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Abstract
Semantics is a local and a global problem at the same time. Local because is

in the mind of the people who have personal interpretations, and global because
we need to reach a common understanding by sharing and aligning these personal
interpretations.

As opposed to current state-of-the-art approaches based on a two layer archi-
tecture (local and global), we deal with this problem by designing a general three
layer architecture rooted on the personal, social, and universal levels. The new in-
termediate social level acts as a global level for the personal level, where semantics
is managed around communities focusing on specific domains, and as local for the
universal level as it only deals with one part of universal knowledge.

For any of these layers there are three main components of knowledge that
helps us encode the semantics at the right granularity. These are: i) Concrete
knowledge, which allows us to achieve semantic compatibility at the level of en-
tities, the things we want to talk about; ii) Schematic knowledge, which defines
the structure and methods of the entities; and iii) Background knowledge, which
enables compatibility at the language level used to describe and structure entities.

The contribution of this work is threefold: i) the definition of general archi-
tecture for managing semantics of entities, ii) the development components of the
system based on the architecture; these are structure preserving semantic matching
and sense induction algorithms, and iii) the evaluation of these components with
the creation of new gold standards datasets.
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Fausto Giunchiglia, and Heiner Stuckenschmidt, eds.), CEUR Work-
shop Proceedings, vol. 431, CEUR-WS.org, 2008.

vii
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Joslyn, Véronique Malaisé, Christian Meilicke, Andriy Nikolov,
Juan Pane, Marta Sabou, François Scharffe, Pavel Shvaiko, Vas-
silis Spiliopoulos, Heiner Stuckenschmidt, Ondrej Sváb-Zamazal, Vo-
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Fausto Giunchiglia, Heiner Stuckenschmidt, Natalya Fridman Noy,
and Arnon Rosenthal, eds.), CEUR Workshop Proceedings, vol. 551,
CEUR-WS.org, 2009.
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Chapter 1

Introduction

In the Web 2.0 era knowledge made available in digital format is growing at a
fast pace. Individuals, communities and organizations usually have their own local
models and standards to represent their knowledge, which evolves over time, cre-
ating semantically heterogeneous knowledge bases, even if dealing with the same
domain. Given the proliferation of information systems, and the growing special-
ization in key areas (e.g., bioinformatics, e-government, e-health), there is a need
to collaborate in order to build shared innovative solutions, which would benefit
from the knowledge that can be obtained by combining information from differ-
ent sources. This is especially true in domains facing identification problems, for
example, in governmental agencies that need to gather information from different
sources for fighting tax evasion, or for health researches that need to combine pa-
tient data to measure, for example, the effect of a treatment. This collaborative
process poses the need of bridging the interoperability issues coming from hetero-
geneous knowledge representations.

The aim of this thesis is to propose a framework for dealing with the semantic
heterogeneity issue in distributed scenarios in order to maximize interoperability.
We organize our knowledge framework around entities, i.e., things we want to rep-
resent, describe and manage. There are several sources of semantic heterogeneity
such as the natural language used to describe the entities and their schemas and the
set of attributes chosen to describe the entities. These need to be resolved in order
to achieve interoperability and to enable collaboration between the participants of
the distributed scenario.

We adopt an a-priori approach for dealing with semantic heterogeneity. This is,
instead of the classical post-hoc approach (schema matching, ontology matching,
record linkage, . . .) we tackle the problem by defining a Knowledge Organization
System (KOS) that deals with the problem by construction. We propose a KOS
model centered around entities where the knowledge is defined using three main
components: i) the background knowledge that deals with the ambiguity of natural
language by converting natural language labels into a formal language (language
independent concepts) that is machine processable; ii) the schematic knowledge
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that deals with the heterogeneity at schema level, allowing us to define different
entity types based on the formal language of the background knowledge; and iii)
the concrete knowledge that contains the model of the entities, based on the entity
types defined in the schematic knowledge and where the values for the attributes
of the entities can be expressed as references to other entities, as concepts from the
formal language, besides the classical set of basic data types such as integer, float,
date, etc.

Capturing the semantics of the entities in this distributed scenario is local and
a global problem at the same time. Local because the entities are to be provided by
people who have personal interpretations and that would want to provide descrip-
tions about their entities using their personal (local) knowledge (terms, concepts,
structure of the entities); and global because in order to profit from the distributed
scenario, where people benefit from the knowledge created by others, we need
to reach a common understanding by sharing and aligning these personal (local)
interpretations.

We propose to achieve interoperability by capturing the real world semantics of
knowledge systems created at three different layers: local (personal), social (com-
munities) and global (across communities). Where in the first layer people create
and maintain locally their own vision of the world, then they share this knowledge
with other people and interact in several bounded social contexts (their communi-
ties), but where in order to achieve successful multi-context interaction there is a
need of an upper layer that formalizes what is commonly known across communi-
ties. We believe that in such scenario entities will be created mostly in a bottom-up
fashion, and that interoperability will be achieve by reusing the background (lan-
guage and concepts) and schematic (entity types) knowledge mainly in a top-down
fashion.

In this distributed scenario we need to also deal with the dynamic nature of
knowledge, this is, while we can enable interoperability by reusing a predefined
set of words and concepts in a top-down fashion, we also need to provided the ca-
pabilities for extending such set of words and concepts based on their usage by the
participants of the distributed scenario. This is needed because relying on a fixed
vocabulary can hinder the capability of the system to extract machine processable
semantics from natural language labels. As we will see, this is a real problem in
highly dynamic scenarios such as Computer Science. Once the system is capable
of creation new terms and concepts, either automatically by relying on the process
described before, or manually by the user, we also need to define the procedure
by which new knowledge is propagated among the participants of the distributed
system.

Given that entities are to be created and maintained locally by people, providing
different perspectives about the same entity being referred, we need to deal with
incomplete and inconsistent perspectives. The aim of this thesis is to deal with
the heterogeneity by being able to unequivocally and globally identify the entities
being referred under such conditions. This poses the need of first understanding
the types of entities that come into play, and how to identify each of them. We

4



identify three types of entities: i) real world entities, i.e., those that actually exits; ii)
mental entities, i.e., those that people from in their mind from their own perspective
referring to real world entities based on their experience and the interaction with the
world; and iii) digital entities, i.e., those that are encoded in the system as provided
by people (based on their mental entities) referring to real wold entities. Under
such condition, the digital entity should be able to distinguish between the identity
of the actual real world entity, and the identity of the local perspective encoded in
the system. This difference will prove to be key in the design of the system, and
will allows us to propose a solution capable of achieving the goal of capturing the
real world semantics of the real world entities, given partial views about them.

The contribution of this thesis is threefold:

1. the definition of a general architecture for managing and enabling interoper-
ability of entities in a distributed setting, rooted in the notion of the identifi-
cation of entities;

2. the development of components of the system based on the defined architec-
ture, these are:

• S-Match, an open source framework for semantic matching (http:
//www.s-match.org).

• the Tags2Con “Delicious” dataset is, to the best of our knowledge,
the first publicly available dataset included in the Linked Open Data
initiative that contains manually created links from Delicious tags to
Wornet synsets for disambiguating the meaning of the tags (http:
//disi.unitn.it/˜knowdive/dataset/delicious/).

• the development of a generic sense induction algorithm that can be
extended with new distance metrics.

3. the evaluation of the above mentioned components.

1.1 Thesis organization

The structure of the thesis is as follows:
In part I: General notions introduces the problem statement that is to be ad-

dressed in this thesis.
Part II: Global architecture for managing local semantics is composed by the

following chapters:

• Chapter 3: “Knowledge Components” presents the structure of the Knowl-
edge Organization System that is designed to deal with different sources
semantic heterogeneity. The background knowledge is composed of a lin-
guistic part defining the natural languages that are to be supported by the
system linked to a conceptual part that is unambiguous enabling automatic
reasoning capabilities; the schematic knowledge is composed by the entity
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type definitions and the concrete knowledge contains the entities of the sys-
tem;

• Chapter 4: “The semantic layers” outlines the three layers of knowledge:
Universal, Community and Personal that will allow people to communicate
with each other in a fully distributed manner, but also in bounded contexts,
while enabling interoperability;

Part III: Background and Schema compatibility deals with the issue of how to
achieve interoperability at the level of language and schema and is composed by
the following chapters:

• Chapter 5: “Semantic Matching” presents an algorithm that allows the sys-
tem to extract formal semantics from natural language labels and to use this
to compare tree-like such as schemas or entity types;

• Chapter 6: “Background Knowledge Evolution” presents a sense induction
algorithm for the computation of new concepts based on the usage of terms in
a distributed setting, and the addition of these new concepts to the linguistic
and conceptual part of the background knowledge;

• Chapter 7: “Knowledge propagation” presents a pragmatic approach for the
propagation of knowledge from the different components of the knowledge
presented in Chapter 3 between all the layers presented in Chapter 4;

Part IV: Entity compatibility studies how to achieve interoperability at the level
of entities and is composed by the following chapters:

• Chapter 8: “Entity Compatibility” defines the conditions under which, given
the incomplete and inconsistent perspectives about entities, it can be estab-
lished whether two perspectives refer to the same real world entity or not;

• Chapter 9: “Identity Management” defines how to manage the identity of the
real world entity being referred by different perspectives by different people,
even using different terminologies. The core contribution of this thesis is
described in this Chapter gluing all the previous notions presented in the
previous chapters;

Part V: Evaluation presents the evaluation of two components: “Semantic
Matching” and “Background Knowledge Evolution” and is composed of the fol-
lowing chapters.

• Chapter 10: “Evaluation of Structure Preserving Semantic Matching” evalu-
ates the Structure Preserving Semantic Matching algorithm defined in Chap-
ter 5.
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• Chapter 11: “Evaluation of Background Knowledge Evolution” presents the
evaluation methodology and initial evaluation of the sense induction algo-
rithms defined in Chapter 6. The contribution of the chapter is also a public
gold standard dataset based on Delicious containing links to Wordnet. The
dataset is used for the evaluation of the sense induction algorithm and can
also be used to evaluate Natural Language Processing (NLP) and Word Sense
Disambiguation (WSD) algorithms.

Part VI: Concluding Remarks present the conclusions of the work and high-
lights the contributions. The Future Work Chapter outlines the issues still open to
research that will enable a system to fully address the issue of identity management
in distributed scenarios.
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Chapter 2

Problem statement

The goal of the thesis is to define a distributed system that allows people to manages
their knowledge locally. People would normally want to manage things they are
interested in according to their personal point of views but being able to effectively
collaborate with each other. These things people care about need to be properly
modeled to achieve interoperability between people’s systems; we will model these
things as entities.

The problem, in such distributed scenario, is how to capture the real world
semantics of entities in order to be able to manage their identity to achieve inter-
operability.

This problem, is composed by several subproblems, namely:

1. In a distributed setting, there are several sources of heterogeneity, the lan-
guage, the schema, the ways entities are described, the different perspectives
from which they are described, and the identifiers used.

2. Semantics is a local and a global problem at the same time. Local because
the entities are created locally by people, and global because there is a need
of shared understanding if we are to allow people to effectively collaborate.

3. People use natural language in order to communicate with each other. How-
ever, natural language is inherently ambiguous and the computer does not
have the same capability humans have to understand this language and ex-
ploit its semantics. We need to formalize the natural language so that its
semantics can also be exploited by the computer system.

4. If we are to capture the real world semantics of entities in a distributed sce-
nario, the solution cannot operate under a closed world assumption, i.e.,
knowledge is inherently dynamic in nature, and the solution cannot be a
static knowledge system but a system that supports the constant evolution of
knowledge.

5. Given this evolution of knowledge, new knowledge has to be propagated
between the participants of the system.
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6. Finally, entities are created and maintained by people from different perspec-
tives, which means that we need to deal with incomplete and inconsistent
perspectives for the same entity being referred.

In this thesis we deal with each of these problems, namely:

• in Chapter 3: “Knowledge Components” we present the structure of the
knowledge for dealing with different semantic heterogeneity sources;

• in Chapter 4: “The semantic layers” we outlined three layers of knowledge:
Universal, Community and Personal that will allow people to communicate
with each other in a fully distributed manner, but also in bounded contexts,
while enabling interoperability;

• in Chapter 5: “Semantic Matching” we outline a state-of-the-art algorithm
that allows the system to extract formal semantics from natural language
labels;

• in Chapter 6: “Background Knowledge Evolution” we present a sense induc-
tion algorithm that can compute new concepts based on the usage of terms
in a distributed setting;

• in Chapter 7: “Knowledge propagation” we present a pragmatic approach
that enables the systems to propagate knowledge from the different compo-
nents of the knowledge presented in Chapter 3 between all the layers pre-
sented in Chapter 4;

• in Chapter 8: “Entity Compatibility” we defined the conditions under which,
given the incomplete and inconsistent perspectives about entities, we can
establish whether two perspectives refer to the same real world entity or not;

• in Chapter 9: “Identity Management” we finalize the research by establishing
how to manage the identity of the real world entity being referred by different
perspectives by different people, and even using different terminology. The
core contribution of this thesis is described in this Chapter gluing all the
previous notions presented in the previous chapters;

• finally in Chapter 10: “Evaluation of Structure Preserving Semantic Match-
ing” and Chapter 11: “Evaluation of Background Knowledge Evolution” we
evaluate two core components, Semantic Matching and Background Knowl-
edge Evolution, tackling problems 3 and 4 from the previous list.
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Part II

Global architecture for managing
local semantics
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Chapter 3

Knowledge Components

3.1 Introduction

When knowledge and structured information is developed and maintained in dis-
tributed scenarios by independent, unrelated organizations, it will most likely have
different structures, even when dealing with the same domain. This difference in
knowledge organization is known as the semantic heterogeneity problem. The dif-
ficulties faced when trying to integrate these heterogeneous sources of information
is known as the interoperability problem [Hal05]. However, there is a need to
collaborate in order to build shared information systems, which benefit from the
knowledge that can be obtained by combining information from different sources.
This collaborative process poses the need of working with heterogeneous knowl-
edge [HM93].

The heterogeneity problem can be dealt with at different levels. The authors
in [PH00] identify three main sources of semantic heterogeneity: structural, do-
main and data. We argue that structural and domain can be merged, and distinguish
a more basic level that the authors recognized as a problem at all their levels, the
natural language. Therefore, our new approach recognizes the following levels:

1. Language: when naming attributes and values there are several issues such
as the language used (e.g., “English” vs. “Italian”), the domain terminol-
ogy used to refer to the same object or concept, even in the same language
(e.g., “dog” vs “Canis lupus familiaris”), the level of specificity used (e.g.,
“dog” vs “animal”), besides the well known issues such as case sensitivity,
synonyms, acronyms, homonyms, and word variations.

2. Schema: refers to the structure given to the data to be managed in the appli-
cation domain. Even in the same domain there are issues such as the name of
the properties, the ordering, the exact choice of properties used, aggregation
of properties (e.g., {price+taxes} or {price,taxes}) [PH00].

3. Data: refers to how the specific data instances can be different. For example,
different identifiers, partial information, incorrect information and different
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Figure 3.1: A depiction of the same object (a person) at different points in time
showing how the time dimension is a source for heterogeneity when describing
entities.

formats in the values. The time validity is another important source of het-
erogeneity and possible conflicts. The same object can be described differ-
ently according to when the description was created. Figure 3.1 shows an
example of how a description of the same person (in this case a picture) can
greatly vary according to the time dimension.

We adopt an a-priory approach to dealing with semantic heterogeneity. This
is, instead of the classical post-hoc approach, where for each of the sources of het-
erogeneity there is already a well established community researching how to inte-
grate existing heterogeneous sources (schema matching, data integration, ontology
alignment) we want to tackle the heterogeneity problem by defining a Knowledge
Organization System (KOS) that deals with the above mentioned heterogeneity
problems by design.

We propose a KOS model centered in the data, which we call entities, how the
entities can be structured, i.e., the schema, and how the entities can be described,
i.e., the language used. Considering this, we define three main components, each
dealing with a specific heterogeneity issue:

1. background knowledge: containing the natural language dictionary in sev-
eral languages, but given the ambiguity of the natural language, we convert
all the natural language into a formal language, i.e., a set of concepts with
relations between them. This component already deals with the difference in
values due to synonymy, homonymy, variations of words, different language,
etc.

2. schematic knowledge: containing a general framework for defining types
of entities, using as basic building blocks the concepts in the background
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knowledge. This means that when naming an attribute, there is no issue of
ambiguous names, where the order of the attributes is not important, because
they are all formalized and easily comparable, even when different schemas
are used for the same entity type for different application domains.

3. concrete knowledge: the entities (data) we want to manage in the system. We
center our attention in capturing the semantics of the real world entities as
provided by people, therefore dealing by construction with different points
of view. We therefore recognize the difference between the identification of
the real world entity and the identification of the, possible different, (partial)
views provided by people.

In the remainder of the thesis, a system that follows the above-mentioned ar-
chitecture will be referred to as a knowledge base.

The rest of the Chapter is organized as follows. In Section 3.2 we present the
basic building block of our framework, the linguistic and conceptual parts, explain-
ing why the linguistic part is not enough and how by having the conceptual part,
we can already solve much of the semantic heterogeneity issues. In Section 3.3
we present the model for defining entity types and in Section 3.4 we define what
we mean by entities, and the difference between real world entities, mental entities
(those provided by people about the real world entities) and digital entities (those
encoded in the system that captures the semantics of the real world entity as pro-
vided by people). In Section 3.5 we compare our approach to the related work.
Finally, Section 3.6 summarized the Chapter.

3.2 Background knowledge1

Human (and machines) need a common language in order to communicate with
each other. Natural language is the means by which humans understand each other;
however, as noted by [SRT05, GH06], natural language, is inherently ambiguous
semantically, but also syntactically. A number of issues with natural language, also
reported in [APZ11a] are:

Base form variation This problem is related to natural language input issues where
a description is based on different forms of the same word (e.g., plurals vs.
singular forms, conjugations, misspellings) [GH06].

Homography Elements of the language may have ambiguous interpretation. For
example, the term “atm” may mean, in the physics domain: a standard unit
of pressure, “the atmosphere”; or in the banking domain: a “cash machine”;

Synonymy Syntactically different words may have the same meaning. For exam-
ple, the words “image” and “picture” may be used interchangeably by people

1Parts of this section were published in [APZ11a] in collaboration with Pierre Andrews and Ilya
Zaihrayeu.
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but will be treated by the system as two different elements of the language
because of their different spelling;

Specificity gap This problem comes from a difference in the specificity of words
used when describing things. For example, a user might describe a picture
with the term “dog”, while another can describe the same picture with the
term “Labrador”, which is more specific than dog, and the system can treat
both terms as not related due to the syntactic difference.

The above mentioned issues make natural language unsuitable for the commu-
nication between machines, which do no poses (to the best of our knowledge) the
skills we as humans use to overcome them. Therefore, a more formal language is
needed for machines to be able to successfully interact. Sheth [SRT05] calls this
formal semantics a representation model such that there is a definite semantic in-
terpretation, making them machine processable. An example of a formalism with
formal semantics can be found in ontologies.

This work follows the approach outlined in [GMFD10], thus identifying two
main components of the background knowledge: i) the linguistic part, contain-
ing the natural language elements that make as bridge between what is provided
by humans (in natural language) and ii) and conceptual part formalizing what is
processable by the machines.

3.2.1 The linguistic part

The linguistic part follows the model introduced by Wordnet [Fel98], a freely and
publicly available large lexical database. The main components are words, synsets,
senses, and relations. Words from different parts of the speech (nouns, verbs, ad-
jectives and adverbs) are grouped into sets of cognitive synonyms, called synsets,
each representing a different concept. Given the homonyms existing in natural
language, a word can be present in more than one synset, therefore, in order to
unequivocally identify the synset that the word is referring to, there is the notion of
word sense. Considering the “atm” example mentioned earlier, the word “atm” has
two senses, “atmosphere” and “cash machine”. Synsets are interlinked by means
of conceptual-semantic and lexical relations.

We adopt the model presented in [GMFD10], where there are different in-
stances of the linguistic component, one for each language (e.g., English and Span-
ish) that is to be supported by the system.

The more rigorous definition of the components of the linguistic part are:

Model Object 1 (word) A word is a string of phonemes or a non-empty fi-
nite sequence of characters over a finite alphabet representing an meaningful
utterance in a particular language [Fel98]. We write W to denote the set of
all possible words.
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Model Object 2 (Synonymous set (synset)) A Synonymous set or synset =
〈SW, pt, c〉 is a tuple where SW is a set of synonymous words (SW ⊆W )
that denote the concept, represented by c, and where pt is called the preferred
term of the synset (pt ∈ SW )

synset#1 = <
SW={atm, atmosphere, standard atmosphere, standard preasure},
pt=atmosphere, c#1
>

synset#2 = <
SW={atm, cash machine, cash dispenser, automatic teller machine},
pt=cash machine, c#2
>

synset#3 = <SW={machine}, pt=machine, c#3>

Figure 3.2: Example definitions of synsets.

Figure 3.2 shows example definitions of three synsets, where c#1, c#2 and
c#3 can be read as concept number one, two and three respectively, i.e.,
making the concepts language independent and where the interpretation in
natural language is given by the synonymous words SW in the synset. A
more formal definition of concept will be given in Model Object 6 in page 19
in the conceptual part section. As can be seen in this example, the word
atm is polysemous, as it belongs to more than one synset, i.e., it has more
than one sense. Note also that multi-word forms or expressions are also
considered as atomic, when they represent an atomic sense or concept.

Model Object 3 (Natural Language Dictionary (NLD)) A natural language
dictionary NLD is a tuple NLD = 〈nlid, LW,SY N〉, where nlid is a
unique identifier of the dictionary language; LW is a set of words of this
language (LW ∈W ); and SYN is a set of synsets, such that the set of words
SW of any synset in SYN is a subset of the set of words of the language, i.e.,
SW ⊆ LW .

Model Object 4 (Word sense w s) A word sense w s = 〈word, c〉 is a pair,
where the word is defined in Model Object 1 and c is a the sense of the
word. We say that the word correspond to the Natural language part of the
word sense, while the concept c correspond to the formal part, given that c is
unambiguous.

For example, 〈atm, c#2〉. Note that the word sense does not suffer from the
polysemy issues, as the sense is already disambiguated.

Model Object 5 (Semantic String (stringsem)) A semantic string is defined
as stringsem = 〈string, {w s}〉 where string is the set of characters as
provided by the user and {w s} is a set of word senses, where each word
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in the set represents a disjoint lemmatized token from string representing
words recognized in the linguistic part with its disambiguated concept2.

The aim of the semantic string is to unequivocally encode the intended mean-
ing of the string, thus eliminating possible ambiguities introduced by the nat-
ural language such as, homonyms and synonyms. This is normally achieved
using Natural Language Processing (NLP) techniques, the definition of which
is out of the scope of the current thesis. The interested reader is referred
to [ZSG+07] for details of NLP.

3.2.2 The conceptual part

Despite the numerous research areas and researchers devoted to the definition of a
concept, there is no widespread agreement of a satisfactory and complete definition
of what a concept is [ML11]. The classical theory of concepts [ML11] states that
a lexical concept “c” has a definitional structure in that it is composed of simpler
concepts that express necessary and sufficient conditions for failing under c, i.e.,
a concept element is defined by its relation to other concepts and its relation to
the world. The prototype theory extends this intuition by adding a probabilistic
element to it, i.e., a concept has a probabilistic structure in that something falls
under c just in case it satisfies a sufficient number of properties encoded by c’s
constituents.

This work adopts the concept definition outlined in [APZ11a], the one defined
by Description Logics (DL) [BCM+03], which we believe is a more pragmatic
definition of the classical and prototype theories of concept. In DL, the semantics
(or, the extension) of a concept is defined as a set of elements (or, instances). For
example, the extension of the concept Person is the set of people existing in some
model (e.g., in the model of the world). Because they are defined under a set-
theoretic semantics, operators from the set theory can be applied on concepts, e.g.,
one could state that concept Organism subsumes (or, is more general than) the
concept Person because the extension of the former concept is a superset for the
extension of the latter concept. Among other things, the subsumption relation can
be used for building taxonomies of concepts. These properties lead to a number of
useful reasoning capabilities such as computing the instances of concepts through
the concept subsumption, computing more specific or general concepts. A more
complete account to DL is out of the scope of this chapter; interested readers are
referred to [BCM+03] for details.

Pragmatically, the conceptual part is composed by concepts and semantic re-
lations between them (e.g., is-a and part-of) as defined by [GMFD10]. Concepts
are independent of natural language, where the later is considered just a mean for
conveying thought [ML11], that in our model acts as a bridge between the con-
ceptual part and humans. As humans communicate in different parts of the world

2For more details on tokenization, lemmatization and disambiguation the reader is referred to
Section 5.2.1 in page 45 and [ZSG+07].
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using different natural languages, different synsets representing the same concept
in different languages (i.e., belonging to different Natural Language Dictionaries
as defined in Model Object 3), are linked to the same concept.

In our example from Section 3.2.1, there are two synsets in English for 〈{atm,
atmosphere. . .}, c#1〉 and 〈{atm, cash machine. . .}, c#2〉 (using a simplified rep-
resentation). If we define the same synsets using words in Spanish, we would get
something similar to 〈{atm, atmósfera. . .}, c#1〉 and 〈{cajero automático. . .}, c#2〉
respectively. In the conceptual part, as we can note, there are only two concepts for
representing both ideas, independently of the language. Note however, that due to
the well known problem of gaps in languages (i.e., given a word in one language,
it is not always possible to identify an equivalent word in another language) not all
concepts have a corresponding synset in all languages.

The more rigorous definition of the components of the conceptual part are:

Model Object 6 (Concept c) A concept c is a cognitive unit that represents
the intension, i.e., the set of properties that differentiates this concept from
others, and defines its extension, i.e., the set of objects that represent such
property [GM10].

Model Object 7 (Conceptual relation (concept relation)) A conceptual re-
lation is a triple concept relation = 〈csource, ctarget, crelation〉where csource
is the source of the relation, ctarget is the target of the relation, and crelation
is the type of relation.

For example, 〈c#2, c#3, c#4〉 could be understood as a relation between
“cash machine” and “machine”, defined by the concept c#4, which can be
defined, for instance, as the is a relation.

3.3 Schematic knowledge

Once we have the background knowledge constructs (the language and the con-
cepts) that enable systems to interoperate, we need to defined the schema of the
objects that will be dealt with in the system. The “objects” that are the subject of
our framework will be called entities (see Section 3.4). In order to be able to rep-
resent these entities, we need to define the format of how these entities will look
like, i.e., the types of entities that we will be able to represent in the system.

The exact definition of the entity types that are to be supported by a Knowl-
edge Organization System (KOS) is highly domain dependent. For example, in the
health domain we would need to deal with types of entities such as Persons that
can act as Patients or Doctors, Diseases, Treatments and Medicines, which are not
the same of types of entities that are dealt with by the music domain. However, we
need to define the basic building blocks that will allows us to define entity types
uniformly across different system.

The basic elements of the schematic knowledge are entity types and attribute
definitions. The definition of these components are:
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Model Object 8 (Entity Type (etype)) An Entity Type (etype) is a tuple
ET = 〈c, {AD}〉, where c is the concept of the etype, and AD = {AD} is
a non-empty set of attribute definitions.

We envision specifying a set of mandatory attribute definitions that have to
be present with their corresponding values when an entity of the particular
etype is instantiated, . This however, is highly etype dependent, and fur-
thermore, domain dependent, e.g., while in a medical application the gender
of a person might be mandatory, in a phone application most likely it is not
strictly mandatory. In general, the etype definition is the entry point for the
creation of an entity, and the set of attribute definitions should normally be
shown to the user creating the entity3.

Model Object 9 (Attribute definition (AD)) An Attribute Definition is a
tupleAD = 〈c,D, isSet〉, where c is the concept that represents the attribute
name, D is the domain of the data type that restricts the possible values for
the attribute definition (i.e., date, string, integer, real, relations, concept . . .),
and isSet is a boolean value which indicates whether AD can be instantiated
to a set of values (in the case isSet = true) or to a single value (in the case
isSet = false). We choose to store the concept in the definition and not
the natural language name in order to avoid the ambiguity of the natural
language is its related problems [APZ11a].

Considering D, we can distinguish betweem three types of domain data
types:

normal (semantic-less) data types such as string, date, integer, float . . ..
These are normal basic types that are not linked to a concept in the
conceptual part.

•• conceptual values including semantic strings and word senses, i.e.,
those which have a formal part with a link to a concept in the con-
ceptual part. Selecting a specific concept as the domain allows us to
restrict the possible values even further, for example, when defining a
color attribute, we can set the domain to the concept of color. By doing
so, all and only those concepts which are colors (defined by the is a re-
lation between the concept of color and the colors such as black, white,
red. . .) will be allowed as values of the specified AD.

• relational attribute values, which means that the value of the attribute
is a reference to an entity, for which the entity type is defined in when
specifying the relation, e.g., when defining a friend attribute, we can
say that the type of the entity has to be a Person.

As stated before, the exact entity types to be modeled are domain dependent.
However, there are some common entity types that are usually shared across sev-

3How to show the set of attributes to be filled in by the user is an Human Computer Interaction
(HCI) issue, which is out of the scope of this thesis.
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eral application domains. These entity types could be defined a-priory fostering
reusability, thus avoiding heterogeneous definitions for the same type. Some com-
mon entity types are, for example, Person, Location, Organization, Event and those
more specific than Mind products such as Music, Paintings, Pictures, etc. We de-
velop a root entity type called “Thing” which can be used as default entity type for
any entity, in the case the domain application wants to leave the entities untyped
(e.g., OKKAM [BSG07])

A recent joint effort by several Internet search engines have made available at
schema.org4 the definition of these entity types, and other commonly used types
of content for the web, allowing webmasters to markup their pages in order to
structure the data, that can later be reused by others and be recognized by these
search engines in order to improve their search results.

3.4 Concrete knowledge

The purpose of our framework is to manage the knowledge of the users and com-
munities. While the language and concepts are important in order to share knowl-
edge, they are not the aim, per-se, of most common Knowledge Organization Sys-
tems; they are just means by which we are able to exchange of knowledge and
ideas. When people engage in conversations, they talk about things, and these
things, are what we will denominate entities in our framework. The types of enti-
ties, or their schema, is defined a priori, and the general model for defining these
entity types is presented in Section 3.3.

An entity is any object that is important enough for a person to talk about it and
give it a name (e.g., a Location, a Person, an Event. . .). We make the distinction
between real world entities (those that exist), mental entities (those that people
form in their minds about real world entities) and digital entities (those that we
model in the system trying to capture the semantics of the previous two).

Given that diversity is an unavoidable and intrinsic property of the world and as
such cannot be avoided [GMD12], the ultimate purpose of the semantic framework
is to interoperate at the level of entities, considering people’s own diverse views of
the world, by being able to manage the identities of the real world entities.

3.4.1 Real world entities

A (real world) entity is something that has a distinct, separate existence, although it
need not be a material (physical) existence5 that belongs to a certain type [YYSL08].
Each real world entity has a set of properties that evolve over time in the course if
its existence, as it interacts with other entities and the world. For example, people
(Person entities) might move from locations to locations, their physical appearance

4http://schema.org/
5http://en.wikipedia.org/wiki/Entity
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change over time (see Figure 3.1), they might acquire or loose titles (such as engi-
neer or baron) and play different roles at different times such as actor or governor.
This evolution though, might not always be perceived by everyone aware of their
existence at all times.

(RW )E = 〈{AT }〉 (3.1)

Equation 3.1 shows a model of a real world entity (RW )E containing a set of
attributes {AT } where the T = [t1, t2] stands for the time interval when the values
of the attributes are valid, i.e., as the entity evolves, the same attribute might have
different values, for example the hair color attribute might change from “red” to
“dark brown” as can be seen in Figure 3.1, and new attributes might appear and
disappear.

From the point of view of the existing real world entity, its uniqueness is given
by its existence and expressed to the world by its attributes and its actions.

3.4.2 Mental entities

A mental entity is a personal (local) model created and maintained by a person6 that
references and describes a real world entity 7. According to Searle [Sea58], the ref-
erence is achieved by a proper name and the description is achieved by definite de-
scriptions. A definite description [Rus05] is a characterization that entails the exis-
tence, uniqueness and universality of the entity (or object) being referred [Lud11],
i.e., it is a set of uniquely referring descriptive statements.

(M)E = 〈name, def desc〉 (3.2)

Equation 3.2 shows the tuple conforming the mental entity (M)E that is com-
posed by a name (to be further discussed in Section 3.4.2.1) and a definite descrip-
tion def desc (to be further discussed in Section 3.4.2.2).

3.4.2.1 Mental identifiers: names

Names are (local) symbols created by people to refer to specific (real world) enti-
ties. Each (real world) entity being identified by a name has a (local) set of char-
acteristics that distinguishes them (locally) from the other real world entities of the
same type (called a definite description in Philosophy). The pragmatics of a proper
name lies in the fact that it enables us to refer publicly to real world entities with-
out being forced to an a-priori agreement on the descriptives characteristics exactly
identifying the real world entity being referred [Sea58]. Thus, what differentiates

6This applies to agents in general such as people and organizations, but for the sake of brevity
and clarity, we will us the term person instead of agent throughout the document.

7Our use of mental entities here should not be confused with fictional entities as used in philos-
ophy, i.e., entities that are not real, e.g., Batman. What we mean is a personal model of real world
entities, whether these exists or not.
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(real world) entities from one another8 is encoded in the definite description, and
the name is a reference to this description [Sea58], an identifier created by people
to avoid having to exchange the whole definite description when interacting with
each other.

Names used in mental entities have the following characteristics:

• A name is a (local) identifier for a definite description [Sea58];

• Both the name and the definite description in one mental entity have the same
referent (the same real world entity) [Sea58];

• Names are locally created and maintained by people, which entails that:

– there can be different names (created by different people) for the same
real world entity (synonames, simmilarly to synonyms).

– the same name can be given to different real world entities (homonymy).

• There can be different (local) names, for the same (local) definite description.

Note that the name element is by definition a reference to the real world entity
being mentioned or thought about. Most commonly, proper names play the role of
the name element, and whenever this is true, we can directly recognize the refer-
ent. However, we also normally use “indexicals” to refer to real world entities, i.e.,
context-sensitive expressions whose meaning vary from context to context [Bra10].
Example indexicals are “my mother” or “my home town”, each having a different
referent according to who is uttering the expression. Nicknames are other types
of names that are typically used. There are also cases when arbitrary “labels” are
used as names. A person might use one or more of these kinds of names to refer to
the same real world entity. Whenever we use the element name in this document,
we refer to all these classes of names, and possibly others, that serve as references
for real world entities in the mind of the people.

3.4.2.2 Descriptions

A (definite) description is a (local) set of characteristics, a mental model created
by a person, that (locally) distinguishes real world entities from one another.

Multiple mental entities (created by multiple people) can refer to the same real
world entity from different perspectives (according how the person has interacted
with the real world entity) encoding different (overlapping or disjoint) descriptions.
For example, multiple people might have different points of view of a particular
person (there is only one person in the real world being referred), perhaps because
they know the person from different social contexts, e.g., Arnold Swarchenegger
as an actor, as a politician, as a friend, or as a father.

Mental entities and their corresponding definite descriptions have the following
characteristics:

8from the point of view of a person
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1. A mental entities is a local model of a real world entity (it encodes one point
of view);

2. Different mental entities from different people with different perspectives,
can refer to the same real world entity;

3. Mental entities are incomplete, as the person creating the mental model does
not know all the details about the real world entity9;

4. Mental entities can have inconsistent10 descriptions, mainly due to:

(a) temporal dependency, i.e., a description that is not true anymore, but
which was true in some past, e.g., “the person with black hair”. This
is due to the evolution of the entity and the fact that descriptions act as
static “photos” of real world entities at one point in time 11;

(b) subjectivity, e.g., nice person, horrible place;

(c) false descriptions, those that were never true about the real world en-
tity, but is believed to be true by the person holding the description,
e.g., Schwarzenegger was the president of USA (only true in a fictional
movie)12.

5. The uniqueness of reference of the definite description in a mental model
is considered with respect to all the other entities the bearer of the mental
model has, not with respect to all the other possible real world entities of the
same type [Sea58];

6. The definite description of a mental entity might be formed via a direct inter-
action with the real world entity it refers to, or learned from someone else.

7. The mental description is created using the local knowledge13, therefore dif-
ferent descriptions for the same characteristic might be different. E.g., one
might think that someone’s eye is blue, but another person might say that is
marine blue (just because s/he has a more detailed knowledge about colors);

3.4.3 Digital entities

The purpose of this work is to develop a model that captures the semantics of the
real world entities. Given that real world entities can only be captured and modeled

9Unless the mental entity is about him/herself, but not all entities are self-conscious.
10with respect to the real world entity
11This is why the time validity T is important in equation 3.1.
12Note that given the local knowledge and context of the person with this description, this might

be true, but nevertheless, it is universally false, i.e., not true about the real world entity.
13local language and concepts which might differ from person to person
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by people14, we also need to encode and understand the local semantics of the men-
tal entities that are provided by people, which can differ from one another, being
referred and described in diverse ways and even in different languages [GMD12].
Digital entities are the way we capture real semantics by allowing the computer
to bridge between the mental entities people provide about the real entities15. In
the following models we will make clear how we capture each of the important
elements of the different kinds of entities. In the rest of this document we will use
the term entity to refer to digital entity, and whenever we refer to one of the other
two (real world or mental entities) we will make an explicit distinction.

In order to capture the real world semantics of real world entities, as provided
by the mental entities, we need to address the following issues present in mental
entities:

1. The name as identifier is locally unique, but not globally unique (homonyms,
indexicals).

2. The same real world entity can be given different names (synonames).

3. A mental entity encodes only a partial view of the real world entity (this is
known as the partial knowledge problem).

4. Neither names nor definite descriptions are persistent in the real world entity
(they evolve over time as the real world entity evolves).

5. Definite descriptions are only locally identifying (at the mental level). This
can create two types of problems when people refer to real world entities:

• People believe they talk about the same real world entity, while they are
actually referring to different real world entities (false positive FP );

• People believe they talk about different real world entities, while they
actually refer to the same real world entity (false negative FN ).

The above mentioned issues uncovers the need of being able to unequivocally
encode the identifier of real world entities, given the diverse views over them, also
being able to encode and maintain these different views. This means that we need
two identifiers for the digital entities: i) a real world identifier, which captures the
real world semantics of the real world entity, referred to as SURI (from semantic
URI), and ii) a mental identifier, which allows the identification and subsequent
retrieval of a particular point of view, referred to as SURL (from semantic URL).

Figure 3.3 shows the relation between the elements of equations 3.1, 3.2 and
how these elements are mapped into the main components of a digital entity. As
we can see in Figure 3.3, a digital entity (E) contains a SURI16, which represents

14Sensors can also give automatic information about entities, but still they will be programed by
people and thus use the mental model of the person programming the sensors.

15A digital entity can be thought as if it was the mental entity of the computer.
16A more complete discussion about SURI is presented in Section 9.2.1.2
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Figure 3.3: The relation between the elements of real world, mental, and digital
entities.

the identifier at the real world level, and a SURL17, which represents an identifier
at a local (mental) level. Given different local views, defined by the metadata
and identified by the SURL, the system should be able to distinguish that these
local views (with different SURLs) actually refer to the same real world entity (as
identified by the common SURI).

In what follows we present the model used for representing the digital entities,
which incorporates the desired characteristics presented in the previous sections.
We use a recursive style for defining the digital entity, where each new element in
a Model Object will be defined in a subsequent Model Object. Model Object 10
introduces the model for the digital entity, that is to be used as the basis of our
framework.

Model Object 10 (Entity) An entity e is a tuple e = 〈 ID, SURL, etype,
name, EM, [link], [copy]〉, where:

ID is a universally unique identifier of the real world entity modeled by
e (which globally encodes the uniqueness and existence of real world
entity). Only when the global uniqueness condition over EM is met
(see Section 8.2.2) the ID = SURI (in Chapter 9 we will expand on
the definition of ID with Model Object 14);

17A more complete discussion about SURI is presented in Section 9.2.1.1
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•• SURL is the local (dereferenceable) URL identifying the entity (which
corresponds to local identifier in the mental entity without the homon-
imy problem, see Section 9.2.1.1);

• etype is the entity type (e.g., Person, Organization, Event);

• EM is the Entity Metadata encoding the local mental model of e (which
corresponds to the (local) definite description created by a person us-
ing his/her knowledge, i.e., language and concepts, and is it a subset of
the evolving attributes < {AT } > of the (RW)E in equation 3.1) taken
at a certain point in time;

• link is an optional property that refers to a remote entity if the person
creating the entity decides to share the metadata definition EM of an-
other person, i.e., to fully rely on the remote entity being referred for its
metadata definition EM, (which corresponds to the case when people
decide to fully trust other’s mental entity definition);

• and copy is also an optional property that specifies from where this
entity has been copied. (which encodes the way we interact with the
real world entity, remembering if we have had learned about this entity
from someone else or not).

The last two elements of the model, link and copy allows us to solve the real
world phenomena of knowledge propagation between people in two different
ways: i) in real time by sharing (see Section 9.3.3), and ii) by learning from
other sources of information by copying (see Section 9.3.2).

By being able to share entities we can significantly reduce the number of
local entities with different metadata (EM) and IDs to maintain, align and
match. Well known entities could be maintained by trusted people, organi-
zations or communities and other people can reuse these trusted definitions.
For example, entities of type Location (e.g., countries and cities) and famous
people (e.g., politicians, actors, scientists) could by maintained by dedicated
communities. By allowing to copy entities, and therefore fully import the
whole entity definition encoded in EM, we allow people to quickly learn
from one another, and consequently improve upon EM.

Model Object 11 (Entity Metadata (EM)) The Entity Metadata (EM) is a
set of instantiated attributes EM =< {Attr} > where each Attr defines
a characteristic of the entity e with its value(s). The type definition in the
entity contains the list of attribute definitions AD that should be suggested
to the user, some of which might be mandatory depending on the application
domain.

Model Object 12 (Instantiated Attribute (Attr)) An instantiated Attribute
is a tuple attr = 〈AD,AV, T 〉, where AD is the attribute definition (see
Model Object 9), the attribute value AV is an element or set of elements
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(according to isSet from AD) from the domain D of possible values as
defined in AD, and T is a time interval during which the assignment of AV
to AD is valid, if applicable. The possible AD to be used in a particular
entity is recommended by the set of attribute definitions {AD} available in
the etype (see Model Object 8) of the entity for which the current instantiated
attribute Attr is being created.

3.5 Related Work18

In this chapter we presented a model for managing knowledge that addresses sev-
eral sources of semantic heterogeneity by construction. Therefore, instead of fo-
cusing on post-hoc solutions to the semantic heterogeneity issues and therefore
interoperability, we focus more on how to deal with heterogeneity by design in the
knowledge model. The post-hoc approach for dealing with heterogeneity is spread
among several well established research areas such as schema matching, ontology
alignment, database interoperability, all of which, are out of the scope of the current
chapter. In this section we will analyze other models of Knowledge Organization
System (KOS) and how these compare to our solution.

There are several KOS models currently in use by people and organizations.
These KOSs can take the form of an authority file, a glossary, a classification
scheme, a taxonomy, a thesaurus, a lexical database (such as WordNet), or an
ontology, among others (see [Hod00] for an in-depth discussion on the different
types of KOSs). Figure 3.4 shows different kinds of ontologies with different
levels of expressivity and formality which can vary from a list of terms, through
Database schemas to rigorously formalized logical theories using Description Log-
ics [UG04]. In what follows we will compare and contrast some of these Knowl-
edge Representation Systems to the one presented in this chapter.

Relational Databases are one of the most commonly used KOS. They are based
on relational algebra and use tables, columns, primary and foreign keys and con-
straints to implement the knowledge model of the domain. There is a close rela-
tion between the schematic knowledge presented in Section 3.3 and the database
schema (tables and columns). The concrete knowledge (see Section 3.4) is compa-
rable to the rows of the tables (the data itself), which are the instances of the given
schema. Despite these similarities, current relational database systems have no
sufficient support for the Background Knowledge model presented in Section 3.2.
There is no notion of language independent concepts that can be used to model the
schema, nor to be used as values. The semantics of the schema usually does not
become part of the database definition and is lost after design-time. This is one of
the mayor reasons contributing to the heterogeneity problem [PH00], which hiders
the interoperability between different database systems, even when dealing with

18Parts of this section were published in [AZP12] in collaboration with Pierre Andrews and Ilya
Zaihrayeu.
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Figure 3.4: Kinds of ontologies from [UG04].

the same domain. This is the main problem that the Schema Integration field has
been dealing with for many years [BLN86].

The knowledge model proposed in previous sections has a direct formaliza-
tion in Description Logics (DL) [BCM+03]. DL classes correspond to concepts,
instances to entities, relations and attributes to roles [GDMF11]. The Conceptual
part (Section 3.2.2) and the Schematic Knowledge (Section 3.3) provide the TBox,
while the Concrete knowledge (Section 3.4), i.e., entities, provides the ABox for
the application domain. However the linguistic part (Section 3.2.1) cannot be prop-
erly represented in DL. DL identifiers are only symbols used to denote an element
of the domain of interpretation. As such, it does not allow the definition of multiple
synsets in different languages for a particular concept, although a name predicate
could be attached to each identifier, this has not the same power of expressiveness
as multilingual synsets.

An Ontology, as defined by Gruber et al., “is an explicit specification of a
(shared) conceptualization” of the application domain [Gru93]. In practice, on-
tologies are usually modeled with (a subset of) the following elements: concepts
(e.g., CAR, PERSON), relations between concepts (e.g., PERSON is-a BEING),
instances of these concepts (e.g., bmw-2333 is-instance-of CAR, Mary is-instance-
of Person), properties of concepts and instances (e.g., PERSON has-father), re-
strictions on these properties (e.g., MAX(PERSON has-father) = 120 ), relations
between instances (e.g., Marry has-father John), etc [Gro04]. These elements have
a direct relation with the Model Objects presented in Sections 3.2, 3.3 and 3.4.
However, depending on the specific implementation, the duality between the lin-
guistic and conceptual part presented in Section 3.2 is captured or not.

Some languages for authoring ontologies are currently defined by the Seman-
tic Web community, implementing the vision by Tim Berner-Lee [BLHL01], sup-
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ported by WorldWide Web Consortium (W3C)19 with participation from a large
number of researchers and industrial partners. Examples are the Resource De-
scription Framework (RDF) [LS99] and the OWL Web Ontology Language family
of languages [MvH04].

While the model presented in the previous sections has a direct relation with
the elements of OWL, and thus can be implemented with it, there are some issues
when comparing it to RDF. In RDF there is no explicit distinction between concepts
and individuals, therefore we cannot neatly distinguish between classes and their
instances (concepts (see Model Object 6) and entities (see Model Object 10) as de-
fined in our model). Furthermore, in RDF there are no cardinality constraints when
assigning predicates to instances. Considering our previous example, nothing pre-
vents us from creating two predicates such as “Mary has-father John” and “Mary
has-father James” which cannot be the case considering real world semantics, i.e.,
assuming that the semantics of has-father is biological father, that Marry refers
to the same real world person, and that James and John are different real world
people. The previous example also shows another drawback of defining the pred-
icates (attribute definition in our terms) with natural language labels, i.e., it is not
uncommon to find subtle differences in meaning between any two ontologies even
if they represent the same domain and are encoded in the same formalism [SK08].
For example, the price element in one ontology could include taxes, and in another
could mean without taxes. Finally, given that the assignment of URIs to instances
(entities) is optional within RDF, metadata for entities can be created without a link
to a real world entity [HHD07].

3.6 Summary

In this chapter we propose a Knowledge Organization System (KOS) centered on
the management of entities, that by construction deals with several sources of se-
mantic heterogeneity. The background knowledge deals with the issues of the
ambiguity of natural language converting words into formal concepts. Based on
the background knowledge, the schematic knowledge defines the model for entity
types that can be instantiated and reused according to the application domain.

The main contribution of this chapter is the modeling of the digital entities,
in the concrete knowledge, that captures the real world semantics of the real world
entities (those that actually exist) as provided partially by people from different per-
spectives using diverse terms and languages. The digital entity solves the problems
with names and descriptions of (mental) entities provided by people by relying on
the SURI (semantified URI) to identify the real world entity while still allowing the
identification and dereferencing of the different perspectives by relying on SURLs
(semantified URLs). The process that specifies how to assign the values of these
two identifiers is the core of Chapter 9: “Identity Management”.

19http://www.w3.org/2001/sw/
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In the following Chapter we will see how these components are used to achieve
interoperability at different levels. The background knowledge encodes well stud-
ied language elements in a top-down approach, from the universal level to commu-
nities, and from communities to people; while we foresee that entities are going to
be created mostly in a bottom-up approach, from people to communities.

An important issue with the background knowledge is the coverage of the lan-
guage, i.e., how many words we are able to recognize. An initial approach can be
that of bootstrapping the set of words of the linguistic part with Wordnet (the origi-
nal English version). However, given the dynamic nature of knowledge, we cannot
guarantee full coverage using a static one-time importing approach. In order to
deal with this issue, in Chapter 6: “Background Knowledge Evolution”, we define
the process by which the background knowledge is updated following a bottom-up
approach too.
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Chapter 4

The semantic layers

4.1 Introduction

Semantics is a local and a global problem at the same time. Local because is in
the mind of the people who have personal interpretations, and global because we
need to reach a common understanding by sharing and aligning these personal
interpretations.

Current approaches of knowledge management, ontology building, ontology
maturing and semantic interoperability (matching, alignment) seem to focus on the
existence of two knowledge layers, one local, where the person creates and shares
knowledge, and a global (sometimes also referred to as universal) which is nor-
mally designed to foster interoperability. We argue that while this is a possible
scenario, there is a no clear understanding of what being global means, and with
respect to what. Several research use the terms “universal” and “global” to actually
refer to the (social) context in which they are being applied, i.e., the whole orga-
nization, the whole community, and not actually the whole world. The terms are
indeed, rarely used to refer to “everyone”, including those who are outside of the
context of the organization or community.

Understanding the above mentioned difference is very important, as it is the
way we believe knowledge evolves. Rather than in a two-layer fashion, we argue
that knowledge evolves in a three-layer architecture, where in the first (bottom)
layer people create and maintain locally their own vision of the world (or the part
they are interested in), then they share this knowledge with other people and inter-
act in a bounded (social) context (an organization, a community, a group)1, but in
order to achieve successful multi-context interaction, there is the need of a higher
layer that supports interoperability and that formalizes what is commonly known
across social contexts (communities), a Universal layer. For example, there is no
disagreement of what a person, gravity, Newton (the scientist) or a cat is.

Although some approaches start to go in this direction creating rather minimal

1Notice that a person can belong to multiple communities, organizations and groups at the same
time
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upper ontologies such as DOLCE [MBG+02] or more rich upper and domain on-
tologies such as SUMO [PNL02] and SWIntO [OAH+07], these approaches seem
to believe there is a precise finite knowledge state that can be captured and formal-
ized. This “simplified” close world assumption works in research scenarios and
closed scenarios, but the reality is that knowledge is in constant evolution [SK05]
and there is a real need to add new concepts, terms and instances recognizing the
place of people in the process of creation of knowledge (a bottom-up approach).

In the following sections we will see that the Components of the knowledge
presented in Chapter 3 fit into each of the three layers, and explain the role they
play at each layer. In Section 4.2 we present our approach to the universal layer,
called Universal Knowledge (UK), that aims at encoding the language and concepts
needed to achieve interoperability at different layers, separating the knowledge in
domains; in Section 4.3 we see how communities can reuse the parts knowledge
that suit their purposes, being able to define new knowledge that evolves faster in
their context and that is reused by all the members of the community; and in Sec-
tion 4.4 we present how at the personal layer we allow users to reuse the knowledge
by bootstrapping from the UK and becoming members of communities, allowing
users to define their own local terms, concepts and entities. Section 4.5 summarizes
the Chapter.

4.2 Universal (global) layer

The main purpose of the Universal Knowledge (UK) layer is to maximize the com-
patibility between users, allowing them to easily interoperate while exchanging
knowledge. This is done by trying to minimize the semantic heterogeneity between
them in a top-down fashion. As observed in [PH00] one of the main components
of the heterogeneity comes from the ambiguity of natural language. As we saw in
the Chapter 3 “Knowledge Components”, the Background Knowledge component
deals with this ambiguity by translating natural language into a formal language,
the conceptual part. These two components are the most important components at
the UK as they give the basic constructs that can be reused by different communi-
ties to further define the knowledge in their domains.

The content of the Background Knowledge of the UK can be initially boot-
strapped from widely used thesaurus and dictionaries which are Language depen-
dent such as Wordnet [Fel98] or Moby Thesaurus2. The Linguistic part of the
background knowledge is usually regulated by Linguistic Institutions (each lan-
guage has an institution dedicated to study the new terms to be allowed in their
dictionary), therefore the decisions made by these institutions governs the terms
that are universally accepted for each language.

Another important source of heterogeneity are the schemas used to model the
entities. At the UK layer we encode a basic set of entity types such as Person,
Organization, Localtion, Event. These can be reused and further define by each

2http://icon.shef.ac.uk/Moby/
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user and community to suit their needs. Defining a basic set of entity types based
on the linguistic and conceptual part of the background knowledge allows us to
address much of the schema heterogeneity issues in a top-down fashion, while
alleviating the work of having to define new schemas from scratch when needed.

Given the vast amounts of concepts and linguistic elements in the background
knowledge of the UK, we follow the approach presented in [GD11] to split the
knowledge into domains in a hierarchical fashion. The content of each the do-
main is considered to be well studied by experts in each field and widely accepted
between all the users. One initial source for the Domain Knowledge can be the
knowledge encoded in library science. For example, consider the extract of a clas-
sification for medicine taken from the Library of Congress Classification3 in Fig-
ure 4.1. the domain of Medicine could be composed of several sub-domains, in the
example, Surgery, Ophthalmology, Nursing and others. Each sub-domain can be
composed of other sub-domains, as for example Surgery contains Plastic Surgery,
Surgical Nursing and others.

Figure 4.1: Extract from the Library of Congress Classification for Medicine.

Given this domain structure of the knowledge, users and communities can
choose which part of the knowledge encoded at the Universal layer to import into
their local instances of the knowledge base.

Similar approaches to the notion of Universal knowledge have been defined, to
some extent, by DOLCE [MBG+02] and SUMO [PNL02]. DOLCE (Descriptive
Ontology for Linguistic and Cognitive Engineering) is a minimalistic foundational
ontology that serves as basis for developing other ontologies. While being rigorous,

3http://www.loc.gov/catdir/cpso/lcco/
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the minimality principle followed by the DOLCE makes it only a starting point
for developing other ontologies, leaving again the work of defining the terms, the
relation between terms and the structuring of the schemas of the application domain
to each application developer. This freedom allows different views of the domain,
opening the door to heterogeneous ontologies, even if based on DOLCE.

SUMO (Suggested Upper Merged Ontology) was created merging a number of
existing upper level ontologies from different domains. SUMO concepts contain
links to Wordnet synsets in a attempt to improve language coverage. SUMO is the
most similar work to our understanding of the universal layer, however, we aim at
a much higher language coverage (we bootstrap the linguistic and conceptual part
of the BK with all the linguistic information from Wordnet, not just part of it) and
make a clear cut between the concepts which are completely language indepen-
dent and the words that can be used to describe concepts in each of the supported
languages, while in SUMO the concepts are defined in English.

Furthermore, neither DOLCE nor SUMO, define the approach for managing
the identity of the entities (instances of the concepts) being defined with their on-
tologies [BSG07]. They approach the issues at the background and schematic com-
ponents of the knowledge, while completely ignoring the concrete knowledge as
defined in Chapter 3 “Knowledge Components”. Finally, neither of them tack-
les the issue of the dynamic nature of knowledge, while we define in Chapter 6:
“Background Knowledge Evolution” how to update the background knowledge in
a bottom-up manner.

4.3 Community (glocal) layer

A community “is a group of people who share interest for a given topic, and who
collaborate to deepen their knowledge through ongoing learning and sharing”4.
Considering real world communities as metaphor, we assume that individuals par-
ticipating in communities gain knowledge which is specific to the topics the com-
munity is formed around. This knowledge includes vocabulary terms (e.g., the
term “rhinoplasty” to refer to “cosmetic nose surgery” in medicine), entities (e.g.,
the members of the community), etc.

The goal of the community layer is to sit between the Universal layer and the
Local (personal) layer. It is local from the point of view of the Universal layer since
it can localize the knowledge around a certain topic, allowing the participants of the
community to manage this knowledge without requiring universal agreement. This
locality is important as it gives a bounded context for the creation and exchange
of new ideas. These local (to the community) ideas can be adopted by all the
members of the community, and later be shared across communities, to become
Universal. It acts as global from the point of view of the Personal layer because

4The definition is from knowledge communities defined by aia.org (http://www.aiasww.
org/resources/knowledge.htm)
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it allows the participants of the community (and perhaps similar communities) to
share knowledge and communicate ideas with each other.

The importance of this layer can be appreciated with the following example:
nowadays when referring to Java one normally thinks about the “programing lan-
guage”; however, when this term was first used to refer to this relatively new mean-
ing, the term was already widely known to refer to the “coffee” or the “island”
meanings. Only in the context of the community around the new programming
language being developed (Sun Microsystem) the new meaning was known. Later,
this new meaning was spread to other communities of universities and taught as a
programming language, used in many applications and became well known, to the
point that now is widely known and can be included at the Universal layer.

Considering the knowledge components presented in Chapter 3, each com-
munity has its own background, schematic and concrete knowledge. The inter-
operability can be achieved by reusing the knowledge defined at the Universal
layer. Each community can bootstrap its knowledge importing the domains that
are deemed useful from the Universal layer, and can further extend each of the
three components with new terms, concepts, entity types and entities. This allows
flexibility and decentralization in the creation of knowledge, while still trying to
reduce semantic heterogeneity. For example, a community around surgery can im-
port the part from the Surgery domain from Figure 4.1. For each of the medical
terms, it can extend the linguistic part of the background knowledge to include the
commonly used terms such as “nose job” for “rhinoplasty”, and further extend the
schematic knowledge for Person (that can be taken from the UK) to the entity type
of patient, including and maintaining entities for the known surgical clinics and
surgeons.

The difference between the community knowledge and the domains encoded
at the Universal knowledge is that a domain is a subset of the Universal knowl-
edge that can be reused across several communities. One community, however,
can reuse different domains to structure the knowledge around the topic of inter-
est. In the example of the paragraph before, it is clear the besides the domain of
Surgery the domain of Space (that include the terms, concepts, schemas and en-
tities related to locations) is also needed to specify the location of the entities for
the surgical clinics and the surgeons. The power of this difference resides in the
fact that several domains can be reused at different communities, thus fostering
interoperability, while allowing the community to extend the knowledge locally to
foster interoperability among the members of the community, allowing flexibility
for new knowledge to emerge.

Note that we did not define the mechanism by which new knowledge is created
at the community layer, since this will depend on the type of communities and
the norms governing them. For example, a “democratic” community could use a
voting mechanism to reach agreement between the participants. In another type of
community there can be an administrator that is in control of all the knowledge of
the community. In the later case, users already “pre-agree” with the knowledge of
the community, since they agree to join the community and to follow its rules at
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subscription time.

4.4 Personal (local) layer

The goal of this layer is to allow people to manage their knowledge locally, thus
avoiding privacy issues that might arise when user’s data is stored in a central server
or service not owned by them. People would normally want to manage, organize
and manipulate things they are interested in according to their own personal point
of views, based on their perception, experience an interactions with other people in
diverse social contexts. People and may belong to zero, one or more communities
as can be seen in Figure 4.2.

Figure 4.2: The connection between the three layers: Universal, Community and
Personal

As we saw in the previous Chapter, these things people care about are modeled
by entities in our knowledge base framework (see Section 3.4). In this distributed
scenario, the workload of the maintenance of the entities that are of interest (at the
personal later but also at the community layer) is distributed among all the users
of the system, requiring no explicit a-priory agreement. However, in order to fully
exploit the distribution of the work, and the fact that others can benefit from already
created entities, we need to provide interoperability between entities.

Given the locality of entities, we expect that they will be mostly created in a
bottom-up fashion, therefore we keep the entities were they are generated and used
the most (at the local layer). However, in order to achieve interoperability and
enable the power of the distributed system, we provide the Universal and Commu-
nity layers, from where people can take shared conceptualizations and reuse them
as much as possible. This means that while entities are created in a bottom-up
fashion, the language, concepts and the schemas used to define and describe the
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local entities are given more in a top-down fashion, coming from the Universal and
Community layers, as it makes little sense to ask people to create from scratch the
whole background and schematic knowledge presented in Chapter 3 “Knowledge
Components”.

While we achieve interoperability by reusing background and schematic knowl-
edge from the Universal and Community layers, we also need to support a process
by which these types of knowledge are formed in a bottom-up fashion. This is
because knowledge is in constant evolution, and new terms, concepts and types of
things that we care about are normally created by people, as we saw in the “Java”
example of the previous section. Given this bottom-up emergence of knowledge,
we need operations to evolve the knowledge shared by a group of people, based on
the usage in this distributed environment. Furthermore, once a new piece of knowl-
edge is created manually or automatically, we need to propagate this knowledge
between users, between users and communities, and between the communities.
The process of automatic evolution of knowledge is studied in Chapter 6: “Back-
ground Knowledge Evolution” and the process of propagation of new knowledge
is presented in Chapter 6: “Background Knowledge Evolution”.

Given the diverse perspectives of entities provided by people, there is a need to
manage the identity of what these entities (in the system) are referring to (outside
the system). This means that once we are able to interoperate at the level of lan-
guage and schemas, we need to be able to interoperate at the level of entities, i.e., to
know when we talk about the same thing. For this we distinguish between the real
world entities (the things we refer to), the mental entities (the personal view about
the thing we refer to) and the digital entity (the way we encode our vision in the
system). Given the digital entity, we need to be able to compare them and to know
when they refer to the same real world entity. The compatibility conditions are pre-
sented in Chapter 8: “Entity Compatibility” and the management of the identities
of the entities is defined in Chapter 9: “Identity Management”. In the later Chapter
we center our attention in capturing the semantics of the real world entities as pro-
vided by people, therefore dealing by construction with different points of view.
We therefore recognize the difference between the identification of the real world
entity and the identification of the, possible different, (partial) views provided by
people.

4.5 Summary

In this charter we presented the different layers that we use to deal with the seman-
tics problem: Universal, Community and Local. The key difference from other
state of the art work is the introduction of the Community layer, which represents a
bounded context where new knowledge can evolve according to the needs and in-
terest of the participants of the community. The community layer can reuse (parts
of) the knowledge defined at the Universal layer, therefore enabling interoperabil-
ity between communities. At the personal layer users can create and maintain their
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own local knowledge according to their own perspective in a distributed manner.
This avoids the privacy issues that are present when knowledge is only maintained
in a central repository that is not owned and managed by them.

In this distributed scenario, we expect entities to be created and maintained
mostly by people (bottom-up) while reusing the linguistic and conceptual parts of
the background knowledge and the schematic knowledge from upper layers, i.e.,
their communities and the Universal knowledge. This means that normally the
background and schematic knowledge are created and propagated in a top-down
fashion. However, we saw that, given the dynamic nature of knowledge, there
is still a need for allowing linguistic, conceptual and schematic knowledge to be
created also in a bottom-up manner and to be propagated between users, between
users and communities and between communities. These operations will be studied
in Chapter 6: “Background Knowledge Evolution” and in Chapter 7: “Knowledge
propagation”.

The problem of reaching interoperability at the different layers considering the
language, concepts and schemas is the core of Chapter 5: “Semantic Matching”;
while the problem of reaching interoperability between entities is the core of Chap-
ter 8: “Entity Compatibility” and Chapter 9: “Identity Management”.
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Chapter 5

Semantic Matching

5.1 Introduction

Matching is a common technique used to address the semantic heterogeneity prob-
lem arising when systems with diverse data structures and languages expressing
different viewpoints wish to interoperate. Some application domains that benefit
from this technique are semantic web, data exchange, query translation, data in-
tegration [Hal05], peer to peer networks, agent communication [ES07] and many
more. The matching process takes as input two ontologies or schema-like struc-
tures and produces as output a set of alignments between the corresponding ele-
ments [GYS07].

Depending on the domain, the input structures can be among classifications
structures (business catalogs, web directories, user directories in the file system),
database or XML schemas and ontologies. The information in these structures is
normally described using natural language labels. Figure 5.1 shows a subset of
Google and Yahoo Web directories related to movies. If a movie oriented appli-
cation wants to show an integrated result, e.g., the list of actors, it is clear that
it would need to match these two directories, and use the information they con-
tain. In the example of Figure 5.1, information from “/Yahoo/Directory/Enter-
tainment/Actors” and “/Google/Top/Arts/Movies/Actors and Actresses” would be
retrieved. Red lines show a possible resulting set of alignments.

Semantic matching is a type of ontology matching technique [ES07] that relies
on semantic information encoded in lightweight ontologies (a graph-like structure
where the meaning of the nodes are unambiguous [GMZ07]) to identify nodes that
are semantically related. For each node in the input graph-like structures, the al-
gorithm tries to derive the concept that the node intends to represent. This is done
by using not only the name or label for a given node, but also its position in the
structure, exploiting implicit information encoded in the structure. After all the
concepts have been computed, transforming the inputs into lightweight ontologies,
the algorithm computes semantic relations (e.g., less general, more general, equiv-
alence) between nodes from different input schemas.
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Figure 5.1: Two subsets of movies related Web directories from Google and Yahoo
and an example matching solution

In many cases a set of structural properties need also to be preserved when
computing semantic relations between input schemas. This is specially the case
when matching web services or database schemas, where i) internal nodes, repre-
senting function symbols or table names, need to be matched to internal nodes and
ii) leaf nodes, representing variable names or columns, need to be matched to leaf
nodes. Furthermore, we need to return only a one to one mapping correspondences
that will allow a direct translation between two services or database schemas. A
similarity score is also computed to check whether the returned alignments can
be considered good enough; however, the decision on whether the score is good
enough is highly domain dependent, and therefore left as a user parameter.

The S-Match framework is open source implementation of the semantic match-
ing algorithm. Given any two graph-like structures, the framework is able to trans-
form them into lightweight ontologies and compute the semantic relations among
the nodes. For example, applied to file systems it can identify that a folder labeled
“car” is semantically equivalent to another folder “automobile” because they are
synonyms in English, relying on the information store in a background knowledge.

There are different ways the set of mapping elements can be returned, accord-
ing to the specifics of the problem where the semantic matching approach is being
applied. In Section 5.2 we highlight the most important elements of the basic
semantic matching algorithm as defined in [GS03]. Section 5.3 presents an adapta-
tion of the basic semantic matching algorithm, called Structure Preserving Seman-
tic Matching (SPSM), that is more suitable to be used when matching database
schemas and web services. Section 5.4 presents the architecture of open source
implementation of the algorithms, called S-Match. Section 5.5 discusses the re-
lated work. Finally, Section 5.6 summarizes the chapter.

The purpose of this Chapter is not to give a complete account for the internals
of the semantic matching algorithms, but rather to give an overview in order to
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understand why semantic matching and its basic components are important for
achieving interoperability at the background by converting strings into semantic
strings and schematic knowledge in order to compare entity types descriptions.
These components are defined in Chapter 3 (Knowledge Components).

Acknowledgments: parts of this chapter were published in [GMY+08] in
collaboration with Fausto Giunchiglia, Fiona McNeill, Mikalai Yatskevich, Paolo
Besana and Pavel Shvaiko, in [MBPG09] with Fiona McNeill, Paolo Besana and
Fausto Giunchiglia and in [GAP12] with Fausto Giunchiglia and Aliaksandr Au-
tayeu.

5.2 The basic algorithm

The basic semantic matching algorithm was initially defined in [GS03] and ex-
tended in [GYS07]. The key idea is to find semantic relations (equivalence (=),
less general (v), more general (w) and disjointness (⊥)) between the meanings
(concepts) that the nodes of the input schemas represent, and not only the labels.
The former refers to the set of data that would be contained under a given label,
independently from its position; the latter refers to the set of data that would be
contained under the given node and its position. The algorithm takes as input two
graph like structures, converts them into lightweight ontologies and computes the
set of alignments using a four steps approach, namely:

1. Compute concept of the label, for all the labels in the two input schemas.

2. Compute concept of the node, for all the nodes in the two input schemas,
converting them into lightweight ontologies.

3. Compute existing relations between all the pair of labels from the two input
lightweight ontologies.

4. Compute existing relations between all the pair of nodes from the two input
lightweight ontologies.

5.2.1 From natural language to lightweight ontologies

In step 1, the algorithm computes the meaning of the label, considering its seman-
tics. The main objective of this step is to unequivocally encode the intended mean-
ing of the label, thus eliminating possible ambiguities introduced by the natural
language such as, homonyms and synonyms. This is done transforming the natural
language label into a complex concept (a set of concepts, from Model Object 6
with logical connectors).

This step can be divided into four sub-steps: tokenization, lemmatization,
building atomic concepts (also known in the literature as Word Sense Disambigua-
tions (WSD)) and building complex concepts.
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Tokenization: Tokenization refers is the process of recognizing atomic words
that are contained in the input label. For example, in the label “Action
and Adventure” from Figure 5.1 the individual tokens are {“Action”, “and”,
“Adventure”}. While the most common heuristic is to use the space as sep-
arator for recognizing the tokens, there are several cases when this is not
sufficient. For example, labels from free-text annotation systems such as De-
licious1 do not allow spaces as word separators and, therefore, users just con-
catenate multi-words (javaisland) or concatenate them using the Camel case
(javaIsland), slashes (java-island), underscores (java island) or other sepa-
rator they deem useful. Whenever possible, the above mentioned heuristics
are applied. However, when not applicable, a dictionary-based tokenization
can be performed, where the input label is tokenized looking for words that
are part of the linguistic part of the Background Knowledge. For example,
using the dictionary-based approach the label “javaisland” can be split into
{“java”, “island”} or {“java”, “is”, “land”} [AZP+10]. The output of this
step is ranked to present the most plausible split first. The ranking prefers
proposals with fewer number of splits and with the maximum number of
tokens recognized by the dictionary.

Lemmatization: lemmatization to the process of reducing different forms of the
same word into a single base form, as it would be found in a standard dic-
tionary. There are a number of standard lemmatization heuristics taken from
WSD. For example, transforming plurals to singular, “Directors” would be
lemmatized to “director”.

Disambiguation: In order to build atomic concepts, the algorithm relies on back-
ground knowledge presented in Section 3.2 which provides the possible
senses for the computed lemmas given a context. Standard WSD techniques
are applied in this step (see [IV98, Ste02] for a complete account on the
WSD problem).

Build complex concept: finally, complex logical concepts are built using the pre-
vious information (for more details refer to [GS03]). The output of this step
is a language independent Description Logic (DL) formula that encodes the
meaning of the label.

Considering Figure 5.1 as an example, the senses that the label “Directors”
could have are: “manager of a company”, “orchestra director”, “theater director”
or “film director”. Filtering the correct sense might seem like a trivial task for a
human, but since there is no further information in the label itself, no further sense
filtering can be done automatically during this step.

In step 2, the algorithm computes the meaning of the node; this is done by
considering its position in the input graph-like structure, i.e., the path to the root.

1http://delicious.com/
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In Figure 5.1, taking into account the position of the “Directors” node under the
node “Filmmaking”, the automatic sense filtering function would be capable of
deriving the right sense: “film director”. The output of this step is a lightweight
ontology, i.e., a graph-like structure where the meaning of the nodes is unambigu-
ous [GMZ07].

5.2.2 Node and tree matching

In step 3, the algorithm computes the relations between the concepts of label of
two input lightweight ontologies. This is done with the aid of two types of element
level matchers: semantic and syntactic. Semantic element level matchers rely on
the conceptual part (see Section 3.2.2) to find semantic correspondences between
the concepts of label. Instead, syntactic element level matchers, such as N-Gram
and Edit Distance are used if no semantic relation could be found by the semantic
element level matcher. Table 5.1 lists the available element level matchers.

Matcher Name Type
Wordnet Sense-based
Prefix String-based
Suffix String-based
N-gram String-based
Edit distance String-based

Table 5.1: Element level matchers

The output of this step is a matrix of relations between all atomic concepts en-
countered in the nodes of both lightweight ontologies given as inputs. This consti-
tutes the theory and axioms which will be used in the following step (see [GYS07]
for complete details).

In step 4, the algorithm computes the semantic relations (=,w,v,⊥) between
the concepts at node. By relying on the axioms built on the previous step, the
problem is reformulated as a propositional satisfiability (SAT) problem between
each pair of nodes of the two input lightweight ontologies. This problem is then
solved by a sound and complete SAT engine.

The output is a set of mapping elements in the form 〈N i
1, N

j
2 , R〉, namely a set

of semantic correspondences between the nodes in the two lightweight ontologies
given as input. Where N i

1 is the i-th node of the first lightweight ontology, N j
2 is

the j-th node of the second lightweight ontology, and R is a semantic relation in
(=,w,v,⊥). The lines between the nodes of the different trees in Figure 5.1 show
a graphical representation of the mapping elements.
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Figure 5.2: Result of Structure Preserving Semantic Matching (SPSM).

5.3 Structure Preserving Semantic Matching (SPSM)2

In many cases it is desirable to match structurally identical elements of both the
source and the target parts of the input. This is specially the case when compar-
ing signatures of functions such as web service descriptions or APIs or database
schemas. Structure Preserving Semantic Matching (SPSM) [GMY+08] is a vari-
ant of the basic semantic matching algorithm outlined in Section 5.2. SPSM can
be useful for facilitating, for instance, the process of automatic schema integration,
returning a set of possible mappings between the elements of the schema. This
can be used to compare definitions of entity types that were not created using the
schematic knowledge presented in Section 3.3.

SPSM computes the set of mapping elements preserving the following struc-
tural properties of the inputs:

i) only one mapping element per node is returned. This is required in order to
match only one element (a function, a schema name or attribute) in the first
lightweight ontology, to only one element in the second lightweight ontology.

ii) leaf nodes are matched to leaf nodes and internal nodes are matched to in-
ternal nodes. The rationale behind this property is that a leaf node represents
a parameter of a function (or an attribute in a schema, a column name in a
database, or an attribute definition in a entity type), and an internal node cor-
responds to a function (or a class in a schema, or a table name in a database).
By doing so, parameters containing values will not be aligned to functions.

Figure 5.2 shows the output of SPSM when matching two simple database
schemas, consisting of one table each: table “auto” with columns “brand”, “name”
and “color” on the left and table “car” with columns “year”, “brand” and “colour”
on the right. Observing the results of SPSM in this example we can see that the set
of structural properties is preserved:

i) The root node “auto” in the left tree has only one mapping to the node “car”
in the right tree on the same level, that is, the root.

2Parts of this section were published in [GAP12] in collaboration with Fausto Giunchiglia and
Aliaksandr Autayeu. and in [MBPG09] in collaboration with Fiona McNeill, Paolo Besana and
Fausto Giunchiglia.
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ii) The leaf node “brand” in the left tree is mapped to the leaf node “brand” in
the right tree, and similarly with the leaf node “color” in the left tree and the
node “colour” in the right tree — the leaf node is mapped to the node on the
same level, that is, to a leaf node.

The output of SPSM is a set of alignments between the nodes of the input trees,
and a numerical score in [0 1] indicating the degree of global similarity between
them. This score allows us to detect not only perfect matches, which are unlikely
to occur in an unconstrained domain, but also good enough matches. A match be-
tween two trees is considered to be good enough if this degree of global similarity
exceeds some threshold value. Since the concept of good enough is very context
dependent, in safety critical situation perhaps only a near-perfect match will be re-
quired but in other situations a much weaker match may suffice, this threshold can
be set by the user according to the application domain [GMY+08].

SPSM is performed in two steps: semantic node matching and structure pre-
serving matching.

Semantic Node Matching: this computes all the possible set of correspondences
between the nodes of the input lightweight ontologies. This is achieved by
relying on the basic semantic matching algorithm outlined in Section 5.2.

Structure preserving matching: once we have the correspondences between the
input nodes, the next step is to match the whole lightweight ontologies tak-
ing into account the set of structural properties we need to preserve, and
determine the global similarity value between them. This step relies on the
tree-edit distance algorithm that is designed to determine the cost of trans-
lating one tree into another through the application of three operations: (i)
node deletion, (ii) node insertion, and (iii) node replacement [Tai79]. How-
ever, the original tree-edit distance algorithm does not consider the semantics
behind these operations: for example, according to the standard algorithm,
replacing the node “color” by “colour” in Figure 5.2 would cost the same as
replacing it with “year”, although it is clear that a the second replacement is
less semantically meaningful than the first one.

In order to overcome this issue, the standard tree-edit distance algorithm has
been enhanced so that the cost of performing each operation is dependent on
the semantics of performing the change: that is, a smaller semantic change
costs less than a large change. This is achieved by associating each edit
distance operation to an operation from the theory of abstraction [GW92]
and assigning a different value to each different abstraction operation. For
example, replacing a node for another whose concept is semantically related
(as defined in Model Object 7) costs less than replacing it by another with
no semantic relation (for a complete account please refer to [GMY+08]).
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5.4 The S-Match open source framework

S-Match3 is the Java open source implementation of the semantic matching al-
gorithm presented in this chapter. It is currently distributed under GNU Library
or Lesser General Public License (LGPL). Currently S-Match contains implemen-
tations of the basic semantic matching algorithm [GYS07], structure preserving
semantic matching algorithm [GMY+08], as well as minimal semantic matching
algorithm [GMA09]. S-Match is developed to have a modular architecture that
allows easy extension and plug-in of ad-hoc components for specific tasks. Fig-
ure 5.3 shows the main components of the S-Match architecture, and a reference to
the four steps of the Semantic Matching algorithm outlined in Section 5.2.

Figure 5.3: S-Match architecture

The Loaders package allows to load the input in various formats such as tab
indented and XML formats. It also provides an interface for allowing to create
custom loaders. The Preprocessors package provides the translation from Natural

3http://s-match.org/
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language of the labels into concepts (step 1), using the Oracles package. The
Classifiers package creates the concepts of the nodes in step 2 using the structure
of the tree and the concepts of the label. These packages translate the input into
lightweight ontologies. This translation needs to be performed only once, and can
be done offline.

The Matchers package contains two sub-packages that perform steps 3 and
4 of the algorithm presented in Section 5.2, these are the Element and Structure
packages respectively. The Element level matchers contain the semantic matchers
that rely on the Oracle package to obtain relations between concepts, The syntactic
matchers are, among others: gloss matcher, prefix, suffix, edit distance, NGram.
The Structure level matchers are used to compute semantic relations between the
concepts of the node relying on the Deciders package for solving the SAT prob-
lems.

5.5 Related work

A considerable amount of research has been done in the field of semantic matching.
Different terminologies have been adopted to refer to the matching problem, such
as alignment, merging, integration, mapping, and so on [KS03] in several com-
binations such as semantic matching [GS03, GYS07], ontology matching [ES07],
ontology mapping [CSH06], schema matching [BBR11, BV11]. Even though each
field has its own peculiarities, the general objective is similar, that is, to address the
semantic heterogeneity problem at schema/structure level.

There are several comprehensive surveys regarding the matching problem in its
related fields that were published during the years [KS03, DH05, SE05, CSH06,
ES07] and more recently in [BBR11]. Therefore, we will not focus on creating yet
another extensive literature review.

The Ontology Matching book [ES07] presents an exhaustive and detailed clas-
sification and state of the art survey. It provides a formalization of the ontology
matching problem, classifying and evaluating algorithms according to various cri-
teria. It provides a detailed description of the matching process and their applica-
tions. A more recent book, “Schema Matching and Mapping” [BBR11] presents
the advances in the area in the last years, outlining several evaluation methodolo-
gies.

The Ontology Alignment Evaluation Initiative (OAEI)4 aims at evaluating sys-
tems with a systematic benchmark containing several tracks such as expressive
ontologies, directories and thesauri. The initiative has been active since 2005, and
myself and Pavel Shvaiko have been in charge of running the directory track for
2008 [CEH+08], 2009 [EFH+09] and 2010 [EFM+10]. In total, 24 matching sys-
tems have participated in the directory track from 2005 to 2010 with increasing av-
erage f-measure. This shows the variety of research systems dedicated to address-
ing the matching problem and how their quality has been increasing over time.

4http://oaei.ontologymatching.org/
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Some of these systems are Falcon5, COMA++6, Similarity Flooding7, HMatch8

and others.
Bernstein et al., [BMR11] enumerate several common techniques used by match-

ing systems in order to compute the alignments. These are: i) linguistic matching
(tokenization, stemming, lematization), ii) instance matching given the elements
of the node, iii) structure matching considering the structure of the schema, iv)
constrain-based matching considering the data types, values, etc., v) rules-based
matching expressed in first-order logic, vi) graph-matching, vii) usage-based con-
sidering the logs of the queries, viii) document content based matching normally
using TI-IDF (term frequency times inverse document frequency) and ix) the use
of auxiliary information such as a linguistic Oracle or background knowledge. The
work presented in this Chapter uses i), iii), v) and ix).

Several systems also use a combination of the above mentioned techniques;
some examples are OLA [FKEV07] and COMA++. The assumption is that no ba-
sic matcher can solve efficiently all the variety of matching tasks and by using them
in combination, the resulting matching solution can have an higher performance.
However, even when combining several techniques, there is still no automatic so-
lution for the matching problem with perfect recall. The authors in [ACMT08]
state that only 80% of the existing alignments can be automatically found, and the
remaining 20% have to be solved by experts. These estimations are consistent with
six years of evaluation of 24 systems at the OAEI evaluation campaign (2005 to
2010), where the highest recall for the directory track was 84% (obtained by OLA
in 2007 [KEV07]).

In order to further increase the quality of the results, several systems include a
manual step (the user-in-the-loop approach) for providing the missing alignments
and/or validating the results of the automatic approaches [ACMT08, JMSK09].
The approaches outlined by Zhdanova and Shvaiko [ZS06] and McCann et al.[MSD08]
take the manual validation a step further distributing the effort in order to min-
imize the workload of experts. Several issues that need to be addressed in this
“crowdsourcing”-based approaches are how to compute agreement, if a result ob-
tained in one domain is still valid for other domains, how to incentivize people to
participate and the trustworthiness of the validators.

5.6 Summary

In this chapter we have presented the semantic matching approach and an archi-
tecture of the open source implementation, S-Match. We outlined the important
components that allows the conversion of natural language labels into a formal
representation that removes the ambiguities of the natural language. This process

5ws.nju.edu.cn/falcon-ao
6dbs.uni-leipzig.de/Research/coma.html
7www-db.stanford.edu/˜melnik/mm/sfa/
8islab.dico.unimi.it/hmatch/
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relies on a linguistic oracle in the form of a background knowledge as presented in
Section 3.2.

The Structure Preserving Semantic Matching (SPSM) extends the basic seman-
tic matching algorithm by introducing constraints that allow to preserve structural
properties when matching graph-like input schemas. This allows us to determine
fully how structured terms, such as web service calls or entity types definitions,
are related to one another, providing also a similarity score based on the theory of
abstraction.

The purpose of this Chapter is not to give a complete account for the inter-
nals of the semantic matching algorithms, but rather to give an overview in order
to understand why semantic matching and its basic components are important for
achieving interoperability at the background and schematic knowledge levels pre-
sented in Chapter 3 (Knowledge Components).

The approaches presented in this Chapter rely on background knowledge to
derive semantic relations, and therefore, it is dependent on their coverage in order
to produce meaningful results. In Chapter 6 (Background Knowledge Evolution)
we will see how to improve the coverage of the background knowledge in highly
dynamic domains, such as computer science, where the time lag between the cre-
ation of new terms and their addition to the background knowledge by experts can
be significant (the addition of new words to dictionaries is a process that normally
take years).
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Chapter 6

Background Knowledge
Evolution

6.1 Introduction

As knowledge is in constant evolution, new concepts and words may arise to denote
new or existing ideas and or to describe entities. In Chapter 3 (Knowledge Com-
ponents) we see how these concepts and words are encoded in our Background
Knowledge (BK). In Chapter 5 (Semantic Matching) we see how this Background
Knowledge is essential in the Word Sense Disambiguation (WSD) process for re-
moving the ambiguity of natural language and formalizing the meaning of strings
in the system.

The dependency on the Background Knowledge for deriving the formal seman-
tics is, however, a problem in highly dynamic domains, such as computer science.
As shown in [APZ11a], a Knowledge Organization System (KOS) such as Word-
Net [Fel98] (from where we can initially populate the BK) only covers between
49% and 71% of the terms used in folksonomies for the “Computer Science” and
“Education, Travel, Cooking” domains respectively. The time lag between the
creation of new terms in dynamic domains and their addition to the Background
Knowledge by domain experts can sometimes be significant (the addition of new
words to dictionaries is a process that normally take years).

Two base cases need to be addressed when adding new elements to the back-
ground knowledge.

1. the word is recognized by the linguistic part of the BK, but lacks the intended
meaning in the conceptual part. For example, while “ajax” and “mac” are
both recognized in Wordnet, the only available sense for “ajax” is “a myth-
ical Greek hero” and for “mac, machintosh, mackintosh, mack” is “a wa-
terproof raincoat made of rubberized fabric”. Clearly, the senses for the
Computer Science domain are missing.

2. the word is not recognized by the linguistic part, which has the following sub
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cases:

• the word is not significant (e.g., a proposition), and therefore should be
ignored

• the word denotes an existing concept in the conceptual part of the back-
ground knowledge, therefore we need to add the new word to the cor-
responding synset;

• the word denotes an unknown concept, therefore, the concept, word
and synset have to be created. Additionally, when creating the concept
we need to create the concept in relation to already known concepts
(i.e., define its meaning in relation to what it is already known).

In this Chapter we propose an approach for computing these missing senses
in order to improve the coverage of the background knowledge. We try to mini-
mize the user involvement whenever possible, assuming that the user attention is
a scarce resource and thus should be used only when absolutely necessary. As
noted in [APZ09], when in presence of a new term or concept we could adopt the
following approaches for updating the Background Knowledge:

• Automatically update. We define a sense induction algorithm presented in
Section 6.4.2 (initially described in [AZP+10]) that works with statistical
information using clustering techniques. If the extracted concept has a cer-
tainty over a given threshold, then this new concept and its corresponding
words and synset could be automatically added to the background knowl-
edge.

• Semi-automatically. The results of automatic algorithms could be shown to
the users, asking the user for his/her approval. Game mechanics [vA06] and
crowd-sourcing [vAMM+08] could be employed in order to distribute this
task and make it more appealing for the end user.

• Manually, by asking the user to create the concept and provide the necessary
information for creating the words and synsets. The workload can be split
following a collaborative approach [BSW+07].

We define a sense induction algorithm that differs from the state of the art by
being able to recognize homographs, i.e., that one word can have many senses
and compute the correct sense for which it is begin used. We use a folksonomy
based systems, Delicious1, as a use case scenario and define a model where the
annotations provided in the folksonomy are converted into semantic strings (see
Model Object 5). However, due to the lack of benchmark datasets and agreed-
upon evaluation methodology, we create a manually validated dataset and propose
an evaluation methodology (presented in Chapter 11).

1http://delicious.com/
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The remainder of this Chapter is organized as follows: Section 6.2 introduces
the use case that we will use to model and later evaluate the sense induction algo-
rithm; Section 6.3 presents the related work; Section 6.4 defines the sense induction
algorithm and the clustering distances needed by the sense induction algorithm are
presented in Section 6.5; Finally, Section 6.6 summarizes the chapter.

Acknowledgment: The work presented in this chapter has been carried out
with Pierre Andrews and Ilya Zaihrayeu. Parts of this Chapter have been published
in [APZ11a] and [APZ11b].

6.2 Motivating example: Folksonomies

Folksonomies are uncontrolled Knowledge Organisation Systems (KOS) where
users can use free-text tags to annotate resources [Wal07], this is also known as
collaborative tagging [GH06]. The main characteristic of the folksonomy (folk +
taxonomy) is the bottom-up approach for reaching consensus on emergent ideas,
without any a-priory agreement on the vocabulary by users. The main advantage is
the distribution of the tagging workload among all the users. This, in turn, lowers
the barrier of user participation since one user can see and adopt the tags assigned
to a resource by other users, thus simplifying the tagging process, or even more
importantly, can search and discover new resources that were tagged with the same
tags as the user’s tags [AN07].

Folksonomies create a network of user-tag-resource triplets that encodes the
knowledge of users [Mik05] (see equation 6.1). The model is widely adopted in
systems such as Delicious, Flickr2, Diigo3, Bibsonomy4 and many more, mainly
due to its simplicity. However, because they are based on the use of free-text tags,
folksonomies are prone to language ambiguity issues as there is no formalisation
of polysemy/homography (where one tag can have multiple senses) and synonymy
(where multiple tags can have the same sense) [GH06]. This lack of explicit se-
mantics makes it difficult for computer algorithms to leverage the whole knowl-
edge provided by the folksonomy model. For instance, in [APZ11a] we show that
exploiting these explicit semantics can improve search results.

6.2.1 Syntactic Folksonomy

Mika [Mik05] introduces a formalisation of the folksonomy model to ease its pro-
cessing using multimodal graph analysis. Doing so, the author enables the formal
representation of the social network resulting from the folksonomy building ac-
tivity. It represents a folksonomy as a tripartite graph composed of three disjoint
types of vertices, the actorsA (the user creating the tag annotation), the conceptsC
(tags, keywords) used as metadata and the objects O or resources being annotated.

2http://www.flickr.com/
3http://www.diigo.com/
4http://www.bibsonomy.org/
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A free-text tag annotation is thus a triple combining the three vertices as defined
by Equation (6.1).

T = 〈u, t, r〉whereu ∈ A, t ∈ C and r ∈ O (6.1)

According to Mika, such tripartite graph can be used to describe an ontology repre-
senting the knowledge of the community that created this folksonomy. This model
has been used since to exploit different social networking analysis tools and distri-
butional semantic models to extract a more formal representation of the semantics
encoded in these tripartite graphs (see [GSCAGP10] for a review).

6.2.2 Semantic Folksonomy

An important point in Mika’s [Mik05] description of the folksonomy model is that
“tags” or “keywords” are considered to be mapped one-to-one to the concepts of
the ontology and that these (the tags or keywords) are the basic semantic units of the
language used in the community that created the folksonomy. However, we believe
that we need to separate the linguistic part from the conceptual part to properly
encode the semantics in the folksonomies. This will enable a better understanding
of its underlying semantic and of the overlap of vocabularies between the users of
the folksonomy.

In fact, tags and keywords, while they represent a specific concept and have a
known semantic for the agent that creates them, are just stored and shared in the
folksonomy as purely free-form natural language text. Because of the ambiguous
nature of natural language, a number of issues such as synonymy, homography,
base form variation and specificity gap arise when sharing only the textual version
of the annotations (see Section 3.2 for a more detailed account of the problems
with natural language).

Indeed, as we show in our evaluation (see Section 11.2.2), such issues are
present in a real application based on the folksonomy model, in our case study,
Delicious. We thus propose to extend the free-text tag annotation model in equa-
tion 6.1 by replacing the tag t string by our model of semantic string presented
in Model Object 5 in Section 3.2.1. Equation 6.2 shows the semantic annotation.
Where the semantic string stringsem = 〈t, {w s}〉 contains the original tag t,
and a set of word senses w s = 〈word, c〉, each containing a token (a word in t
in its base form) and the concept c it represents (see Model Object 4 and Model
Object 5).

T = 〈u, stringsem, r〉 (6.2)

The “semantification” of the tag is a process similar to that of Word Sense
Disambiguation (WSD) (see Section 5.2.1: “From natural language to lightweight
ontologies”). However, while there are existing WSD algorithms in the state of
the art, they are not completely adapted to folksonomies. WSD algorithms use an
existing vocabulary to link terms (in our case tags) to concepts, thus discovering
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the semantics of the tags used. However, as shown in [APZ11a], WordNet only
covers between 49% and 71% of the terms used by the users of the folksonomy.
That is, WSD cannot be applied to up to 51% of the tags in the folksonomy as they
do not have any sense in the background knowledge, if based in Wordnet.

While the computer cannot understand the meaning of the free-text tags used
(either because the word or the concept is missing in the background knowledge),
the users always know the meaning they wanted to use when they tagged a resource.
So, if they tagged a resource with “atm”, in their mind, at the time of tagging,
they knew exactly if they meant the “cash machine” or the “a standard unit of
pressure, the atmosphere”. This principle has already been widely illustrated in
the automatic ontology building field where machine learning is used to extract the
so-called “emergent semantics” [AMO+04].

6.2.3 Semantifying Delicious

To analyze our semantified folksonomy model we use Delicious, a simple folk-
sonomy that allows users to tag Web pages (the resources r) using free-text anno-
tations. We obtained the initial data from the authors of [WZB08] who crawled
Delicious between December 2007 and April 2008. The aim of using this dataset
is two-fold:

First: we want to convert the free-text annotations to semantic annotations. This
process allows us to evaluate WSD algorithms and the coverage of the Back-
ground Knowledge.

Second: given the lack of gold standard dataset for evaluating the sense induction
algorithm, we manually build and evaluate the conversion from free-text to
semantic strings, which will serve as the gold-standard dataset not only for
the sense induction algorithm, but also for other future WSD algorithms.
The dataset is currently published following the Linked Open Data principles
at http://disi.unitn.it/˜knowdive/dataset/delicious/.

The dataset and the results are presented in Chapter 11.

6.3 Related work

The work by [GSCAGP10] provides a good survey of the field of semantic disam-
biguation in folksonomies. The authors present a unified process for the associa-
tion of semantics to tags in four steps:

Data selection and cleaning includes the identification of the folksonomy dataset
to be used. Common examples are Delicious and Flickr. Once selected, the
dataset has to be cleaned out of undesired content, e.g., spam tags.
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Context identification refers to the extra information that is to be used in order
to aid in the selection of the meaning of the tag. For example, in free text
processing [AM02a], the context can be the whole sentence, exploiting struc-
tural information. This information is not available in folksonomies, as tags
are not placed in grammatical sentences, however, different contextual infor-
mation can be derived from the folksonomy structure.

Disambiguation (WSD) tries to address the polysemy issue due to the natural lan-
guage used in tags. This step tries to separate different uses of the homony-
mous or polysemous tags based on the context in which they are used.

Semantic identification tries to link the sense of the tag to a formal meaning
given by a Knowledge Organization System (KOS). This KOS can be, for
example, an ontology like DBpedia [ABK+08] or a thesaurus such as Word-
net [Fel98].

This unified process for the association of semantics to tags makes the assump-
tion that the target formal Knowledge Organization System (KOS) (e.g., Ontology,
Thesaurus, CV) already contains the concepts/classes and entities/instances that
are to be linked to the folksonomy tags. However, as pointed out by [APZ11a], the
coverage of the KOS, in the particular case of Wordnet 3.0, is only around 49% for
the Delicious folksonomy in the domain of Computer Science. This means that,
even if we achieve a perfect precision and recall in the process of assigning seman-
tics to tags as described by the WSD step by [GSCAGP10], we will only be able
to assign formal semantics to as much as half of the tags created by the users of
the folksonomy. This language coverage issue raises the need for a new step in the
“semantification” process of tags in folksonomies: sense induction.

Sense induction is the task of discovering automatically the intended meaning
of a possible ambiguous word in a given context. Differently from the disam-
biguation task, where the senses are assumed to be defined by a KOS, sense in-
duction tries to overcome this limitation by also dealing with missing senses in the
KOS [BL09]. Therefore, besides considering the polysemy issue, sense induction
has to deal with the maintenance of the concept with respect to the KOS.

This maintenance, also known as ontology evolution, is defined by [FMK+08]
as “the process of modifying an ontology in response to a certain change in the do-
main or its conceptualization”. However, the ontology evolution literature is often
defined in terms of single-user environments directed to aid experts in the manual
maintenance of the ontology and does not take into account important characteris-
tics of collaborative schemas and shared KOS [SMMS02, HHSS05]. Some of the
approaches cited by [GSCAGP10] do consider the creation of the senses from the
context in which the tag resides, for instance [Mik05, SM07].

Considering community-built KOS, [BSW+07] proposed an ontology matur-
ing process by which new knowledge is formalized in a bottom-up fashion going
through several maturity stages: from informal emergent ideas using input from
social annotation systems such as folksonomies, to formal lightweight ontologies
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via a learning process involving users. This process also relies on manual user
effort to evolve the KOS.

Ontology learning [Zho07] use machine learning techniques for automatically
discovering and creating ontological knowledge. The automatic process is able to
discover knowledge faster and at larger scale than manual approaches. Ontology
learning can create the ontology from scratch [Mik05, BSW+07], or refine and
expand an existing ontology [RMT08, HHSS05]. The author identifies three types
of learning mechanism; i) statistics based, ii) rule based and iii) hybrid. [AMO+04]
proposed several generic characteristics and issues that any system for emergent
semantics should consider and address.

One method used to automatically extract the semantics from folksonomies is
what is called tag clustering and its principle is based on machine learning clus-
tering algorithms [XW05, Sch06]. This clustering is based on the principle that
similar tags will have the same meaning and can thus be attached to the same
“concept” in the created vocabulary. For instance, if the algorithm finds out that
“opposition” and “resistance” are similar, then it can associate it to one concept for
that meaning. One of the main issues is thus to compute the similarity between tags
to run the clustering algorithms that will attach similar tags together. To do this, all
the methods available currently use a mix of measures based on the collocation of
tags on resources and their use by users. If two tags are often used by the same user
on different resources or by different users on the same resource, then they can be
considered similar [GSCAGP10].

An important point in Mika’s [Mik05] description of the folksonomy model is
that “tags” are considered to be mapped one-to-one to the concepts of the ontology
and that these are the semantic units of the language used in the community that
created the folksonomy. In our opinion, this assumption, which is often found in
the state of the art, is one of the first weak points of these approaches as it makes
the assumption that one tag can only have one meaning [Mik05, MDA08]. Thus
these algorithms can find synonyms of the most popular sense but cannot deal with
the polysemy/homography of the tags. For example, if the tag “java” is collocated
with “indonesian island” on 200 resources and with “programming language” on
1000 resources, then it will be considered to be similar to the latter and the fact
that it has a second meaning is lost. However, [ZWY06] show that tags are often
ambiguous in folksonomies (their study is also based on Delicious5) and can bare
more than one meaning.

Another important issue raised by [GSCAGP10] is the lack of a common eval-
uation methodology and dataset. In fact, as we will discuss in Chapter 11 (Evalu-
ation of Background Knowledge Evolution), there is an issue in the state of the art
as many papers only report anachronistic evaluations that cannot be reproduced or
compared, e.g., [LDZ09, GSSAC09, VHS07, SM07].

5http://www.delicious.com
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6.4 Sense Induction

Many approaches are described in the state of the art and [GSCAGP10] tries to
formalise the problem in a number of general steps to be achieved to resolve the
semantics of tags in folksonomies. In this section we discuss a generic approach
that is inspired by the state of the art and tries to also tackle the issues discussed
earlier, such as the identification of homographs before identifying synonymous.
As in most of the state of the art approaches, a prior step to assigning a sense to the
tags is to clean them; we thus first describe an accurate preprocessing task before
going on to the core algorithm.

6.4.1 Preprocessing Tags

An issue with the most popular folksonomies available at the time of writing is
that many of the tags are written without spaces or without following a standard
lemmatised form, so tags such as “javaisland”, “java island” or “hike”, “hiking”,
“greathikes” are often found and cannot be easily matched together or to an ex-
isting controlled vocabulary, in our case, the linguistic part of the Background
Knowledge. In a sense, this is not an issue of the folksonomy model but an is-
sue of the user interfaces offered by the main tagging services such as Delicious or
Flickr. In fact, these systems did not allow the use of tags with spaces and thus the
users had to find alternative ways for creating multi-word tags. The issue of base
form variation in addition, is a usual issue when dealing with natural language.

As in standard Natural Language Processing (NLP), where free text is first
tokenised and lemmatised, we need to split and normalise the tags from the folk-
sonomy (see Section 5.2.1: “From natural language to lightweight ontologies”).
However, as noted by Andrews [AZP+10], standard tokenisation is based on puc-
tuation and spacing to extract tokens, in our context, this approach cannot be used
as the words that need to be tokenised do not include space or punctuation (in most
cases) within the tag (e.g. javaisland). For lemmatisation, we can use a similar ap-
proach to the standard NLP approaches, testing for common derivations of words
or verbs or special derivation of specific words6. However, there are cases where
lemmatisation and tokenisation have to be performed together, for instance “teach-
ersresource” has to be tokenised and lemmatised at the same time as the first token
“teachers” is a variation of the dictionary form “teacher”.

To perform this task we use the algorithm defined by Andrews in [AZP+10]
based on a standard dictionary search approach, where we compile the vocabulary
(lemmas) from the linguistic part of the BK, preloaded with WordNet 3.0, in a Final
State Automata (FSA). The output of this step is a list of possible semantic strings
(see Model Object 5 in page 17), each corresponding to a possible “split”. The
words in the outpout can be linked to a concept, or marked as unknown. The list is
ranked first by the number of splits (the fewer the better) and then by the number

6which are provided by thesaurus such as WordNet
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of unknown words (the fewer the better too). This approach proved an accuracy of
80.4%, as each split was manually validated by the users.

6.4.2 Algorithms

Once the tags have been preprocessed in tokens and lemmas, we have to perform
the “disambiguation” and “semantic identification” steps introduced by [GSCAGP10]
to find the semantics of each token. Many different techniques are used in the state
of the art, but the general consensus is that a form of clustering can be used to
group tags together to form senses. In this section we propose to generalize differ-
ent aspects of approaches found in the state of the art and to introduce some slight
improvements. The proposed algorithm is then used in Section 11.3 to provide a
formal evaluation of different variations of the approach that we believe simulate
the techniques found in the state of the art.

The method used to extract the semantics from folksonomies is what is called
tag clustering and its principle is based on machine learning clustering algorithms [XW05].
This clustering is based on the principle that similar tags will have the same mean-
ing and can thus be attached to the same “concept” in the created vocabulary. For
instance, if the algorithm finds out that “opposition” and “resistance” are similar,
then it can associate it to one concept for that meaning. One of the main issues is
thus to compute the similarity between tags to run the clustering algorithms that
will attach similar tags together. To do this, all the methods available currently use
a mix of measures based on the collocation of tags on resources and their use by
users. If two tags are often used by the same user on different resources or by differ-
ent users on the same resource, then they can be considered similar [GSCAGP10].

This assumption on the computation of the similarity of tags is, in our opinion,
one of the first weak points of these approaches as it makes the assumption that
one tag can only have one meaning. Thus these algorithms can find synonyms
of the most popular sense but cannot deal with the polysemy of the words. For
example, if the tag “java” is collocated with “indonesian island” on 200 resources
and with “programming language” on 1000 resources, then it will be considered to
be similar to the latter and the fact that it has a second meaning is lost. However,
[ZWY06] show that tags are often ambiguous in folksonomies (their study is also
based on Delicious7) and can bare more than one meaning. In the algorithm we
propose, we add an extra step to the clustering to first identify the diverse senses
of polysemous tags and in the following clustering steps, we do not consider tags
directly, but the unique senses that they can take.

We propose to adopt a parametric based clustering approach slightly different
from the standard KMeans and KNN algorithms that are often discussed in the state
of the art of ontology construction from folksonomy (see, for a review [GSCAGP10]).
In fact, these algorithms, while being the most popular in the clustering field, are
not well tailored to our application domain as they take as an input-parameter the

7http://www.delicious.com
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number of expected clusters (the K in the name). The state of the art approaches
on ontology building from folksonomies cluster all the tags together to find all the
concepts that they represent (see figures two and four in the review of Garcia-Silva
et al. [GSCAGP10]). In this case, they can optimise the K parameter to find the
best overall number of clusters for their dataset. However, in our approach, we
have added an extra step where clustering is applied to detect the different senses
in which one tag can be used. In this case, we cannot find an overall optimal value
for the number of clusters to look for as each term might have a different number
of senses.

Thus, we need to use a clustering algorithm that can work without this param-
eter as input. We use the DBScan algorithm [EpKSX96] to do a density based
clustering. This approach to clustering has various advantages for our application:

• it does not require as input the number of clusters to be found. Instead it
takes two parameters: λ, the minimum distance between two items to put
them in the same cluster and m the minimum number of items in a cluster.

λ is easier to optimize in our use case than to compute the K parameter as
we can find it by studying the accuracy of each clustering step.

• while the KMean and KNN algorithms assign all items in the clustering
space to a cluster, the DBScan algorithm can decide that some of the items to
be clustered are noise and should not be considered. This is very important
in our application domain as it allows for leaving out very personal or subjec-
tive uses of a term that might not be aligned with the rest of the community
understanding of the term; and

• the DBScan algorithm can detect clusters that have more complex “shapes”
than the standard hyperspherical clusters returned by vector quantization
based clustering such as the KMeans and KNN [XW05].

While there is already some research done on diverse similarity measures appli-
cable to concept detection and learning in the Natural Language Processing field
(for instance [AM02a] or [Jam09]), the existing clustering techniques discussed
in the folksonomy field are only considering raw collocation counts (of tags, re-
sources or users) as a similarity measure between tags. For instance, [AM02a]
proposes to combine four different measures to compute sense similarities: the
topic signature, the subject signature, the object signature and the modifier signa-
ture. While most of these measures can only be applied to textual documents as
they require to know noun-verb relationships in a sentence, the topic signature is
interesting in the domain of folksonomy where one of the only context we have
for computing the distances is the list of collocations. However, these colloca-
tions can be considered and weighted in different ways and [Jam09] points out
that simple vector distances or cosinus distances between topic signatures are not
always powerful enough. The authors show that information based measures –
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such as the Kullback-Leibler divergence of word distribution, the mutual informa-
tion – can be used to have more powerful measures of semantic distances between
concepts based on the Distributional Semantics principles [Lin98]. The authors
of [WSyVZ08] have proven that this measure can be applied with success to the
domain of folksonomies to disambiguate tag senses.

For the algorithm that we discuss in this section we use clustering algorithms
relying on distance measures between User-Resource pair and between tag senses.
We are currently experimenting with different measures, from the standard tag
collocation measures proposed in the current state of the art to the more advanced
distributional measures described above.

Figure 6.1: Sense-User-Bookmark Tripartite graph

To enrich the structured vocabulary with a new concept from a free-text tag,
we propose to do the concept detection in three stages:

1. For each tag, we cluster the user-resource bipartite graph that are attached to
this tag. By doing so, as was hinted by [AGH07], we discover the different
meanings of the tag. By considering each cluster to be a tag sense, we replace
the tag in the user-resource-tag tripartite graph by its senses and the tripartite
graph becomes a user-resource-sense graph as illustrated in Figure 6.1. In
this way, if we consider our previous example, the tag “java” will be split in
two senses: java-1, similar to “indonesian island” and java-2, similar
to “programming language”.

2. We then apply the same principle as the one discussed in the state of the art
on the user-resource-sense tripartite graph to cluster similar senses together
(see [GSCAGP10] for a review).

3. Once the tag senses have been clustered together, we identify new concepts
for each of the clusters. This process is equivalent to finding the relation (in
particular hypernym/hyponym relations) of the new concept (represented by
the cluster of tag senses) in the structured vocabulary. This can be achieved
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a)

DN−K ≤ DN−H
DN−K < 1

ρ ×DK−H

CK and CN are “syn-
onymous”

b)

DN−K ≤ DN−H
DN−K ≥ 1

ρ ×DK−H

CK is more general of
CN

c)

DN−K > DN−H

CN will be compared to
CH1,
recuresivelly applying steps
a), b) and c)

Figure 6.2: Decisions to Extend the Concept Taxonomy

by applying a hierarchical classification approach similar to the one pro-
posed in [AM02a]. In their approach to ontology building, they consider a
similarity measure between a known concept Ck in the vocabulary and a new
concept Cn.

• If the distance between these two concepts is smaller than the distance
between Cn and any of the hyponyms of Ck, then Cn is considered to
be the hyponym of Ck.

• Otherwise, they continue the search down the conceptual hierarchy.

We alter this approach by splitting it in three cases as we believe that there
can also be cases in which the new concepts Cn are actually synonyms of an
existing concept Ck. The updated solution, summarized in Figure 6.2, is as
follows:

• if the new concept Cn is closer to the existing concept Ck than to any
of the its hyponyms, but much more – this is defined by the parameter
ρ as defined in Figure 6.2a) – similar to Ck than any of its hyponyms,
then it is most likely that Cn is a synonym of Ck (Figure 6.2a)8);

• if the new concept Cn is closer to the existing concept Ck than to any
of the its hyponyms, but not much more similar to Ck than any of

8where Di−j is the distance between Ci and Cj .
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its hyponyms, then it is most likely that Cn is more specific than Ck
(Figure 6.2b));

• if the new concept Cn is closer to the a hyponyms of Ck than Ck, then
we recursively apply these three steps to this most similar hyponym
(Figure 6.2c));

We apply this search procedure on our in the conceptual part of the Back-
ground Knowledge (initially populated with WordNet), starting from the root
of its conceptual is-a hierarchy.

This approach is parametric as it depends on the value of ρ, which specifies
the threshold to decide if a new concept is more specific than an existing
concept or is just a synonymous. This parameter will be different depending
on the specific application domain and will decide how much specific the
structured vocabulary will get.

6.5 Distance measures

In the previous section, we have described an algorithm for sense induction, this
algorithm can be divided in three main steps that all require the computation of
distances to work. The two first steps are based on standard clustering techniques
that require to compute distances between the elements to be clustered (i.e. the
tags to find sense clusters or the sense clusters to find synonymous tags); the third
step uses the distance between concepts to place them in the conceptual part of the
Background Knowledge.

We have not discussed the particulars of the distances to use in the previous sec-
tion as many kind of distances can be used to perform the same task. In this section
we mention a set of intuitive collocation distances that we have found across the
state of the art of sense disambiguation and induction within folksonomy.

Note that there are interesting works in sense induction from free text, for ex-
ample [Jam09, AM02a] and in graph clustering [Sch07] that could be ported to
compute smarter distances. For instance, [WSVZ08] use an interesting probabilis-
tic framework to find tags that would help disambiguate an existing set of tags.
What [WSVZ08] are trying to do is, given two similar sets of tags, to find a pair
of new tags to add to each set to make them as different as possible. For example
the tag “Cambridge” could refer to different places in the world, but the sets of
tags “Cambridge, UK” and “Cambridge, Massachusetts”, while they share a tag,
are unambiguous. While the application is somehow different, a similar approach
could be used to build an annotation distance that would encode more information
about tags than pure collocation. However, this is not in the scope of this Chapter
and here we will limit ourselves to introducing the existing state of the art distances
and later in Chapter 11 evaluate their performances.

In the first step of the algorithm described in Section 6.4.2, we try to cluster
different annotations of resources with the same tag to find out different senses of
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this tag. To do this, we need to compute the distance between annotations (i.e. a
user-resource-tag triplet as defined in eq. 6.1). In the second step of the algorithm,
the clustering is applied on sets of annotations, representing tag-senses that we
try to cluster together to find synonyms (see Figure 6.1). To do this, we need to
compute the similarity between sets of annotations, which can be seen as a function
of the distances between the individual annotations in each set. In the final step, we
are not dealing with clustering, but are trying to find the distance between a new
concept (and the set of annotations where it is used) and an existing concept (and
the set of annotations where it is used). That is, we are again comparing sets of
annotations, thus trying to find the distance between two annotations.

While the best distance for each step might be different, we can see that the
principle is the same and that we need to find the best way to compare two anno-
tations. An annotation is a triplet representing a tag annotation on a resource by a
particular user. We can thus compare annotations on three main dimensions: the
tag used, the resource being annotated or the user doing the annotation. A distance
between annotations can thus be defined as:

• Tag Collocation: The number of collocated tags on the resources of two
annotations.

• User Collocation: The number of users that annotated the resources of two
annotations.

• Resource Collocation: The number of resources two users share.

• Tag-Tag Collocation: The number of resources that are annotated by two
tags.

We implement some of these collocation-based distance measures and report
the findings in Chapter 11. However, note that the sense induction algorithm pre-
sented in Section 6.4.2 is independent of the exact distance used, and further im-
provements can be done defining better performing distances in the future.

6.6 Summary

In this Chapter we propose a parametric algorithm for inducing new senses and
update the linguistic and conceptual part of the background knowledge to address
the dynamic nature of knowledge and to allow new concepts and terms to emerge in
a bottom-up fashion. The algorithm is based on the usage of terms in collaborative
annotation scenarios such as folksonomies. The advantage of this approach is the
distribution of the workload among all participants of the distributed system, and
the fact that users can reuse the annotations created by other users.

The novelty of the three-step sense induction algorithm resides in the new step
introduced at the beginning were we first cluster annotations (tags) that are used in
a similar manner to create tag senses. By doing so, we can capture the different
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senses of the words used in the tags (thus addressing polysemy) and later in the sec-
ond step we apply standard clustering techniques to group these tag senses together
to create sets of synonyms tag senses. Each tag sense synonym set is considered
to represent a concept, and thus, in the third and final step of the sense induction
algorithm we compute the relation of this new concept with respect to all the other
already existing concepts in the conceptual part of the Background knowledge.

The three steps of the sense induction algorithm rely on the computation of
distance measures between annotations for creating the clusters and compute the
position of the new concept in the conceptual part. We presented some basic dis-
tance measures based on collocation used in the state of the art, however, given
the fact that the algorithm does not depend on any specific type of distance mea-
sure, new distance measures can be tested and adopted from other state of the art
approaches with no change on the basic sense induction algorithm.

In Chapter 11 “Evaluation of Background Knowledge Evolution” we propose
an evaluation mechanism. In order to perform this evaluation, we first create a
manually validated gold standard dataset given the lack of agreed upon evaluation
mechanisms and publicly available evaluation datasets.
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Chapter 7

Knowledge propagation

7.1 Introduction

In a distributed system where users have their own knowledge, each user can define
new local knowledge (words, concepts, entity types, entities) and make it available
so that others can benefit from it. The issue arises when this “new” knowledge is
not understood by other users, therefore, a process of propagation of knowledge
need to be performed, and learning is needed for the users that acquire this “new”
knowledge.

Note that by user here we mean an agentive user, which can be a person, or
an organization (as defined in the Personal layer in Chapter 4). In the case of
organizations, given that it normally represents a group of people, we will normally
refer to them as communities (as defined in the Community Layer in Section 4.3).
In this case, a community will normally be centered around one (or some) areas
of interest or domains. There can be propagation of knowledge between users and
communities in both ways, and also among users and among communities. In the
rest of the document when describing the problem of knowledge propagation and
the possible approaches we will use the term “user” as both the user as person
and communities. This is because as we saw in Chapter 4, both layers have the
same knowledge structure based on what is defined in Chapter 3: “Knowledge
Components”, therefore the same process of propagation of knowledge applies
between them.

The process of propagation of the knowledge can normally be activated when:

1. initially bootstrapping the local knowledge of a user importing the relevant
part of the Universal Knowledge (UK),

2. importing knowledge locally when becoming part of a community,

3. copying knowledge from other users and/or communities.

As discussed in Chapter 4, we distinguish three layers of knowledge, Univer-
sal (or global), Community (or glocal), and Personal (local). Where the personal

71



layer represents the user’s local knowledge from his/her personal point of view,
the Community represents knowledge shared by several users (and there can be
several communities around diverse areas of interest), and the Universal represents
knowledge shared across communities, and therefore by many users. We define
the structure the knowledge base at all three layers to have the following three
components (for more details see Chapter 3 “Knowledge Components”):

Background knowledge: containing the conceptual and linguistic parts.

Schematic knowledge: containing the etypes and attribute definitions.

Concrete knowledge: containing entities.

The remainder of this chapter is organized as follows: in Section 7.2 we de-
fine the knowledge propagation problem; in Section 7.3 we will see a motivating
example of how this propagation of knowledge can happen, considering two dif-
ferent scenarios for the learning user; in Section 7.4 we will present the related
work. Given the three main components of the knowledge (background, schematic
and concrete) defined in Chapter 3, we dedicate one Section for each component
in this Chapter presenting a pragmatic approach to address the propagation of the
knowledge between the users. In Section 7.5 we first define how to propagate the
language and the concepts; in Section 7.6 we then define how to propagate attribute
definitions and entity types and in Section 7.7 we will see how to propagate entities.
Finally, Section 7.8 summarizes the Chapter.

7.2 Problem definition

In order to minimize the difference between the knowledge of different users, dur-
ing the initial process of bootstrapping of their knowledge bases, all users acquire
“basic” Universal Knowledge (UK) that will enable interoperability. The UK can
be seen as commonly shared and well understood knowledge curated by communi-
ties of experts (each of them on their own domain of expertise). By “basic” knowl-
edge we mean an initial language and the corresponding set of concepts with com-
mon sense entity types such as Person, Organization, Event and Location. Users
could also choose to bootstrap (or learn initially) only some parts of the UK in the
domain of their interest. For example, when bootstrapping knowledge from the do-
main of medicine, users get extra linguistic information containing technical terms,
for example, for “heart attack” they also get “myocardial infarction” and “cardiac
arrest”.

Given the common origin of the knowledge of the users (the UK), much of the
knowledge is already aligned and users can safely exchange knowledge which will
be understood. However, there are several cases when there can be a difference
in the knowledge between users, in any of its components, which would require
further actions in order to achieve interoperability. The problem can be defined as
follows:
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User A wants to import a new piece of knowledge (kn) from user B,
e.g., entity E1. E1 (the kn) is defined (even partially) in terms of a
delta knowledge (∆k) contained in user B with respect to user A (there
is a difference in the knowledge of the users). There are two cases for
∆k:

1. ∆k is defined in terms of the UK.

2. ∆k is defined in terms of new knowledge defined in user B.

It is clear that from the definition above, kn being new to user A, is also part
of the difference of knowledge between user A and B, i.e., kn ∈ ∆k. The notation
highlights only the fact that kn is something new being learned, and it can be
defined in terms of something that is not directly understood, that has to be learned
too.

7.3 Motivating Example

Alice (User A) is a new user of the system, and bootstraps her knowledge base
with some basic knowledge base from the UK. Bob (User B) is an experienced
user whose main interest is Computer Science (and who has in the past also boot-
strapped his knowledge from the UK). Figure 7.1 shows two fictitious background
knowledge examples for Alice and Bob, where each box represents a concept, the
label inside the box represents one of the words for the synset of the concept (in
English), and the links between the nodes represent relations between concepts
(part-of, is-a); the dotted (. . .) labels represent more nodes and more labels on
that branch of the knowledge. We can see from Figure 7.1 that the ∆k of Bob
with respect to Alice are the nodes “Object Oriented Programming Language” and
“Java”.

Now assume Bob meets Alice and start talking to her about this brand new
thing he invented called Java (Java being the kn), he goes on and tells Alice that
Java is a Programming Language, but not any kind of programming language, is
a “Object Oriented Programming Language”, which is something very new and
exiting in Computer Science.

At this point we draw two possible scenarios for Alice:

Scenario 1: Alice is a sociologist that has to help Bob in writing a part of a project
proposal. She listens carefully to Bob but since she is not much interested
in all the details, she just grasps a general understanding of what this Java
thing is, only to the extent of what is needed for helping Bob write the social
impact section of the project. After the exchange of information all what Al-
ice remembers is that Java is a Programming Language, which is something
related to Computer Science. The left side of Figure 7.2 show the final state
of the knowledge base of Alice.
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Figure 7.1: A simplified example of the knowledge of two users, A and B

Scenario 2: Alice is a first year Computer Science student, who is attending a
Programming Language introductory lesson given by Bob. In this case Alice
pays very close attention to all the details Bob gives about this exiting new
Java Programming Language, and given that she has to pass the final exam
for the course, she even learns that Java is an Object Oriented Programming
Language. The right side of Figure 7.2 show the final state of the knowledge
base of Alice.

From the scenarios above we can note that what Alice learns, depends on the
situation. Regardless of the situation, however, is the fact that whatever she learns,
has to be situated with respect to what she already knows.

In general terms there are 3 naı̈ve approaches to address the learning problem,
assuming there is a pre-shared knowledge (in our system design, the UK):

1. Drop all the ∆k knowledge used to define kn. In our example above this
would mean that Alice will remember there is something called Java that
Bob told her about, and no more than that (just a set of characters with no
formal meaning).

2. Copy all new ∆k knowledge used to define kn. This means that scenario 2
is supported by the system, but not scenario 1.

3. Try to keep the pre-shared knowledge as much as possible. (a trade-off be-
tween 1 and 2). In this case, according to how we define the learning func-
tion, we can simulate scenario 1 and 2, namely, in some situations we need
a way to propagate only some parts of the ∆k in order to understand kn.
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Figure 7.2: User A’s (Alice) knowledge after the interaction with User B (Bob) in
two different scenarios.

For pragmatic reasons we adopt the third approach. The basic idea is that, if
not explicitly asked by default we only copy the minimal possible knowledge. This
will prevent users from having extra knowledge that they did not explicitly asked
for, while still being able to capture the formal semantics of the new knowledge
being imported. In Sections 7.5, 7.6 and 7.7 we will see how this approach is
implemented in each of the three components of the knowledge.

7.4 Related Word

In the field of Artificial Intelligence and Agents, the work on Meaning Coordina-
tion [SK05] is related to the problem of knowledge propagation. The problem is
stated as follows:

Two Agents A1 and A2 want to interoperate. Each agent has its own
knowledge specified according to his own Ontology. The concepts
in the agent’s ontologies are considered semantically distinct a-priory
from the concepts of other agents’ ontologies, even if syntactically
equal. Agent’s ontologies are not open to other agents for inspection,
therefore agents can only learn concepts from other agents through
interaction [SK05].

The problem of meaning coordination is then addressed by exchanging instances
of those concepts between the agents and by being able to classify the concepts in
a similar manner by both agents.
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As we saw in the definition of our problem in Section 7.2, we defined our
knowledge propagation problem differently in the sense that there is a common
pre-shared knowledge, the UK, which we can be used to explain other agents the
meaning of unknown concepts. It is evident that any agent can define new concepts
without any relation to the UK, but in doing so, the reasoning capabilities of the
knowledge base will not be exploited, and thus, agents (in our case, human agents)
would be encouraged to create new knowledge in terms of pre-shared knowledge.
However, in case the agent still defines new knowledge in isolation, the state of the
art approaches to meaning coordination can be applied, but this is out of the scope
of the current thesis Chapter.

Finin et al., [FFMM94] present a Knowledge Query and Manipulation Lan-
guage (KQML) defining the syntax and semantics to exchange information be-
tween agents. The work recognizes three fundamental component for achieving
interoperability of agents: i) a common language; ii) a common understanding of
the knowledge exchanged; and iii) the ability to exchange whatever is included in
(i) and (ii). In the terms of our work the common language is defined in Chap-
ter 3, the common understanding of the knowledge is given by the UK, and the
ability to exchange knowledge is the purpose of this Chapter. We do not commit
to any explicit language to exchange information between agents, however, for any
such standard to be considered, it needs to comply with the characteristics of our
Knowledge, outlined in Chapter 3 (see Section3.5 for a discussion of some relevant
languages).

The authors in [BRIW06] analyze the economics of knowledge exchange, i.e.,
what is the process by which knowledge starts as a single person idea and spread to
become shared among individuals. They presents a proof that knowledge exchange
is most effective when agents are alike (i.e., they share some knowledge) and thus
interaction is made easier. However, it states that if knowledge between users is
too diverse, there is no room for understanding, but if knowledge is too similar,
now real new knowledge (or ideas) can be created.

Finally, we need to draw a difference in the literature of agents and the ex-
change of knowledge as defined in Section 7.2. Much work is devoted to learn
the best behaviour (the actions that need to be taken by an agent, see for exam-
ple [Bon01]). While normally referred to as agent learning, the object of what is
being learned in these works is different from the current Chapter, in most cases,
they refer to adaptation and not knowledge propagation as we defined earlier in
the Chapter. While the philosophy is the same, the need to achieve understanding
and coordination between agents (see for example [BRIW06]), the pragmatics are
different.

7.5 Background Knowledge

We take a pragmatic approach to the propagation of knowledge given our defini-
tion in Section 7.2. Considering the three components of the knowledge defined in
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Chapter 3, we can see that the most basic component is the Background Knowledge
(BK). The schematic knowledge is then defined in terms of the BK, and the con-
crete knowledge uses both the schematic and background knowledge. In this and
the following two sections, we define how to treat the propagation of knowledge
starting from the BK, then followed by the schematic and the concrete knowledge.

The Background Knowledge (BK) component consist of the conceptual and
linguistic parts. The conceptual part is composed by concepts and relation between
concepts, and the linguistic part is composed of several possible languages, each of
them composed by words grouped in synsets, which are related to concepts; where
a word can be part of several synsets (polisemy). See Chapter 3 Section 3.2 for
details.

Therefore, in the case of the background knowledge, the possible new knowl-
edge (kn) to be propagated are concepts (and its relations) and linguistic elements
(words and synsets), and the ∆k knowledge is also defined in terms of concepts
and linguistic elements (a new concept could have been defined in terms of an-
other new concept). For example, in the right side of Figure 7.1 we can see that
Bob define a new concept for “Java” (the kn) which is defined in terms of another
new concept, “Object Oriented Programming Language” (the ∆k, with respect to
Alice).

Given the one-to-one relation between concepts and synsets1, the basic ele-
ments we need to define how to propagate are new concepts (with its synset) and
new words. We first define a basic function that is used to “explain” new concepts
and then show how to use this function in order to learn concepts and words.

7.5.1 Explaining new concepts

When first instantiating his/her knowledge base, the user imports knowledge from
the UK. The user could also choose to import only relevant domains such as
Medicine, Music, Sports, etc. This means that in general, all users have (a por-
tion of) the same basic conceptual and linguistic parts.

When a new concept is not understood by a user, say user A, s/he can ask the
other user, say user B, to explain this new concept to him/her. The basic idea is
to enrich the user A’s knowledge with the minimal concepts and relations which
allows to give meaning to the new words and concepts during the exchange of
information with user B.

In order to implement this idea, we defined the following function:

Compute path of a given concept to a UK defined concept

compute path to uk(CN )→ path (7.1)

Computes the shortest path between:
1a new concept implies a new synset, otherwise people cannot talk about the concept, and a new

synset implies a new concept, otherwise if people just want to call an existing concept in another
way, they just need to add a new word to the existing synset, assuming the same language.
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• a new concept CN (the kn at BK level) defined by user B and unknown
by user A (the one that imports),

• and a concept defined in the UK that is already in user B’s conceptual
part, let us call it CUK .

The function returns a path (as compute by user B) where the nodes are
concepts and the links are the relations between the concepts. The starting
point of the path is CN and the end is CUK , and there can be zero or more
other new concepts {C ′N} in the path defined by user B in order to explain
CN to user A. For each unknown concept by user A (CN and {CN ′}), the
result also includes the synset and its corresponding words.

In the example of Figure 7.1, if Alice asks Bob to explain “Java” to her,
the result of this function would be the path composed by {Java→ Object
Oriented Programming Language→ Programming Language }.

If CN has not link to any concept defined in the UK, then the path contains
CN as result.

7.5.2 Basic learning operations

There are two basic cases for leaning BK’s components, these are: new concepts
and new words for existing synsets. Considering the words, we focus only on
semantic strings and word senses. Words that have no semantics attached are con-
sidered as any other basic datatypes (integers, dates . . .), in this case, a set of char-
acters.

7.5.2.1 New concept

Defined in terms of the UK In this case user A asks user B to explain the un-
known concept calling the compute path to uk function defined by equation 7.1.
Then the missing concepts, relations, synsets and words obtained from the method
are added to user A’s background knowledge.

It can be the case that the end concept CUK returned by the function is not
known by user A (because it is defined in a domain that was not imported by user
A). In this case user A calls again the compute path to uk with the previousCUK
as parameter until a known concept is returned.

Not related to existing concepts from the UK Since user A cannot know that
the new concept is not related at all to other existing concepts form the UK, user A
has to call the compute path to uk as in the previous cases. The result will only
contain the unknown concept and the corresponding synset and words, which can
be added to the local background knowledge.
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7.5.2.2 New word for synset

Extending existing synsets for existing concepts (from the UK) In this case
we add the new word to the local background knowledge.

For new concepts (implies Case 7.5.2.1) In this case we need to perform the
same operations as in the concept case, see Section 7.5.2.1

7.6 Schematic knowledge

The schematic knowledge is composed by the entity type and attribute definitions.
These components are in turn defined in terms of the background knowledge ele-
ments (concepts and words, see Chapter 3 Section 3.3 for more details). As we will
see in the following subsections, given that we know already how to propagate BK
elements, we can now define how to propagate new attribute definitions and entity
types definitions.

7.6.1 New attribute definitions

An attribute definition AD, defined in Model Object 9 in page 20 contains a con-
cept c, the domain D of the values and a definition of whether it allows one or
multiple values. Considering this definition, we need to recursively propagate also
the concept c, if missing. The following are the possible cases when propagating
an attribute definition:

Based on existing concepts In this case we can safely copy the new attribtue
definition given that we already know the concept.

Based on new concepts In this case we first apply the solution for copying the
new concept (Case 7.5.2.1) and then we apply the solution for copying new at-
tribute definitions for known concepts.

7.6.2 New entity types

An entity type ET = 〈c, {AD}〉 as defined in Model Object 8 in page 20 contains
a concept c and a set of attribute definitions {AD}. The following are the possible
cases when propagating an entity type definition.

Based on existing concepts Given that we know already the concept being used
to define the entity type, we can copy the new entity type definition without prob-
lems.
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Based on new concept We first copy the new concept as defined previously in
Section 7.5.2.1. Once we already learned the missing concept, we can apply the
same solution for copying new entity types based on existing concepts.

Based on existing attributes Similarly to the case of existing concept, we can
copy the entity type reusing the attribute definitions.

Based on new attributes In this case we first apply the solution for copying the
new attribute definition. Once we already have the attribute definitions, we can
copy the entity type as in the previous cases.

Note that more than one combination might be required when copying a new
entity type, for example, it might be defined based on a new concept and a new set
attribute definitions. The solutions presented are not exclusive among each other.

7.7 Concrete knowledge

The concrete knowledge is what users are most likely to define, given our vision of
a semantic system. Users would want to create entities for their contacts (people),
events, locations and businesses they like, and then share these entities with others.

An entity, is defined by Model Object 10 in page 26 as e = 〈ID, SURL,
etype, name,EM, [link], [copy]〉. The propagation of the elements related to the
identity of the entity 〈ID, SURL, name, [link], [copy]〉 is defined in Chapter 9
“Identity Management”. Also, the propagation of the entity itself, i.e., the act of
coying the entity, is defined in Section 9.3.2. Here we focus on the propagation of
the entity metadata EM element.

As defined by Model Object 11 in page 27, the entity metadata (EM =<
{Attr} >) is composed by a set of instantiated attributes. The instantiated attribute
is defined by Model Object 12 in page 27 as (attr = 〈AD,AV, T 〉), composed by
an attribute definition AD, an attribute value AV and a time dependency T .

The propagation of new attribute definitions was already discussed in Sec-
tion 7.6, here we will define the propagation of the missing part, the attribute
values. We distinguish between semantic, semantic-less, and relational attribute
values.

7.7.1 New Attribute values

Semantic-less attribute values A semantic-less attribute value is an attribute
value defined in the domain of a basic datatype such as String, Integer, Float, Date-
Time. Since these values are no related to the concepts in the conceptual part or any
other parts of the knowledge, we can copy the values with no further implications.

Semantic attribute values By semantic attribute value we mean a word with a
link to a concept in the conceptual part of the BK (a word sense as defined in Model
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Object 4 in page 17) or a semantic string (as defined in Model Object 5 in page 17).
If the value is a known concept and the word is already in the corresponding synset,
we copy the attribute value without further issues. If the value is an unknown
concept or the word is not in the corresponding synset, we apply first the solution
for Case 7.5.2.1 (New concept), and then we copy the attribute value.

Relational attribute value based on existing entities In this case the value is
a reference to an entity which is already known. This implies that the ID of the
referred entity is a SURI , for which we already have a local set of metadata de-
scribing it, identified by local SURL. In this case we copy the attribute value for
the entity being copied, but we change the local value in user A to point to the
SURL of the local existing entity.

Relational attribute value based on unknown entities In this case the value
is a reference to an entity which is unknown by user A, i.e., the ID of the entity
being referred is a SURI for which there is no local SURL with no local set of
metadata.

In order to keep in control the transitivity and the local knowledge of user A, we
do not copy this relational attribute value. This means that when copying entities,
we do not transitively copy the unknown entities.

7.8 Summary

In this Chapter we have proposed a methodology for propagating knowledge be-
tween users. We assume a scenario were all the interacting users have the same
knowledge structure, and this structure is given by the three components defined
earlier in Chapter 3 “Knowledge Components”. In this scenario, when users boot-
strap their knowledge, they can reuse the knowledge at the Universal layer (UK)
and from there start defining their own local knowledge to fit their application do-
main or needs.

With the above mentioned assumptions, the difference in the knowledge be-
tween users can be explained in terms of the knowledge from the UK. This is a key
feature of the architecture defined in this thesis, making the problem of knowledge
propagations to be grounded in the capability of users of explaining each other
concepts in terms they can understand.

We envision that most of the propagation will be activated when copying en-
tities between users (for example: contacts, events, locations). Assuming this as
an entry point, our pragmatic, automatic, approach is then based on the following
actions:

1. we copy the new entity,

2. we copy attributes values,
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3. for relational attribute values, we copy known entities,

4. we enrich the knowledge with the minimal information that allows to give
meaning to the terms used in the entity type, attribute definitions and the
semantic values.

Is it clear that what will be actually learn, once the explanations are given, is
dependent on the situation where the learning is taking place. But given the general
procedure for explaining defined in this Chapter, the learning user can adapt the
learning part to fit the situation and application domain.
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Part IV

Entity compatibility
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Chapter 8

Entity Compatibility

8.1 Introduction

In Chapter 3 Section 3.4.3 we have presented an approach of solving the issues
related to using names as references for real world entities in the mental and digital
entities, recognizing the need of local identifiers, that we call SURL, and global
identifiers for the real world entity, that we call SURI .

In this section we present our approach to solving the locality issue of the
definite descriptions in mental models (which leads to incomplete and inconsistent
knowledge about real world entities). We tackle this issue in order to be able to
check whether based on their metadata EM two entities refer to the same real world
entity or not, and assign or reuse a SURI correspondingly.

The main issue with definite descriptions in mental entities is that the unique-
ness is with respect to all the local entities of the bearer of the mental entities;
therefore, is the creator of the description which decides more or less arbitrar-
ily the criteria that identifies one entity from the others (which also applies to
names) [Sea58]. Thus, given two mental models about the same real world en-
tity1, if they differ significantly from one another, the interaction between people
holding these mental models will be difficult [Ful94]2. In order to avoid this we
propose a set of compatibility rules based on identifiers (SURL, SURI and natu-
ral languane name) and metadata, with 3 different possible outcomes:

1. Compatible: when we can be sure two entities refer to the same real world
entity.

2. Not compatible: when we can be sure two entities refer to different real
world entities.

3. Undefined: when we cannot be sure as to whether the two entities being
compared refer to the same real world entity.

1from different people
2They will not know they are referring to the same real world entity
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The aim of this Chapter is to define the conditions under which we can consider
that two digital entities refer to the same real world entity. We do this based on
the available references (names and identifiers) and the the description encoded
in the metadata EM. To achieve this, we require an algorithm with near perfect
precision, and where recall is not as important as precision. We need this high
precision because the algorithm is to be used to know when to assign a new globally
unique identifier that refers to a real world entity (the SURI), or to reuse one
already existing for the same real world entity, perhaps using a slightly different
description.

The novelties of our approach are i) the recognition of the importance of the
name as a reference and ii) the identification of a set of descriptive attributes that
can uniquely describe globally the real world entity being referred. By separating
the name from the other descriptive attributes we can apply advance name match-
ing techniques to compare them, and by identifying (sub)sets of available attributes
as globally identifying we can reduce the comparison time and test several com-
binations, as opposed to use all the available attribute values at the same time to
compare the digital entities.

The rest of the Chapter is structured as follows. In Section 8.2 we outline the
compatibility principle for identifiers and descriptions. In Section 8.3 we compare
our approach to the other related approaches. Finally, section 8.4 summarizes the
Chapter.

8.2 Principle of compatibility

In this Section we define the conditions under which two digital entities are con-
sidered to refer to the same real world entity. We first study the compatibility on
identifiers, i.e., references to the real world entity. In this category names are of
special interest as they are treated separately from descriptions. By doing so, we
can apply state-of-the-art name matching techniques to compare them. We later
study the compatibility on descriptions. We defined the notion of identifying set
that allows us to overcome the issue of local identification of definite descriptions.

8.2.1 Compatibility on identifiers

The compatibility on identifiers refers to the compatibility of elements of the dig-
ital entity that act as references to the real world entity, i.e, names, SURLs and
SURIs. Given that comparing digital identifiers (SURL and SURI) is a mater of
exact string (or numerical) match, we first spend some words about the issue of
comparing names, and later, we will use these notions to define the compatibility
principles on identifiers.
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8.2.1.1 Comparing names

As we have seen, the role of the name is to refer to a real world entity. People use
several types of names, the most common being proper names. When comparing
names there are several types of variations that need to be addressed [Chr06]:

1. Language variations: Proper names of entities (normally famous entities)
tent to be translated. For example: Napoleon vs. Napoleone, London vs.
Londra vs. Londres, Pope John Paul II vs. Papa Juan Pablo II vs. Papa
Giovanni Paolo II. As can be noted in the example, a basic exact or approxi-
mate string comparison technique will not suffice to detect that two versions
of proper names for the same real world entity in different languages are the
same.

2. Syntactic variations: There is a wide range of possible syntactic variations
that can occur when names are written. To cite a few we can find capitaliza-
tion (Ibm vs. IBM), punctuations (Mc’Donald vs. Mc Donald), abbreviations
(HP vs. Hewlett Packard) and misspellings.

3. Format Variations: This category is normally present in personal names
where we can find several formats such as:

• first name last name

• first name middle name last name

• first name abbreviation of(middle name) last name

• abbreviation of(first name) abbreviation of(middle name) last name

• last name, first name

• last name first name

The Wikipedia article for Personal Names3 contains a rather extensive list of
how personal names change according to cultures.

4. Phonetic variations: such as “Sinclair” vs. “St. Clair”.

5. Alternative names: such as “Alexander III of Macedon” vs “Alexander the
Great”, Pope John Paul II vs. Karol Jósef Wojtyła. Nicknames also fall
under this category, but we here consider only those that are widely used, as
the example shows.

From the list above, we can see that comparing proper names is not an easy
task. Several research initiatives report different techniques [Bra03, Chr06] and
book has been dedicated to the issue [HD04].

We adopt in initial pragmatic approach in which we deal with the transla-
tions and alternative names using a dictionary-like approach. Depending on the

3http://en.wikipedia.org/wiki/Personal_name
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entity type we can get the variations from sources like the Internet Movie Database
(IMDB)4 for movies, actors and directors, or from Geonames5 for locations.

The other variations are deal with using an approximate matcher. Given the
evaluation of possible name matchers in [Chr06], the best string comparator is
PermWink. The reader is referred to the paper to a complete account of the com-
parison algorithm.

Given the difficulty of the name matching task, we leave as future work a com-
plete account on the issue of how to best treat the name matching problem, also
considering performance issues, as the matching should normally be done on-line.
The name matching problem on its own represents a whole research area out of the
scope of the current thesis.

Having defined our initial approach for how to compare names, in the following
sections we define the states of the principle of compatibility applied to identifiers.

8.2.1.2 Compatible

There is compatibility on identifiers in the following cases (in the specified order):

1. the SURL is the same (no need for compatibility on metadata)

2. the SURL is different, but the IDs is the same (SURI or SURL), (no need
for compatibility on metadata).

3. the name is the same (or similar6), and there is compatibility on metadata.

8.2.1.3 Non-compatible

There is non-compatibility on identifiers in the following cases (in the specified
order):

1. the SURL is different, and

2. the IDs is different, and there is non-compatibility on metadata.

3. the name is significantly different, and there is non-compatibility on meta-
data.

8.2.1.4 Undefined

There is undefined compatibility on identifiers in the following cases (in the speci-
fied order):

1. the SURL is different, and

4http://www.imdb.com/
5http://www.geonames.org/
6Where the threshold has to be set experimentally and is left as future work.
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2. the IDs is different, and the ID is a SURL, and there is undefined compat-
ibility on metadata.

3. the name is significantly different, and there is undefined compatibility on
metadata.

8.2.2 Compatibility on descriptions

Definite descriptions (coming from mental entities) have a unique referent with
respect to all the other mental entities of the same person, i.e., their identifying
power is only local. However, in order to capture the uniques property of real world
entities, and translate this property into the uniques of our digital counterpart of
the real world entity identifier, the SURI , we need a way to globally distinguish
entities from one another. The compatibility criteria presented in the following
subsection deals with this issue.

8.2.2.1 Identity criteria

The digital counterpart of a definite description is what we call identifying sets
of attributes. An identifying set is a set of attribute definitions {AD} defined for
each entity type. When the identifying set is instantiated with the attribute values
of an entity, it allows us to globally distinguish entities (of the same type) from
one another. For example, for entities of type “Person” the values of the attributes
“passport number and the issuer” uniquely identify people from one another, and
therefore it can be thought as an identifying set for the “Person” entity type.

In what follows we give a more formal definition for the identifying set and
some simple algorithm to compute them, given the availability of an entity dataset.

Model Object 13 (Identifying Set (iSet)) An identifying set is a tuple
iSet = 〈id, etype, {AD}, conf〉 where id is the identifier of the identifying
set, etype is the entity type the identifying set applies to, {AD} is a list of
attribute definitions that are part of the set, which should be a subset of the
attribute definitions defined in the referenced etype, and conf is the degree
of confidence or certainty with which the set uniquely identifies an entity, as
opposed to any other possible combination of attributes.

The purpose of the identifying set is to group a minimal set of attributes
that uniquely and globally “identifies” an entity from all the other enti-
ties of the same type. There might be several iSets for each entity type,
and attributes can be shared among iSets. For example, a person might
have several iSets such as 〈1, P erson, {name, email address}, 100〉 or
〈2, P erson, {name,mobile phone number}, 100〉.
We say that an entity e is well identified (or that the entity is identifiable)
if there is at least one subset of instantiated attributes {Attr} in EM whose
attribute definitions are part of an identifying set for its particular etype.
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Conversely, an entity e is not well identified (or the entity is not identifi-
able) if there is no subset of instantiated attributes that can comply with an
identifying set for its etype.

The exact definition of the identifying set is normally domain dependent, as it
relies on the existing attribute definitions on the entity type (which is domain de-
pendent as we previously discussed in Section 3.4.3). One could normally define
manually several identifying sets of attributes based on experience and common
sense. However, setting the value for the confidence measure can be difficult if
done manually. A suggested method for defining the confidence for each iden-
tifying set in each entity type could be the one presented in Algorithm 1. The
algorithm assumes there existence of a large corpus of entities for the specified
etype (example of such corpus are YAGO7 or GeoNames).

Algorithm 1 Simple (greedy) algorithm to compute the confidence of an already
defined identifying set)
Require: e ∈ E {a corpus of entities E for a particular etype}
Require: iSet = {attr} {an identifying set which is composed as a set of attributes}
Require: get attr val(e, iSet) = {attr val} = identifying values {a function get attr val

that given an entity e and an identifying set iSet returns a set of attribute values {attr val} for
those attributes in iSet in e }

Require: count entities(identifying values, {e}) {a function count entities that given an a
set of attribute values identifying values counts how many entities in {e} contain the same
set of attribute values}

1: M = ∅ {A set for containing the counts of matching entities}
2: for all ej ∈ E do
3: identifying valuesj = get attr val(ej , iSet)
4: matchj = count entities(identifying valuesj , E − ej)
5: M = M ∪matchj

6: end for
7: avg = average(M)
8: confiSet = 1− avg/|E|

If there is no identifying set already defined for a specific etype, still assum-
ing there is a corpus of entities for the particular etype, one could create a simple
greedy algorithm that tests all the combinations (without repetition) of available at-
tributes (considering those attributes that have values in at least X% of the entities,
e.g., 50%), let us call a particular combination c. Algorithm 2 shows this method-
ology where the confidence of each combination of attributes is computed, and if
this confidence is greater than a given threshold (which can be considered the error
allowed in the application domain), then the combination is considered to be an
identifying set. Line 11 of the algorithm tries to optimize the procedure by break-
ing the computation of how many other similar entities there are with the same
values when there is enough evidence that the given combination is not identifying
enough.

7http://www.mpi-inf.mpg.de/yago-naga/yago/
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Algorithm 2 Simple (greedy) algorithm for computing the identifying sets for a
particular etype.
Require: e ∈ E {a corpus of entities E for a particular etype}
Require: atEt = {attr} {a set of attributes avalilable for a specific etype Et}
Require: get attr val(e, atEt) = {attr val} = identifying values {a function get attr val

that given an entity e and a set of attributes atEt returns a set of attribute values {attr val} for
those attributes in atEt in e }

Require: count entities(identifying values, {e}) {a function count entities that given a set
of attribute values identifying values counts how many entities in {e} contain the same set
of attribute values}

Require: combination(atEt) {a function combibation that returns all the combinations (without
repetition) from a set of attributes atE}

Require: thresholdw {a threshold for deciding when a set that contains a particular weight could
be considered as an identifying set, e.g., 0.8}

1: I = ∅ {the set to contain the identifying sets}
2: check = |E| ∗ 0.1 {this parameter serves for checking every 10 percent of the total number of

entities whether it is worth to continue checking the other entities for duplicates}
3: for all ck ∈ combination(atE) do
4: M = ∅ {A set for containing the count of matching entities}
5: for all ej ∈ E do
6: identifying valuesj = get attr val(ej , ck)
7: matchj = count entities(identifying valuesj , E − ej)
8: M = M ∪matchj

9: if |M |%check = 0 then
10: if average(M)/|E| > ((1− thresholdw) ∗ 2) then
11: break the for {if at a certain point the average of similar entities for the particular

combination or attribute is already twice the allowed error, then this combination is
considered not identifying enough}

12: end if
13: end if
14: end for
15: avg = average(M)
16: confidenceck = 1− avg/|E|
17: if weightck > thresholdw then
18: iSet = 〈k, etype, ck, weightck 〉
19: I = I ∪ iSet
20: end if
21: end for
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Given our notion of identifying sets, the Compatibility principle on descrip-
tions is defined in the following subsections using a recursive approach based on
the structure of entities.

8.2.2.2 Compatible

There is compatibility on descriptions (metadata) in the following cases (in the
specified order):

1. the etypes are compatible, and metadata EM are compatible;

2. two etypes are compatible if their concept match;

3. two EMs are compatible if there is at least one subset of {Attr} that forms
an identifying set iSet that is compatible, and there is not subset that forms
an identifying set that is non-compatible. The remaining attributes that are
not part of identifying sets do not affect the compatibility.;

4. two iSets are compatible if all of the contained instantiated attributes {Attr} ∈
iSet are compatible;

5. two instantiated attributes Attrs are compatible if their attribute definition
AD and the attribute value(s) AV are compatible;

6. two ADs are compatible if their concept C match, and the domain D are
comparable. E.g., integers are comparable with float, but not with “semantic
strings”.

7. two AV s are compatible if the values are compatible using the basic data
type comparator (dates, integers, concepts, coordinates, URLs) or the values
are within the margin of error allowed by the etype definition (e.g., for the
Person etype, birth dates are within the same day and the values of height
are the same up to centimeters, for Location the latitude and longitude are
the same up to the 4th decimal, etc.)8.

8.2.2.3 Non-Compatible

There is non-compatibility on metadata in the following cases (in the specified
order):

1. the etypes are non-compatible, or the metadata EM are non-compatible;

2. two etypes are non-compatible if their concept do not match;

3. two EMs are non-compatible if there is at least one subset of {Attr} that
forms an identifying set iSet that is non-compatible;

8The complete list of “fuzzy” comparators is to be defined by each etype developer as it is
normally domain dependent
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4. two iSets are non-compatible if at least one of the contained instantiated
attributes {Attr} ∈ iSet is non-compatible;

5. two instantiated attributes Attrs are non-compatible if their attribute defini-
tion AD are compatible and the attribute value(s) AV are non-compatible;

6. two AD are compatible if their concept C match, and the domain D are
comparable.

7. twoAV are non-compatible if iSet inAD is false and if the values are non-
compatible using the basic data type comparator (dates, integers, concepts,
coordinates, URLs) or the values are not within the margin of error allowed
by the etype definition.

8.2.2.4 Undefined

There are several cases that falls in the middle of the above compatibility and non-
compatibility definitions, for which we say that we don’t know whether the entities
are compatible or not. In these cases user intervention might be required.

There is undefined compatibility on metadata in the following cases (in the
specified order):

1. the etypes are compatible, and there is undefined compatibility on metadata
EM;

2. two etypes are compatible if their concept match;

3. two EMs have undefined compatibility if the set of attribute definitions {AD}
is disjoint, or there is no common subset of {Attr} ∈ EM to form a com-
patible iSet, or if the identifying sets iSet have undefined compatibility;

4. two iSets are have undefined compatibility if at least one of the contained
instantiated attributes {Attr} ∈ iSet has undefined compatibility;

5. two instantiated attributes Attrs have undefined compatibility if their at-
tribute definition AD have undefined compatibility, or AD is compatible
and the attribute value(s) AD have undefined compatibility;

6. two AD have undefined compatibility if their concept c match and the do-
mainsD are non-comparable (E.g., oneD is defined as a string and the other
as float).

7. twoAV have undefined compatibility if iSet inAD is true and if the values
are non-compatible using the basic data type comparator (dates, integers,
concepts, coordinates, URLs) or the values are not within the margin of error
allowed by the entity type definition9.

9In this case we are in the presence of partial information, as it could be compatible in other
values, e.g., phone numbers.
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8.3 Related Work

The issue of recognizing whether two different descriptions of entities refer to the
same real world entity is known with many names in different research areas. In
databases is referred to as record linkage, entity consolidation and duplicate de-
tection, to name a few [HZU+12]. Typically, these approaches focus on string
similarity and statistical analysis to detect duplicate references to the same real
world entity. Given its statistics roots, there is room for errors, while in our ap-
proach, we aim at maximizing precision first, i.e., we need to be certain that the
metadata of different entities refer to the same real world entity in order to reuse or
assign a new real world entity identifier (a SURI) to the given digital entity.

Much work has also been done in the Semantic Web Community commonly
referred to as entity matching [HZU+12] or instance matching [EFM+10]. A
widespread approach in this community is to rely on the owl:sameAs relation
[ABK+08, HZU+12], functional and/or inverse functional properties10 [HHD07,
HZU+12]. However, the semantics of owl:sameAs predicate defines that the URIs
linked with it have the same identity [DS04], i.e., must be exactly the same resource
with respect to all properties (the same perspective). The major drawback of this
approach is that the two URIs become indistinguishable even though they may re-
fer to different perspectives of the same entity according to the context in which
they are used [JGM08]. This also implies that there is no clear separation between
the identifier of a set of properties (or description) of an entity, and the URI of
the real world entity itself, as recommended in the W3C Note “Cool URIs for the
Semantic Web” [SC08].

Furthermore, usually the goal of semantic web tools working with Linked
Data11 are oriented towards query answering. In these cases precision is not at
the top of the requirement of the systems, relying on the end user the task of dis-
carding manually incorrect results (as we can see in Sindice12) or by blaming the
data for the incorrect results stating that “incorrect consolidation is due to errors in
the data, not an erroneous approach” [HZU+12]. While this might be acceptable
by their problem definition, given that we study entity compatibility for the assign-
ment and reuse of globally unique real world entity identifier, low precision is not
acceptable to our needs.

The Silk Link Discovery Framework [IJB10] relies on user-defined matching
heuristics to find synonymy in URIs from different data sources referring to the
same real world object. This is similar to defining manually the identifying sets
for entity types, but the lack of support from the other components of the system
(background, schematic and concrete knowledge) makes the implementation dif-

10For example, the foaf:mbox property representing the email address of a person in FOAF
(http://xmlns.com/foaf/spec/) is defined to be unique to a person, therefore, if two in-
stances share the same foaf:mbox property, then it could be inferred that both refer to the same real
world entity.

11http://linkeddata.org/
12As the example provided by [HZU+12] shows: http://sig.ma/search?q=paris
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ferent.
Stoermer et al., [SR09] define a feature based entity matching algorithm that

recognizes the fact that certain properties are more important than others when
used for identifying an entity. Although the framework claims to be entity type
dependent and does not enforce any fixed schema, in their evaluations in the OAEI
2009 campaign they only matched entities of the same type with each other, with
mixed performance. The work is in the line with our approach in the sense that we
also recognized that only a certain set of attributes are relevant when comparing
entities, the ones in the identifying set, but we use them in sets, as opposed to all
the relevant ones at the same time.

One of the shortcomings discussed in [SR09] is precisely the problem of match-
ing names. For example, they reported how normal string comparison methods
such as Levenstein distance is not suited to deal with the format variations of names
reported in section 8.2.1.1. As stated before, this is a proof that the name matching
problem is a difficult issue per-se, and as such should be dealt separately.

The name matching issue has been studied in [Bra03, Chr06] and a book has
been dedicated to the issue [HD04]. Several techniques are commonly used such
as those based on phonetic encoding (soundex, phonex, . . .), based on pattern
matching (Levenshtein distance, NGram, Longest Common sub-string, Jaro, Win-
kler, PermWink, . . . ) and their combinations. According to [Chr06] the Jaro and
PermWink techiniques are the best performing with an average f-measure of 0.601
and 0.883 respectively.

8.4 Summary

In this Chapter we presented our approach for addressing the issues with multiples
descriptions and names from mental entities to refer uniquely to real world entities.
We defined the conditions under which we say that two digital entities are compat-
ible (i.e., we are sure the both refer to the same real world entity), incompatible
(i.e., we are sure that they bot refer to different real world entities) or the compat-
ibility is undefined (i.e., we cannot be sure whether they both refer to the same or
different real world entities).

The novelties of our approach are i) the recognition of the importance of the
name as a reference, separating it from the descriptions allowing to apply tailored
name matching techniques, and ii) the identification of a subset of descriptive at-
tributes that can uniquely describe globally the real world entity being referred,
that we call an identifying set. By separating the name from the other descrip-
tive attributes we can apply advance name matching techniques that exploit the
characteristics of names to compare them, and by identifying (sub)sets of available
attributes as globally identifying we can reduce the comparison time and test sev-
eral combinations, as opposed to use all the available attribute values at the same
time to compare the digital entities.

The compatibility condition differs from other entity matching and record link-
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age techniques because the main purpose of the compatibility conditions is to be
used by the “Identity Management” algorithm to be presented in Chapter 9 to know
when to assign or reuse new globally unique identifiers for the real world entity be-
ing described by the digital entity. As such, the main requirement is precision,
while recall is not as important given that the comparison method should be de-
signed to minimize false negatives (say that the digital entity refers to different
real world entities, while they actually refer to the same real world entity), while
strictly avoiding false positives (say that the digital entity refers to the same real
world entity, while they actually refer to different real world entities).
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Chapter 9

Identity Management

9.1 Introduction

Large amounts of data about entities are generated and managed by several organi-
zations, institutions and users on the web, dealing with different but also overlap-
ping application domains. This information is currently publicly available thanks
to the widespread adoption of Internet and application developers could take great
advantage from reusing the already existing public information.

However, the diversity in knowledge, be it at the vocabulary, structure, content,
and even at the identifier level, makes interoperability between applications a diffi-
cult task. In Chapter 5 (Semantic Matching) and Chapter 8 (Entity Compatibility)
we have already focused on the issue of interoperability at vocabulary, structure
and content levels. In this Chapter, Identity Management, we propose a method-
ology for dealing with the identity of perceived entities based on the compatibility
criteria presented in Chapter 8: “8”. We define what are the conditions under which
we can generate identifiers for entities, and which kind of identifiers are needed in
order to properly capture the semantics of real world entities.

The purpose of this chapter is to define a model that captures the semantics of
the real world entities, but given that real world entities can only be captured and
modeled by people, each with his/her own local view or perspective, we also need
to model and understand the semantics of (local) mental entities. Digital entities
are the way we capture real semantics by allowing the computer to bridge between
the mental entities people provide about the real world entities1.

The novelty of our approach lies in the ability to capture the semantics of both
local perspectives and the uniqueness and globality of the real world entity into
a single digital entity. By doing so, we can properly distinguish both levels, and
assign proper identifiers accordingly. This allows us to overcome the problem of
identifying local perspectives without claiming globality on the identifier [JGM08],
while being able to maintain a unique global identifier from where we could obtain

1For a complete account on the difference between real world entities and mental entities please
refer to Section 3.4.
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all the possible local descriptions [SC08].
The remaining sections are organized as follows. Section 9.2 defines the iden-

tifiers at both local and global level, stating their requirements. In Section 9.3 we
describe how each operation of the lifecycle of the entity (create, update and delete)
affects the identity of the entity. Section 9.4 defines the procedure for merging iden-
tifiers in case we realize that two entities that were thought to refer to different real
world entities, actually refer to the same real world entity. Section 9.5 presents the
related work for managing identifiers on the Web. Finally, Section 9.6 summarizes
the chapter.

9.2 Digital identifiers

As defined in RFC 3986 [BLFM05], the comparison methods for assigning URIs
based on metadata should be designed to minimize false negatives while strictly
avoiding false positives (see Section 3.4.3), i.e., we should define that two (digital)
entities have the same URI if and only if we are sure they refer the same real wold
entity.

As we have seen in the previous section, names (coming from mental entities as
defined in equation 3.2) as identifiers present several issues. In the WWW however,
several standards for digital identifiers have been created such as URIs2, URNs3

and URLs4 (see Section 9.5). URIs and URNs are simple and extensible means for
identifying an abstract or physical resource [BLFM05], while the URL in addition
to this, provides a means of locating and dereferencing the resource. Important
properties of these WWW identifiers are:

1. Global uniqueness,

2. Persistence (even when the resource ceases to exist),

3. Uniformity.

As outlined before, the aim of the digital entity, and therefore its digital iden-
tifier, is to bridge between the real world entities and mental entities (between the
global and local models). This means that our framework needs to encode these
two digital identifiers in order to capture the characteristics of both mental and real
world entities.

9.2.1 Local and Global identifiers

While mental entities (see equation 3.2) and its name element as local identifier
have the problem of not being globally unique nor being persistent, WWW iden-

2(RFC 1630:Universal Resource Identifiers [BL94] and RFC 1738: Uniform Resource Identi-
fier [BLFM05])

3(RFC 2611: Uniform Resource Names [DvGIF99])
4(RFC 1738: Uniform Resource Locator [BLMM94]
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tifiers, as previously presented, also have some drawbacks that prevent them from
being used as global identifiers for real world entities, namely:

• URLs provide means to retrieve only local descriptions of real world entities,
but do not uniquely identify them universally [SC08].

• URIs and URNs provide universal identification of real world entities, but do
not provide a description of the entity, mental nor real world model (meta-
data) or name [SC08]5.

• The issue with URL as URI for identifying real world entities (such as the
approach followed by OKKAM) is that they merge the identification and
the description of the object (the real world entity), but one cannot force
its own description or mental model to other people or users. In order to
properly solve the duality between local models and global identifiers, i.e.,
the identification and dereferenceability issues, the framework should allow
a real world entity to be described by diverse view points, without enforcing
any of them.

9.2.1.1 SURL: Local URI for global dereferenceability

In the system we need a mental (local) identifier and a way to retrieve its defi-
nite description, avoiding the problem of homonymy of names. URLs provide the
needed local identification and dereferenceability. We create therefore a new local
identifier called SURL (for Semantified URL) with the following characteristics:

1. A SURL represents a local description, perspective or mental model a par-
ticular person has with respect to a real world entity.

2. Each person has its own SURL, which is unique, for each real world entity
known.

3. Given a SURL, we can retrieve a description (mental model) of an real
world entity.

4. One SURL, representing a local descriptor, might refer to only one real
world entity.

5. The SURL allows us to disambiguate homonymy in names used in the men-
tal entities.

We call this identifier SURL and not just URL, because of the above-mentioned
desired properties.

5which basically means that you have a referent, you just don’t know who/what it is
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9.2.1.2 SURI: Global URI for global identification

The properties of (global) uniqueness and persistence present in URIs makes them
a good candidate for identifying real world entities (see Section 3.4.1). Permanence
is another fundamental characteristic needed by a identifier for a real world entity,
this is, in order to withstand the changes real world entities undergo over time6.

A Semantified URI or SURI is a machine processable identifier for real world
entities (sort of the counterpart of names in mental entities) that allows us to uni-
formly, uniquely and universally identify real world entities while being perma-
nent, i.e., resistant to its evolution. Other important properties are:

1. SURIs are shared among different local perspectives (SURLs).

2. in order to ensure global uniqueness of the SURI as an identifier for the real
world entity, the entity to which the SURI is being assigned has to be also
globally identifiable via its metadata EM (i.e., it cannot globally identify an
entity that is not globally differentiable).

3. View Independence: a SURI does not commit to any particular description
of entity, i.e., given a SURI it should be possible to retrieve all the possible
diverse views.

4. Type Independence: a SURI aims at solving the real world entity identifier
problem without committing to any particular entity type.

5. Persistence: Once a SURI is created for a real world entity, it must always
exist to refer to that entity, i.e., it cannot cease to exit (only be merged and
split).

6. Any framework for maintaining SURIs should minimize false negatives
(FN) while strictly avoiding false positives (FP) [BLFM05]. False negatives
(FN) are cases in which different SURIs are given for the same real world
entity. False positives (FP) are cases in which the same SURI is given for
different real world entities.

9.2.2 Identifiers: definition

If we recall the entity definition presented in Model Object 10, an entity e is a tuple
e = 〈 ID, SURL, etype, name, EM, [link], [copy]〉. The ID and SURL are the
digital counterparts for the real world identifier and the mental identifiers. In what
follows we present the Model Objects for the identifiers.

Model Object 14 (Universally Unique Entity Identifier (ID)) ID is the
entity identifier at the “real world” layer. The pragmatics of the ID lies in the
identification process, i.e., if two entities refer to the same real world entity,

6Permanence is an important characteristics in Biometrics which measures how well a biometric
resists aging and other variance over time http://en.wikipedia.org/wiki/Biometrics

100

http://en.wikipedia.org/wiki/Biometrics


then they should have the same ID, and the system must support operations
(matching, alignment, propagation, merging, splitting) for achieving this.

There are two kinds of IDs depending on how well the metadata in EM
identifies globally the real world entity being referred. We say that an entity
is well identified if we can globally distinguish entities (of the same type)
from one another (i.e., uniquely identify a real world entity based on the
attributes in EM and the identifying sets, see Section 8.2.2). On the other
hand, an entity is not well identified, if based on EM and the identifying set
we cannot distinguish unequivocally to which real world entity it refers to.
We will use the SURI as ID for well identified entities, and the SURL as
ID for entities that are not well identified.

Model Object 15 (Semantified URI (SURI)) SURI is the logical universal
resource identifier (URI) of the entity which is used to identify uniquely
an entity at the “real world” layer. Different entities created from different
perspectives, even by different users, should have the same SURI if they all
refer to the same real world entity (see Section 9.2.1.2).

Model Object 16 (Semantified URL (SURL)) SURL is the logical URL
of the entity which is used to deference the metadata of a particular mental
entity, i.e., it uniquely identifies a mental entity (as opposed to the name)
and allows dereferencing the mental representation (the definite description).
Each entity e has a different SURL, therefore, multiple entities referencing
the same real world entity (identified by the same ID) will have different
SULRs.

Given that the SURL represents a particular description of an entity from a
particular perspective, this description (given by EM in e, see Model Ob-
ject 10) might not be sufficient to globally identify a particular real world
entity from other real world entities, we say in this case that EM does not
identify well enough e, and as such, we cannot use the SURI as ID. In
such cases we will use the SURL as ID of e.

We must highlight that the purpose of the SURL is dereferenceability, i.e.,
given a SURL, return the set of metadata that this particular mental model or per-
spective describes, about a real world entity. Whereas the purpose of the ID (or
SURI) is identification of entities to achieve interoperability, i.e., if two entities
have the same SURI , then they refer to the same real world entity, independently
of where they are located. Furthermore, the SURI encodes no particular mental
model or perspective, i.e., given a SURI , there is not only one EM describing the
real world entity attached to the SURI , but all the possible EMs (is up to the user
to select one of them, or create another that fits his/her needs).
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9.3 Dynamics in Entities

This section describes how we manage the life cycle of the identifiers of digital
entities, complying with the desired properties of entities presented in Section 3.4.3
and their identities presented in Section 9.2.

In the following subsection we will adopt a simplified version the Model Ob-
ject 10 to describe the entities assuming all entities being exemplified in the figures
belong to the same etype, therefore the entity model becomes, E = 〈SURL, ID,
link,EM〉.

Based on the entity definition, we recognize three kinds of digital entities: orig-
inal, copied and shared. Original entities are the entities created form scratch,
copied entities are entities that we copied from already existing entities, copying
(and possibly modifying) the metadata definition EM, and a shared entity is an
entity that adopts (and is always synchronized with) the metadata definition EM
from a source entity (which can be any of the three types) in different instance of
the system, i.e., another knowledge base using the same architecture presented in
Chapter 3. The following subsections will define how the basic operations (cre-
ate, update and delete) over the entities will affect the identity of entities, i.e., their
SURLs and SURIs, and how these identifiers are managed.

9.3.1 Original entity

We say that an entity is an original entity if it is created manually by a user, or by a
batch process when bootstrapping the entities into the system, importing them from
other sources (not based on our framework defined in Chapter 3) such as Yago7 or
Geonames8.

9.3.1.1 Create entity

When an entity is created from manual user input, a new entity E is created locally
in the concrete knowledge component of the knowledge base (see Section 3.4). Let
us assume that a peer (p1) creates an entity, in this case it creates a new SURL for
the entity, the ID can take two possible values according to how well specified the
entity is by the metadata given in EM (see Model Object 14 in page 100 in Sec-
tion 3.4.3) and the identifying sets for its etype (see Model Object 13 in page 89).
The process of assigning the ID to the entity is triggered once the entity is fully
created and all the attribute values that one is interested in have been defined, call-
ing Entity ID creation method defined as follows:

Entity ID creation In order to assign the ID to an entity, we have to consider the
following two cases, according to how well specified the entity is by the metadata
given in EM and the identifying set:

7http://www.mpi-inf.mpg.de/yago-naga/yago/
8http://www.geonames.org/
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1. SURI as ID: if EM provides enough information to make the entity identifi-
able, i.e., there are attribute values for at least one identifying set for its etype
and provided that a global search (in all the instances of the framework) did
not find another matching entity that already contains a SURI , then a new
SURI can “safely” be create for the new original entity. Figure 9.1 a) shows
E1 as an example new original entity with a SURI as ID.

2. SURL as ID: if EM does not provide enough information to make the entity
identifiable, i.e., no identifying set is filled in, then we use the entity’s SURL
as ID. This is due to the fact that global search and entity matching will
not be able to find other entities referring to the same real world entity that
already contain a SURI (or even SURL), given that entity matching relies
on identifying sets9. Figure 9.1 b) shows E2 as an example new original
entity with a SURL as ID.

Figure 9.1: Entity creation: a) Entity with enough identifying attributes has a
SURI as ID; b) Entity with not enough identifying attributes has a SURL as
ID.

The ID can be set at any point in time after the entity is created and all the
attribute values are assigned. As long as the entity remains for local use only,
the ID is not essentially needed, given that the entity is locally identifiable and
dereferenceable also by its SURL. The ID of an entity has to be set (in either of
the above cases) before a peer is capable of making its entity public and therefore
findable by other peers.

9.3.1.2 Update entity

Once the entity is created, we can update it by performing CUD (create, update,
delete) operations on the metadata EM. The following subsections specify how
each of these operations affects the identity ID of the entity.

Create attribute The following cases are considered:

9If the user is in the loop, we can search and suggest similar entities that are well identified (have
a SURI) so that we promote the reuse of entities.
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Entity ID is a SURI In the case the new attribute value does not fill in any new
identifying set, the ID is not affected. If the new attribute creates a new
identifying set a compatibility check (see Section 8.2) with other entities
with the same SURI is needed (as the entity might have been copied and
updated somewhere else). If it is still compatible, the ID is not affected, if
it is non-compatible, a new SURI as to be created (see Section 9.3.1.1).

Entity ID is a SURL If the first identifying set is filled in by the creation of the
new attribute value, then the Entity ID creation (see Section 9.3.1.1) method
should be called to assign a new SURI as ID. Figure 9.2 shows an exam-
ple where the new attribute creates the first identifying set for E2 therefore
assigning a SURI to the updated E2′.

Figure 9.2: Updating an entity with SURL as ID when creating the first identify-
ing set gives a SURI to the entity.

Update attribute The following cases are considered:

Entity ID is a SURI Given the principle of compatibility (see Section 8.2), if the
updated version of the entity is not compatible with the original version, a
new SURI has to be assigned to the entity (see Section 9.3.1.1). If we are in
the presence of the undefined compatibility, the user has to be notified and
asked. Figure 9.3 shows an example where updating the identifying set of
entity E1 triggers the creation of a new SURI .

Figure 9.3: Updating an existing identifying set of an entity with SURI .

Entity ID is a SURL The ID does not change, as an identifying set cannot be
created by changing the values of attributes.

Delete attribute The following cases are considered:
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Entity ID is a SURI In the case of deleting an attribute value that is part of the
last remaining identifying set, the SURI has to be replaced by the SURL.

Entity ID is a SURL The ID does not change, as an identifying set cannot be
created by deleting the values of attributes.

9.3.1.3 Delete entity

The entity is deleted locally, which means that the SURL ceases to exist. If the
SURL is not used as value of a relational attribute locally, deleting an entity has no
further local effect. If the SURL is used as value of a relational attribute, then the
reference to the SURL is deleted when the systems tries to dereference it (read),
i.e., it acts as a lazy delete cascade in a foreign key.

9.3.2 Copied entity

Let us assume a peer 2 (p2) finds in p1 an original entity s/he is interested in and
decides to copy the entity locally in order to have information about this entity,
e.g., the phone number or email address of a person or an organization, or to use it
as value of relational attributes.

9.3.2.1 Create entity

Peer 2 (p2) creates a local copy of the found original entity assigning a new lo-
cal SURL, copying (the desired subset of) the metadata10 with the condition that
at least one identifying set is copied whenever available, and assigning the ID
according to the following cases:

1. if the original entity begin copied has a SURI as ID, then the ID of the
new entity is the same as the one in the original entity. Figure 9.4 shows a
copy example of E1 from p1 to p2, creating a new local entity E3 with its
own SURL but with the same SURI as E1.

Note that the SURI gets also propagated in any subsequent copy, as can be
seen in Figure 9.4 when E3 gets copied to E5.

2. if the original entity being copied has a SURL as ID, then the ID of the
new entity is its own new local SURL. In the example of Figure 9.5 when
p2 copies E2 from p1, it creates a local entity as defined by E4. The same
applies when p3 copies E4 locally, creating E6.

10There is also an issue to be considered when the language and concepts used to described EM1

are local to p1, but this is out of the scope of this chapter, for new we assume all the linguistic
and conceptual part of the knowledge base is shared among p1 and p2. In Chapter 7 (Knowledge
propagation) we deal with the case when there is a difference in the knowledge of different interacting
peers.
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Figure 9.4: Copying an entity that has a SURI from p1 to p2, and from p2 to p3

Figure 9.5: Copying an entity that has as ID a SURL from p1 to p2, and from p2
to p3

Note that in this case there is no relation between entities E2, E4, and E6,
other than some common metadata in EM, as their IDs are all different.
Furthermore, from the point of view of p3, it is as if E4 was an original
entity created by p2, as opposed to the case with a SURI as ID in Figure 9.4
where p3 knows that p2 is not the generator of the SURI of E3.

9.3.2.2 Update entity

In this section we will define the effects of updating the copied entities.

Create attribute The following cases are considered:

Entity ID is a SURI (E3 from Figure 9.4) In the case the new attribute value does
not fill in any new identifying set, the ID is not affected. If the new attribute
creates a new identifying set, a compatibility check (see Section 8.2) with
other entities with the same SURI is needed (at least the original entity if
still exists). If it is still compatible, the ID is not affected, if it is non-
compatible, a new SURI as to be created (see Section 9.3.1.1).

Entity ID is a SURL if the first identifying set is filled in by the creation of the
new attribute value, then the Entity ID creation (see Section 9.3.1.1) method
should be called to assign a new SURI as ID.
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Update attribute The following cases are considered:

Entity ID is a SURI (E3 from Figure 9.4) Given the principle of compatibility
(see Section 8.2), if the updated version of the entity is not compatible with
the original version, a new SURI has to be assigned to the entity (see Sec-
tion 9.3.1.1). If we are in the presence of the undefined compatibility, the
user has to be notified and asked.

Entity ID is a SURL (E4 from Figure 9.5) nothing happens, as an identifying set
cannot be created by changing the values of attributes.

Delete attribute The following cases are considered:

Entity ID is a SURI In the case of deleting an attribute value that is part of the
last remaining identifying set, the SURI has to be replaced by the SURL.

Entity ID is a SURL nothing happens, as an identifying set cannot be created by
deleting the values of attributes.

9.3.2.3 Delete entity

The entity is deleted locally, which means that the SURL ceases to exist. If the
SURL is not used as value of a relational attribute locally, deleting an entity has no
further local effect. If the SURL is used as value of a relational attribute, then the
reference to the SURL is deleted when the systems tries to dereference it (read),
i.e., it acts as a lazy delete cascade in a foreign key.

9.3.3 Shared entity

A peer might also want to share the definition of a found entity, fully relying on the
metadata of the source entity. This means that any update on the original entity will
be seen (propagated) to the shared entity, i.e., both entities will be synchronized.
These updates include not only the metadata definition, but also the updates in the
ID. The source entity can be any of the three types, and original entity, a copied
entity, or even another shared entity.

If the original entity ceases to exits, then a copy-like procedure (following the
rules of copy in Section 9.3.2.1) is performed, where the metadata EM is taken
from a local cache (see Section 9.3.3.1) of the metadata of the original entity.

9.3.3.1 Create entity

Given that the source entity can be any of the three types, and original entity, a
copied entity, or even another shared entity, here we will exemplify three possible
cases:
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1. Original entity→ Share entity. In this case we will see what happens when
the source entity is an original entity. Note however that when the source en-
tity is a copied entity, the procedure is the same as if it was an original entity,
given that the metadata EM is contained in the copied entity. Therefore the
“Copied entity→ Share entity” case is the same as this case.

2. Original entity→ Share entity→ Share entity. In this case we will see how
the re-sharing of an entity, i.e, the source entity is a shared entity, affects the
ID.

3. Original entity→ Share entity→ Copy entity. In this case we will explore
what happens when a shared entity is later copied.

Original entity→ Share entity When sharing an entity, a new entity is created
locally with a new SURL, no metadata is stored in the local entity (but is cached
in the peer), the ID is the same as the original entity being shared, and the link
attribute takes the SURL of the original entity (in order to know where to retrieve
the metadata from). Figure 9.6 shows the sharing process ofE1 (the original entity)
from p1 from p2, creating E7.

Figure 9.6: Sharing an entity that has a SURI from p1 to p2

Figure 9.7: Sharing an entity that has as ID a SURL from p1 to p2

Figure 9.7 shows the same sharing process for an original entity that has a
SURL as ID. In this case the SURL as ID gets propagated (as opposed to the
copy case in Section 9.3.2).

Original entity → Share entity → Share entity Figure 9.8 shows the sharing
process of E1 (the original entity) from p1 to p2, and from p2 to p3. The new local
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shared entity in p3 has the same ID as the previous two, but the link attribute does
not point to E7’s SURL, but to E1’s SURL, given that the metadata p3 decides
to trust is actually E1’s, which is the original entity (the one with the metadata).

Figure 9.8: Sharing an entity that has a SURI from p1 to p2, and from p2 to p3

Figure 9.9 shows the transitive sharing process of E2 (the original entity that
has a SURL as ID) from p1 to p2, and from p2 to p3. In this case the SURL as
ID gets propagated from E2 to E8 (as opposed to the copy case in Section 9.3.2).
Note also that the link attribute in E10 also points to E2 (and not to E8) as E2 is
the original entity that contains the metadata.

Figure 9.9: Sharing an entity that has a SURL as ID from p1 to p2, and from p2
to p3

Original entity→ Share entity→ Copy entity Copying a shared entity is as if
the original entity was being copied.

Figure 9.10 shows the sharing process ofE1 (the original entity) from p1 to p2,
and later copying the shared entity E7 from p2 to p3 to create E13. The creation
of E7 is the same as described in Section 9.3.3.1. When copying a shared entity
the new local copied entity in p3 has the same ID as the previous two, but the link
attribute is empty (as it should by the copy rule specified in Section 9.3.2.1). The
final outcome of copying a shared entity is as if E13 was copying the original en-
tity, as the shared entityE7 is just a cached version of the original entity containing
no metadata EM on its own (besides what is cached).

Figure 9.11 shows the sharing process of E2 (the original entity that has a
SURL as ID) from p1 to p2, and later copying the shared entity E8 from p2 to p3
to create E14. The creation of E8 is the same as described in Section 9.3.3.1. The
ID of E14 is its own SURL, as the entity being copied does not have a SURL,
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Figure 9.10: Sharing an entity that has a SURI from p1 to p2, and later copying
the shared entity from p2 to p3.

and the metadata EM is taken from the original entity (or the cached version of the
metadata EM in E8).

Figure 9.11: Sharing an entity that has as ID a SURL from p1 to p2, and later
copying the shared entity from p2 to p3

Caching metadata In order to avoid dereferencing the entity being shared by
the SURL value in the link attribute to retrieve its metadata each time the system
needs to shows it to the user or perform an operation with it, the system creates a
cache version of the metadata of the original entity. This caching needs to consider
that the original entity can be updated, and therefore the system needs to check
whether the metadata in the cache is up to date. This can be achieved by creating a
hash signature (e.g. MD5) over the cached metadata, and request the hash signature
of the metadata of the original entity; if these two hashes match, then the cache is
up to date, if not, it needs to be updated. Another option is to encode versioning
information in the entity definition.

Also, an RSS like mechanism can be implemented, where the peer with the
original entity makes public the data, and the ones linking to it subscribe to this
feed.

9.3.3.2 Update entity

When updating the metadata of a shared entity, i.e, creating, updating and delet-
ing attributes and attribute values, the metadata EM of the original entity gets
copied locally applying the rules for copying entities as described in Section 9.3.2.1,
followed by the rules of updating copied entities described in Section 9.3.2.2.
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Figure 9.12: Updating a shared entity for which the original entity has a SURI .
The update operation in the example did not change the ID, for example, more
non-identifying attributes were added.

Figure 9.12 shows an example where p2 updates E7 which was previously
shared from E1. The updated E7’ preserves the same ID (since by the copy rule
as E1 has a SURI as ID, the copied entity contains the same ID), the metadata
EM is copied to E7’ and p2 updates it as needed. After this copy-like procedure,
the rules for updating entities presented in Section 9.3.2.2 are applied. The up-
date operation in the example of Figure 9.12 did not change the ID, for example,
because more non-identifying attributes were added to the updated E7’.

Figure 9.13: Updating a shared entity for which the original entity as a SURL as
ID. The update operation in the example did not change the ID, for example, a
value was changed.

Figure 9.13 shows an example where p2 updates E8 which was previously
shared from E2. The updated E8’ assigns as ID its own SURL (since by the
copy rule as E2 has a SURL as ID, the copied entity uses as ID its own SURL),
the metadata EM is copied to E8’ and p2 updates it as needed. After this copy-like
procedure, the rules for updating entities presented in Section 9.3.2.2 are applied.
The update operation in the example of Figure 9.13 did not change the ID, for
example, because a value was changed.

9.3.3.3 Delete entity

Similarly to the deletion of an original entity, when a shared entity is deleted lo-
cally, which means that the SURL ceases to exist. If the SURL is not used as
value of a relational attribute locally, deleting an entity has no further local effect.
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If the SURL is used as value of a relational attribute, then the reference to the
SURL is deleted when the systems tries to dereference it (read), i.e., it acts as a
lazy delete cascade in a foreign key.

9.4 Entity alignment

When we detect that two entities have different IDs but refer to the same real
world entity (via entity matching outlined in Chapter 8 or by manual user input)
we need to align the entity metadata and unify the two different IDs into one.
This difference in ID can be due to the partiality of knowledge or the dynamic
nature of entities that evolve (change attributes and values) over time. This service
is required to comply with the SURI property 6 “minimize False Negatives” of
Section 9.2.1.2.

9.4.1 Aligning metadata

Merging the metadata definition EM of two different entities should take into ac-
count the following cases:

1. New attribute and value: in this case we can automatically add the missing
attribute, provided that when adding the attribute, the resulting EM is com-
patible with both source entities. If this process of alignment is triggered
after the entity matching is successful, there should be no issue of compat-
ibility. The compatibility issue could be triggered when the process was
initiated due to a manual entity alignment request by a user, in which case
the user should also be requested to solve the possible compatibility issue.

2. Existing attribute definition, with different attribute value: we can have two
cases:

2.1. if the attribute definition is a set, then we can add the value with no
problem, e.g., a phone number.

2.2. if the attribute definition is not a set, then we need to resolve the dif-
ference. This case normally requires the intervention of the user. How-
ever, in the case the domain D of the attribute definition AD (see
Model Object 9) is a concept or an entity, we can use semantic match-
ing (see Chapter 5) or compatibility on metadata (see Chapter 8) re-
spectively to compare the values and try to resolve the inconsistency
automatically.

When comparing concepts, we need to study the compatibility of attribute val-
ues, for example: more general vs. less general values. Also, values in a close
range for integers, reals, dates and coordinates could also be compared and re-
solved semi-automatically (asking for the confirmation of the user). Resolving
automatically these ranges, however, is highly application domain and entity type
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dependent. For example, is not the same having a difference of 20 centimeters in
the definition of the height of a mountain, which can be considered as a precision
difference and therefore ignored, to having the same 20 centimeters difference in
the height of a person, which cannot normally be ignored.

9.4.2 Unifying identifiers

As a rule of thumb, we define that the ID of the more specified entity (i.e., the
one that has the most identifying attributes defined) will be preferred, and if there
are differences in the attributes, the system should suggest to merge them. The
following sections will analyze the different combinations according to the kind of
ID of the entities being merged.

9.4.2.1 SURL to SURL

In order to unify two entities that have SURLs as IDs one entity has to share
(link) to the other, as the only way the ID of an entity can have a SURL as value
is by sharing (see Section 9.3.3.1). The user that decides to take the SURL of the
other user loses the metadata of the entity which will be shared.

Figure 9.14 shows an example of two entities (E14 and E2) from two different
peers (p4 and p1) that are found to refer to the same real world entity, which are
later unified. E2 shares with E14, therefore the link and ID attributes in E2 take
E14’s SURL as value, and the metadata is now taken from E14.

Figure 9.14: Unifying two entities that have SURLs as IDs. In this example E14
becomes the original entity and E2 shares from E14.

Assuming E2 was shared with other peers as in the case of Figure 9.9, there
will be a set of entities {E2, E8, E10} where E2 is the original entity whose
SURL is used as ID; we will call this a SURL family. If we unify E2 and
E14, as in Figure 9.14, we need to propagate the change in the ID and link at-
tributes from E2 to E8 and E10 setting the ID and LINK attributes to point to
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E14 (similarly to E2). Figure 9.15 shows the entities before the update and after
the update, showing how the whole SURL family is updated and unified.

Figure 9.15: Unifying entities with 2 SURLs, one of which as been shared. Be-
fore: the entities with different SURLs; After: all the entities with the same
SURLs as ID

9.4.2.2 SURI to SURL

In order to unify two entities, one of which having a SURI and the other a SURL
as ID, the entity that has the SURL has to import at least one identifying set from
the entity that has the SURI (i.e., an entity cannot have a SURI as ID without
an identifying set). In this case, the SURI will replace the SURL as ID.

Figure 9.16 shows the case when we unify an entity that has a SURI (E15) with
an entity that has a SURL (E2), which is being linked (shared) by other entities (as
shown in the before part of the image {E2, E8, E10} corresponding to Figure 9.9).
After the unification E2′′ takes the SURI from E15, and later the change in ID
is propagated from E2′′ to E8′′ and E10′′. The figure shows how the process of
changing the ID in an original entity that has a SURL as ID gets propagated from
peer to peer.

9.4.2.3 SURI to SURI

The fact that two entities have different SURIs, but refer to the same real world
entity might be due to two reasons:

1. A previous mistake, where a new SURI was assigned even though another
SURI existed for the real world entity being referred. Maybe because the
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Figure 9.16: Unifying an entity with a SURI with another with SURL as ID that
is shared.

global search in all the instances of the framework failed to retrieve the ex-
isting SURI due to a variation in the name of the entity (e.g., Napoleon vs.
Napoleone. Trento vs. Trient).

2. Different (disjoint) identifying attribute sets in both entities, which meant
that entity matching failed.

In order to unify two entities with different SURIs, both entities have to share
at least one identifying set, and one of the peers have to give up the SURI of its
entity. This means that the entity in the peer that gives up the SURI , the one that
is modifying its entity has to import the minimal set of metadata from the other
entity from where the new SURI is being taken, in order to allow subsequent
entity matching (that rely on identifying sets) to succeed (see Chapter 8).

Figure 9.17 shows an example of two entities with different SURIs, E1 and
E15 that are found to refer to the same real world entity and therefore will be
unified. In the example figure, the SURI of E1 is already propagated to other
peers via share to the entities E7 and E9 (as in Figure 9.8). If p1 decides to unify
E1 withE15, thenE1’s SURI is updated to that ofE15, and later this ID change
propagated to E7 and E9.

If E1 was also copied to other entities, as in the case of Figure 9.4, then given
that each copy contains its own metadata, they would need to start the unification
process independently to try to merge the needed identifying sets, and acquire the
new SURI . Note that a change in the SURI of E1 does not affect the SURI of
E3 or E5 in Figure 9.4. Both E3 and E5 continue to refer to the same (originally
referred) real world entity.

115



Figure 9.17: Merging an entity with a SURI with another with SURL as ID that
is shared.

9.5 Related work

The Internet Engineering Task Force (IETF), together with the World Wide Web
Consortium (W3C) are the main driving forces toward the standardization of iden-
tifiers of WWW resources. The IETF has released several standards that specify
the format of digital identifiers such as URIs [BL94, BLFM05], URNs [DvGIF99],
URLs [BLMM94] and IRIs [DS05]. URIs and URNs are simple and extensible
means for identifying an abstract or physical resource [BLFM05], while the URL
in addition to this, provides a means of locating and dereferencing the resource.
IRIs are URIs with possible international characters (accents, ...). These standards,
however, do not specify the conditions under which a new identifier should be cre-
ated, and confusion is usually present on whether a particular identifier can also be
created for non-www resources, or a www resource talking about it.

The W3C has also published several formats and best practices related to iden-
tifiers such as CURIE or compactURI11 that defines a generic, abbreviated syntax
for expressing URIs and Cool URIs for the Semantic Web12.

Cool URIs for the Semantic Web [SC08] introduces a useful guidance on how
to use URIs for things that are not Web documents using the HTTP protocol (non-
HTTP URIs are not covered). The basic idea is to avoid confusion between an
identifier for a real world object and the identifier of a web document describ-
ing the real world object, i.e, one URI cannot represent both. The solution is to
use a special HTTP status code, “303 See Other”, to give an indication that the
requested resource is not a regular Web document, with a list of the location of

11http://www.w3.org/TR/2010/NOTE-curie-20101216/
12http://www.w3.org/TR/2008/NOTE-cooluris-20080331/
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documents containing a description of the referred real world object. By doing
so, it avoids ambiguity between the original real world object and resources rep-
resenting it. This redirection can be technically implemented by using a Persistent
Uniform Resource Locator (PURL)13 that provides a level of indirection which,
when retrieved, results in a redirection (e.g., via 301, 302, 303 HTTP status
codes) to other locations for the final resource.

Given the proliferation of domain dependent applications, together with a lack
of understanding on the difference between the URI of the real world object and
the identifiers of the documents describing it, there has been a widespread cre-
ation of independent URIs for identifying the same real world objects. Several ap-
proaches [HHD07, JGM08, BSG07] try to overcome this issue. Initially the prob-
lem were heterogeneous descriptions of the real world objects, which is an intrinsic
property of our world and as such cannot be avoided, see Section 3.4.2 (Mental en-
tities), and for which much research is devoted. However, now we are faced with
heterogeneous identifiers, which is not an intrinsic property of the world, but one
introduced by a lack of proper understanding of the difference between real world
and mental models, and the plethora of existing identification schemes (URNs,
OkkamIDs [BSG07], DOI14, ORCID [FGT11], ResearcherID15, Open ID16, We-
dID17, DUNS system18, Organization ID19, to name a few).

Hogan et al. [HHD07] propose the creation of a canonical URI for entities by
fusing identifiers based on “inverse functional properties” specified in Web Ontol-
ogy Language (OWL) descriptions [MvH04]. For example, foaf:mbox20 is defined
to be unique to a person, therefore, if two instances share the same foaf:mbox
property, then it could be inferred that both refer to the same real world entity.
However, one needs to be careful when selecting the canonical URI, and whether
this URI actually refers to the real world object being identified, or it is yet another
representation of the object at hand.

A widespread approach used by the Semantic Web community relies on the
owl:sameAs relation between entities that are considered to be the same; this is the
approach adopted by DBpedia [ABK+08]. However, the semantics of owl:sameAs
predicate defines that the URIs linked with it have the same identity [DS04], i.e.,
must be exactly the same resource with respect to all properties (the same perspec-
tive). The major drawback of this approach is that the two URIs become indistin-
guishable even though they may refer to different perspectives of the same entity
according to the context in which they are used [JGM08]. This implies that there is
no clear separation between the identifier of a set of properties (or description) of

13http://purl.oclc.org/docs/index.html
14http://www.doi.org/
15http://www.researcherid.com/
16http://openid.net/
17http://www.w3.org/2005/Incubator/webid/spec/
18http://en.wikipedia.org/wiki/Data_Universal_Numbering_System
19https://www.arin.net/resources/request/org.html
20The email address property defined in FOAFhttp://xmlns.com/foaf/spec/.
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an entity, and the URI of the entity itself, as recommended in the W3C Note “Cool
URIs for the Semantic Web” [SC08].

Jaffri et al. [JGM08] describe an architecture for managing URI synonymity
by using Consistent Reference Services (CRS). The CRS is an independent knowl-
edge base that contains the knowledge about URI synonyms. Equivalent URIs are
grouped into “bundles” which are themselves given their another URI. A service
in the CRS can be queried for finding equivalent URIs and for retrieving the corre-
sponding bundle. The approach does not include entity deduplication algorithms,
but relies on already existing links between entities on the web (e.g., owl:sameAs
predicates); however, as stated before, the semantics of this predicate is not always
well understood and therefore often misused. Another consideration with this ap-
proach is that while trying to solve the multiplicity of URIs already created to refer
to entities, they do introduce yet another URI for the bundles.

The Linked Data Integration Framework (LDIF) [ASIBB11] is designed to
translated different data sources from the Web of Lined Data into a single clean
local target representation while keeping provenance information. The Identity
resolution module relies on user-defined matching heuristics in the Silk Link Dis-
covery Framework [IJB10] to find synonymy in URIs from different data sources
referring to the same real world object. Once the duplicates are identified, all URIs
are replaced by a single URI and an owl:sameAs statement is added between the
selected URI and the original one. The main drawback of the approach is that
whenever new sources of information are available, or he information is updated,
the whole importing process has to be performed in order to import the new data,
including new possible heuristics to compare entities. While the approach is valid,
there are cases when a centralized approach is not possible, and reasoning has to
be performed using dynamic data in open environments.

The Okkam framework [BSG07, BSB08] aims at providing entity identifiers
for the Web following a proprietary URI scheme. Okkam identifiers guarantee
uniqueness across space and time, which prevents generation of duplicates. En-
tities are untyped, i.e., they are not described with a fix schema. This makes the
management of the entity identifier application independent and allows for the cre-
ation of Okkam IDs for any kind of entities, a process called okkamization. The
framework provides services for adding new entities and creating their identifiers,
adding/modifying/removing descriptions to existing entities and searching for en-
tities already existing in their knowledge base.

While the Okkam definition for entity is close to our understanding of entities;
and the aim of providing a global, unique and persistent identification of real world
entities is much similar to our definition and aim, there are several key points that
differentiate our approaches. First, there is no mention in the architecture on how
to manage the multiple and diverse local views each application domain has about
the same real world entity, i.e., there is no support for the differentiating between
the global identifier and the mental models (which is a desired property as stated
in [SC08]), there is only one central repository with all the information and the de-
scriptions are all stored inside one entity. Creating a new URI for an entity normally
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implies that the issuer has knowledge about the entity that wishes to make public.
It is not clear how it can be accurately determined that the Okkam URI commits to
the same entity to which a knowledge provider wishes to refer [JGM08]. Second,
we argue that the entity type can provide much information on how to effectively
compare descriptions about particular entities, e.g., it is not the same having a dif-
ference of 20 centimeters in the height of a mountain and that of a person, one can
normally be neglected, the other cannot. Third, the possibility of accommodating
to several (future) application domains is solved by having untyped entities. On the
contrary, we provide a framework for any application domain to develop their own
entity types, and therefore exploit their domain expertise. However, if the domain
experts do not want to create their entity types, we provide a basic (root) entity
type, which by default is assigned to an entity, called Entity, similar to the Thing
root schema in schema.org.

There are several approaches for identifying entities that are domain dependent.
For example, the Open Researcher & Contributor ID (ORCID) [FGT11] initiative
aims at solving the author name ambiguity problem in scholarly communication
by establishing a global, open registry of unique identifiers for researchers. Re-
searcherID also assigns unique identifiers to authors in the research community.
The WedID and Open ID frameworks allow the identification of people as users
on the Web. Both protocols enable secure authentication on the Web. An Orga-
nization ID (Org ID) represents a business, nonprofit corporation, or government
entity in the American Registry for Internet (ARIN) database. The DUNS system
identifies organizations, specially banks, or any other form of business that has a
distinct legal identity.

The digital Object identifier (DOI) is a system for identifying objects, normally
intellectual content, in the digital environment. DOI names are not enforced to be
URIs nor it is registered as a URN, despite complying with all the requirements for
being a URN. According to the DOI definition, the system differs from other stan-
dard registries such as the International Standard Book Number (ISBN) and the In-
ternational Standard Recording Code (ISRC) in that DOI names can be associated
with services, such as obtaining well-structured metadata by using the identifier,
as opposed to just being a format or numbering scheme for creating identifiers.
While there is a widespread use of DOI identifiers in the scientific community, our
main concern is its applicability to only a particular domain, and the fact of being
a centralized system committing to a single set of metadata, a single point of view.

9.6 Summary

In this chapter we presented an Identity management framework that captures the
semantics of real world entities and mental entities (local perspectives or views
about the real world entities). The main novelty is precisely in being able to dis-
tinguish between the identifiers of these two kinds of entities. We have seen in the
related work that managing the identity of entities is a much needed capability in
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the current open web of data. We have listed some approaches that try to solve the
issues, and in fact, to some extent go in the right direction. For example, the work
in CRS [JGM08] highlights the need of maintaining different identifiers for each
local views or descriptions, and OKKAM [BSB08] aims at providing a unique type
and domain independent global identifier referencing the real world entities.

In our model, we have recognized the importance of both kinds of identifiers,
as the only way for a digital system to interact with real world entities, identified by
what we define as SURI , is by means of local (possibly diverse) views provided
by people, identified by what we define as SURL. We have defined how the main-
tenance of the entities (create, update and delete operations) affect the both local
and global identifiers. We also define mechanisms to merge identifiers, whenever
it is recognized that different identifiers actually refer to the same real world entity.

The importance of this chapter does not lie in the format of the identifiers them-
selves, but in the definition of how the lifecycle of digital entities (representing
real world entities) affect the digital identifiers, SURI and SURL, in a distributed
and heterogeneous environment, preserving the globality, uniqueness, permanence,
type and view independence of the global digital identifier of the real world entity.

We have not committed to any particular format or numbering scheme for the
SURI . Any format that complies with the basic URI properties and that also
conforms to the SURI properties presented in Section 9.2.1.2 can be adopted. For
example, while complying with several URI properties, the Italian Fiscal Code21,
an Italian wide personal and legal identifiers, is not resistant to changes in the
name of a person as it includes the first letters of all the names and last names of
the person, i.e., if a person changes name, then the Fiscal Code also changes. To
the best of our knowledge, the Okkam identifiers are the most similar identifiers,
despite the outlined issues (see Section 9.5), that could be used as SURI; namely
because its domain independence.

21http://it.wikipedia.org/wiki/Codice_fiscale
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Evaluation
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Chapter 10

Evaluation of Structure
Preserving Semantic Matching

10.1 Introduction

In Chapter 5 we presented a semantic matching variation called Structure Preserv-
ing Semantic Matching (SPSM). SPSM takes as input two tree-like structures and
produces a set of correspondences between the nodes and a numerical similarity
score between [0..1] while preserving certain structural properties. SPSM is based
on the theory of abstraction and the tree edit distance algorithm.

The algorithm aims at automatically solving the semantic heterogeneity prob-
lem and is applicable to the web service integration problem, schema matching
problem, and can also be used to compare etype definition in the Schematic Knowl-
edge presented in Chapter 3, Section 3.3.

In this Chapter we present an synthetic evaluation methodology for SPSM in-
spired in the Ontology Alignment Evaluation Initiative (OAEI) [EIM+07] that con-
sist in generating alterations of the trees given a set of original trees. We apply
syntactic and semantic alterations to the original tress in order to test how well
SPSM performs in the presence of these types of alterations. We then compare
SPSM to state-of-the-art syntactic matching a semantic matcher based on Word-
net. Our results show that SPSM always performs better than any of the individual
matchers, and that it is robust to the syntactic and semantic variations when applied
separately and also in combination.

The rest of the Chapter is structure as follows: Section 10.2 presents the syn-
thetic methodology for the evaluation of SPSM and in Section 10.3 we present
the results when applying syntactic, semantic and combined alterations to original
trees. Finally, Section 10.4 summarizes the Chapter.

Acknowledgment: The work presented in this chapter has been carried out
with Paolo Besana, Lorenzo Vaccari and Pavel Shvaiko. Parts of this Chapter have
been published in [GMY+08] and [VSP+12].
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10.2 Methodology

We adopt a synthetic approach for evaluating SPSM which consist in deriving a
tree-like structure from another original one using different kinds of operations in
order to the change the syntax and the semantics of the original tree1. This is a
common practice in Ontology and Web Service evaluation schemes such as the
Ontology Alignment Evaluation Initiative (OAEI) and others [EIM+07, LSDR07,
CEH+08, EFH+09, EFM+10]. Differently from the OAEI campaign, we gener-
ated the original trees automatically and then apply syntactic and semantic alter-
ations to the original tree to create an altered tree. While altering the original tree,
we compute the expected similarity score based on the types of alterations the orig-
inal tree undergoes.

10.2.1 Tree creation

We have generated automatically 100 trees of depth 1 (i.e., a root and all child
nodes being leaves). The rationale for selecting this depth was that given that
SPSM is tailored for matching schemas, entity types definitions or web services,
all of these normally consist on one parent node, and several immediate children.
In the Web Service case the parent node is the function name and the parameters
of the service are the children; in the schema case, normally the table name is the
root node and the columns are the child nodes. The average number of nodes per
tree was 8.

The labels of the nodes are composed of a random number of words selected
from 9000 words extracted from the Brown Corpus2. We chose this corpus in order
to avoid the bias towards Wordnet, from where our Background Knowledge was
initially populated. The average number of words per node label was 4. This num-
ber was decided based on our experience with the analysis of labels in Directories
such as Dmoz, Google and Yahoo in the Taxme2 dataset [GYAS09].

10.2.2 Tree alteration

In order to produce the altered trees that were to be matched against the original
ones, we devised two types of alterations: i) syntactic alterations aimed at chang-
ing the content of the labels and the structure of the tree, without committing to
maintaining the meaning (semantics) of the original tree; ii) semantics alterations
aimed altering the original tree preserving, to some extent, the original meaning of
the tree.

Both alterations aim at testing different part of SPSM. Semantic alterations
tries to asses how much change in meaning can SPSM deal with, and syntactic
alterations aim at testing if the matcher is resistant to misspellings or other changes

1We use trees as the input of the SPSM algorithm are always automatically converted into
lightweight ontologies which have a tree-like structure.

2http://icame.uib.no/brown/bcm.html
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in the labels. Each alteration can be controlled parametrically, i.e., the probability
of effectively applying the alteration is a parameter in the system.

10.2.2.1 Syntactic Alterations

We define three levels of syntactic changes to the tree; i) introduce syntactic changes
in the word (i.e., reproduce misspellings); ii) completely alter a word, by replacing
it or dropping it; and iii) completely alter a node, by replacing the whole label with
an unrelated one, or deleting the node.

Alter a word syntactically This alterations introduces misspellings to a word in
the label. The words inside a label are tokenized using the space as separator. We
know this is the correct separator given that we have created all the trees by the
process described in Section 10.2.1.

First, given the configured probability, we decide whether to apply the alter-
ation or not. Then, we select a set of words that will be altered, which preserves the
given probability, and finally we select how to modify the words using three types
of alterations: drop, add, change or swap a character in the word. The maximum
number of alterations in a word is never greater that the total number of characters
in the word and depends on a configuration parameter which indicates how much
to change a word. For example, 100 would mean change the word completely, and
20, would change 1 letter in a five character word.

Alter a label syntactically This alteration adds or removes a word in the label
of a node. We drop the word only if the label contains more than one word. The
word added is randomly selected from the Brown Corpus, i.e., the same set used to
create the original trees.

Alter a node syntactically There are three possibilities for this alteration:

1. replace a label in the node with an unrelated label. The unrelated words
were taken from the Moby Thesaurus3 to avoid bias towards Wordnet. The
purpose of this alteration is to check whether the matcher can detect such
drastic change, which would mean a lower similarity.

2. completely remove the node from the tree, which should decrease the simi-
larity score between the trees.

3. change the order of the node between the siblings, which should not alter the
similarity score between the trees.

3http://icon.shef.ac.uk/Moby/
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10.2.2.2 Semantic Alteration

The goal of this alteration is to test the robustness of the matcher in presence of se-
mantic alterations. We defined the semantic alteration as the replacement of a word
in the label of a node by another word related to it, which can be more-general,
less-general or equivalent (a synonym). The related words were extracted from
the Moby Thesaurus and Wordnet using the synonym, hyponyms and hypernyms
relations. Only one word in a node label is replaced.

10.2.3 Expected Similarity

When altering the trees we can compute the expected similarity given the known
alterations. This allows us to compute the ground truth in order to asses the match-
ing quality using standard measures such as precision, recall and f-measure [ES07].
The expected similarity score was computed using equation 10.1.

ExpSim(oTi, aT
j
i ) =

∑
k∈N scorek

N
(10.1)

Where i is the ith original tree oT , j is the jth altered tree aT of the ith original
tree, k is the node number in both oTi and aT ji . The expected score is normalized
by the number of nodes of the original tree (N).

Initially, before applying any alteration, each scorek is set to one since all the
nodes of oTi and aT ji are the same. Note that in this case, the ExpSim is 1.0, and
we expect that any matching system that is given two trees that are the same return
the maximum similarity score. For SPSM this maximum value is 1.0.

After each alteration operation is applied on the node k, the value of scorek is
changed depending on the kind of alteration operation as follows:

Alter word syntactically : for each change in a letter of the word the score is
decreased by (0.5/|word|), where |word| is the count of characters of the
word. The number of syntactic changes on a word is never higher that
|word|.

Alter label syntactically : when adding or dropping a word in the node label
scorek = 0.5

Alter node syntactically : when replacing the label of the node with an unrelated
one, or removing the node the scorek = 0. Then altering the order of the
nodes between the siblings, the scorek remains unchanged.

Semantic alteration : when a word is replaced by a synonym the scorek value
remains unchanged; when a word is replaced by an hypernym or hypomyn,
the scorek = 0.5.

The scorek values were set empirically by trial and error one by one. The
rationale behind these particular values is that the similarity should decrease in a
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way that reflected the alterations in the trees. The change in similarity also reflects
how much a human would say that the original and altered trees were different if
the person did not know that one tree was derived from another.

Note that since the probabilities of applying one alteration or another, one node
can be affected by more than one alteration. Depending on the combination, the
expected score could fall bellow 0, therefore, when this happen, we set the expected
score to 0 (zero).

10.3 Results

For each of the 100 original trees, we generated 30 altered trees using the pa-
rameters reported in Table 10.1. In order evaluate Structure Preserving Semantic
Matching presented in Section 5.3 we have compare it with a set of basic match-
ers as presented in Section 5.2.2, namely: edit distance, N-gram, prefix, suffix
and wordnet relations. We performed three separated tests in order to check how
the different alterations affect the matchers: i) only syntactic alterations, ii) only
semantic alterations and iii) both alterations combined.

The evaluation consists in matching pairs of original trees oTi and its altered
trees aT ji where i = [1..100] and j = [1..30]. The experiment was carried out five
times in order remove noise in the results. We report here the average results.

Table 10.1: Parameters used for generating and modifying the trees

Parameter Syntactic Semantic Combined
Number of trees 100 100 100
Number of modifications per tree 30 30 30
Average number of nodes per tree 8 8 8
Probability of replace a word of a node for a related

one (semantic change)
0.0 0.8 0.8

Probability of making a syntactic change in a word
of a node

0.3 0.0 0.3

Probability of changing the order of the words in a
node

0.4 0.4 0.4

Probability of deleting or adding a word in a node 0.2 0.2 0.2

Since the tree alterations and the expected similarity scores were known, these
provided the ground truth, and hence, the results are available by construction [EIM+07,
LSDR07]. This allows for the computation of the matching quality measures such
as Precision, Recall and F-measure.

The average efficiency of SPSM in all the test cases is 93ms in a standar laptop
with Core Duo CPU-2Ghz and 2GB of ram, running Java 1.4 in Windows Vista,
with no other applications running but the matching experiment.

10.3.1 Syntactic Alterations

Figure 10.1 is composed by three plots: a) recall vs various cut-off threshold val-
ues in [0 1], b) precision vs various cut-off threshold values in [0 1], and c) F-
measure vs various cut-off threshold values in [0 1]. The Figure shows that for the
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syntactic alterations, as expected, string-based matchers (edit distance, N-gram,
prefix, suffix) outperform the WordNet matcher. Also, edit distance performs as
well as SPSM, this is the expected behaviour since, as we presented in Section 5.3,
SPSM is based on S-Match, and this particular matcher contains all the string-based
matchers mentioned above.

The results from Figure 10.1 show that in absence of semantic variation, and
when there are misspellings and other syntactic variations, SPSM can perform as
well as the best string-based matcher. However, as we will see in the following
subsections, when more semantic information can be derived, SPSM outperforms
the string-based matchers. The best performance in terms of F-Measure (which is
0.52) is reached at the threshold of 0.8 by both SPSM and edit distance.

10.3.2 Semantic Alterations

Figure 10.2 is also composed by three plots: a) recall vs various cut-off threshold
values in [0 1], b) precision vs various cut-off threshold values in [0 1], and c)
F-measure vs various cut-off threshold values in [0 1]. The Figure shows that for
the semantic alterations, as expected, the Wordnet-based matcher outperforms the
string-based matchers. SPSM outperforms the Wordnet-base matcher, reaching the
highest F-measure of 0.73.

In Figure 10.2 c), we can see how Wordnet and SPSM have similar F-measure
up to the cut-off threshold of 0.6, then Wordnet’s F-measure start to decrease, while
SPSM’s F-measure continues to increase. If we consider Figure 10.1 c) (for syn-
tactic variations), we see that SPSM also increases its F-measure until the cut-off
threshold of 0.8 with a value of 0.73. If we bear in mind that SPSM uses both syn-
tactic and semantic matchers, we can understand how SPSM outperforms Wordnet,
since it also uses syntactic information.

10.3.3 Combined Alteration

Figure 10.3 is also composed by three plots: a) recall vs various cut-off threshold
values in [0 1], b) precision vs various cut-off threshold values in [0 1], and c) F-
measure vs various cut-off threshold values in [0 1]. The Figure shows that when
combining syntactic and semantic alterations, as expected, SPSM outperforms all
the single matchers.

We can see in Figure 10.1 a) that increasing the threshold reduces the corre-
spondences considered to be correct, decreasing recall, the drop starts at 0.6 and
becomes more significant between 0.8 and 1. This mean that the highest the cut-
off threshold, the least the number of correspondences that are considered to be
correct. If we consider Figure 10.1 b), we can see the opposite happening for pre-
cision in the same cut-off threshold mentioned before. The more strict we are in
considering the correspondences correct, the higher the precision when choosing
the correct results.
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a)

b)

c)

Figure 10.1: Evaluation results for syntactic changes.
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a)

b)

c)

Figure 10.2: Evaluation results for semantic changes.
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Figures 10.1 a) and b) show the usual trade-off between precision and recall
(the same trade-off can be observed in Figure 10.1 and 10.2). The choice between
one and the other normally depends on the application domain. For example, in
highly critical scenarios such as health related applications, one would want to
be very accurate in the decisions (high precision), without considering how many
other possibilities are being missed (low recall), as long as there is at least one
match that is near perfect and that can be used.

We can see in Figure 10.3 c), that the best F-measure of 0.47 belongs to SPSM.
When faced with syntactic and semantic changes, the second best matcher is edit
distance. Up to the 0.6 cut-off threshold, Wordnet is the third best performing
matcher, but after that threshold, we see that Wordnet performance decrease and
N-gram outperforms Wordnet.

10.4 Summary

In this Chapter we presented an synthetic evaluation of the Structure Preserving
Semantic Matching algorithm (SPSM) outlined in Chapter 5. We can see that
SPSM is robust to syntactic, semantic and combined alterations with an maximun
f-measure of 0.52, 0.73 and 0.47 respectively. We saw that in all the cases SPSM
performs at least as well as the individual matchers, but when combining the al-
terations, which is what will be expected in a real scenario, we see the SPSM
outperforms the other single matchers.

Given the dependency of SPSM on the knowledge available in the background
knowledge (the relation between the concepts), the performance is highly depen-
dent on this knowledge. If the knowledge is too general, for example in the case of
a knowledge base bootstrapped with Wordnet, SPSM can miss several alignments
that a domain expert would find manually. This shows the importance of encoding
domain knowledge and shows why the community layer presented in Chapter 4
“The semantic layers” is important.

In order to tackle the issue of the coverage of knowledge we present in Chap-
ter 6 “Background Knowledge Evolution” an algorithm that based on the usesage
of terms can update automatically the background knowledge with new terms and
concepts to keep up with the dynamic nature of knowledge. In the following Chap-
ter “Evaluation of Background Knowledge Evolution” we show the evaluation of
this algorithm.
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Figure 10.3: Evaluation results for combined changes.
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Chapter 11

Evaluation of Background
Knowledge Evolution

11.1 Introduction

In Chapter 5 we presented the Semantic Matching algorithm that aims at auto-
matically tackling the semantic heterogeneity problem relying on the Background
Knowledge for converting ambiguous labels into formal semantic strings. In Chap-
ter 10 we evaluated Structure Preserving Semantic Matching (SPSM) that, al-
though showing good results, has no perfect recall. This lack of perfect recall
is also present in all the state-of-the-art matchers that participated in the Ontology
Alignment Evaluation Initiative (OAEI) campaigns.

One of the reasons for the lack of perfect recall is that some matchers rely on
background knowledge to derive information. However, if the background knowl-
edge is static, the lack of new terms and concepts of the application domain can
become a problem. In order to tackle this issue we proposed in Chapter 6 a sense
induction algorithm that, given the usage of words in folksonomies, can infer the
senses in which they are being used, recognizing homonyms and synonyms, and
add them to the Background Knowledge when missing. To the best of our knowl-
edge, there is no standard mechanism to evaluate such sense induction algorithms.
Furthermore, there are no available gold standard datasets that can be used to com-
pare the performance of different approaches.

In order to help address the above mentioned problems we developed Tags2Con
(an abbreviation for “from tags to concepts”), a tool for creating manually validated
gold standards datasets for evaluating semantic annotation systems including folk-
sonomies. The tool includes state-of-the-art algorithms from Natural Language
Processing (NLP) and Word Sense Disambiguation (WSD) that automatically sug-
gest senses for the annotations (tags in the folksonomies, see eq. 6.1 on page 57)
and provides a manual validation user interface for quickly validating large sam-
ples of folksonomies. We also present an evaluation methodology that, together
with the developed gold standard dataset, is used to analyze the performance of the
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sense induction algorithm.
To the best of our knowledge, the manually validated gold standard dataset is

the first openly available dataset that is used for assessing the quality of semantic
annotation systems. The dataset can also be used in the fields of NLP and WSD
to evaluate tokenization, lemmatization and disambiguation algorithms. Further-
more, while developing the dataset we studied the issue with the coverage of the
vocabularies and found that even though the state-of-the-art WSD algorithms re-
port an average performance of 60%, this only applies to the recognized words and
concepts. The reality is that, by relying on static linguistic datasets such as Word-
net, the coverage of the words and concepts is only between ∼49% and ∼71%
depending on the application domain. This means that from the end user point of
view, in only between ∼29% to ∼42% of the cases there will be a correct sense
suggested by any WSD algorithm relying on these types of linguistic datasets.

The structure of the Chapter is as follows: in Section 11.2 we present the
Tags2Con tool and a manually validated dataset containing 7 882 links to sense
in Wordnet. The dataset is published and available in the Linked Data cloud; In
Section 11.3 we define the methodology for evaluating our sense induction algo-
rithm and present preliminary results using state-of-the-art measures; finally, Sec-
tion 11.4 summarizes the findings of the Chapter.

Acknowledgment: The work presented in this chapter has been carried out
with Pierre Andrews and Ilya Zaihrayeu. Parts of this Chapter have been initially
reported in [AZP+10] and later published in [APZ11a] and [APZ11b].

11.2 A semantic annotation dataset

Since the work on the extraction of formal semantics from folksonomies became
an active topic of research in Semantic Web and related communities, the re-
search community realised that the lack of golden standards and benchmarks sig-
nificantly hinders the progress in this area: “The current lack of transparency
about available social tagging datasets holds back research progress and leads
to a number of problems including issues of efficiency, reproducibility, compara-
bility and ultimately validity of research” [KS10]; and in particular about find-
ing semantics in folksonomies we have noticed the lack of testbeds and stan-
dard evaluation metrics that allow proper comparisons of the different research
works [GSSAC09, KS10, GSCAGP10].

As reported in [KS10], some datasets are available for different folksonomies,
however, none of them is yet annotated with links to an ontology disambiguating
the tags’ meaning (their semantic). For instance, in the Delicious folksonomy1,
if a bookmark is tagged with “javaisland”, to know the real semantic of such tag,
we need to split the tag in the two tokens “java” and “island” and then connect
each token to its corresponding unambiguous sense: “java – an island in Indonesia

1http://del.icio.us
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to the south of Borneo” and “island – a land mass that is surrounded by water”
(disambiguation, as illustrated in Figure 11.1).

In fact, if we look at some of the latest publications in the field, we can see
that such call for evaluation datasets is well grounded. For instance, in [LDZ09],
the authors try to extract ontological structures from folksonomies but only report
a “subjective evaluation” where they study manually a generated ontology with
four branches. To perform a real quantitative evaluation of their algorithm, the
authors would need a folksonomy of which the tags are already linked to an existing
ontology.

In line with what has been requested in other publications [GSSAC09, KS10,
GSCAGP10], we thus believe that a new type of dataset is needed that provides a
real golden standard for the links between the folksonomy tags and their semantics.
To guarantee the validity of such a golden standard, the tag cleaning and disam-
biguation has to be performed manually by a team of annotators. In the following
sections we describe a tool for creating such gold standard dataset, a initial (exten-
sible) dataset, and some results obtained on a golden standard that we built on a
sample of Delicious.

11.2.1 A tool for Creating Golden Standards of Semantic Annotation
Systems

In order to help address the problem mentioned in the previous section and to
create a golden standard dataset to be used for the evaluation, we developed a tool
for creating golden standards for semantic annotation systems, called Tags2Con
(an abbreviation for “from tags to concepts”). The aim of the tool is to provide a
manual validation interface for quickly annotating large samples of folksonomies
to create the required golden standards.

11.2.1.1 Automatic preprocessing

Figure 11.1: Semantic Folksonomy Dataset Creation Process.
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The tool provides a set of utilities and algorithms for the semi-automatic con-
version of free-text annotations (see eq. 6.1 in page 57) into semantic annotations
(see eq. 6.2 in page 58), i.e., (t → stringsem). It automatically performs the pre-
processsing steps outlined in Figure 11.1, these are2:

• Tokenization: splittings the tags into the component tokens (words). This
step generates different splits for the same tag, for instance, the tag “javais-
land” can be split into {“java”, “island”} or {“java”, “is”, “land”}. The
output of this step is ranked to present the most plausible split to the anno-
tator first. The ranking prefers proposals with a fewer number of splits and
with the maximum number of tokens linked to the controlled vocabulary.

• Lemmatization: in order to reduce different forms of the word into a sin-
gle form (that can later be found in the linguistic part of the Background
Knowledge).

• Disambiguation: tries to select the correct sense of the words recognized by
the previous steps. The algorithm we use is an extension of the one reported
in [ZSG+07] based on the idea that collocated tags provide context for dis-
ambiguation (as generalised in the survey by Garcia-Silva [GSCAGP10]).
In our approach, given a token within a tag split, we consider three levels of
context:

1. the other tokens in the tag split provide the first level of context,

2. the tokens in the tag splits for the other tags used for the annotation of
the same resource by the same user provide the second level,

3. the tokens in the tag splits for the tags used for the annotation of the
same resource by other users, provide the third level of context.

The sense with the highest score is then proposed to the validator as the
suggested meaning of the token (see [AZP+10] from more details).

Once the tool has computed the possible splits and senses for the tags, the
validator is asked to validate the split and senses, or to choose the correct ones.

11.2.1.2 Manual validation

The Tags2Con tool main task is to ask validators to provide the true disambiguation
of tags. The process of validation includes the selection of the correct tag split, and
for all the tokens (the words) in the tag split, the selection of the correct sense.
Figure 11.2 shows the user interface developed for the validation task. In order to
be certain that the selected sense is the correct one, we control annotator agreement
by having all the tags validated by at least two different validators.

The manual validation process is summarized as follows:
2See Section 5.2.1 for more details on tokenization and lemmatization
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Figure 11.2: Annotation Page for the Manual Tag Disambiguation
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1. A 〈resource, user〉 pair is selected automatically to ensure that all tags for
the 〈r, u〉 pairs are validated twice to reach a certain confidence in the vali-
dation process. Once the resource (the web page) is selected, it is visualised
in another window of the browser so that the validator can check the Web
page and therefore understand the context and the possible intended mean-
ings of the tags. The validator has the option of ignoring the given resource
at the top right part of the screen if, for example, the Web site is not available
anymore or it is in a foreign language.

2. the validator selects a particular tag for the given 〈r, u〉 pair from the Tag
List on the top left part of the user interface. In the example of Figure 11.2
we can see at the top that the tag “videoconferencing” is selected.

3. the validator selects the correct tag split from the existing list. In the ex-
ample of Figure 11.2 the selected split for the tag “videoconferencing” is
{“video”, “conferencing”} instead of {“video”, “confer”, “en”, “ci”, “ng”}
or {“videoconferencing”}. The validator is also given the option of ignor-
ing the selected tag if no meaningful tag split or sense is suggested. The
validator also is presented with the option of suggesting the correct tag split
(the “Add new TagSplit” button at the bottom left part of the user interface
in Figure 11.2);

4. the validator selects the correct sense for each of the tokens (words) in the
tag. For example, for the word “video”, WordNet shows three senses as
shown in Figure 11.2. The user can also choose to ignore the token (word) if
the correct sense is not present in the list, indicating the reason; for example
because the correct sense is missing from the controlled vocabulary (this
functionality will later allow us to compute the coverage of Wordnet);

5. the validator submits the results and validates the next tag, until all the tags
have been validated for the 〈r, u〉 pair, in which case the validation page goes
to the next 〈r, u〉 pair.

Selecting the right tag split and the right disambiguation for each token in such
split is a tedious task for the human annotators and Tags2Con tries to make this task
as straightforward as possible. It also provides some supporting tools to simplify
the work of the validators and streamline the validation process. With this platform,
a team of four validators annotated a sample of 7,323 tags from∼1,500 〈r, u〉 pairs
from a Delicious crawl in less than two weeks working on their spare time (See
Section 11.2.2). To enable such streamlined annotation, the automatic computation
of the most probable splits and senses prove to be of key importance.

11.2.2 Semantifying a Delicious Dataset

Given the sense induction algorithms discussed in Chapter 6 “Background Knowl-
edge Evolution” and the evaluation methodology in Section 11.3.1, we need a
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golden standard dataset that complies with semantic annotation defined in eq. 6.2 in
page 58, i.e., we need to map the tags t to concepts via semantic strings. In the cur-
rent state of the art of the semi-automatic knowledge building field, folksonomies
such as Delicious3 or Flickr4 are used as data providers to study the automatic con-
struction of ontologies and the evolution of uncontrolled vocabularies. We select
subset of a Delicious dump and disambiguate the tags using the Tags2Con platform
described in the previous Section.

11.2.2.1 Delicious Sample

We obtained the initial crawled data from Delicious between December 2007 and
April 2008 from the authors of [WZB08]. After some initial cleaning (eliminate
invalid URLs, tags with only numbers and non-ASCII characters) the dataset con-
tains 5 431 804 unique tags (where the uniqueness criteria is the exact string match)
of 947 729 anonimized users, over 45 600 619 unique URLs on 8 213 547 differ-
ent website domains. This dataset can be considered to follow free-text annotation
model presented in eq. 6.1 in page 57, where the resource r is the URL being an-
notated. There is a total of 401 970 328 free-text tag annotations in the crawled
cleaned dataset. Note that this is the largest crawled dataset of Delicious currently
available.

The golden standard dataset we have built includes annotations from users
which have less than 1 000 tags who have created at least ten different tags in
five different website domains. This upper bound was decided considering that
Delicious is subject to spam annotations, and users with more than one thousand
tags could potentially be spammers or machine generated tags as the original au-
thors of the crawled data assumed [WZB08]. Furthermore, only 〈r, u〉 pairs that
have at least three tags (to provide diversity in the golden standard), no more than
ten tags (to avoid timely manual validation) were selected. Only URLs that have
been used by at least twenty users are considered in the golden standard in order to
provide enough overlap between users in order to allow the semantic convergence
and evolution algorithms to be evaluated. After retrieving all the 〈r, u〉 pairs that
comply with the previously mentioned constraints, we selected 1 681 pairs in two
batches with the following methods:

1. Random: 500 pairs were selected purely at random,

2. Domains: 1 181 pairs were selected randomly at equal distribution in the
pairs that overlaped with one of the following DMOZ5 topics: /Home/Cook-
ing, /Recreation/Travel or /Reference/Education. This addition was made in
order to include in the dataset more tags and resources from general domains
as the first random batch yielded a dataset biased towards Computer Science.

Table 11.1 summarizes the characteristics of the resulting subset of the dataset.
3http://delicious.com
4http://flickr.com
5http://www.dmoz.org/
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Item Count

〈user, resource〉 pairs 1 681
unique tags 1 569
unique website domains 603
unique URLs of resources 739
unique users 1 397

manually validated tags instances 7 323
manually validated tokens instances 7 882

unique tokens with senses in WordNet 644
unique senses linked to WordNet 689

Table 11.1: Statistics of the tags2con-delicious gold standard dataset

The resulting Tags2Con gold standard dataset is publicly available6 for reuse
following the RDF format depicted in Figure 11.3. The dataset is also part of the
Linked Open Data(LOD) cloud7.

11.2.2.2 Results

In the following paragraphs we outline the results for:

• the automatic preprocesssing: tokenization and WSD,

• the manual validation process,

• the type of vocabulary used by the user of Delicious,

• the coverage of the Wordnet vocabulary for the two batches,

• some statistics on the whole dataset (not only the manually validated part).

A more detailed analysis can be found in [AZP+10].

Tokenization The accuracy of the preprocessing step (see Section 11.2.1.1) in
this validation task reached 97.24%. Figure 11.4 shows an analysis of the accuracy
of the algorithm for different numbers of possible splits. The Y axis corresponds to
the distribution of tags per number of possible splits proposed to the validator, the
top box is the amount of wrong split while the bottom one represents the amount
of accurate splits that were ranked top by the preprocessing algorithm. The figure
should be read as follows: the number of tags with two possible splits is∼35% and

6http://disi.unitn.it/knowdive/dataset/delicious/
7Linked Open Data cloud diagram, September 19th 2011, by Richard Cyganiak and Anja

Jentzsch. http://lod-cloud.net/
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Figure 11.4: Accuracy of the Preprocessing algorithm by the number of possible
splits proposed to the validator.

the accuracy of the algorithm for these cases is ∼80% (see the second bar from the
left).
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Figure 11.5: Accuracy of the WSD algorithm by the level of polysemy.
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Word Sense Disambiguation The average polysemy of the tag tokens in the val-
idated dataset was 4.68, i.e., each tag token had 4.68 possible senses on average.
The implemented WSD algorithm reached an average accuracy of 59.37%. Fig-
ure 11.5 shows an analysis of the accuracy of the algorithm for different levels of
polysemy. The Y axis corresponds to the distribution of tokens per polysemy, the
top box is the amount of wrong disambiguation while the bottom one represents the
amount of accurate disambiguations that were ranked top by the WSD algorithm.
The Figure should be read as follows: the number of cases with two possible senses
in the controlled vocabulary is ∼22% and the accuracy of the algorithm for these
cases is ∼90% (see the second bar from the left).

It is worth noting on Figure 11.5 that the WSD algorithm has an accuracy lower
than 50% for the tokens with many available senses, however, the majority of the
tokens have two senses, and in these cases the WSD algorithm reached an accuracy
of ∼90%. We can see also in the Figure that relying on a general purpose lexical
database such as Wordnet, which tries to include all and every possible sense for the
recognized words, makes it very difficult to manually decide between the available
senses, which in some cases were up to 27.

Manual Validation In order to guarantee the correctness of the assignment of tag
splits and tag token senses, two different validators validated each 〈r, u〉 pair. As
the result, we obtained 7 323 tag validations; 91% of 〈r, u〉 pairs in the dataset were
marked as valid, i.e., the user selected a tag split and disambiguation; 8,9% were
marked as invalid because, for instance, the Web page was not available anymore,
it was in another language or the page was only suitable for adults.

Among the 〈r, u〉 pairs marked as valid, 84.69% of the tags could be validated
by the validators while the other tags were ignored, mostly because the validator
did not know what the tag meant, the tag was in another language, or consisted to
be part of a multiword tag8.

The “agreement without chance correction” [AP08] between users in the task
of disambiguation of tokens is 0.76. As mentioned in [AP08], there is not yet any
accepted best measure for the agreement in the task of sense annotation and thus we
currently report only the raw agreement. It is intuitive to think that the agreement
will fall when there are more available senses for one token as the annotators will
have more chances to choose a different sense. This could also happen because,
as we show in Figure 11.6, sometimes the annotators cannot decide between too
fine-grained senses in the controlled vocabulary.

Use of Nouns, Verbs and Adjectives A previous study of Delicious [DG09]
points out that the users of folksonomies tend to use mainly nouns as descriptors
of the URLs. In the Tags2Con dataset nouns represent 88.18% of the validated

8this ignore option was used when the meaning of one tag was dependent on another different
tag, for example, when two tags as in “George” and “Bush” were applied – which derives from the
issue of using space as separator in Delicious
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tags, while adjectives represent 9.37% and verbs only 2.45%. We have not found
adverbs in the validated dataset.

Coverage of the Background Knowledge While disambiguating the tags to a
sense in WordNet9 the manual annotators could also decide that no sense provided
by the vocabulary was adequate to express the sense meant by the user, even if
the word was recognized. For example, the tag “ajax” was found in the dataset
usually referred to the ajax technology used in Web applications10. However, the
only sense present in WordNet for this tag is “a mythical Greek hero”.

As shown in Figure 11.6 a), in the randomly selected batch the validators were
able to find the correct sense in 49% of the cases. However, in 36% of the cases
the validators said that even though the tag was properly split and the words were
correct, the sense was missing in the list provided by the tool (recall the “ajax”
example). In 6% of the cases, the users were not able to distinguish between the
senses that were provided to them and choose the correct one, normally because
there was no much difference between the provided senses (for example, “bank”
has ten different senses as a noun, and eight different sense as verb). For these and
other reasons, less than half of the vocabulary used by the users could be mapped
to an existing sense in the “Random” batch.

When first validating the tags with the randomly selected batch, we already
realize that the coverage of the vocabulary was low. After investigating the proper-
ties of Delicious, it was obvious that any random selection would lead to the same
result, as most of the tags are related to computer science.

In order to analyze the coverage of the vocabulary in other domains, we created
the second batch of annotations including resources (URLs) from the domains of
Cooking, Travel and Education. Figure 11.6 b) shows the result of the coverage of
the language in this case. In 71% of the cases the validators were able to find the
correct sense. This shows a clear increase (22%) in the coverage of the language
with respect to Computer Science (the first batch). In 15% of the cases the valida-
tors said that even though the tag was properly split and the words was correct, the
sense was missing. This represents less than half of the missing senses with respect
to Computer Science. The high complexity for distinguishing the proper senses in
a long list of senses remained similar, 5% (as opposed to 6%).

These findings with respect to the coverage of the vocabulary are important as
they show the inadequacy of fully automatic folksonomy processing systems based
on fixed controlled vocabularies such as WordNet. For instance, if we consider the
issue of Word Sense Disambiguation, the state-of-the-art tools often perform with
an accuracy of 60%. However, given the fact that only around half of the terms can
be found in a vocabulary for the domain of Computer Science, from the end user
perspective, it means that in only ∼29.4% of the times the user will be suggested
the right sense. For other domains (Cooking, Travel and Education) the user is

9from where we initially populated our Background Knowledge.
10http://en.wikipedia.org/wiki/Ajax_(programming)
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a)

b)

Figure 11.6: Distribution of validated tokens by type of validated dataset.
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suggested to correct term in ∼42.6% of the times.

Considerations on the Dataset Uncontrolled Vocabulary In the following para-
graphs, we present some analysis that we performed on the whole dataset of 45 600 619
URLs, with all the users and tags available.
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Figure 11.7: Number of times a tag is reused by the same User on all the Book-
marks

In Figure 11.7, we analyze tag reuse by users on Delicious. While an often used
assumptions in folksonomy studies is that we can learn a lot from tag collocations
on different resources, we can see that users do not often reuse the same tag more
than once. In fact, from our analysis, in 73% of the cases, a tag is used only once
on the whole set of bookmarks by a single user. This means that in a majority of
the cases, a tag will not be found located on different resources, at least not by
the same user. Only in ∼10% of the cases the user applies the same tag on two
different resources. Only in 7.3% of the cases a tag is reused on more than three
resources.

This finding might impair the ontology learning algorithms [GSCAGP10] that
are based on the measure of collocation of tags, as we will see in the results of
Section 11.3.2. Furthermore, in [AZP+10] we show that in only 18% of the cases
two users use the same tag in the same resource and in 9.3% of the cases more than
three users agreed on at least one tag.
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11.3 Sense induction evaluation

11.3.1 Methodology

In this section we present the evaluation methodology for the sense induction algo-
rithm presented in Chapter 6 “’Background Knowledge Evolution”. As pointed out
in the previously mentioned Chapter, the Natural Language Processing (NLP) field
has already tackled the issue of concepts extraction from text and has considered
different evaluation methodologies for this task. [AM02b] describes the evaluation
problem as follows:

Let us suppose that we have a set of unknown concepts that appear in
the test set and are relevant for a specific domain: U = {u1, u2, . . . , un}.
A human annotator has specified, for each unknown concept uj , its
maximally specific generalisations from the ontology: Gj = {gj,1, gj,2, . . . , gj,mj}.
Let us suppose that an algorithm decided that the unknown concepts
that are relevant are C = {c1, c2, . . . , cl}. For each Ci, the algorithm
has to provide a list of maximally specific generalisations from the
ontology: Hi = {hi,1, hi,2, . . . , hi,pi} (See Figure 11.8).

Figure 11.8: Example of taxonomy, an unknown relevant concept uj , its correct
generalisations gj and the generalisations proposed by three hypothetical algo-
rithms hik, adapted from [AM02b]

From this definition, a number of evaluation metrics can be computed:

Accuracy: The amount of correctly identified maximally specific generalisations.

Parsinomy: The amount of concepts for which a correct set of generalisations is
identified.

Recall: The amount of concepts that were correctly detected and to which at least
one relevant maximally specific generalisation was found.

Precision: The ratio of concepts that were correctly attached to their maximally
specific generalisations to the total of concepts identified.

Production: The amount of proposed maximally specific generalisations per con-
cept.
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Learning Accuracy: The distance, in the concept hierarchy, from the concept
proposed placement to its true placement (from [HS98]).

As can be seen from these proposed measures, a gold standard needs to be
available that provides the “maximally specific generalisations” (Gj) for each con-
cept (U ). [AM02b] use a dataset of textual documents that is manually annotated
for this purpose. However, we need to evaluate the algorithm within a folkson-
omy and thus we use the dataset described in Section 11.2 (the Tags2Con dataset)
as it provides a manually validated disambiguation for each tag in a subset of the
Delicious folksonomy.

The measures listed above can be computed on this dataset by applying a leave
one out cross validation approach to the evaluation. That is, we iterate through all
tag annotations already linked to a concept in the gold standard; we “forget” the
senses of one tag at a time and apply the algorithm on this tag; we then compare
the detected senses and their new place in the taxonomy for this tag to the actual
sense that the gold standard defines.

While this is a possible evaluation procedure to evaluate the final output of the
whole algorithm, the current dataset is not in a form that allows for the evaluation
of the intermediate results. In particular, to optimise the λ and m parameters of
the clustering algorithm used in the first and second step of the algorithm (see Sec-
tion 6.4.2 on page 62), we have to be able to evaluate independently the accuracy
of each stage of the algorithm. In the same way, we need to be able to evaluate
the distance measures used and compare different approaches. For this, we need a
clustering gold standard, that provides the “true cluster” (class) of each 〈r, u〉 pairs
in the dataset so that we compare the found clusters to this gold standard results. In
the following paragraphs we discuss a strategy to generate such a clustering gold
standard.

Let us assume that we have a manually validated dataset of annotations with
their corresponding concepts. We assume this manually validated dataset to be the
gold standard GS, where the set of unknown concepts U = {u1, u2, . . . un} to be
clustered are the terms used in the annotation; for each unknown concept uj , the
maximally specified generalization Gj from the ontology is the parent concept in
the Background Knowledge11. In this case, the set of unknown concepts that the
algorithm decides to be relevant (C) are the same as the manually validated ones
in U , as this set will be generated by the procedure described bellow. Finally, for
each ui ∈ U (or ci, as they are the same) the clustering algorithm produces a set of
results Hi = {hi,1, hi,2, . . . , hi,pi} to be compared with the expected results in Gj .

In our case, GS is the manually annotated Tags2Con dataset described in Sec-
tion 11.2. The set of unknown concepts U will be the tokens contained in t in the
annotations. The set of maximally specified generalization Gj is the set of parent
concepts of the manually disambiguated terms ui, considering the hypernym rela-
tion in WordNet. The construction of the gold standard consists in aligning the set

11For example, using the is-a relation available in Wordnet.
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of concepts U for which we have the resulting clusters Gj and the set of concepts
Ci to be given as input to the clustering algorithm, as described below.

When building the gold standard (GSj) we automatically generate the set of
unknown concepts (U and Ci) to be clustered, their classes, and the maximally
specified generalization Gj . In order to do so, we perform the following steps:

1. we define Gj to be a concept in our Background Knowledge for which there
is more than one hyponym that has more than one manually validated term
in the annotation. In the example in Figure 11.9 a), the conceptG1 =“being,
organism” has two hyponyms (“person” and “parasite”) that contain more
than one annotation attached to them, also the conceptG2 =“body of water”
has two hyponyms (“ocean” and “river”) that have more than one annota-
tion attached to it. Each of the complying concepts (“being, organism” and
“body of water”) will generate a set of clusters for the gold standard datasets
GS1

being,organism and GS2
bodyofwater.

2. we “forget” momentarily that each of the hyponyms of Gj exist. Since for
each of these children Ci we know their corresponding annotations, we cre-
ate a class for each deleted concept, and define the boundary of the GSk

clusters to these particular classes. In our example in Figure 11.9 b), we can
see that two gold standards have been created: GS1 for “being, organism”
and GS2 for “body of water”, each of them containing two clusters (one for
each deleted concept).

3. Starting from the leaves, we recursively repeat the process by further “forget-
ting” concepts higher in the hierarchy and thus creating more gold standard
sets of increasing difficulty as we go up in the hierarchy, the more classes
will be created inGSk. In our example in Figure 11.9 c), we further “forget”
the concepts “being, organism” and “body of water” and create another gold
standard GS3 for “entity”, creating four clusters for each class.

If we apply the above mentioned process on the dataset depicted in Figure 11.9 a)
we obtain three GS datasets as shown in Table 11.2. When using the Tags2Con
dataset, we can create 4 427 of these gold standard annotations representing man-
ually validated user-bookmark-tagsense triplets, from these we build 857 different
GS at various depth of the WordNet is-a graph. Section 11.3.2 discusses the results
of an evaluation ran with this methodology and dataset.

The purpose of each gold standard GSk is twofold:

1. Evaluate step one of the sense induction algorithm presented in Section 6.4.2,
where the input is a set of free-text tagsC and the output is a set of clusters of
similar tags that represents a new concept. In our example in Figure 11.9 a),
the clustering algorithm can be evaluated on each of the gold standardsGSk.
Then, to compute the accuracy of the clustering, we compare the produced
results Hi with the classes of the gold standard with standard cluster evalua-
tion metric such as Purity, Accuracy and Precision/Recall [AGAV09].
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a)

b)

c)

Figure 11.9: Process of constructing an evaluation dataset: a) The validated data
for which the concepts is known; b) Creation of two validation clusters by deleting
the children of being, organism and body of water; c) Creation of a third validation
cluster by further deleting being, organism and body of water.
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GSk C, U Gj Clusters and new concepts

GS1
being,organism C = U = {person, parasite} G1 = {“being, organism”}person = 〈U,R〉1, 〈U,R〉2

parasite = 〈U,R〉3, 〈U,R〉4, 〈U,R〉5

GS2
bodyofwater C = U = {ocean, river} G2 = {“body of water”}ocean = 〈U,R〉6, 〈U,R〉7, 〈U,R〉8

river = 〈U,R〉9, 〈U,R〉10, 〈U,R〉11

GS3
entity

C = U = {person, parasite,
G3 = {“entity”}

person = 〈U,R〉1, 〈U,R〉2
parasite = 〈U,R〉3, 〈U,R〉4, 〈U,R〉5

ocean, river} river = 〈U,R〉9, 〈U,R〉10, 〈U,R〉11
river = 〈U,R〉9, 〈U,R〉10, 〈U,R〉11

Table 11.2: Resulting gold standards GSk for the evaluation of the sense induction
algorithm

2. Considering that we know the parent concept Gj for each gold standard
GSk, we also evaluate step three of the sense induction algorithm where
for each cluster produced, a new concept also has to be added to the KOS
as more specific than an existing concept. The generalisations discovered by
the algorithm (Hi) is compared to the one given in the gold standard (Gj).
In our example in Figure 11.9 a), if we pass GS1 to the algorithm, it should
create concepts for “person” and “parasite”, and put them as hyponyms of
“being, organism”.

11.3.2 Preliminary results

In the previous sections we presented a new evaluation methodology to evaluate
each step of the sense induction algorithm presented in Section 6.4. We also pre-
sented a gold standard dataset (see Section 11.2.2) that was manually validated to
be used with the evaluation methodology

In this section we extend the work carried out in strong collaboration and guid-
ance of Andrews (outlined in [APZ11b]) and report the preliminary results from
the two first steps of the algorithm that involve clustering and for which the dis-
tance measures introduced in Section 6.5. In particular as these are the steps that
are present in the state of the art.

In this section we report precision/recall as an external measure of the cluster-
ing quality. We also report F1 that is the harmonic mean of the two values. How-
ever, note that here precision/recall measures the quality of the clustering decision
process for each pair of elements to cluster and not the quality of a classification of
instances in classes (see [CDMS08] for details of these measures).

The normal state of the art distances used when studying folksonomies were
introduced in Section 6.5 and are based on counting collocation of links between
elements of the folksonomy graph as defined by Equation (6.1). In particular, we
initially studied three collocation measures to compare annotations:

A. Tag Collocation The number of collocated tags on the resources of two anno-
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tations.

B. User Collocation The number of users that annotated the resources of two an-
notations.

C. Resource Collocation The number of resources two users share.

Distances Step Precision (%) Recall (%) F1-Measure (%)

A. Tag
One 53.4 73.2 57.2
Two 0.03 68.2 0.06

B. User
One 58.2 63.6 56.8
Two 0.03 58.5 0.06

C. Resource
One 56.3 46.5 46.6
Two 0.04 39.5 0.09

Table 11.3: Mean precision/recall results for the collocation measures on both
steps; bold number denote the maximum average for step one while italic denotes
maximum average for step 2

Table 11.3 shows the results for the two first steps with these basic measures.
We can see that for step one, there is a good improvement for recall by using the
Tag collocation distance with respect to the Resource collocation distance. Note
that getting a good recall with a clustering algorithm is not so difficult as clustering
all the elements in one single cluster would give a recall of 100%, however, this
would lead to a very bad precision. In the same way, if all elements are put in a
distinct cluster, then the precision will be of 100% but the recall might be low.

For step one, the distances have different behaviours, but when balancing pre-
cision and recall, they reach a similar result with an F1 measure between 47% and
57%. However, for step two, the precision is low, we believe this might be an issue
with the validated dataset.

The clustering algorithm that is used for step one [EpKSX96] selects the num-
ber of clusters automatically, but to do so, it uses the parameter λ that defines the
minimum distance needed to put two elements in the same cluster. Thus, when λ is
close to one, most of the elements will be put in the same cluster; this will improve
the recall of the algorithm but decrease the precision as there will be more noise in
each cluster. Figures 11.10, 11.11 and 11.12 show the evolution of the precision
and recall performance against the value of λ (the colour of the points). We can
observe the usual trade off between precision and recall, and the direct correlation
of this evolution with λ is quite clear: a high threshold for clustering falls at the
bottom right, with a high recall but a low precision, while a low threshold achieves
a better precision but a quite low recall. This happens with both measures A. (Fig-
ure 11.10) and B. (Figure 11.11), but measure C. (Figure 11.12), which has a lower
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Figure 11.10: Precision/Recall Evolution of Step One with the Tag Collocation
Distances; the cross marks the point with the maximum F measure: max(F1) =
61.8%, P = 55%, R = 80.3%
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Figure 11.11: Precision/Recall Evolution of Step One with the User Collocation
Distances; the cross marks the point with the maximum F measure: max(F1) =
61.4%, P = 58.8%, R = 70.9%
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Figure 11.12: Precision/Recall Evolution of Step One with the Resource Col-
location Distances; the cross marks the point with the maximum F measure:
max(F1) = 52.3%, P = 59.1%, R = 53%

performance, behaves in a different manner as the recall increases with the preci-
sion and with λ. However, if we compare this to the two other measures, we can
see that all reach a similar precision/recall pair around 60%/50%. This is the mini-
mal trade-off when tags are clustered in a number of larger clusters, thus reaching
a better recall but still keeping a separation between senses and thus keeping an
average precision.

With the tag collocation measure (Figure 11.10, the results are evenly dis-
tributed, while for the user collocation and the resource collocation (Figure 11.11
and 11.12), we can see that the results are in groups at different precision/recall
values within which λ does not seem to make a great difference. This might be
due to the structure of the underlying folksonomy, where some distant annotations
have to be put together to reach a good recall. That is, there are some annotations
that are considered too distant when λ is low and are thus kept in separate clusters.
λ has to significantly increase to put these distant annotations in the right clusters.
However, when this happens, the recall of the clustering does get better, but distant
annotations that should not be in the same cluster are also taken in and deteriorate
the precision.
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11.4 Summary

In this Chapter we present the evaluation of the sense induction algorithm presented
in Chapter 6 “Background Knowledge Evolution”. This algorithm is needed in or-
der to increase the coverage of the linguistic and conceptual part of the background
knowledge, and thus, the quality of the results of the semantic matching algorithms
presented in Chapter 5.

The main contributions of this chapter are:

1. The quantification of the impact of using a static vocabulary for deriving the
formal semantics in a folksonomy-based system. While the statement that
the lack of background knowledge (terms, concepts and their relations) is
a problem for semantic systems is present in much of the state of the art,
to the best of our knowledge, there is no quantification of how much of a
problem it is. In this Chapter we see that depending of the domain, the
coverage of the vocabulary ranges from 49% in highly dynamic domains
such as Computer Science, to 71% in more static domains such as Cooking,
Travel and Education.

2. The creation of a publicly available gold standard dataset linking folkson-
omy annotations to Wordnet senses that can be used to evaluate sense induc-
tion, Natural Language Processing (NLP) and Word Sense Disambiguation
(WSD) algorithms.

3. The proposal of an evaluation mechanism for the sense induction algorithm
that considers all the three steps of the algorithm, specifically, including the
novel step of being able to discover the different senses in which an annota-
tion is used in folksonomy based systems. The proposal extends on existing
evaluation mechanisms from NLP, adapting it to fit the folksonomy charac-
teristics.
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Concluding Remarks
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Chapter 12

Conclusion

In this thesis we study the issue of how to capture and manage the identity of
entities in a distributed scenario by considering the real world semantics of the
entities in order to enable interoperability and collaboration among the participants
in a distributed scenario.

We first identify several sources of semantic heterogeneity and propose a Knowl-
edge Organization (KOS) system architecture that deals with them by construction.
The proposed KOS has three components: the background knowledge deals with
the issue of ambiguity of the natural language by linking words with formal con-
cepts, enabling automatic reasoning in the system; the schematic knowledge defines
the model for the entities thus dealing with issues of interoperability at schema
level; and the concrete knowledge defines the model for the digital entities that
captures the real world semantics of entities (those that exist) as provided partially
(with incomplete and inconsistent descriptions) by the mental model of entities
created and maintained by people from different perspectives using different terms
and languages. The digital entity solves the problems with names and descriptions
of mental entities by identifying the real world entity being referred (with SURIs)
differently from the local perspectives provided by people (identified by SURLs).

We model the distributed scenarios with three layers in order to deal with the
locality and globality issues of semantics of entities. Entities are local as they
are provided and maintained locally by people, and also global as there is a need
of share understanding if the system is to enable interoperability and collaboration
among the participants. The three layers proposed are the Universal (global), Com-
munity (glocal) and Personal (local) layers. At the personal layer people create and
maintain their own view of the world modeled with entities (i.e., entities are created
mostly in a bottom-up fashion) while reusing the language and concepts defined in
the background knowledge from the upper layers, i.e., the social contexts where
they interact with each other (their communities). However, in order to achieve
multi-context interoperability there is the need of a layer above the community that
maintains the knowledge that is shared among them. This mean that the language
and concepts are mostly maintained in a top-down fashion.
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In order to deal with the dynamic nature of knowledge, especially at the lan-
guage and conceptual level, we propose a sense induction algorithm that given the
usage of terms in collaborative scenarios, such as those of folksonomies, allows
new concepts and terms to emerge in a bottom-up fashion. The advantage of this
approach is the distribution of the workload among the participants of the system,
and the fast formalization of changes in dynamic domains. The novelty of the de-
fined sense induction algorithm is its capability for recognizing the different senses
in which a word can be used in different, but also overlapping, communities. We
also propose an algorithm for propagating the new knowledge defined at the differ-
ent components of our KOS between the different layers.

Finally, we define a set of compatibility conditions that allows us to address
the issue of multiple names and descriptions coming from multiple (incomplete
and inconsistent) views of the entities being referred. The novelties of this compat-
ibility condition are the recognition of the importance of names as references to the
real world entities, thus allowing us to apply tailored name matching techniques on
them, and the identification of a subset of the available descriptive attributes, called
identifying sets, that can uniquely and globally identify the real world entities being
referred.

Based on these compatibility conditions we define our Identity Managements
Framework that is able to assign identifiers to the real world entities being referred
by the participants of the distributed system, while also being able to identify and
dereference the different local perspectives. The identifier of the real world entity is
called SURI (from semantified URI), while the identifier of the local perspective
is called SURL (from semantified URL). We enable interoperability be assigning
both identifiers to the digital entities, therefore, regardless of the description used
locally, we can know (via the SURI) when different local descriptions refer to the
same real world entity. We define the conditions for assigning the SURI given the
life-cycle of the digital entities, i.e., how each create, update and delete operation
affects the identity of the entity in the distributed system, so that whenever a new
entity is created, updated or deleted, we can still consistently manage the SURIs
and therefore achieve interoperability.

To summarize, the main scientific achievements include:

1. The definition of an architecture for managing the identity of entities in the
digital domain in a distributed scenario by capturing the real world semantics
of entities. The separation of entities in three types proved to be key to
proposing an architecture that once and for all can solve the identifier issues
in digital entities. These are:

• real world entities, i.e., those that exist;

• mental entities, i.e., those that are capture and provided by people from
different perspectives, and
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• digital entities, i.e., those that are encoded in the system capturing the
semantics of real world entities as provided by people.

This separation allowed the creation of identifiers for the local perspectives
(mental entities) and the globally unique identifiers for real world entities.

2. The understanding of different sources of semantic heterogeneity and the
definition of a Knowledge Organization System that by design deals with
them at different levels:

• At the background knowledge level by separating the natural language
from the conceptual level;
• At the schematic level by allowing the definition of entity types based

on concepts of the previous level;
• At the concrete level by putting entities as first class citizens of the

system, considering the difference between a particular perspective and
the globally unique real world entity being referred.

3. The definition of tools for:

• Semantically comparing values, by converting string to semantic strings;
• The evolution of the background knowledge by inducing new senses

based on the usage of terms by users;
• The propagation of new knowledge between users and communities;
• The comparison of entities based on identifying sets of attributes and

names.

The contributions in terms of implemented tools are:

• Structure Preserving Semantic Matching (SPSM) inside the S-Match open
source framework available at (http://s-match.org/).

• A generic sense induction algorithm that can be extended with new distance
metrics.

• Tags2Con gold standard dataset creation tool, open source at (http://
sourceforge.net/projects/tags2con/?source=directory)
that aims at converting free-text annotations to annotations that have a ma-
chine processable meaning to it.

The contribution in terms of evaluation are:

• Structure Preserving Semantic Matching (SPSM): The evaluation of SPSM
in synthetic scenarios with three types of alterations: syntactic, semantic
and combined. The F-measure results (0.8; 0.73; 0.47) respectively show
the robustness of the matching tool. Furthermore, in the worst performance
of the tool, the F-measure is equal to base syntactic matchers such as Edit
Distance.
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• Considering the knowledge evolution:

– The proposal of an evaluation mechanism for the sense induction al-
gorithm that considers all the three steps of the algorithm, specifically,
including the novel step of being able to discover the different senses
in which an annotation is used in folksonomy based systems. The pro-
posal extends on existing evaluation mechanisms from NLP, adapting
it to fit the folksonomy characteristics.

– The creation of a publicly available gold standard dataset, created using
the Tags2Con tool, linking folksonomy annotations to Wordnet senses
that can be used to evaluate sense induction, Natural Language Process-
ing (NLP) and Word Sense Disambiguation (WSD) algorithms. The
dataset is available at http://disi.unitn.it/˜knowdive/dataset/
delicious/ and is also included in the Linked Open Data cloud as
from September 2011, available at http://richard.cyganiak.
de/2007/10/lod/.

– The quantification of the impact of using a static vocabulary for de-
riving the formal semantics in a folksonomy-based system. While the
statement that the lack of background knowledge (terms, concepts and
their relations) is a problem for semantic systems is present in much
of the state of the art, to the best of our knowledge, there is no quan-
tification of how much of a problem it actually is. In this thesis we
have seen that depending of the domain, the coverage of the vocabu-
lary ranges from 49% in highly dynamic domains such as Computer
Science, to 71% in more static domains such as Cooking, Travel and
Education.
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Chapter 13

Future work

The implementation and evaluation of the performance of the identity manage-
ment framework, integrating all the already developed components is let as a fu-
ture work. The simulation of the distributed environment and the dynamic nature of
knowledge are the most challenging issues that need to captured by the evaluation
of the framework. Furthermore, the availability of a dataset that contains different
perspectives about the same real world entity is still to be checked. In case no such
dataset can be found, we envision the creation of synthetic scenarios where the dif-
ferent perspectives are created based on an original entity. Some possible sources
for original entities are Yago1 for entities of type Person and Location, Geonames2

for Locations, the Internet Movie Database (IMDB)3 or the Lumiere database of
movies released in Europe4 for Movies, Actors, Directors and Locations, or the US
census data5 for Locations of the US.

The problem of name matching in a distributed scenario can be considered as a
interesting research topic on its own. While there is work related to name matching,
and even a book is dedicated to it, as we saw in this thesis, considering the problem
in a distributed scenario where each person can define its own local names for en-
tities, perhaps using indexicals (e,g., my mother), nicknames, translations, among
others, complicates the name matching problem even more. These new issues have
not been yet accounted in the literature.

While we provide an extensible algorithm for sense induction, more tests need
to be performed to asses which distance measures are the best. Furthermore, while
the manually created dataset is a good initial start point for the evaluation, more
terms need to be validated and added to the dataset in order to provide more rich-
ness to it. This will enable the dataset to be used by more different distance metrics
in the sense induction algorithm.

1http://www.mpi-inf.mpg.de/yago-naga/yago/
2http://www.geonames.org/
3http://www.imdb.com/
4http://lumiere.obs.coe.int/web/sources/
5http://www.census.gov/main/www/cen1990.html
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