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Introduction

This thesis investigates two biological systems using atomistic modelling and

molecular dynamics simulation. The work is focused on: (a) the study of

the interaction between a segment of a DNA molecule and a functionalized

surface; (b) the dynamical modelling of protein tau, an intrinsically disor-

dered protein. We briefly describe here the two problems; for their detailed

introduction we refer respectively to chapter 4 and chapter 5.

The interest in the study of the adsorption of DNA on functionalized

surfaces is related to the considerable effort that in recent years has been

devoted in developing technologies for faster and cheaper genome sequenc-

ing. In order to sequence a DNA molecule, it has to be extracted from the

cell where it is stored (e.g. the blood cells). As a consequence any genomic

analysis requires a purification process in order to remove from the DNA

molecule proteins, lipids and any other contaminants. The extraction and

purification of DNA from biological samples is hence the first step towards

an efficient and cheap genome sequencing. Using the chemical and physical

properties of DNA it is possible to generate an attractive interaction be-

tween this macromolecule and a properly treated surface. Once positioned

on the surface, the DNA can be more easily purified. In this work we set up

a detailed molecular model of DNA interacting with a surface functionalized

with amino silanes. The intent is to investigate the free energy of adsorption

of small DNA oligomers as a function of the pH and ionic strength of the

solution.

The tau protein belongs to the category of Intrinsically Disordered Pro-

teins (IDP), which in their native state do not have an average stable struc-

ture and fluctuate between many conformations. In its physiological state,

tau protein helps nucleating and stabilizing the microtubules in the axons

of the neurons. On the other hand, the same tau - in a pathological aggre-

gation - is involved in the development of the Alzheimer disease. IDPs do

not have a definite 3D structure, therefore their dynamical simulation can-

not start from a known list of atomistic positions, like a protein data bank

file. We first introduce a procedure to find an initial dynamical state for a

generic IDP, and we apply it to the tau protein. We then analyze the dy-

namical properties of tau, like the propensity of residues to form temporary
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secondary structures like β−sheets or α−helices.
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Chapter 1

Overview of Molecular

Modelling

In this work we use Molecular Modelling to study biological systems on

the atomic scale, representing and manipulating the structure of molecules

to study properties that are dependent on these three-dimensional struc-

tures. Molecular Modelling encompasses quantum mechanics and classical

mechanics, and uses minimization procedures, dynamical simulations, con-

formational analysis and other computer based methods to understand and

predict the behaviour of molecular systems. A first step is the selection of a

model to describe the intra- and inter-molecular interactions in the system;

these models enable the computation of the energy of any arrangement of

the atoms and molecules in the system, and allow to determine how the en-

ergy of the system varies with the positions of the atoms. Secondly, one can

make a calculation such as an energy minimisation, a Molecular Dynamics

(MD) or Monte Carlo (MC) simulation, or a conformational search. Finally,

after a check that the calculation has been performed properly (usually a

comparison with experimental data) the results can be analysed to calculate

specific properties of the system.

The 1950s were very important for the development of this discipline. In

this year Watson and Crick discovered the structure of DNA [1]. The deter-

mination of its relationship to the biological function of this molecule had

a tremendous impact, and was the cornerstone of the paradigm of modern

biochemistry and molecular biology. The so-called lock-and-key paradigm

established the primary importance of molecular structure for the function of

7



8 Chapter 1. Overview of Molecular Modelling

biological molecules, and the need to investigate this relationship to advance

our understanding of the processes of life [2].

The subsequent development of Molecular Modelling was very fast, and

gained effectiveness and popularity when computers were introduced in this

field, with an improvement in hardware and software tools that is still pro-

gressing. In 1963 Ramachandran made one of first experiments that showed

the potential of a computational approach in understanding the atomic de-

tails of biomolecules: he made a prediction of the allowed conformations of

amino acids, the basic building blocks of proteins, using a simple hard-sphere

model [3]. With the ever increasing computing power and with faster and ef-

ficient numerical algorithms, computational chemistry can be now used very

efficiently to solve complex chemical and biological problems. In a compu-

tational approach the principal required inputs are: molecular energies and

structures, atomic charges, and surface properties. So there is a close con-

nection between theory and experiment: computational models evolve as

more experimental data become available; biological theories are developed

and new experiments are performed, as a result of computational results.

An effective implementation of Molecular Modelling techniques implies

a through understanding of the method and of the nature of the data used

in the parameterization of the models. With this knowledge one can define

the limits of applicability and one can develop new tools. This entire field

is based on approximate solutions, it is therefore important to understand

how each of these approximations determines the level of accuracy that can

be expected. The models used to represent a system are mathematical de-

scriptions (sometime visual descriptions) and give us a way to describe and

predict microscopic properties without performing the complex mathemati-

cal calculation dictated by an ab-initio theory; the mathematical complexity

might be so great that the exact solution of a problem is just not feasible.

Different types of approximation are possible: one can use a coarse-grained

rather than an atomistic description; one can treat the most relevant part

of the system with its complexity and the remaining part using a mean field

approximation. One can also use simplified semi-empirical functions that

are able to reproduce experimental results with a resonably small set of

fitted parameters.
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1.1 Ab-initio Calculations

The term ab-initio refers to computations which are derived from the basic

principles of quantum mechanics, such as the Schrödinger equation, to de-

scribe the motion of electrons and nuclei, with no inclusion of parameters

derived from experimental data. Since a complete solution of Schrödinger

equation cannot be obtained, ab-initio methods are usually mathematical

approximations of the full theory, at various levels of accuracy.

The most common type of ab-initio method is the Hartree-Fock (HF)

method: by using the variational principle, it can calculate the ground state

wave function and ground state energy of a quantum many-body system.

The starting point are the spin-orbitals, a set of one-electron wave functions.

On these acts the Fock operator, an effective one-electron Hamiltonian op-

erator, that takes into account kinetic energy, internuclear repulsion energy,

nuclear-electronic Coulomb attraction, and Coulomb repulsion between elec-

trons. Inclusion of the latter term, that is considered in a mean-field theory

context, is the critical point of the method: neglecting electron correlation

can lead to large deviations from experimental results.

Most computations begin with a HF calculation, followed by further cor-

rections for the explicit electron-electron repulsion. Among these procedures

are the Møller-Plesset perturbation theory (MPn, where n is the order of

correction) [4], the Generalized Valence Bond (GVB) [5], the Configuration

Interaction (CI) [6], and the Coupled Cluster theory (CC) [7]; these methods

are called correlated calculations.

A different method is Quantum Monte Carlo (QMC) [8]. There are sev-

eral flavors of QMC, namely variational, diffusion, and Green’s function.

These methods work with an explicitly correlated wave-function and eval-

uate integrals numerically using a Monte Carlo integration. These calcula-

tions can be very time consuming, but they are very accurate.

An alternative ab-initio method is the Density Functional Theory (DFT)

[9], in which the total energy is expressed in terms of the total electron

density rather than through the wave-function.

A positive aspect of ab-initio methods is that they converge to the exact

solution by making the approximations progressively more accurate, and the

error sufficiently small in magnitude. The unfavorable aspect is that these

methods often take enormous amounts of computer CPU time, memory and

disk space, and are therefore very expensive. In practice they can be applied
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only to very small systems.

1.2 Semi-empirical Calculations

Semi-empirical calculations have the same general structure as HF, but cer-

tain pieces of information, such as two electron integrals, are approximated

or completely omitted, to reduce the complexity of the system. In order to

correct for the errors introduced by omitting part of the calculation, and

to give the best possible agreement with experimental data, the functionals

are parameterized. The parameters are determined by fitting the data of

a suitable database, entailing either experimental properties or properties

derived by ab-initio calculations. This method is much faster than ab-initio

calculations. On the other hand, if the studied molecule is similar to one

found in the database used by the method, the results may be very good;

but if the molecule is significantly different from anything in the known set,

the results may be very poor. As a matter of fact, semi-empirical calcu-

lations have been very successful in the description of organic molecules,

where there are only a few different atoms even in large molecules.

1.3 Molecular Mechanics

If a molecule is too complex to use a semi-empirical calculation, it is still

possible to model its behaviour totally avoiding an explicit use of a quantum

mechanics formalism. The Molecular Mechanics method uses an algebraic

expression for the total energy, that consists of simple classical terms. A

harmonic oscillator potential may be used to describe the energy associated

with bond stretching, valence angle bending, and dihedral rotation; and a

classical potential (e.g. Lennard-Jones) may be used to describe intramolec-

ular or intermolecular forces, such as Van der Waals interactions. Hydrogen

bonds can be defined based on a simple geometric criterium, specified by

the maximum hydrogen-donor-acceptor angle and donor-acceptor distance.

All parameters in these functions are obtained from experimental data or

ab-initio calculations.

In Molecular Mechanics, the database of properties used to parameterize

a system is crucial for the success of the procedure. The parameterization

allows the modelling of very large molecules, such as proteins and segments
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of DNA, making it the primary tool of computational biochemistry. The

main limit of this method is that there are many chemical process that are

not defined within the method (e.g. we cannot consider classical reactions

or electronic excitation processes).

1.4 Molecular Simulation

Molecular Simulation is a computational experiment performed on a molec-

ular model. The molecular simulation software may be based on different

approaches: Monte Carlo (MC) simulation, Molecular Dynamics (MD) sim-

ulation, or Car-Parrinello Molecular Dynamics (CPMD). In this work we

used GROMACS, a MD software package [10, 11]. A very important part in

the simulation of a biological molecule is the Molecular Graphics software,

which allows a first insight into a generated trajectory through the visu-

alization of the molecule conformations. Molecular graphics systems have

greatly evolved in recent years, and a number of computer programs are now

available to visualize complex systems in the 3D space, like VMD [12].
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Chapter 2

Atomistic Models and Force

Field

The results that one can obtain in a computational experiment on chemical

or physical systems are strictly dependent on the mathematical model used

to represent the energy terms that define the interatomic interactions. The

quantum mechanics (QM) ab-initio approach is inapplicable to biochemical

systems involving macromolecules that contain several thousand atoms, plus

their environment due to its very large computational cost. To investigate

the systems that are the object of the present study a different approach is

necessary, and we have used Molecular Dynamics, implementing force fields

defined by the Molecular Mechanics approach.

2.1 Empirical energy functions

Empirical energy functions can fulfill the accuracy and feasibility require-

ments of computational studies of biochemical and biophysical systems. The

equations of empirical energy functions include relatively simple terms to de-

scribe the physical interactions; the atomistic model is used, so that atoms

are the smallest particles in the system, rather than electrons and nuclei as

in QM. These two simplifying assumptions allow studying structural and

dynamical properties of biological molecules, and a very good accuracy can

be achieved by optimizing the parameters of the model.

13
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Model Degrees of freedom Some computable prop-

erties

Considered Removed

QM nucleus,

electrons

nucleons chemical reactions

Atomistic

Force Field

atoms, dipoles electrons interactions,

structural properties

Implicit

solvent

solute atoms solvent atoms folding of macro-

molecules

2.2 Parameterization of empirical force fields

The empirical energy represents the potential energy V (r) as a function of

all the relevant degrees of freedom of a given system. A typical function

used in a classical MD code is:

V (r) =
∑
bonds

1

2
kbi(bi − b0i)

2 +
∑
angles

1

2
kθi(θi − θ0i)

2

+
∑

improper dihedral

1

2
k(idh)γi (γi − γ0i)2 +

∑
dihedrals

k(dh)γi [1 + cos (nγi − δi)]

+
∑

atompairs

[(C12
ij

r12ij
−
C6
ij

r6ij

)
+

1

4πε

qiqj
rij

]
(2.1)

(the symbols introduced here are explained in the next sections).

The first four terms represent the bonded interactions, the last sum is the

non-bonded term; they entail the parameters describing the equilibrium 3D

structure (e.g. b0i, θ0i... ) and the force parameters (e.g. kbi , kθi ...) . The

former parameters are obtained experimentally by X-ray crystallography,

NMR spectroscopy, electron microscopy (EM); or by homology modelling,

Molecular Dynamics (MD), or Monte Carlo (MC) simulations. On the other

hand, the force parameters are associated with the particular type of inter-

acting atoms, and they are fitted to reproduce experimental data and the

quantum mechanical calculations, where available. The combination of po-

tential energy function and parameters is called a Force Field.
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Figure 2.1: Schematic representation of the relevant degrees of freedom.

2.3 Bonded interaction

In reference to Fig. 2.1, which illustrates the most common potential terms

between atoms connected by chemical bonds, denoting by ri = {riα} (α =

x, y, z) the Cartesian coordinates of the i − th atom, we introduce the fol-

lowing parameters:

• the bond distance:

bi = ri+1 − ri (i = 1, 2, . . . N) ; (2.2)

• the bond angle θi between atoms i, i + 1 e i + 2 (i = 1, 2, . . . N), that

is between two bonds sharing a common atom:

cos θi = −bi bi+1

bi bi+1
; (2.3)

• the torsional angle γi between the plane encompassing atoms i, i+ 1,

i+2 and the plane encompassing atoms i+1, i+2 and i+3. Introducing

the normal vectors ξi, ξi+1 to these two planes:

ξi = bi × bi+1 ξi+1 = bi+1 × bi+2, (2.4)

γi is defined by:

cos γi = −
(
ξi
|ξi|

)
·
(
ξi+1

|ξi+1|

)
(2.5)

2.3.1 Bond stretching

Many types of interaction potentials can be used to model a covalent

bond in a molecular structure, such as the Morse potential or the finitely
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Figure 2.2: Behaviours of the two bond stretching interaction C−C [black line]

and C=C [red line].

extendible nonlinear elastic (FENE) potential. However, the most common

potential used is the harmonic bond potential:

Vs =
∑
i

1

2
kbi(bi − b0i)

2 (2.6)

bi and b0i are respectively the distance and the equilibrium distance between

two atoms. The parameters b0i are associated with the 3D structure, while

the set kbi is characteristic of atoms i and i + 1, and of the type of bond

between them. In Fig. 2.2 the parameterization for C−C and C=C bonds

is shown. This example highlights how the same function, with different

parameters, can represent the interaction of a pair of atoms with a different

type of bonds.

When the potential is known, one can calculate the force acting on the

i− th atom:

fi = −∂Vs
∂ri

= − ∂Vs
∂rij

rij
ri

= kbi(bi − b0i)
bi
bi

(2.7)

2.3.2 Harmonic angle potential

The deviation of angles from their equilibrium value is frequently described

by a harmonic term called bending potential:
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Vb =
1

2
kθi(θi − θ0i)

2 (2.8)

The forces exchanged between atoms are:

fi = −∂Vb
∂ri

fk = −∂Vb
∂rk

fj = −fi − fk (2.9)

The bond-stretching and angle-bending terms are often regarded as ”hard”

degrees of freedom because a large energy is required to have a significant

deviation from their equilibrium value. Most of the variation in structure of

a molecule is thus due to the complex interplay between the torsional and

non-bonded contributions, and the knowledge of barriers to rotation around

chemical bonds is fundamental to understand the structural properties of

the molecule.

2.3.3 Torsion potential

Usually two types of torsion potentials are considered: dihedral angle and

improper torsion potentials. The proper dihedral angle depends on the

position of four consecutive bonded atoms, whereas the improper dihedral

angle depends on the position of four bonded but nonconsecutive atoms.

Proper dihedral

The dihedral angle potential defines the rotation around a bond. This term

is oscillatory in nature and requires the use of a sinusoidal function. The

parameters included in this term are the force constant kγ , the number of

minima n, and the phase δ.

V dh = k(dh)γi [1 + cos (nγi − δi)] (2.10)

In Fig. 2.3 the proper dihedral potential for the butane molecule is

shown. We observe a global minimum in γ = 0, two local minima and two

local maxima respectively in γ = ±2/3π and γ = ±1/3π
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Figure 2.3: A typical behaviour of a dihedral potential. The parametrization is

refered to a butane molecule where the dihedral potential is a sum of five terms

like V dh.

Improper dihedral

This term is included in order to keep a group in a planar or tetrahedral

structure; to represent it a harmonic potential may be used, with only one

minimum.

V idh = k(i−dh)γi (γi − γ0i)2 (2.11)

γi and γ0i are respectively the dihedral and the equilibrium dihedral

angle. The parameters γ0i are associated with the 3D structure, while the

set k
(i−dh)
γi is characteristic of atoms involved.

Fig. 2.4 shows the structure of cyclobutane. It is known from experi-

mental data that the correct geometry is obtained when atoms 1, 2, 3, and

5 are on one plane as on the right; but without the the improper dihedral

term in the force field the system would shift to configuration on the left.

The mathematical derivation of the force for these terms is quite com-

plicated (see the DL-Poly manual) [13].



2.4. Non-bonded interactions 19

Figure 2.4: Conformation of cyclobutane corresponding to diffent values of the

improper dihedral angle.

2.4 Non-bonded interactions

The non-bonded part of the potential describes interactions between

atom pairs that are not covalently bonded to another; solute-solvent,

solvent-solvent, solute-ions and solvent-ions interactions are included; fur-

thermore the non-bonded term describes the interactions between distant

parts of the solute. This term is very important for computational studies

of biological systems because the property of macromolecules are strongly

influenced by the environment and so the proper treatment of non-bonded

interactions is essential for successful biomolecular computations. The

mathematical expression of the function referring to these terms can be

relatively simple.

2.4.1 Van der Waals interactions

The Van der Waals interactions are generated by correlations in the fluctuat-

ing polarizations of atoms; taking into account the Pauli exclusion principle,

the polarization effects and the multipoles interactions, it is the macroscopic

result of the quantum effects. These forces are relatively weak (see Tab. 2.1)

when compared with bonded forces, but play a fundamental role in struc-

tural biology as well as in other physical and chemical fields.
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The mathematical function widely used to represent these forces is the

Lennard-Jones potential that fulfills the request that v(r) → ∞ at small

distances (Pauli exclusion principle), and v(r)→ 0 as 1/r6 for large distances

(Van der Waals dispersion).

V LJ = 4 εij

[(σij
rij

)12−(σij
rij

)6]
(2.12)

Fig. 2.5 shows the tipical behaviour of the Van der Waals potential,

computed for the SPC model of water (described below). The parameters

Figure 2.5: Lennard-Jones potential for SPC model of water.

needed to define this interaction are the well depth εij of the potential and

the minimum interaction radius σij , defined for every pair of atoms in the

system. GROMACS uses an equivalent expressions for the Lennard-Jones

function, namely:

V LJ =

(
C

(12)
ij

r12ij

)
−

(
C

(6)
ij

r6ij

)
(2.13)

The forces acting on the particle are defined by:

fi = −∂V
LJ

∂ri
=

(
12
C

(12)
ij

r12ij
− 6

C
(6)
ij

r6ij

)
fj = −fi (2.14)

2.4.2 Electrostatic interactions

In the study of biomolecules electrostatic interactions play a fundamental

role; they are crucial in a proper modelling of conformational stability, fold-
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ing, enzyme activity, binding energies, and of the interactions between a

macromolecule and a surface.

The electrostatic interactions are defined by the Coulomb law:

V =
1

4πε0

qiqj
εrrij

(2.15)

where ε0 is the electric constant and εr the relative dielectric constant. The

only parameters necessary to define this function are the charges, but in spite

of its simplicity the numerical treatement of this term is quite demanding,

and it is necessary to use specialized algorithms. We well discuss below of

treatment of this term.

As mentioned before, the equation (2.1) is adequate to treat the physical

interactions that occur in biological systems, its accuracy depending on the

set of the parameters used.

kJ mol−1

Covalent 200-4000

Electrostatic 10-30

Hydrogen-bonds 5-20

Van der Waals 5-10

Table 2.1: Order of magnitude of the principal interactions involved in the

molecular structures.

2.5 Explicit solvent model: the water

parametrization

An understanding of a wide variety of phenomena concerning biomolecules

requires considering solvation effects. In this section we present and discuss

the parameterization of water molecules. There are several water models

for (bio)molecular simulation. They can be classified in the following way:

• rigid models with a fixed geometry;

• flexible models, including vibrational degrees of freedoms;
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• polarizable models that explicitly account for polarization;

• implicit models.

The most used models for biomolecular simulation treat water as a rigid

structure: various versions of TIP (Transferable Interaction Potential) and

SPC (Simple Point Charge) are available. In Fig. 2.6 we show the general

shape of 3-, 4-, 5-, and 6-site water models. The geometric parameters (OH

distance and HOH angle) vary depending on the model.

Figure 2.6: Different models of water molecule that correspond to different

parametrizations.

2.5.1 TIP model

The TIP series has been developed by William Jorgensen and coworkers [14].

The TIP3P model has 3 interaction sites centered on the atomic nuclei.

Positive partial charges are on the hydrogen atoms and a negative one is

on the oxygen. The Lennard-Jones parameters are non-zero only for the

oxygen, as in most water models. In the TIP4P model there are 4 interaction

sites. The negative charge is shifted 0.015 nm off the oxygen along the

bisector of the HOH angle. This model is more accurate than TIP3P, but

computationally more expensive. The TIP5P model has 5 interaction sites.

The negatively charged sites are located symmetrically along the lone-pair

directions. This model is the best in reproducing bulk water properties,

but is computationally expensive. This and more complicate models are

impracticable for biomolecular simulation. There is a wide literature on

these models and on their successive development.
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2.5.2 SPC model

The SPC series has been developed by Herman Berendsen, Wilfred van

Gunsteren and coworkers [15]. As for the TIP3P model, all SPC models have

3 interaction sites centered on the atomic nuclei, positive partial charges on

the hydrogens and a negative partial charge on the oxygen; the Lennard-

Jones parameters are non-zero only for the oxygen.

SPC/E: Extended SPC

This model adds an average polarization correction to the potential energy

function:

Epol =
1

2

∑
i

(µ− µ0)2

αi

where µ is the dipole of the effectively polarized water molecule (2.53 D),

µ0 is the dipole moment of an isolated water molecule (1.85 D from ex-

periments) and αi is an isotropic polarizability constant whose value is

1.68 · 10−40F m. Since the charges in the model are constant this correction

just results in adding 1.25 Kcal/mol (or 5.22 kJ/mol) to the total energy.

The SPC/E model is better than the SPC model in reproducing density and

diffusion properties [16].

SPC SPC/E TIP3 TIP 4

r(OM) [Å] - - - 0.15

r(OH) [Å] 1.0 1.0 0.9572 0.9572

HOH [deg] 109.47 109.47 104.52 104.52

C(12)10−3 [kcal Å12 mol−1] 629.4 629.4 582.0 600

C(6) [kcal Å6 mol−1] 625.5 625.5 595.0 610

q(O) -.82 -.8476 -.834 -

q(H) +.41 +.4238 +.417 +.52

q(M) - - - -1.04

Table 2.2: Parameter for the water-topology.
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All MD simulation packages (e.g. GROMACS, CHARMM, AMBER,

LAMMPS, GROMOS...) offer the possibility to choose the water model

independently of the biomolecular force field. Explicit inclusion of water

molecules provides a good representation of the kinetic and thermodynamic

properties of the solute molecules. Most biomolecular simulations are made

in an all-atoms approximation, using periodic boundary conditions. This

yields a large number of water molecules and a considerable increas in the

number of degrees of freedom of the system. For this reason and because of

the smallness of the time step necessary to integrate the equations of motions

(of the order of a femtosecond), the best algorithms can simulate events in

the range of 10−9 s to 10−8 s for typical proteins, and 10−6 s for very small

proteins. Many biological processes occur on a larger time scale, therefore

much work is aimed at developing alternative models and computationally

less expensive approaches.

2.6 Implicit solvent model

In an all-atoms representation of solvated biomoleculs, a large fraction of

the overall computational time is used to calculate the detailed trajectories

of the solvent molecules. An alternative approach consists in incorporating

implicitly the effect of the solvent. The use of a continuum model of the

solvent greatly decreases the number of degrees of freedom in the system,

and consequently the computing time. Fig. 2.7(a) shows schematically a

molecule surrounded by explicit water molecules; Fig. 2.7(b) represents the

same biological system but in a medium field that implicitly incorporates the

influence of the solvent. This approximation can provide useful quantitative

estimates of solvation free energies.

2.6.1 Potential of mean force

In this section we see the statistical approach to the mathematical formula-

tion of the implicit solvent model, and we introduce the classical electrostatic

equation (CE).

Let us consider a molecule α immersed in a bulk solution β.

X = (x1,x2...xN ) is the molecule’s configuration vector and in Y

there are all the other degrees of freedom (solvent and ions, if present in

solution). The system fluctuates over a large number of configurations,
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(a) (b)

Figure 2.7: Schematical rapresentation of a biomolecule surrounded by explicit

water molecules [panel (a)], and in a medium field that implicitly incorporates

the influence of the solvent [panel (b)].

and so one uses a statistical approach to define the probability of a given

configuration:

P (X,Y ) =
exp

[
− βU(X,Y )

]∫
dXdY exp

[
− βU(X,Y )

] (2.16)

with β =1/kBT, kB Boltzmann’s constant and T the equilibrium tempera-

ture of the system.

The total potential energy of the system U(X,Y ) can be separated into

the following terms:

U(X,Y ) = Uα(X) + Uβ(Y ) + Uαβ(X,Y ) (2.17)

where:

• Uα(X) is the intramolecular potential of the solute;

• Uβ(Y ) is the potential representing the solvent-solvent interaction;

• Uαβ(X,Y ) is the solute-solvent interaction.

Using P (X,Y ) one can calculate every observable of the system as an

expected value:

〈Θ〉 =

∫
dXdY Θ(X,Y )P (X,Y ) (2.18)
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If one integrates the function P (X,Y ) over the Y coordinate, one can

define the reduced probability distribution, depending only on the solute

configurations:

P (X) =

∫
dY P (X,Y ); (2.19)

by introducing (2.16) and (2.17) into (2.19) we have:

P (X) =

∫
dY exp

{
−β
[
Uα(X) + Uβ(Y ) + Uαβ(X,Y )

]}
∫
dXdY exp

{
−β
[
Uα(X) + Uβ(Y ) + Uαβ(X,Y )

]} (2.20)

If one defines a function W (X) such that:

exp {−βW (X)} =

∫
dY exp−βU(X,Y ) (2.21)

one can write (2.20) in the canonical form for a system in equilibrium at

temperature T :

P (X) =
exp

[
− βW (X)

]∫
dX exp

[
− βW (X)

] . (2.22)

The function W (X) is an effective configuration-dependent free energy,

and is called the potential of mean force (PMF); it is a function only of

solute configurations, and its gradient is related to the average force:

∂W (X)

∂xi
= 〈 ∂U

∂xi
〉X = −〈F i〉X (2.23)

where 〈· · ·〉X is the average over all solvent coordinates, with the solute in a

fixed configuration specified by X. All solvent effects are included in W (X)

and consequently in the reduced probability distribution P (X).

It is instructive to calculate from the equation (2.23) the variation of

W (X) between two different solute configurations:

W (X2) = W (X1) +

∫ X2

X1

∑
i

dxi ·
∂W (X)

∂xi

= W (X1)−
∫ X2

X1

∑
i

dxi · 〈F i〉X (2.24)
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This relationship clearly shows that the PMF in not simply an average

potential energy but represents the reversible work performed by the solute

molecule against the average solvent force, and is therefore defined up to an

additive constant. Usually, it is rescaled by the solvent-solvent interaction,

which still satisfies the normalization condition (2.22) :

exp {−βW (X)} =

∫
dY exp−βU(X,Y )∫
dY exp−βUβ(Y )

(2.25)

In W (X) we have the intramolecular solute potential contribution

Uα(X), the solute-solute and solute-solvent interactions. The contribution

of the last two terms is due to: (a) a short-range repulsive interaction arising

from Pauli’s exclusion principle; (b) the Van der Waals attractive force aris-

ing from quantum dispersion; (c) long-range electrostatic interactions aris-

ing from a non-uniform charge distribution; (a) and (b) are usually called

non-polar interactions. One can consider the following splitting:

Uαβ(X,Y ) = U
(np)
αβ (X,Y ) + U

(elec)
αβ (X,Y ) (2.26)

that produces a similar separation in the free energy, and is commonly used

in biomolecular force fields (e.g. AMBER [17], CHARMM [18] OPLS [19]).

This separation leads usally to the following formulation:

W (X) = Uα(X) + ∆W (np)(X) + ∆W (elec)(X) (2.27)

Many methods developed for the simulation of biomolecules use the Sol-

vent Accessible Surface Area (SASA) [20] to compute the non-polar free

energy contribution ∆W (np)(X). The Poisson-Boltzmann (PB) equation is

usually used to compute the electrostatic contribution ∆W (elec)(X). The

combination of SASA and PB defines the implicit solvent approach.

2.6.2 Non-polar free-energy contribution

The term ∆W (np) is often defined the free energy of cavity formation because

the principal contribution is the work necessary to rearrange the solvent

molecules around the solute to minimize the hydrofobic force. A second,

small contribution is due to the Van der Waals interactions. Computer sim-

ulation studies [21] attribute the hydrofobic effects primarily to a decrease

in the number of hydrogen bonds among water molecules near a nonpolar
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surface. Therefore, in a first approximation, the non-polar free energy can

be considered proportional to the number of solvent molecules in the first

solvation shell. One assumes that the non-polar free energy contribution is

directly related to the SASA

∆W (np)(X) = γAtot(X); (2.28)

γ has the dimension of a surface tension and its value is assigned by match-

ing experimental data. Atot(X) is the configuration dependent SASA. The

limitations of this model are well studied in the literature [22].

2.6.3 Electrostatic free-energy contribution

In order to describe the electrostatic free energy contribution, it is useful to

introduce a parameter λ so that if λ = 0 the interactions solute-solvent are

absent, and if λ = 1 the full set of interactions is taken into account. The

free energy function has a particularly simple form assuming λ as a scaling

factor of the solute charge (i.e. U
(elec)
αβ (X,Y ;λ) = λU

(elec)
αβ (X,Y ) ). One

has:

∆W (elec)(X) =

∫ 1

0
dλ〈U (elec)

αβ 〉λ. (2.29)

〈U (elec)
αβ 〉λ is proportional to λ because the interaction energy of the sol-

vent is proportional to the charge of solute:

∆W (elec)(X) =

∫ 1

0
dλ
∑
i

qiφrf (xi;λ) ≈ 1

2

∑
i

qiφrf (xi, λ = 1) (2.30)

φrf (xi, λ = 1) is the field acting on the ith solute atomic charge at the po-

sition xi: it is called reaction field and represents the electrostatic potential

exerted on the solute by the polarized solvent [23].

2.7 Application of the electrostatic continuum to

biological systems

In order to calculate the reaction field and from this the electrostatic con-

tribution to the solvation free energy, one can use a classical electrostatic

continuum representation. The first model where the polar solvent was rep-

resented by a continuum dielectric medium, was devised by Born in 1920 to
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calculate the hydration free energy of spherical ions [24]. Later Kirkwood

[25] and Onsager [26] extended Born’s model to study an arbitrary charge

distribution inside a spherical cavity.

In this approximation, to study a macromolecule in a solvent one has to

solve the Poisson equation to find the reaction field:

∇ · [ε(x)∇φ(x)] = −4πρα(x), (2.31)

where φ(x), ρα(x) and ε(x) are respectively the electrostatic potential, the

charge density of the solute, and the position dependent dielectric constant.

ε(x) reflects the reorientation of permanent and induced dipoles under the

local electric field. Permanent dipoles occur when the distribution of charge

over neighboring atoms is not symmetric: typical examples are peptide

bonds and water molecules. In liquid water, the relative freedom of the

molecules allows a high dipolar rotation and consequently one finds a high

dielectric constant (78.5 at 298 K). In contrast, permanent dipoles in a

macromolecule can be considered fixed, and the dielectric constant is much

smaller. Experimental and theoretical studies suggest that the average di-

electric response of such a solute macromolecule can be approximated with

a dipole in the range 2-4; furthermore it has been shown that the use of a

single dielectric constant appears to be a reasonable approximation to ac-

count for the electronic polarization response of the entire macromolecule.

On the other hand, induced dipoles arising from electronic polarization, i.e.,

from the distortion of electronic clouds immersed in an electric field, give a

small contribution of electronic polarization (∼ 4).

In Fig. 2.8 a scheme of a protein immersed in a continuum medium with

a specific dielectric constant is reported. The Poisson equation (2.31) can

be numerically solved by mapping the system on a discrete grid. Several

programs are available to compute the electrostatic potential using this ap-

proach, for example the PBEQ program [27] which is part of the simulation

program CHARMM. The results depend sensitively on the atomic radii and

on the atomic partial charges assigned to the atoms at the solvent exclusion-

boundary. The boundary can be constructed using the SASA model. The

optimal radius of an atom is not a property of the isolated atom, but is

an effective empirical parameter depending on its charge, on its neighbors

and also on the nature of the solvent molecules: some algorithms have been

developed and are available in the simulation packages. The partial back-

ground charges of the solute are specified in the topology of the system, and
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Figure 2.8: Schematic representation of the charge distribution in a protein

immersed in a continuum medium; the two groups, the background charges and

the titratable charges, are represented.

implemented in the definition of the force field of a specific system.

When in solution there is a ionic concentration (counterions), one can

use the equation (2.31) modified according to the Debye-Hückel theory of

electrolytes [28]:

∇ · [ε(x)∇φ(x)]− κ2(x)ε(x)φ(x) + 4πρα(x) = 0 (2.32)

where the charge density ρα(x) refers only to the protein charges and the

ionic effect is totally contained in the second term of the equation. κ(x),

called reciprocal Debye length, is a two-valued function; it assumes the value

κ =

(
8πe2NAI

ε kBT

)1/2

(2.33)

if a point in space is ion-accessible, and zero otherwise. NA is the Avogadro

number, e is the proton charge, kB is the Boltzmann constant and ε the

solvent dielectric constant. The ionic strength I of the solution is defined

as:

I =
1

2

∑
i

ciz
2
i (2.34)

with the sum running over all ionic species in solution, each with its charge

zi; ci is ionic bulk concentration.
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2.7.1 pH and solute charge

With the simple model in Fig. 2.8 we see that the charges of the protein

can be divided into two groups, the background charges and the titrat-

able charges. The former are independent of the protonation state of the

molecule; the latter represent the charge of the ionic (titratable) residues

(Asp, Glu, Lys, Arg, His, Tyr, free Cys, N- and C-terminal), and are gen-

erally pH dependent as a consequence of the protonation/deprotonation re-

actions.

The pH of the solution is an important parameter, strictly correlated to

the electrostatic field. At first glance it would seem a trivial matter to define

the charge state of a given group by considering the Henderson-Hasselbach

equation of the acid-base equilibrium [29]:

pKa = pH − log
f

1− f
; (2.35)

f is the degree of protonation, i.e. the fraction of molecules that is proto-

nated; pKa is the pH value at which half of the molecules is protonated:

its values for the free titratable residues are well known. However, the

situation is more complicated because of the other charged sites: the local

environment in the protein may shift by several pH units the pKa of a

given site from its value typical of the free state. If one defines:

• pKfree: pKa of a titratable residue in its free state;

• pKint: pKa of a titratable residue in the protein taking the other

groups as neutral;

• pKeff : pKa of a titratable residue in the protein taking into account

all the charges in the protein;

one finds the following relations [30]:

pKint = pKfree +
1

2.3KbT
∆Genv (2.36)
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where ∆Genv is the free energy change when moving the residue from water

into the neutral protein;

pKeff = pKint +
1

2.3KbT
∆Gint (2.37)

∆Gint is the free energy due to the electrostatic contribution of the other

charged residues.

The determination of the charge of the titratable residues as a function

of the solution pH is a complicated calculation, and some software has been

developed for this purpose, e.g. DelPhy (see [31]).

2.8 A simple example: the Born model

For its historical importance and for its simplicity in the following we show

the simple Born model, that estimates the free energy of a ion in water. The

ion is modelled with a sphere of radius a centered in the origin characterized

by a dielectric constant ε = 1, whereas the water is modelled by a continuum

with a large dielectric constant ε.

At any point r, with r > a, for the electric field and for the electrostatic

potential we have respectively:

E(r) =
q

εr2
r

r
φ(r) =

q

εr
(2.38)

Inside the sphere, for r 6= 0, the electric field is given by

E(r) =
q

r2
r

r
. (2.39)

The electrostatic potential at r is given by its value on the surface of the

ionic sphere plus the work to move, against the field, the charge inside:

φ(r) =
q

εa
+
q

r
− q

a
. (2.40)

If we remove the work required to move the ion from infinity to r in

vacuum electrostatic field, we have the work performed by the dielectric

medium in moving the ion:

φ(r) = −
(

1− 1

ε

)
q

a
(2.41)

replacing in equation (2.30) ∆W (elec)(X) ≈ 1
2

∑
i qiφrf (xi, λ = 1) we arrive

to the Born solvation free energy:

∆W (elec) = −1

2

(
1− 1

ε

)
q2

a
(2.42)
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2.9 Generalized Born Model

In order to take into account the conformational flexibility in the energy

minimization of various initial conformations, and in the dynamics, we have

to introduce the analytical first derivative of the solvation free energy with

respect to the atomic coordinates of the solute. But this calculation is

computationally too expensive for large systems. For this reason, it is usual

to introduce an approximation to the exact continuum electrostatics, using

a semianalytical function expressed as superposition of pairwise additive

terms. One of the most popular approximations is the Generalized Born

(GB) model [32].

The GB function for the solvation free energy is:

∆Gpol = −1

2

(
1− e−κfGB

ε

)∑
ij

qiqj
fGB

(2.43)

qi and qj are atomic partial charges and the double sum runs over all

pairs of atoms, ε is the solvent dielectric constant, and κ is the Debye-

Hückel screening parameter taking the salt concentration into account.

fGB is a function that interpolates between an effective Born radius αi,

when the distance rij between atoms is short, and rij itself at large distances:

fGB = [r2ij + αiαj exp
(
−r2ij/4αiαj

)
] (2.44)

As we have seen, the effective Born radius αi describes how deeply a

charge of a biological system is placed in the low-dielectric medium. It de-

pends not only on the intrinsic radius ρi of atom i, but also on the relative

positions and intrinsic radii of all other atoms. Several algorithms are avail-

able in the biomolecular software to calculate Born radii, e.g. STILL [33],

HTC [34], OBC [35].

2.10 Biomolecular Force Fields

Central to the success of any computational approach is the quality of the

model used; therefore much work has focused on the improvement in the

available force fields and on the development of new ones. In this section
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we present a list of the most popular force fields used in biomolecular sim-

ulations. Each force field has strengths and weaknesses; there isn’t a best

one, but one can choose the better one for a particular case. Many studies

compare the properties of different force fields [36–38].

AMBER (Assisted Model Building with Energy Refinement)

http://amber.scripps.edu

has been developed since the early 80’s under the leadership of Peter Koll-

man at University of California at San Francisco. In Table 2.3 we report the

major versions.

CHARMM (Chemistry at Harvard Molecular Mechanics)

http://charmm.org

has been developed since the early 80’s under the leadership of Martin

Karplus at Harvard University. In Table 2.4 we report the major versions.

GROMOS (Groningen Molecular Simulation)

http://www.igc.ethz.ch/gromos

has been developed since the early 80’s under the leadership of Wilfred van

Gunsteren, ETH Zurich. In Table 2.5 we can see the major versions.

OPLS (Optimized Potentials for Liquid Simulation)

http://zarbi.chem.yale.edu

has been developed since the early 80’s under the leadership of William

Jorgensen, Yale University. In Table 2.6 the major versions are listed..
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Version Principal characteristic

ff86 United-atom and all atom variants; fixed partial charges cen-

tered on atoms.

ff94 Reparametrization, all-atoms force field and fixed partial

charges centered on atoms. Charges based on multipole-

conformation calculations and a Restrained Electrostatic

Potential fit.

ff96 All-atoms force field. Fixed partial charges. Modification of

backbone φ, ψ torsional parameters based on ab-initio cal-

culations for alanine tetrapeptide.

ff99 All-atoms force field. Fixed partial charges. Minor changes

on protein parameters.

ff02 Polarizable variant of ff99. Polarizable dipoles at the atoms,

which can be calculated iteratively at each step or prop-

agated with the atomic positions as additional dynamical

variables. Two variant, with centered point charges and

with additional point charges.

ff03 All-atoms force field. Fixed partial charges centered on

atoms. Derived from ff99, with charges obtained from ab-

initio calculations with a continuum dielectric to mimic sol-

vent polarization and new backbone φ, ψ torsional parame-

ters.

Table 2.3: Major versions of AMBER force field.
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Version Principal characteristic

param19 United atom force field. Fixed partial charges centered on

atoms.

param22 Reparametrization of param19. Charges based on ab-initio

dimer energies and geometries. Newer CHARMM parameter

sets do not include changes in protein parameters.

CHARMM

fluctuating-

charge

Polarizable force field, based on fluctuating-charge model

i.e. the partial atomic charges in a molecule are allowed

to redistribute to yield equivalent electronegativity on each

atom.

CHARMM

Drude

Polarizable force field based on the Shell or Drude model,

(i.e. introduction of ”massless” virtual sites /Drude parti-

cles) carrying partial electronic charge and attached to in-

dividual atoms via a harmonic spring.

Table 2.4: Major versions of CHARMM force field.

Version Principal characteristic

37C4 United-atoms force field. Fixed partial charges centered on

atoms.

43A1 Reparametrization of 37C4 using the liquid properties and

hydration free energies.

53A6 United-atoms force field (implicit aliphatic H). Fixed par-

tial charges centered on atoms. Reppresentation of polar

groups based on liquid properties and of side chains based

on solvation free energies.

Table 2.5: Major versions of GROMOS force field.
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Version Principal characteristic

OPLS United-atoms force field. Fixed partial charges centered on

atoms.

OPLS-AA1 Reparametrization of OPLS using liquid properties and hy-

dration free energies.

OPLS-AA1 Major reparametrization with special emphasis on torsional

parameters.

Table 2.6: Major versions of OPLS force field.
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Chapter 3

Simulation methods

Interest in the dynamics of biomulecular systems derives from its relevance

in issues such as folding and unfolding of proteins, the role of dynamics in

biological functions, the interaction between proteins or nucleic acids and

other systems. Molecular Dynamics (MD) is a useful tool to study many

such problems. Using a selected force field, Newton’s equations have to be

solved to obtain coordinates and momenta of all atoms of the system along

the time trajectory:

mir̈i = f i i = 1, 2 . . . N (3.1)

r̈i =
d2ri
dt2

f i = −∂V (r)

∂ri
(3.2)

ri = (xi, yi, zi), r̈i and f i are respectively the Cartesian coordinates and the

corresponding acceleration of the i − th atom, and the force acting on it.

Newton’s law of motion is a second order differential equation that requires

two initial values for each degree of freedom to be numerically integrated.

To start a simulation one need also of a molecular description (or topology)

of the system to be simulated containing information on the system, e.g.

which atoms are covalently bonded and other physical information. In Fig.

3.1 there is a simple scheme of a MD computer simulation.

3.1 Initial coordinates

The 3D structures are usually obtained from spectroscopic experiments

(e.g, X-ray crystallography, Nuclear magnetic resonance NMR, Electron

microscopy EM) [39]. Alternatively, one can use the homology protein

39
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Figure 3.1: The global MD procedure.

structure modelling [41]. Homology modelling, also known as comparative

modelling of protein, refers to constructing an atomic-resolution model of

the target protein from its amino acid sequence and an experimental three-

dimensional structure of a related homologous proteins (the templates). Ho-

mology modelling relies on the identification of one or more known protein

structures likely to resemble the structure of the target sequence, and on

the production of an alignment that maps residues in the target sequence

to residues in the template sequence. It has been shown that protein struc-

tures are more conserved than protein sequences amongst homologues, but

sequences falling below a 20% sequence identity can have very different struc-

ture. We can describe the homology technique with four simple steps, re-

peated if needed (Fig. 3.2). For the unknown system (target sequence) we

have to:

1. identify related structures with a 3D known structure (template

structures);

2. align the target to the template sequence;

3. using information from the template structures to build a model for

the target sequence;

4. evaluate the model comparing the information obtained from this

model with the experimental results.
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The spectroscopic experimental techniques are used to produce the 3D

structures, but also to investigate the results of a computer simulation in

order to validate the model.
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Figure 3.2: The flow for comparative protein structure modelling. The figure

has been taken from Ref. [40].
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3.2 Initial velocities

The velocities are usually taken at random from a standard Maxwellian

velocity distribution. For a system in equilibrium at temperature T, one

has for a given component of the velocity:

P (v)dv =

(
m

2πkBT

)1/2

exp

(
− mv2

2kBT

)
dv. (3.3)

In order to avoid a thermal schock of the system, one usually starts with a

low temperature and increases it gradually by scaling the velocities, allowing

the system to relax. This slow heating continues until the simulation reaches

the desired temperature.

According to the equipartition theorem, the temperature T(t) is defined

by:

T(t) =
1

kBNdof

Ndof∑
i=1

mi|vi|2 (3.4)

where Ndof is the number of unconstrained degree of freedom (Ndof = 3N−
n, N is the number of atoms and n is the number of constraints).

3.3 Time step

The most common integration algorithms used in the MD simulation package

(e.g. AMBER, CHARMM, GROMACS...) are Verlet and Leap-frog [42].

A very important parameter is the integration time step ∆t: a smaller ∆t

produces greater accuracy but on the other hand is computationally more

expensive; a good choice of the time step yields a good balance between

economy and accuracy. The choice of ∆t is correlated to the problem under

examination: different types of analysis require different values of the time

step. In Tab. 3.1 we give the reference value for some properties.

When the oscillatory frequency of a bond is greater than kBT/~ (~ =

h/2π Planck’s constant)1 it is necessary to treat the motion with quantum

mechanics and this is true for the vibration of covalent bonds at room tem-

perature (see Tab. 3.1). If one is not interested in observables related to the

stretching of the chemical bonds, it is customary to fix them to their equi-

librium values, using geometrical constraints to keep their length constant.

This procedure has two related advantages: it removes the frequencies that

1kBT/~ ∼ 4× 1013Hz which correspond to a relaxation time of 25 fs.
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Force Relaxation time (fs) Suitable time step (fs)

Hight frequency: 10 0.5

vibration of covalent

bonds

Medium frequency: 40 2

angle deformation, di-

hedral angle torsion,

Van der Waals and

Coulomb short range in-

teractions

Low frequency: 1000 20

Coulomb long range in-

teraction

Table 3.1: Reference values of time steps in different range of frequency.

can not be processed classically, and allows the use of a larger time step

with a typical speed up of a factor of ∼ 4.

A number of algorithms have been developed to implement geometrical con-

straints, e.g. SHAKE [43], or LINCS [44].

3.4 Thermodynamic Boundary Conditions

A direct solution of Newton’s equations yields trajectories typical of the

microcanonical ensemble NVE (where number of atoms, volume and energy

of the system are costants), but other algorithms have been developed to

generate trajectories in NVT or NPT ensemble (where number of atoms,

volume and temperature, or number of atoms, pressure and temperature of

the system are kept constant). The latter algorithms are used in particular

in biology, where the systems are naturally coupled with a thermal bath.

The principal algorithms available to produce a constant temperature

are the Berendsen one [45] that produces a weak coupling, and the Nosé-

Hoover one [46, 47], that defines an extended Hamiltonian system; Berend-

sen’s barostat [45] and Parrinello-Rahman’s barostat [48] can be used to

generate NPT trajectories.
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3.5 Long-range and short-range interactions

As discussed in the previous chapter, a typical potential energy function has

the form:

E = Eb + Eθ + Eγ︸ ︷︷ ︸
bonded

+EV dW + Eel︸ ︷︷ ︸
nonbonded

(3.5)

where E is the total molecular energy, Eb and Eθ are harmonic terms de-

scribing bond and angle vibrations, and Eγ describes the torsion energy

(we include in the Eγ the proper and the improper dihedral terms); EV dW

and Eel are nonbonded terms that describe interactions between atom pairs

that are not part of a common bond, valence or torsion angle. EV dW takes

into account dispersion and repulsion terms, whereas Eel is the Coulomb

interaction.

The computer time required to calculate the potential energy of a par-

ticular conformation in a large system is dominated by the calculations of

the nonbonded interactions. This is due to the number of nonbonded pairs,

which is much larger than the number of terms involved in the bond, angle

and torsion interactions. In a system of N atoms (104 is a typical num-

ber of atoms in a biomolecule) there are about N bond terms and roughly

the same number of angle and torsion terms; by contrast, there are N(N−1)
2

nonbonded pairs: a straightforward calculation is too expensive.

The functional form (see sec. 2.4.1) of EV dW shows that this term de-

scribes short-range interactions. Short-range means that the total potential

energy of a given particle i is dominated by interactions with neighboring

particles that are closer than some cutoff distance rc, and that the error that

results when we ignore interactions with particles at a larger distance can be

made arbitrarily small by choosing rc sufficiently large. If the interactions

decay rapidly enough, one can evaluate the error by the following expression

[42]:

U tot =
∑
i<j

uc(rij) +
Nρ

2

∫ ∞
rc

dr u(r) 4πr2 (3.6)

where uc is the truncated potential energy function, ρ is the average number

density, and we have assumed that the radial distribution function g(r) = 1

for r > rc.

The introduction of a cutoff produces a negligible error if the potential

goes to zero at least as 1/r3. This is the case for the EV dW term, but

not for the electrostatic interaction where a cutoff approximation is quite
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inaccurate. Auffinger and Beveridge discussed the drawback of using simple

cutoff in electrostatics [49].

The electrostatic interaction is a very important issue when studying

biomolecular systems: (i) from the physical point of view, because there is

an increasing evidence that the electrostatic interaction plays a relevant role

in folding, conformational stability, enzyme activity, and binding energies

as well as in protein-protein interactions; (ii) from the computational point

of view, because the evaluation of its contribution to the total energy of the

system is so expensive that it is necessary to develop specific approximate

algorithms.

In most force fields the atoms of the system are parametrized using

partial charges on the atomic sites. When the charges q1, q2 . . . qN are at

positions r1, r2 . . . rN , the electrostatic energy due to the whole system of

charges is given by the Coulomb’s equation:

U =
1

2

N∑
i=1

qiφ(ri) (3.7)

where:

φ(ri) =
∑
j 6=i

qj
rij

rij = |ri − rj | (3.8)

If instead of discrete charges, the charge is described by a smooth charge

density ρ(x), the the main equation used to model electrostatic interactions

is the Poisson’s equation, given by:

∇ · [ε(x)∇φ(x)] = −4πρ(x) (3.9)

In a computer experiment the electostatic interactions are treated solving

(3.7) or (3.9) depending on the required accuracy and on the boundary

condition.

3.5.1 Continuum electrostatics

In continuum boundary conditions the macromolecule is considered as a low-

dielectric region carrying a fixed charge distribution and surrounded by a

continuum high-dielectric medium representing the solvent. The molecule’s

internal forces are described by a standard force field including the Coulom-

bic interactions, while the solution of Poisson’s equation determines the

solvation free energy.
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3.5.2 Discrete and continuum electrostatics

Approximations based on continuum electrostatics, in which the solvent is

represented as a featureless dielectric material, are remarkably successful in

representing the electrostatic contribution to the solvation free energy. Nev-

ertheless sometimes, depending of the problem, a description in which the

structural details of the solvent molecules are ignored may not be appropri-

ate; e.g. the structure of water is important in the folding process and the

creation of secondary structures.

In order to obtain by computer simulation of a finite cluster a statistics

similar to that of an infinite system, Belou and Roux have developed an

intermediate approach: here one takes into account the solute and a small

number of explicit solvent molecules in the vicinity of the solute (a layer of

solvent), and represents the influence of the bulk with an effective solvent

potential. This approximation follows from a formal separation of the mul-

tidimensional configurational integral in the solvent molecules nearest to the

solute and the remaining ones.

Even in this approach, in which the number of explicit molecules is

very reduced, the evaluation of the electrostatic interaction by means of the

Coulomb potential is computationally too expensive, and an approximation

is necessary. A first step to solve this problem was the use of the multiple

expansion series. To evaluate the Coulomb energy at r, let us consider

N charges q1, q2 . . . qN at the positions r(k) = {r(k)α } (α = x, y, z) with

k = 1, 2 . . . N , close to the point b = {bα}, so that their distances |r(k) − b|
are small compared to |b− r| (see Fig. 3.3).

Figure 3.3: Multipole expansion of the potential at r due to charges near b.

Assume that |r(k) − b| < |b− r| for all k.
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In the second-order approximation (quadrupole approximation) we have:

N∑
i=1

q(i)

|r(i) − r|
' Q

|b− r|
−

3∑
α=1

dα(bα − rα)

|b− r|3

+
3

2

3∑
α=1

3∑
β=1

Θαβ(bα − rα)(bβ − rβ)

|b− r|5

− 1

2

3∑
α=1

Θαα

|b− r|3
(3.10)

where Q =
∑N

i=1 q
(i) is the total charge of the system, d its dipole moment,

with dα =
∑N

i=1 q
(i)(r

(i)
α − bα), and Θ its quadrupole moment, with Θαβ =∑N

i=1 q
(i)(r

(i)
α − bα)(r

(i)
β − bβ) (α, β indicate the Cartesian coordinates).

The Fast Multipole Algorithm (FMA) [50], that reduces the cost of the

electrostatic calculation to order N for a system of N particles, is based

on this approximation. The simulation of a cell containing the solute and

the solvent is divided into subcells. At the beginning of the electrostatic

calculation, total charge, dipole and quadrupole moments of each subcell are

calculated; the potential energy at r is calcutated exactly for the charges in

the same and in the adjacent subcells, and using the approximation (3.10)

for the nonadjacent subcells. The key of FMA algorithm is to consider the

more distant charges as grouped into large subcells.

3.5.3 Discrete electrostatics

In the all-atoms approximation all solvent molecules are treated explicitly;

the periodic boundary conditions (PBC) are introduced to minimize surface

effects and to reproduce the bulk phases with a minimal number of atoms.

The simulation cell (for convenience here we consider a cubic cell of side

L), containing the solute and the solvent, is considered at the center of an

infinite system obtained by replicating the original cell in all directions, in

order to mimic the presence of an infinite bulk surrounding the N-particle

system (Fig. 3.4). For every particle i at position ri = (xi, yi, zi), there are

infinite images at positions ri +nL = (xi + n1L, yi + n2L, zi + n3L), where

n is an integer vector. The total potential energy is:

Utot =
1

2

∑
i,j,n

′u(|rij + nL|) (3.11)
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Figure 3.4: Schematic representation of periodic boundary conditions.

the prime over the sum indicates that the terms with i = j have to be

excluded when n = 0.

In order to calculate the short-range interactions (e.g. Van der Waals

interactions), all intermolecular interactions are usually truncated beyond

a certain cutoff distance rc. As seen before, a suitable choice of rc can yield

the desired degree of accuracy.

Ewald sums

The treatment of electrostatic interactions is more complicated; in this case

the introduction of a cutoff produces inaccurate results. The Ewald algo-

rithm [42, 51] has been developed to treat the electrostatic interactions in

an appropriate way. Applied successfully for many years to the simulation

of liquids, it is the reference algorithm for macromolecular simulations.

The basic idea is the modification of charge density. In equation 3.7 the

charge density is a sum of δ-functions and its contribution to the energy

decays as 1/r. In the Ewald algorithm every charge qi is surrounded by a

charge density distribution such that the total charge of this cloud cancels

exactly qi (Fig. 3.5). In this new situation, the electrostatic potential at

large distance is due only to the fraction of qi that is not screened by the

cloud, and this fraction goes to 0 rapidly. With this expedient the electro-

static energy is split into two parts: (a) a short-range part that one computes
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introducing a cutoff; (b) a long-range part defined in the Fourier space, that

can be computed using the Poisson equation.

Figure 3.5: (a) Density ρ(1) is the sum of the point charge and of the Gaussian

densities. This generates the short-range term. (b) Density ρ(2) equals the

Gaussian density with opposite sign, and produces the long-range reciprocal

sum potential.

3.6 Free energy calculation

Free energy, usually expressed as the Helmholtz function F or the Gibbs

function G, is perhaps the most important thermodynamic quantity and a

central concept in modern studies on biochemical systems: in fact many

physical properties relevant from the chemical or biochemical point of view

depend directly or indirectly on the free energy of the system. For example,

binding constants, association and dissociation constants, and conforma-

tional preferences are all related to the difference in free energy between

states.

The Helmholtz function is appropriate for a system with constant num-

ber of particles, temperature and volume and the corresponding ensemble is

referred to as the canonical (NVT) ensemble; on the other hand, the Gibbs

free energy is appropriate for constant number of particles, pressure and tem-

perature (NPT ensemble). In the following we will refer to the Helmholtz
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free energy, but one can extend all considerations to the Gibbs function.

The Helmoltz free energy is defined in thermodynamics as:

F=U− TS (3.12)

where U is the total energy, T the temperature and S the entropy of a sys-

tem. From the microscopic point of view, it is a statistical property, which

measures the probability of finding a system in a given state. Furthermore,

it is a global property that depends on the extent of the phase (or configu-

rational) space accessible to the molecular system.

The statistical physics definition of this quantity is the logarithm of the

partition function Z:

F =− 1

β
lnZ (3.13)

=− 1

β
ln

∫
e−βH(q,p)dpdq (3.14)

where β = 1/(kBT) (kB denotes the Boltzmann constant), and q and p

represent respectively positions and momenta.

To obtain a good estimate of the absolute free energy, in theory one

should sample the whole phase space, which is computationally not possible.

But in many applications the important quantities are actually the free

energy differences between various macroscopic states of the system, rather

than the absolute free energy. Free energy differences allow to quantify the

relative likelihood of different macroscopic states; each of these states is

the collection of all possible microscopic configurations corresponding to the

macroscopic parameters, distributed according to the canonical measure µ;

the latter is defined as:

µ(dq dp) = Z−1 exp [−βH(q, p)] dq dp. (3.15)

Many efforts have been made to devise algorithms to overcome sampling

barriers and to compute free energy differences. Indeed, in many cases the

time trajectory generated in the phase space by the numerical integration

is trapped for a long time in some region of the phase space, and hops

only occasionally to another region, where it again remains trapped for a

long time. This occurs when several regions of low free energy exist in

the phase space, separated by regions of high free energy (that is, of very

low probability). In [52] one can find a good overview of different methods
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of atomistic simulation that can be applied to force a complex system to

overcome sampling barriers, classified according to their scope and range of

applicabilty; in our work we have used umbrella sampling and metadynamics

as discussed in the following.

3.6.1 Metadynamics

The metadynamics algorithm works in the following way. One considers a

dynamical system, in equilibrium at a temperature T, described by a set

of coordinates x and by a potential V (x). The algorithm is based on a

dimensional reduction: one is usually interested in exploring the properties

of the system as a function of a finite number of collective variables CVs such

as some angles, some distances, a coordination number, the potential energy

or any explicit function of x, assuming that they provide a good coarse-

grained description of the system. The algorithm calculates the probability

distribution of the system as a function of one or few of these predefined

collective variables. For example, in a chemical reaction one would choose

the distance between two atoms that have to form a bond. The dynamics in

the space of the chosen CVs is enhanced by a history-dependent potential

constructed as a sum of Gaussians centered along the trajectory in the CVs

space.

The metadynamics method [52] provides in many cases an efficient frame-

work used both for accelerating rare events and for computing the free en-

ergy. The method is schematically represented in Fig. 3.6, which shows how

it makes the system escape local free energy minima through the lowest free

energy saddle point. The same figure illustrates how the method can be

used for estimating the free energy.

In the following the capital S is used for denoting CVs as a function of

the microscopic coordinates S(x), while lower case s is used for denoting the

value of the CVs.

The equilibrium behaviour of these variables is completely defined by

the probability distribution:

P (s) =
exp [−F (s)/T]∫
ds exp [−F (s)/T]

(3.16)
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(a) (b)

(c) (d)

Figure 3.6: The dynamics begins from a minimum of free energy(a). This

minimum is quickly filled with Gaussians, and the system evolves through the

lowest saddle point in towards a near minimum (b). Afterwards, as the dynamics

continues, the free energy profile is progressively filled with Gaussians (c, d).

At the end, the sum of the Gaussians provides the negative image of the free

energy.

where F (s) denotes the free energy and is given by:

F (s) = −T ln

(∫
dx exp

[
− 1

T
V (x)

]
δ [s− S(x)]

)
(3.17)

If one generated a very long trajectory x(t), P (s) could be obtained by

taking the histogram of the CVs, i.e., at time t one would have:

P (s) ∼ 1

t

∫ t

0
dt′δ

(
s− S

[
x(t′)

])
(3.18)

If the phase space of the system displays regions of metastability, the

motion of S will be often bound in some local minimum of the free energy

F (s), or equivalently in a local maximum of P (s), and it will escape from this
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regions with very low probability. On the other hand, in metadynamics even

if the system is initially at the bottom of a well, the algorithm produces a

good sampling by means of the history-dependent potential, that provides an

expanding exploration of a progressively larger portion of the configuration

space. In the simplest molecular dynamics implementation of this algorithm

one introduces a repulsive Gaussian potential every τG MD steps. Therefore

the potential that acts on the system at time t is given by:

VG (S(x), t) = w
∑

t′=τG,2τG,...
t′<t

exp
(
− [S(x)− s(t′)]2

2δ2s

)
(3.19)

where s(t) = S(x(t)) are the values of the CVs at time t. The parameters

that enter the definition of the VG and influence the accuracy and efficiency

of the free energy reconstruction are:

1. the Gaussian height w;

2. the Gaussian width δs;

3. the frequency τG by which the Gaussians are added.

If the Gaussians are large, the free energy surface will be explored at

a fast pace, but the reconstructed profile will be affected by large errors.

Instead, if the Gaussians are small or are placed with low frequency, the

reconstruction will be accurate, but it will take a longer time.

The basic assumption of metadynamics is that VG(s, t) as defined in

equation (3.19) provides a good estimate of the underlying free energy after

a sufficiently long time:

lim
t→∞

VG
(
s, t
)
∼ −F (s) (3.20)

This relation does not derive from any standard identity for the free

energy, but was postulated heuristically [53].

Equation (3.20) can be qualitatively understood in the limit of slow de-

position, i.e. w → 0. In this limit, VG(s, t) varies slowly and the probability

of observing s is approximately proportional to

P (s) ∝ exp

(
− 1

T

(
F (s) + VG(s, t)

))
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If the function F (s) + VG(s, t) has some local minimum, S will be prefer-

entially localized in the neighborhood of this minimum, and an increasing

number of Gaussians will be added there until this minimum is completely

filled. On the other hand, in the region where F (s) = −VG(s, t), the prob-

ability distribution will be approximately flat; in this case the corrugations

in the free energy are an undesired effect of the number and of the size of

the newly added Gaussians.

The efficiency of metadynamics is strongly dependent on the choice of

the CVs. In order to obtain a good reconstruction of the free energy, the

CVs should describe all the slow events that are relevant to the process of

interest; it is also important that all degrees of freedom other than CVs

are allowed to relax in the new potential between two depositions of the

Gaussians. The CVs should assume clearly distinguishable values in the

initial, final, and intermediate states. Finally, it is important to stress that

if the number of CVs is too large, it will take a very long time to fill the free

energy surface.

A more detailed discussion of the method can be found in Refs. [52, 53].

3.6.2 Umbrella Sampling

The free energy function can be considered as a potential of mean force

(PMF) (see section 2.6.1). The concept of potentials of mean force is fre-

quently used to characterize the energetics of transitions in solids, fluids,

and biomolecular systems. A routinely used technique to compute the PMF

along a given reaction coordinate ξ is the umbrella sampling [54]. This tech-

nique aims at overcoming the bias of a limited sampling of energetically

unfavorable configurations; it generates a series of initial conditions, each

corresponding to a possible state of the system, and confining the simula-

tion around this state with an additional potential, usually harmonic. In

this way one can exlplore very low probability areas of the phase space. The

Fig. 3.7 illustrates the method. The steps for this procedure are as follows:

1. one generates a series of configurations along a single degree of freedom

(reaction coordinate ξ(t)) (Fig. 3.7(a)). To produce these configura-

tions one can generate a trajectory by applying an extra force to the

system: for example, one can pull apart the system by applying a

sufficently strong potential;
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Figure 3.7: Panel (a) illustrates the pulling simulation: a part of the system

(blue circle) is pulled away from the rest (red circle). This generates a series of

configurations along the reaction coordinate, which in this case is the distance

between the centers of mass of the two parts of the system. These configurations

are extracted from the constrained trajectory after the simulation is complete, at

points indicated by the dashed arrows. Panel (b) schematizes the independent

simulations within each sampling window, the center of mass of the subsystem

being confined in that window by the umbrella biasing potential. Panel (c)

shows the ideal result expected for the histogram of configurations when one

uses a harmonic potential; if neighboring windows overlap a continuous energy

function can be derived from these simulations.

2. one then extracts from the trajectory produced as in step 1 various

frames corresponding to a desired spacing between configurations, as

indicated in Fig. 3.7(a) where the dashed arrows point at different

positions of the center of mass;

3. a run of the umbrella sampling simulation is started from each config-

uration, in which the system is restrained within a window centered

on the chosen configurations (Fig. 3.7(b));

4. the last step is the calculation of the PMF from the histograms pro-

duced in each run (Fig. 3.7(c)). The most widely used technique to

compute the PMF from histograms is the weighted histogram analysis

method (WHAM) [55].
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In this procedure a set of N separate umbrella simulations are carried

out, with the usual umbrella potential

wi(ξ) =
ki
2

(
ξ − ξci

)2
(3.21)

which restrains the system at positions ξci (i = 1, ..., N) with a force

constant ki. From each of the N umbrella simulations an umbrella his-

togram is recorded, as in Fig. 3.7(c); it represents the probability dis-

tribution P bi (ξ) along the reaction coordinate biased by the umbrella po-

tential wi(ξ). We thus obtain a sequence of biased distribution functions

P b1 (ξ), P b2 (ξ), · · ·P bN (ξ), such that P b1 (ξ) overlaps with P b2 (ξ), P b2 (ξ) with

P b3 (ξ), etc. The unbiased distribution function Pi(ξ) on the ith−window

can be written in terms of the P bi (ξ):

Pi(ξ) = exp
(
β
(
wi(ξ)− fi

))
P bi (ξ) (3.22)

where fi is the free energy obtained by adding the biasing potential, and is

defined by:

exp (−βfi) =

∫
dξ exp

(
− βwi(ξ)

)
P (ξ) = 〈exp

(
− βwi(ξ)

)
〉. (3.23)

The total unbiased probability distribution can be obtained as a linear com-

bination of the unbiased probabilities:

P (ξ) =
N∑
i=1

ci(ξ)Pi(ξ) =
N∑
i=1

ci(ξ)

(
e
β

(
wi(ξ)−fi

)
P bi (ξ)

)
. (3.24)

The P (ξ) is related to the PMF via:

W (ξ) = − 1

β
ln
[
P (ξ)/P (ξ0)

]
(3.25)

where ξ0 is an arbitrary reference point, with W (ξ0) set equal to zero.

The weights in the P (ξ) equation are:

ci(ξ) =
nie
−β
(
wi(ξ)−fi

)
∑N

j=1 nje
−β
(
wj(ξ)−fj

) (3.26)

and satisfy the normalization condition
∑N

i=1 ci(ξ) = 1.
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The equations (3.24) cannot be solved directly because they contain two

unknown quantities: the free energy constants fj and the unbiased distri-

bution P (ξ). Therefore, an iterative procedure is necessary; the WHAM

equation is: 

P (ξ) =

∑N
i=1 niP

b
i (ξ)∑N

j=1 nje
−β
(
wj(ξ)−fj

)

exp (−βfj) =

∫
dξ exp

(
− βwj(ξ)

)
P (ξ)

(3.27)

It is also possible to introduce in (3.27) a parameter describing the sta-

tistical inefficiency: when the sampling of the phase space is not uniformly

distributed, a lower weight is assigned to histograms corresponding to tra-

jectories with longer autocorrelations [56]. In solving iteratively equation

(3.27), the WHAM procedure estimates the statistical uncertainty of the

unbiased probability distribution and subsequently computes by the rela-

tion the PMF that corresponds to the smallest uncertainty.

The WHAM implementation in the GROMACS package allows one to

compute the statistical error estimates for the derived PMFs, using different

bootstrap techniques. Bootstrapping is a resampling technique that can

be applied to estimate the uncertainty of a quantity A(a1, ..., an) which is

computed from a large set of n observations al(l = 1, ..., n).

In theory one could repeat the n observations multiple times in order

to calculate several independent estimates of A and to determine the un-

certainty on A. But in practice this procedure would require too many

observations, and is therefore not feasable for complex systems because it

is computationally too expensive. The idea of bootstrapping is to estimate

P (a) using the n observations, and to subsequently generate new random

sets of n hypothetical observations, based on the estimated distribution.

Each of the sets of n hypothetical observations is then used to calculate a

hypothetical value for A. The uncertainty on A is then given by the stan-

dard deviation of the hypothetical values for A. For a detailed introduction

into the bootstrap technique we refer to [57].

The WHAM procedure computes the PMF based on the N trajecto-

ries, each taken from one of the umbrella windows i = 1, ..., N along the

reaction coordinate. All positions ξi(t) during the N simulations may thus
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be considered as the large set of observations - which we referred to before

as al - and are accordly distributed in accordance with Pi(ξ). Thus, one

can generate from each window distribution a new hypothetical observa-

tion, that is a bootstrapped trajectory ξb,i(t). Each bootstrapped trajectory

ξb,i(t) yields a new histogram. The new set of N Pb,i(ξ) functions is subse-

quently used in WHAM to compute a bootstrapped PMF Wb(ξ). The whole

procedure is repeated Nb times yielding a large set of bootstrapped PMFs

Wb,k(ξ)(k = 1, ..., Nb). The uncertainty on the PMF is then given by the

standard deviation as computed by the Nb bootstrapped PMFs:

σPMF =

√√√√ 1

Nb − 1

Nb∑
k=1

(
Wb,k(ξ)− 〈Wb(ξ)〉

)2
(3.28)

where:

〈Wb(ξ)〉 =
1

Nb

Nb∑
k=1

Wb,k(ξ) (3.29)

denotes the average of the bootstrapped PMFs at position ξ.

In [56] the authors demonstrate that, given sufficient sampling, the boot-

strapped new trajectories allow for an accurate error estimate; they pre-

sented the results obtained on two test systems.

3.7 Essential Dynamics

The biological functions of the proteins or nucleic acids are connected to the

correlations of internal atomic motions. Such complex correlations between

internal atomic motions is inherent in the structures and in the characteristic

interactions of each system. It is a challenge to derive the correlated motions

from the knowledge of molecular structure and about the interactions, in

order to identify the functional role of biomolecules.

To investigate the correlations between atomic positional fluctuations

one can use the covariance analysis, also called principal component analy-

sis or essential dynamics [58]. The covariance analysis uses the covariance

matrix C of the atomic coordinates defined as:

C = 〈(x− 〈x〉)(x− 〈x〉)T 〉 (3.30)
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where x(t) is a trajectory generated with a molecular dynamics simulation,

and 〈 〉 denote an average over time. The generic element of C is:

Cij = 〈(xi − 〈xi〉)(xj − 〈xj〉)T 〉. (3.31)

For a system of N particles C is a 3N×3N symmetric matrix (if desired

x(t) can represent a trajectory of a subset of atoms, usually the Cα atoms for

the proteins), can be diagonalized by an orthogonal coordinate trasformation

T :

(x− 〈x〉) = Tq or q = TT (x− 〈x〉) . (3.32)

T transforms C into a diagonal matrix Λ = 〈 qqT 〉 of eigenvalues λi, and

the i− th column of T is the eigenvector belonging to λi:

C = TΛTT or Λ = TTCT (3.33)

The eigenvalues λi are the average square displacements along the asso-

ciated eigenvector directions. One found that in the proteins most of the

positional fluctuations are concentrated in a subspace of only a few degrees

of freedom [58]. This subspace is called the essential subspace. On the other

hand, the all other degrees of freedom represent much less important, ba-

sically indipendent, Gaussian fluctuations, orthogonal to the essential sub-

space. This offers the possibility to consider the motion outside the essential

subspace as essentially constrained and to represent the protein dynamics

in the essential subspace only.

Using the equation q(t) = TT (x(t)− 〈x〉), the trajectory can be pro-

jected on the essential directions to give the principal components qi(t).

We refer to the literature for more details [58–60].
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Chapter 4

Adsorption of DNA

oligomers on

amine-functionalized surface

4.1 DNA sequencing and diagnostic tool

In recent years, a considerable effort has been devoted to improve the speed

and reliability of full-genome sequencing. A human genome is about 3 billion

base pairs long, and certain variations in the sequence are well known to

cause serious health problems. The sequence of the human genome can be

determined with the current technology, but at a high cost and considerable

time. Alternative technologies for faster and cheaper DNA sequencing are

likely to emerge, and the improvements in this field have also been driven by

the expectation that it could become an important diagnostic and medical

tool, possibly leading to personalized therapies.

To this end, many methods have been proposed, using various physical

properties of the DNA molecule to perform the analysis. For example, the

DNA can be forced to pass through a nanopore, while reading the order

of nucleotides from the different electrostatic properties of the base pairs.

In this respect, computer modelling has been proven to be a good tool

to understand the details of the interaction of DNA with the sequencing

apparatuses [61, 62].

Before DNA can be sequenced, it has to be extracted from the cell where

it is stored (e.g. the blood cells); therefore, any genomic analysis requires a

63
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Figure 4.1: Schematic representation of the APTES moiety used to function-

alize silica surfaces.

purification process in order to remove proteins, lipids and any other con-

taminants. One of the methods used to purify DNA from a biological sample

is based on the fact that under physiological conditions the DNA molecule

is negatively charged, with an average of 2 electronic charges per base pair.

Under the same conditions amine groups are positively charged, and in prin-

ciple the electrostatic interaction could be used to separate DNA from the

other unwanted molecules, e.g. by functionalizing a surface with amine-

carrying molecules so that DNA is preferentially absorbed onto it.

The strength of the electrostatic interaction between charged bodies im-

mersed in an electrolytic solution largely depends on the kind and concen-

tration of the ions present in solution. Under particular circumstances, it

might even happen that the interaction between like-charged bodies becomes

attractive [63, 64]. The origin of this peculiar effect can be ascribed to the

presence of doubly-charged ions in the solution, which develop very strong

spatial correlations through a divalent-ion mediated like-charge attraction

[65, 66]. The possibility of modulating the electrostatic interaction using

dissolved electrolytes suggests that DNA might be efficiently purified by ad-

sorbing it first onto a surface with opposite charge and then releasing it by

appropriately changing the type and concentration of dissolved ions.

This has been recently studied in various experimental setups, mostly

based on the functionalization of a silica surface with 3-aminopropyl-

triethoxysilane (APTES) [67, 68] that contains an amino group. These

functionalized surfaces can be used into lab-on-a chip devices, and have

been shown to be able to extract up to 40% of the DNA present in blood

samples [69, 70]. In Fig. 4.1 the relevant moiety of APTES’ structure is

shown, while Fig. 4.2 depicts schematically the reactions between an oxide

surface and the APTES molecules in a functionalization process.
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Figure 4.2: Reaction between an oxide surface and APTES molecules.

Divalent-ion mediated like-charge attraction has received considerable

attention; on the other hand, the possibility of an opposite-charge repulsion

has not been systematically investigated, although there are experimental in-

dications that such a regime can actually happen [71–73]. In particular, the

general features of the interaction of DNA with an amine-functionalized sur-

face have not been yet investigated theoretically. Therefore, little is known

about the details of how the interaction of DNA with a functionalized surface

depends on the pH and on the ionic strength of the surrounding solution,

as well as on the charge of the dissolved ions.

In this thesis we first present the effects of the charge density on the

adsorption properties of DNA, obtained by using classical density functional

methods to investigate the free energy landscape of DNA oligomers adsorbed

on positively-charged surfaces. Density functional methods, that have been

proven to be very effective in determining the conditions of like-charges

attraction, have been used to investigate adsorption of polyelectrolites [74–

76], ion interactions with polyelectrolites [77, 78], and the electric double

layer in various geometries [79–81].

We then investigate in detail by computer simulation how the interaction

between DNA and an amine-functionalized surface depends on the pH of

the solution, and on the type and the concentration of dissolved ions. In

this first exploratory work we consider DNA oligomers, with a size able to

produce the desired effects within an affordable computational cost. We

have performed free energy calculations using an atomistic model of DNA

and of the functionalized surface, which allowed us to provide a more detailed

description of the adsorption mechanism. This approach showed that the

detachment of DNA oligomers from the surface can indeed take place, and

is the result of an interplay between the attractive electrostatic interactions

and an entropic contribution to the potential of mean force between the

surface and the DNA.
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We also report experimental results obtained by the Biofunctional

Surfaces and Interface (BioSInt) group@FBK (Fondazione Bruno

Kessler) using an atomic force microscope (AFM) [82] to detect in a similar

system the phenomenon described before. This technique has been uti-

lized for the study of interactions occuring within biological systems such

as antibodies-antigens [83, 84], and biological processes such as molecular

recognition [85]. The experiments described in section 4.3.3 point out a

significant dependence of the DNA-surface interaction on the pH of the so-

lution, which is directly related to the average surface charge, and on the

concentration of dissolved ions.

4.2 DNA structure

In this section we describe the principal properties of DNA.

(a) Nucleotide: repeating unit in

a polynucleotide chain.

(b) The bases are planar aromatic het-

erocyclic molecules and are divided

into two groups: the pyrimidine bases,

thymine and cytosine; and the purine

bases, adenine and guanine.

Figure 4.3: The standard nomenclature for the atoms is taken from the Inter-

national Union of Biochemistry.

The deoxyribonucleic acid is a long polymer built from four different

building blocks, the nucleotides. The sequence in which the nucleotides are

arranged contains the entire information required to shape the cells and their

functions. Despite its essential role in cellular functions, DNA molecules

adopt surprisingly simple structures. Each nucleotide contains two parts:
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a backbone consisting of sugar (the deoxyribose) and phosphate unit (Fig.

4.3(a)), and an aromatic base (Fig. 4.3(b)).

The unit containing just the sugar and the base is called the nucleoside.

As shown in Fig. 4.4, individual nucleoside units in a nucleic acid are joined

together in a linear way, through phosphate groups attached to the 3’ and

5’ positions of the sugars. Hence the full repeating unit in a nucleic acid is

a 3’, 5’-nucleotide.

Figure 4.4: A polynucleotide chain (standard

atom labeling is used) runs from the 5’ end

(of the sugar atom C5’) to the 3’ end (of the

sugar atom C3’). Nucleotide linkage is via the

3’ to 5’ phosphodiester bonds. α, β, γ, δ, ε,

and ζ label nucleic acid torsion angles along the polynucleotide chain, and χ

the torsion angle around a glycosyl bond, connecting sugar and base; τ0 through

τ4 represent the length of endocyclic bonds in the sugar.
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The phosphate group is negatively charged and, being located on the

exterior of the helix (see Fig. 4.5), is readily available for physical and

chemical interactions with solvent water molecules and ions present in the

cell.

Figure 4.5: Primary structure of one strand of DNA.

Accurate bond lengths and angle geometries for all bases, nucleosides

and nucleotides have been determined by X-ray crystallography. In struc-

tural surveys [86–89] the mean values for these parameters, that define their

equilibrium values, have been calculated from the most reliable structures

in the Nucleic Acid Databases. These parameters have been incorporated

into several implementations of the AMBER force fields that we have used

in our computer simulations, as well as in other force fields. Accurate crys-

tallographic analyses, at very high resolution, can also yield quantitative

information on the electron-density distribution in a molecule, and hence

on individual partial atomic charges. These charges have been obtained by

ab-initio quantum mechanical calculations, but are also available experi-

mentally [90, 91].
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Figure 4.6: In the classic Watson-Crick base pairing scheme of DNA double

helices, thymine (T) pairs with adenine (A) forming two hydrogen bonds, and

cytosine (C) pairs with guanine (G) forming three hydrogen bonds.

The realization that the planar bases can bind in particular ways by

means of hydrogen bonding (see Fig. 4.6 ), was a crucial step in the elu-

cidation of the structure of DNA. Important early experimental data by

Chargaff showed that the molar ratios of adenine-thymine and cytosine-

guanine in DNA were both unity. This led to the proposal by Watson and

Crick that in each of these pairs the purine and pyrimidine bases are held

together by specific hydrogen bonds, to form planar base pairs. In native,

double-helical DNA the two bases in a base pair necessarily arise from two

separate strands of DNA (with intermolecular hydrogen bonds) and so hold

together the DNA double helix (Watson and Crick, 1953) [1].

In a double helix (Fig. 4.7) only specific pairs of bases can bind together:

A (purine) with T (pyrimidine), and G (purine) with C (pyrimidine). In

other words if an A is a member of a pair, on either chain, then the other

member must be T; similarly for G and C. The sequence of bases on a single

chain does not appear to be restricted in any way. Hovewer, if only specific

pairs of bases can be formed, it follows that if the sequence of bases on

one chain is given, then the sequence on the other chain is automatically

determined. This arrangement produces CG and TA base pairs (bps) whose

size along the double-helix are nearly identical, and therefore the overall

structure appears quite uniform.
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Figure 4.7: The Watson and Crick model of DNA double helix. Alternating

subunits of phosphates and deoxyriboses held together by hydrogen-bonded bps,

with adenine pairing with thymine and guanine pairing with cytosine. The A-T

and G-C bps have the same distance between the C1’ atoms of their sugars

and can form a regular helix. The two chains of the DNA double helix run in

opposite directions, through the center of each bp. The pitch of the helix Ph is

the helix axis for one complete turn, and nb is the number of bps per turn (10 -

10.5). The unit twist is defined as Ω = 360/nb (about 34−36), and the helical

rise is h = Ph/nb. The major grooves (12 Å) and the minor grooves (8.5 Å)

are indicated.
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Figure 4.8: The DNA is schematically represented as a long structure. Some

stretches of the sequence, the genes, contain all information needed to code the

proteins.

The order in which the nucleotides appear in one DNA strand defines its

sequence. Some stretches of the sequence, called genes, contain information

that can be translated first into an RNA molecule and then into a protein,

as schematically represented in Fig. 4.8. The ensemble of all genes of an

organism constitutes its genetic information, and is called the genome.

4.2.1 Classical Density Functional Calculations

Electrostatic interactions are the driving force for many phenomena relevant

to biophysics, and electrostatics is most likely the main driving force in the

reversible adsorption of DNA on functionalized surfaces. From the point of

view of modelling, a continuum description of the electrostatics of a given

problem is a first approximation that is usually capable of giving a con-

siderable insight into the relevant scales characterizing a phenomenon. To

this end, we present the results of a simplified model of the DNA molecule

interacting with a functionalized surface. In this model, a DNA segment is

Figure 4.9: Deprotonation reaction of a phosphate group, as it occurs in the

exterior backbone of the double helix of DNA when the pH value is similar to

the indicated pKa value.
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pH average charge/group

7.65 0.10

7.45 0.15

7.30 0.20

7.04 0.314

6.88 0.40

Table 4.1: Average charge in units |e| per amine group on the functionalized

surface as a function of the pH. The equilibrium costant of the oxidation reaction

of the amine group is pKa=6.7.

approximated as a rigid cylindrical molecule parallel to the functionalized

surface, with radius R = 1 nm and length l = 0.34 nm per base pair. Under

physiological conditions, each base pair carries a charge of −2|e|, where e is

the electron charge, due to the deprotonation of the phosphate groups (as

shown in Fig. 4.9). This reaction has pKa=7 and this charge can be safely

considered constant, up to very acid values of the pH. One assumes that the

negative charge on the DNA is uniformly spread onto the cylinder, which,

as a consequence, acquires a surface charge density of

σc = − 2|e|
2πRl

(4.1)

= −0.936 |e|nm−2 (4.2)

This cylinder interacts with an amine-functionalized surface, which we

also assume to carry a uniform charge density, due to the protonation re-

action of the amine groups. The APTES moieties are assumed to be uni-

formely distributed on the surface with a density of 1.00 nm−2. This is the

actual experimental density of amine groups on APTES functionalized silica

surfaces [92].

Using the Henderson-Hasselbach equation (2.35), we calculate the charge

per amine group as a function of pH (see Fig. 4.10 and Tab. 4.1 where some

values extracted from the curve are reported).

Given these representations of the DNA molecule and the amino-

functionalized surface, the free energy of the system depends on the con-

centration and distribution of the other ions present in the solution. Anal-

ogously to the Hohenberg-Kohn theorem for the electron liquid, it can be

shown that the free energy is a universal functional of the ionic densities
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Figure 4.10: Behaviour of pH value as a function of charge per amine group.

The function is calculated using the Henderson-Hasselbach equation.

[93–95], even though the proof leading to this result does not give the ac-

tual form of this functional. Nevertheless, this theorem is the foundation

of the application of Density Functional Theory (DFT) to the study of the

interactions between polyelectrolytes in ionic solutions.

As a first approximation, the free energy can be taken as the sum of the

electrostatic energy of interaction between the ionic species and of the free

energy of the ideal gas for each species, taken in the local density approxi-

mation. Denoting by ρi(x) the density of species i, (i = 1, 2 . . . n where n is

the total number of ionic species), one has:

FPB = kBT
n∑
i=1

∫
d3xρi(x)log[ρi(x)Λ3

i − 1]

+
|e|2

2

1,n∑
i,j

∫
d3xd3y

ziρi(x)zjρj(y)

ε|x− y|

+

n∑
i=1

∫
d3x|e|ziρi(x)Vext(x) (4.3)

where Λi is the de Broglie thermal wavelength of the particles of species

i, zi its charge in units of |e|, ε is the dielectric constant of the solvent (∼ 80

for water), which is assumed to be uniform, and Vext(x) is the electrostatic

potential generated by an external charge distribution, which is assumed to

be fixed. The minimization of Eq. (4.3) with the relevant boundary condi-
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tions produces the average density of the electrolytes that is a solution of

the Poisson-Boltzmann (PB) (Eq. (2.31)). In Eq. (4.3) one completely ne-

glects the presence of ion-ion correlations. However, these correlations have

been shown to play an important role in the description of the interaction

between charged bodies, especially in the presence of divalent ions, where

like-charge attraction phenomena can be observed [66].

To overcome the limitations of Eq. (4.3), various functionals have been

proposed and tested in the past years. In general, there are two physical phe-

nomena producing ion-ion correlations. First, one has to consider excluded

volume effects, deriving from the fact that the ions have a finite diameter

(σ ∼ 0.3 nm); therefore, the first term on the right-hand side of Eq. (4.3),

which is the free energy of an ideal gas of point particles, is better approx-

imated with the free energy of a hard-sphere fluid. The results presented

here are obtained with this approximation, exploiting the results obtained

by Rosenfeld and collaborators using Fundamental Measure Theory (FMT)

[96, 97]; in particular the White Bear version of this functional has been

used, also known as FMT3 [98]. The set of this approximations, that is

hard-sphere ions immersed in a uniform solvent, is known as the Restricted

Primitive Model (RPM) of the electrolytes.

Secondly, ion-ion correlations are also induced by the long-range

Coulomb interaction: the second and third terms on the right-hand side

of Eq. (4.3) can be improved to take into account at least pair correlations.

The calculation uses the free-energy density functional term calculated by

Tang and collaborators using the Mean Spherical Approximation solution

of the Ornstein-Zernicke equation for interacting charges [65]. It has been

shown that RPM plus ion-ion electrostatic correlations is a very good model,

able to describe efficiently the main effects of electrostatics in a wide range

of systems of biological interest.

Classical DFT simulations have been performed by Giovanni Garberoglio

[99] using the freely available Tramonto software [100]. The approxima-

tions discussed above reduce the system under study to a two-dimensional

system, whose dimension is taken as 20 × 10 nm2, where the first length

is along the direction perpendicular to the functionalized surface. Two

different charge densities for the surface, namely Σ1 = 0.15 |e| nm−2 and

Σ2 = 0.314 |e| nm−2, are considered. Assuming a density of amine groups

∼ 1.0 nm−2, the two charged states correspond to values of pH close to 7.45
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and 7.04, respectively (see Tab. 4.1). The concentration of ions has also

been varied, considering both monovalent and divalent ones. In the DFT

simulations, the ionic concentration was set as the boundary condition far

from the charged surface.

We report in Fig. 4.11 and Fig. 4.12 the results obtained for the DNA

free-energy as a function of the distance from the surface, for the two charge

densities. The distance has been defined as the smallest one between any

point on the surface and any point of the DNA molecule.
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Figure 4.11: Free energy of a DNA dodecamer as a function of the distance from

an amine functionalized surface with fixed charge density Σ = 0.15 |e| nm−2,

calculated using DFT. The two panels refer to monovalent (top) and divalent

(bottom) ions. The four curves in each panel refer to different concentrations

in the solution: 0.1 M (black), 0.2 M (red), 0.3 M (green), 0.4 M (blue).
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Figure 4.12: Free energy of a DNA dodecamer as a function of the distance from

an amine functionalized surface with fixed charge density Σ = 0.314 |e| nm−2,

calculated using DFT. The two panels refer to monovalent (top) and divalent

(bottom) ions. The four curves in each panel refer to different concentrations

in the solution: 0.1 M (black), 0.2 M (red), 0.3 M (green), 0.4 M (blue).

At the lower pH, that is when the charge density on the functionalized

surface is higher (see Fig. 4.10), the free-energy profiles have a well defined

and deep minimum, meaning that the DNA is very likely to be adsorbed

under these conditions. We recall that at room temperature kBT = 2.5 kJ

mol−1, and therefore negligible when compared to the depth of the well.

When passing from a 0.1 M solution of monovalent ions to a 0.4 M solution

of divalent ions the free energy of adsorption can be reduced 9-fold. When

the pH increases, or equivalently the charge density on the functionalized
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surface decreases, the free-energy profiles still show a well defined minimum

close to the surface, but the values of the free energy at this minimum is

higher than in the previous case; that is, the depth of the well is smaller.

The reduction of the well’s depth when the ionic concentration is in-

creased indicates that the dissolved ions are able to screen the electrostatic

interaction between the DNA and the surface. Smaller charge densities on

the surface have not been studied because the pH needed to produce these

states would be so high (see Fig. 4.10) as to result in the denaturation of

DNA.

These calculations indicate that divalent ions can be very effective in

screening the electrostatic interaction. For the same charge density, namely

the molar concentration times the ionic-charge, the adsorption free-energy in

the presence of divalent ions is significantly smaller than when monovalent

ions are present. This can be seen, in both Fig. 4.11 and Fig. 4.12, by

comparing the curves corresponding to 0.1 M and 0.2 M of divalent ions

(bottom panels) with, respectively, the curves corresponding to 0.2 M and

0.4 M for monovalent ions (top panels).

To investigate more in detail the influence of charge screening on the ad-

sorption free-energy, the ionic distributions have been computed as a func-

tion of the concentration for a fixed value of the charge on the adsorbing

surface (Fig. 4.13 and Fig. 4.14). One sees that the negative-ion density

is larger close to the positively charged surface, as expected, and its peak

value increases with increasing ionic concentration. As a consequence, the

DNA-surface electrostatic interaction is progressively screened, resulting in

a smaller adsorption free-energy. A complementary picture is obtained by

analyzing the distribution of positive ions, as shown in Fig. 4.14. The posi-

tive ions are most likely found around the negatively charged DNA molecule,

with a density increasing with the salt concentration, thus contributing to

the screening of the DNA-surface interactions.
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Figure 4.13: Negative-ion densities from classical DFT calculations with DNA-

surface distance fixed to 0.7 nm and immersed in a solution of divalent ions and

with a surface charge of 0.314 |e| nm−2. Top panel: two-dimensional cut at a

concentration of 0.1 M. The axis of the molecule and the funcionalized surface

are perpendicular to the figure. Figures on the axes are given in nm; horizontal

axis, distance from the functionalized surface; vertical axis, distance along the

same surface. The colour scale represents the variation of the charge density in

arbitrary units. Bottom panel: integrated density as a function of the distance

from the surface. The curves correspond to increasing concentrations from 0.1

to 0.6 M, going from the bottom to the top.
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Figure 4.14: Positive-ion densities from classical DFT calculations with the

DNA-surface distance fixed at 0.7 nm, immersed in a solution of divalent ions,

and with a surface charge of 0.314 |e| nm−2. Top panel: two-dimensional cut

at a concentration of 0.1 M. Figures on the axes are given in nm; horizontal

axis, distance from the functionalized surface; vertical axis, distance along the

same surface. The colour scale represents the variation of the charge density in

arbitrary units. Bottom panel: integrated density as a function of the distance

from the surface. The curves correspond to increasing concentrations from 0.1

to 0.6 M, going from the bottom to the top.
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4.3 Molecular dynamics and umbrella sampling

calculations

The DFT analysis of the system shows that the presence of dissolved ions

may have a significant impact on the adsorption free-energy of DNA onto

an amine-functionalized surface; nevertheless, one doesn’t observe anything

close to a phenomenon of opposite-charge repulsion, which would allow a

efficient control of adsorption and desorption of DNA by varying the con-

centration of salts.

As a matter of fact, the inherent approximations of the classical DFT

approach (where the effect of the solvent is taken into account only through

an overall dielectric constant) do not allow a description of the desorption

process. To further investigate this matter, we resorted to a fully atomistic

modeling of the DNA and of the surface. In our model the surface is a

(001) surface of crystalline silica, functionalized with APTES molecules. In

Fig. 4.15 we give a simplified picture of our model: the ions that generate

the desired value of the concentration, and the water molecules that fill the

simulation box when the explicit solvent model is used, are not shown. The

silica atoms are fixed throughout all simulations, and act as Lennard-Jones

(LJ) force centers. The LJ parameters for Si and O, that have been taken

from the DREIDING force field [101], are indicated in Tab. 4.2. The APTES

molecules attached to the surface have been described using the GROMOS

force field, with a topology generated using the PRODRG program [102].

Finally, we have considered a Dickerson dodecamer of DNA (the sequence

is CGCGAATTCGCG), described using the AMBER-99 force-field. Cross

LJ interactions between different atoms have been taken into account by the

Lorentz-Berthelot mixing rules and all computations have been performed

with the GROMACS 4.5.3 Molecular Dynamics (MD) package [11].

ε(kJ mol−1) σ(nm)

Si 2.45 0.339

O 1.72 0.263

Table 4.2: The Lennard-Jones parameters given by the DREIDING force field,

used to model the crystalline silica surface.
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Figure 4.15: Atomistic model of the system constituted by DNA and a surface

of crystalline silica functionalized with APTES molecules. When the molecular

dynamics simulation is made using the implicit solvent, the box is filled with ions

up to the desired concentration. Moreover, when the explicit model of water is

used, the box is filled with ions (at the desired concentration) and with water

molecules.

4.3.1 Implicit solvent model

In an initial exploratory set of calculations, we adopted the generalized Born

implicit solvent model (see section 2.9), as implemented in GROMACS. In

this case, one uses simple cut-offs to describe the electrostatic interactions,

and we have set the cut-off radius to be Rcut = 1.5 nm. We have immersed

the system in a continuous medium with relative dielectric constant equal

to that of water. The size of the simulation box was 5× 7× 40 nm, with the

largest dimesion perpendicular to the surface.

We generated the umbrella configurations by a lightly pushing the DNA
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(a) (b)

Figure 4.16: Representation of the atomistic model of the APTES molecule

[panel (a)] and of the DNA dodecamer [panel (b)]. The DNA visualization

displays the backbone (tan), the sugars (cyan) and the bases (blue) of the

sequence.

molecule towards the substrate, starting from a distance d = 6 nm from the

surface. From here on, the distance between the molecule and the surface is

defined as the distance between the respective centers of mass; this distance

is about 2 nm larger than the distance used in the DFT calculation. From

this trajectory we extract a number of configurations uniformly sampling

the distance of DNA from the surface, with an average interval of ∆z = 0.2

nm between positions of the center of mass of the molecule. Starting from

each of these configurations the center of mass of DNA is restrained by a

harmonic potential having an elastic constant k = 1000 kJ mol−1nm−2 and

a new trajectory of 1 ns is generated after 30 ps of equilibration. All of these

trajectories are then used as input of the WHAM free-energy calculation.

As in our atomistic simulations we are obliged to have a neutral sim-

ulation box, to avoid spurious effects due to electrostatic forces we must

first introduce in the box a number of counterions (less than or equal to 22)

equivalent to the sum of the net charges of the DNA molecule (-22 |e|) and
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of the APTES molecules. Secondly, we have to add further ions to simulate

the various ionic concentration of the solution. The number of these addi-

tional ions varies from 0 for the case in which only counterions are present,

to 502 (half positive and half negative) for a 0.3 M solution, to 1002 for a 0.6

M solution. In order to compare free-energy profiles obtained with different

ionic densities, we have to make sure that the same number of particles are

present in the simulation box, independently of the ionic strength of the

solution. Otherwise, the free energy of the system would have depended

on the number of ions present, due to the different collision rates between

ions and DNA in the various cases. This in turn would have made a direct

comparison between different conditions quite difficult. To overcome this

problem, we added to the system composed by the DNA dodecamer and

the functionalized surface a fixed number of neutral atoms. In simulating

different ion concentrations, we simply endowed an appropriate fraction of

these atoms with the proper charge. In this way, we achieved a different

ionic concentration, but not a different collision rate, as the only difference

between the various states. Notice, however, that in this case we are not im-

plementing the ionic concentration adopted in the DFT simulations, as we

introduce real ions: in the atomistic case the ionic concentration is defined

as the average density of ions in the simulation box and not, as in the case

of DFT calculations, as the boundary condition to be fulfilled far from the

adsorbing surface.

The PMF profiles calculated by the WHAM algorithm (see section 3.6.2)

are shown in Fig. 4.17 for the case of the Dickerson dodecamer. The general

features observed in the DFT analysis are reproduced here. The absolute

value of the free energy is reduced when the concentration of dissolved ions

is increased, and the interaction between the DNA and the surface becomes

quite small a few nanometers away from the surface. Although one would

not expect the actual values of the adsorption free energies to be comparable

between the continuum (DFT) and the atomistic model, given the different

approximations adopted in the two cases, we notice that there are some

common features. In the case of monovalent ions and with a surface charge

density of Σ = 0.314 nm−2 the minimum of the free energy and its position

are similar at 0.3 M [see Fig. 4.12 and Fig. 4.17 (top panel)]; the value at

0.6 M of the free energy has not been calculated with the DFT method, but

its position in Fig. 4.12 (top panel) can be inferred to be quite similar to
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(a) Black: counterions only; green: 0.3 M of monovalent ions; red: 0.6 M

of monovalent ions.

(b) Black: counterions only; green: 0.3 M of divalent ions; red: 0.6 M of

divalent ions.

Figure 4.17: Free energy profiles for the adsorption of the Dickerson dodecamer

on an APTES-functionalized silica surface with average surface density of Σ =

0.314 nm−2, as a function of the distance between the center-of-mass of the

DNA molecule and the center-of-mass of the surface. The uncertainties of the

free energy have been estimated using the bootstrap technique [sec. (3.6.2)].
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the one that can be seen in Fig. 4.17 (top panel). This similarity of features

doesn’t hold for the divalent ions. The comparison between experimental

results, DFT calculation, and MD simulation is in the section (4.4).

Figure 4.18: Free energy profiles for the adsorption of the antiDickerson dode-

camer (see the text for its definition) on an APTES-functionalized silica surface

with average surface density of Σ = 0.314 nm−2, as a function of the distance

between the center-of-mass of the DNA molecule and the surface. The curves

are: black: counterions only; red: 0.6 M of monovalent ions; green: 0.6 M of

divalent ions. The uncertainties of the free energy have been estimated using

the bootstrap technique [sec. (3.6.2)].

We have also investigated the dependence of the adsorption free energy

on the base-sequence of the DNA. Visual inspection of the MD trajecto-

ries indicates that the Dickerson dodecamer interacting with the APTES-

functionalized surface shows a pronounced tendency to form hydrogen bonds

between the terminal bases (cytosine and guanine) and the -NH+ groups on

the surface. Since guanine and cytosine are characterized by the presence

of three hydrogen bonds, we investigated whether substituting them with

adenine and thymine would have an impact on the value of the adsorption

free energy. To this end, we consider the anti-Dickerson dodecamer, which

we define as a DNA oligomer whose sequence is ATATCCGGATAT, that is

complementary to that of the Dickerson dodecamer. This oligomer exposes
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only adenine and thymine at both ending points, and can form only four

hydrogen bonds with the surface, instead of the six that are possible when

cytosine or guanine are exposed. The results for the free-energy calculations

are shown in Fig. 4.18. We notice that the absolute value of the free-energy

of adsorption is smaller than in the Dickerson dodecamer case. This is due

to the different number of hydrogen bonds between the terminal DNA pairs

and the charged groups on the APTES molecules, as shown in Fig. 4.19;

there we give the running average of the number of hydrogen bonds for

the Dickerson and anti-Dickerson dodecamers, in the molecular dynamics

simulation. The analysis of these MD trajectories shows that an adsorbed

Dickerson dodecamer forms 7±2 hydrogen bonds with the surface, whereas

an anti-Dickerson dodecamer forms 4±2 hydrogen bonds, in presence of a

0.6 M solution of divalent ions. We notice that the adsorption free-energy

of an anti-Dickerson dodecamer under these conditions is ∼ 10 kJ mol−1 ,

which is comparable to the value of the Boltzmann factor at room temper-

ature, i.e. kBT ∼ 2.478 kJ mol−1. This makes a desorption of the molecule

quite likely.

(a) Dickerson (b) anti-Dickerson

Figure 4.19: Running average of the number of hydrogen-bonds in the molec-

ular dynamics simulation. The amplitude of the sliding interval is of 100 ps.

The analysis of the MD trajectories shows that the origin of the variation

of the free energy of adsorption as a function of the ion density is the different



4.3. Molecular dynamics and umbrella sampling calculations 87

(a) (b)

Figure 4.20: DNA and monovalent ions mass densities for a Dickerson dode-

camer constrained to reside far [panel (a)] and close [panel (b)] to the function-

alized surface. Black line: DNA; blue line: monovalent cations (+) ; green line:

monovalent anions (-). The solution is 0.6 M.

screening of the electrostatic interaction. We report in Fig. 4.20 the densities

of the monovalent ions, when the DNA dodecamer is constrained to be either

far or close to the surface. In both cases the negative ions accumulate close

to the positively charged surface, in agreement with the results obtained

using classical DFT calculations (compare with Fig. 4.13). At variance

with the DFT results, one sees that in the atomistic model the positively

charged ions also display a tendency to condensate on the functionalized

surface. The density profiles for divalent ions, reported in Fig. 4.21, show a

qualitatively similar picture. Both ionic species are adsorbed on the surface.

However, there are a two important differences with the monovalent case

worth pointing out.

First, the charge density of the negative divalent ions close to the surface

is about two times higher than the density observed in the monovalent case

(Fig. 4.21(a) and (Fig. 4.20(a))). This shows that the electrostatic screen-

ing is more effective with multivalent ions, as already evidenced from the

discussion of classical DFT results, and from the analysis of the free energy

profiles of the atomistic model.
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(a) (b)

Figure 4.21: DNA and divalent ions mass densities for a Dickerson dodecamer

constrained to reside far [panel (a)] and close [panel (b)] to the functionalized

surface. Black line: DNA; blue line: divalent cations (+); green line: divalent

anions (-). The solution is 0.6 M.

Secondly, the ionic charge density close to the surface shows a signifi-

cantly layered structure. When the DNA is far from the surface, one clearly

sees the presence of three layers of divalent ions (Fig. 4.21(a)). When the

DNA is adsorbed on the surface, this layered structure remains, although

the number of measurable layers changes from three to two (Fig. 4.21(b)).

The presence of these layers show that there are strong correlations between

the ionic positions. We notice that the classical DFT model does not give

an indication of this layering structure (see Fig. 4.13). This can be due to

the inherent approximations used in developing the classical DFT model:

despite the fact that the functional used in the calculation has been devel-

oped to include ion-ion correlations, the MD results show that it does not

succeed in describing them to full extent.

Another important difference between the results obtained using the

DFT approach and the atomistic simulation concerns the detail of the ionic

distribution on the surface. In the continuum DFT approach the negative

ions tend to accumulate close to the positively charged surface, whereas the

positive ions are repelled from it, as can be seen from Figures 4.13 and
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(a) (b)

Figure 4.22: Radial distribution functions of the monovalent [panel (a)] and

divalent [panel (b)] ions around the charged group centered on -NH+
3 in the

APTES molecule, with a 0.6 M concentration of ions. Blue: cations (+);

green: anions (-).

4.14, respectively. On the other hand, the density plots coming from the

atomistic simulation, reported in Figures 4.20 and 4.21, show that both the

positive and negative ions tend to accumulate close to the positive surface.

The origin of this difference lies in the fact that in the atomistic simulation

the negative ions tend to accumulate close to the positive APTES, therefore

screening their electrostatic interaction, so that the positive ions can also

be adsorbed on the surface. To show this, we report in Figure 4.22 the

radial distribution function of the dissolved ions around the -NH+
3 of the

APTES molecules, in the case of monovalent and divalent dissolved salts

with a concentration of 0.6 M. The radial distribution function gAB(r) is

defined in such a way that ρB gAB(r) is the actual density of the particles

of species B at a distance r from species A, where ρB is the average density

of species B within the simulation box.

We see that generally the anions are found closer to the positive APTES

group than the cations, thereby screening their electrostatic interaction. In

the case of divalent ions, the radial distribution functions show well defined

layered ionic structures. Inspection of the MD trajectories shows that in
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this case the ions tend to crystallize on the surface, occupying well defined

positions (within the duration of our simulations). On the other hand, when

only monovalent ions are present, they are seen to diffuse more easily along

the surface while adsorbed on it.

However, comparison with explicit water calculations showed that the

approximations involved in the implicit solvent model are too drastic to

study DNA adsorption, and we therefore resorted in our calculations to

fully explicit water molecules.

4.3.2 Explicit solvent model

The approximations involved in the implicit solvent model appear to be too

drastic to study DNA adsorption under the most general conditions: while

it reproduces some effects, the model does not yield a repulsion between the

functionalized surface and the DNA, which has been observed, even though

not in the same conditions as in the present work [92]. Consequently, as the

results obtained with this model cannot be conclusive, we have extended our

simulation by including explicit water molecules, which we represent via the

widely used SPC/E model. In this way the number of degrees of freedom of

the system increases considerably, and longer trajectories are necessary to

calculate the free-energy profiles with umbrella sampling.

We have generated umbrella configurations pulling the DNA molecule

using a quite strong harmonic potential: the elastic constant value is in

the range k ∼ 200 − 500 kJ mol−1nm−2, depending on the conditions of

the system (molarity of the solution and charge on the surface). When wa-

ter molecules are considered explicitly, we can use a stronger force costant

than in the case of implicit solvent, without having a blow-up or a de-

formation of the DNA; this has been checked by visualizing the trajecto-

ries and computing the root mean square displacement. As in the case of

implicit water simulation, we have extracted from this pulled trajectory a

number of configurations, uniformly sampling the distance between DNA

and the surface at intervals of ∆z = 0.2 nm. To restrain the center-of-

mass of DNA we have used a harmonic potential having an elastic constant

k = 1000 kJ mol−1nm−2. At variance with the implicit solvent simulations,

in this case we have generated the trajectories of 5 ns after 1 ns of equili-

bration, and we have treated the electrostatic force with the Reaction-Field

method, which is a compromise between using the Particle Mesh Ewald
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(a) Concentration: 0.1 M. Black: Σ = 0.1 |e| nm−2; red: Σ = 0.314 |e|
nm−2; green: Σ = 0.4 |e| nm−2.

(b) Concentration: 0.3 M. Green: Σ = 0.2 |e| nm−2, red: Σ = 0.314 |e|
nm−2.

Figure 4.23: Free energy profiles for the adsorption of the Dickerson dodecamer

on an APTES-functionalized silica surface, as a function of the average surface

charge density Σ and for constant molar concentration of dissolved monova-

lent ions. The uncertainties of the free energy have been estimated using the

bootstrap technique (sec. 3.6.2).
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method or a cut-off in the whole box [103].

We report in Fig. 4.23 the free-energy profiles as a function of the

distance between the surface and the DNA molecule, calculated analyzing

the umbrella sampling trajectories with the WHAM method. Notice that in

this and in the following figure the free energy curves are drawn by assigning

the zero value at the smallest distance between surface and DNA molecule.

This is due to the fact that, at variance with the calculations in implicit

water, this simulation with explicit water molecules did not allow to reach

the asymptotic behaviour of the free energy far from the surface. Panel (a)

and panel (b) in Fig. 4.23 refer to the Dickerson dodecamer for a fixed value

of monovalent ions concentration, respectively c = 0.1 M and c = 0.3 M,

and for different values of the charge on the surface. As expected, the

interactions between DNA and the functionalized surface become stronger

increasing the charge on the surface; in our model a stronger charge on the

surface is equivalently to a lower pH value. On the other hand, a higher

molarity produces a stronger shielding between surface and DNA molecule,

and thus a smaller interaction free energy. This, which is also an expected

effect, can be see by a comparison between the red curves of the two panels,

even though a conclusive comparison would require matching the asymptotic

behaviour of the two curves at large distances.

In the simulation with explicit water molecules, an important feature

we can observe is the complete detachment of DNA from the surface. This

effect cannot be observed using the DFT calculations, which always produce

one free energy minimum near the substrate. On the other hand the implicit

water model not only does not allow a complete detachment, but drives the

molecule towards the substrate when the latter is not shielded by ions; this

might be due to the neglect of entropic effects that would hinder the docking

in the real case.

We have also performed MD simulations varying the concentration of

the dissolved ions, while keeping a constant value of the surface charge.

The results (see Fig. 4.24) show that the interaction between DNA and

the surface can indeed be changed by varying the concentration of dissolved

ions: keeping a costant surface charge we see that the adsorption free energy

can be reduced by increasing the concentration of dissolved ions. This result

is in qualitative agreement with the results obtained with DFT and implicit

water simulation.
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Figure 4.24: Free energy profiles for the adsorption of the Dickerson dodecamer

on an APTES-functionalized silica surface with average surface density of Σ =

0.314 |e| nm−2. The curves refer to different monovalent ion concentrations.

Black: 0.1 M, red: 0.2 M. The uncertainties of the free energy have been

estimated using the bootstrap technique (sec. 3.6.2).

The analysis of the MD trajectories shows that the origin of the varia-

tion of the free energy of adsorption as a function of the ion density is the

different screening of the electrostatic interactions. As an example, in Fig.

4.25 we represent the charge density of monovalent ions in the case of fixed

concentration of the solution 0.1 M and varying charge on the surface. As

in the implicit water simulation, the negative ions are accumulated near the

positively charged surface and their density is dependent on the charge of

the surface (see Fig. 4.25(a)). The positive ions also are near the surface

(see Fig. 4.25(b)) because they are clustered around the negative ones (see

Fig. 4.26), but in this case the density is not strongly dependent on the

charge on the surface.
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(a) Chlorine (-) (b) Sodium (+)

Figure 4.25: The density of the ions is calculated at fixed concentration 0.1 M,

varying the charge on the surface. Dashed line: Σ = 0.314 |e| nm−2; continuous

line: Σ = 0.4 |e| nm−2. The DNA molecule is more than 10 nm far from the

surface.

Figure 4.26: Radial distribution function of Cl− ions around the Na+ ions. The

first maximum is about at ∼ 0.3 nm; the second one is at ∼ 0.5 nm.
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(a) Chlorine (-) (b) Sodium (+)

Figure 4.27: Cumulative radial distribution of dissolved ions relative to the

-NH+
3 moiety of APTES when the DNA is close to the surface, for a fixed

concentration 0.1M of dissolved ions. Panel (a): chlorine (-); panel (b): sodium

(+). The dashed and solid lines correspond to a surface charge of Σ = 0.1 |e|
nm−2 and Σ = 0.4 |e| nm−2, respectively.

In Fig. 4.27 we also show the cumulative radial distribution function

of the dissolved ions, relative to the positive charge on the APTES moiety,

for a fixed value of the concentration and for two surface charges. In the

case of the smaller surface charge, the DNA is not adsorbed, whereas it

is adsorbed on the surface for larger charges (Fig. 4.23). We notice that

when the surface charge is increased the probability of finding negative ions

close to the surface also increases. This enhanced distribution of negative

charge screens the interaction between the DNA and the surface, but is

not sufficient to compensate for the stronger attraction between surface and

DNA molecule, and thus does not produce desorption.

The screening effect increases with the charge on the surface but also

with the concentration of ions in solution (see Fig. 4.28): the greater the

concentration the higher the screening effect between DNA and the func-

tionalized surface.
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(a) Chlorine (-) (b) Sodium (+)

Figure 4.28: The density of the ions is calculated at fixed charge on the surface

Σ = 0.314 |e| nm−2 and varying the concentration of ions in solution. Circles:

0.1 M; triangle up: 0.2 M; continuous: 0.3 M. The DNA molecule is far from

the surface.
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4.3.3 The experiment by the BioSInt group

(a) (b)

(c)

Figure 4.29: Schematic representation of the experimental setup. Panel (a):

optical measurement of the deflection of the cantilever. Panel (b): microscopic

view of the interacting molecular structures (DNA and APTES) at close dis-

tance. Panel (c): distance dependence of the force exerted on the cantilever

when it approaches the surface (red curve) and when it is pulled away from it

(blue curve).

The AFM force-distance experiments has been performed in liquid en-

vironment using AFM tips functionalized with thiolated double-stranded

DNAs (dsDNAs) and coated mica surfaces. The coating has been obtained

by reaction of aminopropyltrimethoxysilane (APTMS) with the surface. Ad-

hesion forces between the tips and APTMS functionalized mica surfaces have

been recorded at varying pH, monitoring the AFM cantilever deflection while
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pH buffer

4.5 acetate

5.6 acetate

6.5 phosphate

7 phosphate

9.2 Tris-HCl

10.5 carbonate/bicarbonate

Table 4.3: Buffers used in force distance AFM experiments.

it retracts from the surface.

A Cypher AFM system (Asylum Research, SantaBarbara, CA, USA)

has been used to record force-distance data, utilizing a flexure scanner sys-

tem in closed-loop configuration, with a range of 40 × 40 × 5 µm3. Silicon

Nitride gold coated cantilevers from Olympus Corporation (TR 400 PB)

have been used either without functionalization or after depositing a DNA

layer, using 21 base long dsDNAs sequences conjugated with a cyclic dithiol

group (DTPA: dithiolphosphoramidite). Before use cantilevers were cleaned

by an Argon plasma treatment, using a plasma cleaner PDC-32G (Harrick

Scientific Corporation, New York USA) at 40 Watt for 1 minute. The ds-

DNA solution used for cantilever functionalization has been obtained mixing

two complementary strands (5’-DTPA-TAAGTTTGAATGTCATTTCTT-

3’ carrying the thiol modification at its 5’ end and its unmodified comple-

mentary sequence), heating up the solution to 95◦ C for 1 minute and then

cooling down to allow sequence hybridization. Functionalized cantilevers

were obtained by immersion in 1 µM dsDNAs solution in potassium phos-

phate buffer (1 M, pH =6.9) for 10 minutes and then extensively rinsed with

potassium phosphate buffer.

Functionalized mica surfaces have been obtained immersing them in a

APTMS 0.1% water solution for 10 minutes and then rinsing with ultrapure

water to remove APTMS in excess. Force curves were acquired at 80 nm/sec

using a droplet cantilever holder. The pH of the solution was varied from 4.5

to 10.5 using 20 mM ionic strength buffers, as reported in Table 4.3. Data

acquisition and analysis have been performed with Igor 6.2 (Wavemetrics,

Oregon, USA) Asylum Research routines.

At least two maps in different sample places, each containing 400 force

curves, were acquired at every pH, typically over areas of 500 × 500 nm2.
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Finally force histograms have been computed from every map, using a bin

width of 3 pN.

First, the roughness of APTMS-mica surfaces has beeen characterized

with AFM measurements, obtaining a roughness RMS value of 0.14±0.04 nm

over areas of 500 × 500 nm2, to be compared with the value of 0.04 ±
0.01 nm that characterizes freshly cleaved mica surfaces. The morphology

of APTMS-mica samples reveals that the treated surfaces are very uniform,

where small features characterized by peaks with a height of 0.3 nm and

an average distance of 10 nm are visible. Next, force-distance data have

been acquired using these APTMS-mica substrates in different buffer condi-

tions. When increasing the pH, the main expected effect is a corresponding

decrease of the average charge of the nitrogen group of APTMS molecules

(deprotonation) and thus of the interaction force. We report in Fig. 4.30

some typical examples of the adhesion force histograms that can be obtained

with DNA tips (panel A) and with neutral gold tips (panel B) at pH 9.2 and

4.5. In panel C of the same figure we report the value of the average force

FA, computed as FA =
∑

i FiNi/
∑

iNi, at different pH values when using

gold coated tips (open triangles) and DNA tips (circles), where Ni represents

the number of events characterized by an adhesion force Fi, and the error

bar on FA represents the distribution of events. It has to be noticed that

the experiment was not designed to measure negative forces, which would

arise in the case of desorption.

While in both cases a dependence of the average force on pH is detected,

this trend is greatly enhanced when a DNA layer is added to the tip. At pH

values greater than 9 the average force results to be around 30− 40 pN for

both kinds of tip, while decreasing pH to 4.5 the average force rises to 200

pN using gold tips, and to over 700 pN with DNA tips.

In the same graph, a pH titration curve (dashed line) has been reported,

fitting the experimental data obtained with DNA tips with the formula

F (pK;A,B) = A

(
1− 10−pK · 10pH

1 + 10−pK · 10pH

)
+B, (4.4)

assuming that the main effect of the pH increase is the deprotonation of

APTMS groups. In equation (4.4), A, B and pK are the fitting parameters.

The experimental trend of the DNA-APTMS interaction is well described

by this fitting function, that gives a pK value (the definition of which is given

in eq. 2.25) of 6.7 for APTMS groups on mica, similar to that found in [104]
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Figure 4.30: In Panels A and B some typical single force histograms are re-

ported, obtained respectively with DNA tips at pH 4.5 and 9.2 and with gold

tips at the same pH values. In panel C the pH dependence of the average

adhesion force measured with DNA tips (circles) and gold tips (triangles), and

the pH titration curve (dashed line) is shown. The average force is computed

acquiring at least 800 force curves over two different sample areas of 500x500

nm2.

for APTES on silicon substrates. These pK values represent a decrease of

several units with respect to the value typical of free organic primary amine

(∼ 10− 11) at the same ionic concentration, and produce a decrease of the

corresponding pH by several units.

These experimental results indicate that the force that drives the adhe-

sion of DNAs on such functionalized surfaces has an important electrostatic

contribution. Recently published results of experiments on DNA adhesion

and release from APTES functionalized surfaces and microchip devices [92]

are consistent with such interpretation.

4.4 Discussion and conclusions

In this part of thesis we have presented the results of computer simulations

aimed at investigating the principal factors involved in the adsorption of
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DNA oligomers on surfaces functionalized with positively charged groups.

In particular, we have investigated the effect of the concentration and type of

dissolved ions, and of the pH of the solution, on the free energy of adsorption.

We showed that a continuum model based on the classical DFT treat-

ment of the electrostatic interaction is able to capture qualitatively the main

features of the process. In a solution of monovalent ions, the electrostatic

interaction between the surface and a negatively charged DNA oligomer is

quite strong, and one can expect a significant adsorption to take place. In the

presence of an increasing concentration of divalent ions the screening of the

electrostatic interaction becomes stronger, and the free energy of adsorption

is progressively reduced. However, in none of the cases investigated by DFT

one sees an inversion of the electrostatic interaction between the surface and

the DNA (opposite charge repulsion), which could yield a desorption.

The simulation with the atomistic model based on the implicit solvent

approach partially confirmed these results: the free energy profiles of ad-

sorption show a more effective screening of the electrostatic interaction by

increasing the salt concentration, with the divalent ions being considerably

more effective than the monovalent ones. The atomistic description of the

latter model allowed us to investigate in some detail the ion distribution in

the system. We showed that, at variance with the indications coming from

the classical DFT model, both positive and negative ions are adsorbed on

the surface. As it might have been expected, the negative ions screen the

charge of the functionalizing amine groups allowing adsorption of the posi-

tive ones. In the case of divalent ions we found evidence of a layered ionic

distribution near the surface, especially at the highest concentrations that

have been considered.

We want to point out another interesting result obtained with the atom-

istic approach: we were able to establish that the sequence of bases of a

DNA oligomer influences the free energy of adsorption. In particular, the

terminal bases are relevant because of their possibility of forming partial

hydrogen bonds with the charged groups on the functionalized surface. As

a consequence, oligomers with terminal CG pairs have a larger adsorption

free energy than oligomers having a higher terminal density of AT pairs.

Finally, the atomistic simulation using the explicit water model has

shown (see Fig. 4.23(a)) that a desorption of the DNA molecule can in-

deed take place, given the right values of ionic concentration (0.1 M) and
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Figure 4.31: Average number of recorded events of repulsive force between the

functionalized surface and DNA, as function of pH.

charge density on the functionalized surface (sigma = 0.1 e nm−2). Neither

the DFT approximation nor our simulation in implicit water were able to

produce this effect. This is possibly related to entropic effects, that are not

taken into account in the DFT calculation, and only partially accounted for

in the simulation with implicit water. In the latter the DNA molecule is flex-

ible, but the solvent is treated in a mean field approximation, which levels its

microscopic interaction with the DNA oligomers, lowering the fluctuations

and hence the entropy of the system.

Due to the relevance of the desorption phenomenon, also - as explained

at the beginning of the chapter - from the point of view of its application

to the purification process, we have looked for experimental data that could

confirm our findings. We could not find in the literature results obtained

for the same system and/or under the same conditions as ours. The clos-

est results are those of the BioSInt group described before for APTMS.

Looking at Fig. 4.30 one sees that increasing pH values correspond to de-

creasing attraction forces between the functionalized surface and the DNA

molecule. The surface charge density at which we find the desorption cor-

responds to a pH = 7.65. Although occurences of repulsive force between

the functionalized surface and DNA have been recorded (see Fig. 4.31), as

the experimental setup does not allow a measure of negative forces corre-

sponding to the desorption process, a direct comparison with experiment is

not possible. Nevertheless, we have qualitatively checked the reliability of



4.4. Discussion and conclusions 103

our simulation in the following way. The experiment has been performed

at the molarity 0.02 M, which we compare with our lowest, namely 0.1 M.

We have computed average desorption forces deriving two segments of the

black free energy curve of Fig. 4.23(a) as a function of the distance between

DNA molecule and surface: F = −df/dx. The first segment corresponds to

the almost linear decrease between 2 and 3 nm, the second segment corre-

sponds to the almost linear decrease between 4 and 10 nm 4.32(a). In this

way we obtain two limits for the force, which turn out to be, respectively,

−3.0 · 10−10 N and −0.02 · 10−10 N. In order to make a rough comparison

with experiment, we have to infer from Fig. 4.30 (c) the value of the force

that would have been measured at pH = 7.65 if the apparatus had been able

to record negative values. We do this by linearly extrapolating the two ex-

perimental data found just below the desired pH value (Fig. 4.32(b), green

line) which yields a negative force of about −0.5 · 10−10 N (intersection of

the green and of the vertical black lines). Correcting this value to take into

account the contribution to the force due to the pure gold tip (blue line),

one finds a negative force of about −1.2 · 10−10 N. This value falls right in

the middle of the interval between the two limits estimated for the force in

the atomistic simulation; given our interpolation, extrapolation, and further

approximations of our model, this correspondence is surprising and encour-

aging at the same time. It also means that our simulation can be a valid

tool to explore future applications of this phenomenon.
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(a) PMF (b) Experimental result

Figure 4.32: Estimates of the mean desorption force at pH = 7.65. Panel (a)

Maximum (red interpolation) and minimum (blue interpolation) values: see text.

Panel (b) Extrapolation of force values (green line); background contribution of

the gold tip (blue line); intersection at pH = 7.65 (vertical black line).



Chapter 5

Tau, an intrinsically

disordered protein

5.1 Intrinsically disordered proteins

Intrinsically Disordered Proteins (IDPs), or Intrinsically Unstructured Pro-

teins, or Natively Unfolded Proteins, are proteins that in their native state

do not have an average stable structure but fluctuate between many confor-

mations, and thus resemble highly denaturated globular proteins [105, 106];

IDPs are presumed today to constitute up to one fourth of all proteins [105].

Due to their flexibility, and at variance with the well-known lock and key

biomolecular paradigm, they perform tasks that cannot be carried out by

globular proteins [105, 107–110]. In some cases they can switch between

apparently unrelated functions; this ability of IDPs is called moonlighting

[111].

IDPs entail at least an extended disordered region, but can also entail

globular domains alternating with flexible linkers or disordered domains.

These proteins are therefore characterized by different degrees of disorder,

from those formed by globular domains connected by disordered segments

to those totally disordered [105, 106]. Even the latter may entail segments

endowed, albeit temporarily, with secondary structures like α-helices, β-

sheets, or PPII helices [112].

The main functions of IDPs are not structural, but regulatory: con-

trol, modulation, and signalling. Their biological function is characterized

by an interaction energy among residues that is significantly lower than

105
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Figure 5.1: Structure of a healthy neuron. The tau protein, a

microtubule-associated protein, play a large role in microtubule stability.

http://www.highschoolbioethics.org/briefs/nfl.asp

for globular proteins [105, 110]; this favours fast shifts between extended

conformations, that generally accompany the binding to other molecules,

and disordered molten-globule-like conformations. The formation and dis-

solution of bound states is probably faster than in the case of globular

proteins[105, 108].

The biochemical functions of IDPs are related to their structure, which

varies in time. Given the speed at which transitions between confor-

mations are supposed to take place, the simulation of their dynamics

seems to be a promising tool to understand their behaviour. But the

dynamical simulation of an IDP is a computational challenge, because

by definition there are no experimentally determined 3D structures of

the whole molecule, like a protein data bank (pdb) file, from which to

start. In Section 5.3 we describe a procedure to overcome this obstacle.

5.2 The tau protein

The tau protein, one of the largest totally disor-

dered IDPs [107], is involved in the nucleation and

stabilization of the microtubules (MTs) in the ax-
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ons of the neurons (see Fig. 5.1). Stabilization is achieved through the

bonding of the repeats domain (see Tables 5.1 and 5.2) of tau to the α- and

β-tubulines forming the MTs [113].

But the same tau can aggregate in paired helical filaments (PHFs) and

form fibrils which, in their turn, form insoluble tangles as shown in Fig.

5.2 [105–107, 113, 114]. The aggregation of tau proteins prevents them

from carrying on their physiological stabilization role of the MTs and this

pathological deviation from its physiological function - together with other

factors - is at the origin of the development of the Alzheimer disease and of

other neurodegenerative diseases [113].

Figure 5.2: Structure of a diseased neuron. The tau proteins are chemically

altered, forming tangles by coupling with other tau proteins. These altered tau

structures collapse causing microtubules to disintegrate and the cells to die.

http://www.highschoolbioethics.org/briefs/nfl.asp

The process of formation of the PHFs is not entirely known, but

some of its factors and stages have been investigated. A precursor stage

of tau polymerization has been related to specific conformations of the

protein, in which the C terminal is in the neighbourhood of the re-

peats domain that binds to a MT, and the N terminal is folded near

the C terminal. The pathological aggregation in the form of amy-

loids has been attributed to a local transition from the unfolded state

to a β-structure [112, 115–117]. The aggregation process is supposed

to start from a nucleus entailing the VQIVYK motif, a tau segment

with high propensity for a β structure [116], or the VQIINK motif.
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These two hexapeptides are, respectively, at the

beginning of the third and of the second re-

peat [112, 116, 118], and have been identified as

components of steric zippers formed by β-sheets

parallel to the axis of the fibril [117]. Also the

propensity of a polyproline-II motif toward the

formation of β-sheets has been listed among the

possible causes of the aggregation of tau proteins, and hence of the origin of

tau-pathologies [108, 119].

The gyration radius Rg (see eq. (5.1)) of a molecule measures the average

size of its overall conformation. The Rg of tau has been measured by Small-

Angle X-ray Scattering (SAXS), and on average Rg = 6.6 nm [109]. This

value may be compared to that of α-amylase 1, a globular protein that has

448 residues and a gyration radius Rg = 2.3 nm. If tau were a globular

protein with a spherical shape, its volume of 56 nm3 would imply a radius

of 2.4 nm. The larger Rg of tau is due to its non-globular structure, and its

Rg is about that of a random coil of a polypeptide with the same number

of residues (6.9 nm [109]). Nevertheless, when Rg is measured in partial

domains of tau that entail the repeats, its value turns out to be larger

than the value estimated for a random coil; this hints at a propensity of

these domains to acquire an extended structure [109, 120]. Because these

structures would very likely be transient, there is a definite interest in a

dynamical simulation of tau, in order to gather information on the existence

and probability of segments of tau endowed with a secondary structure.

Tau exists in several isoforms [121]; we have

chosen to study with MD simulation its htau40 iso-

form which is found in the human central nervous

system; it has 441 residues (see Tab. 5.1) and a

molecular weight of 45.85 kDa [114]. As said be-

fore, the dynamical simulation of an IDP is chal-

lenging because there are no available structures of

the whole molecule from which to start. Up till

now crystallography has yielded only the structure

of short segments of tau in the following cases: as

1For α-amylase the pdb entry is 1AQH.
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Figure 5.3: Tau protein and K18. (A) Position of the K18 construct with

respect to the htau40 isoform of tau. Tau contains four pseudorepeats (R1-R4)

involved in binding microtubules and forming the core of PHFs. (B) Primary

sequence of the K18 construct, showing the position of repeats 1-4, containing

30-31 residues each [112].

a free molecule 2, or complexed with another struc-

ture [110], or in a docking process [122]. There are no available structures

of the whole free tau.

A static simulation has been previously used to study the 3D struc-

ture of the K18 construct, a region of tau containing the four repeats, as

shown in Fig. 5.3; this region of about 120 residues is known to be involved

in the binding to microtubules, but also in the formation of PHFs. This

simulation has been done using the Flexible-Meccano method, a statisti-

cal sampling from structural databases of folded proteins, combined with a

biased-potential dynamical simulation, to produce thousands of conformers;

the ensemble is then filtered by an Ensemble Optimization Method (EOM)

that uses NMR experimental data [109, 112]. A series of static structures of

the whole tau has been created using the XPLOR-NIH package (NMR molec-

ular structure determination package); they correspond to energy minima

complying with structural energy data from steric repulsion, bond lengths,

bond angles, and dihedral angles [118]. An extended dynamical simulation

of tau in water has been performed only for a segment of 19 residues, as-

suming an α-helix structure of the segment as the initial configuration of

2For the hexapeptide VQIVYK the pdb entries are 2ON9 and 3FQP.
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10 20 30 40 50 60

‖ ‖ ‖ ‖ ‖ ‖
MAEPRQEFEV MEDHAGTYGL GDRKDQGGYT MHQDQEGDTD AGLKESPLQT PTEDGSEEPG - 60

SETSDAKSTP TAEDVTAPLV DEGAPGKQAA AQPHTEIPEG TTAEEAGIGD TPSLEDEAAG - 120

HVTQARMVSK SKDGTGSDDK KAKGADGKTK IATPRGAAPP GQKGQANATR IPAKTPPAPK - 180

TPPSSGEPPK SGDRSGYSSP GSPGTPGSRS RTPSLPTPPT REPKKVAVVR TPPKSPSSAK - 240

SRLQTAPVPM PDLKNVKSKI GSTENLKHQP GGGKVQIINK KLDLSNVQSK CGSKDNIKHV - 300

PGGGSVQIVY KPVDLSKVTS KCGSLGNIHH KPGGGQVEVK SEKLDFKDRV QSKIGSLDNI - 360

THVPGGGNKK IETHKLTFRE NAKAKTDHGA EIVYKSPVVS GDTSPRHLSN VSSTGSIDMV - 420

DSPQLATLAD EVSASLAKQG L

Table 5.1: Primary sequence of htau40.

the simulation, and studying its stability [123].

5.3 The dynamical simulation

In order to produce a generic 3D structure of the whole htau40 to start

a Molecular Dynamics (MD) simulation, we have implemented a protocol

which requires only some hundred picoseconds of dynamical simulation [124].

Before describing our method we want to highlight a second problem in the

simulation of an IDP, namely the choice of a suitable force field. Molecular

mechanics force fields have been parametrized on folded protein structures,

and therefore may not correctly reproduce the structure of disordered pro-

teins. On the other hand, there is no alternative to the use of one of the

known force fields, because an ab initio calculation of a large molecule like

tau is unfeasible. For this simulation we have chosen the ffG53a6 force field,

implemented in the GROMACS package. The simulation has been carried

out at neutral pH (pH = 7), close the physiological value (that is in the 7.2

- 7.4 range). Accordingly, amino acids were set to their default protonation

states at pH = 7, i.e., with Lys, Arg carrying a +1 and Glu, Asp a −1 net

charge.

In order to produce a generic 3D structure of the tau protein we start

from its primary sequence of aminoacids, given in Tab. 5.1. The correspon-

dence between the amino acids (AA) symbols and the relevant chemical

structures is given in Fig. 5.4.
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(a) Non Polar Neutral (b) Polar Neutral

(c) Polar Acid (d) Polar Basic

Figure 5.4: Structure of 20 amino acids (AA) en-

coded by the universal genetic code. The structures

shown have a group specific to each AA, generally

referred to as R group. The carbon atom next to

the carboxyl group (−COOH) is called the α-carbon

(Cα). The amino group (−NH2) is attached to the Cα. In all structure the R

group appear on the left of the (−NH2).
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We use this sequence as an input of the Visual Molecular Dynamics

(VMD) program [12]; this program lines up the amino acids following their

primary sequence, departing from a straight line only when obliged by stere-

ochemical incompatibility of neighbouring amino acids. The output of VMD

is thus a 3D sequence of straight segments of amino acids that bears little

resemblance to a real protein, as shown in Fig. 5.5.

Figure 5.5: Initial shape of tau protein, as produced by the VMD program from

the primary sequence.

When the MD simulation program GROMACS [125] is used to evolve

this structure in vacuo, the molecule’s configuration collapses in a short

time. This can be monitored by measuring the gyration radius

Rg =

(∑
i

r2imi/
∑
i

mi

)1/2

(5.1)

where ri are the positions of the atoms with respect to the centre of mass

of the molecule, and mi are their masses; Rg measures the overall size of

a molecule. The curve #1 in Fig. 5.6 shows that a collapse of Rg, from a

value of 10.4 nm to a value of 2.5 nm, takes place in about 100 ps, and yields

a very compact and entangled configuration (Fig. 5.7). This fast evolution

of the molecule is due to the absence of the solvent, which would prevent

the collapse and the formation of a high number of intramolecular H-bonds

that can be seen in Fig. 5.8 (curve #1).



5.3. The dynamical simulation 113

Figure 5.6: Evolution of the radius of gyration at T = 300 K in the first 200

ps, starting from the configuration of Fig. 5.5. The continuous black line (#1)

shows the rapid collapse of the protein in vacuo. The dashed green line (#2)

shows the evolution after addition of water molecules to the initial configuration

of tau. The dashed red line (#3) shows the evolution after addition of water

molecules to the conformation extracted at t = 56 ps and Rg = 6.57 nm.

Figure 5.7: Collapsed shape of the tau protein after a 100 ps evolution in vacuo

at T = 300 K. Two short β-sheets (yellow) and some short 3-helices (blue) are

highlighted.
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Figure 5.8: Time evolution of the number of intramolecular H-bonds at T =

300 K, first 200 ps. The black line (#1) shows their rapid increase during

the evolution in vacuo. The green line (#2) shows their slow change if water

molecules are added to the initial configuration of tau. The red line (#3) shows

a sharp drop when water molecules are added to the conformation extracted at

t = 56 ps, and the stable subsequent evolution.
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A straightforward way of letting the initial configuration evolve towards

a native-like state of the molecule is to embed its initial structure in the

solvent. The configuration produced by VMD from the primary sequence is

very extended, and the simulation box has to be accordingly large. A totally

disordered protein like the tau can be considered to be approximately a ran-

dom coil, fluctuating in an ensemble of alternative conformations. Therefore,

in a MD simulation of an IDP, one has to pay attention to the flexibility of

the molecular structure: when a periodic box is used, its size must be large

enough to avoid that during the dynamics the protein interacts with one of

its periodic images, if it extends its shape to the region bordering the walls

of the box. A large box entails a very large number of solvent molecules;

this is a relevant obstacle for the workability of a simulation. Using the

box-to-molecule size relation usually adopted in this kind of MD simulation,

this means in the present case that one has to use a box filled with about

1.5×106 water molecules. Moreover, the evolution of the molecule from the

initial configuration is very slow, as shown by curves #2 in Fig. 5.6 and in

Fig. 5.8. Taking into account the experimental value for the average gyra-

tion radius Rg = 6.57 nm [109], one can foresee for the overall configuration

of the molecule and for Rg an equilibration time in excess of several tens of

ns. All in all, this would be a computationally very expensive procedure.

We propose an alternative and efficient way of creating a 3D structure

of the protein. We start with the atomic positions produced by the VMD

program, let them evolve dynamically in vacuo, and stop the evolution when

the configuration has reached a value of the gyration radius equal to the

experimental average Rg = 6.57 nm. The structure obtained in this way is

then embedded in water, where the simulation box and hence the number of

water molecules is significantly reduced (to about 1/3) with respect to the

initial extended state. After a short minimization of the total energy, the

system (tau + water molecules) is ready to start a dynamical evolution in

a region of the phase space corresponding to realistic conformations of the

molecule. The stabilizing effect of the introduction of explicit water on the

dynamical evolution of the protein is a sudden interruption of the collapse of

the molecule, and the beginning of a slow fluctuation of the structure; this

can be seen in Fig. 5.6, curve #3. As for the intramolecular H-bonds, curve

#3 of Fig. 5.8 shows that the introduction of the water molecules causes a

sudden decrease in the number of those bonds, about one fourth of which is
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replaced by H-bonds between tau and the water molecules. Fig. 5.9 shows

more in detail this instantaneous decrease (curve #1), and the first 20 ps

of a NVT simulation. After the introduction of the solvent, the molecule

assumes in a short time a native-like configuration, as shown in Fig. 5.10;

the structure displays short transient secondary structures like β-sheets and

α-helices [126].

Figure 5.9: Time evolution of the number of intramolecular H-bonds at T =

300 K, beginning at the time when solvent is introduced in the simulation. Black

line (#1): explicit water molecules. Red line (#2): implicit water solvent.

The same procedure could be followed embedding either the initial struc-

ture of the molecule, or the one extracted midway during the collapse, in im-

plicit water [127]. The use of implicit solvent seems to be a convenient choice

for a simulation run beginning when the molecule has already shrunk to a

natural size. On the other hand, it is known that the two types of solvent are

not equivalent in the prediction of secondary structures [128, 129]. Indeed,

as shown in Fig. 5.9, the effect of implicit water on the replacement of in-

tramolecular H-bonds is not the same as that of explicit water molecules: the

latter seem to be more efficient in competing with intramolecolar H-bonds

and replacing them with solvent-solute ones. This indicates that after the

evolution in vacuo of the molecule, possible spurious H-bonds, that would

not have been formed if the solvent had been included in the simulation from

the beginning of the dynamics, are better removed by putting the molecule
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Figure 5.10: Shape of the tau protein after a 100 ps evolution, 56 ps in vacuo

and 44 ps in explicit water, at T = 300 K. Two transient short β-sheets (yellow)

and a transient short α-helix (purple) are highlighted.

in explicit solvent.

5.4 The simulation procedure

The method used to find an initial dynamical state of the tau protein can

be used for any IDP. In order to start a Molecular Dynamics simulation of

a protein of unknown 3D structure, one begins from its primary sequence of

aminoacids. One then implements the following procedure to produce a 3D

structure to start the simulation:

1. A first 3D structure is created by feeding the VMD program with the

primary sequence of the whole protein.

2. The energy of this structure - a sequence of sticks - is shortly minimized

to avoid stereochemical incompatibility.
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3. The resulting structure is put in a large box with periodic boundary

conditions, and taken as the initial one for a dynamical evolution in

vacuo at the chosen temperature, performed with the package GRO-

MACS or with any other simulation program; this step produces a

rapid contraction of the protein.

4. The evolution is stopped when the decreasing gyration radius Rg has

reached its average experimental value. This yields a starting point for

the simulation in a more realistic environment, i.e., with the addition

of solvent.

5. The simulation box is reduced to fit the reduced size of the protein, and

filled with solvent. This allows a significant reduction of the volume

of box, and hence of the number of solvent molecules needed to fill it.

6. The energy of the system (protein + solvent) is minimized to allow

the water molecules to adapt to the shape of the solute molecule.

7. A short equilibration (100 ps) is performed at constant temperature.

8. Another short equilibration (100 ps) is performed at constant temper-

ature and pressure.

9. The last conformation of the previous step is used to start an extended

simulation at constant temperature and pressure.

The gyration radius used in step 4 is known for many molecules, being

measured either by light scattering, or SAXS, or small angle neutron

scattering. But one could instead use any other measure of the overall

configuration of the molecule to monitor its evolution in vacuo, like

asphericity, that combines shape and compactness, and is measured by

fluorescence microscopy [130].

5.5 Domain patterns

In our first dynamical simulation of the complete tau (htau40), we have

studied the time evolution of the molecule in water over a time of 30 ns. Fig.

5.11 shows the gyration radius; Rg is not stabilized around its experimental

value, as it progressively decreases to about 4.3 nm. Even though the latter
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Figure 5.11: Time evolution of the radius of gyration of protein tau during the

dynamics at T = 300 K. The experimental average value of Rg is 6.6 nm, the

standard deviation 0.3 nm [109].

value is within the range of values computed from a set of static conformers

of tau produced by the EOM method [109, 112], the continuous decrease

of Rg hints at a possible shortcoming of the force field in reproducing the

overall shape of the molecule. In order to clarify this dynamical behaviour

we have computed the time evolution of the gyration radius of four domains

corresponding to morphologically different sections of the molecule: the N-

terminal projection domain (residues 1-150); a proline-rich segment (residues

151-243); the repeats domain (residues 244-368); the C-terminal domain

(residues 369-441). The results are reported in Fig. 5.12, and show that

all four domains reach an equilibrium stage: first the C-terminal domain,

after about 10 ns; second the repeats domain, shortly before 20 ns; then

the proline-rich segment and the N-terminal domain, after 22 ns. The final

decrease of the total Rg visible in Fig. 5.11 after an apparent stabilization

between 18 and 24 ns can thus be attributed to a reduction of the distances

among domains, rather than to a further shrinking of one or more of them.

The simulation shows a higher flexibility of the N-terminal compared

with the region entailing the repeats [118]. If the four domains of tau

to which Fig. 5.12 refers were random coils, their gyration radius could

be evaluated by the formula Rg = 0.1927n0.588 nm, where n is the num-

ber of residues [109]. This formula yields Rg = 3.7 nm and 3.3 nm for
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Figure 5.12: Time evolution of the radius of gyration of four domains of tau

protein. Curve #1 (black): residues 1-150, N-terminal domain; curve #2 (red):

residues 151-243, proline-rich segment; curve #3 (blue): residues 244-368, re-

peats domain; curve #4 (green): residues 369-441, C-terminal domain.

the N-terminal domain and the repeats domain, respectively; the stabilized

stretches of the dynamical evolution of these quantities shown in Fig. 5.12

(the last 8 ns and 10 ns) yield an average gyration radius of 2.8 nm and 3.7

nm, respectively. The smaller value of Rg found for the N-terminal domain

with respect to the random coil estimate highlights its high flexibility, i.e., a

shorter persistence length of the chain; on the other hand, the higher value

of Rg found for the repeats domain with respect to the random coil estimate

hints at an extended conformation [109]. The value of 3.7 nm found for

the repeats domain in our simulation practically coincides with the value of

3.8 nm obtained in a SAXS experiment for construct K18, which includes

residues 244-372 [109], i.e., four residues more. The random coil value of

Rg for the proline-rich domain is 2.8 nm, which corresponds to the average

value shown in Fig. 5.12 in the stabilized stretch of the last 8 ns. Also

the C-terminal, like the N-terminal, turns out to be more compact than a

random coil: its average Rg, computed over the last 20 ns of the simulation

is 1.9 nm, clearly smaller than the random coil estimate of 2.4 nm.

A further understanding of the conformations assumed by tau domains

can be obtained by the projection of the dynamics on pairs of partial Rg.

The curves thus obtained show the instantaneous Rg value of one of the
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Domain residues Rg (nm)

random-coil MD simulation

N-terminal 1-150 3.7 2.8

Proline-rich 151-243 2.8 2.8

Repeats 244-368 3.3 3.7

C-terminal 369-441 2.4 1.9

Table 5.2: Rg values of the four domains of tau; random-coil estimates and

MD results.

Figure 5.13: Time evolution of the radius of gyration of pairs of domains of tau.

Black: 0-10 ns; red: 10-20 ns; green: 20-30 ns. Panel (a): Repeats domain

and C-terminal domain; the arrow points at the transition taking place around

t = 8.3 ns. Panel (b): N-terminal domain and proline-rich domain.
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Figure 5.14: Time evolution of the radius of gyration of pairs of domains of

tau. Black: 0-10 ns; red: 10-20 ns; green: 20-30 ns. Panel (a): N-terminal

domain and C-terminal domain; the arrow points at the transition taking place

around t = 8.3 ns. Panel (b): repeats domain and proline-rich domain; the

arrow points at the transition taking place around t = 17 ns.

domains as a function of the Rg value of one of the other domains. The

graphs have been represented using a color code: black in the first 10 ns,

red in the 10 to 20 ns interval, and green in the last 10 ns. Fig. 5.13

and Fig. 5.14 show four different projections; in all panels the dynamics

begins in the upper right quarter and ends in the lower left quarter. The

patterns in the two figures show a step-wise evolution of the four domains,

each step representing the dynamics in a confined, almost separated basin

of attraction. Fig. 5.13(a) displays three separate basins, corresponding to

three different ranges of Rg values of the C-terminal domain; during the

dynamics the domain moves back and forth some times between the first

and the second domain, and eventually shifts rapidly (in the time interval

between 8.3 and 8.4 ns) to the third domain, below 2 nm, and stays there

for the rest of the dynamics. As for the repeats domain, Fig. 5.14(b) shows

a transition of Rg between two ranges, above and below 4 nm, at a time

around 17 ns. The N-terminal domain and the proline-rich domain display

a similar evolution, as displayed in Fig. 5.13(b) and Fig. 5.14(a). It appears

that each basin of attraction represents a temporary local equilibrium for

the domains that are confined in it.

The simulation provides evidence that the N-terminal approaches the
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Figure 5.15: Contact map (mean smallest distance between pairs of residues)

averaged over 30 ns of dynamics at T = 300 K.

central region of the molecule, as observed in [131]. Fig. 5.15 shows a contact

map of the protein computed by the average Cα-Cα pair distance of all

residues in the structure during the MD trajectory. Only distances smaller

than 1.2 nm are considered. The distance map clearly shows that a large

segment of the N-terminal region (residues 30-115) is found near the repeats

domain (residues 255-325). This region crumples and temporarily folds in a

globular-like shape. Furthermore, patterns of distances perpendicular and

parallel to the main diagonal hint at stretches of local secondary structures.
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5.6 SAXS experiment

We have used the data produced by the MD simulation to extract useful

information on the equilibrium behaviour of tau, by comparing them with

experimental SAXS results obtained by Gabriele Ciasca [132] from a speci-

men of tau in solution. The SAXS experiment has been performed using full

length htau40 purchased from Sigma Aldrich (product code: T0-576). The

powder was reconstituted in 50 mM MES, pH 6.8, 100 mM NaCl and 0.5 mM

EGTA and concentrated at the nominal concentration of 2 mg/ml in 0.1X

Phosphate Buffer Saline solution (ionic strength ∼0.02 M; 10X PBS: 1.3 M

NaCl, 0.07 M Na2HPO4 and 0.03 M NaH2PO4, pH 7.4) by the QuickSpin

protein concentration/buffer exchange (Dualsystem Biotech AG, Schlieren,

Switzerland). Subsequently, the solution was centrifuged for 10 minutes at

10000 g and the supernatant passed through a 20 nm-pore size syringe filter

to eliminate aggregates. Protein quality was assayed by SDS-PAGE in 12%

(w/v) polyacrylamide, according to Laemmli [133]. The gels were stained

with Coomassie brilliant blue R-250. The SDS-PAGE analysis revealed the

occurrence of a major protein band with the expected size (∼ 45 kDa), a

purity > 90% and the absence of a significant amount of aggregates.

SAXS measurements were acquired on the BioSAXS beamline (ID 14-3)

at the Synchrotron Radiation Facility ESRF (Grenoble, France) [134], at

the constant temperature of 303 K, for two solute concentrations, namely

1 mg/ml and 2 mg/ml. A volume of 50 µl of solution has been placed in

a 1.8 mm diameter quartz capillary with a few tens of micron wall thick-

ness. Data acquisition has been performed with a Pilatus1M detector in

the scattering range 0.01 - 5.8 nm−1. Ten 2 seconds exposures were com-

pared, without observing any radiation damage. SAXS data reported in

the following were obtained with an exposure time of 3 seconds. Solvent

scattering was measured to allow an accurate subtraction of the background

scattering. The scattering patterns measured at different concentrations can

be well scaled to each other, pointing out the absence of a significant aggre-

gation phenomenon, as confirmed by the SDS-PAGE analysis. The result of

this experiment is shown in Fig. 5.16(a).
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Figure 5.16: Panel (a): experimental SAXS curve (black continuous line); fit

by an ensemble of conformers selected by the genetic algorithm GAJOE (red

dashed line). Panel (b): distribution of Rg values. Conformers produced by

the simulation (black continuous line) and conformers selected by the genetic

algorithm (red line), after addition of the coordinated water layer.

5.7 Selection of equilibrium conformers

We have used the SAXS curve to extract from our simulation an ensemble

of conformations that give the best fit of the experimental data, as shown

in Fig. 5.16. The fitting procedure is as follows. We have extracted about

9000 regularly spaced conformers from our 30 ns MD simulation. This pool

of conformers has been processed by the program CRYSOL to obtain the

theoretical SAXS pattern of each conformer, taking properly into account

the scattering from the hydration shell of the water layer coordinated with

the molecule [135]. The Ensemble Optimization Method (EOM) with the

Genetic Algorithm Judging Optimisation of Ensembles (GAJOE) was then

employed to select from the pool of theoretical SAXS curves an ensemble

of 162 conformers that provided on the average the best fit of the experi-

mental SAXS curve [136]. As shown in Fig. 5.16(a), the selected ensemble

corresponding to these curves fits quite well the experimental SAXS results,

when each conformer is weighted with the appropriate multiplicity deter-

mined by the genetic algorithm; the accuracy of the fit is attested by its

χ2 = 1.4. The distribution of Rg values of both the original pool (black
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line) and of the selected ensemble (red line) are shown in Fig. 5.16(b); the

range of Rg values of the original pool is shifted to the right with respect to

the Rg values visible in Fig. 5.11, because the former take into account the

hydration shell, which adds about 0.2 nm to the Rg values [137].

The Rg values corresponding to the two peaks of the distribution selected

by the genetic algorithm, shown in Fig. 5.16(b), encompass the upper part

of the distribution of Rg values derived by the same method from a pool

of static conformers of tau [109]. It may be noted that while most selected

conformers belong to the first 5 ns of the trajectory, where the value of

Rg is near to the initial equilibrium value, there is a significant presence

of conformers with Rg values between 5.1 and 5.4 nm, belonging to the

temporarily stabilized trajectory stretch between 18 and 24 ns (Fig. 5.11).

5.8 Secondary structures

The selected ensemble of conformers has been analyzed with the DSSP pro-

gram [138, 139], as implemented in GROMACS, to identify the presence

of secondary structures like coils, β-sheets, β-bridges, bends, turns, and α-

helices. We report in the A row of Table 5.3 the propensity of the molecule

to form these secondary structures, as measured by the number of residues in

each structure; the numbers are averages over the 162 selected conformers,

each weighted with its multiplicity.

Structure coil β-sheet β-bridge bend turn α-helix

A 268 7 8 123 25 6

B 257± 11 12± 6 14± 5 123± 7 30± 6 5± 2

Table 5.3: Average number of residues found in coils and in various secondary

structures. A row: averages over the set of 162 conformers selected by the

genetic algorithm. B row: time averages over the 30 ns dynamics; the errors

are one standard deviation.

In order to assess the validity of these propensities, which should corre-

spond to an equilibrium state of the protein, we have also extracted a similar

information on the formation of temporary secondary structures from the

whole 30 ns dynamics. We have measured the time evolution of the number

of residues found in coils, β-sheets, β-bridges, bends, turns, and α-helices.
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Figure 5.17: Number of residues found in secondary structures during the 30 ns

dynamics. The curves have been smoothed by averaging the data over a sliding

1 ns interval.

These quantities are shown in Fig. 5.17, with the exception of the residues

in a coil-like conformation, not included in the figure.

While the majority of residues are found in a coil-like conformation and

in bends, there is a significant presence of secondary structures like turns,

β-bridges, β-sheets, and α-helices. We report in the B row of Table 5.3 the

time averaged number of residues found in these various conformations. The

number of coil-like residues oscillates in a stable way during the dynamics,

its average value of 257 being almost the same as the value found by the

EOM/GAJOE selection procedure, taking the standard deviation of 11 as

an estimate of the error affecting the average. The number of residues in

β-sheets and β-bridges gradually increases during the first 15 ns, reflecting

the shrinking size of the molecule; in the second half of the simulation these

numbers undergo stable oscillations, in which a fraction of residues switches

back and forth between the two structures: this can be clearly seen in Fig.

5.17 in the time interval 18-22 ns, and around 27 ns. The average number

of residues found in β-sheets and β-bridges during the whole dynamics,

respectively about 12 and 14, is higher than the corresponding number given

in Table 5.3; this could mean that the progressive shrinking of the molecule,
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shown in Fig. 5.11 and analyzed in Sec. 5.5, favors the formation of β-

structures in excess of the equilibrium ones. On the other hand, the strong

oscillations of these numbers during the dynamics produce a relatively high

standard deviation, as shown in Table 5.3; taking this as the error affecting

the time averages, the two estimates for the β-sheets fall in the same range,

and the two estimates for the β-bridges nearly do the same. The number of

residues forming bends oscillates in a stable way during the dynamics, its

average value of 123 being the same as the value found by the EOM/GAJOE

selection procedure. The number of residues forming turns stabilizes after

about 6 ns, oscillating around an average value of 30, slightly higher than

the value of 25 found with the selection procedure, but again in the range of

one standard deviation. The number of residues forming a helix oscillates

around 5 during the whole dynamics (mostly a α-helix, with some short

shifts to a 3-helix or a 5-helix), about the value found in the set of selected

conformers. The comparison of Table 5.3 and Fig. 5.17 shows that while

the formation of temporary β-structures depends on the overall shape of

the molecule, the frequency and extension of other secondary structures

do not depend significantly on it, due to their localized nature. Paying

attention to this warning about the β-structures, Fig. 5.17 shows a pattern

of extension and time dependence of temporary secondary structures in tau

that should be representative of the equilibrium state. It should be stressed

that the numbers given in Table 5.3 are ensemble or time averages; given the

temporary nature of secondary structures in tau, when they actually arise

their spatial extension may greatly exceed these numbers.

We show in Fig. 5.18 a snapshot of tau taken at time t = 28.7 ns,

corresponding to a conformer of the selected set. Some of the secondary

structures accounted for in Table 5.3 are highlighted.

5.9 Discussion

We have already mentioned that the force fields used in molecular simu-

lation have been optimized to reproduce the structures of folded proteins;

therefore, a caveat is necessary when they are used to simulate disordered

proteins. But, as more precisely tailored force fields are not available, pre-

vious simulations of segments of tau or other IDPs have been done using

the ones computed to reproduce known globular proteins [112, 123, 137].
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Figure 5.18: Snapshot of tau at time t = 28.7 ns, corresponding to a conformer

of the selected ensemble. Some secondary structures are highlighted: turns

(cyan), β-sheets (yellow) and α-helices (purple). The terminal visible in the

upper half of the figure is the C-terminal.
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Figure 5.19: First ten eigenvalues of the covariance matrix computed over 30

ns of dynamics at T = 300 K. The insert shows the cumulative sum of the

eigenvalues: the first ten eigenvectors account for 91% of the total fluctuation.

Static 3D structures of segments or of the whole tau have been produced by

a random choice of angles between neighbouring amino acids taken from a

database [112, 118, 136, 140]; this base was derived from known 3D struc-

tures of globular proteins and is therefore subject to a similar bias as the

mentioned force fields.

The analysis in Sec. 5.5 of the time evolution of the four domains of tau

shows that while the overall structure of the molecule progressively shrinks,

each domain is most of the time in a basin of local equilibrium, moving

from time to time from one basin to another. A further insight into the

equilibrium-like behavior of our tau model is provided by a Principal Com-

ponent Analysis (PCA) [58, 141, 142] of the 30 ns dynamics (see section

[3.7]). In Fig. 5.19 the eigenvalues corresponding to the first ten eigenvectors

of the positional fluctuations covariance matrix are reported, showing that

most of the dynamics is entailed in the first ten eigenvectors, which account

for 91% of the total fluctuation of the molecule; all further eigenvalues have

negligible magnitude. It is worth noting that, also for the intrinsically dis-

ordered protein htau40, the sum of the eigenvalues of the essential subspace

(defined as the first 10 eigenvectors of the atomic covariance fluctuation ma-

trix) is in the range that has been computed for stable folded proteins [58].

This is likely to reflect the transient formation in htau40 of folded domains

entailing secondary structure regions with a flexibility typical of natively
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folded proteins.

In Fig. 5.20 the time evolution of the amplitude of the dynamical com-

ponents along the first ten eigenvectors is displayed. The amplitude of the

component along the first eigenvector, which constitutes the largest compo-

nent of the dynamics, increases over the first 20 ns, while it appears to be

stabilized in the last 10 ns. The amplitude of the component along the sec-

ond eigenvector displays an increasing trend after 15 ns. As for the following

eigenvectors, the corresponding components of the dynamics seem to be sta-

bilized, i.e. to have reached an irregular oscillatory behaviour after 10-15 ns.

It appears that most principal components of the dynamics have reached an

equilibrium state during the dynamics, with the possible exception of the

component along the second eigenvector. As these components encompass

all four domains of tau, this also supports the validity of our simulation for

the study of temporary, local secondary structures.

The set of conformers selected from the simulated dynamics by fitting

the SAXS data is the best approximation of an equilibrium ensemble that

can be extracted from our 30 ns dynamics. Even if the force field chosen for

this simulation may not be able to reproduce all the features of the overall

tertiary structure of tau, as shown by the progressive decrease of Rg in Fig.

5.11, the results on the formation of local transient secondary structures

appear to be sound, albeit with the warning regarding the number of

residues in β-structures shown in Fig. 5.17. In this regard, it is interesting

to compare our results with those obtained by Mukrasch and coworkers

[118], who used NMR analysis to assign to various segments of tau accurate

propensities to form a β-structure or an α-helix. Weighing the number of

residues entailed in each of these segments with its propensity (fraction of

time spent in the secondary structure), one finds an average number of 12

residues in β-structures and of 4 residues in a α-helix. Comparing these

results with Table 5.3 shows that while the first number is of the order of

(but 20% less than) the sum of the average numbers of residues found in

β-sheets (7) and β-bridges (8) in the selected ensemble of conformers, the

second agrees with the time average over the 30 ns dynamics, within one

standard deviation.
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Figure 5.20: Time evolution of the dynamical components along the first ten

eigenvectors of the covariance matrix during the dynamics at T = 300 K.
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5.10 Conclusions

We propose a procedure to start the molecular dynamics simulations of

intrinsically disordered proteins, that overcomes the lack of a known 3D

structure of these molecules, and only requires the knowledge of the pri-

mary sequence. We have tested this method on tau, a large totally disor-

dered protein, and verified its effectiveness, as it requires only few hundred

picoseconds of dynamical simulation. This procedure should be useful to

the community of researchers interested in the atomistic simulation of the

dynamical behaviour of the wide, and yet little known, set of intrinsically

disordered proteins.

We have analyzed a 30 ns interval of conformational dynamics on the

htau40 protein; this provides a significant observation of secondary struc-

tures and of the overall fold of the molecule. The simulated trajectory indi-

cates that the protein samples a limited number of almost stable secondary

structure motifs (mainly short α and β structures), whereas the overall pre-

ferred conformation is a random coil. We find that the size of the radius

of gyration is mainly due to a large collapse of the N-terminal domain that

drives the initial fold of the polypeptide chain from its starting extended

conformation. Finally, the combination of our simulation data and SAXS

measurements yields an ensemble of conformers that represent a 3D data

basis from which further simulations can be started.

The transient nature of the secondary structures in protein tau is rele-

vant, and has biochemical implications in vivo; their topological and tem-

poral details is the object of further research on our side.
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General conclusion

This thesis investigates two biological systems using atomistic modeling and

molecular dynamics simulation: we have studied the interaction between a

segment of a DNA molecule and a functionalized surface, and the dynamical

modeling of protein tau, an intrinsically disordered protein.

Our study highlights that the model used to describe the system plays

a critical role in the results observed. Therefore, validation of the model

through comparison with the literature or with experimental measures is

very important in any computational study; this is especially true in com-

putational studies of biological systems, where the complexity of the system

requires a very large number of parameters to define the force field. On the

other hand, when one has verified the range of validity of the model, an

atomistic description and a molecular dynamics simulation are very pow-

erful tools: computer simulation can complement experiment by providing

not only averages, but also distributions and time series of any definable

quantity, for example, conformational distributions or interactions between

parts of systems.
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