
PhD Dissertation

International Doctorate School in Information &
Communication Technologies

DIT - University of Trento

Testing Techniques for Software Agents

Cu Duy Nguyen

Advisor:

Prof. Anna Perini

FBK-irst, Trento

Co-Advisor:

Prof. Paolo Tonella

FBK-irst, Trento

December 2008

Being deeply loved by someone gives you strength, while loving someone deeply gives you

courage. – Lao Tzu –

To my wife, Phuong, and my family.

Acknowledgements

From the moment I knew that I was admitted to the ICT International

Doctoral School (University of Trento) and the Fondazione Bruno Kessler

(ITC-irst at that time), I knew that I would be on a boat to an exciting,

yet challenging, PhD trip. I would like to acknowledge the people who

have been guiding, encouraging, supporting me along the journey.

First, I am deeply indebted to my advisors, Prof. Anna Perini and

Prof. Paolo Tonella, for embarking with me on this PhD journey. I could

not have wished for better collaborators and coaches. Your contributions,

detailed comments and insights have been of great value to me.

I wish to say sincere thanks to Prof. John Mylopoulos, Prof. Andrea

Omicini, Prof. Mark Harman, and Dr. Jorge J. Goméz Sanz for being

the members of my defence committee. I highly appreciate their time to

evaluate this thesis and their interesting questions and suggestions in my

defence.

I would like to thank people of the Software Engineering research group,

Fondazione Bruno Kessler: Alberto Siena, Mirko Morandini, Chiara Di

Francescomarino, Leonardo Leiria Fernandes, Nauman Ahmed Qureshi,

Emanuela Silvestris, and others. The more I remember your full name, the

greater colleagues you become, and the open space where we work turns

to be a more wonderful place.

I have had an interesting visit to the “Centre for Research on Evolution,

Search and Testing”, King’s College London, during the PhD programme.

I would like to thank Prof. Mark Harman, Prof. Michael Luck, and Dr.

Simon Miles for their inspirations and collaborations.

Last but not least, a special acknowledgement goes to my wife, Phuong

Thanh Nguyen, for her endless love and encouragement. Without her

unconditional supports I would not be here to realize my dream of under-

standing the scientific world, and of course, writing this thesis. I would

pay my deepest gratitude to my family, my parents, my sisters, and my

brothers with whom, I always find happiness and relaxation.

Abstract

Software agents and multiagent systems are a promising technology for

today’s complex, distributed systems. Methodologies and techniques that

address testing and reliability of these systems are increasingly demanded,

in particular to support systematic verification/validation and automated

test generation and execution.

This work deals with two major research problems: the lack of a struc-

tured testing process in engineering software agents and the need of ade-

quate testing techniques to tackle the nature of software agents, e.g., being

autonomous, decentralized, collaborative.

To address the first problem, we proposed a goal-oriented testing method-

ology, aiming at defining a systematic and comprehensive testing process

for engineering software agents. It encompasses the development process

from the early requirements analysis until the deployment. We investigated

how to derive test artefacts, i.e. inputs, scenarios, and so on, from agent

requirements specification and design, and use these artefacts to refine the

analysis and design in order to detect problems early. More importantly,

they are executed afterwards to find defects in the implementation and build

confidence in the operation of the agents under development.

Concerning the second problem, the peculiar properties of software agents

make testing them troublesome. We developed a number of techniques to

generate test cases, automatically or semi-automatically. These include

goal-oriented, ontology-based, random, and evolutionary generation tech-

niques. Our experiments have shown that each technique has different

strength. For instance, while the random technique is effective in revealing

crashes or exceptions, the ontology-based one is strong in detecting com-

munication faults. The combination of these techniques can help to detect

different types of fault, making software agents more reliable.

We also investigated approaches to monitoring agent behaviours and

evaluating them. All together, the generation, evaluation, and monitor-

ing techniques form a bigger picture: our novel continuous testing method.

In this method, test execution can proceed unattendedly and independently

of any other human-intensive activity; test cases are generated or evolved

continuously using the proposed generation techniques; test results are ob-

served and evaluated by our monitoring and evaluation approaches to give

feedbacks to the generation step. The aim of continuous testing is to ex-

ercise and stress the agents under test as much as possible, the final goal

being the possibility to reveal yet unknown faults.

We applied a case study to illustrate the proposed methodology and per-

formed three experiments to evaluate the performance of the proposed tech-

niques. The obtained results are promising.

Keywords

Software agent testing, goal-oriented testing methodology, multiagent sys-

tems, agent-oriented software engineering.

Contents

1 Introduction 1

1.1 Research problems . 3

1.2 Contributions . 4

1.3 Terminology . 6

1.4 Thesis structure . 8

2 State of the art 11

2.1 Software testing . 11

2.2 Agents and MAS testing 13

2.2.1 Unit . 16

2.2.2 Agent . 16

2.2.3 Integration . 18

2.2.4 System and acceptance 19

2.2.5 Summary . 20

3 GOST methodology 21

3.1 Introduction . 21

3.2 Background . 22

3.3 Motivating example . 25

3.4 Methodology . 30

3.4.1 Goal types . 30

3.4.2 Testing levels . 31

i

3.4.3 A process model for goal-oriented testing 32

3.4.4 Test suite derivation 34

3.4.5 Test suite structure 52

3.5 Summary . 54

4 Testing techniques 57

4.1 Agent evaluation . 58

4.1.1 Constraint-based oracle 58

4.1.2 Ontology-based oracle 60

4.1.3 Requirement-based oracle 63

4.2 Monitoring . 66

4.3 Generation . 70

4.3.1 Test inputs for software agents 70

4.3.2 Goal-oriented generation 71

4.3.3 Ontology-based generation 71

4.3.4 Random generation 75

4.3.5 Evolutionary generation 78

4.4 Continuous execution . 82

4.5 Summary . 85

5 eCAT 87

5.1 Specification tool . 88

5.2 Generation and execution tool 93

5.3 Monitoring tool . 94

6 Results 101

6.1 Continuous testing . 102

6.1.1 Testing BibFinder 105

6.1.2 Results . 108

6.2 Ontology-based generation 113

6.3 Requirement-based . 118

6.3.1 Application . 119

6.3.2 Preparation . 120

6.3.3 Evolutionary robustness testing 125

6.4 Summary . 130

7 Conclusion 133

7.1 Conclusion . 133

7.2 Future work . 136

Bibliography 139

Glossary 146

A Publications 151

List of Tables

3.1 Tropos development process by phases and output artefacts. 24

3.2 Acceptance testing: test suites derived for Mr. Cleaners . 38

3.3 System testing: test suites derived for Mr. Cleaners 41

3.4 System testing: examples of test suite derived for Mr. Clean-

ers . 42

3.5 Integration testing: a test case derived for G2: teamwork . 44

3.6 Test suite for plan Move 48

4.1 Valid input generation rules 73

4.2 Invalid input generation rules 74

4.3 Input combination rules 75

4.4 Testing techniques and test input types 85

6.1 List of experiments . 102

6.2 Results of continuous testing on BibFinder 110

6.3 Mean time between failures 112

6.4 Number of possible inputs from the book-trading ontology 115

6.5 Faults and coverage evaluation 118

v

List of Figures

1.1 Thesis outline . 9

3.1 Early requirements for Mr. Cleaners 25

3.2 Late requirements for Mr. Cleaners 26

3.3 Architecture of Mr. Cleaners 28

3.4 Architectural design of the cleaning agent 29

3.5 V process model for goal-oriented testing 32

3.6 Test suite derivation . 35

3.7 Broadcasting situated information protocol 45

3.8 Elementary goal-plan relationships 49

3.9 Overall structure of test suites 53

4.1 Book-trading interaction ontology, specified as UML class

diagram . 61

4.2 Example of stakeholders’ softgoals and contribution analysis 65

4.3 Different scenarios related to the battery level 66

4.4 Reference architecture for monitoring one single platform . 67

4.5 Reference architecture for monitoring multiple platforms . 69

4.6 Procedure of the random generation technique 76

4.7 Evolutionary testing procedure 80

4.8 Continuous testing process 84

5.1 eCAT framework . 88

5.2 An example of FSM presentation of a test scenario 89

vii

5.3 Description of the test scenario in Figure 5.2 90

5.4 eCAT test suite editor . 91

5.5 eCAT generation wizards 92

5.6 eCAT test result view . 95

5.7 eCAT test data view . 96

5.8 eCAT: the central monitoring agent in action 97

5.9 eCAT: the remote monitoring agents in action 98

5.10 eCAT monitoring: interaction view 99

5.11 eCAT monitoring: violation view 100

6.1 Architectural design of BibFinder in TAOM4E 103

6.2 Test suite TS1, used to test the goal Updating-database . . 106

6.3 Real bugs revealed by cycle 109

6.4 Total (real and artificial) bugs revealed by cycle 111

6.5 Log-log plot of mean time between failures 113

6.6 Interaction ontology of BibFinder 117

6.7 Encoding test inputs: an example of 6x6 cells 121

6.8 Plots of the closest distances of the agent to obstacles over

time for two executions of the same test case 122

6.9 Cumulative box-plots for two test cases 124

6.10 A special scenario to test the cleaner agent 129

Chapter 1

Introduction

The increasing use of Internet as the backbone for all interconnected ser-

vices and devices makes software systems highly complex and virtually

unlimited in scale. These systems often involve variety of users and het-

erogeneous platforms. They are evolved continuously to meet the changes

of business and technology. In some circumstances, they need to be au-

tonomous and adaptive for dealing with such changes.

Software agents, with their peculiar properties, e.g., (semi-)autonomy,

adaptivity, are key technologies to meet modern business needs, e.g., world-

wide computing, ubiquitous computing, networked enterprises. They offer

also an effective conceptual paradigm to model such complex systems. In

fact, research on the development of software agents and MultiAgent Sys-

tem (MAS) has grown into a very active area, and interestingly they are

receiving more industrial attention as well.

As these systems are increasingly taking over operations and controls

in enterprise management, automated vehicles, and financing systems, as-

surances that these complex systems operate properly need to be given

to their owners and their users. This calls for an investigation of suit-

able software engineering frameworks, including requirements engineering,

architecture, and testing techniques, to provide adequate software devel-

1

CHAPTER 1. INTRODUCTION

opment processes and supporting tools.

Testing of software agents and MAS is a challenging task because these

systems are distributed, autonomous, and deliberative. They operate in an

open world, which requires context awareness. There are issues concerning

communication and semantic interoperability, as well as coordination with

peers. All these features are known to be hard not only to design and to

program (Bergenti et al. 2004), but also to test. In particular, the very

specific nature of software agents, which are designed to be autonomous,

proactive, collaborative, and ultimately intelligent, makes it difficult to

apply existing software testing techniques to them. For instance, agents

operate asynchronously and in parallel, which challenges testing and de-

bugging. Agents communicate primarily through message passing instead

of method invocation, so existing object-oriented testing approaches are

not directly applicable. Agents are autonomous and cooperate with other

agents, so they may run correctly by themselves but incorrectly in a com-

munity or vice versa. Moreover, agents can be programmed to learn; so

successive tests with the same test data may give different results (Rouff

2002).

As a result, testing software agents and MAS seeks for new testing

techniques dealing with their peculiar nature. The techniques need to

be effective and adequate to evaluate agent’s autonomous behaviours and

build confidence in them.

From another perspective, while this research field is becoming more

mature, there is an emerging need for detailed guidelines during the de-

velopment process. This is considered a crucial step towards the adop-

tion of Agent-Oriented Software Engineering (AOSE) methodology by in-

dustry. A number of methodologies (Perini 2009, Henderson-Sellers and

Giorgini 2005) have been proposed so far. While some work considered

specification-based formal verification (e.g., Formal Tropos (Fuxman et al.

2

CHAPTER 1. INTRODUCTION 1.1. RESEARCH PROBLEMS

2004) and (Dardenne et al. 1993)), others relied on object-oriented tech-

niques, taking advantage of a mapping of agent-oriented abstractions into

object-oriented constructs, UML for instance. However, to the best of our

knowledge, none of existing work provides a complete and structured test-

ing process for guiding the testing activities. This is a big gap that we need

to bridge in order for agent-oriented methodologies to be widely applicable.

1.1 Research problems

Problem 1: defining a structured testing process for software

agents and MAS. Currently, AOSE methodologies have been focusing

mainly on requirement analysis, design, and implementation; limited atten-

tion was given to validation and verification, as in Formal Tropos (Fuxman

et al. 2004), and (Dardenne et al. 1993). A structured testing process that

complements analysis and design is still absent. This problem is pivotal

because without detailed and systematic guidelines, the development cost

may raise in terms of effort and productivity.

Problem 2: finding effective testing techniques for software

agents. The peculiar properties of software agents and MAS, e.g., being

autonomous, distributed, make testing them a troublesome task. Testing

traditional software systems, which have reactive (or input-output) style

behaviour, is known to be non-trivial, but testing autonomous agents is

even more challenging, because they have their own reasons for engaging

in proactive behaviours that might differ from an user’s concrete expecta-

tion, yet are still appropriate; the same test input can give different results

in different executions. Moreover, agents communicate primarily through

message passing instead of method invocation, so traditional testing ap-

proaches are not directly applicable; agents cooperate with other agents,

so they may run correctly by themselves but incorrectly in a community

3

1.2. CONTRIBUTIONS CHAPTER 1. INTRODUCTION

or vice versa. Defining adequate and effective techniques to test software

agents is, thus, a key problem in agent development.

1.2 Contributions

The contributions of this thesis are summarized as methodological contri-

butions with our goal-oriented testing methodology and testing techniques,

and practical contributions with a framework for the specification, gener-

ation, and execution of test cases.

Goal-oriented testing methodology to deal with Problem 1.

We propose a testing methodology, called Goal-Oriented Software Test-

ing (GOST), that exploits the link between requirements and test cases.

We describe the proposed approach with reference to the Tropos software

development methodology (Bresciani et al. 2004, Penserini et al. 2007)

and consider MAS as the target implementation technology. The pro-

posed methodology contributes to the existing AOSE methodologies by

providing: (i) a testing process model, which complements the analysis

and design activities by drawing connections between goals (e.g., stake-

holder goals) and test cases, and (ii) a systematic way for deriving test

cases from goal analysis models. A case study has been used extensively

to illustrate the methodology.

The benefits that the proposed methodology brings are twofold. First

of all, since goal-oriented requirements engineering has been recognized

as a powerful and effective approach for building today’s complex sys-

tems, including MAS, drawing straight connections between goal-oriented

construction and goal-oriented testing, like GOST does, can save the de-

velopment cost and avoid the conceptual gap between analysis and test-

ing. In fact, the common approach to this problem is to transform goal-

oriented concepts into object-oriented ones and then use them to create

4

CHAPTER 1. INTRODUCTION 1.2. CONTRIBUTIONS

test artefacts. This requires additional transformation effort and may cre-

ate anomalies as well as a conceptual gap between the two types of con-

cepts. Secondly, as GOST proposes to parallel goal-oriented construction

and goal-oriented testing, it also helps to discover problems early, avoid-

ing to implement erroneous specifications. Such benefits are well known

(Graham 2002) and have been investigated thoroughly in the test-driven

(or test-first) development method (Beck 2002).

Testing techniques to deal with Problem 2.

We propose and study different testing techniques to tackle the challenges

in testing software agents. Firstly, for evaluating agent behaviours we

propose three different approaches: constraint-based, ontology-based, and

requirement-based. Agents are autonomous, but in many cases they must

respect constraints, norms, or conventions. Constraint violations are con-

sidered as faults. Agents communicate with one another via message pass-

ing, the exchanged messages are often prescribed by means of interaction

ontologies, so interaction ontologies can be used as test oracles to detect

faulty behaviours. Stakeholder’s requirements, such as those related to

safety or performance, can be used as oracles as well.

Secondly, we investigate four different, yet complementary, approaches

to the generation of test cases, partially or fully automated: goal-oriented,

ontology-based, random, and evolutionary. The goal-oriented approach

takes goal analysis diagrams, following the GOST methodology, to gen-

erate test case skeletons. Then, the expected input/output behaviour is

specified manually. The latter three approaches exploit available interac-

tion ontology, domain data, or existing test cases to automatically generate

new test cases. The ultimate goal is to test software agents extensively with

diverse and challenging scenarios in order to detect faults.

Lastly, we propose a new testing execution method, called continuous

testing. This method relies on a tester agent, which plays the role of hu-

5

1.3. TERMINOLOGY CHAPTER 1. INTRODUCTION

man tester, and a monitoring agent network that monitors the system as

a whole to track events, changes, misbehaviours, and so on. The tester

agent uses the generation techniques, e.g., ontology-based, evolutionary, to

generate and execute new test cases against the agents under test, contin-

uously, while the monitoring agent network guards, reports problems (e.g.,

violations), or record data for desired measurements. Since the behaviour

of an agent can change over time due to the mutual dependencies among

agents and to their learning capabilities, a single execution of test cases

might be inadequate to reveal faults. Continuous testing allows for an

arbitrary extension of the testing time, that can proceed unattended and

independently of any other human-intensive activity. Existing test cases

are evolved and new test cases can be generated automatically, with the

aim of exercising and stressing the application as much as possible. The

final goal is the possibility to reveal yet unknown faults.

We have conducted many experiments to evaluate the effectiveness of

the proposed testing techniques. The results obtained are very promising

in terms of fault detection, coverage, and automated generation.

eCAT: a supporting tool.

To support the methodology and the continuous testing method, we have

developed a testing framework, called eCAT (eCAT). The framework con-

sists of tools for test case specification and derivation from goal models, for

graphical visualization, for continuous execution, and for fault reporting.

eCAT is available online at http://code.google.com/p/open-ecat/.

1.3 Terminology

The terms related to software testing used in this dissertation comply with

the “Standard Glossary of Terms used in Software Testing V.2.0, Dec, 2nd

2007” (Standard glossary of terms used in Software Testing 2007). For

6

http://code.google.com/p/open-ecat/

CHAPTER 1. INTRODUCTION 1.3. TERMINOLOGY

convenience, this section presents the most used terms.

behaviour The response of a component or a system to a set of input values
and preconditions.

test input The data received from an external source by a test object during
test execution.

test case A set of input values, execution preconditions, expected results
and execution postconditions, developed for a particular objective
or test condition, such as to exercise a particular program path or
to verify the compliance with a specific requirement.

test suite A set of test cases for a component or system under test.
test scenario A document specifying a sequence of actions for the execution of

a test. Also known as test script or manual test script.
test execution The process of running a test on the component or system under

test, producing actual (a) result(s)
test objective A reason or purpose for designing and executing a test.
test oracle A source to determine expected results to compare with the actual

result of the software under test. An oracle may be an existing
system (for a benchmark), a user manual, or an individual’s spe-
cialized knowledge, but should not be the code.

test coverage The degree, expressed as a percentage, to which a specified cover-
age item has been exercised.

Regarding the goal concept and its related terms, we adopt the defini-

tions used in (Bresciani et al. 2004):

Actor models an entity that has strategic goals and intentionality within
the system or the organizational setting. An actor represents a
physical, social or software agent as well as a role or position.

Goal represents actors’ strategic interests. We distinguish hardgoals
from softgoals, the second having no clear-cut definition and/or
criteria for deciding whether they are satisfied or not.

Plan represents, at an abstract level, a way of doing something. The ex-
ecution of plan can be a means for satisfying a goal or for satisfying
a softgoal.

Belief represents actor knowledge of the world.
Resource represents a physical or an informational entity.

In addition to these definitions, we give definitions of terms and abbre-

viations used at the end of this dissertation. The reader can refer to the

Glossary chapter at ease.

7

1.4. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

1.4 Thesis structure

The thesis is organized as in Figure 1.1. Chapter 2 surveys recent work on

software testing in general and software agents and MAS testing in par-

ticular. Chapters 3 and 4 discuss the GOST methodology and a rich set

of testing techniques for software agents, respectively. Then, Chapter 5

introduces eCAT, a supporting framework to facilitate software agent de-

velopers in defining and executing tests. In Chapter 6, we present three

experiments conducted to evaluate the performance of our newly proposed

testing techniques and tools. Finally, Chapter 7 concludes our work and

discusses future research directions.

8

CHAPTER 1. INTRODUCTION 1.4. THESIS STRUCTURE

Chapter 1:
Introduction

Chapter 2:
State of the art

Chapter 3:
GOST methodology

Chapter 4:
Testing techniques

Chapter 5: eCAT
Testing framework

Chapter 6:
Experimental results

Chapter 7:
Conclusion

Bibliography Publications

Glossary

Figure 1.1: Thesis outline

9

1.4. THESIS STRUCTURE CHAPTER 1. INTRODUCTION

10

Chapter 2

State of the art

2.1 Software testing

Software testing is a software development activity, aimed at evaluating

product quality and improving it by identifying defects and problems.

Software testing consists of the dynamic verification of the behaviour of

a program on a set of suitably selected test cases (Bourque and Dupuis

2004). Different from static verification activities like formal proofing or

model checking, testing involves running specified test cases against the

system under test.

Software testing is an important activity that encompasses the whole

development and maintenance process (Adrion et al. 1982, Schach 1996).

Test design and planning start from the early stage of the requirement pro-

cess. Testing objective is to find defects in specifications, design artefacts,

and implementation. On the other hand, the goal of software testing is

also to prevent defects, as it is obviously much better to prevent faults

than to detect and correct them because if the bugs are prevented, there is

no code to correct. The act of designing tests is known as one of the best

bug prevention activities. Tests design can discover and eliminate bugs at

every stage in the software construction process (Beizer 1990). Therefore,

the idea of “test first, then code” or test-driven is quite widely discussed

11

2.1. SOFTWARE TESTING CHAPTER 2. STATE OF THE ART

today (Beck 2002).

To date, several techniques have been defined and used by software de-

velopers. One can examine the system without reference to the internal

structure of the component or system (black-box testing) or based on an

analysis of the internal structure of the component or system (white-box

testing). On the other hand, one can design tests for a system based on the

analysis of its code (code-based testing) or its specification (specification-

based testing) or derive test cases in whole or in part from a model that

describes functional aspects of the system (model-based testing). In prac-

tice, we often combine different techniques to test a product in order to

increase the opportunity of finding defects.

Recently, a new testing technique called Evolutionary testing (ET) (McMinn

and Holcombe 2003, Wegener 2005) has been introduced. The technique is

inspired by the evolution theory in biology that emphasizes natural selec-

tion, inheritance, and variability. Fitter individuals have a higher chance

to survive and to reproduce offspring; and special characteristics of in-

dividuals are inherited. In ET, we usually encode each test case as an

individual; and in order to guide the evolution towards better test suites,

a fitness measure is a heuristic approximation of the distance from achiev-

ing the testing goal (e.g., covering all statements or all branches in the

program). Test cases having better fitness values have a higher chance to

be selected in generating new test cases. Moreover, mutation is applied

during reproduction in order to generate more diverse test set.

The key step in ET is the transformation from testing objective to search

problem, specifically fitness measure. Different testing objective gives rise

to different fitness definitions. For example, if the testing objective is to

exercise code inside an if block, one can define a fitness function that gives

lower values (considered as better) to test cases that are closer to make

the conditions of the if statement to be true; the best value is given to the

12

CHAPTER 2. STATE OF THE ART 2.2. AGENTS AND MAS TESTING

test cases that make the conditions to be true so that code inside the if

block will be executed. Once a fitness measure has been defined, different

optimization search techniques, such as local search, genetic algorithm,

particle swarm (McMinn and Holcombe 2003) can be used to generate test

cases towards optimizing fitness measure (or testing objective, i.e. finding

faults).

2.2 Software agents and MAS testing

Software agents are computational programs that have (among others) the

following properties: Reactivity, agents are able to sense environmental

changes and react accordingly; Proactivity, agents are autonomous, in that

they are able to choose which actions to take in order to reach their goals

in given situations; Social ability, that is, agents are interacting entities,

which cooperate, share knowledge, or compete for goal achievement.

MAS are systems composed of multiple autonomous agents that interact

with one another in an open environment to fulfil their goals, and the goals

of the systems as a whole. A MAS is usually a distributed and decentralized

system, its agents can be located at geographically-different hosts, and

they communicate mainly through message passing. Each host provides a

specific environment for the agents located at that host.

Due to those peculiar properties of agents and MAS as a whole, testing

them is a challenging task that should address the following issues. (Some

of them were stated in (Rouff 2002)):

Distributed/asynchronous. Agents operate in parallel and asynchronously.

An agent might have to wait for other agents to fulfil its intended goals. An

agent might work correctly when it operates alone but incorrectly when put

into a community of agents or vice versa. MAS testing tools must have

a global view over all distributed agents besides local knowledge about

13

2.2. AGENTS AND MAS TESTING CHAPTER 2. STATE OF THE ART

individual agents, in order to decide whether the whole system operate ac-

cordingly to the specifications. In addition, all the issues related to testing

distributed systems are applied in testing software agent and MAS as well,

for example problems with controllability and observability (Cacciari and

Rafiq 1999).

Autonomous. Agents are autonomous. The same test inputs may result

in different behaviours at different runs, since agents might update their

knowledge base between two runs, or they may learn from previous inputs,

resulting in different decisions made in similar situations.

Message passing. Agents communicate through message passing. Tradi-

tional testing techniques, involving method invocation, cannot be directly

applied.

Environmental and normative factors. Environment and conventions (norms,

rules, laws) are important factors that influence or govern the agents’

behaviours. Different environmental settings may affect the test results.

Sometimes, an environment provides means for agents to communicate or

itself is a test input. One must take into account these factors while dealing

with testing.

“Sealed” agents. In some particular cases, agents could be seen as “sealed”

in that they provide no or little observable primitives to the outside world,

resulting in limited access to the internal agents’ state and knowledge. An

example could be an open MAS that allows third-party agents to come

in and access to the resources of the MAS, how do we assure that the

third-party agents with limited knowledge about their intentions behave

properly?

Work in testing software agents and MAS can be classified into different

testing levels: unit, agent, integration, system, and acceptance. Here we

employ general terminologies rather than using specific ones used in the

community, e.g., group, society. Group and society, as called elsewhere, are

14

CHAPTER 2. STATE OF THE ART 2.2. AGENTS AND MAS TESTING

equivalent to integration and system, respectively. The testing objectives,

subjects to test, and activities of each level are described as follows:

• Unit. Test all units that make up an agent, including blocks of code,

implementation of agent units like goals, plans, knowledge base, rea-

soning engine, rules specification, and so forth; make sure that they

work as designed.

• Agent. Test the integration of the different modules inside an agent;

test agents’ capabilities to fulfil their goals and to sense and effect the

environment.

• Integration or Group. Test the interaction of agents, communication

protocol and semantics, interaction of agents with the environment,

integration of agents with shared resources, regulations enforcement;

Observe emergent properties, collective behaviours; make sure that a

group of agents and environmental resources work correctly together.

• System or Society. Test the MAS as a system running at the target

operating environment; test the expected emergent and macroscopic

properties of the system as a whole; test the quality properties that

the intended system must reach, such as adaptation, openness, fault-

tolerance, performance.

• Acceptance. Test the MAS in the customer’s execution environment

and verify that it meets stakeholder goals, with the participation of

stakeholders.

The rest of this section surveys recent and active work on testing soft-

ware agents and MAS, with respect to these categories. This classification

is intended only to help easily understand the research work in the field.

It is also worthwhile noticing that this classification is not complete in the

15

2.2. AGENTS AND MAS TESTING CHAPTER 2. STATE OF THE ART

sense that some work addresses testing in more than one level, but we put

them in the level they mainly focus.

2.2.1 Unit

At the unit level, Zhang et al. (2007) introduced a model based testing

framework using the design models of the Prometheus agent development

methodology (Padgham and Winikoff 2002). Different from traditional

software systems, units in agent systems are more complex in the way

that they are triggered and executed. For instance, plans are triggered by

events. The framework focuses on testing agent plans (units) and mech-

anisms for generating suitable test cases and for determining the order in

which the units are to be tested. Ekinci et al. (2008) claimed that agent

goals are the smallest testable units in MAS and proposed to test these

units by means of test goals. Each test goal is conceptually decomposed

into three sub-goals: setup, goal under test, and assert. The first and last

goal prepare pre-conditions and check post-conditions while testing the

goal under test, respectively.

Unit testing needs to make sure that all units that are parts of an agent,

like goals, plans, knowledge base, reasoning engine, rules specification, and

even blocks of code work as designed. Effort has been spent on some partic-

ular elements, such as goals, plans. However, fully addressing unit testing

in AOSE still opens room for research. An analogy of expected results can

be those of unit testing research in the object-oriented development.

2.2.2 Agent

At the agent level, Gómez-Sanz et al. (2008) introduced advances in testing

and debugging made in the INGENIAS methodology (Pavón et al. 2005).

The meta-model of INGENIAS has been extended to incorporate the dec-

16

CHAPTER 2. STATE OF THE ART 2.2. AGENTS AND MAS TESTING

laration of testing, i.e., tests and test packages. JUnit-based test case and

suite skeletons can be generated and it is the developer’s task to modify

them as needed. The work also provided facilities to access mental states

of individual agents to check them at runtime.

Coelho et al. (2006) proposed a framework for unit testing of MAS based

on the use of Mock Agents. Even though they called it unit testing but

their work focused on testing roles of agents at agent level according to our

classification. Mock agents that simulate real agents in communicating

with the agent under test were implemented manually; each corresponds

to one agent role. Sharing the inspiration from JUnit (Gamma and Beck

2000) with Coelho et al. (2006), Tiryaki et al. (2006) proposed a test-driven

MAS development approach that supported iterative and incremental MAS

construction. A testing framework called SUnit, which was built on top

of JUnit and Seagent (Dikenelli et al. 2005), was developed to support the

approach. The framework allows writing tests for agent behaviours and

interactions between agents.

Lam and Barber (2005) proposed a semi-automated process for compre-

hending software agent behaviours. The approach imitates what a human

user, can be a tester, does in software comprehension: building and refin-

ing a knowledge base about the behaviours of agents, and using it to verify

and explain behaviours of agents at runtime. Although the work did not

deal with other problems in testing, like the generation and execution of

test cases, the way it evaluates agent behaviours is interesting and relevant

for testing software agents.

Núñez et al. (2005) introduced a formal framework to specify the be-

haviour of autonomous e-commerce agents. The desired behaviours of the

agents under test are presented by means of a new formalism, called utility

state machine, that embodies users’ preferences in its states. Two test-

ing methodologies were proposed to check whether an implementation of

17

2.2. AGENTS AND MAS TESTING CHAPTER 2. STATE OF THE ART

a specified agent behaves as expected (i.e., conformance testing). In their

active testing approach, they used for each agent under test a test (a spe-

cial agent) that takes the formal specification of the agent to facilitate it

to reach a specific state. The operational trace of the agent is then com-

pared to the specification in order to detect faults. On the other hand, the

authors also proposed to use passive testing in which the agents under test

were observed only, not stimulated like in active testing. Invalid traces, if

any, are then identified thanks to the formal specifications of the agents.

2.2.3 Integration

At the integration level, effort has been put in agent interaction to ver-

ify dialogue semantics and workflows. The ACLAnalyser (Bot́ıa et al.

2004) tool runs on the JADE (Telecom Italia Lab 2000) platform. It inter-

cepts all messages exchanged among agents and stores them in a relational

database. This approach exploits clustering techniques to build agent inter-

action graphs that support the detection of missed communication between

agents that are expected to interact, unbalanced execution configurations,

overhead data exchanged between agents. This tool has been enhanced

with data mining techniques to process results of the execution of large

scale MAS (Bot́ıa et al. 2006).

Padgham et al. (2005) use design artefacts (e.g., agent interaction pro-

tocols and plan specification) to provide automatic identification of the

source of errors detected at run-time. A central debugging agent is added

to a MAS to monitor the agent conversations. It receives a carbon copy

of each message exchanged between agents, during a specific conversation.

Interaction protocol specifications corresponding to the conversation are

fired and then analyzed to detect automatically erroneous conditions. Ek-

inci et al. (2008) view integration testing of MAS rather abstract. They

considered system goals as the source cause for integration and apply the

18

CHAPTER 2. STATE OF THE ART 2.2. AGENTS AND MAS TESTING

same approach for testing agent goals (unit – according to their view) to

test these goals.

Also at the integration level but pursuing a deontic approach, Rodrigues

et al. (2005) proposed to exploit social conventions, i.e. norms, rules, that

prescribe permissions, obligations, and/or prohibitions of agents in an open

MAS to integration test. Information available in the specifications of these

conventions gives rise to a number of types of assertions, such as time to

live, role, cardinality, and so on. During test execution a special agent

called Report Agent will observe events and messages in order to generate

analysis report afterwards.

2.2.4 System and acceptance

At the system level of testing MAS, one has to test the expected emergent

and macroscopic properties and/or the expected qualities of the system

as a whole. Some initial effort has been devoting to the validation of

macroscopic behaviours of MAS. Sudeikat and Renz (2008) proposed to

use the system dynamics modelling notions for the validation of MAS.

These allow to describe the intended, macroscopic observable behaviours

that originate from structures of cyclic causalities. System simulations are

then used to measure system state values in order to examine whether

causalities are observable.

To the best of our knowledge, there is no work dealing explicitly with

testing MAS at the acceptance level, currently. In fact, agent, integration,

and system test harnesses can be reused in acceptance test, providing ex-

ecution facilities. However, as testing objectives of acceptance test differ

from those of the lower levels, evaluation metrics at this level, such as met-

rics for openness, fault-tolerance, adaptivity, demand for further research.

19

2.2. AGENTS AND MAS TESTING CHAPTER 2. STATE OF THE ART

2.2.5 Summary

In summary, most of the contemporary research work on testing software

agent and MAS focuses mainly on agent and integration level. Basic issues

of testing software agents like message passing, distributed/asynchronous

have been considered; testing frameworks have been proposed to facilitate

testing process. However, there is still much room for further investiga-

tions, for instance:

• A complete and comprehensive testing process for software agents and

MAS.

• Testing MAS at system and acceptance level, how do the developers

and the end-users build confidence in autonomous agents?

• Test inputs definition and generation to deal with open and dynamic

nature of software agents and MAS.

• Test oracles, how to judge an autonomous behaviour? How to evalu-

ate agents that have their own goals from human tester’s subjective

perspectives?

• Testing emergent properties at macroscopic system level, how to judge

if an emergent property is correct? how to check the mutual relation-

ship between macroscopic and agent behaviours?

• Deriving metrics to assess the qualities of the MAS under test, such

as safety, efficiency, and openness.

• Reducing/removing side effects in test execution and monitoring be-

cause introducing new entities in the system, e.g., mock agents tester

agents, and monitoring agent as in many approaches, can influence

the behaviour of the agents under test and the performance of the

system as a whole.

20

Chapter 3

Goal-oriented testing methodology

3.1 Introduction

The strong connection between requirements engineering and testing is

widely recognized (Graham 2002). First, designing test cases early and

in parallel with requirements helps discovering problems early, thus avoid-

ing to implement erroneous specifications. Secondly, good requirements

produce better tests. Moreover, early test specification produces better

requirements because it helps to clarify ambiguities in requirements. The

link is so important that considerable effort has been devoted to what is

called test-driven (or test-first) development. In such approach, tests are

produced from requirements before implementing the requirements them-

selves (Beck 2002). Software development turns out to be the process of

making test cases pass.

Several AOSE methodologies (Henderson-Sellers and Giorgini 2005) have

been proposed so far. In terms of testing and verification, while some con-

sider specification-based formal verification (e.g., Formal Tropos (Fuxman

et al. 2004, Perini et al. 2003) and (Dardenne et al. 1993)), other borrow

Object-Oriented (OO) testing techniques, taking advantage of a mapping

of agent-oriented abstractions into OO constructs (e.g., PASSI (Cossentino

2005) and INGENIAS (Pavón et al. 2005)). However, a structured testing

21

3.2. BACKGROUND CHAPTER 3. GOST METHODOLOGY

process for AOSE methodologies is still absent.

In this chapter, we propose a testing methodology, called GOST, that

exploits the link between requirements and test cases, following the V-

Model (Development Standards for IT Systems of the Federal Republic of

Germany 2005). We describe the proposed approach with reference to the

Tropos software development methodology (Bresciani et al. 2004, Penserini

et al. 2007) and consider MAS as the target implementation technology.

Similar to object-oriented approaches in which test cases are derived from

use-case requirements models, we investigate how to derive test cases from

goal-oriented Tropos requirements models.

Specifically, the proposed methodology contributes to the existing AOSE

methodologies by providing: (i) a testing process model, which comple-

ments the development methodology by drawing a connection between

goals and test cases and (ii) a systematic way for deriving test cases from

goal analysis.

It is worth noticing that differently from goal-oriented test generation

in the context of coverage testing, i.e., generation of test inputs to achieve

a coverage goal, such as branch coverage (Gotlieb et al. 2007), the goal-

oriented software testing methodology proposed in this chapter aims at

exploiting goal analysis to derive systematically test suites and using the

achievement of goals, e.g., stakeholder goals, system goals, as criteria for

testing. Inversely, the derived test suites provide feedback useful for refin-

ing the analysis, design, and code artefacts to detect and solve problems

as early as possible.

3.2 Tropos methodology background

Tropos is an agent-oriented software engineering methodology (Bresciani

et al. 2004, Penserini et al. 2007) that adopts a requirement-driven ap-

22

CHAPTER 3. GOST METHODOLOGY 3.2. BACKGROUND

proach, that is system requirements are derived from a deep model of the

problem domain, called Early Requirements model, in which the stakehold-

ers, their goals and the social dependencies among them for goal achieve-

ment are made explicit (see Table 3.1). System requirements are then de-

rived from an analysis of the goals that domain stakeholders will delegate

to the intended system. This is modelled in the so-called Late Require-

ments model, which is the input of the following design phases. In par-

ticular, in the Architectural Design phase, candidate system architectures

are derived and analyzed against non-functional requirements (or quality

factors). In the Detailed Design phase the system specification is further

detailed, taking into account the target implementation platform. In case

of MAS, system actors are defined in terms of agent roles and specifications

of agent communication and coordination protocols are given.

The Tropos methodology provides a conceptual modelling language based

on the i* framework (Yu 1995), including a diagrammatic notation to build

views of the model and goal analysis techniques. Basic constructs of the

language are those of actor, goal, plan, softgoal, resource, and capabilities.

Dependency links between pairs of actors allow to model the fact that one

actor depends on another in order to achieve a goal, execute a plan, or

acquire a resource and can be depicted in actor diagrams.

Goals are classified into hardgoals and softgoals; the latter has no clear-

cut definition and/or criteria as to whether they are satisfied. Softgoals

are particularly useful to specify non-functional requirements. Goals are

analyzed from the owner actor perspective through AND, OR decompo-

sition; means-end analysis of plans and resources that provide means for

achieving the goal (the end); contribution analysis that points out hard-

goals and softgoals that contribute positively or negatively to reaching the

goal being analyzed.

A modelling tool is provided to support a model-driven development

23

3.2. BACKGROUND CHAPTER 3. GOST METHODOLOGY

Table 3.1: Tropos development process by phases and output artefacts.

Phase Description Output artefact

Early Req.

(ER)

The organizational settings where the
system-to-be will operate and the rel-
evant stakeholders are identified dur-
ing this stage.

Domain model (i.e. the organiza-
tional setting, as is). Stakehold-
ers are represented as actors while
their objectives are represented as
goals, specified in terms of ER
Actor and Goal Diagram — e.g.,
Fig. 3.1

Late Req.

(LR)

The system-to-be is introduced as a
new actor with its new dependencies
with existing actors that indicate the
obligations of the system towards its
environment as well as what the sys-
tem can expect from existing actors
in its environment.

Model of the system-to-be where
system requirements are modelled
in terms of system goals, by means
of LR Actor and Goal Diagrams —
e.g., Fig 3.2

Archit. De-

sign (AD)

More system actors are introduced.
They are assigned to subgoals or
goals and tasks (those assigned to the
system as a whole). The implementa-
tion platform is chosen, allowing de-
signers to reuse existing design pat-
terns.

System architecture model, speci-
fied in terms of a set of interacting
software agents in an AD Actor Di-
agram — e.g., Fig. 3.3

Detailed De-

sign (DD)

System actors are defined in further
detail, including specification of com-
munication and coordination proto-
cols. Plans are designed in detail us-
ing existing modelling languages like
UML or AUML (Odell et al. 2000).

Specification of software agent
roles, capabilities, and interac-
tions, by means of Activity and Se-
quence Diagrams — e.g., Fig. 3.4,
Fig. 3.7

Implementa-

tion

The Tropos specification, produced
during detailed design, is trans-
formed into a MAS code skeleton.
This is done through a mapping from
the Tropos constructs to those of a
target-programming platform, such
as JADE (Telecom Italia Lab 2000).

MAS skeleton code and implemen-
tation documents.

24

CHAPTER 3. GOST METHODOLOGY 3.3. MOTIVATING EXAMPLE

process (Perini and Susi 2005) in which requirements models are refined

into design models, from which agent code skeleton can be automatically

derived (Penserini et al. 2007).

The Tropos methodology determines the basic requirements for the

GOST approach. Indeed, it uses the notion of agent and all related men-

talistic notions, in particular the concept of goal, in all phases of software

development, from early analysis down to implementation, providing goal-

oriented specification and code. Moreover, Tropos provides a structured,

tool-supported process, which is organized along five main phases, each

one producing a specific set of modelling artefacts, as recalled in Table 3.1.

3.3 Motivating example

To illustrate the GOST methodology, we introduce a multi-agent system

that is composed of several cleaning agents working at an airport. This

software could be deployed on a physical platform composed of a set of

moving robots. We name this system Mr. Cleaners. Mr. Cleaners are in

charge of keeping the airport clean; agents in the system have to collaborate

to optimize their work and be nice with passengers.

G1: keep the
airport clean

Airport
staff

SG0: improve
service quality SG1: minimize

cleaning expense

SG2: please
passengers

+

+

Legends

Softgoal Goal +

contribution link

Actor

dependence link

Figure 3.1: Early requirements for Mr. Cleaners

25

3.3. MOTIVATING EXAMPLE CHAPTER 3. GOST METHODOLOGY

Following the guidelines of Tropos (Bresciani et al. 2004), we do the

early requirements analysis and identify stakeholders’ goals associated with

Mr. Cleaners (see Figure 3.1) 1. There are two top softgoals that the air-

port wants to reach: SG1: minimize-cleaning-expense and SG0: improve-

service-quality. To reach the latter, two other sub-goals need to be ful-

filled: G1: keep-the-airport-clean and SG2: please-passengers. There could

be more goals that the airport wants to achieve, but we consider only these

goals to keep the example simple and understandable.

Mr.
Cleaners

G1: keep the
airport clean

SG1: minimize
cleaning expense

SG2: please
passengers

G2: team work
G3: be polite

+
+

Airport
staff

SG1: minimize
cleaning expense

G1: keep the
airport clean

SG2: please
passengers

Figure 3.2: Late requirements for Mr. Cleaners

Figure 3.2 shows the late requirements analysis for Mr. Cleaners . The

airport staff delegates three goals SG1, SG2, and G1 to the multi-agent

system under construction, Mr. Cleaners . At a high-level view, the system

adds two hardgoals: G2: team-work and G3: be-polite in order to reach

SG1, SG2, as required by the airport staff. Mr. Cleaners must achieve all

the three hardgoals.

1An analysis of the alternative ways to fulfilling stakeholder strategic goals is usually done in Tropos
Early Requirements. See, for instance, (Perini 2009) for an example of how this step is performed on a
cleaning robots scenario.

26

CHAPTER 3. GOST METHODOLOGY 3.3. MOTIVATING EXAMPLE

Moving on from the late requirements analysis, system actors are added

in the architectural design of Mr. Cleaners . In this example, system actors

are the cleaning agents. Goals of the system G1, G3, G2 are delegated to

the agents.

Figure 3.3 depicts the architecture system as a whole, showing (for ex-

ample) three cleaning agents. Notice that at the deployment time the

number of agents will be determined by the number of available robots.

The mutual goal dependency G2 represents the fact that the peer agents

will coordinate to better achieve the system goal SG1 and will reflect

into individual agent goals. Moreover, the agents share resources, namely

recharging-stations, waste-bins, wastes, and obstacles, and knowledge about

them. The internal architectural design of the cleaning agent is described

in Figure 3.4.

Finally, Figure 3.4 shows the architectural design of the cleaning agent.

A number of goals and plans (tasks) are assigned to the agent. At the

highest level there are four root goals: G2: team-work, G4: maintain-

battery, G3: be-polite, and G1: keep-the-airport-clean. G1, G2, G3 are

delegated from the system, while G4 is the agent own goal to keep the

agent alive.

These goals are, then, decomposed into sub-goals. For instance, G4:

maintain-battery is AND-decomposed into two sub-goals G4.1: query-

charging-location, and achieve-move-to-a-location. AND decomposition

requires all sub-goals to be achieved to obtain the achievement of their

root goal. Plans are lastly added to the design as means to achieve goals.

The detailed design of plans can be done following guidelines described

in (Bresciani et al. 2004, Penserini et al. 2007). An example is given in

Figure 3.7.

27

3.3. MOTIVATING EXAMPLE CHAPTER 3. GOST METHODOLOGY

Mr.
Cleaners

Recharging
stations

Waste bins

G2: team work

Legends

Goal AgentResource

dependence link

+

contribution link

G6: maintain
battery

G1.2: perform
looking for wasteG1.1: Achieve clean upG6.1 Query charging

location
Achieve move
to a location

Achieve pickup
waste

Achieve
drop

waste

Drop wasteQuery waste
bin

Qu
ery
loc
atio
n

Pic
kup
wa
ste

Dr
op
wa
ste

Quer
y

wast
e bin

P
at
ro
l

G3.2: avoid
obstacleG3.1: Identify obstacle

G2: team
work

G2.1
Broadcast

situated info

G2.3 Adjust
local plans

G2.2 Update
team info

A
d
j
u
s
t Updat

e
comm
unity
info

Broadcast
ing

Ide
ntif
y

obj
ect
s

G3: be polite

G1: keep the
airport clean

stop or
change
direction

Obstacles

G6: maintain
battery

G1.2: perform
looking for wasteG1.1: Achieve clean upG6.1 Query charging

location
Achieve move
to a location

Achieve pickup
waste

Achieve
drop

waste

Drop wasteQuery waste
bin

Qu
ery
loc
atio
n

Pic
kup
wa
ste

Dr
op
wa
ste

Quer
y

wast
e bin

P
at
ro
l

G3.2: avoid
obstacleG3.1: Identify obstacle

G2: team
work

G2.1
Broadcast

situated info

G2.3 Adjust
local plans

G2.2 Update
team info

A
d
j
u
s
t Updat

e
comm
unity
info

Broadcast
ing

Ide
ntif
y

obj
ect
s

G3: be polite

G1: keep the
airport clean

stop or
change
direction

G6: maintain
battery

G1.2: perform
looking for wasteG1.1: Achieve clean upG6.1 Query charging

location
Achieve move
to a location

Achieve pickup
waste

Achieve
drop

waste

Drop wasteQuery waste
bin

Qu
ery
loc
atio
n

Pic
kup
wa
ste

Dr
op
wa
ste

Quer
y

wast
e bin

P
at
ro
l

G3.2: avoid
obstacleG3.1: Identify obstacle

G2: team
work

G2.1
Broadcast

situated info

G2.3 Adjust
local plans

G2.2 Update
team info

A
d
j
u
s
t Updat

e
comm
unity
info

Broadcast
ing

Ide
ntif
y

obj
ect
s

G3: be polite

G1: keep the
airport clean

stop or
change
direction

Cleaning
Agent

Cleaning
Agent

Cleaning
Agent

WastesWastes Obstacles Waste bins Recharging
stations

Figure 3.3: Architecture of Mr. Cleaners

28

CHAPTER 3. GOST METHODOLOGY 3.3. MOTIVATING EXAMPLE

Legends

Goal

OR decomposition

means-end
Plan Agent

AND decomposition

G4: maintain
battery

G1.2: perform
looking for waste

G1.1: Achieve clean
up

G4.1 Query charging
location

Achieve move to
a location

Achieve pickup
waste

Achieve drop
waste

Achieve drop
waste

Query waste
bin

Query
location

Move

Pickup
waste Drop

wasteLook for
wastebin

Patrol

G3.2: achieve
avoid obstacle

G3.1: achieve identify
obstacle

G2: team
work

G2.1 Broadcast
situated info

G2.3 Adjust
local plans

G2.2 Update
team info

Adjust
Update

community
info

Broadcasting

Identify
objects

G3: be polite

G1: keep the
airport clean

stop or change
direction

Cleaning
Agent

Figure 3.4: Architectural design of the cleaning agent

29

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

3.4 Methodology

This section presents the proposed methodology. We discuss different goal

types, testing types, a testing process model. The relationships between

goal types and testing levels are presented with reference to the process.

Finally, we discuss how to derive systematically test cases from goal models.

3.4.1 Goal types

Different perspectives give different goal classifications. For instance, (Das-

tani et al. 2006) classify agent goals in agent programming into three cat-

egories, namely perform, achieve, and maintain, according to the agent’s

attitude toward them.

We use a general perspective on goals, but not from a specific subject

(e.g., agent), to classify them based on the Tropos software engineering pro-

cess. Goals are classified into the following types according to the different

phases of the process:
Type Descriptions

Stakeholder goals that represent stakeholder objectives and requirements to-
wards the system to-be. This type of goal is mainly identified at
the early requirements phase of Tropos.

System goals that represent system-level objectives or qualities that the
system to-be has to reach or provide. For instance, goals that
are related to performance, openness of the system as a whole are
system goals. This type of goal is mainly specified at the late
requirements phase of Tropos

Collaborative goals that require the agents of the system to-be to cooperate
or share tasks, or goals that are related to emergent properties
resulting from interactions. This type of goal can be called also
as group goal, and they often appear at the architectural design
phase of Tropos

Agent goals that belong to or are assigned to particular agents. This
type of goal appears when designing agents.

Let’s go back to our motivating example in Section 3.3. Goals shown in

30

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

Figure 3.1 (G1, SG0, SG1, SG2) are stakeholder goals while those inside the

balloon presented in Figure 3.2 are system goals; these goals capture the

strategic and system-level objectives of the airport regarding Mr. Cleaners .

The goal G2: teamwork in Figure 3.3 is a collaborative goal of the cleaning

agents. Finally, all goals presented in Figure 3.4 are of agent goal type.

Different goal types are related to different testing scopes and test eval-

uation methods. 2 The next sections discuss testing types and the mapping

between goal types and testing types.

3.4.2 Testing levels

We propose to divide the MAS testing process into different levels to better

focus on the specific problems that may occur at each level. The five testing

levels being proposed are: unit, agent, integration, system, and acceptance.

Details are as follows:
Level What to test

Unit test code units and modules that make up agents like goals, plans,
beliefs, sensors, reasoning engine, and so on.

Agent test the integration of the different modules inside an agent; test
agents’ capabilities to fulfil their goals and to sense and effect the
environment.

Integration test the interaction of agents, communication protocol and semantics,
interaction of agents with the environment, integration of agents with
shared resources, regulations enforcement; observe emergent proper-
ties; make sure that a group of agents and environmental resources
work correctly together.

System test the MAS as a system running at the target operating environ-
ment; test for quality properties that the intended system must reach,
such as adaptation, openness, fault-tolerance, performance.

Acceptance test the MAS in the customer execution environment and verify that
it meets the stakeholder goals, with the participation of stakeholders.

2Notice that to keep notation simple we do not change the labels of the goals while changing scope,
namely actors in Tropos. A more complete notation, for instance for the G1 goal will be the following:
StG1, SysG1, AG1 to refer to G1 as stakeholder, system or agent goal respectively.

31

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

3.4.3 A process model for goal-oriented testing

The V-Model (Development Standards for IT Systems of the Federal Re-

public of Germany 2005) proposes a system development process, which

defines a parallel flow of testing activities with respect to construction ac-

tivities. The upper branch of the V (see Figure 3.5, turn this figure on end

to see the V) represents the construction activities, and the lower branch of

the V represents the testing flow where the application is tested against the

artefacts defined on the upper-branch. The main trait of the V-model is

that it represents explicitly the mutual relationships between construction

artefacts and testing artefacts.

Agent goalsCollaborative
, agent goalsSystem goals

Analysis model

Stakeholder goals

Agent code

CapabilitiesMAS architectureDomain model

Deliverable
System

Acceptance test suites System test suites Agent test suites

Legend

Artifact

development flow
Horizontal V form

Upper branch: construction

Lower branch: testing

Early
Requirements

Late
Requirements

Architectural
design Detailed design

Implementation

Unit testing
Acceptance test System test Agent &

Integration test

Unit test suites

reviewPhase

Note

System

Figure 3.5: V process model for goal-oriented testing

Tropos guides the software engineers in building a conceptual model,

which is incrementally refined and extended, from an early requirement

model to system design artefacts and then to code, according to the upper

branch of the V depicted in Figure 3.5. We integrate testing in Tropos

by defining the lower branch of the V and by providing a systematic way

to derive test cases from Tropos modelling artefacts, i.e. from the upper

branch of the V, in Figure 3.5.

32

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

The modelling artefacts produced along the development process are:

Early Requirements model: a domain model (i.e. the organiza-

tional setting, as is)

Late Requirements model: a model of the system-to-be where

system requirements are modelled

in terms of system goal graph

Architectural Design model: a system architecture model, speci-

fied in terms of a set of interacting

software agents

Detailed Design model: a specification of software agent

roles, capabilities, and interactions

Implementation artefacts: agent code and implementation

documents

With those artefacts come stakeholder goals, system goals, collaborative

goals and agent goals, respectively. These goals provide valuable testing

objectives and input data. For instance, the stakeholder goals in Figure 3.1

are requirements and criteria for the acceptance test of Mr. Cleaners : the

airport accepts Mr. Cleaners only when it reaches three goals G1, SG1,

and SG2 (hence achieving SG0)

Figure 3.5 depicts the relationships between different types of goal (also

modelling artefacts) and different testing levels as vertical flows from the

upper branch of the V to its lower branch. In particular, domain model,

stakeholder goals, and system goals are used to derive acceptance test

suites. Stakeholder goals, analysis model and system goals are used to

conduct system test, and so forth. In other words, based on the outputs of

the first two phases, developers derive acceptance test suites; using the out-

puts of the Late Requirements and Architectural Design phases, developers

derive system test suites to test the system as a whole, and so forth.

The derivation of test suites takes place at the same time as the system

33

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

is constructed, thus helping refine back the system analysis and design

to uncover omissions and defects early, in accordance with the test-first

development approach (Beck 2002). The benefits of designing test early in

software development have been discussed in (Graham 2002). The review

flows (dotted bottom-top arrows) in the V illustrate these activities. For

example, while deriving test cases for an agent at agent level, one might

uncover a problem with the agent design that there is no means (no plan)

to achieve a goal. Thus, the design has to be revised.

The reason for the use of artefacts of two phases to derive one testing

type, for instance Architectural and Detailed Design to derive integration

test, is that the artefacts of the former phase (e.g., Architectural Design)

give a broader view to plan the tests, while the latter phase (e.g., Detailed

Design) provides necessary materials to create test cases (e.g., information

about actual test data).

3.4.4 Test suite derivation

This section introduces in details guidelines to derive test suites according

to the proposed V process model. The guidelines contain four parts, as

illustrated in Figure 3.6. First, we discuss how to derive test suites for

acceptance test from organizational and system goals. Second, we discuss

how system, collaborative, and agent goals are used to create system test

suites. Next, as we move on in the development process to the agent

interaction and capability design, we show how to exploit collaborative and

agent goals to create integration test suites. Finally, we discuss in depth

how to create test suites for agent plans, goals, and agents themselves.

Examples are given in each part to illustrate the derivation. In addition, we

also discuss when the derivations take place, when test suites are executed,

and goal-oriented test adequacy at each test level.

34

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

Acceptance
test suites

System
test suites

Integration
test suites

Stakeholder,
system goals

Domain, analysis
model

System, collaborative
goals

Analysis model and
architecture

Collaborative, agent
goals

Architectural and
capabilities

Agent goals

Detailed design,
code

Acceptance
test suites

System
test suites

Integration
and agent
test suites

Agent and
unit

test suites

Figure 3.6: Test suite derivation

3.4.4.1 Acceptance test

Acceptance test suite derivation takes place at the Late Requirements

phase, in parallel with the system analysis. At this stage, we have iden-

tified: actors, actors’ goals, and dependencies between actors. Actors in

the organizational setting include stakeholders, identified at Early Require-

ments phase, and system actors. Stakeholder actors present their inten-

tions to the system actors by goal dependencies: they delegate goals to

the system actors. In general, these goals represent users’ objectives and

intentions with regard to the system-to-be, so the fulfilment of these goals

is a pivotal benchmark to the system acceptance. Thus, we will use them

as foundations for acceptance test suites.

Acceptance test suite derivation consists of the following steps:

35

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

1: for all actor ∈ {stakeholder actors} do

2: for all g ∈ {actor ’s goals} do

3: analyze the goal decomposition/contribution tree of g

4: for all lg ∈ {leaf goals of the decomposition/contribution tree} do

5: /* create a test suite for lg */

6: step1: identify operational or usage scenarios related to lg

7: step2: identify fulfilment criteria (oracle) for each scenario

8: step3: create one test suite with at least one test case for each

scenario

9: end for

10: end for

11: end for

The procedure reads: for each stakeholder actor identified in the early

and late requirements phases, a set of goals that the actor delegates or

depends on the system is identified. (These goals are analyzed by means

of decomposition or contribution analysis; and the results are goal decom-

position/contribution trees inside system actors.) Then, for each of these

goals, we have to read the corresponding analysis goal tree to identify the

leaf goals of the tree, and finally to create a test suite for each leaf goal

(step 1, 2, 3).

The analysis of each system actor consists of goal decomposition/contribution

trees, in that, goals can be decomposed into sub-goals, and sub-goals are

means to achieve or to contribute to the goals. According to the introduced

steps, we analyze the goal trees and create a test suite for each leaf goal,

each test suite contains a set of test cases corresponding to the scenar-

ios identified. The operational and usage scenarios and the oracle depend

on the problem domain, but they often need agreements from both sides:

36

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

customer and development team. Both work together to define these sce-

narios. Finally, the fulfilment of actor ’s goals can be reasoned on the basis

of the fulfilment of the leaf goals and the goal decomposition/contribution

trees.

Regarding the motivating example, to make it simple we have identified

only one stakeholder actor: the airport staff ; this actor delegates three

goals SG1, G1, SG2 (see Figure 3.2) to Mr. Cleaners . Based on goal models

specified in the first two phases Early and Late Requirements, we identify

three leaf goals that give rise to three acceptance test suites, following the

steps described above. Each test suite can have several test cases. Table 3.2

summarizes the descriptions of the test suites.

The test scenarios presented in Table 3.2 are abstract, and we keep them

so to make our example simple. In reality they should be specified in much

more details. For instance, for the scenario of the test case ATC1.1, we

could specify it as follows: “The checking area 3 - Terminal 5 - Heathrow

airport is used for acceptance test. It is a rectangle of 10 x 20 metres that

we consider with gates upfront. At positions (2, 2), (4, 5), (10, 15), (10, 16)

(positions are expressed in metres assuming a South-North orientation of

the area), we put the following waste: 1 towel and 1 plastic glass at (2, 2);

2 newspapers at (4, 5); 120ml of soft drink at (10, 15); dust (100g) at (10,

16), within a 0.5 meter circle. Mr. Cleaners is put at position (1, 1) and

is switched on by a staff member of the airport. It is left alone, cleaning

the area for half an hour. Then, it is switched off by a staff member of the

airport.”

The derived acceptance test suites can be used for two distinctive ob-

jectives: (i) refining the analysis model, and (ii) acceptance test. The first

objective is realized during acceptance test suite derivation. By using de-

rived suites to review the specification, one could point out problems with

the analysis goal model, such as decomposition, unsatisfiability, ambigui-

37

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

Table 3.2: Acceptance testing: test suites derived for Mr. Cleaners

TS Stakeholder
Goal

TC Scenario Oracle

ATS1 G1: keep
the airport
clean

ATC1.1 given an actual area of the air-
port (A for short), wastes are
placed at specified positions
(p1, p2, . . . , pn), the amount of
waste is (a1, a2, . . . , an), re-
spectively. Mr. Cleaners is in
charge of cleaning that area

the area will be cleaned in
less than t minutes

ATC1.2 area A has wastes that are re-
peatedly thrown into it in a
random manner

the area is periodically
cleaned

ATC1.3 depending on the time at the
airport, area A can be more
or less dirty: the amount of
waste is a function of time and
position (e.g., w = f(t, p))

Mr. Cleaners adapts its
cleaning interval and focal
positions

ATS2 G2: team-
work

ATC2.1 agents of Mr. Cleaners work
together in area A

the agents do not overlap
their cleaning areas

ATC2.2 there two recharging stations
(X1, X2) in A

there is no conflict with re-
gard to the recharging sta-
tions

ATS3 G3: be po-
lite

ATC3.1 while the cleaning agents are
moving or cleaning in area A,
there are N humans moving in
the area along different direc-
tions

the cleaning agents stop
moving/working and nod
their heads to say hello when
they meet a human

TS: test suite, TC: test case

38

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

ties, implicit assumptions, inconsistencies (e.g., a goal cannot be fulfilled

or a hardgoal somehow contributes to a softgoal both positively and nega-

tively), and so forth. Problems pointed out at this stage could substantially

reduce development effort, since they can be solved before implementation.

On the other hand, the second objective requires the system to be built.

At this time, derived test suites are used by the customer to evaluate the

delivered system to decide eventually whether the system is ready to be

deployed or it needs further improvement.

The basic requirement for the system acceptance (all the derived test

suites are passed) entails that all the goals of all the stakeholder actors are

achieved or satisfied.

3.4.4.2 System test

The transition from Late Requirements to Architectural Design phase con-

sists of identifying agents that realize the specified system actors, assigning

system actors’ goals (called system goals) to agents goals, and projecting

system actors’ dependencies to agents dependencies and interactions. At

this stage, apart from the artefacts (actors, goal models) obtained from the

Late Requirements phase, there are agents, their goals, roles, collaborative

goals, agents’ dependencies for goals, resources, the dependencies between

agents and the environment, regulations, constraints, and so forth. System

test suites should consider and make use of these artefacts.

System tests suite derivation takes place in parallel with architectural

design. Similar to acceptance test suite derivation where we take stake-

holder actors’ goals as foundation concepts, we use system actors’ goals as

foundations to create system test suites as they provide the system-level

objectives and requirements. When the system as a whole is built so that

the system actors’ goals (including functional hardgoals and quality soft-

goals) are fulfilled, it is ready to be passed to the customer for acceptance

39

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

test.

System test suite derivation consists of the following steps:

1: for all actor ∈ {system actors} do

2: for all g ∈ {actor ’s leaf goals} do

3: /* create a test suite for g */

4: step1: identify which agent(s) realize(s) g

5: step2: analyze the goal model of each agent to identify goals

that represent the achievement of g

6: step3: identify environmental factors, pre-conditions, inputs

that facilitate or trigger g

7: step4: identify fulfilment criteria (oracle) for g

8: step5: create one test suite with at least one test case for g

9: end for

10: end for

The procedure is described as follows: for each system actor, the goal

analysis of the actor is analyzed to filter the leaf goals. For each leaf goal

g of a system actor, one has to create a test suite to test the achieve-

ment of the goal. Five creation steps are: (1) identifying which agent(s)

realize(s) the goal g, (2) analyzing the goal model of each agent to identify

goals related to the achievement of g, (3) identifying environmental factors,

pre-conditions, inputs that facilitate or trigger g, (4) identifying fulfilment

criteria for g, (5) creating a test suite having a set of test cases for g that

take inputs and oracles identified from previous steps.

Since system actors can have more goals than those delegated to the sys-

tem by stakeholder, the number of system test suites is usually higher than

the number of acceptance test suites. Moreover, at this stage the system

is designed, so more detailed information is available. As a consequence,

system test suites can reuse information from acceptance test suites, but

40

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

much more details can be added, such as fulfilment criteria for goals and

expected behaviours of agents involved.

Let’s consider again the motivating example. To create system test

suites for Mr. Cleaners we start analyzing the Mr. Cleaners actor (Fig-

ure 3.2) and figure out that we need to test three goals: G1, G2, G3. Next,

based on the architectural design of Mr. Cleaners and the cleaning agents,

we identify which agent goals to test and which resources of the environ-

ment to set up. This identification can be straightforward based on goal

identifiers, like in the case of the goal G2, G3, but it may require further

analysis, when the transition from system actors’ goals to agents’ goals is

not explicit, as for the goal G1. In this case, an external knowledge about

problem domain described in analysis documents has been used. Table 3.3

and 3.4 describe system test suites that we derived for Mr. Cleaners . The

former shows the goal realization mapping between Mr. Cleaners actor

and the cleaning agent, while the latter describes some test cases that are

created for each system actor’s goal, accordingly.

Table 3.3: System testing: test suites derived for Mr. Cleaners

TS System goal Agent Agent goal

STS1 G1: keep the airport

clean

Cleaning Agent G1: keep the airport clean

G4: maintain battery

G2: teamwork

STS2 G2: teamwork Cleaning Agent G2: teamwork

STS3 G3: be polite Cleaning Agent G3: be polite

As apparent from Table 3.4, the test case STC1.3 has an undefined

test oracle (G*) with respect to the cleaning agent, because in the design

of the cleaning agent, there is no goal or plan that aims at adapting the

behaviour of the agent according to the amount of waste and time. This is

a clear indication that we have to further refine the design of the cleaning

41

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

Table 3.4: System testing: examples of test suite derived for Mr. Cleaners

TS System
goal

TC Scenario Oracle

STS1 G1: keep
the airport
clean

STC1.1 similar to the scenario
of the acceptance test
case ATC1.1, the test-
ing area A’ considered
is located in the devel-
opment site

the cleaning agent must fulfil
two agent goals G1, G2 and
maintain G4 within the re-
quired time

STC1.2 similar to ATC1.2, real-
ized on A’

the cleaning agent must ful-
fil the agent goals G1, G2 in
a periodical manner, it has to
maintain the goal G4

STC1.3 similar to ATC1.2, on
A’

the cleaning agent must
achieve the agent goals G1,

G2, G4, so as to adapt its
cleaning interval depending
on the amount of waste. This
adaptation can be associated
to a goal G*.

STS2 G2: team-
work

STC2.1 similar to ATC2.1, on
A’

the cleaning agent must
achieve the agent goal G2

STC2.2 similar to ATC2.2, on
A’

the cleaning agent must
achieve the agent goal G2

TS: test suite, TC: test case

42

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

agent. For example, one can add a goal, namely, changing workload to

the agent design, decompose it, and so forth. Nevertheless, this example

demonstrates that we can detect problems, such as under specifications or

implicit specifications, quite early, thanks to test suite derivation. Indeed,

system test suites are used first to refine the system design and detect

design problems early; and later, to perform system test.

3.4.4.3 Integration test

The aim of integration testing is to make sure that agents work together

correctly – sharing tasks and resources – to achieve collaborative or agent

goals. To obtain this objective, we consider dependencies between agents

for collaborative goals and dependencies between agents and resources. In

fact, these dependencies are sources that lead to interactions, i.e. agent-

agent and agent-environment interactions. We can use them to derive test

suites that exercise these dependencies and then evaluate the result of the

interactions.

Integration test suite derivation takes place once we have finished de-

tailed design, so that we can make use of the interaction protocol design.

The derivation for collaborative goals consists of the following steps:

1: for all g ∈ {collaborative goals} do

2: /* create a test suite for g */

3: step1: identify agents involved

4: step2: identify interaction scenarios

5: step3: identify interaction protocols, ontologies

6: step4: identify fulfilment criteria (oracle) for each scenario

7: step5: create a test suite for each scenario

8: end for

43

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

The procedure reads: in the architectural design of the system we iden-

tify a set of collaborative goals. For each of these goals we identify agents

that are involved, interaction scenarios, protocols, and ontology. Then, we

identify fulfilment criteria for the goal. Finally, for each scenario we can

define a test suite making use of data identified, i.e. agents, protocols,

criteria, and so on.

For example, G2: teamwork is a collaborative goal that involves all the

cleaning agents. When we go further into the detailed design of the agent,

in Figure 3.4, we determine two interaction scenarios: (1) one cleaning

agent broadcasts information about its location; and, (2) the agent re-

ceives a message broadcast from another cleaning agent. Let’s consider

scenario (1), Figure 3.7 shows the detailed design of the scenario: first, an

agent sends a request to the Directory Facilitator (DF) (FIPA 2004) to get

the addresses of other cleaning agents. Once a list of agents is returned,

the agent broadcasts a message containing situated information to all the

agents in the list. In order to test this scenario, we create the test case

described in Table 3.5.

Table 3.5: Integration testing: a test case derived for G2: teamwork

Test scenario 1. instantiate two cleaning agents working together
2. monitor the communication between these two agents and
between each of them and the DF (FIPA 2004)

Oracle 1. the two agents register themselves with the DF
2. the two agents send requests to the DF
3. the two agents send messages to each other
4. the content of the messages is valid

Testing the integration of agents with the operating environment con-

sists of testing their perception and affecting capabilities. That is, we need

to make sure that the agents under test are able to perceive changes re-

garding the resources they are interested in. We test whether they can

affect such resources properly. The following steps guide us when deriving

44

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

Broadcast situated information

Cleaning Agent DF

get cleaning Agent list

agents list

Broadcast situated information

Cleaning Agents

Figure 3.7: Broadcasting situated information protocol

test suites for testing the agent-environment interaction:

1: for all agent do

2: step1: identify related resources

3: step2: identify integration scenarios

4: step3: identify access policy, interaction protocol, ontology,

and other related factors if any.

5: step4: identify fulfilment criteria (oracle) for each scenario

6: step5: create one test suite for each scenario

7: end for

The procedure is described as follows: for each agent type in the system

we identify resources that the agents of the type use. Then, we identify

usage or interaction scenarios, access policies, protocols, and other related

factors. Finally, we define criteria for each scenario and create a test suite

45

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

for it, making use of the data identified.

Another aim of integration testing is to observe emergent properties

resulting from agent interactions. Testing for emergence consists of making

sure that all the involved agents respect predefined rules and that the

expected group behaviours or patterns are actually observed. Test suites

created for this objective should focus on providing necessary environment,

so as to facilitate the agent interaction under test, and on enforcing the

rules that govern the behaviour of the agents under test. Moreover, test

oracle for emergence involves human observation and common perspective

because different observers, having no shared perspective, may see the

testing outputs, i.e. emergent properties, differently. So the definition of

test oracles needs to take these issues into account.

As with the other testing levels, integration test suites are aimed at two

distinctive targets: (i) to refine the interaction design and solve integration

problems as early as possible; and, (ii) to test the integration of the imple-

mented agents with one another and with the environment, once these are

available. The first target is realized during the Detailed Design phase and

integration test suite derivation, while the second can be started as soon

as an agent or an environmental resource is implemented. Mock agents,

which simulate behaviours of agents, can be used during integration testing

(with regard to the second target) so that we do not need to wait until all

the involved entities are implemented to start integration testing.

3.4.4.4 Unit and agent test

Unit testing consists of verifying agent units, e.g., goals, plans, beliefs, and

events, that agents are composed of. In the rest of this section we discuss

mainly plan, goal, and agent testing.

i. Plan testing

46

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

Zhang et al. (2007) has discussed different aspects related to plans and

events testing. Though introduced in the context of Prometheus method-

ology (Padgham and Winikoff 2004), those aspects apply to our approach

as well, because the agent architecture that both Prometheus and Tropos

use is the BDI architecture (Rao and Georgeff 1995). In short, plans are

means to achieve goals (ends), plans are triggered as a result of goals selec-

tion. Consequently, to test a plan, we need to create test suites such that

they satisfy all the pre-conditions of its end goal and pre-conditions of the

plan itself. These conditions, among others, contain corresponding events

or percepts that eventually trigger the plan. Then, we have to evaluate the

execution of the plan, its subsequent tasks.

As for plan testing oracle, plan execution can be evaluated by using the

state of its end goal. For example, if the state of the end goal is maintained

or achieved as a result of the plan execution, one may conclude that the

implemented plan passed the test.

Test suite derivation for plans takes place at the Detailed Design phase.

For each single plan, we need to create a test suite that contains a set of

test cases to challenge the plan with different inputs. Let’s consider our

motivating example, for each plan we create a unit test suite, so there are

11 test suites in total. For instance, for the plan Move, the associated test

suite is informally described in Table 3.6.

ii. Agent goal testing

Goals are states of affair, and one must do something in order to achieve

his/her goals. A very natural way of testing the achievement of a goal is to

check one’s work or behaviour with respect to the goal. Similarly, to test

a goal we have to check what the agent does to fulfil the goal.

47

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

Table 3.6: Test suite for plan Move

Suite TS1
Plan Move
Plan class Move

Test Case Scenario Oracle

UTC1.1 There is an event that re-
quires the cleaning agent to move
from position A(1,1) to position
B(3,5), no obstacle is in the mid-
dle of the two points

The cleaning agent moves
straight from A to B

UTC1.2 Between A(1,1) and B(3,5), there
is a static obstacle at point
C(2,3)

The cleaning agent moves close
to C, identifies the obstacle,
avoids C before going to B

UTC1.3 The agent is requested to move
from (1,1) to (3,-1)

The cleaning agent moves to the
boundary nearest to (3,-1)

When applying the Tropos methodology, we can find out how goals

can be fulfilled by looking at their relationships with other goals and with

plans. For instance, if there is a Means-End relationship between goal

g1 and plan p1, we say g1 is fulfilled when p1 is executed successfully; if

goal g2 contributes positively to softgoal sg2 (Contribution+ relationship)

then we can say sg2 is partially satisfied when g2 is fulfilled. Based on

the relationships associated with a goal, we can check the fulfilment of the

goal.

Internal design of an agent consists of goal decomposition/contribution

trees. For example, Figure 3.4 depicts the design of the cleaning agent,

consisting of five trees associated with four root goals: G2: team-work, G4:

maintain-battery, G1: keep-the-airport-clean, G3: be-polite. The fulfilment

of the root goals of the trees is evaluated based on the fulfilment of their

sub-goals and the relationships between the root goals and the sub-goals,

and so on with the intermediate goals inside the trees. The fulfilment of

48

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

the leaf goals of the trees is evaluated based on their relationships with the

means plans. We call these relationships as elementary relationships.

The principal elementary relationships are depicted in Figure 3.8. These

include: (1) Means-End between a plan and a hardgoal; (2) Contribution+

between a plan and a softgoal; (3) Contribution- between a plan and a

softgoal. In order to test this kind of relationships, the execution of the

plan corresponding to a goal is triggered and checked based on assertions

and constraints on the expected behaviour. Developers derive test suites

from goal diagrams by starting from the relationships associated with each

goal. Each relationship gives raise to a corresponding test suite, consisting

of a set of test cases that are used to check goal fulfilment (called positive

test cases) and counter-fulfilment (called negative test cases). Positive

test cases are aimed at verifying the fulfilment capability of an agent with

regard to a given goal; negative test cases, on the other hand, are used to

ensure an appropriate behaviour of the agent under test when it cannot

achieve a given goal.

Goal

Plan

Softgoal Softgoal

Plan Plan

+ -

(1) (2) (3)

Figure 3.8: Elementary relationships. (1): a Means-End plan-hardgoal; (2): a Contribu-

tion+ plan-softgoal; (3): a Contribution- plan-softgoal

The derivation steps are as follows:

49

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

1: for all g ∈ {leaf goals} do

2: step1: identify means plans from elementary relationships.

3: step2: identify the fulfilment criteria of g

4: step3: identify possible plans execution orders or schedules

5: step4: create one test suite for g

6: end for

The procedure can be described as follows: for each leaf goal we identify

means plans from the elementary relationships related to the goal. The

fulfilment of the goal and possible plan executions are then defined. Finally,

a test suite should be created for the goal in which each test case addresses

one possible execution scenario.

For the intermediate goals (i.e. not leaf goal), test suites are derived

by inspecting all relationships that lead to the considered goals. This ends

up analyzing all elementary relationships and creating/reusing test suites

derived for them. Once the results of these test suites are obtained, we

can reason about the achievement of the intermediate goals based on the

decomposition and/or contribution analysis. For example, to test the goal

G2: team work of our cleaning agent (Section 3.3), we have to analyze

its decomposition into three sub-goals; from there, we have to test three

elementary relationships between the sub-goals and their corresponding

plans. Since this is simply an AND-decomposition, if three test suites

derived for these three elementary relationships are passed, then the goal

G2 is passed; otherwise the goal is failed.

For more sophisticated intermediate goals, for example G1, we have to

analyze all possible combination scenarios based on the goal analysis and

reason about the fulfilment of the goals on the basis of these scenarios and

the results of the test suites derived for the related leaf goals.

50

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

Let’s take the agent goal G1: keep-the-airport-clean of the cleaning agent

for example. By analyzing the goal decomposition tree, which has G1 as

root, 5 elementary relationships are identified: Move→Achieve-move-to-

a-location, Achieve-pickup-waste→Pickup-waste, Query-waste-bin→Look-

for-wastebin, Achieve-drop-waste→Drop-waste, and Perform-looking-for-

waste→Patrol. Each of them gives rise to a different test suite.

iii. Agent testing

An agent is composed of smaller components, e.g., beliefs, goals, plans,

events, reasoning module, and so forth. Testing at the agent level consists

of integration testing of agent components, so one has to derive test suites

to verify this integration.

Agent-level test suites have a strong relation with test suites created

for testing agent goals. Because, first of all, in most cases, testing a goal

involves testing one or a number of plans, testing a plan involves events,

percepts, and resources. So to some extent, testing a goal triggers some

integration of plans, events, and so on. Hence, test suites derived to test

agent goals are also effective to test the agent integration.

However, at the agent level, we need to test the integration of goals as

well. Some goals have dependencies among them, such as priority or inhi-

bition dependences; others may be maintained or achieved in parallel while

sharing a resource. So we have to identify goal integration scenarios, create

test suites for each, and look for integration problems such as dependency

violations, deadlock, livelock, and the like.

Let’s consider our motivating example once more. At the agent level,

we have to derive test suites to check if the agent can perform: maintain-

battery (G4), be-polite (G3), keep-the-airport-clean (G1), and team-work

(G2). Moreover, we have to check the possible conflicts among these goals.

51

3.4. METHODOLOGY CHAPTER 3. GOST METHODOLOGY

For example, at a given moment in time, the cleaning agent can only move

either to a recharging station, or to a waste bin, or to a new position for

patrolling. Hence, some goal might be temporarily sacrificed in favour of

another one. In addition to that, we have also to check if collaborative

goals (e.g., G2: teamwork) are achieved in parallel with the other goals.

The basic test adequacy requirement for an agent is that all the agent

goals must be tested. The agent should be able to achieve its goals and

behave correctly in the cases where its intended goal cannot be achieved.

This adequacy requirement may or may not be sufficient to cover the agent

components, i.e. plans, events, beliefs, etc. If some are never exercised by

the test suites defined to reach the basic adequacy criterion (goal coverage),

more test suites have to be defined to complete agent testing.

3.4.5 Test suite structure

The key elements of goal-oriented testing are goals, either organizational,

system, collaborative, or agent goals. The underlying objectives at different

testing levels consist of tackling goals fulfillment. Thus, derived test suites

must be able to specify test target, i.e. goal, and test scenario, including

inputs, conditions, and expected behaviour of the agent under test.

To support specifying goal-oriented test suites, we propose the structure

illustrated as a UML class diagram in Figure 3.9. It can be read as follows:

each Test Suite contains a set of Test Cases, each Test Case contains a

test scenario in which Test Actions are specified. Each Test Suite targets

one or more agents, goals, and/or plans. Each Test Suite or Test Case can

contain Support Actions (e.g., setup testing environment, tear down when

finished). Finally, pre- and post-conditions can be specified for a goal, a

plan or a scenario.

52

CHAPTER 3. GOST METHODOLOGY 3.4. METHODOLOGY

Test Suite

Test Case

Agent
Target

Goal
Plan
Relationship

Goal-Plan

Expression
ConditionTest Action

pre, post-conditions

test targets

scenario
*

1

1

* *

*

1 * 1
*

Support Action

1

1 *

setup, teardown

1

1

**

Figure 3.9: Overall structure of test suites

The proposed structure of test suite, test case, and test scenario are

designed such that they can be used at different formality levels and with

different programming languages. Informally, developers can specify their

test cases using descriptive text. This format can be used by human testers

to specify manually input data and evaluate the output results. When

used formally, the specified test cases can be read by testing tools. To

this purpose, the contents of the elements Test Action, Support Action,

Condition support user-defined data types. Developers can associate their

machine-readable data with their own parser and grammar so that test

suites can be executed automatically.

In our implementation, we provide the following types for Test Action

and Support Action:

53

3.5. SUMMARY CHAPTER 3. GOST METHODOLOGY

Test Action
wait for observation

communication send or receive a message to/from the agent under test
checkpoint check received message, constraints or assertions

branch go to other test actions depending on branch conditions
env-effect make changes to the environment

Support Action
start agent start an agent

kill agent remove an agent
register agent register to the DF (FIPA 2004)

deregister agent remove the agent from the DF
executable launch supporting code to make changes on the testing

environment
not-executable manual action or description

We have defined this structure in an XML schema, available for down-

load and reference at http://se.itc.it/dnguyen/xsd/TestSuite.xsd.

We also provide a tool that allows generating test suites from goal models,

editing test suites, and executing them. Details are described in Chapter 5.

3.5 Summary

This chapter presented the GOST methodology that took goal-oriented

requirements analysis and design artefacts as the core elements for test

case derivation. The proposed methodology has been illustrated with re-

spect to the Tropos development process. It provides systematic guidance

to generate test suites from modelling artefacts produced along with the

development process. These test suites, on the one hand, can be used to re-

fine goal analysis and to detect problems early in the development process.

On the other hand, they are executed afterwards to test the achievement

of the goals from which they were derived.

The procedures for generating the test suites presented follow the struc-

ture of the Tropos goal-oriented modelling artefacts. However, it is worth

54

http://se.itc.it/dnguyen/xsd/TestSuite.xsd

CHAPTER 3. GOST METHODOLOGY 3.5. SUMMARY

noticing that the GOST approach is based on a generalizable set of guide-

lines that complement a goal-oriented requirements analysis and design

process with a suitable testing process. Basic steps for customizing GOST

to different goal-oriented methodologies are the following:

• Identify of the analysis and design phases supported by the methodol-

ogy under consideration, and of the corresponding set of artefacts, in

order to select the testing levels to be considered among the following:

unit, agent, integration, system and acceptance testing.

• Identify of how the different analysis and design artefacts can be com-

bined to derive a specific level test suite (that is, the definition of the

test suite derivation schema as the one depicted in Figure 3.6).

• For each specific level, define a derivation procedure, which takes into

account how goals are analyzed in the corresponding design modelling

artefacts (i.e. follow the goal decomposition and refinement mecha-

nisms supported by the given methodology, according to the modelling

language meta-model).

55

3.5. SUMMARY CHAPTER 3. GOST METHODOLOGY

56

Chapter 4

Testing techniques

Testing can be subdivided into defining or generating test inputs and test

scenarios, specifying test oracles to judge testing results, and executing

test cases. In this chapter we introduce different techniques to tackle these

problems, taking into account agent’s properties. Particularly, we investi-

gate automated ways to generating test inputs that can produce enormous

number of different and challenging situations to exercise the agents under

test. This overcomes the limited human effort for testing. The automated

generation, to some extent, helps dealing with the dynamic nature of the

environments where the agents under test operate.

In this chapter, we first present three approaches to evaluate behaviours

of software agents. As agents are autonomous, saying if an agent exhibits a

correct behaviour or not is not as straightforward as traditional programs.

We put test evaluation, i.e. to evaluate test results, in the first place as

feedbacks from test results give important insights to guide the automated

test input generation. Then, we introduce monitoring as a way to collect

data about test execution. The monitoring technique can deal with the

distributed and asynchronous property of agent-based systems, and provide

a global view of what happens during test execution. Finally, we present

four test generation and one novel execution techniques. Experimental

57

4.1. AGENT EVALUATION CHAPTER 4. TESTING TECHNIQUES

results, discussed in Chapter 6, will show the ability of these techniques in

detecting faults.

4.1 Evaluation of agent behaviours

We consider three types of agent faults: faults related to constraints that

restrict agent’s behaviours, faults related to interaction semantics that de-

fine the semantics of agent interaction, and faults related to user’s require-

ments. Corresponding test oracles are defined to pinpoint these kinds of

faults.

4.1.1 Constraint-based oracle

The behaviour of autonomous agents can change over time. This makes the

evaluation of test results a non-trivial task. Often, it is impossible to give a

fixed verdict to a test case based on the comparison of the returned message

with a gold standard, because the returned message may be different, even

for the same input, at different times. Similarly, mental states of an agent,

e.g., beliefs, can change with respect to the same inputs, specifying some

invariants as oracles for these variables can be non-trivial. We propose

to use constraints that restrict the behaviours of software agents as test

verdicts. Constraint violations are considered as faults.

Behavioural constraints are specified in terms of pre-, post-, and in-

variant conditions. For low testing levels, i.e. unit and agent, we pro-

pose to specify these conditions by using the Object Constraint Language

(OCL) (OMG 2006). As most of the contemporary languages used to

program software agents are object-oriented, e.g., (Telecom Italia Lab

2000), or employ object-oriented code to operationalize agents’ plans, e.g.,

(Pokahr et al. 2005, Agent Oriented Software Pty. Ltd. n.d., Bordini et al.

2007), the emerging OCL can be used to guarantee that agent code units

58

CHAPTER 4. TESTING TECHNIQUES 4.1. AGENT EVALUATION

execute correctly. However, software agents are distributed programs that

run at geographically different hosts, handling OCL constraint violations

need to take this into account. Our monitoring agent network, introduced

in Section 4.2, can deal with this issue.

From OCL constraints, monitoring guards (to check constraint viola-

tions) can be generated automatically, using a tool called OCL4Java1 and

its user-defined handler. We specialize this type of violation handler to

notify a local monitoring agent during testing whenever a constraint is

violated. Local monitoring agent is an agent that runs in the same place

with the agents under test. It is in charge of monitoring not only constraint

violations but also many more types of events, such as communications,

exceptions, belief changes, and so on. Details about the monitoring agent

will be introduced shortly.
Following is an example of pre-/post-condition specified in OCL, which

requires the order attribute to be not null and ensures that after updating
the proposed price must be between 0 and 2000:

public class ExecuteOrderPlan extends Plan {

....

@Constraint("pre: self.order->notEmpty\n" +

"post: price > 0 and price < 2000")

public void body() {

....

}

....

}

The following code is generated by OCL4Java from the constraint above.

The implementation of the method handleConstraintFailed is specialized

to inform the local monitoring agent whenever the constraint is violated.

public class ExecuteOrderPlan extends Plan {

....

1http://www.ocl4java.org

59

http://www.ocl4java.org

4.1. AGENT EVALUATION CHAPTER 4. TESTING TECHNIQUES

@Constraint("pre: self.order->notEmpty\n" +

"post: price > 0 and price < 2000")

public void body() {

if (!assertPreCondition_6fa583bb_for_method_body()) {

org.ocl4java.ConstraintFailedHandlerManager.handleConstraintFailed(

"pre: self.order->notEmpty" ...);

// body code

...

if (!assertPostCondition_6fa584bb_for_method_body()) {

org.ocl4java.ConstraintFailedHandlerManager.handleConstraintFailed(

"post: post: price > 0 and price < 2000" ...);

}

....

}

Using the same manner, i.e., specifying constraints and deriving moni-

toring guards from them, we can specify constraints for higher levels such

as group of agents or the system as a whole. However, this needs further

elaboration on monitoring data because these types of constraints involve

multiple parties. Some research work has investigated this direction, e.g.,

(Rodrigues et al. 2005).

4.1.2 Ontology-based oracle

4.1.2.1 Agent interaction ontology

In order for a pair of agents to understand each other, a basic requirement is

that they speak the same language and talk about the same things. This

is usually achieved by means of an ontology, namely, interaction ontol-

ogy. Popular multi-agent platforms like JADE (Telecom Italia Lab 2000),

JADEX (Pokahr et al. 2005), widely support the use of ontologies. They

provide tools for generating code from ontology documents, thus, reducing

60

CHAPTER 4. TESTING TECHNIQUES 4.1. AGENT EVALUATION

the development effort, and for runtime binding of the message contents

with concepts defined in an ontology.

A common structure of interaction ontology involves two main con-

cepts (also known as Classes): Concept and AgentAction. Sub-classes of

AgentAction define actions that can be performed by some agents (e.g.,

Propose), while sub-classes of Concept define common concepts under-

standable by agents that interact (e.g., Book).

Let us consider a book-trading multi-agent system in which Seller and

Buyer agents negotiate in order to sell and buy books. There could be

multiple sellers and buyers that want to sell or buy the same book at the

same time, so the goal of the sellers is to choose a buyer that proposes the

highest price whereas the goal of the buyers is to choose the seller with the

cheapest price. Let us assume that these agents use the FIPA Contract Net

protocol (FIPA 2002b) and the interaction ontology presented in Figure 4.1.

The ontology consists of a concept Book having two properties title and

author and an agent action Propose, to propose a price for a book.

Thing Concept

AgentAct ion Propose

+book: Book

+price: float

Book

+title: String

+author: String

Figure 4.1: Book-trading interaction ontology, specified as UML class diagram

Rules can be added to the ontology properties in order to restrict ad-

mitted values. For example, the price property in Figure 4.1 may be con-

strained to be within 0 and 2000. The rule is specified in the Web Ontology

Language (OWL) as follows:

<owl:Restriction>

<owl:onProperty rdf:resource="#price"/>

61

4.1. AGENT EVALUATION CHAPTER 4. TESTING TECHNIQUES

<owl:hasValue ...>min 0 and max 2000</owl:hasValue>

</owl:Restriction>

A specific agent action can now be built, based on the shared under-

standing of the concept Book. For example, an agent Buyer could send an

ACL message of the type REQUEST to the agent Seller, with the following

content:

(Propose (Book :title “Testing Agents”) :price 135.7)

The message is understood by both agents thanks to the shared interaction

ontology.

4.1.2.2 Ontology as oracle

Agent interaction ontologies provide available tools to verify agent com-

munication semantics. This can be used in testing. In fact, the message

content sent by the agents under test is expected to respect the rules,

datatypes, and structural relationships specified in the ontology. Sending

invalid messages with respect to the chosen interaction ontology is a fault.

For instance, when the Buyer sends a call for proposal for a book,

the Seller agent must reply with a message whose content belongs to the

Propose action and complies with its rules and datatypes. Otherwise, an

error is detected. On the other extreme, if the Buyer sends something else

but not a call for proposal, then it is faulty.

Our testing framework, which will be introduced in Chapter 5, performs

this type of verification automatically. More interestingly, it is able to take

the interaction ontology that the agents under test use to generate variety

test inputs to challenge them, at nearly no cost.

62

CHAPTER 4. TESTING TECHNIQUES 4.1. AGENT EVALUATION

4.1.3 Requirement-based oracle

Autonomous software agents differ from traditional softwares in that they

have their own goals and operate in a self-motivated fashion. External

subjects might have little or no control over the behaviours of autonomous

agents. As a result, this challenges testing because expected outcomes may

not be immediate or the way to define them is non-trivial. For instance, in

the same environmental settings (i.e. test inputs), an autonomous agent

may decide to do different things due to learning or decision-making. Defin-

ing concrete expected outcomes for this agent based on an external per-

spective, i.e. a human being tester, is hard.

The ultimate goal of building agents with autonomy is to release human

beings from some tasks, possibly dangerous ones. However, before letting

an agent to perform any task, we need to make sure that she is qualified or

she has certain qualities to perform that task. We need to have confidence

in their autonomous operations. The agents need to be reliable and trusted

before being put to real environments.

We propose to apply the recruitment metaphor to evaluate autonomous

software agents. Here, software agents are candidates and stakeholder re-

quirements are used as evaluation criteria. Each agent is given a trial period

in which it has to solve a suite of tests with different difficulty. Agents are

recruited (trusted) only when they pass the required quality criteria.

In requirements engineering, the importance of stakeholder goals has

long been recognized. As such, the concept of goal has been considered

as central to some goal-oriented requirements engineering (GORE) ap-

proaches (Bresciani et al. 2004, Dardenne et al. 1993). In GORE, softgoals

play a key role in representing non-functional or “ility” requirements, such

as dependability, availability, security, and so forth, which can denote the

important criteria for evaluating autonomy. Returning to the recruitment

63

4.1. AGENT EVALUATION CHAPTER 4. TESTING TECHNIQUES

approach to evaluating autonomous agents, we propose to use stakeholder

softgoals as criteria for assessing the quality of autonomous agents, since

satisfying quality criteria derived from these softgoals is likely to indicate

that the agents are reliable. 2

Relevant softgoals to evaluate agent autonomy are transformed or rep-

resented as quality functions (or quality metrics). This transformation is

tricky and depends on the nature of the softgoal at hand and also on the

problem domain. Ad-hoc metrics can be defined for softgoals using domain

expertise.

As an example, Figure 4.2 illustrates the goals of a specific stakeholder

in an airport organization, namely the building manager, who decides to

assign the goal of airport cleanliness to a cleaner agent. The notation used

in the figure is proposed in Tropos (Bresciani et al. 2004). In this exam-

ple, the agent must operate autonomously, with no human intervention.

The agent must be robust and efficient as stated in the two stakeholder’s

softgoals, depicted as two cloud shapes. Applying the proposed approach,

these two softgoals can be used as criteria to evaluate the quality of the

cleaner agent. The agent can be built with a given level of autonomy, and

robustness and efficiency are two key quality criteria for evaluating it. If

the cleaner agent can perform tasks autonomously, but is not robust (for

example, it crashes), it is not ready to be deployed.

Regarding the robustness softgoal, two sub-goals contribute to robust-

ness that are taken into account in this example are maintaining-battery

and avoiding-obstacles. We can define a threshold for the maintaining-

battery capability (e.g. 10%), and monitor the battery level at runtime.

Figure 4.3 shows two scenarios of the battery level: 4.3(a) is an acceptable

2As softgoal has no clear-cut criteria for its achievement, the notion “satisficing” has been used in the
literature to indicate whether a softgoal is satisficied or not. Jureta et al. (2007) stated that ”a softgoal
is satisficed when thresholds of some precise criteria are reached“; we share this view in testing software
agents

64

CHAPTER 4. TESTING TECHNIQUES 4.1. AGENT EVALUATION

Stakeholder

Robustness

Keep the airport
clean

Efficiency

Legends Goal
Actor

softgoal dependence

Robustness

Cleaner
Agent

+

contribution link

Keep the airport
clean

Efficiencymaintaining-battery

avoiding-obstacles

+ +

Figure 4.2: Example of stakeholders’ softgoals and contribution analysis

65

4.2. MONITORING CHAPTER 4. TESTING TECHNIQUES

scenario where the battery level is maintained at a sufficiently high level

within the period considered, while 4.3(b) is an unacceptable scenario in

which the battery level drops below 10%.

10%

time

battery
level

(a) Acceptable scenario

10%

time

battery
level

(b) Unacceptable scenario

Figure 4.3: Different scenarios related to the battery level

Similarly, for the softgoal avoiding-obstacles, one can define the distance

to the closest obstacles during movement as a quality criterion. Corre-

spondingly, a quality threshold ε (distance units) can be defined, and the

agent must stay farther from obstacles than this threshold.

In reality, apart from robustness, we can impose many other require-

ments related to autonomy on the cleaner agent: stability, efficiency,

safety, for example. Stability demands the agent should avoid dropping

its goals too frequently. Efficiency requires the agent to finish cleaning an

area after a specific amount of time, or it must bring a quantity of waste

(e.g., 10 Kg) to the dustbins per hour. The safety requirement demands

that the agent must switch to its ‘safe mode’ in undesirable circumstances,

e.g., arms malfunction.

4.2 Monitoring

In testing software agent and MAS, monitoring plays an important role as

it allows us to observe the operation and interaction of the agents under

66

CHAPTER 4. TESTING TECHNIQUES 4.2. MONITORING

test. It provides necessary data to detect abnormalities in the system,

such as constraint violation, communication semantics mismatching, or

requirement unsatisfaction.

We propose two reference architectures for monitoring agent locally,

Figure 4.4, and globally, Figure 4.5.

AMS

Agent Platform

A2

A1
Monitor

su
bs

cr
ib

es informs
events

BufferLogging
Buffer

read write

communicate

communication read/write from/to a buffer
Agent

Figure 4.4: Reference architecture for monitoring one single platform

At the local level, in a single platform shown in Figure 4.4, a special

agent named Monitor (or Monitoring Agent in other places) subscribes

itself to the Agent Management System (AMS)3 (FIPA 2004) in order to

be notified about all relevant events happen within the platform. These

events include: an agent was born, is dead, is frozen, moves, adopts a goal,

changes its beliefs, and the like. In particular, the AMS will inform the

Monitor about any interactions, messages sent or received by the agents

under test.

3The AMS is responsible for managing the operation of an agent platform, such as the creation of
agents, the deletion of agents, deciding whether an agent can dynamically register with the agent platform
and overseeing the migration of agents to and from the platform. Registration with the AMS implies
authorisation to access the message transport service of the agent platform.

67

4.2. MONITORING CHAPTER 4. TESTING TECHNIQUES

In addition, we propose to use a special component called Logging buffer.

As the name says, this is a buffer where observed data can be store and

read. Information about violations, exceptions or desired data to be ob-

served, such as states of the agent under test, are stored into this buffer.

The monitoring agent is in charge of watching this buffer to report any

problem occurred. Agent code can be instrumented; aspect programming

can be used to inject code for monitoring. In particular cases when al-

lowed, we can ignore the logging buffer. Instead, monitoring code can send

messages about problem to the monitoring agent, transparently with the

agents under test.

At the global level, since a MAS usually consists of multiple distributed

platforms, Figure 4.5, it is important to incorporate information from all

of them to provide a complete and full view about the system under test.

This can be achieved by means of a network of monitoring agents: the

remote monitoring agents act the same as the Monitor at the local level,

mentioned above, each is responsible for monitoring one single platform;

all observed data from the distributed platforms are sent to the Central

Monitoring Agent. Therefore, we obtain a global and synthesised view of

the system during test execution.

One possible issue that need attention is possible side effects of using

the monitoring agents. That is, the monitoring agents might influence the

behaviours or the performance of the agents under test. The monitoring

agents need to be implemented or deployed in a way that is as much trans-

parent to the agents under test as possible. Or at least, we need to control

the testing environment to dismiss any side-effect problem.

These architectures are implemented in our tool, introduced in Chap-

ter 5. Real-time observed data help not only detecting problems, but also

providing useful feedbacks to guide automated test input generation. The

next section will discuss test generation techniques.

68

CHAPTER 4. TESTING TECHNIQUES 4.2. MONITORING

AMS
Agent Platform 1

A2

A1Remote
Monitor

su
bs

cr
ib

es

informs
events

Buff
er

read write
communicate

AMS
Agent Platform 2

A4

A3Remote
Monitor

su
bs

cr
ib

es

informs
events

Buff
er

read write

AMS
Agent Platform 3

A5Remote
Monitor

su
bs

cr
ib

es

informs
events

Buff
er

read write

Central
Monitoring

Agent

communication

read/write from/to a buffer

Agent

Central Platform

Figure 4.5: Reference architecture for monitoring multiple platforms

69

4.3. GENERATION CHAPTER 4. TESTING TECHNIQUES

4.3 Generation

4.3.1 Test inputs for software agents

Georgeff and Ingrand (1989) presented a minimal design of a reference

architecture for BDI agents (Rao and Georgeff 1995), which has been being

widely applied to build autonomous agents. In the architecture, agents

perceive the outside world (environment) through a set of sensors and

make changes to the world through a set of effectors. Recently, Weyns

et al. (2007) complemented to that architecture with a reference model

for the environment, in which agents access the environment by employing

perception (sense and percept), action (make changes to the environment),

or communication (send and receive messages).

In terms of test inputs, from the proposed architectures we identify

two types of black-box test input for agents: environmental settings and

incoming messages. The former type concerns the surrounding world with

respect to an agent; changes that are perceived by the agent can lead it

to expose different behaviours. For instance, if an obstacle appears on the

path that an agent is following, the agent might change its path instead

of going straight or try to remove the obstacle. The latter concerns the

messages that are sent to agents under test. These messages, once accepted

by the agents, may ask the agents to fulfil a task or to reach a goal. More

generally, incoming messages can change the behaviour of agents.

Depending on the kind of the agents under test, test inputs can be gen-

erated by producing environmental settings upon which the agents under

test operate, or by creating messages and submitting them to the agents,

or both.

70

CHAPTER 4. TESTING TECHNIQUES 4.3. GENERATION

4.3.2 Goal-oriented generation

Goal-oriented test cases generation is a part of a methodology, presented

in Chapter 3. It integrates testing into Tropos, providing a systematic way

of deriving test cases from Tropos output artefacts. Goal-based specifi-

cation diagrams are used as inputs to generate test case skeletons to test

goal fulfillment. Specific test inputs (i.e. message content), and expected

outcome are partially generated from plan design (e.g., UML activity or se-

quence diagrams) and are then completed manually by the tester according

to some test scenarios. These scenarios can be user-defined, or can follow

some particular interaction protocols.

4.3.3 Ontology-based generation

This technique concerns generating messages to test software agents.

Agent behaviours are often influenced by messages received. Hence, at

the core of test case generation is the ability to build meaningful messages

that exercise the agent under test so as to cover most of the possible run-

ning conditions. We propose an approach to test generation using agent

interaction ontology. The approach exploits ontology that defines the se-

mantics of agent interactions to generate test inputs and guide the explo-

ration of the input space. We develop an ontology-based input generator.

It is integrated with our testing framework, introduced in the next chapter.

Valid inputs. The task of the ontology-based test generator consists of

completing the message content to send to the agent under test. For each

concept to be instantiated in the message, the generator either picks up an

existing or creates a new instance of the required concept. No input value

is generated by the test generator if the interaction protocol prescribes that

a value from a previously exchanged message must remain the same.

71

4.3. GENERATION CHAPTER 4. TESTING TECHNIQUES

Then, the selected instance is encoded according to a proper content
codec (for the message content) and is made ready to be executed. As
an example, the following excerpt shows an XML-encoded content of a
message that contains information about a proposal for a book, including
the Propose action:

<root ... xmlns="jadex.examples.booktrading.ontology"/>

<Book n:id="2" title="Introduction to MultiAgent Systems"

author="Michael Wooldridge"/>

<Propose n:id="1" price="47.50" r:book="2"/>

</root>

When new instances are generated, the test generator selects one from

those available in the ontology. The selection is based on the number of

usages of each instance, or aims at increasing the diversity of test inputs

and exploring the input space more extensively.

In the case when no ontology instances are available, valid test inputs

can be still generated by using available information, such as rules and

property datatypes, specified in the interaction ontology. For example,

based on the rule about the price, the generator can generate any value

in the range from 0 to 2000 as a valid input value to be processed by the

Seller or Buyer agents.

More generally, for the properties of Numeric datatype, we can exploit

the boundaries of the datatype, as well as the rules that limit the values of

the properties, to generate valid input values. For the properties of string

datatype, we can only exploit the list of allowed values, if available. Most

of the times, meaningful values for properties of string datatype are hardly

generated without the help of an ontology. The full list of valid input

generation rules is provided in Table 4.1.

Invalid input generation. Invalid input generation is based on rules and

datatypes that appear in the interaction ontology. When boundaries are

72

CHAPTER 4. TESTING TECHNIQUES 4.3. GENERATION

Table 4.1: Valid input generation rules

Datatype Rule Description

Numeric RVN1 New value that has not been used before
from ontology instances

RVN2 Reused value from ontology instances
RVN3 Randomly generated value respecting

rules in ontology
RVN4 Default or template value defined in ontology

Boolean RVB1 true
RVB2 false

String RVS1 New value that has not been used before
from ontology instances

RVS2 Reused value from ontology instances
RVS3 Randomly generated value respecting

rules in ontology
RVS4 Default or template value defined in ontology

specified for numeric properties, the generator goes beyond them deliber-

ately. For string properties, the generator produces null (or empty) strings

as potentially invalid values. Other options available to the generator are

to randomly modify a valid input (taken from the available ontology in-

stances) or to randomly generate a new one in order to try to produce

an invalid value. Another generation rule available to the test generator

involves the creation of an input value of the wrong datatype (e.g., an al-

phabetic string where a numeric is expected). The full list of invalid input

generation rules is provided in Table 4.2.

The generator aims at producing invalid inputs that are as diverse as

possible, in an attempt to test the robustness of the agents under test,

making sure that they still behave correctly in most invalid circumstances.

According to the book-trading ontology described above, the test generator

knows that the property price is of datatype float and that there is a rule

73

4.3. GENERATION CHAPTER 4. TESTING TECHNIQUES

Table 4.2: Invalid input generation rules

Datatype Rule Description

Numeric RIN1 Value causing overflow (underflow)
RIN2 Value violating rules in ontology
RIN3 Value of different datatype
RIN4 null value

Boolean RIB1 Value of different datatype
RIB2 null value

String RIS1 Value violating rules in ontology
RIS2 Value of different datatype
RIS3 null value
RIS4 Empty string
RIS5 Randomly generated string
RIS6 Randomly mutated valid string

stating that price must be between 0 and 2000. The generator may produce

the invalid values -1, 2001 to test both sides of the boundaries. Values that

are not of type float may be also used to exercise the agents under test.

Message generation. When generating the full message, the test genera-

tor applies the input combination rules described in Table 4.3. For valid

messages, the only possibility is to use only valid input values. For invalid

messages, the generator can choose either to have only invalid values, or

to have interleaved valid and invalid values, or to have just one invalid

value. Rule selection follows the general criteria of maximizing diversity,

as explained below.

When a valid message can only be formed with inputs coming from an

unique, existing instance, the more restrictive rule RVC2 must be applied

instead of RVC1. If input values from different instances can be freely

combined, we can use RVC1. When RVC2 must be used, one way to

generate invalid inputs is mixing values from different instances, as pre-

74

CHAPTER 4. TESTING TECHNIQUES 4.3. GENERATION

Table 4.3: Input combination rules

Message Rule Description

Valid message RVC1 All values valid
RVC2 All values valid and

from the same instance
Invalid message RIC1 All values invalid

RIC2 Invalid and valid values
interleaved

RIC3 Just one invalid value
RIC4 All values valid but

from different instances

scribed by RIC4.

Input space exploration. The generator uses coverage information to de-

cide how to explore the input space. The test generator gives priority to

classes and instances never selected before. When instances are reused, if

possible the generator selects instances with low reuse frequency. When

invalid inputs are produced, the generator chooses the so-far least-used

invalid input generation rules.

4.3.4 Random generation

Random testing has been proven to be very effective in revealing some types

of faults, specially those that result in crashing or raising exceptions (Mills

et al. 1987, Thévenod-Fosse and Waeselynck 1993). In dynamic and open

environments for MAS, random testing seems to be a natural choice be-

cause it can generate unpredictable scenarios, which likely happen in such

environments.

We are interested in two types of test inputs: messages and environment

settings. The following discusses the random generation of these types of

75

4.3. GENERATION CHAPTER 4. TESTING TECHNIQUES

inputs.

4.3.4.1 Random generation of messages

We propose an approach to random testing of software agents, compos-

ing of two steps, Figure 4.6. First, a communication protocol is randomly

selected among the standard ones provided by the agent platform, e.g.,

FIPA Request Protocol (FIPA 2002b) and/or those specified in a library

by human tester. Then, messages that are required by the protocol are

randomly generated and sent to the agents under test. In order to insert

meaningful data into the messages, a model of the domain data, coming

from the business domain of the MAS under test, must be also supplied.

The message format is prescribed by the agent environment of choice (such

as the FIPA ACLMessage (FIPA 2002a)), while the content is constrained

by a domain data model. Such a model prescribes the range and the struc-

ture of the data that are produced randomly, either in terms of generation

rules or in the (simpler) form of sets of admissible data that are sam-

pled randomly. The model of domain data can be specified by means of

an ontology as well, so ontology-based generation rules can be applied to

generate message content.

Figure 4.6: Procedure of the random generation technique

Randomly generated messages are then sent to the agents under test

and it is the responsibility of our monitoring agent network to observe

76

CHAPTER 4. TESTING TECHNIQUES 4.3. GENERATION

their responses, i.e., communications, exceptions etc. happening in the

agent system. When a deviation from the expected behaviour is found

(condition violated or crash), it is reported to the development team.

A limitation of random testing of MAS is that long and meaningful

interaction sequences are hardly generated randomly. However, it is often

the case that agent interaction protocols need only few trigger messages,

like those specified in (FIPA 2002b), or the agent under test needs only

one message to trigger its goals. In these cases, random testing is a cheap

and efficient technique that can reveal faults. Evidence is provided in

the experimental chapter. For the generation of longer sequences that

are inherently constructed so as to maximize the likelihood of revealing

faults, more sophisticated techniques need to be used, such as manual or

evolutionary.

4.3.4.2 Random generation of environment settings

Random testing can also be used to generate random contexts (i.e., envi-

ronment settings) in which the agents under test operate. As some agents

can be programmed to monitor and/or sense the surrounding environment,

randomly generated environment settings can lead them to expose different

behaviours, yet including faulty ones. Therefore, random generation of en-

vironment settings can be effective for agents that have active behaviours

with respect to the environment, i.e., sensing, monitoring environmental

artefacts.

For example, a cleaning agent has to clean an area in which there can

be waste, wastebins, charging stations, and obstacles located at arbitrary

locations. By placing these objects randomly, i.e., random generation,

there can be some settings where the agent hits obstacles, which is a fault.

This technique can be done by (i) identifying the objects that link to

the agent under test, (ii) identifying the attributes of the objects, and (iii)

77

4.3. GENERATION CHAPTER 4. TESTING TECHNIQUES

generate randomly values for these attributes. In the example above, we

can generate randomly values for the location attribute of waste, wastebins,

charging stations, and obstacles.

4.3.5 Evolutionary generation

The specific properties of software agents (autonomous, self-adaptive, learn-

ing, and so on) demand for a framework that supports extensive and possi-

bly automated testing. Therefore, we propose to apply ET (Evolutionary

Testing) for testing software agents and define two methods to guide the

evolution of test cases: mutation guided, and quality function guided.

In this technique, the agents under test are free to evolve during testing,

but at the same time their behaviours are observed and used to guide the

evolution of test cases, making them more challenging, to run again on the

next cycle. Testing objectives, e.g., to see if an agent violates a constraint,

are transformed into fitness functions to guide the evolutionary generation

of test inputs.

The testing procedure is presented in Figure 4.7. It has the following

steps:

1. Generate initial population. A set of test cases is called population.

Each test case is an individual in the population. Initial population

can be generated randomly or taken from existing test cases created

by testers.

2. Execution and monitoring. Test execution means to put the au-

tonomous agents under test into the testing environment so that they

can operate, i.e. performing tasks or achieving goals, or to send mes-

sages to them. At the same time, a monitoring mechanism is needed to

observe the behaviours of the autonomous agents. Relevant observed

78

CHAPTER 4. TESTING TECHNIQUES 4.3. GENERATION

data are recorded. Many executions might need to be performed re-

peatedly (or in parallel) in order to provide statistically sufficient data

to measure fitness values in the next step. The agents under test might

need a sufficient amount of time to perform their tasks.

3. Collect observed data and calculate fitness values. Cumulative data

from all executions are used to calculate fitness values of selected test

cases. The way of calculating fitness values depends on the stake-

holder’s softgoal of interest and the problem domain. As calculated

fitness values provide insights about the improvement towards the

optimal ones, if no improvement is observed after a number of gener-

ations, the test procedure will stop. Otherwise step 4 will be invoked.

4. Reproduction. Two elite individuals are selected, then crossover op-

eration is used to produce two new offsprings. Finally, mutation is

applied with certain probability on one (or both) offsprings. The two

offsprings are then put back to the population and the next iteration

is triggered, i.e. go back to step 2.

In the following we define two fitness functions and methods to measure

them.

4.3.5.1 MUTATION GUIDED

Mutation testing (DeMillo et al. 1978, Hamlet 1977) is a way to assess the

adequacy of a test suite and to improve it. Mutation operators are applied

to the original program (i.e., an agent under test) in order to artificially

introduce known defects. The changed version of the program is called a

mutant. For example, a mutant could be created by modifying a branch

condition, e.g., the following JADE code (Telecom Italia Lab 2000):

if (msg.getPerformative() == ACLMessage.REQUEST)

can be changed into

79

4.3. GENERATION CHAPTER 4. TESTING TECHNIQUES

1. Generate initial
population

2. Execution
&

Monitoring

3. Collect data
and calculate

fitness

4. Reproduce
new generation

Improvement ?

No after N generations

Yes

Figure 4.7: Evolutionary testing procedure

80

CHAPTER 4. TESTING TECHNIQUES 4.3. GENERATION

if (msg.getPerformative() == ACLMessage.REQUEST WHEN)

or a mutant can be created by modifying a method invocation (e.g., re-

ceive() changed into blockingReceive()).

A test case is able to reveal the artificial defects seeded into a mutant

if the output of its execution deviates from the output of its execution

on the original program. In such a case, the mutant is said to have been

killed. The adequacy of a test suite is measured as the ratio of all the killed

mutants over all the mutants generated. When such a ratio is low, the test

suite is considered inadequate and more test cases are added to increase its

capability of revealing the artificially injected faults, under the assumption

that this will lead to revealing also the “true” faults.

We combine mutation and evolutionary testing for the automated gen-

eration of the test cases. We name this technique Evol-Mutation. In par-

ticular, we use the mutation adequacy score as a fitness measure to guide

evolution, under the hypothesis that test suites that are better at killing

mutants are also likely to be better at revealing real faults.

Given the agent under test A, we apply mutation operators to A to

produce a set of mutants {A1, A2, . . . , AN}. Each contains one fault.

After a test case T is executed againstA and its mutants {A1, A2, . . . , AN},
fitness function of Ti is calculated as F (TCi) = Ki

N , where Ki is the num-

ber of mutants killed by Ti. To increase performance, the executions of

Ti on the mutants should be performed in parallel (e.g., on a cluster of

computers, with one mutant per node).

4.3.5.2 QUALITY FUNCTION GUIDED

As discussed in Section 4.1.3, stakeholders’ softgoals can be used to derive

quality functions to judge the quality of the agents under test. The agents

are faulty or unreliable if quality functions are not as expected.

We propose an evaluation methodology consisting of two main steps:

81

4.4. CONTINUOUS EXECUTION CHAPTER 4. TESTING TECHNIQUES

1. Representing stakeholder softgoals as quality functions. Relevant soft-

goals that need to be used to evaluate agent autonomy are trans-

formed or represented as quality functions for measuring stakeholder

satisfaction. This transformation is domain specific and depends on

the nature of the softgoal as well as on the problem domain.

2. Evolutionary testing. In order to generate varied tests with increasing

level of difficulty, we advocate the use of meta-heuristic search algo-

rithms that have been used in other work on Search Based Software

Engineering (Harman 2007), and, more specifically, we advocate the

use of evolutionary algorithms. The quality functions of interest are

used as objective functions to guide the search towards generating

more challenging test cases.

Let’s consider again the cleaner agents in Section 4.1.3, we can use the

closest distance to obstacles as fitness function to guide the generation of

test cases. The evolutionary algorithm will then optimize this function;

smaller is better, meaning that the later test cases have higher probability

of pushing the cleaner agents to hit obstacles, which is considered as fault.

4.4 Continuous execution

Throughout the chapter we have studied techniques to evaluate and ob-

serve agent’s behaviour, and techniques to generate test cases automat-

ically. This section discusses how to put them in action together in a

method called continuous testing. It is a test execution process in which

automated input generation, evaluation, and evolution make a closed loop.

This method can proceed without human intervention.

Testing software agents can be achieved very naturally by means of a

dedicated Tester Agent (TA) which continuously interacts with agents un-

der test, and of a monitoring agent network which checks those agents

82

CHAPTER 4. TESTING TECHNIQUES 4.4. CONTINUOUS EXECUTION

states. Since agents communicate primarily through message passing, the

TA can send messages to other agents to stimulate behaviours that can

potentially lead to fault discovery. The messages sent by the TA are those

encoded in the test suites, which can in turn be manually derived from goal

diagrams --following the GOST methodology 3-- or automatically gener-

ated. It is then the monitoring agents’ responsibility to observe the reac-

tions to the messages sent by the TA and, in case these are not compliant

with the expected behaviour (post-conditions violated) or crashes happen,

to inform the development team that a fault was revealed.

Furthermore, the TA can also use the random and the quality-function-

guided evolutionary techniques to generate environment settings. This can

be applied to test agents that depend on the environment.

Since the behaviour of an agent can change over time, due to the mu-

tual dependencies among agents and to their learning capabilities, a single

execution of test suites might be inadequate to reveal faults. The use of

the TA allows for an arbitrary extension of the testing time, that can pro-

ceed unattended and independently of any other human-intensive activity.

The TA is empowered with generation techniques, described previously,

to evolve existing test suites and to generate new ones, with the aim of

exercising and stressing the application as much as possible, the final goal

being the possibility to reveal yet unknown faults.

The continuous testing process is shown, as an UML activity diagram,

in Figure 4.8. The human tester has to start the process and check the

final results; other activities are performed by the TA and the monitor-

ing agents. Notice that at the generating / evolving test cases stage, we

can apply not only evolutionary generation techniques but also ontology-

based or random ones as well. In some cases, even with test cases remain-

ing unchanged, continuous process is still effective because of the peculiar

properties (learning, self-adaptivity) of the agents under test.

83

4.4. CONTINUOUS EXECUTION CHAPTER 4. TESTING TECHNIQUES

Generating / evolving
test cases

Executing test cases Monitoring

Evaluating results

Tester Agent Monitoring Agents

Checking final
results

Human Tester

Figure 4.8: Continuous testing process

84

CHAPTER 4. TESTING TECHNIQUES 4.5. SUMMARY

4.5 Summary

In summary, this chapter has discussed a novel testing method for software

agents: continuous testing. It consists of automated test input generation,

evaluation, monitoring techniques, and eventually automated execution.

Four generation techniques have been investigated. The goal-oriented

one takes Tropos analysis diagrams, produced by using TAOM4E 4, to

derive test suites to test for goal fulfillments. The ontology-based and

random technique exploit available agent interaction ontology, interaction

protocols, and domain data to generate messages ready to be submitted to

the agents under test. The random technique can also be used to generate

environmental settings. The advanced evolutionary technique implements

the evolution algorithm to evolve existing test cases to produce new and

more challenging ones based on runtime feedbacks. These feedbacks include

the number of mutants killed (mutation-guided) or the distances to quality

thresholds (quality-function-guided).

The following table, Table 4.4, summarizes the types of test input that

these techniques generate so far:

Table 4.4: Testing techniques and test input types

Technique Messaging

type

Environment

type

Goal-oriented Yes Yes

Ontology-based Yes No

Random Yes Yes

Mutation-guided evolutionary Yes No

Quality-function-guided evolutionary No Yes

For what concerns the evaluation of agent behaviours, we proposed to

use constraints such as norms to detect faulty behaviours that violate these

constraints. We proposed to use ontology to check if messages sending from
4http://sra.fbk.eu/tools/taom4e

85

http://sra.fbk.eu/tools/taom4e

4.5. SUMMARY CHAPTER 4. TESTING TECHNIQUES

agents are semantically and syntactically correct, and use requirements to

judge if the agents under test are reliable given their autonomy. Monitoring

technique is, then, used to observe, guard, and provide instant feedback

information for test input generation.

Special agents including the TA and the monitoring agents are equipped

with these techniques to make continuous and automated testing possi-

ble. The TA continuously generates or evolves test cases, using random,

ontology-based, or evolutionary approach, and then executes them, while

the monitoring agents monitor the behaviours of the agents under test, re-

port faults, and provide desired information for evolution. We will discuss

these agents in Chapter 5.

86

Chapter 5

eCAT testing framework

We build a testing frame work called eCAT (stand for Environment for

Continuous Agent Testing) to support the GOST methodology presented

in Chapter 3 and different testing techniques presented in Chapter 4. The

framework consists of the TA, monitoring agent network, and tools for

test case specification, graphical visualization, continuous execution, and

fault reporting. eCAT is available online at http://code.google.com/p/

open-ecat/.

The architecture of eCAT is presented in Figure 5.1. It consists of three

main components: Test Suite Editor, allowing human testers to derive test

cases from goal analysis diagrams; TA, capable to generate automatically

new test cases and to execute them on a MAS; and Monitoring Agents, that

monitor communication among agents, including the TA, and all events

happening in the execution environments in order to trace and report er-

rors. Remote monitoring agents are deployed with the environments of the

agents under test, transparently to them, in order to avoid possible side

effects. All the remote monitoring agents are under the control of the Cen-

tral monitoring agent, which is located at the same host as the TA. The

monitoring agents overhear agent interactions, events, and constraint vio-

lations taking place in the environments, providing a global view of what

87

http://code.google.com/p/open-ecat/
http://code.google.com/p/open-ecat/

5.1. SPECIFICATION TOOL CHAPTER 5. ECAT

is going on during testing and helping the TA evaluate test results.

Envi ronment 1

Envi ronment N

Agent A
Agent B

Agent Z

MAS

Host N

Host 1

Test suites editor

Autonomous
tes te r agent

Central monitor ing
 agent

eCAT

Remote moni tor ing agent

Remote moni tor ing
a g e n t

Figure 5.1: eCAT framework

eCAT features (i) specification tool that allows generating test case

skeletons from goal analysis diagrams produced using TAOM4E (http:

//sra.fbk.eu/tools/taom4e), and editing them graphically; (ii) genera-

tion and execution tool that can generate and evolve test cases, and execute

them continuously; (iii) monitoring tool to help observing and reporting

faults. Details are introduced in the following sections.

5.1 Specification tool

Test suite structure has been discussed in Section 3.4.5. A test suite con-

tains a set of test cases and suite supporting actions, e.g., set-up and

88

http://sra.fbk.eu/tools/taom4e
http://sra.fbk.eu/tools/taom4e

CHAPTER 5. ECAT 5.1. SPECIFICATION TOOL

tear-down. Each test case consists of one test scenario and specific sup-

porting actions. A test scenario is composed of a list of test actions (such

as sending a message, receiving a message, and so on) and their subsequent

links.

Graphically we propose to represent a test scenario as finite state ma-

chine in which test actions and order links are represented as states and

transitions, respectively. As an example, Figure 5.2 depicts a scenario

that is used to test an agent that communicate using FIPA REQUEST

protocol (FIPA 2002b). The explanation of the scenario is described in

Figure 5.3. First, the TA sends a request to the agent under test, then the

TA waits for a return message. In case the reply is “accepted” then the TA

checks the next “INFORM” message and then finishes, otherwise it does

nothing and stops.

Figure 5.2: An example of FSM presentation of a test scenario

89

5.1. SPECIFICATION TOOL CHAPTER 5. ECAT

Figure 5.3: Description of the test scenario in Figure 5.2

The Test Suite Editor of eCAT is built on top of the Eclipse Graphical

Modeling Framework (GMF) (The Eclipse Graphical Modeling Framework

(GMF) n.d.). It has three main features:

1. Generate test suite automatically from Tropos goal analysis diagrams,

edited in TAOM4E.

2. Provide wizards to create test suites from FIPA standard (or user-

defined) interaction protocol (FIPA 2002b).

3. Allow editing test suite graphically, in a drag-drop-like fashion. Test

scenarios are presented as finite state machines, in each state user

can specify specific testing action such as communication, checking,

branching, and test data such as message content, oracle.

Figure 5.4 depicts the graphical editing environment where end-user can

easily visualize and edit a test suite, which is composed of test cases, the

specific agent to be tested, its goals, and so on. On the right side of the

90

CHAPTER 5. ECAT 5.1. SPECIFICATION TOOL

F
ig

u
re

5.
4:

eC
A

T
te

st
su

it
e

ed
it

or

91

5.1. SPECIFICATION TOOL CHAPTER 5. ECAT

figure there is a drawing palette, it contains artefacts being ready for use to

drag-drop into the suite. Detailed information, such as outgoing message

content, expected communication act can be specified easily as well.

Figure 5.5: eCAT generation wizards

eCAT provides a number of wizards, see Figure 5.5. Using them one

can generate test suites from Tropos diagrams, create a test suite based on

existing interaction protocol, prepare mutation testing environments, and

so forth.

92

CHAPTER 5. ECAT 5.2. GENERATION AND EXECUTION TOOL

5.2 Generation and execution tool

Four test cases generation techniques are equipped to eCAT: Goal-oriented,

Ontology-based, Random, and Evolutionary. Details are presented in Chap-

ter 4 while their brief description follows.

GOAL-ORIENTED. Goal-oriented test cases generation is a part of

the GOST methodology presented in 3 that integrates testing into Tro-

pos, providing a systematic way of deriving test cases from Tropos output

artefacts. eCAT can take these artefacts as inputs to generate test case

skeletons that are aimed at testing goal fulfillment. Specific test inputs (i.e.

message content), and expected outcome are partially generated from plan

design (e.g., UML activity or sequence diagrams) and are then completed

manually by testers.

ONTOLOGY-BASED. eCAT takes advantage of agent interaction

ontologies, which define the semantics of agent interactions, in order to

generate automatically both valid and invalid test inputs, to provide guid-

ance in the exploration of the input space, and to obtain a test oracle

against which to validate the test outputs.

RANDOM. eCAT is capable of generating random test cases. First,

the TA selects a communication protocol among those provided by the

agents platform, e.g., FIPA Interaction Protocol (FIPA 2002b). Then,

messages are randomly generated and sent to the agents under test. The

message format is that prescribed by the agent environment of choice (such

as the FIPA ACLMessage (FIPA 2002a)), while the content is constrained

by a domain data model. Such a model prescribes the range and the struc-

ture of the data that are produced randomly, either in terms of generation

rules or in the (simpler) form of sets of admissible data that are sampled

randomly.

EVOLUTIONARY. Evolutionary algorithms guided by mutation or

93

5.3. MONITORING TOOL CHAPTER 5. ECAT

quality-function-based fitness are implemented in eCAT, allowing it to

evolve test cases during test execution. Based on monitoring data from

the current execution, the TA can evolve the existing test cases (current

population) to be more challenging ones for the next execution.

All the above-mentioned techniques can be used in the continuous test

execution mechanism of eCAT. Testing process is seen as a loop of generat-

ing, executing and monitoring, evaluating, evolving (only in evolutionary

technique), then go back to generating. This continuous process makes it

possible to test software agents extensively and automatically.

eCAT provides runtime view of testing process and results. Example

is shown in Figure 5.6. At the same point we can see testing results of

a number of agent platforms in parallel, the number of generations/cycles

has been passed so far, and the number of test cases exercised. Use can

select a concrete test case to see the failure, if any, in order to speculate

the cause of the failure.

Concrete test data, can be generated automatically or manually defined,

of each test case can be viewed through data view, Figure 5.7. In that

figure, detailed test actions are encoded using XML.

5.3 Monitoring tool

eCAT contains a network of monitoring agents: the remote monitoring

agents that side in agent platforms guard for events, violations, interac-

tions happened at platform level during testing, while the central agent

incorporates monitoring data from all the remote agents, makes the avail-

able for evaluating test results and reporting. Multiple agent platforms

that are used for testing can be located at a same host (i.e. computer) or

at geographically different hosts thank to the monitoring network.

For example, Figure 5.9 shows two remote monitoring agents running

94

CHAPTER 5. ECAT 5.3. MONITORING TOOL

F
ig

u
re

5.
6:

eC
A

T
te

st
re

su
lt

v
ie

w

95

5.3. MONITORING TOOL CHAPTER 5. ECAT

F
igu

re
5.7:

eC
A

T
test

d
ata

v
iew

96

CHAPTER 5. ECAT 5.3. MONITORING TOOL

at two different platforms. The two JADEX/JADE (Pokahr et al. 2005,

Telecom Italia Lab 2000) platforms run at a same host but with two differ-

ent communication ports. The two remote monitoring agents collaborate

with the central monitoring agent, shown in Figure 5.8, during test execu-

tion to provide traces, reports, and desired events to observe. The central

monitoring agent runs in Container-1 in the figure.

Figure 5.8: eCAT: the central monitoring agent in action

Similar to test result view, eCAT also provides runtime view of moni-

toring traces, including interactions, events, constraint violations, desired

guards. This gives the developer a global view of what happens during

testing and helps locating problems. In Figure 5.10, we can easily observe

an interaction event, from the TA to an agent called Seller ; the content of

the interaction is partially presented in the Event details section. In Fig-

ure 5.11, we can see a constraint violation taking place in the body of the

MakeProposalPlan plan; details of the violation says that the constraint:

“acceptable price > 0 and acceptable price < 2000” has been violated.

97

5.3. MONITORING TOOL CHAPTER 5. ECAT

F
igu

re
5.9:

eC
A

T
:

th
e

rem
ote

m
on

itorin
g

agen
ts

in
action

98

CHAPTER 5. ECAT 5.3. MONITORING TOOL

F
ig

u
re

5.
10

:
eC

A
T

m
on

it
or

in
g:

in
te

ra
ct

io
n

v
ie

w

99

5.3. MONITORING TOOL CHAPTER 5. ECAT

F
igu

re
5.11:

eC
A

T
m

on
itorin

g:
v
iolation

v
iew

100

Chapter 6

Experiments and results

We have conducted many experiments to evaluate our proposed approaches

to the automated generation of test cases and continuous execution, pre-

sented in Chapter 4. In this chapter, we present three experiments, their

objectives and results.

Table 6.1 summarizes the techniques used in the experiments and the

links to download available code and materials. In the first experiment,

Section 6.1, we build a MAS called BibFinder to study the performance

of eCAT in continuous testing and the effectiveness of the random and

the Evol-Mutation generation technique. In the second experiment, two

ontologies and two MAS systems of different size have been used to eval-

uate the ability of eCAT in generating test inputs based on agent inter-

action ontology. Finally, in the last experiment, we investigate the use of

quality-based fitness function in generating environment settings to test

autonomous cleaner agents.

Some of the results of these experiments have been presented in (Nguyen

et al. 2008c,b,a, 2007), others are under review at the time of writing this

chapter.

101

6.1. CONTINUOUS TESTING CHAPTER 6. RESULTS

Table 6.1: List of experiments

No
Techniques

Downloadable packages
Generation Evaluation

1 mutation-guided

evolutionary, goal-

oriented, random

constraint-based http://se.itc.it/

dnguyen/bibfinder

2 ontology-based http://se.itc.it/

dnguyen/thesis/supports/

BibFinderBDI.tgz

http://se.itc.it/

dnguyen/thesis/supports/

BookTrader.tgz

3 quality-function-

guided evolutionary,

random

requirement-based http://se.itc.it/

dnguyen/thesis/supports/

MrCleaners.tgz

6.1 Continuous testing

This section describes the experimental results obtained when we used

eCAT to test BibFinder . First, we introduce BibFinder , the MAS under

test, its features and architectural design. Then, the different testing tech-

niques applied to BibFinder , the testing results, and our evaluation are

presented.

BibFinder is a MAS for the retrieval and exchange of bibliographic

information in BibTeX format1. BibFinder is capable of scanning the local

drivers of the host machine, where it runs, to search for bibliographic data

in the format of BibTeX. It consolidates databases spread over multiple

devices into a unique one, where the queried item can be quickly searched.

BibFinder can also exchange bibliographic information with other agents,

in a peer-to-peer manner, thus augmenting its search capability with those

provided by other peer agents. Moreover, BibFinder performs searches on

1http://www.ecst.csuchico.edu/~jacobsd/bib

102

http://se.itc.it/dnguyen/bibfinder
http://se.itc.it/dnguyen/bibfinder
http://se.itc.it/dnguyen/thesis/supports/BibFinderBDI.tgz
http://se.itc.it/dnguyen/thesis/supports/BibFinderBDI.tgz
http://se.itc.it/dnguyen/thesis/supports/BibFinderBDI.tgz
http://se.itc.it/dnguyen/thesis/supports/BookTrader.tgz
http://se.itc.it/dnguyen/thesis/supports/BookTrader.tgz
http://se.itc.it/dnguyen/thesis/supports/BookTrader.tgz
http://se.itc.it/dnguyen/thesis/supports/MrCleaners.tgz
http://se.itc.it/dnguyen/thesis/supports/MrCleaners.tgz
http://se.itc.it/dnguyen/thesis/supports/MrCleaners.tgz
http://www.ecst.csuchico.edu/~jacobsd/bib

CHAPTER 6. RESULTS 6.1. CONTINUOUS TESTING

Figure 6.1: Architectural design of BibFinder in TAOM4E

103

6.1. CONTINUOUS TESTING CHAPTER 6. RESULTS

and extracts BibTeX data from the Scientific Literature Digital Library2,

exploiting the Google search Web service3.

Figure 6.1 depicts the architectural design of BibFinder in Tropos. The

system contains three agents: BibFinderAgent , BibExchangerAgent , and

BibExtractorAgent . Roles of each agent are briefly described as follows:

BibFinderAgent maintains the local BibTeX database and coordinates the

operation of the system as a whole; BibExchangerAgent is in charge of

querying the local database and exchanging data with external agents (e.g.,

with other instances of BibFinder); BibExtractorAgent crawls on local stor-

age devices looking for BibTeX files, and performs searches on and extracts

BibTeX items from the Internet.

Each agent in BibFinder is responsible for some goals and depends on

the other agents for fulfilling some other goals. Inside each agent, a given

goal can be decomposed into sub-goals, resulting in a tree of goals, in

which each leaf goal has a specific plan as means to achieve the goal.

For instance, BibFinderAgent has two root goals Managing-local-database

and Handling-requests ; the former is decomposed into Updating-database

and Deleting-BibTeX-item goal. The plan Update-BibTeX, for adding new

items or updating existing items in the database, acts as means to achieve

the goal Updating-database. When serving external requests, BibFinderA-

gent depends on BibExtractorAgent for seeking URLs and on BibExchang-

erAgent for querying the local database. Similarly, BibExtractorAgent and

BibExchangerAgent also have goal decompositions and plans specified to

fulfil their goals.

This version of BibFinder is implemented in JADE (Telecom Italia Lab

2000).

2http://citeseer.ist.psu.edu
3http://code.google.com/apis/soapsearch

104

http://citeseer.ist.psu.edu
http://code.google.com/apis/soapsearch

CHAPTER 6. RESULTS 6.1. CONTINUOUS TESTING

6.1.1 Testing BibFinder

We applied three testing techniques included in eCAT when testing BibFinder :

(1) random testing, which mainly uncovered bugs that make BibFinder

crashed; (2) goal-oriented testing, aimed at verifying if the agents in BibFinder

can fulfil their goals; and (3) Evol-Mutation testing, aimed at revealing

more bugs thanks to the possibility of continuous execution. Detailed de-

scriptions of these techniques are provided in Chapter 4.

6.1.1.1 Goal-oriented testing

Based on the 6 Means-End relationships in BibFinder ’s architectural de-

sign (there are 7 relationships in total, but we excluded the one related

to the goal crawl-local-devices because it was not fully implemented), we

derived 6 test suites to test the fulfilment of the associated goals. This

derivation follows the goal-oriented software testing methodology discussed

in Chapter 3. These test suites contain 12 test cases specifying 12 different

test scenarios. For example, test suite TS3 was derived to test the fulfil-

ment of the goal Updating-database by the plan Update-BibTeX. Two test

scenarios are presented in Figure 6.2. The scenario 6.2(a) reads: the TA

sends a request to BibFinderAgent , it then waits for a reply. If the replied

message contains the content “Update OK” then the test scenario passes,

in cases when timeout occurs or message content differs from “Update

OK”, the test scenario is considered as failed.

6.1.1.2 Goal-oriented testing enhanced by coverage

Given a test suite, such as the one derived through goal-oriented testing,

statement coverage can be measured and used to make sure that all the

code has been exercised by at least one test case (excluding any unreachable

code). We enhanced goal-oriented testing by manually adding 3 new test

105

6.1. CONTINUOUS TESTING CHAPTER 6. RESULTS

Tester Agent

update (well-formed BibTeX)

inform(?reply)

Checkpoint, check if reply = "Update OK"

BibFinderAgent

(a) Simple scenario with valid data

Tester Agent

update (bad-formed BibTeX)

inform(?reply)

Checkpoint, check if reply = "Update NOT OK"

BibFinderAgent

(b) Simple scenario with invalid data

Figure 6.2: Test suite TS1, used to test the goal Updating-database

106

CHAPTER 6. RESULTS 6.1. CONTINUOUS TESTING

cases, in order to reach 100% statement coverage of the main packages. In

other words, we complement black-box testing with white-box testing: by

analyzing the coverage rate by means of the tool GroboCodeCoverage4, we

figured out the uncovered code and added test cases able to increase the

coverage level, up to 100% coverage.

6.1.1.3 Random testing

In order to apply the random test case generation technique during con-

tinuous testing, we built a library of interaction protocols and a repository

of domain data. The interaction protocols include the five FIPA protocols

Propose, Request, Request-When, Subscribe, and Query (FIPA 2002b), and

twenty-one (simple) protocols, which are created from twenty-one differ-

ent FIPA communication performatives, such as AGREE, REQUEST, etc.

Domain data have been collected from the test suites derived from the goal

model and have been manually augmented with additional possible input

values. The TA generates test cases by selecting domain data randomly

and combining them with interaction protocols. The TA continuously gen-

erates test cases and executes them against BibFinder . The Monitoring

Agents are in charge of observing the whole system, i.e. BibFinder and the

JADE platform (Telecom Italia Lab 2000). Based on the intercepted in-

formation, it can recognize the situations in which bugs are revealed (e.g.,

some agents crash).

6.1.1.4 Evol-mutation testing

The preparation step of Evol-Mutation testing consists of creating ini-

tial test cases, as initial individuals, and creating mutants of the original

BibFinder system. The initial population contains the 12 test cases de-

rived from the goal-oriented testing technique. Since BibFinder agents are

4http://groboutils.sourceforge.net/codecoverage

107

http://groboutils.sourceforge.net/codecoverage

6.1. CONTINUOUS TESTING CHAPTER 6. RESULTS

implemented in JADE, a pure Java platform, we can apply existing object-

oriented mutation operators for Java on them in order to create mutants.

It would be better to have agent-oriented specific mutation operators, but

unfortunately, to the knowledge of the authors, no work has investigated

this issue yet. We consider it as a future work.

We adapted the tool MuClipse5, built on top of µJava (Yu-Seung Ma

and Kwon 2005), to create mutants from the source code of three agents:

BibFinderAgent , BibExchangerAgent , BibExtractorAgent .

The source code of the supporting classes was left untouched. 24 class-level

and 15 statement-level mutation operators (Yu-Seung Ma and Kwon 2005)

were applied on those agents. After combining the results, we obtained

178 mutants of BibFinder to be used in Evol-Mutation testing.

6.1.2 Results

We conducted testing experiments with the goal-oriented (G), coverage-

enhanced goal-oriented (G+), and random (R) techniques on a computer

equipped with 2G RAM, processor Core 2 Duo 1.86GHz (named Host in

the following). The last technique, Evol-Mutation testing, was used with

the original version of BibFinder running on the Host and 15 mutants

running on 3 cluster machines (4GB RAM, 4 CPUs Xeon 3GHz). These

experiments were repeated 10 times for each technique in order to measure

the average time and the ability to discover faults. Each execution time

is composed of execution cycles, in which test cases are run on BibFinder

and its mutants. Test cases executed in each cycle can be the same in the

goal-oriented and coverage-enhanced goal-oriented techniques; but they are

different in random testing. In the Evol-Mutation testing, the test cases

executed in a cycle are those from the previous cycle plus one or two new

test cases generated by evolution.

5http://muclipse.sourceforge.net

108

http://muclipse.sourceforge.net

CHAPTER 6. RESULTS 6.1. CONTINUOUS TESTING

012
34
0 3 6 9 12 15 18

NumberofBu
gs

Time(
y
le)
G+

R R M
Figure 6.3: Real bugs revealed by cycle

To assess the performance of eCAT we considered real bugs of BibFinder

that were detected during its development and artificial faults inserted into

the code according to the fault seeding method (Harrold et al. 1997). The

real faults of BibFinder detected by eCAT are presented in Table 6.2. Fault

No. 1 says that the BibFinderAgent crashed when it was asked to parse

a BibTeX; fault No. 2 says that JADE does not support creating a new

thread within BibExtractorAgent ; fault No. 3 shows that the BibFind-

erAgent fails to forward messages to the BibExchangerAgent when those

messages come from a different JADE platform; etc. Faults are classified

by the severity level (i.e. Fatal faults make agents die, Moderate faults are

associated with discrepancies between implementation and specification).

In the Cycle / generation column, we can find the average cycle (gener-

ation in the case of Evol-Mutation technique) when bugs were uncovered.

One cycle of random testing costs less time than one of goal-oriented test-

ing and Evol-Mutation. Figure 6.3 depicts the number of bugs uncovered

per cycle.

In Table 6.2 and Figure 6.3 we can notice that Random testing is quite

effective in detecting fatal bugs. It actually revealed two real fatal bugs

and one of them was not detected by any other technique. Goal-oriented

testing revealed moderate bugs, showing that the implemented agents fail

109

6.1. CONTINUOUS TESTING CHAPTER 6. RESULTS

Table 6.2: Results of continuous testing on BibFinder

No Bug Bug type Cycle /
genera-
tion

Technique

Real bugs

1 BibTeX parsing Fatal 14 R

2 Using thread in BibExtractorAgent Moderate 1 G, G+, M

3 Forward message error Moderate 1 G, G+, M

4 No reply to incorrect requests Moderate 1 G+, M

5 Lack a required data field Moderate 1 G, G+, M

6 Update wrong BibTeX Fatal G:1, R:15,
M:1

G, G+, M,
R

7 Add new wrong BibTeX Fatal 18 M

Artificial bugs

8 Index out of bound in BibExtractorAgent Fatal G+:1, R:9 G+, R

9 Always reply null Moderate 1 G+

10 No answer to any request Moderate 1 G+

11 Index out of bound in BibExchangerAgent Fatal G+:1, R:9 G+, R

12 Return incorrect BibTeX Moderate 1 G+

13 Null exception to an array Fatal 1 G+

14 Reply wrong performative Moderate 1 G+

15 Handle invalid request error Moderate 1 G+

16 Infinite loop Fatal 16 R

17 Null reference from BibFinderAgent to
BibExtractorAgent

Fatal 1 G+

18 Null reference from BibFinderAgent to
BibExchangerAgent

Fatal 1 G+

R: Random (0.1 minutes / cycle) , G: Goal-oriented (0.13 minutes / cycle
with 12 test cases), G+: Coverage-enhanced Goal-oriented (0.16 minutes /
cycle with 15 test cases), M: evol-Mutation (3.9 minutes / cycle with 15 initial
test cases)

110

CHAPTER 6. RESULTS 6.1. CONTINUOUS TESTING

036
912
0 3 6 9 12 15 18NumberofBug

s
Time(
y
le)

G+
R R R R M

Figure 6.4: Total (real and artificial) bugs revealed by cycle

to fulfil their goals. These moderate bugs were uncovered easily, right at

the first cycle, because the agents of BibFinder exhibited only reactive

behaviours. Since proactive agents could behave differently at different

cycles, more test cycles may be necessary to bring proactive agents to a

state that reveals faults. However, more experiments are needed to prove

this. Finally, looking at the results, we can see that Evol-Mutation testing

reveals the bugs uncovered by goal-oriented testing (this is expected since

Evol-Mutation takes the test cases used by goal-oriented technique as initial

inputs), but, more importantly, Evol-Mutation revealed also bug No. 7,

which was not detected by any other technique. This bug was uncovered

by mutating a message and enriching its content with data taken from the

dynamically constructed database.

To further evaluate the performance of eCAT, we used also the fault

seeding method (Harrold et al. 1997). We involved 3 PhD students with a

lot of skill and experience in MAS development and asked them to insert

realistic bugs (i.e., bugs regarded as similar to real bugs as possible) into

BibFinder . We obtained 15 copies of BibFinder , each containing one bug.

First, we ran Coverage-enhanced goal-oriented and Random techniques to

find bugs on these copies. Then, we ran Evol-Mutation on the copies left,

i.e. containing bugs that could not be found by the other two techniques.

111

6.1. CONTINUOUS TESTING CHAPTER 6. RESULTS

Because Evol-mutation uses test cases of Coverage-enhanced goal-oriented

technique as initial inputs, bugs found by the later is a subset of bugs found

by the former, so we only need to run Evol-mutation to find the bugs that

are left.

Eventually, 11 of these bugs were uncovered by one or more of the

testing techniques under study. eCAT could not detect 4 bugs pertaining

to BibExtractorAgent , even with Evol-mutation technique. These bugs

were inserted into the crawling functionality of BibExtractorAgent (related

to the goal crawl-local-devices), by which the agent is able to scan and

monitor changes in local directories, in order to search for BibTeX files.

These directories can be considered as an environment to BibFinder and

those bugs can be revealed only by changing this environment. No test

cases have been created to test this goal, thus none of these 4 bugs can be

revealed.

Table 6.3: Mean time between failures
Technique G R R R R M

Time (m) 0.13 0.9 1.4 1.5 1.6 70.2
Numb. of Bugs 12 2 1 1 1 1
MTBF (m) 0.01 0.39 0.5 0.1 0.1 68.6

The summary of bugs found by each technique is shown in Figure 6.4,

where they are plotted against the testing cycles. The mean time between

failure (MTBF) is depicted in the log-log plot in Figure 6.5. The detailed

MTBF values in minute are presented in Table 6.3. We can see that the

mean time between two bugs found at the beginning of testing is very

small. Then, it tends to increase, although not always monotonically. Since

the number of remaining bugs decreases, it becomes harder and harder to

reveal them. After the last bug found (around 1 hour from the beginning of

testing) no more bug is revealed by eCAT. In a real development scenario,

eCAT can be left running continuously, so as to try to reveal also those

112

CHAPTER 6. RESULTS 6.2. ONTOLOGY-BASED GENERATION

12�1�2 1 2�1�2
log(MTBF)

log(time)
b

b b

b b

b

G+R R M
Figure 6.5: Log-log plot of mean time between failures

bugs that are associated with a very long mean time between failures and

are thus extremely hard (or impossible) to reveal in traditional testing

sessions. Going back to Figure 6.4, we can notice that the goal-oriented

and the random techniques are quite effective in the initial testing cycles,

when bugs can be revealed by simple and short message sequences and the

selection of the input data is not critical to expose them (i.e., there exist

large equivalence classes of input data that can be used interchangeably

to reveal a given fault). When remaining bugs become hard to find (last

testing cycles) goal-oriented and random testing become ineffective and it

is only through Evol-Mutation that additional faults can be revealed.

6.2 Ontology-based generation

We have evaluated the performance of the ontology-based test generation,

discussed in Section 4.3.3, as well as its capability of revealing faults on two

case studies. The first case study (BookTrader) is a book-trading MAS.

This system was implemented as a set of BDI agents (Rao and Georgeff

113

6.2. ONTOLOGY-BASED GENERATION CHAPTER 6. RESULTS

1995) in JADEX (Pokahr et al. 2005). We extended it to support ontology-

based interaction. After modeling the interaction ontology (see Figure 4.1)

using Protégé6, we generated ontology-supporting code, and modified the

implementation of Seller and Buyer agents accordingly. Moreover, we

added OCL constraints (e.g., the price must be between 0 and 2000). The

size of this MAS is 1312 line of code (LOC).

On the first assessment on the performance of test generation for Book-

Trader, we were able to obtain three ontologies with instances of books,

comprising respectively 10, 20 and 100 instances. Generation rules in-

troduced in Chapter 4 are used. We applied valid input generation rules

RVS1, RVS2, RVS3 for the Book properties author and title; RVN1,

RVN2, RVN3 for Proposal ’s price; RVC1 for the combination. We gen-

erated invalid messages using RIS4, RIS5 for author and title; RIN2 for

price; RIC1, RIC2, RIC3 for the combination.

Table 6.4 shows the total number of possible valid and invalid test inputs

that could be generated by the test generator from three different input

ontologies, Onto1, Onto2, Onto3. Onto1 contains 10 instances of Book.

Since Book has two properties (title and author) of type string, if we assume

that a dictionary with 3 valid values is available for each property, the test

generator can produce in total (10 + 3)2 = 169 valid and (10+4)∗2−1 = 27

invalid inputs. The Propose also has two properties, one of type Book and

the other one, price of type float. Since price has a constraint on it value

from 0 to 2000, the generator can generate randomly at least 3 valid values

within the range and 5 invalid values: null, overflow, underflow, lower than

0, greater than 2000. So Propose can have 10 ∗ 3 = 30 immediate valid

and 10 ∗ 5 = 50 immediate invalid inputs; immediate in the sense that it

takes directly 10 instances of Book. However, based on the fact that Book

6Protégé is a free, open source ontology editor and knowledge-base framework. Available at http:

//protege.stanford.edu

114

http://protege.stanford.edu
http://protege.stanford.edu

CHAPTER 6. RESULTS 6.2. ONTOLOGY-BASED GENERATION

can have 169 valid and 27 invalid values, Propose can therefore have up

to 507 valid and 980 invalid values. This is a considerable amount with

respect to just 10 initial instances.

Table 6.4: Number of possible inputs from the book-trading ontology

Ontology Concept Number of instances Valid inputs Invalid inputs

Onto 1
Book 10 169 27

Propose - 30→507 50→980

Onto 2
Book 20 529 47

Propose - 60→1587 100→2880

Onto 3
Book 100 10609 207

Propose - 300→31827 500→∼ 100000

Table 6.5 (a) shows the total number of test cases (divided into valid

and invalid test cases) that were generated by executing continuous testing.

Test case generation for the Seller required the creation of 3 test case

templates, while only one template was needed for the Buyer. The small

number of templates indicates that little manual effort is required by our

approach. In fact, the template definition is the only step that requires the

human involvement.

The two classes in the BookTrader ontology were fully covered by the

automatically generated test cases. Moreover, two deviations from the

expected behaviour (faults) were observed. Manual testing of the same ap-

plication was conducted by applying the goal-oriented test case derivation

methodology. Results are provided in Table 6.5 (b) and show that 6 test

cases were manually defined for each agent under test. They cover the same

number of classes in the ontology and reveal the same faults as the auto-

matically generated test cases. Although in this example ontology-based

test case generation exhibits no superior performance in terms of ontology

coverage or fault detection, it increases the confidence in the correctness

of the application, in that it allows exploring a much larger portion of the

115

6.2. ONTOLOGY-BASED GENERATION CHAPTER 6. RESULTS

input space (more than one order of magnitude) at no additional cost.

The second case study BibFinder is a MAS that aims at facilitating

bibliographic search. Differ from the case study discussed in Section 6.1,

this BibFinder is a true BDI agent (Rao and Georgeff 1995). A special

assistant agent called BibFinder helps searching and building references

for a specific topic, sharing bibliographic data with other BibFinder . In

particular, BibFinder has the capability to:

1. Consolidate bibliographic data automatically, even when they are

scattered geographically;

2. Perform searches on and extract bibliographic data from the Scientific

Literature Digital Library7, exploiting the Google search service8;

3. Rank publications automatically based on the usage history;

4. Form communities of BibFinder automatically in order to share bib-

liographic and ranking data of similar topics of interest;

5. Join an existing or create a new community based on the interests of

the BibFinder ’s owner;

6. Recommend a list of “must-read” papers to the owner.

Similar to BookTrader, BibFinder is implemented as a BDI agent (Rao

and Georgeff 1995) in JADEX (Pokahr et al. 2005). The size of this MAS

is 8484 LOC. The main differences between BookTrader and BibFinder

are that the former has been evolved together with the several versions of

JADEX (Pokahr et al. 2005), hence it is likely to contain less faults than

the latter, which was implemented recently from scratch. Moreover, the

interaction ontology of BibFinder is much larger than BookTrader ’s one.

7http://citeseer.ist.psu.edu
8http://code.google.com/apis/soapsearch

116

http://citeseer.ist.psu.edu
http://code.google.com/apis/soapsearch

CHAPTER 6. RESULTS 6.2. ONTOLOGY-BASED GENERATION

Notice that the version of BibFinder in this experiment is implemented

in JADEX, which is different from the previous version of BibFinder used

in the previous experiment.

Figure 6.6: Interaction ontology of BibFinder

A portion of the interaction ontology of BibFinder is presented in Fig-

ure 6.6. The complete ontology is quite big, because of the number of

properties (e.g., Entry has 42 properties) and classes not shown in Fig-

ure 6.6 for space reasons (a lot of sub-classes of Entry and AgentAction

are not shown in the figure).

We used a set of BibTeX files, comprising a large number of BibTeX

entries, to create a domain-specific ontology that specifies and contains

BibTeX data. It was then aligned with the BibFinder ontology (shown in

117

6.3. REQUIREMENT-BASED CHAPTER 6. RESULTS

Table 6.5: Faults and coverage evaluation (N/A means Not Applicable). Table 6.5 (a)

presents results with automatically-generated test cases, while Table 6.5 (b) presents

results with manually-derived test cases.

MAS
Agent
under
test

Numb
of tem-
plates

Time
limit

Number of test cases Ontology
cover-
age

Numb
of
faultsValid Invalid Total

BookTrader
Seller 3 30’ 209 131 340 2/2 2
Buyer 1 10’ 56 38 94 2/2 2

BibFinder BibFinder 5 1h 853 423 1267 27/27 6

(a) Automatically generated test cases

BookTrader
Seller N/A N/A 3 3 6 2/2 2
Buyer N/A N/A 3 3 6 2/2 2

BibFinder BibFinder N/A N/A 7 7 14 13/27 4

(b) Manually derived test cases

Figure 6.6). In total, we obtained 983 ontology instances.

Table 6.5 (a) shows the total number of test cases generated for BibFinder ,

ontology coverage and revealed faults. Compared to the manually derived

test cases (Table 6.5, (b)), the continuous and ontology-based testing al-

lowed a much wider exploration of the input space, with a higher ontology

coverage and fault revealing capability. Reliability of BibFinder is sub-

stantially improved after the execution of continuous and ontology-based

testing.

6.3 Requirement-based evolutionary generation

In this experiment we further analyze the cleaner agent, introduced briefly

in Section 4.1.3, and build a simulation of an agent system composed of

an artificial environment and the cleaner agent to evaluate the proposed

approach. We describe, in detail, the functionalities of the agent and the

way we use softgoals to guide test generation and ultimately evaluate the

118

CHAPTER 6. RESULTS 6.3. REQUIREMENT-BASED

quality of the agent.

As mentioned in Section 4.1.3, we choose two softgoals: robustness and

efficiency to evaluate the quality of the cleaner agent. By analyzing ro-

bustness, two further goals decomposed from it are maintaining-battery and

avoiding-obstacles. Similarly, efficiency can be decomposed into sub-goals

as well. All of them must be taken into account while evaluating the qual-

ity of the cleaner agent. Each softgoal gives rise to a fitness function that

can guide the generation of test cases. In this section we investigate only

the goal avoiding-obstacles, using a fitness function derived from the goal

to guide the generation of test inputs. The testing objective is to make

sure that the agent does not hit any obstacles.

6.3.1 Application

The artificial environment is a square area, A. In the area A there can

be obstacles, dustbins, waste, and charging stations located randomly. We

define an environmental setting as a particular configuration of A, in which

numbers of obstacles, dustbins, waste, and charging stations are located at

particular locations. Different settings pose different levels of difficulty in

which the cleaner agent must operate.

The cleaner agent is in charge of keeping that area clean. In particular,

it needs to perform the following tasks autonomously:

1. Explore location of important objects;

2. Look for waste and bring it to the closest bin;

3. Maintain battery charge, with sufficient re-charging;

4. Avoid obstacles by changing course when necessary;

5. Exhibit alacrity by finding the shortest path to reach a specific loca-

tion, while avoiding obstacles on the way.

6. Exhibit safely by stopping gracefully when movement becomes impos-

sible or battery charge level is too low.

119

6.3. REQUIREMENT-BASED CHAPTER 6. RESULTS

These are all requirements related to autonomy; the way in which the

agent achieves them differs depending on the context in which it finds itself.

Each functionality gives rise to a goal that the agent needs to achieve or

maintain, and multiple goals are active simultaneously during operation.

For instance, while exploring the area, the agent needs to avoid obstacles

and maintain its battery.

The simulation environment is implemented in JADEX (Pokahr et al.

2005), extending an existing example of JADEX with a sophisticated ca-

pability to avoid obstacles. The cleaner agent contains a belief base where

information about current location, visited locations, obstacles, dustbins,

charging stations, and so on are stored. In addition, the agent has a number

of goals and associated plans, with goal deliberation based on goal condi-

tions, such as creation, adoption and inhibition conditions. At runtime,

goals are adopted autonomously on the basis of goal deliberation.

6.3.2 Preparation

6.3.2.1 Encoding test inputs

In this case study, an environmental setting (or a test case) is composed

of the quantity and location of obstacles, dustbins, waste, and charging

stations. Each of these factors is encoded as a single gene, as follows (See

also Figure 6.7):

• Divide the area A into RxR cells, R is called resolution.

• Place objects (i.e. obstacles, waste, bins, charging stations) into cells.

A cell containing an object is denoted by 1, while a content–free cell

is denoted by 0.

The resolutions of the environmental factors can be different and their

quantity can be controlled in evolutionary testing. For instance, we can

120

CHAPTER 6. RESULTS 6.3. REQUIREMENT-BASED

1 0 1 0 1 0

0 1 1 0 1 0

0 1 1 0 1 0

1 1 0 1

0

0

0

1 0

1 0

1 0

1

01

1

0

Figure 6.7: Encoding test inputs: an example of 6x6 cells

choose the number of dustbins and charging stations to be as small as than

they are in reality, while the amount of waste and number of obstacles can

be chosen to be much higher.

During evolution, genes are crossed over and/or mutated, resulting in

new environments that combine previous environments or in which objects

change their locations.

6.3.2.2 Fitness computation

We define a fitness function f based on the distance to obstacles encoun-

tered during the operation of the agent. Real-time observations of the

distance of the cleaner agent to all obstacles are performed to measure f.

Moreover, since the test outcomes are different even for the same test input,

we need to repeat the execution of each test case several times to measure

statistical data representing the test outcomes. This section determines a

reasonable value for this repetition.

121

6.3. REQUIREMENT-BASED CHAPTER 6. RESULTS

In the same initial environmental setting, different executions can result

in different trajectories of the agent. This is due to the random targets that

the agent chooses to reach, while exploring the environment. As a result,

the agent can find itself in trouble if the randomly-selected target is close

to obstacles, or if the path to the target is obstructed by obstacles so that

the probability of hitting obstacles becomes high. On the other hand, if

by chance, all the selected targets happen to be far away from obstacles,

then the probability of hitting obstacles would be low. Figure 6.8 plots the

closest distance of the cleaner agent to obstacles over time in two different

executions of the same test case.

Figure 6.8: Plots of the closest distances of the agent to obstacles over time for two

executions of the same test case

In order to find an effective environment where the probability of en-

countering obstacles is high, we must run each test case several times in

order to reduce the influence of those non-deterministic factors in agent

decision-making. In the following, we determine (1) how many executions

of a test case is sufficient to evaluate the effect of it, and (2) how much

122

CHAPTER 6. RESULTS 6.3. REQUIREMENT-BASED

time is needed for each run so that the agent has enough time to exhibit

its behaviour. For the second question, a duration of 40 to 60 seconds is

determined to be sufficient for each execution, since within that amount of

time, the agent can visit all cells in the testing area several times.

To answer the first question, we randomly generate a number of test

cases and execute them repeatedly many times. Figures 6.9(a) and 6.9(b)

show cumulative box-plots of the closest distances to obstacles over the

number of executions of two test cases TC1 and TC2. In each execution

we measured the distance of the agent to the closest obstacles in real-time.

We use a box-plot presentation because it shows, not only the closest and

furthest distance of the whole operation time, but also the ‘hardness’ of a

test case. That is, the quartiles of 25% and 75% of the distances form a

range that provides the typical dispersion of distances. If the range is close

to 0, the probability of encountering obstacles is high.

In general, we can observe, from Figure 6.9, that the boxes in each figure

tend to converge in terms of size and position. We perform a pilot experi-

ment with a large number of test cases, each has been executed a number

of times. The fitness value is non-deterministic, because of the non deter-

ministic behaviour of the agent under test. However, the average fitness

value converges toward its final value after 4.6 executions (on average), as

apparent from the cumulative box plots. Hence, we use 5 test case execu-

tions in our experiments to determine the fitness value associated with a

test case.

6.3.2.3 Fitness function

Let D be the vector of all the closest distances to obstacles observed in all

executions, and ε be the smallest distance allowed (user-defined threshold).

123

6.3. REQUIREMENT-BASED CHAPTER 6. RESULTS

!"#$%

!"#"&%

"%

"#"&%

"#$%

"#$&%

"#'%

"#'&%

"#(%

"#(&%

$% '% (%)% &% *% +% ,% -% $"% $$% $'% $(% $)% $&% $*% $+% $,% $-% '"% '$% ''% '(% ')% '&% '*% '+% ',% '-% ("% ($% ('% ((% ()% (&% (*% (+% (,% (-%)"%)$%)'%)(%))%)&%)*%)+%),%)-% &"%

.$%

/01%

/23041%

/45%

.(%

(a) Cumulative box-plots for TC1

!"#$%

!"#"&%

"%

"#"&%

"#$%

"#$&%

"#'%

"#'&%

"#(%

"#(&%

$% '% (%)% &% *% +% ,% -% $"% $$% $'% $(% $)% $&% $*% $+% $,% $-% '"% '$% ''% '(% ')% '&% '*% '+% ',% '-% ("% ($% ('% ((% ()% (&% (*% (+% (,% (-%)"%)$%)'%)(%))%)&%)*%)+%),%)-% &"%

.$%

/01%

/23041%

/45%

.(%

(b) Cumulative box-plots for TC2

Figure 6.9: Cumulative box-plots for two test cases

Then, the fitness function is defined as follows:

f =



min(D) + w1 ∗ quartile1(D) + w3 ∗ quartile3(D)

if min(D) > ε,

min(D)− ε if min(D) ≤ ε,

+∞ if the agent cannot move and suspend safely.
124

CHAPTER 6. RESULTS 6.3. REQUIREMENT-BASED

where min(D) is the smallest value of the vector D, quartile1 (D) is the

quartile of 25% of D, and quartile3 (D) is the quartile of 75% of D. The

weight of the two last values w1, w3 must be close to 0 as they are less

important than the min(D) value with respect to f . In fact, the reason for

using the quartile values is that, among a set of test cases, we favour those

that have distance dispersion (i.e. box-plots) close to 0 if they have the

same min(D). We have also performed pilot experiments without taking

into account the distance dispersion, and the obtained results show that f

is less effective when the dispersion is discarded.

The search objective is to bring the box-plots close to the threshold ε

whenever min(D) is still greater than the threshold ε. Otherwise, only the

value min(D) is relevant because it represents an error (the agent violates

the threshold), in these cases, the algorithm searches for min(D) as close

to 0 as possible. In the case when the agent cannot move because of

surrounding obstacles and it suspends safely, then the value of f is∞; that

is, the value of f can itself guide the search to skip the obvious cases when

the agent is surrounded by obstacles.

6.3.3 Evolutionary robustness testing

Our testing objective is to assess the robustness of the cleaner agent. In

particular, we test only for the capability of the agent to avoid obstacles

by using the fitness function f, defined in the previous section. A genetic

algorithm (GA) is used to generate test cases that minimize f, that is to

find the test cases that lead the agent to breach the threshold ε (or f ≤
0), which is considered as fault.

The experiments were performed on three computers with Intel proces-

sors, Core 2 Duo (1.86Ghz), Pentium D (3Gz), and Xeon (4x3Ghz), each

has more than 2Gb RAM. Each test case was executed on 5 simulation

platforms (i.e., 5 executions per test case) in parallel. The observed data

125

6.3. REQUIREMENT-BASED CHAPTER 6. RESULTS

from the platforms was combined to calculate f. In evolutionary testing we

choose ε = 0.05, and w1 = w3 = 1/3.

6.3.3.1 Experiment 1

In this first experiment, we encode the locations and quantity of waste,

obstacles, dustbins and charging stations by four genes: one gene for each

kind of object. Their resolutions are chosen as follows:

Kind Resolution Max quantity

Waste 12x12 144

Obstacle 8x8 64

Dustbin 2x2 4

Charging station 2x2 4

This experiment was performed on the early beta version of the agent

that does not implement the capability to find the shortest path to reach

a specific location, and there is no interaction between the two goals:

avoiding-obstacle and maintaining-battery. The latter can inhibit the for-

mer while the agent goes to a charging station.

Evolutionary testing is executed with three different configurations: 60,

90 and 120 generations. The best results of all configuration give the

optimal value f = -0.05 (or the distance to obstacles is 0). This reveals

that the agent is faulty, because it hits obstacles. Our testing technique

reveals two faults in the implementation of the cleaner agent:

126

CHAPTER 6. RESULTS 6.3. REQUIREMENT-BASED

Fault Description

F1 F1 occurs when the cleaner has two competing

goals active at the same time: maintaining-battery

and avoiding-obstacles. The agent favours the goal

maintaining-battery regardless of the latter goal, so

it hits obstacles on the way to a charging station.

The value of f corresponding to this fault is very

close or equal to the optimal value (-0.05).

F2 F2 is that the agent gets too close to an obsta-

cle before the goal maintaining-battery is triggered.

The value of f corresponding to this fault is smaller

than 0, but far away from the optimal value.

To evaluate the performance of evolutionary testing, we also performed

random testing on the cleaner agent. For random testing, test cases were

represented in exactly the same way that they were for the evolutionary

testing approach, but they were generated entirely randomly. All the set-

tings, such as the resolutions of the objects, the values of ε, w1, w3, the

starting point of the agent, and the fitness function f were the same as

for evolutionary testing, to ensure a fair comparison of results. Three

experiments of 60, 90 and 120 random test cases were performed. The

evolutionary approach used in this thesis is what is known in the literature

as a ‘steady state genetic algorithm’ (Vavak and Fogarty 1996), in which

only one new individual is produced at each generation. This means that,

at each generation, there is only one new fitness evaluation. We choose set-

tings for random test input generation to ensure that both the random and

evolutionary approaches are provided with the same budget of the fitness

evaluations. In this case, that means choosing the number of random tests

to be equal to the number of generations of the evolutionary algorithm.

This ensures a fair comparison of the two approaches — evolutionary and

127

6.3. REQUIREMENT-BASED CHAPTER 6. RESULTS

random.

Comparing the results obtained from randomly-generated test cases to

evolutionary-generated ones, we observe that the fitness values of evolu-

tionary testing are smaller (meaning better) than those of random testing

within a similar testing time. In fact, all of the best values of f of evo-

lutionary testing are optimal (f = −0.05) while none of the experiments

with random testing achieves this value. In addition, the dispersion of dis-

tances of evolutionary testing is more compact, and closer to the optimal

value than that of random testing. This implies that evolutionary testing

generates more challenging test cases to test the cleaner agent than random

testing, though both of them can detect the faults.

6.3.3.2 Experiment 2

The objective of this experiment is to further compare the performance of

evolutionary testing to random testing. In this experiment, we fix the loca-

tions of 2 charging stations, 2 dustbins, and 6 obstacles (see Figure 6.10).

The obstacles are placed in the corners so that once the agent goes to these

corners, it is difficult for it to get out. In particular, we place three ob-

stacles in the top-right corner, forming a waste–rich potential ‘honey pot

trap’ from which the agent has only one way to get in and out and could

drain its battery there. In this experiment only waste is placed randomly

in random testing, or with the guidance of the fitness function in ET.

This experiment was performed on a revised version of the cleaner agent.

It has the capability to find the shortest trajectory to reach a specific lo-

cation, avoiding obstacles on the way. Moreover, we change the implemen-

tation of the agent to make testing more challenging, by making the first

fault F1 harder to detect. Now in the goal deliberation mechanism of the

cleaner agent, the goal avoiding-obstacles can inhibit the goal maintaining-

battery if the battery level is still greater than 5%. The fault has a chance

128

CHAPTER 6. RESULTS 6.3. REQUIREMENT-BASED

to reveal only the battery level goes below 5%, not 20% like in the previous

experiment.

Figure 6.10: A special scenario to test the cleaner agent

The final results of detecting the two faults F1 and F2 of this experiment

are described as follows. In three runs with 90, 120, or 200 generations, the

evolutionary technique detects both faults; while with comparable numbers

129

6.4. SUMMARY CHAPTER 6. RESULTS

of random test cases: 90, 120, 200, the random technique can detect only

the easy fault F2.

Overall, evolutionary testing, guided by fitness functions derived from

softgoals, outperforms random testing under the same execution cost and

time.

The significance of the test results above is that evolutionary testing, fol-

lowing our approach, tests an agent in a greater range of contexts, thereby

accounting for its autonomy to act differently in each. Testing an au-

tonomous agent using a more standard approach can only work if the

range of contexts that influence the agent’s behaviour is sufficiently lim-

ited that the developer can predict them all. However, when considering

systems of any substantial complexity, of which a multi-agent system is

certainly included, such a limited range is unlikely to occur. We can there-

fore argue that automated, search-based testing is essential to ensure the

robustness of complex systems and, as our tests show, evolutionary testing

is an excellent candidate.

6.4 Summary

This chapter has presented the results of three experiments that have been

conducted to study the proposed generation, evaluation techniques.

The results obtained from the first experiment, Section 6.1, indicated

that continuous testing has a big potential to complement the manual test-

ing activity. In fact, for faults involving long message sequences and specific

input data, continuous testing seems particularly suited to explore those

states that can potentially lead to them. Evol-Mutation can contribute

to the discovery of the hard to reveal faults, which would go probably

unnoticed under goal-oriented and random testing.

The results of the second study, Section 6.2, showed that whenever the

130

CHAPTER 6. RESULTS 6.4. SUMMARY

interaction ontology has a non trivial size, the ontology-based generation

method achieved a higher coverage of the ontology classes than manual

test case derivation. It also overcomes manual derivation in terms of the

number of faults revealed and the portion of input space explored during

testing. The level of automation achieved by our tool eCAT allows for the

automatic test case generation at negligible extra costs.

Finally, in the third experiment with the autonomous cleaner agents,

Section 6.3, we evaluated the systematic way of evaluating the quality of

autonomous agents, presented in Section 4.1.3 and Section 4.3.5.2. Briefly,

stakeholder requirements were represented as quality measures, and cor-

responding thresholds were used as testing criteria; autonomous agents

needed to meet these criteria in order to be reliable. Then, fitness functions

that represent testing objectives were defined accordingly. They guided

our evolutionary test generation technique to produce test cases automat-

ically. The longer time for evolution is, the more challenging the evolved

test cases are. Thus the autonomous agent is tested more and more ex-

tensively. We developed the simulation of the cleaning agent system to

evaluate the approach. The observed results, which we reported in Section

6.3, demonstrated that the evolutionary testing was effective. Indeed, our

approach has great potential in evaluating complex software entities like

autonomous agents.

131

6.4. SUMMARY CHAPTER 6. RESULTS

132

Chapter 7

Conclusion

7.1 Conclusion

The increasing use of Internet as the backbone for all interconnected ser-

vices and devices makes software systems highly complex and virtually

unlimited in scale. These systems often involve variety of users and het-

erogeneous platforms. They are evolved continuously in order to meet the

changes of business and technology. In some circumstances, they need

to be autonomous and adaptive for dealing with such changes. Software

agents and MAS are considered as key enabling technologies for building

such open, dynamic, and complex systems.

Now, as software agents with built-in autonomy are increasingly taking

over control and management activities, such as in automated vehicles or

e-commerce systems, testing these systems to make sure that they behave

properly becomes crucial. This calls for an investigation of suitable soft-

ware engineering frameworks, testing in particular, to build high quality

and dependable software agents and MAS.

Testing software agents and MAS has been receiving much effort from

several active research groups. However, there are still many open issues for

research. A complete and comprehensive testing process for software agents

and MAS is absent. We need adequate approaches to judge autonomous

133

7.1. CONCLUSION CHAPTER 7. CONCLUSION

behaviours, to evaluate agents that have their own goals. We need methods

to test emergent properties of MAS as a whole. These opportunities, among

others, motivate this PhD work.

This work has contributed to advance the state of the art in different

aspects. Firstly, the proposed GOST methodology takes goal-oriented re-

quirements analysis and design artefacts as the core elements for test case

derivation. It provides systematic guidance to generate test suites from

modelling artefacts produced along with the development process. These

test suites, on the one hand, are used to refine goal analysis and to de-

tect problems early. On the other hand, they are executed to test the

achievement of the goals from which they were derived. Moreover, the

proposed methodology gives a complete classification of testing levels in

software agent and MAS testing, and a complete testing process following

the standard V.

Secondly, we have proposed a number of techniques to tackle the chal-

lenges in testing software agents: (i) for evaluating agent’s behaviours we

have proposed three different approaches, i.e., constraint-based, ontology-

based, and requirement-based ; (ii) for the generation of test cases (partially

or fully automated) we have proposed goal-oriented, ontology-based, ran-

dom, and evolutionary techniques; (iii) then we combined them in a novel

testing execution method, called continuous testing. This method relies

on a tester agent, which plays the role of human tester, and a monitoring

agent network, which monitors the system as a whole to record events,

changes, misbehaviours, and so on. The tester agent uses the generation

techniques, e.g., ontology-based, evolutionary, to generate and execute new

test cases against the agents under test, continuously; while the monitoring

agent network guards, reports problems (e.g., violations), or record data

for desired measurements.

Finally, to support the methodology and the continuous testing method,

134

CHAPTER 7. CONCLUSION 7.1. CONCLUSION

we have been developing a testing framework, called eCAT. The framework

consists of tools for test case specification and derivation from goal models,

for graphical visualization, for continuous execution, and for fault report-

ing. eCAT is available online at http://code.google.com/p/open-ecat/.

The results obtained, discussed in Chapter 6, are very promising. First

of all, they showed that continuous testing had a big potential to comple-

ment the manual testing activity. In fact, especially for faults involving

long message sequences and specific input data, continuous testing par-

ticularly suits to explore those states that can potentially lead to reveal-

ing these faults. Whenever high reliability (i.e., long mean time between

failures) is the aim, Evol-Mutation can contribute to the discovery of the

hard to reveal faults, which would go probably unnoticed under other tech-

niques. Secondly, the ontology-based generation method achieved a higher

coverage of the ontology concepts than the manual method. It also over-

comes manual derivation in terms of the number of faults revealed and

the portion of input space explored during testing. The level of automa-

tion achieved by eCAT allows for test case generation at negligible extra

costs. Finally, the results obtained in the experiment with the autonomous

cleaner agents have demonstrated that the evolutionary testing technique

and the use of quality functions derived from requirements are effective.

Indeed, our approach has great potential in validating complex software

entities like autonomous agents.

For what concerns the GOST methodology, the benefits that it brings

are twofold. First of all, since goal-oriented requirements engineering has

been recognized as a powerful and effective approach for building software

agents and MAS, drawing straight connections between goal-oriented anal-

ysis and goal-oriented testing can help to make the concepts used in the

development consistent and to save the development cost. Secondly, as

GOST proposes to parallel goal-oriented construction and goal-oriented

135

http://code.google.com/p/open-ecat/

7.2. FUTURE WORK CHAPTER 7. CONCLUSION

testing, this helps to discover problems early, thus avoiding to implement

erroneous specifications.

7.2 Future work

In the future work, we will extend the derivation method to exploit detailed

design of plans, which may include interaction or operation design. This

extension will enrich the derived test suites with detailed information and

will further automate MAS testing. Moreover, we will investigate metrics

to evaluate goal-oriented testing coverage of the implementation, as they

can give insights to the developer about the testing effort and the confi-

dence level in the implemented MAS. More importantly, we will evaluate

thoroughly, by means of an empirical study, the methodology in terms of

usability, productivity, and more generally the benefits the methodology

could bring.

We will further investigate the pre- and post-conditions that can be

checked by the monitoring agents. This can potentially contribute to guide

evol-mutation to reveal faults that violate the conditions specified. In

addition, we plan to extend our framework to deal with remaining MAS

testing issues, such as “sealed” agents and the environment factors, so that

the TA can detect faults related to specific environment configurations.

Moreover, we will consider how to provide the tester agent with heuristics

to analyze the interactions among the agents under test, in order to guide

evol-mutation testing towards the generation of test cases that are more

likely to reveal faults.

In evolutionary testing of agents, some research issues remain open. In

our future work, we will consider multiple sets of simultaneous conflicting

and competing requirements. For instance, in the cleaner agent one may

want to evaluate robustness in terms of maintaining battery and avoiding

136

CHAPTER 7. CONCLUSION 7.2. FUTURE WORK

obstacles. Since each requirement related to autonomy can give rise to a

fitness function (or search objective), multiple requirements call for a multi-

objective search technique. The multi-objective versions of evolutionary

algorithms are probably suitable to deal with such situations.

137

Bibliography

Adrion, W. R., Branstad, M. A. and Cherniavsky, J. C.: 1982, Valida-

tion, verification, and testing of computer software, ACM Comput. Surv.

14(2), 159–192.

Agent Oriented Software Pty. Ltd.: n.d., JACK Agent Language,

http://agent-software.com.au/jack.html.

Beck, K.: 2002, Test Driven Development: By Example, Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

Beizer, B.: 1990, Software Testing Techniques (2nd ed.), Van Nostrand

Reinhold Co., New York, NY, USA.

Bergenti, F., Gleizes, M.-P. and Zambonelli, F. (eds): 2004, Methodolo-

gies and Software Engineering for Agent Systems : The Agent-Oriented

Software Engineering Handbook, Springer.

Bordini, R. H., Wooldridge, M. and Hübner, J. F.: 2007, Programming

Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent

Technology), John Wiley & Sons.

Bot́ıa, J. A., Gómez-Sanz, J. J. and Pavón, J.: 2006, Intelligent Data Anal-

ysis for the Verification of Multi-Agent Systems Interactions, Intelligent

Data Engineering and Automated Learning - IDEAL 2006, 7th Interna-

tional Conference, Burgos, Spain, September 20-23, 2006, Proceedings,

pp. 1207–1214.

139

BIBLIOGRAPHY BIBLIOGRAPHY

Bot́ıa, J. A., López-Acosta, A. and Gómez-Skarmeta, A. F.: 2004,

ACLAnalyser: A tool for debugging multi-agent systems, Proc. 16th Eu-

ropean Conference on Artificial Intelligence, pp. 967–968.

Bourque, P. and Dupuis, R. (eds): 2004, Guide to the Software Engineering

Body of Knowledge: 2004 Edition, IEEE.

URL: http://www.swebok.org

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A.:

2004, Tropos: An Agent-Oriented Software Development Methodology,

Autonomous Agents and Multi-Agent Systems 8(3), 203–236.

Cacciari, L. and Rafiq, O.: 1999, Controllability and observability in dis-

tributed testing, Information and Software Technology 41(11-12), 767–

780.

URL: http://www.sciencedirect.com/science/article/B6V0B-3X3TD3J-

7/2/be2860fa5fae5350c8b9d85a1a4b0c84

Coelho, R., Kulesza, U., von Staa, A. and Lucena, C.: 2006, Unit testing

in multi-agent systems using mock agents and aspects, SELMAS ’06:

Proceedings of the 2006 international workshop on Software engineering

for large-scale multi-agent systems, ACM Press, New York, NY, USA,

pp. 83–90.

Cossentino, M.: 2005, From requirements to code with the passi method-

ology, in (Henderson-Sellers and Giorgini 2005).

Dardenne, A., van Lamsweerde, A. and Fickas, S.: 1993, Goal-directed

requirements acquisition, Science of Computer Programming 20(1-2), 3–

50.

Dastani, M., van Riemsdijk, M. B. and Meyer, J.-J. C.: 2006, Goal types

140

BIBLIOGRAPHY BIBLIOGRAPHY

in agent programming, Proc. 17th European Conference on Artificial In-

telligence, pp. 220–224.

DeMillo, R. A., Lipton, R. J. and Sayward, F. G.: 1978, Hints on test

data selection: Help for the practicing programmer, IEEE Computer

11(4), 34–41.

Development Standards for IT Systems of the Federal Republic of Ger-

many: 2005, The V-Model.

URL: http: // www. v-modell-xt. de

Dikenelli, O., Erdur, R. C. and Gumus, O.: 2005, Seagent: a plat-

form for developing semantic web based multi agent systems, AAMAS

’05: Proceedings of the fourth international joint conference on Au-

tonomous agents and multiagent systems, ACM Press, New York, NY,

USA, pp. 1271–1272.

Ekinci, E. E., Tiryaki, A. M., Cetin, O. and Dikenelli, O.: 2008, Goal-

Oriented Agent Testing Revisited, Proc. of the 9th Int. Workshop on

Agent-Oriented Software Engineering, pp. 85–96.

FIPA: 2002a, ACL Message Structure Specification,

http://www.fipa.org/specs/fipa00061.

FIPA: 2002b, FIPA Interaction Protocols Specifications,

http://www.fipa.org/repository/ips.php3.

FIPA: 2004, FIPA Agent Management Specification,

http://www.fipa.org/specs/fipa00023/.

Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M. and Traverso,

P.: 2004, Specifying and analyzing early requirements in tropos, Require-

ments Engineering 9(2), 132–150.

141

http://www.v-modell-xt.de

BIBLIOGRAPHY BIBLIOGRAPHY

Gamma, E. and Beck, K.: 2000, JUnit: A Regression Testing Framework,

http://www.junit.org.

Georgeff, M. P. and Ingrand, F. F.: 1989, Decision-making in an em-

bedded reasoning system, International Joint Conference on Artificial

Intelligence, pp. 972–978.

Gómez-Sanz, J. J., Bot́ıa, J., Serrano, E. and Pavón, J.: 2008, Testing and

Debugging of MAS Interactions with INGENIAS, Proc. of the 9th Int.

Workshop on Agent-Oriented Software Engineering.

Gotlieb, A., Denmat, T. and Botella, B.: 2007, Goal-oriented Test Data

Generation for Pointer Programs, Information and Software Technology

49(9-10), 1030–1044.

Graham, D. R.: 2002, Requirements and testing: Seven missing-link myths,

IEEE Software 19(5), 15–17.

Hamlet, R. G.: 1977, Testing programs with the aid of a compiler, IEEE

Transactions on Software Engineering 3(4), 279–290.

Harman, M.: 2007, The current state and future of search based soft-

ware engineering, in L. Briand and A. Wolf (eds), IEEE International

Conference on Software Engineering (ICSE 2007), Future of Software

Engineering, IEEE Computer Society Press, Los Alamitos, California,

USA, pp. 342–357.

Harrold, M. J., Offutt, A. J. and Tewary, K.: 1997, An approach to fault

modeling and fault seeding using the program dependence graph., Jour-

nal of Systems and Software 36(3), 273–295.

Henderson-Sellers, B. and Giorgini, P. (eds): 2005, Agent-Oriented Method-

ologies, Idea Group Inc.

142

BIBLIOGRAPHY BIBLIOGRAPHY

Jureta, I., Faulkner, S. and Schobbens, P.-Y.: 2007, Achieving, satisfic-

ing, and excelling, Advances in Conceptual Modeling –Foundations and

Applications pp. 286–295.

Lam, D. N. and Barber, K. S.: 2005, Programming Multi-Agent Systems,

Springer Berlin / Heidelberg, chapter Debugging Agent Behavior in an

Implemented Agent System, pp. 104–125.

McMinn, P. and Holcombe, M.: 2003, The state problem for evolution-

ary testing, Proceedings of the Genetic and Evolutionary Computation

Conference.

Mills, H. D., Dyer, M. D. and Linger, R. C.: 1987, Cleanroom software

engineering, IEEE Software 4(5), 19–25.

Nguyen, C. D., Perini, A. and Tonella, P.: 2007, Automated continuous

testing of multi-agent systems, The fifth European Workshop on Multi-

Agent Systems.

Nguyen, C. D., Perini, A. and Tonella, P.: 2008a, Constraint-based evolu-

tionary testing of autonomous distributed systems, Proc. of the first Intl.

Workshop on Search-Based Software Testing.

Nguyen, C. D., Perini, A. and Tonella, P.: 2008b, Experimental evaluation

of ontology-based test generation for multi-agent systems, 9th Interna-

tional Workshop on Agent-Oriented Software Engineering, pp. 165–176.

Nguyen, C. D., Perini, A. and Tonella, P.: 2008c, Ontology-based Test

Generation for Multi Agent Systems, Proc. of the International Confer-

ence on Autonomous Agents and Multiagent Systems.

Núñez, M., Rodŕıguez, I. and Rubio, F.: 2005, Specification and testing of

autonomous agents in e-commerce systems, Software Testing, Verifica-

tion and Reliability 15(4), 211–233.

143

BIBLIOGRAPHY BIBLIOGRAPHY

Odell, J., Parunak, H. V. D. and Bauer, B.: 2000, Extending UML for

Agents, in G. Wagner, Y. Lesperance and E. Yu (eds), Proc. of the Agent-

Oriented Information Systems Workshop at the 17th National conference

on Artificial Intelligence, Austin, TX, pp. 3–17.

OMG: 2006, Object Constraint Language Specification, OMG Specifica-

tion. version 2.0.

Padgham, L. and Winikoff, M.: 2002, Prometheus: A pragmatic methodol-

ogy for engineering intelligent agents, Proc. Workshop on Agent Oriented

Methodologies (OOPSLA 2002).

Padgham, L. and Winikoff, M.: 2004, Developing Intelligent Agent Sys-

tems: A Practical Guide, John Wiley and Sons. ISBN 0-470-86120-7.

Padgham, L., Winikoff, M. and Poutakidis, D.: 2005, Adding debugging

support to the Prometheus methodology, Engineering Applications of

Artificial Intelligence 18(2), 173–190.

Pavón, J., Gómez-Sanz, J. J. and Fuentes-Fernández, R.: 2005, The INGE-

NIAS Methodology and Tools, in (Henderson-Sellers and Giorgini 2005).

Penserini, L., Perini, A., Susi, A. and Mylopoulos, J.: 2007, High variabil-

ity design for software agents: Extending tropos, ACM Transactions on

Autonomous and Adaptive Systems 2(4), 16.

Perini, A.: 2009, Wiley Encyclopedia of Computer Science and Engineer-

ing, Hoboken: John Wiley & Sons, Inc., chapter Agent-Oriented Software

Engineering. dx.doi.org/10.1002/9780470050118.ecse006.

Perini, A., Pistore, M., Roveri, M. and Susi, A.: 2003, Agent-oriented mod-

eling by interleaving formal and informal specification, Agent-Oriented

Software Engineering IV, 4th International Workshop, Melbourne, Aus-

tralia, pp. 36–52.

144

BIBLIOGRAPHY BIBLIOGRAPHY

Perini, A. and Susi, A.: 2005, Agent-Oriented Visual Modeling and Model

Validation for Engineering Distributed Systems, Computer Systems Sci-

ence & Engineering 20(4), 319–329.

Pokahr, A., Braubach, L. and Lamersdorf, W.: 2005, Jadex: A BDI Rea-

soning Engine, Kluwer Book, chapter Multi-Agent Programming.

URL: http://vsis-www.informatik.uni-hamburg.de/projects/jadex

Rao, A. S. and Georgeff, M. P.: 1995, BDI-agents: from theory to practice,

Proceedings of the First Intl. Conference on Multiagent Systems, San

Francisco.

URL: citeseer.ist.psu.edu/rao95bdi.html

Rodrigues, L. F., de Carvalho, G. R., de Barros Paes, R. and de Lucena,

C. J. P.: 2005, Towards an integration test architecture for open mas, 1st

Workshop on Software Engineering for Agent-oriented Systems / SBES.

Rouff, C.: 2002, A test agent for testing agents and their communities,

Aerospace Conference Proceedings, Vol. 5.

Schach, S. R.: 1996, Testing: Principles and practice, ACM Comput. Surv.

28(1), 277–279.

Standard glossary of terms used in Software Testing: 2007.

URL: http://www.istqb.org/downloads/glossary-current.pdf

Sudeikat, J. and Renz, W.: 2008, A Systemic Approach to the Validation

of Self-Organizing Dymanics within MAS, Proc. of the 9th Int. Workshop

on Agent-Oriented Software Engineering, pp. 237–248.

Telecom Italia Lab: 2000, Java Agent DEvelopment Framework.

URL: http: // jade. tilab. com

The Eclipse Graphical Modeling Framework (GMF): n.d.,

http://www.eclipse.org/modeling/gmf/.

145

http://jade.tilab.com

BIBLIOGRAPHY BIBLIOGRAPHY

Thévenod-Fosse, P. and Waeselynck, H.: 1993, Statemate: Applied to sta-

tistical software testing, Proc. of the Int. Symposium on Software Testing

and Analysis (ISSTA), pp. 78–81.

Tiryaki, A. M., Oztuna, S., Dikenelli, O. and Erdur, R.: 2006, Sunit: A unit

testing framework for test driven development of multi-agent systems, 7th

International Workshop on Agent Oriented Software Engineering.

Vavak, F. and Fogarty, T. C.: 1996, Comparison of steady state and gen-

erational genetic algorithms for use in nonstationary environments, In

IEEE International Conference on Evolutionary Computation (ICEC,

IEEE Publishing, Inc, pp. 192–195.

Wegener, J.: 2005, Stochastic Algorithms: Foundations and Applications,

Springer Berlin / Heidelberg, chapter Evolutionary Testing Techniques,

pp. 82–94.

Weyns, D., Omicini, A. and Odell, J.: 2007, Environment as a first class

abstraction in multiagent systems, Autonomous Agents and Multi-Agent

Systems 14(1), 5–30.

Yu, E.: 1995, Modelling Strategic Relationships for Process Reengineering,

PhD thesis, University of Toronto, Department of Computer Science,

University of Toronto.

Yu-Seung Ma, J. O. and Kwon, Y. R.: 2005, Mujava : An automated

class mutation system, Software Testing, Verification and Reliability

15(2), 97–133.

Zhang, Z., Thangarajah, J. and Padgham, L.: 2007, Automated unit

testing for agent systems, 2nd International Working Conference on

Evaluation of Novel Approaches to Software Engineering (ENASE-07),

Barcelona, Spain.

146

Glossary

ACLAnalyser A tool that intercepts agent inter-

actions and detects communication

problems, such as miscommunicating,

unbalanced, or overhead, 17

AMS Agent Management System, a spe-

cial agent in FIPA compliant architec-

ture that is responsible to manage the

agent platform, 67

AOSE Agent-Oriented Software Engineering,

2–4, 16, 21, 22

DF Directory Facilitator, a special agent

in FIPA compliant architecture that

is centralized registry of entries which

associate service descriptions to agent

identifiers, 44, 53

eCAT A Environment for the Continuous

Testing of Software Agents, 6, 7, 87,

88, 90, 92–94, 97, 101, 104, 108, 111,

112, 130, 134, 135

147

Glossary Glossary

Evolutionary testing Testing technique that transforms

testing objective to a search problem

and uses metaheuristic search tech-

niques to generate test inputs, 12, 78

Evol-Mutation Evolutionary-Mutation test genera-

tion technique, it combines evolution-

ary testing and mutation testing, 81,

101, 104, 107–109, 111, 112, 130, 135

FIPA Foundation for Intelligent Physical

Agents is an IEEE Computer Society

standards organization that promotes

agent-based technology and the inter-

operability of its standards with other

technologies, 61

GMF The Eclipse Graphical Modeling

Framework, 90

GOST Goal-Oriented Software Testing, 4, 5,

7, 22, 25, 54, 82, 87, 93, 134, 135

INGENIAS An AOSE methodology, 21

LOC Line Of Code, 113, 116

MAS MultiAgent System, 1–4, 7, 13–19, 22,

23, 31, 66, 68, 75–77, 101, 102, 111,

113, 116, 133–136

148

Glossary Glossary

Mock agent Program that simulates behaviour of

real agent in communication, 16

Mr. Cleaners A simulation of a multiagent sys-

tem that composes of cleaning agents

working at an airport, 25

MTBF Mean Time Between Failure, 112

OCL Object Constraint Language, 58, 59,

113

OO Object-Oriented, 21

OWL Web Ontology Language, a family

of knowledge representation languages

for authoring ontologies, 61

PASSI An AOSE methodology, 21

Prometheus An AOSE methodology, 15

Software testing Software testing is a software devel-

opment activity, aimed at evaluating

product quality and improving it by

identifying defects and problems, 11

SUnit A testing framework built for testing

agents developed with Seagent, 16

Tester Agent Software agent that acts like human

tester to test other agents, 82, 83, 86,

87, 89, 93, 97, 105, 107, 136

149

Glossary Glossary

Tropos An AOSE methodology, v, 4, 22, 23,

25, 30–32, 47, 54, 70, 85, 90, 92, 93,

104

150

Appendix A

Publications

Journal

[1] Cu D. Nguyen, Anna Perini and Paolo Tonella. Goal-Oriented Test-

ing for MAS. Int. Journal of Agent-Oriented Software Engineering, (under

review).

2009

[2] Cu D. Nguyen, Simon Miles, Anna Perini, Paolo Tonella, Mark Har-

man, Michael Luck. Evolutionary Testing of Autonomous Software Agents.

The 8th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS’09) (accepted as full paper).

2008

[3] Cu D. Nguyen, Anna Perini and Paolo Tonella. Ontology-based Test

Generation for Multi-Agent Systems. In the 7th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS’08), Estoril,

Portugal, May 12-16, 2008, Volume 3, pages 1315-1320, 2008.

[4] Cu D. Nguyen, Anna Perini and Paolo Tonella. eCAT: a Tool for Au-

tomating Test Cases Generation and Execution in Testing Multi-Agent Sys-

tems (Demo Paper). In the 7th International Conference on Autonomous

Agents and Multiagent Systems (AAMAS’08), Estoril, Portugal, May 12-

16, 2008, Demo Proceedings, pages 1669-1670, 2008.

151

APPENDIX A. PUBLICATIONS

[5] Cu D. Nguyen, Anna Perini and Paolo Tonella. Experimental Eval-

uation of Ontology-based Test Generation for Multi-Agent Systems. In the

9th International Workshop on Agent-Oriented Software Engineering, at

the 7th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS’08). Springer, 2008.

[6] Cu D. Nguyen, Anna Perini and Paolo Tonella. Automated Contin-

uous Testing of Autonomous Distributed Systems. In the 1st International

Workshop on Search-Based Software Testing, in conjunction with the IEEE

International Conference on Software Testing, Verification and Validation,

IEEE, 2008. (Best paper award).

2007

[7] Cu D. Nguyen, Anna Perini and Paolo Tonella. Automated Contin-

uous Testing of Multi-Agent Systems. In the fifth European Workshop on

Multi-Agent Systems (EUMAS), December 2007.

[8] M. Morandini, C. D. Nguyen, A. Perini, A. Siena and A. Susi. Tool-

supported Development with Tropos: the Conference Management System

Case Study. In Agent-Oriented Software Engineering VIII, 8th Interna-

tional Workshop, AOSE 2007, Honolulu, HI, USA, May 14, 2007, Revised

Selected Papers, volume 4951 of Lecture Notes in Computer Science, pages

182-196, 2008.Science, pages 182-196, 2008.

[9] Cu D. Nguyen, Anna Perini and Paolo Tonella. A Goal-Oriented

Software Testing Methodology. In Agent-Oriented Software Engineering

VIII, 8th International Workshop, AOSE 2007, Honolulu, HI, USA, May

14, 20volume 4951 of Lecture Notes in Computer Science, pages 58-72,

2008.

152

	Introduction
	Research problems
	Contributions
	Terminology
	Thesis structure

	State of the art
	Software testing
	Agents and MAS testing
	Unit
	Agent
	Integration
	System and acceptance
	Summary

	GOST methodology
	Introduction
	Background
	Motivating example
	Methodology
	Goal types
	Testing levels
	A process model for goal-oriented testing
	Test suite derivation
	Test suite structure

	Summary

	Testing techniques
	Agent evaluation
	Constraint-based oracle
	Ontology-based oracle
	Requirement-based oracle

	Monitoring
	Generation
	Test inputs for software agents
	Goal-oriented generation
	Ontology-based generation
	Random generation
	Evolutionary generation

	Continuous execution
	Summary

	eCAT
	Specification tool
	Generation and execution tool
	Monitoring tool

	Results
	Continuous testing
	Testing BibFinder
	Results

	Ontology-based generation
	Requirement-based
	Application
	Preparation
	Evolutionary robustness testing

	Summary

	Conclusion
	Conclusion
	Future work

	Bibliography
	Glossary
	Publications

