a simulation) is
the first return line, which appears as a strong feature. Ideally, the first return line is
the nadir surface return. In practice this is not true when lateral clutter echoes arrive to
the receiver before the nadir return. However, if a radargram and a simulation have been
produced in the same conditions, no changes are expected in the shape of the first return
line (unless major ground changes occurred between the two acquisitions). The detection
of the first return line on real radargrams is performed according to the method proposed
in Chapter 2.

The position of the first return in the simulated radargram is known during the simula-
tion process. Therefore, no specific technique is needed in order to perform its detection.

In the second step of the coarse registration process the range shift between the input
radargrams is calculated. Let us denote with j0,ref(i) and j0,m(i) the first return position
detected on the reference and the moving radargram, respectively. The range shift ∆j is
thus calculated as follows:

∆j =
1

I

I
∑

i=1

[j0,m(i)− j0,ref(i)] . (4.5)

In the last step, the moving radargram is translated in the range direction by a quantity
of pixels equal to ∆j. As ∆j is calculated with sub-pixel accuracy, interpolation of the
moving radargram is required in order to perform the coarse translation. Depending on
the nature of the moving radargram, different approaches can be applied (e.g., nearest
neighbor, linear interpolation, spline interpolation) [102]. However, in the case Xm is a
clutter simulation, according to our experiments, linear interpolation is sufficient for an
initial alignment and also allows one to preserve the properties of the moving radargram.
This holds also for the fine registration step. We denote the moving radargram after
applying the coarse registration with Xc

m.
In the case the moving radargram is a clutter simulation, the coarse registration process

may be biased due to simulation conservativity. Indeed, simulations often show lateral
surface returns which are not visible in real data. These are usually related to lateral
relief, which appears in simulations but may correspond to (almost) flat areas in actual
radargrams. This is due to the fact that clutter simulators often overestimate the scat-
tering contribution of off-nadir slopes not directly facing the radar. Fig. 4.6 shows an
example of simulation conservativity. In order to deal with this problem, when the mov-
ing radargram is a clutter simulation the coarse registration is performed by considering
only the flat regions of both the reference and moving radargram. This is carried out by
applying (4.5) only to a subset of the frame set composed by the frames if which fulfill
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(a)

(b)

Figure 4.6: Result of the first return detection on (a) the SHARAD radargram 0365601 acquired on
Elysium Planitia and (b) the related simulation obtained using the law of (4.1). For the simulation, the
detected first returns have been downselected according to the criterion of (4.6).

the following condition:
s(if , w) ≤ st, (4.6)

where s(if , w) is the standard deviation of the first return positions calculated on the
simulated radargram within a sliding window of width w centered on if , and st is a user-
defined threshold. In Fig. 4.6b the result of such a selection is shown on a SHARAD
simulation. In our experiments the results of the coarse registration (and thus also of the
whole registration process) demonstrated to be weakly dependent on the selection of w
and st.

4.4.3 Area-based Fine Registration

The fine registration step aims at generating the final coregistered moving radargram
starting from the output of the coarse registration. For the fine registration an area-based
method is used. This choice comes from the fact that in radargrams (and clutter simula-
tions) it is difficult to identify automatically features which detection can be sufficiently
reliable to assure a precise sub-pixel coregistration. This is true especially if the mov-
ing radargram is a clutter simulation. Indeed, a feature-based coregistration approach
exploiting the presence of particular subsurface structures is not applicable to clutter
simulations as they only show surface clutter returns. For these reasons, the use of an
area-based coregistration approach preserves the generality of the proposed technique.

In order to deal with the aforementioned problem of local distortions, a registration
technique capable to deform locally the moving radargram has to be applied. We propose
the use of a deformable transformation based on B-splines [103]. A rectangular coarse
grid spanning the whole moving radargram space (B-spline grid) is defined. The grid
is made up of a set of control points gi′j′ uniformly distributed in both the along-track
and range directions. The total number of control points is equal to G = GI ·GJ , where
GI and GJ are the number of points in the along-track and range direction, respectively.
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gi′j ′ D(i, j)

Figure 4.7: Schematic representation of the B-spline grid including the deformation vectors, and of the
resulting deformation field D(i, j).

Each point gi′j′ represents a deformation vector. The deformation field D(i, j) defined for
all radargram points (i, j) is then calculated and applied to the moving radargram (see
Fig. 4.7). D(i, j) is obtained through B-spline interpolation [103] as follows:

D(i, j) =

3
∑

p1=0

3
∑

p2=0

Bp1(u1)Bp2(u2)gi′′+p1,j′′+p2, (4.7)

where i′′ = ⌊i/GI⌋ − 1, j′′ = ⌊j/GJ⌋ − 1, u1 = i/GI − ⌊i/GI⌋, and u2 = j/GJ − ⌊j/GJ⌋.
The functions Bp(·) represent the basis functions of the B-spline and are given by:

B0(u) =(1− u)3/6

B1(u) =(3u3 − 6u2 + 4)/6

B2(u) =(−3u3 + 3u2 + 3u+ 1)/6

B3(u) =u
3/6. (4.8)

The process is repeated iteratively, obtaining at each iteration a different deformed
moving radargram X̂f

m. Fig. 4.5b summarizes schematically the fine registration pro-
cess. For each iteration a new deformation field is computed with the goal to optimize
a similarity measure Υ(Xref, X̂

f
m), calculated between the reference radargram Xref and

the deformed moving radargram X̂f
m. The process stops when the similarity measure

converges, and the final deformed moving radargram Xf
m is returned. Convergence is

obtained when ∣

∣

∣
Υ(Xref, X̂

f
m,p)−Υ(Xref, X̂

f
m,p−1)

∣

∣

∣
< ς, (4.9)

where X̂f
m,p and X̂

f
m,p−1 are the deformed moving radargram at iteration p and p− 1, re-

spectively; and ς is a user-defined value. At each iteration a number 2G of parameters has

91



4.4. Automatic Coregistration of Radargrams and Clutter Simulations

to be estimated, where the factor 2 accounts for the fact that deformation vectors have
two components (as we are dealing with 2D radargrams). The problem described by (4.9)
can be solved using several optimization approaches. Due to the high number of parame-
ters involved in the coregistration process, in our experiments we used a limited-memory
bound-constrained Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) optimizer [104].

Different similarity measures can be used for the coregistration of radargrams and
clutter simulations. Due to the synthetic simulation process and to the approach adopted,
the radiometry of the simulated signals are much different from that of real data. For
this reason, covariance-like measurements are not suited to be used as similarity measures
between real radargrams and simulations [25]. Thus, we propose to use as measure mutual
information (MI). Indeed, MI can model complex mappings between two images when
their radiometry has no direct dependency relations. As a result, MI is widely used
as similarity measure for multi-modal coregistration [102, 105, 106] and, recently, was
introduced also for the coregistration between SAR real and simulated images [25]. The
MI between Xref and Xm is calculated as follows [25]:

MI(Xref, Xm) = H(Xref) +H(Xm)−H(Xref, Xm), (4.10)

where H(Xref) andH(Xm) are the entropies ofXref andXm, respectively, andH(Xref, Xm)
is their joint entropy. The entropies can be computed as:

H(Xref) =−
∑

ξref

pXref
(ξref) · log pXref

(ξref) (4.11)

H(Xm) =−
∑

ξm

pXm
(ξm) · log pXm

(ξm) (4.12)

H(Xref, Xm) =−
∑

ξref,ξm

pXref,Xm
(ξref, ξm) · log pXref,Xm

(ξref, ξm), (4.13)

where ξref and ξm denote the intensity values in the reference and moving radargram,
respectively; pXref

(ξref) and pXm
(ξm) are the marginal probability functions, and

pXref,Xm
(ξref, ξm) is the joint probability function. These functions can be estimated in an

approximate way by:

pXref,Xm
(ξref, ξm) =

hist(ξref, ξm)
∑

ξref,ξm
hist(ξref, ξm)

(4.14)

pXref
(ξref) =

∑

ξref

pXref,Xm
(ξref, ξm) (4.15)

pXm
(ξm) =

∑

ξm

pXref,Xm
(ξref, ξm), (4.16)

where hist(ξref, ξm) is the joint histogram of Xref and Xm.
As we will show in Sec. 4.6, the use of the B-spline deformable transform can effectively

overcome the problem of local misalignment between reference and moving radargrams
due to, e.g., variations of the ionospheric delay along the same track. It is noteworthy
that in the case no local distortions are present in the considered data, a simpler rigid
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Figure 4.8: Block scheme of the proposed method for the automatic generation of clutter binary maps
from coregistered radargrams and simulations.

transform (e.g., translation, affine) could be sufficient to correctly align reference and
moving radargrams. However, the only advantage of using such rigid transformations is
the reduced computation time.

The main parameters to be set for the B-spline transformation are the number of
points of the B-spline grid to be used in the along-track and range directions of the
moving radargram. On the one hand, geometric distortions on radargrams usually vary
in the along-track direction in the form of changing range offsets. On the other hand,
in the range direction no local distortions within single frames are usually visible once
the radargram has been properly focused. For this reason, in the range direction only a
small number of B-spline grid points is sufficient. Instead, in the along-track direction a
number of grid points proportional to the along-track size of the radargram should be set.
In Sec. 4.6 we report the number of grid points used in our experiments.

4.5 Automatic Detection of Surface Clutter Returns

The technique presented in the previous section allows the coregistration of radargrams
and clutter simulations. Once the coregistration has been performed, radargrams and
simulations can be combined in order to generate binary maps of the clutter returns au-
tomatically. The block scheme of the proposed technique for the automatic generation of
surface clutter binary maps is reported in Fig. 4.8. The method is made up of three steps:
i) smooth-surface response removal from the simulation, ii) multiplication of radargram
and filtered simulation, and iii) thresholding. In order to reduce the noise contribution on
the radargram (and thus also on the final clutter map), this is previously filtered with a
Gaussian filter. In the following the main steps of the proposed method are explained in
greater detail. In order to simplify the notation, in this section the symbol XS will denote
a clutter simulation which is already coregistered with the relative radargram.

4.5.1 Smooth-surface Response Removal

The simulator presented in Sec. 4.3 does not consider the effect of surface roughness.
This is done to simplify and speed up the simulation process. Moreover, in many cases
no reliable a priori information on surface roughness is available from the DEM of the
region of interest, thus making it difficult to set the parameters of a more complex clutter
simulators. For this reason, it is possible that simulations are quite conservative, showing
long scattering tales also in regions where the surface can be considered smooth. As an
example, Fig. 4.9 shows the surface impulse simulated with the simulator presented in
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Figure 4.9: Normalized smooth-surface impulse given by the simulator described in Sec. 4.3.

Sec. 4.3 on a smooth area through the power law of (4.2) (εr = 3.15, κ = 3000). For
the considered simulator, such a profile is constant for all smooth surfaces. However,
as it is visible in Fig. 4.2 and Fig. 4.3, real radargrams usually show much sharper
surface returns. This difference makes it difficult to combine radargrams and simulations
following a pixel-wise approach, as actual subsurface features may be identified as surface
clutter due to the long surface response present in the simulations.

In order to mitigate this problem and to simplify the detection of clutter returns in
the shallow subsurface range, we defined a smooth-surface response removal procedure.
The goal of this step is to subtract the smooth-surface response ξS,surf(j) from the region
of the simulation XS related to the shallow subsurface. The knowledge of such a response
is needed. The user is thus requested to select interactively a smooth region in order
to tune the algorithm. The algorithm detects the surface response and stores its shape
normalized between 0 and 1 starting from the nadir return [i.e., ξS,surf(0) is equal to 1
and corresponds to the nadir return]. It is worth noting that, as mentioned before, if the
parameters of the simulator are constant the surface response does not change. Therefore,
only one profile is sufficient to allow the filtering of all the simulations obtained with the
same parameter set.

The smooth-surface response is subtracted from the simulation according to the fol-
lowing equation:

ξS,f(i, j) =

{

ξS(i, j)− ξ̂S,surf[i, j − jnadir(i)] if ξS(i, j) ≥ ξ̂S,surf[i, j − jnadir(i)]

0 if ξS(i, j) < ξ̂S,surf[i, j − jnadir(i)]

∀i, ∀j ≥ jnadir(i) + jtol, (4.17)

where ξS,f(i, j) are the samples of the filtered simulationXS,f , jnadir(i) indicates the sample

position of the nadir return of the frame i, and ξ̂S,surf(i, j) = ξS(i, jnadir)ξS,surf(j) is the
smooth-surface response modulated on the intensity of the nadir return of the frame i.
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The parameter jtol has the goal to preserve the first samples related to the nadir return,
which is a feature that usually appears as a thick strong line in real radargrams. The
choice of the value of jtol depends on the range resolution and on the sampling of the
considered data. According to (4.17) the simulated returns stronger than the smooth-
surface response are reduced by a quantity equal to the modulated ideal smooth-surface
contribution. This is in agreement with the simulation process, which generates a frame
as the summation of independent contributions coming from different resolution cells.

4.5.2 Fusion of Radargram and Filtered Simulation

The goal of this step is to generate an image which highlights the surface clutter returns
present in the radargram, using the simulation filtered in the previous step and the real
radargram. In order to reduce the effect of the background noise on the final map, the real
radargram X is filtered with a Gaussian filter, obtaining the filtered radargram Xf . The
size of the filter depends on the resolution and sampling of the radargram. It has to be
chosen in order to reduce noise while preserving the visible subsurface structures. For the
considered application, the latter issue is more important than noise reduction. The two
filtered input radargrams Xf and XS,f are thus combined using a pixel-wise multiplication
as follows:

Π = Xf ·XS,f . (4.18)

This operation has the advantage to highlight the samples which have high intensity in
both the real radargram and the clutter simulation. The strength of the returns present
in the simulation which are not visible in the real radargram is thus reduced. Indeed,
they are multiplied with noise, which has a lower intensity with respect to actual returns
visible in the real radargram. This contributes to mitigate the residual conservativity of
simulations and simplifies the threshold operation performed in the following step.

4.5.3 Thresholding

In this step the product image Π is thresholded in order to create a binary map Πbin

representing the samples which have high probability to be affected by surface clutter
returns. This is performed according to:

πbin(i, j) =

{

0 if π(i, j) < πthr
1 if π(i, j) ≥ πthr

∀i, ∀j, (4.19)

where π(i, j) and πbin(i, j) are the samples of Π and Πbin, respectively; and πthr is a user-
defined threshold. As mentioned in the previous subsection, the product operation has
the advantage to highlight simulated surface clutter returns which also appear in the real
radargram. As we will show in Sec. 4.6, this effect is visible in the histogram of Π, where
most of the values belong to the range in proximity of zero and the useful information
(actual clutter returns) corresponds to the tail of the histogram. In order to obtain the
final binary map it is thus sufficient to threshold the histogram at high values. This
can be done manually by the user, depending on the considered dataset and the desired
level of conservativity of the final binary map. Automatic approaches to the histogram
thresholding can be also applied [81].
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The final binary map can be used to generate false-color compositions using on different
color channels the original radargram and the binary map itself. Such an approach can be
also applied using as input the other intermediate outputs of the technique. In this way, it
is possible to generate images that allow a quick visual representation of actual and false
subsurface features by means of a color code. As an example, false-color compositions
can be obtained through RGB compositions where the green channel corresponds to the
amplitude of the reference radargram and the red and blue channels show the coregistered
clutter simulation. According to this color table, green pixels correspond to features which
are visible only in the radargram, whereas magenta pixels are associated with returns
which are visible only in the simulation. Finally, white pixels correspond to features which
are visible (and matched) in both radargram and clutter simulation, and thus should not
be considered in the radargram as they are artifacts due to clutter. This representation
will be used in Sec. 4.6.2 as a mean to evaluate qualitatively the performance of the
proposed method.

4.6 Experimental Results

In this section we show the results obtained by the proposed method on two real large
datasets acquired by the SHARAD instrument at Mars. After a brief description of the
considered datasets, qualitative results and quantitative measurements will be discussed.

4.6.1 Experimental Setup

The radargrams used in this chapter have been downloaded from the Geosciences Node
of NASA’s PDS [48]. We selected more than one hundred radargrams and extracted the
amplitude information. Echoes have been aligned in time using the information contained
in the RDRs [73]. As the data are highly oversampled, we applied a downsampling factor
of 15 in the along-track direction. No multilooking has been performed. The selected
radargrams can be divided in two datasets corresponding to two different areas: the
NPLD and Elysium Planitia. As shown in Fig. 4.10, the two regions have different
characteristics. On the one hand, the NPLD has a relevant topography due to the ice
deposits of the North Pole. On the other hand, the Elysium Planitia is an almost flat
region including some craters. The subsurface of the two regions is also characterized by
different features. As it is visible in Fig. 4.2a and Fig. 4.3a, the subsurface of the NPLD
shows extended layering due to ice stratigraphy, whereas in the subsurface of Elysium
Planitia only a single linear reflector in the shallow subsurface is visible in many tracks.
Moreover, the acquisitions taken on the NPLD usually cross the night/day limit. As it will
be shown later, this implies that the ionospheric delay changes during the orbit causing
distortions in the radargram.

In the experiments, for the coregistration step we used simulations obtained with (4.1).
For the generation of the final binary clutter map we used simulations created using
(4.2), which have been previously deformed using the same transformation derived in
the coregistration step. Indeed, in our experiments we obtained the best coregistration
performance using conservative simulations, while the generation of the final clutter maps
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benefits from the use of less conservative power laws. The input DEM was derived by
MOLA data and has a resolution of 128 pixels per degree of latitude and longitude.
These data are also available from the PDS. The grid used for the B-spline deformation
coefficients had a fixed size of GJ = 5 in the range direction. The along-track size of the
grid GI has been defined adaptively depending on the number of frames of the radargrams,
according to:

GI = 6 +

⌈

I − 3000

2000

⌉

. (4.20)

4.6.2 Qualitative Results

The performance of the proposed method can be evaluated qualitatively by superimposing
the reference radargram to the outputs of the different steps of the technique by means of
false-color compositions. Here we adopt the color code proposed in Sec. 4.5.2 and present
in detail the results obtained on two radargrams, one for each considered dataset. The
results for the other processed radargrams are similar.

Radargram of the NPLD

Fig. 4.11 shows the intermediate and final outputs of the proposed method for a radargram
of the NPLD dataset. The considered radargram shows a deformation on the right side.
Indeed, the corresponding part of the orbit was approaching the day side of Mars. As a
result, the delay introduced on the signal by the ionosphere increased during the orbit.
This produced a deformation of the radargram, and the surface return appears shifted
towards the bottom of the radargram. This effect is not present in the simulation as it
would be very difficult to model precisely the variability of the ionosphere. Therefore, it is
not possible to align the radargram and the simulation without deforming the simulation
accordingly. The output of the coarse registration minimizes the mean range shift between
the radargram and the simulation. This is visible in Fig. 4.11a, where the simulation
appears slightly mismatched on both the left and right side of the radargram. As a
reference, in Fig. 4.11b we report the results obtained with a simple rigid translation
transform (applied to the output of the coarse registration). The result of the iterative
procedure converges to an unsatisfactory alignment between the inputs. In particular, it is
possible to note that there is a good alignment in the right side of the radargram, while the
left part is completely mismatched. This problem is due to the aforementioned variation
of the ionospheric delay. Such a problem is solved by using the proposed approach.
Fig. 4.11c shows the coregistration obtained by the proposed method, where radargram
and simulation are aligned with high precision and the simulation has been deformed
by the B-spline transform according to the distortion occurred on the radargram. Fig.
4.11d illustrates the same situation of Fig. 4.11c but using a less conservative simulation
[obtained with the law of (4.2) using ε = 3.15, and κ = 3000]. In Fig. 4.11e the effect of
the smooth-surface removal procedure is shown. Finally, Fig. 4.11f illustrates the RGB
composition obtained using the clutter binary map generated after the thresholding of
the product image (as explained in Sec. 4.5.2). From Fig. 4.11c to Fig. 4.11f it is thus
possible to note the reduction of the conservativity of the clutter simulation and how this
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allows the generation of a final clutter map which shows only the clutter returns which
are actually visible in the real radargram. A detail of Fig. 4.11 is shown in Fig. 4.12. A
detailed analysis of Fig. 4.11 and Fig. 4.12 shows the potential of the technique combined
with false-color compositions. Such products can represent for scientists a fast visual way
to study radargrams and discriminate between actual and false subsurface features due to
clutter. Indeed, the former correspond to green features, while the latter are represented
in white.

Radargram of Elysium Planitia

An example of coregistration between a real radargram and the relative simulation, and
of clutter detection for a radargram of the Elysium Planitia is shown in Fig. 4.13. Dif-
ferently from the NPLD case, this type of radargrams are not affected by geometrical
distortions. Therefore, the clutter simulator reproduces with good accuracy the geometry
of surface clutter returns as it appears also in real radargrams. The result of the coarse
registration is reported in Fig. 4.13a, where the residual misalignment between the radar-
gram and the simulation is visible. The outputs of the rigid translation transform and of
the proposed method are shown in Fig. 4.13b and Fig. 4.13c, respectively. Visually, the
two results are comparable. This is expected, as no deformation affects the radargram.
Fig. 4.13d illustrates the same situation of Fig. 4.13c but using a less conservative sim-
ulation [obtained with the law of (4.2) using ε = 5, and κ = 3000]. The output of the
smooth-surface removal procedure is shown in Fig. 4.13e. Finally, Fig. 4.13f reports the
RGB composition obtained using the clutter binary map generated after the thresholding
of the product image. The final map correctly shows as clutter returns only those related
to the nadir surface and to the area of a crater.

4.6.3 Quantitative Results

In order to measure quantitatively the coregistration performance of the proposed method,
we selected a subset of 6 and 5 radargrams for the NPLD and Elysium Planitia datasets,
respectively. For each radargram we defined manually a set of nRP = 10 reference points
(RPs) on both the radargram and the corresponding clutter simulation. Finally, we
measured the distance between the RPs of the radargram and the corresponding RPs
on the clutter simulation coregistered by the coarse registration, by the rigid translation
transform and by the proposed method. We report the measured distances in terms of
mean shift error (∆d), mean shift error in the along-track and range direction (∆dalt
and ∆dz, respectively), and root mean square error (∆dRMSE). These parameters are
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calculated as follows:

∆d =
1

nRP

nRP
∑

p=1

√

(irefp − imp )
2 + (jrefp − jmp )

2 (4.21)

∆dalt =

∣

∣

∣

∣

∣

1

nRP

nRP
∑

p=1

(irefp − imp )
2

∣

∣

∣

∣

∣

(4.22)
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∆dRMSE =

√

√

√
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nRP

nRP
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[

(irefp − imp )
2 + (jrefp − jmp )

2
]

, (4.24)

where (irefp , j
ref
p ) and (imp , j

m
p ) indicate the coordinates of the p-th RP on the real and the

simulated radargram, respectively. In the following we present the results obtained for
the two considered datasets.

Radargrams of the NPLD

The quantitative results obtained for the subset of radargrams of the NPLD are reported
in Tab. 4.1, Tab. 4.2, Tab. 4.3, and Tab. 4.4. All the measurements carried out confirm
that the proposed method is capable to register with high precision real radargrams to the
relative clutter simulations despite geometrical distortions. Both the mean shift and root
mean square errors are below 2 pixels in most of the tests. Such values are smaller than
the expected tolerance of the clutter simulation and thus no significant clutter artifacts
are missed. The comparison between the results obtained with rigid transformations
(only coarse, translation) and the results given by the proposed method shows the better
performance of the latter. In particular, the rigid translation transform gives the worst
results, also with respect to the coarse registration only. This is due to the presence of
geometrical distortions which make the iterative process of the translation fine registration
converge to a position which matches only one side of the radargram.

Radargrams of Elysium Planitia

The results related to the radargrams of Elysium Planitia are reported in Tab. 4.5, Tab.
4.6, Tab. 4.7, and Tab. 4.8. Also for this dataset the proposed technique shows a good
registration performance and outperforms the other methods. However, differently from
the results obtained on the NPLD dataset, the rigid translation transform gives good
results. This confirms what has been observed qualitatively in Sec. 4.6.2. As the clutter
simulator reproduces with good precision the geometry of the surface returns due to the
absence of time-variant delays of the ionosphere, the registration process mainly corrects
only for along-track and range misalignments.
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Table 4.1: Mean shift error ∆d in pixels for the NPLD dataset.

Radargram number Coarse Rigid translation Proposed method

0794703 6.09 14.13 1.81
0879602 8.65 14.47 1.37
0921802 9.83 17.44 1.59
1041902 11.46 19.49 0.83
1592001 8.65 17.38 2.16
1743601 7.22 7.15 1.72

Table 4.2: Mean shift error the along-track direction ∆dalt in pixels for the NPLD dataset.

Radargram number Coarse Rigid translation Proposed method

0794703 1.68 8.58 0.63
0879602 2.65 8.25 0.65
0921802 2.67 9.60 0.48
1041902 7.05 14.55 0.27
1592001 5.35 8.15 0.27
1743601 5.87 2.87 0.53

Table 4.3: Mean shift error in the range direction ∆dz in pixels for the NPLD dataset.

Radargram number Coarse Rigid translation Proposed method

0794703 2.36 10.55 0.48
0879602 2.88 10.42 0.30
0921802 4.05 11.87 0.68
1041902 4.94 11.30 0.12
1592001 0.90 14.37 0.77
1743601 1.58 6.08 0.18

Table 4.4: RMSE ∆dRMSE in pixels for the NPLD dataset.

Radargram number Coarse Rigid translation Proposed method

0794703 7.11 15.08 1.88
0897602 9.27 15.76 1.48
0921802 11.43 18.38 1.67
1041902 11.99 20.21 1.06
1592001 9.70 18.36 2.20
1743601 7.36 7.86 1.89

Table 4.5: Mean shift error ∆d in pixels for the Elysium Planitia dataset.

Radargram number Coarse Rigid translation Proposed method

0365601 4.38 2.45 1.43
0394601 12.18 2.98 1.39
0486901 4.81 1.94 1.89
0566001 6.65 1.87 1.53
0914802 6.50 2.21 1.71
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Table 4.6: Mean shift error in the along-track direction ∆dalt in pixels for the Elysium Planitia dataset.

Radargram number Coarse Rigid translation Proposed method

0365601 0.78 1.65 0.48
0394601 7.53 1.03 0.55
0486901 0.78 0.60 0.30
0566001 2.53 0.68 0.43
0914802 4.73 0.43 0.18

Table 4.7: Mean shift error in the range direction ∆dz in pixels for the Elysium Planitia dataset.

Radargram number Coarse Rigid translation Proposed method

0365601 4.14 1.00 0.58
0394601 4.89 0.80 0.31
0486901 4.53 0.05 0.33
0566001 6.13 0.28 0.18
0914802 3.93 0.70 0.10

Table 4.8: RMSE ∆dRMSE in pixels for the Elysium Planitia dataset.

Radargram number Coarse Rigid translation Proposed method

0365601 4.54 2.63 1.70
0394601 19.70 3.30 1.47
0486901 5.17 2.21 2.13
0566001 6.92 2.13 1.78
0914802 6.82 2.35 1.97
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4.7 Conclusion

In this chapter we presented a novel technique for the automatic detection of surface
clutter returns from RS data. The technique is based on the automatic coregistration
between real radargrams and surface clutter simulations. The main output of the pro-
posed method is a binary map representing the areas of the radargram which have high
probability to be affected by clutter returns. In addition, the intermediate outputs of the
method (e.g., coregistered clutter simulations) can be also used to support manual inves-
tigations. The chapter also presented a fast clutter simulator suited to both user-oriented
real-time analyses and batch processing.

The qualitative and quantitative experimental results obtained on two large datasets
acquired by the SHARAD instrument at Mars confirm the effectiveness of the proposed
method. In particular, the technique is capable to align with good precision clutter simula-
tions to radargrams. This was observed also when radargrams are affected by geometrical
distortions due to variations of the ionospheric delay during the same acquisition.

The proposed method represents a valuable contribution to the analysis of planetary
RS data. Indeed, the detection of surface clutter through the comparison with clutter
simulations is nowadays performed manually by scientists. This process is time-consuming
and subjective. In this context, if suitable DEMs of the area of interest are available, the
proposed technique can be included in the basic processing chain of RS data in order
to generate matched simulations and clutter maps which can be distributed along with
radargrams as higher level products. Such products would greatly help the community
and increase the scientific return of the analysis of the data.
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Figure 4.10: Digital elevation models of (a) the NPLD, and (b) Elysium Planitia on Mars derived from
MOLA data.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.11: RGB compositions obtained according to the method proposed in Sec. 4.5.2 by the combi-
nation of the SHARAD radargram 0921802 acquired on the North Pole of Mars and the related clutter
simulations (see Fig. 4.2) after the different steps of the proposed method. (a) Coarse registration; (b)
rigid translation transform; (c) proposed method; (d) final transformation applied to a less conservative
simulation obtained using (4.2) and εr = 3.15 and κ = 3000; (e) result of the smooth-surface impulse
removal; (f) final binary clutter map.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Detail of Fig. 4.11. (a) Coarse registration; (b) rigid translation transform; (c) proposed
method; (d) final transformation applied to a less conservative simulation obtained using (4.2) and εr =
3.15 and κ = 3000; (e) result of the smooth-surface impulse removal; (f) final binary clutter map.
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Figure 4.13: RGB compositions obtained according to the method proposed in Sec. 4.5.2 by the combi-
nation of the SHARAD radargram 0365601 acquired on the region of Elysium Planitia of Mars and the
related clutter simulations (see Fig. 4.3) after the different steps of the proposed method. (a) Coarse
registration; (b) rigid translation transform; (c) proposed method; (d) final transformation applied to a
less conservative simulation obtained using the law of (4.2) and εr = 5 and κ = 3000; (e) result of the
smooth-surface impulse removal; (f) final binary clutter map.
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Chapter 5

A Study on the Relationship

between Double Bounce and the

Orientation of Buildings in VHR

SAR Images

In this chapter1 we study empirically the relation between the double-bounce effect of build-
ings in VHR SAR images and the orientation angle for two different ground materials
(i.e., asphalt and grass), by analyzing two different TerraSAR-X VHR spaceborne SAR
images. Furthermore, we compare our empirical results with simulations obtained us-
ing theoretical electromagnetic models. In order to deal with slightly rough surfaces, we
also present a novel model for double-bounce scattering based on the SPM. We show that
the double-bounce effect results in different power signatures depending on the type of
the building and the surrounding ground properties. Finally, we discuss the reliability of
theoretical models for predicting the double-bounce power for the analyzed datasets. The
models can predict the general behavior of the double bounce, but lack in calculating the
accurate double-bounce RCS reliably.

5.1 Introduction

Among the different scattering contributions present in meter-resolution VHR SAR (e.g.,
COSMO-SkyMed and TerraSAR-X) data from urban areas, the double-bounce effect of
buildings (which is caused by the corner reflector assembled by the front wall of the build-
ing and its surrounding ground area) is an important scattering characteristic [36,37]. It

1This chapter appears in:
[38] D. Brunner, L. Bruzzone, A. Ferro, J. Fortuny, and G. Lemoine, “Analysis of the double bounce scattering

mechanism of buildings in VHR SAR data,” in Proc. SPIE Conf. on Image and Signal Processing for Remote
Sensing XIV, vol. 7109, 2008, pp. 71 090Q–71 090Q–12.

[107] D. Brunner, L. Bruzzone, A. Ferro, and G. Lemoine, “Analysis of the reliability of the double bounce scattering
mechanism for detecting buildings in VHR SAR images,” in Proc. IEEE Radar Conf, 2009.

[108] A. Ferro, D. Brunner, L. Bruzzone, and G. Lemoine, “On the relationship between double bounce and the
orientation of buildings in VHR SAR images,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 612–616,
2011.
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Figure 5.1: Definition of the orientation angle of a building.

indicates the presence of a building because it appears as a linear feature in correspondence
with its front wall. The double bounce has been exploited for the development of auto-
matic methods for the detection and reconstruction of buildings from multi-aspect [23]
and interferometric SAR (InSAR) data [24]. However, the relation between the double-
bounce effect and the SAR illumination conditions, and thus its reliability as a feature
for building detection purposes, has not yet been investigated to a sufficient extent in real
VHR SAR images.

The effect of the orientation angle φ of a building on the power signature of the double
bounce is important. The orientation angle is defined as the angle between the front wall
of the building and the azimuth direction (see Fig. 5.1). As an example, we show in Fig.
5.2 a meter-resolution TerraSAR-X image and the corresponding aerial photo of a flat-
roof building that has two main axis, i.e., it has two walls which are oriented towards the
sensor but with different orientation angles. The smaller axis of the building (A) shows
a stronger double bounce than the larger axis (B). Since we are investigating the same
building, which has similar structures for the two front walls (as shown in Fig. 5.2b),
the deviations in the strength of the double bounce cannot be attributed to differences
in either the material properties or the facade structure. Nevertheless, observing the
orientation angles with which the two walls were imaged, we find that they are quite
different (φ = 2.4° for A and φ = 29.2° for B). Another factor that affects the double-
bounce scattering is the ground material, which properties are difficult to retrieve without
any a priori information about the scene.

As buildings are imaged with different orientation angles in different surroundings,
the relation between the orientation angle, the ground material and the double-bounce
strength implies the limits of detection techniques which are based on the double-bounce
effect. In this context, the understanding of this behavior both on theoretical models
and on real VHR SAR images can be exploited for developing novel optimized detection
techniques based on single SAR images (see Chapter 6), and refined tools for the inter-
pretation of the scattering in urban areas [109]. This is of special interest for operational
monitoring tasks with stringent limitations on the timely availability of the data (e.g.,
for emergency response), where the acquisition of a pair of images for building detection
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Figure 5.2: (a) Building with two axes in VHR TerraSAR-X data. Illumination from bottom to top
(© Infoterra). (b) Corresponding optical image (© Microsoft).

cannot be considered.
In this chapter we extend and refine the findings from [38], presenting a detailed study

of the relation between the double-bounce effect and the orientation angle. First, we
investigate empirically a set of industrial and residential buildings with two different
ground materials (grass and asphalt) in ascending and descending spaceborne meter-
resolution TerraSAR-X images. Then we compare these findings with state of the art
theoretical models in order to assess to which extent they can predict the double-bounce
behavior. This is important to consider if these models are employed for information
extraction purposes (e.g., building detection and reconstruction). In order to deal with
slightly rough surfaces such as asphalt, we developed a novel model for double-bounce
scattering based on SPM.

The remainder of the chapter is organized as follows. In Sec. 5.2 the main scattering
effects related to buildings and the literature regarding the double-bounce effect are re-
viewed. In Sec. 5.3 we report the double-bounce RCS measurements performed on real
data, while in Sec. 5.4 we compare such results with theoretical models. Finally, Sec. 5.5
we draw the conclusions of this study.

5.2 Background

In this section we provide background information related to the scattering of buildings in
VHR SAR images and on the modeling of the double-bounce effect. In the first subsection
we illustrate the typical scattering behavior of flat- and gable-roof buildings. Then, we
review the theoretical models developed in the literature for the modeling of the double-
bounce scattering mechanism. Finally, we also report the main empirical works present
in the state of the art regarding the analysis of the double-bounce effect in real data.

5.2.1 Modeling of Building Radar Footprints in Single Detected VHR SAR

Images

The side-looking and ranging properties of SAR sensors cause peculiar geometrical distor-
tions in VHR SAR imagery. A review of the main general effects visible in SAR images
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Figure 5.3: Scattering model for a flat roof building with viewing direction from left. The different gray
areas at the bottom of the figure symbolize the amplitudes.

has been provided in Chapter 1. In this context, the key characteristics of buildings in
SAR are the layover, double-bounce, and shadowing effects. To illustrate this, Fig. 5.3
shows a schematic view of the scattering profile of a simplified flat-roof building model. In
this figure, the building in the middle, which is modeled as a rectangular box, is imaged
by a sensor with incidence angle θ. The annotations a refers to backscattering from the
ground surface surrounding (in this 2D figure before/behind) the building. acd denotes
the layover area where scattering from the ground, from the vertical building front wall
and from parts of the flat roof are superimposed since these parts have the same dis-
tance to the sensor. The vertical front wall and the surface area in front of the building
compose a corner reflector resulting in the bright double-bounce effect b. The scattering
area that is only characterized by scattering from the roof is denoted by d. The elevated
building occludes parts of the surface behind the building from the radar beam, resulting
in the shadow area e. This backscattering profile is flexible with respect to a number of
parameters [110]. For instance, for very high buildings there is typically no area d as the
part of the roof is entirely included in the layover area. An example of radar footprint
of an industrial flat-roof building is shown in Fig. 5.4. The main scattering mechanisms
are visible (i.e., layover, double bounce, scattering from roof and shadow). However, ad-
ditional features appear (e.g., bright spots on the roof due to metallic structures). The
figure also shows examples of interference due to other targets, in this case tall trees. In
fact, both the layover and the shadow areas of the footprint are partially masked by the
trees that surround the building.

For gable-roof buildings the theoretic scattering signature is slightly different [111,112].
As shown in Fig. 5.5, the signature has a second bright scattering feature acd at the
sensor-close side resulting from direct backscattering from the roof. The extent and the
strength of this feature depends on the relationship between θ and the roof inclination
angle θroof. For θroof = θ the strength of this feature is maximum, whereas its extent is
smallest. Moreover, we found that in actual 1 m resolution TerraSAR-X and COSMO-
SkyMed data this second bright scattering area is also detectable for buildings with a
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(a) (b)

Figure 5.4: Example of a flat-roof building. (a) Building in 1 m resolution TerraSAR-X data with viewing
direction from left (© Infoterra). The double-bounce line is highlighted with a red arrow. (b) The same
building in an optical image (© Microsoft).
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Figure 5.5: Scattering model for a gable-roof building with viewing direction from left. Here, the roof
inclination angle θroof is smaller than θ. The different gray areas at the bottom of the figure symbolize
the amplitudes.

high orientation angle. This is illustrated in Fig. 5.6 and Fig. 5.7, where we show actual
scattering signatures from gable-roof buildings with small and large orientation angles,
respectively.

5.2.2 Theoretical Models

In order to model the double-bounce effect of a building, the theory of dihedral corner
reflectors has been extended to simplified building models, which are generally constituted
by rectangular parallelepipeds with smooth walls surrounded by a homogeneous ground
surface [36,37]. These models are considered isolated in the electromagnetic sense, i.e., no
interactions with other structures in the scene are taken into account. In particular, [36]
presents a fully analytical electromagnetic model for urban environments that also includes
a study on the double-bounce contribution from buildings based on Geometric Optics
(GO) and Physical Optics (PO) [99], according to the surface roughness.
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(a) (b)

Figure 5.6: Examples of gable-roof buildings with small orientation angles. (a) Buildings in 1 m resolution
TerraSAR-X data with viewing direction from left (© Infoterra). The double-bounce and roof scattering
lines are highlighted with red and yellow arrows, respectively. (b) The same buildings from (a) in an
optical image (© Microsoft).

(a) (b)

Figure 5.7: Examples of gable-roof buildings with large orientation angles. (a) Buildings in 1 m resolution
TerraSAR-X data with viewing direction from left (© Infoterra). The scattering lines due to the roofs
are highlighted with yellow arrows. (b) The same buildings from (a) in an optical image (© Microsoft).

However, the choice of the adequate roughness parameters, i.e., the RMS height hRMS

and the correlation length lc, and dielectric parameters of a surface is non-trivial. RCS
measurements made directly on SAR images can differ considerably with theoretical pre-
dictions using literature material parameters, e.g., due to the effect of the moisture content
or the temperature of the material. Furthermore, surfaces in urban areas are not homo-
geneous, even at the scale of a single meter-resolution cell. For instance, a paved street in
a city may have small structures elements (e.g., manhole covers), causing local variations
in the actual surface roughness. Moreover, they are also made of metal, which is a dif-
ferent material with respect to the surrounding asphalt. Hence, using only the dielectric
constant and surface roughness parameters of asphalt to calculate the RCS of a street
in urban areas is a significant simplification. In addition, in dense urban environments
scattering effects coming from adjacent objects can interfere and therefore invalidate the
assumption of isolated buildings. As a result, the theoretical models currently reported
in literature can only be considered as a tool for making preliminary predictions of the
scattering behavior of buildings in urban environments imposing the need for empirical
studies.
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5.2.3 Empirical Studies

The effect of the orientation angle on the scattering from urban areas (the so-called
cardinal effect) has already been reported for medium resolution SAR data [113]. Fur-
thermore, [114] demonstrated the influence of the polarization and the incidence angle on
the double-bounce effect, which showed that the corner reflector has generally a higher
return in HH polarization. Instead, VV polarization is more sensitive to variations in the
incidence angle. This analysis was conducted only on buildings parallel or perpendicular
to the azimuth direction. In [37] the authors discussed the influence of both incidence and
orientation angles on the scattering from urban environments using actual SAR airborne
data. They observed that buildings which are parallel to the azimuth direction have a
stronger double-bounce contribution than buildings facing away from the radar. Their
study was conducted on a small set of residential and commercial buildings.

Some preliminary experimental studies on the double-bounce effect have been con-
ducted acquiring SAR measurements on scaled building models under controlled condi-
tions. In [115], the results of an experiment developed by means of an outdoor Inverse
SAR (ISAR) facility on corner reflector models made from different real world materials
are presented. In [38], we presented a detailed experimental study using polarimetric
laboratory ISAR measurements, which were taken on a scaled building model. In addi-
tion we discussed preliminary results for a meter-resolution airborne image which was a
simulation of a spaceborne acquisition. Both studies confirmed that the double-bounce
effect gives a strong power signature to buildings with walls almost parallel to the SAR
azimuth direction, but decays rapidly in a narrow range of orientation angles.

5.3 Analysis of Real VHR Spaceborne SAR Data

The data that we analyze in this chapter is a pair of ascending and descending high-
resolution spotlight TerraSAR-X images acquired in HH polarization in December 2007
and January 2008 from the city of Dorsten, Germany. Their geometric resolution is 1.1 m
× 1.2 m (azimuth × slant range). The two images were acquired with similar incidence
angles (50.7° for the ascending and 53.8° for the descending image).

This study aims at analyzing the actual double-bounce effect of buildings which are
minimally affected by the scattering from other structures present on walls (e.g., metal
pipes, porch roofs). For complex building facades the backscattering depends rather on
the elements on the facades than on the double-bounce effect itself. In fact, such elements
may interfere with the double wall-ground and ground-wall reflections. Therefore, we
selected a set of candidate buildings which presented simple walls (i.e., no windows and
balconies) with asphalt or grass ground surfaces in the surroundings using the bird’s eye
view data from Bing� maps [116]. We estimated their planar and height dimensions
from the optical images in order to predict their scattering behavior. These estimates
were then confirmed by measuring the return of the buildings on the SAR image. The
expected scattering behavior of a building permitted to locate the position of the double-
bounce stripe, the layover and shadow areas, and the eventual single-bounce stripe due
to an inclined building roof.

The data set included 55 buildings suitable for the extraction of the mean RCS
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value of the expected double-bounce area: 17 residential buildings surrounded by as-
phalt terrain (residential/asphalt), 19 industrial buildings surrounded by asphalt terrain
(industrial/asphalt) and 19 residential buildings surrounded by grass covered soil (res-
idential/grass). We considered buildings with different orientation angles in the range
between 0° and 42°. For larger orientation angles the double-bounce areas of suitable
buildings were not well distinguishable from the surroundings; thus we did not consider
these buildings in the study. In single polarized images, single-bounce backscattering
from the building roofs complicates the extraction of the double-bounce stripes, as in
many cases this contribution is superimposed with the double-bounce stripe itself. In our
observations this occurs mainly when the roof is not facing the SAR sensor and appears to
be related to the roof tile coverage. Buildings showing a single-bounce stripe overlapping
with the expected double-bounce region have not been considered in our analysis. The
RCS of the double bounce is dependent on the area of the building wall, and thus also
on its height. The higher the building, the stronger the double bounce. This needs to
be taken into account when the RCSs of different buildings are compared to each other.
As the empirical measurements refer to buildings with different heights, we considered as
reference a building height of 6.5 m, which is the mean height of the buildings in the data
set, and normalized the RCS values accordingly. The normalization has been performed
taking into account the quadratic and linear dependence of the double-bounce RCS on
the building height for coherent and incoherent scattering, respectively [36, 37]. As the
azimuth resolution is smaller than the building length, we did not consider the length in
the normalization step [36]. The difference of the incidence angles between the two scenes
is about 3°. Based on theoretical models, we confirmed that this variation in incidence
angle only implies a marginal change of the double-bounce RCS, which can be assumed
to be smaller than the error introduced by the analysis process. Hence, we considered the
buildings in the two scenes as they were in a single scene.

The results of the analysis are shown in Fig. 5.8 (crossed points), which show the rela-
tion between the RCS of the corner reflector and the orientation angle per building/terrain
category. The graphs show that buildings with similar orientation angles can have double-
bounce stripes that differ by several dBs. This behavior reflects the fact that in real SAR
data many variables (which are mainly unknown) affect the scattering behavior of sur-
faces, as mentioned in Sec. 5.2. Therefore, our goal was to analyze the overall trend of
the double-bounce effect for each class of buildings, rather than the double-bounce stripe
of individual buildings.

Fig. 5.8a shows the behaviour of the RCS versus the orientation angle for the res-
idential/asphalt case. The graph shows that, on the one hand, the double bounce is
significant in the first 10° orientation angle range, with values in the order of 30 dBs, and
then decreases considerably. The strong part of the double bounce is caused by a strong
coherent scattering. On the other hand, for larger orientation angles, the relevance of
incoherent scattering due to the surface roughness increases and the double-bounce effect
is less pronounced. The results of the analysis of the industrial/asphalt class are reported
in Fig. 5.8b. The trend is similar to that for the residential/asphalt class, but with gen-
erally higher power values. The difference is in the order of 10 dBs. Moreover, the double
bounces of the buildings in the industrial/asphalt class present a sparser distribution.
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Figure 5.8: Relation between double-bounce RCS and orientation angle: collected data (crosses), theo-
retical model (solid line). (a) residential/asphalt category. (b) industrial/asphalt category. (c) residen-
tial/grass category.

117



5.4. Comparison between Empirical Results and Theoretical Models

These two effects can be explained by the variable and inhomogeneous materials used for
industrial buildings, and by the presence of more metal parts that are not as common as
for residential buildings. Finally, Fig. 5.8c depicts the distribution of the double-bounce
RCS for the residential/grass class. Due to the impact of the roughness of the grass
surrounding the buildings (which is expected to be higher than for asphalt grounds) the
contrast between the double-bounce peak at near 0° orientation angles and the remaining
part of the graph is lower than for buildings which are surrounded by asphalt. The peak
power is about 10 dBs lower compared to the residential/asphalt class, while the RCS
decreases with increasing orientation angles in a smoother way, suggesting a pronounced
relevance of incoherent scattering.

5.4 Comparison between Empirical Results and Theoretical

Models

In this section we compare the empirical measurements retrieved in Sec. 5.3 with theoret-
ical models. First, we illustrate the used theoretical models and describe the developed
GO-SPM formulation. Then, after a discussion on the proper selection of the model
parameters, we present and discuss the obtained results.

5.4.1 Theoretical Models

In order to assess whether the trends shown in Sec. 5.3 are in agreement with theoretical
models, we compared the actual data to simulated data obtained with analytic models.
The models approximate the building wall as a smooth surface in order to apply standard
GO rules for the estimation of the scattering from the wall. This allows the calculation
of the area which is illuminated at the ground in closed form by considering a plane
wave reflected by the wall. Hence, no roughness parameters need to be defined for the
wall. The area surrounding the building wall is considered as a rough surface. On the
one hand, the roughness parameters of grass allows for the considered frequency the
estimation of the double-bounce scattering power for the residential/grass class using the
GO-PO approximation proposed in [36]. On the other hand, the analytic models currently
reported in the literature are not valid for slightly rough surfaces like asphalt. Therefore,
we derived a novel model for double-bounce scattering based on GO-SPM. The single
backscattering contribution of the ground and its eventual variations are not taken into
account as they are expected to be negligible compared with the double-bounce power for
the considered incidence angle [36].

For the double bounce modeling, both formulations are composed of two contribu-
tions: a coherent (σDB,c) and an incoherent term (σDB,i). The double-bounce RCS σDB is
obtained by the sum of these two contributions. For the proposed GO-SPM model, the
coherent term corresponds to the scattering from a smooth dihedral corner reflector on
an infinite surface:

σDB,c =

(

k2

π

)

A2
w|ρhh|2sinc2[klw sin(θ) sin(φ)]sinc2

[

khw
sin2(θ) sin2(φ)

cos(θ)

]

(5.1)
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where k = 2π/λ; sinc(x) = sin(x)/x; hw and lw are the height and length of the wall,
respectively; Aw = hl tan(θ) cos(φ). The term ρhh is defined by:

ρhh =2ρ⊥(θ) cos(θ) cos(2φ)Ah + [sin2(θ) sin(2φ) + ρ‖(θ)
(

1 + cos2(θ)
)

sin(2φ)]Bh (5.2)

Ah =− cos2(θ) cos2(φ)ρ⊥w(θw) + sin2(φ)ρ‖w(θw) (5.3)

Bh =cos(θ) cos(φ) sin(φ)
[

ρ⊥w(θw) + ρ‖w(θw)
]

, (5.4)

and ρ⊥(θ), ρ‖(θ), ρ⊥w(θw), ρ‖w(θw) depict the Fresnel coefficients for the ground and the
wall, respectively. θw = cos−1[sin(θ) cos(φ)] is the local incidence angle on the building
wall. The incoherent scattering is given by:

σDB,i = 32Aw|̟hh +̟hv|2 cos4(θ)k4h2RMSW {k sin(θ) [1− cos(2φ)] ,−k sin(θ) sin(2φ), lc}
(5.5)

where W (kx, ky, lc) represents the roughness spectrum using a Gaussian correlation func-
tion and is given by:

W (kx, ky, lc) =
l2c
2
exp

[

− l
2
c

4
(k2x + k2y)

]

. (5.6)

The factors ̟hh and ̟hv are given by:

̟hh = −Ah
(εr,g − 1) cos(2φ)

(cos(θ) +̟C)
2 (5.7)

̟hv = Bh
(εr,g − 1) sin(2φ)̟C

(cos(θ) +̟C) (εr,g cos(θ) +̟C)
, (5.8)

where ̟C =
√

εr,g − sin2(θ) and εr,g is the relative dielectric constant of the ground
surface.

Both the GO-PO and GO-SPM models do not consider the effects of the azimuth
aperture of the SAR sensor in order to achieve a simple analytical solution [117]. These
contributions are expected to be negligible for the scope of this study [36].

5.4.2 Dielectric and Roughness Parameters

To compare the results from the empirical analysis with theoretical models, we first col-
lected the information about the roughness parameters and the dielectric characteristics
of the materials (asphalt, grass, and concrete) from the literature (see Tab. 5.1) [118–122].
Starting from these values we calculated the theoretical curves which give the minimum
RMSE with respect to the data from the real SAR images for each of the three cate-
gories. The fitting has been performed in the validity ranges of the considered theoretical
models [99]. The calculated best-fit parameters are reported in Tab. 5.2.

5.4.3 Analysis of Results

The solid lines in the graphs in Fig. 5.8 show the theoretical RCSs as a function of the
orientation angle in comparison to the measured data from the actual SAR scenes. In
Tab. 5.2 the mean absolute error (MAE) between empirical and theoretical dB RCSs is
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Table 5.1: Roughness parameter and dielectric constant ranges used for the fitting of the theoretical
models to the measured data (εr = ε′r − jε′′r ).

Materials ε′r ε′′r hRMS lc

Asphalt 3–8 0–0.5 0.3–1.4 mm 0.4–2 cm
Grass 3–20 0–7 5–20 mm 0.5–10 cm

Concrete 3–8 0–0.5 - -

reported. Considering the graph for the residential/asphalt category (Fig. 5.8a) the range
in which the coherent term prevails matches correctly with the points characterized by
high RCS values for small orientation angles. However, for large orientation angles the
theoretical model underestimates the double-bounce power. Considering the orientation
angles between 11° and 45°, the empirical mean dB power is −2.74 dB and the MAE is
8.40 dB. The prediction error of the theoretical model is thus considerable. Note that the
best-fit curve is obtained using the upper limits of the parameter ranges for the dielectric
constants and for hRMS (see Tab. 5.2). Using higher values for these parameters results
in a better fit. However, this would imply that the materials are not realistic. Moreover,
higher hRMS values do not fulfill the SPM validity conditions [99]. The industrial/asphalt
category (Fig. 5.8b) shows characteristics similar to the residential/asphalt case. The
prediction error for large orientation angles is higher than for small orientation angles.
In fact, the MAE for orientation angles greater than 10° is equal to 15.17 dB while the
empirical mean dB power in the same range is 3.80 dB. Considering the residential/grass
category (Fig. 5.8c), the theoretical curve has a good agreement with the empirical data.
The contribution of the coherent scattering term is reduced to the first orientation angles
and its strength is much lower than for the residential/asphalt and industrial/asphalt
classes, as expected due to the increased surface roughness of grass with respect to asphalt.

For asphalt surfaces the use of the literature values in the theoretical models did
not reflect the behavior of the empirical measurements sufficiently, especially for high
orientation angles. This can be explained by the presence of metal objects or other small
structures resulting in a relatively strong scattering also at larger orientation angles. For
the grass surfaces the GO-PO model can predict the scattering behavior of the selected
buildings more accurately. However, the range of valid model parameters for grass is very
large (see Tab. 5.1), hampering a precise a priori choice of reasonable general values.
This confirms that, as mentioned in Sec. 5.2, the scattering in urban areas depends on
many variables. Literature values for one material are too specific to describe an extended
surface in an urban area precisely. Therefore, material properties can only be used in an
approximate way in the currently reported analytical electromagnetic models to infer the
rough scattering behavior in an urban area in practical situations.

5.5 Conclusion

In this chapter we presented an empirical study on the behavior of the double-bounce scat-
tering mechanism of buildings in VHR SAR. We focused on the analysis of the strength
of the double bounce with respect to the orientation angle. The study investigated three
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Table 5.2: Material properties and MAE between empirical and theoretical RCS per category.

residential/asphalt industrial/asphalt residential/grass

Building
εr = 8.0− j0.5 εr = 8.0− j0.5 εr = 4.0− j0.05

wall
Ground εr = 8.0− j0.5 εr = 8.0− j0.5 εr = 14.0− j1.0
surface hRMS = 1.4 mm hRMS = 1.4 mm hRMS = 10 mm

lc = 1.8 cm lc = 1.5 cm lc = 5.5 cm
MAE
0° - 10° 16.40 dB 14.06 dB 4.73 dB
11° - 45° 8.40 dB 15.17 dB 3.91 dB
0° - 45° 12.18 dB 14.79 dB 4.25 dB

classes of buildings in two TerraSAR-X images and compared these results with theoret-
ical electromagnetic scattering models. In this context, we presented a novel model for
predicting the double-bounce power based on SPM, which is suitable for urban surfaces
like asphalt.

The results pointed out that the double-bounce effect has a strong power signature
for buildings which have the wall on the sensor close side almost parallel to the SAR
azimuth direction. Furthermore, the strength of the double bounce decays rapidly in a
narrow range of orientation angles, while it decays moderately for larger angles. The exact
characteristic of the decay depends on the material and surface parameters, making the
double bounce a variable feature within the same scene. Therefore, the double-bounce
feature can only be used for reliable building detection and reconstruction by taking into
account its non-linear relation with the orientation angle.

The comparison between the predictions from the theoretical electromagnetic models
based on SPM and PO and the real data showed the general behavior of the double
bounce can be derived with theoretical models. However, the complexity of the actual
scene hampers the reliable calculation of the double-bounce RCS. In particular, in complex
environments such as urban areas, many scattering contributions from small structures
with possibly different materials interfere, which is not considered in the currently re-
ported theoretical models. In order to improve their reliability, more complex models
need to be developed, including these additional contributions. Nonetheless, although
the development of these models is very important from a theoretical viewpoint, the in-
creased number of parameters required by more complex models would make it impossible
to use them in real building detection/reconstruction applications.

The study presented in this chapter demonstrated that the correct behavior of the
double-bounce effect with respect to the orientation angle of buildings can be derived
empirically considering a few real world cases. As it will be shown in Chapter 6, this
result can be integrated easily in practical feature extraction application scenarios, e.g.,
for the development of building detection/reconstruction techniques from meter-resolution
SAR images.
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Chapter 6

A Novel Method for the Automatic

Detection and Reconstruction of

Building Radar Footprints from

Single VHR SAR Images

In this chapter1 we present a novel method for the automatic detection of buildings from
VHR SAR scenes, which also reconstructs the 2D radar footprints of the detected build-
ings. Unlike most of the literature methods, the proposed approach can be applied to single
images. The method is based on the extraction of a set of low-level features from the
images and on their composition to more structured primitives using a production sys-
tem. Then, the concept of semantic meaning of the primitives is introduced and used for
both the generation of building candidates and the radar footprint reconstruction. The
semantic meaning represents the probability that a primitive belongs to a certain scatter-
ing class (e.g., double bounce, roof, facade) and has been defined in order to compensate
for the lack of detectable features in single images. Indeed, it allows the selection of the
most reliable primitives and footprint hypotheses on the basis of fuzzy membership grades.
The efficiency of the proposed method is demonstrated by processing a 1 m resolution
TerraSAR-X spotbeam scene containing flat- and gable-roof buildings at various settings.
The results show that the method has a high overall detection rate and that radar footprints
are reconstructed accurately.

1Part of this chapter appears in:
[123] A. Ferro, D. Brunner, and L. Bruzzone, “An advanced technique for building detection in VHR SAR images,”

in Proc. SPIE Conf. on Image and Signal Processing for Remote Sensing XV, vol. 7477, 2009, pp. 74 770V–
74 770V–12.

[124] A. Ferro, D. Brunner, and L. Bruzzone, “Detection and reconstruction of building footprints from single VHR
SAR images,” in Synthetic Aperture Radar (EUSAR), 2010 8th European Conference on, 2010.

[95] A. Ferro, D. Brunner, and L. Bruzzone, “Building detection and radar footprint reconstruction from single VHR
SAR images,” in Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS), 2010, pp. 292–295.
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6.1 Introduction on Building Detection in VHR SAR Images

As mentioned in the introduction of this thesis, in the last few years VHR spaceborne
SAR sensors acquiring data with meter resolutions became widely available. To a greater
extent, optical imagery at meter and submeter resolution is now also available (e.g.,
QuickBird, Worldview-2). All these data have the potential to be employed for various
important application scenarios, such as the monitoring of changes in urban areas [125,
126], the characterization of urban areas (e.g., slum mapping) [127, 128], the surveillance
of the effects of violent conflicts [29], and the crisis management after natural disasters
(e.g., earthquakes) [28, 129]. For the latter application scenario, spaceborne VHR SAR
sensors, such as COSMO-SkyMed and TerraSAR-X, are of particular interest, due to
their independence on the solar illumination and the relative insensitivity to the weather
conditions.

One of the main drawbacks of VHR SAR is the complexity of the images, mainly
owing to the speckle effect and the side-looking geometry of the SAR sensor, hampering
the interpretation of the data by non-SAR experts. This is especially true for urban areas,
where the data are mainly characterized by layover, multi-bounce and shadowing effects
of the buildings (see Chapter 5). Therefore, to support the widespread usage of VHR
SAR, robust automatic information extraction methods are essential.

Different techniques for building detection and reconstruction from VHR SAR images
have been presented in literature. For instance, Soergel et al. [130] proposed an iterative
technique for building reconstruction from InSAR data, which is based on the detection
of the combined occurrence of a strong scatter line and a shadow area in correspondence
of an elevated region. Cellier et al. [131] presented a building reconstruction technique
for InSAR data based on building hypothesis management. The developed method uses
a tree of hypotheses, which is simplified according to a set of semantic rules. Thiele et
al. [24] proposed an approach to building detection which uses orthogonal multi-aspect
InSAR images. The approach is based on the detection of edges and their combination
to building footprints. A method for the extraction of buildings and the estimation of
their height from stereoscopic airborne radar images was presented by Simonetto et al.
in [132], while in [133] a building extraction method using dual-aspect SAR data was
presented. An algorithm for building reconstruction from multi-aspect polarimetric SAR
(PolSAR) images was presented by Xu and Jin [23]. The polarimetric information is
exploited by employing an edge detector effective on polarimetric images. The retrieved
edges are then parameterized by means of the Hough transform to generate the building
footprint hypotheses. Wang et al. [134] developed a method for the detection of buildings
from single-aspect PolSAR data combining edge and area features with Markov random
fields. Hill et al. [135] presented a semi-supervised method for the estimation of building
dimensions in VHR SAR temporal scenes based on the analysis of the shape of building
shadows. Another method based on shadow analysis which exploits InSAR data and is
suitable for high or isolated buildings was proposed by Tison et al. [136]. A building
detection method using an orthophoto and an InSAR image based on conditional random
fields is presented in [137]. Techniques for the 3D reconstruction of buildings using VHR
optical data for the 2D building footprint reconstruction and a single VHR SAR scene
for the building height extraction were presented in [110] and [138]. Finally, recently a
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technique for the fusion of high resolution optical and SAR images for the updating of
building databases has been proposed in [139]. Such a method exploits a framework based
on Dempster-Shafer evidence theory for the evaluation of the detected building footprints.

All the aforementioned works addressed the problem of building detection and recon-
struction in VHR SAR images by relying on the availability of ancillary or multi-sensor
data (e.g., optical imagery), polarimetric SAR, interferometric SAR, or multi-dimensional
airborne data which implies that the area under investigation is imaged more than once
with different viewing configurations (changed incidence and/or aspect angle). This rep-
resents a limitation for application scenarios with stringent timing restrictions which do
not allow the acquisition of multi-dimensional SAR data (e.g., emergency response). For
these reasons, research on the detection and extraction of buildings from single VHR
SAR data is important. To our knowledge, only very few papers addressed the problem
of building detection with one single meter-resolution SAR images only. One of the few
related works using single VHR SAR images was presented by Quartulli and Datcu [140],
and was based on a stochastic geometrical model and a posteriori probability maximiza-
tion (MAP). Recently, a method for L-shape building footprint extraction from single
SAR images was proposed in [141]. This method fails in the detection of buildings if they
do not show L-shaped returns. Moreover, it considers only bright lines and discards other
relevant features, such as bright areas and shadows.

In this chapter we propose a novel method for building detection and radar footprint
reconstruction from detected VHR SAR images. Unlike most of the literature methods,
it can be applied to single images. Moreover, it is suitable to be used with data acquired
by currently operational spaceborne SAR sensors. In this context, radar footprint refers
to the characteristic scattering signature of buildings in SAR. The method integrates the
concepts of basic feature extraction and their composition to more structured primitives
using a production system [142, 143]. In order to compensate for the lack of detectable
features in single images, the concept of semantic meaning of the primitives is introduced
and used to generate building candidates and reconstruct radar footprints. The semantic
meaning represents the probability that a primitive belongs to a certain scattering class
(e.g., facade, double bounce) and allows the selection of the most reliable primitives and
footprint hypotheses on the basis of fuzzy membership grades.

The main novelties and advantages of the proposed method are: i) the capability to
accurately detect individual buildings using only one SAR scene without the need for
ancillary data, ii) the possibility to estimate the reliability of the detected features and
footprint hypotheses through a set of fuzzy functions, iii) the flexibility to handle gable-
and flat-roof buildings at different sizes and at various settings, and iv) the expansibility
of the approach, which allows the definition of new scattering classes and rules according
to specific image characteristics or user requirements. These characteristics make the
approach valuable for different application scenarios, e.g., damage assessment after crisis
events and change detection in urban areas. In addition, as shown later in the chapter, the
method is suited to the implementation on computer clusters, thereby making it possible
almost-real-time applications.

Some steps in our proposed method have similarities with existing work. For instance,
the method presented in [131] is based on hypothesis management. Since their approach
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relies on submeter-resolution InSAR data the hypothesis are based on different infor-
mation (combination of height and topology) compared to ours (presence and semantic
meaning of scattering features). Moreover, we introduce a way to quantitatively evaluate
the hypotheses to automatically select the best one, which is missing in [131]. Similar to
our approach, the method in [140] uses the layover and double-bounce features for the
reconstruction of buildings. However, this method is based on a global MAP estimation
using Monte Carlo methods, while the approach proposed in this thesis exploits also the
shadow information and introduces the concept of semantic meaning and membership
grade for each primitive and footprint hypothesis. Moreover, such a work was intended as
a tool for the investigation of the limits and merits of information extraction from single
images, and was not optimized for building reconstruction purposes.

The radar footprint map extracted with the proposed method can be used to derive
different information, such as the build-up presence index. It can also be used as a feature
in the classification of the build-up areas (e.g., according to residential and commercial
areas). Indeed, radar footprints in single SAR images lack the information about the exact
dimensions (length, width, height) and the location of the 2D footprint of buildings. In
order to derive them, the method could be combined with an iterative simulation and
matching scheme as presented for instance in [110] for the building height extraction. In
this context, the capability of the proposed method to extract the individual scattering
contributions of a building in the SAR image could be used to improve the matching
function as the simulator is also able to distinguish between the different contributions.

The remainder of this chapter is structured as follows. In Sec. 6.2, we present the
proposed methodology in detail, while Sec. 6.3 discusses the processing of full VHR
SAR scenes using a grid computing infrastructure. In Sec. 6.4 we demonstrate the
performance and the properties of our approach by processing and analyzing a large
meter-resolution TerraSAR-X spotlight mode scene from Dorsten, Germany, which is
characterized by different types of buildings at various settings. Finally, in Sec. 6.5, we
draw some conclusions.

6.2 Proposed Technique for the Automatic Detection and Re-

construction of Building Radar Footprints

The proposed technique for the automatic detection and reconstruction of building radar
footprints from single VHR SAR images is suited for meter-resolution data. Buildings
are assumed to be approximately regular parallelepipeds, with rectangular base, or com-
positions of parallelepipeds. The minimum building size which can be handled by the
algorithm depends on the specific building characteristics. As a reference, buildings with
a base with a main side shorter than 10 m and a height lower than 5 m with no relevant
scattering centers are likely to be not detected in meter-resolution images. The radar
footprints corresponding to very tall buildings have a high probability to be detected.
However, additional features and rules would be necessary (with respect to the algorithm
specifications reported in this chapter) in order to handle properly those situations. The
algorithm does not require the buildings to be isolated. However, it may provide better
results on isolated buildings. In fact, such buildings usually show a clear shadow feature,
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Figure 6.1: Block scheme of the processing chain of the proposed technique for the automatic detection
and reconstruction of building radar footprints in single VHR SAR images.

which is exploited by the algorithm to improve the detection performance. Very close
buildings may be detected as single structures, as we will show in Sec. 6.4.

The proposed technique is composed of six main steps: i) preprocessing and feature ex-
traction, ii) generation of primitives, iii) analysis of primitives, iv) generation of building
radar footprint hypotheses, v) selection of hypotheses, vi) 2D radar footprint reconstruc-
tion. Fig. 6.1 shows a block scheme representing the proposed processing chain. In the
following we describe in detail each step. In this thesis we present the algorithm optimized
for the application to meter-resolution SAR images. However, the general structure of
the algorithm is suitable to handle also higher resolution data. We highlight through-
out the chapter the modifications which would be necessary to apply the algorithm to
submeter-resolution images.

6.2.1 Preprocessing and Feature Extraction

In the preprocessing, the input image is first radiometrically calibrated. Although this
step is not strictly necessary, it permits to define the algorithm parameters to be used
with SAR images of different datasets and data products acquired by either the same or
different sensors. Afterwards, the image is filtered with a Gamma MAP filter [144] in order
to reduce the signal variability due to speckle. Both the unfiltered and filtered images are
used by the algorithm. The basic features composing building radar footprints in VHR
SAR images are extracted from the calibrated image. According to the aforementioned
assumptions on building shapes, these are bright linear features with different thicknesses,
and dark areas. The former are usually related to double-bounce scattering or, as the
line thickness increases, to layover areas, where the roof or the facade scattering may
be dominant depending on the building characteristics. The latter are due to building
shadows and low-return areas (e.g., roads, rivers, lakes). These features are sufficient to
describe the main parts of a building radar footprint in meter-resolution images. However,
as far as resolution increases, other scattering effects due to small structures become visible
(e.g., point scatterers due to pipes on walls) and other types of features may be extracted
to increase the detection performance of the algorithm. In the following, the techniques
used for the extraction of bright linear features and dark areas are described in detail.

Extraction of bright linear features

The extraction of bright linear features is performed on the unfiltered image by means of
the line detector proposed by Tupin et al. in [145]. This detector is based on a three-region
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Figure 6.2: Definition of the window used by line detector.

sliding-window approach and is a well-known algorithm specifically developed for SAR
images. Here we use as reference for the window size the dimension of the central region,
and assume that the lateral regions have the same width and length (see Fig. 6.2). The
length has been set to ten times the resolution of the image and 16 directions have been
considered for the window. As we are interested in both thin and thick linear features,
the detector is applied T times with different increasing window sizes wu (u = 1, . . . , T ).
Each filtering is performed independently. The result of each filtering is a detection map,
which is then thresholded, obtaining binary linear regions which thickness is related to
wu. Such regions are vectorized using a rectangular approximation. This is performed by
approximating the region skeletons with lines and using such lines as the axis of rectangles
of width wu. The region skeletons are extracted according to [146]. In Fig. 6.3 we show
an example of the detection on a meter-resolution SAR image of an urban area using
wu = 5 m. The intermediate results are also shown. For each rectangle, the local contrast
value Cr is calculated on the filtered image as:

Cr =

[

1

|Ain|
∑

p∈Ain

ξ̄p

]

·
[

1

|Aout|
∑

p∈Aout

(

1− ξ̄p
)

]

, (6.1)

where Ain and Aout are the inner region of the rectangle and an outer thick border sur-
rounding it, respectively. The thickness of Aout is defined as wu

2
. |Ain| and |Aout| represent

the number of pixels contained in the regions Ain and Aout, respectively; and ξ̄p depicts
the pixel amplitude value normalized between 0 and 1. For the normalization the im-
age amplitude dynamic range has been thresholded to cover the 99.5th percentile of the
original image histogram in order to reduce the effect of very bright point scatterers.
Cr is a measure of the contrast between the pixels contained in the rectangles and their
surrounding. The higher the difference between the mean amplitude of the two regions,
the higher the value of Cr. This measure has been proposed in [147] and has been used
in [132] for the case of binary images.

As a result of the T filterings we obtain T vector maps containing rectangles corre-
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(a) (b) (c) (d)

Figure 6.3: (a) Meter-resolution TerraSAR-X image of an urban area (© Infoterra). (b) Result of the
line detection using wu = 5 m. (c) Skeletons of the binary regions shown in (b). (d) Rectangles generated
using the skeletons shown in (c).

sponding to bright linear features with different thicknesses. These maps are thus merged
in one map. It is possible that the same real bright objects are detected independently for
different wu, resulting in overlapping rectangles in the merged map. In order to reduce
the number of rectangles, a downselection step is performed by means of a production
net. For each combination of two rectangles (p, q) the net tests the following conditions:
i) the width of the two rectangles is similar, and ii) the two rectangles overlap. Condition
i) is met when:

|wp − wq| < δwmax (6.2)

where wp and wq are the widths of the rectangles, and δwmax is a user-defined threshold
(see Fig. 6.4). Condition ii) is fulfilled when:

A∩ > Ap · At ∧ A∩ > Aq · At (6.3)

where Ap and Aq are the areas of the rectangles, A∩ = Ap ∩ Aq (see Fig. 6.4), and At is
a value belonging to the range (0, 1) set by the user. When conditions (6.2) and (6.3) are
fulfilled, the net discards the rectangle with the lowest contrast, which is the rectangle
associated to the lowest value of Cr.

For the choice of the values of δwmax and At, values on the order of 3 m and 0.5 are
suggested, respectively. Moreover, in our experiments a number of T = 7 filterings using
equally spaced wu between 3 and 15 m has given a good detection of the linear bright
features in the test images using a fixed threshold equal to 0.4 for all the considered wu.

It is worth noting that this downselection step is not strictly necessary for the correct
operation of the proposed technique. However, it greatly reduces the number of extracted
bright linear features, thus improving the overall performance in terms of execution time
and memory requirements of the technique.

Extraction of dark areas

Dark areas are extracted from the unfiltered image by means of mean shift clustering
followed by a threshold operation, according to the approach proposed in [148]. This op-
eration selects only the clusters with amplitude values lower than an user-defined threshold
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Figure 6.4: Measures involved in the rectangle downselection described in the feature extraction step,
and in the primitives generation step.

ξS. The extracted clusters are then vectorized and a simplification procedure is applied in
order to reduce the number of vertexes describing their shape. Such simplification is not
strictly necessary, but it allows the algorithm to work with simpler objects reducing the
needed amount of memory. In order to select only the dark regions which are likely to
be related to building shadows, the algorithm removes the regions which are not located
in the sensor-far side of any bright linear feature (previously extracted). This is done by
keeping only the dark areas which overlap with the predicted shadow area of the bright
features. The predicted shadow area is determined by taking into account the viewing
configuration of the SAR. The maximum range size lS of the expected shadow area is set
by the user. The parameters of the mean shift clustering and the value of ξS have to be
selected by analyzing the amplitude of sample pixels belonging to shadow regions in the
SAR image. In our experiments, reasonable values for ξS were in the order of -13 – -11
dB.

6.2.2 Generation of Primitives

The goal of this step is to generate the primitives that will be used in the following
steps as basis for the composition of building radar footprint hypotheses. Starting from
the set of simple extracted bright linear features and dark areas, the algorithm merges
adjacent features in order to compose bigger objects. This is done by a production system
applied to the vector domain, after a conversion from slant range to ground range, and
is aimed at compensating for errors in the feature extraction step. The conversion from
slant to ground range allows us to define the parameters of the method in the ground
domain, which is independent on the incidence angle and thus simpler to handle for an
end-user. After their generation, composed objects are given as input to the production
system. Therefore, multiple compositions with other simple or composed objects are
possible. The set of objects and productions involved in the generation of primitives is
shown in Fig. 6.5. The composition of dark areas is based only on an adjacency criterion,
represented by productions P1 and P2. For the case of bright linear features, merged
features are generated as new rectangles which have as principal axis the conjunction
of the two farthest points of the principal axes of the original features. The width of
the new rectangles is calculated as the weighted average of the widths of the original
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Figure 6.5: Production net for the generation of dark primitives (DP) and bright primitives (BP). The
inputs of the process are dark areas (DA) and bright linear features (BL), which are composed to large
dark areas (LDA) and large bright linear features (LBL), respectively. The whole set of DA, LDA, BL
and LBL are selected as primitives.

features, using as weights their length. The algorithm merges two bright features when
the following conditions are fulfilled (P3 and P4): i) the features have similar widths, ii)
their orientation is approximately the same, iii) the composed object has an orientation
that is approximately the same of the original features. Condition i) is equivalent to (6.2).
Condition ii) is fulfilled when ψ(p, q) < δψmax, where ψ(p, q) is the angle between the two
linear bright features represented by the rectangles p and q (see Fig. 6.4), and δψmax is
user-defined and indicates the maximum angle allowed between two features for which
they are considered parallel. The value of δψmax should be on the order of 20°. Condition
iii) is satisfied when:

ψ(χ, p) < δψmax ∧ ψ(χ, q) < δψmax, (6.4)

where χ is the rectangle corresponding to the composed bright linear feature. It is probable
that in this step many bright primitives are generated. In order to reduce their number,
a selection procedure as the one described in the previous subsection for bright linear
features can be applied.

At the end of this step, for the whole set of simple and composed objects the algorithm
stores a set of attributes regarding their size and position, and the amplitude features
of the composing pixels (i.e., mean value, standard deviation). The set of simple and
composed objects (with the related attributes) will be considered as set of primitives for
the following steps.

6.2.3 Analysis of Primitives

This step aims at evaluating the semantic meaning of the primitives. Here we use the
term semantic meaning to describe the membership grade of a certain primitive to belong
to a predefined scattering class. Different scattering classes are related to different parts
of building radar footprints. The choice of the set of semantic classes is related to the
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Figure 6.6: Example of sigmoid function Σb(b) defined according to (6.5). br = 2, b0 = 0, Br = 0.95.

types of features extracted from the image and, thus, to the image resolution. For the
bright primitives (i.e., the primitives obtained from bright linear features) we define four
semantic classes: general line, double bounce, roof, and facade. For dark primitives (i.e.,
the primitives obtained from dark areas) only the class shadow has been defined. The
membership grade of each primitive to belong to a certain semantic class is calculated
on the filtered image according to membership functions (MFs) derived empirically for
each semantic class. The MFs are functions of the primitive attributes and describe
the membership grade of a primitive as a number in the range (0,1). The membership
grades to belong to the different semantic classes are calculated independently. Thus, one
primitive can have high membership grade for different classes at the same time. The
different semantic meanings are managed by the proposed technique in the later stages of
the processing chain.

The MFs are defined as a product of sigmoid functions. Each sigmoid factor depends on
a specific attribute of the primitives. A generic sigmoid function is defined as follows [149]:

Σb(b) =
1

1 + e−αb(b−b0)
(6.5)

αb = − ln(1/Br − 1)

br − b0
, (6.6)

where b indicates the attribute which constrains the function (e.g., the coefficient of varia-
tion of the amplitude of the pixels contained in the primitive), Σ(b0) = 0.5 and Σ(br) = Br.
The function Σb(b) gives values in the range (0,1). For each sigmoid function two param-
eters needs to be specified: the value of b for which the sigmoid returns a high likelihood
Br (br), and the value corresponding to the center of the sigmoid (b0), implicitly setting
the slope of the function. Fig. 6.6 shows an example of sigmoid function.

The MFs which relate bright primitives to the relative semantic classes are defined
according to the tree shown in Fig. 6.7. The number of sigmoid functions composing the
MF for a semantic class is smaller or equal to the number of branches which connect the
root to the final leaf. In the following we describe in detail the MFs of each semantic class
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Figure 6.7: Tree representing the semantic classes used in this thesis for bright primitives.

for both bright and dark primitives, by also suggesting the range of parameters which
is most suited for the related scattering class. Unless otherwise stated, such values have
been estimated by analyzing the scattering properties of a set of samples of the considered
scattering classes manually selected on the meter-resolution TerraSAR-X input images
used in this chapter. As the images are calibrated, the suggested values related to pixel
amplitude can be considered generally valid. In the case of images acquired at different
resolution and/or with a sensor with different characteristics, some of the values should
be estimated again. In Sec. 6.4.5 the choice of the parameters is discussed more in detail.

Bright primitives

General line The membership grade of a primitive to the class general line depends only
on its width. The MF is thus defined as

MFGL = Σthin
w (w), (6.7)

where Σthin
w (w) gives a measure of the membership of the primitive to the high-level class

thin line, which depends on the primitive width w. According to the definitions of (6.5)
and (6.6), Σthin

w (w) is controlled by the parameters wthin
r and wthin

0 . The values of these
parameters are chosen to give high values when w is small (e.g., wthin

r = 5 m, wthin
0 = 7 m

for meter-resolution images).

Double bounce As shown in Chapter 5, the double-bounce effect appears in VHR SAR
images as relatively thin bright lines and is more evident when the building wall is parallel
to the azimuth direction, i.e., its orientation angle is close to zero. The MF of the class
double bounce is thus defined as follows

MFDB = Σthin
w (w)ΣDB

φ (φ), (6.8)

where the term φ is the primitive orientation angle, and ΣDB
φ (φ) takes into account the

dependence of the double-bounce effect on φ. ΣDB
φ (φ) has high values when φ is close

to zero. In such a case, the MFs of the classes general line and double bounce give very
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similar values. Proper values for φDB
r and φDB

0 are on the order of 10° and 30°, respectively.
Such values have been chosen according to the results discussed in Chapter 5.

Roof The class roof is the most specific, as it appears as leaf for every branch combi-
nation. This is due to the intrinsic uncertainty given by the fact that we are using only
one VHR SAR image and that we are considering meter-resolution images. Indeed, the
signature of a building roof could be either a thin line (e.g., in the case of gable-roof
buildings with high orientation angle), or a homogeneous rectangular area (e.g., flat roof
buildings), or a non-homogeneous rectangular area (e.g., flat roof buildings with metal
structures on the roof, which are common for industrial buildings). Therefore, for the
class roof the final membership grade is calculated as the maximum of the membership
grades given by the three MFs corresponding to the three occurrences of the class in the
tree. These are defined as:

MF′
R = Σthin

w (w) (6.9)

MF′′
R = Σthick

w (w)Σhom
ζ (ζ) (6.10)

MF′′′
R = Σthick

w (w)Σnon-hom
ζ (ζ). (6.11)

Finally, we obtain:

MFR = max {MF′
R,MF′′

R,MF′′′
R} . (6.12)

The definition of Σthick
w (w) is complementary to that of Σthin

w (w). As a requirement,
to cover the whole possible range of primitive thicknesses it is necessary that wthin

r =
wthick
r . This assures that any value of w is mapped either in the thin line or thick line

classes with high membership grade (greater than Br). Fig. 6.8 shows the behaviors
of the complementary MFs Σthin

w (w) and Σthick
w (w) that are used in this thesis. The

same considerations hold for the definition of Σhom
ζ (ζ) and Σnon-hom

ζ (ζ), which indicate the
degree of membership of a primitive to the classes homogeneous and non-homogeneous,
respectively. These refer to the homogeneity of the pixels contained in the primitive. The
homogeneity is measured using as parameter the coefficient of variation ζ of the pixels.
Reasonable values for wthick

0 , ζhomr = ζnon-homr , ζhom0 and ζnon-hom0 are on the order of 2 – 3 m,
0.3 – 0.35, 0.45 – 0.55, and 0.15 – 0.3, respectively. Thanks to these constraints, the tree
representing the semantic classes covers all the possible combinations of attributes taken
into account in this thesis. In the specific case of the class roof, (6.12) shows that the
membership grade is always greater or equal to B2

r . This is in line with the aforementioned
issue of the uncertainties related to the radar signature of building roofs.

Facade As reported in the tree of Fig. 6.7, the semantic class facade includes primitives
with a relevant width and which pixels have non-homogeneous values. This is the general
scattering behavior of building facades, where returns coming from structures like windows
or balconies (often made of metal) give a strong textured signature in the radar footprint.
As a further constraint, the orientation angle of the building should not be too high (i.e.,
the building should not be perpendicular to the azimuth direction). Indeed, the facade
scattering area in the radar footprint becomes smaller with increasing orientation angles.
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These factors are taken into account in the definition of the facade MF as follows:

MFF = Σthick
w (w)Σnon-hom

ζ (ζ)ΣF
φ(φ), (6.13)

where ΣF
φ(φ) models the effect of the building orientation angle φ by penalizing primitives

with high orientation angles (e.g., φF
r = 70° and φF

0 = 80°). As mentioned at the beginning
of this section, we do not include in our analysis very high buildings, for which the facade
scattering area can have different characteristics.

Dark primitives

For dark primitives only the semantic class shadow has been defined. The MF of this
class takes into account the mean and the coefficient of variation of the pixels contained
in the primitive. It is defined as:

MFS = ΣS
µ̃(µ̃)Σ

hom
ζ (ζ), (6.14)

where ΣS
µ̃(µ̃) is the sigmoid functions depending on the pixel mean µ̃. The MF is tuned in

order to penalize dark primitives with high mean value and high coefficient of variation.
Our experiments pointed out that reasonable values for ΣS

µ̃(µ̃) are µ̃S
r ∈ (−14,−12) dB

and µ̃S
0 ∈ (−9,−8) dB.

6.2.4 Generation of Building Radar Footprint Hypotheses

In this step the algorithm creates building radar footprint hypotheses starting from the set
of primitives. The hypotheses are generated according to a set of rules and the process
is performed by means of a production system. Fig. 6.9 summarizes the generation
process. A footprint hypothesis is generated when i) two bright primitives, or ii) two bright
primitives and one dark primitive, or iii) one bright primitive and one dark primitive are
close each other and have a relative position compatible with the viewing configuration of
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Figure 6.9: Production net for the generation of building radar footprint hypotheses (FH) starting from
the set of bright primitives (BP) and dark primitives (DP).

the SAR sensor (i.e., dark primitives are located in the sensor-far side of bright primitives).
The three cases are described by the productions P5, P6 and P7 of Fig. 6.9. The generation
is thus based only on the vicinity criterion, and many hypotheses are usually created
for the same actual building radar footprint. The vicinity is checked by measuring the
minimum distance between the primitives. A proper value for the maximum distance
allowed between two primitives is the value δd0 used in the selection of hypotheses (see
Sec. 6.2.5). As it will be shown in Sec. 6.2.5, on the one hand if two primitives have a
distance greater than δd0 they produce footprint hypotheses which are associated to low
scores by the algorithm. On the other hand, a distance threshold shorter than δd0 would
discard hypotheses which may be associated to high scores.

The order in which the bright primitives are aggregated is also taken into account, i.e.,
at least two hypotheses will be generated for each pair of bright primitives. The choice of
using a maximum number of two bright primitives depends on the image resolution and on
the types of features used in this thesis. In meter-resolution images an average building
radar footprint can be usually described effectively by the combinations considered in
this thesis. In the case more types of features are extracted from the image or decimeter-
resolution images are used, more combinations of primitives become relevant.

6.2.5 Selection of Hypotheses

As mentioned in the previous subsection, many hypotheses are generated by aggregating
the primitives. At this stage the algorithm selects only the most reliable hypotheses, which
will be used in the next step as starting point for the 2D radar footprint reconstruction.
Therefore, the output of this step is a map containing the detected (but not reconstructed)
building radar footprints. This means that the output map is composed by footprint
hypotheses which are still not refined.

The reliability of each hypothesis is evaluated on the basis of a score. The score is
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computed from the membership grades of the primitives composing each hypothesis. The
general form of the score equation for a building radar footprint hypothesis h̃ is given by:

Sh̃ = nh̃max
p,q

{Ξh̃(p, q)Mh̃(p, q)}Zh̃, (6.15)

where nh̃ depends on the number of primitives composing the hypothesis, Ξh̃(p, q) and
Mh̃(p, q) are related to the relative position and to the membership grades of the bright
primitives, respectively, and Zh̃ depends on the membership grade and position of the
dark primitive. (p, q) indicates the combination of the semantic class p of the first bright
primitive and the class q of the second bright primitive. All these factors belong to the
range [0,1]. The overall value of Sh̃ thus belongs to the same range. In the following we
describe in detail each term of the equation:� nh̃: for the case presented in this thesis, when the hypothesis h̃ includes three prim-

itives (i.e., the maximum number allowed), then nh̃ = 1. In the case one primitive
is missing, it takes the value nh̃ = n′

h̃
< 1, which is set by the user. This term is

thus related to the reliability assigned by the user to the candidates composed by a
non-complete set of primitives.� Ξh̃(p, q): this term depends on the relative position of the bright primitives in the
radar footprint hypothesis. In this thesis, only the classes general line and double
bounce are considered for the first bright primitive, and the classes roof and facade
for the second bright primitive. It is worth noting that the technique also considers
the case in which the bright primitives are switched, as in the hypotheses generation
step different hypotheses are created taking into account also the order in which the
bright primitives are aggregated. If only one bright primitive is present the value
of Ξh̃(p, q) is 1. When two bright primitives are included in the hypothesis and the
first bright primitive is closer to the SAR flight path than the second primitive, its
value is 0. Indeed, for the considered cases, scattering from double bounce or any
other linear scattering feature of a building (associated to the first bright primitive)
cannot precede in range the scattering from the roof and from the facade (which are
associated to the second bright primitive). At most, the scattering area of double
bounce and other lines are contained in that of roof and facade. When this condition
is fulfilled, the value of Ξh̃(p, q) is calculated differently depending on the combination
(p, q). In detail, Ξh̃(p, q) is calculated as follows:

Ξh̃(p, q) =

{

Σclose
δd (δdfs)Σ

parallel
δψ (δψpa) if p=double bounce, q=facade

Σclose
δd (δd)Σparallel

δψ (δψmin) otherwise,
(6.16)

where δdfs is the distance between the first bright primitive and the sensor-far side of
the second bright primitive oriented in its principal direction, and δψpa is the angle
between them (see Fig. 6.10). δd is the distance between the two bright primitives.
Distances are measured in terms of minimum distance between the considered ob-
jects. The distance to the sensor is calculated considering an infinite line located
outside the image with a position and angle compatible with the viewing configura-
tion of the SAR. If one bright primitive overlaps with the other, δd = 0. δψmin is
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defined as:
δψmin = min {δψpa, δψsa} (6.17)

where δψsa is the angle between the first bright primitive and the secondary axis of the
second bright primitive (see Fig. 6.10). The functions Σclose

δd (δd) and Σparallel
δψ (δψ) give

values close to 1 when their argument is small. The definition of Ξh̃(p, q) thus assures
that its value is close to 1 when the bright primitives are both close and oriented
parallel or perpendicularly to each other. For the combination double bounce/facade
the condition is more strict and requires that the two primitives have their principal
axis oriented in the same direction, and that the supposed double-bounce line is
located at the sensor-far side of the facade scattering area (see Chapter 5). Proper
values for δdr and δd0 are on the order of 3 m and 10 m, respectively. Regarding δψr
and δψ0, values on the order of 10° and 30° are suggested.� Mh̃(p, q): this factor depends on the membership grades of the bright primitives
composing the footprint hypothesis and on their size. When only one bright primitive
is present, it reduces to Mh̃(p) and its value is equal to the membership grade of the
primitive to the class p. If two bright primitives are present, it is calculated in the
following way:

Mh̃(p, q) =
M ′

h̃
(p, q) +M ′′

h̃
(p, q)

2
(6.18)

M ′
h̃
= MF1,p ·MF2,q (6.19)

M ′′
h̃
=
A1 ·MF1,p + A2 ·MF2,q

A1 + A2
, (6.20)

where MF1,p indicates the membership grade of the first bright primitive to the
class p, and MF2,q is the membership grade of the second bright primitive to the
class q. A1 and A2 are the areas of the first and of the second bright primitives,
respectively. The definition of Mh̃(p, q) permits to obtain reliable scores also for
particular combinations of bright primitives. For instance, if one of the two bright
primitives has a very low membership grade, the term M ′

h̃
(p, q) becomes very small

and the overall value of Mh̃(p, q) will be low (in the limit, Mh̃(p, q) =
M ′′

h̃
(p,q)

2
≤ 0.5).

Instead, the term M ′′
h̃
(p, q) takes into account the area of the bright primitives. As

a result, the value of M ′′
h̃
(p, q) depends more on the larger bright primitive.� Zh̃: this term is function of the membership grade to the class shadow of the dark

primitive, and on its position in the radar footprint hypothesis with respect to the
bright primitives. It is calculated as:

Zh̃ = MFS · Σclose
δd (min {δd1,S, δd2,S}), (6.21)

where δd1,S and δd2,S are the distances of the dark primitive from the first and the
second bright primitive, respectively (see Fig. 6.10).

On the basis of the value of Sh̃, the algorithm deletes all the radar footprint hypotheses
for which Sh̃ < Sh̃,min, where Sh̃,min is an user-defined threshold. After this first selection,
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Figure 6.10: Measures involved in the calculation of the term Ξh̃(p, q).

many hypotheses with high values of Sh̃ may still overlap in correspondence of actual
building radar footprints (e.g., composed by different combinations of primitives). There-
fore, the algorithm selects amongst the overlapping hypotheses only the one with the
highest value of Sh̃.

6.2.6 2D Radar Footprint Reconstruction

The 2D radar footprint reconstruction aims at refining the detection of both, the bright
part and the dark part (if present) of the footprint hypotheses selected in the previous
step. This is performed in order to reduce the effect of imprecisions coming from the
feature extraction and primitive generation steps, and to provide reliable outputs which
can be used to estimate parameters of the buildings, such as their length, width and
height (with the limitations imposed by the fact that only a single image is available).
The result of this procedure is thus the final map of the building radar footprints detected
and reconstructed from the input VHR SAR image.

As a first step, the algorithm generates for each footprint hypothesis a best-fit rect-
angle which includes its bright primitives. If only one bright primitive is present, the
best-fit rectangle and the bright primitive match. The local contrast Cr of the rectangle
is calculated according to (6.1). Then, the rectangle is translated, rotated, expanded and
shrunk with the goal to maximize Cr. The maximization is carried out using a Parti-
cle Swarm Optimization approach (PSO) [150], which is a well-known iterative method
suited for the optimization of problems without a priori assumptions. A similar approach
was applied in [132] for binary images and using a different optimization strategy. The
rectangles which become smaller than the minimum sizes set in the previous steps of
the algorithm are deleted. Moreover, it is possible that some rectangles move and over-
lap. Therefore, the algorithm deletes overlapping rectangles, and thus the corresponding
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footprint hypothesis, keeping only the rectangles associated to the hypotheses with the
highest scores.

A refinement procedure is carried out also for the dark part of the footprint hypothesis,
when it is present. In fact, a good knowledge of the size of the shadow area of a building
can be exploited for the retrieval of the building height [110]. The refinement aims at
expanding the dark primitive on pixels with amplitude values similar to those of shadows
in the sensor-far side area of the reconstructed bright primitive. To this end, the center
of the dark primitive is used as seed for a region growing algorithm which, starting from
an initial circular contour, stretches its border to fit the dark area around the seed.
The chosen implementation is a level-set algorithm [83] which moves the contour by
including the pixels which have amplitude values in the range [0, µ̃S

r ] (µ̃
S
r has been defined

in Sec. 6.2.3). The resulting regions are cut in the azimuth direction in order to match
the extension of the reconstructed bright part of the footprint hypothesis. Indeed, the
reconstructed regions are associated to building shadow areas, which cannot be larger
than the corresponding buildings in the azimuth direction. The size of the reconstructed
dark areas in the range direction depends only on the radiometric measurements in the
image. As the proposed technique uses as input only one VHR SAR image and no a
priori information is available, it is not possible to detect the end of the shadow region by
other means. This may lead to shadow areas which are longer than real shadows because
of low scattering areas behind the buildings (e.g., roads, parking lots). This problem can
be partially mitigated by imposing a maximum shadow range size lS set by the user as in
Sec. 6.2.1. Shadows longer than lS are cut to lS, and a flag is set to notice the user about
the lower reliability of the reconstructed shadow.

6.3 Analysis of Large VHR SAR Scenes

The technique proposed in this chapter can be used in many application scenarios, e.g.,
the detection of changes in urban areas aimed at the quick assessment of damages after a
natural disasters. For these applications it is important to process entire scenes in a fast
manner. However, the processing chain described in the previous section is demanding
both in terms of computation effort and memory requirements. This reduces the size of
the input images that can be analyzed to a small subset of an actual VHR SAR scene,
thus limiting the potential application of the method in real scenarios. In particular, the
amount of resources required by the proposed technique depends directly on: i) the size of
the input image, mainly for the parts of the algorithm based on image filtering and feature
extraction (i.e., despeckling and line detection); and ii) the number of primitives and
hypotheses generated through the processing chain. The latter is the most relevant factor
that defines the complexity of the method. Indeed, the amount of required resources shows
a non-linear dependence on the number of objects inserted in the production systems used
in the processing chain. Although the number of primitives and hypotheses depends on
the size of the input image, it also depends on the type of imaged area. As an example,
two images of the same size covering a urban area and a rural area will produce a different
number of primitives, with the greater number of primitives from the urban area.

In order to face these problems, we extended the algorithm to operate in a computer
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Figure 6.11: Proposed computing architecture to perform the building detection and reconstruction
method on large VHR SAR scenes.

cluster infrastructure. In such a framework, the nodes in the cluster process different
subsets of the input image in parallel. Each subset contains only few primitives, and thus
also a reduced number of footprint hypotheses. This enables us to apply the proposed
technique on large scenes in a fast way on state-of-the-art hardware. In Fig. 6.11 a block
scheme of the considered simple architecture is presented. As a first step, the VHR SAR
image is split into tiles. Every tile overlaps with its neighbors to assure that buildings
located at the tile borders are detected and reconstructed properly at least in one tile.
Then, the tiles are distributed across the nodes which independently execute the proposed
method. Finally, the results for each tile are merged in order to generate the final radar
footprint map for the entire input scene. When footprint hypotheses coming from different
tiles overlap on tile borders, the algorithm selects the ones with the highest score.

6.4 Experimental Results

In this section we show the results obtained by applying the proposed methodology to
a real meter-resolution large SAR image. After a brief description of the used dataset,
we show and analyze qualitatively the results obtained on the whole image following the
grid-computing approach described in Sec. 6.3. Then, we focus on two subsets of the
image in order to assess quantitatively the accuracy of the method.

6.4.1 Dataset Description

The effectiveness of the proposed method has been tested on the ascending spotlight
TerraSAR-X image of the city of Dorsten, Germany, used also in Chapter 5. The image
has a geometrical resolution of approximately 1.1 m × 1.2 m (azimuth × slant range).
The incidence angle varies between 50.3° and 51.0°. The original scene has been cut to a
subset of 2800 × 3712 pixels, covering an area of approximately 10 km2. The cut includes
both urban and rural areas. Urban areas are characterized by both flat- and gable-roof
buildings at various settings. Fig. 6.12 shows the SAR test image and an optical image
corresponding to the same area taken from Google� Maps [151].
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(a)

(b)

Figure 6.12: (a) TerraSAR-X image used for assessing the effectiveness of the proposed technique (© In-
foterra). (b) Optical image taken from Google� Maps of the investigated area (© Google).

6.4.2 Results on the Entire Scene

The proposed method has been run using the parameters reported in Tab. 6.1, Tab. 6.2
and Tab. 6.3. The values of such parameters have been chosen according to the guidelines
given in Sec. 6.2. The results obtained are shown in Fig. 6.13. The method shows in
overall a high detection rate. False alarms are mostly related to the scattering from
objects different from buildings (e.g., trees, garages) that show radar footprints similar
to those of buildings. A particular case is represented by bridges, which have been also
detected. Such structures can be easily masked, either using a priori information about
the presence of rivers, or by extracting the rivers directly from the SAR scene [152].
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Figure 6.13: Building detection and radar footprint reconstruction obtained by the proposed technique
on the SAR image of Fig. 6.12a. Only the bright parts of the reconstructed building radar footprints are
shown.

Table 6.1: Parameters used in the feature extraction and primitive generation steps in the experiments
carried out with the proposed technique.

Parameter Value

T 7
w1, . . . , w7 3,5,. . . ,15
δwmax 3
At 0.5
ξS -12.2 dB
lS 30 m

δψmax 20°
The radar footprints of complex buildings which do not correspond to the rectangular
model used in this thesis are mostly detected with some reconstruction errors (e.g., the
radar footprint has been split in more parts). In general, the proposed method detected
and reconstructed quite precisely the radar footprints of medium- and big-size buildings
that fulfill the rectangular model. Radar footprints of small adjacent buildings aligned
in regular patterns are also detected, but in some cases are considered as belonging to a
single building. Small buildings which do not show clear features are not detected by the
method. However, considering the use of a single SAR image, the results can be considered
qualitatively very satisfactory. Moreover, it is worth noting that if the proposed method
is applied in order to derive indexes of the presence of buildings, reconstruction errors
(i.e., split and merged buildings) do not represent a critical issue. In order to analyze
quantitatively and in greater detail the results achieved by the proposed method, in the
following we focus on two subsets of the test image.
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Table 6.2: Parameters used in the analysis of primitives step in the experiments carried out with the
proposed technique.

Parameter Value

Br 0.999
wthin

r , wthin
0 5 m, 7 m

wthick
r , wthick

0 5 m, 3 m
φDB
r , φDB

0 10°, 30°
ζhomr , ζhom0 0.3, 0.5

ζnon-homr , ζnon-hom0 0.3, 0.2
φFr , φ

F
0 70°, 80°

µ̃S
r , µ̃

S
0 -13.6 dB, -8.6 dB

Table 6.3: Parameters used in the selection of hypotheses and 2D radar footprint reconstruction steps in
the experiments carried out with the proposed technique.

Parameter Value

n′
h̃

0.8

δdr, δd0 3 m, 10 m
δψr, δψ0 10°, 30°
Sh̃,min

0.7

6.4.3 Results on the Subset 1

Fig. 6.14 shows the area corresponding to the subset 1 in both the SAR and optical
images. This area is characterized by both flat- and gable-roof buildings with different
sizes and orientations. In particular, the upper part of the image contains mainly medium
to large buildings, while the bottom part includes smaller buildings, which are also often
joined together and surrounded by gardens with other man-made structures or trees. In
order to assess the performance of the proposed technique, we consider the correct/missed
and false building detection rates and correlate such results with the size of the buildings.
The number of split or merged buildings is also counted. The planar area of the buildings
(length × width) has been estimated using the optical image. The set of buildings present
in the investigated area has been divided into three subsets: small, medium and large.
Each subset corresponds to a different range of planar areas. Buildings are considered to
be small if their planar area is smaller or equal to 200 m2, medium if the area is between
200 and 400 m2, and large if it is greater than 400 m2. Tab. 6.4 reports the number of
buildings for each size class in the subset 1 and the number of buildings correctly detected
given by the proposed technique. As it is difficult to measure numerically the accuracy
of the reconstruction of the building radar footprints, here we only evaluate the detection
performance of the algorithm in terms of footprints detected in correspondence of actual
buildings. The detections have been checked manually by comparing the SAR image,
an optical image of the same area, and the positions of the footprints extracted by the
algorithm. A building is considered detected if the algorithm extracted a footprint in
correspondence of the actual building footprint. Fig. 6.14e shows the correct and missed
detection on the optical image. The results point out that the overall detection rate of the
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(a) (b) (c)

(d) (e)

Figure 6.14: Subset 1: (a) original TerraSAR-X image of the considered area, viewing direction from left
(© Infoterra); (b) reconstructed bright parts of the detected building radar footprints on the SAR image;
(c) reconstructed building radar footprints on the SAR image: (yellow) bright parts, (red) dark parts;
(d) optical image (© Google); (e) optical image with detected and missed buildings for each building
size class: (green) large, (yellow) medium, and (red) small. Detected and missed buildings are highlighted
with filled and empty rectangles, respectively.

proposed technique is high, especially considering that the method is unsupervised and
works on a single meter-resolution VHR SAR image. The performance of the technique
is very good for medium and large buildings, while small buildings result in a higher
number of missed alarms. This expected result is due to the fact that small buildings in
meter-resolution images often do not show the scattering features used by the proposed
technique. On the one hand, the number of split buildings is 1, 4 and 2 for the classes
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(a) (b)

Figure 6.15: Example of bright part of a radar footprint hypothesis (a) before, and (b) after the 2D
footprint reconstruction step.

small, medium and large, respectively. Therefore, as far as building size increases, the
probability that the technique splits the radar footprints in more parts increases. On the
other hand, as far as building size decreases, the probability that the radar footprints of
adjacent buildings are detected as a single one increases. In fact, the number of merged
buildings is 9 for the class small, 3 for the class medium and 1 for the class large. The
number of false alarms in building detection is 11. The size of the bright part of the false
building radar footprints has been measured on the SAR image and false alarms have
been divided in small, medium and large according to the same rules used for building
planar sizes. Although the two measurements considered (i.e., area of false building radar
footprints and planar area of real buildings) are different, the use for false alarms of the
same classes as for real buildings allows us to give an indication on the types of false alarms
produced by the proposed method. As shown in Tab. 6.4, false alarms are mostly related
to small radar footprints. By comparing the SAR image to the optical image it is clear
that false alarms usually correspond to other man-made structures (e.g., garages) or trees
which show radar signatures that are very similar to those of buildings. Such false alarms
are also difficult to be detected by an expert human interpreter without other sources of
information (e.g., a reference optical image). The footprints reconstructed by the proposed
technique are usually accurate for medium and large buildings. As an example, Fig. 6.15
shows the refinement of the bright part of a footprint hypothesis after the 2D footprint
reconstruction step. For small buildings the radar footprints are often reconstructed with
lower accuracy. Fig. 6.14c shows also the detected (and reconstructed) building shadows.
The proposed technique extracted with good accuracy most of the shadow areas related
to the detected building radar footprints. This result can be used for further estimations
on the building sizes, e.g., for estimating building heights [110]. However, it is worth
noting that in many cases shadow areas are limited by adjacent buildings, thus reducing
their usefulness for height extraction purposes.
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Table 6.4: Algorithm performance for Subset 1, Subset 2 and Subset 1 + Subset 2 in terms of number of
detected buildings, false alarms, split and merged buildings per building class.

Building size
Number of

Detected
False

Split Merged
buildings alarms

Subset 1
Large 21 19 0 2 1

Medium 26 22 2 4 3
Small 66 35 9 1 9

Subset 2
Large 12 12 0 4 0

Medium 27 23 2 4 3
Small 53 34 9 1 8

Subsets 1+2
Large 33 31 0 6 1

Medium 53 45 4 8 6
Small 119 69 18 2 17

6.4.4 Results on the Subset 2

The area corresponding to the subset 2 is shown in Fig. 6.16. This area is characterized
by a large number of trees located along the streets (in Fig. 6.16d it is possible to see
their shadows). Such trees often mask the radar returns also from medium-sized buildings.
Moreover, small buildings are usually quite irregular, and show many structures on their
walls. This subset is thus a challenging benchmark for the proposed technique. Tab. 6.4
reports the results obtained for the subset 2, and Fig. 6.16e shows the correct and missed
detections on the optical image. As for the subset 1, the detection rate for the classes
large and medium is very good. For the class small performance are less satisfactory.
The number of split buildings is 1 for the class small, 4 for the class medium and 4 for
the class large; while the number of merged buildings is 8 for the class small and 3 for
the class medium. The total number of false alarms is 11. As for subset 1, the most of
them are related to small false building radar footprints. In overall, considering the issues
mentioned at the beginning of this paragraph and the limited amount of information
used by the proposed technique, the results can be considered very good. In order to
provide a more general view of the results obtained by the proposed method, Tab. 6.4
also reports the overall results computed by summing the results of the subsets 1 and 2.
The total statistic confirms the trend highlighted for the single subsets, i.e., the algorithm
has a high detection rate for medium and large buildings, with a limited amount of
false alarms, whereas its performance decreases in the case of small buildings, which are
associated to most of the total number of false alarms. It is worth noting that it is possible
to mitigate this problem by imposing a rule for discarding the footprints smaller than an
user-defined minimum footprint size. As a consequence, the number of false alarms would
be considerably reduced and the detection of small buildings would not be a target of
the method anymore. This is a reasonable strategy to adopt for tuning the proposed
technique only on the detection of medium and large buildings.
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(a) (b)

(c)

(d) (e)

Figure 6.16: Subset 2: (a) original TerraSAR-X image of the considered area, viewing direction from left
(© Infoterra); (b) reconstructed bright parts of the detected building radar footprints on the SAR image;
(c) reconstructed building radar footprints on the SAR image: (yellow) bright parts, (red) dark parts;
(d) optical image (© Google); (e) optical image with detected and missed buildings for each building
size class: (green) large, (yellow) medium, and (red) small. Detected and missed buildings are highlighted
with filled and empty rectangles, respectively.

6.4.5 Selection of Algorithm Parameters

The tuning of the parameters has been performed according to the scene investigated.
However, some parameters are not strictly related to the image analyzed, and can be set
a priori following general rules. Moreover, many of the considered parameters have a
clear physical meaning that helps the user to include its prior knowledge on the scene in
the detection algorithm. In addition to the guidelines already provided in Sec. 6.2, in this
section we analyze more in detail the role of the parameters of the proposed method.
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Feature extraction and primitive generation

In these steps the main parameters of the proposed technique are related to the detection
and generation of bright rectangles, and to the extraction of the shadows. The possible
range of values for the window of the line detector wu should be set between the expected
thickness of thin linear features and the maximum size of the buildings which has to be
extracted. The sampling of the range of wu, given by the number of filterings T , should
assure that most of the linear features can be effectively modeled with the considered
values of wu. The minimum value for δwmax has to be greater than the width sampling
resulting from the definition of the values of wu. On the one hand, a value smaller than this
quantity would not allow the algorithm to downselect effectively the rectangles produced
in the feature extraction step. Moreover, the procedure for the generation of primitives
would combine only rectangles with approximately the same width. On the other hand,
a value much greater than the width sampling would make the algorithm to downselect
too many rectangles, and combine features with much different widths. According to our
tests, a good choice for the value of δwmax is 1.5 times the width sampling used in the
line detection. Regarding the parameters At and δψmax, high values for At and low angles
for δψmax make conditions (6.3) and (6.4) too stringent, respectively. By setting At = 0.5
and δψmax = 20° we obtained the best results in our experiments. Note that these settings
are general and do not depend on the image under analysis.

As mentioned in Sec. 6.2.1, the choice of the value of ξS depends on the characteristics
of the shadow regions in the SAR image. The results obtained with different values for
ξS showed that the detection and reconstruction of the shadows is not sensitive to slight
variations of the parameter. The choice of lS depends on the maximum expected height
of the buildings present in the scene (and thus of their shadows). Thus, this parameter
should be set according to the acquisition incidence angle and to prior information on the
scene. However, if no a priori information is available, a large value can be set. This does
not affect significantly the detection of the radar footprints. In fact, footprint hypotheses
including dark primitives which are not close to bright primitives (which have been kept in
the feature extraction due to a large lS) are penalized by the term (6.21) in the selection of
hypotheses. Thus, only the reconstruction step is affected by the choice of lS, as shadows
can grow further.

Analysis of primitives

In this step the main parameters to be set are those related to the membership functions
defined for the different scattering classes. The choice of the value of Br is not critical,
and Br = 0.999 can be considered as a fixed value. The parameters wthin

r = wthick
r , wthin

0 ,
and wthick

0 used in this chapter can also be considered general. Indeed, they are given in
meters, so that they do not depend on the resolution of the system. According to our
tests, by setting wthin

r = wthick
r to a value 2-3 m greater than the expected thickness of the

linear signatures due to the double-bounce effect give the best results, as the procedure
which creates rectangles from the output of the line detector may overestimate their actual
thickness.

The values of the parameters φDB
r , φDB

0 , φF
r , and φF

0 are defined on the basis of our
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experience in analyzing VHR SAR images. These values are also general, and can be
considered valid for most images of urban areas. The main studies carried out specifically
on the relation between the double-bounce effect and the orientation angle of buildings
has been described in Chapter 5.

The choice of the values ζhomr = ζnon-homr , ζhom0 , and ζnon-hom0 depends on the characteris-
tics of speckle in the considered image. As the membership functions are evaluated on the
GMAP filtered image, different parameters applies for different filterings. Similarly, these
parameters depend on the image resolution, as speckle develops differently on the same
target depending on resolution. For these reasons, the correct choice of these values in
terms of capability to model effectively homogeneous and non-homogeneous areas comes
after a proper optimization of the GMAP filtering parameters.

The last parameters used in this step are µ̃S
r and µ̃S

0. As for ξS, these values depend
on the characteristics of shadows in the SAR image. According to our experiments, µ̃S

r

and µ̃S
0 should be set about 1.5 dB lower and 3-4 dB greater than ξS, respectively. This

allows one to obtain a quite smooth term ΣS
µ̃(µ̃) in (6.14). Indeed, the mean amplitude of

a dark region corresponding to a shadow may be biased by the interference of surrounding
structures which increases its value. Thus, using a sharp ΣS

µ̃(µ̃) would make the algorithm
to discard possible real shadows.

Selection of hypotheses and 2D radar footprint reconstruction

As mentioned in Sec. 6.2.5, the parameter n′
h̃
is related to the reliability assigned by the

user to the footprint hypotheses composed by only two primitives. In our tests, by setting
this parameter to higher values resulted in detection maps with less hypotheses composed
by three primitives, as expected. This does not affect significantly the detection rate of
the proposed method, but it increases the probability that the extracted footprints are
not well-reconstructed (e.g., shadows are missing even though they were detected). On
the contrary, by setting n′

h̃
to low values would increase the number of missed detections.

Therefore, the choice of n′
h̃
should be done by the user as a trade-off between reliability

of the reconstruction and detection performance.

The pair of parameters (δdr, δd0) and (δψr, δψ0) are related to the vicinity and relative
orientation of the primitives, respectively. The values proposed in this chapter can be
considered general for the defined scattering classes. Note that using these values the
sigmoid functions present in (6.16) and (6.21) are quite smooth, thus mitigating the effect
of possible errors in feature extraction.

The last parameter to be discussed is Sh̃,min. This parameter gives the trade-off between
false and missed detections. According to our tests, the use of high Sh̃,min results in a
greater number of missed detections, as expected. However, the number of false alarms
is not reduced significantly. Indeed, these are usually related to footprints of other man-
made structures, or trees, which actually appear as related to buildings. For this reason,
values in the order of 0.6-0.7 are suggested.
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Radar Footprints from Single VHR SAR Images

6.4.6 Computational Load

The test image described in Sec. 6.4.1 has been processed using a cluster composed by 16
AMD® Opteron� 6172 CPUs, for a total of 192 cores, with 4 GB of RAM per core. The
image has been split on tiles of 300 × 300 pixels with an overlapping offset of 30 pixels
with the neighbors. The total number of tiles was thus 154, and each tile was processed by
one core. The total processing time was about 45 minutes. With the same infrastructure
it is thus possible to process a whole spotlight image of about 6000 × 10.000 pixels in less
than 3 hours. We also tested the proposed technique using a smaller cluster composed by
8 commercial workstations equipped with Intel® Core� i7-870 quad-core processors and
8 GB of RAM. The total processing time for the test image on this smaller architecture
was about 1 hour and 30 minutes, which is a good performance in terms of operational
application of the algorithm.

6.5 Discussion and Conclusion

In this chapter the problem of the detection and reconstruction of building radar footprints
in VHR SAR images has been addressed. Unlike many other methods presented in the
literature, the proposed technique can be applied to single VHR SAR images. It extends
state-of-the-art feature extraction and composition steps to more structured primitives
using a production system and by introducing the concept of semantic meaning. This has
been done in order to compensate for the lack of information due to the fact that only
one VHR SAR image is used as input. The semantic meaning represents the probability
that an object belongs to a certain scattering class (e.g., facade, double bounce), and is
calculated via fuzzy membership functions. Therefore, it allows the technique to select the
most reliable primitives and footprint hypotheses during its processing steps. As a further
refinement, the proposed technique also reconstructs the detected radar footprints. The
goal of this step is to provide as output a map which can be used for further calculations,
e.g., the estimation of building widths and lengths. Moreover, by exploiting the recon-
struction of the shadow areas, height retrieval techniques can be also applied to estimate
building heights. In order to make it possible to use the proposed technique on large VHR
SAR images in near real-time, we also proposed and implemented an infrastructure based
on a computer cluster for the processing of large VHR SAR scenes.

The proposed method is suited for meter-resolution SAR images. However, it can
be extended and tuned for higher-resolution airborne data by introducing new types of
primitives, composed objects and rules. Moreover, new semantic classes for the primitives
should be defined, as finer scattering mechanisms become visible in submeter data.

The experimental results obtained on a large meter-resolution SAR image confirmed
the effectiveness of the proposed technique. In particular, the method shows very high
detection rates in the case of medium and large buildings, exhibiting also a good capability
to reconstruct their radar footprints. The number of false alarms is limited, and these
are mostly related to other man-made structures or trees which show radar signatures
similar to those of buildings. For small buildings the proposed technique shows worse
detection and reconstruction performance, and an increased number of false alarms. This
is mainly due to the low number of features related to small buildings visible in single
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meter-resolution SAR images. Nonetheless, this is an expected problem, which is mainly
related to the need to use submeter-resolution images for a proper detection of these
buildings, rather than to a limitation of the proposed technique. In order to mitigate this
problem, it is possible to include a simple rule in the proposed technique for discarding the
radar footprints smaller than an user-defined threshold, thereby reducing the number of
false alarms and avoiding the detection of small buildings. This is a reasonable strategy
to adopt for tuning the proposed method only on the detection of medium and large
buildings, on which performances are very accurate.

The proposed approach needs the user to set some parameters which depend on the
product under analysis. After this, the method is automatic and can be applied with the
same set of parameters to similar products. Guidelines for the selection of the parameters
were given throughout the chapter. It is worth noting that many relevant parameters have
been already selected on calibrated SAR images so that they can be applied to different
VHR SAR scenes without the need to be changed.

The proposed technique is promising for addressing problems in real operative scenar-
ios which exploit the available spaceborne meter-resolution SAR systems (e.g., COSMO-
SkyMed, TerraSAR-X, and TanDEM-X). As an example, it can be used for a fine esti-
mation of the density of urban areas even from single images or it can be used for the
analysis of multitemporal series, e.g., for the detection of changes in urban areas. It is
worth noting that the method is independent of the viewing configuration of the SAR
sensor, as it works in the vector domain. This makes it possible to potentially combine
the results obtained from SAR acquisitions taken with different viewing angles, or also
maps derived from optical images. This would allow a finer detection of buildings and a
more accurate estimation of building properties. However, the problem of the correct ge-
olocalization of buildings in the different acquisitions should be faced e.g., for the correct
merging of the single radar and/or optical footprint maps.
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This chapter concludes this thesis by providing a summary of the novel contributions and
the related experimental results presented in the document. Finally, future developments
of the proposed methods are discussed.

Summary and Discussion

In this thesis we have presented novel methods for the automatic analysis of RS and
VHR SAR signals. Such methods represent a valuable contribution for the analysis of the
data provided by new generation radars mounted onboard of orbiting platforms. Indeed,
in order to effectively exploit both the amount of data provided by new missions and
their properties, automatic information extraction methods are essential to support both
scientific studies and practical application scenarios.

In the first part of the thesis we presented novel automatic methods for the analysis
of RS data. This topic has been only marginally addressed in the literature so far. As a
first step, we carried out a statistical analysis of RS signals aimed at the development of
automatic methods for the detection and characterization of subsurface features. Then,
we proposed a technique for the automatic extraction and analysis of ice layering. Finally,
a method for the automatic detection of surface clutter returns through clutter simulation
matching has been developed.

In the study of the properties of sounder signals we analyzed different statistical mod-
els from a theoretical point of view and then empirically tested them on different real
SHARAD data acquired on the NPLD of Mars. The obtained results show that the
statistical distributions of the amplitude signals related to different types of targets can
be modeled precisely using the K distribution, while, as expected, the background noise
follows a Rayleigh distribution. Exploiting the results of the aforementioned study, we
have then proposed two novel techniques for the automatic analysis of radargrams aimed
at: i) producing maps of the subsurface areas showing relevant features; and ii) identi-
fying and mapping the deepest scattering areas visible in the radargrams. The former is
based on the comparison of the distributions of local subsurface parcels with that of noise
adaptively estimated on each radargram. The latter exploits a specifically defined region-
growing method implemented in an iterative technique based on the level-set algorithm.
The results obtained by both the developed techniques are accurate and thus promising
for operational applications.

The proposed novel method for the automatic detection and characterization of sub-
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surface linear features in RS data is suited to the analysis of regions showing extended
layering. The method is based on the joint radargram denoising and enhancement, fol-
lowed by a line detection step which operates with sub-pixel accuracy. In order to extract
further information from the radargrams, we also proposed a set of measurements which
can be derived from the detected linear features. Such measures can describe locally the
properties of the single linear features and provide information about their distribution
within the radargram (and thus the geographical area of interest). The technique and the
measurements proposed in this thesis are relevant for the automatic analysis and combi-
nation of many RS acquisitions over large areas. Indeed, they can provide in a fast way
information on subsurface layering which can be used to derive high level products in a
global mapping perspective, or to drive further manual analysis on interesting areas.

The novel technique for the automatic detection of surface clutter returns from RS data
is based on the automatic coregistration between real radargrams and surface clutter
simulations. The coregistration is performed by a two-step procedure. The first step
aims at performing a coarse registration of the inputs, while the final coregistration is
carried out in the second step using a deformable transformation. The main output of
the proposed method is a binary map representing the areas of the radargram which
have high probability to be affected by clutter returns. In addition, the intermediate
outputs of the method (e.g., coregistered clutter simulations) can be also used to support
manual investigations. In this framework, we also presented a fast clutter simulator
suited to both user-oriented real-time analyses and batch processing. The qualitative
and quantitative experimental results obtained on two large datasets acquired by the
SHARAD instrument at Mars confirm that the technique is capable to align with good
precision clutter simulations to radargrams affected by geometrical distortions (e.g., due
to variations of the ionospheric delay during the same acquisition). The proposed method
represents an important contribution to the analysis of planetary RS data. Indeed, the
detection of surface clutter through the comparison with clutter simulations is nowadays
performed manually by scientists, thus introducing subjectivity and wasting time and
resources.

The methods developed in this thesis are suited to be included in the basic processing
chain of RS data. In this way, it is possible to generate high-level products that can
be distributed along with radargrams (e.g., maps of subsurface features, detected basal
returns, extracted layering, clutter maps). The joint analysis of radargrams and such
products would greatly help the community and increase the scientific return of the data.

The second part of this dissertation presented the main contributions on the analysis
of VHR SAR images of urban areas. In particular, we described in detail the empirical
and theoretical study carried out on the relation between the double-bounce effect of
buildings and their orientation angle. Then, a novel approach to the automatic detection
of building radar footprints from single VHR SAR images has been illustrated.

The presented study on the strength of the double-bounce scattering mechanism with
respect to the orientation angle of buildings in VHR SAR investigated three classes of
buildings in two TerraSAR-X images and compared these results with theoretical electro-
magnetic scattering models. In this context, we presented a novel model for predicting
the double-bounce power based on SPM, which is suitable for urban surfaces like asphalt.
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The results pointed out that the double-bounce effect has a strong power signature for
buildings which have the wall on the sensor close side almost parallel to the SAR azimuth
direction. Furthermore, the strength of the double bounce decays rapidly in a narrow
range of orientation angles, while it decays moderately for larger angles. The exact char-
acteristic of the decay depends on the material and surface parameters, making the double
bounce a variable feature within the same scene. As a result, the double-bounce feature
can only be used for reliable building detection and reconstruction by taking into account
its non-linear relation with the orientation angle. The comparison between the predic-
tions from the theoretical electromagnetic models based on SPM and PO and the real data
showed that the general behavior of the double bounce can be derived with theoretical
models. However, the complexity of the actual scene hampers the reliable calculation of
the double-bounce RCS. The presented study demonstrated that the correct behavior of
the double-bounce effect with respect to the orientation angle of buildings can be derived
empirically considering a few real world cases. This result can be integrated easily in
practical feature extraction application scenarios (e.g., for the development of building
detection/reconstruction techniques from meter-resolution SAR images).

The proposed method for the automatic detection of building radar footprints can be
applied to single VHR SAR images. This is a major innovation, as most of the methods
presented in the literature that address this topic rely on multi-dimensional data. The
technique extends state-of-the-art feature extraction and composition steps to more struc-
tured primitives using a production system and by introducing the concept of semantic
meaning. This has been done in order to compensate for the lack of information due to
the fact that only one VHR SAR image is used as input. The semantic meaning represents
the probability that an object belongs to a certain scattering class (e.g., facade, double
bounce), and is calculated via fuzzy membership functions. Therefore, it allows the tech-
nique to select the most reliable primitives and footprint hypotheses during its processing
steps. As a further refinement, the proposed technique also reconstructs the detected
radar footprints. The goal of this step is to provide as output a map which can be used
for further calculations, e.g., the estimation of building widths and lengths. Moreover, by
exploiting the reconstruction of the shadow areas, height retrieval techniques can be also
applied to estimate building heights. In order to make it possible to use the proposed
technique on large VHR SAR images in near real-time, we also proposed and implemented
an infrastructure based on a computer cluster for the processing of large VHR SAR scenes.
The experimental results obtained on a large meter-resolution SAR image confirmed the
effectiveness of the proposed technique. In particular, the method shows very high de-
tection rates in the case of medium and large buildings, exhibiting also a good capability
to reconstruct their radar footprints. For small buildings the proposed technique shows
worse detection and reconstruction performance, and an increased number of false alarms.
This is mainly due to the low number of features related to small buildings visible in single
meter-resolution SAR images. Nonetheless, this is an expected problem, which is mainly
related to the need to use submeter-resolution images for a proper detection of these build-
ings, rather than to a limitation of the proposed technique. Despite this limitation, the
proposed technique is promising for addressing problems in real operative scenarios which
exploit the available spaceborne meter-resolution SAR systems (e.g., COSMO-SkyMed,
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TerraSAR-X, and TanDEM-X).

Concluding Remarks and Future Work

The studies, the techniques and the results described in this thesis regarding planetary
radar sounding are a first step to the definition of a general framework for the analysis
of RS data. The goal of such a framework is to extend the low-level processing chain
currently applied to the downlinked data with high-level information extraction steps. To
this end, additional automatic techniques for the extraction of features and parameters
from radargrams should be developed with respect to what presented in this document.
This should be done by taking into account indications provided from scientists expert of
the considered application and of the related requirements. The framework could be also
extended to the use of input data coming from other sensors (e.g., optical images of the
investigated area). Although human interpretation cannot be fully replaced by automatic
algorithms, automatic methods can significantly help to overcome the subjectivity intrin-
sic in manual investigations by providing in a fast way numerical results obtained with
predefined and fixed metrics. These results can then drive further manual refinements.

At the present time, the techniques developed for the automatic extraction of informa-
tion from RS signals are important especially for the analysis of the data provided by the
currently operating RSs at Mars. However, the development of automatic methods such
as the ones proposed in this thesis becomes important also for future spaceborne missions
exploring other planetary bodies or the Earth’s polar regions. In the latter case, it is
expected that a RS orbiting the Earth will provide a huge amount of high-precision data,
allowing also multi-temporal studies. All these factors make automatic methods suitable
for a fast and objective analysis of the data, which can help to provide information for
the assessment of the impact of climate changes on the Earth’s system.

Future developments regarding the methods related to the analysis of RS data illus-
trated in this thesis should focus on their full automatization and generalization in order to
make them suited for the analysis of a wider set of RS data with different characteristics.
In particular, future work should address the following points:� Definition of a procedure for the unsupervised and adaptive selection of the param-

eters of the presented techniques.� Development of novel methods for the generation of subsurface feature maps based on
the local statistics using context-sensitive techniques for the adaptive determination
of the local parcel size.� Test of the proposed method for the extraction of ice layering on datasets acquired
at different frequencies and resolutions on Mars, and on the Earth’s polar regions by
airborne RSs.� Test the proposed method for the automatic detection of surface clutter with other
clutter simulators and with different real datasets (e.g., focused with different pa-
rameters or acquired by other instruments, including airborne RSs operating in the
polar regions of the Earth).
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Regarding the part of the thesis related to the analysis of VHR SAR data of urban ar-
eas, future developments should be devoted to the definition of a (semi-) automatic proce-
dure for the setting of the parameters of the proposed method for the automatic detection
of building radar footprints. Moreover, although the method is suited for meter-resolution
SAR images, it can be extended and tuned for higher-resolution airborne data by intro-
ducing new types of primitives, composed objects and rules. To this aim, new semantic
classes for the primitives should be defined, as finer scattering mechanisms become visible
in submeter data. The proposed technique can be also extended to both the analysis of
multi-aspect acquisitions (e.g., images acquired on ascending and descending orbits) and
the integration of interferometric height information in the steps of the processing chain.
In this way it is possible to develop a flexible framework for building detection and radar
footprint extraction requiring as minimum only a single SAR scene, but making best use
of additional input data if available. The integration of the presented method with state-
of-the-art change detection algorithms can be also investigated in order to develop novel
reliable approaches to change detection in urban areas using VHR SAR multi-temporal
series.
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