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Abstract

This thesis is concerned with the problem of automatic ekva of harmonic and rhythmic
information from music audio signals using statisticahieavork and advanced signal process-
ing methods.

Among different research directions, automatic extractod chords and key has always
been of a great interest to Music Information Retrieval (Mé@mmunity. Chord progressions
and key information can serve as a robust mid-level reptatien for a variety of MIR tasks.
We propose statistical approaches to automatic extraofichord progressions using Hidden
Markov Models (HMM) based framework. General ideas we relyhave already proved to
be effective in speech recognition. We propose novel prtibab approaches that include
acoustic modeling layer and language modeling layer. Wesitigate the usage of standard N-
grams and Factored Language Models (FLM) for automaticcchazognition. Another central
topic of this work is the feature extraction techniques. Weelop a set of new features that
belong to chroma family. A set of novel chroma features tediased on the application of
Pseudo-Quadrature Mirror Filter (PQMF) bank is introdudaf show the advantage of using
Time-Frequency Reassignment (TFR) technique to deriverbatoustic features.

Tempo estimation and beat structure extraction are amahgshost challenging tasks in
MIR community. We develop a novel method for beat/downbstitraation from audio. It is
based on the same statistical approach that consists ofénarthical levels: acoustic modeling
and beat sequence modeling. We propose the definition ofyaspecific beat duration model
that exploits an HMM structure without self-transitions. new feature set that utilizes the
advantages of harmonic-impulsive component separatamigue is introduced.

The proposed methods are compared to numerous state-aftthpproaches by partic-
ipation in the MIREX competition, which is the best impakrt@ssessment of MIR systems
nowadays.
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Chapter 1

Introduction

This thesis deals with automatic extraction of harmonic gmdhmic information from raw
audio. This chapter makes an introduction to MIR, formidatee motivation, sets goals and
describes the contributions.

1.1 Content-based music information retrieval

Recent advances in digital media have allowed for extenside-spread growth of musical
collections. Existing storage capacities allow for havingje collections of media on portable
media devices. There is a continuous transformation of gnewe listen to music. Going back
to the end of the 20-th century, we could observe radio brastidty and music record stores to
be the major ways of music consumption. Nowadays, drasticilaoty of social networking
has lead to the creation of web communities, changing theolvayusic dissemination. Music
recommendation services, such as Last.frave gained huge popularity and proposed new
facilities to access media data based on your personakpneies.

To this end, the need for effective search in large mediab@dates is becoming critical. De-
veloping techniques for accessing content and browsingigehmusic archives has become
an emerging area of research. High demand for such techmitagelead to establishing and
evolving Music Information Retrieval (MIR) community, wdhi include academic research in-
stitutions, as well as industrial research companies. &lugormation Retrieval is an inter-
disciplinary science that addresses extraction of me&mimgformation from music data. It
involves musicology, signal processing, machine learaimg other disciplines.

In spite of growing research activities in MIR, nowadays thost common way of media
search is accomplished through textual metadata. Lots sfawownload services are based
on the search by artist, album, song name. However, a numbentent-based search engines,

http://www.last.fm



1.1. CONTENT-BASED MUSIC INFORMATION RETRIEVAL

such as Shazahand SoundHourthave become available, introducing essentially novel ap-
proaches to music retrieval. Content-based concept islhaséhe principle of processing the
content of a given audio document and extracting the negesgarmation from it.

Shazam provides music identification service that is basedcoustic fingerprinting [1].

A fingerprint of each audio file from a huge music databaseaoiedtin an indexed database.
A query audio file is subjected to the same analysis and theaagt fingerprint is matched
against a large set of fingerprints from the database. A figbssible candidate songs from
the database is evaluated for the correctness of the matwmhroBust identification in noisy
environment, spectrogram peaks are used as feature set. oA tsme-frequency points with
the highest energy in their neighboring region is extraeted constructed constellation map
is indexed. The robustness of the approach is proved by tieHat noise and distortions
usually do not change the temporal layout of the spectrogr@aks. Shazam is considered to
be an effective tool to search for exact content match. Hewelight modifications in the song
arrangement make identification impossible. For examgla;,ch query using a remix version
for a given song would fail.

However, the solution of the above-mentioned search pnobhMhen there is no exact match
in spectral peak distribution, but high similarity in thertmonic content is proposed by Sound-
Hound. Apart from the functionality provided by Shazam, éitgorithm is so advanced that it
can confidently recognize a song from your own singing anddonming. On the other hand,
sometimes, the system is not capable of exact matching anprogide a remixed version of a
guery song instead of the original as the final result.

Shazam and SoundHound are the solutions developed maimilzgdanobile phone users.
However, there is the need for such tools on desktop conmgufepossible scenario could be
the following: having a huge amount of untagged music datmrze a collection, where songs
are sorted according to a certain criteria, e. g. artistfalbstyle. A solution is proposed by
MusicBrainZ project. The project is maintained by open community thdiects, and makes
available to the public music metadata in the form of a retal database. The database of
MusicBrainz contains information about artists, traclesif the length of each track, and other
metadata. Recorded works can additionally store an acolirsgierprint for each track. This
provides the facility for automatic content-based idecdiion and subsequent tagging.

There are thousands of other possible applications of theteithnologies. For all of them,
effective and robust algorithms for feature extractiory@a essential role.

2http://www.shazam.com
3http://www.soundhound.com/
“http://www.musicbrainz.org



CHAPTER 1. INTRODUCTION

1.1.1 High-level music descriptors

One of the largest research areas of MIR is the extractiongti-level music descriptors, or
attributes. The most important and informative attributesude harmony, rhythm, melody,
instrumentation and others. Effective methods for extwactuch descriptors is the necessary
condition for developing robust and effective music infatian retrieval systems. A funda-
mental approach to the classification of musical facets waggsed by Orio [2].

In the following sections a short description of the mostamant high-level music descrip-
tors is provided.

Onset structure

An important characteristic of any musical excerpt is theatistructure. Onset information can
be useful for the analysis of temporal structure such as éemmgl meter. Music classification
and music fingerprinting are the tasks where onset infoonatould also be of great use [3].
The notion of onset leads to many definitions: a sudden bfiestergy, a change in the short-
time spectrum of the signal or in the statistical properti€se onset of the note is a single
instant chosen to mark the temporally extended transientndst cases, it will coincide with
the start of the transient, or the earliest time at which thegient can be reliably detected [4].
Onsets can be divided into two classes, "soft" and "hard". akdlonset is characterized by
a sudden energy change. A soft onset is usually represegtstblw changes in the spectral
energy. The most straightforward methods for hard onsefctien are based on the analysis
of energy-based features. Soft onsets are considered taible more difficult to detect and
usually involves spectral analysis methods. Noise andlasons associated with frequency
and amplitude modulation make the task of onset structuraeion challenging.

Rhythmic structure

Rhythmic structure of music plays an important role in Miated tasks. It is primarily repre-
sented by tempo, beat and meter structure. For example,ikgdgat structure allows one to
extract musically meaningful beat-synchronous featunssead of performing frame-by-frame
analysis. It can be of great benefit to manage the tasks ofcrstrsicture extraction or cover
song identification. In these tasks dealing with beat-néim®a time axis is usually much more
convenient, since a tempo-invariant representation lig exd.

Rhythmic structure is strongly related to the notion of mdteter can be characterized by a
hierarchical structure that comprises several levelsHBfceptually, the most important level is
the tactum-level, which is also referred to as the beatkldétesually corresponds to the period
of foot-tapping. Bar-level structure is another importarformation, which is characterized
by the number of tactum-level events within one musical measBar-level structure is also

3



1.1. CONTENT-BASED MUSIC INFORMATION RETRIEVAL

named as time signature and can be expressed in the formaufteofral number, e.g. 3/4, 2/4,
6/8. It gives information on the organization of strong (evel) and soft (tactum-level) events
along the time axis. An example of hierarchical rhythmicsture is presented in Figure 1.1

< 20

- 10

Z-10k

Z-20k

R R L L L L L e
s s s

Bar-level

LN N L N BN e N R e R N N RN RN LR R AR
s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s 11s 12s 13s 14s 15s 18s 17s 18s 19s

Figure 1.1: An example of hierarchical rhythmic structusethe beginning of George Michael’'s "Care-
less Wisper"

Nowadays, beat detection is one of the most challengingstaskhe MIR community.
While processing modern rock and pop songs with rich penceiggrt and stable rhythm is
a nearly solved problem, dealing with non-percussive musils soft note onsets and time-
varying tempo, that is characteristic of classical musistill a challenge.

Melody

Melody is amongst the most important high-level descriptbat describe the contents of music
signals. Melody extraction is highly related to the gené&aiak of pitch detection and tracking
that has been extensively addressed in other research suehsas speech signal processing.
However, the task of melody extraction does not only meamasibn of the fundamental
frequency, but also the subsequent quantization usingcaustale to produce a score-like
representation. As in the case of single speaker in speedessing, melody detection in the
case of monophonic signals is nearly a solved problem. Heweealing with multi-instrument
signals with the number of fundamental frequencies at agivee instant greater than one is
still a challenge. This problem becomes even harder, if mpemiment instruments have rich
spectral representation with harmonics containing sicgnifi part of spectral energy. There are
some problems one can come across when extracting meloghe gerformances may contain
vibrato parts, which can lead to a sequence of notes in thietfarescription, while the original
score notation contain just a single note. Another caseisiard to manage is glissando. In
this case, rapidly changing pitch can also be transcribedsasjuence of notes.

Melody is considered to be the attribute that captures th& significant information about

4



CHAPTER 1. INTRODUCTION

song. A song that needs to be recalled can be easily repeelsbytsinging or humming the
melody, since in most cases, melody is the attribute théhdisishes one piece from another.

Harmonic structure

Key and chords are the two attributes that describe tonahanghonic properties of a musi-
cal piece. Harmony denotes a combination of simultaneaursbyogressively sounding notes,
forming chords and their progressions. Among all existingsital styles, western tonal mu-
sic, which is one of the most popular nowadays, is known Bstitong basement on harmony.
Harmonic structure can be used for the purposes of conssgebindexing since it is derived
from the mood, style and genre of musical composition. Haimsetructure can be described
in terms of chord sequences. A chord can be introduced as hemwhnotes sounding simulta-
neously, or in a certain order between two time instantswknas chord boundaries. Therefore,
the task of chord transcription includes chord type clasaifon and precise boundary detection.

Harmony together with such features as tempo, rhythm, ngedgttacted from a raw wave-
form can be widely used for context-based indexing, resieand navigating through large
collections of audio data.

1.1.2 MIR applications

Extracting high-level information, such as rhythm, harydeey, melody has become a chal-
lenge. We have entered an era of complex content-basechsmadaetrieval systems [6]. A
number of use cases, where recently developed content-basthods were successfully ap-
plied in MIR applications are addressed in this section.

Automatic music transcription and lead sheet generation

Similarly to automatic speech recognition, automatic murginscription has a lot of challeng-
ing tasks. For example, distinguishing musical instrureenta polyphonic piece of audio
can be more or less easily done by human being. Meanwhiléngallis problem automati-

cally needs a lot of research effort. Actually the most deagnproblem is the transcription of
polyphonic piece of music in terms of notes, which impliegdurcing score notation for each
instrument. The subtask of this problem, which deals with éRktraction of harmonic prop-

erties of audio signal, is chord recognition. Another atradling subtask is the extraction of
hierarchical rhythmic structure [5].

Recently, systems that are capable of comprehensive nassctiption have become avail-
able. For example, Weil et al. [7] proposed a lead sheet génarsystem that aggregates
high-level music descriptors. Tempo, time signature, hglohords, and key are extracted in
separate modules that can interact with each other. Rethtaid sheets contain the melody

5



1.1. CONTENT-BASED MUSIC INFORMATION RETRIEVAL

and the corresponding chord progression in a beat-synocbsdashion. State-of-the-art perfor-
mance in each constituent module is achieved, which allowslftaining transcription results
close to musician expectations.

Accompaniment based on chord extraction

While the application area of tempo and beat descriptorsaislynindexing and segmentation,
the information on chord progressions covers more prdaggects. Opportunity to automat-
ically extract harmonic structure can be of great use to aolsgists, who perform harmonic

analysis over large collections of audio data, or just totaoramusicians. A great interest
in chords can be indicated by the number of websites conigicihord databases for existing
songs. Archives containing chord transcriptions are bé&egmore and more popular. An easy
way to accompany a singer is to play the chords extracted fineperformed song, which can
be extracted manually by expert musicians, or in automashibn. For the moment, the con-
tent is generated by users manually in a time-consuming eraihe quality of the data highly

depends on the user expertise and background in music. kdtyi online chord databases
sometimes contain not reliable transcriptions. At the sime, modern advanced automatic
chord extraction systems do not allow to produce 100% cblabels. The best system in the
MIREX 2011 competition performed at 83% recognition rate.

The compromise between time-consuming manual labelingtla@djuality of automatic
chord transcription can be achieved in semi-automatic miodée first step, preliminary labels
are obtained by running automatic chord extraction systemme final step, a number of trained
musicians work together on error correction and qualityckhe

Automatic accompaniment generation for vocal melody and atomatic song creation

Melody and harmony are considered to be the backbone of a $tiegrocess of song creation
for many song writers often starts with the idea about me[8flyin this approach developing
chord progression and accompaniment patterns are thesaegesteps to produce the final
version. Usually, professional musicians with the knowkedf musical structure and harmony
manage the whole process of song production. However, peats poor background in music
theory are not able to participate in such an amusing andieeezctivity. Recent advances in
MIR have allowed musically-untrained individuals to work music creation. An example
of a machine-learning-based system that takes a melody iapainand generates appropriate
chords was presented by Simon et al. [8].

Another interesting use case of song generation was prdgnsEukayama et al. [9]. Au-
tomatic song generation web-service was developed in theexbof Orpheusproject. The

Shttp://ngs.hil.t.u-tokyo.ac.jptorpheus/cgi-bin/
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system requires only song lyrics as an input data. A user Isansat up music genre, voice,
tempo and other parameters. Then the system performs taktseg) melody and harmony
generation, and produces score notation containing lgtmsg with the resultant audio file.

Recommender systems

Extreme growth of online music collections and advancesgitad multimedia have allowed
us to start listening music just with a click of a button. Intepf the easy access to large
web archives, discovering new music according to our peismeferences is a hard problem.
This caused a variety of music recommender systems to camexistence. There are several
approaches to music recommendation.

Pandoré is one of the most popular music recommendation systems dased on the
Music Genome Projett Each track in the database is annotated with 400 differtrithztes.
Annotating is performed in a time-consuming manual fasbipprofessional musicians, which
makes the growth of the database dependent on the humamaesou

Music recommendation system proposed by Lastifrbased on a different approach. They
have developed social recommenders, also known as cai@aoffilters. The statistics for
music tracks ever listened by a particular user forms theslzdghe recommendation engine.
Each user is proposed to install an optional plug-in that itboos media player software and
builds a profile of his or her music preferences. Having adatgtabase of user profiles, the
system finds users whose listening history is similar andamakiggestions.

Mufin® is a music recommendation service that is purely contesédba It analyzes the
fundamental properties of a song. The recommendation edb@sthe similarity of the content.
The algorithm analyzes 40 characteristics of each songydimg tempo, sound density, and
variety of other factors.

Other use cases

The number of possible use cases, where content-based §oRthins are successfully applied
is not limited to the above-mentioned applications. Aitisintification, copyright infringement

detection and protection, instrument separation, pemdoca alignment, plagiarism detection,
composer identification are amongst the most challenging tdsks being addressed recently.

®http://www.pandora.com
"http://www.pandora.com/mgp.shtml
8http:/www.last.fm
®http://www.mufin.com



1.1. CONTENT-BASED MUSIC INFORMATION RETRIEVAL

1.1.3 Music Information Retrieval Evaluation eXchange

Progressive and continuous evolving of MIR systems thatameobserve nowadays is boosted
by the existence of Music Information Retrieval Evaluate{change (MIREX) [10], the most
influential, community-based evaluation framework. Diremmparison of MIR systems aimed
at solving a specific problem is sometimes impossible duedoynfactors. Performance of a
given system can be obtained on different datasets, udiiegadit evaluation metrics. Establish-
ing common rules of MIR system assessment has become a ingegsscaused establishing
and gradual development of the MIREX framework.

Audio Classification (Train/Test) Tasks, incorporating:
Audio US Pop Genre Classificatig

Audio Latin Genre Classification
Audio Music Mood Classification

Audio Classical Composer Identification

Audio Cover Song Identification

Audio Tag Classification

Audio Music Similarity and Retrieval

Symbolic Melodic Similarity

Audio Onset Detection

Audio Key Detection

Real-time Audio to Score Alignment (a.k.a Score Following)

Query by Singing/Humming

Audio Melody Extraction

Multiple Fundamental Frequency Estimation & Tracking

Audio Chord Estimation

Query by Tapping

Audio Beat Tracking

=]

Structural Segmentation

Audio Tempo Estimation

Table 1.1: MIREX 2011 tasks.

MIREX is coordinated by the International Music Informati®etrieval Systems Evalua-
tion Laboratory (IMIRSEL) [11] at the University of lllingiat Urbana-Champaign. The target
of IMIRSEL is to create the necessary infrastructure fordt@luation of many different MIR
systems. The necessary condition for any kind of MIR evadaatis the music data collections
with the corresponding metadata information. Due to d#ifércopyright issues, sometimes it
is not possible to provide public access to the data. Anagtsson not to give an access to the

8



CHAPTER 1. INTRODUCTION

test datasets for the participants is to prevent from modedmpeter over-fitting, which is an
important aspect of objective evaluation. To this end,ipi@dnts should deliver their systems
to the MIREX team to execute using recently developed Thevbidied Environment for Mu-
sic Analysis (NEMA) framework [12]. The framework facilies valid statistical comparisons
between techniques, avoiding the above-described prabbgntarrying out experiments that
are both carefully constructed and exactly repeatable.

The set of different tasks is defined by the community. Anyisnieee to propose a new
task, describing the evaluation metrics, and, if necesgaoyide a dataset. Then, the task is
discussed on the wiki-pages by all potential participatifierent approaches for the evaluation
are taken into consideration, and the final description alesbecomes available.

Starting from the MIREX of 2005 year, a lot of different tasies’e been proposed. Table 1.1
contains a list of tasks for the MIREX of 2011 year.



1.2. MOTIVATION

1.2 Motivation

Fast development of hi-tech industry allowed people hatiogrs of digital audio recordings
in their pockets. It caused high demand for content-basagtiseand retrieval, known as music
recommendation. Due to the extreme growth of digital musitection, effective and robust
content-based indexing and retrieval methods have beconeenarging area of research. It
boosted the demand for tools that can perform accurateatixinaof high-level descriptors.
Chords, key, beat structure and tempo are among the mosamneldescriptive attributes of
music information.

Given the great demand for tools that are able to performetd+iiased analysis, higher
level aspects of musical structure, such as harmony antimhgre given attention, and we
contribute exploring these areas.

10



CHAPTER 1. INTRODUCTION

1.3 Goals

This thesis encompasses a variety of research activitiescamainly at the extraction of har-
monic and rhythmic descriptors. The main focus is concésdran the developing compu-
tational algorithms and effective feature extraction mdthfor the transcription of chord se-
guences and beat structure.

The objectives of the work include the following aspects:

1. Analyze state-of-the art approaches for chord deteetimhbeat structure extraction.
2. Develop robust feature sets that capture essentiahvaon from audio for a given task.

3. Design and develop probabilistic frameworks for auteo@tord recognition and beat/downbeat
extraction.

4. Perform large-scale evaluations and describe the bahaivihe developed systems vary-
ing different configuration parameters.

5. Participate in the MIREX competition to demonstrate thmpetitiveness of the proposed
approaches.

11
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1.4 Contributions
The thesis contribute in the following areas:

1. A new feature set for chord recognition that outperfortaedard chroma feature has been
proposed. It is based on the Time-Frequency Reassignnamtitgie and incorporates
harmonic-impulsive component separation.

2. Atwo-level probabilistic framework for chord recogwitihas been introduced. Itis based
on a novel approach that includes acoustic modeling layeéfamguage modeling layer.

3. The usage of standard N-grams and Factored Language $fodalitomatic chord recog-
nition has been addressed. Experiments with different Hodfcktrategies for Factored
Language Models have been carried out.

4. The performance of the proposed chord recognition sysi@srbeen investigated using
large-scale parameter optimization.

5. A new feature set for beat/downbeat detection has begroped. It is based on the
harmonic and impulsive part of the Time-Frequency Reassigpectrogram.

6. A novel probabilistic approach to beat/downbeat detadtias been developed. The def-
inition of a very specific beat duration model that exploits MM structure without
self-transitions has been introduced.

7. All the described techniques have been implemented analitted to the MIREX [13]
competition. Our chord recognition system showed the lessiitin the 2011 year contest,
while our beat/downbeat estimation system was at the tapedist for the MCK dataset.

12
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Chapter 2

Background

This chapter is concerned with the background informatiorcleord extraction. Among all
existing musical styles, western tonal music, which is ohthe most popular nowadays, is
known for its strong relationship to harmony.

Harmonic structure can be used for the purposes of contsgebindexing and retrieval
since it is correlated to the mood, style and genre of musicaiposition. It has been suc-
cessfully used for audio emotion classification [14], coseng identification [15], audio key
estimation [16]. Chord sequence can serve as a robust netirkpresentation for a variety of
MIR tasks. Among different research directions automdtiard recognition has always been
of a great interest to MIR community.

During the past few decades several approaches to chorgiméon were developed. They
can be classified into template matching[17, 18], machiaeniag [19-21] and hybrid ap-
proaches [22, 23]. The majority of the current state-ofdhtemachine learning approaches are
based on Hidden Markov Models [24], [25], [26], Dynamic Bsiga Networks (DBN) [27]
and Support Vector Machines (SVM) [28]. Submissions bagsethe above cited approaches
were among the top-ranked results in the MIREX competitions

Section 2.1 introduces general information on featureoreszlection and extraction tech-
niques. In Sections 2.2 — 2.3 different approaches to autowetaord recognition are presented.

2.1 Feature extraction for chord recognition

2.1.1 Feature selection

As in the case of speech recognition, one of the most crigsales in chord recognition is the

choice of the acoustic feature set to use in order to représenvaveform in a compact way.
Chromagram has been the most successfully used featuteefehord recognition task. It

consists of a sequence of chroma vectors. Each chroma yatdorcalled Pitch Class Profile

15



2.1. FEATURE EXTRACTION FOR CHORD RECOGNITION

(PCP), describes harmonic content of a given frame. The ahudenergy for each pitch class
is described by one component in a chroma vector. Since a domsists of a number of tones
and can be uniquely determined by their positions, chronctovean be effectively used for
the chord representation.

Fujishima was the first one who used the chroma feature [29¢liord extraction from
audio. The most common way of calculating chromagram isaostfiorm the signal from the
time domain to the frequency domain with the help of shantetiFourier transform (STFT)
or constant-Q transform and subsequent energy mappingecfrapbins to chroma bins [19—
21, 30-32].

An alternative way to extract chroma was proposed by MuBa&j.[ The analyzed signal is
passed through a multirate IIR filter bank. In the first stepMSP (Short-Time Mean-Square
Power) features that measure the local energy content bffése output are extracted. Large
amount of energy indicate the presence of musical noteseMneguencies correspond to the
passband of a given filter. In the next step, chroma-baseid aejresentation is obtained from
STMSP by summing energies that correspond to the subbarks sdme pitch class.

Much attention has been put to the problem of higher harnsoana their impact on the
chroma vector. Several approaches proposed performing som of harmonic analysis in
order to reveal the presence of higher harmonic compond#ts3p]. All these approaches are
based on a frame-by-frame spectral analysis that is aimf@tb@g all the pitches that occur in
the given time instant.

In the approach of Mauch and Dixon [34] an approximate n@atesicription procedure was
applied before calculation of wrapped chromagram. Expemtal results showed an increase
in performance of 1%. However, their technique proved to beenadvantageous when consid-
ering "difficult” chords.

Ueda et al. [26] showed the importance of harmonic filteritep Sor feature extraction.
Before extracting feature vectors, a harmonic/percussagaration is performed in order to
remove impulsive components and noise. The system basédsoapproach showed the best
result in the MIREX 2008 competition. Another importantueghe authors addressed in this
paper is the usage of dynamic delta-features.

There were some attempts to use features derived from sthotleoma vector using an
additional transform operation. Lee and Slaney [20] usedltoentroid as an alternative to
chroma vectors. In their experiments on the first two Beatllesms, as well as on two classical
pieces of Bach and Haydn tonal centroid showed to outperfdimoma features. Another
example of feature set obtained from chroma is presentdueiapproach of Ueda et al. [26].
They used FFT of the chroma vectors as feature set for choadjniion system and showed
the advantage of this transform in terms of recognition.rate
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CHAPTER 2. BACKGROUND

2.1.2 Beat-synchronous features

Recently, several approaches that exploit mutual depeydagtween harmonic progressions
and rhythmic structure have been proposed [21], [37], [B&at-synchronous chroma features
are used instead of frame-by-frame chroma vectors [37], [38ce western music is highly
structural in terms of rhythm and harmony, the basic idea¢hard boundaries occur on the
beat positions is exploited.

Papadopoulos and Peeters [21] proposed a system thatpsigonultaneous estimation of
chord progressions and downbeats from audio. They paidd &dtention to possible interac-
tion of the metrical structure and the harmonic informatda piece of music. They proposed
a specific topology of HMMSs that allows for modeling chordpéedency on metrical structure.
Thus, their system is capable of recognizing chord progyassand downbeat positions at the
same time. The model was evaluated on a dataset of 66 Beatlgs and proved to improve
both the estimation of the chord progression and the dovirguesdtions.

Bello and Pickens [37] used a similar approach. The evaloaif their system showed a
significant increase in performance (about 8%) when usid-&gnchronous chroma features
as opposed to frame-by-frame approach.

However, beat-synchronous features have some weak sithe® t8e quality of beat-level
segmentation depends highly on the beat extraction appreamne beat location errors can
lead to incorrect segmentation.

2.1.3 Tuning

In the stage of feature extraction for chord recognition key estimation, a lot of attention
has been paid to tuning issues [18, 30, 31]. The necessiynaig appears when audio was
recorded from instruments that were not properly tunedrimseof semitone scale. They can
be well-tuned relatively to each other, but, for example4™Aote is played not at conventional
440 Hz but at 447Hz. This mis-tuning can lead to worse featdtection and, as a result, less
efficient or incorrect classification. Several approacloesircumvent the problem have been
developed.

Harte and Sandler [18] suggested using 36 dimensional coneeutors. The frequency
resolution in this case is one-third of a semitone. Afterghak-picking stage and computing a
histogram of chroma peaks over the entire piece of musicfihdymis-tuning deviation. And
prior to calculating 12-bin conventional chromagram thegusately locate boundaries between
semitones. The resulting 12-bin semitone-quantized chgvam is then compared with a set
of predefined chord templates. They defined 4 chord types ermijinor, diminished and
augmented for each pitch class (total 48 chord template®).full alboums of the Beatles were
used for evaluation. The average frame-level accuracy 96
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Peeters [31, 32] tested a set of candidate tunings, i.e.udear-tone below and the quarter-
tone above "A4" note. For each possible tuning the amounhefgy in the spectrum is esti-
mated. After defining the global tuning center, the signaégsampled so that it becomes tuned
to 440Hz.

Mauch et al. [30] used a quite similar approach: after comgud6-bin chromagram they
pick one of three possible sets of 12-bin chromagram, rglgim the maximum energy inside
candidate bins (e. g. {1, 4, 7... 34}).

2.2 Template-matching techniques

Template matching techniques are based on the idea of udiogla set of templates for each
chord type. The template configurations are derived eitkaristically or using some knowl-
edge from music theory. In the classification step, extchfgtature vectors are matched against
all possible templates. The template that produces thesbtgiorrelation is used to generate
chord label for a given vector.

A most trivial example would be the definition of a binary lilaénsional chord template
mask, where pitch classes that correspond to the condtinaées of a given chord are set to
ones, while the other pattern components are set to zeromatyltemplatel” is defined as

T =Zc,Zcy, Zp, Zpg, Zg, Zr, Zpg, Zc, Loy, Za, Zag, Zg] (2.1)

where Z, denotes the mask value that corresponds to the pitch glabsr example, binary
masks for C major and D minor chords would take the followiogf:

Teimaj = [1,0,0,0,1,0,0,1,0,0,0,0]

2.2)
TD:min - [07 07 17 07 07 17 07 07 07 17 07 0]

Fujishima [29] proposed a real-time chord recognitioneystdescribing extraction of 12-
dimensional chroma vectors from the Discrete Fourier Tans(DFT) of the audio signal and
introducing numerical pattern matching method using Builkthord-type templates to deter-
mine the most likely root and chord type. He introduced feattector smoothing over time
and "chord change sensing". The system was tested on raal andl showed 94% accuracy
for the opening theme of Smetana’s Moldau.

Similarly, Harte and Sandler [18] applied binary masks toegate templates for four dif-
ferent chord classes: major, minor, diminished and augeagentheir vocabulary consisted of
48 different chords. Evaluation was performed on the first Beatles albums, "Please, Please
Me" and "Beatles For Sale". The average frame-level acgutay achieved was 62.4%.

Papadopoulos and Peeters [39] used more sophisticated thoplates that take into ac-
count higher harmonics of pitch notes. The ideas they relarenbased on the extension of
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PCP, Harmonic Pitch Class Profile (HPCP) that was used by @{#0¢ for key detection. In
the approach presented in [39], amplitude values of foux-gjher harmonics contribute to
chord templates. An empirical decay factor for higher harit®amplitude is set t0.6, so that
the amplitude of &-th harmonic is set t0.6", whereh = 0 corresponds to the fundamental.
Evaluations on the 110 songs of Beatles showed that comsgdgk higher harmonics in chord
templates brings about 5% relative improvement.

Oudre et al. [41] proposed a template-based method for alkroadjnition. They investigate
different chord models taking into account one or more hidtemonics. As in the above-
mentioned approaches, the detected chord over a frame aéminimizing a measure of fit
between a rescaled chroma vector and the chord templatestekesting investigation they car-
ried out is the influence of different measures of fit betwdendhroma features and the chord
templates. In order to take into account the time-perstgtetiney performed a post-processing
filtering over the recognition criteria, which quickly sntbes the results and corrects random
errors. Their system was evaluated on the 13 Beatles alblims.experiments showed that
chord template configurations with one and four harmonicsveld better results than those
with six harmonics. They discovered that the most robustedfgttive measure of fits in their
approach are the Kullback-Leibler divergence and the Haal distance.

A fast and efficient template-based chord recognition nektkas suggested in [17]. The
chord is determined by minimizing a measure of fit betweenctiremagram frame and the
chord templates. This system proved the fact that templased approaches can be as effective
as probabilistic frameworks.

2.3 Machine learning techniques

HMM-based aproaches

Sheh and Ellis [19] proposed a statistical learning metbodtord recognition. The Expectation-
Maximization (EM) algorithm was used to train Hidden Markigdodels, meanwhile chords
were treated as hidden states. Their approach involveststalinformation about chord pro-
gressions — state transitions are identical to chord tiiansi The optimal state path is found
using the Viterbi algorithm. They achieved accuracy of 280%thie chord recognition task and
75% in the forced-alignment task, which is not longer state®art. But their work made sub-
stantial contributions in several aspects. They appliedhmaf the speech recognition frame-
work with minimal modification. They draw an analogy betwéaa sequence of discrete chord
symbols used to describe a piece of music, and the word sequesed to describe recorded
speech. It was shown that the chromagram is superior to MgliEncy cepstral coefficients
(MFCCs).
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Bello and Pickens [37] proposed a probabilistic model thatartially based on music the-
oretical considerations. As opposed to Sheh and Ellis M8} used random initialization of
mean vector and diagonal covariance matrix in Gaussianhisbns, they propose initialize
these values according to music theory. In order to takedotsideration correlation between
chroma elements, they introduce full covariance matrideyltiaim that pitches which comprise
the triad are more correlated than pitches which do not lgeforthe triad. These dependencies
are introduced when initializing covariance matrix. Theggose selective model training us-
ing the standard Expectation Maximization (EM) algorithon HMM parameter estimation as
introduced in [42]. The observation vector parameters ateaaestimated in the training phase.
The only parameters that are updated using EM algorithneisttlord transition matrix and ini-
tial distributions. The experiments were conducted udimafirst two Beatles albums, "Please,
Please Me" and "Beatles For Sale". The performance of tisies proved to be significantly
higher when using selective model training (75%), if consplaio the system configuration,
where all parameters are re-estimated in the training plda3$é).

In Western tonal music, key and chord progression are thettifacts that are highly de-
pendent on each other. Some approaches exploit this mgpahdency [20],[43]. The advan-
tage of such systems is the possibility of concurrent estimaf key and chord progression,
which is achieved by means of building key-dependent HMMs.

Lee and Slaney [20] described a chord recognition systetuged symbolic data, taken
from MIDI? files, to train HMMs. This allowed them to avoid a time consngiiask of human
annotation of chord names and boundaries. At the same tirag siynthesized audio from the
same symbolic files and extracted feature vectors. They lauiey-dependent HMMs, where
chord transition probabilities are influenced by a given. Kayring the Viterbi decoding [42]
the HMM with the highest log-likelihood determines the gibkey and is used to derive chord
progression.

Hybrid approaches

Yoshioka et al. [22] presented an automatic chord transorigystem, which is based on gen-
erating hypotheses about tuples of chord symbols and cleanddaries, and further evaluating
the hypotheses, taking into account three criteria: atofesitures, chord progression patterns,
and bass sounds. Thus, they first performed beat-analyseoaudio to extract downbeat po-
sitions of a piece of music. Then, the most probable hypalamut a chord sequence and the
key were searched. Finally, the obtained most plausiblethgsis is produced as an output. A
conventional 12-dimensional chroma feature is used aarfeaet. Pre-defined chord progres-
sion patterns reduce the ambiguities of chord symbol ifleation results. They evaluated their

*http://www.midi.org
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system on one-minute excerpts from seven popular songsdmelved 77% average accuracy.

This approach was further developed by Sumi et al. [23]. Timeynly focused on the
interrelationships among musical elements and made ampgitte efficiently integrate infor-
mation about bass lines into probabilistic chord recogniframework. Their framework made
it possible to deal with multiple musical elements unifoymhd integrate statistical information
obtained from music recordings. They particularly ex@dithe mutual dependency between
chord sequences and bass lines in order to improve the agcafahord recognition. For
pruning the search space, they define the hypothesis teliads the weighted sum of three
probabilities: the likelihood of Gaussian Mixture Modets the observed features, the joint
probability of chord and bass pitch, and the chord transitiegram probability. Evaluation on
150 songs from twelve Beatles albums showed the averagefrata accuracy of 73.4%.

Some approaches used structural segmentation infornfatienhancing chord recognition
by combining information from different occurrences of tteme segment type for chroma
calculation [44].

In [27], a 6-layered dynamic Bayesian network was suggesteithis network four hidden
source layers jointly model key, metric position, basstpitiass and chord. The two observed
layers model bass and treble content of the signal. Thisoagprshows an example of how
simultaneous estimation of beats, bass and key can cotatibthe chord recognition rate.

Ni et al. [45] proposed a system for simultaneous estimaifarihords, key, and bass notes.
As opposed to the approach of Mauch [46], where some expertlkdge is used to set up
system parameters, it is fully based on the machine leaappgoach, where all the parameters
are estimated from training data.

Chord progression statistics

Incorporating statistical information on chord progressi into a chord recognition system is
an importantissue. It has been addressed in several wadiggth different techniques. Mauch
and Dixon [30] used one of the simplest forms/éfgrams — the bigram language model. In
the approaches of Papadopoulos and Peeters, Lee and SX@n2¢]chord sequence modeling
is introduced through state transition probabilities in MMn their case "language model" is
a part of HMM and is derived from the Markov assumption, whererd probability is defined
by only one predecessor. A large study on the modeling ofcceequences by probabilistic
N-grams was performed by Scholz et al. [47]. Unal et al. [4&Jdiperplexity-based scoring to
test the likelihoods of possible transcription sequences.
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Chapter 3

Feature extraction

In this chapter, a new feature set for extracting harmorf@mrmation from audio content is in-
troduced. The proposed features belong to the chroma fantiigh has always been a common
and well-established feature set for chord recognitione¥berforming feature extraction, sig-
nal in the given analysis frame is assumed to be stationatytas also assumed that no note
transitions occur inside it. However, standard chromaaekion approaches, which are based
on Short-Time Fourier Transform (STFT) or Constant-Q tfams, require frame size to be
long enough to provide reasonable frequency resolutioandients and noise may cause en-
ergy assignment to some frequencies that do not occur inghalsin this thesis, we investigate
on alternative solutions to feature vector extraction toord recognition. Along with the de-
scription of traditional approaches to chroma extractwespropose two novel methods that are
based on PQMF filter bank and Time-Frequency Reassignmgmectvely, and provide their
comparative characteristics.

3.1 Introduction to chroma features

Feature extraction is an important step in the majority oRNHsks. It allows for representing a
waveform in a compact way, capturing the desired charatiesiof the analyzed signal for fur-
ther processing. In chord recognition domain, chroma haayas been almost unique feature.
One of the reasons, why chroma performs well, is the strongection between the physical
meaning of chroma vector components and music theory.

Generally, chroma feature extraction consists of the fahg steps. At first, audio signal is
downsampled and converted to the frequency domain by mdeadisont-Time Fourier Trans-
form (STFT) or Constant-Q transform applying a window fuactwith a given overlapping
factor.

After applying STFT, the power spectrum is mapped to themlardomain, as
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n(k) = 12log, ( Ji
Jfref
where f,.; denotes the reference frequency of "A4" tone, wifjleandn are the frequen-
cies of Fourier transform and the semitone bin scale indespectively. Usually, different ap-
proaches consider the range of frequencies between 106+2@0d 1-2 kHz, mainly because
in this range the energy of the harmonic frequencies is géotihan non-harmonic frequencies
of the semitones. In order to reduce transients and noisdéasly to Peeters [32] and Mauch
et al. [30], smoothing over time using median filtering is laggmh After filtering semitone bins

are mapped to pitch classes, as follows:

) +69,n € RT, (3.1)

¢(n) = mod(n, 12) (3.2)

A sequence of conventional 12-dimensional chroma vedtosyn as chromagram is used
as acoustic feature set. Each element of chroma vectorspamels to the energy of one of the
12 pitch classes.

3.2 Tuning

An important parameter in Equation (3.1) that greatly inflces the quality of chroma features
is the reference frequency of "A4" nofg. The task off;, extraction is known as audio recording
mis-tuning estimation problem. In this section, we propaseethod forf; estimation that is
based on the analysis of the spectral phase change.

In order to circumvent the problem of audio recording misitg, a technique that was
formerly developed for phase vocoder [49] is utilized tareate the reference frequency. The
proposed method allows for very precise and accurate frezyuestimation of each sinusoid
by performing the analysis of the degree of phase changeblbo& diagram of the proposed
estimation scheme is depicted in figure 3.1.

The basic principle is to compute a second Fourier transtifrthe same signal, windowed
by the same function shifted by samples. Let:[n| be a sequence of samples of the analyzed
signal that contains some fundamental and harmonic conmp@nBiscrete Fourier Transform
(DFT) is performed on the signal weighted by window functioin| as

N— .
Xulto, K =3 wlnlaln + oo 2mk/N (33)

wherek and N denote a bin number and the window size respectively.

Peak extraction algorithm is applied to the obtained magieitspectrum, which results in
a list of possible candidates. The main problem of accuraguiency detection based just on
the magnitude information is that the main lobe of low fragmeharmonics is wider than the

24



CHAPTER 3. FEATURE EXTRACTION

l'tllmlllllllllmlllmlHll'l“'ll(llmlllllllllllll“ll‘tll'llnll'll(llmlllmlllll‘(“l
i G

Frame 1- >
b / Frm\ >
| Windowing | | Windowing |
¥ ¥
| FFT | | FFT |
/ \
[ weice | | P | | Pree |
| Peak search | | Subtract |
L]
| Divide by D |
(]
Frequency estimate |

Figure 3.1: Block diagram of precise frequency estimates.

spectral resolution (and sometimes than a semitone destaric such cases the energy of a
harmonic component is distributed between adjacent bih&ghwrepresents an obstacle in the
way of an accurate frequency estimation.

To cope with the above-mentioned problem, a second DFT isesppn the signal weighted
by the same window, shifted by samples, from which the difference of the two given phases
divided by the time interval oD samples is calculated as follows:

arg X [to + D, k] — arg X,,[to, k]
D

The time intervalD is chosen so that the phase change for the maximum frequeheysi
than2z. Analyzing the obtained spectra in terms of phase-charigersfor determining fre-
guencies of harmonic components in a more accurate wa alhihe adjacent bins containing
the energy of a single harmonic have the same degree of phasge(see fig. 3.2).

Now, information obtained from peak-search algorithm isnbmed with phase-change
spectrum in order to provide the final estimation. Positiohsll possible candidates are
checked in terms of the flatness of the corresponding fregyuirtervals in the phase-change
spectrum.

A set of detected harmonics is compared to the table of ndrineguencies. Mean value and
standard deviation of closest log-distance (based on a@eenmetric) to the nearest nominal
frequency are calculated in order to determine the misaguand the consequent consistency
of the estimate. Once this procedure has been applied, aalae i assigned to the reference
frequency, which is subsequently used for feature extractor example, frequency of "A4" is
setto 443Hz and frequencies of all the other notes are detedaccording to equally tempered
intervals.

w(D, N, ty) = (3.4)
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Figure 3.2: Magnitude and Phase-change spectrum.

3.3 PQMF-based chroma features

This section describes a novel approach to chroma extraaitibich is based on the Pseudo-
Quadrature Mirror Filters (PQMF) filter bank.

Chroma features can be extracted from audio in severalréiffevays. The first option,
which is the most common is to transform the audio to the feagy domain by means of
Short-Time Fourier Transform (STFT) or Constant-Q Transfand subsequent assigning en-
ergy from different spectral bins to chroma bins [19, 21]. &i'lperforming chroma extraction
using transform to frequency domain, the signal in a giveslyais frame is assumed to be
stationary and it is also assumed that no note transitioogranside it. Transients and noise
may cause energy assignment to some frequencies that deawotio the signal. Due to this
assumptions, the analysis frame should be short enougtheAgame time, frame size should
be long enough to provide reasonable frequency resoluliarade-off between frequency res-
olution and stationarity should be made for a particulak.tdfre most common frame lengths
for capturing spectral content to form chroma vectors are96360ms. As a rule, to provide
smoothed feature sequence a high overlap ratio (50% — 90%)swbsequent median filter-
ing or averaging is applied. However, using such window tlesgntroduces inaccuracies with
rapidly changing notes. On the other hand, short windowtlehdo not provide reasonable
frequency resolution.

An alternative way to extract chroma is to pass the analympubkthrough a multirate
filter bank [33], [50]. In [50], IR multirate filter band is pposed to derive chroma features.
The filter bank is designed so that the passband of each §legual to a semitone width and
corresponds to a certain note. Energies from differentdiltieat correspond to the same pitch
class are summed up resulting in chroma representation.
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CHAPTER 3. FEATURE EXTRACTION

In this section, we propose a novel method that is based otiratal PQMF filter bank
and subsequent periodicity estimation in the output of didteln. As opposed to the approach
of Muller [33], passband of each filter is greater than sen@tdistance. We propose sample-
by-sample periodicity estimation technique that can refiease to instant frequency changes.
Feature extraction process starts from passing the sigrmalgh a multirate filter bank. An ac-
curate periodicity estimation is then performed on eacérfdutput. It is assumed that features
derived from this periodicity analysis reflect harmonicyedies of the signal in a better way.

In the following sections, PQMF filter bank configuration mroduced and the proposed
periodicity estimation technique is briefly described.

3.3.1 PQMFfilter bank

(a) Pitch class profile extracted with the help of DFT of ldnfigy Pitch class profile extracted with the help of suggesied a
182 msec and 50% ovelap. proach with the frame length analysis of 23 msec.

Figure 3.3: Comparison of DFT chroma and PQMF-based chrestares.

Quadrature Mirror Filters (QMF) is a class of perfect re¢ardion filter banks that divide
frequency range into 2 channels. In practical applicatsmrmetimes more channels than 2 are
needed. One of the possible decisions is to build a QMF-trée use alternative filter banks.

A Pseudo-QMF solution, an extension of QMF, is a near perminstruction filter bank
that was developed and successfully used for encoding auM&EG layer | and Il formats. It
consists ofV filters with equal passband bandwidths. In PQMF filter bardsalg cancellation
occurs only between adjacent bands [51].

In our approach a PQMF solution with 32 filters is adopted. Héter has 512 taps. The
impulse response of the prototype filtgr] is shown in figure 3.4. Filter coefficients [n] for
k—th filter can be obtained as shown below:
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3.3. POMF-BASED CHROMA FEATURES

Figure 3.4: Impulse response of the PQMF prototype fil{ed.

hln] = hin] cos Kk + %) (n— 16) 3—”2} (3.5)

Filterbank configuration

The proposed novel approach for chroma extraction with éhe of filter bank analysis is based
on high-precision periodicity estimates in the output afteehannel. There are some conditions
to be met when designing a filter bank. Passband bandwidtheo$elected channels should
be compared to the frequency distance between adjacentosesi It is desirable to have
filters with narrow passband bandwidth to perform betteassmon of the harmonics. Since
the semitone distance increases exponentially with trguéecy and passband bandwidth is
constant in all PQMF channels, a multirate filter bank wasgesl. In a multirate filter bank
different channels are operated at different samplingrathus, starting from a prototype filter
one can design a filter bank with the desirable channel padgtraperties.

Audio analysis starts with downsampling and filtering trgba number of channels. PQMF
channels, sampling frequencies and passband bandwiéthssmented in Table 3.1. Magnitude
responses of the first 14 filters are depicted in Figure 3.5.

The outputs of all the filters are synchronized by taking axtoount the delay time of each
output. In the next stage, each channel output is analyzegef@odicities as described in the
following section.

3.3.2 PQMF-based chroma

In this section, a new chroma vector calculation method tbrmd. It is based on the analysis
of the output of PQMF filter bank described in section 3.3.%.was shown in Table 3.1, the
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Sampling frequency (Hz) Channel number| Start frequency (Hz)| End frequency (Hz)
800 4 50 62.5
800 5 62.5 75
800 6 75 87.5
800 7 87.5 100

1600 4 100 125
1600 5 125 150
1600 6 150 175
1600 7 175 200
3200 4 200 250
3200 5 250 300
3200 6 300 350
3200 7 350 400
6400 4 400 500
6400 5 500 600
6400 6 600 700
6400 7 700 800
16000 3 750 1000
16000 4 1000 1250
16000 5 1250 1500
16000 6 1500 1750
16000 7 1750 2000

Table 3.1: Filter bank configuration

Magnitude Response (dB)

-20

-40

-60

Magnitude (dB)

-80

-100

! ML 1 1% | ! I
0.1 0.2 0.3 0.4 0.5 0.6
Frequency (kHz)

Figure 3.5: Magnitude response of the first 14 PQMF filters.

passband of output channels is greater than a semitoneckstdn order to derive chroma
representation, further analysis is needed. Output of &ehis analyzed for periodicities in
order to estimate the frequency that corresponds to therdorthamount of energy in a given
subband.
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3.3. POMF-BASED CHROMA FEATURES

There are a lot of different approaches to periodicity eatiom proposed in the litera-
ture [52]. They are based on time-domain or frequency-doraaalysis. In our approach
we utilize time-domain analysis that is based on accuratgkaby-sample periodicity estima-
tion. Normalized Cross-Correlogram (NCC) is obtained amalyzed for periodicities, which
proved to be effective for pitch extraction from speech algif53].

Cross-correlogram basics

A variety of time domain methods for pitch estimation of sgesignals were presented in [52].
Chung and Algazi [54] described the usage of auto-cormaiadind cross-correlation functions
for the task. Our approach is based on the works of Medan E3land De Mori and Omol-
0go [55]. The above mentioned works aimed at extractindhgitem speech pronounced by a
single speaker. Here we adapt this methodology to muktihgiontext. This is achieved by split-
ting the frequency bandwidth of the signal into several sulols as described in section 3.3.1,
and applying cross-correlation analysis on each chanperately.

Let 2(n) be a discrete signal in the time domain sampled at a samplkoméncyF;. For
each time instanty = nq - F two vectors of samples are defined as follows:

INne(n) =2(n — N +mn),0<n <N (3.6)

TNmo(n) = z(n +mnp),0 <n <N (3.7)

Herely ,,(n) andiy ,,(n) denote left and right contexts of lengii samples at the time
instantn,. Figure 3.6 shows an example of right and left contexts dédght lengthsV,, N,
andNs.

Let us assume that in the given intervals the signal is periedh period P. In the general
case,P is a fractional number of samples that can be expresséd@sﬁ% whereT' is a period
in seconds. Due to the fact that we operate on the filtereakiba poténtial periodicity range
can be determined by the frequency values that lie insidg#ssband interval of the given
channel:

Jo <[ </[r (3.8)

1
f ' Fs
Here f;, and f are the left and the right frequencies that define passbamdibdth of the
filter.

pP= (3.9)
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Figure 3.6: Example of left and right contexts of differezndiths at the time instant,.

The normalized cross-correlation coefficient betweenefteahd the right contexts is com-
puted as follows:

o lN,no (n> "TN.no (n>
S o) = e o T ()] (3.10)

Instantaneous perioft’ at the time instant, can be estimated as:

P = argjcmx{S(N, no) } (3.11)

High values of normalized cross-correlation can be obsevéhe multiples of the period.
In figure 3.6 one can see that the context length&/ofand N3 samples provide high cross-
correlation coefficient between the left and the right cetgtewhile using the context lengths of
N; samples results in lower cross-correlation value. Dueéddhbt that we have limited range
of possible period values defined by Equations (3.8) and,(®8 ambiguity in the multiples of
the period is avoided.

Figure 3.7 shows a cross-correlogram visual representatione of the filter bank channels
output. The first part of the cross-correlogram (0s — 3s)rsga strongly periodical signal with
the period of 23.4 samples. In the second part (3s — 6s) thedoisr18.9 samples. While in
the interval from 6s to the end of the excerpt detected pmiiydhas evident peak in the 5-th or
6-th multiple of the period.
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Figure 3.7: Crosscorrelogram for one of the filterbank cledsin

3.3.3 From cross-correlogram to chroma representation

For a given frame, once estimated the periodicity vatiéor each samplg, the obtained data
are used to derive chroma vector. For a window giznd for each frame, the frequencyf;
and the RMS energy, .., are computed as shown below:

Fy
. Pj
J=J
fi= T (3.12)
j//
> x(j)?
Jj=Jj’
Ermsi = 11 (3.13)

wherej’ = [i-d- Fs] andj” = [(i +1)-d- Fy]. The E,,; portion of energy is added
to the chroma bir(f;) that corresponds to the detected frequelichased on the following
equation:

c(i) = 12log, ( ff : ) + 69 (3.14)

ref
wheref,. is the reference frequency of the A4 note.

This operation is applied to all the filter bank outputs, asid eesult a chroma representation
is obtained, where a 12-bin chroma vector corresponds tofeace:.

Figure 3.8a shows the example of standard chroma using Dirpated on a window length
182ms with 50% overlap. The given window length in some caees not allow for precise
capturing the harmonic properties, since inside such awindow analysis some note transi-
tions are likely to occur. This leads to the distribution péstral energy among adjacent chroma
bins.

32



CHAPTER 3. FEATURE EXTRACTION

jme—20ms_400ms _S00ms G0Ams 700ms 200ms 200ms t= Ads 12 1

(a) Standard chroma of length 182 msec and 50% ovelap

Hms_200ms_400ms_S00m=_O00ms _700ms _20dms_20ams 1= dle 12s 1

(b) Standard chroma of length 46 msec and 50% ovelap

ms—200ms_200ms_390ms_S00ms_300ms_700m= 300ms 00ms L Lle12e 13

(c) PQMF-based chroma of length 23 msec and 0% ovelap

Figure 3.8: Unwrapped chroma vectors extracted from a staig passage by means of different ap-
proaches.

Figure 3.8b depicts chroma for the same same signal, buaatet with the help of DFT
of 46 msec with 50% overlap. In this case the analysis windiae grovides the necessary
time-domain resolution for capturing rapid note changes,dm the other hand, low spectral
resolution causes wide lobes of the spectral componerttietids to spectral leakage.

The proposed approach to chroma feature vectors extraistibased on PQMF filtering
and subsequent periodicity detection, and in general doesttoduce the above-mentioned
drawbacks. Chroma vectors extracted with the new techracgidisplayed in Figure 3.8c.
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3.4 Time-frequency reassigned chroma features

In the past few years a lot of different techniques for adeusad relevant feature extraction
in automatic chord recognition have been proposed. In #us@a we propose another method
for chroma extraction that is based on the Time-Frequenagstgned spectrum.

Feature extraction process is aimed at transforming a gua@form into a representation
that captures desirable properties of an analyzed signaht 8f acoustic features is derived
from some kind of time-frequency representations, whiah loa obtained by mapping audio
signal from one-dimensional time domain into two-dimensialomain of time and frequency.
Spectrogram is one of the most widely spread time-frequeapyesentations that has been
successfully used in a variety of applications, where speenergy distribution changes over
time.

Time-frequency reassignment technique was initially psgal by Kodera et al. [56]. The
main idea behind TFR technique is to remap spectral energadi spectrogram cell into an-
other cell that is the closest to the true region of suppothefanalyzed signal. As a result,
"blurred” spectral representation becomes "sharpert all@vs one to derive spectral features
from reassigned spectrogram with much higher time and &eqy resolution. Some papers
have already investigated the usage of reassigned spextrog different tasks, such as sinu-
soidal synthesis [57], cover song identification [58] andynathers.

Now some mathematical foundations for the TFR techniquepeseided. Letz(n) be a
discrete signal in the time domain sampled at a samplingiéeayF..

At a given time instant, STFT is performed on the signal weighted by a window funrctio
w(n) as in the following

M-—1 .
X(t, k) = ano w(n)z(n + t)e 2mmk/M (3.15)

wherek and M denote a bin number and the window size respectively. Spgetm is
derived from (3.3) as shown in (3.16).

P(t,k) = |X(t, k) (3.16)

whered is equal to 2. The majority of chromagram extraction techaguses this repre-
sentation for mapping spectral energies to chroma bingrigg phase information as in the
following

Ji
fref
wheref,.; denotes the reference frequency of "A4" tone, wifil@ndn are the frequencies
of the Fourier transform and the semitone bin scale indepgetively.

n(k) = 12log, ( ) +69,n € R, (3.17)
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On the other hand, the result of STEXT(¢, k) can be presented in the following form:
X(t, k) = M(t, k)el*tr), (3.18)

where M (t, k) is the magnitude, and(t, k) the spectral phase of (¢, k). As was shown
in [59], reassigned time-frequency coordinatesy) can be calculated as

t(t,w) = —% (3.19)
St w) = w+ a¢g£w) (3.20)

Efficient computation of(¢,w) and@(t,w) in the discrete-time domain was proposed by
Auger and Flandrin [60] and takes the following form:

. L Xrw(t,w) - X*(t,w)

tt,w)=t—N { Xl } (3.21)
. B o [ Xpu(t,w) - X*(t,w)
Ot,w)=w+S { X (o) } (3.22)

where Xp,, is the STFT of the signal weighted by a frequency-weighedaim function,
X7, is the STFT of the signal weighted by a time-weighed windonction ([59]). Reallo-
cating spectral energy from spectrogram coordiriate ) to (£, &) concludes the reassignment
operation. As a result more precise estimates of specteagygmlistribution are obtained. How-
ever, reassigned spectrogram can be noisy. A random enargieclocated in points where
there are no obvious harmonic or impulsive components. Timeiple of the reassignment
technique is to reallocate energy from the geometricalerenit the analysis window to the
"center of gravity" of the spectral component this energpibgs to. Meanwhile, in some spec-
tral regions, where there are no dominant components, &rgegy reassignment both in time
and frequency can be observed. In order to obtain a bettetrapeepresentation and to refine
the spectrogram keeping the energy of harmonic componadtde@emphasizing that of noisy
and impulsive components, the following condition showgdet [61]

D¢ (t,w)
OtOw
where A is the tolerance factor, which defines the maximum deviabibthe acceptable
spectral component from a pure sinusoid. The optimal valué depends on a particular task
and can be empirically determined. Fullop and Fitz repari¢é2] that 0.2 is often a reasonable
threshold for speech signals.

+ 1’ <A (3.23)

35



3.4. TIME-FREQUENCY REASSIGNED CHROMA FEATURES

As for the impulsive part of the spectrogram, the filteringdition takes the following form:

0?¢ (t,w)

S| <A (3.24)

Efficient computation o% is given in [59] and can be expressed as follows

¢ (t,w) X7pw(t,w)X*(t,w) B X7w(t,w) Xpyw(t,w)
oMow %{ | X (t,w)]? } %{ X2(t,w) }

whereXp,(t,w) is the STFT of the signal weighted by time-frequency-we@vndow
function ([59]).

Comparison of spectrogram, reassigned spectrogram afigetté reassigned spectrogram
for an excerpt from "Girl", the Beatles is provided in Fig@.8. All spectrograms are computed
using Hanning window of 192 ms with 90% overlapping.

(3.25)

: '}.ﬂ- LR

é 300 IH 1 | Nl ‘I \ . ||I.. T ' il‘ l
: g .h"h. \fllll j .' T LF (. L
i ‘m-‘-ﬂ“ N A T -mlu

- 'I L

- 200

= 100

(c) Harmonic reassigned spectrogram with tolerance faetbto 0.4

Figure 3.9: Time-Frequency representation of an exceopt fiGirl", the Beatles. All spectrograms are
computed using Hanning window of 192 ms with 90% overlapping
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3.5 Towards reducing dimensionality

In this section we try to explore the advantage of the dinwraity reduction on the feature

space. We consider two different approaches to dimensigmatiuction. The first approach

is based on the computation of Tonal Centroid (TC), a 6-dsimral feature that proved to be
quite effective for the problem of dividing audio into harmically homogeneous segments [63,
64]. Some attempts were made to use TC for chord recogni@@h [The second approach is
based on the idea of transforming feature vectors of chr@amély by Inverse Discrete Cosine

Transform (IDCT).

3.5.1 Tonal centroid

Tonal centroid was first introduced by Harte et al. in [63],onfroposed to use it to detect
harmonic changes in audio.

In chord recognition domain the usage of TC was investigatetiee et al. [20]. They
showed that using TC as feature set instead of conventidtmahta leads to a significant in-
crease in recognition rate. The experiments were carriédouhe first two Beatles albums
as well as on a short set of classical excerpts by Bach andriHaaother application of TC
for chord recognition was suggested by Harte et al. in [64]ene the algorithm of detect-
ing harmonic changes introduced in [63] was utilized as appoeessing step to determine
chord boundaries. Obtained segmentation informationad usthe next step to obtain average
chroma vector for each segment and perform classificatiderplate matching.

Conceptually, TC is based on Tonnetz, a harmonic networlergvhotes with closer har-
monic relations have smaller distance. Tonnetz plane isiiefi However, some music-related
tasks, e. g. chord recognition, assume enharmonic andeoetpuvalence. The computation of
TC is based on the transformation on chroma vector into 6d2espwvhere three pairs of coor-
dinates assume projection onto three different circlegonthirds, minor thirds and fifths [63].
The computation is performed by multiplying of chroma veetpand transformation matrig
as follows:

11

> o Den(l)  0<d<50<1<11 (3.26)

feall, 2

1

Suld) =

Here||c,||, is theL; norm ofc,, and matrix® is
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[©(0,1)] 7y sinl%r-
d(1,1) ry cos [
(2,1 7o sin 137
d(d, 1) = <I>E3 z§ = r2cosl32” 0<1<11 (3.27)
) 2 o
d(4,1) rysin (2
[ ®(5,1) | _7’3(:osl2?’T

3.5.2 Application of Inverse Discrete Cosine Transform

Another technique for reducing dimensionality we investégl is the Inverse Discrete Cosine
Transform (IDCT). It proved to be quite effective in speecbgessing domain [65]. IDCT
coefficientsy)(n) are obtained as

-1

wk (2n + 1)
n) = kz: x(k) cos (T) 1<n<N, (3.28)

wherez (k) is the input vector N is the number of bins in:(k) and N, is the number of
output IDCT coefficients.

We set up experiments witN, = 16 and we use combined chroma vectgy,, as the input
vector for IDCT x(k). c.om IS comprised of basg, and treblec, chroma vectors and has 24
dimensions. In order to investigate influence of the chrooragonents order inside,,,, we
build two different input vectors,,,,,; andc.y,s.

Cooma (k) = [cb(O) (1) o (1) @(0) 1) .. Mn)} (3.29)

Coom (K) = [cb(O) c(0) (1) (1) .. e(11) ct(n)} (3.30)

We also investigate system performance using mean subtraechnique, that proved to
provide more robust features in speech processing [66].nNahtraction is a post-processing
step, which includes the following actions. At first, mearueaof feature vectors extracted
from the whole piece of audio is estimated . Then, the obtemean value is subtracted from
each feature vector. In the experimental section we wikatigate the efficiency and usefulness
of mean vector subtraction for IDCT features in the choragadtion task.
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Chapter 4

System architecture

This chapter is concerned with the proposed statisticahaust to automatic extraction of
chords from audio. The structure of the chapter is as folldextion 4.1 introduces acoustic
modeling approach adopted here. Section 4.2 describegdgegnodeling techniques. Appli-
cation of standard and factored language models is outlirethlly, general overview of the

proposed chord recognition system is given.

4.1 Acoustic modeling using multi-stream HMMs

This section refers to the acoustic modeling mechanismbeappere for chord recognition.
Acoustic modeling part is based on HMMs and is quite simitathte one described in [67]
and [25]. However, these approaches are extended to the o$agmore general version of
HMMs with multi-stream observation layer. A similar techoe was used in [27], where a
dynamic Bayesian network was configured to contain bassrabtttobservable layers.

As in the case of a single-stream HMM, a multi-stream HMM ¢stissof a number of states
N, Each statg characterized by its observation probability distribatig(o;) that defines the
probability to emit observation symbao) at time instant. An important parameter is the tran-
sition matrixa;; that determines the probability of transition from state state;j. Continuous
density models are used in which each observation probadistribution is represented by
a mixture of multivariate Gaussians. In the multi-stream MMhe related observation layer
consists of multiple streams ahgo;) can be expressed as

s [ M. Vs

bj (Ot) - H Z stmN (Ost; Hjsm, Ejsm) 5 (41)

s=1 [ m=1

where M, denotes the number of mixture components in sfdtar streams, c;,, IS the
weight of them-th component andV' (os; 11jsm, 2jsm) 1S @ Multivariate Gaussian with mean
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vector ;1 and covariance matriX. Each Gaussian componehft (ost;,ujsm,zjsm> can be
expressed as
N (0 9) = ——eexp (30— 1= 0 ) @.2)
O, 2u) = ————exp | —=(0o— 0 — .
H (27r)" ] P 5 H K

wheren is the dimensionality of observati@n The termry, is a stream weight. Varying this
parameter allows one to emphasize or deemphasize theldidn of a particular stream.

Figure 4.1 depicts a typical structure of multi-stream HMMhihree hidden emitting states
andS observation streams.

Stream S; 05, ii Og,

Figure 4.1: Structure of multi-stream HMM with three hiddemitting states

Training is performed for each chord type from the predefidetionary, resulting in a
separate left-to-right HMM. A chord type represents choevis a given set of intervals between
constituent notes regardless of the root note, e.g. majomonnmEach model consists of 1 —
3 emitting hidden states. Observation probability disttitns are learned from data in the
training stage. Feature vector components are assumeduacberelated with one another, so
the covariance matrix has a diagonal form.

Trained multi-stream HMMs are then connected as shown indigL2. An insertion penalty
is introduced to influence the transition probability betwechords. Varying the insertion
penalty allows for obtaining labels with different degredésragmentation, as typically done
in speech recognition tasks. As was shown in [25], the ifmepenalty (or self-transition
probability in [68]) can have a significant impact on the @ligperformance.
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Insertion penalty

Figure 4.2: Connection scheme of trained models for degodin

In the experimental part two different HMM configuration® avaluated — baseline and
multi-stream one. The former configuration includes onecolaion stream, where emitted
symbols are chroma vectors. In the latter case, an additotisarvation bass chroma stream is
added.

4.2 Language Modeling

A lot of different statistical language models have beerppsed over years. The most suc-
cessful among them appeared to be finite state transduné¥sitliral Language Processing N-
grams are used for word prediction. Givdn- 1 predecessors, they can provide the probability
of N-th element appearing. Language models have a variety ditappns such as automatic
speech recognition and statistical machine translatibe.main goal of language modeling can
be explained as follows: having a sentence, which condigtswords (v, w-, ...wg), generate

a probability modep(w;, ws, ...wg). In most common cases it can be expressed as

p(wy, wy.. wg) = Hp(wt|w1,w2...wt_1) = Hp(wt|ht) 4.3)

whereh, is the history sufficient for determining the probability ©f word. In standard
N-gram models the history consists of the immediately adjade— 1 words. For example, in
3-gram model the probability of current word can be expréssep(w;|w;_1, w;_s).

While estimating language model parameters, there existprioblem of sparse data. It is
caused by the impossibility of producing maximum likeliloestimate of the model, because
all combinations ofNV-word sequences are unlikely to be found in the training esrgSince
any training corpus is limited, some acceptable sequerarebe missing from it, which leads
to setting zero probability to plenty d¥-grams. In order to cope with the problem, different
techniques, such as back-off, smoothing and interpolatierused [69—71]. The main principle
of back-off is to rely on lower-order model (epguw,|w;_1)) if there is zero evidence for higher-
order (e.g. p(w;|w;_1,w;_2)) model. The order of dropping variables is known as back-off
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Figure 4.3: Chord Duration Histogram.

order. In the case of standard language models it is obvimisriformation taken from older
predecessor will be less beneficial and it should be droppedtp other predecessors.

In the proposed approach we draw a direct analogy betweanense in speech and a part
of a song. The above-described strategy can be succeasseltlin chord sequences modeling.
In this case a chord is the equivalent of a word and the seguainthords can be modeled by
means of the same technique.

4.2.1 Factored language models

Western music is known to be highly structural in terms ofthiny and harmony. In order
to take advantage of mutual dependency between these twmmpiema, we have studied the
interrelationship between beat structure and chord duratiThe number of occurrences as a
function of chord duration in beats histogram is shown inrégd.3. It is clearly seen that a
large part of chord durations is correlated to the metricacsure (2, 4, 8, 12, 16, 24, 32 beats),
which suggests that including also chord durations in thguage model is more convenient
than analyzing just a sequence of chord symbols. This carabiéy @lone with the help of
factored language models (FLMs), which treat a word (chasda set of factors. FLMs have
been recently proposed by Bilmes and Kirchoff [72] and stdbpmmising results in modeling
highly inflected languages, such as Arabic [73].

In a Factored Language Model, a word (chord) can be repredgerst a bundle of factors:
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CHAPTER 4. SYSTEM ARCHITECTURE

wy = {fL f2 ..., f5}. The probability for FLM is given in (4.4), where(fF) is a set of
variables (parents), which influence the probability’6f In our case to model chord sequences
we use two factors: chord labé} and chord duratio,: w, = {C}, D;}.

plwilhy) = [ [ p(fF1x () (4.4)
k

As opposed to standard language models, where older ps=tesayive less relevant infor-
mation at the given time instant, in FLMs there is no obviouteoto drop parents(f). There
are a lot of possibilities to choose less informative fastordrop among the others. Moreover,
keeping some factors of older predecessors can be of gtssatefit than keeping the value of
some other factors, which are more relevant to the givenitstant. One of the possible solu-
tions is to use "generalized parallel back-off", which waisially proposed and well described
by Bilmes and Kirchoff [72]. The main idea is to back-off fact simultaneously. The given set
of back-off paths is determined dynamically based on theectivalues of the variables. (For a
more detailed description, see [72]).

P(ClG. 041G 2 0) P(G1G.1 041G 2 0)
Do, o D.,
Y
P(G1G1 01 G) P(G1G. 010, P(G1G. 0.1 Go)
Cs
Y \/
P(G1G.0) P(G1G..0)
D o D
Y
P(C|C.) P(G D) P(CG1G.)
C‘ 1
V \/
P(C) P(C)
a) b)

Figure 4.4: Standard back-off (a) and parallel back-offgit@phs for tri-gram LM.
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4.3. SYSTEM OVERVIEW

At the experimental stage we explore the standard baclaptir{d the parallel back-off (b)
techniques, whose graphs are presented in figure 4.4. Indasts the chronological order
is kept, while in the standard back-off case a higher pgidotthe factor of chord symbol is
assigned. The arrows are marked with the factor being dbppé¢he current back-off step;
blocks include the variables that influence the probabdftghord label being estimated.

4.3 System overview

WAVEFORM FEATURE

VECTOR
STREAMS

\ 4

FEATURE VECTOR EXTRACTION

REFERENCE
FREQUENCY

Figure 4.5: Feature extraction block diagram

4

MISTUNING ESTIMATOR

This section is concerned with an overview of the propos&ddhecognition system. Fig-
ures 4.5 and 4.7 show the two main blocks of the chord recogrstystem. Feature extraction,
including mistuning estimation, produces feature vedi@asns that are subsequently processed
by decoder. A fundamental step regards model training basétke application of Baum-Welch
algorithm as depicted in Figure 4.6.

In the proposed chord recognition system chroma featueessad to model emission prob-
abilities, while HMMs are used to model chord progressiditsee main blocks can be empha-
sized, feature extraction (Figure 4.5), training (Figui®) 4and testing (Figure 4.7).

4.3.1 Mistuning estimation

In the general case, chroma feature is obtained by summirteakpectral energies corre-
sponding to a given semitone bin. Central frequencies fpeaific bin are calculated using the
information on the reference frequengy, of "A4" note and the mapping itself is performed
as shown in the Equation (3.1). The problem of the referereguency estimation arises in
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CHAPTER 4. SYSTEM ARCHITECTURE

several cases. Sometimes all the instruments that paticip the music performance can be
well tuned to each other and a listener would not notice armydel artifacts. However, the
reference frequency,., can slightly deviate from the conventional 440Hz, whichl wduse
incorrect mapping of the spectral energy into semitone &5 as a result, it will lead to less
accurate acoustic features. Another possible scenarid bayppen during the process of con-
verting vinyl LP records and tapes from analog to digital. Iiyl# deviation of the moving
mechanism speed leads to shifting all the frequencies taaiceegree.

The importance of th¢,.; estimation is evident [67, 74] and is an essential part of the
feature extraction step. A detailed description of the diety estimation approach is given in
Section 3.2. The obtained valye. ; is subsequently used for the creation of the semitone bin
frequency ranges.

4.3.2 Model training

In the training stage, features extracted from waveforresfiesst segmented according to the
ground-truth labels so that each segment contains one .clibs circular permutation proce-

dure is then applied in order to discard root information. tis point, a number of feature

vector segments is collected for each chord type that argesuiently used to train HMMs. Fi-

nally, in order to obtain model parameters for all possiblerds for a given chord type, another
circular permutation on the mean vectors and covariancebaft multivariate Gaussians is

performed.

™1 TRAINING BEAT
i1 FEATURE ACOUSTIC MODELS CHORD SEGMENTS
VECTOR LABELS +
STREAMS - CHORD LABELS
C:maj Gmgj ... F:7 [C:maj;2beats]
[G:maj;4beats] ...
Amin E7 ...D:min [F:7;2beats]
Y Y
RAMS FACTORED LANGUAGE
L] L
NG MODELS
"_‘“‘—t‘j
_,,_,’_;' B:min
T

Figure 4.6: Training phase block diagram. Baum-Welch étigor for HMM training and n-gram model
parameter estimation using ground-truth labels.

In order to prevent the lack of training data (some chord $ygemn appear only few times
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4.3. SYSTEM OVERVIEW

in the training corpus) only two models are trained: C-majod C-minor. For this purpose,
all chroma vectors obtained from labeled segments are ndaggpthe C-root using circular
permutation. After that, mean vectors and covariance pegiare estimated for the two models.
All the other models can be obtained by a circular permutgtimcedure.

At the same time, chord labels from training corpus are usexthanput for language model
parameter estimation. Language model training inclu@esitrg either standard LMs or FLMs.
For training standard LMs chord sequences taken from tiv@ngalabels are used as input. For
building text for FLM the information combined from beat edtion module and the train-
ing labels is used. Beat extraction algorithm used here mtasduced by Dixon [75] and is
exploited as a separate module, calBehtRoot. For each chord symbol from ground-truth
labels we estimate the duration in beats and produce antaatfhe form: "C-(chord type):D-
(duration)". To minimize the problem of sparse data, allation values are quantized by a
relatively-small set of or integer values. Our codebookststs of the following values: 1, 2, 3,
4,6, 8, 12, 16, 24 and 32 beats. The suggested codebook issapi be well-suited for the
pop songs. This assumption is made on the basis of metrieflsas of the Beatles data (see
fig. 4.3). The suggested scheme however might not be suffisileite modeling jazz or other
genres.

In order to make our system key invariant, a key transforomeachnique is proposed here.
In fact, the training corpus might not contain some type ajrds and chord transitions due
to the fact that keys with a lot of accidentals are much lessespread (G#:maj, Ab:min).
Moreover, while estimating chord transition probabibtie relative change in the context of
the given key (e.g. tonic — dominant — subdominant) is moevamt than exact chord names.
For training data we have ground-truth table of keys for esmhg, while for test data we
estimate key in the key detection module. Then, similaraming HMMs, by applying circular
permutation, features and labels are converted to the Gmegge of major key) or to Amin (in
case of minor key). After the decoding procedure in orderealpce final labels (in the original
key of the analyzed song) obtained labels are convertedimsng the same scheme.

4.3.3 Decoding step

General block-scheme of decoding process is depicted unré&iy 7.

The system can output labels in two different ways. The fipgtom is to directly use the
output of the Viterbi decoder, which is the optimal path tigb the hidden states of the HMMs.
However, this system configuration does not use statisticaleling of chord sequences. All
the chords have the same probability to be generated. Weteethis system as "No-LM"
configuration. Dashed arrow in Figure 4.7 shows the procedsext deriving of chord labels

*http://www.elec.qmul.ac.uk/people/simond/beatrowtéix. html
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Figure 4.7: Test phase block diagram.

N-GRAMS

Figure 4.8: An example of a lattice.

The second system configuration involves statistical mogelf chord progressions. It will
be referred to as "LM" configuration. Similar to the approatmultiple-pass decoding, which
has been successfully used in speech recognition [71],dbeding procedure consists of two
steps. During the first step, bigram language model is appli¢he stage of Viterbi decoding,
producing a lattice. A lattice can be represented by a dicegtaph, where nodes denote time
instants and arcs are different hypotheses. Since lattmet®in the information on the time
boundaries, it is possible to make an estimation of duratideats for each hypothesis. During
the second step the obtained lattice is rescored applying suphisticated language models
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Figure 4.9: Test phase block diagram using FLMs.

(trigram and higher) on the reduced search space.

System configuration with FLMs, which will be referred to &.M" configuration, requires
the same beat extraction procedure as in the model traiepy sThe modified version of
the decoder that makes use of FLMs is shown in Figure 4.9. Boeding scheme is also
based on Viterbi decoding and subsequent lattice rescaXnges in a lattice contain the time
information on possible chord boundaries. Beat infornraisaised to assign the duration factor
for each chord hypothesis. The "LM" system configurationsdoa take into account duration
factor at all. The advantage of FLM is that when applying #reguage model weight in the
stage of lattice rescoring, chord durations contributééodrobabilities of different hypotheses
in the lattice.

Standard LMs are manipulated using HTt6ols, while FLMs are managed using SRILM
[76] toolkit, since HTK does not support this type of langaagodels.

2http://htk.eng.cam.ac.uk/
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Chapter 5

Experimental results

This chapter is concerned with the evaluation of chord reitmyn system introduced in chap-
ter 4. At first, datasets and evaluation metrics are predemepact of different configuration
parameters on the chord recognition performance is irgegstil. Then, we explore the use of
Factored Language Models and compare them to the standgrdms. Another portion of
experimental results regards different feature vectartgwois. We carefully examine and com-
pare the performance of standard chroma and PQMF-basethahntroduced in Section 5.4.
Then, we perform comprehensive evaluation of TRF-baseahcaifeatures that are introduced
in Section 3.4. Finally, experiments with with multi-stnreddMM configuration described in
Section 4.1 are carried out.

5.1 Description of the dataset and evaluation metrics

5.1.1 Evaluation metrics
Chord recognition system evaluation

For evaluation, the recognition rate measure was used,hwhithe given case corresponds
to the total duration of correctly classified chords dividgdthe total duration of chords, as
reported in the following

|recognized_chords| N |ground — truth_chords|

RR = (5.1)

|ground — truth_chords|

Evaluation was performed on a frame-by-frame basis, as st deme under the MIREX
competition. The system can distinguish 24 different chigpes (major and minor for each of
12 roots). 7th, min7, maj7, minmaj7, min6, maj6, 9, maj9, dchords are merged to their root
triads; suspended augmented and diminished chords asrdistfrom the evaluation task.The
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5.1. DESCRIPTION OF THE DATASET AND EVALUATION METRICS

percentage of duration of discarded chords results to b2 .Gf the whole material. The
proposed chord dictionary will be referred to as "maj-miahfiguration.

In order to determine, whether the results produced by reiffesystems are significantly
different from each other, a Tukey's HSD (Honestly SignificBifference) test is performed.
HSD test is an easy and frequently used pairwise comparesimigue. HSD test finds what
means are significantly different from one another. Detiaglescription of HSD test is provided
in[77].

Chroma quality evaluation

One of the main goals of this work is to compare the effectaasnof the proposed acoustic
feature set and compare the ability to carry relevant in&drom for chord discrimination. The
most obvious way to evaluate it is the chaatognition rate (RRRs given in the previous
section. However, here we propose two additional estintategaluate the quality of a chroma
vector —ratio (R) andcosine measure (CM)hey are are computed as proposed in [78].

Let ¢(n) be an unwrapped chroma vector extracted from a chord saimglevas generated
from a set of notes. TheR estimate is the ratio of the power in the expected semitame bver
the total power of that frame. The expected semitone birladiecthe bins of the fundamentals
and 3 partials for every note from set

To estimateCM a chroma templatg(n) is built so that its values are set to 1 in the chroma
bins that correspond to the fundamentals and to 0.33 in tt@ranbins that correspond to the
first 3 partials. TheZ'M estimate is then computed a5V = % where(-) is the inner
product and|-|| is the L? norm.

5.1.2 Datasets
Chord recognition datasets

Audio collections with the corresponding ground-truthdisof high quality have always been
an essential condition for any MIR system assessment. Tpogeal approach to chord recog-
nition described in the previous chapter includes traitilogk, which is necessary to perform
model parameter estimation. This fact requires the data$et split into training and test parts.
Here we utilize standard N-fold cross validation approadtere all the data is divided into N

parts. Evaluation procedure is executed N times, each tmeepart is used as test material,
while the rest of the collection is used for training purms@©ur evaluation setup, similarly

to MIREX?, performs 3-fold or 5-fold cross-validation, which meahattall the songs were

randomly divided into three or five folds.

*http://ww.music-ir.org/mirex/2010/index.php/Mairade
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Data collections used for evaluation consist of the commaised Beatles data set and
additional 45 songs of Queen, Zweieck, and Carol King. Theesponding labels were kindly
provided by C. Harte[79] and M. Mauch [27]. Two datasets ateduced. The first one, which
will be referred to as "Beatles dataset”, consists of 18GIBgaongs. Album names are given
in Table A.1. The second one, which will be referred to as tBsaQueen dataset” consists
of the "Beatles dataset" enriched with the songs of Queerjetk, and Carol King. Songs of
Queen, Zweieck, and Carol King are listed in Table A.2.

Chroma quality evaluation datasets

For this set of evaluations, we used a large set of recordifhigglividual notes collected at the
University of lowa?. This dataset contains high-quality note samples recdimbeal different
instruments.

We used this data for generating chord waveforms. For a gitiend type, the recordings
of three constituent notes are chosen from three randomumstts. Then these samples are
mixed together, producing a waveform of 2 seconds duratidre proposed schema of gen-
erating data results in 200 waveforms with the correspandmound-truth information on the
notes.

The obtained material is then used to evaluate the qualitiiftdfrent chroma features as
was described in section 5.1.1. For tR& measure, half of the generated material was used as
training set, the other half was used for testing purposes.

5.2 Baseline configuration: impact of tuning

In this section, we evaluate the baseline configuration oggstem. This configuration exploits
standard chroma features that were introduced in Sectlbn"Blo-LM" system configuration
described in Section 4.3.3 is investigated. It allows ussgeas the performance of the chosen
feature set and evaluate the effectiveness of the propesestc modeling.

5.2.1 Results

The first set of experiments considers different window teag Varying insertion penalty al-
lows for obtaining output labels with different degree aigmentation. The recognition ac-
curacy as a function of insertion penalty, introduced inti®ac4.1, for Hanning window is

displayed in figure 5.1. For each window size, there is amugdtvalue of insertion penalty,
which produces labels with a fragmentation rate very clasthé ground-truth. Fragmenta-

2http://theremin.music.uiowa.edu/MIS.html
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tion rate is another important characteristic of the trabsd chord labels, which is defined as
relative number of chord labels [30].
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Figure 5.1: Recognition rate as a function of insertion fignesing Hanning window of different lengths.

In order to find the best windowing function, a set of testsangarried out involving window
lengths of 1024(92.8 ms), 2048(185.7 ms), 4096(371.5 mi®2@43.0 ms), for Blackman,
Hamming and Hanning window types (with 50% overlapping dedoptimal insertion penalty).
The results for the first fold are reported in table 5.1.

1024 | 2048 | 4096 | 8192
Blackman| 57.05| 68.92 | 68.67 | 64.36
Hamming| 60.24 | 69.00| 67.91| 64.18
Hanning | 59.76| 68.51| 68.40| 63.63

Table 5.1: System performance obtained with different wiidg configurations on the first fold.

The highest performance (69.00 %) was achieved with Hammingow of length 2048
samples, while other window types showed results that angalese to this value. Window
length of 2048 samples appeared to be a reasonable tratletoféen the stationarity of the
analysed frame of signal and frequency resolution. Takimggkiest configuration from the
above-described experiments (Hamming window of lengti82€aimples) the system perfor-
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mance was conducted by including the tuning procedure. eiifft window delays were
explored in terms of recognition rate. The results are givelable 5.2. By increasing the
delay D, a very small increase in accuracy can be noticed, which eafubk to a different un-
certainty in frequency that is obtained for the given windewgth [80]. Besides this aspect,
applying the tuning procedure leads to a higher recognrate

delay (samples) recognition rate
1 71.37
2 71.42
4 71.41
10 71.52
12 70.60
15 69.06

Table 5.2: Recognition rate obtained using the tuning pioce

In order to estimate the increase of performance introdbgethe tuning procedure, a 3-
fold cross-validation was accomplished on the "Beatletd dat. The results are shown in table
5.3, which show that about 2.5% and 1% improvements arerwatain the reduced and on the
whole data sets, respectively.

baseline with tuning

data
rec.rate| frag. | rec.rate| frag.
fold1 69.00%| 0.80 | 71.52%| 0.81
fold1, fold2, fold3 | 67.47%| 0.84 | 68.28% | 0.84

Table 5.3: Recognition rates and fragmentation rates orettéced and on the complete test data set.

5.2.2 Conclusion

In this section, the results of a set of chord recognitioneexpents have been outlined which
are based on exploring different windowing solutions ad waelon the adoption of a tuning
procedure to make this task less dependent on possiblanmsitit mis-tuning effects. A novel
approach for tuning introduced in section 3.2 that is basedomcurrent analyzing magnitude
and phase-change spectrum proved to be effective. Expetahesults showed an increase
in performance using the database of Beatles songs, fohvamcaverage recognition rate of
68.28% has been obtained.
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5.3 Factored language models

In this set of experiments we evaluate "LM" and "FLM" systeomfigurations introduced in
Section 4.3.3. 5-fold cross-validation on the "Beatlestadat is adopted. The use of stan-
dard and factored 3-gram and 4-gram language models istigatsd. While working with
FLMs, we exploited standard and generalized parallel lwdCktrategies (see Figure 4.4; 4-
gram graphs have the same structure and can be obtained fgramBgraphs by adding one
level).

5.3.1 Results

Applying different language model weights on the stage tifck rescoring, one can obtain
different recognition rates. Figure 5.2 indicates how gegtion rate depends on the LM weight.
In this case, the curves correspond to the "LM" and "FLM" egstonfigurations; experiments
were conducted on the fold 1 with 4-gram configuration.
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Figure 5.2: Recognition rate as a function of LM weight.

The recognition rates are shown in Table 5.4. Here "No-LMhesbaseline system, "3Im"
"3flm" "3flmgpb" are trigram configurations for standard LM,M, and FLM with generalized
parallel back-off respectively, "4Im" "4flm" "4fimgpb" arewesponding 4-gram configura-
tions. For any of the given configurations, an average stardiviation of about 15% was also
observed, which was derived from the recognition rates edetpbon a song-by-song basis.

Experimental results showed that introducing languageatiraglincreases the performance
of the system, while generalized parallel back-off strafeg FLM did not show any advantages
over standard back-off for the chord recognition task. Méale, using FLM show very slight
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data | No-LM | 3Im | 3flm | 3fimgpb| 4Im | 4flm | 4flmgpb
fodl | 70.81 | 72.22| 72.55| 72.56 | 72.39| 72.53| 72.27
fold 2 70.23 | 70.78| 71.15| 71.51 | 71.09| 71.38| 71.25
fold3 | 65.87 | 66.81| 66.59| 67.01 | 67.22| 66.89| 67.17
fold 4 66.20 | 67.15| 67.60| 67.61 | 67.64| 67.62| 67.51
fold5 | 66.19 | 69.73| 69.72| 68.55 | 68.55| 69.72| 69.77

| average| 67.86 | 69.34] 69.52| 69.45 | 69.38] 69.63| 69.59 |

Table 5.4: Recognition rates for "No-LM", "LM", and "FLM" adigurations.

improvement (0.25 %) in comparison with the standard LM.

5.3.2 Conclusions

In this section a set of experiments on chord recognitiok tasluding language modeling
functionality as a separate layer has been conducted. Tieimental results in a 5-fold cross-
validation were conducted on the "Beatles" dataset. Fadtianguage models were compared
with standard language models and showed small increaserfiormance for the task. Com-
paring back-off techniques, we can assume that using gereset@arallel back-off for the chord
recognition task does not result in better performance.

In general, experimental results showed that utilizingjleage models leads to an increase
in accuracy by about 2%. This relatively small differenceénformance may be due to the size
of vocabulary for the chord recognition task in comparisaththat of many speech recognition
applications. The performance of chord recognition systemperhaps influenced primarily by
relevance and accuracy of the extracted features anddaeateistic modeling. A deeper study
on different model smoothing and selection techniques@sethddressed by Scholz et al. [47]
could be reprised in further investigations.

5.4 PQMF-based chroma features

The next set of experiments investigates the performanB&QdiF-based chroma features de-
scribed in Section 3.3. Evaluation was performed in 3-falolss-validation fashion on the
"Beatles" dataset. "LM" system configuration is adopteehehere language models are rep-
resented by standard 3-grams.
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5.4.1 Results

In order to compare the proposed PQMF-based chroma feattrecon technique with the
standard one, a set of experiments with standard chromacasied out. Frame lengths used in
the experiments for the standard chroma were 185.76, 92d88& 44 ms with the overlapping
factor of 50%. For the PQMF-based chroma no overlapping wad.un order to operate at the
same frame rate, the corresponding frame lengths of 928844nd 23.22 ms were used.

Figure 5.3 depicts the recognition rates of standard and PQ&%ed chroma configurations
as a function of insertion penalty. Different curves in tihegis correspond to different number
of Gaussians in the mixtures for modeling emission prolt&slin the HMMs.

Table 5.5 shows the evaluation results. The recogniti@srateach row are the best among
possible configurations (penalty, number of Gaussians) fpecified frame length.

frame size (ms) best result (%)

PQMF chroma 23.22 69.37
PQMF chromal 46.44 69.43
PQMF chroma 92.88 68.31
Standard chroma 46.44 (50% overlap 52.39
Standard chroma 92.88 (50% overlap 64.53
Standard chroma 185.76 (50% overlap 69.53

Table 5.5: Evaluation result summary. Best recognitioegdor different frame lengths and feature
extraction methods.

5.4.2 Conclusions

The experimental results show that chroma extraction basd®QMF filter bank analysis and
subsequent periodicity detection does not outperform taedsard approach for the analysis
frame length of 182 ms. However, when taking into considenashort-term analysis with
frame lengths of 46 ms and 92 ms the proposed approach sagiifioutperforms the applica-
tion of standard chroma feature vector extraction. The@sed technique could be of great use
in the music transcription tasks where it is necessary ttucafarmonic content of the signal
with very high time resolution. To this end, new specific tagkll also be devised in the future
activities.

One of the main disadvantages of the filter bank approach eahebvery high computa-
tional load if compared to the standard chroma extractiolthodgh, the issue of complexity
will be subject of future investigation. In spite of the fézat each filter has passband bandwidth
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Figure 5.3: Recognition rates for different system configions as a function of insertion penalty.
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wider than semitone distance, PQMF-based chroma feathosgesl comparable performance
to the standard chroma features.

It is worth noting that alternative filter bank configuratiofe.g. with more channels) can
be utilized. In the above-described configuration, the wiafteach channel of the filter bank is
approximately equal to 2 — 3 units of the semitone distanavéver, introducing filters with
narrower bandwidth can cause the substantial increaseeifetigths of the filters, therefore
causing a further increase of the computational load.

Another wide area of research may regard different altermé&tchniques for the periodicity
detection. In fact, periodicities computed in the previfrasnes can be exploited for a more
effective computation of the periodicity in the actual fram

5.5 Time-frequency reassigned chroma features

In this section, we carry out experiments with TFR-basedmlar features. Similarly to the
previous experimental setup, "LM" system configuratiorhwtiandard 3-grams is adopted here.
"Beatles-Queen"” collection is utilized as the evaluatiatadet.

5.5.1 Chroma quality evaluation

Initial set of experiments is aimed at comparing standardrola feature with the RC and HRC
features introduced in Section 3.4. Chroma quality evadnawas performed using the met-
rics described in Section 5.1.1. Chroma features wereagttavith 185 ms window lengths,
overlapping factor of 90% and Hanning windowing. The evatraresults for three different
chroma features are given in Figure 5.4.
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Figure 5.4: Chroma quality estimates.

In all the casestiRC andRC significantly outperfornSTDfeature. In particular, theatio
measurements proved the ability HRC to deemphasize noise and impulsive components,
which frequently occur during the note onsets.
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5.5.2 Chord recognition system evaluation
Baseline system configuration

As a baseline system we define a single-stream HMM with standt@oma feature and "LM"
decoder. Previous experiments provided in Section 5.2 sdawat optimal window length
for standard chroma is 185 ms. As starting point, we obse®v&2Po recognition rate on the
"Beatles-Queen" dataset. In the following sections défiferwindow lengths will be used for
the STD feature leading to different results. The baselyséesn configuration does not contain
tuning block. Tuning issues will be addressed later in taidisn.

Time-frequency reassigned chroma features with reassignemt constraints

In this set of experiments, we introduce the RC feature sgttrarestigate its behavior applying
reassignment constraints. In order to estimate the imdatieatime-frequency reassignment
operation, statistical information on the energy reallimcadistance in time-frequency coordi-
nates has been collected.

For window length of 96 ms) f and At distributions can be approximated with a Gaussian
with zero-mean and standard deviations of 15.68 Hz and 142sp&ctively.

x10°

Number of occurences

Semitone change

Figure 5.5: Semitone change distribution

Frequency shift (in semitones) -3 -2 -1 0 1 2 3
Percentage of energy reassignmeiit14 | 0.43| 4.28 | 90.23| 4.33| 0.37| 0.19

Table 5.6: Semitone change distribution

The statistics about the frequency reassignments thatdesrtergy moving to another semi-
tone bin is given in Table 5.6 and Figure 5.5. This table shihatabout 9.7% of all the re-
assignments result in moving energy to an adjacent semiimmevhich makes an impact on
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the chroma energy distribution. This preliminary statististudy shows the importance of the
time-frequency reassignment operation. Reallocatingoatantial amount of energy between
different chroma components can improve the accuracy.

In order to estimate the efficiency of the time-frequencygsggnment operation, other eval-
uation tests that impose reassignment restrictions weareedaout. In these experiments, a
time-frequency rectangular window is defined as shown inf€éidgp.6 and all the energy reas-
signments are constrained to remain inside this windowe@iise, the reassignment operation
is not performed and original time-frequency coordinates@eserved. In practicé) f and
At are limited to small values for the energy reassignment ghibe allowed. Two examples
of time-frequency rectangular window are given in Figui@ 3n this schema, window width is
represented by a maximum allowed reassignment in the timmaahy and height is represented
by that in the frequency domain.

At
fA .

Af
fO _______ L1l Y )

>
fo t

Figure 5.6: Schema of time-frequency reassignment windmovstcaints

Experiments with different combinations &ff andAt were carried out. Figure 5.7 displays
chord recognition rates applying various reassignmensgtcamtsA f andA¢. Results showed
that a minimum constraint of 100Hz-1sec is necessary tooagprthe performance provided
by the unconstrained reassignment with the best recogniéite. The difference between the
proposed TFR-based features and standard ones turnedasuatmut 6%.

Some results from Figure 5.7 are given in Table 5.7. For thtso$ results, a Tukey’s
HSD test was also run. Figure 5.8 proves the fact that emiguyif and At results in system
configurations with statistically significant differenaashord recognition rates.
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Recognition rate (%)
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Figure 5.7: Evaluation results with time-frequency regissient constraints as a functionff. Differ-
ent At are represented by different curves.
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Figure 5.8: Tukey's HSD test.
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std 5 0.05| 20 _0.1| 100_1| reas
65.38| 66.65| 73.79| 76.02| 76.70

Table 5.7: A subset of evaluation results with time-frequereassignment constraints.

Alternative settings

Since the time-frequency reassignment technique usedihewales weighting an analyzed
signal with a window function, an impact of different winddaypes on the performance was
investigated. The results for the STD (using 192 ms windavgtle) and RC (using 96 ms
window length) feature are provided in Table 5.8.

From these results, it is shown that system performance nategary greatly with differ-
ent window types. Blackman, Hanning and Hamming windowsvgabquite similar results.
Similar behavior was observed in the experiments desciib8eéction 5.2.

STD RC
hanning| 70.62| 76.70
hamming| 70.5| 76.63
blackman| 70.41| 76.56

kaiser(alpha=8) 70.36| 76.82

Table 5.8: Performance of STD and RC feature with differemmidew types.

A number of different configurations is involved for optirmg such parameters as spectrum
type (energy or magnitude), number of Gaussians to modelszom probabilities and insertion
penalty.

Figure 5.9 depicts recognition rates using RC feature wiffierént window lengths and
number of Gaussians. Hanning window is assumed here andlatd-or each configuration
the best insertion penalty is assumed.

These results showed that for the RC feature optimal winéngth appeared to be 96 ms,
as opposed to the STD feature, for which such a short windogtheresults in a much lower
performance. This fact is coherent with a more accurateggnecalization in time for the
TFR-based features.

Figure 5.10 presents further investigation on the impat¢hefspectral energy rateintro-
duced in Equation ( 3.16). In the case of magnitude spectrimalue is set to 1, for power
spectrum it is set to 2. An optimal parameter setting fromghevious experiments is here
assumed (RC feature, 96 ms Hanning window). The optimaleviduthe given dataset and
approach is around 0.75.

An important step in the feature extraction process is thienasion of the deviation of the
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Figure 5.9: Recognition rates using the RC features foeufit window lengths and Gaussian numbers
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Figure 5.10: Recognition rate for RC feature as a functiof. of
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A4 note from 440 Hz and subsequent compensation for miswpiii7]. Since a considerable
amount of data used for the evaluation purposes was recegl@dal decades ago, the tuning
problem should be taken into careful consideration. Hereepése the experiments that show

the impact of tuning block. Results with the STD and RC fesdwith and without tuning are
provided in table 5.9.

STD | STD tuning RC | RC tuning
70.33 71.29| 76.70 77.29

Table 5.9: Influence of tuning on STD and RC feature perfoxaan

The experimental results showed that the tuning operateys@n important role and leads
to an increase in performance of about 0.6% for the RC feasurelarly to what was observed
in Section 5.2.

A large-scale parameter optimization performed here leadteresting results. Different
window types showed similar performance, RC feature shotlvedbest results with 96 ms
window length. Taking magnitude spectrum instead of endéeggs to better performance.

Moreover, using value of 0.75 leads even to a better performance. The usageaiaf) block
proved to be reasonable.

Harmonic reassigned chroma

In order to improve the quality and robustness of the RC featand take an advantage of
possible harmonic filtering of the reassigned spectrograraduced in section 3.4, the adoption
of the HRC features is here explored.

78.5

78

77.5

77

Recognition rate (%)

76.5

76 Il Il Il Il Il
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Tolerance factor

Figure 5.11: Recognition rate for HRC as a function of therahce factor
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Figure 5.12: Recognition rate as a function of the numberaisSians

First of all, the impact of the tolerance factdrintroduced in (3.23) was investigated. As
shown in Figure 5.11. The optimal value dffor the chord recognition task turned out to be
0.4 with recognition rate of 78.28%, although small dewiasi on this parameter seem to have
a minor impact in terms of loss of performance.

The next set of experiments aimed to compare HRC, RC and Safrés. Figure 5.12
depicts recognition rates for different number of GaussialRor each configuration the best
insertion penalty is assumed.

In all the three cases, the obtained results indicate gootelof the number of Gaussians
equal to 2048. Higher values do not bring significant improgat, while increasing compu-
tational load drastically. This trend may also depend ortridiaing material size. As a result,
the HRC feature proved to be advantageous over RC with thmalptalue ofA to be 0.4 with
chord recognition rate improved to 78.28%.

Chroma and bass-chroma in multi-stream HMMs

Having shown the advantage of the HRC features, in the nexbss we will adopt them for

further investigations. The next step is based on the mad#ianulti-stream observation layer
introduced in section 4.1. This set of experiments involedtechnique of splitting frequency
range used for chroma calculation into two parts: chromalss$-chroma. For computing
bass-chroma, frequencies that correspond to the MIDI raegygeen 24 (32.7 Hz) and 54 (185
Hz) notes are used. For chroma feature extraction frequiabesval between 54 (185 Hz) and
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96 (2093 Hz) MIDI notes is employed. For these experimenésysed HRC feature based on
the spectrum calculated with Hanning window of 92 ms andrémlee factor set to 0.4. The
obtained chord recognition rate turned out to be equal t@®, i.e., multi-stream HMMs
provided a further improvement of about 2%.

Thus, this bunch of experimental results proved the fadtsphtting frequency region into
2 bands is reasonable and leads to a significant increasewf idcognition rate.

Chroma and bass-chroma weights

In order to take further advantage of using the two chroneasts, a careful evaluation of the
system performance was performed setting different strgaights in the Viterbi recognizer.

Chroma weight

Bass chroma weight

Figure 5.13: Recognition rate (%) as a function of diffeneetghts for chroma and bass-chroma observ-
able streams

Important parameters here are the weights of each streagureb.13 depicts recognition
rate as a function of bass-chroma weight and chroma weidtg.s€lf-test experiments, when
the training material was used as a test set, were also ctuiuthe obtained results, shown
in Figure 5.14, suggested the optimal stream weights fogithen data corpus.

The experiments of this section proved that assigningreiffeimportance factors to differ-
ent feature streams by applying stream weights in the rézegis effective. It was shown that
using weights 1, 0.7, for the chroma and bass-chroma streasysectively, leads to the best
performance of 81.58%.
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Figure 5.14: Self-test recognition rate (%) as a functiodiffiérent weights for chroma and bass-chroma
observable streams

Number of emitting states in HMM

A series of experiments involving more than 1 emitting Satas conducted. Table 5.10 pro-
vides the summary of recognition rates as a function of Ganssumber for different number
of states (1 - 3). using 2 or 3 emitting states in HMM does nistghany improvement.

2 8 32| 128| 512| 2048
1state| 72.6| 75.15 77| 78.89| 79.91| 81.58
2 states| 71.96| 74.88| 77.6| 78.55| 79.74| 81.22
3 states| 71.93| 74.59| 77.22| 79.03| 79.87 | 80.82

Table 5.10: Recognition rates as a function of Gaussian euifob different number of states in HMM

Chord confusions

Finally, in order to understand in detail chord misclasatins statistics, information about
typical errors was collected. The confusion pie chartstierliaseline and best system configu-
rations are presented in figures 5.15.

The relation between detected chord and ground-truth dealehoted by Roman numerals.
Lower-case numerals are used to indicate minor triads apeéregase for major ones. For
example, wrongly detected instead ofC is indicated a¥/I.

Major chord confusions of the baseline and the best system coafigns do not show any
significant difference of the error statistics. At the sam&t number of "parallel” errors for
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Figure 5.15: Chord confusion statistics.
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Minor increases to a considerable extent from 28% in the baselstera to 40% in the final
configuration. Significantly reduced the numbedXdfconfusions from 11% to 6%. However,
other error type statistics are similar for the baselinelzgst system configurations.

Conclusions

In this section we proved the fact that accurate spectrdysisdor feature extraction can sig-

nificantly improve chord recognition accuracy. RC featueefgrmed significantly better than

standard chroma. Large-scale evaluations of chord retogriystem with different parame-

ter configurations pointed out the optimal feature, whicHRC chroma with tolerance factor

set to0.4. Multi-stream HMM configuration, where the two observaliteams correspond to

chroma and bass-chroma proved to be effective and showest petformance in comparison

with a single-stream HMM configuration. A substantial imggment over the baseline system
has been obtained with the final result of 81.58% recogniite.

5.6 Chroma features with reduced dimensionality

This section is concerned with the evaluation of chromaufest with reduced dimensionality
introduced in Section 3.5. Tonal centroid as well as dified®CT features are evaluated.
Experimental setup used here is the same as described ior§8d&.2.

The experimental results are given in Table 5.11. Here "Drolar streams” is the best
configuration obtained using bass and treble chroma stre@athshe corresponding stream
weights of 0.7 and 1.0. "Unique chroma vector" configuratitiizes c.,,,,; vector as feature
set. "2 tonal centroid streams” is the 2-stream configumatith bass and treble tonal centroids
weighted by 1.0 and 1.0 correspondingly. In "Tonal centtogtble” and "Chroma treble" we
investigate the advantages of tonal centroid over standa@na. And finally "IDCTc,o,,1"
and "IDCTc,,,,:" are the IDCT features givenin ( 3.29) and (3.30), while "ID&,,,,; subtract
mean" shows system performance using mean subtractionidgeh

Experimental results showed that tonal centroid did notvsaioy advantage over standard
chroma features, neither in a single-stream, nor in a nstriiam configuration. Using IDCT
transform that is considered to be established technigaparech processing did not prove its
effectiveness in chord recognition. Mean subtraction diishow any advantages, conversely,
it proved to decrease the performance drastically.
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Configuration Dimensionality| Recognition rate
2 chroma streams 12+12 81.581
Unique chroma vector 24 79.339
2 tonal centroid streams 6+6 79.753
Tonal centroid treble 6 74.408
Chroma treble 12 76.691
IDCT ceomi 16 77.624
IDCT Ceom1 16 77.211
IDCT c.om1 Subtract mear 16 71.573

Table 5.11: Experimental results using feature dimens$itgnaduction

5.7 MIREX evaluations

In this section we present the results of the proposed chemdgnition systems that partici-
pated in MIREX competitions. We compare the performancé wiher submitted systems and
analyze statistically significant differences in the résul

5.7.1 MIREX 2008

The first time audio chord recognition was included in thedfsMIREX subtasks was in 2008.

At that time several approaches to chord recognition exjstet comparison of the output
results was difficult, because different measures were tosasisess the performance. MIREX
2008 established common rules and methodology for chomagretton systems evaluation.
Test set, which included 176 songs of Beatles, was definethaAtime it was the largest and
probably the only publicly available labeling dataset ajurd-truth chords kindly provided by
C. Harte. The audio was in WAV format in at a sampling rate afl4dHz and a bit depth of
16 bit. Ground-truth to audio alignment was done autombyiedth the script provided by
C. Harte. Audio chord detection task was divided into twotasks, which are "train-test" and
"pretrained”. In the "pretrained” subtask participantsensupposed to submit systems that are
ready to perform chord transcription. All the parametess st up in advance and no model
training is needed. In the "train-test” subtask the prooésystem evaluation consisted it two
steps. At first, model parameters are estimated using igaiohta. In the last step, the trained
system is evaluated on the test data. 3-fold cross validatas adopted, where album filtering
was applied on each train-test fold. That means that songsttie same album can not appear
in both train and test sets simultaneously.

Two different measures were used. The first measure, thatatesl "Overlap score”, is
the "recognition rate" measure introduced in Section 5I1i% calculated as ratio between the
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duration of correctly identified chords and total duratidrymund-truth chords. The second
measure, that is "Overlap score merged" is calculated im#esimanner. The only difference is
the fact that only chord roots from output labels are mat@gainst ground-truth. For example,
A:maj is considered to be correct if there is A:min in the grdruth.

Participants from different teams are presented in Tabl€2 &nd 5.13. The results for
"pre-trained” and "train-test" subtasks are given in Fegbrl6. Tukey-Kramer HSD tests for
statistical significance are depicted in Figure 5.17.

Team ID | Authors

BP J. P. Bello, J. Pickens

KO M. Khadkevich, M. Omologo

KL1 K.Leel

KL2 K.Lee?2

MM M. Mehnert

PP H.Papadopoulos, G. Peeters

PVM J. Pauwels, M. Varewyck, J-P. Martens
RK M. RyynAdnen, A. Klapuri

Table 5.12: Team legend for MIREX 2008 pretrained subtask.

Team ID | Authors

DE D. Ellis

ZL X. Jhang, C. Lash

KO M. Khadkevich, M. Omologo

KL K. Lee

UMS Y. Uchiyama, K. Miyamoto, S. Sagayama
wD1 J. Weil

WD2 J. Weil, J.-L. Durrieu

Table 5.13: Team legend for MIREX 2008 train-test subtask.

KO system that participated in both subtasks is described ctid®e5.2 of experimental
results. Standard chroma features that were introducedatid® 3.1 were used as a front-end.
"No-LM" system configuration described in Section 4.3.3 wdspted. At that time, out chord
recognition system did not include language modeling flonetity. Parameter estimation for
the "pretrained” system configuration was performed usiagBeatles" dataset. The difference
in performance between our systems in "pretrained” andn*test” subtasks appeared to be
about 8%. It seems to be due to a small bug in the chroma cotigputaodule and the fact that
"pretrained” system had seen the test material beforee sirveas previously used for model
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Figure 5.16: MIREX 2008 results in audio chord detection.
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Figure 5.17: Tukey-Kramer HSD test for MIREX 2008 results.

parameter estimation.

pAR

In the "pretrained" subtask the system of Bello and Pickéwsved the best performance.
However, the winner of the competition is undoubtedly thstem of Uchiyama, Miyamoto,
and Sagayama. It showed 72% overlap ratio with statisyicadinificant difference from all
other systems, as shown in Figure 5.17. The system of Eltlstive overlap score of 70% also

showed the results that are significantly better than aliéseof the systems.
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5.7.2 MIREX 2009

MIREX 2008 audio chord recognition contest had attractedatitention of many people work-
ing in the MIR area. 15 systems were submitted from 11 differesearchers and research
groups. Rules and methodology of evaluation in MIREX 2009engerived from MIREX
2008. However, the test material was enlarged and compnigednly the Beatles collection,
but 38 additional songs of Queen and Zweieck donated by Mati¥iauch.

Participants from different teams are presented in Table$ &nd 5.15. The results for
"pre-trained” and "train-test" subtasks are given in Fegbrl8. Tukey-Kramer HSD tests for
statistical significance are depicted in Figure 5.19.

Team ID Authors

CH C. Harte

DE D. Ellis

KO1 - KO2 M. Khadkevich, M. Omologo

MD Matthias Mauch, Katy Noland, Simon Dixon
OGF1-0GF2 L. Oudre, C. Févotte, Y. Grenier

PP H. Papadopoulos, G. Peeters

PVM1 - PVM2 Johan Pauwels, Matthias Varewyck,Jean-Pierre Martens
RRHS1 - RRHS3 T. Rocher, M. Robine, P. Hanna, R. Strandh

Table 5.14: Team legend for MIREX 2009 pretrained subtask.

Team ID Authors
RUSUSL J.T.Reed,Yushi Ueda,S.Siniscalchi,Yuki Uchiyama, Stii§agayama,C.H.Le
WEJ1 - WEJ4| Adrian Weller, Daniel Ellis, Tony Jebara

D

Table 5.15: Team legend for MIREX 2009 train-test subtask.

KO1 andKO2 system was submitted to partcipate in the "pretrained"askbtin compar-
ison with the systenKO that was submitted to MIREX 2008, several minor improveraémt
the feature extraction block were made. Mistuning raterestor was added, which improved
the front-end KO2 system was equipped with the language modeling block. Thégroration
is derived from the "LM" system described in Section 4.3.3.

Both systems3KO1 andKO2, showed good results. The difference in overlap score letwe
KO2 and the best submission in the "pretrained” subtask, wisithD), appeared to be only
0.3%. The best system showed 71.2% of overlap score. Theemxt was produced by the
systemOGF2 with the overlap score of 71.1%, which is extremely closehwliighest result.
There is no surprise that HSD test did not show significarfiedihces between the bestsix re-
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Figure 5.18: MIREX 2009 results in audio chord detection.

sults, as shown in Figure 5.1801 andKO2 systems showed 69.7% and 70.8% overlap ratios
respectively. It is worth noting that iKO1 no statistical information about chord transitions
was used. Transition probabilities between each chordgpaiequal and classification is based
solely on acoustic features. Including language modelingd2 showed a slight increase in
performance.

The leader in the "train-test" subtask is the submis®utd4 of Weller et al. with the over-
lap ratio of 74.2%. The algorithm is based on the applicatib8VM [81] and outperformed
the best system from the "pretrained" subtask.

5.7.3 MIREX 2010

MIREX 2010 gave a new perspectives on large scale evaluafidWliR systems. NEMA
MIREX DIY infrastructure was developed to facilitate thepess of automatic processing the
results. In contrast to the previous years, evaluationiosethanged. Instead of "overlap ratio
merged", "weighted average overlap ratio" metric was ohieed. "Weighted average overlap
ratio” was calculated as the average overlap ratio caledia the song basis. Dataset remained
the same as in MIREX 2009. Starting from MIREX 2010 "pretegifiand "train-test" subtasks
are merged together in a single "audio chord detection" task

Participants from different teams are presented in Taldlé.5The results are given in Ta-
ble 5.17. Tukey-Kramer HSD tests for statistical signifo@aare depicted in Figure 5.20.

Two different systems were submitted. They K@1 andMK1. Recently developed RC
features were used as the front-end. Multi-stream HMM weilezed for acoustic model-
ing, where frequency range for chroma calculation was spfittwo parts: chroma and bass-
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Figure 5.19: Tukey-Kramer HSD test for MIREX 2009 results.

chroma. "LM" system configuration was adopted. WIMK1 system needed trainingO1
system was submitted with all the model parameters estimat@dvance.

MIREX 2010 competition in chord detection showed significercrease in performance
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5.7. MIREX EVALUATIONS

Team ID Authors

CWB1 T. Cho, R. Weiss, J. Bello

EW1-EW4 D. Ellis, A. Weller

KO1 M. Khadkevich, M. Omologo

MD1 M. Mauch, S. Dixon

MK1 M. Khadkevich, M. Omologo

MM1 M. Mauch

OFG1 L. Oudre, C. Févotte, Y. Grenier

PP1 H. Papadopoulos, G. Peeters

PVM1 J. Pauwels, M. Varewyck, J.-P. Martens
RRHS1 - RRHSZ T. Rocher, M. Robine, P. Hanna, R. Strandh
UuoOS1 Y. Ueda, Y. Uchiyama, N. Ono, S. Sagayaina

Table 5.16: Team legend for MIREX 2010 audio chord deteatmmtest.

Algorithm | Chord Overlap ratio| Chord weighted average overlap ratjo
MD1 0.8022 0.7945
MM1 0.7963 0.7855
CcwB1l 0.7937 0.7843
KO1 0.7887 0.7761
EW4 0.7802 0.7691
EW3 0.7718 0.7587
Uuos1 0.7688 0.7567
OFG1 0.7551 0.7404
MK1 0.7511 0.7363
EW1 0.7476 0.7337
PVM1 0.7366 0.727
EW2 0.7296 0.7158
RRHS1 0.7263 0.7128
PP1 0.7023 0.6834
RRHS2 0.5863 0.5729

Table 5.17: MIREX 2010 results in Audio Chord Detection.

in comparison with the previous years. The best "overlap'raf 80.2% showed the system
MD1 of Mauch and Dixon. In comparison with MIREX 2009, where tlestachieved result
was 74.2%, a significant increase of 6% was observed. Nexttlanention the fact that the
average performance of the submitted systems is signilychigher than a year beford&KO1
andMK1 systems showed 78.9% and 75.1% overlap ratios respectimelgmparison with the
MIREX 2008, where the difference in performance between"pugtrained” and "train-test"
systems was about 8%, here we can observe only 3.8%.
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Figure 5.20: Tukey-Kramer HSD test for MIREX 2010 results.

5.7.4 MIREX 2011

MIREX 2011 contest in audio chord detection is an exact caphif MIREX 2010 in terms of
evaluation metrics and datasets.

Participants from different teams are presented in Taldl8.5The results are given in Ta-
ble 5.19. Tukey-Kramer HSD tests for statistical significaare depicted in Figure 5.21.

Our chord detection systems are marke&k@d andKO2. As opposed to our submissions
to MIREX 2010, where RC features were used as the front-eR{; features were adopted.
The same multi-stream HMM configuration as in MIREX 2010 wtkzed. Similarly to the
previous year, we submitted two systerk®1 system was submitted pretrained, wHi©2
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5.7. MIREX EVALUATIONS

Team ID Authors

BUUROL1 - BUUROS5| I. Balazs, Y. Ueda, Y. Uchiyama, S. Raczynski, N. Ono, S. Saqm
CB1-CB3 T. Cho, J. P. Bello

KO1-KO2 M. Khadkevich, M. Omologo

NM1 Y. Ni, M. Mcvicar

NMSD1 - NMSD3 Y. Ni, M. Mcvicar, R. Santos-Rodriguez, T. De Bie

PVM1 J. Pauwels, M. Varewyck, J.-P. Martens

RHRC1 T. Rocher, P. Hanna, M. Robine, D. Conklin

UuoOS1 Y. Ueda, Y. Uchiyama, N. Ono, S. Sagayama

UUROS1 I. Balazs, Y. Ueda, Y. Uchiyama, S. Raczynski, N. Ono, S. $agea

Table 5.18: Team legend for MIREX 2011 audio chord deteatmmtest.

Algorithm | Chord Overlap ratio| Chord weighted average overlap ratjo
NMSD2 0.976 0.9736
KO1 0.8285 0.8163
NMSD3 0.8277 0.8197
NM1 0.8199 0.8114
CB2 0.8137 0.8
CB3 0.8091 0.7957
KO2 0.7977 0.7822
CB1 0.7955 0.7786
NMSD1 0.7938 0.7829
UuOS1 0.7689 0.7564
PVM1 0.7396 0.7296
RHRC1 0.7289 0.7151
UUROS1 0.3429 0.3386
BUURO3 0.3427 0.3385
BUURO1 0.2361 0.2313
BUURO4 0.1898 0.1853
BUURO2 0.1675 0.1616
BUURO5 0.1264 0.1215

Table 5.19: MIREX 2011 results in Audio Chord Detection.

system was submitted for 3-fold cross-validation.

The highest overlap ratio showed systBiSD2 of Ni et al. Almost perfect chord tran-
scription was demonstrated with the overlap ratio of 97.6%wever, it is probable that the sys-
tem used ground-truth labels along with some song idertificalgorithm, assigning ground-
truth chord progression to the identified song. This can lesged from the fact that the ma-
jority of the transcribed songs had 100% overlap ratio. Rersongs that the system could not
identify properly we can observe inconsistencies in thatom of output labels, for example,
the output labels for an audio file of 120 seconds could be &Z0rsls.

Among the rest of the systems that are based solely on the aodtent analysigKO1
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Figure 5.21: Tukey-Kramer HSD test for MIREX 2011 results.

showed the highest overlap ratio of 82.85%. The next reavétpretty much close to this value
and do not show statistically significant differences asasshim Figure 5.21. We can observe
further improvement of chord recognition system perforagam comparison with MIREX
2010.
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Chapter 6

Conclusions

This chapter summarizes contributions of the first part eftthesis. Possible directions for
future work are outlined.

6.1 Summary of the contributions

In Chapter 2 we reviewed state-of-the-art approaches twnaatic chord recognition. Classi-
fication into template-matching, statistical, and hybngh@aches was provided. General in-
formation on feature vector selection and extraction tephes for automatic chord recognition
was given. The importance of mistuning estimation probless hghlighted.

Chapter 3 was concerned with different frond-end configomat Phase-change based
method for mistuning rate estimation was proposed. A newsctd chroma features that is
based on the PQMF filter bank and Time-Frequency Reassigreatragram was introduced.
Detailed description of feature vector extraction usirgpgloposed methods was provided. The
main contribution of this chapter is the introduction of tmavel chroma features.

In Chapter 4 we presented a probabilistic approach to autosteord recognition and intro-
duced two-level system architecture. Acoustic modelingegach base on multi-stream HMMs
was described. Application of standard and factored laggumodels was outlined. Finally,
general overview of the proposed chord recognition systasgiven.

In Chapter 5 we performed a systematic evaluation of diffesgstem configurations. We
investigated the influence of different parameters on tetesy performance. The experimental
results show that chroma extraction based on PQMF filter baakysis and subsequent period-
icity detection does not outperform the standard approactht analysis frame length of 182
ms. However, when taking into consideration short-termyamawith frame lengths of 46 ms
and 92 ms the proposed approach significantly outperformapplication of standard chroma
feature. The TFR technique proved to be effective for protumore accurate chroma features
that outperformed the traditional one. A novel approacthBomonic component separation in
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6.2. FUTURE WORK AND PERSPECTIVES

the spectral domain that was used for generating HRC chreatare showed the best perfor-
mance. Tolerance factor impact on the HRC feature perfocmaas addressed and an optimal
choice has been individuated. Another interesting ingasiton was carried out in the acoustic
modeling. The multi-stream HMM structure for chord recdgm system, where the two ob-
servable layers represent harmonic content of two frequesgions was evaluated and showed
better performance in comparison with the single-streanM#tructure. Experimental results
showed that assigning different weights to different feastreams influences the recognition
rate. We proved the fact that accurate spectral analysie&bure extraction can significantly
improve chord recognition accuracy. Large-scale evadnatof chord recognition systems with
different parameter configurations pointed out the optisedtings, which imply HRC chroma
feature with multi-stream HMM, where the two observableains correspond to chroma and
bass-chroma. A substantial improvement over the basegjsters has been obtained with the
final result of 81.58% recognition rate. The proposed systeowed the highest overlap ratio in
MIREX 2011 competition among chord recognition systemdgciviare based solely on audio
content analysis.

6.2 Future work and perspectives

MIREX competitions during the past 4 years show a notabladtte continuous improvement
of different submitted chord recognition systems. Starfilom 72% of the best overlap ratio in
2008, we can observe an increase of about 10% nowadays.

The most straightforward possible improvement can be brbtagthe system by including
probabilistic modeling of temporal structure. This can baelby introducing an additional hid-
den layer in HMMs, where hidden states correspond to diftdseat phases. Additional feature
vector stream for modeling observation probabilities atlevents will be introduced. An inter-
esting research could be carried out in the area of possitdesiction and mutual dependencies
of different hidden layers in HMMs.

Another interesting direction of future work considerstifier improvement of the feature
vectors quality. Careful analysis of higher harmonics capérformed using the proposed TFR
technique. Applying higher harmonic subtraction can leadven better performance, as was
shown in [34, 35].

82



Part Il

Beat structure extraction
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In this part of the thesis we suggest an approach that pesfsimultaneous estimation of
beats and downbeats. It consists of two hierarchical layengch include acoustic modeling
and beat sequence modeling, and proposes a novel schemdebprdodic metrical structure.
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Chapter 7

Background

Extracting different types of semantic information from simudata has become an emerging
area of research in Music Information Retrieval (MIR) commtyy Tempo estimation and
beat/downbeat tracking are amongst the most challengsig tia MIR community. While
processing modern rock and pop songs with rich percussiteapd stable rhythm is a nearly
solved problem, dealing with non-percussive music witht swofte onsets and time-varying
tempo, that is characteristic of classical music, is stilhallenge.

As opposed to tempo estimation, where only the periodidibeats is looked for, beat/downbeat
tracking implies also producing correct time positionsresponding to rhythmical events. A
notion of beats can be defined as time instants, when humag tags his or her foot trying to
follow the music. From the musicological viewpoint, dowabeosition is defined as the first
beat in a bar. Classification of rhythmical events into beats downbeats brings a portion of
useful information about metrical structure, that can beduss high-level feature in many MIR
tasks.

There are lots of different approaches for beat/downbeeaeion. Most of them are based
on searching for periodicities in some kind of Onset Detectunction (ODF) [82], [83]. The
most common periodicity detection methods are based orcauedation [84], [85], bank of
comb filter resonators [86], or short-time Fourier transfaf the ODF [84]. All the methods
aim at revealing periodicities in the onset-energy fungtfoom which beat positions and tempo
can be derived. The intensities of the estimated perigdari¢ not constant over time and can
be visually represented by means of spectrogram-like septations called rhythmogram [87].
However, estimating beat structure for non-percussivagsespecially with soft note onsets,
becomes a more complex problem due to the noisy ODF. In ocdeir¢cumvent this, more
sophisticated methods that are based on pitch [88] and glelay [89] analysis were proposed.

A lot of attention has been paid to the problem of downbeakiry. Most approaches are
based on some prior knowledge, extracted on previous stegsen to the system as input
parameters [90].
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Dixon [91] proposed a system that is able to estimate the demmol the beat locations in
expressively performed music. His system can manage ejmebolic data such as MIDI, or
raw audio. The processing is performed off-line to deteetdalient rhythmic events. Then,
different hypotheses about the tempo at various metrivaldeare generated. Based on these
tempo hypotheses, a multiple hypothesis search was applfed beat locations that fit to the
rhythmic events in the best way. In his approach, multiplt lagents compete with each other
in the prediction of beat events. His system was tested omteselacontaining songs belonging
to different musical styles.

Ellis and Poliner [92], [58] proposed a beat-tracking systhat is based on global tempo
estimation. The global tempo is extracted using the autetaiion of ODF function. Then they
apply dynamic programming to locate beat positions in thele/lsong so that beats are placed
at the time instants with high ODF values, at the same timpikgespaces between beats that
correspond to the global tempo.

Goto [5] described another multiple agent-based beatitigaystem that recognizes a hier-
archical beat structure. His system is capable of real{tirneessing. The analysis is performed
on several layers: beat, half-bar, and bar. The proposéeysan manage audio data with and
without drums. Onset times, chord changes, and drum pattegmused to derive hierarchical
beat structure. Onset positions are represented by séwemsional onset-time vector, where
dimensions correspond to the onset times across sevemepfi@duency sub-bands. Tempo
is estimated using the autocorrelation of the onset segueRor half-bar and bar detection,
bass drum and a snare drum events are detected and matcivexd dgan templates. For non-
percussive sounds a measure of chord change probabilityed. uThe underlying ideas are
supported by the fact that chord changes occur most comnooriyar positions.

Recently, several HMM-based approaches have been prop&ssters in [93] proposed
used reverse Viterbi algorithm which decodes hidden stawes beat-numbers, while beat-
templates are used to derive observation probabilitiesShu and C.-C. Jay Kuo used periodic
HMM structure to extract beat locations [94], based on thepi@ information obtained on the
previous step.
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Chapter 8

Feature extraction

The efficiency of many MIR systems depends highly on the @ofcacoustic features. Each
task has its distinctive characteristics, and appropfegteire selections plays an important role.

This chapter introduces acoustic features for effectivkanturate beat/downbeat positions
extraction. Three different features are proposed. Thedimsension is represented by On-
set Detection Function (ODF) that is based on the impulsart pf the reassigned spectro-
gram. The second and the third dimensions are introduceat®hthe dynamics of harmonic
changes. In order to model fast and slow changes, ChromathariFunction (CVF) is calcu-
lated for short and large context windows. The choice of C¥Rdeature vector component
is based on the assumption that most harmonic changes thatioside a piece of music are
located on the bar positions.

8.1 Onset detection function

There are several approaches to compute Onset Detectiatidium the literature [82], [83].
Some studies have addressed the usefulness of signal desitiomp into several frequency
bands and subsequent independent analysis in each band.a@btMuraoka [95] split the
spectrogram into several strips and recognizes onsetstbygtogy sudden changes in energy.
Extracted seven-dimensional onset-time vectors are thecepsed by a multi-agent system.
An example of onset-time vector used in their approach isctighin Figure 8.1

Scheirer [96] implemented a bank of six elliptic filters. T&ering was performed in time
domain. In the next step, tempo is extracted using anothee diacomb-filters.

Alonso et al. [82] used decomposition of the analyzed sigmal several frequency sub-
bands. Decomposition is performed using a bank of 150thrdftie filters with 80 dB of
rejection in the stop band. They also suggest to perform daicrtnoise decomposition of the
signal, which aims at separating sinusoidal components fiesidual noise. In the next step,
Musical Stress Profile (MSP), which is an analogue of ODFxisaeted. MSP calculation is

89



8.1. ONSET DETECTION FUNCTION
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Figure 8.1: Onset-time vector in the approach of Goto andadke.

based on the extraction of Spectral Energy Flux (SEF). Tleelto use SEF is based on gen-
eral assumption that the appearance of an onset in an aue@nrsteads to a variation in the
signal’s frequency content.

In this work, we propose a novel method to derive onset deteduinction. It is based on
the impulsive part of the reassigned spectrogram.

ODF extraction process starts with transforming audio aigmo spectral domain using
TFR technique described in Section 3.4. Time-frequencysigaed spectrogram is computed
applying impulsive component filtering as shown in Equaf®24). Having filtered impulsive
energy components from the spectrum, onset detectionifumistobtained by summing all the
spectral components in the given frame.

ODF(t) = Simp(t. k) (8.1)
k

wheresS;,,(t, k) is the impulsive spectrogram. Spectral energy sum of theiisie com-
ponents acts as the first dimension in the feature vectoespac
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Figure 8.2: Onset detection function of an accending nossgme.

8.2 Chroma variation function

Discrimination between beats and downbeats is partiguthillenging and often needs a richer
feature set, rather than a single ODF. Davies [90] used spelifference between band-limited
beat synchronous analysis frames as a robust downbeattodit this work we propose to use
Chroma Variation Function. The main concept here on whiclbase our ideas is the fact that
harmonic (chord) changes occur very frequently on the deanpositions. CVF reflects the
discrepancies between mean chroma vectors of two adjaagmiets. This technique was used
in [97] and [98], where spectral variation function feativgere used in for speech recognition
and automatic segmentation purposes. It was shown thaj uanmble context lengths along
with mean subtraction leads to more robust features. Irptyer we adopt a similar approach.

Let c(k) be a chromagram is extracted from the harmonic part of tresigaed spectrogram
Sharm(k,n) introduced in [59]. Lefi;, (k) and rightc,, (k) contexts of lengthl correspond to
the bins with indexe§: — L, ..., k| and|k, ..., k + L] respectively.

1 — min(Miepe, Myight)

CVF(k) = .

(8.2)
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8.2. CHROMA VARIATION FUNCTION

where:
Mleft = 1I<I§.i£L(p(clL/<k>7 CTj/(k))) (83)
Mright - 1r<I;i£lL(p(Clj/(k)v CT‘L,(k:))) (84)

In these equations,’(k) andc, (k) are the left and the right contexts with subtracted mean
value over timen(k) of the context that corresponds to the bins with indékes L, ..., k + L].

1, (k) = c, (k) — m(k) (8.5)

¢, (k) = ¢, (k) — m(k) (8.6)
whenp(c;, ¢,) is the normalized inner product between the two context istlean

<@, >
[liten

plc, ) = (8.7)

The meaning o'V F'(k) can be interpreted as a cosine of an angle between the two mean
chroma vectors with subtracted(%) value. In order to identify the highest (i.e., most signif-
icant) chroma variations, given the left and the right cetsgeminimum values in Equations
(8.3) and (8.4) are used. Varying context lengttallows one to set up the ability to detect
smooth or fast harmonic changes.

An example of ODF and CVF features extracted from George bt "Careless Wisper"
are shown in Figure 8.3. Plot 8.3a depicts ground-truthl¢atoe the analyzed excerpt. Thick
vertical lines correspond to downbeat positions, whil@ tines show beat locations. Onset
Detection Function extracted from the excerpt is shown gufeé 8.3b. In the next two plots,
Chroma Variation Functions with context lengths of 0.4 ars@ are depicted. Vertical dotted
lines correspond to the time instants, where there is a foeal in CVF.
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Different feature components extracted frororGe Michael’s "Careless Wisper".
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Chapter 9

System architecture

This chapter describes the proposed statistical approaaitdmatic extraction of beat sequence
from audio. A system architecture that consists of two mamaal levels, acoustic modeling
and beat sequence modeling is introduced. As opposed tordeistic approaches, where beat
locations are obtained by periodicity analysis and subsetgbeat locating using the tempo
information extracted on the previous step, no prior infation is needed in the proposed
scheme. A specific dictionary and unit alphabet for applyarmgguage model approaches are
introduced.

The proposed system is capable of simultaneous extracfibeai and downbeat rhyth-
mic events. A dictionary of beat words is introduced, wheifeeent words represent time
segments between two adjacent beat events. Similarly echpecognition, a unit-based tran-
scription of each beat word from the dictionary is providéte alphabet includes 5 units (beat
pre-attack/attack, downbeat pre-attack/attack, no}lzeet beat words are then defined by ag-
gregating units. Each beat word is then characterized byemgiuration. In order to model the
periodicity of beat events, language modeling block isagd. Beat word sequence statistics
extracted from ground-truth material are used to train Aligtanguage models.

Section 9.1 introduces acoustic modeling approach addpesl Section 9.2 is devoted
to language modeling techniques. The overview and detaitsttription of the proposed
beat/downbeat extraction system is then presented indBe2:(3.

9.1 Acoustic modeling

This section describes the process of building acoustietsddr beat/downbeat detection. Two
different approaches are introduced. In both approachemalogy between beat/downbeat
detection and speech recognition is drawn, based on tleaviold) relationship: phoneme, word,
and sentence in speech correspond to unit, beat word, ahsdepeence respectively. Figure 9.1
depicts different description levels for a speech sentandea beat sentence respectively. Two
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9.1. ACOUSTIC MODELING

beat word classes are introduced, which are beats and dawnigach beat word from the beat
dictionary is characterized by type and duration. The nex¢ll of word segmentation is the
phoneme-based or unit-based level. At this level, diffetamts that comprise beat words are
modeled by a number of hidden states in HMMs.

(s)—(_this () book? > Word level

@ ° e Phoneme (unit) level

/ \

/ 8 \ HMM level

(a) Speech sentence

_beat Word level

/ \
/
/ \\
/ \
@ @ fo-beat Unit level
/ \
/ \
/

/ \\ HVM level

(b) Beat sequence

Figure 9.1: Description levels for a speech sentence andtsskquence.

In the following sections we introduce two different appses to acoustic modeling. The
first approach is based on word-level modeling, while th@sd@pproach takes advantages of
unit-based acoustic modeling.

9.1.1 Word-based acoustic modeling

The first approach is based on using a dictionary consistirilgeotwo words: beat (BT) and
downbeat (DBT). In the training stage audio data is segndeateording to the ground-truth
labels so that each segment contains time interval betweeadjacent beat markers. Two sepa-
rate left-to-right HMMs that correspond to BT and DBT modais trained using feature vectors
extracted from the training material. Each model consissstodden states. They are supposed
to model beat/downbeat attack, sustain and pre-attaclepsfabe next beat/downbeat. How-
ever, no unit-level segmentation information is used indtep of training. All the emission
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CHAPTER 9. SYSTEM ARCHITECTURE

probabilities are learned from the data using Baum-Weltghrahm. In the test stage trained
HMMs are used by Viterbi decoder to output beat sequences. bldtk diagram of the de-
scribed system is depicted in Figure 9.3. HMM training anadiel@onnection is schematically
represented in Figure 9.2.

L) (e e ey

\ Downbeat segment frames / \ Beat segment frames /
\ / \ /
\ / \ /

\ / \ /

DBT HMM BT HMM

@%@

Figure 9.2: Word-level acoustic modeling.

Training data Test data
audio labels audio
Training HMMs
Y
A A
Feature extraction Feature extraction
module module
Viterbi decoder

Training LMs >
Lattice rescoring |\ Outputlabels

Figure 9.3: Block diagram of beat transcription system.

An output example of the above-described system is showrgur& 9.4. The first results
revealed the fact that the problem of producing periodipouéxists and the need for adapting
the structure of HMMs is evident. As opposed to the speecbgraton task, where word
durations can vary significantly and do not influence the @iVg@erformance, beat/downbeat
detection has some distinctive features. One of the masiusgproblems one can come across,
when trying to use HMM for decoding highly periodical eventsthe problem of keeping
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9.1. ACOUSTIC MODELING

periodicity in the output labels. Self-transitions in thiates of an HMM allow the model to
remain in the same state for quite a long period of time. Asdo@e time, some intervals with
numerous note onsets can produce quite dense estimateolgat, as shown in Figure 9.4.

labels

(a) Ground-truth and output labels

 s00m

bt ‘“\"'541—"?&‘“:""4 e ANJ*”“\A"‘“‘”L'"A'-'“'- b k""‘“‘“‘"JL“"‘“M‘“ “!"‘*!“‘“‘L%‘J LEE L-A‘““*“AJ LIWE® PRI JH"L?'F*!AW \“ﬁ\"‘l‘ L”*"'{ }M ‘M“F "?JL"Y‘!%JW "f‘!‘!""’fl ‘h“J ‘M‘JMJ‘M‘“AIJ‘ “?*c‘?""‘LU ‘ R”Y“N'W "‘“‘“'J\“A'

(b) Onset detection function

Figure 9.4: An example of the transcription output of Gedwijehael’s "Careless Wisper".

9.1.2 Unit-based acoustic modeling

Word-based acoustic modeling that was described in thequresection outlined the prob-
lem of periodicity in the output labels. There were somenaftis to address this problem in
HMM-based approaches. Y. Shiu et al. [94] proposed periledlito-right model that produces
periodic output. However, a prior information on the temgoaquired.

The solution proposed here is to take advantage of unitebasgustic modeling, to discard
all self-transitions in HMMs, and to add an additional besjieence modeling layer to the sys-
tem architecture. In this approach, a unit dictionary isstarcted, where different units model
the following events: beat pre-attack (BTp), beat attacka)B downbeat pre-attack (DBTp),
downbeat attack (DBTa) and "no beat" (NB). We draw an analmgyween a unit in the beat
extraction task and a phoneme in speech recognition as wassh Figure 9.1b.

All the units, apart from NB, are represented by a left-ghtiHMM with a numberN,;
of hidden states and no self-transitions. The NB unit hag oné emitting state. The number
of statesV,; imposes a duration constraint and corresponds to the ragassmber of time
frames to output the unit.
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CHAPTER 9. SYSTEM ARCHITECTURE

Model parameter estimation utilizes training materialwground-truth markers, labeled
manually. Extracted feature vectors are segmented acgptdithe ground-truth labels so that
each segment containg,; frames corresponding to a specific unit. All the emissiorbploli-
ties are learned from the training data using Baum-Welcbratgm.

In such a way, different units model different phases of fdeatnbeat event, at the same
time following the duration constraint. The proposed tir@gnschema rules out the possibility
to stay in any state for more than one frame. Figure 9.5 depicexample of acoustic modeling,
whereN,; = 4 andn(:) is the number of frames used to train the NB unit-ith ground-truth
beat segment.

Ground-truth markers
DBT marker «— T BT marker

" Downbeat segment ‘|‘ Beat segment |
¢ -t —q—h

Figure 9.5: Unit-level acoustic modeling.

9.2 Language modeling

Unit-based acoustic modeling approach that was describdteiprevious section needs high-
level language modeling to aggregate units in beat wordg¢@aimdroduce beat duration factor.

Language modeling layer is an essential part in the propbsatl detection system. Its
main target is to provide statistical information abouttissguences and beat periodicity. The
dictionary for the beat/downbeat tracking task consistsvofword classes: beat and downbeat
words. Each word from the dictionary is characterized bydin@tion information.

For each word a unit-level transcription is provided. It sists of a pre-attack unit, followed
by an attack unit and a numbey of NB units that define the duration factor. The first 7 words
of the dictionary are provided in Table 9.1.

Having ground-truth annotations for both beats and dowisheae can collect the statistics
on possible beat word sequences. Language model trairang stith the extraction of beat
sequences from the ground-truth labels. Each beat seqgisscamposed of beat words defined
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9.2. LANGUAGE MODELING

Table 9.1: Dictionary for the beat/downbeat tracking task

Word Unit transcription
beat20 BTp BTa 20NB
downbeat20| DBTp DBTa 20NB
beat21 BTp BTa 21NB
downbeat21| DBTp DBTa 21NB
beat22 BTp BTa 22NB
downbeat22| DBTp DBTa 22NB
beat23 BTp BTa 23NB

as described above. The duration information for each bead v¢ extracted from the time
instants corresponding to the boundaries of the segment.

In order to take into account all possible tempo variati@tsling factors, in the range
[0.8 — 1.2] with the step 0f).05 are applied. Let us assume a ground-truth beat sequence that
consists of only three beat words that are downbeat50, Bela¢at50. The duratiofy, of each
beat word is equal to 50 frames. After applying scaling pdoce with different scaling factors
sy, a number of beat sentences are obtained. Duratjon of beat words in-th sentence is
defined asi;(i) = dys¢(i). As a consequence, a number of beat sequences is extramted fr
each ground-truth song. An example of the training matexalacted from a short song is
given in Table 9.2. Symbols s > and< /s > denote the beginning and the end of a musical
piece respectively. Extracted material is given as an itgotrain V-gram language models.

Table 9.2: Text extracted from the ground-truth labels

< s > downbeat52 beat52 beat52 beat52 downbeat52 ... beajs2>
< s > downbeat54 beat54 beat54 beat54 downbeat54 ... beas3>
< s > downbeat56 beat55 beat56 beat55 downbeat55 ... beaysb>
< s > downbeat57 beat57 beat57 beat57 downbeat57 ... beas7>

< s > downbeat94 beat94 beat94 beat94 downbeatd4 ... beajead>
< s > downbeat96 beat96 beat96 beat96 downbeat95 ... beaje5>
< s > downbeat98 beat97 beat98 beat97 downbeat97 ... beatd7>

The proposed approach, which includes acoustic and laegoaglieling impose duration
constraints and solves the problem of keeping periodicitthe output labels. For example,
in order to output beat23 word in the process of decoding ieisessary for the system to
start in BTs unit model, remain there for the time correspogdo N,; frames, continue in
BTa unit model, remain there for anoth®&t; frames, and finally switch to 23 successive NB
unit models. The absence of self-transitions in HMMs alldevsdefining duration constraints.
Such an explicit duration modeling allows one to have as aputlabels with stable duration.
The proposed language modeling approach is flexible andaNgnodels can be trained on
many musical styles. For example, while working with modeop and rock music, one can
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CHAPTER 9. SYSTEM ARCHITECTURE

observe stable tempo. However, when dealing with othercaustyles such as classic one can
observe frequent tempo changes. The main advantage ofdpeg®d approach is the absence
of imposed deterministic rules. All the system parametsgseatimated using the training data.

9.3 Beat/downbeat detection

The process of beat structure extraction starts with featector extraction for a given test song
as described in Section 8. Extracted feature vectors angggsed to the decoder. Similarly to
the approach of multiple-pass decoding, which has beeressfidly used in speech recogni-
tion [71], the decoding procedure consists of two stepshérfitst step, time-and-space efficient
bigram language model is applied in the stage of Viterbi dewp producing a lattice. Lattice
nodes denote time instants and lattice arks denote diffaggrotheses about beat and downbeat
events. In the second step, the obtained lattice is reseqelgling more sophisticated 4-gram
language models on the reduced search space. Finally, theedt transcription labels are
matched against ground-truth. A block-diagram of the systepresented in figure 9.6.

Training data Test data

audio labels audio

Training HMMs

A4

A

Feature extraction

module
module

/ Viterbi decoder |l«— Feature extraction

&

T

S
/°

Training LMs > Lattice rescoring

A

| Outputlabels

Figure 9.6: Block diagram of the modified beat transcripsgatem.
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9.4 Reference system

For the sake of objective evaluation, we compare the prapbsat detection system with a
reference system. The reference system we used is the Sonatator softwarkwith Bar and
Beat TrackeiQM Vamp plug-irf. It will be referred to as "Davies". The plug-in first calctda
an Onset Detection Function using the "Complex Domain" wettescribed in [99]. Extracted
ODF is processed twice, first to estimate the tempo, and thestimate beat locations. In
the stage of tempo extraction, ODF is segmented into frarhéssecond duration with 75%
overlapping. The autocorrelation function of each segmsenobmputed, and then it is passed
through a perceptually weighted comb filter bank [99]. Mabf periodicity observations is
produced by the output of the filter bank. In the final stepeNit decoder is used to estimate
the best path of periodicity through the observations. Gihe extracted tempo, beat locations
are localized by applying the dynamic programming algonitthescribed in [85]. Recursive
cumulative score function of the ODF is calculated and lrackid on the next step. The cu-
mulative score indicates the likelihood of a beat existingach sample of the onset detection
function input, and the backtrace gives the location of tb&t previous beat given this point in
time. Stark et al. [100] proposed real-time implementabbthe above-described beat track-
ing algorithm. In order to extract bar locations, the thiabkp processing is performed. The
audio signal is down-sampled to 2.8kHz and segmented irgbdyechronous frames. Spectral
content from each frame is extracted. Spectral differemteden adjacent frames is calculated
using Kullback-Leibler divergence [90]. Bar locations #nen obtained by the analysis of the
most consistent spectral change between beats.

http://omras2.org/SonicAnnotator
2http://www.vamp-plugins.org
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Chapter 10

Experimental results

This chapter is devoted to the evaluation of beat/downbetattion system introduced in chap-
ter 9. Datasets and evaluation metrics are described im8elfd.1. Experimental results with
different feature vector solutions are presented in Sed@2. Performance of the proposed
beat/downbeat extraction system is compared to the refergystem introduced in Section 9.4,
as well as to other state-of-the-art systems submittecet®/tiREX 2011 competition in Audio
Beat Tracking.

10.1 Datasets and evaluation metrics

10.1.1 Datasets

Three different datasets were used to evaluate beat egtramistem. Each excerpt is man-
ually annotated by expert musicians. The annotations catarbbeat annotations only, or
accompanying downbeat information.

The first dataset, which consists of 72 modern pop songs, s&for evaluation purposes
inside the Quaero project in 2010. The corresponding grdrutt labeling contain two layers,
beat and downbeat. Description of the tracks included irdttiaset is given in Table A.3.

The second dataset we used is the well-known Hainswortl&sda It contains 180 short
tracks of different styles, including jazz, folk, and classThe labels for this dataset contain
only beat-level markers, which does not allow us to test dmah estimation on this dataset.

The third dataset is the ubiquitous Beatles dataset, whoatams 172 songs from 12 al-
bums. The corresponding ground-truth annotations wereeraa@ueen Mary University of
London. Labels contain both beat and downbeat positionghanakes this dataset suitable
for our test purposes.
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10.2. BEAT/DOWNBEAT EXTRACTION

10.1.2 Evaluation metrics

Following MIREX evaluations, the scoring methods were taikem the beat evaluation tool-
box and are described in [101]. Here we provide a short dasmni of each metric used for
evaluation.

F-measureis based on the standaRtecision and Recall. Ground-truth annotations are
matched against the transcription labels. A precision aindf 70 ms is defined. Annotated
beat label is considered to be correct if it is located in ttierval of[b, — pw; b, + pw|, where
b, is the ground-truth beat location apd is the precision window length.

Apart from fixed precision window length of 70 ms, as done ulMKREX, we also address
an adaptive approach to the calculation of precision winddhe precision window is set to
10% of the distance between two successive beat positighs ground-truth labels. The same
evaluation schema is utilized for downbeat evaluation,re/peecision window is set to 10% of
the distance between two successive downbeat positions.

Cemgil - beat accuracy is calculated using a Gaussian error funetith 40ms standard
deviation as reported in [102].

Goto - binary decision of correct or incorrect tracking based @tistical properties of a
beat error sequence.

McKinney’s PScore - McKinney’s impulse train cross-correlation method ascdégd
in [103].

CMLc, CMLt, AMLc, AMLt - continuity-based evaluation methods based on the longest
continuously correctly tracked section as introduced 0%]1

D, Dg - information based criteria based on analysis of a beat arstogram as described
in [101].

10.2 Beat/downbeat extraction

In this section large-scale evaluation of the proposedteanbeat detection system is carried
out. Different feature vector configuration that are eveddare given in Table 10.1.

1dimMSP | MSP

1dim ODF -

2dim ODF | CVF 0.4s window -

3dim ODF | CVF 0.4s window | CVF 2s window

Table 10.1: Feature vector configurations.

In the first part of the experiments, MSP feature that wasrdest in Section 8.1 is com-
pared with the proposed ODF feature. Experiments with 2dich3dim feature vector config-
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CHAPTER 10. EXPERIMENTAL RESULTS

urations are given in Section 10.2.2.

10.2.1 Onset detection function

In the first set of experiments we compare the performandeegbtoposed ODF with the MSP
feature described in Section 8.1. The experiments wereumed on the "Quaero” dataset and
the results are given in Table10.2.

Algorithm | F-Measure| Cemgil | Goto | McKinney P-score| CMLc | CMLt | AMLc | AMLt | D (bits) | Dg (bits)
ODF 0.7820 | 68.92 | 55.56 74.00 | 40.48 | 57.25| 59.54 | 86.63 3.03 1.84
MSP 0.7172 66.67 | 50.00 67.61| 37.37| 54.16 | 61.41| 8552 3.00 1.89

Table 10.2: MIREX-based evaluation results for ODF and M&Rures on the Quaero dataset.

0.9

0.7

Precision Precision
08l Recall Recall
FMeasure 0.6 FMeasure |1
07 SESIEIEIE RITIEIRIEES IR |
—— 05f /
0.6 /
/
. 08} L 04f 7777/ b
E 3 _—
s g —
0.4r / 03
/ :
osr LTRSS
0.2
/ &
0.2 //
01
0.1
0 i i i i 0 i i i i
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
Precision Window Precision Window
(a) Beat estimation results with MSP feature (b) Downbeat estimation results with MSP feature
0.9 0.7
Precision
0.8} - B sk Recall
- ’ — FMeasure
0.7t E| /
Precision o5k /1
06f Recall
— FMeasure
o 05 L 04F SRR 4
El 3 —
s s ’/
0.4f / 03l /
03F-// -
ool [
0.2
0.1
0.1F
0 i i i i 0 i i i i
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25

Precision Window

(c) Beat estimation results with ODF feature

Precision Window

(d) Downbeat estimation results with ODF feature

Figure 10.1: Evaluation of MSP and ODF features on the Quaataset.
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10.2. BEAT/DOWNBEAT EXTRACTION

We also estimated precision, recall and F-measure as aidaraft the precision window
length using adaptive approach to the calculation of pi@tisvindow as was described in
Section 10.1.2. The plots are given in Figure 10.1.

The proposed ODF feature turned out to be quite effectivaiferaccurate estimation of
beat positions in comparison with the MSP for the given dsdtaklowever, the performance
of downbeat estimation is quite poor. This can be explainethb presence of ODF only in
the feature set. ODF or MSP itself cannot model harmonic gésin the signal, which is an
essential information for meter estimation.

10.2.2 Chroma variation function

In order to address the problem of poor downbeat estimagofopnance with a single ODF,
CVF vector components with context lengthsOof seconds and seconds were added to the
feature set. The results for 2dim and 3dim configurationsyelkas for the reference system,
are given in Table 10.3.

Algorithm | F-Measure| Cemgil | Goto | McKinney P-score| CMLc | CMLt | AMLc | AMLt | D (bits) | Dg (bits)
2dim 0.8653 81.35 | 86.11 84.81| 74.71| 78.68| 81.16| 85.61 3.05 2.29
3dim 0.8532 80.22 | 84.72 83.84 | 72.75| 77.10| 79.32| 84.16 3.00 2.32
DAVIES 0.8723 77.45 | 80.56 84.15| 7394 | 76.94 85.11 | 89.46 3.26 2.24

Table 10.3: MIREX-based evaluation results for 2dim, 3dird ®avies systems on the Quaero dataset.

o
©

0.9

o
®
&
\
Q@
|
1
(0]
I
I
|
9
I

085} _e---0---_g

ol
=)
T

0.8

o
5
a

—— beatPrecision

0.75
| — © — beatRecall B —*— beatPrecision

—<— beatFMeasure
f| = —downBeatPrecision

e
3

— © — beatRecall
0.7 —<4— beatFMeasure
— - — - downBeatPrecision

Performance
o
@
a
Performance

downBeatRecall
L | —©— downBeatFMeasure

o
>

downBeatRecall
—6&— downBeatFMeasure

0.65

055

Penalty Penalty

(a) 2dim feature vector configuration (b) 3dim feature vector configuration

Figure 10.2: Evaluation results with 2dim and 3dim featweetors

Figure 10.2 shows the behavior of precision, recall and Bsuee for 2dim and 3dim feature
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vector configurations as a function of insertion penalty.e Tptimal value of the insertion
penalty in the given system configuratiorsisit shows precision, recall, and F-measure values
to be close to each other.

F-measure for downbeat position reached 54% in the caseif f2dture vector configu-
ration and 10% adaptive precision window. 3dim configurasbowed 61.8% F-measure for
downbeats. The results for beat estimation indicate tlegbtbposed method widimsfeature
vector configuration reached the F-measure score very tdbke reference system by Davies.
However, in evaluation metrics proposed by Cemgil and Gioaghieves better results for the
Quaero dataset. Adding CVF feature component with the goteagth of 0.4 sec to a sin-
gle ODF shows a significant increase in performance for bettidand downbeats estimation.
However, downbeat F-measure is further improved by addieghird feature vector dimen-
sion, which is CVF with the context length of 2 sec. Needlesséntion a slight decrease in
the beats F-measure estimate in comparison witl2thsconfiguration. Nevertheless, these
two features do improve the downbeat estimation resulth®proposed method.

The next series of experiments were conducted on the "Haitk\wand "Beatles” datasets.
The results are given in Table 10.4 and Table 10.5 respéctitgures 10.3 and 10.4 depict
precision, recall and F-measure as a function of the patisindow length using adaptive
approach introduced in Section 10.1.2. Summary resulta tleese plots for 10% adaptive
precision window are given in Tables 10.7 and 10.6.

Algorithm | F-Measure| Cemgil | Goto | McKinney P-score| CMLc | CMLt | AMLc | AMLt | D (bits) | Dg (bits)
3dims 0.7756 65.05 | 67.96 77.80 | 65.24| 68.46 | 74.49| 78.19 2.19 1.15
DAVIES 0.7593 61.73 | 66.85 76.87 | 62.87| 69.46 | 78.00| 87.31 231 0.99

Table 10.4: MIREX-based evaluation results for 3dim andiBagystems on the Hainsworth dataset.

Algorithm | F-Measure| Cemgil | Goto | McKinney P-score| CMLc | CMLt | AMLc | AMLt | D (bits) | Dg (bits)
3dims 82.31 62.88 | 73.41 83.79 | 64.61| 73.26 | 7259 | 83381 2.79 1.09
DAVIES 77.03 55.68 | 61.85 77.22| 60.01| 68.72| 75.48| 86.37 3.00 1.18

Table 10.5: Experimental results for 3dim and Davies systemthe "Beatles" dataset.

Beat F-measurg Downbeat F-measure
3dim 0.8600 0.6082
DAVIES 0.7971 0.6165

Table 10.6: F-measure using 10% adaptive precision windoBdim and Davies systems on the "Bea-
tles" dataset.

3dim system configuration showed better F-measure for lieatsthe reference system on
the "Hainsworth" collection as shown in Table 10.4, whiletbe "Beatles" dataset the differ-
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Figure 10.3: Evaluation of 3dim and Davies systems on thestairth dataset.

Beat F-measurg

Downbeat F-measurg

3dim

0.8001

DAVIES

0.7906

Table 10.7: F-measure using 10% adaptive precision windmwdflim and Davies systems on the

"Hainsworth" dataset.

ence in beat F-measures is quite small as shown in Table EQabuations with 10% adaptive

precision window provided in Tables 10.7 and 10.6 show b&teasure on both datasets for
3dim system. Downbeat F-measures for Davies and 3dim sgst@nthe Beatles dataset are
almost equal.

Experimental results showed that the introduced approadieat/downbeat estimation is
effective. The proposed method for ODF extraction proveaet@ppropriate. It is indicated by
the performance of 1dim system for beat extraction. Theridgee of additional CVF features
is obvious. Experiments showed that the proposed two- ame-ttiimensional feature vector
configurations outperform 1dim system in both, beat and d@ahestimation.
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10.3 MIREX 2011

Participation in MIREX 2011 audio beat tracking contestngacellent opportunity to compare
the performance of the developed system with many otheessst

Two different datasets were used. The first dataset, whidhbeireferred to as "MCK",
contains 160 30-second excerpts in WAV format used for thdid\lempo and Beat contests
in 2006. Beat locations have been annotated in each exced Wifferent listeners. Audio
recordings have rather stable tempo that does not sigrifjoeimange over time. Some exam-
ples contain changing meters. The second collection asr#i867 Chopin Mazurkas and will
be referred to as "MAZ". In comparison with the "MCK" datgsetost part of the "MAZ"
dataset contain tempo changes. MIREX 2011 contest in awdibtbacking does not evaluate
downbeat locations estimation.

Participants from different teams are presented in Tabl8.10he results for "MCK" and
"MAZ" datasets are given in Tables 10.9 and 10.10 respdgtive

Team ID Authors

FW1 F.-H. F. Wu

GKC2, GKC5 A. Gkiokas, V. Katsouros, G. Carayannis

GP2 - GP5 G. Peeters

KFRO1 - KFRO2| M. Khadkevich, T. Fillon, G. Richard, M. Omologp
SB3 - SB4 S. Bock

SP2 S. Pauws

Table 10.8: Team legend for MIREX 2011 audio beat trackinotest.

Algorithm | F-Measure| Cemgil | Goto | McKinney P-score| CMLc | CMLt | AMLc | AMLt | D (bits) | Dg (bits)
SB3 0.5269 39.92 | 19.73 57.08 | 20.83| 29.96 | 37.45| 53.64 1.60 0.26
SB4 0.5086 38.55 8.89 54.64 | 14.18 | 23.92 2415 | 41.64 1.28 0.21
KFRO1 0.5067 38.60 | 18.23 54.75| 20.04| 27.55 37.27 | 52.74 1.54 0.26
KFRO2 0.5045 38.45 | 20.00 55.30 | 24.44| 31.33| 46.25| 57.85 1.70 0.35
GP5 0.5032 37.27 | 21.18 56.56 | 23.97 | 33.69 49.27 | 66.45 1.81 0.31
GKC2 0.5010 37.83 | 19.03 55.16 | 25.81| 32.94 51.05| 64.23 1.71 0.33
GP4 0.5009 37.00 | 20.22 56.18 | 23.26 | 32.30| 48.58 | 64.89 1.81 0.30
GP3 0.4956 36.65 | 20.86 56.06 | 23.36 | 32.99 47.51 | 64.89 1.77 0.28
GP2 0.4929 36.38 | 20.00 55.68 | 22.85| 31.99 46.71 | 63.47 1.75 0.27
GKC5 0.4854 36.77 | 15.68 52.83 | 21.88| 29.22 47.55 | 62.29 1.67 0.31
FW1 0.4784 35.58 6.65 52.36 13.25 | 22.88 22.64 | 41.75 1.26 0.18
SP2 0.4353 32.90 8.86 48.16 16.19 | 23.32 38.96 | 54.32 1.53 0.26

Table 10.9: MIREX 2011 Results in audio beat tracking cdrftesMCK dataset.

We have submitted two different systems that are KFRO1 arlR®E KFRO1 corresponds
to the 2dim feature vector configuration, while KFRO2 coamgbs to the 3dim one. Model
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CHAPTER 10. EXPERIMENTAL RESULTS

Algorithm | F-Measure| Cemgil | Goto | McKinney P-score| CMLc | CMLt | AMLc | AMLt | D (bits) | Dg (bits)
FW1 0.6756 57.16 | 0.31 62.15 7.13 | 32.92 9.71 | 40.66 1.46 0.81
SB4 0.5117 42.28 | 0.00 49.65 426 | 27.85 432 | 28.60 0.54 0.28
GP4 0.4912 37.71| 0.31 50.55 3.35 | 23.89 6.46 | 34.12 0.49 0.23
GP5 0.4702 36.06 | 0.00 48.70 3.08 | 21.24 6.17 | 31.83 0.43 0.20
GKC2 0.4218 33.50 | 0.00 41.63 2.21 | 15.58 5.07 | 25.98 0.37 0.18
GP2 0.4180 31.56 | 0.00 44.32 252 | 18.62 4.67 | 27.13 0.30 0.10
SB3 0.4029 32.70 | 0.00 40.31 3.27 | 19.80 3.97 | 22.79 0.34 0.14
GP3 0.4016 30.35 | 0.00 42.72 2.29 | 16.99 481 | 26.54 0.27 0.09
GKC5 0.3731 29.21 | 0.00 34.85 1.31 7.80 6.21 | 26.06 0.32 0.15
KFRO2 0.3504 2899 | 0.31 35.39 2.04 9.45 5.30 | 20.93 0.31 0.13
SP2 0.3103 24.90 | 0.00 32.85 1.72 9.77 3.19| 16.11 0.22 0.07
KFRO1 0.2927 23.15| 0.00 29.77 2.16 7.62 4.43 | 17.49 0.22 0.05

Table 10.10: MIREX 2011 Results in audio beat tracking cetrfier MAZ dataset.

parameters were estimated using "Quaero” dataset.

Experimental results showed that both systems performédwthe "MCK" dataset, show-
ing F-measure value very close to the top result. Howevefopeance on the "MAZ" dataset
turned out to be quite poor. This can be explained by the Fattthe systems were trained on
a different musical style, which is mostly pop and rock sorgsing classical pieces for model
parameter estimation can lead to a better performance ¢tWtAZ" dataset.

10.4 Tempo estimation based on beat extraction

Tempo is an important piece of information that is cohereri wmood or style of a musical
excerpt. The most common way of tempo extraction is to aeaYBF for periodicities and
estimate the dominant period [82], [105].

This section is devoted to a bottom-up approach to tempmastin that is based on the
above-described beat extraction system. In the first stag@/downbeat extraction is per-
formed using 3dim feature configuration, resulting in otitpbels, from which statistics on the
beat lengths is extracted. Since the output transcriptiag contain segments with different
tempos, K-means clustering is performed and the centeedltister that has the highest num-
ber of beats is used to derive the tempo. The approach of Alenal. [82] was chosen as a
reference system. It will be refereed to as "Alonso".

The test set used for tempo extraction evaluations corsiSi81 song excerpts of different
musical genres. Each excerpt contains 15-25 seconds af atidirelatively constant tempo.
Part of the collection was used for evaluation purposesen8MIR 2004 Tempo Induction
Contest. Musical style and tempo are the ground-truth médion. The only metric used
for evaluation is the percentage of songs with correctlyiified tempo. Tempo is treated as
correctly identified if estimated value lies within 5% intat of the ground-truth tempo.
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10.4. TEMPO ESTIMATION BASED ON BEAT EXTRACTION

The results are presented in Table 10.11.

Genre Alonso | Bottom-up
1.-Classic 91.1% 55.2 %
2.-Jazz 96.6 % 83.0%
3.-Latin music| 91.3 % 86.1 %
4.-Pop 97.9 % 92.7 %
5.-Rock 95.6 % 82.4%
6.-Reggae 100.0 %| 100.0 %
7.-Soul 100.0%| 87.5%
8.-Rap 100.0 %| 100.0 %
9.-Techno 98.2 % 87.5%
0.-Others 96.9 % 83.7 %
1.-Greek 77.9 % 61.4 %
Total 92.50% | 76.60%

Table 10.11: Tempo detection results.

The experimental results showed that the proposed botapproach did not succeed and
the difference in performance in comparison with the rafeeesystem is significant. Tempo
estimation based on periodicity analysis of MSP turned ouiet more effective. One of the
possible reasons for the observed difference in perforesoculd be the fact that parameters
of the proposed tempo extraction were estimated on thargmaterial taken from the Quaero
corpus, which consists mostly of pop music. That could beg¢hson for very low performance
in classic or Greek part of the test data. However, the preghdsttom-up approach to tempo
estimation showed promising performance of 76.60%, whathdccbe improved by training the
system on a larger set of songs from different genres.
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Chapter 11

Conclusions

In this chapter we summarize the main contributions of tloese part of the thesis. Possible
future work is discussed.

11.1 Summary of the contributions

Chapter 7 was concerned with existing approaches to beatagsin. Different state-of-the-art
systems were reviewed. In Chapter 8 acoustic feature seffémtive and accurate beat/downbeat
extraction was proposed. A novel approach to the calculati®dnset Detection Function was
introduced. It is based on the impulsive part of the reasgiggpectrogram. In order to model
dynamics of harmonic changes, the usage of CVF featurediased on the harmonic part of
the reassigned spectrum was suggested.

Chapter 9 was devoted to the description of the proposeddosatbeat extraction system.
Two-layered system architecture that comprises acoustaefing and beat sequence modeling
was introduced. Similarities and differences between d@peecognition and beat/downbeat
extraction are outlined. A specific dictionary and unit @pét for beat/downbeat extraction
was introduced.

Chapter 10 regards the experimental part. Different featactor configurations were com-
pared with each other, as well as with a reference systeng tisiae different datasets. Exper-
imental results showed that the proposed probabilisticaggi to simultaneous estimation of
beat/downbeat positions from audio is effective. The ihiiced explicit modeling of beat seg-
ment duration in the beat sequence modeling layer proved &ifbctive for solving the output
labels periodicity problem. Participation in MIREX 2011 éio Beat Tracking context proved
the effectiveness of the proposed approach, showing peafoce very close to the top result on
the "MCK" dataset.

A bottom-up approach to tempo estimation that is based omléiseribed beat extraction
system was introduced. Evaluations on a large datasetinorganusic belonging to different
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11.2. FUTURE WORK AND PERSPECTIVES

genres showed performance that is significantly lower thahdbtained with a reference sys-
tem. However, these first results could be improved by tngitihe system on a larger dataset.

11.2 Future work and perspectives

One of the possible improvements to the beat/downbeat astimperformance could be con-
sidering genre-specific training material. The results ¢REIX 2011 showed that our systems
did not perform well on the "MAZ" dataset. Training genreesjic models and introducing
genre classification block in the system architecture cad te interesting results.

Another interesting research direction could be in featglection and adaptation. ODF
feature extraction for instruments that are charactebygesoft note onsets can be reprised.

Further improvement could also be gained by incorporagngpto estimation into the model
and utilizing high-level features to enhanced downbeatedton. Another interesting investi-
gation can be conducted in the area of application of mtigasn HMMs, as was shown in the
first part of the thesis. Splitting feature vector into a nembf separate streams and assigning
different stream weights could be effective for beat/dogattestimation.
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Appendix A

Datasets

Table A.1: Beatles dataset.

CD Album name
Please Please Me
With the Beatles

A Hard Day’s Night
Beatles for Sale
Help!

Rubber Soul
Revolver

Sgt. Pepper’s Lonely Hearts Club Band

OO N[O WIN|F

Magical Mystery Tour
10CD1| The Beatles
10CD2 | The Beatles

11 | Abbey Road

12 | LetltBe

Table A.2: Song list of Queen, Zweieck, and Carol King.

Artist Track
Zweieck Mr Morgan
Zweieck Akne
Zweieck Zuhause
Zweieck She
Continued on next pag
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Artist Track

Zweieck Duell

Zweieck Erbauliche Gedanken Eines Tobackrauchers
Zweieck Santa Donna Lucia Mobile

Zweieck Tigerfest

Zweieck Blass

Zweieck Ich Kann Heute Nicht

Zweieck Rawhide

Zweieck Liebesleid

Zweieck Jakob Und Marie

Zweieck Zu Leise Fir Mich

Zweieck Es Wird Alles Wieder Gut, Herr Professor

Zweieck Andersrum

Zweieck Spiel Mir Eine Alte Melodie

Zweieck Paparazzi

Queen Somebody To Love

Queen Another One Bites The Dust
Queen Play The Game

Queen | Want To Break Free
Queen Hammer To Fall

Queen Bicycle Race

Queen Fat Bottomed Girls

Queen Good Old

Queen Friends Will Be Friends
Queen You're My Best Friend
Queen A Kind Of Magic

Queen Crazy Little Thing Called Love
Queen We Are The Champions
Queen Who Wants To Live Forever
Queen Seven Seas Of Rhye
Queen We Will Rock You

Queen Bohemian Rhapsody
Queen | Want It All

Queen Don’t Stop Me Now

Queen Save Me
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APPENDIX A. DATASETS

Artist

Track

Carole King

| Feel The Earth Move

Carole King

It's Too Late

Carole King

Beautiful

Carole King

You've Got A Friend

Carole King

Home Again

Carole King

Way Over Yonder

Carole King

So Far Away

Table A.3: Quaero Dataset.

Artist Album Track

A ha Take On Me

Patrick Hernandez Born to be alive

George Michael Careless Whisper

Dolly Parton Coat Of Many Colors Travelling Man

Run DMC It’s like

Eminem The Eminem Show Cleanin Out my Closet
Enya Shepherd Moons Caribbean blue

Shack HMS Fable Natalies Party

CoCo Lee Just No other Way Do You Want My Love
Vangelis Conquest of Paradise
Mariah Carey Without you

The Beatles Magical Mystery Tour Baby Youre A Rich Man
Phil Collins Another Day in Paradise
The Beatles Abbey Road Sun King

Bananarama \Venus

Offspring Smash Come out and play

FR David Words

La Bouche Be My Lover

Ace of Base All that she wants
Queen A Night at the Opera Lazing on a sunday afternoon
Dusty Springfield Dusty in Memphis Son of a Preacher Man
Cher Believe
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Artist Album Track

Santa Esmeralda Don t Let Me Be Misunderstood
Aqua Barbie Girl

Culture Beat Mr Vain

Whitney Houston | Will Always Love You

Kiss | Was Made For Loving You
Enigma Sadeness

Sean Kingston Sean Kingston Take You There

Jordin Sparks Jordin Sparks No Air

4 Non Blondes Whats up

Crash Test Dummies

Mmm Mmm Mmm Mmm Mmm

Lil Mama \oice of the Young People Shawty Get Loose
Outkast Aquemini Chonkyfire

George Michael Careless Whisper
Kylie Minogue Cant Get You Out Of My Head
Leona Lewis Spirit Bleeding Love

Soul Asylum Runaway train
DAngelo Brown Sugar Higher

East 17 Its Alright

Dillinger Cocaine | Thirst

Nickelback How You Remind Me
Puff Daddy Feat Faith Evans I'll Be Missing You
Pop Tops Mamy Blue

The Beatles A Hard Days Night Tell Me Why

Bobby McFerrin Dont worry Be happy
Chris Brown Exclusive Forever

U2 The Joshua Tree With or without you
Womack and Womack Teardrops

Twenty Fingers Short Dick Man
Rolling Stones Angie

Spice Girls Wannabe

The Beatles Beatles For Sale I’'m A Loser

Bon Jovi Its My Life

Will Smith Men In Black

Mariah Carey

E MC2

Touch my body
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APPENDIX A. DATASETS

Artist Album Track

Shakira Whenever Wherever

Mamas and Papas Dream a Little Dream of Me
Carl Douglas Kung Fu fighting

Metallica Nothing Else Matters

Eminem Without Me (Radio Edit)
Nirvana In Utero Rape me

The Beatles Abbey Road Maxwell’'s Silver Hammer
Nena 99 Luftballons

Haddaway What is love

Harold Faltermeyer Axel F

Modern Talking You re My Heart You re My Sou
Enya Orinoco Flow

Fall out boy Infinity on High this aint a scene its an arms rac
Xzibit X

The Beatles Magical Mystery Tour Your Mother Should Know
Ricky Martin The Cup Of Life

Fools Garden Lemon Tree
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