
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Communication Priorities and StochasticMeasures
forWeb ServicesModeling

Igor Cappello

February 2012

Abstract

Service Oriented Architecture is an important trend in the development of ser-

vices composed of loosely coupled, heterogeneous and interacting components.

We first consider COWS, which is a language tailored to model the behavioural

aspects of these systems. We analyse the peculiarities of the communication

mechanism of the language, a key ingredient in its modelling capabilities, pre-

senting a separation result between a fragment of CCS equipped with global

priorities and the fragment of COWS relevant for its communication mecha-

nism. We then consider a stochastic approach to model the quantitative aspects

of Web Services through SCOWS, a stochastic extension of COWS. We present

a prototype tool, named SCOWS lts, for the derivation of the complete repre-

sentation of the behaviour of a SCOWS model as a Continuous Time Markov

Chain. In order to validate the approach, a number of case studies are mod-

elled in SCOWS considering both the SOA and the concurrency literature. Us-

ing PRISM as model checker, the results of the simulation phase are analysed

using properties written to check the probabilistic behaviours of the considered

systems.

Keywords
Process Calculi, Priorities, Model Checking, Operational Semantics, Language
Encoding

Contents

1 Introduction 1
1.1 Objective of the Thesis . 2

1.2 Related Works . 2

1.3 Structure of the Thesis . 5

2 COWS 7
2.1 Syntax and Semantics of COWS 7

2.2 COWS Derivation Example . 17

3 COWS Communications 21
3.1 Preliminaries . 21

3.2 The Leader Election Problem 26

3.3 Separation Result . 27

3.4 Global Priorities in COWS . 36

3.4.1 Encoding Function J. K 37

3.4.2 Encoding Function 〈. 〉 44

3.4.3 Properties of encoding functions J. K and 〈. 〉 45

3.4.4 Comments on Encoding Functions J. K and 〈. 〉 60

4 A Stochastic Extension 63
4.1 Basic Notions . 63

4.1.1 Continuous Time Markov Chains 63

i

4.1.2 Expressing Quantitative Properties 64
4.2 SCOWS . 66
4.3 Transition Rates Computation 72

4.3.1 Transition Rate Computation Example 77
4.4 SCOWS lts . 79

4.4.1 PRISM overview . 79
4.4.2 SCOWS identifiers in SCOWS lts 80
4.4.3 SCOWS lts: the main loop 80
4.4.4 Structural Congruence for SCOWS 83
4.4.5 Structural Congruence: an implementation 84
4.4.6 Complexity Analysis and Performance Optimizations . . 93
4.4.7 Other features of SCOWS lts 95
4.4.8 Usage Example . 97

5 Case Studies 99
5.1 PRISM Notation . 99
5.2 Case Study: BPMN Mail . 100
5.3 Case Study: Mutual Exclusion 105

6 Conclusions 119

Bibliography 121

A Operational Correspondence for J. K 127
A.1 Theorem 6 . 127
A.2 Theorem 7 . 134
A.3 Theorem 8 . 138

B SCOWS lts Models 143
B.1 Mail BPMN Case Study . 143
B.2 Dekker’s Algorithm . 151

ii

B.3 Djikstra’s Algorithm . 157
B.4 Lamport’s Bakery Algorithm 165

iii

List of Tables

2.1 Syntax of COWS . 8

2.2 Definition of function f id(.) 10

2.3 Definition of function bid(.) 11

2.4 Structural Congruence rules for COWS 11

2.5 Definition of function halt(.) 12

2.6 Grammar for COWS labels . 12

2.7 Definition of function d(.) . 13

2.8 COWS: definition of functionM(. , .) 16

3.1 Operational Semantics for FAP 22

3.2 Definition of function f nF(.) 22

3.3 Definition of the function J. K, encoding FAP into COWS 40

3.4 Definition of the function 〈. 〉, encoding FAP into COWS 44

4.1 Syntax of SCOWS . 66

4.2 Definition of function f dec(. , . , . , .) 69

4.3 Definition of function open(. , .) 69

4.4 Definition of function tau of(. , . , . , .) 71

4.5 SCOWS: definition of functionM(. , .) 71

4.6 Operational Semantics of SCOWS, part 1 72

4.7 Operational Semantics of SCOWS, part 2 73

4.8 Definition of function ark(. , .) 74

4.9 Definition of function inv(. , . , .) 75

v

4.10 Definition of function req(. , . , . , .) 76
4.11 Structural Congruence rules for SCOWS 84
4.12 Minimization function min(.) 85
4.13 Flattening function f lt?(.), for ? ∈ {|,+} 87
4.14 Definition of function f lt|α(.) 88
4.15 Definition of function holed(.) 95

5.1 Abstraction rules for Mutual Exclusion models 109
5.2 Time for which Property 5.4 is verified with probability p > 0.5

for bwr = 50.0 . 118

vi

List of Figures

3.1 Graph representations of NET4 and bNET4c 30

3.2 Representation of the protocol introduced by the encoding func-
tions . 39

3.3 Structure of the derivation tree for the transition 〈P〉
search.h · ε · h · x0
−−−−−−−−−−−−→

s . 47

3.4 Structure of the derivation tree for the transition 〈P〉
search.h · ε · h · h
−−−−−−−−−−−→

s . 48

4.1 Example of application of function f lt|(.) 87

5.1 Plot of the steady-state probability of having x discussion loops . 105

5.2 Probability of having to perform one reset of the discussion,
given the propensity of not having a clear majority after a vote
(series representation) . 106

5.3 Probability of having to perform one reset of the discussion,
given the propensity of not having a clear majority after a vote
(3D representation) . 107

5.4 LTS derived interleaving a write (set) and a read (get) of a vari-
able n# . 111

5.5 Results obtained checking Property 5.4 for Dekker’s algorithm . 115

5.6 Results obtained checking Property 5.4 for Djikstra’s algorithm . 116

5.7 Results obtained checking Property 5.4 for Lamport’s algorithm 117

vii

A.1 Structure of the derivation tree for the transition JPK
search.h · ε · h · x0
−−−−−−−−−−−−→

s . 128
A.2 Structure of the derivation tree for the transition JPK

search.h · ε · h · h
−−−−−−−−−−−→

s . 128

viii

Chapter 1

Introduction

The integration of loosely coupled heterogeneous systems, known as Web Ser-
vices, represents an issue that both the academic and the industrial communities
have faced in recent years with increasing interest and efforts. The orchestration
of Web Services in a Service Oriented Architecture, i.e. the automatic arrange-
ment and coordination of executable services, is described using languages as
WS-BPEL (Business Process Execution Language) [4], which is an executable
description of the activities and interactions that can take place in a system.
Since BPEL representations (given in XML format) of even small business pro-
cesses are hardly readable and understandable by humans, typically a graphi-
cal representation of BPEL processes is given using BPMN (Business Process
Model and Notation) [2] which helps human modeling and reasoning on large
business processes. There is, however, a matching problem between BPMN and
BPEL representations of business processes [30], which raises the problem of
lack of a human-readable and formal way to represent business processes. The
COWS [20] process algebra has been built considering these facts, providing a
language formally defined both in its syntax and semantics.

1

1.1. OBJECTIVE OF THE THESIS CHAPTER 1. INTRODUCTION

1.1 Objective of the Thesis

The aim of this work is to investigate the peculiarities of COWS and its poten-
tials in formal quantitative reasoning to build a platform to analyse concurrent
systems in general, not only derived from the Service Oriented Architecture
paradigm. The presented assessment is composed of two parts.

In the first part, the communication mechanism of COWS is analysed rela-
tively to the expressing power of FAP [32], a process calculus that can be con-
sidered as a common ground for a comparison of prioritized capabilities among
process calculi. The second part studies the feasibility of a practical approach
to formally reason on COWS models considering quantitative measures.

1.2 Related Works

Given the scope of the thesis, we can divide the discussion of related works in
two parts: the first is relative to COWS and to tools that support process algebras
for modelling concurrent systems, while the second is relative to the assessment
of the expressive power of the language itself.

The Calculus for the Orchestration of Web Services language (COWS) has
been first introduced in [20]. With respect to that version of the language, we
refer to a dialect in which agent identifiers are used instead of replication to ex-
press recursive behaviour. Stochastic extensions of the language have been pre-
sented in [27] for a monadic version of the language and in [31] for its polyadic
version. In both cases, labelled semantics using scope opening/closing of iden-
tifier delimiters have been introduced. We refer mainly to the polyadic version
presented in [31] and define a different approach to compute the rate associated
to transitions of a SCOWS term, resulting in a less involved formalization of
the transition rate computation.

The development of the presented tool, named SCOWS lts, has its roots in

2

CHAPTER 1. INTRODUCTION 1.2. RELATED WORKS

the work presented in [9], from which major performance and usability updates
have been developed. The original work on SCOWS lts was compared to a
related project presented in [29], which describes a statistical approach, i.e.
based on repetitions of an experiment to get statistically significant results, for
the model checking phase of SCOWS models.

The tool we present can be also partially compared to CMC [13], an on-the-
fly model checker supporting the verification of qualitative properties of COWS
services. The approach used in CMC is slightly different from the one we adopt,
since in CMC only fragments of the state space are generated as required by the
verification of the considered property. In our approach, an optimized repre-
sentation of the entire state space is generated, and the resulting structure can
be reused to check properties using different quantitative configurations, since
SCOWS lts supports the use of parametric rates. The main purpose for the
derivation of the whole Labelled Transition System (LTS) of a SCOWS ser-
vice is the possibility of performing quantitative model checking on the CTMC
derived from the LTS discarding transition labels.

In the field of the comparison of the expressive power of process calculi, two
main approaches have been adopted. One is based on the comparison of the ab-

solute expressive power of calculi: given a problem and a modelling language,
the existence (or lack) of a solution satisfying some given properties is shown.
If a language is able to solve the problem under these conditions and another
language cannot, then a separation result can be derived. A second approach to
the problem of comparing the expressive power of different process calculi is
the study of encoding functions from one language to another. In this case, the
relative expressive power of the language is studied, focussing on the properties
that the used encoding function satisfies.

The absolute approach has been used in [7], where the Leader Election Prob-
lem is used to compare three dialects of CSP and in [33, 25], where the expres-
siveness of CCS [22], π-calculus [23] and Mobile Ambients [10] dialects are

3

1.2. RELATED WORKS CHAPTER 1. INTRODUCTION

compared using the same problem as a test base. Another example of this ap-
proach is presented in [32], where the Leader Election Problem is used to prove
separation results between calculi equipped with different priority enforcing
mechanisms. In [25, 32, 33] both behavioural and syntactic properties of en-
coding functions are taken into account. In particular, an encoding is defined
uniform if it is distribution preserving, i.e. homomorphic w.r.t. parallel compo-
sition, permutation preserving, i.e. name invariant, and observation respecting,
i.e. when considering maximal computations, observables are maintained.

The relative approach has been used, for example, in [14], where various
combinations of features of communication primitives (synchronous vs asyn-
chronous, monadic vs polyadic, message passing vs tuple spaces, pattern match-
ing) are compared, showing the existence of an encoding (or lack thereof) of one
variant into the other, resulting in a hierarchy of languages. In this work, an en-
coding is reasonable if it enjoys compositionality, name invariance, faithfulness
(i.e. the semantics of the original term must not be modified by the encoding)
and operational correspondence.

Another example of the second approach has been recently proposed in [5],
where the criterion of replacement freeness is used to categorize process al-
gebras. Replacement freeness is a property based on the sensitivity of a given
process algebra, in terms of behaviour inhibition, to the replacement of a generic
process with an invisible one. A weaker and a stronger version of the criterion
are defined, inducing the creation of three categories: strong replacement-free
calculi (insensitive to substitution of processes), weak replacement-free calculi
(sensitive to substitution of non closed invisible processes), non replacement-
free calculi (sensitive even to substitution of closed invisible processes). It is
then shown that it is not possible to write an encoding from a more sensitive
(e.g. CCS with global priorities, COWS) to a less sensitive process algebra
(e.g. π-calculus, CCS), when the encoding function has to respect some proper-
ties. In particular, compositionality, interaction sensitiveness (based on barbs)

4

CHAPTER 1. INTRODUCTION 1.3. STRUCTURE OF THE THESIS

and independence preservation (no communication links must be introduced by
the encoding) are taken into consideration.

1.3 Structure of the Thesis

Chapter 2 presents the formalization of the COWS language that we will refer to
throughout the first part of the thesis. COWS syntax and operational semantics
are presented and commented. Chapter 3 presents an assessment of the COWS
prioritized communication mechanism, which is based on pattern matching and
correlation sets. In particular, this assessment is based on a separation result
between COWS KF, the kill and protection free fragment of COWS, and FAP,
the finite fragment of CCS equipped with global priorities. Chapter 4 presents
SCOWS, first introduced in [31], a polyadic stochastic extension of COWS in
which exponentially distributed delays are associated to basic actions. Differ-
ences with the original formulation, such as the different transition rate compu-
tation algorithm and the decoration system used in the operational semantics,
are presented. SCOWS lts, a tool for the derivation and compact representation
of the behaviour of SCOWS services, is described in terms of implementation
choices and optimizations. In Chapter 5 SCOWS lts is applied to two case stud-
ies, the former inspired from a BPMN scenario and the latter derived from the
comparison of a number of well-known algorithms solving the Mutual Exclu-
sion problem. Finally, Chapter 6 draws conclusions from the presented work.
Appendix A presents the proofs omitted from Chapter 3. Appendix B presents
the code for the SCOWS lts models mentioned in Chapter 5.

5

1.3. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

6

Chapter 2

COWS

In this chapter we describe COWS, in terms of the syntax and the operational
semantics which formally define the behaviour of COWS terms. With respect
to [20], here we present a version of the calculus which uses agent identifiers in
place of replication for expressing iterative/recursive behaviour.

2.1 Syntax and Semantics of COWS

To define the syntax of COWS, we identify three countable and pairwise disjoint
sets: N set of names N (ranged over by m, n, o, p,m′, n′, o′, p′),V set of write-

once variables (ranged over by v, v′, x, y, x′, y′) andK set of killer labels (ranged
over by k, k′).

In the following, we will use d, d′ to range over N ∪V ∪K and u, u′, . . . to
range over N ∪V. We use the notation˜ for tuples, so, e.g., ñ stays for a tuple
of elements in N and ũ stays for a tuple of elements in N ∪V.

With a slight abuse of notation, we sometimes read tuples as sets so, for
example, we will write u ∈ ũ to mean that the element u occurs in ũ.

We use σ,σ′, . . . to denote substitutions of names for variables. Substitu-
tions are functions from variables in V to elements of N , which we write as
finite collections of pairs in the form {n1/x1, . . . , n j/x j}, where {x1, . . . , x j} is the
domain of the substitution, and {n1, . . . , n j} is the cosupport of the substitution,

7

2.1. SYNTAX AND SEMANTICS OF COWS CHAPTER 2. COWS

denoted by csp(σ). Given σ = {n1/v1, . . . , nk/vk}, we define |σ| = k.

The empty substitution is denoted by ε, and given the two substitutions σ1

and σ2, we write σ1] σ2 to denote the union of σ1 and of σ2 which is defined
only if the two substitutions have disjoint domains.

A communication endpoint is denoted as u.u′, where u represents the partner

and u′ the operation involved in communications modelled in COWS.

The syntax of COWS is presented in Table 2.1 in BNF form. As can be seen,
nondeterministic choice has to be input-guarded. Endpoints for input (request)
operations are of the form p.o, meaning that they cannot include COWS vari-
ables. This fact will have a crucial role in the results presented in Chapter 3.
As in the asynchronous version of π-calculus [16, 6], we do not have the output
(invoke) prefix operator.

s ::= kill(k) | u.u′ ! ũ | g | s | s | {|s|} | [d]s | S (d1, . . . , d j)

g ::= 0 | p.o ? ũ. s | g + g

Table 2.1: Syntax of COWS

COWS presents two peculiar operators: kill activities kill(k), defined on kill
labels k, are used to terminate (kill) services. The execution of kill activities
is prioritized with respect to communications. The second peculiar operator,
which is the dual of kill activities, is represented by the protection operator {|s|},
which defines a scope of inhibition for the effects of kill activities executed
in parallel. These two operators, used in conjunction, can be used to model
compensation procedures which have to take place in order to recover from er-
roneous configurations reached at runtime. This need stems from the fact that
Web Services are loosely-coupled by definition, and so runtime errors have to
be taken into account when modeling them. In Chapter 3 and, for the stochastic
extension of COWS, in Chapter 5, we will see that the usefulness of these op-
erators is not limited to compensation activities: we will take advantage of the

8

CHAPTER 2. COWS 2.1. SYNTAX AND SEMANTICS OF COWS

prioritized nature of kill activities over communication actions.

The delimitation operator [d]s binds the identifier d inside s. This operator
is the only binding operator in the language. Given d̃ = d1, . . . , dn, we will
often use the notation [d̃]s or, alternatively, [d1, . . . , dn]s to represent service
[d1] . . . [dn]s.

In contrast to the original definition of COWS [20], where replication was
introduced, we make use of service definitions in order to model persistent and
iterative behaviour. For this reason, for each service identifier S (d1, . . . , d j),
we assume the presence of a definition S (d′1, . . . , d

′
j) = s in an environment of

execution.

As we said before, we allow the presence of nondeterministic choice only
when it appears guarded by an input (request, in COWS nomenclature). A re-
quest p.o ? ũ. s can play a role in a communication over endpoint p.o, involving
the identifiers in ũ; sσ, where σ is a (possibly empty) sequence of substitutions
induced by the communication operation, represents the residual of the request
activity and specifies the subsequent behaviour of the service. Note that we re-
quire that each request activity specifies a static endpoint (being p and o ground
names), whereas invoke activities can specify dynamic endpoints (being u and
u′ write-once variables). This fact means that, similarly to what happens in [21]
for local π-calculus, it is not possible, for a COWS service, to perform a re-
quest activity over an endpoint containing an identifier received by a previously
executed request activity.

We denote the set of COWS services respecting the syntax in Table 2.1 as
LCOWS.

An identifier d is free in s if it appears outside the scope of a delimiter [d].
Function f id : LCOWS 7→ (N ∪V ∪K), which returns the set of all free iden-
tifiers in a COWS service, is defined in Table 2.2. When considering an agent
identifier S (d1, . . . , dn), where S (d′1, . . . , d

′
n) = s is a given service definition, we

require the instantiation of the body s{d1, . . . , dn/d′1, . . . , d
′
n} to be closed mod-

9

2.1. SYNTAX AND SEMANTICS OF COWS CHAPTER 2. COWS

ulo actual parameters d1, . . . , dn, which compose the set of free identifiers of the
service invocation itself.

f id(0) = ∅

f id(kill(k)) = {k}
f id(s1 | s2) = f id(s1) ∪ f id(s2)
f id(g1 + g2) = f id(g1) ∪ f id(g2)
f id({|s|}) = f id(s)
f id([d]s) = f id(s) \ {d}
f id(p.o ? ũ.s) = f id(s) ∪ {p, o, ui | ui ∈ ũ}
f id(u.u′ ! ũ) = {u, u′, ui | ui ∈ ũ}
f id(S (d1, . . . , dn)) = {d1, . . . , dn}

Table 2.2: Definition of function f id(.)

We define also auxiliary functions f n : LCOWS 7→ N , which returns the
set of free names inside service s as f n(s) = f id(s) ∩ N , f v : LCOWS 7→ V,
which returns the set of free variables inside service s as f v(s) = f id(s)∩V and
f kl : LCOWS 7→ K , which returns the set of free kill labels inside service s as
f kl(s) = f id(s) ∩ K . Function bid : LCOWS 7→ (N ∪V ∪K) is the function
which computes the set of bound identifiers defined inside a given service s. Its
formal definition can be seen in Table 2.3. As before, we define also auxiliary
functions bn : LCOWS 7→ N , which returns the set of bound names inside
service s as bn(s) = bid(s) ∩ N , bv : LCOWS 7→ V, which returns the set of
bound variables inside service s as bv(s) = bid(s)∩V and bkl : LCOWS 7→ K ,
which returns the set of bound kill labels inside service s as bkl(s) = bid(s)∩K .

In this setting, we identify COWS services up to structural congruence,
denoted as ≡, which we define as the least relation satisfying the properties
reported in Table 2.4. Nondeterministic choice and parallel composition are
commutative, associative, and have 0 as identity element. The protection of 0
is equivalent to 0 itself, while the multiple protection of a service s is struc-
turally congruent to the single protection of s. Renaming of bound identifiers

10

CHAPTER 2. COWS 2.1. SYNTAX AND SEMANTICS OF COWS

bid(kill(k)) = bid(0) = ∅

bid(s1 | s2) = bid(s1) ∪ bid(s2)
bid(g1 + g2) = bid(g1) ∪ bid(g2)
bid({|s|}) = bid(s)

bid([d]s) =

 {d} ∪ bid(s) if d ∈ f id(s)
bid(s) otherwise

bid(p.o ? ũ.s) = bid(s)
bid(u.u′ ! ũ) = ∅

bid(S (d1, . . . , dn)) = bid(s{d1, . . . , dn/d′1, . . . , d
′
n})

where S (d′1, . . . , d
′
n) = s is a given service definition

Table 2.3: Definition of function bid(.)

(α-equivalence) preserves structural congruence; Finally, agent identifiers for
which a service definition is contained in the execution environment are recog-
nized structurally congruent to their instantiation.

s1 ≡ s2 if s1 =α s2

[d]0 ≡ 0s s1 | [d]s2 ≡ [d](s1 | s2) if d < f id(s1) ∪ f kl(s2)

[d1][d2]s ≡ [d2][d1] {|[d]s|} ≡ [d]{|s|}

s1 | (s2 | s3) ≡ (s1 | s2) | s3 s1 | s2 ≡ s2 | s1 s | 0 ≡ s

(g1 + g2) + g3 ≡ g1 + (g2 + g3) g1 + g2 ≡ g2 + g1 (p.o ? ũ. s, γ) + 0 ≡ (p.o ? ũ. s, γ)

{|0|} ≡ 0 {|{|s|}|} ≡ {|s|}

S (d′1, . . . , d
′
n) ≡ s{d′1/d1, . . . , d′n/dn} if S (d1, . . . , dn) = s

Table 2.4: Structural Congruence rules for COWS

Before presenting the operational semantics of the language, we need to de-

11

2.1. SYNTAX AND SEMANTICS OF COWS CHAPTER 2. COWS

fine further auxiliary functions. When dealing with the execution of kill actions,
we take advantage of function halt : LCOWS 7→ LCOWS, which definition
can be seen in Table 2.5. This function is used to define how the execution of a
kill activity affects a service s. Note that a protected service is not affected by
the halt(.) function, and that halting a nondeterministic choice g1 + g2 results in
the 0 service, since g1 and g2 are input-guarded by definition.

halt(0) = 0
halt(u.u′ ! ũ = 0
halt(p.o ? ũ.s) = 0
halt(g1 + g2) = 0
halt(S (d1, . . . , dn)) = 0
halt(s1 | s2) = halt(s1) | halt(s2)
halt({|s|}) = {|s|}

Table 2.5: Definition of function halt(.)

The operational semantics of COWS generates transitions of the form
α
−→;

the syntax for labels α is presented in Table 2.6. Transitions of the form
†
−→ and

p.o · ε · ñ · ũ
−−−−−−−→ for some p, o, ñ, ũ, are considered as pseudo-τ transitions and indicate
proper steps of execution for a COWS service s. We will write s ↪→ s′ if s

†
−→ s′

or s
p.o · ε · ñ · ũ
−−−−−−−→ s′ for some p, o, ñ.

Moreover, we will write s
αi
=⇒

(k)
s′ to denote the sequence of k transitions such

that s
α1
−→ . . .

αk
−→s′.

α ::= †k | † | p.o ? ũ | p.o ! ñ | p.o ·σ · ñ · ũ

Table 2.6: Grammar for COWS labels

Function d(α) is used to determine identifiers inside label α. In particular,
the definition of function d(.) can be seen in Table 2.7. Note the last two cases:
labels corresponding to completed kill activities and to communication actions
with no pending substitutions contain no identifier.

12

CHAPTER 2. COWS 2.1. SYNTAX AND SEMANTICS OF COWS

d(†k) = {k}
d(p.o ? ũ) = {p, o, ui | ui ∈ ũ}
d(p.o ! ñ) = {p, o, ni | ni ∈ ñ}

d(p.o · {n/v}] σ · ñ · ũ) = {n, v} ∪ d(p.o ·σ · ñ · ũ)
d(†) = ∅

d(p.o · ∅ · ñ · ũ) = ∅

Table 2.7: Definition of function d(.)

In order to check whether a service s can perform a kill action on identifier
d, we use the predicate s ↓d; this predicate is true if and only if some unguarded
subterm of s has the shape kill(k). We also write s ↓ñ · j

p.o if s can perform a
request activity on endpoint p.o with some ũ as the tuple of parameters, where
the matching between ñ and ũ generates strictly than j substitutions.

We now comment the rules composing the operational semantics of COWS.

Rule (kill) states that a kill activity kill(k), when executed, reduces to 0 with
a transition labelled by †k.

-
(kill)

kill(k)
†k
−→ 0

Rule (inv) states that an invoke activity on endpoint p.o, with ñ as parame-
ter, can be executed, reducing to 0 and generating the label p.o ! ñ. Note that
p, o, ñ ∈ N , i.e. an invoke activity can be executed only if all parameters and
components of the endpoint have been instantiated to ground names.

-
(inv)

p.o ! ñ
p.o ! ñ
−−−−→ 0

Rule (req) states that a request activity over endpoint p.o, with ũ as parameter
and with s as residual service, can be executed reducing to s generating the label
p.o ? ũ. Note that ũ can contain variables.

13

2.1. SYNTAX AND SEMANTICS OF COWS CHAPTER 2. COWS

-
(req)

p.o ? ũ. s
p.o ? ũ
−−−−→ s

Rule (choice) states that a nondeterministic choice presents the same be-
haviour as its composing services g1 and g2, but once one of the two performs
an action, the other component is removed from the residual service.

g1
α
−→ s

(choice)
g1 + g2

α
−→ s

Rule (del sub) defines the behaviour of a service [x]s when the label gen-
erated by the premiss of the rule is a communication involving a substitution of
x with a name m. The delimiter of the variable is deleted and the only needed
action is the substitution of x with m in the residual s′.

s
p.o ·σ]{m/x} · ũ · ñ
−−−−−−−−−−−−−→ s′

(del sub)
[x]s

p.o ·σ · ũ · ñ
−−−−−−−−→ s′{m/x}

Rule (del k) defines the behaviour of a service [x]s when k is involved in the
execution of a kill action; in particular, since the whole scope on which the kill
label is defined has been reached, the effects of the execution of the kill action
must not be propagated any further. This effect is accomplished by propagating
the label † in place of †k.

s
†k
−→ s′

(del k)
[k]s

†
−→ [k]s′

Rule (del p) can be applied when, given a delimiter [d] and a label α, it hap-
pens that d is not contained in the identifiers in α and, if service s can perform

14

CHAPTER 2. COWS 2.1. SYNTAX AND SEMANTICS OF COWS

a kill activity, then α must be a completed kill action or an active kill action
on a label k , d. This last condition makes the rule enforce the priority of kill
actions over other types of actions. Rule (prot) states that the protection of a
service s behaves exactly as s.

s
α
−→ s′ d < d(α) s ↓d ⇒ (α = † or α = †k)

(del p)
[d]s

α
−→ [d]s′

Using rule (par k), the effects of an executed (and still active) kill action are
propagated to services in parallel with the one originating the kill execution.
Here we make use of the halt(.) function defined in Table 2.5.

s1
†k
−→ s′1 (par k)

s1 | s2
†k
−→ s′1 | halt(s2)

As said before, function halt(.) has no effect on protected services {|s|}. As
stated by rule (prot), if a protected service s performs a transition labelled by α
reducing to s′, then the protection of s can perform the same transition, labelled
in the same way, and reduce to the protection of s′.

s
α
−→ s′

(prot)
{|s|}

α
−→ {|s′|}

Rule (par p) states that, considering a parallel composition s1 | s2, the exe-
cution of a request, invoke or concluded kill activity by one of the components
represents, in an interleaved fashion, an execution step of the parallel composi-
tion.

s1
α
−→ s′1 α , p.o ·σ · ũ · ñ α , †k

(par p)
s1 | s2

α
−→ s′1 | s2

15

2.1. SYNTAX AND SEMANTICS OF COWS CHAPTER 2. COWS

Rule (com) is the one formalizing the communication paradigm of COWS.

s1
p.o ! ñ
−−−−→ s′1 s2

p.o ? ũ
−−−−→ s′2 M(̃u, ñ) = σ ¬(s1 | s2) ↓ñ · |σ|

p.o (com)
s1 | s2

p.o ·σ · ũ · ñ
−−−−−−−−→ s′1 | s

′
2

Considering a service s1 that reduces to s′1 by executing an invoke action
p.o ! ñ and a service s2 reducing to s′2 by executing a request action p.o ? ũ,
we first have to compute the list of substitution induced by matching tuple ñ

with tuple ũ. For this purpose, we use function M(. , .), which is defined in
functional style in Table 2.8. This function is used to determine the list of
needed substitutions when trying to match a tuple ñ, composed of names and a
tuple ũ, composed of names and variables. The first case defined for function
M(. , .) considers matching a name with itself, which induces no substitution.
The following case considers the match of a name n with a variable u. Matching
lists of identifiers is considered in the third case.

If we haveM(̃u, ñ) = σ, then σ represents the list of substitutions induced
by matching ñ with ũ. GivenM(̃u, ñ) = σ, we denote the cardinality ofM(̃u, ñ)
as the size of the substitution set σ: |M(̃u, ñ)| = |σ|.

M(̃u, ñ) = match ũ , ñ with

n , n = ε

u , n = {n/u}

uũ1 , ñn1 = M(u, n)]M(̃u1, ñ1)

default = ⊥

end match

Table 2.8: COWS: definition of functionM(. , .)

16

CHAPTER 2. COWS 2.2. COWS DERIVATION EXAMPLE

Predicate ¬(s1 | s2) ↓ñ · j
p.o is used to enforce the best matching mechanism.

Even if ñ and ũ match, this is not enough for the communication to take place:
ũ must be the best matching tuple when considering ñ, i.e. there must be no re-
quest activity on endpoint p.o with ũ0 as parameter tuple for which |M(̃u0, ñ)| <
j. This condition is enforced also by rule (par c) when considering a parallel
composition where one of the components evolves executing a communication
where the other service plays no role.

s1
p.o ·σ · ũ · ñ
−−−−−−−−→ s′1 ¬s2 ↓

ñ · |M(̃u,̃n)|
p.o (par c)

s1 | s2
p.o ·σ · ũ · ñ
−−−−−−−−→ s′1 | s2

Rule (struct) is applied when a rearrangement of the structure of a service
s, according to the notion of structural congruence among COWS services, is
needed in order to obtain the derivation tree for a transition.

s ≡ s1 s1
α
−→ s2 s2 ≡ s′

(struct)
s

α
−→ s′

2.2 COWS Derivation Example

We now present an example that will help in understanding the peculiarities of
COWS. The example is aimed at showing how pattern matching works and
how restriction is the only binding operator in the language: consider a COWS
service [p, o,m, x, y] (r) where

• r = s1 | s2 | s3 | s4 | s5

• s1 = [n]p.o ! 〈n,m〉

• s2 = p.o ? 〈x,m〉. s′2

17

2.2. COWS DERIVATION EXAMPLE CHAPTER 2. COWS

• s3 = r.m ? x

• s4 = p.o ? 〈m,m〉

• s5 = p.o ? 〈x, y〉

Invocation p.o ! 〈n,m〉 in s1 can synchronize only with request p.o ? 〈x,m〉 in
s2, with the substitution of x with the private name n. The scope of this sub-
stitution contains s3 and s5. Request p.o ? 〈m,m〉 in s4 cannot synchronize with
p.o ! 〈n,m〉, since M(〈n,m〉, 〈m,m〉) = ⊥, while the synchronization involving
request s5 and invocation s1 is inhibited, since 〈x, y〉 is not the best matching
tuple for 〈n,m〉: |M(〈x,m〉, 〈n,m〉)| < |M(〈x, y〉, 〈n,m〉)|.

We now comment on the derivation tree for the execution of the communi-
cation action between s1 and s2, which is broken down for clarity and spacing
reasons.

In the first part of the derivation tree, axioms (inv) and (req) along with rule
(com) are applied.

-
(inv)

s1
p.o ! 〈n,m〉
−−−−−−−→ 0

-
(req)

s2
p.o ? 〈x,m〉
−−−−−−−→ s′2 M(〈x,m〉, 〈n,m〉) = {n/x} ¬(s1 | s2) ↓〈n,m〉 · 1p.o (com)

s1 | s2
α=p.o · {n/x} · 〈x,m〉 · 〈n,m〉
−−−−−−−−−−−−−−−−−−→ 0 | s′2

The communication label α = p.o · {n/x} · 〈x,m〉 · 〈n,m〉 is formed. As can
be seen, the substitution {n/x} induced by the communication action is delayed.

The second block composing the derivation tree presents the repeated appli-
cation of rule (par c).

18

CHAPTER 2. COWS 2.2. COWS DERIVATION EXAMPLE

s1 | s2
α
−→ 0 | s′2 ¬

∏
i≤3

si

 ↓〈n,m〉 · 1p.o

(par c)∏
i≤3

si
α
−→ 0 | s′2 | s3 ¬

∏
i≤4

si

 ↓〈n,m〉 · 1p.o

(par c)∏
i≤4

si
α
−→ 0 | s′2 | s3 | s4 ¬r ↓〈n,m〉 · 1p.o

(par c)
r

α
−→ 0 | s′2 | s3 | s4 | s5

The context composed of parallel services s3, s4 and s5 is gathered and no
conflicting action, according to predicate . ↓〈n,m〉 · 1p.o is found.

The third block is composed of the application of rule (del p), applied when
the delimiter for variable y has to be considered, and of rule (del sub), which
applies the substitution {n/x} to its residual.

r
α
−→ 0 | s′2 | s3 | s4 | s5 y < d(α) [y]r 8 y

(del p)
[y]r

α
−→ [y](0 | s′2 | s3 | s4 | s5)

(del sub)
[x, y]r

β=p.o · ε · 〈x,m〉 · 〈n,m〉
−−−−−−−−−−−−−−−→ r′ = [y](0 | s′2{n/x} | r.m ? n | s4 | p.o ? 〈n, y〉)

As a consequence of the application of rule (del sub), the action label β =

p.o · ε · 〈x,m〉 · 〈n,m〉 takes the place of α in the conclusion of the rule, since the
information about the pending substitution is no more needed.

The fourth, and final, block composing the derivation tree presents the re-
peated application of rules (del p), some of which are omitted and replaced by(
...
)

when considering the delimiters for names p, o,m. Note that n < d(β), since β
is a silent action. In the derivation tree we used the definitions [ũ1] = [n, x, y],
[ũ2] = [m, n, x, y], [ũ3] = [p, o,m, n, y] and [ũ4] = [p, o,m, n, x, y].

19

2.2. COWS DERIVATION EXAMPLE CHAPTER 2. COWS

Finally, the application of rule (struct) is needed in order to rearrange the
scope of delimiters (in this example no renaming of bound names is necessary)
as presented in service s.

[x, y]r
β
−→ r′ n < d(β) [ũ1]r 8 n

(del p)
[ũ1]r

β
−→ [n, y]r′ m < d(β) [ũ2] = r 8 m

(del p)(
...
)

(del p)
s ≡ [u4]r [u4]r

β
−→ [ũ3](0 | s′2{n/x} | r.m ? n | s4 | p.o ? 〈n, y〉)

(struct)
s

β
−→ [ũ3](0 | s′2{n/x} | r.m ? n | s4 | p.o ? 〈n, y〉)

20

Chapter 3

COWS Communications

In this chapter we will analyse the expressive power of the prioritized commu-
nication mechanism that stems from the use of correlation sets in the semantics
of COWS. In particular, we provide a separation result between a fragment
of CCS with global priority (FAP) and the kill and protection free fragment of
COWS, named COWS KF. Relaxing the properties used to prove the separa-
tion result, we are able to define two encoding functions. The first, represented
by J. K, encodes FAP processes in COWS while the second, represented by 〈. 〉,
encodes FAP processes in COWS KF. Some of these results have been tackled
in [8].

3.1 Preliminaries

FAP [32] is a finite fragment of asynchronous CCS enriched adding global pri-
orities to the language. Given NF a set of names, which is ranged over over by
x, x1, x′, . . ., the syntax of FAP is expressed as

P ::= 0 | x.P | x | x | P | P

FAP processes are ranged over by P, P′,Q, Note the presence of two
versions of the output action. The first, x, is the usual output action defined for

21

3.1. PRELIMINARIES CHAPTER 3. COWS COMMUNICATIONS

CCS, while x is the prioritized output action. The operational semantics, de-
fined in reduction style, makes use of two different relations, one for prioritized
actions (�) and one for standard ones (7→). The whole set of rules can be seen
in Table 3.1. The definition of structural congruence for FAP processes, used in
the reduction semantics of the language, is given in Definition 1.

Definition 1. Structural congruence ≡F on FAP processes is defined as the least

relation generated by the following rules

P | 0 ≡F P P | Q ≡F Q | P P | (Q | R) ≡F (P | Q) | R

The semantic rule denoted by (∗) is the one enforcing the priority of �
derivations against 7→ derivations. We say that P → P′ (P reduces to P′) if
and only if either P� P′ or P 7→ P′.

-

x.P | x 7→ P

-

x.P | x� P

P� P′

P | Q� P′ | Q

P 7→ P′ P | Qg R
(∗)

P | Q 7→ P′ | Q

P ≡F Q P 7→ P′ P′ ≡F Q′

Q 7→ Q′
P ≡F Q P� P′ P′ ≡F Q′

Q� Q′

Table 3.1: Operational Semantics for FAP

The function f nF(.) returns the set of free names of a FAP process, is defined
in Table 3.2.

f nF(0) = {} f nF(x.P) = {x} ∪ f nF(P)
f nF(x) = f nF(x) = {x} f nF(P | Q) = f nF(P) ∪ f nF(Q)

Table 3.2: Definition of function f nF(.)

Before presenting the details of the obtained separation result, we recall
some needed definitions from [32], and introduce corresponding adapted defi-
nitions for COWS KF.

22

CHAPTER 3. COWS COMMUNICATIONS 3.1. PRELIMINARIES

Definition 2. A computation C of a FAP process P is a sequence C : P→ P1 →

. . .→ Pn.

A FAP process cannot have infinite computations, since the language has no
iterative/recursive capability.

Definition 3. Given C : P → . . . → Pn a FAP computation, C′ extends C

(written C ≺ C′) iff there exists a computation C′′ : Pn → . . . → P(n+m) with

m > 1 such that C′ = CC′′.

Definition 4. A computation of a FAP process C : P → . . . → Pn is maximal if

it cannot be extended further, i.e. there exists no C′ such that C ≺ C′.

Definition 5. A computation C of a COWS KF service s is a sequence (finite or

infinite) s
α
−→ s1

α1
−→ s2 →

Definition 6. Given C : s1 → . . . → sn a COWS KF computation, C′ extends

C (written C ≺ C′) iff there exists a computation C′′ : sn → . . . → s(n+m) with

m > 1 or C′′ : sn → . . . such that C′ = CC′′.

Definition 7. . A computation C of a COWS KF service s → . . . → s′ → . . . is

maximal if it cannot be extended further, i.e. there exists no C′ such that C ≺ C′.

Note that an infinite computation C cannot be extended, so C is a maximal
computation according to Definition 7.

We now focus our attention on observables, also called observable actions.
These special actions are denoted byω,ω1, Observables are not inNF nor in
N∪V∪K . They are explicitly added to the syntax of both FAP and COWS KF,
and are treated as asynchronous outputs. Note, however, that the operational
semantics of both FAP and COWS KF remain unchanged.

To denote the fact that a FAP process contains an unguarded observable
action ω, we rely on the notion of observable barbs for FAP processes and
COWS KF services.

23

3.1. PRELIMINARIES CHAPTER 3. COWS COMMUNICATIONS

Definition 8. A FAP process P exhibits the observable barb ω, written P ↓ω, if

P ≡F ω | R for some R.

Definition 9. A COWS KF service s exhibits the observable barb ω, written

s ↓ω if s ≡ [ũ] (ω | s1) for some ũ and s1.

Our interest is directed towards the sets of observables that appear unguarded
along maximal computations.

Definition 10. Let P0, . . . , Pi be FAP processes. Let C be a computation P0 →

. . .→ Pi Given a set Ob = {ωi} of intended observables, the observables of

C are Obs(C) = {x ∈ Ob : ∃i.Pi ↓x}.

Definition 11. Let s0, . . . , si be COWS KF services. Let C be a computation

s0
α
−→ . . .

αi
−→ si Given a set Ob = {ωi} of intended observables, the observ-

ables of C are Obs(C) = {x ∈ Ob : ∃i.si ↓x}.

We now recall the definitions of independent FAP processes and introduce
similar definitions for COWS KF services.

Definition 12. Two FAP processes P1, P2 are independent if they do not share

free names, i.e. f n(P1) ∩ f n(P2) = ∅.

Definition 13. Two COWS KF services s1 and s2 are variable independent if

f v(s1) ∩ f v(s2) = ∅.

Definition 14. Two COWS KF services s1, s2 are independent if they do not

share free names or free variables i.e. f n(s1) ∩ f n(s2) = f v(s1) ∩ f v(s2) = ∅.

Definition 15. Function res(.) : LCOWS KF 7→ {p.o such that p, o ∈ N} (re-

24

CHAPTER 3. COWS COMMUNICATIONS 3.1. PRELIMINARIES

quest endpoint set) is defined as

res(s) =

{p.o} ∪ res(r) if s = p.o ? ũ.r

res(s1) ∪ res(s2) if s = s1 | s2

res(g1) ∪ res(g2) if s = g1 + g2

res(s′) \ {p.o such that p , u ∧ o , u} if s = [u]s′

res(s′{u1/u′1, . . . , un/u′n}) if s = S (u1, . . . , un)
and s′ = S (u′1, . . . , u

′
n)

∅ otherwise

Definition 16. Two COWS KF services s1 and s2 are independent requesting if

res(s1) ∩ res(s2) = ∅

Note that if s1, s2 are two independent COWS KF services, then they are
both independent requesting and variable independent.

Given two languages L1 and L2 we characterize an encoding function b. c
from L1 to L2 as

1. Observation respecting if, for all P ∈ L1:

• for every maximal computation C of P ∈ L1 there exists a maximal
computation C′ of bPc such that Obs(C) = Obs(C′).

• for every maximal computation C of bPc there exists a maximal com-
putation C′ of P such that Obs(C) = Obs(C′).

2. Distribution preserving if, ∀P1, P2 ∈ L1, we have bP1 | P2c = bP1c | bP2c

3. Independence preserving if, given P1, P2 ∈ L1 such that P1, P2 are inde-
pendent, then bP1c and bP2c are independent.

4. Renaming preserving if, for any permutation π of the identifiers inL1 there
exists a permutation π′ in L2 such that bπ(P)c = π′ (bPc) and π(ωi) =

π′(ωi) for all i, i.e. π, π′ do not affect the special identifiers ωi reserved as
observables.

25

3.2. THE LEADER ELECTION PROBLEM CHAPTER 3. COWS COMMUNICATIONS

An observation respecting encoding is required to preserve and not add ob-
servables expressed along maximal computations. A distribution preserving
encoding has to maintain the parallel structure of encoded processes. An inde-
pendent-preserving encoding must not create new communication capabilities
at encoding time; the renaming preserving property, on the other hand, enforces
an encoding to be independent of the actual identifiers used in encoded pro-
cesses.

3.2 The Leader Election Problem

The Leader Election Problem (LEP) has been used in the expression and for-
malization of separation results [25, 32]. In an electoral system, it is required
that all participants eventually reach an agreement on a winner, which becomes
the new leader. In the model presented in [32], this fact is represented by the
presence of a barb ω j, if P j is the winner participant. Once a barb ω j is observ-
able, no other barb ωi, i , j can become observable. We recall the definition of
the FAP process NET = P1 | . . . | Pk from [32]: NET is defined as a system of
k participants where each Pi is defined as

Pi = mi | si | mi.si.
(
ωi | di1 | . . . dizi

)
| di1.

(
si | di1 | . . . dizi

)
...

| dizn.
(
si | di1 | . . . dizi

)
(3.1)

NET is an electoral system [32]: once a participant process Pi exhibits the
observable ωi, prioritized synchronizations on channels dnm enable inputs over
st and inhibit synchronizations over channels mt; when these are enabled, the
prioritized output over corresponding channels st have already been consumed,
so residuals of processes P j, j , i enter a deadlock state.

In the model, zi represents the number of neighbours for participant Pi, where
two participants Pi and P j are neighbours if they share a communication link,

26

CHAPTER 3. COWS COMMUNICATIONS 3.3. SEPARATION RESULT

represented in NET by channel di j. In general zi ≤ k, meaning that NET is not
needed to be fully connected for the model to work; in fact it is sufficient that
NET is connected, i.e. if some participants Pr, Ps are independent (sharing no
free name), then there exists a list of participants Nbs = [P1, . . . , Pk] such that
Pr, P1 are neighbours as well as Pk, Ps, and for each 1 ≤ i < k, we have that
Pi, Pi+1 ∈ Nbs are neighbours.

Note that each Pi, if considered in isolation, is an electoral system on its
own.

3.3 Separation Result

Using the Leader Election Problem example, we will show that FAP cannot be
encoded into COWS KF by an observation respecting, independence preserv-
ing, distribution preserving and renaming preserving encoding function. First,
we want to underline a peculiarity of the communication priority mechanism of
COWS KF, which will be used when deriving the main result.

Lemma 1. Let s = [ũ0]([n1]s1 | (g1 + g2)) such that s1
p.o ! ñ
−−−−→ s′1, g1 + g2

p.o ? ũ
−−−−→

s′2 and s
p.o · ε · ñ · ũ
−−−−−−−→ s′1 | s′2σ where σ = {n1/v1} ∪ σ

′ for some v1 ∈ ũ; then s′2σ

cannot perform a request action on an endpoint using n1 as either partner or

operation name.

Proof. By the definition of the syntax of COWS KF, all endpoints of request
actions are composed of names in N , so no substitution induced by a commu-
nication action can alter their partner or operation components.

�

The implications of the inherent prioritization of communications given by
the matching mechanism used in COWS KF can be subtle. For example, a com-
munication inhibition can happen only on a common endpoint. In other words,
service s1 can prevent a communication involving s2 only if s1 and s2 share at

27

3.3. SEPARATION RESULT CHAPTER 3. COWS COMMUNICATIONS

least two free names (forming a communication endpoint): communications on
different endpoints are executed without taking into account the different num-
ber of substitutions induced by the matching function, which is the mechanism
used to introduce the concept of priority in the semantics of the language.

Moreover, for Lemma 1, the creation of new communication links at execu-
tion time between previously independent services, given by the name-passing
capabilities of the language, is not as powerful as the static definition of commu-
nication capabilities at design time: while the latter can involve a two-way use
of endpoints (both for request and invoke activities), the former can create only
one-way communication endpoints (only for invoke activities): if the scope of
a name n is extruded to incorporate service s2 as result of a substitution induced
by the execution of a communication with s1, then s2 and its residuals cannot
use n as part of the endpoint of a request action.

We now consider a FAP process NET4 defined as in Definition 17.

Definition 17. NET4 is the process defined as

P0 | P1 | P2 | P3

where each Pi is defined as in Equation (3.1) and, for each pair i, j with j =

(i + 1) mod 4, Pi and P j share a unique name di j = d ji. For clarity, process Pi

is associated to observable ωi.

Given the structure of processes Pi and the fact that NET4 is connected,
then it is a FAP electoral system [32]. We will show that, when considering an
observation respecting, distribution preserving, independence preserving and
renaming preserving encoding b. c from FAP to COWS KF, bNET4c is not an
electoral system.

First of all, to understand the dynamics of the electoral system NET4 and of
its encoded version bNET4c, it can be useful to consider a graphical visualiza-
tion of their interaction capabilities. Using as a basis the concept of hypergraph

28

CHAPTER 3. COWS COMMUNICATIONS 3.3. SEPARATION RESULT

associated to a network [26, 25], we can represent NET4 and bNET4c as con-
nected graphs, presented in Figure 3.1. This figure presents also the structure of
[ũ]

∏
i≤3 si, a generic evolution of bNET4c after k steps such that

bNET4c
αi
=⇒

((k))
≡ [ũ]

∏
i≤3

si

Each solid edge in Figure 3.1 represents an interaction capability among
subservices on shared endpoints introduced at encoding time, i.e. two nodes
connected by a solid edge can use the shared endpoints for performing both
invoke and request actions. We denote such endpoints as bidirectional. Dot-
ted edges represent runtime-created interaction capabilities that, for Lemma 1,
cannot involve bidirectional endpoints. This difference in the nature of commu-
nication endpoints has a pivotal role in the separation result that is presented in
Theorem 2.

The structure of bNET4c can be derived reasoning on the properties of func-
tion b. c starting from the definition of NET4: b. c is distribution preserving,
so we can identify a service bPic for each Pi composing NET4; b. c is indepen-
dence preserving, so no new interaction capability is introduced in bNET4c with
respect to the ones already present in NET4.

Intuitively, the separation result between FAP and COWS KF is based on the
fact that the symmetry in the COWS KF service bNET4c, for some computation,
cannot be broken, as shown in Theorem 1.

When considering NET4 = P0 | P1 | P2 | P3 as defined in Definition 17, the
concept of symmetry can be expressed identifying a particular substitution σ1

such that

Piσ1 ≡F P(i+2) mod 4 for i ∈ {0, 1, 2, 3}

Given the definition of NET4, in which processes Pi are equal modulo re-
naming, such a substitution σ1 exists. Since we are considering a distribu-
tion preserving and renaming preserving encoding function b. c from FAP to

29

3.3. SEPARATION RESULT CHAPTER 3. COWS COMMUNICATIONS

Figure 3.1: Graph representations of NET4 (top left), bNET4c (top right) and a residual of
bNET4c with runtime-created communication capabilities (bottom): nodes represent process-
es/services, solid arcs represent communication capabilities defined at design/encoding time,
dotted arcs represent communication capabilities obtained at runtime.

30

CHAPTER 3. COWS COMMUNICATIONS 3.3. SEPARATION RESULT

COWS KF, a similar property holds also for bNET4c = bP0c | bP1c | bP2c | bP3c:
there exists a substitution σ2 such that

bPicσ2 ≡
⌊
P(i+2) mod 4

⌋
for i ∈ {0, 1, 2, 3}

We will use the notation 〈〈r〉〉 to denote any service s ≡ [ũ]r, to focus on the
relevant structure of services. We will also use function ϕ(.), defined as

ϕ(n) = (n + 2) mod 4

as a shorthand to denote the indexes of symmetric COWS KF services in bNET4c.

Theorem 1. Let b. c be a observation respecting, distribution preserving, inde-

pendence preserving and renaming preserving encoding of FAP into COWS KF.

Then bNET4c
αh
=⇒

(2k)
ssym ≡ 〈〈r0 | r1 | r2 | r3〉〉 where riθ1 ≡ rϕ(i) and such that

ri, rϕ(i) are independent requesting and ri, r j, with i, j ∈ {0, 1, 2, 3} and i , j, are

variable-independent.

Proof. By induction on the length of the transition sequence
αh
=⇒

(2k)
. Without

loss of generality, we will assume that si = s0 is the service performing the
invoke action involved in the transition s ≡ 〈〈s0 | s1 | s2 | s3〉〉

α
−→ s′ with α =

p.o · ε · ñ · ũ, so we have that s0
p.o ! ñ
−−−−→ s′0.

• k = 1

We have that bNET4c ≡ s
α
−→ s′ with α = p.o · ε · ñ · ũ for some p, o, ñ, ũ.

Since s ≡ [ũ](
∏

si), and since s is closed, we can consider the derivation
tree for transition

α
−→ as the one concluded with a unique application of rule

(struct) and with applications of rules (del sub) and (del p) involving all
names and variables in ũ at the bottom, so that we can focus on the relevant
subservice s0 | s1 | s2 | s3 and its behaviour.

In the base of the induction we have to distinguish two cases, based on the
relationship between the two services s0 and s j involved in the synchro-
nization.

31

3.3. SEPARATION RESULT CHAPTER 3. COWS COMMUNICATIONS

1. (s0, internal synchronization). We have s0
p.o ·σ0 · ñ · ũ
−−−−−−−−→ s′0. By hypoth-

esis services s1, s2, s3 cannot inhibit this transition by offering a best
matching request action on endpoint p.o. The list of substitutions σ0

induced by the communication cannot affect s1 and s3, since services
si are variable independent. By the symmetry existing between s0 and
s2, service s2 can perform its own internal synchronization

s2
p′.o′ ·σ2 · ñ′ · ũ′
−−−−−−−−−−→ s′2

with |M(̃n, ũ)| = |M(̃n′, ũ′)|. By symmetry this transition cannot be
inhibited by s1, s3. The same holds for s′0σ0, since s0 and s2 are in-
dependent services, so they are both variable independent and request
independent. We get that

s
p.o · ε · ñ · ũ
−−−−−−−→ s′ =

〈〈
s′0σ0 | s1 | s2 | s3

〉〉
and that

s′
p′.o′ · ε · ñ′ · ũ′
−−−−−−−−−→ s′′ =

〈〈
s′0σ0 | s1 | s′2σ2 | s3

〉〉
= 〈〈(r0 | r1 | r2 | r3)〉〉

Starting from θ1 and taking into consideration new substitutions in σ0

and σ2 to define θ2, we can state that

riθ2 ≡ rϕ(i)

Service s′′ is still symmetric and is such that pairs (r0, r2) and (r1, r3)
are independent requesting and variable-independent.

2. (s0, s j, j ∈ {1, 3}, i.e. neighbour services and p.o bidirectional be-
tween s0, s j). The request action is performed by either s1 or s3; let
consider s1 (the other case is specular) and let σ1 be the list of substi-
tutions induced by the executed communication, whose scope is lim-
ited to s′1, since services si are all variable independent. We have that

32

CHAPTER 3. COWS COMMUNICATIONS 3.3. SEPARATION RESULT

s1
p.o ? ũ1
−−−−−→ s′1. By the symmetry hypothesis, we have that s2

p′.o′ ! ñ′
−−−−−→ s′2,

with s′0, s
′
2 symmetric and s3

p′.o′ ? ũ′
−−−−−−→ s′3 with s′1, s

′
3 symmetric. Note

that s1, s3 are independent services, and by Lemma 1 also s′1σ1, s′3
are independent requesting and, moreover, they are also variable in-
dependent. For these reasons, no request in s′0 or s′1σ1 can inhibit the
synchronization between s2 and s3. Moreover, a match between ũ′ and
ñ′ such that |M(̃n, ũ)| = |M(̃n′, ũ′)| has to be defined for the symmetry
condition. We finally get that

s
p.o · ε · ñ · ũ
−−−−−−−→ s′

p.o · ε · ñ′ · ũ′
−−−−−−−−→≡ s′′ =

〈〈
(s′0 | s

′
1σ1 | s′2 | s

′
3σ3)

〉〉
= 〈〈(r0 | r1 | r2 | r3)〉〉

where σ3 is the list of substitutions induced by the second communi-
cation action, whose scope is limited to s′3. Starting from θ1 and taking
into consideration new substitutions in σ1 and σ2 to define θ2, we can
state that

riθ2 ≡ rϕ(i)

We obtain that s′′ is symmetric and is such that pairs (r0, r2) and (r1, r3)
are independent requesting and variable-independent.

Note that, after the application of the substitution lists σ1 and σ3 to re-
spectively s′1 and s′3, new communication capabilities could have been
formed between these residual services. As shown in Lemma 1 these
substitutions cannot involve any component of a request endpoint and,
therefore, cannot involve bidirectional endpoints. These communica-
tion capabilities created at runtime are represented by dotted arcs in
Figure 3.2.

• k > 1

33

3.3. SEPARATION RESULT CHAPTER 3. COWS COMMUNICATIONS

As before, we can consider the derivation tree for transition s
α
−→ s′, with

α = p.o · ε · ñ · ũ, as the one concluded with an unique application of rule
(struct) and with applications of rules (del sub) and (del p) involving all
names and variables in ũ, at the bottom.

In the proof for the step of the induction on the length of
α
=⇒

(2k)
we have

to consider two additional cases with respect to the base of the induction.
These additional cases are given by the possibility of a communication
happening on runtime-created channels, represented in Figure 3.2 with
dotted arcs, between s0 and its symmetric service s2 or with one of its
neighbours s1, s3.

1. (s0, internal synchronization). The proof for this case is identical to
the corresponding case presented for the base of the induction.

2. (s0, s j, j ∈ {1, 3} and p.o bidirectional between s0, s j). The proof for
this case is identical to the corresponding case presented for the base
of the induction.

3. (s0, s j, j ∈ {1, 3} and p.o not bidirectional between s0, s j). Note that
the proof for the previous point, which refers to the corresponding
case of the base of the induction, does not depend on the fact that p.o

is bidirectional, and so holds also for this case.

4. (s0, s2, i.e. symmetric services). In this case, we consider a communi-
cation happening on an endpoint whose components have been shared
at runtime between independent requesting services. By assumption

we have s0
p.o ! ñ
−−−−→ s′0 and s2

p.o ? ũ2
−−−−−→ s′2. Given that s0 and s2 are sym-

metric, we have

s0 ≡ p.o ! ñ | p′.o′ ? ũ0.r0 + g0

s2 ≡ p′.o′ ! ñ′ | p.o ? ũ2.t2 + g2

34

CHAPTER 3. COWS COMMUNICATIONS 3.3. SEPARATION RESULT

We can then write that s′0 = p′.o′ ? ũ0.t0 + g0 and t2 = p′.o′ ! ñ′ | s′2.
We get that

s
p.o · ε · ñ · ũ
−−−−−−−→≡ s′ =

〈〈
(p′.o′ ? ũ0.t0 + g0 | s1 | p′.o′ ! ñ′ | t2 | s3)σ2

〉〉
for some substitution list σ2 induced by the communication. Since
s0, s2 are independent requesting and variable independent, so are ser-
vices s′0 and s′2, even when considering substitution σ2. Since func-
tion b. c is distribution preserving, services si do not share variables,
so substitution σ2 does not affect s′0, s1, s3.

Services s1 and s3 are symmetric and since they did not interfere with
the communication on endpoint p.o, they do not offer a request on
endpoint p′.o′ with M(̃n′, ũ0) = (, , j′, ,) with j′ < j, even when
considering substitution σ2 so we can conclude that

s′
p′.o′ · ε · ñ′ · ũ0
−−−−−−−−−−→≡ s′′ = 〈〈(t0σ0 | s1 | t2σ2 | s3)〉〉

= 〈〈(r0 | r1 | r2 | r3)〉〉

where |M(̃n, ũ)| = |M(̃n′, ũ0)|. Starting from θ1 and taking into con-
sideration new substitutions in σ0 and σ2 to define θ2, we can state
that

riθ2 ≡ rϕ(i)

Service s′′ is still symmetric and is such that pairs (r0, r2) and (r1, r3)
are independent requesting and variable-independent.

�

Given the result presented in Theorem 1, bNET4c has at least one computa-
tion that does not break the initial symmetry. Theorem 2 uses this fact to obtain
the separation result between FAP and COWS KF.

35

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

Theorem 2. There is no observation respecting, distribution preserving, in-

dependence preserving and renaming preserving encoding of the FAP process

NET4 in COWS KF.

Proof. Let assume b. c is a observation respecting, distribution preserving, inde-
pendence preserving and renaming preserving encoding of FAP into COWS KF.
Applying Theorem 1 to bNET4c, we obtain that, since there exists at least one
maximal computation C of bNET4c along which the symmetry cannot be bro-
ken, one of the following holds

1. {ωi such that i = 0, 1, 2, 3} ∩ Obs(C) = ∅

2. {ωi such that i = 0, 1, 2, 3} ∩ Obs(C) =
{
ωi, ω j such that i , j

}
3. {ωi such that i = 0, 1, 2, 3} = Obs(C)

In either case, b. c is not observation respecting and bNET4c is not an electoral
system, which leads to a contradiction. �

Theorem 2 underlines the difference between the global priority mechanism
of FAP and the communication mechanism based on correlation sets and best
matching peculiar to COWS. The distribution preserving and independence pre-
serving properties, in particular, are at the basis of the proof of the non-existence
of the encoding of FAP into COWS KF: enforcing these properties means lim-
iting the interaction and interference capabilities of COWS KF services to such
an extent that a global prioritization of actions cannot take place.

3.4 Global Priorities in COWS

Even if a separation result between FAP and COWS KF exists, this does not
mean that COWS and, more interestingly, COWS KF cannot encode FAP. Of
course we will need to lift some of the requirements on the encoding function.
In particular, first we will show that FAP can be encoded in COWS using an

36

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

observation respecting encoding function, whose definition will take advantage
of the full syntax/semantics of COWS introducing also kill activities. Subse-
quently, we will present an observation respecting encoding function from FAP
to COWS KF.

To better understand the rationale of the encoding functions, it can be use-
ful to start abstracting from the concurrent paradigm and focus on the coarse-
grained steps that the protocols introduced by the encoding functions perform.
For this reason, we start the presentation of the encoding functions by comment-
ing on a high-level imperative view of the protocol, represented in Figure 3.2
and summarized in Pseudocode 3.1. Given a FAP process P ≡F

∏
i6n xi.Pi′ |∏

j6m x j |
∏

k6o xk, encoded unguarded input actions xi.Pi′ are taken into ac-
count one at a time (line 2), and a corresponding encoded high-priority output
action xi is searched (line 3). If one is found, then the synchronization takes
place, the encoding of the residual Pi′ is instantiated and a subsequent clean-
ing phase is executed before restarting the loop (lines 4-7). If no high-priority
match could be found for any encoded input, then the protocol proceeds per-
forming a similar search for a low-priority match (lines 10-17). If no match is
found, then lines 12-15 are never executed, and the algorithm terminates reach-
ing a deadlock state (lines 18 and 20), meaning that P 9. In the presented
encoding, i f statements are rendered by nondeterministic choices composed of
competing request activities presenting different numbers of variables as pa-
rameters, thus having different priorities, given the communication paradigm of
COWS. Cleanup phases are modelled using combinations of kill activities and
protections, while f or operators and goto operators are modelled using agent
identifiers.

3.4.1 Encoding Function J. K

We now present the formalization of J. K : LF → LCOWS. This function is not
distribution preserving nor independence preserving. We make use of a sup-

37

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

Pseudocode 3.1 Algorithmic representation of the protocol introduced by the encoding func-
tions
Input: encoded process P ≡F

∏
i xi.Pi′ |

∏
j x j |

∏
k xk

1: loop
2: for all input xi.Pi′ do
3: if ∃ xi then
4: consume xi, xi

5: instantiate Pi′;
6: cleanup;
7: goto 1;
8: end if
9: end for

10: for all input xi.Pi′ do
11: if ∃ xi then
12: consume xi, xi

13: instantiate Pi′;
14: cleanup;
15: goto 1;
16: end if
17: end for
18: goto 20;
19: end loop
20: deadlock;

porting function L. Mh l
r LF → LCOWS. Table 3.3 presents the definition of the

encoding function J. K. In the encoding, h, l, r are bound names introduced by
the encoding, while m̃ contains all the names in the process P. Observables
are not in m̃. COWS variables introduced by the encoding are denoted by vi.
Other bound identifiers introduced by the encoding are to be considered COWS
names. Pseudocode 3.2, Pseudocode 3.3 and Pseudocode 3.4 present the defi-
nitions of the COWS agents used in the encoding procedure.

The search protocol introduced by function J. K is driven by the encoding of
input actions which, once activated, try to synchronize with a matching out-
put function. The activation part of the protocol is performed using a token,

38

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

token: high priority

high priority search

grant token high priority communication

token: low priority

no high priority communication

low priority search

grant token

low priority communication

end

no low priority communication

Figure 3.2: Representation of the protocol introduced by the encoding functions

which is initialized by a Monitor agent and is passed along Input agents. When
considering the evolution of the search protocol, various scenarios can arise,
depending on the presence of a matching Output agent and depending on its
priority: as expected, higher priority output actions are probed before low pri-
ority ones. After each successful communication, blocked and unexecutable
actions are removed and the protocol is reset. If no successful communication
could be performed, the protocol is halted: no further repetition of the search
will find an executable communication so, to avoid livelocks and to reflect the
deadlocked state of the encoded FAP process, agent Monitor is removed from
the system along with the token.

The use of a single token allows only one Input agent to be active at any
given time. Each activated Input agent performs a search for a matching high
priority output. If the search is successful, then the synchronization is per-
formed. If this search ends without finding a suitable high priority output, then
another input action gets the token and is allowed to perform a similar search.

39

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

JPK = [h, l, r, m̃]
(
Mon2(h, l, r) | LPMh l

r

)
LP | QMh l

r = LPMh l
r | LQMh l

r

Lx.QMh l
r = {|Inputx.Q(x, h, l, r)|}

LxMh l
r = {|Output(x, l)|}

LxMh l
r = {|Output(x, h)|}

L0Mh l
r = 0

Table 3.3: Definition of the function J. K, encoding FAP into COWS

If no input action finds a suitable high priority output, all input actions, once
granted the token, perform a search for a suitable low priority output. As before,
if a suitable encoded output is found, then the synchronization is performed and
the encoded residual of the input action is instantiated. Encoded input actions
perform their searches in a serialized way, so that there is at most one input
action active at any given time.

After a successful communication, the residuals of the Input agents involved
in the search, but not in the communication, trigger a kill action each; these
actions clean up their states, removing any stale part and leaving a protected
instance of the input actions.

We now give a finer description of agents involved in the encoding. Agent
Monitor(h, l, r), whose definition is presented in Table 3.2, has the primary role
of instantiating the token, performing the first invocation on channel search.h.
An encoded input action can perform the corresponding request activity (with
the same parameter, thus involving no substitution) and, then, search for an
encoded high priority output process or regenerate the invocation over search.h,
which activates another encoded input. After all Input agents have performed
the search for a high priority output, the last activated Input action has a pending
invoke action on endpoint search.h. This is removed by agent Monitor, which
performs a request activity on the same endpoint involving two substitutions.

If the search performed by an active Input agent is concluded positively, that

40

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

agent (Table 3.3) synchronizes over comm. f inish with the found encoding of a
high priority output, with h (for high) as parameter. Monitor then forces a reset
of the state of all invocations not involved in the executed communication, as
well as its state. On the other hand, if the search is concluded without finding a
suitable encoded high priority output, then the last invocation over search.h can
only synchronize with the request defined in agent Monitor; this communica-
tion involves one substitution. The residual of agent Monitor generates then a
signal triggering the search for a low priority output action, with an invocation
over search.l. At this point, if the search is concluded positively, then the corre-
sponding Input agent performs an invocation on comm. f inish with l (for low) as
parameter; otherwise, the last Input agent involved synchronizes with Monitor

over search.l with a communication involving one substitution. In both cases,
a reset procedure for the Input agents involved in the search is initiated. In the
first case, a fresh instance of agent Monitor is ready to restart the search pro-
cedure. In the second case agent Monitor is not instantiated again, since a new
search would lead to the same (negative) result: this means that the residual
of the encoded process enters a deadlock, since no service has an unguarded
invocation on endpoint search.h.

The signalling of the reset procedure is performed through channel hard.r.
As before, agent Monitor performs the first invoke activity while each Input

agent, which has been considered while searching for a feasible synchroniza-
tion, first performs the corresponding request activity and subsequently is ready
to perform another invoke activity on channel hard.r. The last Input agent can
only synchronize over hard.r with agent Monitor, which can perform a request
activity on endpoint hard.r involving a substitution.

After the synchronization over endpoint search.h, an Input agent, encoding
an input on x, searches for a corresponding encoded high priority output ac-
tivity, trying to synchronize over endpoint x.h. If such an agent exists, then a
communication involving no substitution can happen and, subsequently, a syn-

41

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

Pseudocode 3.2 Definition of the COWS agent Monitor(x, l, r), introduced by function J. K
1: Monitor(h, l, r) =

2: (search.h ! 〈h〉
3: | ([v1]search.h ? 〈v1〉 .(
4: search.l ! 〈l〉
5: | [v2]search.l ? 〈v2〉
6: .CBlock(r, kcl)
7: +comm. f inish ? 〈l〉
8: .CReset(h, l, r, kcl)
9:)

10: +comm. f inish ? 〈h〉
11: .CReset(h, l, r, kcl)
12:)
13:);
14: CReset(h, l, r, kcl) =

15: hard.r ! 〈r〉
16: | [v3]hard.r ? 〈v3〉 .(
17: Monitor(h, l, r)
18:);
19: CBlock(h, l, r, kcl) =

20: hard.r ! 〈r〉
21: | [v4]hard.r ? 〈v4〉 .0;

chronization over x.com is the only possible outcome. Conversely, the Input

agent performs an internal communication on endpoint x.h involving one sub-
stitution (thus having lower priority); the residual of the Input agent gives up
its turn, performing an invocation activity over search.h. The remainder of the
behaviour consists of a request activity over search.l; after this request activity
is executed, it means the Input agent can search for a low priority output over
x. The behaviour is very similar to the high priority search.

In parallel to this subprocess, each Input agent presents a subprocess (a re-
quest activity over hard.r) involved in resetting the state of the encoded input
to its initial state, as well as a subprocess (a request activity over so f t.r) which

42

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

Pseudocode 3.3 Definition of L. Mh l
r for a FAP input process

1: Inputx.Q(x, h, l, r) =

2: [kin][myid](search.h ? 〈h〉 .(
3: x.h ! 〈x, h〉
4: |(x.com ? 〈x, h〉
5: .(so f t.r ! 〈myid, h〉)
6: +[v6]x.h ? 〈x, v6〉 .(
7: search.h ! 〈h〉
8: |search.l ? 〈l〉 .(
9: x.l ! 〈x, l〉

10: |(x.com ? 〈x, l〉
11: .(so f t.r ! 〈myid, l〉)
12: +[v7]x.l ? 〈x, v7〉 .(search.l ! 〈l〉)
13:))))
14: |(hard.r ? 〈r〉 .(
15: (kill(kin))
16: |{|hard.r ! 〈r〉 |}
17: |Lx.QMh l

r)
18: +[prio]so f t.r ? 〈myid, prio〉 .(
19: |LQMh l

r

20: |comm. f inish ! 〈prio〉
21:)))
22:);

is triggered if and only if a suitable Output agent has been found and the cor-
responding communication has been performed. Service LRMh l

r , encoding the
residual R is then instantiated. The invoke activities over channel comm. f inish

are used to signal to Monitor that a communication has been successfully per-
formed, and that a hard reset is needed.

Pseudocode 3.4 Definition of the COWS agent Output(x, prio), introduced by function J. K
1: Output(x, prio) = x.prio ? 〈x, prio〉 .x.com ! 〈x, prio〉 ;

The encoding of a FAP output (in Pseudocode 3.4), both for high and low
priority, is rather simple when compared to the ones already presented. The

43

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

burden of the organization of the prioritized search is in fact divided between
agents Monitor and Input, so that an Output agent consists only of a request
activity on channel x.prio, where prio can be either h or l, and of a subsequent
invoke activity on channel x.com, which signals to the current activated Input

agent that the search has successfully concluded.

3.4.2 Encoding Function 〈. 〉

Encoding 〈. 〉 maps FAP processes to a subset of COWS, named COWS KF,
which is obtained removing kill actions and protection operators from the lan-
guage. Using properly nondeterministic choices and the communication paradigm
of COWS, it is possible to represent the protocol in Pseudocode 3.1 without the
use of kill activities and protection operators: the cleanup phase is modelled by
communications over endpoints noti f y.r and retry.r, which are used to notify
the completion of the simulation of a FAP synchronization and to signal to ac-
tivated input processes, not involved in the successful operation, to reset their
state. We present the definition of the encoding function 〈. 〉 from FAP processes
to COWS KF services in Table 3.4. The definitions of the agents used in Ta-
ble 3.4 are given in Pseudocode 3.5, Pseudocode 3.6 and Pseudocode 3.4 (FAP
output processes are encoded in the same way in both encoding functions).

〈P〉 = [h, l, r, m̃]
(
Mon2(h, l, r) | 〈|P|〉h l

r

)
〈|P | Q|〉h l

r = 〈|P|〉h l
r | 〈|Q|〉

h l
r

〈|x.Q|〉h l
r = In2x.Q(x, h, l, r)

〈|x|〉h l
r = Output(x, l)

〈|x|〉h l
r = Output(x, h)

〈|0|〉h l
r = 0

Table 3.4: Definition of the function 〈. 〉, encoding FAP into COWS

As can be seen comparing the definitions of homologous agents in J. K and
〈. 〉, the different approach in modeling the cleanup/reset phase causes only a

44

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

Pseudocode 3.5 Definition of Mon2(h, l, r)
1: Mon2(h, l, r) =

2: search.h ! 〈h〉
3: | ([x0]search.h ? 〈x0〉 .(
4: search.l ! 〈l〉
5: | ([x1]search.l ? 〈x1〉 .0
6: +noti f y.r ? 〈r〉 .(
7: retry.r ! 〈r〉
8: | [x2]retry.r ? 〈x2〉 .Mon2(h, l, r)
9:)

10:)
11:)
12: +noti f y.r ? 〈r〉 .(
13: retry.r ! 〈r〉
14: | [x3]retry.r ? 〈x3〉 .Mon2(h, l, r)
15:)
16:)

slight modification of the protocol: the major changes regard how service deal
with their internal cleanup, rather than the way in which cleanup notifications
are propagated between different services. Note that the definition of the encod-
ing for a FAP output process is identical in J. K and 〈. 〉.

3.4.3 Properties of encoding functions J. K and 〈. 〉

Since the properties for the two encoding functions are identical and the proof
strategies are very similar, we report here the proofs regarding the properties of
function 〈. 〉. This encoding function can be seen as more interesting, since it
maps FAP processes to the kill and protection-free fragment of COWS. Proofs
regarding the properties of function J. K are reported in Appendix A.

Theorem 3 states that all executions of a COWS KF service 〈P〉 represent
the first transition of an execution trace which, with a finite number of steps,
reaches a configuration congruent to the encoding of a residual of P itself or, if

45

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

Pseudocode 3.6 Definition of agent In2x.Q(h, l, r)
1: In2x.Q(h, l, r) =

2: search.h ? 〈h〉 .(
3: x.h ! 〈h〉
4: | (x.com ? 〈h〉 .(
5: noti f y.r ! 〈r〉
6: | 〈|Q|〉h l

r

7:)
8: +[y0]x.h ? 〈y0〉 .(
9: search.h ! 〈h〉

10: | (
11: search.l ? 〈l〉 .(
12: x.l ! 〈l〉
13: | (
14: x.com ? 〈l〉 .(
15: noti f y.r ! 〈r〉
16: | 〈|Q|〉h l

r

17:)
18: +[y1]x.l ? 〈y1〉 .(
19: search.l ! 〈l〉
20: | 〈|x.Q|〉h l

r

21:)))
22: +retry.r ? 〈r〉 .(
23: retry.r ! 〈r〉
24: | 〈|x.Q|〉h l

r

25:)
26:)
27:))

46

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

P cannot execute any action, a deadlocked configuration where the Mon2 agent
is no more present.

Theorem 3. If 〈P〉 −→ s then there exists s′ such that s −→∗ s′ and either s′ ≡ 〈P′〉

for some P′ such that P→ P′, or s′ ≡ [h, l, r, m̃]〈|P|〉h l
r with m̃ as defined above

and P such that P9.

Proof. By definition of the encoding, we have

〈P〉 = [h, l, r, m̃]
(
Mon2(h, l, r) | 〈|P|〉h l

r

)
We also know that the first action that service 〈P〉 can perform is a commu-

nication over endpoint search.h.

Branch 1 The structure of the derivation tree of the transition 〈P〉
search.h ·σ · h · u
−−−−−−−−−−−→

s, where we explicited the label , can have either the structure presented in Fig-
ure 3.3, in which case u = x0 or the structure presented in Figure 3.4, in which
case u = h. Given the semantic rules of COWS, the possibility of executing one
of the two is mutually exclusive.

...

[l, r, m̃]〈|P|〉h l
r

search.h · ε · h · x0
−−−−−−−−−−−→ s′1 h < d(α) s 8 h

(del p)
s = [h, l, r, m̃]〈|P|〉h l

r
search.h · ε · h · x0
−−−−−−−−−−−→ [h]s′1 = s′

Figure 3.3: Structure of the derivation tree for the transition 〈P〉
search.h · ε · h · x0
−−−−−−−−−−−→ s

In the former case, depicted in Figure 3.3, there is no In2 agent introduced
by the encoding, otherwise a communication presenting a best matching tu-
ple, thus having higher priority, could take place. Service s′ can evolve only
by performing a synchronization on endpoint search.l internal to agent Mon2
(lines 4,5 in Pseudocode 3.5) involving one substitution; the reached resid-
ual service, s′′, is in a deadlock state. We have that the sequence of reduc-

47

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

tions 〈P〉 = [h, l, r, m̃]
(
Mon2(h, l, r) | 〈|P|〉h l

r

)
−→∗ s′′ involves only actions in

agent Mon2, which leaves no residual in s′′. We can then conclude that s′′ ≡

[h, l, r, m̃]〈|P|〉h l
r .

For the analysis of the remaining cases, we note that process P can be gener-
ally written as P ≡F

∏
i6n xi.Pi |

∏
j6m x j |

∏
k6o xk: P presents n > 0 unguarded

input actions, m > 0 unguarded prioritized outputs and o > 0 unguarded unpri-
oritized outputs.

...

[l, r, m̃]〈|P|〉h l
r

search.h · ε · h · h
−−−−−−−−−−−→ s′1 h < d(α) s 8 h

(del p)
[h, l, r, m̃]〈|P|〉h l

r
search.h · ε · h · h
−−−−−−−−−−−→ [h]s′1 = s′

Figure 3.4: Structure of the derivation tree for the transition 〈P〉
search.h · ε · h · h
−−−−−−−−−−−→ s

High priority search If the latter case of Branch 1, depicted in Figure 3.4, takes
place, i.e. if the initial communication over endpoint search.h is not internal to
agent Mon2, by definition of encoding function 〈. 〉 the only other possibility is
that an In2 agent obtains the token for searching for a matching high-priority
output action, executing the request action over endpoint search.h at line 2 in
Pseudocode 3.6. Note that this communication involves no substitution. With-
out loss of generality, let suppose that the activated agent has been introduced
by the encoding when considering a FAP process xi′.Qi′. In this case, the In2
agent has been instantiated as In2x.Qi′ (xi′, h, l, r).

Branch 2 After the acquisition of the token, there are only two possible con-
tinuations: either the activated input agent performs an internal synchronization
on endpoint xi′.h (lines 3,8 in Pseudocode 3.6) involving one substitution, or a
communication over xi′.h involving no substitution between the activated In2

48

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

agent (line 3 in Pseudocode 3.6) and an agent Output(xi′, h) happens (line 1 in
Pseudocode 3.4).

In the former case, the encoding function has not introduced any service
Output(xi′, h), meaning that P , Q1 | xi′ | Q2 for any FAP processes Q1,Q2. As
a consequence of the synchronization, the residual of the activated In2 agent is
ready to release the high priority token, providing an invoke action on endpoint
search.h (line 9 of Pseudocode 3.6) and waiting for the low priority token (line
11) or for a reset signal (line 22). If the token is acquired by another In2 agent,
then the evolution is described reconsidering Branch 2.

High priority synchronization In the latter case, the only possible continuation
is a synchronization between the residual of the activated Input agent and the
residual of the found Output(x j′, h) agent over endpoint xi′.com, for x j′ = xi′

(lines 4 in Pseudocode 3.6 and line 1 in Pseudocode 3.4). The only possible con-
tinuation is a communication over endpoint noti f y.r with r as parameter (line
12 in Pseudocode 3.5 and line 5 in Pseudocode 3.6). There is only one possi-
ble continuation: a synchronization over endpoint retry.r: all residuals of Input

agents which unsuccessfully took part in the search for a matching high priority
output can perform a request activity over retry.r (line 22 in Pseudocode 3.6)
which equally matches the invoke activity at line 13 in Pseudocode 3.5. For
each of these Input residuals, the residual of the Input agent is composed of
an invoke action propagating the reset signal (line 23 in Pseudocode 3.6) and
of a new instance of the encoding of the input action. The last synchronization
over endpoint retry.r takes place between the last Input residual needing a reset
(line 23 in Pseudocode 3.6)and the residual of agent Monitor (line 14 in Pseu-
docode 3.5). After this synchronization, the residual of the system, identified
by s2, has the form presented in Pseudocode 3.7.

Note that s2 is congruent to the encoding of the FAP process P′, reachable
from P after a high priority synchronization over channel xi′ = x j′.

49

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

Pseudocode 3.7 Encoding of a FAP process after a successful low priority communication
1: s2 ≡ [h, l, r, m̃](Monitor(h, l, r)
2: | 〈|Qi′ |〉

h l
r

3: |
∏

i6n,i,i′〈|xi.Qi|〉
h l
r

4: |
∏

j6m, j, j′〈|x j|〉
h l
r

5: |
∏

k6o〈|xk|〉
h l
r

6:)

Low priority search If each activated In2xi.Qi(xi, h, l, r) agent has performed the
internal synchronization over endpoint xi.h, meaning that no corresponding high
priority output encoding service was found, the residual of service s is a ser-
vice s1 which we can identify, by construction of the encoding, as the service
presented in Pseudocode 3.8 If the w-th activated In2 agent is instantiated as
In2xw.Qw(xw, h, l, r) and one of the m unguarded prioritized outputs in P, indexed
by p is instantiated as Output(xp, h) where xw = xp, then the invoke action on
endpoint xw.h at line 3 in Pseudocode 3.6 best matches with the request action at
line 1 in Pseudocode 3.4. After this synchronization, the only possible continu-
ation is a synchronization over endpoint xw.com, following by an internal syn-
chronization in agent In2 over endpoint so f t.r (lines 5,18 in Pseudocode 3.6).
The encoding of the residual of the FAP input process Q is exposed, and the in-
formation about the executed synchronization is forwarded to the residual of the
Mon2 service over endpoint comm. f inish. (line 20 in Pseudocode 3.6 and line
10 in Pseudocode 3.5). The only possible continuation is the repetition, w − 1
times, of a synchronization over endpoint hard.r (line 15 in Pseudocode 3.5 and
line 16 in Pseudocode 3.6 synchronizing with line 14 in Pseudocode 3.6). This
synchronization triggers the cleanup phase, first carried out by the residual of
the w-th activated In2 agent, which performs the kill activity over kill label kin.
In this way each of the w−1 input agents is reset to its initial state 〈|xi.Qi|〉

h l
r . Af-

ter this sequence, the only possible synchronization is again on endpoint hard.r

and involves the invoke action at line 16 of the w − 1-th considered In2 agent

50

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

and the residual of agent Mon2 (at line 16 in Pseudocode 3.5) or, if w = 0 this
synchronization is internal to agent Mon2. In either case this step resets the
monitor to its initial state Mon2(h, l, r). At the end we obtain a service

s′′ ≡ [h, l, r, m̃]
(

Mon2(h, l, r)

|
∏

i≤n,i,w〈|xi.Qi|〉
h l
r

| 〈|Qw|〉
h l
r

|
∏

j6m, j,p〈|x j|〉
h l
r

|
∏

k 〈|xk|〉
h l
r

)
Service s′′ is structurally congruent to the residual of process P after a high

priority synchronization over name x.

Pseudocode 3.8 Encoding of a FAP process after an unsuccessful high priority search
1: s1 ≡ [h, l, r, m̃](search.l ! 〈l〉
2: | ([v2]search.l ? 〈v2〉 .0
3: +noti f y.r ? 〈r〉 .(...))
4: |

∏
i6n search.l ? 〈l〉 .(xi.l ! 〈xi, l〉 | . . .)

5: |
∏

j6m Output(x j, h)
6: |

∏
k6o Output(xk, l)

7:)

In case of an unsuccessful high priority search, the presented behaviour is
repeated, considering l in place of h as name for the identification of the priority.
In particular, we have that at least one synchronization happens on endpoint
search.l. Either it is an internal synchronization to the residual of agent Mon2
(lines 1-2 in Pseudocode 3.8) or, for some i′, it involves the request at line 5 in
Pseudocode 3.6 for the i′-th considered In2 agent.

Branch 3 In the first case, the encoding phase did not introduce any In2 agent.
This situation has already been discussed in Branch 1. In the second case, sim-
ilarly to what happened before, the residual of an In2 agent, indexed as i′ and
thus instantiated as In2xi′ .Qi′ (xi′, h, l, r) gets the token to perform the search for

51

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

an unguarded low priority output action indexed as k′, and thus encoded as
Output(xk′, l) with xi′ = xk′.

Branch 4 If such an Output agent does not exist, the only possible executable
action is an internal synchronization over endpoint xi′.l (lines 11 and 18 in Pseu-
docode 3.6), after which the token is again available. Another In2 agent can
then obtain the low priority token, and the protocol continues from the second
choice of Branch 3.

Low priority synchronization If, on the other hand, such an Output agent ex-
ists, the only possible executable action is a synchronization over endpoint
xi′.l involving no substitution (line 11 in Pseudocode 3.6 and line 1 in Pseu-
docode 3.4); this communication can be followed only by a synchronization
over endpoint xi′.com (line 14 in Pseudocode 3.6 and line 1 in Pseudocode 3.4).
At this point the encoding of the residual Qi′ of action xi′.Qi′ is instantiated,
alongside with the invoke activity over endpoint noti f y.r among agent In2 (line
15 in Pseudocode 3.6) and agent Mon2 (line 6 in Pseudocode 3.5). This syn-
chronization triggers n− 1 repetitions of a synchronization involving all In2 ac-
tions which participated in the search, but not in the successful communication.
These synchronizations happen over endpoint retry.r (line 7 in Pseudocode 3.5,
lines 22 and 23 in Pseudocode 3.6). After this sequence, the last considered In2
action synchronizes over endpoint retry.r with the residual of agent Mon2 (line
23 in Pseudocode 3.6 and line 8 Pseudocode 3.5) involving one substitution.
After this synchronization, a fresh instance of the Mon2 agent is ready to restart
the execution of the communication protocol. We obtain a service s2 which is
of the form presented in Pseudocode 3.9.

Note that service s2 has the form of the encoding of a FAP process

P′ ≡F Qi′ |
∏

i6n,i,i′
xi.Pi |

∏
j6m

x j |
∏

k6o,k,k′
xk

52

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

Pseudocode 3.9 Encoding, according to 〈. 〉, of a FAP process after a successful low priority
communication

1: s2 ≡ [h, l, r, m̃](Mon2(h, l, r)
2: | 〈|Qi′ |〉

h l
r

3: |
∏

i6n,i,i′〈|xi.Qi|〉
h l
r

4: |
∏

j6m〈|x j|〉
h l
r

5: |
∏

k6o,k,k′〈|xk|〉
h l
r

6:)

which represents the residual of process P after the execution of a low priority
synchronization over name xi′ = xk′ between process xi′.Qi′ and process xk′.

The last possibility that we have to consider is the one where all In2 agents
perform unsuccessfully a low priority search, i.e. no synchronization is possible
in the encoded FAP process P. In this case, the last synchronization happen-
ing over endpoint search.l involves the n-th In2 agent and the residual of the
Mon2 agent (line 5 in Pseudocode 3.5 and line 19 in Pseudocode 3.6). Note
that the obtained residual service s3 is congruent to the service presented in
Pseudocode 3.10, which can perform no action.

Pseudocode 3.10 Encoding after a totally performed unsuccessful search
1: s3 ≡ [h, l, r, m̃](
2: |

∏
i6n〈|xi.Qi|〉

h l
r

3: |
∏

j6m〈|x j|〉
h l
r

4: |
∏

k6o〈|xk|〉
h l
r

5:)

Given the distributive property of function 〈|. |〉h l
r , service s3 is congruent to

[h, l, r]〈|P|〉h l
r .

�

Theorem 4 states that each transition a FAP process P can execute can be
simulated by a number of transitions by the COWS KF service obtained encod-
ing P using function 〈. 〉.

53

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

Theorem 4. If P→ P′ then s = 〈P〉 −→∗≡ 〈P′〉

Proof. Given the semantics of FAP, a process P can perform a reduction P→ P′

in two cases: either it performs a high-priority synchronization P � P′ or it
performs a low-priority synchronization P 7→ P′. By rule (∗) in Table 3.1, these
two cases are mutually exclusive.

1. P� P′. There exists a proof tree for this derivation of the form

P ≡F Q1

-
x.R1 | x� R1

Q1 = x.R1 | x | R2 � R1 | R2 = Q2 Q2 ≡F P′

P� P′

Given this structure, we have P ≡F x.R1 | x | R2 and P′ ≡F R1 | R2. We
can then derive the encoding of P according to s = 〈. 〉 to be

s = 〈P〉 = [h, l, rm̃](
Mon2(h, l, r)
| In2x.R1(x, h, l, r)
| Output(x, h)
| 〈|R2|〉

h l
r

)

Given this structure and the definition of agents Mon2, In2 and Output,
we can describe a possible evolution of 〈P〉 that will reach a configuration
congruent to 〈P′〉, as needed.

We have that s can perform a communication over endpoint search.h in-
volving no substitution (line 2 in Pseudocode 3.5 and line 2 in Pseudocode 3.6).
Given the definition of agent Output(x, h) introduced by the encoding, the
only possible continuation is a synchronization over endpoint x.h involving
no substitution (line 3 in Pseudocode 3.6 and line 1 in Pseudocode 3.4) fol-
lowed by a synchronization over endpoint x.com (line 1 in Pseudocode 3.4

54

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

and line 4 in Pseudocode 3.6, which consumes the residual of agent Output(x, h).
The only possible continuation for the residual service is represented by a
synchronization over endpoint noti f y.r between the activated In2 agent
(line 5 in Pseudocode 3.6) and the residual of the agent Mon2 (line 6 in
Pseudocode 3.5. At this point the residual of agent In2 is composed of the
instantiation of the encoding of Q, which is the residual of the FAP input
action x.Q (line 6 in Pseudocode 3.6). The residual of agent Mon2 per-
forms an internal synchronization over endpoint retry.r (no other In2 agent
was activated, so the internal synchronization is the best matching, even if
it involves one substitution). A new instance of the Mon2 agent is instan-
tiated. After this action, the residual service is [h, l, r, m̃](Mon2(h, l, r) |
〈|R1|〉

h l
r | 〈|R2|〉

h l
r), which is congruent to the service obtained applying the

encoding function to P′.

2. P 7→ P′. Given the semantics of FAP, we have that P ≡F Q1 g, other-
wise rule (∗) in Table 3.1 could not have been applied. We have that the
derivation tree for P 7→ P′ is

P ≡F Q1

-
x.R1 | x 7→ R1 x.R1 | x | R2 g

Q1 = x.R1 | x | R2 7→ R1 | R2 = Q2 Q2 ≡F P′

P 7→ P′

Process P can be generally written as
∏

i6n xi.Pi |
∏

j6m x j |
∏

k6o xk. Given
the reduction tree, no prioritized synchronization can happen in P, so we
can state that for all i, j such that P ≡F xi.Pi | x j | R, we have xi , x j. In
the following, we will identify x.R1 as the î-th input process, i.e. xî.Rî, and
x as the k̂-th output process, i.e. xk̂.

We now consider the COWSservice s = 〈P〉. We can state that the number
of FAP input processes, and subsequently the number of In2 agents intro-
duced by the encoding, is n > 0; for this reason, s can evolve performing

55

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

a transition on endpoint search.h with no substitution involved between
agent Mon2 (line 2 in Pseudocode 3.5) and one of the In2 agents (line 2
in Pseudocode 3.6). At this point, the residual of the activated In2 agent
can only perform an internal synchronization on endpoint x.h involving
one substitution (lines 3 and 8 in Pseudocode 3.6): no matching service
Output(x, h), which could provide a better-matching request, has been in-
troduced by the encoding function. The residual of the In2 agent releases
the token, providing an invoke action on endpoint search.h. The sequence
of transitions is repeated for all the In2 agents introduced by the encoding,
where the last activated In2 agent releases the token by synchronizing with
the residual of the Mon2 agent on endpoint search.h) with one substitution
(line 9 in Pseudocode 3.6 and line 3 in Pseudocode 3.5).

At this point, the residual of the Mon2 agent provides an invoke action
on endpoint search.l representing the low priority token, which can be
acquired nondeterministically by one of the n In2 residuals. By simplic-
ity, let the residual of the encoding introduced by considering the FAP
input action xî.Rî be the first one to acquire the token by synchronizing
on endpoint search.l with the residual of agent Mon2. By reasoning on
the hypotheses, we derived the fact that a matching low priority output
action is present in P, so an agent of the form Output(xî, l) has been in-
troduced by the encoding. For this reason, a synchronization on endpoint
xî.l, involving no substitution, is possible (line 12 in Pseudocode 3.6 and
line 1 in Pseudocode 3.4). After a subsequent synchronization on endpoint
xî.com (line 14 in Pseudocode 3.6 and line 1 in Pseudocode 3.4), the en-
coding of the residual Pî is instantiated. The only possible continuation
is a synchronization on endpoint noti f y.r (line 15 in Pseudocode 3.5 and
line 6 in Pseudocode 3.5). This action signals to Mon2 that a low syn-
chronization has been performed, and that a reset signal has to be sent out
on endpoint retry.r to all the In2 agents who unsuccessfully searched for

56

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

a matching partner. The first signal is sent by the Mon2 agent itself (line
7 in Pseudocode 3.5); it matches with the request activity at line 22 in
Pseudocode 3.6. After this synchronization, the reset signal is replicated,
in parallel with a clean instance of the In2 agent. This sequence is re-
peated n − 1 times; the last invoke action on endpoint retry.r (line 23 in
Pseudocode 3.6) is intercepted by the residual of agent Mon2 (line 8 in
Pseudocode 3.5), whose residual is a fresh instance of the Mon2 agent.

After this sequence of transitions, we get a service

s′ ≡ [h, l, rm̃](
Mon2(h, l, r)
| 〈|Rî|〉

h l
r

|
∏

i6n,i,î〈|xi.Ri|〉
h l
r

|
∏

j6m〈|x j|〉
h l
r

|
∏

k6o,k,k̂〈|xk|〉
h l
r

)

Service s′ is congruent to service 〈P′〉, as required.

�

Theorem 5 states that encoding 〈. 〉 is livelock-free.

Theorem 5. If P9 then s = 〈P〉 −→∗≡ [h, l, rm̃]〈|P|〉h l
r

Proof. Given that P 9, we have that a proper derivation tree for a transition
of P could not be built. Given the set of semantic rules for FAP, this means
that neither of the two axioms in Table 3.1, namely rule (com) and (pr com),
could be applied. In other words, if we write P ≡F

∏
i6n xi.Pi |

∏
j6m x j |∏

k6o xk, xi , x j and xi , xk for all values 0 < i 6 n , 0 < j 6 m and
0 < k 6 o. Applying the encoding function 〈. 〉 to P, we obtain a service
s = {|hlr|}(Mon2(h, l, r) |

∏
i6n〈|xi.Pi|〉

h l
r |

∏
j6m〈|x j|〉

h l
r |

∏
k6o 〈|xk|〉

h l
r). Based on

57

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

the value of n, i.e. the number of In2 agent instantiated by the encoding, we
have two possible scenarios:

1. n = 0: the evolution of service s is the one presented for choice 1 in
Branch 1 for Theorem 6: service s can evolve only by performing a syn-
chronization on endpoint search.h internal to agent Mon2 (lines 2,3 in
Pseudocode 3.2) involving one substitution; after another internal synchro-
nization on endpoint search.l (lines 4,5 in Pseudocode 3.2), the residual
service, let call it be s′, is in a deadlock state. We have that the se-
quence of reductions 〈P〉 = [h, l, r, m̃]

(
Mon2(h, l, r) | 〈|P|〉h l

r

)
−→∗ s′ in-

volves only actions in agent Mon2, which is no more present in s′, i.e.
s′ ≡ [h, l, r]〈|P|〉h l

r .

2. n > 0: the evolution of service s has been presented in Theorem 6 when
considering unsuccessful searches for both high and low priority outputs.
We have that in P there is at least one unguarded input FAP process (n > 0);
given the definition of the encoding function, this means that at least one
unguarded In2 service is in the encoding 〈P〉. We also know that in P, for
all input processes, there is no unguarded matching output, otherwise P

could perform a transition, contradicting the hypothesis of the theorem.

Given the definition of the encoding function applied to P under these con-
ditions, all In2 agents, instantiated as In2xi.Qi(xi, h, l, r), are activated (one
at a time) through a communication labelled as search.h · ε · h · h (line 2 in
Pseudocode 3.5 and line 2 in Pseudocode 3.6) and declare the search as un-
successful by performing an internal synchronization labelled as xi.h · ε · h · y0

(lines 3,8 in Pseudocode 3.6). The last considered In2 agent synchronizes
with agent Mon2 with a communication labelled as search.h · ε · h · x0 (line
3 in Pseudocode 3.5 and line 9 in Pseudocode 3.6). This removes the
high priority token and instantiates the low priority one. All residuals of
In2 agents, which are at this point instantiated as a service congruent to

58

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

s∗i =≡ (search.l ? 〈l〉 .(. . .).

The residual of service 〈P〉, at this point, can only continue by performing
n times the sequence composed of a communication on endpoint search.l

(line 4 in Pseudocode 3.5 and lines 11,19 in Pseudocode 3.6), labelled
as search.l · ε · l · l, which activates one of the In2 residuals, followed by a
synchronization internal to the activated In2 agent on endpoint xi.l labelled
as xi.l · ε · l · y1 (lines 12, 18 in Pseudocode 3.6). As before, the possibil-
ity of having a communication on endpoint xi.l involving no substitution
(which would take precedence) is denied by the lack of any matching out-
put action in the encoded process. After each synchronization over xi.l,
a fresh instance of the i-th In2 agent involved in the last synchronization
is instantiated. The last synchronization on endpoint search.l is between
the last activated In2 agent and the residual of agent Mon2 (line 5 in
Pseudocode 3.5 and line 19 in Pseudocode 3.6). After this the residual
of agent Mon2 disappears. The obtained residual is congruent to service
[h, l, r, m̃]〈|P|〉h l

r . Since agent Mon2 is not present, the high priority token
(in the form of the unguarded invoke action on endpoint search.h) is not
reinstantiated, so the process is in a deadlock state.

�

We now present the theoretical results, homologous to the ones presented
for function 〈. 〉, that formalize the operational correspondence between a FAP
process and the COWS KF service encoding it according to function J. K. The-
orem 3 states that all executions of a COWS KF service JPK represent the first
transition of an execution trace which, with a finite number of steps, reaches a
configuration congruent to the encoding of a residual of P itself or, if P cannot
execute any action, a deadlocked configuration where the Monitor agent is no
more present. Theorem 7 is the counterpart to Theorem 6, as it states that each
transition a FAP process P can execute can be simulated by a number of transi-

59

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

tions by the COWS KF service obtained encoding P using function J. K. Finally,
Theorem 8 states that if P cannot perform any transition, then its encoding JPK,
after a sequence of transitions, reaches a deadlock state as well, avoiding the
presence of livelock loops.

Theorem 6. If JPK −→ s then there exists s′ such that s −→∗ s′ and either s′ ≡ JP′K
for some P′ such that P→ P′, or s′ ≡ [h, l, r, m̃]LPMh l

r with P such that P9.

Proof. The proof, which can be found in Appendix A.1, is very similar to the
one given for Theorem 6. �

Theorem 7 states that if a FAP process P is able to perform an action re-
ducing to P′, then the corresponding COWS service JPK can, after a number of
reductions, reach a residual that is congruent to JP′K. The number of steps re-
quired to reach this residual depends on the priority of the reduction that process
P performs.

Theorem 7. If P→ P′ then s = JPK −→∗≡ JP′K

Proof. The proof of Theorem 7, given in Appendix A.2, is very similar to the
proof of Theorem 4.

�

Theorem 8. If P9 then s = JPK −→∗≡ [h, l, r, m̃]LPMh l
r

Proof. The proof of Theorem 8, given in Appendix A.3, is very similar to the
proof of Theorem 5. �

3.4.4 Comments on Encoding Functions J. K and 〈. 〉

As we said in Chapter 1, there are two approaches to compare the expressive
power of process calculi: the absolute one, which regards the capabilities of
solving a given problem using a process calculus, and the relative one, which
studies of encoding functions from one language to another.

60

CHAPTER 3. COWS COMMUNICATIONS 3.4. GLOBAL PRIORITIES IN COWS

Whether one approach or the other is chosen, one has to specify which are the
properties that define a good encoding function, depending on the context and
on the task at hand. Given this fact, it is not surprising that a general agreement
has not been found on which properties have to be considered. For example, in
[25, 32] the concept of network symmetry plays a crucial role. For this reason,
an encoding is deemed as good if it is homomorphic w.r.t parallel composition:
a good encoding should not introduce a central synchronization process, which
would break the symmetry. In [24], however, it is argued that this requirement
is too strict and that, for practical purposes, a compositional encoding function
(which is allowed to introduce a central controller) is a more suitable choice;
the same property is required in [5] for basic encodings. Another example of
difference in the treatment of encoding properties is represented by name inde-
pendence: while in [5] and [32] independence preservation plays a crucial role,
it is considered in [33] only for the solvability of the Leader Election Problem
for ring network topologies. Another point of discussion is represented by di-
vergence: observation respecting encodings, such as those considered in [33],
cannot introduce divergence, while for some authors (e.g. [24]) to some extent
divergence introduction can be tolerated, if certain fairness or scheduling as-
sumptions are made; in some works (e.g. [5]), the requirement on divergence
introduction is dropped altogether.

Following the characterization of the COWS process algebra presented in
[5], where the language is proved to be non replacement free by analysing
the kill(.) prioritized operator, we focused our work on the communication
paradigm of COWS. This paradigm is based on pattern matching and introduces
a priority mechanism built on top of a best matching policy. We compared the
relevant fragment of the language (named COWS KF) to a fragment of CCS
with global priorities named FAP, presented in [32]. We concluded that there is
no observation respecting, independence preserving and distribution preserving
encoding of FAP into COWS KF. We then presented a compositional (but not

61

3.4. GLOBAL PRIORITIES IN COWS CHAPTER 3. COWS COMMUNICATIONS

distribution preserving) encoding of FAP into COWS, making use of both the
communication paradigm and the kill(.) operator. We showed that there exists
an operational correspondence between the original and the encoded process.
Moreover, the communication protocol introduced by the encoding allows a
COWS service, obtained encoding a FAP process, to detect a deadlock state in
the original process in a finite number of internal synchronizations, i.e. without
the introduction of live-locks.

62

Chapter 4

A Stochastic Extension

In this chapter we present a stochastic extension of COWS, named SCOWS,
revisiting the parts of the syntax and of the semantics presented in Chapter 2
which are affected by the extension. SCOWS was first introduced in [31]. With
respect to that work, the stochastic extension to COWS presented here differs
mainly in the definition of the computation of transition rates, which is now less
involved. Moreover, we present the implementation of a simulator which is able
to derive the whole Labelled Transition Systems of SCOWS terms and produc-
ing the associated Continuous Time Markov Chains. We describe optimizations
and implementation choices needed to consider non-trivial models.

4.1 Basic Notions

We now revise some notions about Continuous Time Markov Chains (CTMCs)
and quantitative properties expressed using CSL [3].

4.1.1 Continuous Time Markov Chains

CTMCs (Continuous Time Markov Chains) are one of the most common rep-
resentation for stochastic transition systems. In this formalism, a model C is
represented by a structure C =< S ,Q > where S is a countable set of states

63

4.1. BASIC NOTIONS CHAPTER 4. A STOCHASTIC EXTENSION

and Q :
[
qi j

]
, i, j ∈ {1, . . . , |S |} is the transition rate matrix associating a non-

negative real number to the pair of states (si, s j), if i , j; this means that the
system, when in si, performs a transition to s j with a propensity or, equivalently,
with a delay which is exponentially distributed according to rate qi j ∈ R>0.
Given the nature of Q, we have that qii = −

∑
j,i qi j 6 0.

Given C =< S ,Q > and si ∈ S , the exit rate of si is given by

E(si) =
∑

s j∈S ,i, j

qi j

Using the exit rate of a state si, it is possible to compute the probability that
a model C in state si at a given time will, at the next step, perform a transition
to state s j as

PC[si → s j] =
qi j

E(si)
Each rate in matrix Q is associated to a negative exponential distribution,

whose probability density function is defined as f (γ, x) = γe−γx with γ, x ∈ R>0

and cumulative density function is defined as F(γ, x) = 1 − e−γx. Historically,
the choice of exponential distributions for modelling time has been preferred for
two reasons: this is the only continuous distribution satisfying the memoryless
property and it is described by a single parameter, the stochastic rate γ.

4.1.2 Expressing Quantitative Properties

If we want to get quantitative information, e.g. regarding time, about a formal
model, we have to be able to express in a formal way the property we want
to check. In this work we consider CSL [3] as the language to express such
properties. In particular, here we present a version of CSL supported by the
PRISM model checker [17]. This tool supports properties specified to inquire
the transient behaviour of models P Z b[pathprop]) or their steady-state be-
haviour (SZb[pathprop]), where pathprop is a path property evaluated in the
current state and Zb is a probability bound or =?. In the former case, checking

64

CHAPTER 4. A STOCHASTIC EXTENSION 4.1. BASIC NOTIONS

the property gives a boolean result, while in the latter case the result is the prob-
ability of verifying pathprop. In the following, we will write s1, s2, . . . , sn to
indicate a path composed of the sequence of transitions s1 → s2 → . . .→ sn as-
suming that this sequence of transitions is defined for the considered CTMC
model. Path properties are expressed using propositions on local variables,
boolean operators and path operators X , U , F , whose meaning can be
summarized as:

1. next: X pathprop is true if the next state verifies pathprop

2. until: pathprop1 U pathprop2 is true for a path s1, . . . , sn if pathprop2

is true in a state si with 1 ≤ i ≤ n and in all preceding states s j, where
1 ≤ j < i, we have that pathprop1 is true

3. eventually: F pathprop is true if true U pathprop is true

Using these properties as building blocks, we can derive other useful opera-
tors, such as the always operator G pathprop, which can be used to express the
fact that pathprop is always true, the weak until operator (pathprop1 W pathprop2),
which differs from the until operator in that it does not require pathprop2 to ever
become true if pathprop1 remains true along the considered path, an the release

operator pathprop1 R pathprop2 which expresses the fact that pathprop2 is
true until pathprop1 becomes true, or pathprop2 is true forever.

Formally, these derived operators can be defined as

1. always: G pathprop is true if ¬ F ¬pathprop is true

2. weak until: pathprop1 W pathprop2 is true if pathprop1 U pathprop2 is
true or G pathprop1 is true

3. release: pathprop1 R pathprop2 is true if ¬(¬pathprop1 U ¬pathprop2)
is true

65

4.2. SCOWS CHAPTER 4. A STOCHASTIC EXTENSION

4.2 SCOWS

Following an approach similar to the ones used in [28], [15] and [27], the
stochastic extension of the considered language is based on defining a labelled
operational semantics and in associating each action to a stochastic rate, de-
noted by γ, γ′, δ, λ, . . . ∈ R>0. Rates model the time needed for actions to be
executed, or, alternatively, the delay associated to the triggering of actions. Ex-
ecution times and delays are modelled according to exponential distributions.
The syntax of SCOWS, derived from the one presented in Chapter 2 adding
rates, is presented in Table 4.1.

s ::= (kill(k), λ) | (u.u′ ! ũ, γ) | g | s | s | {|s|} | [d]s | S (d1, . . . , d j)

g ::= 0 | (p.o ? ũ. s, δ) | g + g

Table 4.1: Syntax of SCOWS

As stated in Chapter 2, we will use d, d′ to range overN∪V∪K and u, u′, . . .

to range over N ∪V. Given that scope extrusion is handled using opening and
closing of delimiters, the operational semantics of SCOWS is given as a labelled
system. For this reason, we let labels of the operational semantics contain names
and variables enclosed in parenthesis, like, e.g., (n) and (x), where (n) denotes a
name n whose scope has been opened. The set of names enclosed in parenthesis
is collectively referred to as (N), and the set of variables enclosed in parenthesis
is referred to as (V). We will use a, a′, . . . to range over N ∪ (N) and w,w′, . . .

to range over N ∪V ∪ (V). We extend the use of notation˜ for tuples so that
ã stays for a non-empty tuple of elements in N ∪ (N) and w̃ stays for a non-
empty tuple of elements in N ∪V ∪ (V). Functions f id(.), f n(.), f v(.), f kl(.)
and bid(.), bn(.), bv(.), bkl(.), defined in Chapter 2 for COWS services, are in-
tuitively extended to consider SCOWS services.

As for COWS services, given d̃ = d1, . . . , dn, we will often use the notation
[d̃]s or, alternatively, [d1, . . . , dn]s to represent service [d1] . . . [dn]s.

66

CHAPTER 4. A STOCHASTIC EXTENSION 4.2. SCOWS

We use σ,σ′, . . . to denote substitutions of names for variables. The usual
notation for substitutions is slightly abused, and in the labels of the operational
semantics we actually use substitutions to also carry information about scope
opening: for example, {(n)/v} denotes the substitution of a variable v with a
name n, when the scope of n has been opened. We also extend the definition of
the cosupport of a substitution: given a set of substitutions {a1/x1, . . . , a j/x j},
its cosupport csp({a1/x1, . . . , a j/x j}) is defined to be

{
a1, . . . , a j

}
. Given a set of

k substitutions σ = {a1/w1, . . . , ak/uk}, we define |σ| = k.

Each derivation step of SCOWS has to carry the information needed to com-
pute the stochastic delay associated to the executed action. If a SCOWS service
is able to perform a transition labelled by α, executing an action whose associ-
ated rate is ρ and reducing to s′, we write s

α
−−→ρ q s′. Set q = {d1, . . . , dn} is a

subset of identifiers in s, which is used in the decoration system introduced by
the operational semantics. The rate ρ is used to compute the transition rate, and
its form depends on α: if α = p.o ·σ · ñ · ũ, then ρ =

[
γ, δ

]
, where γ is the rate

of the invocation and δ is the rate of the request activity involved in the com-
munication. If α has one of the other forms, then ρ is the rate associated to the
single activity whose execution generated the transition. Set q will be omitted
when empty.

We now comment on the approach adopted for defining the operational se-
mantics of SCOWS and on the difference with respect to the one presented for
COWS. The most visible difference is the lack of a rule (struct) for SCOWS.
In a stochastic setting, such a rule would introduce the possibility of deriving
infinite transitions (labelled in a different way), from a term, thus breaking the
subsequent quantitative reasoning on the obtained transition system. For this
reason, we use the mechanism of scope opening and closing for names and
variables, along with a decoration system for agent instantiations.

We require that in SCOWS terms there must be non-homonymy between
bound and free identifiers, and also that bound identifiers must be all distinct.

67

4.2. SCOWS CHAPTER 4. A STOCHASTIC EXTENSION

These two conditions are necessary for the correct functioning of the open/close
mechanism used to modify the scope of a binder as consequence of the execu-
tion of a communication. These conditions are also necessary for the correct
behaviour of instantiated agent identifiers. For this reason, we adopt the mech-
anism of decoration in order to deal with the instantiation of agent identifiers,
whose body can contain bound identifiers. Note that, for each agent defini-
tion S (d′1, . . . , d

′
j) = s, we assume that service s respects the non-homonymy

condition. The decoration mechanism allows us to enforce the non-homonymy
condition when dealing, for example, with agents defined using recursion. We
denote with d(j) the fact that identifier d is associated with decoration j ∈ N.
If, in a service s, d appears associated with two different decorations j1 and j2,
then we consider d(j1) and d(j2) to be different.

The decoration mechanism is only a syntactic convenience, since d(j) can
be read as identifier d j, where j is integrated with the identifier itself. For this
reason, the decoration mechanism can be thought as a background machinery;
when not needed, we will avoid to make it explicit, in order to keep the no-
tation as clean as possible. For instance, when dealing with rule (s id), the
decoration mechanism plays a central role through the application of function
f dec(. , . , . , .), which is defined in Table 4.2. This function creates a list of
decorated identifiers which will substitute bound identifiers in the body of the
instantiated agent. The non-homonymy condition is maintained, since the fresh
decorations are created taking into account the set q, which contains the iden-
tifiers used in the whole service under consideration, the list b̃ of bound identi-
fiers defined in the body of the agent and the lists of formal/actual parameters
d1, . . . , dn and d′1, . . . , d

′
n for the agent under consideration.

When an identifier u is opened by the application of one of the semantic
rules, we record this fact by putting its occurrences in parentheses in the transi-
tion label α. This procedure is formalized by function open(. , .), presented in
Table 4.3.

68

CHAPTER 4. A STOCHASTIC EXTENSION 4.2. SCOWS

f dec([], q, d̃, d̃′) = []
f dec(d :: b̃′, q, d̃, d̃′) = d(j) :: f dec(̃b′, q, d̃, d̃′)

where j = max
({

k | d(k) ∈ (q ∪ b̃′ ∪ d̃ ∪ d̃′)
}
∪ {0}

)
+ 1

Table 4.2: Definition of function f dec(. , . , . , .)

open(n, α) =

p.o ? w̃{(n)/n} if α = p.o ? w̃
p.o ! ã{(n)/n} if α = p.o ! ã
p.o ·σ{(n)/x} · ñ · ũ if α = p.o ·σ · ñ · ũ
α otherwise

Table 4.3: Definition of function open(. , .)

We report the remarkable differences in the operational semantics rules of
SCOWS with respect to the ones introduced for COWS. The whole set of rules
for SCOWS can be found in Table 4.6 and Table 4.7. Given that we cannot
have a homologous of rule (struct) for SCOWS, the rule system uses the mech-
anism of scope opening and closing of names and variables. This mechanism is
formalized by rules (o req), (o inv), (o tau) and (del c).

Rule (o req) opens the scope of a variable x which appears in the list of
parameters w̃ of a request action.

s
p.o ? w̃
−−−−−−→δ q∪{x} s′ x ∈ w̃

(o req)
[x]s

open(x , p.o ? w̃)
−−−−−−−−−−−−→δ q s′

Rule (o inv) opens the scope of a name n appearing in the list of parameters
ã of an invoke action.

s
p.o ! ã
−−−−−→γ q∪{n} s′ n ∈ ã n < {p, o}

(o inv)
[n]s

open(n , p.o ! ã)
−−−−−−−−−−−→γ q s′

When considering a transition labelled by α = p.o ·σ · ñ · w̃ for a service
[n]s, rule (o tau) opens the scope of name n appearing in the cosupport of σ.

69

4.2. SCOWS CHAPTER 4. A STOCHASTIC EXTENSION

s
p.o ·σ · ñ · w̃
−−−−−−−−−→ρ q∪{n} s′ n ∈ csp(σ)

(o tau)
[n]s

open(n , p.o ·σ · ñ · w̃)
−−−−−−−−−−−−−−−→ρ q s′

When considering a transition labelled by α = p.o · {(n)/x}] σ · ñ · w̃ for a
service [x]s, rule (del c) performs the delayed substitution {n/x} on the resid-
ual service s′, while removing the delimiter for x and substituting it with the
delimiter for n.

s
p.o · {(n)/x}]σ · ñ · w̃
−−−−−−−−−−−−−−−→ρ q∪{x} s′

(del c)
[x]s

p.o ·σ · ñ · w̃
−−−−−−−−−→ρ q [n]s′{n/x}

Agent instantiation is treated explicitly by rule (s id), which is based on the
decoration machinery described before: when instantiating the service body
s, f̃ is the list containing fresh identifiers that can be used in place of the ones
appearing bound in s, in order to avoid name clashes with the identifiers already
present in the whole service. These are recorded in the set q.

s{d′1/d1, . . . , d′j/d j}{ f1/b1, . . . , fk/bk}
α
−−→ρ q s′ S (d1, . . . , d j) = s b̃ = bid(s) f̃ = f dec(̃b, q, d̃, d̃′)

(s id)
S (d′1, . . . , d

′
j)

α
−−→ρ q s′

Other differences regard the definition of the matching functionM(. , .), whose
definition is revised in Table 4.5 to treat the cases in which names and variables
have been opened by one of the rules (o req) and (o inv). In the definition,
operator @ represents the concatenation of two lists.

If we have M(. , .) = (σ, n, j, L, σ′), then σ represents the list of delayed
substitutions, σ′ is the list of substitutions to be applied to the residual of the
receiving service, named s′2 in rule (com), L is the list of identifiers for which a
binder with scope s′1 | s′2 must be created, j is the total number of substitutions
induced by matching ñ with ũ, i.e. j = |σ| + |σ′|.

70

CHAPTER 4. A STOCHASTIC EXTENSION 4.2. SCOWS

tau of(s′1, s
′
2, L, σ

′) =

 s′1 | s
′
2σ
′ if L = []

[n1, . . . , nh]
(
s′1 | s

′
2σ
′
)

if L = [n1, . . . , nh]

Table 4.4: Definition of function tau of(. , . , . , .)

s1
p.o ! ã
−−−−−→γ q∪id(s2) s′1 s2

p.o ? w̃
−−−−−−→δ q∪id(s1)∪id(s′1)∪{̃n} s′2 M(̃a, w̃) = (σ, ñ, j, L, σ′) ¬(s1 | s2) ↓ñ · j

p.o (com)
s1 | s2

p.o ·σ · ñ · w̃
−−−−−−−−−→[γ,δ] q tau of(s′1, s

′
2, L, σ

′)

The conclusion of rule (com) is based on the definition of tau of(. , . , . , .). The
purpose of this function, defined in Table 4.4, is to check if the name list L,
computed by functionM(̃a, w̃), is not empty, in which case for each element of
L a binder upstream of the parallel composition s′1 | s

′
2 is introduced. Names in

L are those opened names for which a substitution with an opened variable has
been induced by the matching mechanism.

M(w̃, ã) = match w̃ , ã with

n , n = (ε, n, 0, [], ε)

x , n = ({n/x}, n, 1, [], ε)

x , (n) = ({(n)/x}, n, 1, [], ε)

(x) , n = (ε, n, 1, [], {n/x})

(x) , (n) = (ε, n, 1, [n] , {n/x})

ww̃1 , ãa1 = (σ] σ1, ñn1, j + j1, L @ L1, σ
′] σ′1)

ifM(w, a) = (σ, n, j, L, σ′)
andM(w̃1, ã1) = (σ1, n1, j1, L1, σ

′
1)

M(w, n)]M(w̃1, ñ1)

default = ⊥

end match

Table 4.5: SCOWS: definition of functionM(. , .)

71

4.3. TRANSITION RATES COMPUTATION CHAPTER 4. A STOCHASTIC EXTENSION

-
(kill)

(kill(k), λ)
†k
−−−→λ q 0

-
(req)

(p.o ? ũ. s, δ)
p.o ? ũ
−−−−−→δ q s

s
α
−−→ρ q s′

(prot)
{|s|}

α
−−→ρ q {|s′|}

-
(inv)

(p.o ! ñ, γ)
p.o ! ñ
−−−−−→γ q 0

g1
α
−−→ρ q∪id(g2) s

(choice)
g1 + g2

α
−−→ρ q s

s
p.o · {n/x}]σ · ñ · ũ
−−−−−−−−−−−−−→ρ q∪{p,o,̃n,x} s′

(del sub)
[x]s

p.o ·σ · ñ · ũ
−−−−−−−−−→ρ q s′{n/x}

s
†k
−−−→ρ q∪{k} s′

(del k)
[k]s

†
−−→ρ q [k]s′

s
α
−−→ρ q∪{d} s′ d < d(α) s ↓d ⇒ (α = † or α = †k)

(del p)
[d]s

α
−−→ρ q [d]s′

s1
p.o ! ã
−−−−−→γ q∪id(s2) s′1 s2

p.o ? w̃
−−−−−→δ q∪id(s1)∪id(s′1)∪{̃n} s′2 M(̃a, w̃) = (σ, ñ, j, L, σ′) ¬(s1 | s2) ↓ñ · j

p.o
(com)

s1 | s2
p.o ·σ · ñ · w̃
−−−−−−−−−→[γ,δ] q tau of(s′1, s

′
2, L, σ

′)

Table 4.6: Operational Semantics of SCOWS, part 1

4.3 Transition Rates Computation

We define the computation of transition rates for pseudo-τ transitions when con-

sidering a SCOWS service s, namely s
†
−−→ρ s′ and s

p.o · ε · ñ · w̃
−−−−−−−−−→ρ s′. Following

the approach presented in [15], we make use of apparent rates. Informally, the
apparent rate of an action of type t is determined by the rate at which an exter-
nal observer witnesses a transition of type t, without being able to distinguish
between actions of the same type, i.e. the apparent rate of an action is the sum
of the rates of all executable actions that, according to an external observer, are
not different from the considered one. For this reason, the apparent rate depends
not only on the composed rate ρ associated to a transition, but also on all the
actions that the considered SCOWS service s can perform. We now formally
define the computation of pseudo-τ transition rates.

When we consider transitions of the form s
†
−−→ρ s′, the apparent rate is the

sum of the rates of all the kill activities that can be executed in s, which are all

72

CHAPTER 4. A STOCHASTIC EXTENSION 4.3. TRANSITION RATES COMPUTATION

s1
p.o ·σ · ñ · w̃
−−−−−−−−−→ρ q∪id(s2) s′1 ¬s2 ↓

ñ · j
p.o M(w̃, ñ) = (σ, ñ, j, L, σ′)

(par c)
s1 | s2

p.o ·σ · ñ · w̃
−−−−−−−−−→ρ q s′1 | s2

s1
†k
−−−→ρ q∪id(s2) s′1

(par k)
s1 | s2

†k
−−−→ρ q s′1 | halt(s2)

s1
α
−−→ρ q∪id(s2) s′1 α , p.o ·σ · ñ · w̃ α , †k

(par p)
s1 | s2

α
−−→ρ q s′1 | s2

s{d′1/d1, . . . , d′j/d j}{ f1/b1, . . . , fk/bk}
α
−−→ρ q s′ S (d1, . . . , d j) = s b̃ = bid(s) f̃ = f dec(̃b, q, d̃, d̃′)

(s id)
S (d′1, . . . , d

′
j)

α
−−→ρ q s′

s
p.o · {(n)/x}]σ · ñ · w̃
−−−−−−−−−−−−−−→ρ q∪{x} s′

(del c)
[x]s

p.o ·σ · ñ · w̃
−−−−−−−−−→ρ q [n]s′{n/x}

s
p.o ? w̃
−−−−−→δ q∪{x} s′ x ∈ w̃

(o req)
[x]s

open(x , p.o ? w̃)
−−−−−−−−−−−→δ q s′

s
p.o ! ã
−−−−−→γ q∪{n} s′ n ∈ ã n < {p, o}

(o inv)
[n]s

open(n , p.o ! ã)
−−−−−−−−−−−→γ q s′

s
p.o ·σ · ñ · w̃
−−−−−−−−−→ρ q∪{n} s′ n ∈ csp(σ)

(o tau)
[n]s

open(n , p.o ·σ · ñ · w̃)
−−−−−−−−−−−−−−−→ρ q s′

Table 4.7: Operational Semantics of SCOWS, part 2

73

4.3. TRANSITION RATES COMPUTATION CHAPTER 4. A STOCHASTIC EXTENSION

the unguarded kill activities on a closed kill label. Formally, this apparent rate
is computed using function ark(s, s), defined in Table 4.8.

ark(s1 | s2) = ark(s1) + ark(s2)

ark((kill(k), λ) , s) =

 λ if k ∈ bkl(s)
0 otherwise

ark({|s1|}, s) = ark([d]s1, s) = ark(s1, s)
ark((p.o ? ũ, δ) .s1, s) = ark(g1 + g2, s) = 0

ark((p.o ! ũ, γ) , s) = ark(0, s) = 0

Table 4.8: Definition of function ark(. , .)

In a service s, an unguarded kill action with rate λ is executed with a proba-
bility computed as the ratio between λ and the sum of the rates of all executable
unguarded kill actions in s. Given a transition s

†
−−−→ρ=λ s′, the rate of the tran-

sition is then computed as in Equation (4.1). As can be seen, the approach of
computing transition rates using apparent rates results in a simplification that
leaves as result the rate of the executed kill action.

rate
(
s
†
−−−→ρ=λ s′

)
=

λ

ark(s, s)
ark(s, s) = λ (4.1)

In the case of a transition s
p.o · ε · ñ · w̃
−−−−−−−−−→ρ=[γ,δ] s′, which is triggered by the exe-

cution of a communication, an unguarded invocation and an unguarded request
activity perform a synchronization over a common endpoint. Therefore, to com-
pute the transition rate we have to combine their basic rates γ, δ. Applying the
same methodology presented in [15] and already used for kill actions, we first
have to compute the probability of having a particular invoke action and a par-
ticular request action involved in a synchronization. For the sake of the clarity
of the explanation, in the following informal descriptions we will refer explic-
itly to the participants of the communication. This will not be the case for the
formalization of the computation, since we are dealing with pseudo-τ transi-
tions, through which we cannot explicitly identify the actual participants in the

74

CHAPTER 4. A STOCHASTIC EXTENSION 4.3. TRANSITION RATES COMPUTATION

communication.
Given the best matching policy implemented in COWS and SCOWS, a syn-

chronization is driven by the invoke activity involved in it. The request activities
that can take part in a communication depend on the particular invoke activity
that we consider. For this reason, given a service s = s1 |

(
g′ +

∑
j g j

)
| s3,

where s1 = (p.o ! ñ, γ) and g′ = (p.o ? ũ.s2, δ), the probability of having s1 and
g′ involved in a communication, denoted by P1(γ I δ, p.o, ñ, s), involves the
computation of a conditional probability, as can be seen in Equation 4.2.

P1(γ I δ, p.o, ñ, s) = P2(γ, p.o, s) · P3(δ given γ, p.o, ñ, s) (4.2)

Given a service s and an unguarded invoke activity s1 = (p.o ! ñ, γ) able to
take part in a communication, the probability of having s1 involved in a com-
munication is defined as the ratio between the basic rate of s1 and the sum of all
the invoke actions in s over endpoint p.o which can take part in a communica-
tion. We denote this as P2(γ, p.o, s) =

γ
inv(p.o,s,s) where inv(. , . , .) is defined in

Table 4.9. Notably, inv(p.o, s, s) is also the apparent rate of an invocation which
can take part in a communication over endpoint p.o when considering a service
s.

inv(p.o, (kill(k), λ) , s) = 0
inv(p.o, 0, s) = inv(p.o, g1 + g2, s) = 0

inv(p.o, (p.o ? ũ, δ) .s′, s) = 0
inv(p.o, s1 | s2, s) = inv(p.o, s1, s) + inv(p.o, s2, s)

inv(p.o, {|s1|}, s) = inv(p.o, [d]s1, s) = inv(p.o, s1, s)

inv(p.o, (p.o ! ñ, γ) , s) =

γ if s = (p.o ? ũ, δ) .s′ +

∑
j g j | s2

andM(̃n, ũ) = (σ, ñ, j, L, σ′)
and ¬s ↓ñ · j

p.o

0 otherwise

Table 4.9: Definition of function inv(. , . , .)

The conditional probability P3(δ given γ, p.o, ñ, s) can be computed consid-

75

4.3. TRANSITION RATES COMPUTATION CHAPTER 4. A STOCHASTIC EXTENSION

ering the basic rate δ and the sum of all the request activities in s that compete
to communicate on endpoint p.o matching with ñ. This can be formalized as
P3(δ given γ, p.o, ñ, s) = δ

req(p.o,̃n,s,s) , where req(. , . , . , .) is defined in Table 4.10.
Function req(. , . , . , .) is also used to compute the apparent rate of a request ac-
tivity. This is the main difference in the stochastic rate computation with respect
to the approach adopted in [31], where a more involved computation of the ap-
parent rate of a request activity was presented.

req(p.o, ñ, (kill(k), λ) , s) = 0
req(p.o, ñ, 0, s) = 0

req(p.o, ñ, (p.o ! ñ, γ) , s) = 0
req(p.o, ñ, g1 + g2, s) = req(p.o, ñ, g1, s) + req(p.o, ñ, g2, s)
req(p.o, ñ, s1 | s2, s) = req(p.o, ñ, s1, s) + req(p.o, ñ, s2, s)

req(p.o, ñ, {|s1|}, s) = req(p.o, ñ, [d]s1, s) = req(p.o, ñ, s1, s)

req(p.o, ñ, (p.o ? ũ, δ) .s′, s) =

δ ifM(̃n, ũ) = (σ, ñ, j, L, σ′)

and ¬s ↓ñ · j
p.o

0 otherwise

Table 4.10: Definition of function req(. , . , . , .)

Using the same approach presented in [15], we model the apparent rate of
a communication using the minimum of the apparent rates of the participants.
We can now define the computation of the rate of a transition step triggered
by a communication in s = s1 |

(
g′ +

∑
j g j

)
| s3 with s1 = (p.o ! ñ, γ) and

g′ = (p.o ? ũ, δ) .s2. Equation 4.3 defines the function R1(γ I δ, p.o, ñ, s), which
formalizes this computation.

R1(γ I δ, p.o, ñ, s) = P1(γ I δ, p.o, ñ, s) · min (inv(p.o, s, s), req(p.o, ñ, s, s))

(4.3)
Finally, we can formalize the computation of a transition step triggered by

the execution of a pseudo-τ communication. The result is presented in Equation
4.4.

76

CHAPTER 4. A STOCHASTIC EXTENSION 4.3. TRANSITION RATES COMPUTATION

rate
(
s

p.o · ε · ñ · w̃
−−−−−−−−−→[γ,δ] s′

)
= R1 (γ I δ, p.o, ñ, s) (4.4)

4.3.1 Transition Rate Computation Example

To better understand how the transition rate computation works, we present now
an example. Let s be the service defined as

s = [n,m, x]
(

(p.o ! n, 3)

| (p.o ? n, 5)

| (p.o ? n, 7)

| (p.o ! m, 11)

| (p.o ? x, 13)
)

Service s can perform three communications, the first involving invoke ac-
tion (p.o ! n, 3) and request action (p.o ? n, 5), the second involving invoke ac-
tion (p.o ! n, 3) and request action (p.o ? n, 7) and the third involving invoke ac-
tion (p.o ! m, 11) and request action (p.o ? x, 13). We focus on the first one and
compute its rate.

We start by computing the apparent rate of an invoke action over p.o in
s, defined as inv(p.o, s, s). Since both invoke actions in s can take part in a
communication over p.o, the apparent rate is equal to the sum of their rates:

inv(p.o, s, s) = 3 + 11 = 14

We proceed by computing the apparent rate of a request activity in s, over
endpoint p.o and with respect to n, which is the list of parameters of the consid-
ered invoke action. Computing req(p.o, n, s, s) we obtain:

req(p.o, n, s, s) = 5 + 7 = 12

77

4.3. TRANSITION RATES COMPUTATION CHAPTER 4. A STOCHASTIC EXTENSION

The other request activity in s does not take part in the computation, since is
not a best matching request action with respect to (p.o ! n, 3).

We now compute P2(3, p.o, s), which is defined as

P2(3, p.o, s) =
3

inv(p.o, s, s)
=

3
14

The next step is represented by the computation of P3(5 given 3, p.o, n, s).
We get

P3(5 given 3, p.o, n, s) =
5

req(p.o, n, s, s)
=

5
12

We can now compute P1(3 I 5, p.o, n, s) using Equation 4.2. We obtain:

P1(3 I 5, p.o, n, s) =
3
14
·

5
12

=
15

168

We can then compute R1(3 I 5, p.o, ñ, s), according to Equation 4.3:

R1(3 I 5, p.o, n, s) =
15
168
· min(12, 14) =

15
168
· 12 =

15
14

Finally, for Equation 4.4, we have that the rate of the considered transition is

rate
(
s

p.o · ε · n · n
−−−−−−−−−→[3,5] s′

)
= R1(3 I 5, p.o, n, s) =

15
14

We have defined a stochastic extension of COWS and we have formalized
how to associate exponential delays to transitions. We now present SCOWS lts,
a simulator able to derive the whole Transition Graph of a SCOWS term and
produce the associated Continuous Time Markov Chain.

78

CHAPTER 4. A STOCHASTIC EXTENSION 4.4. SCOWS LTS

4.4 SCOWS lts: a tool for the analysis of SCOWS models

SCOWS lts is a tool which is able to derive the whole Labelled Transition Sys-
tem (LTS) of a SCOWS term, if the LTS can be represented using a finite
number of states, and can build a Continuous Time Markov Chain (CTMC)
model based on the derived LTS. The derived CTMC can then be imported
in a model checker such as PRISM to perform a quantitative analysis of the
model by checking CSL properties. In order to mitigate the effects of the State
Space Explosion Problem, the tool implements a notion of structural congru-
ence among SCOWS terms. We describe the implementation of the peculiar-
ities of SCOWS lts, along with other performance optimizations. The latest
available version of the software, which is written in Java, is available at [1]
packaged as a Jar executable file, along with a number of examples. We pre-
sented an earlier version of the tool in [9]. The version presented here, along
with many bug fixes, shows a much more performant search criterion for struc-
tural congruent terms.

4.4.1 PRISM overview

PRISM [17] is an open-source model checker developed in Java. The main fea-
tures of the tool include the support for different probabilistic models (e.g. Dis-
crete and Continuous Time Markov Chains, Markov Decision Processes) and
temporal logics (e.g. LTL, PCTL, CSL); moreover, PRISM implements various
model checking engines, involving both symbolic and explicit representations
of states. PRISM can be used using a graphical user interface, through which
it is possible to plot the results of the model checking phase, or through a com-
mand line, which is more useful when dealing with an automated verification
process.

These features, along with the fact that it is actively developed, make PRISM
one of the reference model checkers for quantitative verification in different

79

4.4. SCOWS LTS CHAPTER 4. A STOCHASTIC EXTENSION

scenarios, ranging from verification of the energy consumption in networks to
systems biology.

4.4.2 SCOWS identifiers in SCOWS lts

In SCOWS lts models, identifiers consist of strings composed using numbers,
letters and the underscore symbol “ ”. Each identifier must begin with a let-
ter, and different classes of identifiers are recognized following these rules: kill
label identifiers must start with the letter k; names are recognized by the pres-
ence of a trailing hash symbol #, agent identifiers must start with an uppercase
letter. Identifiers not following these conventions are treated as variables, with
the exception of reserved keywords true, f alse, f ixed. Each SCOWS lts model
is composed of four main sections, divided by the $ symbol. The first section
contains the definitions of agent identifiers in the form Idi(param j) = S i;. The
second section specifies the definition of the initial service. The third section
contains PRISM variable definitions that will be inserted in the resulting PRISM
model; the fourth section contains the list of SCOWS action abstractions, which
link the execution of particular labelled SCOWS actions to PRISM transitions.

4.4.3 SCOWS lts: the main loop

The basic structure of SCOWS lts is an adaptation of a Breadth First Search
algorithm for visiting a graph. In the specific case, visiting a node n means also
adding it to the Transition Graph and computing all its derivatives, determined
applying to the SCOWS term associated to n the operational semantics defined
in Section 4.2. For the sake of readability, the shown algorithm does not contain
all the implementation details. In the presentation, we retain the Java notation
of generics, using angled parentheses <> to specify the type of elements in a
collection.

The representation of a LTS is given by an object of type Graph, which is

80

CHAPTER 4. A STOCHASTIC EXTENSION 4.4. SCOWS LTS

defined as State 7→ List < Transition >, where type State is a representation of
a SCOWS service and Transition is a type defined as (S tate × Label) 7→ S tate.

The pseudocode for the main loop of SCOWS lts is presented in Pseudocode 4.1.
The tool takes as input a file containing the specification of a SCOWS ser-
vice, represented by State s. Another parameter, which we left implicitly spec-
ified, is represented by the global execution environment e, containing, among
other structures, the definitions of SCOWS agents that appear in s. The re-
sult given by SCOWS lts is a CTMC c; the current version of SCOWS lts is
able to specify the CTMC according to the format used by the PRISM model
checker [17], which is available at http://www.prismmodelchecker.org
and also according to the format used by the GraphViz tool available at http:
//www.graphviz.org, which is useful if a graphical representation of the
Transition System is needed.

Queue q (line 3 in Pseudocode 4.1) is a list of states which implements the
FIFO policy: states are added at the end of the queue and are removed from
its head. While q is not empty, the main loop of the algorithm is executed: the
first element in the queue is removed (line 6) and its transitions are computed
(line 7). This operation is performed according to the operational semantics
defined in Section 4.2, using the agent definitions contained in the execution
environment e. In SCOWS lts, each type of SCOWS service is implemented as
a subclass of State, so that the Object-Oriented paradigm of method overloading

can take place. The obtained transitions, stored in list tr, have to be elaborated
to be added to graph g (line 8): a transition tri in tr is defined as h × αi 7→ si. If
si is structurally congruent to a state s j already in g, we have to:

1. rearrange tri, substituting si with s j and possibly modifying αi

2. flag si as a discarded state, avoiding to add it to queue q

The second action is reflected in the presence of list toBeAdded: this list
contains a subset of the states generated when computing the transitions for

81

http://www.prismmodelchecker.org
http://www.graphviz.org
http://www.graphviz.org

4.4. SCOWS LTS CHAPTER 4. A STOCHASTIC EXTENSION

state s, namely it contains the states for which a structurally congruent state
inside g could not be found. This list is added at the end of queue q (line 9).

Pseudocode 4.1 Main loop for SCOWS lts
Input: State s, global Env e
Output: Ctmc c

1: Graph g = new Graph();
2: g.setFirstS tate(s);
3: Queue < State > q = new Queue();
4: q.add(s);
5: while q.notEmpty() do
6: State h = q.removeHead();
7: List < Transition > tr = h.getTransitions();
8: List < State > toBeAdded = g.addTransitions(tr);
9: q.addAll(toBeAdded);

10: end while
11: Ctmc c = g.getCtmc();

A basic implementation of method addTransitions(), used in line 8, can be
seen in Pseudocode 4.2. Each residual service is compared to the states already
in the LTS using function congruence(. , . , . , . , .), described in the following
section and defined in Pseudocode 4.3.

An algorithm such as the one presented in Pseudocode 4.1 terminates if the
LTS originated from the SCOWS service associated to s can be represented us-
ing a finite number of states. Implementing structural congruence, we can also
consider services with a cyclic, i.e. infinitely looping, behaviour. A weaker re-
sult could be obtained using only structural equivalence but, being this a stricter
relation, services differing only for syntactic reasons would be recognized as
different.

82

CHAPTER 4. A STOCHASTIC EXTENSION 4.4. SCOWS LTS

Pseudocode 4.2 Definition of function addTransitions(.)
Input: List < Transition > transitions
Output: List < State > result

1: List < State > result = new List < S tate > ();
2: for all Transition t ∈ transitions do
3: for all State s ∈ getGraphS tates() do
4: Map < Id, Id >χ = new Map < Id, Id >()
5: if !congruence(t.getDestination(), s, |,+, χ) then
6: addTransition(t.getS ource(), t.getLabel(), t.getDestination())
7: result.add(t.getDestination());
8: else
9: addTransition(t.getS ource(), t.getLabel(), s)

10: end if
11: end for
12: end for
13: return result;

4.4.4 Structural Congruence for SCOWS

When deriving the LTS of a SCOWS term, it is quite common to generate terms
that differ only for syntactic reasons. For example, consider a service

s = [n x]
(
(p.o ! n, γ) |

(
p.o ? x.s′, δ

)
|
(
p.o ? x.s′, δ

))
Two different communication actions can be triggered, reaching states

s1 = [n]
(
0 |

((
p.o ? x.s′, δ

))
| s′

)
{n/x}

and
s2 = [n]

(
0 | s′ |

((
p.o ? x.s′, δ

)))
{n/x}

As can be seen, s1 and s2 differ only for the order in which subservices
are arranged through parallel compositions. In order to mitigate the problem of
State Space Explosion, we decided to implement a procedure to recognize when
two SCOWS services can be considered structurally congruent. The check per-
formed by this procedure is carried out when inserting new residuals in the LTS.

83

4.4. SCOWS LTS CHAPTER 4. A STOCHASTIC EXTENSION

Using this procedure, each state in the LTS represents a congruence class among
SCOWS services, rather than a single SCOWS service. The definition of struc-
tural congruence we implemented is the least congruence relation induced by
the rules in Table 4.11. With respect to the definition given in Table 2.4, we
removed the rule regarding agent identifiers, which are treated explicitly by the
semantic rule (s id). The description of the implementation of the procedure for
checking whether two SCOWS services are congruent is given in Section 4.4.5.

s1 ≡ s2 if s1 =α s2

[d]0 ≡ 0 s1 | [d]s2 ≡ [d](s1 | s2) if d < f id(s1) ∪ f kl(s2)

[d1][d2]s ≡ [d2][d1]s

s1 | (s2 | s3) ≡ (s1 | s2) | s3 s1 | s2 ≡ s2 | s1 s | 0 ≡ s

(g1 + g2) + g3 ≡ g1 + (g2 + g3) g1 + g2 ≡ g2 + g1 (p.o ? ũ. s, γ) + 0 ≡ (p.o ? ũ. s, γ)

{|0|} ≡ 0 {|{|s|}|} ≡ {|s|}

Table 4.11: Structural Congruence rules for SCOWS

4.4.5 Structural Congruence: an implementation

The rules presented in 4.11 can be divided in three categories. The first category
is represented by rules involving 0 services and redundant protection operators,
which can be implemented using a recursive minimization function min(.) pre-
sented in Table 4.12, where ? ∈ {|,+}: when checking the congruence of two
services s1 and s2, we actually consider their minimized versions. In the fol-
lowing, we assume that the minimization procedure has already been applied to
all mentioned services.

84

CHAPTER 4. A STOCHASTIC EXTENSION 4.4. SCOWS LTS

min(0) = 0
min((kill(k), λ)) = (kill(k), λ)
min((p.o ! ũ, γ)) = (p.o ! ũ, γ)

min((p.o ? ũ.s′, δ)) = (p.o ? ũ.min(s′), δ)

min({|s|}) =

min(s) if s = {|s′|}
{|min(s)|} if s , {|s′|} and min(s) , 0
0 otherwise

min(s1 ? s2) =

min(s1) ? min(s2) if min(s1),min(s2) , 0
min(s1) if min(s2) = 0 and min(s1) , 0
min(s2) if min(s1) = 0 and min(s2) , 0
0 otherwise

min([d]s) =

[d](min(s1 ? s2)) if s = s1 ? s2

and d ∈ f id(s1)
and d ∈ f id(s2)

min([d]s1 ? s2) if s = s1 ? s2

and d ∈ f id(s1)
and d < f id(s2)

min(s1 ? [d]s2) if s = s1 ? s2

and d < f id(s1)
and d ∈ f id(s2)

[d]min(s) if s , s1 ? s2

and d ∈ f id(s)
min(s) otherwise

Table 4.12: Minimization function min(.) for SCOWS services, ? ∈ {|,+}

85

4.4. SCOWS LTS CHAPTER 4. A STOCHASTIC EXTENSION

The second category of rules for structural congruence is represented by the
distributive and commutative properties of parallel composition and nondeter-
ministic choice. The implementation of these rules produces a flattened view
of a service, in which its syntactic structure is recursively broken into its basic
subservices, which are then collected in a multiset (i.e. repetitions count). We
will underline the use of multisets by adding a subscript m to operators: {ei}m is
the multiset composed by elements ei (possibly with repetitions), ∪m,∩m, \m are
respectively the multiset union, multiset intersection and multiset subtraction
operators. Parallel composition and nondeterministic choice must be consid-
ered in separate instances of the flattening procedure, otherwise the procedure
would recognize as congruent services g1+g2 and g1 | g2. For this reason, a non-
deterministic choice is treated as a basic subservice when flattening with respect
to parallel composition, and vice versa. This will be clarified when describing
Pseudocode 4.3 and Pseudocode 4.4.

The delimiter construct is the subject of the third category of rules for struc-
tural congruence; we consider it in the flattening procedure for service s, pre-
sented in Table 4.13: given ?, � ∈ {|,+} and � , ?, flattening s1 ? s2 means
obtaining recursively the basic subservices of both s1 and s2; flattening a ser-
vice [u]s1 means collecting the subservices obtained by a recursive call on s1.
In this way, we forget about the actual position of the delimiter in the service;
all we need to know is whether an identifier is bound or free in s: since the
non-homonymy condition holds, each name and variable, bound or free, is uni-
vocally identified. Given the particular operational semantics of kill actions, a
service [k]s is treated as a basic service. The same is true for protected services
and for compositions s1 � s2. These three cases will be treated recursively by
the procedure presented in Pseudocode 4.4. Figure 4.1 presents a graphical rep-
resentation of the flattening function applied to services [n]((s1 | s2) | (s3 | s1))
and (s1 | [n](s2 | (s1 | s3)))), in which we assume n is shared between services
s2 and s3. The procedure produces two equal multisets.

86

CHAPTER 4. A STOCHASTIC EXTENSION 4.4. SCOWS LTS

The flattening function presented in Table 4.13, however, is still incomplete:
we need to take into account also the fourth class of rules for structural congru-
ence, which is represented by the rule for α-equivalence, according to which
two SCOWS services which are equal modulo renaming of bound names/vari-
ables/kill labels have to be recognized as congruent.

f lt?(s1 ? s2) = {ti such that ti ∈ f lt?(s1) ∪m f lt?(s2)}m
f lt?([u]s1) = {ti such that ti ∈ f lt?(s1)}m
f lt?(s) = {s}m if s , s1 ? s2 and s , [u]s1

Table 4.13: Flattening function f lt?(.), for ? ∈ {|,+}

[n]

|
b
bb

"
""
|

ee%%
s1 s2

|

ee%%
s3 s1

=⇒ {s1, s1, s2, s3}m

|
b
b

"
"

s1 [n]

|
ZZ��

s2 |

ee%%
s1 s3

=⇒
{s1, s1, s2, s3}m

Figure 4.1: An example of the flattening function f lt|(.), defined in Table 4.13, applied to
services [n]((s1 | s2) | (s3 | s1)) and (s1 | [n](s2 | (s1 | s3))))

Our solution to the problem of deciding if two services can be obtained by
renaming bound identifiers stems from the observation that, if two services s1

and s2 are α-equivalent, then there exists a bijective function χ : (N ∪ V ∪

87

4.4. SCOWS LTS CHAPTER 4. A STOCHASTIC EXTENSION

K) 7→ (N ∪ V ∪ K) mapping each bound identifier in s1 to a bound iden-
tifier in s2. We will write dom(χ) = {d such that (d 7→ d′) ∈ χ}, cod(χ) =

{d′ such that (d 7→ d′) ∈ χ}, χ(d) = d′ if (d 7→ d′) ∈ χ and χ(d) = ⊥ if
d < dom(χ).

Deciding whether s1 and s2 are α-equivalent is equivalent to deciding if such
a function χ exists. In order to do so, while considering also structural rules
for delimiters, we use an enriched flattening function f lt|α(.), which maps each
basic service identified by f lt|(.) to the set of identifiers bound upstream in the
considered service. Since f lt|(.) produces a multiset, we have to keep track
of the number of identical basic services produced by the flattening function,
otherwise services s1 | s1 | s2 and s1 | s2 | s2 would be recognized as congruent.

We formalize the definition of f lt|α(.) in Table 4.14: when applied to a ser-
vice s, the function produces a mapping from the basic subservices in s, ob-
tained by using function f lt|(s), to a pair (ni, bi) composed of ni, the number of
instances of a particular subservice and bi, the set of names, variables, and kill
labels appearing in the subservice and bound upstream. We make use of aux-
iliary functions instances(. , .), whose purpose is counting how many instances
of an element appear in a multiset and unique(.), whose purpose is producing a
set containing all elements in the multiset passed as parameter.

f lt|α(s) =
{
si 7→ (ni, bi) such that si ∈ unique(f lt|(s))

and ni = instances(si, f lt|(s))
and bi = f id(si) ∩ bid(s)

}
instances(e, Am) =

 1 + instances(e, A′m) if Am = {e}m ∪m A′m
0 if e <m Am

unique(Am) =

 {e} ∪ unique(A′m) if Am = {e}m ∪m A′m
∅ if Am = ∅

Table 4.14: Definition of function f lt|α(.)

Given Ms = f lt|α(s) and si ∈ unique(f lt|(s)), we write Ms(si) = (ni, bi)
if (si 7→ (ni, bi)) ∈ Ms and Ms(si) = ⊥ otherwise. Ms represents the normal-

88

CHAPTER 4. A STOCHASTIC EXTENSION 4.4. SCOWS LTS

ized view of service s. We now describe the algorithm implementing the given
notion of structural congruence, which is based on the normalized view of ser-
vices.

As said before, in order to decide if two given services s1 and s2 are con-
gruent, we need to find a bijective function χ mapping each name/variable/kill
label of service s1 into one of s2. The search is carried out by obtaining first the
normalized views Ms1 and Ms2; two ordered lists of subservices L1 and L2 are
then built from unique(f lt|(s1)) and unique(f lt|(s2)), respectively. By matching
corresponding elements l1i = L1[i] and l2i = L2[i], function χ can be built, pos-
sibly with the use of recursion, considering how identifiers are used in l1i and
l2i. If a match is not possible or a conflict in the definition arises, i.e. χ is not
a bijection, then a new permutation of the elements in L1 is considered. If no
permutation of the elements in L1 induces the construction of a bijection χ, then
s1 and s2 are not structurally congruent. If, on the other hand, there exists a
permutation of the elements in L1 such that a bijection χ is found, then s1 and
s2 are structurally congruent.

The pseudocode for congruence(. , . , . , . , .), the procedure implementing this
algorithm, is presented in Pseudocode 4.3. Given two services s1 and s2, op-
erators ? and � and a partially built map χ, the algorithm first computes the
flattened views M1 and M2 and the corresponding lists of basic subservicees L1

and L2. A permuter for list L1 is then instantiated (line 5). The core of the algo-
rithm is the while cycle at line 6: while there is another permutation P of list L1

to be considered, the algorithm checks whether P and L2 induce a bijection χ
among bound identifiers. In order to do so, for each i-th subservice in P and L2,
the algorithm checks (line 12) the number of identical copies of P[i] and L2[i]
inside s1 and s2; moreover, the number of upstream bound identifiers is checked
as well. Using function compare(. , . , . , . , .), defined in Pseudocode 4.4, the al-
gorithm then checks (lines 15-16) whether P[i] and L2[i] can be compared and
if the mapping induced by their use of identifiers is compatible with the tem-

89

4.4. SCOWS LTS CHAPTER 4. A STOCHASTIC EXTENSION

porary mapping χl. Function compare(. , . , . , . , .) also triggers the recursive
calls to function congruence(. , . , . , . , .); the recursive cases are represented by
�-compositions of services s1 � s2, protected services {|s|} and delimiters for kill
labels [k]s.

Pseudocode 4.1 considers two services s1 and s2 as congruent, representing
them with the same state in the LTS, if congruence(s1, s2, |,+, ∅) gives true as
result.

Pseudocode 4.3 Implementation of the relation congruence(. , . , . , . , .) for SCOWS services
Input: Service s1, s2 Operator?, � Map& χ

Output: bool b
1: View M1 = f lt?α(s1);
2: View M2 = f lt?α(s2);
3: List < Service > L1 = new List(unique(f lt?(s1));
4: List < Service > L2 = new List(unique(f lt?(s2));
5: Permuter perm = new Permuter(L1);
6: while perm.hasNextPermutation() do
7: Map χt = χ;
8: List < Service > P = perm.getNext();
9: for i = 1→ size(p) do

10: Pair < int,List < Id >>(n1, b1) = M1(P[i]);
11: Pair < int,List < Id >>(n2, b2) = M2(L2[i]);
12: if n1 , n2 or b1.size() , b2.size() then
13: goto 6;
14: end if
15: bool res = compare(P[i], L2[i], ?, �, χt);
16: if !res then
17: goto 6;
18: end if
19: end for
20: χ.merge(χl);
21: return true;
22: end while
23: return f alse;

90

CHAPTER 4. A STOCHASTIC EXTENSION 4.4. SCOWS LTS

Function compare(. , . , . , . , .), presented in Pseudocode 4.4, compares the
types of two services s1 and s2 given as parameters. This control considers
the nature of services s1 and s2 and, when present, the number of parameters.
Note that if s1 and s2 are of different types or if the number of parameters does
not match, none of the expression checked in the i f statements is true, so the
procedure returns f alse. If the types of s1 and s2 match, the algorithm tries to
extend χ with a new mapping for each used identifier. This role is carried out
by function extendMap(. , . , .), which is defined in Pseudocode 4.5. If no error
arises, then the algorithm in Pseudocode 4.4 returns true as result and, as a side
effect, modifies the mapping χ passed as parameter.

The function defined in Pseudocode 4.4 is also responsible for performing
recursive calls of the congruence relation. The most interesting case is the one
considered in lines 25-26: s1 and s2 are service compositions defined using the
� operator, which is the nondeterministic choice (parallel composition) if the
flattening was performed on parallel compositions (nondeterministic choices).
Note that the recursive call swaps � and ?. Other cases which need a special
treatment are those considered at lines 20 and 23: since the scopes of appli-
cation of kill label delimiters and protection operators cannot be modified by
congruence rules, but the services representing these scopes can be rearranged
using these rules, when s1 = [k1]s′1 and s2 = [k2]s′2, or when s1 = {|s′1|} and
s2 = {|s′2|}we have to recursively apply function congruence(. , . , . , . , .). In these
cases, we force ? = | and � = +.

Function extendMap(d1, d2, χ), defined in Pseudocode 4.5, implements the
check performed when trying to extend a bijective map between identifiers.
First, the function controls the types of the involved identifiers d1 and d2: names
can be mapped only into names, and the same holds for variables and kill labels.
If the mapping d1 7→ d2 is already in χ, then no conflict arises (lines 3-4). If
there is no mapping in χ from d1 to a generic d , d2 and χ does not map
a generic d , d1 to d2, then d1 7→ d2 can be added to χ, obtaining again a

91

4.4. SCOWS LTS CHAPTER 4. A STOCHASTIC EXTENSION

Pseudocode 4.4 Implementation of auxiliary function compare(. , . , . , . , .)
Input: Service s1, s2 Operator ? Operator � Map& χ

Output: bool res
1: bool res = f alse;
2: if s1 = (kill(k1), λ) and s2 = (kill(k2), λ) then
3: res = extendMap(k1, k2, χ);
4: else if s1 =

(
p1.o1 ? ũ11, . , u1n.s′1, δ

)
and s2 =

(
p2.o2 ? ũ21, . , u2n.s′2, δ

)
then

5: res = extendMap(p1, p2, χ) and extendMap(o1, o2, χ);
6: for i = 1→ n do
7: res = res and extendMap(u1i, u2i, χ);
8: end for
9: res = res and compare(s′1, s

′
2, ?.�, χ);

10: else if s1 = (p1.o1 ! ũ11, . , u1n, γ) and s2 = (p2.o2 ! ũ21, . , u2n, γ) then
11: res = extendMap(p1, p2, χ) and extendMap(o1, o2, χ);
12: for i = 1→ n do
13: res = res and extendMap(u1i, u2i, χ);
14: end for
15: else if s1 = S (d11, . , d1n) and s2 = S (d21, . , d2n) then
16: res = true;
17: for i = 1→ n do
18: res = res and extendMap(d1i, d2i, χ);
19: end for
20: else if s1 = [k1]s′1 and s2 = [k2]s′2 then
21: res = extendMap(k1, k2, χ);
22: res = res and congruence(s′1, s

′
2, |,+, χ);

23: else if s1 = {|s′1|} and s2 = {|s′2|} then
24: res = congruence(s′1, s

′
2, |,+, χ);

25: else if s1 = s′1 � s′2 and s2 = s′3 � s′4 then
26: res = congruence(s1, s2, �, ?, χ);
27: end if
28: return res;

92

CHAPTER 4. A STOCHASTIC EXTENSION 4.4. SCOWS LTS

bijective function.

Pseudocode 4.5 Implementation of function extendMap(. , . , .)
Input: Identifier d1, d2 Map& χ

Output: bool result
1: if type(d1) , type(d2) then
2: return f alse;
3: else if χ = {d1 7→ d2} ∪ χ

′ then
4: return true;
5: else if d1 < dom(χ) and d2 < cod(χ) then
6: χ.add(d1 7→ d2);
7: return true;
8: else
9: return f alse;

10: end if

4.4.6 Complexity Analysis and Performance Optimizations

We described a procedure implementing the given definition of structural con-
gruence for SCOWS services. Analysing Pseudocode 4.3, it is possible to see
that the complexity of such an algorithm, when applied to services s1 and s2,
depends on the number of permutations of a list of subservices of s1. Since this
number is equal to the factorial of the length of the list under consideration, if
we denote by length(s) the number of parallel compositions, nondeterministic
choices, kill label delimiters and protections inside s, we can identify the worst
case scenario as the one requiring O(length(s)!) cycles to decide s1

?
≡ s2: other

operations, such as flattening and comparing services to build χ are linear in
the length of the considered services. This complexity seems to deny any effec-
tiveness of the presented procedure. Applying a simple reasoning, however, we
can mitigate this problem: if we partition the list of basic subservices of s1 and
s2 with respect to the service type, dividing e.g. request activities from invoke
activities, we can avoid to consider some permutations that would certainly not

93

4.4. SCOWS LTS CHAPTER 4. A STOCHASTIC EXTENSION

lead to a positive conclusion. The worst case scenario, however, represented
by the case in which all subservices have the same type, has again time com-
plexity O(length(s)!). For instance, dividing a list of three request services and
three invoke services in two sublists, we reduce the number of permutations to
consider in the while cycle in Pseudocode 4.3 from 6! = 720 to 3! × 3! = 36.

Another important optimization that can be easily introduced regards the
search for a congruent service inside the LTS (line 8, Pseudocode 4.1): with-
out optimizations, the search has to be performed considering all the states, and
their associated SCOWS services, inside the LTS. If the graph g modelling the
LTS is g =< S t,Tr > and snew is the state to be inserted in g, we can denote the
time complexity of a search for a state congruent to snew as O(length(snew)!·|S t|).
However, we notice that the time-consuming check for α-equivalence is only
needed in a subset of the cases: to identify these, we abstract from bound names,
variables and kill labels. In order to do this, we fix a particular name nhN , a par-
ticular variable vhV and a particular kill label khK , which are fresh in all states
in g and cannot be obtained decorating any identifier occurring in any state in g.
We refer to these special identifiers as holes. We then apply function holed(.),
defined in Table 4.15, which performs the substitutions that allow us to abstract
from the bound identifiers used in a service s. Note that in holed versions of ser-
vices the non-homonymy condition is not guaranteed to hold. Holed services
are used solely to compare the syntactic structure of services, and not to derive
their behaviour, so this fact does not break our working assumptions.

If we apply the flattening function f lt|α to holed(s), we obtain a flattened

holed view of s. If two services have different flattened holed views, then they
cannot be structurally congruent. The states in the LTS can then be partitioned
using this over-approximation; when a new state s has to be inserted, the al-
gorithm checks if a subset of the states in the LTS shares the same flattened
holed view of s, and performs the full congruence check only on these states.
The worst case scenario, in which all states share the same flattened holed view,

94

CHAPTER 4. A STOCHASTIC EXTENSION 4.4. SCOWS LTS

holed(0) = 0
holed((kill(k1), λ)) = (kill(k1), λ)
holed((p1.o1 ? ũ11, . , u1n.s′, δ)) = (p1.o1 ? ũ11, . , u1n.holed(s′), δ)
holed((p1.o1 ! ũ11, . , u1n, γ)) = (p1.o1 ! ũ11, . , u1n, γ)
holed(s1 | s2) = holed(s1) | holed(s2)
holed(g1 + g2) = holed(g1) + holed(g2)
holed([n]s) = [nhN]holed(s){nhN/n}
holed([v]s) = [vhV]holed(s){vhV/v}
holed([k]s) = [khK]holed(s){khK/k}

Table 4.15: Definition of function holed(.)

presents the same time complexity, namely O(length(s)! · |S t|), but for practical
situations the obtained gain is relevant. For instance, when running the BPMN
Mail example presented in Chapter 5, SCOWS lts is able to compute the whole
LTS in 185s when the optimization is active, while it requires 124 × 102s to
compute the same LTS, which is composed of 1453 states, without this opti-
mization. The tests have been carried out on the same machine, under similar
conditions of workload. This improvement is obtained caching the flattened
holed views of services and, more importantly, using them as keys in a Java
HashMap < Map,List < State >>. The optimized version of Pseudocode 4.2
can be seen in Pseudocode 4.6.

4.4.7 Other features of SCOWS lts

The main purpose for the derivation of the whole LTS of a SCOWS service is
the possibility of performing quantitative model checking on the CTMC derived
from the LTS discarding transition labels. Because of this, SCOWS lts presents
two features aimed at the model checking phase. In particular, SCOWS lts
is able to operate with parametric rates: one can define a model containing
actions of the type (p.o ! ũ, γ) , (p.o ? ũ.s′, δ) , (kill(k), λ) without specifying the
actual values for rates γ, δ, λ. These values will be specified when performing

95

4.4. SCOWS LTS CHAPTER 4. A STOCHASTIC EXTENSION

Pseudocode 4.6 Definition of function addTransitions(.), optimized
Input: List < Transition > transitions
Output: List < State > result

1: List < State > result = new List < S tate > ();
2: for all Transition t ∈ transitions do
3: for all State s ∈ getGraphS tates() such that f lt|α(holed(s)) =

f lt|α(holed(t.getDestination())) do
4: Map < Id, Id >χ = new Map < Id, Id >()
5: if !congruence(t.getDestination(), s, |,+, χ) then
6: addTransition(t.getS ource(), t.getLabel(), t.getDestination())
7: result.add(t.getDestination());
8: else
9: addTransition(t.getS ource(), t.getLabel(), s)

10: end if
11: end for
12: end for
13: return result;

the model checking phase itself. In this way, a model can be derived once
using SCOWS lts and then be used to verify different configurations using a
supported model checker (at the time of writing, PRISM is the only supported
model checker). This feature is implemented introducing the use of arithmetical
expressions in the computation of transition rates. If a parametric rate is present
in the expression of a transition rate, then the latter is only partially evaluated,
leaving the burden of completing its evaluation phase to the model checker, in
which the actual values for parametric rates are defined.

Another important feature implemented by SCOWS lts is the presence of
abstraction rules: a particular SCOWS action, e.g. a communication on a given
channel, can trigger a particular action in the model checker, e.g. the assign-
ment of a value to a variable. SCOWS lts implements this feature visiting the
derived LTS and comparing each transition label to a list of abstraction rules
defined in the input model. In this way we can introduce in the model flags

96

CHAPTER 4. A STOCHASTIC EXTENSION 4.4. SCOWS LTS

and counters, which will be used when specifying the properties to be verified
in the model checking phase. For instance, stop.votes < ∗ >: stopc < 100 :
stopc′ = (stopc + 1); is an abstraction rule defined in the BPMN Mail example
presented in Chapter 5. When this rule is applied, each transition involving a
communication on endpoint stop.votes, whichever the parameters (∗ operates
as a catch-all), triggers the modification of a PRISM variable named stopc,
which is incremented, as long as its value is below the threshold 100. The last
requirement is needed by the semantics of PRISM: a transition can be triggered
only if its boolean guard, checking the values of variables, is evaluated to true.
In this case, the increment of variable stopc can be triggered as long as the value
of the variable is below 100.

4.4.8 Usage Example

After downloading the software and the needed libraries, following the instruc-
tions available at [1], we can launch SCOWS lts using a command similar to
the one reported in Pseudocode 4.7.

Pseudocode 4.7 SCOWS lts Usage Example

j a v a −cp l i b / j ava −cup−11a− r u n t i m e . j a r : l i b / l o g 4 j . j a r \
: TOOL LTS 0 . 3 a . j a r : . scows . Main i n p u t =model . scows

If the file model.scows exists and is a valid SCOWS lts model, then the tool
starts building the whole LTS describing the behaviour of the SCOWS agent
specified inside model.scows. If the LTS can be represented using a finite num-
ber of states, i.e. if SCOWS lts terminates its execution, the output of the tool
consists of two files. The first file, in the example named model.scows.dot, is a
representation of the LTS that can be used to produce a graphical representation
of the transition graph using the dot tool, available at http://www.graphviz.
org. The second file, named model.scows.sm, is the translation of the LTS in a
CTMC model that can be opened using the PRISM model checker.

97

http://www.graphviz.org
http://www.graphviz.org

4.4. SCOWS LTS CHAPTER 4. A STOCHASTIC EXTENSION

98

Chapter 5

Case Studies

In this chapter we apply SCOWS lts to two case studies: the first one is derived
from the BPMN Mail example, available at http://www.omg.org/spec/BPMN/
2.0/examples/PDF, while the other case study is a comparison of three his-
torically relevant algorithms solving the Mutual Exclusion Problem, in which
a number of running processes have to compete for the exclusive access to a
resource, using only shared variables. In particular we analyse Dekker’s algo-
rithm, attributed to Dekker by Dijkstra in [12], Dijkstra’s algorithm, presented
in [11] and one algorithm developed by Lamport, named the Bakery algorithm
[18].

5.1 PRISM Notation

Here we briefly introduce the syntax of PRISM models, focussing our attention
to the case of Continuous Time Markov Chain (CTMC) models. Each PRISM
model is a composition of modules which can interact with each other. The state
of each module is described by the state of its local variables, and the state of
the whole model is represented by the states of the modules composing it. The
behaviour of each module, i.e. the possible changes of the states of its local vari-
ables, is described by a command of the form [li]gi− > r1 : u1 + . . . + rn : un;
where ri are rates associated to local state updates ui, li is the label on which

99

http://www.omg.org/spec/BPMN/2.0/examples/PDF
http://www.omg.org/spec/BPMN/2.0/examples/PDF

5.2. CASE STUDY: BPMN MAIL CHAPTER 5. CASE STUDIES

parallel modules synchronize, using multi-way synchronization in the style of
PEPA [15] and gi is a predicate over the variables of the model. If gi is evaluated
to true, then u1, . . . , un represent possible evolutions of the model.

PRISM models generated using SCOWS lts are composed of one module,
with at least one local variable named prIdx. Each state change in the value
of prIdx reflects a transition in the LTS of the SCOWS term given as input to
SCOWS lts. As we will see in the case studies, each variable appearing in an
applied abstraction rule is represented by a different local variable in the PRISM
model.

5.2 Case Study: BPMN Mail

This Case Study is based on the example that can be found at http://www.
omg.org/spec/BPMN/2.0/examples/PDF. It describes the activities carried
out by the manager of a mailing list for a voting board. Subscribers to the list
(external participants, in terms of the BPMN specification) can discuss issues
and, when the manager opens a voting session, send their vote. Other duties
of the manager are represented by moderating the discussion, alert members of
incoming deadlines, count votes and present the results of the voting procedure.
When needed, the manager restarts the voting session or reset the discussion
procedure. These actions are taken when no clear majority has arisen from a
previous voting session.

We present the main SCOWS agents composing the model, which can be
found in its entirety at http://disi.unitn.it/˜cappello/mail_bpmn.scows.

Agent Voting(., .), presented as Pseudocode 5.1, represents the activities
carried out by the manager when a new vote is instantiated. When the is-
sue list is prepared and received (executing the request activity on channel
start#.vote#, the sub-activities are activated in parallel. Parameters f irsttime

and alreadywarned are identifiers associated with boolean values. These pa-

100

http://www.omg.org/spec/BPMN/2.0/examples/PDF
http://www.omg.org/spec/BPMN/2.0/examples/PDF
http://disi.unitn.it/~cappello/mail_bpmn.scows

CHAPTER 5. CASE STUDIES 5.2. CASE STUDY: BPMN MAIL

rameters are later used to identify if the voting procedure has already been re-
setted and if the mailing list members have already received a voting warning.
Kill label klvoting is used to remove from the system activities associated with
terminated voting instances.

Pseudocode 5.1 SCOWS agent for the voting procedure
1: Voting(f irsttime, alreadywarned) =

2: [klvoting][issueList]
3: (start#.vote#? < issueList >, 1.0).(
4: CheckCalendar()
5: |ModerateMailDiscussion()
6: |DeadlineWarning()
7: |CollectVote()
8: |U pdateVotes()
9: |ElabResults(f irsttime, alreadywarned, klvoting)

10:);

Agent ElabResults(., ., .) (Pseudocode 5.2) models the behaviour of the mail-
ing list manager when the voting procedure approaches its termination, i.e.
when the discussion has been moderated and a deadline warning has been is-
sued. After these activities the voting procedure stops, then the results are pre-
pared (note the use of the parametric rate modResposiveness for example at
lines 4,5). The SCOWS model proceeds checking for the number of collected
votes. If this number is not enough and the situation happens for the first time,
then the voting procedure is reset and a new one is issued; on the other hand,
if this case has already happened in the past or if enough votes have been col-
lected, then the system proceeds computing the relative majority of the votes
(this behaviour is modeled by another agent, not depicted here). Note that the
third parameter of ElabResults() is the kill label used by the kill activity trig-
gered when the voting procedure has to be reset. The delimiter defining the
scope of this kill label is defined in Pseudocode 5.2 at line 22.

Pseudocode 5.3 represents the code for the agent modeling the behaviour of

101

5.2. CASE STUDY: BPMN MAIL CHAPTER 5. CASE STUDIES

Pseudocode 5.2 SCOWS agent for the elaboration of votes
1: ElabResults(f irsttime, alreadywarned, klvoting) =

2: (moderate#.cc#? <>, 1.0).(moderate#.maildisc#? <>, 1.0).
3: [warn](dispatch#.deadline.warning#? < warn >, 1.0).(
4: [result#](prepare#.results#! < result# >,modResponsiveness)
5: |[res](prepare#.results#? < res >,modResponsiveness).(
6: ...

7:)
8: |[vt#]((stop#.votes#! < vt# >, 1.0)
9: |... .(

10: [nbvotes#](enough#.votes#! < nbvotes# >, 1.0)
11: |(//enough?no
12: [nv1](enough#.votes#? < nv1 >, 1.0).(
13: (members#.warned#! < alreadywarned >,modResponsiveness)
14: |(
15: (members#.warned#? < true >,modResponsiveness).(
16: (reduce#.votes#! <>, 1.0)
17: |(reduce#.votes#? <>, 1.0).(...)
18:)
19: +(members#.warned#? < f alse >,modResponsiveness).(
20: [wmsg#](issue#.warning#! < wmsg# >, 1.0)
21: |[msg](issue#.warning#? < msg >, 1.0).(
22: (kill(klvoting), 1.0)
23: |{...})))
24:)
25: //enough?yes
26: +[nv2](enough#.votes#? < nv2 >, 1.0).(...)
27:))));

102

CHAPTER 5. CASE STUDIES 5.2. CASE STUDY: BPMN MAIL

the list manager when enough votes have been collected. The agent first checks
if a majority on the vote has been reached. If it is not the case (lines 4-13), then
the model restarts only the voting procedure (if it is the first time this situation
happens, line 7) or the whole procedure (if a majority could not be found in
preceding votes, lines 8-11). If a majority has been found (line 15), then no
further action has to be taken, and the execution of the model stops.

Pseudocode 5.3 SCOWS agent for the elaboration of votes
1: EnoughVotes(f irsttime, alreadywarned, klvoting) =

2: (reached#.ma jority#! <>, 1.0)
3: |(//ma jority?no
4: (reached#.ma jority#? <>,minorityRate).(
5: (outer#.loop#! < f irsttime >, 1.0)
6: |(
7: (outer#.loop#? < true >, 1.0).(...)
8: +(outer#.loop#? < f alse >, 1.0).(
9: (kill(klvoting), 1.0)

10: |...

11:)
12:)
13:)
14: //ma jority?yes
15: +(reached#.ma jority#? <>,ma jorityRate).nil
16:);

A graphical representation of the transition system (without transition la-
bels), generated by SCOWS lts applied to the considered model, is available
at http://disi.unitn.it/˜cappello/mail_unlabelled.svg. Given the
size of the representation, we do not insert it here.

In order to characterize the behaviour of the modelled system, we associate
a counter (named redisc) to specific SCOWS actions. The SCOWS lts code for
this abstraction rule can be seen in Pseudocode 5.4. This counter is used to col-
lect information on how many times the discussion procedure is restarted. In the

103

http://disi.unitn.it/~cappello/mail_unlabelled.svg

5.2. CASE STUDY: BPMN MAIL CHAPTER 5. CASE STUDIES

model, additional counters are defined, which collect information on how many
times a voting procedure is stopped (stopc), on how many times a warning is
issued to the list members (warnc), and on how many times a voting procedure
is restarted (revotec).

Pseudocode 5.4 Example of an abstraction rule in the BPMN Mail Case Study
1: outer#.loop# < f alse >: redisc < 15 : redisc′ = (redisc + 1);

First we analyse the steady-state probability of having x resets of the discus-
sion procedure, with all rates set to 1.0. The PRISM property we consider is
Property 5.1.

S =?[redisc = x] (5.1)

We limit our analysis to a maximum of 10 loops. Figure 5.1 presents the plot
of the results, from which it it is possible to see that the probability of reaching
the end of the model after a given number of loops decreases exponentially with
the number of the considered loops.

Another analysis we present regards the sensitivity of the model to the propen-
sity of not gaining a clear majority during the voting phase. We consider Prop-
erty 5.2.

P =?[F ≤ T (redisc = 1)] (5.2)

The change in the propensity of not gaining a clear majority is obtained
changing the value of the parametric rate minorityRate in agent EnoughVotes

(see line 3 in Pseudocode 5.3). The different values for minorityRate deter-
mine the propensities of executing one of the two available communications;
the value for ma jorityRate (see line 15 in Pseudocode 5.3) is fixed and equal
to 1. Figure 5.2 reports the results obtained checking for Property 5.2 with
minorityRate ∈ {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}, between 0 and 100 time units.
The same data is also presented in Figure 5.3, where it is clearer that the impact

104

CHAPTER 5. CASE STUDIES 5.3. CASE STUDY: MUTUAL EXCLUSION

0 2 4 6 8 10
Loops

0

0,2

0,4

0,6

0,8

Pr
ob

ab
ili

ty

Figure 5.1: Plot of the steady-state probability of having x discussion loops

on the result of a change in the value of minorityRate decreases with the in-
crease of the absolute value of the parameter itself: the 3D graph, in fact, shows
that the slope of the surface becomes smoother when minorityRate has higher
values.

5.3 Case Study: Mutual Exclusion

In this section we analyse several algorithms developed to solve the Mutual
Exclusion problem, in which two or more processes compete to access a re-
source in an exclusive way. When a process is granted this access, it is said

105

5.3. CASE STUDY: MUTUAL EXCLUSION CHAPTER 5. CASE STUDIES

0 20 40 60 80 100
Time

0

0,2

0,4

0,6

0,8

Pr
ob

ab
ili

ty

minorityRate = 1.0
minorityRate = 3.0
minorityRate = 5.0
minorityRate = 7.0
minorityRate = 9.0
minorityRate = 11.0
minorityRate = 13.0
minorityRate = 15.0
minorityRate = 17.0
minorityRate = 19.0

Figure 5.2: Probability of having to perform one reset of the discussion, given the propensity of
not having a clear majority after a vote (series representation)

to be in its critical section. These algorithms have been developed so that, us-
ing only shared variables, at any time at most one of the competing processes
is in its critical section. We model the considered algorithms in SCOWS and
use SCOWS lts to obtain, for each model, the LTS which will be imported and
studied in PRISM. In particular, we consider three algorithms: one attributed
to Dekker [12], one presented by Dijkstra [11] and one presented by Lamport
[18]. Dekker’s algorithm is limited to the case of two competitors, while the
others algorithms can solve the problem for N concurrent processes.

Each variable defined in the algorithms is modelled in SCOWS using a ser-

106

CHAPTER 5. CASE STUDIES 5.3. CASE STUDY: MUTUAL EXCLUSION

 1
 4

 7
 10

 13
 16

 19

 0
 20

 40
 60

 80
 100

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

P
ro

b
a
b
ili

ty

minorityRate

Time

P
ro

b
a
b
ili

ty

Figure 5.3: Probability of having to perform one reset of the discussion, given the propensity of
not having a clear majority after a vote (3D representation)

vice of the form presented in Pseudocode 5.5, which models a variable named
n#. A modelled process S P willing to change the value associated to variable n#
has to interact with agent CS v(n#, k) over endpoint set#.n#. After the new value
has been received, the residual of agent CS v(n#, k) proceeds to kill parallel in-
stances of CGv(n#, oldvalue). It then signals to the residual of process S P that
the new value has been received and instantiated. Service CGv(n#, value), on
the other hand, interacts over endpoint need#.get# with a modelled process S P

willing to perform a read operation of the variable n#. In this case, the service
has a simple persistent request-response structure. Note, however, that after S P

requests the value of n# any subsequent interaction with CS v(n#, k) with an-
other process S Q will not change the value obtained by S P, since the invoke
action at line 19 in Pseudocode 5.5 is protected and thus cannot be killed. This

107

5.3. CASE STUDY: MUTUAL EXCLUSION CHAPTER 5. CASE STUDIES

can be seen also in Figure 5.4, which represents the LTS for the SCOWS service
obtained putting in parallel an agent of the form represented in Pseudocode 5.5
for a variable named n# initially equal to 0, a service trying to read the value
of n# and a service trying to set the value of n# to 1. As can be seen from the
sequence of highlighted labelled actions, if S P first, then eventually it reads the
value 0, while if the write service executes first, then the read service eventually
gets the value 1. In other words, the presented models verify sequential consis-

tency, defined in [19] as the condition in which the result of any execution is the

same as if the operations of all the processors were executed in some sequential

order, and the operations of each individual processor appear in this sequence

in the order specified by its program. A multiprocessor satisfying this condition

will be called sequentially consistent. Starting from this modeling technique
for single variables, we model a vector vec of size N as a set of independent N

variables named vec0, . . . , vecN, so for each vector cell there is an instance of
agent CS v and one of agent CGv.

Modelling a read operation of the value associated to a variable named v is
done through a service of the form (need#.get#! < v, pid >, 1.0)|[myv](get#.v? <
myv, pid >, 1.0).(. . .), where pid is the unique identifier for the process, which
interacts with a service CGv(v, val) put in parallel. In the same way, an update of
the value associated to variable v with a new value val is performed by a service
of the form (set#.v! < val, pid >, 1.0)|(ok#.v? < val, pid >, 1.0).(. . .). The eval-
uation of arithmetic and boolean expressions, needed to model the behaviour of
conditional statements and cycles, is performed first reading the values of the
involved variables, then putting in parallel an invoke service having as parame-
ter the expression to check and a sequence of nondeterministic choices between
request services, each having as parameter a relevant result for the evaluation of
the expression. For example, the construct i f (exp)then . . . else . . . can be mod-
elled by a service of the form (check#.local#! < exp >, 1.0)|((check#.local#? <
true >, 1.0).(. . .) + (check#.local#? < f alse >, 1.0).(. . .)). Iterative constructs

108

CHAPTER 5. CASE STUDIES 5.3. CASE STUDY: MUTUAL EXCLUSION

can be modelled in a similar way by recursive agents.
To express PRISM properties controlling the behaviour of models with re-

spect to mutual exclusion, we defined two abstraction rules which can be seen
in Table 5.1. These rules state that, when the i-th process enters the critical
section, the PRISM variable i crit is set to 1 (initially it is 0). The second rule
states that when the i-th process leaves the critical section, the PRISM variable
i crit is set to 2.

is#.crit# < @1 > : @1 crit < 2 : (@1 crit′ = 1);
is#.noncrit# < @1 > : @1 crit < 2 : (@1 crit′ = 2);

Table 5.1: Abstraction rules for Mutual Exclusion models

The whole SCOWS lts models for the presented algorithms can be seen in
Appendix B.

We now present the pseudocode for the considered algorithms.
Pseudocode 5.6 presents the Dekker’s algorithm for the process indexed by

i, while the only antagonist is indexed by j. The algorithm is based on the use
of two boolean variables bi and b j, initially set to false, and of a shared variable
k, whose initial value can be either i or j. If bi (b j) is set to true, it means that
process i (j) is actively trying to enter the critical section. Variable k contains
the index of the next process that will be able to enter the critical section. When
exiting the critical section, process i (j) flips the value of k and sets bi (b j) to
f alse.

Dijkstra’s algorithm, presented in Pseudocode 5.7 solves the problem of mu-
tual exclusion for N contending problems. The set of shared variables is com-
posed of two boolean vectors b, c of size N. Each i-th element of these vectors,
initially equal to true, is set by the process indexed as i and is read by the other
processes. Shared variable f lag is read and set by all processes, and its initial
value can be any value in {1, . . . ,N}.

The Bakery Algorithm is presented in Pseudocode 5.8. This algorithm uses

109

5.3. CASE STUDY: MUTUAL EXCLUSION CHAPTER 5. CASE STUDIES

Pseudocode 5.5 SCOWS agent modelling a variable named n#
1: [k](
2: CS v(n#, k)
3: |CGv(n#, zero)
4:)
5: CS v(v, kv) =

6: [pr][val](set#.v? < val, pr >, 1.0).(
7: (kill(kv), 1.0)
8: | {

9: (ok#.v! < val, pr >, 1.0)
10: | [knewv](
11: CS v(v, knewv)
12: CGv(v, val)
13:)
14: }

15:)
16: ;
17: CGv(v, val) =

18: [lpr](need#.get#? < v, lpr >, 1.0).(
19: {(get#.v! < val, lpr >, 1.0)}
20: | CGv(v, val)
21:)
22: ;

110

CHAPTER 5. CASE STUDIES 5.3. CASE STUDY: MUTUAL EXCLUSION

Figure 5.4: LTS derived interleaving a write (set) and a read (get) of a variable n#

111

5.3. CASE STUDY: MUTUAL EXCLUSION CHAPTER 5. CASE STUDIES

Pseudocode 5.6 Dekker’s Algorithm
1: while true do
2: bi := true;
3: while b j do
4: if k , i then
5: bi := f alse;
6: while k , i do
7: skip;
8: end while
9: bi := true;

10: end if
11: end while
12: {beginning critical section}
13: {ending critical section}
14: k := j;
15: bi := f alse;
16: end while

a boolean vector choosing of size N, initialized to f alse and an integer vector
nmb of size N, initialized to 0. This algorithm captures the behaviour of a set
of customers waiting for their turn at a store: a process i gets an index, which is
stored in nmb[i]. The construct (a, b) < (c, d) used in the condition at line 9 is a
shortcut for (a < c) ∨ ((a = c) ∧ (b < d)). Notably, this algorithm works even
when the condition of sequential consistency is dropped.

We studied the presented algorithms when considering two processes con-
tending for entering the critical section. In the models, we introduced para-
metric rates for SCOWS actions controlling the busy waiting loops in Dekker’s
and Lamport’s algorithm, and for SCOWS actions involved in the control of the
loop at line 10 of Dijkstra’s algorithm. In this way, we can provide temporal
information on the performances of the algorithms varying one parameter.

In order to check mutual exclusion, we checked Property 5.3. Variables
proc0 crit and proc1 crit are the ones modified by the first abstraction rule in

112

CHAPTER 5. CASE STUDIES 5.3. CASE STUDY: MUTUAL EXCLUSION

Pseudocode 5.7 Dijkstra’s Algorithm for the i-th process
1: b[i] := f alse;
2: if f lag , i then
3: c[i] := true;
4: if b[f lag] then
5: f lag := i;
6: end if
7: goto 2;
8: else
9: c[i] := f alse;

10: for j := 1→ N do
11: if j , i ∧ ¬c[j] then
12: goto 2;
13: end if
14: end for
15: end if
16: c[i] := true;
17: b[i] := true;
18: {beginning critical section}
19: {ending critical section}
20: goto 1;

113

5.3. CASE STUDY: MUTUAL EXCLUSION CHAPTER 5. CASE STUDIES

Pseudocode 5.8 Lamport’s Bakery algorithm for process i
1: while true do
2: choosing[i] := true;
3: nmb[i] := 1 + max(nmb[1], ..., nmb[N]);
4: choosing[i] := f alse;
5: for j := 1→ N do
6: while choosing[j] do
7: skip;
8: end while
9: while (nmb[j] , 0) ∧ (nmb[j], j) < (nmb[i], i) do

10: skip;
11: end while
12: end for
13: {beginning critical section}
14: {ending critical section}
15: nmb[i] := 0;
16: end while

Table 5.1, which sets as 1 the variable corresponding to the process inside the
critical section. If both variables are equal to 1 at the same time, it means that
the mutual exclusion property does not hold. All three models, when checked
with PRISM, give true as response, meaning that the mutual exclusion property
holds.

P = 0[(trueU((proc1 crit = 1)&(proc2 crit = 1)))] (5.3)

Given that mutual exclusion holds, we can use Property 5.4 to infer quan-
titative information about the performance of the modelled algorithms. Prop-
erty 5.4, in particular, considers the time needed for one of the contending pro-
cesses to be granted access to the critical section. We checked this property
considering three values for the parametric rate, namely 1.0, 50, 0, 99.0, setting
all other rates to 1.0. In this way we can study the impact of busy waiting (and
of the f or cycle for Dijkstra’s algorithm) on the overall performances of the sys-

114

CHAPTER 5. CASE STUDIES 5.3. CASE STUDY: MUTUAL EXCLUSION

tem. By considering the results, we can see that Dekker’s solution is the fastest
algorithm to grant one of the processes the access to the critical section. Since it
is the only solution built to solve the problem for exactly two contenders, this is
not surprising: the other algorithms introduce additional variables and controls
which delay the access to the critical section. The results obtained checking
Property 5.4 are presented in Figure 5.5 for Dekker’s algorithm, in Figure 5.6
for Djikstra’s algorithm and in Figure 5.7 for Lamport’s algorithm.

P =?[(true U <= T ((proc1 crit = 1)|(proc2 crit = 1)))] (5.4)

0 10 20 30 40
0

0,2

0,4

0,6

0,8

1

bwr = 1.0
bwr = 50.0
bwr = 99.0

Figure 5.5: Results obtained checking Property 5.4 for Dekker’s algorithm

115

5.3. CASE STUDY: MUTUAL EXCLUSION CHAPTER 5. CASE STUDIES

The results for Dekker’s algorithm, presented in Figure 5.6, show that the
algorithm is not very sensitive to the propensity of the actions involved in the
busy waiting loop at lines 6-7 in Pseudocode 5.6. The slight differences between
the three cases can be seen between 15 and 30 time units.

0 20 40 60 80 100
0

0,2

0,4

0,6

0,8

1

bwr = 1.0
bwr = 50.0
bwr = 99.0

Figure 5.6: Results obtained checking Property 5.4 for Djikstra’s algorithm

When comparing the results for the model of Djikstra’s algorithm, we can
see that the behavioural difference between the cases in which bwr = 50.0
and bwr = 99.0 is negligible, while the transient behaviour of the model is
significantly slower when bwr = 1.0.

The results obtained checking Property 5.4 for the model of Lamport’s algo-

116

CHAPTER 5. CASE STUDIES 5.3. CASE STUDY: MUTUAL EXCLUSION

0 20 40 60 80 100
0

0,2

0,4

0,6

0,8

1

bwr = 1.0
bwr = 50.0
bwr = 99.0

Figure 5.7: Results obtained checking Property 5.4 for Lamport’s algorithm

117

5.3. CASE STUDY: MUTUAL EXCLUSION CHAPTER 5. CASE STUDIES

rithm reveal that the transient behaviour of the system is slower when compared
with the model of Djikstra’s algorithm. This can be explained considering that
Djikstra’s algorithm is based on the assumption of having atomic read and write
operations, while Lamport’s algorithm does not operate under this assumption,
has to introduce additional operations to compensate. Note however that the
read/write operations in the SCOWS models presented in Appendix B respect
the sequential consistency property.

To give a quantitative measure of the comparison of the transient evolution
of the models, we report in Table 5.2 the time for which Property 5.4 is verified
with probability p > 0.5 when bwr = 50.0.

Algorithm Time Unit Probability
Dekker 18 ∼ 0.52
Djikstra 37 ∼ 0.55
Lamport 60 ∼ 0.53

Table 5.2: Time for which Property 5.4 is verified with probability p > 0.5 for bwr = 50.0

118

Chapter 6

Conclusions

Among the various languages built to describe in a formal way Web Services,
COWS is an interesting representative given its communication mechanism,
based on correlation sets and priority levels determined by best matching, and
the presence of peculiar operators such as kill activities and protection delim-
iters. We gave an assessment of the prioritized communication mechanism in-
duced by COWS semantics comparing, by means of a separation result and
encoding functions, a fragment of CCS with global priorities (FAP) using the
Leader Election Problem as base. We determined that, under some requirements
regarding encoding functions from FAP to COWS, the priority mechanism of
FAP cannot be replicated into COWS. Relaxing these requirements, however,
we were able to define an encoding function from FAP to COWS and proving a
notion of behavioural correspondence, without introducing livelocks. From an
operative point of view, then, we can say that the presented encoding function
is reasonable.

We then presented a refined version of SCOWS, a stochastic dialect of COWS,
one of the calculi developed in the European project SENSORIA http://www.
sensoria-ist.eu/ in the context of modelling and analysing in a formal way
Web Services for both qualitative and quantitative properties. Starting from
SCOWS syntax and semantics, we developed a Java tool, named SCOWS lts

119

http://www.sensoria-ist.eu/
http://www.sensoria-ist.eu/

CHAPTER 6. CONCLUSIONS

and available at [1], to derive the whole Transition System of SCOWS terms.
In order to minimise the effect of the State Space Explosion Problem, we intro-
duced in the implementation a notion of structural congruence between SCOWS
services, allowing SCOWS lts to reduce the actual number of states needed to
represent the behaviour of a SCOWS term using congruence classes. The result
of the simulation phase, in the form of a LTS representation, can be imported
in PRISM [17] to be analysed. Apart from an optimized implementation of
structural congruence, we described other features of SCOWS lts, such as the
support for parametric rates associated to basic actions and rules of abstraction
from SCOWS actions to PRISM operations.

We presented the features of SCOWS lts and the feasibility of the approach
considering two main cases studies: the first is a manual translation of one of the
examples given in the BPMN guide, the primary target language for the mod-
elling ambitions of the COWS family of languages, while the second is com-
posed of the analysis of various mutual exclusion algorithms, relevant mainly
for historical reasons. We presented the results of model checking for quanti-
tative properties on the presented examples using PRISM as the model checker
of choice.

The work presented here could be the basis on which both theoretical and
practical approaches to formal modelling, especially of Web Services, can be
further advanced: assessing characteristics and peculiarities of modelling lan-
guages is fundamental to characterize their proper scope of application and spe-
cialization. On the practical side, the development of tools to promote and
expand the use of these formal techniques, especially in non-academic commu-
nities, is a long-term goal that has to be pursued. In this sense the SENSORIA
European Project, whose results are presented in [34], has shown that there is a
great potential in this field which could be further investigated.

120

Bibliography

[1] disi.unitn.it/˜cappello.

[2] Business process model and notation. http://www.omg.org/spec/
BPMN/.

[3] Vigyan Singhal Adnan Aziz, Kumud Sanwal and Robert Brayton. Veri-
fying continuous time Markov chains. In R. Alur and T. Henzinger, edi-
tors, Proc. 8th International Conference on Computer Aided Verification

(CAV’96), volume 1102 of LNCS, pages 269–276. Springer, 1996.

[4] BEA Alexandre Alves, Intalio Assaf Arkin, Individual Sid Askary,
Adobe Systems Charlton Barreto, Systinet Ben Bloch, IBM Fran-
cisco Curbera, Inc. Mark Ford, Active Endpoints, BEA Yaron Goland,
Inc. Alejandro Guzar, JBoss, Sterling Commerce Neelakantan Kartha,
SAP Canyang Kevin Liu, IBM Rania Khalaf, IBM Dieter Knig, for-
merly FileNet Corporation Mike Marin, IBM, Deloitte Vinkesh Mehta,
Microsoft Satish Thatte, TIBCO Software Danny van der Rijn, webMeth-
ods Prasad Yendluri, and Oracle Alex Yiu. Web services business process
execution language version 2.0. Technical report.

[5] Federico Banti, Rosario Pugliese, and Francesco Tiezzi. A criterion for
separating process calculi. In EXPRESS’10, pages 16–30, 2010.

[6] Gérard Boudol. Asynchrony and the pi-calculus, 1992.

121

disi.unitn.it/~cappello
http://www.omg.org/spec/BPMN/
http://www.omg.org/spec/BPMN/

BIBLIOGRAPHY BIBLIOGRAPHY

[7] Luc Bougé. On the existence of symmetric algorithms to find leaders in
networks of communicating sequential processes. Acta Inf., 25(2):179–
201, 1988.

[8] Igor Cappello and Paola Quaglia. Expressing global priorities by best
matching. In SAC’12, to appear.

[9] Igor Cappello and Paola Quaglia. A tool for checking probabilistic prop-
erties of cows services. In Martin Wirsing, Martin Hofmann, and Axel
Rauschmayer, editors, Trustworthly Global Computing, volume 6084 of
Lecture Notes in Computer Science, pages 364–378. Springer Berlin / Hei-
delberg, 2010.

[10] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical

Computer Science, 240(1):177–213, 2000.

[11] Edsger W. Dijkstra. Solution of a problem in concurrent programming
control. Commun. ACM, 8(9):569, 1965.

[12] Edsger W. Dijkstra. Cooperating sequential processes. 1968.

[13] Alessandro Fantechi, Stefania Gnesi, Alessandro Lapadula, Franco Maz-
zanti, Roberto Pugliese, and Francesco Tiezzi. A model checking approach
for verifying COWS specifications. In Proc. of Fundamental Approaches

to Software Engineering (FASE’08), volume 4961 of Lecture Notes in

Computer Science, pages 230–245. Springer, 2008.

[14] Daniele Gorla. Comparing communication primitives via their relative
expressive power. Information and Computation, 206(8):931–952, 2008.

[15] Jane Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

122

BIBLIOGRAPHY BIBLIOGRAPHY

[16] Kohei Honda and Mario Tokoro. An object calculus for asynchronous
communication. In Proceedings of the European Conference on Object-

Oriented Programming (ECOOP, pages 133–147. Springer-Verlag, 1991.

[17] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: Proba-
bilistic Model Checking for Performance and Reliability Analysis. ACM

SIGMETRICS Performance Evaluation Review, 36(4):40–45, 2009.

[18] Leslie Lamport. A new solution of dijkstra’s concurrent programming
problem. Commun. ACM, 17(8):453–455, 1974.

[19] Leslie Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Computers, 28(9):690–691,
1979.

[20] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A Calculus
for Orchestration of Web Services. In Proc. of 16th European Symposium

on Programming (ESOP’07), volume 4421 of Lecture Notes in Computer

Science, pages 33–47. Springer, 2007.

[21] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing
calculi. In Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel,
editors, ICALP, volume 1443 of Lecture Notes in Computer Science, pages
856–867. Springer, 1998.

[22] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lec-

ture Notes in Computer Science. Springer, 1980.

[23] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile
Processes, Part I and II. Information and Computation, 100(1):1–77, 1992.

[24] Uwe Nestmann. What is a ”good” encoding of guarded choice? Inf.

Comput., 156(1-2):287–319, 2000.

123

BIBLIOGRAPHY BIBLIOGRAPHY

[25] Catuscia Palamidessi. Comparing the expressive power of the synchronous
and the asynchronous pi-calculus. In POPL, pages 256–265, 1997.

[26] Catuscia Palamidessi. Comparing the expressive power of the synchronous
and asynchronous pi-calculi. Mathematical Structures in Computer Sci-

ence, 13(5):685–719, 2003.

[27] Davide Prandi and Paola Quaglia. Stochastic cows. In Bernd J. Krämer,
Kwei-Jay Lin, and Priya Narasimhan, editors, ICSOC, volume 4749 of
Lecture Notes in Computer Science, pages 245–256. Springer, 2007.

[28] Corrado Priami. Stochastic pi-calculus. Comput. J., 38(7):578–589, 1995.

[29] Paola Quaglia and Stefano Schivo. Approximate model checking
of stochastic cows. In Martin Wirsing, Martin Hofmann, and Axel
Rauschmayer, editors, TGC, volume 6084 of Lecture Notes in Computer

Science, pages 335–347. Springer, 2010.

[30] Jan Recker, Marta Indulska, Michael Rosemann, and Peter Green. How
good is bpmn really? insights from theory and practice. Proceedings of the

14th European Conference on Information Systems, pages 1582 – 1593,
2006.

[31] Stefano Schivo. Statistical model checking of Web Services. PhD thesis,
Int. Doctorate School in Information and Communication Technologies,
University of Trento, 2010.

[32] Cristian Versari, Nadia Busi, and Roberto Gorrieri. An expressiveness
study of priority in process calculi. Mathematical Structures in Computer

Science, 19(6):1161–1189, 2009.

[33] Maria Grazia Vigliotti, Iain Phillips, and Catuscia Palamidessi. Tutorial on
separation results in process calculi via leader election problems. Theor.

Comput. Sci., 388(1-3):267–289, 2007.

124

BIBLIOGRAPHY BIBLIOGRAPHY

[34] Martin Wirsing and Matthias M. Hölzl, editors. Rigorous Software Engi-

neering for Service-Oriented Systems - Results of the SENSORIA Project

on Software Engineering for Service-Oriented Computing, volume 6582
of Lecture Notes in Computer Science. Springer, 2011.

125

BIBLIOGRAPHY BIBLIOGRAPHY

126

Appendix A

Operational Correspondence for J. K

A.1 Theorem 6

Theorem. If JPK −→ s then there exists s′ such that s −→∗ s′ and either s′ ≡ JP′K
for some P′ such that P→ P′, or s′ ≡ [h, l, r, m̃]LPMh l

r with P such that P9.

Proof. By definition of the encoding, we have

JPK = [h, l, r, m̃]
(
Monitor(h, l, r) | LPMh l

r

)
and also we know that the first action that service JPK can perform is a commu-
nication over endpoint search.h.

Branch 1 The structure of the derivation tree of the transition JPK
search.h ·σ · h · u
−−−−−−−−−−−→

s, where we explicited the label, can have either the structure presented in Fig-
ure A.1, in which u = x0, or the structure presented in Figure A.2, in which
u = h. Note that the only difference between the two is the presence of one
substitution in the communication label. Given the semantic rules of COWS,
the former represents an acceptable COWS transition only if the latter cannot
be executed.

In the former case, depicted in Figure A.1, there is no Input agent introduced
by the encoding, otherwise a communication presenting a best matching tuple

127

A.1. THEOREM 6 APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K

...

[l, r, m̃]LPMh l
r

search.h · ε · h · x0
−−−−−−−−−−−→ s′1 h < d(α) s 8 h

(del p)
s = [h, l, r, m̃]LPMh l

r
search.h · ε · h · x0
−−−−−−−−−−−→ [h]s′1 = s′

Figure A.1: Structure of the derivation tree for the transition JPK
search.h · ε · h · x0
−−−−−−−−−−−→ s

could take place. Service s′ can evolve only by performing a synchronization
on endpoint search.l internal to agent Monitor (lines 4,5 in Pseudocode 3.2)
involving one substitution; with another internal synchronization on endpoint
hard.r, the reached residual service, s′′, is in a deadlock state. We have that
the sequence of reductions JPK = [h, l, r, m̃]

(
Monitor(h, l, r) | LPMh l

r

)
−→∗ s′′

involves only actions in agent Monitor, which leaves no residual in s′′. We can
then conclude that s′′ ≡ [h, l, r, m̃]LPMh l

r .

Process P can be generally written as P ≡F
∏

i6n xi.Pi |
∏

j6m x j |
∏

k6o xk

be the encoded FAP process: P presents n > 0 unguarded input actions, m > 0
unguarded prioritized outputs and o > 0 unguarded unprioritized outputs.

...

[l, r, m̃]LPMh l
r

search.h · ε · h · h
−−−−−−−−−−−→ s′1 h < d(α) s 8 h

(del p)
[h, l, r, m̃]LPMh l

r
search.h · ε · h · h
−−−−−−−−−−−→ [h]s′1 = s′

Figure A.2: Structure of the derivation tree for the transition JPK
search.h · ε · h · h
−−−−−−−−−−−→ s

High priority search If the latter case of Branch 1, depicted in Figure A.2, takes
place, i.e. if the initial communication over endpoint search.h is not internal
to agent Monitor, by definition of encoding function J. K the only other pos-
sibility is that an Input agent obtains the token for searching for a matching
high-priority output action, executing the request action over endpoint search.h

at line 2 in Pseudocode 3.3. Note that this communication involves no substi-

128

APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K A.1. THEOREM 6

tution. Without loss of generality, let suppose that the activated agent has been
introduced by the encoding when considering a FAP process xi′.Qi′. In this case,
the Input agent has been instantiated as Inputx.Qi′ (xi′, h, l, r).

Branch 2 After the acquisition of the token, there are only two possible con-
tinuations: either the activated input agent performs an internal synchronization
on endpoint xi′.h (lines 3,6 in Pseudocode 3.3) involving one substitution, or a
communication over xi′.h involving no substitution between the activated Input

agent (line 3 in Pseudocode 3.3) and an agent Output(xi′, h) happens (line 1 in
Pseudocode 3.4).

In the former case, the encoding function has not introduced any service
Output(xi′, h), meaning that P , Q1 | xi′ | Q2 for any FAP processes Q1,Q2.
As a consequence of the synchronization, the residual of the activated Input

agent is ready to release the high priority token, providing an invoke action on
endpoint search.h (line 7 of Pseudocode 3.3) and waiting for the low priority
token (line 8) or for a reset signal (lines 14 and 18). If the token is acquired by
another Input agent, then the evolution is described reconsidering Branch 2.

High priority synchronization In the latter case, the only possible continuation
is a synchronization between the residual of the activated Input agent and the
residual of the found Output(x j′, h) agent over endpoint xi′.com, for x j′ = xi′

(lines 4 in Pseudocode 3.3 and line 1 in Pseudocode 3.4). The activated Input

agent performs then an internal synchronization over endpoint so f t.r (lines 5
and 18 in Pseudocode 3.3). The only possible continuation is a communica-
tion over endpoint comm. f inish with h as parameter (line 10 in Pseudocode 3.2
and line 20 in Pseudocode 3.3). At this point the residual of agent Monitor

is represented by agent CReset. Again, there is only one possible continu-
ation: a synchronization over endpoint hard.r: all residuals of Input agents
which unsuccessfully took part in the search for a matching high priority output

129

A.1. THEOREM 6 APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K

can perform a request activity over hard.r (line 14 in Pseudocode 3.3) which
equally matches the invoke activity at line 15 in Pseudocode 3.2. For each of
these Input residuals, after the synchronization over endpoint hard.r a priori-
tized local kill activity over label kin is performed; after this action, the residual
of the Input agent is composed of a protected invoke action propagating the
reset signal (line 16 in Pseudocode 3.3) and of a new instance of the encoding
of the input action. The last synchronization over endpoint hard.r takes place
between the last Input residual needing a reset (line 16 in Pseudocode 3.3)and
the residual of agent Monitor (line 16 in Pseudocode 3.2). After this synchro-
nization, the residual of the system, identified by s2, has the form presented in
Pseudocode A.1.

Pseudocode A.1 Encoding of a FAP process after a successful low priority communication
1: s2 ≡ [h, l, r, m̃](Monitor(h, l, r)
2: | LQi′Mh l

r

3: |
∏

i6n,i,i′Lxi.QiMh l
r

4: |
∏

j6m, j, j′Lx jMh l
r

5: |
∏

k6oLxkMh l
r

6:)

Note that s2 is congruent to the encoding of the FAP process P′, reachable
from P after a high priority synchronization over channel xi′ = x j′.

Low priority search If each activated Inputxi.Qi(xi, h, l, r) agent has performed
the internal synchronization over endpoint xi.h, meaning that no correspond-
ing high priority output encoding service was found, the residual of service s

is a service s1 which we can identify, by construction of the encoding, as the
service presented in Pseudocode A.2 If the w-th activated Input agent is instan-
tiated as Inputxw.Qw(xw, h, l, r) and one of the m unguarded prioritized outputs in
P, indexed by p is instantiated as Output(xp, h) where xw = xp, then the invoke
action on endpoint xw.h at line 3 in Pseudocode 3.3 best matches with the re-

130

APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K A.1. THEOREM 6

quest action at line 1 in Pseudocode 3.4. After this synchronization, the only
possible continuation is a synchronization over endpoint xw.com, following by
an internal synchronization in agent Input over endpoint so f t.r (lines 5,18 in
Pseudocode 3.3). The encoding of the residual of the FAP input process Q is
exposed, and the information about the executed synchronization is forwarded
to the residual of the Monitor service over endpoint comm. f inish. (line 20 in
Pseudocode 3.3 and line 10 in Pseudocode 3.2). The only possible continuation
is the repetition, w− 1 times, of a synchronization over endpoint hard.r (line 15
in Pseudocode 3.2 and line 16 in Pseudocode 3.3 synchronizing with line 14 in
Pseudocode 3.3). This synchronization triggers the cleanup phase, first carried
out by the residual of the w-th activated Input agent, which performs the kill
activity over kill label kin. In this way each of the w − 1 input agents is reset
to its initial state Lxi.QiMh l

r . After this sequence, the only possible synchroniza-
tion is again on endpoint hard.r and involves the invoke action at line 16 of the
w− 1-th considered Input agent and the residual of agent Monitor (at line 16 in
Pseudocode 3.2) or, if w = 0 this synchronization is internal to agent Monitor.
In either case this step resets the monitor to its initial state Monitor(h, l, r). At
the end we obtain a service

s′′ ≡ [h, l, r, m̃]
(

Monitor(h, l, r)

|
∏

i≤n,i,wLxi.QiMh l
r

| LQwMh l
r

|
∏

j6m, j,pLx jMh l
r

|
∏

k LxkMh l
r

)
Service s′′ is structurally congruent to the residual of process P after a high

priority synchronization over name x.

In case of an unsuccessful high priority search, the presented behaviour is
repeated, considering l in place of h as name for the identification of the priority.
In particular, we have that at least one synchronization happens on endpoint

131

A.1. THEOREM 6 APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K

Pseudocode A.2 Encoding of a FAP process after an unsuccessful high priority search
1: s1 ≡ [h, l, r, m̃]({|[kcl](search.l ! 〈l〉
2: | ([v2]search.l ? 〈v2〉 .CBlock(r, kcl)
3: +comm. f inish ? 〈l〉 .CReset(h, l, r, kcl)))|}
4: |

∏
i6n {|search.l ? 〈l〉 .(xi.l ! 〈xi, l〉 | . . .)|}

5: |
∏

j6m Output(x j, h)
6: |

∏
k6o Output(xk, l)

7:)

search.l. Either it is an internal synchronization to the residual of agent Monitor

(lines 1-2 in Pseudocode A.2) or, for some i′, it involves the request at line 4 in
Pseudocode 3.3 for the i′-th considered Input agent.

Branch 3 In the first case, the encoding phase did not introduce any Input

agent. This situation has already been discussed in Branch 1. In the second case,
similarly to what happened before, the residual of an Input agent, indexed as i′

and thus instantiated as Inputxi′ .Qi′ (xi′, h, l, r) gets the token to perform the search
for an unguarded low priority output action indexed as k′, and thus encoded as
Output(xk′, l) with xi′ = xk′.

Branch 4 If such an Output agent does not exist, the only possible executable
action is an internal synchronization over endpoint xi′.l (lines 9 and 12 in Pseu-
docode 3.3), after which the token is again available. Another Input agent can
then obtain the low priority token, and the protocol continues from the second
choice of Branch 3.

Low priority synchronization If, on the other hand, such an Output agent exists,
the only possible executable action is a synchronization over endpoint xi′.l in-
volving no substitution (line 9 in Pseudocode 3.3 and line 1 in Pseudocode 3.4);
this communication can be followed only by a synchronization over endpoint
xi′.com (line 10 in Pseudocode 3.3 and line 1 in Pseudocode 3.4). Again, the

132

APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K A.1. THEOREM 6

only possible continuation of the protocol is represented by an internal synchro-
nization of agent Input over endpoint so f t.r (lines 11 and 18 Pseudocode 3.3).
At this point the encoding of the residual Qi′ of action xi′.Qi′ is instantiated,
alongside with the protected communication over endpoint comm. f inish among
agent Input (line 21 in Pseudocode 3.3) and agent Monitor (line 7 in Pseu-
docode 3.2). This synchronization triggers n−1 repetitions of a synchronization
involving all Input actions which participated in the search, but not in the suc-
cessful communication. These synchronizations happen over endpoint hard.r

(line 15 in Pseudocode 3.2, lines 14 and 16 in Pseudocode 3.3), and after them
the prioritized kill action over kin takes place (line 15 in Pseudocode 3.3), which
cleans the state of the Input agent under consideration. After this sequence, the
last considered Input action synchronizes over endpoint hard.r with the resid-
ual of agent Monitor (line 16 in Pseudocode 3.3 and line 16 Pseudocode 3.2)
involving one substitution. After this synchronization, a fresh instance of the
Monitor agent is ready to restart the execution of the communication protocol.
We obtain a service s2 which is of the form presented in Pseudocode A.3.

Pseudocode A.3 Encoding of a FAP process after a successful low priority communication
1: s2 ≡ [h, l, r, m̃](Monitor(h, l, r)
2: | LQi′Mh l

r

3: |
∏

i6n,i,i′Lxi.QiMh l
r

4: |
∏

j6mLx jMh l
r

5: |
∏

k6o,k,k′LxkMh l
r

6:)

Note that service s2 has the form of the encoding of a FAP process

P′ ≡F Qi′ |
∏

i6n,i,i′
xi.Pi |

∏
j6m

x j |
∏

k6o,k,k′
xk

Process P′ represents the residual of process P after the execution of a low
priority synchronization over name xi′ = xk′ between process xi′.Qi′ and process
xk′.

133

A.2. THEOREM 7 APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K

The last possibility that we have to consider is the one where all Input agents
perform unsuccessfully a low priority search, i.e. no synchronization is possible
in the encoded FAP process P. In this case, the last synchronization happening
over endpoint search.l involves the n-th Input agent and the residual of the
Monitor agent (line 5 in Pseudocode 3.2 and line 12 in Pseudocode 3.3), after
which the cleanup phase for Input residuals, consisting of n repetitions of a
synchronization over endpoint hard.r takes place. The last synchronization over
endpoint hard.r involves the last Input residual (line 16 in Pseudocode 3.3) and
agent Monitor (line 22 in Pseudocode 3.2). Note that the obtained residual
service s3 is congruent to the service presented in Pseudocode A.4, which can
perform no action.

Pseudocode A.4 Encoding after a totally performed unsuccessful search
1: s3 ≡ [h, l, r, m̃](
2: |

∏
i6nLxi.QiMh l

r

3: |
∏

j6mLx jMh l
r

4: |
∏

k6oLxkMh l
r

5:)

Given the distributive property of function L. Mh l
r , service s3 is congruent to

[h, l, r]LPMh l
r . �

A.2 Theorem 7

Theorem. If P→ P′ then s = JPK −→∗≡ JP′K

Proof. Given the semantics of FAP, a process P can perform a reduction P→ P′

in two cases: either it performs a high-priority synchronization P � P′ or it
performs a low-priority synchronization P 7→ P′. By rule (∗) in Table 3.1, these
two cases are mutually exclusive.

134

APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K A.2. THEOREM 7

1. P� P′. The proof tree producing this derivation is of the form

P ≡F Q1

-
x.R1 | x� R1

Q1 = x.R1 | x | R2 � R1 | R2 = Q2 Q2 ≡F P′

P� P′

Given this structure, we have P ≡F x.R1 | x | R2 and P′ ≡F R1 | R2. We
can then derive the encoding of P according to s = J. K to be

s = JPK = [h, l, r, m̃](
Monitor(h, l, r)
| Inputx.R1(x, h, l, r)
| Output(x, h)
| LR2Mh l

r

)

Given this structure and the definition of agents Monitor, Input and Output,
we can describe a possible evolution of JPK that will reach a configuration
congruent to JP′K, as needed.

We have that s can perform a communication over endpoint search.h in-
volving no substitution (line 2 in Pseudocode 3.2 and line 2 in Pseudocode 3.3).
Given the definition of agent Output(x, h) introduced by the encoding, the
only possible continuation is a synchronization over endpoint x.h involving
no substitution (line 3 in Pseudocode 3.3 and line 1 in Pseudocode 3.4) fol-
lowed by a synchronization over endpoint x.com (line 1 in Pseudocode 3.4
and line 4 in Pseudocode 3.3, which consumes the residual of agent Output(x, h).
The only possible contiunation for the residual service is represented by an
internal synchronization performed by the residual of the activated input
over endpoint so f t.r. At this point the residual of agent Input is composed
of the instantiation of the encoding of Q, the residual of the FAP input ac-
tion x.Q (line 19 in Pseudocode 3.3) and an invoke action on endpoint

135

A.2. THEOREM 7 APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K

comm. f inish (line 20 in Pseudocode 3.3). This matches with the request
action on the same endpoint defined in the Monitor agent (line 10 in Pseu-
docode 3.2). The communication on endpoint comm. f inish involves one
substitution; after it is executed, a new instance of the Monitor agent is in-
stantiated. After this action, the residual service is [h, l, r, m̃](Monitor(h, l, r) |
LR1Mh l

r | LR2Mh l
r), which is congruent to the service obtained applying the

encoding function to P′.

2. P 7→ P′. Given the semantics of FAP, we have that P ≡F Q1 g, other-
wise rule (∗) in Table 3.1 could not have been applied. We have that the
derivation tree for P 7→ P′ is

P ≡F Q1

-
x.R1 | x 7→ R1 x.R1 | x | R2 g

Q1 = x.R1 | x | R2 7→ R1 | R2 = Q2 Q2 ≡F P′

P 7→ P′

Process P can be generally written as
∏

i6n xi.Pi |
∏

j6m x j |
∏

k6o xk. Given
the reduction tree, no prioritized synchronization can happen in P, so we
can state that for all i, j such that P ≡F xi.Pi | x j | R, we have xi , x j. In
the following, we will identify x.R1 as the î-th input process, i.e. xî.Rî, and
x as the k̂-th output process, i.e. xk̂.

We now consider the COWS service s = JPK. We can state that the num-
ber of FAP input processes, and subsequently the number of Input agents
introduced by the encoding, is n > 0; for this reason, s can evolve per-
forming a transition on endpoint search.h with no substitution involved
between agent Monitor (lin 2 in Pseudocode 3.2) and one of the Input

agents (line 2 in Pseudocode 3.3). At this point, the residual of the ac-
tivated Input agent can only perform an internal synchronization on en-
point x.h involving one substitution (lines 3 and 6 in Pseudocode 3.3): no
matching service Output(x, h), which could provide a better-matching re-

136

APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K A.2. THEOREM 7

quest, has been introduced by the encoding function. The residual of the
Input agent releases the token, providing an invoke action on endpoint
search.h. The sequence of transitions is repeated for all the Input agents
introduced by the encoding, where the last activated Input agent releases
the token by synchronizing with the residual of the Monitor agent on end-
point search.h) with one substitution (line 3 in Pseudocode 3.3 and line 3
in Pseudocode 3.2).

At this point, the residual of the Monitor agent provides an invoke action
on endpoint search.l representing the low priority token, which can be ac-
quired nondeterministically by one of the n Input residuals. By simplicity,
let the residual of the encoding introduced by considering the FAP input
action xî.Rî be the first one to acquire the token by syncronizing on end-
point search.l with the residual of agent Monitor. By reasoning on the
hypotheses, we derived the fact that a matching low priority output action
is present in P, so an agent of the form Output(xî, l) has been introduced by
the encoding. For this reason, a synchronization on endpoint xî.l, involving
no substitution, is possible (line 9 in Pseudocode 3.3 and line 1 in Pseu-
docode 3.4). A subsequent synchronization on endpoint xî.com triggers
the second phase of the protocol, which consists in initializing the encod-
ing of the residual Pî and resetting all the agents involved in the search to
their initial state. The first task is performed with a local communication
on endpoint xî.com by the residual of the agent encoding the input action
involved in the FAP synchronization (lines 11 and 18 in Pseudocode 3.3).
The residual of this synchronization and the residual of the Monitor agent
can synchronize on endpoint comm. f inish. This action signals to Monitor

that a low synchronization has been performed, and that a reset signal has
to be sent out on endpoint hard.reset to all the Input agents who unsuc-
cessfully searched for a matching partner. The first signal is sent by the
Monitor agent itself (line 15 in Pseudocode 3.2); it matches with the re-

137

A.3. THEOREM 8 APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K

quest activity at line 14 in Pseudocode 3.3. After this synchronization, a
prioritized kill activity is performed by the residual of Input on label kin.
The reset signal is then replicated, in parallel with a clean instance of the
Input agent. This sequence is repeated n − 1 times; the last invoke action
on endpoint hard.reset (line 16 in Pseudocode 3.3) is intercepted by the
residual of agent Monitor (line 16 in Pseudocode 3.2), whose residual is a
fresh instance of the Monitor agent.

After this sequence of transitions, we get a service

s′ ≡ [h, l, r, m̃](
Monitor(h, l, r)
| LRîMh l

r

|
∏

i6n,i,îLxi.RiMh l
r

|
∏

j6mLx jMh l
r

|
∏

k6o,k,k̂LxkMh l
r

)

Service s′ is congruent to service JP′K, as required.

�

A.3 Theorem 8

Theorem. If P9 then s = JPK −→∗≡ [h, l, r, m̃]LPMh l
r

Proof. Given that P 9, we have that a proper derivation tree for a transition of
P could not be built. Given the set of semantic rules for FAP, this means that
neither of the two axioms in Table 3.1, namely rule (com) and (pr com), could
be applied. In other words, if we write P ≡F

∏
i6n xi.Pi |

∏
j6m x j |

∏
k6o xk,

xi , x j and xi , xk for all values 0 < i 6 n , 0 < j 6 m and 0 < k 6 o. Applying
the encoding function J. K to P, we obtain a service

138

APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K A.3. THEOREM 8

s = {|hlr|}(Monitor(h, l, r) |
∏
i6n

Lxi.PiMh l
r |

∏
j6m

Lx jMh l
r |

∏
k6o

LxkMh l
r)

Based on the value of n, i.e. the number of Input agent instantiated by the
encoding, we have two possible scenarios:

1. n = 0: the evolution of service s is the one presented for choice 1 in
Branch 1 for Theorem 6: service s can evolve only by performing a syn-
chronization on endpoint search.h internal to agent Monitor (lines 2,3 in
Pseudocode 3.2) involving one substitution; after another internal synchro-
nization on endpoint (lines 4,5 in Pseudocode 3.2), the only possible con-
tinuation is a synchronization on endpoint search.h hard.r (lines 21,22 in
Pseudocode 3.2). The residual service, let call it be s′, is in a deadlock
state. We have that the sequence of reductions

JPK = [h, l, r, m̃]
(
Monitor(h, l, r) | LPMh l

r

)
−→∗ s′

involves only actions in agent Monitor, which is no more present in s′, i.e.
s′ ≡ [h, l, r]LPMh l

r .

2. n > 0: the evolution of service s has been presented in Theorem 6 when
considering unsuccessful searches for both high and low priority outputs.
We have that in P there is at least one unguarded input FAP process (n > 0);
given the definition of the encoding function, this means that at least one
unguarded Input service is in the encoding JPK. We also know that in P,
for all input processes, there is no unguarded matching output, otherwise
P could perform a transition, contradicting the hypothesis of the theorem.

Given the definition of the encoding function applied to P under these con-
ditions, all Input agents, instantiated as Inputxi.Qi(xi, h, l, r), are activated
(one at a time) through a communication labelled as search.h · ε · h · h (line
2 in Pseudocode 3.2 and line 2 in Pseudocode 3.3); each activated Input

139

A.3. THEOREM 8 APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K

agent declares the search as unsuccessful by performing an internal syn-
chronization labelled as xi.h · ε · xi, h · xi, v6 (lines 3,6 in Pseudocode 3.3).
The last considered Input agent synchronizes with agent Monitor with
a communication labelled as search.h · ε · h · v1 (line 3 in Pseudocode 3.2
and line 7 in Pseudocode 3.3). This removes the high priority token and
instantiates the low priority one. All residuals of Input agents, which are
at this point instantiated as a service congruent to s∗i , where

s∗i ≡ [kin][myid](search.l ? 〈l〉 .(. . .)
|(hard.r ? 〈r〉 .(. . .)
+[prio]so f t.r ? 〈myid, prio〉 .(. . .)));

The residual of service JPK, at this point, can only continue by performing
n times the sequence composed of a communication on endpoint search.l

(line 4 in Pseudocode 3.2 and lines 8, 12 in Pseudocode 3.3), labelled as
search.l · ε · l · l, which activates one of the Input residuals, followed by
a synchronization internal to the activated Input agent on endpoint xi.l

labelled as xi.l · ε · xi, l · xi, v7 (lines 9, 12 in Pseudocode 3.3). As before,
the possibility of having a communication on endpoint xi.l involving no
substitution (which would take precedence) is denied by the lack of any
matching output action in the encoded process.

The last synchronization on endpoint search.l is between the last activated
Input agent and the residual of agent Monitor (line 5 in Pseudocode 3.2
and line 12 in Pseudocode 3.3). After this, the residual of agent Monitor is
composed by the instantiation of agent CBlock. If we call sa the residual
of service JPK after the last possible synchronization on endpoint search.l,
we have that sa can only evolve performing n times a sequence of synchro-
nizations over endpoint hard.r (line 21 in Pseudocode 3.2 and lines 14, 16
in Pseudocode 3.3). After each synchronization, an Input agent is reset to
its initial state. The last synchronization on endpoint hard.r is performed

140

APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K A.3. THEOREM 8

between the last resetted Input agent and the residual of agent Monitor,
involving one substitution (line 16 in Pseudocode 3.2 and line 16 in Pseu-
docode 3.3). After it is performed, the obtained residual is congruent to
service [h, l, r]LPMh l

r . Since agent Monitor is not present, the high priority
token (in the form of the unguarded invoke action on endpoint search.h) is
not reinstantiated, so the process is in a deadlock state.

�

141

A.3. THEOREM 8 APPENDIX A. OPERATIONAL CORRESPONDENCE FOR J. K

142

Appendix B

SCOWS lts Models

B.1 Mail BPMN Case Study

Discussion(firsttime, alreadywarned) =

[issueList]

[k_disc]

(identify#.issues#?<issueList>,1.0).(

(announce#.issues#!<issueList>,modResponsiveness)

| (announce#.issues#?<issueList>,modResponsiveness).(

(moderate#.discussion#!<>,modResponsiveness)

|(moderate#.discussion#?<>,modResponsiveness).(

(discussion#.token#!<>,1.0)

)

|(warn#.deadline#!<issueList>,modResponsiveness)

|(warn#.deadline#?<issueList>,modResponsiveness).(

(deadline#.token#!<>,1.0)

)

|[date#](check#.confCall#!<date#>,1.0)

|[week](

(check#.confCall#?<week>,1.0).(

//yes

143

B.1. MAIL BPMN CASE STUDY APPENDIX B. SCOWS LTS MODELS

(moderate#.confCall#!<week>,modResponsiveness)

|(moderate#.confCall#?<week>,modResponsiveness).(

(confCall#.token#!<>,1.0)

)

)

+(check#.confCall#?<week>,1.0).(

//no

(confCall#.token#!<>,1.0)

)

)

)

|(deadline#.token#?<>,1.0).(confCall#.token#?<>,1.0)

.(discussion#.token#?<>,1.0).(

(eval#.discussion#!<issueList>,modResponsiveness)

|(

(eval#.discussion#?<issueList>,modResponsiveness).(

//ready

(announce#.vote#!<issueList>,1.0)

| BetweenDiscAndVote(firsttime,alreadywarned)

)

+(eval#.discussion#?<issueList>,modResponsiveness).(

//not ready

(kill(k_disc),1.0)

|

{

(identify#.issues#!<issueList>,1.0)

| Discussion(firsttime, alreadywarned)

}

)

144

APPENDIX B. SCOWS LTS MODELS B.1. MAIL BPMN CASE STUDY

)

)

)

;

BetweenDiscAndVote(firsttime, alreadywarned)=

[iL](announce#.vote#?<iL>,1.0).(

(start#.vote#!<iL>,1.0)

|Voting(firsttime, alreadywarned)

)

;

CollectVote()=

nil

;

UpdateVotes()=

nil

;

CheckCalendar()=

[wk#](check#.week#!<wk#>,1.0)

|(

[w1](check#.week#?<w1>,1.0).(

//cc in voting week? NO

CheckCalendar()

)

+[w2](check#.week#?<w2>,1.0).(

//cc in voting week? YES

145

B.1. MAIL BPMN CASE STUDY APPENDIX B. SCOWS LTS MODELS

(moderate#.cc#!<>,1.0)

)

)

;

ModerateMailDiscussion()=

(moderate#.maildisc#!<>,1.0)

;

DeadlineWarning()=

[warningtext#]

(dispatch#.deadlinewarning#!<warningtext#>,1.0)

;

EnoughVotes(firsttime, alreadywarned, k_voting)=

(reached#.majority#!<>,1.0)

|(

//majority? no

(reached#.majority#?<>,minorityRate).(

(outer#.loop#!<firsttime>,1.0)

|(

(outer#.loop#?<true>,1.0).(

[newsolutions#](reduce#.solutions#!<newsolutions#>

,modResponsiveness)

| [sol](reduce#.solutions#?<sol>,modResponsiveness).(

(kill(k_voting),1.0)

|

{

(mail#.voters#!<sol>,1.0)

146

APPENDIX B. SCOWS LTS MODELS B.1. MAIL BPMN CASE STUDY

| BetweenDiscAndVote(false, alreadywarned)

| [newissues#](announce#.vote#!<newissues#>,1.0)

}

)

)

+(outer#.loop#?<false>,1.0).(

//restart discussion

(kill(k_voting),1.0)

|

{

[new_issues#](identify#.issues#!<new_issues#>,1.0)

|Discussion(firsttime, alreadywarned)

}

)

)

)

//majority? yes

+ (reached#.majority#?<>,majorityRate).nil

)

;

ElabResults(firsttime, alreadywarned, k_voting)=

(moderate#.cc#?<>,1.0).

(moderate#.maildisc#?<>,1.0).

[warn](dispatch#.deadlinewarning#?<warn>,1.0).

(

[result#](prepare#.results#!<result#>,modResponsiveness)

| [res](prepare#.results#?<res>,modResponsiveness).(

(post#.results#!<res>,modResponsiveness)

147

B.1. MAIL BPMN CASE STUDY APPENDIX B. SCOWS LTS MODELS

|(post#.results#?<res>,modResponsiveness).

(eval#.votes1#!<>,1.0)

|(mail#.results#!<res>,modResponsiveness)

|(mail#.results#?<res>,modResponsiveness).

(eval#.votes2#!<>,1.0)

)

|[vt#](

(stop#.votes#!<vt#>,1.0)

|(stopped#.vt#?<>,1.0).(eval#.votes1#?<>,1.0)

.(eval#.votes2#?<>,1.0).(

[nbvotes#](enough#.votes#!<nbvotes#>,1.0)

|

(

//enough? no

[nv1](enough#.votes#?<nv1>,1.0).(

(members#.warned#!<alreadywarned>,modResponsiveness)

|(

(members#.warned#?<true>,modResponsiveness).(

(reduce#.votes#!<>,1.0)

| (reduce#.votes#?<>,1.0).

EnoughVotes(firsttime, true, k_voting)

)

+(members#.warned#?<false>,modResponsiveness).(

[wmsg#](issue#.warning#!<wmsg#>,1.0)

|[msg](issue#.warning#?<msg>,1.0).(

(kill(k_voting),1.0)

|

{

[adjustedissues#](

148

APPENDIX B. SCOWS LTS MODELS B.1. MAIL BPMN CASE STUDY

(start#.vote#!<adjustedissues#>,1.0))

| Voting(firsttime, true)

}

)

)

)

)

//enough? yes

+

[nv2](enough#.votes#?<nv2>,1.0).(

EnoughVotes(firsttime, alreadywarned, k_voting)

)

)

)

)

)

;

Voter()=

[vote](stop#.votes#?<vote>,1.0).(

(stopped#.vote!<>,1.0)

| Voter()

)

+ [solutions](mail#.voters#?<solutions>,1.0).Voter()

;

Voting(firsttime, alreadywarned) =

[k_voting]

[issueList]

149

B.1. MAIL BPMN CASE STUDY APPENDIX B. SCOWS LTS MODELS

(start#.vote#?<issueList>,1.0).(

CheckCalendar()

|ModerateMailDiscussion()

|DeadlineWarning()

|CollectVote()

|UpdateVotes()

|ElabResults(firsttime, alreadywarned, k_voting)

)

;

$

fixed;

[list#](

(review#.issues#!<list#>,1.0)

| (

//go to Discussion Cycle

(review#.issues#?<list#>,1.0).(

Discussion(true, false)

| (identify#.issues#!<list#>,1.0)

)

)

| Voter()

)

$

$

//stopping vote

150

APPENDIX B. SCOWS LTS MODELS B.2. DEKKER’S ALGORITHM

stop#.votes# <*> : stopc < 100 : stopc’=(stopc+1);

//warning users about the need for their vote.

issue#.warning# <*> : warnc < 15 : warnc’=(warnc+1);

//reissuing voting.

outer#.loop#<true> : revotec < 15 : revotec’=(revotec+1);

//reissuing discussion.

outer#.loop#<false> : redisc < 15 : redisc’=(redisc+1);

B.2 Dekker’s Algorithm

CGv(v,val)=

[pr](need#.get#?<v, pr>,1.0).(

{(get#.v!<val, pr>,1.0)}

| CGv(v,val)

)

;

CSv(v, k_v) =

[pr][val](set#.v?<val, pr>,1.0).(

(kill(k_v),1.0)

| {

(ok#.v!<val, pr>,1.0)

| [k_new_v](

CSv(v,k_new_v)

| CGv(v, val)

151

B.2. DEKKER’S ALGORITHM APPENDIX B. SCOWS LTS MODELS

)

}

)

;

Controller(f0, f1, t, zero, one, token) =

[k_f0](

CSv(f0, k_f0)

| CGv(f0, zero)

)

| [k_f1](

CSv(f1, k_f1)

| CGv(f1, zero)

)

| [k_t](

CSv(t, k_t)

| CGv(t, zero)

)

;

ProcessBusyWait(zero, one, x, notx, turn, token, proceed) =

[check#]

(

(need#.get#!<turn, x>,1.0)

| [lt](get#.turn?<lt,x >,1.0).(

(check#.local#!<lt>,bwr)

| (

(check#.local#?<notx>,bwr).(

ProcessBusyWait(zero, one, x, notx, turn, token

152

APPENDIX B. SCOWS LTS MODELS B.2. DEKKER’S ALGORITHM

, proceed)

)

+

(check#.local#?<x>,bwr).(

(can#.proceed!<x>,1.0)

)

)

)

)

;

ProcessWhileFlag(zero, one, x, notx, flagx, flagnotx, turn

, token) =

[check#][lfnotx]

(

(need#.get#!<flagnotx, x>,1.0)

| (get#.flagnotx?<lfnotx, x>,1.0).(

(check#.local#!<lfnotx>,1.0)

| (

(check#.local#?<one>,1.0).(

(

(need#.get#!<turn, x>,1.0)

| [lt](get#.turn?<lt,x >,1.0).(

(check#.local#!<lt>,1.0)

| (

(check#.local#?<x>,1.0).(

ProcessWhileFlag(zero, one, x, notx

, flagx, flagnotx, turn, token)

153

B.2. DEKKER’S ALGORITHM APPENDIX B. SCOWS LTS MODELS

)

+(check#.local#?<notx>,1.0).(

(

(set#.flagx!<zero,x >,1.0)

| (ok#.flagx?<zero, x>,1.0).(

[proceed#](

ProcessBusyWait(zero, one, x, notx

, turn, token, proceed#)

| (can#.proceed#?<x>,1.0).(

(

(set#.flagx!<one, x>,1.0)

| (ok#.flagx?<one, x>,1.0).(

ProcessWhileFlag(zero, one

, x, notx, flagx, flagnotx

, turn, token)

)

)

)

)

)

)

)

)

)

)

)

+(check#.local#?<zero>,1.0).(

(is#.crit#!<x>,1.0)

)

154

APPENDIX B. SCOWS LTS MODELS B.2. DEKKER’S ALGORITHM

)

)

)

;

Process(zero, one, x, notx, flagx, flagnotx, turn, token) =

(

(set#.flagx!<one,x>,1.0)

| (ok#.flagx?<one,x>,1.0).(

ProcessWhileFlag(zero, one, x, notx, flagx, flagnotx

, turn, token)

| (is#.crit#?<x>,1.0).(

(is#.noncrit#!<x>,1.0)

| (is#.noncrit#?<x>,1.0).(

(

(set#.turn!<notx,x>,1.0)

| (ok#.turn?<notx,x>,1.0).(

(

(set#.flagx!<zero,x>,1.0)

| (ok#.flagx?<zero,x>,1.0).(

nil

)

)

)

)

)

)

)

)

155

B.2. DEKKER’S ALGORITHM APPENDIX B. SCOWS LTS MODELS

;

$

fixed;

[flag1#][flag2#][turn#]

[proc1#][proc2#]

[t#](

Process(proc1#, proc2#, proc1#, proc2#, flag1#, flag2#

, turn#, t#)

|

Process(proc1#, proc2#, proc2#, proc1#, flag2#, flag1#

, turn#, t#)

| Controller(flag1#, flag2#, turn#, proc1#, proc2#, t#)

)

$

$

is#.crit# < @1 > : @1_crit < 2 : (@1_crit’=1);

is#.noncrit# < @1 > : @1_crit < 2 : (@1_crit’=2);

156

APPENDIX B. SCOWS LTS MODELS B.3. DJIKSTRA’S ALGORITHM

B.3 Djikstra’s Algorithm

CGv(v,value)=

[process](need#.get#?<v, process>,1.0).(

{(get#.v!<value, process>,1.0)}

| CGv(v,value)

)

;

CSv(v, k_v) =

[process][value](set#.v?<value, process>,1.0).(

(kill(k_v),1.0)

| {

(ok#.v!<value, process>,1.0)

| [k_new_v](

CSv(v,k_new_v)

| CGv(v, value)

)

}

)

;

Controller(f0, f1, t, token) =

[flag_f0](

CSv(f0, flag_f0)

| CGv(f0, zero)

)

157

B.3. DJIKSTRA’S ALGORITHM APPENDIX B. SCOWS LTS MODELS

| [flag_f1](

CSv(f1, flag_f1)

| CGv(f1, zero)

)

| [flag_t](

CSv(t, flag_t)

| CGv(t, zero)

)

;

CS(n,pid, procname, b, c, b_of_i, c_of_i, flag) =

(is#.crit#!<procname>,1.0)

|(is#.crit#?<procname>,1.0).(

(is#.noncrit#!<procname>,1.0)

|(is#.noncrit#?<procname>,1.0).(

(set#.c_of_i!<true,pid>,1.0)

|(ok#.c_of_i?<true,pid>,1.0).(

(set#.b_of_i!<true,pid>,1.0)

|(ok#.b_of_i?<true,pid>,1.0).(

nil

)

)

)

158

APPENDIX B. SCOWS LTS MODELS B.3. DJIKSTRA’S ALGORITHM

)

;

ForCycle(n,stop,pid,procname,j,b,c,b_of_i,c_of_i,c_of_j

,flag)=

(check1#.check1#!<pid,j>,1.0)

|(

[otherj](check1#.check1#?<pid,otherj>,1.0).(

(need#.get#!<c_of_j,pid>,1.0)

|[mycj](get#.c_of_j?<mycj,pid>,1.0).(

(check2#.check2#!<pid,((! (j=pid)) & (!(mycj)))>

,bwr)

|(

(check2#.check2#?<pid,true>,bwr).(

ProcessL1(n,pid,procname,b,c,b_of_i,c_of_i

,flag)

)

+(check2#.check2#?<pid,false>,bwr).(

ForCycle(n,stop,pid,procname,(j+1),b,c,b_of_i

,c_of_i,(c+(j+1)),flag)

)

)

)

)

+(check1#.check1#?<pid,stop>,1.0).(

CS(n,pid,procname,b,c,b_of_i,c_of_i,flag)

)

)

159

B.3. DJIKSTRA’S ALGORITHM APPENDIX B. SCOWS LTS MODELS

;

ProcessL4(n,pid,procname,b,c,b_of_i,c_of_i,flag)=

(set#.c_of_i!<false,pid>,1.0)

|(ok#.c_of_i?<false,pid>,1.0).(

ForCycle(n,(n+1),pid,procname,1,b,c,b_of_i,c_of_i

,(c+1),flag)

)

;

ProcessL1(n, pid, procname, b, c, b_of_i, c_of_i, flag)=

(need#.get#!<flag, pid>,1.0)

|[myflag](get#.flag?<myflag,pid>,1.0).(

[b_of_flag](

(match1#.match1#!<(!(myflag=pid)), (b+myflag),pid>,1.0)

|(

(match1#.match1#?<true, b_of_flag,pid>,1.0).(

(set#.c_of_i!<true,pid>,1.0)

|(ok#.c_of_i?<true,pid>,1.0).(

(need#.get#!<b_of_flag,pid>,1.0)

|[b_of_flag_value]

(get#.b_of_flag?<b_of_flag_value,pid>,1.0).(

(match2#.match2#!<pid,b_of_flag_value>,1.0)

160

APPENDIX B. SCOWS LTS MODELS B.3. DJIKSTRA’S ALGORITHM

|(

(match2#.match2#?<pid,true>,1.0).(

(set#.flag!<pid,pid>,1.0)

|(ok#.flag?<pid,pid>,1.0).(

ProcessL1(n,pid,procname,b,c,b_of_i

,c_of_i,flag)

)

)

+(match2#.match2#?<pid,false>,1.0).(

ProcessL1(n,pid,procname,b,c,b_of_i

,c_of_i,flag)

)

)

)

)

)

+(match1#.match1#?<false, b_of_flag,pid>,1.0).(

ProcessL4(n,pid,procname,b,c,b_of_i,c_of_i,flag)

)

)

)

)

;

Go() =

[proc](operation#.ready#?<proc>,1.0).(

161

B.3. DJIKSTRA’S ALGORITHM APPENDIX B. SCOWS LTS MODELS

(operation#.go#!<proc>,1.0)

| Go()

)

;

Process(n,pid, procname, b, c, b_of_i, c_of_i, flag) =

(operation#.ready#!<pid>,1.0)

|(operation#.go#?<pid>,1.0).(

(set#.b_of_i!<false, pid>,1.0)

|(ok#.b_of_i?<false, pid>,1.0).(

ProcessL1(n,pid,procname,b,c,b_of_i,c_of_i,flag)

)

)

;

SpawnProcesses(maxprocidx, m, pid, procbase,b, c,flag)=

[cS#](

(cS#.cS#!<pid>,1.0)

|(

[other](cS#.cS#?<other>,1.0).(

Process(maxprocidx,pid,(procbase+pid),b,c,(b+pid)

,(c+pid),flag)

|SpawnProcesses(maxprocidx, m,(pid+1),procbase,b

,c,flag)

)

162

APPENDIX B. SCOWS LTS MODELS B.3. DJIKSTRA’S ALGORITHM

+(cS#.cS#?<m>,1.0).(

Go()

)

)

)

;

InitVector(v,index,max_val, val) =

[k_proc](

CSv(v+index, k_proc)

| CGv(v+index, val)

)

|(

[checkflag1#][val#](

(checkflag1#.val#!<index>,1.0)

|(

(checkflag1#.val#?<max_val>,1.0).

(finished#.initvector#!<v,(max_val-1)>,1.0)

+ [otherIdx](checkflag1#.val#?<otherIdx>,1.0).

InitVector(v,index+1,max_val, val)

)

)

)

;

Init(n,b,c,flag) =

[k_flag](

CSv(flag,k_flag)

| CGv(flag, 1)

)

163

B.3. DJIKSTRA’S ALGORITHM APPENDIX B. SCOWS LTS MODELS

| InitVector(b, 1, n+1, true)

| InitVector(c, 1, n+1, true)

;

$

fixed;

[proc#][b#][c#][flag#](

(set#.maxProcNmb#!<2>,1.0)

|[mpn](set#.maxProcNmb#?<mpn>,1.0).(

Init(mpn,b#,c#,flag#)

| (finished#.initvector#?<b#,mpn>,1.0).

(finished#.initvector#?<c#,mpn>,1.0).

SpawnProcesses(mpn,(mpn+1), 1, proc#, b#, c#

, flag#)

)

)

$

$

is#.crit#<@1>:@1_crit < 2 : (@1_crit’=1);

is#.noncrit#<@1>:@1_crit < 2 : (@1_crit’=2);

164

APPENDIX B. SCOWS LTS MODELS B.4. LAMPORT’S BAKERY ALGORITHM

B.4 Lamport’s Bakery Algorithm

CGv(v,value)=

[process](need#.get#?<v, process>,1.0).(

{(get#.v!<value, process>,1.0)}

| CGv(v,value)

)

;

CSv(v, k_v) =

[process][value](set#.v?<value, process>,1.0).(

(kill(k_v),1.0)

| {

(ok#.v!<value, process>,1.0)

| [k_new_v](

CSv(v,k_new_v)

| CGv(v, value)

)

}

)

;

Go() =

[proc](operation#.ready#?<proc>,1.0).(

(operation#.go#!<proc>,1.0)

| Go()

165

B.4. LAMPORT’S BAKERY ALGORITHM APPENDIX B. SCOWS LTS MODELS

)

;

InitVector(v,index,max_val, val) =

[k_proc](

CSv(v+index, k_proc)

| CGv(v+index, val)

)

|(

[check1#][max_val#](

(check1#.max_val#!<index>,1.0)

|(

(check1#.max_val#?<max_val>,1.0).

(finished#.initvector#!<v,max_val>,1.0)

+ [otherIdx](check1#.max_val#?<otherIdx>,1.0).

InitVector(v,index+1,max_val, val)

)

)

)

;

Init(b, nmb, n)=

InitVector(b, 1, n, false)

| InitVector(nmb, 1, n, 0)

;

SpawnProcesses(b, nmb, procbase, idx, n, token)=

166

APPENDIX B. SCOWS LTS MODELS B.4. LAMPORT’S BAKERY ALGORITHM

[check2#][max_val#](

(check2#.max_val#!<idx>,1.0)

|(

(check2#.max_val#?<n>,1.0).(

ProcessPhase1(n, b,nmb, (procbase+idx), idx

, (b+idx),(nmb+idx), token)

| Go()

)

+ [otherIdx](check2#.max_val#?<otherIdx>,1.0).(

ProcessPhase1(n, b, nmb, (procbase+idx), idx

, (b+idx), (nmb+idx), token)

| SpawnProcesses(b, nmb, procbase, (idx+1), n

, token)

)

)

)

;

GetMaxRec(v,it,idx,v_of_it,max_it,var_max)=

[new_max](

(need#.get#!<v_of_it, idx>,1.0)

| [theVal](get#.v_of_it?<theVal, idx>,1.0).(

(update#.local_max#!<max(var_max, theVal)>,1.0)

| (update#.local_max#?<new_max>,1.0).(

[iterate#][index#](

(iterate#.index#!<it>,1.0)

167

B.4. LAMPORT’S BAKERY ALGORITHM APPENDIX B. SCOWS LTS MODELS

| (

[vi](iterate#.index#?<vi>,1.0).(

GetMaxRec(v, it+1, idx, (v+(it+1)), max_it

, new_max)

)

+

(iterate#.index#?<max_it>,1.0).(

(return#.max#!<1+new_max,idx>,1.0)

)

)

)

)

)

)

;

Wait1(procname, idx,b_of_q, token) =

[lW1#]

(

(need#.get#!<b_of_q, idx>,1.0)

| [theVal](get#.b_of_q?<theVal, idx>,1.0).(

(lW1#.procname!<theVal>,bwr)

| (

(lW1#.procname?<true>,bwr).(

Wait1(procname,idx,b_of_q, token)

)

+

(lW1#.procname?<false>,bwr).(

168

APPENDIX B. SCOWS LTS MODELS B.4. LAMPORT’S BAKERY ALGORITHM

(notify#.procname!<1>,1.0)

)

)

)

)

;

Wait2(procname, idx, q, nmb_of_i, nmb_of_q, token) =

[lW2#]

(

need#.get#!<nmb_of_i, idx>,1.0)

|[v_nmb_of_i](get#.nmb_of_i?<v_nmb_of_i, idx>,1.0).(

(need#.get#!<nmb_of_q, idx>,1.0)

| [v_nmb_of_q](get#.nmb_of_q?<v_nmb_of_q, idx>,1.0).(

(lW2#.procname!<((!(v_nmb_of_q = 0))

& ((v_nmb_of_q < v_nmb_of_i)

| ((v_nmb_of_q = v_nmb_of_i)

& (q < idx))))>,bwr)

| (

(lW2#.procname?<true>,bwr).(

Wait2(procname, idx, q, nmb_of_i, nmb_of_q

, token)

)

+

(lW2#.procname?<false>,bwr).(

(notify#.procname!<2>,1.0)

)

)

169

B.4. LAMPORT’S BAKERY ALGORITHM APPENDIX B. SCOWS LTS MODELS

)

)

;

ProcessPhase2Rec(n,np1, b, nmb, procname, idx, q, b_of_i

, nmb_of_i, token)=

[local#](

(local#.iterate#!<q>,1.0)

| (

[v](local#.iterate#?<v>,1.0).(

Wait1(procname, idx,(b+q), token)

| (notify#.procname?<1>,1.0).(

Wait2(procname, idx, q, nmb_of_i, (nmb+q)

, token)

| (notify#.procname?<2>,1.0).(

ProcessPhase2Rec(n, np1, b, nmb, procname, idx

, (q+1), b_of_i, nmb_of_i, token)

)

)

)

+

(local#.iterate#?<np1>,1.0).(

(is#.crit#!<procname>,1.0)

| (is#.crit#?<procname>,1.0).(

(is#.noncrit#!<procname>,1.0)

| (is#.noncrit#?<procname>,1.0).(

(set#.nmb_of_i!<0, idx>,1.0)

| (ok#.nmb_of_i?<0, idx>,1.0).(nil)

)

170

APPENDIX B. SCOWS LTS MODELS B.4. LAMPORT’S BAKERY ALGORITHM

)

)

)

)

;

ProcessPhase2(n, b,nmb, procname, idx, b_of_i,nmb_of_i

, token) =

ProcessPhase2Rec(n, (n+1),b, nmb, procname, idx, 1

, b_of_i, nmb_of_i, token)

;

GetMax(v, idx, max_it)=

GetMaxRec(v, 1, idx, (v+1), max_it, 0)

;

ProcessPhase1(n, b, nmb, procname, idx, b_of_i, nmb_of_i

, token)=

(operation#.ready#!<idx>,1.0)

|(operation#.go#?<idx>,1.0).(

(set#.b_of_i!<true, idx>,1.0)

| (ok#.b_of_i?<true, idx>,1.0).(

GetMax(nmb, idx, n)

| [mynumber](return#.max#?<mynumber,idx>,1.0).(

(set#.nmb_of_i!<mynumber, idx>,1.0)

| (ok#.nmb_of_i?<mynumber, idx>,1.0).(

171

B.4. LAMPORT’S BAKERY ALGORITHM APPENDIX B. SCOWS LTS MODELS

(set#.b_of_i!<false, idx>,1.0)

| (ok#.b_of_i?<false, idx>,1.0).(

ProcessPhase2(n, b,nmb, procname, idx, b_of_i

, nmb_of_i, token)

)

)

)

)

)

;

$

fixed;

[n][nmb#][b#][proc#][t#](

(set#.maxProcIdx#!<2>,1.0)

|(set#.maxProcIdx#?<n>,1.0).(

Init(b#, nmb#, n)

|

(finished#.initvector#?<b#, n>,1.0).

(finished#.initvector#?<nmb#, n>,1.0).

SpawnProcesses(b#, nmb#, proc#, 1, n, t#)

)

)

$

$

is#.crit# < @1 > : @1_crit < 2 : (@1_crit’=1);

is#.noncrit# < @1 > : @1_crit < 2 : (@1_crit’=2);

172

	Introduction
	Objective of the Thesis
	Related Works
	Structure of the Thesis

	COWS
	Syntax and Semantics of COWS
	COWS Derivation Example

	COWS Communications
	Preliminaries
	The Leader Election Problem
	Separation Result
	Global Priorities in COWS
	Encoding Function "4A4AA71 "5A4BA79
	Encoding Function "426830A "526930B
	Properties of encoding functions "4A4AA71 "5A4BA79 and "426830A "526930B
	Comments on Encoding Functions "4A4AA71 "5A4BA79 and "426830A "526930B

	A Stochastic Extension
	Basic Notions
	Continuous Time Markov Chains
	Expressing Quantitative Properties

	SCOWS
	Transition Rates Computation
	Transition Rate Computation Example

	SCOWS_lts
	PRISM overview
	SCOWS identifiers in SCOWS_lts
	SCOWS_lts: the main loop
	Structural Congruence for SCOWS
	Structural Congruence: an implementation
	Complexity Analysis and Performance Optimizations
	Other features of SCOWS_lts
	Usage Example

	Case Studies
	PRISM Notation
	Case Study: BPMN Mail
	Case Study: Mutual Exclusion

	Conclusions
	Bibliography
	Operational Correspondence for "4A4AA71 "5A4BA79
	Theorem 6
	Theorem 7
	Theorem 8

	SCOWS_lts Models
	Mail BPMN Case Study
	Dekker's Algorithm
	Djikstra's Algorithm
	Lamport's Bakery Algorithm

