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Chapter 1

Introduction

Dielectric elastomers (DEs) are an important class of materials, currently
employed in the design and realization of electrically-driven, highly de-
formable actuators and devices, which find application in several fields of
technology and engineering, including aerospace, biomedical and mechani-
cal engineering [8]. Subject to a voltage, a membrane of a soft dielectric elas-
tomer coated by compliant electrodes reduces its thickness and expands its
area, possibly deforming in-plane well beyond 100%: this principle, pointed
out by Pelrine et al. [36], extending to silicones experimental observations
made earlier on electrostrictive polyurethanes (Zhenyi et al. [56]), is ex-
ploited to conceive transducers for a broad range of applications, including
soft robots, adaptive optics, Braille displays and energy harvesters.

Soft dielectrics undergo finite strains, and their modelling requires a
formulation based on the Mechanics of Solids at large deformations. For
conservative materials, the first theory of non-linear electroelasticity was
developed by Toupin [47]; recently, it has been revisited, among others, by
McMeeking and Landis [31], Dorfmann and Ogden [12], and Suo et al. [45],
who have clarified the notion of Maxwell stress and discussed the different
choices in terms of primary variables for the constitutive description.

A major problem that limits the widespread diffusion of such devices
in everyday technology is the high voltage (high electric field) required to

9



10 Chapter 1. Introduction

(a) (b)

Figure 1.1: In (a) Mediterraneos Elastomer buoys, example of a generator transducer,
installed by Mediterraneo Señales Maritimas (Valencia, Spain). In (b) electronic Braille
cell, example of an actuator transducer, realized in the Research Center “E. Piaggio”
(Pisa, Italy).

activate large strains, because of the low dielectric permittivity of typical
materials (acrylic elastomers or silicones), in the order of few unities, which
governs the electromechanical coupling. On the other hand, for the same
reason, typical actuators are membrane-like, as the electric field is inversely
proportional to the thickness at constant voltage.

Composite materials provide a way to overcome these limitations, as
suggested by some experiments (Zhang et al. [55], Huang et al. [26]) and
theoretical works, performed mainly with reference to layered geometries
(deBotton et al. [11], Tian et al. [46]). The key principle is to enhance the
coupling, reinforcing a soft matrix with stiff and high-permittivity particles,
for the overall actuation performance to be improved despite the expected
increase of stiffness. Therefore, a careful design and optimization of the
composite is required in order to improve its effective behaviour.

To increase strains by enhancing the dielectric constant ε of such ma-
trices and keeping low elastic modulus Y to control the ratio ε/Y , several
attempts have been made: it is possible to improve the electromechanical
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performance of DE actuators by electrically charging and polarizing soft
elastomeric polyurethane matrices with a foamy structure, via the Corona
process. Such matrices enhance the electromechanical strains, possibly due
to the presence of macro-dipoles induced both at the matrix/pore surfaces
and inside the bulk [9].

In addition, composites can display failure modes and instabilities not
displayed by homogeneous specimens that must be thoroughly investigated.
Commonly, instability phenomena are seen as a serious drawback, that
should be predicted and avoided. However, in some cases they can be
used to activate snap-through actuation, as in the case of buckling-like or
highly-deformable balloon-like actuators. Electromechanical instabilities in
homogeneous soft DEs have been investigated in detail [45], while meth-
ods to address incremental bifurcation and stability have been provided
by Dorfmann and Ogden [13] and by Bertoldi and Gei [2], who classified
the different unstable mechanisms within an extension of Hill’s theory for
nonlinear elastic solids [23]. In the latter paper, a first stability analy-
sis on layered composites was performed, being the applied electric field
perpendicular to the layer direction (see also Rudykh and deBotton [41]).

After having recalled in Chap. 2 the elements of physics of dielectric
elastomer transducers, in Chap. 4 the non-linear theory of electroelasticity
is introduced, preceded by a Chapter devoted uniquely to the basic notion
of Solid Mechanics at finite strain. In particular, in Chap. 4 the modelling
of soft DEs is described in terms both of dielectric displacement and electric
field as independent electric variable. Well-known phenomena depending
on electric interactions occurring for other types of material, such as piezo-
electricity and electrostriction, are illustrated and fit within the general
theory of electroelasticity in Chap. 5.

Performance and stability of both homogeneous and composite DE ac-
tuators are analyzed in this thesis.

In particular, as far as homogeneous systems are concerned (Chap. 7),
the research goals are the following:

• investigate diffuse modes bifurcations of prestretched actuators and
quantify electrostriction effects;
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• formulate the criterion for the onset of the band-localization insta-
bility in electroelastic solids and analyze when critical modes for the
actuated specimens are reached.

Regarding DE composites (Chap. 8), the goal is to evaluate in detail
the behaviour of two-phase rank-1 laminates in terms of different types of
actuation, geometric and mechanical properties of phases, applied bound-
ary conditions, and instabilities phenomena, in order to establish precise
ranges in which the performance enhancement is effective with respect to
the homogeneous counterpart.

The results will be given adopting mainly extended Mooney-Rivlin and
Gent strain energies (Chap. 3).

The conclusions are finally drawn in Chap. 9.
The content of the thesis has been summarised in the following papers:

• Gei, M., Colonnelli, S., Springhetti, R., “The role of electrostriction
on the stability of dielectric elastomer actuators”, submitted,

• Gei, M., Colonnelli, S., “Instability of soft dielectric elastomers: the
role of electrostriction”, EuroEAP 2011: I International Conference
on EAP Transducers and Artificial Muscles, Pisa, June 8-9, 2011,

• Gei, M., Colonnelli, S., Springhetti, R., “Instability of soft dielectric
composite actuators”, XX AIMETA National Conference, Bologna,
September 12-15, 2011,

• Gei, M., Colonnelli, S., Springhetti, R., “A framework to investi-
gate instabilities of homogeneous composite dielectric elastomer ac-
tuators”, Proc. Smart Structures/NDE 2012, paper No. 8340-34, San
Diego (USA) March 11-15, 2012,

• Gei, M., Springhetti, R., Colonnelli, S., “Electrostrictive effects on
the stability of dielectric elastomer actuators”, VIII European Solid
Mechanic Conference, ESMC2012, Graz, Austria, July 9-13, 2012.



Chapter 2

The Physics behind Dielectric Elastomer

Transducers

A short treatise of the basic physics of the transducer is presented below.
For further details see [45].

2.1 Dielectric Elastomer Transducers

A dielectric transducer is a device consisting of a soft solid that separates
two electrodes, possibly subject to a force P , which can represent the effect
of the weight or that of an external action (Fig. 2.1). The two electrodes
are connected through a conducting wire to a battery, which gives the volt-
age ∆φ and pumps surface charge (whose density is denoted by ω) to flow
through the conducting wire from one electrode to the other, set at a dis-
tance equal to h. Because of the presence of the force P and the voltage
∆φ, the transducer is capable of two independent movements: deformation
due to the applied force, and deformation due to the charge flowing. Con-
sequently, the states of the transducer can be represented graphically on
a plane. The two coordinates on the plane may be chosen from variables
such as P,∆φ, h and ω.

Many uses of transducers involve cyclic changes of states. As an illus-

13
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Figure 2.1: A dielectric elastomer transducer.

Figure 2.2: A capacitor under external forces.

tration, consider a simple system composed of a parallel-plate capacitor
(two plates of electrodes separated by a thin layer of vacuum, see Fig. 2.2).
The separation h between the two electrodes may vary, but the area A of
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each electrode remains fixed, so that the charge Q can be introduced,

Q = ωA.

Figure 2.3: In (Q,φ)-plane, a point represents a state of a generator transducer. A
use of the transducer typically involves a cyclic change of state. The rectangle represents
a cycle involving two levels of voltage and two values of charge.

A particular cycle of state is presented in Fig. 2.3 on the Q− φ plane.
To operate with a transducer in this cycle, we will need two batteries: one
at a low voltage φL, and the other at a high voltage φH . The four sides of
the rectangular cycle shown in Fig. 2.3 represent the following processes:

1. In changing from state A to state B, the simplified transducer is
connected to the battery at a low voltage φL. The two electrodes
attract each other, reducing the spacing between them, causing the
charge on the electrodes to increase, and the applied force increases
in order to avoid the overcharge.

2. Moving from state B to state C, the system is under an open-circuit
condition and the electrodes maintain the constant charge QH . The
applied force (constant) increases the spacing between the two elec-
trodes, raising the voltage φH .
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3. In changing from state C to state D, the simplified transducer is con-
nected at a high voltage φH . A decreasing force is applied, increasing
the spacing between the two electrodes and lowering the charge QL.

4. From state D to state A, the setup is under an open-circuit condi-
tion, maintaining a constant charge QL. The applied force (constant)
decreases the spacing between the two electrodes, causing a lowering
of the voltage, which reaches the φL level.

This cycle operation of an electromechanical parallel capacitor is analogous
to the Carnot cycle, provided that we replace voltage with temperature and
charge with entropy. During the cycle, the transducer receives mechanical
work from the environment, draws an amount of charge from the low–
voltage battery, and deposits the same amount of charge to the high–voltage
battery. Thus, the transducer is a generator, producing electric energy by
receiving mechanical work. Indeed, a closed curve of any shape on the
(Q,φ)-plane represents a cyclic operation of the transducer. To operate
such a cycle would require a variable-voltage source. The amount of energy
converted per cycle is given by the area enclosed by the cycle on the (Q,φ)-
plane. When the cycle runs counterclockwise, the transducer is a generator,
converting mechanical energy into electrical energy; on the contrary, when
the cycle runs clockwise, the transducer is an actuator, converting electrical
energy into mechanical energy. In this work of thesis we focus on the latter.

2.2 Work-Conjugate Measures

When the scalar product between two quantities gives the work, they are
said to be work-conjugate. A classic example in Physics is provided by
forces and displacements, in Mechanics the second Piola-Kirchhoff stress
and the Green-Langrange strain tensor are also qualified as work-conjugate
measures [22]. More in general, we can define the Lagrangian and Eule-
rian work-conjugate measures, depending on the (deformed or undeformed)
state considered. Our goal is to do the same analysis for the system taken
into account. We introduce the fundamental quantities for the descrip-
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tion of dielectric systems: the nominal electric field, denoted by e0, the
corresponding true electric field (in the current configuration) e, the elec-
tric displacement vectors d0 and d, in the reference and in the current
configuration, respectively. An Euclidean orthogonal reference system is
considered, with the origin O and orthonormal basis ik, k = 1, 2, 3, so, in
the case of a planar capacitor (with arms parallel to the plane i1-i2), we
have that e0 = e0i2 and d0 = d0i2.

The voltage is equal to ∆φ = e0h0, the charge Q = A0d0 as d0
ext−d0

int =
−ω0, where “ext” and “int” indicate external to the arms and within to the
arms, respectively. As known from classical physics, the differential work
δL, in terms of nominal quantities, is given by

δL = ∆φδ(ω0A0) = e0h0A0δd0 = (h0A0)e0δd0,

which means that e0 and d0 are work-conjugate physical quantities. In the
current configuration, e = ei2, so that ∆φ = eh and d = di2, so that we
have analogously Q = Ad as dext − dint = −ω. Then the differential work,
in terms of the actual quantities, is given by

δL = ∆φδ(ωA) = ehAδd+ ehdδA,

which means that e and d are not work-conjugate physical quantities.

2.3 Equations of State of an Actuator

The main component of the actuator is an elastomer, a three-dimensional
network of long and flexible polymer chains. Its thermodynamic behaviour
is highly entropic, characterized by the Helmholtz free energy W . By drop-
ping by a small distance δh, the weight does the work Pδh. By pumping a
small amount of charge δQ, the battery does the work ∆φδQ. The force is
work-conjugated to the displacement, and the voltage is work-conjugated
to the charge. When the system finds equilibrium with the applied force
and the applied voltage, the change in the free energy of the transducer
equals the sum of the work done by the weight and the work done by the
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battery:

δW = Pδh+ ∆φδQ. (2.1)

This condition of equilibrium holds for arbitrary and independent small
variations δh and δQ. The two independent variables (h,Q) characterize
the state of the actuator, therefore

W = W (h,Q).

Associated with small variations δh and δQ, the free energy varies by the
amount

δW =
∂W (h,Q)

∂h
δh+

∂W (h,Q)

∂Q
δQ. (2.2)

A comparison of equations (2.1) and (2.2) gives[
∂W (h,Q)

∂h
− P

]
δh+

[∂W (h,Q)

∂Q
−∆φ

]
δQ = 0. (2.3)

When the transducer equilibrates with the weight and the battery, the con-
dition of equilibrium (2.3) holds for independent and arbitrary variations ∂h
and ∂Q. Consequently, in equilibrium, the coefficients of the two variations
in eq. (2.3) both vanish, giving

P =
∂W (h,Q)

∂h
, (2.4)

∆φ =
∂W (h,Q)

∂Q
. (2.5)

Once the free-energy function W (h,Q) is known, eqs. (2.4) and (2.5) ex-
press P and ∆φ as functions of h and Q. That is, the two equations give
the force and voltage needed to cause a certain displacement and a certain
charge. The two equations (2.4) and (2.5) constitute the equations of state
of the transducer. The equations represent the transformations that map
the states of the transducer from one thermodynamic plane to another.
Equation (2.4) can be used to determine the free-energy function from
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the force-displacement curves of the transducer measured under the open-
circuit conditions, when the electrodes maintain constant charges. For each
value of Q, the free energy is the area under the force-displacement curve.
Similarly, eq. (2.5) can be used to determine the free-energy function from
the voltage-charge curves of the transducer. As mentioned before, (h, P )
and (Q,φ) are convenient planes to represent the states of the transducer
when we wish to highlight work and energy. As an illustration, consider the
parallel-plate capacitor previously introduced in Fig. 2.2. The separation
h between the two electrodes may vary, but the area A of either electrode
remains fixed. Recall the elementary fact that the amount of charge on
either electrode is linear in the voltage:

∆φ =
hQ

ε0A
, (2.6)

where ε0 is the permittivity of vacuum (ε0 = 8.85412 pF/m). Inserting
eq. (2.6) into eq. (2.5), and integrating eq. (2.5) with respect to Q while
holding h fixed, we obtain that

W (h,Q) =
hQ2

2ε0A
. (2.7)

Inserting eq. (2.7) into eq. (2.4), we obtain that

P =
Q2

2Aε0
. (2.8)

Eqs. (2.6) and (2.8) constitute the equations of state of the parallel-plate
capacitor. They are readily interpreted. The applied voltage causes charge
to flow from one electrode to the other, so that one electrode is positively
charged, and the other negatively charged. Equation (2.6) relates the charge
to the applied voltage. The oppositely charged electrodes attract each
other. To maintain equilibrium, a force needs to be applied to each elec-
trode. Equation (2.8) relates the applied force to the charge. Define the
electric field by e = ∆φ/h and the stress by T = P/A. Rewrite eq. (2.8) as

T =
1

2
ε0e

2. (2.9)
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This equation gives the stress needed to be applied to the electrodes to
counteract the electrostatic attraction. This stress is known as the Maxwell
stress.

2.4 Global Stability of Soft Dielectric Actuators

For a given system, the free energy W (h,Q) may take a complicated func-
tional form. The equations of state, eqs. (2.4) and (2.5), are in general
nonlinear. If the transducer operates in the neighborhood of a particular
state (h,Q), the equations of state can be linearized in this neighborhood,
written in an incremental form:

δP =
∂2W (h,Q)

∂h2
δh+

∂2W (h,Q)

∂Q∂h
δQ, (2.10)

δφ =
∂2W (h,Q)

∂h∂Q
δh+

∂2W (h,Q)

∂Q2
δQ. (2.11)

The increments δP and δφ are linear in the increments of the variables
δh and δQ. This procedure is known as a linear perturbation. We call
∂2W (h,Q)/∂h2 the mechanical tangent stiffness of the transducer, and
∂2W (h,Q)/∂Q2 the electrical tangent stiffness of the transducer. The two
electromechanical coupling effects are both characterized by the same cross
derivative, ∂2W (h,Q)/(∂h∂Q) = ∂2W (h,Q)/(∂Q∂h). The matrix

H(h,Q) =

[
∂2W (h,Q)

∂h2
∂2W (h,Q)
∂Q∂h

∂2W (h,Q)
∂h∂Q

∂2W (h,Q)
∂Q2

]

is known as the Hessian of the free-energy function W (h,Q). As mentioned
above, a state of the transducer can be represented by a point in the (h,Q)
plane, as well as by a point in the (P, φ) plane. For the same state of
the transducer, the point in the (h,Q) plane is mapped to the point in
the (P, φ) plane by the equations of state, (2.4) and (2.5). The mapping
may not always be invertible. That is, given a pair of “loads” (P, φ), the
equations of state may not be invertible to determine a state (h,Q). For
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example, eqs. (2.10) and (2.11) are not invertible when the Hessian is a
singular matrix, detH = 0. This singularity may be understood in terms
of thermodynamics. The transducer and the loading mechanisms (i.e., the
weight and the battery) together constitute a thermodynamic system. The
free energy of the system is the sum of the free energies of the individual
parts – the transducer, the weight, and the battery. The free energy (i.e.,
the potential energy) of a constant weight is −Ph. The free energy of
a battery of a constant voltage is −∆φQ. Consequently, the free energy
of the thermodynamic system combining the transducer and the loading
mechanisms is

G(h,Q) = W (h,Q)− Ph−∆φQ.

So the system has still two independent variables, h and Q. Thermody-
namics requires that the system should reach a stable state of equilibrium
when the free energy function G(h,Q) is a minimum against small changes
in h and Q. When the weight moves by δh and the battery pumps charges
δQ, the free energy of the system varies by

δG =

[
∂W (h,Q)

∂h
− P

]
δh+

[
∂W (h,Q)

∂Q
− φ

]
δQ

+
1

2

∂2W (h,Q)

∂h2
(δh)2 +

∂2W (h,Q)

∂h∂Q
(δh)(δQ) +

1

2

∂2W (h,Q)

∂Q2
(δQ)2.

We have expanded the Taylor series of the function W (h,Q) up to terms
quadratic in δh and δQ. In a state of equilibrium, the coefficients of the
first-order variations vanish, recovering the equations of state (2.4) and
(2.5). To ensure that this state of equilibrium minimizes G, the sum of the
second-order variations must be positive for arbitrary combinations of δh
and δQ. That is, a state of equilibrium is stable against small perturbations
if the Hessian of the free energy of the transducer, H(h,Q), is positive-
definite. The two-by-two (symmetric) matrix is positive-definite if and only
if (Sylvester criterion)

∂2W (h,Q)

∂h2
> 0,

[
∂2W (h,Q)

∂h2

] [
∂2W (h,Q)

∂Q2

]
>

[
∂2W (h,Q)

∂h∂Q

]2

.
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When the Hessian of the free energy function is positive-definite, the func-
tion W (h,Q) is convex at this state (h,Q). As an illustration, consider
the parallel-plate capacitor again. Given the free-energy function (2.7), the
second derivatives are

∂2W (h,Q)

∂h2
= 0,

∂2W (h,Q)

∂Q2
=

h

ε0A
,

[
∂2W (h,Q)

∂h∂Q

]
=

Q

ε0A
.

Consequently, the Hessian is not positive-definite in any state of equilib-
rium. That is, the parallel-plate capacitor subject to a constant force and a
constant voltage cannot reach a stable state of equilibrium. The conclusion
is readily understood. The weight is independent of the separation between
the plates, but the electrostatic attractive force increases as the separation
decreases. Subject to a fixed weight, the two plates will be pulled apart if
the voltage is low, and will be pulled together if the voltage is high. The
capacitor can be stabilized by a modification of the loading mechanisms.
For example, we could replace the weight with a spring that restrains the
relative movement of the plates. Let K be the stiffness of the spring, and
h0 be the separation between the electrodes when the spring is unstretched,
so that the force in the spring is P = K(h − h0). The free energy of the
system is the sum of the free energies of the capacitor, the spring and the
battery:

G(h,Q) =
hQ2

2ε0A
+

1

2
K(h− h0)2 −∆φQ.

In a state of equilibrium, the first derivatives of G(h,Q) vanish, giving the
same equations of state as eqs. (2.9) and (2.11). The state of equilibrium is
stable if and only if the Hessian of G(h,Q) is positive-definite. The second
derivatives of the function G(h,Q) are

∂2G(h,Q)

∂h2
= K,

∂2G(h,Q)

∂Q2
=

h

ε0A
,

∂2G(h,Q)

∂h∂Q
=

Q

ε0A
.

A state of equilibrium (h,Q) is stable if and only if

Kh

ε0A
>

(
Q

ε0A

)2

.
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Thus, the transducer is stable when the spring is stiff and the applied
voltage is small.

2.5 Instabilities in Soft Dielectric Actuators

The above described devices can be composed of different types of di-
electrics. While all dielectrics deform under voltage, the amount of defor-
mation differs markedly among different materials. Under voltage, piezo-
electric ceramics attain strains of typically less than 1%. Glassy and semi-
crystalline polymers can attain strains of less than 10%. Strains about 30%
or more were observed in some elastomers. In the last decade, strains over
100% have been achieved in several ways, by pre-stretching an elastomer, by
using an elastomer of interpenetrating networks, by swelling an elastomer
with a solvent, and by spraying charge on an electrode-free elastomer [27].
These experimental advances have prompted a theoretical question: what
is the fundamental limit of deformation that can be induced by voltage?
After all, one can easily increase the length of a rubber band several times
by using a mechanical force. Why is it difficult to do so by using voltage?
The answer to these questions is strongly related to the various instabilities
that may arise in an actuator or a generator made of dielectric materials.

For a stiff dielectric, such as a ceramic or a glassy polymer, voltage-
induced deformation is limited by electric breakdown, when the voltage
mobilizes the charged species in the dielectric to produce a path of elec-
trical conduction. For a compliant dielectric, such as an elastomer, the
voltage-induced deformation is often limited by electromechanical insta-
bility. Stark and Garton [44] described a model that accounted for the
following experimental observation: the breakdown fields of a polymer are
reduced when the polymer becomes soft at elevated temperatures. As the
applied voltage increases, the polymer thins down, so that the same volt-
age induces an even higher electric field. This positive feedback results
in a mode of instability, known as electromechanical instability or pull-in
instability, which causes the polymer to reduce the thickness drastically, of-
ten leading to electrical breakdown. Electromechanical instability has been
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recognized as a mode of failure for insulators in power transmission cables,
for example. Clearly, the quantitative determination of the pull-in voltage
is not a simple task for real deformable devices: the failure mechanism of
electroactivated thin films depends not only on electro-elastic interactions,
but also on the actuator shape and on purely electrical effects.

As a summary, we report a list of all possible instability modes for a
dielectric specimen activated electrically:

• Electric breakdown: it represents a possible failure mode which
occurs when the current electric field reaches the maximum admissible
value in the material, beyond it a discharge may destroy the actuator
(see Fig. 2.4).

Figure 2.4: Schematization of the phenomenon of electric breakdown for a transducer.

• Pull-in/electromechanical instability: in analytical terms, it cor-
responds to the failure of positive definiteness of the tangent electroe-
lastic constitutive operator. Beyond the threshold set by this crite-
rion, the material is no longer able to sustain the Maxwell pressures
transmitted by the electrodes, leading to the collapse of the system or
to a snap-through effect. It can be rigorously shown that this criterion
is significant only for specimens subjected to traction boundary con-
ditions on the whole boundary, while it does not affect devices with
prescribed displacement boundary conditions. In order to describe
this type of instability, one may consider a toy model composed of
two rigid conducting plates connected by an insulated linear spring,
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with a rest distance equal to d. If the plates are subjected to a volt-
age ∆φ, the Coulomb forces between the plates will tend to attract
them, so that the spring will become compressed (see Fig. 2.5). It
is easy to check that there exists a voltage threshold ∆φ∗, such that
for larger voltages no more equilibrium is possible between the elastic
and electric forces and the top plate slams onto the bottom plate. For
stiffening polymers, the pull-in instability may trigger a snap-through
instability (see Fig. 2.6).

Figure 2.5: Representation of the pull-in instability, where plates are connected by a
dielectric device.

Figure 2.6: The shape of the voltage-stretch curve ∆φ(λ) indicates a snap-trough
electromechanical instability.

• Diffuse modes of bifurcation: under compression, buckling-like
instabilities may be induced. This is typical of prestretched actuators,
where the initial longitudinal tensile prestress may diminish due to the
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electrical activation. These instabilities are exploited in buckling-like
actuators (see Fig. 2.7 and Chap. 7)

Figure 2.7: A transducer, under lateral compression, exhibits the characteristic defor-
mation of buckling mode.

• Loss of strong ellipticity/band localization modes: these modes
correspond to the onset of a localized deformation in the form of a
band, having a precise inclination. Analytically, it corresponds to the
loss of ellipticity of the governing equations of the coupled electrome-
chanical problem (see Fig. 2.8 and Chap. 7).

Figure 2.8: Localized deformation, appearing in the form of a band.



Chapter 3

Basic Elements of Solid Mechanics

A brief account of the theory of Continuum Mechanics is given in this
Chapter. For additional information, the interested reader is referred to
Truesdell and Noll [50], Gurtin [20], Ogden [35].

3.1 Mathematical Basis

In this section the main notions of vector and tensor analysis, that are
fundamental tools in the description of deformation of continuous media,
are recalled.

3.1.1 Euclidean Vector Spaces

The mechanical behaviour of continuous media is most conveniently de-
scribed in terms of a scalars, vectors and tensors which in general vary
from point to point in the material, and may therefore be regarded as func-
tions of position in the physical space occupied by the solid. In order to
express this formally in mathematical terms, the notion of Euclidean point
space is required. Let E be a set of elements which we refer to as points. If,
for each pair (x, y) of points x, y of E there exists a vector, denoted v(x, y),

27
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in E, which indicates the Euclidean vector space, such that

v(x, y) = v(x, z) + v(z, y)

for all x, y, z in E , and

v(x, y) = v(x, z) if and only if y = z

for each x ∈ E , then E is said to be a Euclidean point space (it is not a
vector space). It can be easily shown that

v(x, x) = 0 for all x in E ,

and hence that

v(y, x) = −v(x, y) for all x, y in E .

Then, if a fixed (but arbitrary) point o of E is chosen for reference x(o) is
called the position vector of the point x relative to o, and o is referred to as
origin. The distance d(x, y) between two points x, y of E is defined making
use of the dot product on E, according to

d(x, y) = |x− y| = {(x− y) · (x− y)}1/2.

It is straightforward to establish that the bilinear mapping d from E ×E to
R is a metric, that is

(a) d(x, y) = d(y, x),

(b) d(x, y) 6= d(x, z) + d(z, y),

(c) d(x, y) ≥ 0 with equality if and only if x = y,

for all x, y, z in E . Properties (a), (b), (c) can be verified from the definition
of distance and from some properties of scalar product.

Since E is endowed with a metric it is a metric space. The angle θ
between the lines joining o to x and o to y in E is also defined through the
scalar product on E. Thus, we have

cos θ =
x · y
|x||y|
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for an arbitrary choice of the origin o.

With an origin o fixed in E , an arbitrary point x of E corresponds to
a unique position vector x in E. Let {ik} be an orthonormal basis for
E. Then, the components xk of x are given by xk = x · ik. They may
alternatively be defined by three scalar fields over E, ik : E → R, such that
ik(x) = x · ik (k = 1, 2, 3) for every x ∈ E . The origin o, together with
the collection of mapping ik is denoted by {0, ik} and this is said to form a
(rectangular) Cartesian coordinates system on E . The components xk are
called (rectangular) Cartesian coordinates of the point x in the coordinate
system {0, ik}.

Consider an infinitesimal element of surface area dS in a continuous
medium. Let n be the unit normal to dS. In general, the material on one
side of dS exerts a force on the material on the other side. We denote the
force by t(n)dS, where t(n) is called the stress vector and is such that
t(−n) = −t(n). It has dimension of force per unit area and it depends
on the orientation of dS, that is on n. In fact, t(n) depends linearly on n
(Cauchy Theorem). We express this dependence by writing

t(n) = Tn, (3.1)

where T, which is independent of n, is a linear mapping from E into E.
When referred to the orthonormal basis {ik}, however, (3.1) is decomposed
as

tk(n) = Tkjnj ,

where Tkj are the components of T relative to the basis {ik}. The linear
mapping T is called a second order tensor on E, and in this context it is a
stress tensor on E.

We define the tensor product in E

(u⊗ v)w = (v ·w)u

for all u,v,w ∈ E.
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3.1.2 Cartesian Tensors

Let D be a subset of an Euclidean point space E and let L be the space
of real-valued linear functions whose domain is the Euclidean space En. A
scalar field Φ : D → R is a real–valued function over D, a vector field
v : D → R and a tensor field T of order n is a mapping T : D →
L(E× · · · × E︸ ︷︷ ︸

n times

,R). Let ψ : D → R3 be a continuous, one–to–one map-

ping whose inverse ψ−1, defined on ψ(D), is also continuous. If x ∈ D we
write

ψ(x) = (x1, x2, x3), x = ψ−1(x1, x2, x3).

Such a ψ is called a homeomorphism.

Given ψ and D there are three scalar fields ψi : D → R such that

ψ(x) = (ψ1(x), ψ2(x), ψ3(x)), x ∈ D.

The fields ψi are called the coordinate functions of ψ on D, ψ is a coordinate
system on D and D is a coordinate neighbourhood. The coordinates xi of
the point x in the coordinate system ψ are given by

xi = ψi(x). (3.2)

They are called curvilinear coordinates covering D, and it is important to
distinguish the curvilinear coordinates xi (superscript) from the Cartesian
coordinates xi (subscript). The equation

xi ≡ ψi = constant

defines a subset of D called a xi –coordinate surface of ψ in D. The in-
tersection of coordinate surfaces corresponding to two different values of i
defines a coordinate curve in D. The tangent vector to the xi–coordinate
curve at x = ψ−1(x1, x2, x3) is defined as ∂x/∂xi. For a field f : D → I,
we define the mapping fψ : ψ(D)→ I by

f(x) = f{ψ−1(x1, x2, x3)} = fψ(x1, x2, x3), x ∈ D.
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Thus, the gradient of f is defined as follow

(gradf(x))a =
d

dt
fψ(x1 + ta1, x2 + ta2, x3 + ta3)

=
∂fψ
∂xi

(x1, x2, x3)ai =
∂f

∂xi
(x)ai, (3.3)

where the ai are defined by xi+tai = ψi(x+ta), recalling (3.2). Application
(3.3) to the scalar field ψi shows that

ai = (gradψi(x)) · a, (3.4)

while in respect of the position vector field r relative to some chosen origin
we obtain

grad(r(x)) =
∂x

∂xi
ai, (3.5)

since rψ(x1, x2, x3) = r(x) = x. Observing that, we have grad(r(x)) = I,
where I is the identity on E. Hence (3.5) gives

a =
∂x

∂xi
ai, (3.6)

and since a is an arbitrary vector on E, the three vectors ∂x/∂xi form a
basis {∂x/∂xi} at each point x of D. It is called the natural basis of ψ at
x and we write

gi(x) =
∂x

∂xi
, (i = 1, 2, 3), (3.7)

where gi is a vector field on D. Note that gi(x) is tangent to the xi–
coordinate curve of ψ.

3.2 Representation of Isotropic Functions

Definition 3.2.1. We say f , h and S are scalar, vector and tensor invari-
ants relative to the group G ⊆ O(E) (where O(E) is the orthogonal group
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on E), respectively, if for any vector v and tensor A we have

f(Qv,QAQT ) = f(v,A), ∀Q ∈ G ,

h(Qv,QAQT ) = Qh(v,A), ∀Q ∈ G ,

S(Qv,QAQT ) = QS(v,A)QT , ∀Q ∈ G .

If G = O(V ), the invariants are usually called isotropic invariants or
isotropic functions, otherwise they are called anisotropic invariants. We
show here some useful examples:

1. isotropic scalar invariant: det(A); in fact

det(QAQT ) = det(Q)det(A)det(QT ) = det(A),

having used Binet Theorem [42] and the fact that the inverse of a
orthogonal tensor coincides with the transpose;

2. Isotropic scalar invariant: tr(AmBn); in fact

tr(QAQT . . .QAQT︸ ︷︷ ︸
m

QBQT . . .QBQT︸ ︷︷ ︸
n

) = tr(QAmBnQT ) = tr(AmBn),

having used the the well-known property for orthogonal tensors (QQT =
I) and the invariance of the trace;

3. isotropic tensor invariant: Amv ⊗Bnv; in fact

(QAQT )mQv ⊗ (QBQT )nQv = Q(Amv ⊗Bn)QT .

The goal of representation problems is to find the sets of invariants of scalar
such that are basic invariants, and to achieve vector and tensor functions,
such that are generating invariants: the full set of scalar and generating
invariants ensures the requirement of objectivity. A set of basic invariants
or a generating set is called functional basis if it is irreducible, namely
that elements of the basic invariants are not functionally related, and the
elements of the generating set are linearly independent with respect to
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Variables: v,A

Isotropic scalar invariants 1, trA, trA2, trA3,v · v,v ·Av,v ·A2v

Isotropic vector generators v,Av,A2v

Isotropic tensors generators v⊗v, I,A,A2,v⊗Av+Av⊗v,Av⊗Av

Table 3.1: List of isotropic invariants, for the couple (v,A) vector and symmetric tensor
as variables.

the isotropic functions. Functional bases for isotropic functions have been
extensively studied in the literature [50]. The functional bases for a space
generated by a vector and by a symmetric tensor are presented in table
(3.1) where we find all the isotropic invariants 1.

3.3 Large-strain Solid Mechanics

An elastic body undergoing motion occupies different regions of the three
dimensional Euclidean space at different times. It is convenient to choose
a fixed region, B0 say, as reference, and to identify points of the body
with their position vectors x0 in B0, which is then called the reference
configuration. We denoted by B the actual configuration then occupied by
the body. This is called the current configuration.

1We can observe that using Cayley-Hamilton, the principal invariants can be defined
as a function of trA, trA2, trA3 and viceversa, in fact

trA2 = I21 − 2I2, trA3 = I31 − 3I2I1 + 3I3.
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Deformation and Strain

We consider the mapping from the reference configuration B0 to a current
configuration B as a deformation or motion of the body. It carries each point
x0 in the reference configuration B0 into a point in the current configuration
B. The point in B0 is denoted by the position vector x0 and the point in
B by x, relative to arbitrarily chosen origins. The deformation may be
regarded as a one parameter mapping χ : B0 → B, which is differentiable,
invertible, with the inverse χ−1 invertible too. We write

x = χ(x0), x0 ∈ B0. (3.8)

On taking the differential of equation (3.8), we obtain

dx = Gradχ dx0

where Grad is the gradient operator in B0. The second-order tensor Gradχ
is known as the deformation gradient tensor, which will be denoted here by
F. A deformation with F constant is homogeneous. In general, F depends
on x0. We choose bases vectors i0k and ik (k = 1, 2, 3) in the reference and
current configurations, respectively. When the bases i0k in B0 are Cartesian
rectangular coordinates, we may express F in the form

F =

(
i01

∂

∂x0
1

+ i02
∂

∂x0
2

+ i03
∂

∂x0
3

)
x. (3.9)

We adopt the conventional assumption that the Jacobian

J = detF, (3.10)

is positive at each point of B0. According to Nanson’s formula, we have

ndA = JF−Tn0dA0. (3.11)

The corresponding volumes dV 0 in B0 and dV in B are related by

dV = JdV 0.
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For this reason, if the volume in B0 is unchanged during the deformation
J = 1 and the deformation is said to be isochoric. Furthermore, a ma-
terial for which the volume of any region in B0 is unchanged during any
deformation is said to be incompressible, and it is said to be compressible if
there is no such constraint on the body during any possible motion. Since
the tensor F is non-singular by assumption, from the Polar Decomposition
Theorem it follows that

F = RU = VR,

where U and V are symmetric, positive definite tensors and R is a proper
orthogonal tensor. U and V are called the right and left stretch tensor,
respectively, and R satisfies

RRT = RTR = I, detR = 1, (3.12)

where I is the identity and the superscript T denotes the transpose. With
the help of equation (3.12), it turns out that detF = detU. If R = I,
we have F = U = V and the deformation is known as a pure strain. We
use the notation B = FFT and C = FTF for the left and right Cauchy-
Green deformation tensor, respectively. They are easily related to U and
V through

B = V2, C = U2. (3.13)

Since U is symmetric and positive definite, its principal values λj (j =
1, 2, 3) are positive. Let u(j) (j = 1, 2, 3) be the principal axes of U. Then,
we have the spectral decomposition

U =

3∑
j=1

λju
(j) ⊗ u(j).

The coefficients λj are also the principal values of V corresponding to prin-
cipal axes v(j) = Ru(j) (j = 1, 2, 3), and it turns out that

V =
3∑
j=1

λjv
(j) ⊗ v(j).
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We refer to λj as the principal stretches, u(j) and v(j) as Lagrangian and
Eulerian principal axes of the deformation, respectively. From (3.13), we
deduce that B has the same principal axes as V, and C as U, and

B =
3∑
j=1

λ2
jv

(j) ⊗ v(j), (3.14)

C =

3∑
j=1

λ2
ju

(j) ⊗ u(j). (3.15)

The principal stretches λ1, λ2, λ3 are scalar quantities which are indepen-
dent of the choice of the coordinate system. The principal invariants of U
(or V) are defined as

Ī1 = λ1 + λ2 + λ3 = trU,

Ī2 = λ1λ2 + λ1λ3 + λ2λ3 =
1

2
[(trU)2 − tr(U2)], (3.16)

Ī3 = λ1λ2λ3 = detU.

Similarly, the principal invariants of B (or C) are denoted by

I1 = λ2
1 + λ2

2 + λ2
3 = trB,

I2 = λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 =

1

2
[(trB)2 − tr(B2)], (3.17)

I3 = λ2
1λ

2
2λ

2
3 = detB.

Analysis of Stress and Equation of Equilibrium

Let V be the region occupied by an arbitrary part of the body in the current
configuration B, and A be the closed surface bounding V , the outward unit
normal to which is denoted by n. We use the notation t as the traction
per unit area of A, and b as the body force per unit volume of V . From
Cauchy’s theorem that t depends linearly on n, we may deduce that there
exists a second order tensor T, which is symmetric and independent of n,
such that

t(x,n) = T(x)n,



3.3. Large-strain Solid Mechanics 37

Figure 3.1: Traction forces in Cauchy continuous body.

for all t in B and each unit vector n. Thus, T is said to be the Cauchy
stress tensor. A consequence of the objectivity and isotropy is that the
stress T must be coaxial with the Eulerian principal axes v(j). Thus, if
t1, t2, t3 denote the principal values of T, then we write

T =
3∑
j=1

tjv
(j) ⊗ v(j).

In some situations it is more convenient to introduce a concept of first
Piola-Kirchhoff tensor S, as the traction per unit reference area, which can
be expressed as

tdA = TndA = Sn0dA0.

The area elements dA0 and dA are related by Nanson’s formula (3.11). We
then have

S = JTF−T . (3.18)

Sometimes it is more convenient to use the nominal stress, which is defined
as

ST = JF−1T. (3.19)

The (Eulerian) equation of motion is given by

div T + b = ρa, (3.20)

where ρ is the density in B, b represents the body force per unit volume
in B and a denotes the acceleration. In the static case, a is vanishing and
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equation (3.20) is referred to as the equilibrium equation. If, furthermore,
there is no body force, the equilibrium equation reduces to

div T = 0. (3.21)

Let ρ0 denotes the density per unit volume in B0. Then, the mass conser-
vation equation may be expressed in the form

J =
ρ0

ρ
.

The corresponding Lagrangian equilibrium equation of motion is given by

Div S + b0 = 0, (3.22)

where Div is the divergence operator in B0.

3.3.1 Strain-energy Functions

We recall that S · dFdt represents the stress power per unit volume. If there
exists a scalar function W (F) such that

d

dt
W (F) = S · dF

dt

the material is said to be a Green elastic material or a hyperelastic mate-
rial. Physically, W (F) measures the energy stored in the material during
deformation and we refer to it as the strain-energy function. When such a
function exists, we have

d

dt
W (F) =

∂W (F)

∂F
· dF
dt
,

so that

S =
∂W (F)

∂F
. (3.23)

For the linear case, the elastic constitutive law may now be written as

T = CE (3.24)
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where E = 1/2(∇u + (∇u)T ) and C is the fourth order tensor which has
the following symmetries

Cijkl = Cjikl = Cijlk,

that are the minor symmetries. For a Green-elastic material the additional
symmetry

Cijkl = Cklij

holds, and the strain-energy function is given by

W =
1

2
tr [(CE) ·E] . (3.25)

In general, for a homogeneous objective, isotropic hyperelastic material,
W (F) must satisfy all properties valid for constitutive equations (material
objectivity, material simmetry and so on). From the polar decomposition
theorem and the spectral decomposition (for F) we may regard W as a
function of λ1, λ2, λ3, namely

W = W (λ1, λ2, λ3), (3.26)

satisfying the symmetry requirement

W (λ1, λ2, λ3) = W (λ2, λ3, λ1) = W (λ3, λ1, λ2).

When the natural configuration is taken as the reference configuration, we
may assume that W vanishes in such a configuration, and set

W (1, 1, 1) = 0, (3.27)

because in the underformed state λ1 = λ2 = λ3 = 1. Analogously, the value
of the stress is zero in the natural state, that is

∂W

∂λj
(1, 1, 1) = 0, (j = 1, 2, 3). (3.28)

For a homogeneous objective, isotropic, hyperelastic material, W (F) satis-
fies

W (F) = W (QF) = W (FP), (3.29)
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for arbitrary rotations Q and P. From (3.29), it is easily shown (using the
polar decomposition theorem) that

W (QVQT ) = W (V),

which holds for arbitrary Q. By choosing Q = R we deduce that

W (F) = W (U) = W (V).

From (3.19), we calculate T = J−1FS, so from (3.23) we have

T = J−1F
∂W

∂F
. (3.30)

Choosing a system in which F is in a diagonal form, from spectral decom-
position theorem and from (3.30) it turns out

T = J−1
3∑
i=1

λi
∂W

∂λi
v(i) ⊗ v(i). (3.31)

With the help of (3.31), we calculate

∂W

∂λj
=

∂W

∂I1

∂I1

∂λj
+
∂W

∂I2

∂I2

∂λj
+
∂W

∂I3

∂I3

∂λj

= 2λjW1 + 2λ−1
j [W2I2 +W3I3]− 2λ−3

j W2I3, (3.32)

where Wj = ∂W/∂Ij (j = 1, 2, 3). Eq. (3.31) is rewritten as

T = 2I
− 1

2
3

3∑
j=1

[I2W2 + I3W3 + λ2
jW1 − λ−2

j W2I3]v(j) ⊗ v(j).

From (3.14), it follows that

T = 2I
− 1

2
3 (I2W2 + I3W3)I + 2I

− 1
2

3 W1B− 2I
1
2
3 W2B

−1, (3.33)

or, as it is usual to see,

T = α0I + α1B + α−1B
−1, (3.34)

where the elastic response functions αs = αs(I1, I2, I3), (s = 0, 1,−1) from
(3.33) are given by

α0 = 2I
−1/2
3 [I2W2 + I3W3], α1 = 2I

−1/2
3 W1, α−1 = −2I

1/2
3 W2.
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3.4 Incremental Deformations in Solid Mechanics

The mechanics of incremental deformations superimposed upon a given
strain allows the investigation of the response of a solid body subject to
prestress. The classical way to investigate this problem consists in the
introduction of a boundary-value problem and a set of solving incremen-
tal linear relationships. All the equations take into account the presence
of a given pre-stress state. As pointed out by Biot, if we restrict atten-
tion to incremental deformations, the circumstances that lead to a specific
distribution of pre-stress within the body are not required to be known.
Therefore, equations valid for any material model are established. Biot
developed the corresponding theory in the late thirties collecting it in a fa-
mous monograph [4]. The topic received much attention in relation to the
developments of numerical techniques designed to solve nonlinear problems
[33], [43]. On the other hand, from the theoretical point of view, several
works have been published concerning criteria of stability and uniqueness
of incremental boundary-value problems [21] that provide useful tools in
understanding the effective behaviour of loaded structures. In Ogden [35]
several aspects of the theory of incremental deformations are touched on,
comprising discussion about global and incremental uniqueness and stabil-
ity in finite elasticity.

Figure 3.2: Incremental deformation for a body.
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Let χ(x0, t) be the motion of a body that is subject to prescribed initial
and boundary conditions. Let us consider the problem of finding solutions
near χ when the boundary conditions are perturbed. Let χ be a solution
of the perturbed boundary value problem (3.22), with F = Gradχ(x0) and
recalling that SFT = FST . To specify the boundary conditions, let us
consider the motion and surface traction area of the boundary: introducing
two subsets ∂B0

v ,∂B0
s ∈ ∂B0 2, we have

χ(x0) = ψ(x0) on ∂B0
v ,

Sn0 = s(x0,x,F) on ∂B0
s ,

(3.35)

where ψ and s are prescribed vector fields. The condition (3.35) is quite
general and allows for a wide variety of assigned tractions, including dead-
loading and pressure loading. Let x = χ(x0). The displacement of a
material particle due to this change is

ẋ = x− x = χ(x0)− χ(x0) ≡ χ̇(x0),

which serves to define the dot operator ( ˙ ). If the displacement is small for
each x0 ∈ B0, so that the terms of order |ẋ|2 can be neglected, then we refer
to ẋ as an incremental (linear) deformation from the current configuration
B.

The change in the deformation gradient, brought by the incremental
deformation ẋ, is given by

Ḟ = ˙(Gradχ) = Gradχ−Gradχ = Gradχ̇, (3.36)

where the property of linearity of the Grad operator has been used. Equa-
tion (3.36) is exact and is valid even if ẋ is not small in the sense defined
above.

The formulation of incremental boundary-value problems directly de-
rives from that relative to finite deformation. Let the boundary conditions
be subjected to the increments

χ̇(x0) = ψ̇(x0) on ∂B0
v ,

Ṡn0 = ṡ(x0,x, Ḟ) on∂B0
s ,

(3.37)

2∂B0
v ∪ ∂B0

s = ∂B0, ∂B0
v ∩ ∂B0

s = Ø
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where the increment in s depends in general on ẋ = χ̇(x0) and Ḟ =
Gradχ̇(x0) in addition to the increments in any loading parameters in-
cluded in s.

The incremental equation of the motion is, from (3.22),

DivṠ + ρ0ḃ = 0, (3.38)

and the condition of symmetry of SFT becomes

ṠFT + SḞT = ḞST + FṠT . (3.39)

The linearized constitutive equations may be obtained as

Ṡ = CḞ, C0 =
∂S

∂F
,

or, when the material is incompressible (J = 1, (3.10)), since S = ∂W/∂F−
pF−T ,

Ṡ = C0Ḟ + pLTF−T − ṗF−T , (3.40)

where

L = ḞF−1. (3.41)

C0 is the fourth–order tensor of elastic moduli relative to the reference con-
figuration. In solving incremental boundary–value problems, it is usually
convenient to refer to the current configuration. Then, we introduce the
new incremental stress quantity

Σ = J−1ṠFT (3.42)

such that, using the Piola Identity

Div(JAF−T ) = J(divA),

where A is a tensor, equation (3.38) and (3.39) take the form, respectively,

divΣ + ρḃ = 0,
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Σ−ΣT = LT−TLT .

Using Nanson’s formula (3.11), we remind that An0dA0 = J−1AF−TndA
for every tensor A. So it turns out that

Ṡn0dA0 = J−1ṠF−TndA = ΣndA,

so the boundary conditions (3.37) become

u(x) = ẋ(x) = ψ̇(x) on ∂Bv,
Σn = ṡ(x,L) on ∂Bs,

(3.43)

where u(x) is the incremental displacement.
In case of pressure loading

t = −Pn,

where P is the given pressure, so in the reference, using Nanson formula,
we find

s = −PJF−Tn0.

The corresponding incremental quantity is given by

ṡ = −Ṗ JF−Tn0 − P J̇F−Tn0 − PJ ˙(F−T )n0,

and considering that J̇ = Jtr(ḞF−1) = Jtr(L) and ˙(F−T ) = −LTF−T , we
obtain

ṡ = −Ṗ JF−Tn0 − JP tr(L)F−Tn0 + JPLTF−Tn0.

In the current configuration (re–applying Nanson formula (3.11))

Σn = −Ṗn− P tr(L)n + PLTn,

so in the incompressible case we have (since tr(L) = 0)

Σn = −Ṗn + PLTn. (3.44)

The “Piola identity” is based on the following analytical result:

Div(JF−T ) = 0,
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obtained using, first, the divergence theorem∫
B0

Div(JF−T )dV 0 =

∫
∂B0

JF−Tn0dA0,

then using Nanson’s formula (3.11)∫
∂B0

JF−Tn0dA0 =

∫
∂B

ndA =

∫
∂B

IndA,

and finally the divergence theorem∫
∂B

IndA =

∫
B

divIdV = 0.

Therefore

DivS = Div(JTF−T ) = Div(T(JF−T ))

= (DivT)(JF−T ) + TDiv(JF−T ) = JDivTF−T ,

so remembering the pull–back rule divA = Div(AF−T ), we obtain the Piola
identity DivS = JDiv(TF−T ) = JdivT.

3.5 Constitutive Models

The aim of this section is to introduce the constitutive model suitable to
describe the behaviour of rubber-like polymers. Polymers are studied in
the fields of polymer chemistry, polymer physics, and polymer engineer-
ing. In the last sixty years, many studies have focused on finding new
constitutive relations: in particular, many physicists and chemists focused
on the research for forms of strain energy so that they could have a good
prediction in large deformations [37], [54], [1], [18]. A good constitutive
model should represent the three-dimensional nature of the stress-stretch
behaviour using a minimal number of parameters to represent physically
the deformation process. Ideally, the parameters should be obtainable from
a small number of experiments. Simultaneously, it is hard to find a consti-
tutive model which accurately represents the behaviour of such materials
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in various deformation states and satisfies the criterion of requiring only
a small number of ”physically based” parameters, therefore such material
parameters or constants should be independent of the deformation state.
The first statistical mechanical approach for describing force on a deform-
ing polymeric network assumed the use of Gaussian statistics, based on
the fact that chains never approached their fully extended length rL = lN ,
where N is the number of statistical links of lenght l in the chain between
chemical crosslinks. Gaussian statistics yields to Neo–Hookean constitutive
law

W =
µ

2
(λ2

1 + λ2
2 + λ2

3 − 3), µ = nkΘ, (3.45)

where λi are the applied stretches and whose stiffness modulus is a func-
tion of the chain density n, Boltzmann’s constant k and temperature Θ. In
a fundamental review article on basic rubber elasticity, Gent has outlined
some open problems. One of these is to understand the non-Gaussian char-
acter of short chain elasticity and another question emphasizes the need
for a satisfactory general treatment of networks under large deformations,
when the chains approach their fully stretched state. It is suggested that
progress in this direction would aid the understanding of work hardening,
fatigue and fracture of rubber. It is well known that the chemical struc-
ture of a polymeric chain may be of three types: isotactic, syndiotactic
and atactic. Natural polymeric substances such as natural rubber or gut-
tapercha have an isotactic structure so that the side groups lie on the same
side of the polymeric chain. Isotactic polymers always crystallize if the
temperature is decreased or if they are stretched, because the correspond-
ing groups of two neighboring chains may match easily to form an ordered
structure. In isotactic polymers the presence of crystallites act as large
junctions or cross links and this has a strain-stiffening effect on the me-
chanical behavior of the material. Therefore when a piece of natural rubber
is stretched, because the side groups of the chains are able to converge, as
the stretch increases they crystallize and the material stiffens. This effect is
clearly recorded in a simple tension experiment where the stress-extension
curves exhibit a rapid rise at high values of stretch. On the other hand
the structure of many synthetic polymers is atactic, i.e. the side groups
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are irregularly placed on each side of the chains. An atactic chain never
crystallizes, because the side groups, having different sizes and chemical
properties may not match in space due to the irregularity of their position
relative to the chain backbone. A severe rise in the stress-extension curves
is clearly recorded also in experiments with atactic rubber-like materials,
but here the stiffening arises from the effects of finite chain extensibility.
Indeed when the full extension of the polymeric chain is approached the
material stiffens because most of the monomers composing the chain be-
come aligned along the direction of stretch, and one has to start stretching
the bonds, and changing bond angles, both of which require larger energies
that of changing the configurations of the chains. Important atactic poly-
mers are elastin polypeptide chains constituting the protein responsible for
soft tissue elasticity. Generally speaking, in nearly all networking-forming
bio-molecular systems, the process of strain-stiffening is a major factor in
the response to a deforming force because this is the mechanism that al-
lows biological tissue to respond adaptively to varying external mechanical
conditions that may damage tissue integrity. Limiting chain extensibility
from a phenomenological point of view may be introduced in many ways
and a detailed review of some of the possibilities may be found in the paper
by Horgan and Saccomandi [24].

3.5.1 Mooney-Rivlin Model

In Continuum Mechanics, a Mooney-Rivlin solid is a hyperelastic mate-
rial model where the strain energy density function is a linear combination
of two invariants of the left Cauchy-Green deformation tensor B. It was
proposed by Melvin Mooney in 1940 [32] and expressed in terms of invari-
ants by Ronald Rivlin in 1948 [40]. The strain energy density function
for an incompressible MooneyRivlin material, which is an extension of the
Neo-Hookean model (3.45) is

W =
µ1

2
(I1 − 3)− µ2

2
(I2 − 3), µ = µ1 − µ2, (µ2 < 0). (3.46)

The ability of neo-Hookean and Mooney-Rivlin constitutive model is to
capture small to moderate stretch behaviour of rubber elastic material is
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well-recognized.

3.5.2 Arruda-Boyce Model

The need for a constitutive relationship which possesses mathematical sim-
plicity, requires one test to characterize the material and has a limited
number of parameters, has been proposed by Arruda and Boyce [1]. The
statistical mechanics approach to rubber elasticity models the rubber chain
segment between chemical crosslinks as a number N of rigid links of equal
length l. The initial chain length is taken from a random walk consideration
of N steps of length l, and is denoted by r0,

r0 =
√
Nl.

The fully extended chain has approximate length lN so that the limiting
extensibility (or chain locking stretch), defined as the final length divided
by initial length, is given in terms of the statistical parameters as λL =

√
N .

At any value of the chain length the most probable angular distribution of
rigid links about the chain vector length may be found, following the use
of Langevin statistics. Langevin function takes the form

L (x) = cothx− 1

x

and it arises in the context of magnetization of an ideal paramagnet, for
statistical analysis of randomly jointed chains. The Arruda-Boyce model
has been constructed a representative macromolecular network of eight-
chains, where each chain emanated from the center of a cube out of each
corner. The cube is deformed such that each face lies along a principal
stretch axis.
The network principal stress-stretch behaviour is given by

σi =
nkΘ

3

√
N

λ2
i

λchain
L −1

(
λchain√
N

)
+ p, i = 1, 2, 3, (3.47)

where
√
N represents the limiting extensibility of a chain, L −1 is the inverse

Langevin function ,p is the hydrostatic pressure, λi the principal stretches
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Figure 3.3: Langevin function.

Figure 3.4: Schematic representation of the Arruda-Boyce eight-chain net-
work model in the a) undeformed state, b) in uniaxial tension and c) in
uniaxial compression.

and finally

λchain =

√
I1

3
=

1√
3

(√
λ2

1 + λ2
2 + λ2

3

)
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is the stretch on each chain in the network.
The inverse of Langevin function L −1 is achieved using the methodology
of Padé approximation [10] and allows to do a convenient analysis of ex-
perimental data and analytical manipulations of a material models: this
inverse is given into an approximant Taylor-expansion and takes the form:

L −1(x) = 3x+
9

5
x3 +

297

175
x5 +

1539

875
x7 +

126117

67375
x9 + . . . .

Then the principal stresses from (3.47) result

σi = nkΘ
λ2
i√
I1
N

[(
I1

N

) 1
2

+
1

5

(
I1

N

) 3
2

+
11

175

(
I1

N

) 5
2

+
19

875

(
I1

N

) 7
2

+
519

67375

(
I1

N

) 9
2

+ . . .

]
,

(3.48)

and strain energy function was found via integration of eq. (3.48) in the
underfomed(I1 = 3) and the actual configuration, taking into account that
σi = ∂W

∂λi
λi + p, giving

WAB = nkΘ
[1

2
(I1 − 3) +

1

20N
(I2

1 − 9) +
11

1050N2
(I3

1 − 27)

+
19

7000N3
(I4

1 − 81) +
519

673750N4
(I5

1 − 243) + . . .
]
.

(3.49)

3.5.3 Gent Model

Models involve a strain-energy density of the form W = W (I1), are so
called generalized neo-Hookean models. The simplest model with limiting
chain extensibility is due to Gent. Stress–strain relations for simple, unfilled
rubber vulcanizates, are described reasonably well at small and moderate
deformations by the Neo–Hookean constitutive relation, which can be re-
written as

W =
µ

2
J1 (3.50)
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where µ is the shear modulus, and J1 is the first invariant, defined by:

J1 = λ2
1 + λ2

2 + λ2
3 − 3, (3.51)

where, as usual, λ1, λ2, λ3 are the principal stretch ratios. A number of
refinements of equation (3.50) have been proposed, that give even better
agreement with experiment at small and moderate strains. However, large
discrepancies are found at large strains when the molecular chains become
nearly fully stretched. An empirical two–constant relation for W , suitable
for use over the entire range of strains, was proposed by A. N. Gent in
1995: it was similar to the Langevin form proposed by James, Guth [52]
and Treloar [49] in terms of the maximum strain that a network molecular
chain can undergo, but it has a simpler mayhematical form. At the basis
of the model is the assumption to have a maximum value of J1, denoted
by Jm, at which the material reaches a limiting state. For a a network of
molecular chains, this would be the fully stretched state. At this point W
become infinitely large. In order to simulate this behaviour, the following
constitutive relation is proposed in place of equation (3.50):

WGent = −µ
2
Jm log

(
1− J1

Jm

)
(3.52)

in the limit as a polymeric chain extensibility parameter tends to infin-
ity (Jm → ∞), (3.52), reduces to the classical neo-Hookean form (3.50).
Although empirical, this relation has several advantages:

• it involves just two material parameters (µ and Jm), which are given
in terms of microscopic properties,

• at small strains equation (3.52) reduces to (3.50),

• since equation (3.52) is expressed in terms of a strain invariant, it can
be applied to complex states of deformation,

• it involves only an additional constant respect to (3.50), which is Jm,
whose value may be deduced from simple molecular and physical con-
siderations: indeed, because maximum extension ratio of molecular
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chains, when they are fully stretched, are propotional to the square
root of molecular length, whereas µ is inverserly proportional to the
molecula length, the initial constant of (3.52), EJm is expeted to be
independent of molecular length and hence of the degree of crosslink-
ing,

• (3.52) yields stress–strain relations of remarkably simple mathemati-
cal form.

Disadvantages of using this model: predictions of the Gent constitutive
law differ somewhat from those given by particular molecular models of
rubber network, in particular the differences would have been even more
pronounced at large strains because the upturn of ”non–affine” displace-
ments of a network occurs at higher extensions.

Comparison between Arruda-Boyce and Gent Model

Returning to the strain energy function of the Gent model given in eq.
(3.52), we note that the natural logarithm term can be expanded which
yields

WGent =
E

6
Jm

[ J1

Jm
+

1

2

(
J1

Jm

)2

+
1

3

(
J1

Jm

)3

+
1

4

(
J1

Jm

)4

+ . . .
1

n+ 1

(
J1

Jm

)n+1 ]
.

Furthemore, substituting J1 = I1 − 3 then gives

WGent =
E

6

[
(I1 − 3) +

1

2Jm
(I1 − 3)2 +

1

3J2
m

(I1 − 3)3

+
1

4J3
m

(I1 − 3)4 + . . .
1

(n+ 1)Jnm
(I1 − 3)n+1

]
.

(3.53)

In other words, the Gent new constitutive model takes the form of a general
invariant based representation of the strain energy function

WGent =
n∑
i=1

ci(I1 − 3)i.
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However, in the Gent new model, the coefficient ci are all defined a priori as
functions of Jm, which thus provides a physical meaning to the coefficients.
The Arruda-Boyce model can also be re-written in a general invariant-based
form as

WAB =

n∑
i=1

c̃i(I
i
1 − 3i),

where the c̃i are all determined a priori as functions of the limiting network
stretch N1/2. As in the Gent model, c̃i have physical meaning and do not
require additional tests to be fitted. Note that the Arruda-Boyce model
was based on a network of eight non-Gaussian chains and was also demon-
strated to be predictive of other states of deformation when the two material
constants nkΘ and N were fit to data from a singol test. In other words,
when fitting nkΘ and N to uniaxial tension data, the Arruda-Boyce model
was found to predict other states of deformation such as shear and biaxial
tension. One can visualize why the Arruda-Boyce is predictive of general
three-dimensional states of deformation by observing that each chain in
the network stretches and rotates toward the maximum principal stretch
axis(es) with deformation much as real molecular network must when de-
formed.
Comparing eq. (3.53) with eq. (3.49), one can observe that the Gent model
emulates the main features of the Arruda-Boyce model. The Gent model
recognizes a need for averaged representation of chain stretch (i.e. I1 based
where an average chain stretch is (I1/3)1/2 as shown in Arruda-Boyce), as
well as a need for higher order terms in I1. The Gent model also recognizes
the need to weigh the contribution of chain stretch to stress build-up by a
limiting network stretch (i.e. the Gent J1/Jm weighting can be compared
to the inverse Langevin based weighting of λchain/N

1/2 used in the Arruda-
Boyce model), where in both models the stress increases in an asymptotic
manner as the first invariant approaches a limiting value. In other words,
we note that, considering that µ of the Gent model is equal to 6nkΘ of
Arruda-Boyce model (or making allowance for µ of (3.52) which is equal
to 2nkΘ), therefore the limiting stretch can be furnished in the following
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approximated formula

I1/3 = N,

so for example if we care for uniaxial stretch λlim = 10, for Gent model
Jm = 97.2, then for Arruda-Boyce N = 33.4. In Fig. 3.5, the Arruda-Boyce
curve exhibits a more gradual approach to the limiting stretch state than
does the Gent model, but otherwise the two models show similar behaviour
in the case of uniaxial stress.
Indeed, other models have been formulated based on non-Gaussian statis-

Figure 3.5: Comparison between the three models in uniaxial test (for Gent material
Jm = 97.2 and for Arruda-Boyce N = 33.4).

tics. In one of this [3], Beatty has considered a stretch averaged full-network
model of rubber elasticity. On considering a non-Gaussian network of per-
fectly flexible chains and using the approximate expression for the probabil-
ity distribution function for the end-to-end distance, it is shown in [3] that
the macroscopic constitutive equation for the Cauchy stress tensor for an
incompressible material, obtained by averaging in a suitable way, is given
by

TBeatty = −pI + µ0
L −1(λ̂r)

3λ̂r
B, (3.54)
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where the mean relative chain stretch λ̂r is the ratio of the current chain
vector length rchain to its fully extended length rL =

√
N , defined by

λ̂r =

√
I1

3N
. (3.55)

Since the Cauchy stress associated with (3.52) is given by

TGent = −pI + µ
Jm

Jm − (I1 − 3)
B, (3.56)

on using (3.55) one obtains I1 = 3Nλ̂r, (3.56) can be rewritten as

TGent = −pI + µ
N − 1

N

1

1− λ̂2
r

B, (3.57)

where we have used the fact that if the maximum value for I1 is 3N , then

Jm = 3(N − 1).

From (3.57), it is clear that Gent model cannot be obtained by a power se-
ries approximation of the molecular models based on the inverse Langevin
function. The use of a power series to approximate the inverse Langevin
function is somewhat misleading because in (3.54) there is a singularity as
λ̂r →∞, and functions with singularities cannot be approximated globally
by polynomial expressions. For this reason the comparison carried out in [5]
between the eight chain molecular model of [1] and the Gent model is not
complete. Then, since the Gent model is remarkably simple, and since ana-
lytic closed-form solutions to several benchmark boundary-value problems
have been obtained recently on using this model, in [24] authors have shown
that the Gent model provides a very good qualitative and quantitative ap-
proximation of such models, and they have also seen that the Gent model is
closely related to Padé approximants for the inverse Langevin function that
arises in the non-Gaussian molecular models. In conclusion, in problems in-
clude those of torsion, axial, azimuthal and helical shear, anti-plane shear,
mode III crack problems, rotation induced deformation of circular cylin-
ders and fracture, results are radically different from those obtained in the
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literature for classical models such as the neo-Hookean and Mooney-Rivlin
models for incompressible rubber [25]. Gent model is an attractive alterna-
tive to the comparatively complicated molecular models for incompressible
rubber involving the inverse Langevin function and warrants inclusion in
the libraries of large scale commercial computer codes (e.g., ABAQUS or
ANSYS) especially since analytic solutions to benchmark problems are now
available for this model.

3.6 Classification of Regimes and Strain Localiza-
tion

In the purely mechanical case, these materials do not present localizations,
as can be deduced from the classical classification of regimes of the govern-
ing equations. Considering a deformation of the type λ1 = λ, λ2 = 1/λ and
λ3 = 1, the ansatz made by Hill and Hutchinson provides the introduction
of a stream-function ψ of the type

ψ = ψ(c1x1 + c2x2), (3.58)

so that u1 = ∂ψ
∂x2

and u2 = − ∂ψ
∂x1

, in this way the incompressibility con-
straint is automatically verified. Then, the equilibrium equations (3.21) are
given by[

c2
1c2C1111 + c1c

2
2C1112 − c3

1C1121

+ c2

(
− c2

1C1122 + c1c2C1211 + c2
2C1212

− c1(c1C1221 + c2C1222)
)]
ψ′′′(c1x1 + c2x2)− ∂ṗ

∂x1
= 0,

(3.59)

[
c2

1c2C2111 + c1c
2
2C2112 − c3

1C2121

+ c2

(
− c2

1C2122 + c1c2C2211 + c2
2C2212

− c1(c1C2221 + c2C2222)
)]
ψ′′′(c1x1 + c2x2)− ∂ṗ

∂x2
= 0,

(3.60)



3.6. Classification of Regimes and Strain Localization 57

differentiating (3.59) respect to x2, (3.60) respect to x1 and subtracting the
latter, we obtain the fundamental equation

c4
2C1212 + c4

1C2121 + c1c
3
2(C1112 + C1211 − C1222 − C2212)

+ c3
1c2(−C1121 − C2111 + C2122 + C2221)

+ c2
1c

2
2(C1111 − C1122 − C1221 − C2112 − C2211 + C2222) = 0.

(3.61)

Eq. (3.61) is equivalent [23] to

{µ+
1

2
(σ1 − σ2)}c4

1 + 2(2µ∗ − µ)c2
1c

2
2 + {µ− 1

2
(σ1 − σ2)}c4

2 = 0, (3.62)

where (σ1 − σ2) = λdWdλ , µ∗ = λ
4
d
dλ(σ1 − σ2) and µ = 1+λ4

2(λ4−1)
. In general

for (3.62) there are two distinct roots c2
1/c

2
2. By combining the 4 associated

functions of type (3.58) linearly we obtain a general solution of

{µ+
1

2
(σ1 − σ2)}∂

4ψ

∂x4
1

+ 2(2µ∗ − µ)
∂4ψ

∂x2
1x

2
2

+ {µ− 1

2
(σ1 − σ2)}∂

4ψ

∂x4
2

= 0.

Since we are interested only in real ψ, the character of this solution depends
on the nature of roots c1/c2, if they are real or not. We re-write eq. (3.62),
considering c1/c2 = ν

{µ+
1

2
(σ1 − σ2)}ν4 + 2(2µ∗ − µ)ν2 + {µ− 1

2
(σ1 − σ2)} = 0, (3.63)

the nature of the roots ±ν1 and ν2 of eq. (3.63) defines the regime classifi-
cation:

• complex conjugate ±ν1 and ν2 in the elliptic complex regime (EC),

• pure imaginary ±ν1 and ν2 in the elliptic imaginary (EI),

• real ±ν1 and ν2 in the hyperbolic (H),

• two real and two pure imaginary ±ν1 and ν2 in the parabolic regime
(P).

In Fig. 3.6, the regimes of the three material models employed in the thesis
are reported for plain strain deformations, in plots having, in abscissa, the
parameter X = (σ1−σ2)

4µ∗ and in ordinate Y = µ
2µ∗ .
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Figure 3.6: Classification of regimes for a) Mooney-Rivlin, b) Arruda-Boyce and c)
Gent materials.



Chapter 4

Theory of Elastic Dielectrics

The theory of nonlinear electroelasticity accounts for the coupling of elec-
trical and mechanical material properties of electro-active solids subjected
to finite strain. The theory was originally developed by Toupin [47] in 1956
and it is of a great interest because the electromechanical coupling opens
the door for the development of new devices: these materials rapidly and
reversibly change their mechanical properties in response to the application
of an electric field, being capable of large elastic deformations that are much
larger than those arising in conventional elasticity. We summarize the basic
equations in Eulerian and Lagrangian form for the mechanical and electric
field variables and their interactions. We deduce the constitutive law for
an isotropic electroelastic material, based on a total energy function that
enables expressions for the stress and electric field variable to be cast in
particularly simple forms. Two alternative formulations are highlighted:
in one formulation the deformation gradient and the electric displacement
field vector are taken as the independent variables, while in the other the
electric displacement is replaced by the applied electric field vector. Appro-
priate boundary conditions are specified for the electric field variables and
for the total stress tensor. Then, we consider incremental changes in the
deformation within the material and in the electric displacement vector,
deducing the complete form of electro-elastic tensor moduli.

59
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4.1 Kinematics

Figure 4.1: A body deformed by electro-mechanical loadings.

Let us consider an isolated system consisting of a multi–phase phase
electroelastic body and the complemental surrounding space (see Fig. 4.1)
and indicate, as before, by B0 and B0

sur = R3 \ B0 the underformed stress–
free configuration of the body and the surrounding space, respectively. We
identify with ∂B0 the boundary separating B0 from the surrounding and, in
order to specify boundary conditions, the subsets ∂Bv and ∂Bt (∂Bv∪∂Bt =
∂B, ∂Bv ∩ ∂Bt = Ø )are introduced. The application of both mechanical
loadings and electric fields deforms quasi statically the body from B0 to the
current configuration B. Such deformation is described by the function χ
that maps a reference point x0 in B0 to its deformed position x = χ(x0) in
B. If the surrounding space does not consists of vacuum, the deformation
χ can be extended to B0

sur, yielding Bsur = R3 \ B = χ(B0
sur).
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4.2 Maxwell’s Equations

In this section, we summarize the specialization of Maxwell’s equations for
electric field variables in the absence of magnetic fields, free currents and
free volume charges and with no time dependence. We use the notation
e for the electric field vector and d for the electric displacement vector.
These are governed by the equations

curl e = 0, div d = 0, in B ∪ Bsur (4.1)

where curl and div are operators acting in the current domain, with deriva-
tives taken with respect to x. Eqs. (4.1)1 implies that the electric field
is conservative, it means that exists a continous scalar function φ(x), the
electric potential, such that

e = −gradφ.

In vacuo we may regard the electric field e as the basic variable and then
we have simply d = ε0e, where the constant ε0 is the vacuum electric
permittivity. For condensed matter, an additional variable is introduced in
order to explain the alignement of the dipoles inside the body, caused by
the presence of electric field: the polarization density, which is defined as

P = d− ε0e. (4.2)

4.3 Balance Equations

To describe equilibrium of a soft dielectric it is important to introduce the
concept of Maxwell stress, often employed in the literature to highlight the
effect of the polarization of the material on the total stress distribution. In
Toupin [47] and Eringen [15] papers, the total electric field is taken as the
sum of three components: one due to the presence of dielectric material,
another one due to the effect of polarization charge in the body and on its
surface and in addition, the so called local electric field, which is function
of the strain and polarization via the constitutive law. The first two fields
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together compose the classical Maxwell-Faraday electric field. In McMeek-
ing [31] an innovative way to consider the Maxwell stress is presented, in
which the basic physics is not different from that used in [47] and [15],
but the structure have a simpler form than used in [47] and [15], identi-
fying different contributions, such as external field, depolarization field or
local field: a single electric field is utilized, assuming that it is connected
to material strain and polarization by a constitutive law. This formula-
tion is supported by the fact that the electrostatic stress is measurable in
experiments either directly through characterization of stress and electric
fields or through measurement of the constituive properties of the mate-
rial. Since the versatility of this formulation, also Ogden [12] and Suo [45]
have adopted the structure of Maxwell stress proposed by McMeeking and
Landis.

Rinaldi and Brenner [39] highlight the distinction between electrostatic
body forces and the associated Maxwell stresses, considering the well-known
mathematical relation (see eq. (4.9)), and they emphasize that the equiva-
lence is not supported by physical arguments.

In order to formulate the equilibrium equations, it is instrumental to
introduce the notion of total (true) stress tensor, T, for which we consider
(see eq. (3.21))

div T = 0, (4.3)

and the balance of the angular momentum requires that

T = TT . (4.4)

The total stress can be formally split into two parts, namely

T = Tmec + Te, (4.5)

where Tmec is the mechanical stress, while Te is the Maxwell stress. Eq.
(4.5) must balance the surface traction

t = JTmec + TeKn, (4.6)

where t is now the mechanical (nonelectrical) surface force per unit area
acting on ∂B and the operator J·K indicates a jump across the surface ∂B.
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Note that eq. (4.6) illustrates why it is difficult to measure separately
the mechanical and the Maxwell stresses, since it shows that any traction
measured by mechanical means is related to their sum. Since there are no
experiments that can separate the effects of the mechanical and the Maxwell
stresses unambiguously, it is generally more profitable to consider their sum
and not to try to identify them separately. The sum will determine the
already introduced total true stress T. In addition it can be observed that
while T is symmetric, in general Tmec is not symmetric.

Since mathematically we can separate the two contributions, eq. (4.3)
can be rewritten as

divTmec + fe = 0, (4.7)

where Tmec can be seen also as the classical Cauchy stress tensor of Contin-
uum Mechanics, in equilibrium with total (both electrical and mechanical)
tractions, and fe is the electric body force (per unit volume) given by

fe = (grade)TP. (4.8)

Next we remark that, from (4.2) and (4.1) 1, we have

fe = div(e⊗ d)− ε0
2

grad(e · e) = div(e⊗ d− ε0
2

(e · e) I),

so we assume that the electric body force can be derived from the Maxwell
stress tensor Te in this way

fe = divTe, (4.9)

where the electrical body force is the effect of interaction between the elec-
tric field and the solid. At the boundary ∂B, the jump in Te is linked to
the electrical traction te as

te = −JTeKn on ∂B, (4.10)

so that eq. (4.6) is satisfied.

1Given a vector v(x), curlv(x) is the axial vector corresponding to the skew tensor
gradv(x)− (gradv(x))T . It follows that if curlv = 0 then gradv(x) = (gradv(x))T .
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Note that the relationship between fe and Te is not the only possible
within the theory presented above (eq. (4.8), (4.9)). As shown by Bus-
tamante et al. [6], other couples can be determined which fit the general
theory based on the total stress. For instance, two of them are reported in
Table 4.1.

Energy Body force fe Maxwell Stress Te

W (F, e) (grad e)TP d⊗ e− 1
2(d · e)I

W̃ (F,d) ε−1
0 (grad d)TP e⊗ d +

[
ε0(d · d)/2− (d · e)

]
I

Table 4.1: Table of relationships between fe and Te [6].

4.3.1 Eulerian Formulation

Equilibrium of the dielectric body, in absence of volume forces, is summa-
rized in the following equations

div T = 0, T = TT in B ∪ Bsur,
div d = 0, curl e = 0 in B ∪ Bsur.

(4.11)

4.3.2 Boundary Conditions in the Eulerian Formulation

It remains to prescribe appropriate boundary conditions on the fields e,d,T
and χ, bearing in mind that outside the material, in the case of a vacuum,
P = 0. We introduce the subsets ∂Bv and ∂Bt (∂Bv ∪ ∂Bt = ∂B, ∂Bv ∩
∂Bt = �) where displacement and surface tractions are prescribed. Thus
the boundary conditions are given by:

JvK = 0, JTKn = t on ∂Bt, v = ṽ on ∂Bv,
JdK · n = −ω, n× JeK = 0 on ∂B,

(4.12)

where ω is the surface charge density. By convention n is taken as the
outward pointing normal at the material boundary. In the particular case
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of surrounding space consisting of vacuum, the boundary conditions (4.12)2

and (4.12)4 specialize to

Tn = t + T∗n, d · n = −ω + ε0e
∗ · n,

respectively, where T and d are evaluated in the body, whereas ∗ denotes
quantities evaluated in the vacuum. It turns out that

T∗ = ε0

(
e∗ ⊗ e∗ − 1

2
(e∗ · e∗) I

)
, d∗ = ε0e

∗ (4.13)

ε0 being the permittivity of vacuum (ε0 = 8.85 pF/m). In vacuum the
Maxwell stress Te coincides with T∗.

4.3.3 Lagrangian Formulation

Integration of (4.3), (4.1) over B, considering (4.4) and a change of variable
from x to x0 yield

Div S = 0, SF = (SF)T in B0 ∪ B0
sur,

Div d0 = 0, Curl e0 = 0 in B0 ∪ B0
sur,

(4.14)

which represent the Lagrangian formulation of the field eqs. for the elec-
troelastic response of the system, where Curl is the curl operator in the
reference configuration B0. In the eq. (4.14), S = JTF−T is the total first
Piola-Kirchhoff stress, d0 and e0 are respectively the Lagrangian electric
displacement and electric field, given by

d0 = JF−1d, (4.15)

and
e0 = FTe. (4.16)

Eq. (4.15) follows from (4.14)3, using the divergence theorem and the
Nanson’s formula (3.11):∫
B

div d dV =

∫
∂B

d · n dA =

∫
∂B0

d · JF−Tn0dA0 =

∫
B0

Div(JF−1d)dV 0.
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Eq. (4.16) follows from (4.14)4, using Kelvin-Stokes theorem and the fact
that dx = Fdx0:∫

S
curl e dA =

∫
∂S

e · dx =

∫
∂S0

FTe · dx0 =

∫
S0

Curl(FTe)dA0,

where S0 is the surface in the reference configuration that deforms into S,
and the closed curve ∂S0 is its boundary that deforms into ∂S. Since the
electric field is conservative, in the reference configuration e0 = −Gradφ0,
where φ0(x0) = φ(x) is the Lagrangian description of the electric potential.

4.3.4 Boundary Conditions in the Lagrangian Formulation

The boundary conditions (4.12) may be written in the Lagrangian form as

Jv0K = 0, JSKn0 = t0 on ∂B0
t , v0 = ṽ0 on ∂B0

v , (4.17)

Jd0K · n0 = −ω0, n0 × Je0K = 0 on ∂B0, (4.18)

where v0(x0) = v(x).

4.4 Constitutive Equations

We follow the procedure described in McMeeking and Landis [31] to formu-
late the constitutive relationships for a nonlinear dielectrics excluding here
thermal and kinetic effects. The conservation of energy can written as

Ė = Pext, (4.19)

where E is the total energy of the system and a superimposed dot (or
the symbol d

dt) indicates the rate of the relevant quantity, Pext denotes
the external power that depends on mechanical and electrical effects. In
particular, in the absence of body forces and volume free charge

Pext =

∫
∂Bt

t · ẋdS +

∫
∂Be

φ
˙

(ωdS).



4.4. Constitutive Equations 67

For the mechanical part, using Cauchy’s theorem, the symmetry of the
stress tensor and the divergence theorem, the following expression is ob-
tained ∫

∂Bt
t · ẋ dS =

∫
B

(T · grad ẋ + ẋ · div T)dV ,

which can be reduced to∫
∂Bt

t · ẋdS =

∫
B

T · LdV ,

making use of (3.41) and exploiting equilibrium eq. (4.3). For the electric
part, using the jump condition, we have∫

∂Be
φ

˙
(ωdS) = −

∫
∂Be

φJḋK · ndS −
∫
∂Be

φJdK · ˙
(ndS),

where the first integral, using divergence theorem, the relation

ḋ = d̂− dtrL + Ld

and equilibrium equation, reduces to

−
∫
∂Be

φJḋK · ndS = −
∫
Be

(
φdivḋ + ḋgradφ

)
dV

= −
∫
Be
φ
(
LT · gradd

)
dV +

∫
Be

ḋ · edV,

while the second integral, using Nanson’s formula (3.11) and then the di-
vergence theorem and equilibrium equation becomes

−
∫
∂Be

φJdK · ˙(n dS) = −
∫
∂Be

φJdK · (trL)n dS +

∫
∂Be

φJdK · LTn dS

=

∫
Be

[(trL)d · e− φd · grad(divẋ)]dV

+

∫
Be

[
LT · (φ grad d− d⊗ e) + φd · div(grad ẋ)T

]
dV

=

∫
Be
{[(d · e) I− e⊗ d] · L + φLT · grad d}dV.
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Therefore, for the electric part, it turns out that∫
∂Be

φ
˙

(ωdS) =

∫
Be
{ḋ · e + [(d · e) I− e⊗ d] · L}dV,

or it can be seen as∫
∂Be

φ
˙

(ωdS) =

∫
Be
{[d̂ + Ld] · e− (e⊗ d) · L}dV.

So

Pext =

∫
B
{ḋ · e + [T + (d · e) I− e⊗ d] · L}dV

+

∫
Bsur
{ḋ · e + [T∗ + (d · e) I− e⊗ d] · L}dV

(4.20)

and since in vacuum d = ε0e and taking into account (4.2), we obtain

Pext =

∫
B
{ḋ · e + [T + (d · e) I− e⊗ d] · L}dV

+

∫
Bsur
{ε0ė · e + [T∗ + (ε0e · e) I− ε0e⊗ e] · L}dV.

Remembering (4.13) and d
dt

∫
B
ε0
2 e · e dV = ε0

[∫
B
(
ė + e

2

)
· e dV

]
, we have

that

Pext =

∫
B
{Ṗ · e + [T−T∗ + (P · e) I− e⊗P] · L}dV

+
d

dt

∫
R3

ε0
2

e · e dV .
(4.21)

In vacuum T = T∗, P = 0 and Pext simply reduces to the last integral.
The total energy is the sum of internal and electrostatic energies. If we
indicate by W̃ the Helmholtz free-energy per unit reference volume of each
phase, we have

Ė =
d

dt

∫
B0
W̃dV 0 +

d

dt

∫
R3

ε0
2

e · e dV ,
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so that change of variables of the first integral gives

Ė =

∫
B
{J−1 ˙̃W} dV +

d

dt

∫
R3

ε0
2

e · e dV .

The use of the last and (4.21) in the balance (4.19) provides

˙̃W = JṖ · e + J [T−T∗ + (P · e) I− e⊗P] · L. (4.22)

Assuming that the Helmholtz free-energy will depend on deformation gra-
dient and polarization, so that

˙̃W =
∂W̃

∂F
· Ḟ +

∂W̃

∂P
· Ṗ,

the substitution in (4.22) yields the constitutive equations

J [T−T∗ + (P · e) I− e⊗P] =
∂W̃

∂F
FT , (4.23)

and

Je =
∂W̃

∂P
.

An alternative possibility is the introduction of the electric free energy Y =
Y (F, e), given by Y = W̃ − Je · P, so that a straightforward substitution
provides

J [T−T∗ − e⊗P] =
∂Y

∂F
FT ,

and

JP = −∂Y
∂e

.

A procedure parallel to that described in the previous subsection can be fol-
lowed to obtain the form of the constitutive equations in terms Lagrangian
variables. To this end, we note that, based on relation d = J−1Fd0, it
follows that J ḋ = Fḋ0 + (L − (trL)I)Fd0, the Lagrangian counterpart of
(4.20) is

Pext =

∫
B0

e0 · ḋ0 + S · Ḟ dV 0 +

∫
B0sur

e0 · ḋ0 + S∗ · Ḟ dV 0,
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where S∗ = JT∗F−T . The rate of the total energy can be reformulated as

Ė =
d

dt

∫
B0
W̃ + J

ε0
2

C−1e0 · e0dV 0 +
d

dt

∫
B0sur

J
ε0
2

C−1e · e dV 0,

where the two contributions relative to each phase of the body (due to the
polarization of the material and to the electric field) have been separated
from that of the external vacuum. If we introduce the modified Helmholtz
free-energy function W = W (F,d0), such that

W = W̃ + J
ε0
2

C−1e0 · e0,

considering

Ẇ =
∂W

∂F
Ḟ +

∂W

∂d0
· ḋ0,

then the energy balance (4.19) is satisfied if

Ẇ = e0 · ḋ0 + S · Ḟ,

that yields the constitutive prescriptions

S =
∂W

∂F
, e0 =

∂W

∂d0
. (4.24)

On the other hand, the electric enthalpy H(F, e0) [30] can be introduced,
defined as

H = W − d0 · e0,

providing the following expression of the energy balance

Ḣ = −d0 · e0 + S · Ḟ,

which implies that Lagrangian constitutive equations can be reformulated
as

S =
∂H

∂F
, d0 = −∂H

∂e0
. (4.25)
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4.4.1 The Incompressible Case

The constitutive equations for an incompressible soft dielectric material are
similar to the that obtained before. As trL = 0 expression (4.20) simplifies
to

Pext =

∫
B
{ḋ · e + (T− e⊗ d) · L}dV

+

∫
Bsur
{ḋ · e + (T∗ − e⊗ d) · L}dV.

(4.26)

Incompressibility could be enforced introducing the Lagrange multiplier p,
associated with the constraint ψ(F) = J−1 = 0, directly into the Helmholtz
free-energy W , which is now replaced by the expression W̃−pψ(F). Taking

into account that dψ(F)
dF = pF−T , the same procedure followed above (4.23)

provides the following constitutive equations for an incompressible material:

T−T∗ − e⊗P =
∂W̃

∂F
FT − pI, e =

∂W̃

∂P
,

while

S =
∂W

∂F
− pF−T , e0 =

∂W

∂d0
. (4.27)

Considering (4.25), equivalently we have

S =
∂H

∂F
− pF−T , d0 = −∂H

∂e0
. (4.28)

4.5 Constitutive Equations for Isotropic Soft Di-
electrics: Part 1

In this first part we want to consider a conservative material whose response
is described by a free-energy function whose independent variables are the
gradient of deformation (3.9) and the reference electric displacement (4.15),
W = W (F,d0). The Eulerian total stress can be obtained recalling (4.24)1

and (3.18)

T =
1

J

∂W

∂F
FT , (4.29)
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and from (4.24)2, the Eulerian electric field is

e = F−T
∂W

∂d0
.

For an incompressible material, for which J = 1 (3.10), eq. (4.29) modifies
as (see (4.24))

T =
∂W

∂F
FT − pI. (4.30)

The representation theorem for incompressible bodies becomes

T = −pI + α1B− α−1(I1B−B2), (4.31)

and, using Cayley-Hamilton theorem, B−1 = B2 − I1B + I2I, so eq. (4.31)
can be equivalently represented as

T = −(p+ α−1I2)I + α1B− α−1(I1B−B2)

= −πI + α1B + α−1B
−1,

(4.32)

where α1 and α−1 are the material response functions. The unknown hy-
drostatic pressure is given in two equivalent ways2 through p and through
π, which are related by

p = π − α−1I2.

In (4.32) we can identify, recalling eq. (3.35), α1 = 2∂W∂I1 and α−1 = −2∂W∂I2 .
If we consider the total first Piola–Kirchhoff we have, from eq. (4.31),

S = −πF−T + α1F + α−1F
−TC−1, (4.33)

or from (4.32)

S = −pF−T + α1F− α−1(I1F− FC). (4.34)

2If we consider a pure homogeneous plane–strain deformation, we can write the prin-
cipal stresses as

ti = λi
∂W

∂λi
− π̃

and can be easily shown that pressure term π̃ coincides with pressure term p in (4.31).
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For an isotropic hyperelastic dielectric the free–energy W = W (F,d0) can
be expressed as a function of the invariants (3.17) of the right Cauchy–
Green tensor C = FTF

I1 = trC, I2 =
1

2
(I2

1 − tr(C2)), I3 = detC = J2 (4.35)

and (as we can see in the table 3.1) three additional invariants that depend
on d0, namely

I4 = d0 · d0, I5 = d0 ·Cd0, I6 = d0 ·C2d0. (4.36)

For an incompressible material I3 = 1, so that W depends only on five
independent scalars. Due both to the lack of available experimental data
and to the desire of a simple enough formalism that allows a better under-
standing of the material response, an uncoupled form for the free energy is
often considered

W (Ii) = Welas(I1, I2) +Wpol(I4, I5, I6),

where Welas is the strain energy when electric effect are ignored while Wpol

represents the contribution of the polarization of the solid. Several investi-
gations showed that the uncoupled free energy well captures the behaviour
of large classes of soft dielectrics such as ideal dielectrics and electrostrictive
materials. We will focus on a particular form of free–energy (for incompress-
ible material)

W (Ii) = Welas(I1, I2) +
1

2ε0ε̄r
(γ̄0I4 + γ̄1I5 + γ̄2I6), (4.37)

where γ̄i (i = 0, 1, 2) are dimensionless constant coefficients and ε̄r is the
relative dielectric constant in the unstretched configuration. We intro-
duce other dimensionless coefficients, recalling (3.35) ᾱ1 and ᾱ−1, that for
Mooney-Rivlin material (3.46) specialize as

ᾱ1 =
µ1

µ
, ᾱ−1 =

µ2

µ
, (4.38)
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and for Gent model (3.52) they become

ᾱ1 =
Jm

Jm − (I1 − 3)
, ᾱ−1 = 0. (4.39)

As shown in Table 3.1, the total Cauchy stress and the electric field, in
terms of F and d can be expressed in terms of left Cauchy–Green tensor B
and the Eulerian electric displacement d as follows

T = −πI+µ
[
ᾱ1B + ᾱ−1B

−1
]
+

1

ε0ε̄r

[
γ̄1d⊗d+γ̄2(d⊗Bd+Bd⊗d)

]
, (4.40)

or better

T = −p I+µ
[
ᾱ1B− ᾱ−1(I1B−B2)

]
+

1

ε0ε̄r

[
γ̄1d⊗d+γ̄2(d⊗Bd+Bd⊗d)

]
,

(4.41)
and

e = E−1d, E−1 =
1

ε0ε̄r
(γ̄0B

−1 + γ̄1I + γ̄2B), (4.42)

where E is the Eulerian tensor of dielectric constants. In the lagrangian
formulation, (4.40) and (4.42) become:

S = −πF−T + µ
(
α1F + α−1F

−TC−1
)

+
1

ε0ε̄r

[
γ̄1Fd0 ⊗ d0 + γ̄2(Fd0 ⊗Cd0 + FCd0 ⊗ d0)

]
,

(4.43)

or better

S = −pF−T + µ [ᾱ1F− ᾱ−1(I1F− FC)]

+
1

ε0ε̄r

[
γ̄1Fd0 ⊗ d0 + γ̄2(Fd0 ⊗Cd0 + FCd0 ⊗ d0)

]
,

(4.44)

and

e0 = (E0)−1d0, (E0)−1 =
1

ε0ε̄r
(γ̄0I + γ̄1C + γ̄2C

2), (4.45)

where E0 is the Lagrangian tensor of dielectric constants. For an ideal
dielectric we can observe that γ̄0 = γ̄2 = 0 and γ̄1 = 1, so that E−1 = 1

ε0ε̄r
I.
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4.6 Constitutive Equations for Isotropic Soft Di-
electrics: Part 2

In this second part, we consider the constitutive law (4.25), whose inde-
pendent quantities are the gradient deformation (3.9), as before, and the
reference electric field (4.16), H = H(F, e0). The Eulerian total stress,
from (4.25)1 and (3.18)

T =
1

J

∂H

∂F
FT (4.46)

and from (4.25)2, the true electric displacement is

d = − 1

J
F
∂H

∂e0
. (4.47)

For an incompressible material, eqs. (4.46) and (4.47) modify as (see
(4.28)2)

T =
∂H

∂F
FT − pI, d = −F

∂H

∂e0
.

The mechanical invariants (4.35) result the same, while the electric invari-
ants are defined as

K4 = e0 · e0, K5 = e0 ·C−1e0, K6 = e0 ·C−2e0.

Our assumption for the free energy (for incompressible material) is, as
before,

H(I1, I2,K4,K5,K6) = Helas(I1, I2) +
ε0ε̄r

2
(η̄0K4 + η̄1K5 + η̄2K6), (4.48)

where η̄i, (i = 0, 1, 2) are dimensionless constant coefficients. Note that
K4,K5 and K6 can also be written, respectively, as e·Be, e·e and e·(B−1e).
The choice (4.48) is not unique (referring to Cayley-Hamilton theorem) and
one could, for example, replace C−1 by C in I5 and I6 [12], [30]. The total
first Piola-Kirchhoff is therefore

S = −pF−T + µ [ᾱ1F− ᾱ−1(I1F− FC)]

− ε0ε̄r{η̄1(F−Te0 ⊗C−1e0) + η̄2(F−Te0 ⊗C−2e0 + B−1F−Te0 ⊗C−1e0)},
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and the electric displacement is

d0 = E0e0, E0 = −ε0ε̄r(η̄0I + η̄1C
−1 + η̄2C

−2).

Consequently, the total stress tensor is

T = −p I + µ
[
ᾱ1B− ᾱ−1(I1B−B2)

]
− ε0ε̄r

[
{η̄1e⊗ e + η̄2(e⊗B−1e + B−1e⊗ e)

]
,

(4.49)

and the true electric displacement is

d = Ee, E = −ε0ε̄r(η̄0B + η̄1I + η̄2B
−1).

For an ideal dielectric, we can observe that η̄0 = η̄2 = 0 and η̄1 = −1, so
that E = ε0ε̄rI. We note that E is the same operator presented in (4.42),
but written in terms of different “dielectric” coefficients.

4.7 Electroelastic Incremental Constitutive Equa-
tions: Part 1

Recalling sect. 3.4, here incremental equations related to the dielectric are
presented, considering a free-energy of the type W = W (F,d0), presented
in sect. 4.5.

4.7.1 Lagrangian Formulation

We start considering a perturbation ṫ0 and ω̇0 of the tractions and the
surface charges applied on ∂B0 that takes the body to a new equilibrium
configuration where eqs. (4.14), (4.12) are still satisfied and leaves the body
force density b0 unchanged. Likewise in (3.4), the incremental problem is
governed by

Div Ṡ = 0,

Div ḋ0 = 0, in B0 ∪ B0
sur,

Curl ė = 0,

(4.50)
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where Ṡ, ḋ0 and ė0 denote the increments of total first Piola-Kirchhoff
stress, nominal electric displacement and nominal electric field caused by
the perturbation. The incremental jump conditions at the external bound-
ary of the body take the form

Jẋ0K = 0, JṠKn0 = ṫ0 on ∂B0
t , ẋ = 0 on ∂B0

v ,

Jḋ0K · n0 = −ω̇0, n0 × Jė0K = 0 on ∂B0,
(4.51)

ẋ = χ̇(x0) denoting the incremental deformation. Similar boundary condi-
tions hold at ∂B0

int, namely

Jẋ0K = 0, JṠKn0 = 0,

Jḋ0K · n0 = 0, n0 × Jė0K = 0 on ∂B0
int.

Assuming that all incremental quantities are sufficiently small, the consti-
tutive equations

S =
∂W

∂F
, e0 =

∂W

∂d0

can be linearized; for the total Piola Kirchhoff stress as from (4.57)

Ṡ = C0Ḟ + B0ḋ0, ṠiJ = C0
iJkLḞkL +B0

iJM ḋ
0
M , (4.52)

while for the electric field we have

ė0 = B0T ∗
Ḟ + A0ḋ0, ė0

M = B0
iJM ḞiJ +A0

MN ḋ
0
M , (4.53)

where Ḟ = Gradχ̇, (B0T ∗
)MiJ = B0

iJM and the electroelastic moduli tensors
C0, B0 and A0 are given by

C0
iJkL =

∂2W

∂FiJ∂FkL
,

B0
iJM =

∂2W

∂FiJ∂d0
M

,

A0
MN =

∂2W

∂d0
M∂d

0
N

,
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which imply the following symmetries (given by regularity of the strain
energy)

C0
iJkL = C0

kLiJ , A0
MN = A0

NM .

For incompressible materials the incremental total first Piola-Kirchhoff
stress tensor and Lagrangian electric field are given by

Ṡ = −ṗF−T + p(F−T ḞTF−T ) + C0Ḟ + B0ḋ0

and

ė0 = B0T ∗
Ḟ + A0ḋ0,

where the Lagrange multiplier ṗ has been introduced by the incompress-
ibility constraint tr(ḞF−1) = 0. Explicitly, indicating with CSL the right
Cauchy-Green tensor, the fourth order tensor C0, in the incompressible
case, is given by

C0
iJkL = 2

[
∂W

∂I1
δikδJL + 2FiJFkL

(
∂2W

∂I2
1

+
∂W

∂I2

)
(4.54)

+2
∂2W

∂I2
2

(I1FiJ − FiRCRJ)(I1FkL − FkSCSL)

+
∂W

∂I2
[δik(I1δJL − CJL)− FiLFkJ −BikδJL]

+2
∂2W

∂I1∂I2
(2I1FiJFkL − CJMFiMFkL − FiJFkMCML)

]

+
1

ε0ε̄r

{
γ̄1δikd

0
Jd

0
L + γ̄2

[
δikd

0
S(CJSd

0
L + CLSd

0
J)

+FiRd
0
R(δJLFkSd

0
S + FkJd

0
L) +FiLFkSd

0
Sd

0
J +Bikd

0
Jd

0
L

]}
.
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Explicitly, the third order tensor is given by

B0
iJM =

1

ε0ε̄r

[
γ̄1(FiMd

0
J + FiSd

0
SδJM )

+ γ̄2(FiMCJSd
0
S + FiSCJMd

0
S + FiSCSMd

0
J + FiRCRSd

0
SδJM )

]
,

and the second order tensor by

A0
MN =

1

ε0ε̄r

[
γ̄0δMN + γ̄1CMN + γ̄2C

2
MN

]
.

4.7.2 Pressure Terms for the Incompressible Case

For an incompressible material, starting from (4.34) we can consider the
incremental first Piola–Kirchhoff (only “mechanical” contributions)

Ṡ = −ṗF−T + p(F−T ḞTF−T ) + α1Ḟ− α−1
˙

(I1F− FC)

= −ṗF−T + p(F−T ḞTF−T ) + C0,pḞ
(4.55)

or, considering (4.33),

Ṡ = −π̇F−T + π(F−T ḞTF−T )− α−1I2(F−T ḞTF−T )

+ α−1

(
∂I2

∂F
· Ḟ
)

F−T + C0,pḞ,
(4.56)

where ∂I2
∂F = 2(I1F− FC). So taking into account (4.33)

C0,πḞ = C0,pḞ + α−1

[
2(I1F− FC) · Ḟ− I2F

−T ḞT
]
F−T

where C0,π is the fourth order tensor considering π as pressure term and
C0,p is the fourth order tensor considering p. In indices we have:

C0,p
iJkL = α1δikδJL − 2α−1FiJFkL

− α−1 (I1δikδJL − δikCJL − FiLFkJ − δJLBik)
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and it follows that

C0,π
iJkL = C0,p

iJkL + α−1

[
2(I1F

−1
Ji FkL − F

−1
Ji FkJCJL)− I2F

−1
Jk F

−1
Li

]
.

So from (4.55) we have

Ṡ = C0,pḞ− ṗF−T + p(F−T ḞTF−T ) (4.57)

or, from (4.56), equivalently

Ṡ = C0,πḞ− π̇F−T + π(F−T ḞTF−T ). (4.58)

We can note that C0,π
iJkL doesn’t have major symmetries because of its

derivation starting from (4.56). For this reason the tensor we consider
is that associated with the pressure p and dependence on the latter will be
omitted henceforth.

4.7.3 Updated Lagrangian Formulation

In solving incremental boundary-values problems, it is usually convenient
to refer to the current configuration. Push-forward transformations based
on linear momentum balance and divergence theorem (see Appendix (10.1)
and (10.2)) allow the introduction of the mechanical quantity (3.42) and
for the electrical quantities we obtain

d̂ =
1

J
Fḋ0, ê = F−T ė0.

Introduction of the incremental updated quantities into eqs. (4.50) yields

div Σ = 0,

div d̂ = 0, in B ∪ Bsur,
curl ê = 0,

(4.59)

which represent the updated Lagrangian formulation of the field equations
governing the incremental problem. The incremental boundary conditions
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relating the jumps in the updated Lagrangian formulation to the pertur-
bations in the reference configuration (recalling eq. (3.43)) can be written
as

JuK = 0, JΣ̇KndA = ṫ0dA0 on ∂Bt, u = 0 on ∂Bv,
Jd̂K · ndA = −ω̇0dA0, n0 × JêK = 0 on ∂B.

(4.60)

Introduction of eq. (3.42) into eqs. (4.52) and (4.53) yields

Σ = CL + Bd̂, (4.61)

and

ê = BT∗L + Ad̂, (4.62)

where the components of the updated constitutive tensors are given by

Ciqkp =
1

J
C0
iJkLFpLFqJ , Biqa = B0

iJMFqJF
−1
Ma, Aab = JA0

MNF
−1
MaF

−1
Nb .

(4.63)
For an incompressible material eq. (4.61) modifies as

Σ = CL + pLT − ṗI + Bd̂,

whereas eq. (4.63) are still valid, substituting J = 1. Analogously to C0

and A0, the updated constitutive tensors C and A possess major symmetries

Ciqkp = Ckpiq, Aab = Aba.
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In the incompressible case, the straightforward components of the updated
fourth order tensor are

Ciqkp = 2

[
∂W

∂I1
δikBpq + 2BiqBkp

(
∂2W

∂I2
1

+
∂W

∂I2

)
+ 2

∂2W

∂I2
2

(I1Biq −BiaBqa) (I1Bkp −BtkBpt)

+
∂W

∂I2
(δikBpq(I1 −Bpq)−BipBkq −BikBpq)

+ 2
∂2W

∂I1∂I2
(2I1BiqBkp −BiaBqaBkp −BiqBapBka)

]

+
1

ε0ε̄r

{
γ̄1δikdpdq + γ̄2

[
δikds(Bqsdp +Bpsdq)

+ di(Bpqdk +Bqkdp) + dq(Bpidk +Bikdp)

]}
,

(4.64)

and for the third and second order tensors we have explicitly

Biqa =
1

ε0ε̄r

[
γ̄1(δiadq + diδqa) + γ̄2(δiaBqsds +Bqadi +Biadq +Bisdsδqa)

]
,

(4.65)
and

Aab =
1

ε0ε̄r

(
γ̄0B

−1
ab + γ̄1δab + γ̄2Bab

)
. (4.66)

4.8 Electroelastic Incremental Constitutive Equa-
tions: Part 2

Recalling sect. 3.4, here incremental equations related to the dielectric are
presented, considering a free-energy H = H(F, e0), where the electric field
is the independent quantity, as presented in sect. 4.6.
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4.8.1 Lagrangian Formulation

The incremental problem is governed by (4.50), with the boundary condi-
tions given by (4.51). Assuming that all quantities are sufficiently small,
the linearized constitutive equations are:

Ṡ = C0,HḞ− B0,H ė0, ṠiJ = C0,H
iJkLḞkL −B

0,H
iJM ė

0
M (4.67)

and for the electric displacement

ḋ0 = B0,HT ∗
Ḟ + A0,H ė0, ḋ0

M = B0,H
iJM ḞiJ +A0,H

MN ė
0
M , (4.68)

where (B0,HT ∗
)MiJ = B0,H

iJM . The electroelastic moduli tensors C0,H , B0,H

and A0,H are given by

C0,H
iJkL =

∂2H

∂FiJ∂FkL
,

B0,H
iJM = − ∂2H

∂FiJ∂e0
M

A0,H
MN = − ∂2H

∂e0
M∂e

0
N

,

(4.69)

which imply the following symmetries (given by regularity of strain-energy)

C0,H
iJkL = C0,H

kLiJ , A0,H
MN = A0,H

NM .

For incompressible materials the incremental total first Piola-Kirchhoff
stress tensor and Lagrangian electric field are given by

Ṡ = −ṗF−T + p(F−T ḞTF−T ) + C0,HḞ− B0,H ė0

and

ḋ0 = B0,HT ∗
Ḟ + A0,H ė0,



84 Chapter 4. Theory of Elastic Dielectrics

where the Lagrange multiplier ṗ has been introduced by the incompress-
ibility constraint tr(ḞF−1) = 0. In detail, in components we have

C0,H
iJkL = 2

[
∂H

∂I1
δikδJL + 2FiJFkL

(
∂2H

∂I2
1

+
∂H

∂I2

)
+2

∂2H

∂I2
2

(I1FiJ − FiRCRJ)(I1FkL − FkSCSL)

+
∂H

∂I2
[δik(I1δJL − CJL)− FiLFkJ −BikδJL]

+2
∂2H

∂I1∂I2
(2I1FiJFkL − CJMFiMFkL − FiJFkMCML)

]

+ε0ε̄r

{
η̄1e

0
P e

0
S

[
C−1
JSF

−1
PkF

−1
Li + F−1

Pi (C−1
JLF

−1
Sk + C−1

SLF
−1
Jk )

]
+η̄2e

0
Se

0
R

[
F−1
Li F

−1
Sk C

−2
JR + F−1

Si F
−1
Jk C

−2
LR

+F−1
Si (C−1

JLF
−1
PkC

−1
PR + C−1

JPF
−1
PkC

−1
LR + C−2

JLF
−1
Rk )

+F−1
Li F

−1
PkC

−1
PRC

−1
JS +B−1

ik C
−1
LRC

−1
JS

+B−1
it (F−1

Lt F
−1
RkC

−1
JS + F−1

Rt F
−1
Jk C

−1
LS + F−1

Rt C
−1
JLF

−1
Sk )

]}
,

and the third order tensor becomes

B0,H
iJM = ε0ε̄r

[
η̄1F

−1
Jl e

0
P (F−1

MiF
−1
Pl + F−1

MlF
−1
Pi )

+ η̄2e
0
P (F−1

MiC
−2
JP + C−1

MJF
−1
T i C

−1
TL + C−1

MTF
−1
T i C

−1
JP + C−2

MJF
−1
Pi )
]
,

while the second order tensor takes the form

A0,H
MN = −ε0ε̄r(η̄0δMN + η̄1C

−1
MN + η̄2C

−2
MN ).
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4.8.2 Updated Lagrangian Formulation

Considering the governing eqs. (4.59) for the incremental problem, the
constitutive equations become

Σ = CHL− BH ê, (4.70)

and

d̂ = BH,T∗L + AH ê, (4.71)

where the components of the updated constitutive tensors are given by

CHiqkp =
1

J
C0,H
iJkLFpLFqJ , BH

iqa =
1

J
B0,H
iJMFqJFaM , AHab =

1

J
A0,H
MNFaMFbN .

(4.72)
The correspondent boundary conditions are the same as seen in eqs. (4.60).
For an incompressible material eq. (4.70) modifies as

Σ = CHL + pLT − ṗI− BH ê,

whereas eq (4.72) are still valid, substituting J = 1. Analogously to C0,H

and A0,H , the updated constitutive tensors CH and AH possess major sym-
metries

CHiqkp = CHkpiq, AHab = AHba.
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In the incompressible case, the components of the updated fourth order
tensor are

CHiqkp = 2

[
∂H

∂I1
δikBpq + 2BiqBkp

(
∂2H

∂I2
1

+
∂H

∂I2

)
+ 2

∂2H

∂I2
2

(I1Biq −BiaBqa) (I1Bkp −BtkBpt)

+
∂H

∂I2
(δikBpq(I1 −Bpq)−BipBkq −BikBpq)

+ 2
∂2H

∂I1∂I2
(2I1BiqBkp −BiaBqaBkp −BiqBapBka)

]

+ ε0ε̄r

{
η̄1

(
δipekeq + δqpeiek + δqkeiep

)
+ η̄2

[
et

(
δipekB

−1
qt

+ δkqeiB
−1
pt + (δpqei + δipeq)B

−1
kt + (δkqep + δpqek)B

−1
it

)
+ ei(B

−1
kq ep +B−1

qp ek) + eq(B
−1
ik ep +B−1

pi ek)

]}

(4.73)

that of the third order tensor are

BH
iqa = ε0ε̄r

[
η̄1(δiaeq + δaqei)

+ η̄2(δiaB
−1
qt et + δaqB

−1
it et +B−1

ia eq +B−1
aq ei)

]
,

(4.74)

while the second order tensor becomes

AHab = −ε0ε̄r
[
η̄0FaMFbM + η̄1δab + η̄2B

−1
ba

]
. (4.75)



Chapter 5

Electric-induced Deformations in Solid

Mechanics

This chapter aims at providing a clarification on a couple of well-known
phenomena in Solid Mechanics at that can be described using the notion of
electro-elasticity presented previously: piezoelectricity and electrostriction.

5.1 Piezoelectricity and Electrostriction at Small
Deformations

“Piezo” in Greek means “pressure”. In 1880 the Curie brothers discovered
that by applying a pressure (mechanical stress) to a crystal of quartz, a sur-
face electric charge was developed, thus induced by an electric field (“direct
piezo-electric effect”); other natural materials with this property are tour-
maline and Rochelle salt. Around 1930, it was discovered that“ferroelectric
ceramics”, developed to realize devices such as capacitors, had this property
when subjected to the process of “polarization”, i.e. when a strong electric
field (1-2 kV/mm) was applied; the best known of these (developed in 1945)
are the Barium titanate, BaTiO3, and the Lead zirconate titanate (PZT),
suitably doped. Piezoelectric materials have been recently developed in a
plastic matrix (PVDF) and continuing developments are underway to find

87
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new materials and more advanced manufacturing processes.
While “piezoelectricity” is a first-order coupling between electric field

and stress/strain, “electrostriction” is a second-order coupling between elec-
trical and mechanical variables. At small strains, it is possible to sepa-
rate these two contributions expanding the total first Piola-Kirchhoff stress
SiJ = SiJ(F,d0) and the nominal electric field e0

N = e0
N (F,d0) into a

second-order Taylor series about the natural configuration:

ṠiJ =
∂SiJ
∂FkL

ḞkL +
∂SiJ
∂d0

M

ḋ0
M +

1

2
ḞqR

∂2Sij
∂FqR∂FkL

ḞkL

+ ḞkL
∂2Sij

∂FkL∂d
0
M

ḋ0
M +

1

2
ḋ0
S

∂2Sij
∂d0

S∂d
0
M

ḋ0
M ,

(5.1)

ė0
N =

∂e0
N

∂FkL
ḞkL +

∂e0
N

∂d0
M

ḋ0
M +

1

2
ḞqR

∂2e0
N

∂FqR∂FkL
ḞkL

+ ḞkL
∂2e0

N

∂FkL∂d
0
M

ḋ0
M +

1

2
ḋ0
S

∂2e0
N

∂d0
S∂d

0
M

ḋ0
M ,

(5.2)

or, in terms of the electro-elastic density energy,

ṠiJ =
∂2W

∂FkL∂FiJ
ḞkL +

∂2W

∂d0
M∂FiJ

ḋ0
M +

1

2
ḞqR

∂

∂FqR

(
∂2W

∂FkL∂FiJ

)
ḞkL

+ ḞkL
∂

∂d0
M

(
∂2W

∂FiJ∂FkL

)
ḋ0
M +

1

2
ḋ0
S

∂

∂d0
S

(
∂2W

∂FiJ∂d0
M

)
ḋ0
M ,

and

ė0
N =

∂2W

∂FkL∂d
0
N

ḞkL +
∂2W

∂d0
M∂d

0
N

ḋ0
M +

1

2
ḞqR

∂

∂FqR

(
∂2W

∂FkL∂d
0
N

)
ḞkL

+ ḞkL
∂

∂FkL

(
∂2W

∂d0
M∂d

0
N

)
ḋ0
M +

1

2
ḋ0
S

∂

∂d0
S

(
∂2W

∂d0
N∂d

0
M

)
ḋ0
M .

The tensors of incremental moduli can still be introduced. The elastic
coefficients (at constant electric field) are

C0
iJkL =

∂2W

∂FkL∂FiJ
,
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the piezoelectric stress coefficients takes the form

B0
iJM =

∂2W

∂d0
M∂FiJ

, (5.3)

while the dielectric permittivity coefficients at constant strain are

A0
MN =

∂2W

∂d0
M∂d

0
N

. (5.4)

We can define the quadratic stiffness coefficients as

∂C0
iJkL

∂FqR
=

∂

∂FqR

(
∂2W

∂FkL∂FiJ

)
, (5.5)

and the quadratic dielectric permittivity coefficients as

∂A0
MN

∂d0
S

=
∂

∂d0
S

(
∂2W

∂d0
N∂d

0
M

)
. (5.6)

The mixed second order derivatives (second-order coupling between me-
chanical and electrical variables) are

∂C0
iJkL

∂d0
M

=
∂

∂d0
M

(
∂2W

∂FkL∂FiJ

)
=

∂

∂FkL

(
∂2W

∂d0
M∂FiJ

)
=
∂B0

iJM

∂FkL
(5.7)

and
∂B0

iJM

∂d0
S

=
∂

∂d0
S

(
∂2W

∂d0
M∂FiJ

)
=
∂A0

MS

∂FiJ
. (5.8)

For a piezoelectric material, the constitutive law is that considered from
the first-order Taylor series expansion about the undeformed state, assum-
ing that displacements and their gradients are small enough so that there
is no need to distinguish between Lagrangian and Eulerian descriptions.
Therefore,

σij = Cijklεkl +Bijmδm

en = Bklnεkl +Anmδm
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where ṠiJ , ėN , ḞiJ , ḋ
0
M become, respectively, σij , en, εij , δm, taking into

account that Cijkl = 1
2(C0

iJkL+C0
iJLk) as the fourth order elastic tensor has

minor and major symmetries. This procedure is analogous to that obtained
in (4.52) and (4.53), which became (4.61) and (4.62), respectively.

We provide below an example of how a purely electrostrictive material
is treated. For polyurethane materials, for instance, the following assump-
tions are made:

• they do not exhibit any piezoelectric behaviour and the coefficients
Bijm are therefore zero;

• their quadratic stiffness coefficients (5.5) are negligible;

• the variation of the stiffness coefficients with respect to the electric
field is negligible and the coefficient (5.7) are therefore ignored.

As a consequence, the only two relevant second-order quantities are the
electrostrictive stress coefficients

Qmsij =
1

2

∂Ams
∂εij

,

and the quadratic dielectric permittivity coefficients at constant strain, i.e.

Onms =
1

2

∂Amn
∂δs

;

then, the electrostrictive response considered for polyurethanes reduce to

σij = Cijklεkl +Qmsijδmδs,

en = Amnδm + 2Qmnklδmεkl +Onmsδmδs.

By analogy with piezoelectricity, one can also define electrostrictive
strain coefficients Mmsij , which relate the strains to the square of the elec-
tric displacement as

εij = Mmsijδmδs.
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Placing in (5.9)1 σij = 0 [19], then it follows from (5.9) that the electrostric-
tive coefficients are given by

Qmsij = −MmsklCklij .

Entries Mmsij are the quantities that are to be experimentally obtained in
order to characterize the electrostrictive behaviour of polyurethane [19].

5.2 Deformation-dependent Permittivity: Electrostric-
tion in Soft Dielectric Elastomers

In a dielectric polarized by an external field, two are the effects leading to
an electric induced strain: Maxwell effect and electrostriction. Even though
both are quadratic in the intensity of electric field (differently form piezo-
electricity), Maxwell effect is caused by electrostatic attraction of charges
on the electrodes while electrostriction is due to the intrinsic electrome-
chanical response of the material, as previously discussed.

In terms of modelling, electrostriction refers to the change of the dielec-
tric permittivity with the deformation, as suggested also by definition (5.9).
DEs deform substantially, so that the role of the electrostriction in these
materials cannot in general be neglected. Experimental results show that
typical materials for DEAs possess this property (Wissler and Mazza [53];
Li et al. [28]) and therefore it becomes important to investigate its effects to
the stability behaviour of such actuators. Even though Suo and Zhao [45]
provided a first description of electrostriction for soft dielectrics, our goal
is to show that deformation-dependent permittivity is incorporated in the
constitutive model (4.41), (4.44). We point out that ideal dielectrics with
constant permittivity, for which e = d/(ε0εr), are caught in the Eulerian
counterpart of (4.41)2 imposing γ̄0 = γ̄2 = 0 and γ̄1 = 1, with ε̄r = εr.

The considered sets of parameters γ̄i (i = 0, 1, 2) have been computed
gathering data from experimental tests performed by Wissler and Mazza
[53] and Li et al. [28] on 3M VHB4910 equally biaxially prestretched films.
To this end, the formula for Eulerian electric field has been specialized
accordingly, providing values reported in Table 5.1. The fitting results,
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Figure 5.1: Experimental results: biaxial tests, εr = ε̄r(γ̄0(λ1λ2)2+ γ̄1+ γ̄2/(λ1λ2)2)−1.

Set # (Reference) ε̄r γ̄0 γ̄1 γ̄2

1 (Wissler and Mazza) [53] 4.68 0.00104 1.14904 −0.15008
2 (Li et al.) [28] 4.5 0.00458 1.3298 −0.33438

Table 5.1: Sets of electrostrictive parameters employed in the instability analyses in
terms of γ̄0, γ̄1, γ̄2.

obtained using the least square method, are reported in Fig. 5.1.
The same procedure described above, referring to the constitutive equation
(4.49), gives the correspondent values in terms of ηi (i = 0, 1, 2), reported
in Table 5.2.

The influence of electrostriction on the deformation of an electrically
excited specimen can be inferred specializing the (4.41)2 to a homogeneous
deformation of a three-dimensional actuator (see Fig. 5.3), where F =

Set # (Reference) ε̄r η̄0 η̄1 η̄2

1 (Wissler and Mazza) [53] 4.68 −0.1468 −0, 853712 0.000512
2 (Li et al.) [28] 4.5 −0.2952 −0.705973 0.00119971

Table 5.2: Sets of electrostrictive parameters employed in the instability analyses in
terms of η̄0, η̄1, η̄2.



5.2. Deformation-dependent Permittivity: Electrostriction in Soft Dielectric Elastomers93

Figure 5.2: In a) a dielectric that is non polar in absence of applied voltage. Subject
to a voltage, some dielectrics become thinner b) but other dielectrics become thicker c).

diag[1/
√
λ, 1/

√
λ, λ] and the electric displacement is directed along x3, i.e

d = (0, 0, d3), namely

T11 − T33 = µ(ᾱ1λ− ᾱ−1)
1− λ3

λ2
− 1

ε0ε̄r
d2

3(γ̄1 + γ̄2λ
2).

The ”electric part” of the stress difference, which depends on the elec-
trostrictive coefficients, is

(T11 − T33)el = − 1

ε0ε̄r
d2

3(γ̄1 + γ̄2λ
2), (5.9)

that can be reformulated in terms of the applied voltage (∆φ) introducing
the electric field (4.42)

e3 =
1

ε0ε̄r

( γ̄0

λ2
+ γ̄1 + γ̄2λ

2
)
d3,

and employing the relationship e3 = ∆φ
h = ∆φ

λh0
, obtaining

(T11 − T33)el

ε0ε̄r
= − γ̄1 + γ̄2λ

2( γ̄0
λ2

+ γ̄1 + γ̄2λ2
)2 ∆φ2

(h0)2λ2
. (5.10)

In Fig. 5.4 the function (T11−T33)el

ε0ε̄r(∆φ/h0)2
is reported for the sets of param-

eters of Table 5.1. It is noted that an increase of electrostriction for the
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soft elastomer makes the electric part of the stress difference less intense
compared to the case where εr is constant. This difference can turn positive
when the change is particularly pronounced. In this case, the electrostric-
tive contribution to the global deformation of the actuator overcomes the
squeezing effect induced by the Maxwell stress, resulting in an increase of
the thickness of the system.

Figure 5.3: In a) the specimen is prestressed with T11 = T22, T33 = 0. In b) the
specimen is free prestressed (T11 = T22 = T33 = 0).

Figure 5.4: In a) plot of “electric part” of the stress (5.10) is reported, in which we
can note that after the minimum value, electrostriction takes over Maxwell effect. In b)
the voltage (per unit of thickness) in terms of λ1 is represented, when T11 = T33 = 0.



Chapter 6

Homogeneous Non-linear Electroelastic

Deformations for DE Actuators

The homogeneous electroelastic deformations considered as fundamental
paths for the instability analysis are here introduced.

6.1 Homogeneous Fundamental Paths: Prestressed
and Prestretched DE-layers

Stability of DE actuators are performed considering states obtained de-
forming homogeneously the initial natural configuration in plane strain by
electrical actuation. To this end, we introduce a reference cartesian coor-
dinate system Ox0

1x
0
2x

0
3 with orthonormal basis {i1, i2, i3}, where x0

3 is the
out of plane axis, x0

1 the longitudinal axis, and x0
2 the transverse direction

of the layer, such that the boundaries of the layer correspond to x0
2 = 0

and x0
2 = h0, where h0 is the initial thickness. In particular, we consider a

deformation described by

x1 = λx0
1, x2 =

1

λ
x0

2, x3 = x0
3,

where λ is the imposed pre–stretch along direction x0
1, so the deformation

gradient is F = diag[λ, 1/λ, 1]. The electrical actuation is induced by per-

95
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fectly compliant electrodes on the two boundaries at x0
2 = 0, h0 where a

voltage ∆φ is applied, so that electric field and electric displacement are
uniquely directed along direction x0

2 (e = e2i2 and d = d2i2).
Then, the invariants I1 and I2 (3.17) are simply

I1 = I2 = 1 + λ2 +
1

λ2
, (6.1)

while I3 = 1 due to the incompressibility constraint. The current and the
reference electric displacements (eq. (4.15)) are linked by

d1 = 0, d2 =
d0

2

λ
, d3 = 0,

while the electro-mechanical invariants I4, I5, I6 (4.36) are given by

I4 = (d0
2)2, I5 = λ−2I4, I6 = λ−4I4. (6.2)

We can easily obtain the component of the stress tensor T (4.41), for which
the only non-zero components are:

T11 = λ2µᾱ1 − µᾱ−1(λ2 + 1)− p,

T22 =
µᾱ1

λ2
− µᾱ−1

1 + λ2

λ2
+ d2

2

γ̄1

ε0ε̄r
+

2d2
2γ̄2

ε0ε̄rλ2
− p,

T33 = µᾱ1 − µᾱ−1(
1

λ2
+ λ2)− p,

(6.3)

while the components of the electric field e (4.42) are

e1 = 0, e2 =
d2

ε0ε̄r
(γ̄1 +

γ̄2

λ2
+ γ̄0λ

2), e3 = 0.

6.1.1 Presence of an External Electric Field

Adopting the deformation just described, on the specialization of the bound-
ary conditions

(d− d∗) · n = 0, (e− e∗)× n = 0,
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to the boundary x0
2 = x2 = 0, we obtain d∗2 = d2 and from (4.13)2 it follows

that d∗1 = d∗3 = 0 and e∗2 = ε−1
0 d∗2 = ε−1

0 d2, (see Fig. 6.1). Outside the
material we take the electric field to be uniform and equal to its value at
x2 = 0. Then, Maxwell’s equations are satisfied identically and d∗ and e∗

(eq. (4.13)) have components

d∗1 = 0, d∗2 = d2 = λ−1d0
2, d∗3 = 0,

and

e∗1 = 0, e∗2 = ε−1
0 d2 = ε−1

0 λ−1d0
2, e∗3 = 0,

respectively. We deduce from (4.13)1 that the non–zero components of the
Maxwell stress are given by

T ∗11 = T ∗33 = −T ∗22 = − d2
2

2ε0
.

Figure 6.1: A specimen is subjected to an external transverse electric displacement
field and deforms accordingly.

Therefore, from (6.3)2, and using the assumption of an external electric
field, we compute the pressure

p =

(
γ̄1

ε0ε̄r
− 1

2ε0

)
d2

2 +
2d2

2γ̄2

ε0ε̄rλ2
+
µᾱ1

λ2
− µᾱ−1

(
1 +

1

λ2

)
.
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6.1.2 Expansion with Longitudinal Applied Force

In this case (Fig. 6.2) the actuator is stress free along direction x2 and
subjected to a constant force S̃h0 along the longitudinal direction, so that
the stress state is represented by

S11 = S̃, S22 = 0,

which provide the following implicit relation between λ and D̄ = d2/
√
µε0ε̄r,

i.e.
S̃

µ
λ2 + (ᾱ1 − ᾱ−1)

(
1

λ
− λ3

)
+ D̄2

(
γ̄1λ+

2γ̄2

λ

)
= 0.

Figure 6.2: A specimen is prestressed and activated electrically at S11 = S̃, applying a
constant force S̃ along x2 direction.

6.1.3 Pre-stretched Specimen

Along x2, the total stress is identically zero throughout the solid, namely
T22 = 0. Denoting by λpre the imposed pre-stretch, the applied deformation
results in an uniaxial tensile state of stress,

T pre
11 = µ(ᾱ1 − ᾱ−1)

(
λ2

pre −
1

λ2
pre

)
.

When a varying electric displacement d2 (see Fig. 6.3) is subsequently
applied, the longitudinal stress changes as

T11

µ
=
T pre

11

µ
− D̄2

(
γ̄1 +

2γ̄2

λ2
pre

)
.
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The electric actuation decreases the longitudinal stress, so that at a cer-
tain level of d2, under compression, a buckling-like instability occurs. The
behaviour of T11 in terms of D̄ is reported in Fig. 6.4 for the sets of pa-
rameters #1 and #2. The vanishing of T11 is often indicated as ‘loss of
tension’.

Figure 6.3: A specimen is prestretched, so starting from the natural configuration
(λ = 1), the actual configuration is achieved by imposing, 1) λ = λpre and 2) an electric
displacement field.

Figure 6.4: Plots of dimensionless uniaxial tensile state of stress for Gent model material
(3.52), (4.37), with set #1 in a) and set #2 in b).
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Chapter 7

Diffuse Modes and Band Localization of

DE Actuators

Bertoldi and Gei [2] have investigated analytically the influence of elec-
tromechanical finite deformations on the stability of multilayered soft di-
electrics. For homogeneous systems, diffuse mode bifurcations for pre-
stretched actuators and onset of band localization are here investigated, for
different geometries (layer and half-space), under plain strain conditions.

7.1 Diffuse Modes of Bifurcation

These instabilities may be detected investigating the propagation of small-
amplitude perturbations of arbitrary wavelength superimposed on the cur-
rent state of deformation [14]. While a real natural frequency corresponds
to a propagating wave, a complex natural frequency identifies perturbation
exponentially growing with time. Therefore, the transition between a sta-
ble and an unstable configuration is observed when the frequency vanishes
and can be studied using investigation of zero-speed waves: for electroe-
lastic solids, Dorfmann and Ogden [13] have explored surface instability,
revealing that the critical loading parameter is crucially dependent on the
magnitude of electric displacement applied.
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Diffuse modes are meaningful for partially constrained bodies, then they
are investigated here only for prestretched specimens. We will analyse two
particular geometries: a half-space and a layer, with different boundary
conditions. In the investigation of diffuse modes, along the homogeneous
fundamental path, we must consider when band localization occurs as an
alternative instability which terminates the homogeneous response of the
body. The latter will be discussed deeply in Sect. 7.4.

7.1.1 Surface Instability with an External Electric Field

The study of diffuse modes for a half-space is called surface instability. We
consider a prestretched half-space and with the presence of an external field,
as in Fig. 7.1, assuming as fundamental path the one presented in sect.
6.1.1 , recalling incremental eqs. (4.59) and specializing the constitutive
equations for a Mooney-Rivlin electroelastic solid (3.46), (4.37). For the
Gent material model a similar procedure can be followed.

Figure 7.1: A specimen is prestreched and an external electric displacement field is
applied in the transversal direction.
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Electroelastic Moduli

Since Fij = 0 for i 6= j and d0
1 = d0

3 = 0, significant simplifications occur in
the component of the tensors C, B and A (see eqns. (4.64),(4.65),(4.66)).
In particular, we obtain

C1111 = C3131 = λ2
preµ,

C1212 =
d2

2(γ̄1λ
2
pre + γ̄2(2 + λ4

pre)) + ε0ε̄rµ

ε0ε̄rλ2
pre

,

C1221 = C2112 = C2332 = C3223 =
d2

2γ̄2λ
2
pre

ε0ε̄r
,

C2323 =

(
d2

2γ̄2λ
2
pre

ε0ε̄r
+ µ

)
, C2121 = λ2

preC2323,

C2222 =
d2

2(6γ̄2 + γ̄1λ
2
pre) + ε0ε̄rµ

ε0ε̄rλ2
pre

,

C3232 =
d2

2(2γ̄2 + (γ̄1 + γ̄2)λ2
pre) + ε0ε̄rµ

ε0ε̄rλ2
pre

,

C1313 = C3333 = µ,

and

B121 = B211 =
d2(γ̄2 + γ̄1λ

2
pre + γ̄2λ

4
pre)

ε0ε̄rλ2
pre

B233 = B323 =
d2(γ̄2λ

2
pre + γ̄1λ

2
pre + γ̄2)

ε0ε̄rλ2
pre

,

B222 =
2d2(γ̄1λ

2
pre + 2γ̄2)

ε0ε̄rλ2
pre

and

A11 =
γ̄0 + γ̄1λ

2
pre + γ̄2λ

4
pre

ε0ε̄rλ2
pre

, A22 =
γ̄0λ

4
pre + γ̄1λ

2
pre + γ̄2

ε0ε̄rλ2
pre

, A33 =
γ̄0 + γ̄1 + γ̄2

ε0ε̄r
.
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Incremental Fields and Equations

As for the underlying deformation, we consider the incremental deformation
also to have a plane strain character. Thus, we suppose that the components
of the incremental displacement (presented in (3.43)1) are such that u3 =
0 and that the in–plane components depend only on x1 and x2: ui =
ui(x1, x2), for i = 1, 2. Similarly, we assume that d̂3 = 0 and d̂i = d̂i(x1, x2),
for i = 1, 2 and ṗ = ṗ(x1, x2). So the incremental field equations

Σ11,1 + Σ12,2 = 0,

Σ21,1 + Σ22,2 = 0,

d̂1,1 + d̂2,2 = 0,

ê1,2 − ê2,1 = 0,

specialize in

u1,11λ
2
preµ+ u1,11

(
d2

2

γ̄1

ε0ε̄r
− d2

2

2ε0
+

µ

λ2
pre

)
− ṗ,1

+ d̂1,2d2

γ̄1λ
2
pre + γ̄2(1 + λ4

pre)

ε0ε̄rλ2
pre

+ u1,22

(
d2

2

γ̄1 + γ̄2(2 + λ4
pre)

ε0ε̄r
+

µ

λ2
pre

)

+ u2,12

(
d2

2

γ̄1 + γ̄2λ
2
pre

ε0ε̄r
− d2

2

2ε0
+

µ

λ2
pre

)
= 0,

d̂1,1d2

γ̄1 + γ̄2(1 + λ4
pre)

ε0ε̄rλ2
pre

+ u2,11µλ
2
pre + u1,12

(
d2

2

γ̄1

ε0ε̄r
− d2

2

2ε0
+

µ

λ2
pre

)
+ 2d2d̂2,2

γ̄1λ
2
pre + 2γ̄2

ε0ε̄rλ2
pre

+ u2,22

(
d2

2γ1 +
µ

λ2
pre

)
+ u2,22

(
d2

2

γ̄1

ε0ε̄r
− d2

2

2ε0
+

µ

λ2
pre

)
− ṗ,2 = 0,

(7.1)
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and

d2(u1,22 + 2u2,12)(γ̄2 + γ̄1λ
2
pre + γ̄2λ

4
pre) + d̂1,2

(
γ̄0 + γ̄1λ

2
pre + γ̄2λ

4
pre

)
− 2d2u2,12(γ̄1λ

2
pre + 2γ̄2)− d̂2,1(γ̄1λ

2
pre + γ̄0λ

4
pre + γ̄2) = 0.

(7.2)

Solution

In order to solve the incremental boundary value problem (4.59) and (4.60),
we seek small–amplitude solutions in the half space x2 ≥ 0 in the form

ui(x1, x2) = vi(x2) exp (ik1x1),

d̂i(x1, x2) = ∆i(x2) exp (ik1x1),

ṗ(x1, x2) = q(x2) exp (ik1x1), for i = 1, 2.

(7.3)

The incompressibility constrain u1,1 + u2,2 = 0 imposes that for (7.3)1 we
have

ik1v1(x2) + v′2(x2) = 0 (7.4)

and the Maxwell equation d̂1,1 + d̂2,2 = 0 imposes that for (7.3)2 we have

ik1∆1(x2) + ∆′2(x2) = 0. (7.5)

It’s necessary to make other assumptions:

v2(x2) = U exp (sk1x2),

∆2(x2) = W exp (sk1x2),

q(x2) = Q exp (sk1x2),

(7.6)

where s is to be determined subject to the restriction

Re(s) < 0, (7.7)

which ensures that displacement decays away from the boundary with in-
creasing x2. Then, from (7.4), eq. (7.6)1 becomes

v1(x2) = iUs exp (sk1x2)
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and from (7.5), eq. (7.6)2 becomes

∆1(x2) = iWs exp (sk1x2).

So substituting all these quantities in (7.1) and (7.2) we obtain a homo-
geneous system ,in the unknowns U,W,Q, to which is associated a 3 × 3
matrix. So in order to have a non trivial solution, the determinant of co-
efficients U, V,Q must vanish. This leads to the equation in the variable s,
which in the case of Ogden and Dorfmann (γ̄2 = 0), is simply given by

λ2
pre[s

4 + λ4
pre − s2(1 + λ4

pre)]
[
d2

2s
2γ̄0γ̄1λ

2
pre

+ ε0ε̄r(s
2γ̄0 + (s2 − 1)γ̄1λ

2
pre − γ̄0λ

4
pre)µ

]
= 0

(7.8)

which is cubic in s2. Let s1, s2, s3 the three negative roots of (7.8), because
this ensure that the displacement decays away from the boundary with
increasing x2. So here we write the roots

s1 = −1, s2 = −λ2, s3 = −
λpre

√
ε0ε̄r(γ̄1 + γ̄0λ2

pre)µ√
d2

2γ̄0γ̄1λ2
pre + ε0ε̄r(γ̄0 + γ̄1λ2

pre)µ
.

So the general solution for the half–space satisfying the decay condition
can be written as

v2(x2) =
3∑
j=1

Uj exp (sjk1x2),

∆2(x2) =

3∑
j=1

Wj exp (sjk1x2),

q(x2) =
3∑
j=1

Qj exp (sjk1x2).

The constants Uj , Wj and Qj are not independent and are connected using
the equilibrium eqs. (7.1)2 and (7.2) (given in the simple case γ̄2 = 0):

Wj = −
d2k1γ̄1λ

2
presj(s

2
j − 1)Uj

γ̄0(s2
j − λ4

pre) + γ̄1λ2
pre(s

2
j − 1)

, for j = 1, 2, 3, (7.9)
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and

Qj =
1

sj
k1(−λ4

pre + s2
j )

(
µ

λ2
pre

+
d2

2γ̄0γ̄1s
2
j

ε0εr[γ̄0(s2
j − λ4

pre) + γ̄1λ2
pre(s

2
j − 1)]

)
Uj ,

for j = 1, 2, 3.

(7.10)

Incremental Exterior Equations

Outside the material, Maxwell’s equations hold for d∗ and e∗. From the
equation curle∗ = 0, and the assumption that all fields depend only on x1

and x2, we deduce the existence of a scalar function ϕ∗ = ϕ∗(x1, x2) such
that

ė1
∗ = −ϕ∗,1, ė2

∗ = −ϕ∗,2, ė3
∗ = 0.

Then
ḋ1
∗

= −ε0ϕ∗,1, ė2
∗ = −ε0ϕ∗,2, ḋ3

∗
= 0.

and the equation divd∗ = 0 gives

ϕ∗,11 + ϕ∗,22 = 0

for ϕ∗. Finally, the incremental Maxwell stress tensor has the following
non–zero components

Ṫ ∗11 = Ṫ ∗33 = −Ṫ ∗22 = ε0e
∗
2ϕ
∗
,2

Ṫ ∗12 = Ṫ ∗21 = −ε0e∗2ϕ∗,1.

For the vacuum we suppose that

ϕ̇∗−(x1, x2) = F− exp (k1x2) exp (ik1x1)

so that the solution decays for x2 → −∞, where the subscript minus indi-
cates that we are in the neighbor of x2 = 0. In this way we have

ė1
∗− = −iF−k1 exp (ik1x1 + k1x2), ė2

∗− = −F−k1 exp (ik1x1 + k1x2).
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Incremental Boundary Conditions

Next we specialize the incremental boundary conditions to the present sit-
uation. We set the incremental mechanical traction ṫ to 0 and the incre-
mental traction boundary condition (4.60)2,4 specializes in

Σ̇ndA = ṫ0dA0 + Σ∗ndA, d̂ · ndA = −ω̇0dA0 + d̂∗ · ndA, (7.11)

where

Σ∗ = Ṫ∗ + T∗[trL|bndI− (L|bnd)
T ], d̂∗ = ε0[ė∗ + (trL|bndI− L|bnd)e

∗],

denoting with ė∗ the increment of the electric field in the vacuum and with
L|bnd = (gradu)∂B. Eq. (7.11)1 reduces to the component equations

Σ21 + T ∗11u2,1 + T ∗21u2,2 − Ṫ ∗21 = 0,

Σ22 + T ∗22u2,2 + T ∗21u2,1 − Ṫ ∗22 = 0
(7.12)

on x2 = 0. Then the incremental electric boundary condition (7.11)2 be-
comes

d̂2 + d∗1u2,1 + d∗2u2,2 − ḋ∗2 = 0 (7.13)

and

ê1 − u1,1e
∗
1 − u2,1e

∗
2 − ė∗1 = 0 (7.14)

on x2 = 0. We remind that in this case T12 = T21 = 0, d∗1 = 0 and e∗1 = 0.

Substituting eqs. (7.3), (7.6), (7.9),(7.10) in (7.12), (7.13) and (7.14) we
obtain a system of four homogeneous equations. For non–trivial solution,
the determinant of coefficients Uj , for j = 1, 2, 3 and F− must vanish. This
provides a connection between the four quantities k1, γ̄0, γ̄1, γ̄2, d2, in which
we have to consider the fixed value of µ and ε0. This equation is called
bifurcation equation.
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Results

We can consider a comparison with the Ogden-Dorfmann work. In [13], we
find that authors indicate with α and β the electric material coefficients,
establishing the next relations with our electrostrictive coefficients

α =
γ̄0

2ε̄r
, β =

γ̄1

2ε̄r
.

Since it is valid the physical relationships

γ̄0 + γ̄1 + γ̄2 = 1, ε̄r > 1

then it follows that for Ogden-Dorfmann coefficients must be verified that

α+ β <
1

2
,

but in their work is not taken into account to comply with this condition,
so some numerical data, which are presented, have no physical meaning.

Results are reported in Fig. 7.2, where the chosen parameters are con-
sistent with the rest of the thesis (see Table 5.1). Curves pertinent to
Sets #1 and #2 terminate at the onset of band-localization (marked with
red points) that will be analysed in Sect. 7.4, while set #0 denotes the
case εr = ε̄r (constant). When D̄ = 0, surface instability is achieved at
λpre ≈ 0.544 as predicted by Biot [4]. It is found that the electric field has
a highly nonlinear influence on the stability, and it is evident the strongly
dependence on the parameters γ̄0, γ̄1 and γ̄2.

7.2 Surface Instability with Electric Field Induced
by a Surface Electrode

We consider a half-space with an external electric field, induced by a surface
electrode, so subjected to a fundamental path as presented in sect. 6.1.3, see
Fig. 7.3. Study has been made for Mooney-Rivlin electroelastic material
model (3.46), (4.37). Analogous calculations have been made for Gent
electroelastic material model (3.52), (4.37).
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Figure 7.2: Plot of the critical stretch λpre for an electroelastic Mooney-Rivlin half-
space as a function of the dimensionless D̄ = d2/

√
µε0ε̄r, with the presence of an external

electric field. Results show that the electric field has a highly nonlinear influence on the
stability, and it is evident the strongly dependence on the parameters γ̄0, γ̄1 and γ̄2, set
#0 stands for εr = ε̄r.

Figure 7.3: A specimen is prestretched, so starting from the natural configuration
(λ = 1), the actual configuration is achieved by imposing 1) λ = λpre and 2) an electric
displacement field induced by a surface electrode.
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The incremental equations become:

u1,11λ
2
preµ+ u1,11

(
d2

2

γ̄1

ε0ε̄r
+

µ

λ2
pre

)
− ṗ,1

+ d̂1,2d2

γ̄1λ
2
pre + γ̄2(1 + λ4

pre)

ε0ε̄rλ2
pre

+ u1,22

(
d2

2

γ̄1 + γ̄2(2 + λ4
pre)

ε0ε̄r
+

µ

λ2
pre

)

+ u2,12

(
d2

2

γ̄1 + γ̄2λ
2
pre

ε0ε̄r
+

µ

λ2
pre

)
= 0,

d̂1,1d2

γ̄1 + γ̄2(1 + λ4
pre)

ε0ε̄rλ2
pre

+ u2,11µλ
2
pre + u1,12

(
d2

2

γ̄1

ε0ε̄r
+

µ

λ2
pre

)
+ 2d2d̂2,2

γ̄1λ
2
pre + 2γ̄2

ε0ε̄rλ2
pre

+ u2,22

(
d2

2γ1 +
µ

λ2
pre

)
+ u2,22

(
d2

2

γ̄1

ε0ε̄r
+

µ

λ2
pre

)
− ṗ,2 = 0

(7.15)

and

d2(u1,22 + 2u2,12)(γ̄2 + γ̄1λ
2
pre + γ̄2λ

4
pre) + d̂1,2

(
γ̄0 + γ̄1λ

2
pre + γ̄2λ

4
pre

)
− 2d2u2,12(γ̄1λ

2
pre + 2γ̄2)− d̂2,1(γ̄1λ

2
pre + γ̄0λ

4
pre + γ̄2) = 0.

(7.16)

Considering the same solutions seen above for the prevoius half-space
problem, we obtain on one hand the same values for s, on the other incre-
mental boundary conditions change as follows: introducing the incremental
electric field φ̇∗−(x1, x2) = F− exp (k1x2) ∗ exp (ik1x1), we specialize such
conditions in x2 = 0 and for the electrical part we have to consider only
the incremental Maxwell stress tensor:

d̂2 − ε0ė∗−2 = 0, ê1 − ė∗−1 = 0.

With the same manipulations seen before, we obtain bifurcation equation,
in terms of k1, γ̄0, γ̄1, γ̄2, d2, µ, ε0.
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Figure 7.4: Surface instability diagram for a Mooney-Rivlin material, induced by an
electric field generated by a surface electrode. For set #2 the solution is composed of
two branches, mainly in the compressive range (λpre). Red points indicate occurrence of
band-localization instability.

Results

Fig. 7.4 is qualitatively similar to Fig. 7.2, even if their quantitative com-
parison is provided in Fig. 7.8, for set #0 only, for a Mooney Rivlin model
(3.46). We observe that, for the same value of strech, a higher value of D̄
occurs when the electric field is generated by a surface electrode. In partic-
ular Fig. 7.4, for set #2, the solution is composed of two branches: the first
is a classical surface instability, the second is a localized mode along the
surface of the half-space (see Fig. 7.7 and comments below). In all plots,
red points indicate occurrence of band-localization instability. The “stars”
in c) denote the two modes sketched in Fig. 7.7.

Figs. 7.2-7.4 exhibit the comparison between surface instabilities for
Mooney-Rivlin in blue and Gent material models in purple (recalling (3.52),
assuming in the uni-axial test the limiting stretch equal to 10, conseguently
Jm = 97.2 (3.51)), when the electric field is generated by a surface electrode.
At low stretches (λpre . 2, the two material responses are very similar. For
sets #1 and #2 the curves are interrupted in the range where the instability
is determined by band-localization (Sect. 7.4).

The sketch of instability modes corresponding to the two points marked
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Figure 7.5: Comparison between
surface instabilities for Mooney-Rivlin
(MR, blue) and Gent material models
(G, purple). The electric field is gen-
erated by a surface electrode. At low
stretches (λpre . 2) the two material
responses are very similar. The first
and second modes, indicated with two
“stars” in c), will be shown in Fig. 7.7.

by “stars” in the previous figures (set #2, λpre = 0.7) are drawn in Fig.
7.7. Surfaces in a) and b) display, respectively, the functions |u(x1, x2)|
and |d̂(x1, x2)| for the first mode, corresponding to the classical Rayleigh
mode. Modes have been normalized chosing max(|u(x1, 0)|) = 1. Parts b)
and d) of Fig. 7.7 report the same functions for the second mode. It can
be observed that the latter is very localized along the surface of the half
space with high values of the electric quantity compared to the former. We
have also noted that d̂2 component is predominant compared to d̂1.
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Figure 7.6: Same as Fig. 7.2, but for
a wider range of the imposed λ pre. For
sets #1 and #2 the curves are inter-
rupted in the range where the instability
is determined by band-localization.

7.3 Diffuse modes of Instability in a Homogeneous
Layer

The goal of this section is to investigate electrostrictive effects on diffuse
(sinusoidal) instability modes for a homogeneous layer under plane strain
condition, subjected to the large strain deformation described in Sect. 6.1.3
(see Fig. 6.3): the specimen will be first prestretched homogeneously to
λ = λpre and then subject to electric actuation along the transverse di-
rection. These instability modes are important as they comprise buckling
instability (a diffuse mode with high wavelength, typical of slender speci-
mens) and surface instability (the limit for short wavelengths) as calculated
before. Real actuators exploit buckling modes to induce a snap actuation
mechanism [8].

To start, we suppose that the components of the incremental displace-
ment are such that u3 = 0 and that the in–plane components depend only
on x1 and x2: ui = ui(x1, x2), for i = 1, 2. Similarly, we assume d̂3 = 0
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Figure 7.7: Instability modes corresponding to the two “stars” reported in Fig. 7.4
for set #2 (λpre = 0.7). a), c): modulus of incremental displacement |u(x1, x2)|; b),
d): modulus of updated incremental electric displacement field |d̂(x1, x2)|. Note the
difference in the amplitudes between d) and b).

and d̂i = d̂i(x1, x2) for i = 1, 2. Moreover, ṗ = ṗ(x1, x2). Under these
hypotheses, the incremental field equations are

Σ11,1 + Σ12,2 = 0, Σ21,1 + Σ22,2 = 0, (7.17)

d̂1,1 + d̂2,2 = 0, (7.18)

ê1,2 − ê2,1 = 0, (7.19)

while the entries of the constitutive moduli (4.64)-(4.65)-(4.66) simplify
accordingly.
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Figure 7.8: Comparison between surface instabilities obtained for the two different
fundamental paths considered (Mooney-Rivlin material, set #0).

Incremental boundary conditions

The incremental traction boundary conditions are similar to those employed
for the half-space problem, Sect. 7.1.1,

Σ21 − Ṫ ∗21 = 0,

Σ22 − Ṫ ∗22 = 0
(7.20)

d̂2 − ḋ∗2 = 0 (7.21)

ê1 − ė∗1 = 0 (7.22)

but now they are imposed on the two boundary of the layer, x2 = 0, h.

Diffuse modes of instability

Diffuse instability modes correspond to solutions of the incremental equa-
tions of the form

ui(x1, x2) = vi(x2) exp (ik1x1),

d̂i(x1, x2) = ∆i(x2) exp (ik1x1),

ṗi(x1, x2) = q(x2) exp (ik1x1), for i = 1, 2,

(7.23)
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being k1 the wavenumber. The incompressibility constraint u1,1 + u2,2 = 0
imposes

ik1v1(x2) + v′2(x2) = 0, (7.24)

while the Maxwell equation d̂1,1 + d̂2,2 = 0 that

ik1∆1(x2) + ∆′2(x2) = 0, (7.25)

(see (7.23)2). Admissible form for the x2–dependent fields in (7.23) are

v2(x2) = U exp (sk1x2),

∆2(x2) = W exp (sk1x2),

q(x2) = Q exp (sk1x2),

(7.26)

so that from eqs. (7.26)1 and (7.26)2, (7.24) and (7.25), become, respec-
tively,

v1(x2) = iUs exp (sk1x2),

∆1(x2) = iWs exp (sk1x2).

Substituting all these quantities in (7.17) and (7.19), we obtain a homoge-
neous system in the unknowns U,W,Q. A non-trivial solution is found if
the determinant of the matrix of coefficients vanishes, leading to an equa-
tion in the variable s, which is a cubic in s2. Let s1, s2, s3, s4, s5, s6 be the
roots of that equation. The general solution for the incremental fields is

v2(x2) =

6∑
i=1

Ui exp (sik1x2),

∆2(x2) =
6∑
i=1

Wi exp (sik1x2),

q(x2) =

6∑
i=1

Qi exp (sik1x2).

The constants Ui, Wi and Qi are not independent and are connected using
the equilibrium equations (7.17)2 and (7.19).
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Exterior equations

Outside the material, Maxwell equations hold for d∗ and e∗. From curl e∗ =
0 and the assumption that all fields depend only on x1 and x2, we deduce
the existence of a scalar function ϕ∗ = ϕ∗(x1, x2) such that

ė1
∗ = −ϕ∗,1, ė2

∗ = −ϕ∗,2, ė3
∗ = 0, (7.27)

where ė∗ is the electric field in the vacuum caused by the perturbation.
Then, as ḋ = ε0ė,

ḋ1
∗

= −ε0ϕ∗,1, ė2
∗ = −ε0ϕ∗,2, ḋ3

∗
= 0,

while the condition div ḋ∗ = 0 gives

ϕ∗,11 + ϕ∗,22 = 0. (7.28)

Finally, the incremental Maxwell stress tensor in vacuum (4.13) has the
following non–zero components

Ṫ ∗11 = Ṫ ∗33 = −Ṫ ∗22 = ε0e
∗
2ϕ
∗
,2,

Ṫ ∗12 = Ṫ ∗21 = −ε0e∗2ϕ∗,1.

The surrounding space consists of vacuum for x2 < 0 and x2 > h. For
the vacuum at x2 < 0 an expression for ϕ̇∗− satisfying (7.28) and decaying
conditions for x2 → −∞ is

ϕ̇∗−(x1, x2) = F− exp (k1x2) exp (ik1x1),

while for that at x2 > h similar considerations lead to

ϕ̇∗+(x1, x2) = F+ exp (−k1x2) exp (ik1x1).

In this way, eqs. (7.27) provide

ė1
∗− = −iF−k1 exp (ik1x1 + k1x2), ė2

∗− = −F−k1 exp (ik1x1 + k1x2),
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and

ė1
∗+ = −iF+k1 exp (ik1x1 − k1x2), ė2

∗+ = F+k1 exp (ik1x1 − k1x2),

for the two vacui.
Substituting eqs. (7.23), (7.26), and the expressions of Wi and Qi in

(7.20), (7.21) and (7.22), a system of eight homogeneous equations is ob-
tained. For non–trivial, inhomogeneous solutions, the determinant of coeffi-
cients Ui, for i = 1, . . . , 6, and F−, F+ must vanish. This is the bifurcation
equation that can be studied, for a well-defined strain energy function,
assigning the following dimensionless quantities: λpre, k1h, γ̄0, γ̄1, γ̄2, D̄.

Results

Figure 7.9: Comparison between antisymmetric modes (Gent material model with
different electrostrictive parameters (3.52), (4.37), (5.1)) for the same initial λpre: line
for set #0, dashed line for set #1 and dot-dashed line for set #2.

In Fig. 7.10, diffuse-mode instability (i.e. antisymmetric modes of
instability)is analysed for a prestretched specimen at different λpre and for
different sets of electrostrictive parameters (see Table 5.1) for an extended
Gent electroelastic free energy (3.52), (4.37).

In each of the three plots at the top of the figure, the horizontal axis
refers to the dimensionless wavenumber k1h, therefore high values of this
parameter denote a surface-like modes (see Sect. 7.1.1, the asymptotic
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values of critical D̄ at k1h → ∞ correspond to the findings previously
obtained), while low k1h’s correspond to buckling-like modes.

The change of permittivity with deformation influences the critical elec-
tric displacement at bifurcation. This can be easily inferred comparing the
top three plots for the same initial λpre and the comparison in Fig. 7.9.
In general, a high degree of electrostriction will lower the critical electric
actuation. The reason can be understood observing that the instability
occurs when the axial stress T11 becomes compressive and this takes place,
at equal conditions, at a slightly low D̄ for high electrostriction, as shown
in Fig. 6.4. As experimental results on electrostriction are available only
for stretched membranes (see Sect. 5.2), the calculated values of parame-
ters γ̄i well interpolate the behaviour for λpre > 1, while for λpre < 1 we
have verified that the resulting εr is far from reasonable values. Then, in
Fig. 7.10, for λpre = 0.8 only the curve for constant εr has been sketched.
For Set #2, the curve for λpre = 2.5 is not reported as at this value of the
prestretch the specimen is in the range where band-localization takes place.
The geometrical instability pattern for modes k1h = 0.4, 1.3 is reported at
the bottom part of the figure, respectively marked with ∗ and ∗∗.
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Figure 7.10: Diffuse instability modes for a prestretched actuator in plane strain (Gent
material). Top line: Plots for different values of λpre, in the (k1h, D̄)-plane, where k1h
is the current non-dimensional wavenumber, while D̄ is the non-dimensional electric
displacement. The three different graphs highlight the role of electrostriction: for the
different set of electrostrictive parameters, diffuse modes occur for lower value of D̄ and
band-localization arises for different value of electric displacement. Bottom part: the
figure shows possible visualizations of diffuse modes corresponding to two arbitrary values
of k1h, denoted by ∗ and ∗∗, as well as a representation of band-localization instability.

7.4 Band Localization Instability

A local instability mode that could arise in large-strain solid mechanics
is band localization where fields at bifurcation are discontinuous across a
narrow band of unknown inclination. The condition of its onset along the
homogeneous paths previously introduced can be determined investigat-
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ing the admissible jumps between incremental quantities across the inter-
face between band (superscript ’b’) and the rest of the solid (superscript
’o’). Band-localization of electroelastic solids have been also considered by
Bertoldi and Gei [2] and Rudykh and deBotton [41] by searching the condi-
tions of existence of static discontinuities in the incremental electroelastic
problem. Here, we consider jumps across the interface between homoge-
neous solid and band and we build the general solution of the problem. In
this first formulation we consider electric displacement as independent field,
then we use the electroelastic formulation developed in Sects. 4.5 and 4.7.

In the current configuration, let n be the normal to the band and m
the orthogonal unit vector, aligned to the band, such that m · n = 0. At
a certain point of the electro-mechanical loading process imagine that Lo

and d̂o be the uniform response of the solid to an incremental change in
the boundary conditions, except within the considered band where the in-
cremental displacement u is assumed constant on planes x ·n = const
and d̂b uniform. Compatibility relationships across the interface, namely
(L b − Lo)m = 0 and continuity of the normal component of d̂, require
respectively that

L b = Lo + ξm⊗ n, d̂ b = d̂ o + ζm, (7.29)

where ξ and ζ are real scalars and represent mode amplitudes in the band.
Note that fields L b and d̂ b satisfy field equations (7.17) and (7.19) in
the band and the relative displacement field in (7.29)1 associated with the
dyadic term is an isochoric simple shear of amount ξ. On the other hand,
continuity of the incremental traction and of the tangential component of
the electric field require

(Σ b −Σ o)n = 0, ê b − ê o = αn, (7.30)

where, again, α is real.
The use of (7.29) in the constitutive equations and in (7.30) provides,

in component form, respectively (recalling eqs. (4.64), (4.65), (4.66))

Qikmk −
1

ξ
(ṗ b − ṗ o)ni + ζ̄Biqamanq = 0, (7.31)
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Figure 7.11: Band-localization instability. a) General sketch of the band. b) Orienta-
tion of the band occurring at the onset for extended Mooney-Rivlin and Gent material
models. In the proposed linear analysis, the band thickness remains unknown.

Biqaminq + ζ̄Aabmb = ᾱna,

where Qik = Ciqkpnpnq (called ‘acoustic tensor’), ζ̄ = ζ/ξ and ᾱ = α/ξ.
The manipulation of (7.31) yields the scaled amplitudes

ζ̄ = −Biqaminqma

Aabmamb
, ᾱ = Biqaminqna + ζ̄Aabnamb, (7.32)

the incremental pressure difference across the interface

1

ξ
(ṗ b − ṗ o) = Qikmkni + ζ̄Biqaninqma,

as well as the condition for band localization, namely (Aabmamb 6= 0)

AabmambQikmimk − (Biqaminqma)
2 = 0. (7.33)

Eq. (7.33) clearly depends on the current finite state and on the normal to
the band n (the components of m can be easily substituted exploiting the
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connection mr = esrns, where e12 = −e21 = 1, e11 = e22 = 0). The final
general form of the localization equation (7.33) is

Γ6ν
6 + Γ5ν

5 + Γ4ν
4 + Γ3ν

3 + Γ2ν
2 + Γ1ν + Γ0 = 0, (7.34)

which is a complete polynomial with:

Γ6 = B2
121 −A11C1212,

Γ5 = 2(B121(B111 −B122 −B221) +A12C1212 +A11(C1112 − C1222)),

Γ4 = (+B122 +B221 −B111)2 − 2B121(B112 +B211 −B222)

−A22C1212 + 4A12(C1112 − C1222)

−A11(C1111 − 2C1122 − 2C1221 + C2222),

Γ3 = 2(B121B212 − (B111 −B122 −B221)(B112 +B211 −B222)

+A22(C1222 − C1112) +A11(C1121 − C2122)

+A12(C1111 − 2C1122 − 2C1221 + C2222)),

Γ2 = 2B212(B111 −B122 −B221) + (B112 +B211 −B222)2

−A11C2121 − 4A12(C1121 − C2122)

+A22(−C1111 + 2C1122 + 2C1221 − C2222),

Γ1 = 2(B212(B222 −B112 −B211) +A12C2121 +A22(C1121 − C2122)),

Γ0 = B2
212 −A22C2121.

In (7.34), ν = n2/n1 (n1 6= 0). Localization occurs when (7.34) has a real
solution. We can note that ν = is (where s is that considered in (7.6)), so
if ν is complex we do not have loss of ellipticity and diffuse modes can be
explored.

7.4.1 Band-localization of a Homogeneous Layer

We specialize now the general equation (7.34) to the problem of the pre-
stretched layer. Now, as seen already, constitutive tensors Aab, Biqa, Ciqkp
assume the form (4.64), (4.65), (4.66) and d = d2i2. Therefore, eq. (7.33)
becomes

Γ6ν
6 + Γ4ν

4 + Γ2ν
2 + Γ0 = 0, (7.35)
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and coefficients Γi (i = 0, 2, 4, 6) depend on the incremental moduli as

Γ6 = B2
121 −A11C1212,

Γ4 = −2B121(B121 −B222)

−A22C1212 −A11(C1111 − 2C1122 − 2C1221 + C2222),

Γ2 = (B121 −B222)2 −A11C1221

−A22(C1111 − 2C1122 − 2C1221 + C2222),

Γ0 = −A22C2121.

Again, band localization takes place when a real solution ν∗ of eq. (7.35)
exists.

Eq. (7.35) is a sextic with no odd powers that can be reduced to a cubic
in the unknown ν2. Its real roots can be determined explicitly following
Tartaglia-Cardano’s theory (valid for Γ6 6= 0). Two cases arise depending
on the value of discriminant

∆ =
a2

4
+
b3

27
, (7.36)

where

a = −1

3

(
Γ4

Γ6

)2

+
Γ2

Γ6
, b =

2

27

(
Γ4

Γ6

)3

− 1

3

Γ2Γ4

Γ2
6

+
Γ0

Γ6
.

When ∆ ≥ 0, eq. (7.35) has only one real root, i.e.

ν2 =
3

√
− b

2
+
√

∆ +
3

√
− b

2
−
√

∆− Γ4

3Γ6
. (7.37)

In the case ∆ < 0, eq. (7.35) has three real roots, namely

ν2
1 = 2

√
−a

3
cos θ − Γ4

3Γ6
,

ν2
2 = 2

√
−a

3
cos

(
θ + 2π

3

)
− Γ4

3Γ6
, ν2

3 = 2

√
−a

3
cos

(
θ + 4π

3

)
− Γ4

3Γ6
,
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where θ = arctan (−2
√
−∆/b) [θ = π+arctan (−2

√
−∆/b)] if b ≤ 0 [b > 0].

When Γ6 = 0, eq. (7.35) becomes a biquadratic and the roots can be
easily obtained.

For the general form of the free-energy employed in this work and homo-
geneous paths considered for the homogeneous actuators, the expressions
of coefficients Γi are

Γ6 =
1

ε20ε̄
2
rλ

4

[
d2

2(−γ̄2
2+γ̄0(γ̄1λ

2+γ̄2(2+λ4)))+ε0ε̄r(γ̄0+γ̄1λ
2+γ̄2λ

4)µ(ᾱ1− ¯α−1)
]
,

Γ4 =
1

ε20ε̄
2
rλ

6

{
d2

2λ
2
[
γ̄2(γ̄1λ

2 + γ̄2(−4 + 3λ4)) + γ̄0(γ̄1λ
2(1 + λ4)

+ γ̄2(6 + λ8))
]

+ ε0ε̄rµ

[
(ᾱ1 − ᾱ−1)λ2

(
γ̄0 + 2γ̄0λ

4 + γ̄1λ
2(2 + λ4)

+ γ̄2(1 + λ4 + λ8)
)
− 2(−1 + λ4)2(γ̄0 + γ̄1λ

2 + γ̄2λ
4)

(
∂ᾱ−1

∂I2
− ∂ᾱ1

∂I1

)]}
,

Γ2 =
1

ε20ε̄
2
r

{
d2

2(−γ̄1λ
2 + γ̄2(−3 + λ4))2

λ4

+ (γ̄0 + γ̄1λ
2 + γ̄2λ

4)(γ̄2d
2
2 + (ᾱ1 − ᾱ−1)ε0ε̄rµ)

− 1

λ6

(
γ̄2 + γ̄1λ

2 + γ̄0λ
4
)[
d2

2λ
2(−γ̄1λ

2 + 2γ̄2(−3 + λ4))

+ ε0ε̄rµ

(
(ᾱ−1 − ᾱ1)(λ2 + λ6) + 2(−1 + λ4)2

(
∂ᾱ−1

∂I2
− ∂ᾱ1

∂I1

))]}
,

and

Γ0 =
1

ε20ε̄
2
r

(γ̄2 + γ̄1λ
2 + γ̄0λ

4)(d2
2γ̄2 + ε0ε̄rµ(ᾱ1 − ᾱ2)).

As far as instability is concerned, the onset of band localization arises
when one of the following conditions is satisfied: i) Γ6 = 0, ii) Γ0 = 0, and
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iii) ∆ = 0. In the first case, the following relation between λ and D̄ can be
found

D̄ =

√
−(γ̄0 + γ̄1λ2 + γ̄2λ4)(ᾱ1 − ᾱ−1)

γ̄2
2 + γ̄0(γ̄1λ2 + γ̄2(2 + λ4))

,

in the second case

D̄ =

√
− ᾱ1 − ᾱ−1

γ̄2
,

while the third case the expression is too involved and it will be not reported
explicitly.

Results

An example of band-localization instability analysis for homogeneously de-
formed actuators is reported in Fig. 7.12 for an extended Gent free-energy
function with set of parameters #1. In a) and b) the actuator is prestressed
with a given nominal traction S̃, following a nonlinear electroelastic defor-
mation described in Sect. 6.1.2. In c) and d) the specimen is prestretched at
λ = λpre and then actuated, as considered in the analysis of diffuse modes.
In a), b), and d) long dashed portions of the loading path curves (bounded
by red circles) denote ranges where band localization occurs. Even though
in our analysis we can predict the onset of such instability and nothing can
be said about the evolution of the band, we note that in electroelasticity
there are stable homogeneous nonlinear deformations also beyond the the-
oretical emergence of the band, suggesting that the range of instability can
be crossed in some way to reach again the stable path (the same applies to
electroelastic deformations where the actuator deforms biaxially, compu-
tations not reported). Comparison with experiments is difficult as we are
not aware of papers dealing with electroelastic band-localization instability.
The following additional comments must be added to clarify the issue:

i) this type of instability is strongly dependent on the way the incre-
mental problem is set. Polynomial (7.35) is obtained taking d̂ as the in-
dependent electric incremental variable, which means that physically we
perturb the surface charge. Alternatively, if ê is chosen, and then a pertur-
bation in the voltage is induced, the onset of the band along the same finite
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Figure 7.12: Band-localization instability analysis for an electrically actuated DE layer
in plane strain (Gent material, set of parameter #1, see Table 5.1). a), b): plots for
prestressed actuators with different S̃/µ (in ascending order S̃/µ = −1, 0, 1, 2, 2.8, 3);
dashed lines indicate ranges where instability occurs (bounded by red circles). c), d):
results for actuators initially prestretched at λ = λpre. In particular: c): instability
region in the λ pre–D̄ diagram; the line marked by green squares corresponds to T11 = 0
(‘loss of tension’ threshold: beyond this line the specimen is compressed; d) dimensionless
longitudinal stress (T11/µ) and localization ranges (indicated by dashed lines) in terms of
electrical actuation D̄. In a) and c) dashed coloured lines represent the analytical zones
which delimit the boundary where instability occurs, i.e. Γ6 = 0, Γ0 = 0 and ∆ = 0.
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Figure 7.13: Band-localization instability analysis for an electrically actuated DE layer
in plane strain (Gent material, set of parameter #2, see Table 5.1). a), b): plots for
prestressed actuators with different S̃/µ (in ascending order S̃/µ = −1, 0, 1, 1.5, 1.8, 2);
dashed lines indicate ranges where instability occurs (bounded by red circles). c), d):
results for actuators initially prestretched at λ = λpre. In particular: c): instability
region in the λpre–D̄ diagram; the line marked by green squares corresponds to T11 = 0
(‘loss of tension’ threshold: beyond this line the specimen is compressed; d) dimensionless
longitudinal stress (T11/µ) and localization ranges (indicated by dashed lines) in terms of
electrical actuation D̄. In a) and c) dashed coloured lines represent the analytical zones
which delimit the boundary where instability occurs, i.e. Γ6 = 0, Γ0 = 0 and ∆ = 0.
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deformation path, with the same free energy, is ruled out and the system
remains stable at every stage of the electrical actuation (see the pertinent
band-localization analysis in Appendix 10.4);

ii) the onset of localization is strongly dependent on the electrostriction.
If it is absent, i.e. εr = ε̄r, any localization is predicted. Therefore, to detect
the emergence of a band in an experiment, the electrostrictive properties
of the specimen must be carefully measured and identified. We point out
also that, as shown in Sect. 3.6, the Gent material model does not exhibit
localization under pure mechanical loadings;

iii) a failure mode observed experimentally in DE actuators is electric
breakdown, where the dielectric becomes conductive when the electric field
inside the solid reaches a material-dependent threshold value, leading to a
discharge between the electrodes. We argue that the electric breakdown can
be induced by a band-localization instability. Indeed, at its onset, and for
both fundamental paths, the band is always orthogonal to the direction of
the electric field (ν →∞, see Fig. 7.11b). Through relationships (7.32) we
can estimate the incremental fields inside the band by fixing the amplitude
ξ. Well, for S̃/µ = 0 in Fig. 7.12 b) we have found that the increment
of the electric field êb inside the band is almost six times larger then that
outside (i.e., êo) showing a strong localized behaviour of the incremental
electric field. This can clearly cooperate with micromechanical issues to
promote electric breakdown. In Fig. 7.12 b) the curve ∆φ(λ) for an electric
breakdown of eEB = 100 MV/m (a typical value for acrylic elastomers) is
sketched showing that localization may imply failure of the specimen.

Therefore, weather or not a band will develop in a real sample is some-
thing still uncertain that requires additional investigation, both experi-
mentally and theoretically. For the latter aspect, it could be important to
adopt a microelectromechanical model to follow the evolution of the band
and check if the predicted shear bands are stable or unstable.

Coming back to the Fig. 7.12, for both fundamental paths it is clear
that λ ≈ 2.76 provides a theoretical critical threshold. As this limit de-
pends strongly on the degree of electrostriction, for set #2 (Fig. 7.13) it
can be appreciated that it falls to λ ≈ 1.97. For prestretched actuators
(parts c) and d)) similar considerations apply. In c), in addition to the re-
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gions where localization is theoretically critical, the line where the electric
actuation (represented by D̄) induces a null longitudinal stress (T11 = 0,
‘loss of tension’ threshold) is also reported, as typical devices must operate
under a tensile stress state to avoid the buckling instability. Therefore, only
points at the right-hand side of the line T11 = 0 correspond to meaningful
configurations for real actuators. The arrows below the abscissa axis in
part c) (ranging from λpre = 0.7 to λpre = 3.2) indicate the loading path
reported in part d) that is similar to Fig. 6.4 a), but with the data of the
localization analysis for each λpre added.

As already reminded, Fig. 7.13 is very similar to Fig. 7.12 but calcu-
lated for set #2.

As a conclusion for this part, we point out that a first analysis of band-
localization instability has been developed. We suppose that this instability
may trigger electric breakdown and failure of actual prestretched/prestressed
specimens. However, further investigations are needed both theoretically
and experimentally to clarify how localization may develop within a DE
actuator under various electromechanical loading conditions.
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Chapter 8

Composite Dielectric Elastomers

Investigation of the behaviour of two-phase rank-one laminates is made.
In particular, the performance improvement of DE composites in terms of
actuaction with respect to the homogeneous case is analysed.

8.1 Modelling of Layered Composites

Composite materials represent a promising way to improve the electrome-
chanical coupling in soft dielectric elastomers and then the actuation per-
formance of DE actuators [55]. The ideal recipe consists in mixing a stiff
and high conductive phase (for instance polyanilines) with a soft matrix
(typically made up of silicone or acrylate elastomer). The microstructure
of the composite can play a fundamental role, even though its control is
not easy during the processing [51].

While for general composites the overall performance can only be es-
timated through the formulation of bounds [38], for a layered solid the
solution can be expressed in closed form as a function of phase properties.
For this reason, we focus on this class of composites; in particular, rank-
one bi-layered soft dielectrics under plane-strain conditions are analysed.
The two phases, a and b, have volume fractions ca = h0a/

(
h0a + h0b

)
and

cb = 1 − ca respectively, where h0a and h0b represent the relevant thick-
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nesses in the reference configuration B0 (see Fig. 8.1). The actuation can
be achieved by either imposing the voltage or the charge. The latter method
has been recently exploited by Keplinger et al. [27].

Actuation properties of samples made up of this class of simple compos-
ites have been also investigated (see deBotton et al. [11], Tian et al. [46]),
however our goal is to study in detail the evolution of the microstructure
under large deformations and to highlight instability mechanisms typical of
the composite, possibly not observed in a homogeneous material. Although
this approach can also be applied to higher-rank layered composites, here
only results for rank-one solids will be provided.

Figure 8.1: Biphasic layered dielectric actuator deformed under the effect of a constant
nominal electric displacement field d0av.

8.2 Modelling Layered DE Composites with d0av

as Independent Variable

In this first formulation, we consider as independent quantity the macro-
scopic deformation gradient Fav and the reference electric displacement
d0 av, similarly to Sect. 4.5. Under the assumption of a homogeneous re-
sponse in each phase, Fav and d0 av are the weighted sum of those in each
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phase, namely ([47], [11], [2])

Fav = caFa + cbFb, d0av = cad0a + cbd0b. (8.1)

On the other hand, for a composite medium, the b.v.p. formulated in
(4.17) and (4.18) is completed by the following boundary conditions across
the interface ∂B0

int between phases (see Fig. 8.1):

[[v0]] = 0, [[S]]n0 = 0, [[d0]] · n0 = 0, n0×[[e0]] = 0 (on ∂B0
int). (8.2)

Interface continuity (8.2)3 requires

d0a − d0b = βm0, (8.3)

where β is a real parameter and m0 is a unit vector aligned with the layers.
It follows from eqns. (8.1)2 and (8.3) that

d0a = d0av + cbβm0, d0b = d0av − caβm0.

Similarly, interface compatibility, [[F]]m0 = 0, provides

Fa = Fav
(
I + α cbm0 ⊗ n0

)
, Fb = Fav

(
I− α cam0 ⊗ n0

)
,

where α is a real parameter. Quantities α and β are obtained enforcing
(8.2)2,4. In the present context, the latter can be also written [[e0]] ·m0 = 0.
As both phases are described by an extended Mooney-Rivlin free energy
(4.37)-(3.46) with no electrostriction (γ̄i0 = γ̄i2 = 0, γ̄i1 = 1, εi = ε0ε̄

i
r,

i = a, b) their expressions are

α =
µb − µa

caµb + cbµa
Favn0 ·Favm0

Favm0 ·Favm0
, (8.4)

β =
εa − εb

caεa + cbεb
Favd 0 av ·Favm0

Favm0 ·Favm0
− αd 0 av · n0.

While (8.4)1 has been found in [2], (8.4)2 is alternative to that obtained in
the same paper and is new.
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The jump in hydrostatic pressure across each interface is obtained by multi-
plying the traction continuity condition (8.2)2 with vector (Fav)−T , yielding

pb − pa =

[
εa − εb

εaεb
(
d0av · n0

)2
+ µb − µa

]
1

(Fav)−Tn0 · (Fav)−Tn0
. (8.5)

The macroscopic free energy of the composite is given by

W av = caW a(Fa,d0a) + cbW b(Fb,d0b) (8.6)

and the macroscopic total stress and electric field can be obtained from
W av via the constitutive equations as

Sav =
∂W av

∂Fav
− pav (Fav)−T , e0av =

∂W av

∂d0av
. (8.7)

The response of a planar dielectric elastomer actuator made up of a
bilayered composite is analysed: the specimen is subjected to a transverse
lagrangian electric displacement field d0av = d0avi2; we assume a homoge-
neous overall deformation of plain strain and Sav

22 = Sav
11 = 0. The solution

depends on properties of phases and on the geometry (lamination angle θ).

8.2.1 Incremental Problem

Assuming that the constitutive equations (8.7) can be linearized, the incre-
mental total first Piola-Kirchhoff is

Ṡav = −ṗ(Fav)−T + p(Fav)−T (Ḟav)T (Fav)−T + C0avḞav + B0avḋ0av

and the electric field

ė0av = B0avT ∗
Ḟav + A0avḋ0av,

where (B0avT ∗
)MiJ = B0av

iJM (see eq. (4.53))and the electroelastic moduli
tensors C0av, B0av and A0av are given in components by

C0av
iJkL =

∂2W av

∂F av
iJ ∂F

av
kL

, B0av
iJM =

∂2W av

∂F av
iJ ∂d

0av
M

, A0av
MN =

∂2W av

∂d0av
M ∂d0av

N

,
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which imply the following symmetries

C0av
iJkL = C0av

kLiJ , A0av
MN = A0av

NM .

The components of the updated constitutive tensors are given (specialized
keeping in mind the incompressibility constraint) by (see eq. (4.63))

Cav
iqkp = C0av

iJkLF
av
pLF

av
qJ ,

Bav
iqa = B0av

iJMF
av
qJ (F av)−1

Ma,

Aav
ab = A0av

MN (F av)−1
Ma(F

av)−1
Nb.

(8.8)

8.2.2 Performance Evaluation

Figure 8.2: Different loading paths for a bilayer actuator (µa/µb = εa/εb = 1, 50, 80, 90,
cb = 0.9) deformed under the action of an electric displacement field along x2 (extended
Mooney-Rivlin free energy). a) θ = 50◦; b) θ = 60◦.

In Fig. 8.2 some typical loading paths are reported in the λ–d̄0av space
(where d̄0av = d0av/

√
ε0εbrµ

b) for cb = 0.9 and µa/µb = εa/εb = 1, 50, 80, 90.
The value of the angle inclination is θ = 50◦ in part a), while θ = 60◦

in part b). We note, comparing a) and b), that the overall response is
very sensitive to the layering angle. In part b), for high values of the con-
trast parameter µa/µb = εa/εb a peak at low stretch in the curve occurs,
indicating the possibility of a snap-through instability for the actuator.
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Figure 8.3: Different loading paths for a bilayer actuator deformed under the action
of an electric displacement field along x2, in a) (µa/µb = εa/εb = 50, cb = 0.75, 0.8, 0.9,
θ = 70◦), with null prestress (S̃ = 0), in b) (µa/µb = εa/εb = 20, 80, 90, cb = 0.9,
θ = 70◦), with prestress S̃ = 0.5 (extended Mooney-Rivlin free energy).

In Fig. 8.3 (a), loading paths, with the same electromechanical param-
eters (µa/µb = εa/εb = 50) and the same angle θ = 50◦, are presented
in the λ–d̄0av space, varying the volume fraction cb: it can be noted that
for higher value of cb, there is the chance of snap-trough instability. Fig.
8.3 (b), loading path with a low prestress S̃ = 0.5 are reported, showing
modified behaviour, changing the electromechanical parameters: for high
permettivity and stiffness, snap-throught instability and stiffening effect
are admissible. Points are pointed out in Figs. 8.2 and 8.3 in some loading
paths marking the occurrence of band-localization instability. For a layered
composite, this threshold is associated with large-wavelength bifurcations
(see Bertoldi and Gei [2] and Rudykh and deBotton [41]) and can be anal-
ysed using the procedure outlined in Sect. 7.4 employing the incremental
moduli (8.8). In this case the polynomial is complete.

It is important to remark that the composite configurations considered
in Figs. 8.2 and 8.3 are not ‘optimal’, in fact the overall response is worse
than that of a homogeneous actuator composed uniquely of phase b (the
matrix). The goal was to show that for some configurations a snap-through
instability becomes available (to conceive release-actuated system) and lo-
calization may occur at quite low stretching, leading to a possible early
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failure of the specimen.
The choice of the electric displacement field d0av as the independent

variable for the modelling poses some questions regarding the effective ap-
plication of the results to real actuators. It may help to recall that d is
controlled by charges, while e is controlled by voltage. Therefore, it seems
more meaningful to adopt the electric field as an independent descriptor as
actual devices are driven by an external voltage applied through electrodes.
However, some recent works (see for instance Keplinger et al. [27]) have
shown how to activate a DE actuator in charge-controlled mode, adapting a
procedure pioneered by Roentgen, who considered a layer-shaped specimen
on which charges were sprayed on the surface through needle combs at high
voltage. The advantage is that, for 3d actuators, electromechanical (pull-
in) instability is prevented and therefore the severe limitations imposed to
typical actuators controlled by voltage are ruled out.

In Fig. 8.4, the microstructure of a multilayered rank-one composite is
highlighted: the stiffening effect can be explained regarding the evolution
of the true electric field eav, for different growing values of stretch (λ =
1.1, 1.8, 3). In addition, it is observed that increasing λ, true electric field
eav aligns to the reference electric displacement d0av.
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Figure 8.4: Microstructure evolution (µa/µb = εa/εb = 90, θ = 60◦, cb = 0.9) and
intensity of electric fields. Starting from the undeformed configuration a), Fig. b-c-d)
show the configuration development increasing λ, clarifying the stiffening effect outcome.

8.3 Modelling Layered DE Composites with e0av

as Independent Variable

In this formulation, we consider as independent quantity the deformation
gradient Fav and the reference electric field e0 av, as seen in Sect. 4.6. The
macroscopic deformation gradient has the form seen before, in (8.1)1, and
the average lagrangian electric field is:

e0 av = cae0 a + cbe0 b. (8.9)
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The boundary conditions are the same presented in (8.2). Interface conti-
nuity (8.2)4 requires

e0a − e0b = β̃n0, (8.10)

where β̃ is a real parameter and n0 is a unit vector orthogonal to the layers.
It follows from eqs. (8.9)2 and (8.10) that

e0a = e0av + cbβ̃m0, e0b = e0av − caβ̃m0.

The parameter β̃ is obtained enforcing (8.2)2,3 and its expression is

β̃ =
εb − εa

cbεa + caεb
Fav−Te0 av · Fav−Tn0

Fav−Tn0 · Fav−Tn0
+ αe0 av ·m0,

while α is given again by (8.4)1.
The jump in hydrostatic pressure across each interface is obtained, as above
(8.5), by multiplying the traction continuity condition (8.2)2 with vector
(Fav)−T , yielding

pb − pa =

{
εb
[
(Fav)−T

(
e0av + ca(αe0av ·m0 − β̃)n0

)
· (Fav)−Tn0

]2

− εa
[
(Fav)−T

(
e0av − cb(αe0av ·m0 − β̃)n0

)
· (Fav)−Tn0

]2

+ µb − µa
}

1

(Fav)−Tn0 · (Fav)−Tn0
.

(8.11)

The macroscopic free energy of the composite is given by

Hav = caHa(Fa, e0a) + cbHb(Fb, e0b)

and the macroscopic total stress and electric field can be obtained from Hav

via the constitutive equations as

Sav =
∂Hav

∂Fav
− pav (Fav)−T , d0av = −∂H

av

∂e0av
. (8.12)
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The response of a planar dielectric elastomer actuator made up of a bi-
layered composite is analysed: the specimen is subjected to a transverse
lagrangian electric field field e0av = e0avi2; we assume a homogeneous over-
all deformation of plain strain and Sav

22 = Sav
11 = 0. The solution again

depends on properties of phases and on the geometry (lamination angle θ).

8.3.1 Incremental Problem

Assuming that the constitutive equation (8.12) can be linearized, it turns
out that the incremental Piola-Kirchhoff is

Ṡav = −ṗ(Fav)−T + p((Fav)−T (Ḟav)T (Fav)−T ) + C0,HavḞav + B0,Havė0av

and the electric displacement field

ḋ0av = B0,HavT ∗
Ḟav + A0,Havė0av,

where (B0,HavT ∗
)MiJ = B0,Hav

iJM (see eq. (4.68)) and the electroelastic mod-
uli tensors C0,Hav, B0,Hav and A0,Hav are given (eq. (4.72)) in components
by

C0,Hav
iJkL =

∂2Hav

∂F av
iJ ∂F

av
kL

, B0,Hav
iJM = − ∂2Hav

∂F av
iJ ∂e

0av
M

, A0,Hav
MN = − ∂2Hav

∂e0av
M ∂e0av

N

,

which imply the following symmetries

C0,Hav
iJkL = C0,Hav

kLiJ , A0,Hav
MN = A0,Hav

NM .

The component of the updated constitutive tensors are

CHav
iqkp = C0,Hav

iJkL F av
pLF

av
qJ ,

BHav
iqa = B0,Hav

iJM F av
qJF

av
aM ,

AHav
ab = A0,Hav

MN F av
aMF

av
bN .

(8.13)
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8.3.2 Performance Evolution

Results calculated assuming e0av as the independent electrical quantity for
the composite are reported in this section. As previously anticipated, the
advantage of this formulation is that the electric field derives directly from
the voltage ∆φ applied to the flexible electrodes, as e0av = ∆φ/h0.

Figure 8.5: Comparison between the actuation performance of two types of layered
composites and that of a homogeneous specimen as a function of the voltage applied to
electrodes (extended Mooney-Rivlin free energy). a) low deformation range (1 < λ < 1.7);
b) 1 < λ < 3.

In Fig. 8.5, the overall behaviour of a composite with imposed voltage
∆φ (in the plane λ–∆φ, where ∆φ = ∆φ

√
εb/µb/h0) is reported for Sav

11 =
Sav

22 = 0. The geometrical/mechanical parameters (see the figure) are in
the range where the performance of heterogeneous actuators is improved
compared to the homogeneous case, at least for λ < 1.5 (part a of the
figure). At higher stretches the composite behaves worse, i.e., a higher
voltage is needed to reach the same deformation (part b). In the range
1 < λ < 1.5, the actuation enhancement of the rank-one layered device is
remarkable, as shown in plots displayed in Fig. 8.6. The improvement is
studied in terms of stiffness and permittivity ratio (part a), layer inclination
(part b), and matrix volume fraction (part c). In all cases, the dimensionless
index

M =
log λcomp − log λhom

log λhom
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is considered, where λcomp and λhom identify longitudinal stretches for the
composite and for the homogeneous specimen, respectively.

It is found that the higher the stiffness/permittivity ratio, the higher is
the enhancement of the performance, even though the advantage becomes
quite localized around ∆φ ≈ 0.8; the optimal layering angle lies within the
range 50◦ < θ < 75◦, while, still for 1 < λ < 1.5, a higher volume fraction
of the stiff phase will improve the actuation strain of the composite.

Figure 8.6: Performance improvement of a rank-one layered composite actuator com-
pared to that of homogeneous specimen (extended Mooney-Rivlin free energy) under
plane strain deformation in the range 1 < λ < 1.5. a) stiffness and permittivity ra-
tio (cb = 0.9, θ = 70◦, and µa/µb = εa/εb = 10, 50, 100, 500, 100); b) layer inclination
(µa/µb = 100, cb = 0.9, θ = 60◦, 65◦, 70◦, 75◦); c) matrix volume fraction (µa/µb = 100,
θ = 60◦ and cb = 0.7, 0.8, 0.85, 0.9).

In Fig. 8.7 and 8.8, the ratios µa/µb = εa/εb are taken to be the
same (this choice is consistent with real materials) and we can observe
that the improvement is higher for higher µa/µb = εa/εb ratios and for
angles greater than 50◦ (the best is around 60◦ − 70◦). In particular for
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µa/µb = εa/εb = 100 there is a strong stiffening effect and the enhanced
behaviour lies in the range (1 < λ < 1.6).

Figure 8.7: Comparison between the actuation performance of three types of layered
composites whit the same electromechanical properties (µa/µb = εa/εb = 10), equal vol-
ume fraction cb = 0.7, but having different inclination angles, and that of a homogeneous
specimen as a function of the voltage applied to electrodes (extended Mooney-Rivlin free
energy).

Figure 8.8: Comparison between the actuation performance of four types of layered
composites whit the same electromechanical properties (µa/µb = εa/εb = 100), equal vol-
ume fraction cb = 0.7, but having different inclination angles, and that of a homogeneous
specimen as a function of the voltage applied to electrodes (extended Mooney-Rivlin free
energy). The greater the angle, the greater the range of improvement.

In Fig. 8.9, it can be noted that peaks in the curves are present, corre-
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sponding to points of electromechanical instability. Then, also for applied
e0av, it is possible to conceive actuators with new instabilities compared to
the behaviour of homogeneous specimen.

Figure 8.9: Comparison between the actuation performance of four types of layered
composites which the same electromechanical properties (µa/µb = εa/εb = 38), equal vol-
ume fraction cb = 0.7, but having different inclination angles, and that of a homogeneous
specimen as a function of the voltage applied to electrodes (extended Mooney-Rivlin free
energy).

In Fig. 8.10 some optimal configurations are considered, putting in evi-
dence that band localization (see Sect. 10.4) may occur for some particular
choices of the mechanical/geometrical parameters.

Finally, in Fig. 8.11 (as above 8.4) the microstructure of a multilayered
rank-one composite is considered, noting that, increasing λ, the true electric
displacement dav aligns to the reference electric field e0av.
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Figure 8.10: Some optimal configurations, in terms of actuation, are reported. At
the same stiffness ratio (µa/µb = 1) and volume fraction (cb = 0.7), for low permittivity
ratio and little angle (εa/εb = 10, 30, θ = 12, 60◦), an amelioration is noted, even if in
one case (εa/εb = 10, θ = 60◦) band-localization occurs at low stretch. In the other cases
(εa/εb = 100, 1000, θ = 80◦), a remarkable stiffening effect is deduced at approximately
λ ≈ 2.4.

Figure 8.11: Microstructure evolution (µa/µb = εa/εb = 90, θ = 60◦, cb = 0.9) and
intensity of electric displacement fields. Starting from the undeformed configuration a),
Fig. b-c-d) show the configuration development increasing λ, clarifying the stiffening
effect outcome.
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Chapter 9

Conclusions

In this work, instabilities in prestressed/prestretched dielectric elastomer
actuators (DEAs) have been investigated for specimens deforming under
plane-strain conditions.

In particular, after having recalled the fundamentals of the theory of
elastic dielectrics at finite strain and defined in detail the incremental
electroelastic boundary-value problem, the phenomenon of electrostriction
(namely, the dependency of the permittivity on the deformation) has been
modelled using the theory of invariants for isotropic electroelastic solids.
The resulting unknown constants were obtained interpolating experimental
data available for a typical acrylic elastomer.

We have shown that electrostriction strongly affects diffuse-sinusoidal
mode instabilities in DEAs (such modes comprise both surface instabilities
and Euler-like modes, the latter being extensively exploited in buckling-
like actuators). Moreover, electrostriction may trigger band-localization
instability, that has been thoroughly investigated. In plane strain, the
critical condition corresponds to the emergence of real solutions of a bicubic
equation, whose roots can be obtained by analytically following Tartaglia-
Cardano’s theory.

In the second part of the work, rank-one layered dielectric composite
actuators, whose phases have constant permittivity, are studied in detail,
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with particular attention to layouts that are able to display a better per-
formance with respect to homogeneous devices. The behaviour of layered
composites has been presented in terms of the two possible independent av-
erage electric quantities: electric displacement d0av and electric field e0av,
that can be selected by acting on the charge and the voltage, respectively.

We have also observed that a layered composite may display an elec-
tromechanical instability, which can be exploited to induce snap-through
mechanisms useful in conceiving and realizing release-actuated transduc-
ers. On the other hand, the analyses of band localization show that this
instability may limit the range of applicability of such systems in terms
of maximum longitudinal stretch. Possible improvements of the actuation
performance of layered dielectric composite actuators may be obtained by
employing rank-two materials.



Chapter 10

Appendix

10.1 Appendix for the Cubic

We treat the polynomial of the third order

x3 + ax2 + bx+ c = 0,

remembering that without loss of generality we can consider the polynomial
to be monic. Acting the change of variable x = y − a

3 we have

x3 + ax2 + bx+ c = 0⇔ y3 + py + q = 0,

where y = x+ a
3 and {

p = −a2

3 + b,

q = 2
27a

3 − ab
3 + c.

Formula x = y − a
3 is less misterious than it can seem. Given a monic

polynomial equation of n degree, xn + axn−1 + . . . = 0, the coefficient a is
the opposite of the roots sum. Since in this case, roots are three, a

3 is the
barycentre of the roots. The change of variables x = y − a

3 is a translation
which brings the origin to be coincident with this barycentre. The new
coefficient will be the new sum of roots, which has to be zero, because
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the new barycentre is the origin. So we have a new polynomial equation,
without the quadratic term:

y3 + py + q = 0.

For “unfathomable” reasons, we search for solution y as the sum of two
numbers u and v:

y = u+ v.

Substituting, we obtain

0 = y3 + py + q = (u+ v)3 + p(u+ v) + q

= u3 + 3u2v + 3uv2 + v3 + p(u+ v) + q

= (u3 + v3 + q)︸ ︷︷ ︸+(u+ v) (3uv + p)︸ ︷︷ ︸ .
This is an equation in two variables. Fixing, for example u, the equation is
in the third order in v, and the difficulty is equivalent to that of the initial
problem. But there is a particular combination in u and v which is very
easy to calculate: it’s necessary to impose{

u3 + v3 = −q,
uv = −p

3 .

Now we want to prove the equivalence between the equation and the system:

y3 + py + q = 0⇔ ∃u, v such that


u+ v = y,

u3 + v3 = −q,
uv = −p

3 .

The left arrow ⇐ is immediately proved due to the identity y3 + py + q =
(u3 + v3 + q) + (u + v)(3uv + p). Viceversa, given a solution y such that
y3 + py + q = 0, then we can find u and v such that u + v = y, uv = −p

3
and from 0 = y3 + py + q = (u3 + v3 + q) + (u+ v)(3uv + p) we have that
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u3 + v3 + q = 0, as it was required. Now, we proceed to the resolution of
the system in u, v. Passing to the cube of the second equation, we have{

u3 + v3 = −q,
uv = −p

3 .
⇒

{
u3 + v3 = −q,
u3v3 = −p3

27 ,

(note the fact that the arrow is only in the right side). So for u3 and v3 we
know their sum and product. So that we find that

{
u3, v3

}
=

{
z : z2 + qz − p3

27
= 0

}
.

The equation in z-variable is soon resolved:

z = −q
2
±
√
q2

4
+
p3

27
,

so we can write

u3 = −q
2

+

√
q2

4
+
p3

27
, v3 = −q

2
−
√
q2

4
+
p3

27
,

and it follows that

y =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
,

which is the known solving formula for the cubic equation, discovered by
Gerolamo Cardano [7].

It should be noted that the solutions for

{
u3 + v3 = −q,
uv = −p

3 .
are the solu-

tions of

{
u3 + v3 = −q,
u3v3 = −p3

27

such that uv = −p
3 . If the polynomial equa-

tion is with real coefficients, then it’s crucial the sign of the discriminant

∆ = q2

4 + p3

27 .
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First case: ∆ > 0. In this case, the solving formula gives only one real so-
lution of the equation, if all the radicals are interpreted as real in the strict
sense. In order to have the other two roots, we have to recall the non–real
cubic roots of the unity, that are cos 2π/3 ± i sin 2π/3 = −(1/2) ± i

√
3/2.

So the three roots for each u and v are written respectively as:

u1 : = 3

√
−q

2
+
√

∆, u2 := u1

(
−1

2
+ i

√
3

2

)
, u2 := u1

(
−1

2
− i
√

3

2

)

v1 : = 3

√
−q

2
−
√

∆, v2 := v1

(
−1

2
+ i

√
3

2

)
, v2 := v1

(
−1

2
− i
√

3

2

)
.

In order to select the roots above the nine possibilities, it’s sufficient to
verify that uv = −p/3, or better that uv ∈ R. Then the three roots are
given by:

y1 = u1 + v1,

y2 = −1

2
y1 + i

√
3

2
(u1 − v1),

y3 = −1

2
y1 − i

√
3

2
(u1 − v1),

where we note that y2 and y3 are complex conjugated roots.
Second case: ∆ = 0. In this case, since the coefficients are real, q =

±2
√

3
9

√
−p3 and necessarily p < 0 In this case we have that u1 = v1. Then

the three roots are given by

y1 = ∓2

√
−p

3
,

y2 = ±
√
−p

3
,

y3 = ±
√
−p

3
,
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where we note that y2 = y3.
Third case: ∆ < 0. The cubic radicals are given by

−q
2
± i
√

∆

and they are complex conjugated, with modulus R corresponding to

R :=
∣∣∣−q

2
± i
√

∆
∣∣∣ =

√(
−q

2

)2
−∆ =

√
−p

3

27
,

(note that if ∆ < 0 then necessarily p < 0, so that the last radical is real)
and with argument an angle ±θ whose tangent is

tan θ =

√
−∆

− q
2

if q 6= 0.

To be precise:

if − q/2 > 0 then θ = arctan

(
−2
√
−∆

q

)
;

if − q/2 < 0 then θ = π + arctan

(
−2
√
−∆

q

)
.

So, indicating the complex number as a couple of modulus and argument,
the value for u3 and v3 are given by

u3 = (R, θ), v3 = (R,−θ),

so that the cubic roots are

u1 : =

(
3
√
R,

θ

3

)
, u2 :=

(
3
√
R,

θ + 2π

3

)
, u3 :=

(
3
√
R,

θ + 4π

3

)
,

v1 : =

(
3
√
R,−θ

3

)
, v2 :=

(
3
√
R,
−θ + 2π

3

)
, v3 :=

(
3
√
R,
−θ + 4π

3

)
.

As before, it has to be chosen the combination (u, v) such that uv = −p/3
and the right couples are the same: {u1, v1}, {u2, v3}, {u3, v2}, where we
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note that u and v are conjugated to each other. The three couples give
three real solutions y = u + v, because the sum of complex conjugated
roots is real. So the three roots for the cubic equation are given by:

y1 = 2

√
−p

3
cos

θ

3
,

y2 = 2

√
−p

3
cos

θ + 2π

3
,

y3 = 2

√
−p

3
cos

θ + 4π

3
.

Since ∆ is strictly negative, then θ is not a multiple of π, so the three roots
are distinct.

10.2 Updated Incremental Electric Displacement
and Electric Field

Tensor Σ arises, using Nanson’s formula (3.11), as∫
∂B0

JṠKn0dA0 =

∫
∂B

1

J
JṠKFTndA =

∫
∂B

JΣKndA.

Then ∫
∂B0

Jḋ0Kn0dA0 =

∫
∂B

1

J
Jḋ0KFTndA =

∫
∂B

Jd̂KndA. (10.1)

The updated Lagrangian formulation for the electric field is obtained con-
sidering an arbitrary integration path Γ0 in the reference configuration
and an infinitesimal fibre dl0 tangent to Γ0. In the current configuration
Γ = χ(Γ0) and dl = Fdl0, so that∫

∂Γ0

ė0 · dl0 =

∫
∂Γ

ė0 · F−1dl =

∫
∂Γ

ê · dl. (10.2)
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10.3 Some Derivatives of Invariants

Here, we record for reference the expressions for the first derivatives of the
six invariants with respect to F and d0

∂I1

∂FiJ
= 2FiJ ,

∂I2

∂FiJ
= 2(I1FiJ − CJLFiL),

∂I3

∂FiJ
= 2I3F

−1
Ji ,

∂I4

∂FiJ
= 0,

∂I5

∂FiJ
= 2d0

LFiJd
0
J ,

∂I6

∂FiJ
= 2(CJPd

0
PFiLd

0
L + d0

JFiLCLPd
0
P ),

∂I4

∂d0
J

= 2d0
J ,

∂I5

∂d0
J

= 2CJPd
0
P ,

∂I6

∂d0
J

= 2C2
JPd

0
P .

Note that I1, I2, I3 do not depend on d0. The second derivatives with
respect to F are

∂2I1

∂FiJFkL
= 2δikδJL,

∂2I3

∂FiJFkL
= 2I3(2F−1

Ji F
−1
Lk − F

−1
Jk F

−1
Li ),

∂2I2

∂FiJFkL
= 2(δikCJL + FiLFkJ + δJLBik − I1δikδJL − FiJFkL),

∂2I4

∂FiJFkL
= 0,

∂2I5

∂FiJFkL
= δikd

0
Jd

0
L,

∂2I6

∂FiJFkL
= δikd

0
S(CJSd

0
L + CLSd

0
J) + FiRd

0
R(δJLFkSd

0
S + FkJd

0
L)

+ FiLFkSd
0
Sd

0
J +Bikd

0
Jd

0
L.

The mixed derivatives of I1, I2, I3 and I4 with respect to F and d0 vanish,
and

∂2I5

∂FiJd0
M

= FiMd
0
J + FiSd

0
SδJM ,

∂2I6

∂FiJd0
M

= FiMCJSd
0
S + FiSCJMd

0
S + FiSCSMd

0
J + FiRCRSd

0
SδJM .
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The second derivatives of I4, I5, I6 with respect to d0 are

∂2I4

∂d0
Md

0
N

= δMN ,
∂2I5

∂d0
Md

0
N

= CMN ,
∂2I6

∂d0
Md

0
N

= C2
MN .

10.4 Band Localization: Formulation in Terms of
Electric Field

In this second formulation we consider electric field in place of electric
displacement seen in Sect. 7.4.
Compatibility relationships across the interface for L require (7.29)1 , while
continuity of the normal component of ê, requires that

ê b = ê o + α̃n, (10.3)

where α̃ is a real scalar and represent mode amplitudes in the band. Note
that fields L b and ê b satisfy field equations (7.17) and (7.19) in the band
and the relative displacement field in (10.3)1 associated with the dyadic
term is an isochoric simple shear of amount ξ. On the other hand, continuity
of the incremental traction and of the tangential component of the electric
field require (7.30)1 for Σ and for the electric displacement

d̂ b − d̂ o = ζ̃m, (10.4)

where, again, ζ̃ is real.
The use of (10.3) in the constitutive equations and in (10.4) provides,

in component form, respectively (recalling eqs. (4.73), (4.74), (4.75))

QHikmk −
1

ξ
(ṗ b − ṗ o)ni − ᾱBH

iqananq = 0, (10.5)

ξBH
iqaminq + α̃AHabnb = ζ̃ma,

where QHik = CHiqkpnpnq and we recall that ξ is referred to (7.29)1 . The
manipulation of (10.5) yields

α̃

ξ
= −

BH
iqaminqna

AHabnanb
, (10.6)
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as well as the condition for band localization, namely (AHabnanb 6= 0)

AHabnanbQ
H
ikmimk + (BH

iqaminqna)
2 = 0. (10.7)

Eq. (10.7) clearly depends on the current finite state and on the normal to
the band n (the components of m can be easily substituted exploiting the
connection mr = esrns, where e12 = −e21 = 1, e11 = e22 = 0). The final
form of the localization equation (10.7) is

Ω6υ
6 + Ω5υ

5 + Ω4υ
4 + Ω3υ

3 + Ω2υ
2 + Ω1υ + Ω0 = 0, (10.8)

which is a complete polynomial with:

Ω6 = B2
122 +A22C1212,

Ω5 = 2(B122(B112 +B121 −B222) +A12C1212 +A22(C1112 − C1222)),

Ω4 = (B112 +B121 −B222)2 + 2B122(B111 −B212 −B221)

+A11C1212 + 4A12(C1112 − C1222)

+A22(C1111 − 2C1122 − 2C1221 + C2222),

Ω3 = 2(−B122B211 + (B111 −B212 −B221)(B112 +B121 −B222)

+A11(C1112 − C1222) +A22(C2221 − C1121)

+A12(C1111 − 2C1122 − 2C1221 + C2222)),

Ω2 = −2B211(B112 +B121 −B222) + (B212 +B221 −B111)2

+A22C2121 − 4A12(C1121 − C2122)

+A11(C1111 − 2C1122 − 2C1221 + C2222),

Ω1 = 2(B211(B212 +B221 −B111) +A12C2121 +A11(C2221 − C1121)),

Ω0 = B2
211 +A11C2121.
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