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Abstract

This thesis presents experimental studies, based on guided ion beam mass spectrometric

techniques and coupled to theoretical interpretations by quantum chemistry, on ionic mech-

anisms for the molecular growth of aromatic hydrocarbons with a particular relevance for

understanding the formation of large molecules in ionized gases such as planetary iono-

spheres, plasmas and combustion systems. The starting point of this dissertation is a

study of the reactivity of naphthyl cation C10H
+
7 with benzene. Ion-molecule reactions

leading to hydrocarbon growth via the formation of new C-C bond are studied with spe-

cial reference to the association product C16H
+
13. Another experiment in this dissertation

concerns the reactivity of the C12H
+
9 ion with benzene. The growth of hydrocarbon ions

up to C18H
+
15 species via C–C bond forming reactions is observed. The adduct formation

route is found to be exothermic and barrierless, while other products are found to have

energy barriers. The last topic addressed in this thesis is the experimental investigation of

the possible formation mechanisms of the ion C12H10O
+, observed in benzene/air plasma

corona discharges at atmospheric pressure.
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Chapter 1

Introduction

Laboratory studies on the chemistry of planetary atmospheres and the interstellar medium

have been historically focussed mainly on small and simple molecules, such as benzene.

The latter has been detected in the atmospheres of Jupiter, Saturn and Titan by using

the Infrared Space Observatory (ISO) [1, 2]. In more recent years the attention has

shifted towards larger molecules, mostly of organic nature. Among them, a special place

is reserved to polycyclic aromatic hydrocarbons (PAHs).

Polycyclic aromatic hydrocarbons may form in various environments, both terrestrial

and extraterrestrial. They have been detected in the interstellar space [3, 4], where they

are claimed to be responsible for an emission band in the UV region (at 217.5 nm) [5], while

it is still an open question the contribution of PAHs to the so-called “diffuse” interstellar

bands (DIBs) [5, 6, 7, 8, 9]. A few studies on chemical reactivities of PAHs have shown

that these molecules are stable in the interstellar medium [10, 11, 12]. Thereby they

might play a role in the extraterrestrial synthesis of complex biomolecules, which in turn

might be the building blocks of life. Thus in the past few years understanding how these

ubiquitous molecules are formed has become an increasingly important research topic.

The Cassini-Huygens mission [13] has shown that Titan has one of the richest atmo-

spheric chemistry in the solar system. Its extensive atmosphere is composed mostly of

N2 with CH4 (2 %) and H2 (0.4 %) being the most abundant minor constituents [14, 15].

Different types of hydrocarbons [16, 17], nitrogen-bearing species [18], and oxygen-bearing

species [19] complete the list of compounds that exist in Titan’s atmosphere. Moreover

heavy ions with masses over 100 amu have been detected in significant amounts on Titans

ionosphere below 1200 km [20]. Due to the possible chemical structures PAHs, nitrile aro-

matic polymers [21], fullerenes [22] and polyphenyls [23] have been proposed as precursors

1



INTRODUCTION

for aerosols formations.

PAHs also are ubiquitously present in the terrestial environment. They are found in

air [24], soil [25, 26], groundwater [27] and they can infect food due to the fact that several

PAHs are known to be carcinogens and mutagens. PAHs released into the environment

may be originated from different sources like gasoline, diesel fuel combustion [28], tobacco

smoke [29]. But the major contributors for PAH releases are petroleum refining and trans-

port activities [30]. These loadings can happen through dumping of industrial effluents

and through fortuitous release of raw and refined products. In general PAHs are formed

during the incomplete combustion of organic materials, where they act as intermediates

in the formation of soot particles [31]. Soot formation is a complex process that usually

involves decomposition of hydrocarbons in the fuel and formation of small aromatic hy-

drocarbons from the decomposition products followed by their growth to compounds with

a larger number of rings. After the formation of the large aromatic hydrocarbons several

processes follow such as inception of the first particles, growth of soot particles due to

reactions with gas phase species, particle coalescence, agglomeration and oxidation. Then

fine soot particles can carry PAHs deep into the lungs. The ubiquitous distribution of

PAHs and their potentially deleterious effects on human health are at the basis of the

increased interest in the search for destruction mechanisms of PAHs. For instance, the

mechanical way to remove soot from the exhaust gas of a diesel engine is through the use

of particulate filters. Another way of reducing the formation of PAHs is through tchemical

action (e.g. catalytic combustion [32], biodegradation [33]).

Recently it has been shown that plasmas can be applied for the removal of PAHs as well

as several other organic pollutants. There are many techniques based on cold plasmas,

which are used in air pollution control for the removal of harmful compounds [34, 35, 36].

In addition, plasmas can be used in hydrocarbon reforming [37], hydrogen production out

of liquid fuel [38], for deposition of advanced materials [39], for film growth and particulate

formation, and for improvements of ion sources for mass spectrometry techniques. Thus

the complex chemistry occurring in gaseous discharges at atmospheric pressure becomes

an interesting research area and hence the knowledge of plasma by-products becomes an

important issue.

To model the formation and degradation of PAHs in extraterrestrial and terrestrial

environments a detailed knowledge of the chemistry of PAH synthesis and oxidation at

high and low temperatures and pressures is needed. In particular, the interstellar medium

and planetary atmospheres are characterised by low temperatures and small pressures,
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while combustion systems and cold plasmas are high pressure systems characterised by

high and low temperatures respectively.

Several mechanisms have been proposed for PAHs formation in the high tempera-

ture environment of combustion chambers and flames. The most established one is the

so-called HACA mechanism [31, 40, 41]. The acronym HACA stands for Hydrogen Ab-

straction ACetylene Addition and refers to a mechanism in which radicals formed during

the combustion process are able to abstract an hydrogen atom from a precursor benzene

ring. Subsequently the so-formed phenyl radical can add acetylene molecules to close a

second ring onto the benzene one and form naphthalene. Similar mechanisms will cause

the production of higher-order PAHs. However, the HACA mechanism presents high en-

ergy barriers, which makes it feasible only at high temperatures. In fact the formation of

PAHs in flames generally does not occur until the temperature is at least 1200-1600 K.

Therefore, the same mechanism cannot be hold responsible for PAHs synthesis at the low

temperatures of the interstellar space. Indeed, the extreme conditions in extraterrestrial

environment have several limitations for the occurence of gas phase reactions. The low

temperatures rule out endothermic reactions (or exothermic reactions with activation bar-

riers), and low density prevents three-body processes. Thus, the dominant processes in

the gas-phase chemistry of interstellar space are exothermic reactions without any activa-

tion barriers. The most common type of barrierless reactions are ion-molecules reactions

[42]. In the interstellar medium ions can be formed by a variety of the processes. One of

the processes is ionization by cosmic ray photons. The reaction rates of ion-molecule reac-

tions at low temperatures exceed by orders of magnitude the reactions rates of gas-phase

neutral reactions. Consequently, molecular formation involving ions rather than neutrals

may be favoured under extraterrestrial conditions [43] and therefore ion chemistry plays

an important role even in the synthesis of organic molecules. Besides growth routes based

on singly charged ions [44], with a special relevance to Titan’s atmosphere, bond-forming

reactions of CmH
2+
n dications with methane have been proposed as a potential formation

route of the so-called pre-formed building blocks. Thus the sequential post association of

such units into PAHs can be possible [45, 46, 47, 48].

The growing mechanisms of molecular systems initiated by charged particles is also

relevant for modelling the ion chemistry occurring in atmospheric pressure plasmas [49].

For instance it was shown that ion-molecule reactions are relevant for understanding the

chemical mechanisms of plasma polymerization processes [50]. Plasmas appear to be

dominated by reactions of neutral and radical species, whose densities can be larger by
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orders of magnitude than that of ions. However, the small density of ions can be balanced

by their higher reactivities, which can exceed those of neutral species [51, 52].

With special reference to PAHs, it was recently shown that in some experiments on

electron beam industrial gas cleaning of harmful impurities, such as the electron beam

dry scrubbing (EBDS) process, an increase in the concentrations and sizes of polycyclic

aromatic hydrocarbons is observed, rather then their expected and sought after destruc-

tion [53, 54]. The growth is the result of formation of larger PAHs from simpler ones

during the processing. The EBDS process, similar to cold plasma treatments, occurs at

low gas temperatures and therefore the HACA mechanism does not play a significant role

in the dynamics of PAH growth, due to the already mentioned high energy barriers rel-

ative to the H abstraction steps. In such conditions an ionic mechanism of condensation

of aromatic compounds can be more suited to describe the chemistry of PAH synthesis.

We can therefore conclude that ion chemistry should be taken into account as a com-

petitive mechanism for PAH synthesis in cold plasmas as well as in the interstellar medium

and planetary atmospheres.

1.1 General motivations and outline of thesis

Our contribution to the study of possible growing mechanisms of aromatic hydrocarbons

in Titan’s atmosphere, the interstellar medium or cold atmospheric pressure plasmas is the

investigation of association processes involving naphthyl C10H
+
7 and biphenylium C12H

+
9

cations with benzene. In both studies the growth of hydrocarbon ions were observed

via C–C bond forming reactions. The study on the reactivity of naphthyl cation C10H
+
7

with benzene is reported in Section 4.1 and in Ref. [55]. Recent measurements about

the reactivity of the C12H
+
9 ion with benzene show that the structure of the association

product correponds to the structure of polyphenyls and not to PAHs. This study will be

discussed in Section 4.2.

With regard to chemical processes in cold plasmas, the study of oxidation processes of

aromatic compounds is also of significant interest. It is well-known that benzene can be

efficiently converted into phenol in non thermal atmospheric plasma [49, 56, 57]. Apart

from phenol various oxygenated products are observed in benzene/air dielectric barrier

discharge. The study of the possible mechanisms for formation of the oxygenated product

ion C12H10O
+ observed in such plasma is given in Section 4.3.

To study ion-molecule reactions guided ion beam tandem mass spectrometers, which
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allow selection and manipulation of both reactant and product ions to investigate reaction

mechanisms, are used (see Chapter 2). The use of theoretical calculations to calculate

energy and structures of the most relevant points on the reactive potential hypersurface

is discussed in light of density functional theory.

The outline of the thesis is as follows. The next Chapter 2 presents a brief introduction

on mass spectrometric techniques, a detailed description of the experimental set-ups used

throughout this thesis and data collection and evaluation procedures. Chapter 3 explains

the general idea of density functional calculations. Chapter 4 presents the motivations

for the individual systems of investigation, the detailed experimental results and their

interpretation also on the basis ot theoretical modelling.
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Chapter 2

Experimental Techniques and

Procedures

This chapter will give a general but brief description of mass spectrometry techniques

and of the experimental setups, which were used to perform the measurements, described

in Chapter 4. The reactions of cations with neutrals were investigated by using both a

home-built Guided-Ion Beam Spectrometer (GIB-MS) and a triple quadrupole mass spec-

trometer API 3000 LC/MS/MS (in the following indicated as API-3000), AB Sciex, USA

equipped with an atmospheric pressure chemical ion source (APCI). The data analysis

procedures, used to extract absolute value of cross sections, rate constants, and branching

ratios from the measurements will be presented.

2.1 Introduction

Mass spectrometers are powerful analytical instruments that serve as the gold standard

for chemical analysis. The first mass spectrometer was reported in 1910 and was followed

by 40 years of modest innovations [77]. Before the 1950’s, mass spectrometers only had

a few applications in physics and chemistry, but this was soon changed with the growth

of the petroleum industry. Commercialization of the mass spectrometer for chemical

analysis pushed the rapid development of this tool. In turn, emphasis shifted from the

physics of the device to finding new applications. Today, mass spectrometers are utilized

in industrial processing, environmental monitoring, national security, space exploration,

healthcare and characterization of proteins and biomolecules.

A typical mass spectrometer consists of four main components: an ion source, a mass
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analyzer, a detector, and a vacuum pump system (see Fig. 2.1). The principle on which

the mass spectrometer based is the following. The molecular ion is formed by ionization

of a gas sample to be analyzed and the ion source plays a key role in obtaining a mass

spectrum. Then ions enter the mass analyzer, where they are sorted depending on their

mass to charge ratios (m/z ). A system of electrostatic lenses is generally used to focus ions

produced in the source and then to guide them through the apparatus into a detector,

where they are collected and counted. If we plot the detector count as a function of

the specified m/z, we will generate a mass spectrum for the sample. This spectrum will

provide information on the relative quantities of each m/z within the sample, and serves

as a chemical “finger print”. The last major component is the vacuum pump, which keeps

the other three components under vacuum (usually using a differential pumping between

the ion source and the detector). A schematic view of a typical mass spectrometer is

shown in Figure 2.1.

vacuum pump

ion source detectormass analyzer

Gas Phase Ion sorting Ion detection

computergas inlet

Figure 2.1: Schematic view of a mass spectrometer.

2.2 GIB-MS setup

The guided ion beam setup is a tandem mass spectrometer with an O1Q1O2Q2 configu-

ration (Q stands for quadrupole and O-for octopole), which allows the measurement of

integral cross sections for ion-molecule reactions as a function of the collision energy in
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the range from about 0.1 to about tens/hundreds eV in the center of mass. Positive ions

are generated in an electron impact source (EI). In this type of source an incandescent

filament made of tungsten emits a high-energy beam of electrons (in the range of 70–

100 eV), accelerated towards an anode, which is placed on the opposite of the filament

side. These electrons collide with the electron cloud of the molecule and thus may transfer

enough electron energy to remove another electron from that molecule. EI ionization

usually produces singly charged ions containing one unpaired electron. A charged molecule

which remains intact is called the molecular ion. Energy imparted by the impact with

electron and, more importantly, instability in a molecular ion can cause that ion to break

into smaller pieces (fragments). Then ions are extracted by a set of conical extractor

lenses, to be injected into a first octopole Q1 (length 8.2 cm, radius 0.9 cm), which is

used as an energy quencher. The octopole is surrounded by a cell, which can be filled

with an inert gas (for instance, He or Argon). In this way reagent ions produced in

excited states can quench their internal energy by collisions with the inert partner. After

the cooling stage, an Einzel lens transport the ions into a first quadrupole Q1, which

is used to mass-select the primary ion beam. The chosen reactant ions are injected

into the second octopole O2 ion guide (length 10.2 cm, radius 0.6 cm) by a six-element

accelerating/decelerating cylindrical lens, whose last element has a conical shape to limit

the angular divergence of the ion beam entering the octopole to 41 ◦. The octopole utilizes

eight rods arranged in an octagonally symmetrical array around the ions. In the direction

perpendicular to the axis of the rods the potential, created by applying radio frequency

(rf) electric potentials in opposite phases to alternate rods, produce an inhomogeneous

field, which creates an affective radial potential well. In this way scattered reactant and

product ions are well trapped and can be collected with enhanced efficiency. In addition,

the energy region can be extend from about 1 eV in the laboratory frame down to thermal

energies (0.04 eV can be found in Ref. [78]). Such inhomogeneous radiofrequency devices

were pioneered by Gerlich [78] and Teloy [79] and more details can be found in the review

by Gerlich [80]. We chose an octopole over the conceptually similar rf-only quadrupoles

because a more homogeneous trapping field can be obtained with more rods. It was shown

that the time-averaged radial trapping field of a rf multipole device varies as rp−2, where r

is the distance from the center of the device and p is the number of poles [81]. Thus for the

octopole (an instrument having p=8 poles) the produced field varies as r6 and it ensures a

large tubular trapping volume (see Fig. 2.3) and steep walls. These characteristics result

in effective ion trapping with only small perturbations of the kinetic energies of ions,
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traveling down the axis of the octopole. An effective trapping field for a quadrupole is

quadratic and varies as r2 (see Fig. 2.3). The maximum trapping energy (or the depth

of the trapping field) for the quadrupole (varies as (p/2)2 [82]) at r=r0 is one-fourth that

of the octopole. This makes the quadrupole ion trapping less efficient and yields larger

perturbation on the kinetic energy of the ions compared to octupole trapping. Thereby,

for the quantitative measurements of the energy dependence of cross section the octopole

trapping field is more desirable than a quadrupole field.

Figure 2.3: The reduced effective potential of an octopole and quadrupole radiofrequency trap as a

function of the fractional distance between the center of the device and the rods. (taken from [82],

Cortesy of J. Am. Soc. Mass. Spectrom.)

The second octopole is surrounded by the scattering cell filled with neutral gas, where

mass-selected ions can react with neutrals. Neutrals are introduced in the scattering cell

as a vapors through a leak valve with the pressure generally set in the range of 10−5 mbar

(monitored by a spinning rotor gauge SRG2 MKS Instruments, USA [83]) to ensure that

products are the result of single collision conditions. Product ions and primary ions are

collected by the lens system between the octopole O2 and the quadrupole Q2. These

lenses need to efficiently transport ions, which may have large radial velocities because of

the rf voltages, emerging from the octopole O2 into the last quadrupole Q2. After a 90 ◦

deflection, product ions and primary ions are detected by an electron multiplier.

In general the advantage of the use of the ion beam technology is to be able to control

the kinetic energy of the reactant ion. In our GIB-MS the kinetic energy of the projectile

11
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ion beam can be varied easily over a wide range from practically 0 to several tens of eV

simply by changing the voltage difference between the region where the ions are formed

and where they react (basically, the DC bias potential of O2). Using the retarding po-

tential analysis (described later and also in Ref. [81]) the energy scale can be calibrated

and the energy spread of the ion beam can be measured. In this way the collision energy

is determined. Such a large tuneability in the collision energy, achievable with the GIB-

MS set up, allows us to perform bond-activation energy measurements and to probe the

potential energy surfaces and thus the reaction mechanism.

2.3 API-3000 setup

In the experiments performed with API-3000, reactant ions are generated in an atmo-

spheric pressure chemical ion (APCI) source. A suitable neutral-precursor is injected via

a micrometric syringe pump, with injection flows in the range of 1–10 l/min as solution

in an appropriate solvent (e.g. methanol). Measurements are performed with the source

heated usually at 300–400 ◦C. Such high temperature used to ensure a rapid evaporation.

A high velocity jet of nebulizer gas flows coaxially over the sprayer to disperse the sample

as a mist of fine particles. The gaseous sample and solvent molecules are swept from the

probe by auxiliary gas flow into the reaction region of the ion source, where the electrons

emitted by the corona discharge needle initially ionize the sample and solvent. High pu-

rity N2 is used as nebulizer and curtain gas and obtained by the boil-off from a liquid

nitrogen Dewar. Then the vaporized solvent molecules collide with the sample molecules

to produce stable sample ions (X+H)+ (see Figure 2.4). Then ions drift under the influ-

Figure 2.4: Schematic drawing of an atmospheric pressure chemical ionization source. (Cortesy of Life

Technologies Corporation.)
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ence of the electric field in the direction of the curtain plate and through the gas curtain

into the mass analyzer. The whole ion formation process is collision dominated because of

the pressure of the APCI source. Except in the immediate vicinity of the needle tip, where

the electric field strength is greatest, the energy imparted to an ion by the electric field is

small in comparison with its thermal energy. In most of our experiments the declustering

potential voltage plays an important role. The higher the declustering potential voltage

the greater the energy imparted to the ions entering the analyzing region of the mass

analyzer. This energy helps to decluster the ions and increasing the voltage beyond

optimal conditions can induce fragmentation before the ions enter the mass filters. In this

way the dissociation does not occur in the source, since there is not enough energy, but

it is due to collision with nitrogen in the declustering region.

The advantage of producing positive ions via the corona discharge of the APCI source

rather than by EI in the GIB-MS ion source relies in the lower degree of internal excitation

attained by the primary ion, as can be demonstrated by the absence of unimolecular

fragmentation of the primary ion to lower mass fragments during the flight from the

source to the detector.

After the source the ions of interest are mass-selected with the first quadrupole Q1 and

injected into the second quadrupole Q2 which acts as an ion guide and which is surrounded

by the scattering cell were the neutral partner is admitted at a typical pressure in the

range of 10−5–10−3 mbar. In standard operating conditions the API-3000 operates with

N2 as collisionally activated dissociation (CAD) gas in the collision cell and its pressure

can be controlled by means of four separate valves with different diameters that operate

on a “go/no go” basis. N2 admitted in the collision cell is redirected from the differentially

pumped interface vacuum line and derives from a splitter in the curtain gas supply line.

To admit a gas different from N2 into the CAD cell of the API-3000 instrument the gas

injection line was modified by addition of a separate interface vacuum line pumped by a

70 l/s turbo pump backed by a 83 l/min scroll pump and gas inlet system, as shown in

Figure 2.5.

Reagent gases or vapors in equilibrium with volatile liquids are stored in small glass

cylinders labeled as reagent gas 1 or reagent gas 2 in the figure and the flow in the CAD

cell is manually regulated by a variable leak valve (MDC Vacuum products, all metal MLV

series, variable leak rate from 10−2 to 10−7 mbar l s−1. When a reagent gas is admitted in

the collision cell, the CAD gas flow controller is by-passed (the on/off valve vA is closed),

while valves vB and vC are open and any contamination of the CAD gas flow controller

13
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Figure 2.5: Schematic representation of the gas inlet system created for injection of reagent gases dif-

ferent from N2 in the collision cell of the API-3000 the original CAD gas flow control and CAD cell are

highlighted by a dashed rectangle.

with the reagent gas is avoided. This is particularly useful to avoid memory effects when

working with reagent gases having high sticking coefficients. By closing the variable leak

valve, together with valves vC and vD, and opening valves vA and vB, the systems revert

quickly to standard operating conditions and N2 can be admitted in the collision cell.

Ionic products emerging from Q2 are mass-analyzed by scanning the third quadrupole Q3

and later detected by a channel electron multiplier.

2.4 Data evaluation

GIB-MS experiments

In our experiments the raw data are reactant/product ion intensities (both with and

without gas in the cell) as a function of the ion kinetic energy and as a function of the

pressure of the neutral partner. To use these data several transformations are needed. The

kinetic energy of the ion is measured in the laboratory frame and appropriate conversion

to the center-of-mass energy is performed to get the energy available to the reaction

system for chemical transformations. Converting the ratio of product and reactant ion

intensities, measured as a function of the neutral target pressure, absolute value of reactive

cross section can be obtained [81, 82, 84]. The latter represents the intrinsic probability

for reaction.
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Conversion from laboratory to center-of-mass energies

It is important to know how much energy is available to the reaction system. The transla-

tional energy of the two colliding particles during reaction can be divided into the relative

translational motion of the two reactants and the motion of the entire collision system

through the laboratory. The latter part is conserved due to the conservation of linear

momentum (the total mass of the system does not change during reaction). And so,

there is no available energy to induce chemical change during the reaction. Therefore,

the energy that is available for chemical reactions is the relative kinetic energy of the two

particles (center-of-mass energy, ECM). Due to the fact that the ion has an appreciable

velocity, which is defined by its laboratory energy, ELAB, whereas the neutral reactant is

essentially stationary, the center-of-mass energy, ECM , can be calculated as

ECM = ELAB ·
m

(M +m)
, (2.1)

where m and M stand for the mass of the neutral target and the ionic projectile, respec-

tively [84].

Conversion from ion intensities to cross sections

In collision theory the reaction cross section σ is an important quantity. It describes the

probability that two particles (e.g., an ion and a neutral) collide and proceed to products.

So it has units of area and represents an effective size of the ion-molecule collision pair.

The ratio between the measured signal intensities of product and reactant ions is

proportional to the effective integral cross section and its absolute value can be measured,

in a beam-cell experiment, according to the Lambert-Beer law. For low pressures of

neutral target (thin target limit) the Lambert-Beer law can be approximated as

IP
I0

= σP · n · leff , (2.2)

where IP and I0 are the intensity of products P and reagent ions, respectively (with

IP � I0), n is the neutral gas density in the collision cell, and leff is the effective lenght

of the collision cell (equal to 12.0± 0.6 cm in our case). By measuring the slope of the
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plot of IP/I0 as a function of the neutral gas density (at sufficiently low densities to

ensure single collision regime), we can obtain σP for each of the reaction channels. In

such type of measurements, the accuracy is limited by uncertainties in the measurement

of the gas pressure and by error propagation due to the calibration procedure necessary

to establish the value of leff . We estimate that absolute cross section values are accurate

within ± 30 %.

Branching ratios

The branching ratio BR for a particular channel is defined in Eq. 2.3 as the ratio of the

fraction (or yield) of product ions formed by one channel with respect to the total amount

of products formed by all channels.

BRi = ki/(k1 + k2 + k3 + ...ki) = ki/k (2.3)

Hereby, the reaction cross section for individual product ions P can be given as

σP = σT ·BRP , (2.4)

where σT is the total reaction cross section, BRP is the branching ratio for P channel.

Alternatively, given the total amount of products formed by all channels, the partial

yeild of product ions can be written as

ki = BRi · k. (2.5)

Conversion from absolute cross section values to rate constants

Absolute cross section values can be converted into phenomenological rate constant k(〈E〉)
by using this expression

k(〈E〉) = υ · σP (E), (2.6)
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where k(〈E〉) is the rate constant in cm3 s−1, σP is the reactive cross section for product

channel P in cm2, υ = (2E/µ)1/2 is the nominal center of mass velocity in cm s−1,

and µ is the reduced mass of the reactants in kilogram. Because of the kinetic energy

distributions of the reagents, the rate constant can be better characterized as a function

of the mean relative energy of the reactants, which is given by 〈E〉 = E + (3/2)γkBT ,

where γ = M/(M + m) and T is the neutral gas temperature. Because GIB-MS allows

very low ion energies, the rate constant k at near room temperature for the reaction can

be obtained directly from the data at the lowest energy.

Retarding potential analysis

How it was mentioned earlier in this Chapter the DC voltage of octopole establishes

the laboratory kinetic energy of the ion. To use the data taken at low energies requires

calibration of the energy scale. One of the methods to determine the kinetic energy is

retarding potential analysis. To produce a retardation curve the ion beam intensity was

taken as a function of the DC voltage of the octopole swept through the zero ion energy.

Then the derivative of that curve gives the ion energy distribution.

API-3000 experiments

The kinetic energy of the charged ions entering the middle quadrupole Q2 can be varied

between 0 and 100 eV, which allows the investigation of ion-molecule reactions in different

kinetic energy regimes, e.g. from quasi-thermal conditions to elevated kinetic energies,

where collision-induced dissociation (CID) experiments are carried out. The collision

energy can be adjusted by changing the offset between Q0 and Q2 and the zero point of

the kinetic energy scale as well as the width of the kinetic energy distribution is determined

by means of retarding-potential analysis.

A typical retarding field curve for the primary ion at m/z 153 (data taken for biphenylium

ion C12H
+
9 , produced in the APCI source using p-hydroxybiphenyl C12H10O) is shown

in Fig. 2.6. The collision energy scans using API-3000 are presented as a function of

a nominal collision energy, for which zero value is set to the point of inflection of the

curve, obtained by the derivative of the curve. An explanation of the use of nominal

values of collision energy is the following. Due to the fact that the primary beam is very

wide (the full width at half maximum (FWHM) is about 3 eV in the laboratory frame),

collision energy can not be well-defined. In addition, when working with neutral gas in

the reaction cell, the smallest pressure of gas inside the middle quadrupole compatible
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with the detection of products is around 10−4 mbar. For this value of pressure the mean

free path (the average distance that the molecule travels between collisions) of a benzene

molecule is about (or smaller by about 20%) the lenght of the reaction cell, which speaks

in favor of secondary collisions. Therefore the collision energy can not be defined under

such conditions.
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Figure 2.6: Retarding field analysis of the primary beam at m/z 153.
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Chapter 3

Quantum Chemical Calculations

Quantum chemistry has been used in this work in parallel to mass spectrometry experi-

ments in order to shed more light on the gas-phase behaviour of the species under study.

In particular, the aim of our quantum chemical calculations was the characterization of

a molecular system in terms of geometries, relative energies and electronic states of re-

actants, intermediates, transition structures and products formed during a reaction. The

findings relative to the geometries of ground and transition states already tells us an im-

portant information about the reaction mechanisms, but the determination of the relative

energies allows a more quantitative description of the thermochemistry of a reaction and

the location of reaction barriers.

3.1 Introduction

The presence of several nuclei in polyatomic molecules makes quantum chemical calcu-

lations harder than for simple diatomic molecules. Besides, the electronic wave function

of a diatomic molecule is a function of only one parameter, the internuclear distance.

For a polyatomic molecule, the electronic wave function depends on several parameters,

such as bond distances, bond angles and dihedral angles of rotation about single bonds.

Therefore, the calculation of the electronic wave function for a range of each of these

parameters is needed. To minimize the electronic energy the values of equilibrium bond

distances and angles should be found. There are four main approaches to the theoretical

determination of molecular properties: ab initio methods, semiempirical methods (SE),

the density functional methods and molecular-mechanic methods. The method which will

be used in this thesis is density functional theory (DFT). DFT has been shown to provide
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good results at reasonable computational budgets when applied to molecular systems such

as the ones discussed in this thesis. In the following a brief introduction to DFT will be

given.

3.2 Density functional theory

Density functional calculations are, like ab initio and SE calculations, based on the

Schrodinger equation. However, unlike the other two methods, DFT does not calculate a

wavefunction, but calculates the molecular electron probability density ρ and calculates

the molecular electronic energy from ρ. The idea of calculating atomic and molecular prop-

erties from the electron density arose from independent calculations on an ideal electron

gas made by Enrico Fermi and P.A.M. Dirac in the 1920s (well-known Fermi-Dirac statis-

tics [58]. In Ref. [59] atoms were modelled as systems located in a homogeneous electron

gas having positive nucleus potential. This modelling (later called Thomas-Fermi model

[60] had very good results only for atoms and not for molecules.

The Born-Oppenheimer approximation [61] is the first assumption made in DFT, as

well as in any other quantum chemistry problem with more than two bodies. This ap-

proximation assumes that the nuclei are infinitely heavier than the electrons. In this way

the motions of the nuclei can be easily separated from that of the electrons, and the elec-

tronic problem for a given set of stationary nuclei can be solved. In DFT calculations the

properties of a molecule in a ground electronic state are determined by the ground state

electron density function ρ0(x, y, z) (the first Hohenberg-Kohn theorem came out in 1964

[62], proved in Levine [63]). So, if we know ρ0(x, y, z), in principle we can calculate any

ground state property, notably the energy, E0 and

ρ0(x, y, z)→ E0 (3.1)

this relationship means that E0 is a functional of ρ0(x, y, z). Then this theorem says

that any ground state property of a molecule is a functional of the ground state electron

density function, e.g. for the energy

E0 = F [ρ0] = E[ρ0] (3.2)

20



CHAPTER 3. QUANTUM CHEMICAL CALCULATIONS 3.2. DENSITY FUNCTIONAL THEORY

The ground state electronic energy of a molecule can be presented as

E0 = T [ρ0] + VNe[ρ0] + Vee[ρ0], (3.3)

where T is the kinetic energy of the electrons, VNe is the attractive potential energy

between the nuclei and the electrons, Vee is the electron-electron repulsion potential energy.

The last term can be represented in two parts: one classical Coulomb potential term and

one nonclassical term. Thus determining the ground state of a system becomes a problem

of finding the ρ that produces the minimum E. It was shown by Hohenberg and Kohn

[62] that E will always be equal to or higher than the true ground state energy.

In the original DFT formalism E is only dependent on ρ, which is a function of only

the three spatial coordinates x, y, z, while the wavefunction is a function of 4N coordi-

nates (three spatial and one spin coordinate), where N is the number of electrons. Thus ρ

significantly reduces the number of variables. However, there are difficulties in finding an

accurate functional T, which would facilitate the direct minimization of the ground-state

energy with respect to the electron density (see Ref. [64] for review) and this leads to un-

acceptably low accuracies. A significant improvement was obtained with the introduction

by Kohn and Sham of the idea of a reference system of noninteracting electrons [65] (also

known as KS orbitals). They represented E as two parts: one part that is based on non-

interacting electrons and another part which is a correction for the electron interaction.

Now equation 4.2 can be rewritten as

E0 = Tr[ρ0] + VNe[ρ0] + J [ρ0] + Exc[ρ0], (3.4)

where Tr is the kinetic energy of noninteracting electrons, J is the classical Coulomb

potential energy, Exc is the exchange correlation energy, i.e. due to interacting electrons.

The Exc can be represented as the sum of the kinetic energy deviation from the reference

system and the electron-electron repulsion energy deviation from the classical system:

Exc[ρ0] ≡ ∆T [ρ0] +∆Vee[ρ0], (3.5)
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where ∆Vee[ρ0] is the potential correlation energy and the exchange energy and ∆T [ρ0]

represents the kinetic correlation energy of the electrons, e.g. the deviation of the real

kinetic energy from that of the reference system:

∆T [ρ0] ≡ T [ρ0]− Tr[ρ0]. (3.6)

The electronic kinetic energy of the noninteracting electrons Tr[ρ0] (reference system) is

determined from the KS orbitals ψKSi as

Tr[ρ0] =
N∑
i=1

〈
ψKSi (1)

∣∣∣∣−1

2
∇2

1

∣∣∣∣ψKSi (1)

〉
. (3.7)

It is worth noting that because KS theory uses orbitals, the number of variables will

increase from 3 to 3N, but for the whole method the complexity is still far less than for

many particle wavefunction models.

So now the exchange correlation energy in equation 3.4 can be rewritten as

Exc[ρ0] ≡ ∆T [ρ0] +∆Vee[ρ0] = T [ρ0]− Tr[ρ0] + Vee[ρ0]− J [ρ0], (3.8)

By defining it in this way, Exc becomes the only term which can not be computed exactly

in the expression for E, and the task of KS theory is to find an expression for it. There

are different approaches, and B3LYP is the one which will be used in the thesis. B3LYP is

the most popular hybrid functional at present and also the most popular DFT functional.

It is based on an exchange-energy functional developed by Becke in 1993 (called Becke 3

parameter hybrid functional for the exchange energy [66]) and modified by Stephens et

al. in 1994 [67] by introduction of the LYP 1988 correlation-energy functional (Lee, Yang

and Parr functional [68]). The expression for this exchange-correlation functional will be

EB3LY P
xc = (1− a0 − ax)ELSDA

x + a0E
HF
x + axE

B88
x + (1− ac)EVWN

c + acE
LY P
c , (3.9)
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where the ELSDA
x is the exchange energy, expressed through the Local Spin Density Ap-

proximation (LSDA), which treats the electron density locally as a uniform electron gas

with different densities for spin up and spin down electrons; the EHF
x is the KS-orbital-

based exchange energy functional, given by the wavefunction based Hartree-Fock theory;

EB88
x is the Becke 88 gradient correction to the LSDA exchange energy and it is included

because the electron gas is not uniform in reality; ELY P
c is a similar gradient corrected

functional for the correlation energy; EVWN
c is the Vosko-Wilk-Nusair functional for the

correlation energy [69], which forms part of the accurate functional for the homogeneous

electron gas of the LSDA. The parameters a0,ax and ac are those that give the best fit

of the calculated energy to molecular atomization energies. The terms Ex (an exchange-

energy functional) and Ec (a correlation-energy functional) are coming from the expression

for the Exc exchange-correlation energy functional Exc = Ex + Ec [70].

As mentioned earlier KS theory calls for the use of (molecular) orbitals. By turn a

molecular orbital can be represented by a set of known functions, which are called basis

set. When the basis set is complete, the molecular orbital can be accurately described.

But this would require an infinite number of functions, which is of course impossible in

real numerical calculations. Therefore a finite basis set has to be chosen large enough to

give a reliable result and sufficiently small to require reasonable computational resources.

It was mentioned by [71]:“There are probably as many basis sets defined for polyatomic

calculations as there are quantum chemists”. For this reason let us focus only on the basis

set used in the calculations carried out in this thesis, namely the 6-31G* [74]. 6-31G*

basis set describes the molecular orbitals using Gaussian functions. Gaussians contain

an exponential function e−ζr
2
. By themselves Gaussians are not able to describe the

qualitative features of molecular orbitals, because they tend to resemble the so called

Slater functions, where the exponential is of the form e−ζr. For instance, the first orbital

of hydrogen atom is described by a Slater function. However, using linear combinations

of multiple Gaussians gives a reasonable resemblance of Slater features. Unfortunately,

it has the drawback of requiring more functions for describing the molecular orbital and

its use does not increase the computational time because Gaussian functions provide

more easily evaluated integrals. A further reduction in computational efforts can be

obtained if the linear combination of Gaussian functions is fixed, which creates a so called

contracted set of Gaussian functions. This contraction is advantageous to apply when

treating the core electrons, as they do not contribute to the chemistry of the system. The

first number of the 6-31G* basis set tells that the core orbitals are represented in terms of
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six Gaussians. The next two numbers 3 and 1 refer to the valence electrons, these are the

ones which participate in chemical bonds, and the shape of their molecular orbital may

therefore deviate from the atomic orbital due to e.g. bonding. For this reason they are not

described only by one function, but in this case by two functions. The first is a contraction

of three Gaussians, the second consists of only one Gaussian. This arrangement, where

the functions for the valence electrons are tripled, is referred to as a triple split valence

basis set. It is worth noting that additional valence-shell splitting should lead to even

greater flexibility.

6-31G* is also one of the simplest polarization basis sets, constructed from 6-31G by

adding a set of d -type polarization functions written in terms of a single Gaussian for

each heavy (non-hydrogen) atom. To give the lowest energies for representative molecules

Gaussian exponents for polarization functions have been chosen. For instance, polariza-

tion of the s orbitals on hydrogen atoms is necessary for an accurate description of the

bonding in many systems (particularly those in which hydrogen is a bridging atom).

Correlation-consistent basis sets cc-pVTZ and cc-pVQZ, developed by Dunning for

the first and second row elements [72], were also used in our calculations. cc-p stands for

“correlation consistent-polarized”, V speaks for valence-only basis sets, T stands for Triple

(Q=Quadruple) Zeta. Such basis sets are formulated to yield the lowest possible CISD (A

limited Configuration Interaction scheme in which only single and double excitations from

occupied to unoccupied molecular orbitals are considered) ground-state atom energies [73].

They should be better suited than basis sets as 6-31G* to capture most of the correlation

energy.

In this thesis DFT calculations have been done by the group of Prof. Glauco Tonachini

(University of Turin) using the Gaussian09 program package [75] and by Prof. Paolo Tosi

using Spartan software [76].
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Chapter 4

Results and discussion

In this chapter results from GIB-MS and API-3000 experiments on C10H
+
7 , C12H

+
9 and

C12H10O
+ are presented and discussed in light of density functional theory theoretical

calculations.

4.1 Reactivity of C10H
+
7 ion with benzene

4.1.1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) have been observed in quite different gaseous

environments, such as combustion systems or the interstellar medium [86]. Thus under-

standing how these ubiquitous molecules are formed has become an increasingly important

research topic in the last few years. While great progress has been made in the knowledge

of synthetic mechanisms based on radical and neutral reactions [31], much less is known

about ionic routes to the synthesis of PAHs. It is worth noting that ionic reactions are

not restricted to “obvious” environments (gaseous discharges, plasmas, planetary iono-

spheres), but they also occur in unexpected situations, such as hydrocarbon flames [87, 88],

or the exhaust of aircraft engines [89]. The formation of ionized naphthalene from the

reaction of benzene radical cations with diacetylene was described and proposed almost

20 twenty years ago as a general model for the growth of PAHs by ion-molecule reactions

[90]. More recently, the formation of benzene ions within ionized acetylene clusters has

been reported [91]. In turn benzene ions can catalyze the polymerization of acetylene

molecules and possibly their conversion into naphthalene-type ions [92]. An unexpected

result from the Cassini flybys of Titan was the discovery of benzene at high altitude [93]

and the presence of large mass (over 100 amu) positive and negative ions in significant
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amounts in Titan’s ionosphere below 1200 km [20]. Among the possible structures of

such large mass molecules fused-ring polycyclic aromatic hydrocarbon compounds (e.g.

naphthalene and anthracene, but also nitrile aromatic polymers [21]) have been proposed,

as well as fullerenes [22] and polyphenyls [23]. All such structures are compatible with

Cassini detections and such heavy particles have been proposed to be the precursors to

the haze particles which form the optically thick haze layer lower in Titan’s atmosphere

[94]. In spite of several laboratory investigations, new experimental and theoretical data

are still required to provide a quantitative comparison between the in situ observations

of the Cassini orbiter and the proposed models. In the present section we report on new

measurements about the reactivity of the naphtyl cation C10H
+
7 with benzene.

4.1.2 Experimental results

The reaction of naphtyl cation C10H
+
7 with benzene (both C6H6 and C6D6) was inves-

tigated by using both GIB-MS and API-3000 equipped with the APCI source. Naphtyl

ions were formed by dissociative ionization of 1-chloronaphthalene in either EI or APCI

sources. The reaction of naphtylium ions with benzene leads to the growth of larger hyd-

1 2 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 2 0 0 2 1 0
0

2

4

6

C 16
H 10

+
C 16

H 11
+

C 16
H 12

+

C 12
H 11

+

C 13
H 9+

C 14
H 10

+

C 1 5 H 1 0
+

rel
ati

ve
 in

ten
sity

 (%
)

m / z

C 1 6
H 1 3

+

Figure 4.1: MS spectrum of ionic products from the reaction of mass-selected C10H
+
7 ions with C6H6

recorded by GIB-MS at a collision energy ECM ∼ 0.2 eV in the center of mass frame and with ∼ 1.8×10−4

mbar (black) and 8× 10−4 mbar (red) of benzene in the reaction cell. The signal intensity of the parent

ion (100%) is off-scale.

rohydrocarbon species via C–C bond forming reactions. In the case of benzene-h6, the

occurrence of such reactions is evidenced by the detection of ions C16H
+
n with n=13–10
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(m/z 202–205), C15H
+
n with n=9–10 (m/z 189 and 190), C14H

+
n with n=9–11 (m/z 177–

179), C13H
+
9 + (m/z 165), and C12H

+
11 (m/z 155) in the mass spectrum recorded at low

collision energy using the GIB-MS equipped with the EI source (see typical mass spectra

reported in Figure 4.1 at two different pressures of benzene-h6 in the scattering cell).
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Figure 4.2: MS spectrum of ionic products from the reaction of mass-selected C10H
+
7 ions with C6H6

recorded by GIB-MS at a collision energy ECM ∼ 0.46 eV in the center of mass frame and with ∼ 2×10−4

mbar (black) and 8×10−4 mbar (red) of benzene-d6 in the reaction cell. The signal intensity of the parent

ion (100%) is off-scale.

In conjunction with the mass shifts observed upon using benzene-d6 as reactant (see

Fig. 4.2), the generation of such ions is attributed to the occurrence of the following

reactions:

C10H
+
7 + C6H6 → C16H

+
13 (m/z 205), (1)

→ C16H
+
12 (m/z 204) + H, (2)

→ C16H
+
11 (m/z 203) + H2, (3)

→ C16H
+
10 (m/z 202) + H + H2, (4)

→ C15H
+
10 (m/z 190) + CH3, (5)

→ C15H
+
9 (m/z 189) + CH3 + H, (6)

→ C14H
+
10 (m/z 178) + C2H3, (7)

→ C13H
+
9 (m/z 165) + C3H4, (8)

→ C12H
+
11 (m/z 155) + C4H2. (9)
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The product branching ratios at two different pressures are shown in columns (a) and

(b) of Table 4.1. At low benzene pressures the formation of the C16H
+
13 ion is indeed ob-

Table 4.1: Branching ratios for formation of the vari-

ous product channels observed upon reaction of C10H
+
7

with benzene-h6 at the following conditions: (a) GIB-

MS, benzene pressure 1.8 × 10−4 mbar, (b) GIB-MS,

benzene pressure 8 × 10−4 mbar, (c) API-3000, ben-

zene pressure 9.5× 10−4 mbar.

m/z Ion
Branching ratios, %

(a) (b) (c)

Others 0 0 0.6

153 e 155 C12H
+
n n=9, 11 2 3 0.1

165 e 166 C13H
+
n n=9, 10 4 5 0.2

177-181 C14H
+
n n=9-13 4 5 0.4

189-191 C15H
+
n n=9-10 38 34 5.5

202 C16H
+
10 9 6 1

203 C16H
+
11 19 20 7.2

204 C16H
+
12 19 18 6.1

205 C16H
+
13 5 9 78.3

Total 100 100 100

served experimentally though in a rather low relative yield. The latter is however increas-

ing with the pressure (from 5% to 9%, corresponding to an increase of the pressure from

1.8× 10−4 mbar to 8× 10−4 mbar, see Table 4.1). This indicates that multiple collisions

allow an efficient dissipation of the energy liberated upon association, thus providing sta-

bilization of the initially excited addition complex, and formation of a long-lived species.

The latter most likely has the structure of covalently bound protonated phenylnaphtha-

lene, formed via electrophilic addition of naphthyl cation to the benzene ring. As well

as on specific pressures and collision energy conditions, the relative ionic yields of the

various channels are found to be dependent on the ionization method used to generate

the C10H
+
7 primary ions. Values referring to the use of the API-3000 (with the APCI

source) are reported in column (c) of Table 4.1, while a typical mass spectrum is shown

in Figure 4.3.

The most striking difference between the ion yields measured by using two different

methods for the generation of naphtyl cations (namely EI ionization in GIB-MS and APCI

ionization in API-3000) is observed for the association product C16H
+
13: in the case of EI
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Figure 4.3: MS spectrum of ionic products from the reaction of mass-selected C10H
+
7 ions with C6H6

recorded by API-3000 at a collision energy ECM ∼ 1 eV (CE 3.6 in the lab) in the center of mass frame

and with ∼ 9.5×10−4 mbar of benzene in the reaction cell. The signal intensity of the parent ion (100%)

is off-scale.

generation (see Figure 4.1 and Table 4.1) the yield of C16H
+
13 amounts to about 91% (at a

pressure of benzene ∼ 8×10−4 mbar), the main product being C15H
+
10 produced according

to reaction (5) above. Conversely, for APCI generation (see Figure (4.3) and Table 4.1

the association product predominates with a yield of about 62% (at a similar value of the

benzene pressure ∼ 10−3 mbar). The difference is attributed to the internal excitation

of the C10H
+
7 reacting ion, which is expected to reduce the lifetime of the intermediate

complex and the probability for its stabilization into a long-lived species. The EI source of

the GIB-MS operates at low pressure and therefore collisional cooling of the nascent ions

is ineffective. On the contrary, C10H
+
7 ions produced in the APCI source can dissipate

the excess of internal energy by collisions with N2 at atmospheric pressure prior to react

with benzene.

The ratio IP/I0 as a function of the benzene density for reactions (2) and (5) is shown

in Figures 4.4. Data have been collected at the lower collision energy achievable for the

present system in GIB-MS about 0.2± 0.05 eV in the center of mass frame. We observe a

linear dependence up to a density value of about 5× 1012 molecules cm−3 (corresponding
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Figure 4.4: Density dependences of: (a) C16H
+
12 and (b) C15H

+
10 products after the reaction of C10H

+
7

with C6H6 at a collision energy of about 0.2–0.3 eV in the center of mass frame. Dashed lines are linear

fits of the data.

to a benzene pressure of about 2 × 10−4 mbar). By fitting the data we estimate the

absolute values of the reactive cross section for channels (2) and (5) to be 1.0 ± 0.3 Å2

and 2.0 ± 0.6 Å2 respectively. The positive deviation from linearity observed at higher

benzene densities can be due to several factors. In particular, multiple collisions can cool

internal degrees of freedom of the ionic reactants and/or of the intermediate complexes,

and at the same time they can collisionally stabilize products. Considering that reactions

(2) and (5) proceed via an intermediate complex, which forms more efficiently at higher

pressures due to collisional stabilization. In addition, a multicollisional regime tends to

thermalize the reactant kinetic energy.

Reactive cross sections for channels (1)–(8) have been measured as a function of the

collision energy in the range 0.1–3 eV, by using GIB-MS, at a benzene pressure of ∼
8× 10−5 mbar to ensure single collision conditions. For the C16H

+
12 and C15H

+
10 products,

absolute values of the cross section have been also measured at one specific energy. Cross

sections at the other collision energies and for the other channels have been rescaled

accordingly, by using the relative intensities of products. In this way absolute cross

sections as a function of collision energy were derived and shown in Figure 4.5.

A common trend is the negative energy dependence of the cross sections, indicating barri-

erless exothermic processes, hence possible energy barriers should be lower than the total

energy presumably available to the reactants. The cross section for reaction (1) (open

squares in Figure 4.5(a)) shows the steepest decrease as the collision energy increases,

which fits with a E−1.3
CM dependence (shown by the blue line in Figure 4.5).

30



CHAPTER 4. RESULTS AND DISCUSSION 4.1. REACTIVITY OF C10H
+
7

0 . 0 1

0 . 1

1

1 2 3
0 . 0 1

0 . 1

1

 C 1 6 H 1 3
+

 C 1 6 H 1 2
+

 

 
cro

ss 
se

ctio
n ,

 �2
 C 1 6 H 1 1

+

 C 1 6 H 1 0
+

( a )

 C 1 4 H 1 0
+

 C 1 3 H 9
+

 C 1 5 H 1 0
+

 C 1 5 H 9
+

( b )

 

 

c o l l i s i o n  e n e r g y  E C M  ,  e V

Figure 4.5: Cross sections as a function of the collision energy for the reaction of C10H
+
7 with C6H6

leading to the following products: (a) C16H
+
n with n=13–10; (b) C15H

+
10, C15H

+
9 , C14H

+
10 and C13H

+
9 .

Red points corresponds to the absolute values of the cross sections for channels (2) and (5), directly

obtained from analysis of data shown in Fig. 4.4. Lines in (a) are guide for the eye indicating a

dependence E−1
CM (green) and E−1.3

CM (blue).

Several other channels leading to the loss of neutral fragments (i.e., H, H2, CH3,

etc...) can compete with this reaction, thereby explaining the low yield of reaction (1)

when carried out at low benzene pressure. The similar energy dependences of all the other

channels (2)–(8) suggest that these reactions proceed via a complex-mediated mechanism,

i.e., by formation and subsequent fragmentation of the association product C10H7 ·C6H
+
6 ,

with complex formation probability and lifetime strongly suppressed by an increase in

the collision energy. We note in passing that the absolute value of the cross section for

formation of the benzene addition product from naphtylium ion is smaller than the similar

channel leading to C12H
+
11 from phenylium ion, the latter having a cross section of 1.9±0.5

Å2 at 0.23 eV [85]. This difference is further demonstrated in Figure 4.6 where the MS

spectra of products for the reactions of C10H
+
7 and C6H

+
5 ions with benzene are shown.

Spectra have been taken using the API-3000 and care has been taken in ensuring the

same experimental conditions in terms of collision energy, benzene pressure and source

parameters relevant for the generation of C6H
+
5 and C10H

+
7 ions. The relative yield of
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C12H
+
11 from phenyl cations is about a factor two bigger than C16H

+
13 from naphtyl cations.
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Figure 4.6: MS spectra of products from the reactions of C6H
+
5 (in black) and C10H

+
7 (in red) with ben-

zene, recorded by API-3000 at an ECM of ∼ 1 eV and benzene pressure ∼ 10−4 mbar. Ions C6H
+
5 and

C10H
+
7 (relative intensities 100%, out of scale) have been generated in the APCI source from chloroben-

zene and 1-chloronaphthalene precursors respectively.

To shed more light on the reaction mechanism and on the structure of the adduct

complex in the reaction of naphthyl cations with benzene we performed collision induced

dissociation experiments on the cation C16H
+
13 (m/z 205) by using N2 as fragmentation

gas. Primary ions at m/z 205 are produced in the APCI source by infusion of a solution

of commercial phenylnaphthalene in methanol (0.1 mol/liter). The resulting MS/MS

spectrum (reported in Figure 4.7) shows a fragmentation pattern in which the most intense

ionic fragments occur at m/z 204 (loss of H), 203 (loss of H2), 202 (loss of H +H2) and

190 (loss of CH3). Thus collision induced dissociation of C16H
+
13 (having the structure

of protonated phenylnaphthalene) affords fragments having the same masses of the ions

produced in the reaction of C10H
+
7 with benzene (compare MS spectra and peak positions

in Figures 4.3 and 4.7. Other fragments are detected, although with smaller intensities

at m/z 178 (formal loss of C2H3), 165 (formal loss of C3H4), 149 and 145 plus m/z 77

(in very low yield, formal loss of C10H8). It is worth noting that such fragments are

detectable only at high collision energies (i.e. above 20 eV, nominal in the lab).

The MS/MS experiment supports the idea that reaction of naphthyl cation with ben-
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Figure 4.7: MS/MS spectrum of the m/z 205 ion generated by infusion of phenylnaphthalene in the APCI

source, using N2 as CAD gas at a pressure ∼ 10−3 mbar and a nominal collision energy of 28 eV in the

LAB.

zene proceeds via a long lived intermediate complex, for which we can conjecture the

structure of protonated phenylnaphthalene. When the internal energy content is high

enough, the complex can dissociate along several channels, the principal ones being the

loss of light fragments (H, H2, methyl).

The reactivity of naphtylium ions with benzene molecules is investigated in previous

radiolytic studies carried out using both gaseous benzene (at pressures in the range 7–

80 mbar, i.e., much higher than those used in present experiments) and liquid benzene

[95, 96]. The main observed products, after neutralization via proton transfer with the

substrate or the reactor walls, are 1- and 2- phenylnaphthalenes as well as fluoranthene

C16H10, observed only in one case and in rather low yield [95]. We underline the fact

that a quantitative comparison between our and previous experiments is not possible due

to the different pressure regimes used (single or close to single collision in our case and

strongly multi-collisional regime in Ref. [95, 96]). However we note that C–C coupling

reactions, having small reactive cross sections in our low-pressure experiments, occur with

rather high overall absolute yields (up to 46%) at elevated benzene pressures [96]. With

respect to the atmosphere of Titan, having low temperatures and a surface pressure of

about 1 bar, if viable mechanisms exist for the generation of benzene and napthylium
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ions, the C–C coupling reactions of smaller building blocks of the type studied in this

section might represent viable paths for further growth of larger hydrocarbons.

4.1.3 Theoretical results and reaction mechanisms

One of the more prominent peaks in Figure 4.1 is relevant to the C15H
+
10 radical cation,

which can form upon methyl radical loss from C16H
+
13 (reaction 5). Since its origin does not

appear obvious, the purpose of this theoretical part of the study is to focus on the possible

transformations leading to it. First, naphthylium can be generated with two accessibile

spin multiplicities, singlet and triplet [97]. Since they are separated by only 3 kcal mol−1,

in favour of the singlet [98] or in favour of the triplet (it was shown recently in [99]),

they can be deemed accessible both, under present experimental conditions. However,

upon exploration of the first reaction steps for the triplet, sizeable barriers have been

assessed, that discouraged a full study. Therefore, the energies so defined are just reported

in note for completeness [100], making reference, as regards structure identification, to

the same numbers used for the singlet (see Scheme 4.8). The results obtained on the

singlet hypersurface are presented in the following, discussing CBS ∆EZPE values, while

geometries and energies can be found in the supplement material file [101]. The singlet

pathways can be considered reasonably to be at the origin of the largest part of the

observed products.

Naphthylium acts as an electrophile and adds to the π system of benzene, leading

initially to the formation of an ionic adduct with an exothermicity of about 53 kcal mol−1

(i.e., lying at -53 kcal mol−1 with respect to the reagents, taken as our reference energy

throughout). Starting from structure 1 several rearrangements have been explored, apt in

principle to lead to a methyl radical loss. We have found that the only sequences of events

suitable to get in the end a methyl loss include: 1 a ring closure leaving a methylenic

group connecting two other carbons, Ca and Cb in Scheme c and 4.11 (which can be

bridgeheads or not); 2 cleavage of one of the two bonds Ca − C or C − Cb in the bridge

Ca − CH2 − Cb, to get an exocyclic methylenic group; 3 a final H shift to generate the

methyl group, which then dissociates. One or more H shifts can occur in between the

above stages. Steps 2 and 3 may be concerted. Consequently, only the most promising

pathways are displayed in Schemes 4.8–4.11 and their key passages are illustrated in the

following. On the onset, after an easy 1,2 H transfer, the key step for the subsequent

formation of a methyl group is the electrophilic addition 2–3, whose barrier is at -16 kcal

mol−1 with respect to the reagents (see Scheme 4.8). It brings about the formation in 3 of
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Scheme 4.8: Structures and energies of the most relevant stationary points on the reactive potential

energy surface leading from C10H
+
7 plus benzene to C15H

+
10 (structure 10) plus CH3. Hydrogen atoms

are explicitly indicated when they are involved in shifts or gradual CH3 formation. Energies are in kcal

mol−1.

35



4.1. REACTIVITY OF C10H
+
7 CHAPTER 4. RESULTS AND DISCUSSION

a bicyclic subunit condensed with the rings formerly belonging to naphthylium (n-rings),

located in turn at -22 kcal mol−1 with respect to the reagents. This subunit carries a

methylenic group as a one-carbon bridge, indicated as Ca−CH2−Cb in Schemes 4.8 and

4.11, which is the future nucleus for methyl group formation. This rearrangement has an

energetic cost which can easily be sustained by the evolving system. Then, two alternative

H transfers (3–4 and 3–4a) can restore the aromaticity of the leftmost n-ring. However

the H shifts require overcoming sizable energy barriers, which bring the system energy

close to the zero defined by the separate reactants. 3–4a is slightly favoured, having a

barrier at -3 kcal mol−1 with respect to the reagents. Then, the energy gain so attained

is not negligible, since the energy of the system is now comparable in both cases to that

of the initial adduct (4a: -55 kcal mol−1; 4: -49 kcal mol−1). From 4, ring opening and

further H shifts produce first an 8-membered ring that carries a methyl substituent, 5, -33

kcal mol−1, followed by two H shifts to get 7, at -42 kcal mol−1. Both barriers relevant

to these steps are well below our reference energy. The isomer 7 can be obtained also

from 4a and then 4b, through an H shift and subsequent ring opening (with barriers at

-24 and -9 kcal mol−1). So, both pathways stemming from 3 finally converge on 7. Then

a final ring closure with formation of two condensed 5-membered rings leads from 7 to

8 (at -57 kcal mol−1). Another H shift and a final methyl radical loss from 9 (which is

at -55 kcal mol−1) lead to the C15H
+
10 product (10). The dissociation limit is at -8 kcal

mol−1 with respect to the reagents. From 9, an alternative pathway (described in Scheme

4.9) leads to an isomer of 10. The first step is a 5-ring opening/4-ring closure (barrier

at -36 kcal mol−1 with respect to the reagents) which forms the spiro intermediate 11,

at -42 kcal mol−1. Its evolution is energy demanding, yet with a barrier still below the

reference. A difficult H shift (barrier at -1 kcal mol−1) and a subsequent easier C shift

(barrier at -9 kcal mol−1) generate an intermediate in which the migrating C (highlighted

with a green dot in Scheme 4.9) brigdes onto two carbons of one n-ring (13, at -31 kcal

mol−1). Then the 3-membered ring breaks and a ring expansion follows (barrier at -19 kcal

mol−1), generating a structure resembling phenanthrene, 14. It is quite stable, at -61 kcal

mol−1. A further H shift allows to create a biphenyl-type structure, and the intermediate

15 is even more stable (-77 kcal mol−1). The dissociation of a methyl radical leaves the

intermediate product 16, of formula C15H
+
10. This last step is very endoergic, yet the

energy of the dissociation limit is still below the reference by 3 kcal mol−1.

In conclusion, the channel through 3 and 4a implies overcoming a slightly lower barrier

than that through 3 and 4. Then the step from 9 to 10 with methyl loss goes up to –8
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Scheme 4.9: The alternative pathway leading to methyl loss from C16H
+
13 (structure 9) with formation

of C15H
+
10 in an isomeric structure with respect to 10 (described in Scheme 4.8). Hydrogen atoms are

explicitly indicated when they are involved in shifts or gradual CH3 formation. Carbon atoms involved in

bond breaking/bond forming steps are highlighted with red and green dots. Energies are in kcal mol−1.

kcal mol−1, while that from 9 to 11 and 12 has to go up to -1 kcal mol−1. All considered,

the description of the C16H
+
13 → C15H

+
10· evolutions offered above appears consistent with

the height of the C15H
+
10· peak. We have also explored the possibility of methyl loss

involving a carbon that belongs to one n-ring. Also in this case we describe as an example

only a channel presenting lower barriers for methyl loss. For this alternative process to

proceed, the 1–3 sequence outlined above (see Scheme 4.8) should actually be preceded

by preliminary hydrogen migrations to position 4 of the formerly naphthylium part (1IV

in Scheme 4.10), in order to form a methylenic group (in the initial adduct 1 the n-ring is

bound to the phenyl part by its position 1). We note in passing that isomers 1I − −1IV

having the “extra” hydrogen bound to a sp3 carbon belonging to the “naphthalene” part of

the adduct, actually have lower energies than 1 itself, the most stable one being structure
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1IV that lies ∼ 21 kcal mol−1 lower than structure 1.

Scheme 4.10: Structures and energies of the hydrogen migrations along the rings of the C16H
+
13 adduct.

Shifting hydrogens are explicitly indicated. Energies are in kcal mol−1.

The complete mechanism for methyl loss from the n-rings is represented in Scheme

4.11. After H migrations leading to 1IV , the next step entails binding one ortho carbon of

the phenyl part to the 3 position (which becomes Cb) in the rightmost n-ring (the C atoms

involved in this step are highlighted by black dots in structures 1IV and 17 of Scheme

4.11). The ring closure step brings the reacting system to an higher energy with respect

to the reference level defined by the two reactants (structure 17, at +1.1 kcal mol−1).

Then, a bond cleavage involving the CH2 group would follow: two are possible, but only

breaking of CH2 − Cb is relatively easy. After some H shifts the methyl group is formed.

One ring closure and a few other H shifts and it can leave without attaining too high

an energy (+4.2 kcal mol−1 with respect to reagents). Methyl loss from 21–24 does not

allow to form a biphenyl structure which can be attained only from 25. In concluding

the survey of the most viable channels it is worth pointing out that the CH3 loss from

phenyl (Schemes 4.8 and 4.9) is at any step below the reference level defined by reagents,

and thus is a viable pathway for methyl loss in cold environments such as the interstellar

medium or Titans ionosphere.

Regarding the formation of C16H
+
12 and C16H

+
11, we expect that the high exothermicity

of reaction (1) leading to structure 1 favours further chemical rearrangements giving

rise to H and H2 losses, reactions (2)–(4), maybe as a consequence of self-condensation

reactions resulting in fluoranthene-like structures, as put forward in Ref. [95]. However

the theoretical investigation of these reactive channels is beyond the scope of the present

section.
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Scheme 4.11: The alternative pathway leading to methyl loss from the naphthylium moiety. Hydrogen

atoms are explicitly indicated when they are involved in shifts or gradual CH3 formation. Energies are

in kcal mol−1.

4.1.4 H/D scrambling

Further measurements are carried out in the API-3000 by using isotopically labelled C6D6

as neutral reagent, with the purpose of investigating any possible H/D atom scrambling

during reactions (2)–(9) and of observing channels leading to back-fragmentation of the

association product adduct into reactants. A typical mass spectrum of products from the

reaction of C10H
+
7 (produced in the APCI source) with C6D6 taken at a collision energy

ECM ∼ 0.5 − 1 eV and benzene-d6 pressure ∼ 10−3 mbar is shown in Figure 4.12. The

mass spectrum is complicated by extensive H/D atom scrambling in some of the reaction

products, similar to what previously observed in the phenyl cation/benzene system [85].

In ion-molecule reactions leading to arenium-like ions (e.g. protonated benzene, proto-

nated naphthalene and protonated biphenyl [85, 102, 103] H/D atom scrambling implies

a reactive mechanism that proceeds via the formation of an intermediate complex, whose

lifetime is long enough to allow a redistribution of the H and D atoms over the rings

via 1,2-hydrogen shift, both intra and inter rings (i.e. the benzyl and napthtyl rings in

the present case of C16H
+
13 having the structure of protonated phenylnaphthalene). The
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Figure 4.12: MS spectrum of ionic products from the reaction of mass-selected C10H
+
7 ions with C6D6

recorded by API-3000 at a collision energy ECM 1 eV in the center of mass frame (3.6 eV in the lab) and

with 9.5 × 10−4 mbar of benzene-d6 in the reaction cell. Red bars represents the calculated intensities

corresponding to a complete randomization of position of H and D atoms in the ions C15(H,D)+10 and

C12(H,D)+11 formed according to reactions (5) and (9) respectively.

reactive channel that is most easily analyzed in terms of H/D scrambling is reaction (5),

leading to C15H
+
10 at m/z 190 in the case of benzene-h6 (in Figure 4.3 two peaks at m/z

189 and 191 are visible but with much smaller intensity compared to m/z 190: peak at

m/z 189 corresponds to production of C15H
+
9 , with an intensity about 14 times lower than

C15H
+
10, while the contribution of C15H

+
11 to the peak at m/z 191, when 13C contribution

is taken into account, is over a factor 90 smaller than C15H
+
10. When naphtyl cations are

reacted with benzene-d6 a cluster of ions is observed in the m/z region 192–198, with the

highest intensity at the mass of C15H5D
+
5 (m/z 195). The relative intensities of the peaks

193–196 within the cluster can be calculated assuming a complete randomization of the

7 H and 6 D atoms over both benzyl and naphthyl aromatic ring systems at the level

of the intermediates C16H7D
+
6 indicated as 1 and 2 in Scheme 4.8 prior to production

of C15(H,D)+10 and, though in smaller amounts, of C15(H,D)+9 and C15(H,D)+11. From

an energetic point of view H atoms can freely “walk” along both rings since barriers for

1,2 H shifts always lie well below the reactant energy. The peak intensities expected for
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complete statistical scrambling can be calculated making allowance for the presence of
13C at natural abundance in the C6D6 reacting partner [104], and taking into account the

presence of channels leading C15(H,D)+9 and C15(H,D)+11, as well as C15(H,D)+10. Ac-

cording to the results obtained in the fully hydrogenated case, the relative intensities of

the three channels are in the ratio C15H
+
9 :C15H

+
10:C15(H,D)+11=6.6:92.4:1.0 and this same

ratio is assumed also in the mixed isotope experiment.
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Figure 4.13: Experimental intensities of products from the reaction of C10H
+
7 with C6D6 are compared

with calculations assuming a complete randomization of the H and D atoms in the C16H7D
+
6 complex

prior to dissociation leading mainly to C(H,D)3 loss.

The calculated intensities are shown as hatched bars in Figure 4.13 and are compared

with the experimental results (black bars) given in terms of areas of the experimental

peaks in the mass range 191–199. Both data have been renormalized to give a total inten-

sity of 100.0. Experimental intensities are in good, though non perfect agreement, with

calculations from a model, suggesting that the mechanism for formation of C15(H,D)n+

(with n=9–11) ions involves a high degree of H/D randomization over both the naphthyl

and phenyl rings.
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4.1.5 Conclusion

In this section we explored mechanisms for the molecular growth based on ion-molecule

reactions, which can be relevant in ionized gases such as planetary ionospheres, plasmas,

and combustion systems. The reaction of naphthyl cation C10H
+
7 with benzene was inves-

tigated by using tandem mass spectrometers and reactive cross sections were measured

as a function of the collision energy. We detected the association product C16H
+
13 and

various lighter cations corresponding to the loss of H, H2, and CH3. Experiments per-

formed by using isotopic reagents indicate an almost statistical scrambling of H,D atoms

among the different rings, thus suggesting that the reaction proceeds via a long-lived as-

sociation product, presumably the covalently bound protonated phenylnaphthalene, from

which lighter species are generated by elimination of neutral fragments. In particular

the reaction channel C10H
+
7 + C6H6 → C15H

+
10 + CH3 was theoretically investigated by

DFT calculations, and at least two exoergic mechanisms were found sketched in Schemes

4.8 and 4.9. This result is a clear example for the possibility of molecular growth via

ion-molecule reactions, and may be relevant for explaining the detection of large PAHs

in diverse environments, in those cases when a certain degree of molecular ionization is

present.
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4.2 Reactivity of C12H
+
9 ion with benzene

4.2.1 Introduction

Not only polycyclic aromatic hydrocarbons can be present in Titan’s atmosphere, but also

polyphenyls [23] might be used to explain the formation of heavy hydrocarbons under the

conditions of atmosphere of Titan. Polyphenyls are aromatic hydrocarbons with chemical

and physical properties similar to PAHs (e.g. ionization potential and electron affinity).

In general, polyphenyls refer to benzene rings bonded together with single C–C bonds

between each ring (see Scheme 4.14).

Scheme 4.14: Structures of various polyphenyl molecules.

The simplest polyphenyl is biphenyl that consist of only two benzene rings. The reaction

of biphenylium ion C12H
+
9 with benzene was chosen to study in our laboratory as a con-

sequence of the interest that such species have recently received as potential components

of Titan’s upper atmosphere. The cold temperatures and low pressures at the altitude

of around 1000 km speak in favor of the formation of polyphenyls rather than PAHs.

Thus polyphenyls can grow to the larger polymeric structures to form aerosols under such

conditions [23].

4.2.2 Experimental results

The reactivity of biphenylium ion C12H
+
9 with benzene was investigated by API-3000.

Biphenylium ions C12H
+
9 were produced in the APCI source using p-hydroxybiphenyl

(C12H10O) as precursor via dissociatiation of the precursor ions (C12H10OH
+ generated
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in the plasma corona discharge) induced by collisions with the nitrogen declustering gas.

A typical mass spectrum of the ionic products for the reaction of C12H
+
9 with benzene

is shown in Fig. 4.15(a). The spectrum was measured at a collision energy (in the center
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Figure 4.15: Mass spectrum of selected C12H
+
9 ions reacting with ∼ 10−3 mbar of C6H6 (a) recorded by

API-3000 at a collision energy ECM ∼ 1 eV in the CM frame. Mass spectra (b) of selected C12H
+
9 ions

colliding with benzene (red) and with N2 (blue at a collision energy of 20 eV in the lab frame and black

at a collision energy of 4 eV in the lab frame. The signal intensity of the parent ion (100%) is not shown.

of mass frame) ECM ∼ 1 eV (corresponding to a nominal collision energy of 3.7 eV in the

laboratory) and with a pressure of benzene inside the reaction quadrupole of about 10−3

mbar.

The main ionic product is observed at m/z 230 and a possible pathway might be the

electrophilic addition of the aromatic neutral to the cation, followed by H migration to

give the two different isomers of the terphenyl radical cation:

Scheme 4.16: Possible mechanism of the C18H
+
15 ion formation.

The generation of various ions attributed to the occurrence of the following reactions:

C12H
+
9 + C6H6 → C18H

+
15 (m/z 231), (1)

→ C18H
+
14 (m/z 230) + H, (2)

→ C18H
+
13 (m/z 229) + 2H/H2, (3)

→ C18H
+
12 (m/z 228) + H + H2, (4)
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→ C17H
+
12 (m/z 216) + CH3, (6)

→ C17H
+
11 (m/z 215) + CH3 + H, (7)

→ C16H
+
13 (m/z 205) + C2H2, (8)

→ C16H
+
12 (m/z 204) + C2H2 + H, (9)

→ C16H
+
11 (m/z 203) + C2H2 + 2H/H2, (10)

→ C16H
+
10 (m/z 202) + C2H2 + H2 + H, (11)

→ C15H
+
10 (m/z 190) + C3H5/(CH3 + C2H2), (12)

→ C15H
+
9 (m/z 189) + C3H5/(CH3 + C2H2) + H, (13)

→ C8H
+
7 (m/z 103) + C10H8. (14)

To better understand fragmentation processes a collision induced dissociation experi-

ment was performed using nitrogen in the reaction cell (the pressure of the nitrogen was

about 2 × 10−3 mbar). The resulting mass spectrum is compared with the one observed

with benzene (at a pressure of about 10−3 mbar) as reaction partner in Figure 4.15(b). A

collision energy of 20 eV in the LAB was used in both benzene and nitrogen cases. The

most intense peak at m/z 127 comes from the loss of C2H2 from the primary beam C12H
+
9

(see spectrum with N2 (blue line) in Fig. 4.15(b)). The presence of a peak at m/z 169 is

due to the fragmentation of adducts that C12H
+
9 forms with water (due to the presence

of a certain degree of humidity in the nitrogen), which are indeed observed at m/z 171

(and 198 at low collision energies (see Fig. 4.15(b) the spectrum in black). When working

with benzene as a collision gas, in addition to products at high mass (e.g. m/z 215, 230)

ions at m/z 79, 103 and 127 are observed. In particular, the ion at m/z 103 appears only

when benzene is used as reagent and therefore it does not derive from collision induced

dissociation of the primary ions, but can be regarded as a characteristic fragmentation of

the product resulting from the addition of benzene to C12H
+
9 . This channel is found to

be exothermic and will be discussed more in theoretical part.

The relative ionic yields of the different channels are reported in Table 4.2. The

association product predominates with a yield of about 79%.

The dependence of product ion abundances on the nominal collision energy can provide

some mechanistic insight in the reaction process. Products of exothermic or thermoneutral

reactions generally have an onset at a similar energy to that of the parent ion and present

a maximum at low collision energies, while endothermic channels require some excess

energy to occur and thus peak at higher collision energies. The ion abundance curves as

a function of the nominal collision energy in the LAB frame are shown in Figure 4.17(a)
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Table 4.2: Branching ratios for formation of the various

product channels observed upon reaction of C12H
+
9 with

benzene-h6 at a benzene pressure of 10−3 mbar.

m/z Ion Branching ratios

103 C8H
+
7 5.38± 1.5

104 C8H
+
8 0.13± 1.5

189− 191 C12H
+
n , n = 9− 11 0.67± 1.5

202− 205 C16H
+
n , n = 10− 13 2.07± 1.5

215− 217 C17H
+
n , n = 11− 13 2.4± 1.5

227 C18H
+
11 1.05± 1.5

228 C18H
+
12 3.52± 1.5

229 C18H
+
13 6.94± 1.5

230 C18H
+
14 0.46± 1.5

231 C18H
+
15 78.85± 1.5

Total 100

for the ionic products C18H
+
15 (adduct), C18H

+
14 and C8H

+
7 .

The C18H
+
15 product has the characteristic shape of an exothermic and barrierless for-

mation of a covalently bound adduct via an intimate collision complex, while the other

two products show markedly higher thresholds and should therefore be assigned to en-

dothermic process. Due to the large spread in the kinetic energy distribution of the pri-
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Figure 4.17: Normalized ion yields as a function of the collision energy (in the LAB frame) for the

primary and product ions of the reaction of massselected C12H
+
9 with C6H6 (a) and of the reaction of

mass selected C10H
+
7 with C6H6 (b).

mary ion, a quantitative measure of the appearance energy threshold for the endothermic

products is beyond the capability of our experimental set-up, however we can qualitatively
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observe that the C8H
+
7 has the smallest threshold, while the loss of an H atom, H2, and

CH3 molecule from the adduct requires a substantially larger amount of translational

energy.

To obtain further confirmation of the absence of any experimental artifacts, the data

for the system C10H
+
7 + C6H

+
6 , that was studied using GIB-MS as described in Sec-

tion 4.1 and Ref. [55], were repeated using API-3000 and collision energy data are shown

in Figure 4.17(b). In the case of naphthylium ion, reactivity studied with GIB-MS, the

dependences of the collision channels for the loss of H, H2 and CH3 are exothermic.

The data obtained with API-3000 and relative to adduct formation from C10H
+
7 and

from C12H
+
9 have the same dependence on the nominal collision energy (see red line in

Fig. 4.17(a) and magenta line in Fig. 4.17(b)). Channels of exothermic losses of H, H2

and CH3 have maximum at low collision energies for the case of naphthylium ion (see

Fig. 4.17(a)). While in the case of biphenylium ion the only exothermic channel without

a barrier is C12H
+
9 + C6H6 → C18H

+
15. The other channels, like the one that leads to

C8H
+
7 +C10H8, seem to have an energy barrier and therefore might be interesting for the

modelling of the growth of PAH in high energy environments such as flames, combustion,

etc.. In particular, the channel leading to the formation of C8H
+
7 is the most abundant

after the adduct and it is the reactive channel showing the lowest energy threshold.

In Figure 4.18 comparison between reactivities of C6H
+
5 , C10H

+
7 and C12H

+
9 ions col
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Figure 4.18: Comparison between reactivities of C6H
+
5 , C10H

+
7 and C12H

+
9 ion colliding with 10−4 mbar

of benzene. The signal intensity of the parent ion (100%) is not shown.
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liding with benzene is shown. The three MS spectra are renormalized so that the intensity

fo the parent ion is 100% in each case. For the C12H
+
9 plus benzene system the MS

spectrum of product ions are also multiplied by a factor 100 for an easier comparison

with the spectra of the other systems. A rough estimate of the reaction probability for

the association of the C12H
+
9 ions with benzene can be obtained as described in the

following. Because the pressure of benzene in the scattering cell is the same in all cases,

the ratios of the relative intensities of products (e.g. given by the integration over the

mass peaks) can be assumed equal to the ratios of the corresponding reaction probabilities

σi. In particular for the association reactions:

C6H
+
5 + C6H6 → C12H

+
11 σ1

C10H
+
7 + C6H6 → C16H

+
13 σ2

C12H
+
9 + C6H6 → C18H

+
15 σ3

we can infer that:

σ1
σ2

=
I(C12H

+
11)

I(C16H
+
13)
≈ 3 (4.1)

and

σ1
σ3

=
I(C12H

+
11)

I(C18H
+
15)
≈ 140 (4.2)

Thus the highest reaction probabilities are observed for phenylium and naphthylium ions,

while biphenylium ions are about a factor 100 less reactive against benzene.

4.2.3 H/D scrambling

Further measurements have been carried out by using isotopically labelled C6D6 as neu-

tral reagent with the purpose of investigating any possible H/D atom scrambling and of

observing channels leading to back-fragmentation of the association product into reac-

tants. A typical mass spectrum of products from the reaction of C12H
+
9 with C6D6 taken

at a collision energy of 3.7 eV (in the lab) and with a benzene-d6 pressure ∼ 10−3 mbar

is shown in Figure 4.19(a). The mass spectrum is complicated by extensive H/D atom
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scrambling in some of the reaction products, similar to what we have previously observed

in the naphthylium/benzene system (see Section 4.1 and Ref. [55]).
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Figure 4.19: Mass spectrum of selected C12H
+
9 ions reacting with ∼ 10−3 mbar of C6D6 recorded at a

collision energy of 3.7 eV in the lab frame (a). The signal intensity of the parent ion (100%) is not shown.

Comparison (b) between the experimental and calculated intensities in the mass region of C8(H,D)+7

products. The calculated intensities correspond to a complete scrambling of the 9 H and 6 D atoms over

the three rings prior to fragmentation.

So far we have focussed the attention only on the C8(H,D)+7 product for which the

scrambling is far from being statistical, as shown in Fig. 4.19(b), where the comparison

between the experimental intensities and those calculated assuming a statistical redis-

tribution of the H and D atoms over the three benzene rings prior to fragmentation is

reported.

4.2.4 Theoretical results and reaction mechanisms

Here we will discuss the possible mechanisms for the formation of the ion C8H
+
7 . One of

the more prominent peaks in Fig. 4.15(a) is relevant to the C8H
+
7 cation observed at m/z

103, which can be formed upon fragmentation from C18H
+
15, and implies the formation of a

neutral counterpart of molecular formula C10H8. This peak is present only when C12H
+
9

reacts with benzene. Moreover, the peak is more pronounced at high collision energy

(>6–10 eV) and it almost desappears at collision energies smaller than 4 eV. Due to the

fact that this peak may correspond to the formation of the smallest PAH, naphthalene,

or other two-ring isomers the formation mechanism of the ion C8H
+
7 bears a particular

interest, and possible reaction channels are investigated.

Biphenylium can be generated with two accessibile spin multiplicities, singlet and
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triplet. Since they are separated by only 1.9 kcal mol−1, in favour of the singlet, they

can be deemed accessible both under our experimental conditions. However, only results

obtained on the singlet hypersurface are discussed here.

Several unimolecular transformations are explored, apt in principle to lead to a couple

C8H
+
7 /C10H8. Among them, only the most promising pathway is displayed in Schemes 4.20–

4.22, and the relevant steps are briefly commented in the following. Along this channel

the system can evolve through some hydrogen shifts with ring closures and openings, and

this allows in the end the formation of a naphthalene unit. An overall barrier above the

reagents is present, and it has a moderate height, which is consistent with the experimental

data on collisional energy dependences.

In Schemes 4.20–4.22 σ bond cleavages are indicated in red, σ bond formations in

green. Biphenylium acts as an electrophile and adds to the π system of benzene, leading

initially to the formation of either ionic adducts 1A or 1B (Scheme 4.20), depending on

the formation of one or two σ bonds between the two moieties. The exoergicity (∆EZPE)

is in both cases -54 kcal mol−1 with respect to the reagents (labelled as 0 in Scheme 4.20),

which is taken as a reference energy. An 1,2 H shift (or D shift, when working with

deuterated benzene) from position 1’ to position 1 leads from 1A to 2 down to -66 kcal

mol−1. The relevant barrier is 10 kcal mol−1 high, i.e. below the reagents. The next

rearrangement is a simple concerted 1,2 phenyl shift from position 4’ to 3’ of the original

biphenylium. It entails a barrier of 13 kcal mol−1 and the isomer 3 is obtained. Both

initial steps are well below the energy of the reagents. The energy of 3 is slightly below

that of 1A. Then, from 3, the bridged intermediate 4 is obtained, in which the original

6-ring, though still present, splits into the two fused 5- and 3-rings. This is not an easy

process, because it requires 37 kcal mol−1, but since the system goes up to -19 kcal mol−1,

it seems quite feasible. Then one bond belonging to the 3-ring cleaves and generates a

central 5-ring and a C+-H bridge into the intermediate 5A.

In Scheme 4.21 the phenyl group of structure 5 can transfer a hydride to the carbo-

cationic center C+-H group. This occurs because a favorable geometric arrangement can

be attained with consequent good overlap between one phenyl’s ortho C–H bond and the

empty π orbital on the C+. The H shift would create a “phenylium” substituent (phase (1)

in Scheme 4.21, where a positive charge is localized on the carbon marked by a red dot).

However, though this entity is recognizable on inspection of the transition structure (TS

5–6), this positively charged carbon (marked by a red dot) concertedly attacks the upper

phenyl group in the ortho position, indicated as a σ bond formation (2), which entails a
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Scheme 4.20: Preliminary steps: adduct formation, phenyl migration, and formation of a central 5-

membered cycle and methynic bridge. Energies are in kcal mol−1.

7-ring closure. Consequently, a “phenylium”-carrying intermediate is not present along

this pathway (as indicated by the brackets). The events (1) and (2) take place concertedly

but asynchronously, in the sense that ring closure clearly follows the “H−” transfer, which

is very nearly accomplished in a complete way in the TS. Along the reaction pathways

discussed here, this step is the most demanding one. It corresponds to a barrier of 46

kcal mol−1 and the system goes up in energy, almost to 5 kcal mol−1 above the reactants.

Subsequently, an easy two-step migration of the former phenylium carbon (red dot) to the

ipso position of the upper phenyl group (blue dot), takes place. First, the formation of a

3-ring in the intermediate 7 occurs. Then, the former inter-ring connection is abandoned

in favour of the new one, and the 8 spiro intermediate is obtained, in which the red-dot
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carbon is bound into the ipso position. A H [1,5] sigmatropic shift gives then 9 with a

barrier of 22 kcal mol−1, which keeps the evolving system below the energy of reagents

by 14 kcal mol−1.

Scheme 4.21: Central steps, with temporary linking of the two external phenyl rings. Energies are in kcal

mol−1.

From 9 further rearrangements follow. The scenario for the final fragmentation is

shown in Scheme 4.22. The step 9–10 corresponds to a barrier just above the zero, which

is defined by the reagents (3 kcal mol−1), the step 5–6 is found to be even lower. Then

two bond breakings and two bond formations in a concerted step (TS 9–10) correspond

to the shift of the carbon marked by a red dot, which belongs to the leftmost phenyl from

the ipso position (blue dot) to the central 5-ring (green dot), to form a 4-membered ring in

10. The secondary to tertiary carbocationic rearrangement 10–11 follows, while releasing

the strain involved by the 4-ring, produces the fused 6-rings of the to-be naphthalene σ

skeleton and a potentially leaving C8H7 group. A further H migration gives 12 and

precedes the two bond cleavages (steps 12–13 and 13–14), which produce naphthalene

and the (Ph-C=CH2)
+ fragment. In the fragmentation step the 1,2 H migration and a

cleavage of C–C bond are shown.

This reaction scheme is complicated, but it is more viable than others, explored

within the same perspective (forming the naphthalene framework and a potentially leav-
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Scheme 4.22: Final steps: phenyl migration, formation of the naphthalene framework (in 11), and final

fragmentation. Energies are in kcal mol−1.

ing group). It can be used to explain the experimental results as concerns the peak at

m/z 103. It is worth pointing out that in the end the proposed pathway is exoergic and

keeps most of the steps of the system below the reagents level. But it also has two small

barriers (steps 5–6 and 9–10), which can explain the fact that to observe the peak at

m/z 103, we need more energy (see Fig. 4.17(a)). When working with deutered benzene,

the scheme is consistent with the formation of the major C8H
+
7 species, i.e. C8H2D

+
5 .

4.2.5 Conclusion

The reaction of biphenylium ion C12H
+
9 with benzene was investigated by using API-3000.

The association product C18H
+
15 was detected at m/z 230. The dependences of various

products ion abundances on the nominal collision energy were performed to provide some

insight in the reaction processes. The adduct formation route was found to be exothermic

and barrierless, and therefore might be relevant for the atmosphere of Titan. Theoretical

calculations were performed to sheld light on the channel C12H
+
9 +C6H6 → C8H

+
7 +C10H8

which was in the end found to be exoergic. Other products corresponding to the loss of

H, 2H/H2, H + H2, etc. have energetic barriers and consequently might be interesting

for the modelling of the PAHs growth only in “hot” environments, such as combustion
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systems.

To get a rough idea of the reactivity of biphenylium ion we made a comparison between

reactivities of C6H
+
5 , C10H

+
7 and C12H

+
9 ion reacting with the same amount of benzene. It

was found that the association reaction of C12H
+
9 with benzene has a reaction probability

about 100 times smaller than that of the aromatic phenylium and naphtylium ions.
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4.3 Formation of C12H11O
+ ion

4.3.1 Introduction

Benzene is a good model to study more complex organic molecules. It is one of the im-

portant harmful volatile organic compound (VOC) of proved carcinogenic activity. In

recent years, it was demonstrated that benzene can be removed from the gas phase using

atmospheric non-thermal plasmas [57, 105, 106, 107]. By changing the O2 concentration

inside the plasma, it was found that in oxygen rich enviroments benzene undergoes com-

plete combustion, while when the amount of oxygen is reduced plasma processing leads

to polymerization and to formation of heavier oxidised derivatives, among which phenol

represents the dominant product [57, 105].

The chemical processes occurring in non-equilibrium plasmas of benzene/air mixtures

working at atmospheric pressure were recently investigated in our group [57, 56]. In

order to study reactive processes in non-equilibrium plasmas of benzene/air mixtures,

experiments were carried out by using a dielectric barrier discharge (DBD) reactor. Neu-

trals were produced in a DBD, and subsequently analysed by gas chromatography-MS

(GC-MS). Phenol (C6H5OH) was observed as the most abundant product in the GC-MS

spectrum. In addition to phenol several isomers with molecular formulas C12H10O and

C12H10O2 were also detected (see Fig. 4.23).

Figure 4.23: GC-MS analysis of the solid deposit obtained from the DBD treatment of a C6H6 mixture

with 4 % of O2 (phenol intensity off scale in the figure).

To study corona discharges of benzene/air mixture the Atmospheric Pressure Chemical
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Ionization source was used. Ions were produced inside the APCI source and subsequently

analysed by mass spectrometry. In Fig. 4.24(a) APCI measurements show that the most

abundant peaks are observed at m/z 94 (C6H6O
+), m/z 171 (C12H11O

+) and m/z 187

(C12H11O
+
2 ).

Figure 4.24: Positive ion mode mass spectra from the corona discharge source operating with: (a) benzene

and (b) deuterated benzene. Air is used as nebulizer gas in both cases, and benzene injection flow is

0.1 mL/min.

Several experiments have been done to understand the chemical origin and nature of

the oxygenated products. The peak at m/z 94 was attributed to phenol radical cation

due to following results. When working with deuterated benzene in the APCI source, a

mass shift to m/z 100 was observed (see Fig. 4.24(b)). The fragmentation spectra of ions

at m/z 94 (for C6H6/air mixture) and m/z 100 (C6D6/air) show a loss of 28 Da, which

corresponds to loss of CO molecule. It was shown that the loss of CO molecule is a typical

fragmentation route of the phenol ion [108, 109]. Also, additions of D2O to benzene (and

H2O to benzene-d6) in the APCI source were studied. A shift is observed from m/z 94 to

m/z 95 (C6H5OD
+) in the case of C6H6/D2O mixture. A similar shift is observed from

m/z 100 (C6D6O
+) to m/z 99 (C6D5OH

+) when working with mixture of C6D6 with

H2O. From all these data one can conclude that ions at m/z 94 and m/z 100 have the

structure of phenol with the O-bound proton leading to H/D scrambling with water.

To gain information about reaction mechanisms leading to the formation of phenol

cation in a benzene/air mixture several ion-molecule reactions were considered theoreti-

cally and experimentally studied in GIB-MS. It was shown that phenol was formed via
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radical mechanism C6H6 +O· → C6H5OH by oxygen addition on the benzene ring. The

fact that phenol was detected as a neutral molecule in the DBD plasma of benzene/air

mixture and as an ion in the corona discharge in the APCI source can be explained by

post ionization of the neutral product [57].

For the heavier oxygenated products with molecular formulas C12H10O and C12H10O2,

various isomeric structures have been detected in the solid deposit produced after DBD treat-

ment using GC-MS. In particular, for the C12H10O species the following isomers diphenyl

ether, 2-phenylphenol and 4-phenylphenol have been identified on the basis of their dif-

ferent retention times, compared with commercially available products (see Fig. 4.23).

This section is dedicated to the investigation of the possible chemical pathways leading

to the formation of such isomers both in DBD and in plasma corona discharges. In the

APCI mass spectrum of benzene (Fig. 4.24(a)) the ion at m/z 171 is the most abundant.

A molecular formula C12H10O
+ has been established for this ion by observing a mass

shift to m/z 182 when the spectrum is recorded with C6D6. Hence the ion observed in

the APCI source should be the protonated analogue of the neutrals observed in the solid

deposit after DBD treatment.

In this section we explore the possibility that the ion C12H10O
+ observed in plasma

corona discharges of C6H6/air is formed not by post ionization of pre-formed neutral, but

by ion-molecule reactions.

Several ionic routes for the formation of the ion at m/z 171 were proposed in the

literature [110, 111]. One of the meachanism [110] is via aromatic electrophilic addition

of C6H5OH
+ ions on neutral benzene (Scheme 4.25).

Scheme 4.25: Mechanism proposed for the formation of the ion observed at m/z 171.

[C6H6O]+ ions were produced directly from commercial phenol in acetone in the

APCI source and compared with the [C6H6O]+ ions synthesized in the APCI source

fed with a mixture of C6H6 and air. Figure 4.26 represents product ion MS spectra of

selected C6H6O
+ ions reacting with benzene produced in the two above mentioned ways.

As we can see, the reactivity of one type of ions is different from that of the other one.

In particular, the formation of the adduct product at m/z 172 is ∼ 20 times more likely
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from [C6H6O]+ ions coming from in-source synthesis than from [C6H6O]+ deriving from

commercial phenol.
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Figure 4.26: Reaction of mass selected [C6H6O]+ (m/z 94) ions with C6H6 at a collision energy of 4 eV

in the lab frame. The reacting [C6H6O]+ ion was generated in two different ways: (a) by ion-molecule

reaction in the APCI source fed with C6H6 and air; (b) by ionization of phenol in the APCI source. The

pressure of benzene was about 10−3 mbar. The signal intensity of the parent ion (100%) is off-scale.

This might be explained by different degrees of internal excitation of produced C6H6O
+ ions.

However this is a different problem that we have not explored any further. The important

result is that for both precursors the reactivity of the [C6H6O]+ ions is small and the main

product from both reactions is an adduct at m/z 172 (and not at m/z 171), thus ruling

out the attack of phenol molecular ion on the aromatic ring as a source of C12H11O
+ ion

[110].

Then we moved to study the reaction of ions [C6H5O]+ (m/z 93) with benzene as

another possible source for the formation of C12H11O
+ [111]. Ions of molecular formula

[C6H5O]+ can exist in the form of two different isomers: phenoxy C6H5O
+ and hydrox-

yphenyl OHC6H
+
4 cations [111]. Upon reaction with benzene, the two isomers should

form ionic adducts with different structures (see Schemes 4.27 and 4.28). Specifically, the

adduct structure from the reaction of C6H5O
+ ions with benzene could be protonated

diphenyl ether (Scheme 4.27), while OHC6H
+
4 ions after reacting with benzene will most

likely give protonated phenylphenol (Scheme 4.28).

To produce phenoxy ions (C6H5O
+) we have used anisole (C7H8O) as a neutral pre-

cursor (see Fig. 4.29(a)), while the OHC6H
+
4 ions were produced from p-bromophenol

(Fig. 4.29(b)) by dissociative ionization in either EI or APCI sources.
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Scheme 4.27: Mechanism proposed for the formation of the ion observed at m/z 171 through the reaction

of phenoxy C6H5O
+ ions with benzene.

Scheme 4.28: Mechanism proposed for the formation of the ion observed at m/z 171 through the reaction

of hydroxyphenyl OHC6H
+
4 ions with benzene.

Scheme 4.29: Phenoxy ions (C6H5O
+) produced from anisole (a) and OHC6H

+
4 ions produced from

p-bromophenol (b) in EI or APCI source.

4.3.2 Theoretical results and reaction mechanisms

Before discussing the experimental results we present a summary of the theoretical cal-

culations concerning the energetic and structures of the reactants and product ions. Ab

initio quantum chemical calculations were performed at the B3LYP/6-31G* level of theory

using the Spartan suite of program. Initially we focused on the possible interconversion

of the two isomeric reagents C6H5O
+ and OHC6H

+
4 , in order to understand whether

dissociative ionization of the different neutral precursors may lead to the formation of

[C6H5O]+ ions with a high degree of isomeric purity.

A schematic representation of the potential energy profile and the geometries of the

most relevant structures interconnecting the ions C6H5O
+ and OHC6H

+
4 is reported in
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Scheme 4.30. The para-OHC6H
+
4 isomer lies 1.09 eV above the C6H5O

+ ion. The iso-

merization C6H5O
+ → para-OHC6H

+
4 requires the intermediate formation of the ortho-

OHC6H
+
4 cation that is hampered by a large energy barrier of about 3 eV (see the
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Scheme 4.30: Structures and energies of isomeric [C6H5O]+ ions.

energy and structure of the corresponding transition state, labelled as TS 1 in Scheme 4.30).

The ortho-OHC6H
+
4 isomer can subsequently isomerize into the para-OHC6H

+
4 via 1,2 H

shifts. These rearrangements are also affected by high barriers: in particular, the transi-

tion state for the ortho-meta isomerization (TS 2 in Scheme 4.30) lies at 2.98 eV while

that for meta-para isomerization (TS 3 in Scheme 4.30) is at 3.01 eV. Our calculations

thus show that the interconversion between the two isomers is unlikely due to the presence

of high energy barriers.

In Scheme 4.31 we present the results of the calculations on the reaction of the C6H5O
+

isomer with C6H6. The addition of C6H5O
+ ions to benzene forms an adduct, labelled as

structure (a), via a process that is exoergonic by 0.32 eV and barrierless. Structure (a)

can subsequently rearrange into the more stable structures (b) and (c) corresponding to
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different isomers of protonated diphenyl ether by proton ring walk along the two benzene

rings. In analogy with proton ring walk mechanisms previosly addressed in our laboratory

on protonated biphenyl, even in this case the 1,2 H shifts may present small barriers. Even

though we have not explicitly calculated them, we do not expect them to be higher that

0.2–0.5 eV [85]. We also note that ring protonated diphenyl ether (structure (c)) is more

stable, by about 1.64 eV, than the O-protonated isomer (structure (b)).

We have also investigated the reaction channel leading to C12H
+
9 ion (m/z 153) plus

water, that is endoergonic by 0.6 eV (13.84 kcal mol−1) when C12H
+
9 ionic product is

assumed to have the structure labelled as (d) in Scheme 4.31. Several other structures,

such as (e), are also feasible, but they lie at higher energies. We have not attempted to

explore any further the mechanism of C12H
+
9 product formation, in particular to assess

whether it can proceed via a complex-mediated mechanism that requires adduct formation

and rearrangements.

Then we have moved to study the reaction of OHC6H
+
4 cations with benzene. A

schematic representation of the potential energy profile and geometries of the most rele-

vant stationary points are reported in Scheme 4.32. The addition of C6H6 toOHC6H
+
4 ions

is a barrieless process giving rise to structure (a); the process is exoergonic by 2.06 eV

(47.51 kcal mol−1). Adduct (a) can rearrange into structure (b), which lies 2.16 eV

below the energy of reactants, by migration of an H atom. It was shown in [102, 103]

that phenylium and naphthylium ions are known to undergo statistical H/D scrambling

as a consequence of the significant mobility of hydrogen atoms along the aromatic rings.

Our calculations indicate that this is also the case for protonated phenylphenol cations.

Due to the small energy difference between neighboring isomeric structures, an H atom

prefers to “walk” along the ring (namely sequential 1,2-hydrogen shifts) and this leads to

structures (b)– (e). As shown in Scheme 4.32 the energy differences between two neigh-

boring isomeric structures are not more than about 0.6 eV, which is in agreement with

[85, 102, 103]. In addition, the reaction channel leading to the formation of C12H9O
+ ions

plus water was also found to be exoergonic (see Scheme 4.32) by 0.27 eV (6.23 kcal mol−1).

4.3.3 Experimental results

Typical mass spectra of the ionic products and the product branching ratios both obtained

by API-3000 for the reaction of C6H5O
+ ions with benzene and OHC6H

+
4 ions with ben-

zene are shown in Fig. 4.33(a) and in Table 4.3. The product mass spectra from reactant

ions generated via APCI source (Fig. 4.33(a)) were measured at a collision energy (in the
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centre of mass frame) ECM ∼ 1 eV and with a pressure of benzene ∼ 10−4 mbar.
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Figure 4.33: MS spectra of ionic products from selected C6H5O
+ ions (blue) and OHC6H

+
4 ions (red),

produced from anisole and p-bromophenol in the APCI source (a) and in the EI source (b), colliding with

10−4 mbar of C6H6 at a collision energy of 1 eV in the centre of mass frame. The signal intensity of the

parent ion (100%) is off-scale.

The main ionic product for the reaction of C6H5O
+ ions with benzene is observed at

m/z 171, corresponding to the ion-molecule adduct C12H11O
+ with a sufficiently long

lifetime to reach the detector. The peak observed at m/z 153 is due to water loss, and

the peak at m/z 143 corresponds to the loss of CO. For the reaction of OHC6H
+
4 ions

with benzene (see Fig. 4.33(a)) the most intense peak was observed at m/z 153, while the

adduct was also present at m/z 171. According to our calculations the reactive channel

giving C12H
+
9 plus water from the reaction of the C6H5O

+ ion with benzene is endoergic

at least by 0.6 eV (when the C12H
+
9 isomeric structure (d) in Scheme 4.31 is formed),

and therefore the corresponding to C12H
+
9 ion peak at m/z 153 should not be present in

the mass spectrum. However, when working at a collision energy ECM ∼ 1 eV, as done in

the MS spectrum of Fig. 4.33(a), the translational energy imprated to the ionic reactant

is of help to fragment the association product C12H11O
+ into C12H

+
9 plus water.

Table 4.3: Branching ratios for formation of the various prod-

uct channels observed upon reaction of both OHC6H
+
4 and

C6H5O
+ ions with 10−4 mbar pressure of C6H6 by API-3000.

OHC6H
+
4 reagents C6H5O

+ reagents Position of peak

18.8% 67.1% 171

75.9% 30.3% 153

4.5% 2.4% 143

0.8% 0.2% 128
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The reactions under investigation are studied also using GIB-MS, where a better control

of the collision energy can be achived. Mass spectra are measured at a collision energy

of 1 eV (in the centre of mass frame) and with a pressure of benzene about 10−5 mbar

(see Fig. 4.33(b)). It was shown that the biggest peak for both reactions was observed

at m/z 153. The reacting ion C6H5O
+, produced in EI source of GIB-MS, is internally

excited and expected to reduce the lifetime of the intermediate complex and therefore the

probability for its stabilization into a long-lived species. On the contrary, C6H5O
+ ions

produced into the APCI source can dissipate the excess of internal energy by collisions

with N2 at atmospheric pressure prior to reaction with benzene. These considerations

can explain the small amount of ionic adduct C12H11O
+ at m/z 171 observed when the

reactions are carried out in GIB-MS (Fig. 4.33(b)), while in the spectra recorded with

API-3000 equipped with the APCI ion source (see Fig. 4.33(a))the ionic adducts are

formed with a higher yield.

The reaction of phenoxy ion C6H5O
+ with benzene are studied as a function of the

collision energy with GIB-MS. Behaviour of cross sections (in arbitrary units) for the

three channels are shown in Figure 4.34 over the center of mass collision energy range

from 0.1 to 6 eV. Data have be-
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Figure 4.34: Cross sections as a function of the col-

lision energy for the reaction of C6H5O
+ + C6H6

leading to the following products: C12H11O
+,

C12H
+
9 and C11H

+
11.
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Figure 4.35: Density dependences of C12H
+
9 prod-

uct from the reaction of C6H5O
+ ion with C6H6

at a collision energy of ∼0.64 eV in the center of

mass frame. Dashed line is linear fit of the data.

en collected with a C6H6 pressure of about ∼ 2 × 10−5 mbar to ensure adduct produc-

tion via bimolecular association using GIB-MS. The adduct formation channel C12H11O
+

has a negative energy dependence and this speaks for a barrierless exothermic process,

which is in agreement with theoretical calculations (see Scheme 4.31). The behaviour
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of the cross section for the channel giving C12H
+
9 at m/z 153 has also negative energy

dependence, which is usually the sign of an exothermic reaction. According to our the-

oretical calculations the channel C6H5O
+ + C6H6 → C12H

+
9 + H2O is endoergic by at

least 0.6 eV, while the same channel from the reaction OHC6H
+
4 +C6H6 was found to be

exoergic. It was also shown in Scheme 4.30 that any interconversion between the isomeric

[C6H5O]+ ions requires to overcome isomerization barriers of about 3 eV. The possible

explanation for the negative energy dependence for the channel giving C12H
+
9 ion is the

following. Since C6H5O
+ ions were produced in EI source (see Fig. 4.33(b)) we have to

take into account the possibility of having ions in electronically excited states. Thus such

ions with an internal energy of at least ∼0.6 eV can form the ion C12H
+
9 via a barrierless

process. This can clarify the negative energy dependence for C12H
+
9 product channel,

even if our calculations shows that this process is indeed endoergonic.

The reactive channel giving C12H
+
9 plus water has been studied by GIB-MS by mea-

suring the ratio IP/I0 as a function of the density of benzene in the reaction cell, and

results are shown in Figure 4.35 for the center-of-mass collision energy 0.64 eV. Data are

linear with density up to a value 1.2× 1012 molecules cm−3. Ions were formed under low-

pressure conditions. The corresponding range of benzene density was choosen to avoid a

contibution of multiple collisions. The absolute value of the reactive cross section for the

product C12H
+
9 was estimated by fitting the data and a value of σ ≈ 0.75± 0.23 Å2 was

derived for the reaction C6H5O
+ + C6H6 → C12H

+
9 +H2O.

4.3.4 H/D scrambling

Further measurements have been carried out in the API-3000 by using isotopically labelled

C6D6 as neutral reagent, with the purpose of investigating any possible H/D atom scram-

bling in the channel leading to water loss to gain some insights about the mechanism.

Black and red lines in Figure 4.36 show the mass region of C12(H,D)+9 products from

the reactions of C6H5O
+ and OHC6H

+
4 ions with ∼ 10−4 mbar of C6D6. The calculated

intensities for position of H and D atoms from the ions corresponding to the loss of H2O

are shown as blue bars in Figure 4.36 given in terms of areas of the experimental peaks in

the mass range 155–161 and then compared with the experimental results (black and red

lines). It was found that for this range 155–161 the distribution seems to be statistical

and this suggests that the mechanism for formation of the C12(H,D)+9 ions involves the

production of the adduct C12(H,D)11O
+, where the H and D atoms are randomized over

both rings and therefore water loss occurs via a complex-mediated mechanisms for both
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reactant isomers.
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Figure 4.36: Comparison between the experimental (black and red lines) and calculated - red hatched bars

intensities in the mass region of C12(H,D)+9 products from the reaction of C6H5O
+ or OHC6H

+
4 ions

with C6D6.

4.3.5 Supplementary data

Figure 4.37: Schematic representation of commercial

samples: (a) 3-phenylphenol, (b) 2-phenylphenol,

(c) 4-phenylphenol, (d) diphenyl ether.

To shed more light on the reaction mech-

anism and on the structure of the ion at

m/z 171 (C12H11O
+) we have performed

the following experiments. We have car-

ried out collision induced dissociation spec-

tra, using N2 as fragmentation gas, of the

cation C12H11O
+ (m/z 171), produced in

the APCI source by infusion of a mix-

ture of C6H6/air. Then we have com-

pared them with MS/MS spectra of iso-

baric ions deriving from commercial sam-

ples of diphenyl ether and 2- , 3- and 4-

phenylphenol (molecular masses equal to 170 u (C12H10O), for structures see Fig. 4.37),

using methanol as a solvent. In general, positive ion mode ionization of a given polar an-
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alyte molecule M in a soft ionization source such as APCI produces protonated molecular

ions MH+. As a result, working with APCI source will give the corresponding peaks at

m/z 171 for all commercial samples.

The MS/MS spectra of the ion at m/z 171 from 2- , 3- and 4-phenylphenol are very

similar (Fig. 4.38) and show the following fragments: high loss of H2O and small loss of

CO.
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Figure 4.38: MS/MS spectra of selected

C12H11O
+ ion produced from 2-, 3- and 4-

phenylphenol colliding with ∼ 1.8 × 10−4 mbar

of nitrogen at a collision energy of 18 eV in the

lab frame. The signal intensity of the parent ion

(100%) is off-scale.
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Figure 4.39: MS/MS spectra of selected

C12H11O
+ ion produced from C6H6/air,

phenylphenol and diphenyl ether colliding

with ∼ 1.8×10−4 mbar of N2 at a collision energy

of 18 eV in the lab frame. The signal intensity of

the parent ion is off-scale.

In Fig. 4.39 the MS/MS spectrum of C12H11O
+ ions produced from diphenyl ether

are shown and the following fragments are observed: H2O loss (major) and CO loss

(minor). To compare the fragmentation spectra of MH+ ions deriving from 2- , 3- and

4-phenylphenol and diphenyl ether with the MS/MS spectrum of the m/z 171, produced

in the APCI source from a C6H6/air mixture (Fig. 4.39) a linear combination of two

spectra (one is MS/MS spectrum of the m/z 171 from diphenyl ether, another one is

MS/MS spectrum of the m/z 171 from one of the isomeric phenylphenol) is performed

in Fig. 4.40. It was found that the best fit is obtained for a relative abundance of about

94 % of isomeric phenylphenol and about 6 % of diphenyl ether. This means that when

working with C6H6/air mixture in the APCI source both types of isomers can be obtained,

with a majority of isomeric phenylphenol.
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Figure 4.40: Linear combination of 94 % of isomeric phenylphenol (indicated as PP) and about 6 % of

diphenyl ether (indicated as DE) and MS/MS spectrum of the m/z 171, produced in the APCI source

from a C6H6/air mixture. The signal intensity of the parent ion (100 % is off-scale).

4.3.6 Conclusion

Ion-molecule reactions occurring in benzene/air corona discharges at atmospheric pres-

sure with particular reference to the formation route of the C12H10O
+ ion were studied.

It was shown that the mechanism proposed in Ref. [110] does not lead to the adduct at

m/z 171, but to the C12H11O
+ ion at m/z 172. Theoretical calculations were performed

to provide some mechanistic insights in the reaction processes, concerning the two pre-

cursor ions (C6H5O
+ and para-OHC6H

+
4 ) reacting with neutral benzene. It was found

that due to the presence of high isomerization barriers between the two precursors, any

interconversion C6H5O
+ ↔ OHC6H

+
4 prior to reaction is unlikely, when low collision or

internal excitation energies are involved. According to our calculations the reaction of

C6H5O
+ ion with benzene will lead to the adduct with a molecular structure of diphenyl

ether, while the reaction of OHC6H
+
4 ion will form the adduct with a molecular structure

of phenylphenol. To sheld more light on the structure of C12H11O
+ ion, MS/MS spectra

of commercial diphenyl ether and phenylphenol were performed and compared with the

ion at m/z 171 produced in the APCI source from a C6H6/air mixture. The result is that

the MS/MS spectrum of the m/z 171 from in-source C6H6/air mixture consists of 94 % of

69



4.3. FORMATION OF C12H11O
+ CHAPTER 4. RESULTS AND DISCUSSION

phenylphenol and 6 % of diphenyl ether.
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