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Abstract

Polycrystalline thin films and coatings often show preferred orientation of grains and
crystalline domains, and develop a residual stress state as an effect of the growth
mechanisms. These features can be conveniently measured by means of non-contact
and non-destructive X-ray diffraction. As the technique only measures a map of
strains along selected directions, stress evaluation requires a suitable constitutive
equation, where the expression of moduli can be far from trivial if texture effects are
to be taken into account; additionally, a grain interaction model needs to be enforced
to describe strain and stress distribution among grains in the aggregate, based on
background assumptions.

Several grain interaction models are available from literature: usually, a model or
a combination of them provides a good fit of experimental data; often however un-
derlying hypotheses are too restrictive or require unavailable information on certain
microstructural parameters, leading this approach to fail. For this reason an ex-
perimental method was developed, for the characterisation of elastic properties and
residual stress in thin film components by means of X-ray diffraction during in-situ
mechanical testing.

This thesis presents a review of major literature works describing grain interaction
modelling in textured components, and their implementation in X-ray diffraction
stress analysis procedures. Following, the method for experimental characterisation
of thin film elastic properties is described in detail. Applications are presented in the
final chapter, that illustrates selected case studies on electrodeposited coatings.
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Chapter 1

Introduction

Thin films and coatings technology is among the major topics of research in mater-
ials science and engineering. Films are used to alter or enhance surface properties,
providing protection from the working environment as well as additional features to
the component. Microelectronics make extensive use of thin films as electronic circuit
elements; this industry has occupied a leading position in the technological advance-
ment of the last decades, and constitutes a major driving force in surface engineering
research.

Thin films and coatings are often described as “two-dimensional” objects, thanks to
their thickness to spread ratio. The film is grown for a limited thickness, and thus
surface effects have a major impact on the final properties of the object. Moreover,
growth is directional and occurs along specific paths, while on average perpendicularly
to the substrate interface; as a consequence, films are likely to display transverse an-
isotropy, with properties changing significantly from in-plane to transverse direction.
This effect can be either beneficial or detrimental to the component applications, and
as such needs to be carefully investigated.

It is important to note that deposition conditions, much more than interactions at the
substrate interface, determine the final structure of a film component, and hence its
properties. For this reason, accurate characterisation of microstructure and properties
relationships is imperative to devise the most convenient deposition setup, in order
to achieve the required features in the final coated component.
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Chapter 1. Introduction

On grains and crystalline domains In the following paragraphs, both grains and
crystallites (or crystalline domains) will be mentioned. It is therefore worth to define
these entities as follows, in order to avoid confusion. Hereafter, crystallite indicates a
region within a single phase where the crystalline lattice is continuous and uniformly
oriented; its boundaries are defined by discontinuities in the periodic atomic structure.
The term grain is instead used to indicate a portion of a phase that originates from
the same nucleus; its boundaries are defined by the (generally amorphous) layers
formed where two growing fronts encounter or by physical boundaries, such as a
mould’s walls. While the two terms are generally interchangeable, the opposite may
also occur; a grain can, for instance, comprise several crystallites that originate from
the same nucleus.

1.1 Deposited film microstructure

Film morphology, as in grain size and orientation, mainly depends on the choice
of deposition technique and working conditions; different mechanisms can activate
and control growth as a function of processing parameters. Additionally, substrate
choice and final thickness of the deposit are also known to play a role in thin film
microstructure definition.

Morphology and structure-zone diagrams Morphology has been historically
classified into structure-zone diagrams (SZD) [1], the most simple of which define
temperature ranges (in terms of growing surface to melting temperature ratio) in
which certain microstructures are expected to be found. Description can be enhanced
by a larger number of parameters, such as final thickness or deposition chamber gas
pressure, increasing the number of dimensions required to draw the structure-zone
diagram (see Figure 1.1 for a qualitative example). While a complete treatise on this
topic goes beyond the scope of this thesis, it is worth to keep in mind how deposition
structures are categorised for reference purposes.

Crystallographic texture On top of glaring morphological features, deposited
films often display peculiar crystallographic features. Often directional growth leads
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1.1. Deposited film microstructure

Figure 1.1: Structure-zone diagram, indicating a sputtered film morphology as a
function of deposition parameters (growing surface temperature and sputtering gas
pressure).

to preferred crystallites orientation, or crystalline texture, with certain atomic planes
rather being stacked along the normal to the film surface.

In the most general case, preferred orientation is identified by a plane-direction pair.
For example, a rolled metal sheet may display a deformation texture, arising from
dislocation slip and grain rotation, identified as (110)[111]: meaning that (110) planes
are preferably found in the sheet plane and [111] directions are mainly aligned to the
rolling direction. Thin films on the other hand are likely to display rotational in-
plane symmetry; this because hardly anything discriminates in-plane directions in a
polycrystalline deposit. As a consequence, textures are often only indicated by means
of one plane family, indicating one that is most often found parallel to the surface.

Like morphological features, crystallographic texture may also be referred to in structure-
zone diagrams.

1.1.1 The Orientation Distribution Function

Texture, either crystallographic or morphological, can be described using an orient-
ation distribution function (ODF), hereby indicated as f . The function returns the
density of crystallites (or grains) whose principal axes are rotated in a fashion de-
scribed by the function arguments, in respect to the object’s reference frame. For ex-
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Chapter 1. Introduction

ample, f can be written as a function of three Eulerian angles: in this work, this form
will be preferred, and the Roe [2] notation will be used (with α = Ψ, β = Θ, γ = Φ).
In this description, the complete rotation reads as follows:

1. rotate around xS3 by α: transformation from the S (sample) reference frame to
S′

2. rotate around xS
′

2 by β: transformation from S′ to S′′

3. rotate around xS
′′

3 by γ: transformation from S′′ to S′′′ ≡ C (crystal)

The angle triad can be conveniently written in the form of a vector, g = (α, β, γ).
The Euler space, containing all the possible g vectors, is finite and bound within
0 ≤ α, γ < 2π and 0 ≤ β < π. The volume element in this space is d3g = dα sinβdβdγ

[3, 2]; integrating,

ˆ 2π

0

dα

ˆ π

0

sinβdβ

ˆ 2π

0

dγ =

˚
G

dg = 8π2 (1.1)

As a consequence, a normalisation condition naturally follows, that is applied enfor-
cing

˝
G
f (g) dg = 8π2.

The orientation distribution function possesses, under commonly encountered cir-
cumstances, several axes of symmetry. This leads to simplifications in the function
expression, as well as allowing shorter data collection time when the ODF needs to
be measured.

Unit cell symmetry In crystalline texture, unit cell symmetry is reflected in the
ODF, allowing a narrower angle range to be representative of the whole data array.
As an example, let us assume we are describing the orientation distribution function
of a polycrystal with a cubic unit cell. In the cubic system, any (h00) is a plane of
symmetry. Hence, a π − β rotation is equivalent to a β rotation; similarly, a π ± γ
rotation is equivalent to a γ rotation and so is 2π − γ. This means that the [0, π/2]

interval is representative of the whole Euler space for a cubic system, for all three Euler
angles. Equivalent arguments can be formulated for other crystalline symmetries.
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1.2. X-ray diffraction for film characterisation

Figure 1.2: Diffraction from a polycrystalline aggregate. Non diffracting crystallites
have been greyed out.

ODF-weighted average In a textured aggregate of individually anisotropic grains,
physical properties vary as a function of direction within the sample. If single-crystal
properties are available, macroscopic average can be calculated from texture data,
by performing an ODF-weighted average over the whole Euler space. If the single-
crystal property tensor is indicated as P , and the macroscopic average using angular
brackets, as 〈P 〉, we can write

〈P 〉 =

˚
G

f (g) P (g) dg (1.2)

where the g dependence of P indicates that the property needs to be rotated by the
given Euler angles for the purpose of averaging.

1.2 X-ray diffraction for film characterisation

As already hinted, X-ray diffraction is a very convenient tool for characterisation of
thin film structures, thanks to its non-contact and non-destructive nature [4]. Diffrac-
tion only detects a signal from crystallites whose atomic planes are suitably aligned
to the beam path, the scattering planes normal to the bisector of the beam path, as
shown in Figure 1.2.

It naturally follows that different information is acquired by tilting the sample around
given angles (such as φ rotation and ψ tilt, shown in Figure 1.3). In other words, it
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Chapter 1. Introduction

Figure 1.3: Sample to laboratory reference frame transformation

is possible to discriminate results as a function of direction within the sample; yet,
it should be noted that information is nonetheless acquired as an average over all
possible λ crystallite rotations around the scattering vector. If we indicate the P
property average over this space with curly brackets as {P}:

{P} =

ˆ 2π

0

dλ P (hkl, λ, φ, ψ) (1.3)

When texture is present, it needs to enter the property average over the diffraction
space and the result appropriately normalised, as hereby shown:

{P} =

´ 2π
0
dλ f∗ (hkl, λ, φ, ψ) P (hkl, λ, φ, ψ)´ 2π

0
dλ f∗ (hkl, λ, φ, ψ)

(1.4)

A suitable coordinate transformation is required to provide the correct (α, β, γ) argu-
ments to the ODF, in terms of the X-ray diffraction setup parameters (hkl, λ, φ, ψ).
This is guaranteed to be possible by the fact that only simple rotations are used in
a diffraction experiment, and thus equivalent Euler angles (which cover all possible
rotations in space) can be found. When the ODF is given in terms of diffraction para-
meters, the f∗ symbol is used, to indicate that a coordinate conversion is required.

XRD texture measurements As an immediate application, crystallographic tex-
ture can be easily measured by diffraction. Information is given in terms of diffraction
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1.2. X-ray diffraction for film characterisation

peak intensity, which is a function of the number of scattering planes, that in turn
changes with sample rotation.

When the sample is rotated, or the beam incident angle is changed, different crys-
tallite groups will be involved in producing a coherent signal from diffraction. In a
randomly oriented powder, the diffraction peak intensity is expected to be identical at
every sample rotation; the same does not hold true for a textured polycrystal, where
diffraction peak intensity will show up as a function of φ and ψ for a given hkl re-
flection; the Ihkl intensity as a function of (φ, ψ) is conventionally called a pole figure.
Different hkl plane families will return unique pole figures, that can be employed in
reconstructing the whole ODF. Since peak intensity is proportional to the (square)
number of scattering planes [5], it immediately follows that a single pole figure intens-
ity can be expressed as the integral average of the ODF over the diffraction space,
that is

Ihkl (φ, ψ) =
1

2π

ˆ 2π

0

dλ f∗ (hkl, λ, φ, ψ) (1.5)

Fibre texture in thin films It has already been mentioned that polycrystalline
thin films and coatings are expected to display rotational symmetry around the axis
normal to their surface, as there is often no reason for properties to vary across
different in-plane directions. Hence, textured polycrystalline films often show what is
called a fibre texture, that is their orientation distribution function possesses an axis
of symmetry that coincides with the normal to the sample surface.

This has an immediate practical application: pole figures are independent on φ, thanks
to rotational symmetry, hence the XRD measurement time can be drastically reduced.
Rotational symmetry also means that the orientation distribution function f is inde-
pendent on the first Euler angle in the Roe notation, or ∂f/∂α = 0 (in fact, for the
[h00] direction, α ≡ φ); this allows the ODF expression to be significantly simplified.
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Chapter 2

Stress and texture relationships
in films by means of XRD

Thin films and coatings have been introduced as two-dimensional object, their thick-
ness being orders of magnitude smaller than spread in the other two directions. This
feature affects elastic properties, as it is likely to cause anisotropy between the in-plane
and normal to the surface directions; and introduces constraints on the stress state,
as any assumption such as “far enough from the surface” is clearly not applicable [6].
This chapter briefly illustrates the stress measurement technique by means of X-ray
diffraction, then moves on to describing the literature models that can be applied
to data analysis. Finally, weaknesses in literature models will be shown, and a new
method for simultaneous experimental measurement of thin film elastic constants and
residual stress state will be introduced.

2.1 Grain interaction modelling for X-ray diffraction

stress measurements

As already mentioned, X-ray diffraction is often and conveniently used for residual
stress characterisation, thanks to its non-contact and non-destructive nature [4]. The
most important feature is that diffraction measures strains along one direction, in a
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Chapter 2. Stress and texture relationships in films by means of XRD

specific crystallite subset (see Figure 1.2). This constitutes a further complication to
the stress characterisation problem, as it requires an ad hoc constitutive equation to
produce a result. For this reason, proper modelling of elastic properties is critical to
the technique’s success.

Strains are measured along the scattering vector, in the diffractometer (or laboratory)
frame of reference (henceforth indicated with a L superscript), whose xL3 axis lies along
said scattering vector; only crystallites whose scattering planes lay in the xL1 xL2 plane
produce coherent diffraction. The XRD strain can then be written as

{
εL33
}

(hkl, φ, ψ) =

ˆ 2π

0

dλ εL33 (hkl, λ, φ, ψ) (2.1)

The constitutive equation for a single crystallite reads

εij = Sijklσkl (2.2)

where Sijkl is the single crystal compliance, and σkl the stress acting on the single
crystallite. Defining the latter is no simple task; in fact, the stress in a single crystal is
usually written as a function of the macroscopic average stress and a grain interaction
tensor Υ:

σij = Υijkl (hkl, λ, φ, ψ) 〈σkl〉 (2.3)

Υ is a mathematical representation of a priori hypotheses on stress distribution among
crystallites; more information on the latter term is offered in the following paragraphs.

The ultimate result to be sought is the macroscopic average stress 〈σkl〉. In order
to produce a constitutive equation that relates XRD strain to macroscopic average
stress, the fourth-rank tensor A is introduced [7], combining Equations 2.2 and 2.3:

AL33kl =

ˆ 2π

0

dλ ΥL
ijkl (hkl, λ, φ, ψ) ΩL←Cmi ΩL←Cnj SC33mn (2.4)

Note the reference frame specifications: the integral average is performed in the dif-
fraction frame of reference, whose xL3 axis is aligned with the scattering vector. Single
crystal compliance is rotated from the crystal (C) to the laboratory (L) frame of ref-
erence by means of the ΩL←C rotation, which is a function of hkl and λ. Finally, the
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2.1. Grain interaction modelling for X-ray diffraction stress measurements

constitutive equation for X-ray diffraction can be written as

{
εLij
}

= ALijkl
〈
σLkl
〉

(2.5)

or, since only
{
εL33
}
is effectively measured,

{
εL33
}

= AL33kl
〈
σLkl
〉

(2.6)

Eventually, stress needs to be evaluated in the sample’s frame of reference (S super-
script), therefore the sample to laboratory transformation ΩL←S is included. The
latter transformation is usually expressed in terms of the angles φ (sample rotation
around xS3 ) and ψ (sample tilt around xS2 ), shown in Figure 1.3. Equation 2.6 becomes

{
εL33
}

= AL33klΩ
L←S
km ΩL←Sln

〈
σSmn

〉
(2.7)

The strain
{
εL33
}

is a function of the sample to laboratory transformation (φ and
ψ angles) applied to the sample average stress tensor and also the hkl scattering
plane family in the case of elastically anisotropic crystalline domains. Similarly, the
elastic tensor A is a function of the single crystal elastic tensor, SC and the plane
family (hkl). Where preferred orientation (texture) is present, the expression of A
is further complicated by the introduction of two further parameters, the orientation
distribution function (f) and the grain interaction (Υ tensor); this is more precisely
described in the following Section. The complete expression for Equation 2.6 is then

{
εL33
}

(hkl, φ, ψ) = AL33kl
(
SC , hkl, f,Υ

) 〈
σLmn

〉
(φ, ψ)

= AL33kl
(
SC , hkl, f,Υ

)
ΩL←Skm (φ, ψ) ΩL←Sln (φ, ψ)

〈
σSmn

〉
(2.8)

Equation 2.8 is then often conveniently written using the so-called stress factors [8],
F , which are the product of A and the sample to laboratory transformation:

Fij = AL33kl ΩL←Ski ΩL←Slj (2.9)

Equation 2.8 then becomes

{
εL33
}

(hkl, φ, ψ) = Fij
(
SC , hkl, φ, ψ, f,Υ

) 〈
σSij
〉

(2.10)
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Chapter 2. Stress and texture relationships in films by means of XRD

The constitutive equation is now formally written. X-ray elastic constants however
were shown to depend on a parameter, grain interaction, which is a (usually unknown)
description of how stresses are distributed among crystallites on the basis of a priori
hypotheses. As several such hypotheses can be made, options will be illustrated in
detail in the following paragraphs.

2.1.1 Crystalline texture

The most immediate grain interaction models apply to purely crystallographic descrip-
tions, where only preferred orientation of crystallographic axes is taken into account,
if present. Morphological features are not taken into account.

Intrinsic elastic isotropy In the case of a intrinsic elastic isotropy, i.e. a poly-
crystalline object composed of elastically isotropic crystallites, Equation 2.8 reduces
to

εL33 = SL33kl σ
L
kl =

(
S1δkl +

1

2
S2δ3kδ3l

)
σLkl (2.11)

where Sijkl is the sample (but also single crystal) compliance tensor, with

S1 = − ν
E

and
1

2
S2 =

1 + ν

E

Note the absence of average indicators (curly brackets) as they become redundant
under the given hypotheses; as crystallites show identical elastic behaviour, stresses
and strains are expected to be the same throughout the whole aggregate. Again
thanks to elastic isotropy, S applies to both the polycrystal and the single crystallite.
For the same reason, εL33 no longer a function of hkl. Expanding the reference frame
transformation in Equation 2.11 yields

εL33 (φ, ψ) =
1

2
S2 sin2 ψ

(
σS11 cos2 φ+ σS12 sin 2φ+ σS22 sin2 φ

)
+

+
1

2
S2

(
σS13 cosφ sin 2ψ + σS23 sinφ sin 2ψ + σS33 cos2 ψ

)
+S1

(
σS11 + σS22 + σS33

)
(2.12)

which, for a planar stress state (σS11 = σS22 = σ‖, whereas other components σij = 0)
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2.1. Grain interaction modelling for X-ray diffraction stress measurements

such as the one often found in thin layers and films, becomes

εL33 =

(
2S1 +

1

2
S2 sin2 ψ

)
σ‖ (2.13)

The latter equation shows why X-ray strain data is usually plotted as εL33 (sometimes
as dhkl) against sin2 ψ, as the trend is linear for an elastically isotropic material and
as such easily fitted to find σ‖.

Macroscopic elastic isotropy Macroscopic elastic isotropy refers to a polycrys-
talline aggregate of randomly distributed elastically anisotropic crystallites, with
direction-independent grain interaction (single crystal strain does not depend on its
alignment in respect to the sample). Equation 2.8 can still be simplified in a fashion
similar to Equation 2.11, albeit keeping the distinct averages over bulk and diffracting
crystallites respectively and the dependence on hkl for

{
εL
}
and A. The latter tensor

is written in terms of single crystallite compliance for a given hkl crystallographic
orientation S (hkl)

{
εL33
}

= S33kl (hkl)
〈
σLkl
〉

=

(
S1 (hkl) δkl +

1

2
S2 (hkl) δ3kδ3l

) 〈
σLkl
〉

(2.14)

Note that, in this case, the sample average remains indicated for the stress tensor.
As will be shown later in greater detail, in calculating the hkl-dependent compliance,
one may assume that either 1) all crystallites are subject to the same stress (in this
case the sample average will disappear) or 2) all crystallite are subject to the same
strain (Reuss and Voigt hypothesis, respectively); these have been proved to be the
extremal cases within which a real material’s behaviour is to be found [9].

Equation 2.14 can then be expanded to include the sample to laboratory reference
frame transformation, in exactly the same fashion as Equation 2.12, and obtaining,

εL33 (φ, ψ) =
1

2
S2 (hkl) sin2 ψ

(〈
σS11
〉

cos2 φ+
〈
σS12
〉

sin 2φ+
〈
σS22
〉

sin2 φ
)

+

+
1

2
S2 (hkl)

(〈
σS13
〉

cosφ sin 2ψ +
〈
σS23
〉

sinφ sin 2ψ +
〈
σS33
〉

cos2 ψ
)

+S1 (hkl)
(〈
σS11
〉

+
〈
σS22
〉

+
〈
σS33
〉)

(2.15)
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Chapter 2. Stress and texture relationships in films by means of XRD

Which, for a planar stress state (
〈
σS11
〉

=
〈
σS22
〉

= σ‖), becomes

{
εL33
}

=

(
2S1 (hkl) +

1

2
S2 (hkl) sin2 ψ

)
σ‖ (2.16)

We now define the so-called X-ray anisotropy factor Γ as

Γ =
h2k2 + h2l2 + k2l2

(h2 + k2 + l2)
2 (2.17)

where 3Γ varies between 0 (two zero indices) and 1 (three equal indices) for all possible
families. It has been proved [10] that the X-ray diffraction strain measured on a
reflection with 3Γ = 0.6 corresponds to the macroscopic mechanical strain: this is in
fact the condition that makes the Reuss compliance (upper bound) equal to the Voigt
compliance (lower bound). In other words, the macroscopic elastic compliance 〈S〉
can be calculated by evaluating the elastic constants with 3Γ = 0.6.

Macroscopic elastic anisotropy When a sample is made of elastically anisotropic
crystallites with non-random orientation, the constitutive equation cannot be easily
simplified as in the cases above, and stress factors assume more complicated expres-
sions.

Single crystal compliance needs to be averaged over the whole space of possible rota-
tions for crystallites, which is finite and includes a full revolution around the scattering
vector. The ODF is used as a weight and a suitable grain interaction model (Υ tensor)
is enforced: remember that the stress state of a single crystallite is σij = Υijkl 〈σkl〉,
and therefore its strain is εij = SijklΥklmn 〈σmn〉. It is worth to note that stress tensor
symmetries reflect on the grain interaction tensor, hence Υijkl = Υjikl = Υijlk. The
diffraction average strain {ε} can then be obtained by averaging the strain in each
crystallite ε over all possible λ rotations around the scattering vector, using the ODF
as weight.
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2.1. Grain interaction modelling for X-ray diffraction stress measurements

{
εL33
}

=

´ 2π
0
εL33 f

∗ dλ´ 2π
0
f∗ dλ

=

´ 2π
0
SL33kl ΥL

klmn

〈
σLmn

〉
f∗ dλ´ 2π

0
f∗ dλ

(2.18)

Note that the reference frame transformation from the laboratory to each diffracting
crystallite is a function of hkl and the λ rotation around the scattering vector; the
product of such transformation with the already mentioned sample to laboratory
rotation ΩL←S returns a sample to crystal transformation. To the latter, a unique
triad of Euler angles can be associated, thus allowing the ODF in Equation 2.18 to be
effectively expressed as a function of the diffraction parameters as f∗ (hkl, λ, φ, ψ).

One can also note that in Equation 2.18, the bulk average stress tensor
〈
σLmn

〉
is

independent on hkl or λ and thus can be effectively taken out of the integral. The
expression for the stress factors introduced in Equation 2.10 immediately follows

Fij (hkl, φ, ψ) =

´ 2π
0
SL33kl ΥL

klij f
∗ dλ´ 2π

0
f∗ dλ

(2.19)

Grain interaction can be based on different hypotheses: under these premises, the
expression for the Υ tensor may change significantly, returning radically different
elastic constant trends as a function of sample orientation. As an example, Figure 2.1
shows for the (200) family of a texture-free, pure Nickel polycrystal, the stress factors
sum F11 +F22 as a function of sin2 ψ, which is but the ratio between XRD strain and
in-plane stress; this has to be compared to the model for an elastically, intrinsically
isotropic polycrystal, which is expected to display a linear trend.

2.1.1.1 Direction-independent models

The first models to be presented were originally conceived for bulk rather than thin
objects. They represent the most simple scenario, posing identical conditions for all
directions in the polycrystal, which are assumed to be equivalent.
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Chapter 2. Stress and texture relationships in films by means of XRD
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Figure 2.1: Stress factors (F11 + F22) as a function of sin2 ψ for a texture-free pure
Nickel polycrystal, comparison of different grain interaction models: Reuss (solid line),
Voigt (dashed line), Vook-Witt (dotted line) and inverse Vook-Witt (dashed-dotted
line).

Reuss Under the Reuss hypothesis [11], grains are assumed to be subject to the
same stress state, but can deform freely in all directions. Since σ = 〈σ〉, the grain
interaction tensor Υ is simply the fourth-rank identity tensor

Υijkl = Iijkl = 1/2 (δikδjl + δilδjk) (2.20)

and the bulk constitutive equation can be written as

〈εij〉 =

˚
G

Sijklσkl f (g) dg =

[˚
G

Sijkl f (g) dg

]
〈σkl〉 (2.21)

with the stress tensor being taken out of the integral because of the original hypothesis,
σ = 〈σ〉. The bulk average compliance 〈S〉 can then be calculated as an ODF-weighted
average of single crystal compliance SC (see also Equation 1.2)

〈
SSijkl

〉
=

˚
G

f (g) ΩimΩjnΩkoΩlp S
C
mnop dg (2.22)

with Ω being the transformation matrix corresponding the Euler g rotation, trans-
forming the crystal reference frame into the sample’s. It is worth to note that the
constitutive equation (Equation 2.21) cannot be as easily written in terms of stiffness,
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Figure 2.2: Untextured Ni, Reuss stress factors F11 + F22 versus sin2 ψ (φ = 0).

and that the average stiffness is not just the ODF-weighted average of single crystal
stiffness. This means that the model is not self-consistent.

The Reuss stress factors expression then becomes

Fij (hkl, φ, ψ) =

´ 2π
0
SL33ij f

∗ dλ´ 2π
0
f∗ dλ

(2.23)

where SL is the single crystal elastic compliance, in the diffractometer (L) reference
frame; this rotation transformation is a function of λ and hkl, hence the final X-ray
stress factors will be hkl-dependent. As an example, figure 2.2 shows F11 + F22 as a
function of sin2 ψ for untextured Nickel, calculated with the Reuss model; note that
they are linear versus sin2 ψ, but depend on hkl as expected.

Voigt In the Voigt hypothesis [12], grains are subject to an identical strain state,
i.e. ε = 〈ε〉. The constitutive equation can be written as

〈σij〉 =

˚
G

Cijklεkl f (g) dg =

[˚
G

Sijkl f (g) dg

]
〈εkl〉 (2.24)

Similarly to the Reuss approach, the strain is taken out of the average as it is assumed
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Figure 2.3: Untextured Ni, Voigt stress factors F11 + F22 versus sin2 ψ (φ = 0).

to be constant. Bulk average stiffness 〈C〉 can be calculated as the ODF-weighted
average of single crystal stiffness C, or

〈
CSijkl

〉
=

˚
G

f (g) ΩimΩjnΩkoΩlp C
C
mnop dg (2.25)

Like in the Reuss case, the constitutive equation cannot be written as easily in terms
of compliance. In fact, Voigt average stiffness is not the inverse of Reuss average
compliance, neither model is self-consistent.

The macroscopic average Voigt compliance is calculated as 〈S〉 = 〈C〉−1. As {ε} =

〈ε〉 = 〈Sσ〉, X-ray stress factors can be expressed by means of a simple sample to
laboratory transformation ΩL←S , as in

Fij (φ, ψ) = 〈S33kl〉ΩL←Ski ΩL←Slj (2.26)

Note that, under these premises, stress factors do not depend on hkl. As an example,
Figure 2.2 shows F11 +F22 as a function of sin2 ψ for untextured Nickel, as calculated
with the Voigt model.

Hill average Hill proved that Reuss and Voigt models represent respectively the
lower and upper bound for the elastic moduli of a macroscopic aggregate [9]. For this
reason, the arithmetic average of the Voigt and Reuss results is often taken as an
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2.1. Grain interaction modelling for X-ray diffraction stress measurements

approximation of the material’s behaviour. Although not strictly a grain interaction
model, as it does not enforce any hypothesis on stress or strain distribution, this
technique has been labelled the Neerfeld-Hill model [13].

As an alternative to the arithmetic average, weighted average of Reuss and Voigt
elastic constants can also be used. The weight parameter can be arbitrarily enforced,
or it can be entered as a minimization parameter in fitting experimental points. This
approach is often called Hill’s weighted average.

Geometric mean The geometric mean is, again, not really a grain interaction
model, much like the Hill description. Unlike Reuss and Voigt approaches, however,
it offers a self-consistent alternative to the elastic constant calculation problem [14].
Elastic constants are averaged geometrically, instead of arithmetically and thus the
geometric mean compliance is the inverse of the geometric mean stiffness.

In order to evaluate geometric average elastic constants, the single crystal elastic stiff-
ness C is first written in matrix form, then its natural logarithm C log is computed,
after diagonalization. The operation consists of computing the eigensystem for C;
eigenvalues will be indicated as λi and corresponding eigenvectors as qi. Now, if ei-
genvectors are arranged as columns in a matrix Q so that Qij = (qj)i, and eigenvalues
in a diagonal matrix Λ so that Λij = δijλi, then C = QΛQ−1. If we write a diagonal
matrix Λlog whose elements are the logarithms of the eigenvalues, i.e. Λlog

ij = δij log λi,
then by definition, C log = logC = QλlogQ−1.

Since the logarithm of a product can be written as the sum of the logarithms of each
term, the geometric mean can be calculated in the form of an integral mean. In fact,
the ODF-weighted sample average of C log is calculated as shown in Equation 2.27:〈

C log
ij

〉
=

˚
G

f (g) ΩikΩjl C
log
kl dg (2.27)

Eventually, the bulk average stiffness matrix will be 〈Cij〉 = exp
〈
C log
ij

〉
; the mat-

rix exponential is calculated in the same fashion as its logarithm, by computing its
eigensystem and arranging now the exponential of eigenvalues in a diagonal matrix.
The average compliance can finally be obtained by inverting the stiffness matrix,
〈Sij〉 = 〈Cij〉−1. Since the model is self-consistent, identical results will be obtained
by performing the geometric average on the compliance tensor, S.
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Chapter 2. Stress and texture relationships in films by means of XRD

2.1.1.2 Direction-dependent models

Films are characterised by a very low thickness to spread ratio, and therefore under
such premises equivalence of all directions in the sample is too loose an assumption.
For this reason, direction dependent models have been proposed by Vook and Witt
[15], based on the distinction between in-plane (xS1 , xS2 ) and out-of-plane (xS3 ) direc-
tions.

Vook-Witt In the Vook-Witt assumption, crystallites are subject to identical in-
plane strains, but can deform freely in the out-of-plane direction. Hence, for a trans-
versely isotropic object under equibiaxial plane stress, εS11 = εS22 = εS‖ and εS12 = 0

and σS13 = σS23 = σS33 = 0, whereas other components are unknown:

εS =

 εS‖ 0 εS13

0 εS‖ εS23

εS13 εS23 εS33

 σ =

 σS11 σS12 0

σS12 σS22 0

0 0 0

 (2.28)

Using matrix form, the constitutive equation for a single crystallite can be written as

εS‖
εS‖
εS33

2εS23

2εS13

0


=



S1111 S1122 S1133 2S1123 2S1113 2S1112

S1122 S2222 S2233 2S2223 2S2213 2S2212

S1133 S2233 S3333 2S3323 2S3313 2S3312

2S1123 2S2223 2S3323 4S2323 4S2313 4S2312

2S1113 2S2213 2S3313 4S2313 4S1313 4S1312

2S1112 2S2212 2S3312 4S2312 4S1312 4S1212





σS11

σS22

0

0

0

σS12


(2.29)

Ruling out the 3rd, 4thand 5th row: εS‖
εS‖
0

 =

 S1111 S1122 2S1112

S1122 S2222 2S2212

2S1112 2S2212 4S1212


 σS11

σS22

σS12

 (2.30)

Equation 2.30 can be solved for
(
σS11, σ

S
22, σ

S
12

)
, which will be expressed as a function

of εS‖ . The last three unknowns
(
εS33, 2ε

S
23, 2ε

S
13

)
are obtained by solving remaining
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2.1. Grain interaction modelling for X-ray diffraction stress measurements

equations:  εS33

2εS23

2εS13

 =

 S1133 S2233 2S3312

2S1123 2S2223 4S2312

2S1113 2S2213 4S1312


 σS11

σS22

σS12

 (2.31)

From the practical point of view, the whole operation of finding the unknown stress(
σS11, σ

S
22, σ

S
12

)
and strain

(
εS33, 2ε

S
23, 2ε

S
13

)
components needs to be performed in every

point in the Eulerian space, as the S matrix is rotated according to a given triad of
angles. Once all unknowns are expressed in terms of the in-plane strain εS‖ , the latter
can be assigned a virtual value. Bulk elastic constants may then be calculated as
the ratio of the virtual εS‖ (or the calculated bulk average strain components) to the
corresponding average stresses.

Stress factors evaluation follows a similar procedure. Bulk average stress components
〈σij〉 are calculated as a function of a known virtual strain εS‖ , by performing an ODF-
weighted average of σij over the whole Euler space (as in Equation 1.2). Then the
average diffraction strain,

{
εL33
}
is calculated using another ODF-weighted average

over the diffracting crystallites subspace (Equation 1.4); finally,

Fij (hkl, φ, ψ) =

{
εL33
}

〈σij〉
(2.32)

It is worth to note, however, that the grain interaction tensor does not have a simple
analytical expression for the Vook-Witt model.

Figure 2.4 shows the calculated F11 + F22 for untextured Nickel. Note the loss of
linearity as a function of sin2 ψ, even in absence of preferred orientation.

Inverse Vook-Witt Taking an opposite approach from the Vook-Witt description,
the inverse model [13, 6] assumes crystallites to be subject to an identical in-plane
stress state, but tightly connected so that they exhibit identical out-of-plane strains.
Under these assumptions, for a transversely isotropic object under equibiaxial plane
stress, we fix σS11 = σS22 = σS‖ , σ

S
12 = 0; εS33 = ε⊥, εS13 = εS23 = 0, i.e.

εS =

 εS11 εS12 0

εS12 εS22 0

0 0 εS⊥

 σ =

 σS‖ 0 σS13

0 σS‖ σS23

σS13 σS23 σS33

 (2.33)
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Figure 2.4: Untextured Ni, Vook-Witt stress factors F11 + F22 versus sin2 ψ (φ = 0).

The constitutive equation in matrix form reads

εS11

εS22

εS⊥
0

0

εS12


=



S1111 S1122 S1133 2S1123 2S1113 2S1112

S1122 S2222 S2233 2S2223 2S2213 2S2212

S1133 S2233 S3333 2S3323 2S3313 2S3312

2S1123 2S2223 2S3323 4S2323 4S2313 4S2312

2S1113 2S2213 2S3313 4S2313 4S1313 4S1312

2S1112 2S2212 2S3312 4S2312 4S1312 4S1212





σS‖
σS‖
σS33

σS23

σS13

0


(2.34)

We proceed as in the Vook-Witt solution, expressing all unknowns as a function of a
single constant (in this case, we choose σS‖ ). Ruling out the 1st, 2nd and 6th row from
Equation 2.34 and separating unknown terms, we obtain: εS⊥

0

0

− σS‖
 S1133 + S2233

2S1123 + 2S2223

2S1113 + 2S2213

 =

 S3333 2S3323 2S3313

2S3323 4S2323 4S2313

2S3313 4S2313 4S1313


 σS33

σS23

σS13


(2.35)

Equation 2.35 can then be solved for
(
σS13, σ

S
23, σ

S
33

)
as a function of εS⊥ and σS‖ .

Now, substituting this result back into the 3rd row of equation 2.34, we obtain a
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Figure 2.5: Untextured Ni, inverse Vook-Witt stress factors F11 + F22 versus sin2 ψ
(φ = 0).

linear equation that can be solved for εS⊥ in terms of Sijkl and σS‖ only. Finally,(
εS11, ε

S
12, ε

S
22

)
can be easily written as a function of σS‖ by expanding rows 1, 2 and

6 in Equation 2.34. As in the Vook-Witt case, the process needs to be repeated for
every rotation in the Euler space, since the compliance matrix is rotated.

After all unknowns have been expressed in terms of one single constant, the in-plane
stress σS‖ , the latter can be assigned a virtual value and corresponding virtual, bulk
average stresses and strains can be evaluated. The bulk average elastic tensor com-
ponents can then be calculated from the virtual strain to stress ratios. Stress factors
are calculated in a similar fashion, not unlikely how it was done in the Vook-Witt
approach: once bulk average, virtual stress and strain components are collected, the
ODF-weighted average diffraction strain

{
εL33
}

is calculated at each hkl, φ, ψ and
stress factors are returned as in Equation 2.32.

Figure 2.5 shows calculated stress factors F11 + F22 for untextured Nickel under the
inverse Vook-Witt model.

Extending Vook-Witt and inverse models to general loading states Expres-
sions for Vook-Witt and inverse models were expanded considering relatively simple
macroscopic strain or stress states, enforcing the (reasonable) in-plane isotropy hy-
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Chapter 2. Stress and texture relationships in films by means of XRD

pothesis for thin films and coatings. Truly, the definition only states that crystallites
are subject to identical, but not necessarily rotationally symmetric, in-plane strain
(Vook-Witt) or stress (inverse). In the most general case, Vook-Witt (VW subscript)
and inverse Vook-Witt (iV W subscript) strain and stress, respectively become [16]

εVW =


〈
εS11
〉 〈

εS12
〉

εS13〈
εS12
〉 〈

εS22
〉

εS23

εS13 εS23 εS33



σiV W =


〈
σS11
〉 〈

σS12
〉

σS13〈
σS12
〉 〈

σS22
〉

σS23

σS13 σS23 σS33

 (2.36)

It naturally follows that elastic constants determination for a general loading state be-
comes more complicated, as additional, virtual strain (stress) components shall enter
the algorithm, in different steps. As this is of limited relevance to the polycrystalline
thin film elastic constants determination problem, formulas will not be expanded.

2.1.1.3 Modelling experimental data

Grain interaction models introduced so far return elastic constant from extremal strain
or strain distribution hypothesis, enforcing all crystallites to display identical stresses
or strain along given directions. Hill proved that, in bulk materials, Reuss and Voigt
hypotheses constitute the lower and upper bound, respectively, for elastic moduli [9].
The same idea can, in fact, be extended to direction-dependent models: the Vook-
Witt and its inverse approach, despite their complex formulation, only enforce either
hypothesis (constant strain or stress) in a direction-dependent fashion. It is therefore
not unreasonable to assume that a Hill weighted average approach can take different,
direction-dependent weights[13, 6]. The Reuss, Voigt, Vook-Witt and inverse models
then constitute the boundaries within which a real material’s behaviour is expected
to be found.

For a given stress problem, a set of experimental points are collected, usually at
different sample ψ tilts and φ rotations, and often for different hkl reflections. It is
common practice to collect a reasonably high number of experimental points, in order
to improve statistics. A least squares minimisation is then performed, according to
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2.1. Grain interaction modelling for X-ray diffraction stress measurements

Equation 2.10, in order to obtain the stress components
〈
σSkl
〉
after measured strains{

εL33
}
and calculated X-ray elastic stress factors Fij . When a combination of models

is involved, one can indicate with mk the material volume fraction obeying the k-th
model assumptions;

∑
kmk = 1 and 0 ≤ mk ≤ 1 need to be enforced to ensure

physical meaning to the solution. Equation 2.10 thus becomes

{
εL33
}

=
∑
k

mkF
(k)
ij

〈
σSkl
〉

where F (k)
ij indicate the stress factors calculates as per the k-th model. Unless specific

assumptions are being enforced (such as m1 = m2 = 0.5 for arithmetic averaging),
volume fraction parameters mk add to the total of minimisation parameters in the
least squares algorithm.

An example is shown in Figure 2.6. Experimental data was kindly provided by U.
Welzel [13], modelling was performed using the QXrdTex software package using
four grain interaction models (Reuss, Voigt, Vook-Witt and inverse) and assuming
an equibiaxial stress state. The least squares algorithm returns an in-plane residual
stress value of 162MPa; linear combination coefficients 0.41 (Reuss), 0.00 (Voigt), 0.42
(Vook-Witt) and 0.17 (inverse Vook-Witt). As a comparison,[13] reports a 165MPa

residual stress value; linear combination coefficients 0.3, 0.0, 0.6 and 0.1 respectively.

2.1.2 Morphological texture

So far only crystallographic texture was discussed. Preferred orientation however
can show up in terms of grains having aligned, elongated shapes, without necessarily
having a connection with preferred orientation in crystalline domains. Modelling
morphological texture usually makes use of the Eshelby-Kröner description, which is
hereby described.

Eshelby-Kröner The Eshelby-Kröner elastic grain interaction model, originally
devised for studying the effect of an inclusion in a polycrystalline matrix, was revised
for the study of a polycrystalline aggregate whose grains display elongated shapes
[17]; each grain is treated as an inclusion in the polycrystalline matrix, and the final
elastic tensor is calculated iteratively.
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Chapter 2. Stress and texture relationships in films by means of XRD

Figure 2.6: Sputtered Cu thin film dhkl versus sin2 ψ plots for six hkl families. Black
dots show experimental points, modelling is shown as a continuous line. Data courtesy
of U. Welzel [13].

Following the procedure found in literature, the stress and strain in a single grain can
be written as

σ = p 〈σ〉 and ε = q 〈ε〉 (2.37)

with p and q being suitable fourth-rank tensors, depending on the grain principal axes
rotation in respect to the aggregate (Euler α, β, γ); so that

p = C q 〈C〉 and q = S p 〈S〉 (2.38)

The effect of an inclusion can be separated as

p = 〈C〉+ r

q = 〈S〉+ t (2.39)

The Euler space average of r and t is zero, because

〈σ〉 = 〈C + r〉 〈ε〉 = 〈C〉 〈ε〉 ⇒ 〈r〉 = 0

〈ε〉 = 〈S + t〉 〈σ〉 = 〈S〉 〈σ〉 ⇒ 〈t〉 = 0 (2.40)
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2.1. Grain interaction modelling for X-ray diffraction stress measurements

For the sake of convenience, r and t can be written as

r = 〈C〉 v and t = u 〈S〉 (2.41)

Let us now assume that a single grain does not fit into the matrix. Ideally, one can
imagine that a strain free shape has been cut out, deformed plastically up to εP and
then put back into the matrix, with which it interacts elastically. Some relaxation will
occur at the interface, resulting in a final strain, εG in the grain. The stress will then
be σ = C (εG − εP ), but also εG will be proportional to the permanent deformation
withstood by the grain, that is

εG = ω−1εP (2.42)

where ω is called Eshelby tensor. If an external strain, 〈ε〉, is applied, the local stress
can be written as

σ = (〈C〉 − 〈C〉ω) εG + 〈C〉 〈ε〉

σ = C (εG + 〈ε〉) (2.43)

so that

ε = − (C − 〈C〉+ 〈C〉ω)
−1

(C − 〈C〉) 〈ε〉

u = − (C − 〈C〉+ 〈C〉ω)
−1

(C − 〈C〉)

v = (ω − I) (−u) (2.44)

An expression for the Eshelby tensor is now needed. If we define E = ω−1 〈S〉, we
can take the result from [18], and implement it in our procedure:

Eijkl =
a1a2a3

8π

ˆ π

0

sinψdψ

ˆ 2π

0

dφ
D−1ik kjkl +D−1jl kikk[

(a1k1)
2

+ (a2k2)
2

+ (a3k3)
2
] 3

2

where a contains the length of the principal axes of an ellipsoidal inclusion (often
expressed in term of aspect ratios η1 = a1/a3 and η2 = a2/a3); k is the position
vector with components (sinψ cosφ, sinψ sinφ, cosψ); and Dij = 〈Cijkl〉 kkkl.

The algorithm starts with a guess for 〈S〉 (for instance, one may take the corresponding
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Chapter 2. Stress and texture relationships in films by means of XRD

isotropic polycrystal’s compliance) and proceeds scaling the ω tensor iteratively, until
the condition 〈u〉 = 〈v〉 = 0 is met. For this purpose, it is convenient to use the
scalar averages ũ =

∑
ijkl u

2
ijkl and ṽ =

∑
ijkl v

2
ijkl , and set a threshold value for

them after which the iteration process will be stopped. At the end of iterations, the
method returns the correct ω and 〈S〉. It is worth to note that the Eshelby-Kröner
grain interaction model is self-consistent, i.e. produces the same results whether
calculations are performed in terms of stiffness or compliance.

The X-ray stress factors calculation is rather straightforward once ω and 〈C〉 = 〈S〉−1

are available, and involves averaging the u tensor over the diffracting crystallites only,
combining Equations 2.44, 2.41, 2.39 and 2.37.

Example stress factors are shown for polycrystalline, texture-free Nickel, with different
grain aspect ratios in Figures 2.7 and 2.8.

Baczmanski An alternative grain interaction model for free-surface conditions was
recently proposed by [19]. Following a similar approach to that of Vook and Witt
for crystallographic texture, Baczmanski et al. suggest enforcing the Eshelby-Kröner
model in-plane, and the Reuss model in the out-of-plane direction. From a practical
point of view, the tensor p in Equation 2.37 is rewritten as pB , as follows

pBijkl =

Iijkl i = 3 or j = 3

pijkl i 6= 3 or j 6= 3
(2.45)

Bulk and XRD elastic constants calculation follows the same procedure as in the
Eshelby-Kröner model, once the correction from Equation 2.45 is applied.

2.1.2.1 Modelling experimental data

Fitting experimental data with morphological texture grain interaction model involves
finding the optimal grain aspect ratio, that yields the lowest (weighted) sum of resid-
uals. Since the calculation of elastic constants is computationally expensive, the best
approach consists in performing a least squares regression using stress factors calcu-
lated with a given aspect ratio; the (weighted) sum of squared residuals is then plotted
against the aspect ratio, in order to find a minimum. Since most thin films possess
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Figure 2.7: Eshelby-Kröner stress factors (F11 + F22) as a function of sin2 ψ, for
different grain aspect ratios: from the top left, clockwise, η1 = η2 = 0.1, 1, 10.
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Figure 2.8: Eshelby-Kröner stress factors (F11 + F22), comparison between different
aspect ratios for peak 200.

two equivalent directions (the in-plane axes xS1 and xS2 ), it is physically reasonable to
assume that grains assume an elongated (or flat) shape, with identical aspect ratio
along the two minor axes, i.e. η1 = η2, hence reducing significantly the number of
solutions to explore.

An example is shown in Figure 2.9. Modelling is performed, using the Eshelby-Kröner
grain interaction model, on the same data set as in Figure 2.6, data were kindly
provided by U. Welzel [13]. The minimisation returned a residual stress value of 156
MPa, the best fitting grain aspect ratio being 0.85 (slightly elongated grains). The fit
with the Eshelby-Kröner model is visibly not as good as with using crystallographic
texture models; the resulting residual stress value is however almost the same.

2.2 The QXrdTex software package

Modelling grain interaction is, computationally speaking, no easy task. Moreover,
there is no readily available software package that can provide reliable algorithms for
the calculation of X-ray elastic constants (or stress factors) from texture data and use
them in fitting experimental curves. For these reasons, a new software was developed
[20], to perform X-ray diffraction stress data analysis by applying the grain interaction
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2.2. The QXrdTex software package

Figure 2.9: Fitting X-ray diffraction strain data with the Eshelby grain interaction
model. Sputtered Cu from [13].

models described in Chapter 2.1.

Design principles The need for a software package for XRD stress analysis of a
textured components arises from the fact that algorithms are computationally expens-
ive. Implementation in computer algebra or numerical computation systems is not
very effective in terms of performance, hence the requirement for a high performance
environment such as a compiled language. As lots of procedures imply the use of trial
and error, the software was designed with extensibility and programmability in mind.
Finally, only portable and open-source libraries were used to ensure availability to
about any target system.

The program was divided in three layers: an engine providing a set of highly optimised
algorithms, JavaScript bindings for the engine functions and a user interface offering
a script editor and an array of tools to ease the programming task, including a wizard
to help the user automatically set up the most common analysis tasks.

Implementation The software package was programmed using C++, linking to
the GNU Scientific Library [21] for numerical functions, and the Qt libraries [22] for
the scripting interpreter (Qt Script module) and the user interface (Qt Gui module).
As a first step, Qt-based wrapper classes for all used GSL objects were implemented,
to ensure results such as lists or matrices to be easily accessible from the scripting
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Chapter 2. Stress and texture relationships in films by means of XRD

Figure 2.10: The QXrdTex software main window.

engine. Subsequently, new custom types such as an elastic tensor or ODF class were
introduced.

Eventually, the XRD stress and texture elaboration algorithms were implemented,
by making use of custom classes only, so that every piece of code would be able to
be exposed by the user-controlled scripting engine. Objects and methods for simula-
tion and data analysis were finally linked using Qt Script bindings to the JavaScript
interpreter.

The user interface was designed as a single-instance text editor for the script code,
featuring several programming aids, such as code snippets and a wizard to automate
the most common analysis tasks. A custom plot package was implemented and linked
to the engine, in order to provide charting capabilities. Finally, the script engine was
implemented to run on a separate thread, to ensure interface responsiveness during
calculations, and also allowing emergency stops.
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2.3. Measuring elastic grain interaction

2.3 Measuring elastic grain interaction

Elastic grain interaction models can take different forms, based on a wide array of
assumptions. Hypotheses however refer to extremal cases, deemed the upper or lower
bound of a true material’s behaviour (see e.g. the reasoning underlying Hill averaging
[9]); effectively, grain interaction models rely on assumptions that do not necessarily
hold true for any case study. On top of this, calculating elastic constants requires
accurate knowledge of several microstructural parameters, such as the single crystal
elastic constants, as well as the orientation distribution function; the latter especially
is rather problematic when morphological effects are to be taken into account. On
the other hand, in some cases measuring the actual elastic constants for a thin film
is of special interest for the final component application, especially when mechanical
reliability is a key factor.

Stress state in thin films is most often expected to be simple. In-plane directions are
equivalent thanks to symmetry arguments, so in-plane stress components are equal

σS11 = σS22 = σ‖ (2.46)

and hence σS12 = 0. Moreover, as the surface is expected to be homogeneous, at least
within a reasonable area,

∂σSij
∂xS1

=
∂σSij
∂xS2

= 0 (2.47)

As the surface is stress-free (i.e. σS13 = σS23 = σS33), one can enforce the divergence
theorem (∂σij/∂xj = 0) to obtain

∂σS11
∂xS1

+
∂σS12
∂xS2

+
∂σS13
∂xS3

= 0 ⇒ σS13 = 0

∂σS21
∂xS1

+
∂σS22
∂xS2

+
∂σS23
∂xS3

= 0 ⇒ σS23 = 0

∂σS31
∂xS1

+
∂σS32
∂xS2

+
∂σS33
∂xS3

= 0 ⇒ σS33 = 0 (2.48)

In the end, it is reasonable to assume that only the σ‖ component is to be found in
a thin film.
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Chapter 2. Stress and texture relationships in films by means of XRD

The Stoney formula These considerations led Stoney [23] to formulate a simple
equation to calculate the stress state in a film based on substrate curvature. Provided
a film is deposited on a substrate with initial curvature 1/R0, should a residual stress
state arise during film deposition, the final component will show a curvature of 1/R

with R 6= R0. Given the film thickness tf , the substrate thickness ts and the sub-
strate’s Young modulus in the bending direction Es, we can enforce equilibrium as
follows

σ‖tf +

ˆ tf

0

Es
xS3
R
dxS3 = 0

ˆ tf

0

Es

(
xS3
)2

R
dxS3 = 0 (2.49)

yielding

σ‖ =
Est

2
s

6tf

(
1

R
− 1

R0

)
(2.50)

The Stoney formula has one strong limitation. While the thickness of the substrate
can be measured with good relative accuracy, and the substrate Young’s modulus
obtained by a simple bending test, the result is very sensitive to film thickness and
sample curvature, whose evaluation is not always an easy task. However, provided the
measurement can be conducted reliably, the Stoney residual stress value can prove a
handy reference point.

Rocking curve of monocrystalline substrates by XRD The residual stress
value given by the Equation 2.50 relies heavily on an accurate measurement of sub-
strate curvature. This problem can be addressed in an elegant and effective way on
monocrystalline substrates, such as Silicon wafers for electronic applications.

As shown in Figure 2.11, when a single crystal is bent, its atomic planes parallel to
the surface are rotated by an ω angle which is a function of the position along the
sample. The corresponding diffraction peak will then be found at the same 2θ Bragg
angle, but only after tilting the sample holder by an angle ω; if said ω peak position
is acquired in at least two points along the sample surface, curvature can be easily
measured as pointed out in [24].

1

R
=

∂ω

∂xS1

34



2.3. Measuring elastic grain interaction

Figure 2.11: ω diffraction peak shift in bent single crystal.
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Figure 2.12: Rocking curve of monocrystalline (h00) Si after deposition of a Tungsten
film.

An example application is shown in Figure 2.12. The rocking curve was measured on
a (h00) Silicon wafer upon which a film of pure Tungsten was deposited by means of
magnetron sputtering. The measured radius of curvature is (170.0± 0.2)mm.

2.3.1 XEC evaluation by curvature methods

As already mentioned, thin film X-ray elastic constants are often difficult to calcu-
late, as they require accurate knowledge of other microstructural parameters which is
not always readily available. However, experimental measurement is possible: if the
residual stress state is known, for example by relying on the Stoney formula, X-ray
elastic constants can be evaluated as the strain to stress ratio.
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Chapter 2. Stress and texture relationships in films by means of XRD

We have already seen in Section 2.1 that for an untextured polycrystal we have (Equa-
tion 2.16) {

εL33
}

=

(
2S1 (hkl) +

1

2
S2 (hkl) sin2 ψ

)
σ‖ (2.51)

so that (1/2)S2 (hkl) can be calculated as the slope of the linear fit of
{
εL
}
versus

sin2 ψ, divided by the in-plane stress σ‖ [25]. Similarly, 2S1 (hkl) is calculated from
the intercept of said linear regression. Note that S (hkl) indicates the effective elastic
moduli for a given hkl direction, and not the single-crystal moduli; see also Section
2.1 for a more detailed description.

If the sample can be assumed to be intrinsically isotropic, the hkl dependence wanes
from S, so that the macroscopic elastic moduli can be immediately calculated. Else,
one may recall [10] that the macroscopic elastic strain corresponds to that measured
on a reflection with 3Γ = 0.6; if X-ray elastic constants measured along several hkl
directions are plotted against 3Γ, the equivalent macroscopic compliance in terms of
〈S1〉 and 〈1/2S2〉 can be obtained by interpolation.

If the sample cannot be assumed to be texture-free, then X-ray stress factors Fij
introduced in Equation 2.10 can be evaluated as the

{
εL33
}
to σ‖ ratio [25] as

{
εL33
}

= Fijσ
S
ij = (F11 + F22)σ‖

⇒ (F11 + F22) =
{εL33}
σ‖

(2.52)

This way, the F11 +F22 sum can be assessed by performing XRD strain measurement
at any (hkl, φ, ψ) which is the object of interest.

An example application is hereby shown. An 1µm thick Tungsten film was deposited
by means of magnetron sputtering on a monocrystalline (h00) Silicon substrate, whose
curvature after deposition was measured by collecting the monocrystal’s rocking curve
by XRD (see also Figure 2.12). In-plane, residual stress value was calculated with the
Stoney formula, yielding (800± 24)MPa. Stress factors are plotted against sin2 ψ in
Figure 2.13.

This method however presents two major limitations: 1) it only allows calculating the
sum of F11 + F22 and 2) it does not allow measuring the macroscopic elastic moduli
of the film. Moreover, the procedure is relatively sensitive to accurate knowledge of
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Figure 2.13: Tungsten on monocrystalline Silicon, X-ray stress factors F11 + F22

as a function of sin2 ψ. Reflections: 110 (4), 200 (�) and 211 (?). Polynomial
interpolation shown as dotted line as a guide for the eye.

unit cell parameters: the strain measured by diffraction is

{
εL33
}

=
{d}
d0
− 1 (2.53)

thus
∆
{
εL33
}

= ∆

(
1

d0

)
=

1

d20
∆d0 (2.54)

The error on experimental stress factors due to unit cell parameter uncertainty is then

∆ (F11 + F22) =

(
∆d0
d20

)
{d}
σ‖

(2.55)

As will be illustrated in the following paragraphs, higher precision can be achieved
by performing in-situ mechanical testing.

2.3.2 In-situ mechanical testing for XEC evaluation

In-situ mechanical testing introduces a further degree of freedom in elastic constants
evaluation. This not only allows improving statistics, thus reducing numerical errors,
during the calculation; but also permits isolating different terms in the equation, that
can hence be evaluated independently. The following procedure constitutes the core
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Chapter 2. Stress and texture relationships in films by means of XRD

method of analysis developed in the present Thesis work, and has been published in
[26].

Let us assume a known load σA11 is applied along the xS1 direction of an untextured
sample. X-ray diffraction strain 2.15 then becomes

{
εL33
}

=

(
S1 (hkl) +

1

2
S2 (hkl) sin2 ψ cos2 φ

)(
σ‖ + σA11

)
+

(
S1 (hkl) +

1

2
S2 (hkl) sin2 ψ sin2 φ

)
σ‖ (2.56)

This technique allows elastic constants S1 (hkl) and 1/2S2 (hkl) to be calculated as
∂
{
εL33
}
/∂σA11, for φ = 0◦ and φ = 90◦ respectively, hence relying on a different

parameter and reducing numerical errors, as explained below. Again, the condition
S (hkl) = 〈S〉 when Γ (hkl) = 0.2 holds true for the calculation of macroscopic com-
pliance.

Where a textured sample is the object of the study, the constitutive equation (2.10)
becomes {

εL33
}

= F11

(
σ‖ + σA11

)
+ F22σ‖ (2.57)

Expanding the stress factors expression (Equation 2.9), we obtain

F11 (φ = 0◦) = F22 (φ = 90◦) = (A3333 −A3311) sin2 ψ

−2A3313 cosψ sinψ +A3311

F22 (φ = 0◦) = F11 (φ = 90◦) = A3322 (2.58)

Eventually,

{
εL33
}

(φ = 90◦) =
(
σ‖ + σA11

)
F11 (φ = 90◦) + σ‖F22 (φ = 90◦)

=
(
σ‖ + σA11

)
F22 (φ = 0◦) + σ‖F11 (φ = 0◦) (2.59)

hence both F11 and F22 can be calculated in terms of ∂
{
εL33
}
/∂σA11, by performing

two separate measurements at φ = 0◦ and φ = 90◦; in other words, repeating the
measurement at φ = 90◦ is equivalent to applying a load along xS2 while measuring
at φ = 0◦.
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2.3. Measuring elastic grain interaction

In-situ mechanical testing offers two major advantages. First, it is quite immediate
to realize that individual stress factors Fij rather than the sum F11 + F22 can be
measured independently. Second, the technique is arguably less sensitive to accurate
knowledge of unit cell parameters. We have

∆Fij = ∆

(
∂
{
εL33
}

∂σAij

)
=

2 (∆d0)
2

d30

∂ {d}
∂σAij

(2.60)

so that the impact of the error induced by uncertainty on the d0unstrained planar
spacing (hence unit cell parameters) is reduced from ∆d0/d

2
0 to 2 (∆d0)

2
/d30.

It is important to add that the result from Equation 2.59 should be taken into ac-
count to further reduce experimental error; by exploiting this, the number of ex-
perimental points per unknown is at least doubled, allowing a reduced error. For
any given (hkl, ψ), data points can be arranged as

(
σA11, 0,

{
εL33
})

when φ = 0◦, and(
0, σA11,

{
εL33
})

when φ = 90◦, remembering how F11 (φ = 0◦) = F22 (φ = 90◦) and
vice versa. This way a linear regression with two independent variables can be per-
formed, modelling together data points collected at different φ values for the same
hkl and ψ; moreover, the resulting constant term is but σ‖, which can be compared
to the same result obtained from Stoney’s formula.

In-situ four-point bending While an uniaxial tensile test would seem easier from
a theoretical point of view, it poses strict requirements on sample preparation and
geometry; because of the need of clamping, an uniaxial tensile test cannot be per-
formed on brittle substrates; finally, there is no easy way to measure the actual stress
applied to the film. For these reasons, although the technique has seen applications
[27], other methods are usually preferred.

Four-point bending instead presents several advantages. The substrate can be a simple
rectangular slab (opportunely cut to size), which is easy to manufacture; additionally,
supports do not stress the substrate significantly. The main advantage of four-point
bending, however, is the possibility of carefully evaluating the applied stress by means
of curvature measurements. In four-point bending, the bending moment, and there-
fore the sample curvature radius, are constant in the central section. Therefore,
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assuming bending occurs around the xS2 axis, the stress on its surface will be

σS11 =
E

R

t

2
(2.61)

where E is the elastic modulus along the xS1 direction, R is the beam curvature radius
and t the beam thickness. Now, if the sample is a thin film deposited on top of a
substrate, the thickness becomes ts (reasonably assuming tf � ts), while the Young
modulus to be applied is Ef , the effective average elastic modulus of the film along the
xS1 direction. The latter parameter is initially unknown; it can however be calculated,
along with the other results, by following a two-step procedure.

First, an initial guess for the in-plane elastic modulus E
′

f is provided; this can be
calculated using a grain interaction model such as those described in Section 2.1, or,
more simply, by taking the Young modulus of the corresponding bulk material (the
guess doesn’t need to be precise). First-iteration X-ray elastic constants A

′

33kl (or
stress factors F

′

ij) are then calculated, as well as a first guess of the residual in-plane
stress value, σ

′

‖. Finally, the in-plane residual stress result from Stoney’s formula is
enforced, leading to scaling the just calculated X-ray elastic constants, along with the
in-plane elastic modulus Ef , by a factor of σ

′

‖/σ
(Stoney)
‖ .

Four-point bending has the further advantage of allowing reduced experimental error
on the residual stress value given by Stoney’s formula. A four-point bending device is
likely to support a loading cell, yielding the measured load applied on the sample. As
long as the actual to nominal load is a linear function (which is a reasonable expect-
ation), one can extrapolate the zero-load curvature from curvature measurements at
each loading step. As this method increases the number of points used in evaluation,
statistical error is expected to decrease.

The technique is not flawless: first, the applied stress is not homogeneous, but a
slight gradient unfolds across the film’s thickness; this effect is however negligible, if
we consider that the substrate is usually at least three orders of magnitude thicker.
Second, the anticlastic deformation of the bar is constrained by clamping; this is
however not relevant when a secondary, independent applied stress measurement is
conducted by other means, such as curvature measurement. Third, Poisson coefficient
mismatch between film and substrate may lead to the rise of a small stress component
in the xS2 direction [27]; this is however negligible in most cases, due to being a few

40



2.3. Measuring elastic grain interaction

percent of the applied load along the main direction. Lastly, and more importantly,
the technique is harder to apply on multi-phase objects, because load is distributed in
an unknown fashion among constituents; in this case, new hypotheses or conditions
need to be found and enforced.

Despite the aforementioned issues, the procedure can be applied to a large number of
case studies; in the end, it returns the residual stress in the film (calculated by the
Stoney formula and confirmed with X-ray diffraction); the X-ray elastic constants;
and the in-plane, bulk elastic modulus of the coating.

2.3.3 Effects of texture gradients

It is not uncommon for relatively thick (µm) coatings to display a gradient of either
stress or texture along the direction perpendicular to the surface. This is due to
substrate interface effects being confined to the very few material layers, within a
thickness that varies as a function of several parameters. Under these premises, any
material property discussed so far (stress, texture, stress factors) need to be expressed
no longer as an absolute quantity, but as a function of a spatial coordinate; namely,
the xS3 direction, normal to the sample surface.

Gradient characterisation can be effectively performed by means of diffraction, by
exploiting radiation absorption by the sample material. Absorption changes signific-
antly as a function of the beam incidence angle on the sample surface, to the point
that gauge volumes for different hkl reflections can be quite different. More import-
antly, absorption is a function of radiation wavelength: if a measurement is repeated
under different photon energies, results may differ under the presence of a gradient,
and need to be related to the average information depth[28] involved.

Different photon energies may be obtained by using different radiation tubes, e.g.
repeating a measurement under Cu and Cr radiations; eventually, however, the choice
is limited. Better possibilities are offered by employing synchrotron radiation, because
wavelength can be tuned arbitrarily within a given emission range. This is especially
useful because it allows repeating a measurement close to the absorption edge of the
sample main element(s); under these conditions in fact, absorption may change by up
to two orders of magnitude within few electronvolts. The advantage is given by the
likeness of instrumental conditions: instrumental corrections in fact are not expected
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to change significantly under such a low energy shift; immediate comparison of results
is therefore possible [29].

Experimental data points need to be associated to their corresponding information
depth xS3 , defined as

xS3 =

´ t
0
xS3 exp

(
−xS3 /ξ

)
dxS3´ t

0
exp

(
−xS3 /ξ

)
dxS3

where t is the layer thickness and ξ = sin θ cosψ/ (2µ); µ is the target material’s linear
absorption coefficient, and is a function of wavelength. The value that is actually
measured for a generic property P is similarly written as

P =

´ t
0
P
(
xS3
)

exp
(
−xS3 /ξ

)
dxS3´ t

0
exp

(
−xS3 /ξ

)
dxS3

Eventually, property P as a function of depth within the material layer xS3 can be
obtained by interpolation; for most applications, and due to the fact that repeating a
measurement is expensive in terms of machine time, a linear interpolation is assumed
to suffice.
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Chapter 3

Methods and Materials

This Chapter briefly illustrates instrumental setups and measurement techniques em-
ployed in experiments presented in this Thesis work. A quick introduction on X-ray
diffraction equipment is initially offered; following, an extensive introduction to elec-
trodeposited coatings is presented.

3.1 Methods: X-ray diffraction analysis

X-ray diffraction measurements were equally performed with conventional laboratory
instruments and synchrotron radiation. Features of both instrumental setups are here
briefly presented.

Panalytical X’Pert MRD The diffractometer is originally designed for stress and
texture characterisation, and is equipped with a four-circle goniometer. A pseudo-
parallel beam is obtained with a polycapillary lens, which allows reaching 0.3◦divergence
in the incident beam. This configuration provides reasonable specimen illumination in
unfavourable conditions (such as low 2θ or high ψ), while also ensuring a sufficiently
large specimen area to be invested by the beam in any configuration, allowing for
good grain statistics [30].

A vertical slit collimator (divergence 0.27◦) and a graphite flat-crystal analyser are
installed before the detector.
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Figure 3.1: Instrumental 2θ correction for the MCX beamline goniometer. (a) 9.4keV ,
at ψ = 0◦ (solid line), ψ = 70◦ (dotted line) and ψ = −70◦ (dashed line); square dots
mark the ZnO peak positions used for characterization. (b) ψ = 0◦, photon energy
7keV (solid line), 9.4keV (dot-dashed line), 15keV (dashed line) and 18keV (dotted
line).

The MCX beamline The MCX beamline at Elettra Synchrotron in Trieste was
used for several experiments, whose results are presented in this thesis. The beam-
line was designed to provide a highly versatile setup for materials characterisation
purposes, from crystalline powders to heavily worked surfaces, to highly anisotropic
objects such as films and fibres.

Optics consist of a tangentially collimating mirror, a double-crystal monochromator
which also provides sagittal focusing, and a second, tangentially refocusing mirror.
The first element consists of a Platinum coated, 1.2m long flat Silicon crystal, with a
surface roughness of less than 3Å. This crystal is mounted on a bending mechanism
with a root mean square residual tangential slope of less than 5′′.

Full characterisation of instrumental corrections for flat plate samples was conducted
by analysing high resolution data collected from standard samples [31]. A mixture of
NIST SRM 640a (pure Silicon) [32] was blended with commercial, pure ZnO powder,
and a high resolution pattern was collected in order to obtain accurate values for the
ZnO powder unit cell parameters; pure ZnO was then used in assessing instrumental
2θ corrections at several energies and sample tilt angles. Silicon SRM instead was
not employed, because the standard powder grains are too coarse, and result in poor
statistics when installed in flat plate geometry. Instrumental 2θ corrections are shown
in Figure 3.1.
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Figure 3.2: MCX instrumental peak shape at 15 keV: full width at half maximum (a)
and pseudo-Voigt η (b).

The NIST SRM 660a (Lanthanum Hexaboride) [33]was used to characterise instru-
mental peak shape. The Caglioti [34] function parameters (full width at half max-
imum, and pseudo-Voigt η mixing parameter) for 15keV and ψ = 0◦ are reported in
Equation 3.1. Corresponding plots are shown in Figure 3.2.

FWHM [◦] = 3.419× 10−3 tan2 θ − 2.130× 10−4 tan θ + 2.586× 10−4

η = 1.336× 10−1-7.117×10−4θ [◦] (3.1)

3.1.1 Four-point bending device for in-situ mechanical testing

In recent years [35], a four-point bending device for in-situ testing, named SCRX-01,
was designed and built, for installation on the Panalytical X’Pert MRD diffractometer.
During the course of the present work, an adaptor was also realised for installation of
the device on the MCX goniometer cradle [31]. The device is shown in Figure 3.3.

Testing samples should be ideally 8 × 80mm in size (±2mm), and between 0.5 and
2mm in thickness. Outer blades are located 70mm apart, inner ones 40mm. Load
may vary between −30 and +30N , and an internal extensometer provides an accurate
reading of the actual load. Accurate calibration of the device is required to produce
reliable X-ray strain results.

First, as XRD strain measurements require several hours (at least, with conventional
laboratory radiation sources), stability over time is mandatory. For this purpose, a
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Figure 3.3: The SCRX-01 four-point bending device installed on the Panalytical
X’Pert MRD diffractometer.

monocrystalline h00 Silicon substrate was installed on the device, and bent under a
load of 5N . Curvature was measured by means of diffraction peak ω shift, over a
course of 16h; as seen in Figure 3.4, no peak shift is visible, confirming the device
stability over the course of long measurements.

The X-ray elastic constants measurement requires actual applied load to be evalu-
ated carefully. For this purpose, it is important to verify that the actual response
to imposed nominal load follows a know, possibly linear calibration. Again, mono-
crystalline h00 Silicon was used for characterisation, as the actually applied load can
be very accurately measured by means of curvature measurements, performed in a
non-contact fashion by means of diffraction. Figure 3.5 shows that the response of
the cell is linear, as required for proper experimental applications.

3.2 Materials: electrodeposited coatings

Electrodeposition is common in coating applications, thanks to the technique’s low
cost and easy implementation. The process involves the application of an electric
potential to promote reduction of metallic ions from a bath, at the surface of a metallic
substrate, in order for a deposit to grow on top of the latter. These deposits are mainly
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Figure 3.4: Bending device stability over time, Si(400) ω peak position in two different
positions along the xS1 axis, over the course of 16h.

Figure 3.5: SCRX-01 measured actual load versus nominal load. Calibration per-
formed with monocrystalline h00 Silicon.
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employed for corrosion and wear protection applications, but in special cases they have
been employed also to alter the surface magnetic, thermal and optical characteristics
[36].

Electrodeposition mainly produces polycrystalline films [37]. Growth at the substrate
interface often shows pseudomorphism, a term that indicates the continuation of grain
boundaries and other microstructural features from the substrate into the deposit,
without crystalline continuity as defined for epitaxial growth. The latter epitaxial
growth is also possible, provided that the substrate is carefully polished and pickled;
that deposition material crystalline structure is similar to the substrate’s; and that
energetically favourable crystalline planes are exposed by the substrate.

Structure-zone diagrams are drawn in terms of bath temperature and current density;
e.g., high temperature and low current promotes the formation of columnar struc-
tures with large grains, whereas low temperatures and high current densities produce
acicular-shaped, fine grains, thanks to the increased nucleation rate. Structure-zone
description can be enriched by also taking bath additives into account; in fact, sev-
eral types of chemicals are added to the solution, to regulate pH, act as surfactant
and thus promote gas bubble removal from the growing film, and more. Finally, the
current regime may be pulsated to promote microstrain relaxation during the “off”
phase, while maintaining a high nucleation rate during the “peak” phase to obtain a
fine, yet relatively unstrained structure.

Since a few decades ago [38], interest has arisen in the field of technological applica-
tions of electrocodeposition, a process referring to the embedding a secondary phase
(usually solid particles from the electrolytic bath) in the electrodeposit. Such particles
have an impact on the crystallisation process, leading to microstructural changes.

With these premises, electrodeposited coatings make an ideal candidate for study-
ing residual stress and texture relationships in films. Deposition mechanisms and
conditions are briefly discussed.

3.2.1 The electrodeposition process

The electrodeposition process occurs when an electric potential is applied to a con-
ductive substrate immersed in a bath containing metallic ions, so that a reduction
reaction occurs at the substrate surface, leading to formation of a metallic deposit.
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This process, albeit simple in theory, is governed by a very large amount of parameters
[37], such as substrate geometry and surface preparation; chemicals in the deposition
bath, such as acids or bases employed in pH regulation, surfactants to avoid gas
bubble inglobation (and consequent embrittlement); and perhaps most importantly,
the electrical potential and subsequent current density.

Current pulsation was found to positively affect the deposition process [39, 40], al-
lowing a higher current density to be employed. Higher current density in fact means
higher nucleation rate, but also higher tensile microstrains, which ultimately have a
negative effect on the final mechanical properties. Pulsation offers a periodic time
lapse during which microstrains are allowed to relax; eventually, a finer and less
strained microstructure is achieved.

Effect of sonication Past works [41] have given attention to the application of
ultrasounds in chemical processes, as a method to promote phase dispersion and mix-
ing, affect crystallisation processes and promote gas removal. Power ultrasounds (in
the range just above human hearing) have been successfully employed in electrodepos-
ition, with positive effects on the quality of deposits in terms of adhesion, morphology
and, most importantly, gas removal [42, 36]. Hydrogen bubbles forming on the cath-
ode surface are promptly removed by ultrasonic waves before they can get trapped in
the substrate, reducing pitting issues in the final component and replacing (or adding
to the effect of) other kind of surfactant additives commonly employed in gas removal.

Electrocrystallisation The grain nucleation and growth process in these depos-
its is often called electrocrystallisation. Most electrodeposits exhibit a structure that
is determined by concurrent epitaxial and pseudomorphic phenomena, where pseudo-
morphism describes the continuation of grain boundaries and other geometric features
from the substrate into the film [37]. When a secondary phase is codeposited, nuc-
leation and growth is altered by the effect of surface interactions occurring between
the growing matrix material and the embedded particle. In this case, electrocrystal-
lisation mechanisms are not fully understood, and models proposed only work in a
narrow range of deposition parameters [36].

Historically, a first model proposed by Guglielmi [38], states that the secondary phase
is adsorbed on the substrate phase, and that metallic ions would subsequently form
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an ionic cloud around the adsorbed particle before the reduction reaction takes place.
Eventually, such model is only characterised by particle concentration and current
density. More recently [43, 44], it was suggested that codeposition only occurs when
the precipitate phase particles are able to support an adsorbed layer mainly made by
metallic ions; when said ions undergo reduction at the substrate interface, the particle
is embedded. Other, more complex models have been proposed ever since, covering
different deposits and parameters ranges, but so far no model is able to provide a
general approach to the problem. Moreover, so far no valid model has been proposed
to address the crystallisation mechanics of electrocodeposition that features nano-
scale particles, where different mechanisms, such as Brownian motion, come into play
[36].

Residual stress formation Texture and mechanical properties of an electrode-
posited coating depend heavily on the deposition conditions (and hence the electro-
crystallisation process) [45, 46]. The most critical condition is achieved with low
temperature, which hinders mobility and thus relaxation, and high current density,
which promotes a high nucleation rate. As a consequence of this, tensile residual
stresses of intrinsic nature are developed, because of defects such as inclusions or
voids, stacking faults or grain boundaries. It is important to note that the majority
of the effects which promote homogeneous nucleation also compensate residual stress
formation mechanisms, as they help offset defect formation, resulting in a defect-
poorer microstructure.

In the end, because of both the complexity and the amount of mechanisms involved,
it is difficult to predict the residual stress state on the basis of deposition parameter,
and no model is available to get an estimate. For this reason, an experimental meas-
urement is usually the only option to resort to for characterisation.

3.2.2 Composite Nickel coatings

Codeposition naturally occurs when a solid phase is suspended in a galvanic bath
during depostion. The phenomenon is not yet fully understood, to the point that
several models have been proposed, but no one is effectively widely accepted [36].

Since the early studies on codeposition [38], Nickel was employed as matrix material
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for a wide array of tests, thanks to its popularity as a coating material, featuring
a large variety of materials as codeposited phase. Wide interest has been especially
shown for Silicon carbide and alumina embedded particles, which can greatly enhance
the coating’s wear resistance and hardness, to the point of being able to provide a
substitute for hard Chromium [36]. More recently [47, 36] interest has been shown for
employing nano-scale particles as precipitate phase in composite coatings. Thanks to
the higher surface-to-volume ratio, the effect of the secondary phase on the metallic
matrix is maximised, and such the strengthening effect; in particular, special attention
was given to Silicon carbide and alumina nanoparticle embedding in polycrystalline
Nickel.

The secondary phase is known to affect electrocrystallisation in several ways. In
respect to a pure Nickel coating, Silicon carbide nanoparticles precipitation yield a
more homogeneous and smooth surface, made up of finer grains, which also show
a rounder shape. Alumina precipitates, on the other hand, still positively affects
morphology, leaving a more compact and homogeneous structure in respect to pure
Nickel. The coating surface is however rougher and grains coarser, when compare to
the film featuring Silicon carbide nanoparticles [36].

Crystallographic texture is also heavily influenced by the presence of nanoparticles.
It has been reported [48, 49] that the presence of SiC microparticles promotes the
rise of 100 and 110 fibre texture poles. This effect is expected to be magnified if the
precipitate phase is added in the form of nano-scale particles, because of the higher
surface to volume ratio. No significant effect has been reported to be found after
addition of an Al2O3 precipitate phase; the latter in fact is known to agglomerate,
thus having a reduced impact on crystalline growth, and owes most of its beneficial
effect to precipitation strengthening mechanisms.
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Chapter 4

Stress and texture relationship
in nanocomposite galvanic
coatings

Electrodeposited coatings display a large amount of different morphologies, crystal-
lisation textures and residual stress states. Hence, they make an ideal case for the
study of texture, elastic properties and residual stress relationships. Deposition con-
ditions and nanoparticles embedding effects on the final coating properties are hereby
presented.

It is worth to note that the goal of this activity is the application of the elastic
properties characterisation method described in the previous Chapters to real cases
of technological interest. For this reason, products and working conditions have been
chosen on the basis of investigations conducted in previous works (in particular, [36]).

Electrodeposition parameters Based on prior works [36] and practice, identical
deposition conditions have been used for all samples described in this Chapter. A
standard Watt’s bath was used, with the following composition: 240g/l NiSO4, 45g/l

NiCl2, 30g/l H3BO4; moreover, 0.1g/l sodium dodecylsulphate was added as surfact-
ant, to promote gas bubble removal. Pulsed 1Hz current with 2A/dm3 peak intensity
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was applied. Temperature was held at 45◦C using a thermostat. These conditions
promote fast nucleation, thanks to the high peak current density, but also microstrain
relaxation during the “off” phase of the pulsed current regime; also, the final coating
is especially dense, to the point that residual porosity is negligible.

Deposition time is calculated as a function the required final thickness, on the basis
of current density and area to be coated, assuming a perfectly dense layer. the latter
assumption is very abstract (does not take into account not only possible inclusions,
but also grain boundaries), and area estimates are very approximate. Combining with
instrumental errors, the final thickness ends up being within 20-25% of the goal.

Experimental considerations All films showed a tensile residual stress state, as
expected for coatings deposited under a high density, pulsed current. In-situ mech-
anical testing was performed under tensile loads on the film: loading is in fact more
critical to the substrate rather than the coating, the latter being able to withstand
higher stress levels without undergoing plastic deformation [26]. Moreover, applied
loads on the film varied on a per-sample basis, the upper limit being about 200 MPa.
In order to verify that plastic deformation did not ensue, XRD peak shape was mon-
itored, and verified that it remained constant as applied load was increased. It is in
fact known that upon plastic deformation, diffraction peak width increases because
of microstrains arising from dislocation formation.

4.1 Elastic properties characterisation in a pure Nickel

coating

The first characterisation, both in chronological and logical order, was performed on
a pure Nickel coating. A 4µm thick film was deposited on a 0.8mm low-carbon steel
sheet; results were used as a demonstration of the residual stress and X-ray elastic
constants experimental measurement technique, as described in 2.3, and published in
[26].

X-ray diffraction pole figures and stress analysis have been performed on peaks 200,
220, 311 and 331; these peaks have, on average, high intensity, and do not overlap
any signal from the substrate. In-situ mechanical testing was performed under 9
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Figure 4.1: 4µm Nickel on steel; ODF section at α = 0.

loads, from 0 to 16 N on the bending device, corresponding to up to about 200 MPa
on the film. The sample presents a relatively soft texture, as seen in Figure 4.1.
Residual stress value measured with curvature methods (Section 2.3.2) was found to
be (440± 20)MPa; effective in-plane macroscopic average Young modulus, Ef =

(182± 13)GPa. Experimental stress factors are shown in Figure 4.2.

A comparison with the best-fitting (see Section 2.1.1.3) linear combination of grain
interaction models for crystalline texture is offered in Figure 4.3; the best fit is given
by xReuss = 0.28 and xV oigt = 0.72 (both the Vook-Witt and inverse Vook-Witt
model account for no contribution). It is immediate to see that calculated stress
factors do not reproduce the elastic constants trend as a function of sample tilt. In
fact, as illustrated in the following map plot (Figure 4.4), the best-fitting combination
of problem parameters likely lies beyond the boundaries of physical meaning; in other
words, it is impossible to match experimental values with an average of the extremal
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Figure 4.2: 4µm pure Nickel on steel, experimental stress factors F11 (�) and F22

(#). Polynomial interpolation is shown as a dotted line, as a guide for the eye.

grain interaction behaviours.

Similar results are obtained when experimental stress factors are compared with the
predictions from morphological texture models (Figure 4.5). The best fitting (see
Section 2.1.2.1) grain aspect ratio was found to be 1, corresponding to morphologically
isotropic behaviour. This is in contrast with the textured nature of the sample; again,
the best fitting solution does not reproduce experimental trends.

Characterisation described in this paragraph was performed as an example of the
potential of in-situ mechanical testing for the assessment of elastic properties in a
film component. As shown, a good fit of experimental strain data was not possible
by means of modelling based on a priori assumptions, thus preventing an effective,
reliable application of such models to this case. Experimental determination on the
other hand has provided accurate results, that do not rely on unverified background
hypotheses.
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Figure 4.3: 4µm Nickel on steel, experimental stress factors comparison with grain
interaction models for crystalline texture. Experimental points interpolation is shown
as a black line, modelling as a grey line. A solid line refers to F11, while a dashed line
indicates F22.
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Figure 4.4: Experimental stress factors fit with grain interaction models for crystalline
texture. Map of the weighted sum of squared errors as a function of the problem
parameters space (xinverse V ook Witt = 0).
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Figure 4.5: 4µm Nickel on steel, experimental stress factors comparison with grain
interaction models for morphological texture. Experimental points interpolation is
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4.2 Effect of nanoparticle precipitation on texture

and residual stress state

Interest for nanocomposite, Nickel matrix coatings has already been introduced in
Section 3.2.2. The codeposition of nanoparticles to galvanic Nickel deposits presents
several positive effects on the final mechanic properties, mainly improved hardness
and wear resistance [36]. Some recent works [49] have also dealt with character-
isation of electrocrystallisation structures under the effect of codeposited particles;
however, no accurate study was ever performed on final microstructures influenced
by the addition of nanoparticles (as opposed to micrometer-size precipitates), and
microstructural effects were not yet related to final, elastic properties. Based on prior
works [36], selected Nickel-matrix coatings with different precipitate phases were ex-
tensively characterised, both in terms of microstructure (crystallographic texture and
morphology) and elastic properties; results are reported in [50].

Three 20µm thick, electrodeposited Nickel matrix nanocomposite coatings have been
deposited on low carbon steel plates, cut from the same sheet: one pure Nickel (1),
one with addition of SiC nanoparticles (2), and one with Al2O3 nanoparticles (3).

Silicon carbide nanopowders were produced as the result of the laser pyrolisys of acet-
ilene and silanes by ENEA Frascati; by means of TEM, mean diameter was found to
be 20 nm with narrow size distribution; particle shape is spherical and regular. Alu-
minum oxide was instead purchased by Sigma Aldrich; nanoparticle mean diameter
ranges from 5 to 100 nm (with an average of 45); particle shape is still regular and
spherical [36]. As previously mentioned, nanoparticle codeposition naturally occurs
is the ceramic phase is suspended in the acqueous solution used for electrodeposition.

Thickness and distribution of the ceramic powder in the metal matrix was verified
by optical microscopy and Transmission Electron Microscopy (TEM) on the pol-
ished cross-section of the samples. The volume fraction of embedded nanoparticles,
as measured by GDOES analyses, is about 3 (±1)% for both nanocomposites [36].
Optical micrographs of composite deposits are shown in Figure 4.6, showing visible
agglomeration of the alumina phase (darker dots within the light Nickel phase), but
good dispersion of Silicon carbide. In fact, noappreciable agglomeration of the SiC
codeposit was observed even at lower scale, after TEM observation [50].

Crystalline domain size and shape was measured by X-ray diffraction line profile

60



4.2. Effect of nanoparticle precipitation on texture and residual stress state

(a) (b)

Figure 4.6: Nickel-matrix nanocomposites, with SiC (a) and Al2O3 (b) nanoparticles.

Figure 4.7: Nanocomposite Nickel-matrix coatings, diffraction patterns.

analysis, using the WPPM approach [51] as implemented in the PM2K [52] software
package; crystallites were modelled as cylinders, compatible with the elongated shape
electrodeposited grains, as often it is assumed. Diffraction patterns are shown in
Figure 4.7, and results reported in Table 4.1: it is immediate to appreciate the effect of
SiC nanoparticles, which promote the formation of larger, equiaxed domain; whereas
no appreciable effect is given by the addition of alumina.

The absence of gradients was verified by means of multiple measurements using dif-
ferently penetrating X-ray beams; namely, 8.3keV and 8.4keV were selected, these
energies being located at either side of Nickel Kα absorption edge (8.33keV ); as a ref-
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Sample Mean domain size [nm] Domain aspect ratio
Ni (1) 61 ± 28 0.32
Ni-SiC(2) 125 ± 13 1.05
Ni-Al2O3 (3) 47 ± 22 0.28

Table 4.1: Nanocomposite Nickel-matrix coatings, crystalline domain size and shape.
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Figure 4.8: Pole figure at φ = 0◦ (a) and interplanar spacing d200 as a function of
sample ψ tilt (b), at 8.3 (�) and 8.4 (©) keV respectively.

erence, consider that average information depth for the 200 peak decreases from about
2.5µm (8.3keV ) to about 1.2µm (8.4keV ). Figure 4.8 shows an example comparison
of the pole figure at φ = 0◦ and measured interplanar spacing dhkl as a function of ψ
tilt, for the 200 reflection of the sample containing Silicon carbide precipitate phase.
No difference is appreciable, therefore the presence of a gradient was excluded.

Collection of pole figures has shown that samples present a fibre texture, as expected;
hence, reconstructed pole figures are shown at φ = 0◦ only, in Figure 4.9. Unlike
alumina, whose effect isn’t noticeable, SiC nanoparticles codeposition affects crystal-
lographic texture as well, promoting the rise of a 100 texture pole (compatibly with
observations from [49]).

X-ray stress factors are presented in Figures 4.10, showing F11 and F22 separately,
along with a comparison to the best-fitting combination of grain interaction models.
A comparison is instead offered in Figure 4.11: the change in crystallographic texture
induced by Silicon carbide codeposition reflects in X-ray elastic constants.

As a visual indicator of the goodness of fit, “sin2 ψ” plots for the Ni+SiC coating are
shown in Figure X. The coating is subject to a 177MPa load, hence the split between
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Figure 4.9: Reconstructed pole figures at φ = 0◦: pure Ni (grey); Ni+SiC (black,
dotted); Ni+Al2O3(black, dashed).

Sample pure Ni (1) Ni+SiC (2) Ni+Al2O3 (3)
σ
(Stoney)
‖ [MPa] 146 ± 46 207 ± 30 243 ± 32
Ef [GPa] 194 ± 30 203 ± 33 213 ± 16

Table 4.2: Residual stress values and effective in-plane Young modulus.

φ = 0◦ and φ = 90◦ directions.

Residual stress and effective, in-plane Young modulus for the studied coatings are
found in Table 4.2. In-plane residual stress are of tensile, intrinsic nature as expected
for high current densities [45, 46]; stress increases with nanoparticle precipitation,
and the effect is larger for alumina that Silicon carbide. In-plane elastic moduli are
also affected, and increases observed are in line with what expected from the rule of
mixtures for the addition of a stiffer phase (namely, 2 to 3 GPa for 3% SiC, 4 to 6 for
Al2O3).

Nanoparticle addition was shown to significantly affect the electrocrystallisation pro-
cess [50]. The effect is remarkable for the addition of Silicon carbide, which promotes
the formation of larger and equiaxed domains, as well as the rise of a new, sharper
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Figure 4.10: Nanocomposite Nickel-matrix coatings, X-ray stress factors F11 (solid
line) and F22 (dashed line); experimental (black) versus best-fitting grain interaction
models combination (grey).
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Coating thickness [µm] Ef [GPa] σ‖ [MPa]
5.6 176± 11 275± 26
27.0 178± 31 135± 14

Table 4.3: Nickel on brass, in-plane residual stress and effective Young modulus.

crystallographic texture pole; this change reflects in the X-ray elastic constants, which
display an entirely different trend as a function of ψ tilt compared to pure Nickel.
Alumina codeposition instead has a limited effect on the final product, because of
agglomeration, and is only responsible for a slight precipitation hardening effect.

4.3 Stress and texture gradients in electrodeposited

Nickel on brass

Electrodeposited pure Nickel coatings of different thickness were deposited on brass,
following the same procedure and deposition conditions employed in previous cases.
Brass was selected as a substrate thanks to its better affinity for Nickel (compared to
ferritic steel), in order to maximise surface interactions; for this reason, development of
a stress gradient was likely expected as final thickness rises significantly. Two coatings,
whose final thickness was measured to be 5.6 and 27.0 µm respectively were deposited;
residual stress evaluation by curvature (Stoney) methods immediately revealed that a
stress gradient is, in fact, present (see Table 4.3), as σ‖ drops with increasing coating
thickness.

X-ray diffraction experiments were performed on reflections 111, 200, 220 and 331,
chosen in a way that they do not overlap peaks from the substrate. Initially, residual
and X-ray elastic constants were measured using Cu Kα radiation, which has a relat-
ively high penetration depth, so that it returns a reasonable whole-thickness average
for the thinner coating. Results are shown in Figure 4.13, and differences between
coatings of different thickness are immediately appreciable.

As an indicator of the goodness of fit, a few selected “sin2 ψ” plots are shown in Figure
X, displaying data from both coatings and different reflections, under a 120MPa load.

Due to the fact that coatings of different thickness, but deposited under identical
conditions, show different elastic properties and residual stress state, further meas-
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Figure 4.13: Experimental X-ray stress factors, polynomial interpolation; showing F11

(solid line) and F22 (dashed line) for the 5.6 (black) and 27.0 (grey) µm thick Nickel
coatings on brass.

urements were conducted using synchrotron radiation, on the 5.6µm coating. Using
two different photon energies around Nickel Kα absorption edge, namely 8.3 and
8.4keV , average information depth for the 111 reflection is about halved, as shown in
Figure 4.15; hence, gradient information can be extrapolated.

The presence of a gradient was in fact assessed within the 5.6µm coating, as expected.
As shown in Figure 4.16, the 111 texture pole becomes sharper as thickness increases.
Measured stress also changes slightly, from 275 (whole thickness average) to 258MPa

(surface layer); the result is in line with expectations. For this latter estimate, an
interpolation of stress factors measured for the thin and the thick samples was used.

The presence of a texture gradient requires elastic properties to be characterised by
interpolating multiple data sets, collected at different depths within the sample mater-
ial, e.g. by means of using different photon energies for X-ray diffraction experiments
(see Section 2.3.3). Full characterisation was not possible in this case, due to limited
synchrotron beamtime availability; therefore, an approximate solution was achieved
by interpolating results from a similar sample, deposited under identical conditions,
although up to a different final thickness. This approach is not entirely correct from
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a formal standpoint, because the effect of upper material layers on the bottom ones
is a priori unknown.; in this particular case a reasonable and consistent solution
was provided regardless [29]. It is nonetheless important to remember that such an
approximation should be generally avoided, because it potentially leads to wrong con-
clusions which may not be as glaring in more complex cases, when no comparison to
known material is available.

69



Chapter 4. Stress and texture relationship in nanocomposite galvanic coatings

70



Concluding remarks

X-ray diffraction stress measurement is a very powerful and reliable technique, often
the only solution to the characterisation problem thanks to its unique features. As
a possible drawback however, as the technique produces a map of strains, accurate
knowledge of the sample material’s elastic behaviour is required to calculate residual
stresses. When textured samples, such as thin films and coatings, are the object of
analysis, the requirement is far from trivial: modelling, based on a priori hypotheses,
can be applied, but results reliability is not guaranteed.

To address issues discussed above, this Thesis work focuses on a method for experi-
mental characterisation of elastic properties, in terms of X-ray as well as macroscopic
elastic constants; the residual stress state is also simultaneously determined. The pro-
cedure involves in-situ mechanical testing, which is effectively performed as four-point
bending, thanks to several advantages presented by this technique. Gradient effects
can also be addressed by means of the same characterisation method, by exploiting
the different X-ray beam penetration in the material achieved by adjusting the photon
energy.

Elastic properties and residual stress characterisation, by means of X-ray diffraction
during in-situ mechanical testing, was employed in characterising several electrodepos-
ited Nickel coatings on different substrates. These samples were chosen because they
constitute an ideal case study: the effects of deposition conditions can be carefully
investigated. A collection of results was produced, highlighting the microstructural
consequences of substrate choice, coating thickness achieved and nanoparticle precip-
itation.

Extensive and accurate characterisation was possible thanks to the flexibility offered
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by experimental procedures. These methods were in fact developed to minimise the
need for a priori knowledge of microstructural data (especially, single crystal elastic
properties), that cannot be easily verified. Moreover, the result is no longer limited
by the narrow, and not always sufficient, background hypotheses introduced by grain
interaction modelling approaches.
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Appendix A

QXrdTex user manual

The QXrdTex software package was conceived with programmability in mind. Its
interface may be described as a script editor, supporting syntax highlighting and
code snippets; on top of basic functions (such as Open, Save, or Find), script
execution control is provided by means of the Run ( ) and Stop ( ) button; the
latter is provided to force execution stop, and should be avoided in most cases.

The application digests a Javascript input, in order to execute a batch of operations.
Text output is returned in a box at the bottom of the main window, whereas plots
appear on the right side. Several custom objects have been implemented into the
Javascript engine, offering a complete set of tools for X-ray stress data analysis.

Data is provided in the form of text files; once data files have been prepared, the
engine may be instructed to load the data providing a complete path to the data files.

This Appendix is divided in two parts, describing data files format and custom script
objects respectively.

A.1 Data files

Files format was conceived to contain a set of data in the form of one or more tables.
Generally, data is preceded by custom tags, that provide additional information or
identification to following tables. Data files may contain comments, for the user’s
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reference, that will be ignored when reading data from the file; comments start with
a sharp (#) symbol and last until the end of the line; spacing is usually irrelevant,
unless otherwise specified. Files accepted as input by the program are hereby briefly
presented.

Orientation Distribution Function data Numerical ODF data can be loaded
from file, using the command new OdfData (<unit_cell>, <path_to_file>). More
information is available in the following Section. Data should be arranged in the form
of a list of f values, ordered by increasing α, β and γ (in this order).

The file needs a header preceding the data table, that specifies the number of points
to be read, and symmetry multipliers if needed. The first line should contain the
label ODF 1.0, in order to identify the contents of the file. It is followed by a line
that contains a description of the material it refers to. Finally, the number of data
points per angle and corresponding symmetry multiplier is to be provided. A complete
header looks like this:

ODF 1.0

a sample ODF

alpha 1 1

beta 91 2

gamma 91 4

It reads as follows: the file contains ODF data for “a sample ODF”. Sample possesses
fibre texture, so the ODF is independent on α; hence, only one point along the α axis
is provided, with no symmetry multiplier required. One point per degree (for a total
of 91, including extremes) is provided along the β and γ axes, respectively; as data is
only provided in the [0◦, 90◦] range, the corresponding symmetry multipliers to cover
all of Euler space should be 2 and 4, respectively.

Data should follow in the form of a list of f values; it may be convenient to arrange it
in the form of a table for better viewing, although the program is insensitive to data
formatting within the file.

XRD stress measurement data file XRD stress measurements can be loaded
from a file that contains one or more “sin2 ψ” tables, whose entries should be in the
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form of (ψ, 2θ) pairs (in degrees). Tables are preceded by a header that indicates
what hkl index they refer to, and what φ rotation they were collected at.

The file header should contain a “XrdStressMeasurements 1.0” label, identifying the
file content; following, the number of “sin2 ψ” tables, and a list of hkl indices. It is
also possible to indicate whether measurements were collected at φ = 0◦ only, or at
φ = 90◦ as well; finally, confidence levels for 2θ positions may be provided, to be used
as weight in the least squares minimisation. A complete header looks like this:

XrdStressMeasurements 1.0

peaks 2

1 1 1

2 0 0

phiCount 1

errors yes

The above header indicates that the data file contains strain data measured on two re-
flections (111 and 200); that measurements were only performed at φ = 0◦ (psiCount
1) and that data is provided with confidence bands.

Following, each “sin2 ψ” table should be entered, preceded by a parameter indicating
the number of ψ points, in the following form:

psiCount 10

0.0 44.502 0.002

6.0 44.518 0.004

12.0 44.523 0.003

...

A.2 Custom classes

Several custom classes were implemented. Many act as QObject-based [22], C++
wrappers to GSL [21] objects, that were originally introduced to implement model-
ling algorithms in a more efficient way, and were then made available to the script
engine. Several more classes were then added to handle physical data, such as unit
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cell information and elastic tensor representations; these objects are collected in a
separate Section.

A.2.1 Generic-purpose classes

This Section introduces the generic-purpose classes that are available within the script
engine. They are presented separately because they do not specifically concern hand-
ling physical material data, but rather provide a set of standard templates to handle
mathematical objects, such as vectors, matrices and linear system solvers.

Vector This class handles a vector of real values; length must be specified upon
allocation.

new Vector (n ) allocates a new vector of length n

count () returns the length of the vector

at (position ) returns the item at position

setAt (position , value ) sets value at position

copyFrom (vector ) copies all items of vector

copyTo (vector ) copies all items into vector

compareElements (vector ) returns true if all items are equal to vector ’s

setAll (value ) sets all items to value

setZero () sets all items to zero

setBasis (index ) sets all items to zero, except for index, which is set to one

add (vector ) adds vector ’s content itemwise

scale (value ) scale all items by value

storeSum (vector_1 , vector_2 ) stores here the sum of vector_1 and vector_2

product (vector ) returns the dot product with vector

storeProduct (matrix , vector ) stores here the product of matrix with vector
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Matrix This class handles a matrix of real values; size must be specified upon
allocation.

new Matrix (m , n ) allocates a new matrix of size n×m

rows () returns the number of rows

columns () returns the number of columns

at (i , j ) returns the item at (i,j )

setAt (i , j , value ) sets value at (i,j )

copyFrom (matrix ) copies all items of matrix

copyTo (matrix ) copies all items into matrix

copyRowFrom (i , vector ) copies vector into row i

copyRowTo (i , vector ) copies row i into vector

copyColumnFrom (i , vector ) copies vector into column i

copyColumnTo (i , vector ) copies column i into vector

compareElements (matrix ) returns true if all items are equal to matrix ’

setAll (value ) sets all items to value

setZero () sets all items to zero

setIdentity () sets all items to zero, diagonal items to one

transpose () transposes content

add (matrix ) adds matrix’ content itemwise

scale (value ) scale all items by value

storeSum (matrix_1 , matrix_2 ) stores here the sum of matrix_1 and matrix_2

storeProduct (matrix_1 , matrix_2 ) stores here the product of matrix_1 and
matrix_2
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Pattern Handles a resizeable list of (x, y,∆y) values; ∆y is optional. Used for
interpolation and plotting.

new Pattern ([x ,y ,[err ]]) allocates a new pattern; if provided, fills content with
x, y, err

x, y, err (i ) returns x, y, err value at i

count () returns the number of entries

append (x , y [, err ]) appends a new entry at the end

count () clears all entries

copyFrom (pattern ) copies the content of pattern

saveToFile (path ) saves entries into a text file specified in path; overwrites the file,
if already present

minX, maxX, minY, maxY () returns minimum and maximum x or y values

LinearSolverLU Handles a LU solver; used for solving linear systems or for matrix
inversion.

new LinearSolverLU (n ) allocates a solver for a system of dimension n

decompose (matrix ) computes the LU decomposition of matrix

solve (x , b ) solves Ax = b, needs A to be LU-decomposed first

invert (matrix ) computes the inverse of the LU-decomposed matrix and stores the
result into matrix

determinant () computes the determinant of the LU-decomposed matrix

Interpolation Computes an interpolation of any given pattern.

new Interpolation (pattern , type ) initialises interpolation of pattern; type can
be Linear, Polynomial, CubicSpline, CubicSplinePeriodic, Akima, AkimaPeri-
odic
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evaluate (x ) evaluates interpolation value at point x

evaluateDerivative (x ) evaluates interpolation derivative value at point x

evaluateIntegral (x1 , x2 ) evaluates interpolation finite integral between x1 and
x2

FitLinear Computes a linear, least-squares fit of data in any given pattern.

new Interpolation (pattern ) initialises least-squares fit of pattern

solve () computes least-square solution

coefficients () returns calculated linear function parameters in the form of a vec-
tor

covariance () returns the covariance matrix

degreesOfFreedom () returns the number of degrees of freedom

normalizedChiSquare () returns the normalised χ2 of the minimisation

PlotCurve Handles pattern representation on a xy plot.

new PlotCurve () initialises the object

setPattern (pattern ) indicates that data contained in pattern should be repres-
ented

setSymbol (symbol , size , border_color , fill_color ) specify what symbol to
use for data points; options are NoSymbol, Square, Circle; size of symbol
is in pixels; colors are represented by a string, such as “black”, “red”, “blue”

setSymbol (line , thickness , color ) specify what line style to use for connect-
ing data points; options are NoLine, Continuous, Dashed; thickness is in
pixels; color is represented by a string

setErrorBar (type , color ) specify what type of error bar to display; options are
NoErrorBar, LineBar; color is a string representation

PlotCurve objects are displayed on screen by means of the global object Plot.
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Plot (global object) Displays curves in a xy plot. This is a global object, that
may be invoked directly rather than allocated on a per-need basis.

add (title , plot_curve ) adds a tab labelled title to the plot window, if not
already present; displays plot_curve in the corresponding tab

Print (global function) This function is used to display custom text output in
the bottom window. Accepts any number of arguments, and about any argument
type that can be represented in the form of simple text.

A.2.2 Physical data manipulation classes

These custom classes were implemented to handle physical material data. The user
is supposed to primarily interact with this kind of objects.

UnitCell[type] Describes a crystalline unit cell; type can be Cubic, Hexagonal or
Triclinic (generic).

new UnitCell[type ] (a , b , c , alpha , beta , gamma ) initialises the unit cell;
for a cubic system, only a is required; for a hexagonal one, a and c; all
arguments are required for a triclinic system

a, b, c, alpha, beta, gamma () returns the corresponding unit cell parameter

Ihkl Represents a triad of Miller indices, indicating a crystallographic plane or dir-
ection.

new Ihkl (h , k , l ) initialises the descriptor

h, k, l () returns the corresponding index

ElasticTensor Describes an elastic tensor; information is stored both in terms of
stiffness and compliance.

new ElasticTensor () initialises the object; does not store any actual data yet
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initializeCubicS (S11 , S12 , S44 ) initialises entries for a cubic symmetry from
compliance elements

initializeCubicC (C11 , C12 , C44 ) initialises entries for a cubic symmetry from
stiffness elements

initializeHexagonalS (S11 , S12 , S13 , S33 , S44 ) initialises entries for a hexagonal
symmetry from compliance elements

initializeHexagonalC (C11 , C12 , C13 , C33 , C44 ) initialises entries for a hexagonal
symmetry from stiffness elements

initializeFromS (S ) initialises entries from a generic matrix representation of com-
pliance

initializeFromC (C ) initialises entries from a generic matrix representation of stiff-
ness

storeS (S ) stores compliance into S

storeC (C ) stores stiffness into C

OdfData Handles Orientation Distribution Function data. Provides capability to
load from file as well as normalise over the Euler space.

new OdfData (cell , path ) initialises the object, loading data from file at path;
crystalline unit cell cell needs to be provided for symmetry evaluation
purposes

value (g ) returns value at g = (α, β, γ)

integrate () returns the integral over the whole Euler space; after normalisation,
it should return 8π2

normalize () normalizes enforcing the integral over the whole Euler space to be 8π2
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Model[name] Computes X-ray and macroscopic elastic constants based on a grain
interaction model, single crystal elastic properties, and texture information. Name
can be Reuss, Voigy, VookWitt, InverseVookWitt, Eshelby, Baczmanski.

new Model[name ] (cell , odf , elasticTensor [, eta1 , eta2 ]) initialises the model
for the given unit cell, ODF data and single crystal elastic tensor ; morpho-
logical texture models (Eshelby, Baczmanski) require grain aspect ratios
eta1 and eta2 to be specified as well

evaluateConstants (a ) fills vector a with macroscopic elastic constants S1 and
1/2S2

evaluateStressFactors (f , hkl , psi , phi ) calculates X-ray stress factors F11

and F22 and stores the result into vector f ; requires hkl and sample rota-
tion angles psi and phi, in degrees

StressModel Performs residual stress data analysis, with the given grain interac-
tion model(s).

new ElasticTensor () initialises the object

loadMeasurementsFromFile (path ) loads data from file at path

addModel (model , fraction ) adds a grain interaction model to minimisation; ma-
terial volume fraction obeying to the model ’s behaviour may be specified

clearModels () clears the list of grain interaction models for minimisation

measurements () returns the number of “sin2 ψ” data sets

measurementIhklString (i ) returns a string representation of the hkl index used
in the i -th measurement; useful for plotting and reporting purposes

setWavelength (lambda ) sets the radiation wavelength used for experimental meas-
urements

set[Parameter] (value , fixed ) sets the initial guess for parameter (Cell for unit
cell parameter(s); DeltaTth for a global 2θ error (in degrees); DeltaPsi
for a global ψ tilt error (in degrees); StressPlane for σ‖; StressLong for an
additional σS11 stress component)
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solve () performs least-squares minimisation with the given initial conditions

[Parameter] () returns the value of a minimisation parameter (cellA, C, ... for unit
cell parameters; deltaTth, deltaPsi, stressPlane, stressLong represent the
same quantities introduced before)

[Parameter]Err () returns an estimated standard deviation for parameter

patterns (data , fit , i , p ) fills patterns data and fit with experimental points
and modelling, for the i -th “sin2 ψ” data set and direction φ = 0◦(p=0)
or φ = 90◦(p=1); output data points are arranged as

(
sin2 ψ, dhkl

)
pairs.

This function is used for plotting

A.3 Example script

The use of this application is better explained with a practical example. A typical
script for X-ray stress analysis is hereby presented and commented step-by-step; it
describes the problem of residual stress evaluation in a polycrystalline electrodeposited
Nickel coating.

First, the known physical parameters for the sample material are entered: the unit
cell parameter and single crystal elastic constants.

var cell = new UnitCellCubic (3.524) // [Angstrom]

var elasticConstants = new ElasticConstants

elasticConstants.initializeCubicS (7.95, -2.65, 8.61) // [1/TPa]

The ODF data is then loaded; normalisation is performed.

var odf = new OdfData (cell, "~/galvanic Nickel ODF.txt")

odfSim.normalize()

The stress analysis is now initialised; data is loaded from a file.

var stressAnalysis = new StressModel()

stressAnalysis.loadMeasurementsFromFile ("~/galvanic Nickel strain data.txt")

Grain interaction models are appended to the analysis: for this example we are only
using the simple Reuss and Voigt descriptions. The software will calculate the best-
fitting Hill mixing parameter.

93



Appendix A. QXrdTex user manual

stressAnalysis.addModel (new ModelReuss (cell, odfSim, elasticConstants),

0.5)

stressAnalysis.addModel (new ModelVoigt (cell, odfSim, elasticConstants),

0.5)

Minimisation parameters are initialised (and set free to vary during iterations).

stressAnalysis.setCell (cell, false)

stressAnalysis.setWavelength (1.540665) // Cu K alpha, [Angstrom]

stressAnalysis.setStressPlane (180) // [MPa]

stressAnalysis.setDeltaTth (0.0, false) // [degrees]

Perform minimisation.

stressAnalysis.solve()

Finally, display the results in plots.

for (var i = 0; i < stressAnalysis.measurements(); i++) {

var curvePoints = new PlotCurve, curveFit = new PlotCurve

curvePoints.setLine (PlotCurve.NoLine)

curvePoints.setSymbol (PlotCurve.Circle, 6, "black")

curveFit.setLine (PlotCurve.Continuous, 2, "red")

curveFit.setSymbol (PlotCurve.NoSymbol)

// Data points will be shown as black dots;

// modelling as a red line

var dataPoints = new Pattern, dataFit = new Pattern

stressAnalysis.patterns (dataPoints, dataFit, i, 0) // retrieve pattern

data from the minimisation object

curvePoints.setPattern (dataPoints); curveFit.setPattern (dataFit)

// data points are assigned to their corresponding

// curves, which can now be displayed

Plot.add (stressAnalysis.measurementIhklString(i), curvePoints)

Plot.add (stressAnalysis.measurementIhklString(i), curveFit)

// use the measurement hkl as plot tab label

}

The final result is shown below (Figure A.1).
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Figure A.1: Example stress analysis with QXrdTex.
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