
PhD Dissertation

International Doctorate School in Information and

Communication Technologies

DISI - University of Trento

Privacy elicitation and utilization in distributed

data exchange systems

Annamaria Chiasera

Co-Advisor:

Prof. Fabio Casati
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Abstract

Recently we are assisting to the advent of many data integration projects to allow the

cooperation of systems in the more disparate fields (healthcare, finance, education, public

security). This trend responds to the increasing needs of data to monitor, compare, corre-

late and analyse the distributed business processes managed by different institutions and

companies for different purposes. As the availability of data in electronic form increases,

the risk of improper use of sensitive information is raising also.

In this thesis work we focus on the problem of realising an infrastructure for the data

and application integration of systems in the healthcare domain. Our solution is compliant

with the privacy regulations, reconciling the visibility requirements of the institutional data

consumers with the needs of control and protection of the data subjects. It is an event-

based solution which allows to capture the processes going on between the systems to be

integrated in a way that is flexible, decoupled and adherent to reality. Our solution enables

the sharing of very fine-grained pieces of information to a wide range of consumers still

allowing the producers to control who can see what and for what purposes. The architecture

minimizes the transit of sensitive information and controls the distribution of events and

of their content at a very fine-grained level. In this thesis work we take into account also

the impact of the proposed solution on the existing systems ensuring to minimize the effort

of companies and institutions in adopting the infrastructure.

As legal privacy regulations are most of the time quite distant from unambiguous IT

requirements we investigate the problem of privacy constraints elicitation. Typically pri-

vacy constraints are defined manually with a tedious procedure by the IT experts based

on the desiderata of the users. This approach is not always yielding the best results as

designers lacks the domain knowledge required to produce complete, meaningful and not

over-constraining privacy requirements. We believe the user holds the knowledge of the

domain and of the data that is necessary to define privacy constraints at the right level of

granularity. In particular, we provide a novel approach to privacy constraints elicitation

based on the interaction with the user. Our approach derives from high level indications

given by the user a concise definition of the privacy constraints directly applicable to the

underlying database. Such constraints can be used to further restrict the data values that

can appear in a report.
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Chapter 1

Introduction

Modern healthcare relies on computerized means to share data among different organiza-

tions and institutions with the intent to create a complete medical history of the patients.

This poses also concerns on the sharing of sensitive data and the rights patients can exer-

cise on their data that falls under the umbrella of privacy law [88]. This thesis considers

different aspects related to privacy in healthcare systems and proposes an architecture for

the integration of healthcare systems and tools to automate the generation and compli-

ance checking of privacy policies.

In Section 1.1 we present the problem and why current information integration approaches

are not enough. We present a case study in which the developments of this thesis was

applied and its challenging aspects. In Section 1.2 we show the research areas and our

contributions. Finally Section 1.3 outlines the structure of the whole thesis.

1.1 Motivation

Recently we are assisting to a strong commitment of the public administrations toward

e-government projects focused mainly on the dematerialization of the administrative pro-

cesses, to monitor, control and trace the clinical and assistive processes [18]. Initially,

the computerization in healthcare was limited to a single data controller (e.g. a hospital

or a nursing home) developing their own management systems for medical data called

Health Files (HFs) [88]. Even if there are many healthcare professionals involved (e.g.

doctors, nurses, social workers) they belonged to one single healthcare body acting as

data controller.

An HF improves the quality of care as it simplifies the management and improves the ac-

cessibility of healthcare data but is limited only to one institutions. Typically, healthcare

processes span multiple institutions (hospital, nursing home, no profit organizations) and

to support their integration or, as a minimum, to monitor their execution, some degree
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1.1. MOTIVATION CHAPTER 1. INTRODUCTION

of integration to cooperate and exchange information among multiple IT systems is nec-

essary.

Electronic Health Records (EHR) have been introduced to overcome this limitation (Fig-

ure 1.1). An EHR combines the medical data distributed in many health files at different

healthcare bodies typically in the same region o geographical area. An EHR is accessed by

healthcare professionals of different institutions and the data has different data controllers.

As defined in [88] EHR’s data is “generated by the various health care professionals and/or

bodies providing medical care to that individual over time”. An EHR greatly improves the

quality of care [13] as the medical staff can easily access all the past clinical events of the

user (e.g. diagnosis, hospitalization records, emergency care).

When sensitive information (about health and economical state of a person, habits, polit-

ical and religious opinions) are distributed, accessed, stored and used to develop reports

like in an EHR, privacy becomes one of the most important properties that need to be

preserved.

Figure 1.1: Health and Social services interoperability: the EHR.

In this thesis we identified the risks of privacy violations and the properties the system

should exhibit to avoid them. We show how to develop a data integration solution that

meets these privacy requirements, throughout the different development phases. In doing

that, we depart from classical data warehousing solutions which are not applicable in

this context as they impose some design decisions that are not allowed by the privacy

2
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regulations, they lack flexibility and they are too monolithic for a distributed, dynamic

and continuously changing environment like with an EHR. We propose an EHR system

based on Service Oriented Architecture (SOA) and on Event Driven Architecture (EDA)

that proves to reduce the effort to understand and model the data dependencies among

institutions and their data needs abstracting from their internal data structures. We

exploit the potentiality of the pub/sub approach to guarantee full visibility on the data

to all the EHR’s partners still preserving the privacy of the individuals with privacy

constraints enforced at the event broker level.

Notice how for an HF, privacy is - in most cases - an issue of limited importance as

data stays within a single organization for healthcare purpose. But for EHR, multiple

data controllers and many users co-exists with different roles and purpose of access. In

addition to “common sense” rules in managing sensitive data, companies have to obey to

laws, more or less precisely stating the obligations and restrictions in handling sensitive

data. Conservative solutions with a coarse grained access control to the patients data are

too restrictive as they tend to hide too much to the medical staff, even data that in the

end are not so sensitive. The problem is that, in order to define the right procedures to

manage and protect the data, a certain knowledge on the privacy regulations, on what

the data represents and on which data should be considered sensitive or not is required.

Developers does not have such knowledge that instead is expertise of the user.

In our work we want to exploit the knowledge of the users in understanding which data in

a database should be protected thought they cannot work directly on the database, nor

use formal languages to express constraints on it. Furthermore, the database is usually

a complex one, comprising millions of records, and it is not feasible for the user to go

through all of it and tell us what is wrong.

In this dissertation we propose an approach to discover how privacy is perceived by the

users. We derive the privacy constraints from indications given by the user of the form

“I don’t want to see this value in any report”. Such approach tries to minimize the

effort made by the user by selecting samples of the original database the user is able to

handle in a reasonable time and that don’t exceed a single screen dimension. We apply

data mining techniques to identify the more representative elements of the database to be

shown to the user with the aim to capture quickly the constraints the user desires to define.

The output of the privacy elicitation phase is a declarative representation of the privacy

constraints that can be used to further restrict the data values that are allowed to appear

in a report. In doing that we search for the more concise representation of the privacy

constraints to guarantee they are general enough to remain valid even upon changes in the

original data and such that they are as “actionable” (i.e. verifiable, testable) as possible.

Our privacy constraints can be expressed as select-project queries so that it is easy to

3



1.1. MOTIVATION CHAPTER 1. INTRODUCTION

find privacy violations. Our system guarantees that only the necessary information is

accessed by authorized users by filtering out the data that is sensitive according to some

privacy constraints defined directly by the data controllers. In order to be approved by

the institutions in charge of verifying the correct application of the privacy regulations all

the design decisions and the protocols employed in an EHR solution should be properly

documented and motivated. In this thesis work we applied also some modelling formalisms

to trace which requirements have been implemented in the system to answer to specific

privacy laws.

1.1.1 Context

The solutions presented in this thesis have been applied and validated in a large integration

project called CSS (Cartella Socio-Sanitaria1, Social and Health Record) undertaken by

the Autonomous Province of Trento (Italy) with a dozen of partners from the IT sector,

the public administration and the healthcare services. The project aimed at monitoring

healthcare and social processes across the different government and healthcare institutions

in the region of Trentino, Italy. Trentino was used as a pilot region in Italy, and the results

will next be applied at the national level.

In this scenario users are required to provide documents containing almost the same

information to different offices, even if they belong to the same administration (e.g. the

financial and welfare departments) [18]. This is obviously quite frustrated for citizens

as well as for the caregivers since they need to spend precious working hours to re-type

(almost the same) data taken from documents generated by other entities into their IT

systems, which also increases the risk to do mistakes.

The complexity of the processes involved and the lack of coordination badly affect the

quality of the services delivered as perceived by the stakeholders:

• patients experience delays and lack of visibility on the progress of their requests;

• organizations waste time to enter information from documents to their IT systems;

• the governance lacks a comprehensive interoperability infrastructure to monitor ser-

vices delivered and resources consumed analyzed by temporal, demographic, and

territorial dimensions, to identify needs and trends in social, economical and medi-

cal phenomena.

The last point is particularly relevant for the governance as it does not have visibility

on the whole business processes going on along the different systems. It has only a partial

vision on the single systems sending periodically accounting information and statistical

1http://www.trentinosociale.it/index.php/Il-nuovo-welfare/E-welfare/Progetto-Cartella-Socio-Sanitaria-CSS
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data but at a very low rate (typically each 3 months). Furthermore, it takes time also

to analyse the data in order to combine the partial results obtained from a single source

into a global perspective covering the province as a whole. What happens is that the final

reports are available one month (or even more) after the data is sent from the sources and

they are typically incomplete or they contain mistakes as they are collected manually. The

consequence is that the governance will plan the investments in healthcare and welfare

services with unreliable data and reports that are at least 4 months old.

In addition to that, an agreed privacy management procedure among the institutions

involved is missing, and when data is moved from a system to another, they end up in

a sort of “no mans’ land” in which it is not clear which privacy constraints to enforce.

This prevents the sharing of data, unless in sporadic circumstances, which requires further

effort to compensate for the lack of a systematic way to prove the adherence to the privacy

regulations.

In this scenario it is easy to have unintentional privacy breaches, as the data owners

(doctors, social workers and third party assistance providers) that collect the data from

the patients do not have any fine-grained control on the data they exchange or send to the

governing body [18]. Very often, either they make the data inaccessible (over-constraining

approach) or they release to the others more data than what is needed in conflict with

the principle of minimal usage [57].

Furthermore, as there is no central controller of the data access requests there is no way

to trace how data is used by whom and for what purpose and to be able to answer to

auditing inquiry by the privacy guarantor or by the data subjects.

In this thesis we show how to devised an interoperability solution to collect, share

and distribute in a more timely way the data on healthcare and social services with

a tight control on the sharing of sensitive data. Specifically the goal is to allow the

cooperation of applications from different agencies (both public and private) to provide

high quality clinical and socio-assistive services to the citizens in compliance with the

privacy protection code.

1.2 Research Issues and Contributions

Application Integration poses many well-known problems in terms of bridging the different

protocols and data models of the various systems involved.

Especially for cross-domain integration projects in healthcare at regional and national

level the institutions to be integrated are very high in number and very heterogeneous

in nature. Furthermore, institutions progressively join the integrated process monitoring

ecosystem, so that an additional challenge lies in how to facilitate the addition of new

5
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institutions.

From a data privacy perspective, these kinds of scenarios present tough challenges, such

as:

• how to make it simple for all the various data sources to define the privacy constraints

and enforce them. Simplicity here is the key as otherwise the complexity of the

information system, and in some cases also of the law, make the problem already

hard to tackle, and unless the privacy model remains really simple it is very hard to

understand which information is protected and to what extent.

• how to achieve patient/citizen empowerment by supporting consent collection at

data source level (opt-in, opt-out options to share the events and their content)

• how to allow monitoring and tracing of the access requests (who did the request and

why/for which purpose?)

• how to support the testability and auditability of privacy requirements: owners of

data sources often require that the privacy rules they are asked to define can be tested

and audited so that they can be relieved of the responsibility of privacy breaches.

All the above cases involve 1) the adoption of data and application integration techniques,

2) the definition of contracts, as precise as needed, that define the work to be done and the

expected results, and 3) information flowing across several organizations, with significant

privacy issues involved (which also need to be subject to contractual agreements).

In this thesis we study the application integration problems from a privacy perspective and

particularly we focus on two problems. One is to find an architecture for the lightweight

integration of IT systems in the social and medical domains that is compliant to privacy

regulations. The other problem is in enabling the users to control their data by defining

in a simple way which data is private and which is not. In the rest of the section we show

the complexity of these problems and why current solutions are not applicable.

1.2.1 Privacy-aware EHR Design

The realization of an EHR system is quite challenging because, in addition to the classical

issues present in all the information integration systems, the privacy regulations impose

additional requirements on the way data are processed and, consequently, on the design

and behaviour of the integration system. Particularly, an EHR system should: prevent

unauthorized access to sensitive information with access control mechanisms, reduce the

replication of sensitive data in many places to trace easily any access attempt, minimize

the quantity of sensitive data transferred among different systems, give to the data owners

6
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full control in deciding which data can be seen by whom and for which purposes.

A comprehensive EHR solution satisfying the requirements mentioned above is not avail-

able in literature.

The challenges are not only technical but are also related to the domain complexity and

heterogeneity of the different institutions and actors involved (see Figure 1.1). It is difficult

to keep all of them focused in a short-term joint effort as they have different expectations,

goals and backgrounds from sociology, medicine, financial management, IT. In these cases,

the traditional data warehouse approach does not work: it is already lengthy and hard

to integrate a few systems in a single organization, let alone integrate dozens of them,

developed and managed by different institutions.

If we go for a more flexible integration patterns based on SOA and EDA we have to

guarantee that the data dissemination capability of the system due to the use of these

technologies is controlled and customized according to the needs of the data producers to

avoid uncontrolled privacy leaks.

Another challenge is to identify which data can be shared electronically among different

systems, and then, how to make these systems interoperable requiring minimal effort and

limited changes to existing solutions, a feature which could benefit especially small com-

panies and organizations (since they usually lack the economical and technical resources

to do the integration on their own).

1.2.2 Privacy Policy Definition

Even if the system is designed in compliance with the privacy regulations, it may be

possible that sensitive information is exposed (even by fault) in a report derived from the

integrated data or an event released by a source system. The problem is to understand

which data can be released without violating any privacy regulations, and to understand

it hopefully before the reports are published to avoid to compromise the privacy of the

data owner and the reputation of the publishing institution.

Solutions existing in literature to deal with the modeling and the enforcement of privacy

constraints take typically the point of view of the database administrator or the report

designer. However, there is no easy way for developers to collect from the owners of the

data and the data subjects indications on which data should be considered sensitive and

should be protected.

Our idea is to let the privacy expert to say when a privacy violation may occur by showing

her sample data. The sample data are selected taking into account the size of the sample a

user can manage and the distribution of the data to be analyzed. The goal is to minimize

the number of cases the user has to consider (some cases will be redundant or could

be inferred from what has already been said) and to show a sample that respect some

7
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constraints (e.g. the size of the screen).

This requires to answer the following question: once the privacy expert has reported all

the cases in which a privacy violation occurs, how can we express in a concise form the

privacy constraints inferred? In addition, as we gather notifications of privacy violations

from the user in an iterative way, we need to find the best way to show the sample data

according to a certain order which facilitates the work of the user and which converges

to the final set of constraints as quickly as possible and without loosing any privacy

constraints.

1.3 Structure of the Thesis

The thesis is divided in the following chapters:

Chapter 2 surveys related works in the research area connected to this thesis and in

particular on the design of EHR, on the available architectural solutions for the design of

data and application integration systems and on the management of sensitive information

with Privacy-Enhancing Technologies. From this analysis we saw the lack of a compre-

hensive solution covering all our research and operative goals.

Chapter 3 presents an architectural solution for an EHR in which privacy is first class

citizen. It presents an application integration solution balancing the needs of visibility

achieved with an event-based system with the desiderata of control and protection re-

quired in an healthcare scenario.

Chapter 4 provides a theoretical analysis of the privacy constraints definition problem.

It presents an elicitation approach based on sampling for the generation of concise pri-

vacy constraints minimizing the effort of the user. The constraints produced are directly

enforceable in a relational database. An analysis of the effectiveness of the approach on

test data is also provided.

Chapter 5 presents the application of the architectural solution of EHR proposed in the

previous chapters to real scenarios. We highlight the approach used to analyse the current

systems and the effort required to adapt the research solution into the specificities and

complexity of real systems. We present the approach used to interact with the user to

collect the system requirements in response also to the constraints imposed by the privacy

regulations. Finally we test the applicability of our solutions in a particular challenging

environment to realize an EHR in Mozambique.

Chapter 6 gives an overview of the key contributions of the thesis and presents the future

research directions.
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Chapter 2

State of the Art

The design of privacy compliant interoperability infrastructures in healthcare touches

many research fields to properly answer to stakeholders’ needs and to legal, organiza-

tional and technological constraints.

This section analyses the solutions in literature that can be exploited in devising a privacy-

aware Electronic Health Record (EHR) system. They are divided in the areas: Electronic

Health Record, an overview of emerging health information technologies, their main func-

tionalities, benefits and experiences from existing implementations; data and application

integration patterns that can be used in the design of an EHR solution; approaches to

capture privacy requirements from regulations; compliance and provenance management

techniques, to monitor the behavior of the system and to support the auditors in com-

pliance checking using provenance as a way to grant visibility of the data management

flow; modeling and specification of privacy policies, to express, refine and manage privacy

requirements; access control mechanisms, to implement purpose based data management

restrictions; privacy preserving in databases and information management, to analyze and

integrate data still preserving the privacy of their data sources and data providers.

2.1 Electronic Health Record

Recently, the interest in eHealth systems is increasing [85, 79] as a way to minimize costs

induced by a reduction of patient’s stay in hospital, an optimization of the work of medical

staff in sharing information and an improvement of care quality (e.g. improved control of

adverse drug events [107]). Healthcare providers are gradually moving from paper-based

medical records to Electronic Medical Record (EMR) and to even more evolved eHealth

systems to maintain patient’s data.

The European Commission [66] defines an EMR and its evolutions as follows:

• Electronic Medical Record (EMR): the electronic record of an individual in a physi-
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cians office or clinic, which is typically in one setting and is provider-centric;

• Electronic Patient Record (EPR): the electronic record of an individual in a hospital

or health care facility, which is typically in one “organisation” and is facility-

centric;

• Electronic Health Record (EHR): the longitudinal electronic record of an individual

that contains or virtually interlinks data in multiple EMRs and EPRs, which is

to be shared and/or interoperable across healthcare settings (inter-institutional)

and is patient-centric.

An EHR allows to share patient’s information in form of EMR among different in-

stitutions. Recently the trend is toward the adoption of Personal Health Record (PHR)

[148] enriching EHR with information provided by the patients themselves.

This poses even more stringent privacy issues as also problems in certifying the quality of

the data. According to the DataLossDB 1 statistics 20% of the violations of Personally

Identifiable Information (PII) in United States occurs in the medical sector.

In this thesis we focus on EHR as it is a prerequisite to build more evolved eHealth

systems and particularly to create a national and international level Health Information

Exchange (HIE) infrastructure.

The Institute of Medicine identifies the following functionalities of an EHR [134, 36]:

• Health information and data: the capability of construct, maintain and evolve a

comprehensive profile of the patient core information (e.g. a patient summary) with

allergies and diagnosis, previous laboratory tests and medication list;

• Results management: enable the sharing of medical results in electronic form for a

prompt and quicker consultation among caregivers of different institutions;

• Order entry/management: allows the informatization and standardization of medical

procedures and instructions for the medical staff;

• Decision support: helps the caregivers to evaluate the effectiveness of medical pro-

cedures and treatments, facilitates the diagnosis process and identifies possible risks

for the patients;

• Electronic communication and connectivity: improves the communication among

the medical team members belonging to the same division and also to different care

providers;

1http://www.datalossdb.org/
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• Patient support: facilitate the patient empowerment in managing his healthcare

data autonomously and the continuity of care with treatments performed directly

at home improving the efficiency of the care and of preventive protocols;

• Administrative processes: relieves the medical staff from purely administrative task

like invoice management, prescription and admissions management and scheduling;

• Reporting and population health management: provides a comprehensive set of

information to monitor Key Performance Indicators (KPI) on the quality and per-

formances of healthcare processes distributed in many institutions and the trends in

patient’s needs.

Indeed the use of EHR to exchange EMRs (Electronic Medical Records) has many

advantages: it allows to exchange quicker patient’s information, it is more reliable than

paper records that can be lost or deteriorate, it improves the accessibility to historical

medical data of chronic patients, finally it facilitate the exchange of EHRs with other

hospitals and avoids in this way expensive duplicate tests [117].

Full benefits of an EHR are achieved if all the hospitals involved in patient’s care adopt

it to share information. As shown in [117], privacy regulations [36] may be an obstacle

to the adoption of an EHR solution for two main reasons: on one side patients are

reluctant to share information and they should be reassured with the adoption of suitable

privacy protection mechanisms, on the other side privacy protection makes the exchange of

information more expensive increasing the effort to adopt EHR solutions. This motivates

us in devising an EHR solution capable to protect patients’ privacy minimizing the effort

for its adoption.

The American Institute of Certified Public Accountants (AICPA2) and the Canadian

Institute of Chartered Accountants (CICA) define privacy in the Generally Accepted

Privacy Principles (GAPP [12]) as “the rights and obligations of individuals and organi-

zations with respect to the collection, use, retention, disclosure and disposal of personal

information.” This definition covers all the aspects of the data life-cycle and in particular

[115]: who owns or is responsible of the data generated by a data source; how the data

owner can lawfully use the data and release them to an external third party entity; how to

transfer data to another party under the same or different jurisdiction of the data owner

and control data access according to specific roles and purposes of use; how to transform

the data to produce statistical analysis without exposing the identity of an individual; how

to store and archive the data for a long time guaranteeing access only to the authorized

information; how to destroy the data when the retention period expires. In this thesis we

do not deal with the data transformation and data retention problems but we focus on

2http://www.aicpa.org/InterestAreas/InformationTechnology/Resources/Privacy
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the other issues listed above according to the Italian privacy regulations at national and

regional level [88, 57, 25, 26, 121, 120, 6] which impact on the technological solutions

adopted to develop an health information system.

One of the first issue privacy regulations are dealing with is how to guarantee access to

sensitive information only to the data subjects the data refers to and to the users entitled

by law, or by the data subjects themselves, to use such data (e.g. caregivers, relatives or

governing bodies). In some countries like in Netherland [61] and in some Italian regions

(e.g. Lombardia3, Friuli Venezia Giulia4 and in the near future also Trentino5) patients

and caregivers are identified to the EHR by means of a smartcard. Smartcards are usually

combined with a password or PIN and a certificate used to encrypt the information stored

in a microchip realizing a strong authentication mechanisms. The smartcards released at

national level allow to identify and authenticate the user at national level, to sign to PHR

systems and certificate the authenticity of documents.

Alhaqbani in his thesis [13] highlights the importance of guaranteeing to patients full

control on which health records can be accessed by whom. In our EHR system we delegate

the definition of the privacy policies to the data collectors (hospitals, nursing homes and

municipalities) as they already got from the patient the consent and the set of information

she allows to share. Our focus is on guaranteeing that the data collector can enforce the

privacy policies on the collected data. However, this assumption will be no longer valid

when the patients themselves will enter information in the ehealth system by means of

a PHR. In this case, the user should be able to define his own privacy policies and new

mechanisms to interact with the patients and to share the data among the caregivers

should be devised.

The management of user’s roles and authentication in an healthcare scenario could be

very complex. In the eHealth system of an hospital patients are usually associated to a

department (e.g. medicine, orthopedic unit) and inside this to a medical branch. Doctors

belonging only to the department and branch in which the patient is hospitalized can

access her data. Nurses, instead, are not associated to specific branches but they need to

work on all the patients in the department and they should be able to see the data of all

the department regardless the branch.

The access rights are not static but they may change and there are exceptions to manage.

For example, doctors working in the night and during week-ends should work on all

the department even if they belong to a different department and branch in the normal

working days. This makes the roles dynamic and hierarchical. Recently some work

has been done in trying to represent context-dependent roles [73, 74] but they are not

3http://www.crs.lombardia.it/
4http://cartaservizi.regione.fvg.it/CrsCentralService/
5http://www.cartaservizi.provincia.tn.it/documenti/pagina2.html
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yet capable to fully model a complex EHR scenario with different institutions involved.

What happens in practice is that the administrative and IT departments of the hospital

maintains an LDAP (Lightweight Directory Access Protocol) directory with the users to

manage the authentication procedure but not user’s roles. Roles are managed separately

from the LDAP system using authentication systems like CAS 6 (Central Authentication

Service) or Shibboleth 7 using also a workflow engine to manage the dynamicity in the

roles. In fact, roles could be very complex and change dynamically based on what the

employee is doing at the moment.

In literature there are many standards for managing data representation and data ex-

change in EHR. An example is OpenEHR8 [145] that is quite generic and defines template

and archetype for the design of EHR systems and for the exchange of health data.

IHE, Integrating the Healthcare Enterprise consortium [87] proposes a solution to create

and manage EHR based on Cross-Enterprise Document Sharing (XDS). This solution is

based on a central Document Registry (based on ebXML9 technology) with meta-data to

search and retrieve documents from Document Repository at the source systems. The

Canada Health Infoway system [39], the AORTA Dutch national infrastructure [128] and

NHS Connecting for Health in UK [124] are based on the IHE interoperability solution.

A similar architecture is proposed in Italy with IBSE [150] for the interoperability of

healthcare systems by means of distributed registries for the sharing of clinical data regard-

less where they are produced (e.g. by institutions with different administrative domains

at different regions). These specifications together with the ICAR project [49] funded

by the CNIPA (Centro Nazionale per l’Informatica nella Pubblica Amministrazione, now

DigitPA - Ente nazionale per la digitalizzazione della pubblica amministrazione) aim at

defining a public system of cooperation (SPCoop specification) for the operative cooper-

ation of public administrations. Our solution extends SPCoop specification with a more

fine grained control on sensitive data and a simplified approach to manage the definition

of the contracts among data producers and consumers regarding privacy control of sensi-

tive data. In particular, the privacy constraints are not included in the contract signed

between a producer and consumer but are managed with detailed policies that further

specify the run-time behaviour of the participants in sharing and using data. This relieves

us to create and manage specific contracts among pairs of data producer and consumer

for each type of data and purpose of use in a P2P style as data access control is managed

at the application level.

The experience in Netherlands with the basic cooperation infrastructure AORTA and the

6http://www.jasig.org/cas
7http://shibboleth.internet2.edu/
8http://www.openehr.org
9http://www.ebxml.org/
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work on realizing an EHR at national level [127] confirms that developing a nation-wide

EHR with a central repository is not feasible. Instead, a more conservative approach

should be employed where data remains at the information systems of the care providers

so that they can continue working with their own specific information systems to request

additional data when needed. This is also the approach followed in our EHR solution.

Recently there is also the willingness to integrate national-wide healthcare systems to

guarantee continuity of care to patients moving around Europe. The epSOS10(European

Patients, Smart Open Services) project tries to standardize common healthcare services

like the drug prescription and to define a minimal set of information describing the health

status of the patient (Patient Summary). The Patient Summary allows healthcare pro-

fessional to know core information on the patient (e.g. allergies, recent surgeries, medical

problems) all over Europe. epSOS uses the IHE specification to define the structure of the

documents in such a way that title and header of documents are uniform among different

systems and countries and the single fields in the documents can be accessed directly.

The work in [69] by Eze et al. is very similar to our idea of EHR. They analyse

typical interoperability solutions based on ERP and SOA showing these are not suitable

for eHealth processes. ERP Web portal systems introduce duplication and they force

users to search for the data on their own. SOA (Service Oriented Architecture) frameworks

avoids duplication but imposes a synchronous interaction mode based on request/response

point-to-point invocations. In contrast, eHealth processes have multiple parties concurring

in their execution with a point-to-many interaction style over asynchronous and long-

running processes. Eze et al. propose an event-driven data integration infrastructure for

the palliative care unit at the local health authority in Ottawa with a message broker

managing the subscription and delivery of event topics related to the clinical status of

patients. The architecture is interesting for our work under many aspects: it uses an event-

driven architecture like in our case; it allows to control the way events are routed to the

subscribers and to filter the data content with XACML [118] similar to what we do with

our privacy policies [18]; it allows to monitor and analyse the inter-department business

processes by means of a web portal subscribed to all the events generated, analogously

to what our event-feed data warehouse does. The solution is interesting but it cannot be

applied as-is in our system since it maintains also sensitive information in the notification

messages. Even if they are persisted in the service broker only for the sake of reliable

notification they may still contain sensitive data. The solution is perfectly suitable for

integrating healthcare systems inside the same institution but is not applicable to integrate

different organizations with different privacy requirements and without a shared trusted

party (like the web portal) to store potentially sensitive data.

10http://www.epsos.eu
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In [112] is presented Indivo, a personally controlled health records PCHR (named PING

in a previous work [142]) which allows patients to manage and annotate electronic copies

(XML documents) about their clinical history, to share them with caregivers from different

points of care or with other people (relatives, friends, school and research staff). Data

sources can share documents by means of a subscription agent which deals with the

synchronization among the data source and the document repository and with translating

the documents from the source format to a PCHR-specific format. We used a similar

solution also in our EHR system by providing a wrapper module to be applied to the data

producers acting as an adapter between the legacy system and the EHR system. The

main difference of Indivo from our approach is that Indivo is basically a point-to-point

interoperability platform acting between the sources and a centralize data repository while

in our case we applied a loosely coupled integration with a message broker distributing the

updates of patient’s data to the interested parties. This makes the Indivo approach not

applicable in our scenario as it duplicates the data even if they are stored in an encrypted

data store.

Another PHR based on Indivo is MyOSCAR11, an electronic medical record which allows

patients to control and upload data about their health status on their own, and decide

who can see what.

Malamateniou and Vassilacopoulos [111] propose a virtual patient records (VPR) with

workflows running among different healthcare providers to exchange patient’s data in

form of XML documents. Authorization policies are specified to control “which roles (e.g.

physician) are allowed to perform what operations on what data objects and under what

conditions” [111]. Authorizations are defined on the DTD of the XML documents and

are used to enforce access control at a global level, for all the healthcare organizations

involved, or at a local level inside a single healthcare organization. The idea to integrate

the operative work of healthcare organizations by means of a workflow management system

is possible also in our EHR as the interoperability infrastructure is equipped with an ESB

(Enterprise Service Bus). An application of this approach could be the execution of

operations in response to the occurrence of certain events: for example when the record

of a patient is modified, a notification message is sent to the family doctor and to the

relatives.

Another project worth to mention is the OpenMRS12 project aiming at providing an EHR

for developing countries. It is realized as a client-server application with patient’s data

stored in a central database exposed by APIs. A web application is also provided to

administer and access the data with common functionalities (e.g. search for a patient,

11http://myoscar.org/myoscar/
12http://openmrs.org/
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edit the health profile). This solution is not applicable in our scenario due to the privacy

regulations that will not allow the construction of a centralized database. But its approach

is similar to what we used to adapt the EHR system for developing countries: a modular

architecture with simple data entry and export functionalities.

In the medical domain there are various standards for representing data and docu-

ments like for example the HL7 Clinical Document Architecture [64]. Another important

standard to mention is DICOM [122], Digital Imaging and Communications in Medicine,

for the interoperability of digital medical images and to realize picture archiving and com-

munication systems (PACS) [100]. In our implementation of EHR we used plain XML

documents to exchange data to further limit the complexity of the infrastructure for the

data sources joining the system. However, the architecture is fully compatible with more

advanced standards for the medical domain like HL7.

2.2 Data and Application Integration Patterns for Healthcare

Business Intelligence technologies are being increasingly used by companies and institu-

tions for detecting problems and inefficiencies in the execution of their business operations

and for identifying opportunities for improvement. The reason for the recent success of

BI solutions and their fast adoption13 are due to both improvements in BI technology

and its key ingredients (ETL, warehousing, reporting, and mining) and in the increased

availability of digital information that makes business operation analysis feasible.

Interoperability solutions commonly used for medium and large integration projects that

are based on data warehousing (DWH), Enterprise Information Integration (EII) or Ser-

vice Oriented Architecture (SOA) are not applicable as-is to our scenario [43]. Let’s

briefly analyze the pros and cons of the different approaches.

In a Data WareHouse (DWH) data integration is achieved by means of periodic-

snapshots of detailed and aggregated information flowing from the sources to the data

warehouse. A data warehouse is basically an integrated database capable to maintain

a huge amount of data covering a wide period of time that allows to create a complete

history of the information. The internal data structures are typically designed with a star

schema structure [98] that is optimized for reporting and for the resolution of complex

queries.

As shown in Figure 2.1a the bridge between the sources and the data warehouse is

represented by the ETL (Extract, Transform, Load) system aiming at:

• Extract: it deals with the extraction of data from the sources according to different

extraction modality depending on the particular type of source: direct access to the

13See Gartner, http://www.gartner.com/it/page.jsp?id=501189
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DB, periodic data pump by email or FPT, creation of specific infrastructures at the

data source dedicated to the data extraction. The extracted data ends up in the so

called “staging area”, an area that is not accessible by the final user of the DWH in

which the data are further transformed with cleaning and standardizations steps to

fit into the DWH data structure to guarantee suitable level of quality.

• Transform and Load: data extracted from the sources is checked to identify errors,

missing data, mismatches and duplicates, that are corrected or notified to the DWH

administration for a manual resolution. The staging area represents a central place

in which all the information necessary to perform the consistency and correctness

check of the data are available (e.g. mapping tables internal or external to the DWH

and logging tables). Depending on the number and type of sources the data cleaning

and transformation step can be more or less complex and it is often necessary to

resolve conflicts due to different representation types (e.g. the same data could be

labelled with different names). Another problem is due to the synchronization of

the data coming from different sources at different instant of times and arrival rate.

Once the data transformation phase is completed, the data can be loaded in the

data warehouse (loading phase). The staging area allows to collect and clean the

data in an incremental way and even asynchronously. This makes the whole system

more robust to unavailability of the single sources.

Adopting a DWH to realize an EHR is not feasible as: (i) it requires to duplicate

data and this is not allowed by the privacy regulations for EHR [88]; (ii) data flows

only from the sources to the DWH while the reverse is difficult and makes hard to get a

full interoperability among the systems; (iii) the data synchronization occurs periodically

while in the healthcare domain is important to access to the most recent data in a timely

way.

Enterprise Information Integration (EII) defines a virtual schema as a logical view

on the sources [80]. As showed in Figure 2.1b, the data remains stored at the sources

and the EII integration layer encapsulates the mapping and transformations of the

information from the virtual integrated schema to the single sources. The integration

layer exposes to the final user only the virtual schema on which to perform inquiries

while the heterogeneity of the sources is hidden behind. Each query defined on the

virtual integrated schema is decomposed by the integration layer into sub-queries that

are forwarded to the single sources. Each source will send back to the integration layer

of the EII the answer to the sub-query that will be further processed and integrated (by

a query resolver module) to be returned to the user as a reply to the initial query.
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(a) Data Warehouse

(b) Enterprise Information In-

tegration

Figure 2.1: Data Integration patterns.

The use of a unique unified schema to query allows to act independently from the

actual location and format of the data and from the protocols and security constraints

in use at the sources. Information is retrieved at query time directly from the sources

in the more up-to-date status. This unfortunately makes the whole system strongly

dependent on the availability of the sources: if a source is unavailable or is not working

properly the results obtained could be incomplete or erroneous . Furthermore, this query

resolution mechanism may hinder and slow down the operational efficiency of the sources

as it requires them some effort to retrieve and process the required data. This induces a

degradation of the response time especially for those sources with poor computational

capability.

Notice also that, in contrast to a DWH solution, there is no staging area available to

perform harmonization and cleaning procedures and the partial results coming from the

sources are combined on-the-fly. This makes more difficult in EII to guarantee data

quality as there is no enough “room” to detect and correct inconsistencies in the data

coming from the different sources within suitable response time.

The EII approach is recommended when it is possible to have a direct access to the

sources, for example within an intranet or when the sources belong to the same adminis-

trative domain.

In contrast, an EII solution requires too strong requirements on the data sources when

they are heterogeneous, belonging to different administrative domains or with unreliable

access. Furthermore, it strongly depends on the performances and availability of the data
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sources: a wrong or incomplete answer due to unavailability or inconsistency among the

sources is not acceptable in healthcare.

The use of Web Services (WS) and Service Oriented Applications (SOA) for data

integration [15] is based on exposing resources and functionalities of the applications as

services. SOA uses two key concepts: the concept of standardization, specifically at

the level of interaction protocol; the concept of loose coupling, that is, services that

are not written with a particular client in mind but that are designed and maintained

to be useful to a large number of clients. SOA solutions are particularly suited for

the integration of applications within a single organization but also among different

organizations. Recently SOA techniques have been reinterpreted in the context of data

integration: data resources have been exposed as services and the access to the data is

performed by means of services invocation. There are three main modalities in which

services are used for this purpose: (1) as an ETL adapter, providing to the ETL tool a

uniform mechanism to access to the sources; (2) as a query adapter, providing an interface

for an EII application or a DBMS to perform SQL-like query on the service; (3) as

a monitor, that observes the source and emits events informing on the data changes.

Such a notification can be in batch or real-time mode (i.e. each change generates an

event). The last modality leads to the Event-Driven SOA Architecture (EDA) and is

the one we decided to use in our EHR solution as shown in Section 3.1. In our EHR

scenario there are many actors impersonating dynamic roles and increasing in number as

more institutions tend to join the system. SOA pattern is well suited for point-to-point

synchronous interactions but in this intricate scenario it becomes soon unmanageable.

Event-Driven SOA Architecture (EDA) mitigates the problems highlighted for the pure

DWH and EII solutions with a solution that is extremely loosely coupled and distributed

[116]. In event-driven systems data producers exchange data with data consumers by

means of asynchronous events and the mediation of a common event manager (a messaging

system [86]) as shown in Figure 2.2 (the picture is taken from [68]). As said in [67]

an event-driven architecture allows the personalized delivery of information that is to

“deliver the right information to the right consumer at the right granularity at the right

time” and brings the following advantages (see [67, 86] for a complete list):

• Abstraction: the operations for generating and processing the events can be kept

separated from the application logic and they are typically isolated into adapters

modules [15]. In this way the adapters can evolve without impacting on the pro-

ducing and consuming applications. This has also the benefit of abstracting from

the complexity of the application logic and of the data structures of the systems to

be integrated.
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Figure 2.2: Example of basic publish/subscribe system from [68].

• Decoupling : there is no need for the data producers and consumers to be aware of

each other as both interacts only with the event manager. In this way an event gen-

erated by one producer can be broadcasted to many different consumer applications.

• Asynchronicity : it is not necessary for the data producers and consumers to be up

and ready at the same time and event processing can be performed asynchronously.

This is particularly useful when an application is temporarily unavailable or events

are produced at irregular rates and the processing of event picks can be deferred

when the consumer is less busy (e.g. during the night).

• Data timeliness : by sharing small chunks of data frequently is easier to keep pro-

ducers and consumers in sync minimizing the time interval in which they are not

aligned. This makes the interaction between consumer and producer more natural

and similar to what happens in the real world (e.g. admission and discharge of a

patient can be represented by two events). The data consumers do not need to

query the data producers to get new data as it happens in pull mode interaction.

But consumers are notified by the data producers when new data arrives with a

push mode interaction. This allows the data consumer to continue its work without

losing any key update.

Note how EDA is not an alternative to SOA but in many cases they are used together.

The use of SOA combined with EDA allows to share information efficiently, with minimal

effort and in a timely manner [69]. Recently this combined approach is indicated with

the term event-driven SOA which takes advantage of the benefits of the two approaches

[67]. Business Activity Monitoring (BAM [84]) is part of the Operational Intelligence

analysis and leverages the capability of real-time continuous analysis by capturing events
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to discover and notify anomalies.

In our EHR solution we adopted a mixed EDA-SOA driven approach [116] in which in-

volved entities exchange data through WS invocation and the data processor implements

the Publish/Subscribe [68] functionalities. Our approach is similar to [119] with events

used to transfer information by pub/sub but our case is more general as: it is not limited

to mobile devices acting as data producers but it can work with any source system; it

maintains a centralized index of the events with only meta-data on the real event oc-

currence to search for them even after a long time elapsed from their publication to the

subscribers; the content of the event is maintained at the producers for legal reasons to

agree to privacy regulations (Section 3.1 explain our solution more in details).

The differences of our solution with similar systems based on EDA and in general with

the messaging systems are due to the peculiarities of the EHR scenario in which events

should remain available after the notification at any time and for the whole lifetime of

the patient among heterogeneous systems. This requires to persist the notified events so

that they can be indexed and queried even a long time after the notification. The Inte-

grating the Healthcare Enterprise - IHE consortium [149] proposes a solution based on

a central registry of searchable meta-data linked to the data generated by producers. A

Cross-Enterprise Document Sharing (XDS) cooperation architecture allows the document

sharing (typically documents with simple text, formatted text in HL7 CDA Release 1,

DICOM images) among the federated document repositories at the healthcare delivery

organizations using an ebXML Registry. The solution of the IHE consortium is applied to

many eHealth projects around the world: NHS Connecting for Health14, Canada Health

Infoway15, AORTA16 (the Dutch national infrastructure).

Various implementations of registries like UDDI, ebXML (Electronic Business using eX-

tensible Markup Language, e-business XML), XML/EDI [154] are currently available.

The most appropriate in terms of flexibility, interoperability and also the more widely

used for the Health domain [63, 62] is ebXML by OASIS [129]. The ebXML registry

implementation is also adopted in our EHR.

The problem of integrating information from different and distributed sources is well

studied in literature [102]. Jeff Ullman [89] identifies three main integration architectures:

federation, in which data sources talks each other in a peer-to-peer fashion; warehouse,

in which data at the sources are transformed according to a global schema and copied in

a central DB (a data warehouse); mediator (or virtual warehouse), in which a mediator

layer translates user’s query into a sequence of queries executable at the sources and the

data remains at the sources.

14http://www.connectingforhealth.nhs.uk/
15https://www.infoway-inforoute.ca/
16http://www.ringholm.com/docs/00980 en.htm
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The first approach is also named Peer Data-Management by Alon Halevy [14]: in this

approach, each peer can provide a view of its data or behave as a mediator for the other

peers propagating the query to other peers if it is not capable to answer on its own. The

answer to a query is returned directly to the requester and so there is no privacy issues.

However, we did not apply this approach for the EHR proposed in this thesis, because

in this case there is a partner which can act as central data processor to trace all the

access requests. The tracing is necessary to keep track of who access what for auditing

purposes, and in a peer data-management it is not easily doable as answers to queries can

be provided by any source in the system.

An information integration system using a mediator approach is composed of a wrapper

module at each source and a mediator layer. The wrapper module is in charge of preparing

and sending the data from the data source to the mediator. The mediator encapsulates all

the logic to integrate the data from the different data sources. It retrieves, composes and

integrates the data obtained from them and provides the integrated data to the consumers

in such a way that the consumer is not aware of the differences at the data source level.

In our EHR solution we combined the mediator approach with a publish-subscribe ap-

proach, as it allows to inform multiple consumers with notification messages signalling a

data update is ready. In this architecture the sources can behave both as producers and

consumers. The mediator plays the role of coordinator of the publish/subscribe system

to assure that when an event arrives it is delivered only to the subscribers. The advan-

tages of the publish/subscribe approach for the consumers are: (i) they get immediately

useful information from the notification content (e.g. the notification of the start of a

clinical examination) without querying further the sources; (ii) they can go ahead with

their internal operations, and query the sources asynchronously only when the desired

information is ready and the related notification message has been received.

We also have a DWH in the architecture but its role is to keep a log of all the data

transferred in the system. In contrast to standard DWH systems, when a request from a

customer arrives to our system the data are retrieved from the sources instead that from

the DWH. In this regard the DWH behaves like a data consumer.

The implementation of the communication between the producers/consumers and the

mediator is done through an ESB (Enterprise Service Bus). So, from now on, whenever

we refer to the term bus we mean the term ESB.

2.3 Privacy-Enhancing Technologies

In the previous sections is presented what an EHR is, how it is typically realized and

which technologies can be used for its design and development. This section presents
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techniques that can be used to guarantee the EHR complies to the privacy regulations

both in the design and in the behaviour at run-time.

Privacy Requirements Gathering

The problem of defining and refining privacy requirements is similar to more general

software engineering problems and specifically requirements analysis, refinement and

management. Privacy requirements should be elicited, analyzed, defined and verified

that these are actually met in the system applying a suitable development process and

set of best practices. Customers are often imprecise in explaining their expectations

from the system (or they simply don’t know what they want in the beginning) so

that requirements tend to evolve and become clear only after repeated interactions

with the developers. All these issues are well known and also well studied in software

engineering [143]. Research in this area has lead to modeling languages (as UML,

Unified Modeling Language), software development processes and agile methodologies

(as the RUP, Rational Unified Process, and the SCRUM approach), and tools to aid the

software engineer in performing the requirement engineering phase in a way as accurate

and as painless as possible to minimize the mismatch between customer’s expectations

and what the system actually provides. Evolutionary development processes based on

rapid prototyping and testing of the intermediate implementations of the system are

often the best choice when requirements are fuzzy and inclined to change as is the case

with privacy requirements.

UML and other modeling languages from the requirement engineering community, e.g. i*

[60], may also be used to represent privacy requirements. These languages are expressive

enough, but hard to use, and due to the fact that they have been to a large extend

ignored by modeling techniques, their integration into a data management solution is not

an easy task.

An alternative option is to model privacy requirements in terms of meta-data that

accompany the data and controls its access and use. The advantage of this approach

is that the metadata can be easily defined and can accompany the data throughout

transformations [146]. The meta-data can be part of the data model, typically as data

annotations [47, 76]. At a certain extend also in our EHR system privacy constraints are

represented as meta-data associated to the database views we want to protect and to the

events transmitted among the parties.

Privacy regulations impose constraints on the design of an EHR and also on its

run-time behaviour [135, 7, 57, 88]. Such regulations depend on the country and in some

cases they may prevent data sharing among different jurisdictions. The U.S.-EU Safe
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Harbor framework17 was introduced to allow US organizations to share citizens’ personal

data with EU countries in compliance with the EU directives. In [32] are highlighted

the requirements an organization processing sensitive information about health should

satisfy to be compliant to the HIPAA regulation.

In [132] it is highlighted the importance of understanding which are the privacy and

confidentiality policies and rules that are in place to avoid sharing sensitive information

with other organizations (either private or public) that is not strictly needed to manage

the patient. This is also known as the collection/data minimization principle or minimum

necessary disclosure [28]. On the other hand if the system is designed to be too much

conservative it results in over-constraining the data and in the end in a system which is

unusable for the users.

Furthermore, is important to adopt standards to represent healthcare information to

allow the data exchange between EHRs at different organizations and jurisdictions and

with the public healthcare organizations.

In [99] is proposed a tool to automatize the analysis of regulations written in natural

language with legal terminology. The tool uses semantic annotations to identify rights

and obligations in regulations like HIPAA. The automatic analysis of regulations to

derive system requirements, or at least to model the obligations in such rules, is not

simple as law typically contains a certain degree of uncertainty and ambiguity and

manual intervention is needed [22].

Lam et al. [101] proposes another systematic approach to formalize regulations as

Datalog logical rules. In this way it takes advantage of the possibility to verify the

satisfiability of the rules to check compliance and identify conflicts. The effort of

formalizing the natural language regulations into Datalog rules could be quite high and

limit the applicability of the approach. It is also difficult to use Datalog rules to interact

with the medical personnel as instead is suggested in the paper to train the users on the

importance of satisfying regulations.

In [40] is analysed the problem of managing privacy obligations imposed by privacy

laws (e.g. HIPAA [7], COPPA [71], GLB [70], Data Protection Act [136] ) and

guidelines (e.g. OECD guidelines [131]) in enterprises and organizations. It proposed

an architecture in which data is stored in obfuscated form by means of cryptographic

techniques and data events are generated from the data repositories, databases or

file systems. Events are monitored and privacy obligations are enforced to avoid the

disclosure of sensitive data. The approach is quite general and do not propose an

implementation of the high level architecture. It emphasises that the deploy of a privacy

obligation framework should require minimal impact on the applications and services in

17http://www.export.gov/safeharbor/index.asp
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use in the companies and organizations. In this regard, the approach is quite similar to

our solution as we also enforce privacy policies on events with a solution that minimizes

the impact on the data sources [18].

In [105] is proposed a modeling language to express actionable requirements to satisfy

policies (like the Safe Harbor) on outsourced data. For example, it allows to express

retention policies and to verify data are deleted at the expiration of the retention period.

It also provide a run-time environment to enforce the actions as a state machine in a

workflow engine.

The approach presented in [95], and further extended in [22], applies an argumentation

framework to reason on legal concepts in a systematic way with the users. The approach

uses the Nòmos notation to link requirements with the legal concepts and an argumen-

tation process to trace the motivations (arguments) leading to a certain requirement,

the achievement of a goal and at last the satisfaction of a law. In this thesis we applied

the argumentation approach to motivate to the domain experts and privacy auditor the

compliance of the EHR design to the privacy regulations. The approach is effective but

it requires some effort to be applied on complex system and it is worth to use only on

well delimited scenarios and for the most critical legal constraints. Other compliance

management techniques are further analysed next.

Compliance and provenance management techniques

It is important to note how verifying the correct enforcement of privacy restrictions can

be seen as a special case of compliance checking and should be supported by suitable

compliance management techniques. Compliance checking means to verify at which

extent a system, and in general an organization, satisfies regulations, best practices and

codes of conduct. An example of compliance to financial regulations is the monitoring

on financial transactions performed by anti-money laundering activities. With the

introduction of legislature and regulatory bodies [140] as Sarbanes-Oxley [4], Basel

II [133] and the COSO framework [3] for the financial world and HIPAA [7] (Health

Insurance Portability and Accountability Act) for healthcare information, compliance

has gained increasing importance from a legal point of view with punishments in case

compliance check is not passed.

In Business Process Management systems (BPMSs), techniques have been proposed

not only to detect lacks in achieving compliance (detection approach) but also to

guide the design of Business Processes (BPs) to satisfy the requirements derived from

compliance needs [33] so that compliance is “achieved by design” [140] (preventive

approach). Governatori et al [77] provides a logic-based formalism to express contracts

and obligations in business processes. Compliance of a BP to the contracts is performed
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by monitoring the generated events to check they comply with the contract.

Compliance requirements could be rather complex constraining the actions and steps the

BP is allowed to do (or has to do) on resources and data exchanged between BP tasks.

In [96] are studied the problems of how to verify if the BP is compliant to such complex

constraints and also how to auto-generate processes from them.

Agrawal et al. [9] propose a framework to support requirements imposed by the Sarbanes

Oxley act as auditing and compliance verification of internal financial activities carried

out by a company.

Process monitoring techniques [41] could be valuable means to address compliance

needs with the collection and analysis of information on running processes to discover

bottlenecks, points of improvements, discrepancies with constraints and expectations

usually formalized into SLAs at modeling time [21, 38].

A more privacy centric approach is used in data intensive applications like Hippocratic

DB [10] where compliance to HIPAA is achieved by the enforcement of privacy restric-

tions at query time and the logging of queries to help the auditor in discovering privacy

breaches.

Chinosi et al. [46] provides a compliance checking procedure to verify a business process

is compliant to P3P (Platform for Privacy Preferences) privacy policies by extending an

XML-based BPMN representation (BPeX) with attributes that can match P3P policy

elements.

In our EHR system information may be derived by integrating data coming from

different sources imposing different privacy restrictions. Provenance (and its synonym

lineage) with its capability to capture the origins of data [147] can facilitate privacy

and compliance management. It allows to build the tracing metadata required in

compliance checking activities to understand the behavior of a system when it transforms

the data. Provenance may be applied to improve and control data quality especially

when provenance metadata could be queried (e.g. to retrieve the source of uncertain

information in a database as proposed in the Trio system [155]). It is used to describe

the derivation process of a piece of data so that it could be replicated elsewhere by

re-running the recipe given in the provenance data (e.g. in scientific workflow or curated

databases) or explored by an auditor to understand how data are managed to comply

with particular privacy rules and in general for compliance management.

Data provenance systems could be classified in annotation based and non-annotation

based [147].

In the annotation based approach provenance is achieved by means of annotations

associated to the data. Annotations evolve with the data to reflect the transformations

applied in the data flow from the sources to the target repository. In that way provenance
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is always available without any further analysis of the original and derived data. However,

this approach may require a considerable space occupancy to maintain the annotations

and effort to propagate them on the way of the data derivation process.

Non-annotation based approaches as used in [54] by Cui and Widom do not associate

annotations to the data but compute provenance at tracing time. The approach in [54]

exploits some properties of ETL transformations to obtain the set of tuples in the input

data set contributing in the derivation of the output.

In our EHR system we annotate the data with their provenance (producer and time of

generation of the events) to treat the data with different access control profiles depending

on the producer and also to trace the quality of the data generate by a certain organization.

Modeling and specification of privacy policies

In the area of privacy, the Platform for Privacy Preferences (P3P) [53, 138, 29] project

proposed by the World Wide Web Consortium (W3C) allows web sites to define privacy

policies in a machine readable way. A user agent could detect mismatches between the

web site’s privacy policies and the privacy preferences of users defined in APPEL (the

W3C’s P3P Preference Exchange Language) and refuse data disclosure [17]. Compact

version of P3P policies can be produced to include them in the HTTP header [29]. The

applicability of P3P is undermined by its lack of a formal semantics so that different

user agents may interpret P3P policies differently. In addition, the expressive power of

APPEL is limited and it may be difficult and error prone to define even simple privacy

preferences [52, 11, 29]. P3P is thought to be used to define a sort of agreement with

the user by publishing the privacy policies the web site is going to use. However, the

enforcement of such privacy policies is not addressed in P3P. XPref tries to overcome the

limitations of APPEL with a preference language using a strict subset of XPath 1.0 [11].

IBM’s Enterprise Privacy Authorization Language (EPAL [23]) and the OASIS eXtensi-

ble Access Control Markup Language (XACML) are access control languages that allow

to express directly-enforceable privacy policies with purpose of access and obligations

(e.g. log access operations) [16]. The two languages differ in the functionalities supported

(EPAL offers a subset of XACML’s functionalities) and in the way conflicts are resolved.

In EPAL, rules are evaluated in sequential order until a rule applicable to the request is

encountered. The first-applicable ruling approach [126, 30] avoids conflicts but makes

the automatic integration of different privacy policies problematic. XACML resolves

conflicts among policies and rules in a more flexible way on the base of a combining

algorithm.

The eXtensible Access Control Markup Language (XACML, [118]) is mainly used to

control access requests to a web service [48]. As pointed out in [113] XACML considers
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the objects to protect as XML documents or part of it that fit perfectly in our scenario,

but could be a limitation if data in other formats should be protected.

In this theses, XACML is used to enforce privacy policies not only at document-level but

also at a more fine-grained level constraining the access to the fields of the exchanged

documents (that in the EDA architecture corresponds to events) [18].

In [56] is proposed a fine-grained solution for the definition and enforcement of access

restrictions directly on the structure/content of the documents providing XML responses

with their Document Type Definition (DTD) associated files. In this thesis we apply

the same idea using XML schema (XSD) instead of DTD as it is more suitable for Web

Service invocations.

Jin et al. [90, 91] propose an approach to specify access control policies based on the

specified purpose and on a categorization of the sensitive parts of an EHR document.

They investigate on resolving conflicts and redundancy among policies from different

sources integrated in the same virtual schema. In our EHR we do not deal with conflicts

among policies from different data sources because in our system we do not provide an

integrated schema on which to map the information and so there is no need to guarantee

the privacy policies defined on the events are coherent. Our EHR infrastructure deals

only with routing of information to the correct consumer for the purposes and with

the content allowed by the producer. Each data source acts independently from the

other in defining such sharing preferences by specifying their own privacy policies. This

means that a piece of information that is considered sensitive for a data source can be

freely released by another. However, privacy policy conflicts will be a problem when

all the information coming from the different sources are combined to create a unique

shared schema like in the data warehouse module of our EHR populated with the events

generated by the different data sources. In this regard the strategies proposed by Jin et

al. could be useful.

Access Control Mechanisms

Access control mechanisms grant access to data objects and resources in general (e.g.

tables, views, reports, files) only to authorized subjects (e.g. users or applications acting

on behalf of the users). They can be enforced at the application level (e.g. embedded

in a reporting tool) or at the level of the database storing the data. Reporting and

business intelligence frameworks rely heavily on Role-Based Access Control (RBAC)

[72] mechanisms to restrict access to reports on the base of user roles. In RBAC, users

are assigned to hierarchical roles reflecting the activities and functions carried out in the

organization and access rights are associated to roles simplifying their administration.

When a user changes his role he will “inherit” automatically the privileges of the new role
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[34]. Furthermore, role hierarchies allow to realize separation of duties and make sure a

role gets the minimal capabilities necessary to carry out its job. In some cases there is the

need of a more fine-grained access control so that access restrictions could be defined on

the content of the data to be accessed (Content-based Access Control) in addition to the

profile of the data consumer [34]. Consider for example a table containing clinical data

of patients in a hospital. In this scenario, medical data of a patient could be accessed

only by the nurses working at the floor where the patient has been admitted. Views

could be used to grant content-based access exposing to the user only the data his role is

allowed to see. In principle we can define a view for each kind of access to implement a

view-based access control but this solution will not be scalable [139].

In [108] a query rewriting approach named Query Filter (QFilter) is proposed specifically

for XML documents. QFilter allows to enforce fine-grained access control rules on the

content of XML documents by means of a pre-processing step which re-writes the input

XPath query on the base of the access control policies to return only safe data.

Commercial relational databases like Oracle provide automatic mechanisms (Virtual

Private Database, VPD) [5] to enforce fine-grained access control at the row level by

means of transparent query rewriting. Queries coming from the users are rewritten by the

VPD functionality filtering the data on the base of the privacy policies and users profiles

[34]. Such a powerful mechanism may lead to subtle errors due to its transparency. As

pointed out by [139] a transparent query rewriting mechanism could produce spurious

answers since the query issuer is not aware of the rewriting process that may produce

partial results computed only on the limited part of data visible to the user.

When row-level access control is not enough, a more fine-grained control could be

performed at the field level even if this is not easy to implement. With a field-level

access control the same data may have different access control views. This may lead to

problems (polyinstantiation) when update operations should be managed [34].

Access control mechanisms achieve confidentiality that is one pre-requisite for privacy.

However, privacy requires also to manage data provider consent and data usage con-

strained to specific purposes [34]. In P-RBAC (Privacy Aware RBAC) [125] the notions

of purpose, condition for data usage and obligations have been introduced into the

RBAC mechanism to make it privacy aware. P-RBAC extends RBAC [126, 125] with

privacy annotations to support purposes, conditions, actions and obligations. P-RBAC

[126, 125] allows to define for each data object the intended usage of that data object,

i.e. the purpose. In particular, a data access request is authorized if all the conditions

in the request related to role, data requested, action performed and purpose matches

the permission assignments corresponding to the policy. The main contribution of

P-RBAC is the unification of privacy policy definition and enforcement with access
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control mechanisms and the proposal of conflicts detection procedure (although only

between pairs of policies). In this thesis we adopted a similar approach but with the

difference that we defined policies regulating the access to single fields inside an XML

document.

The languages presented so far are of generic nature and can be used in different

contexts. However, due to their generality, they cannot easily express actionable privacy

requirements that are directly “testable” and “verifiable”. They are neither intuitive

enough to be used by a privacy expert to express even simple constraints. Furthermore,

they require a translation step to make the privacy constraints enforceable on the data

schema.

A different approach is the exploitation of the notion of views. In particular, views are

defined to disallow or restrict access to the base tables specifying different permissions and

operators in each one. The use of views has the additional advantage that it can combine

information that is distributed across different tables, thus defining privacy restrictions

on the integrated information would have never been possible by defining restrictions on

the individual base tables [34]. Our approach based on samples and constraints specified

on them inherits the advantages of the view definition with the difference that it relieves

the user from the definition of such views.

Alternatives or complements to the use of views as an access control mechanism include

automatic query rewriting techniques, such as those found in commercial databases like

Oracle Virtual Private Database (VPD) or in the Hippocratic Database (HDB) [10].

In [55] privacy constraints are expressed as queries that is as views on the database.

Enforcement is performed by checking query/view containment. Incoming queries may

be completely rejected or rewritten in order to release at least some minimum information.

The problem with this approach is that it requires to define the privacy constraints as

SQL queries which limits its use only to database administrators that typically are not

experts in privacy. In contrast, our approach is thought to interact directly with the

privacy expert with no mediation by the database administrator.

Other privacy preserving query answering techniques are based on the perturbation of

the output expected from the queries [137]. Perturbation can also be applied to the data

in input by adding noise in such a way that the statistical distribution and the patterns

of the input data are preserved and the quality of aggregate reports or mined results is

not compromised, even if derived from altered data [152]. Cryptographic techniques can

be used to scramble the data, again without compromising the possibility of computing

aggregates or mining data [152]. These techniques are very useful to perform statistical

analysis but cannot be applied when the end-users need access to the exact information

as it happens in the healthcare domain.
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In our EHR system we applied cryptography to the identifying information of the citizen

stored in the DWH and used to correlate the events, specifically Name, Surname and

Fiscal Code. This implements the request of the Italian Data Protection Authority [88]

to “prevent the data from being intelligible to unauthorised entities”. However, it does

not protect from a curious attacker that can still infer the identity of an individual by

collusion attacks as occurred in famous cases like the privacy breaches induced by the

release of search queries by American On Line in 200618.

Privacy Preserving in databases and information management

A common way to protect privacy used in the statistical database community when

detailed private information are published is to manipulate the original data (sanitiza-

tion) so that they become anonymous and can be freely published without compromising

privacy [8]. In alternative, sanitization can be applied to the output of the queries

leaving the original data as they are.

Many techniques has been developed in Privacy Preserving Data Publishing (PPDP) to

deal with the publication of microdata with certain requirements of privacy and possibly

minimizing alteration of the original data. Most of the sanitization techniques work

on the so called quasi-identifier or pseudo-identifiers fields (e.g. age, zip code, sex) [8].

Quasi-identifiers are attributes that could be linked easily with external publicly available

information (e.g. voting registry or census data) to identify with a good estimate sensitive

data (e.g. more sensitive fields like a patient’s disease) [144] by inferring the real identity

of the individual (e.g. name and social security number).

The intuition behind anonymization techniques like k-anonymity [144] or l-diversity [110]

is to hide a person in the crowd [109] to avoid linking attacks. Re-identification of

individuals by linking attacks is based on the use of quasi-identifiers released together

with the sensitive information that can be linked to publicly available data containing

the actual identity of individuals.

These anonymization techniques make it hard for an attacker to successfully perform

linking attacks by hiding a single individual in a group of similar records to avoid an

exact re-identification. This näıve idea is formalized in the concept of k-anonymity where

individuals are clustered together into groups of size k so that they share the same value

for the quasi-identifier fields with other k − 1 people. Each individual is identical to the

others clustered in the same group when viewed restricted to the set of quasi-identifier

fields. Intuitively, the bigger the group the harder is to identify a single individual and

its sensitive fields [144]. Sweeney [144] proposes two approaches to built a k-anonymous

version of a table by means of generalization and suppression repeatedly applied until

18http://select.nytimes.com/gst/abstract.html?res=F10612FC345B0C7A8CDDA10894DE404482
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the table becomes k-anonymous. Generalization substitutes a value with a more general

one. The maximum generalization step corresponds to the suppression of the element

(field or tuple).

Anonymization induces a loss of information due to the fact that some details are no

longer present in the generalized data. A trade-off should be reached between the level

of protection achieved and the loss of information.

Unfortunately, k-anonymity techniques are not completely safe from privacy breaches.

If all the records in the group of k identical tuples of a k-anonymous table share the

same values for the sensitive data, then the approach is totally ineffective as shown in

[110] with the concept of l-diversity. In l-diversity the k-anonymity condition is extended

to solve its weakness so that for the tuples with the same values for the quasi-identifier

fields the values over the sensitive attributes should be different.

However, also l-diversity may fail in certain cases and more advanced techniques have

been proposed like (α, k)-anonymity [156] and t-Closeness [106] which enforce more strict

requirements in the data distributions of the released table.

In [158] Xiao and Tao propose to release the quasi-identifiers and the sensitive values into

separate tables. The sensitive fields of the tuples in a bucket are mixed together so that

there is no more a one-to-one correspondence between the quasi-identifiers (QI) and the

sensitive attributes but a single QI can be associated to any of the sensitive attributes.

An interesting approach for releasing safely sensitive data is proposed by De Capitani

et al. [59]. They specify confidentiality constraints to protect sensitive associations

among data (e.g. the publication of the name of patient together with his diagnosis) and

visibility constraints imposing instead certain data to be published together (e.g. the

birth date and zip code of patients should be released or the SSN). The confidentiality

constraints are satisfied by releasing the data into fragments in which sensitive data

do not show up together neither in a single fragment nor in their join. Fragments are

constructed with no attributes in common to inhibit join operations among them and

they are split in such a way that both the visibility and confidentiality requirements are

satisfied with a minimum number of fragments. The authors reduce the fragmentation

problem to a SAT problem with boolean formulas representing the constraints and they

propose a resolution algorithm based on a SAT solver.

The confidentiality constraints proposed in this work are similar to the privacy con-

straints defined in our EHR system as they are both inspired by the idea that releasing

certain attributes together may compromise the privacy of an individual. Also our idea

of splitting the data into different messages can take advantage of the fragmentation

approach to devise a methodology to choose how to split the data in different messages.

Currently the only split of attributes which takes into account privacy constraints is
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performed among the notification of an events, with the identifying information of a

patient, and the details of the events, with the sensitive information. But no other

attention nor methodology, apart from the visibility constraints imposed informally by

the users on which data to include in the events, are considered in defining the structure

of the details and by joining different details is easy to expose sensitive data. The

problem with our current approach is that all the notifications and details messages share

the same identifying information to be able to correlate the events to a specific patient.

This is necessary to guarantee the operative business processes receiving the events at the

consumers can correlate them easily and precisely. However, for the sake of the business

intelligence tasks could be enough to guarantee that only certain associations among the

data is preserved without exposing the real identity of the patients.

De Capitani et al. provide an approach to publish associations (named loose associations)

among tuples in different fragments by hiding the tuples into groups so that associations

are exposed only at the group level. This approach can be applied to create events

releasing to a data warehouse module only the data at the sources that can be safely used

for the statistical analysis (outsourcing of the business intellicence tasks) or to expose

the reporting results without compromising the confidentiality constraints.

Anonymization like k-anonymity [144] or l-diversity [110] can be applied in the cases

in which we cannot alter the original information with perturbation or randomization

techniques (e.g. results of clinical trials for a doctor) as long as it is acceptable to lose

some details (e.g. the exact place of birth or day of birth of a person). However, they

are rather expensive from the computational point of view and usually cannot be applied

to anonymize all the data in a database or a data warehouse. For that reason is not

advisable to apply them to the whole database but just to some tables and for few fields.

Specifically in the EHR system developed in this thesis we plan to anonymize just some

report extracted from the DWH before they are published (e.g. the distribution of diseases

by place, age class and sex).

The applicability of all these techniques depends on the successful identification of the set

of quasi-identifiers based both on the capability of the privacy expert in identifying such

key fields and in an evaluation of the knowledge an external attacker can exploit.

Our approach can support all these anonymization techniques once the privacy constraints

have been defined and helps the user in identifying the set of quasi-identifiers by giving

evidence of the effects of such constraints on the views derived from the original database.

The paper by Atzori et al. [123] depicts a scenario where just discovering the presence

of a person in a database represents a privacy violation even if the sensitive information

remains unknown. The authors present metrics to quantify the risk of guessing the pres-

ence of an individual in a database and to mitigate such risk. This solution helps to deal
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with the common practice used in hospitals of communicating the personal data and the

ward of hospitalization of a patient to the information centres to facilitate visitor’s access.

The Italian Data Protection Code [57] state that the patients are entitled to disable the

sharing of this data to the public and in this case it should be guarantee such information

is no more publicly available.

In [109] privacy is preserved without sanitization. The authors propose a way to answer

queries only if they do not expose any private data, otherwise they are rejected. The

problem of the analysis of the safety of the incoming queries is reduced to a conjunctive

query containment problem and the paper shows in which cases it could be solved.

Another work achieving privacy without necessarily use sanitization techniques is repre-

sented by the Hippocratic Database, HDB [10], a privacy aware database implemented as

a middleware layer on top of existing commercial databases like DB2. Privacy restrictions

are defined as corporate privacy policies (written in P3P language) and opt-in and opt-

out choices given by the data provider to define who can use the data and the particular

purpose of use. Privacy is achieved by the Active Enforcement component that is similar

in principle to the Oracle’s Virtual Private Database concept. The Active Enforcement

component rewrites the incoming query to reflect the privacy restrictions so that it could

be safely executed on the database (e.g. by hiding some fields).

The HDB system provides also an auditing mechanism to facilitate the identification of

privacy leaks. The system logs any query issued by the data users (only the textual for-

mulation) with some metadata (e.g. the query issuer). In addition, an history of all the

modifications performed on the database is maintained to allow the reconstruction of the

state of the database at any point in time during the HDB lifetime. If anomalous disclo-

sure of protected data is suspected, the database administrator writes a query reflecting

the particular data to be audited. The system identifies in the query logs the set of past

inquiries that may be responsible of the unwanted information disclosure and re-executes

them over the database once it has been brought back to the state valid at the time of their

past execution. On the base of the results obtained, the database administrator could

identify if there is any responsibility from the systems and its users in the unlawful data

disclosure. This solution works when all the information to be protected is centralized in

a single database but is not applicable in our scenario in which different systems should

be integrated without saving the data in a single centralized database and consequently

a more distributed solution should be devised.

The techniques presented so far are in principle applicable to query management and

publication of detailed sensitive data from any database model. However, in the field of

business intelligence and data warehousing there are specific means to explore the data

(e.g. OLAP, On-Line Analytical Processing) that needs to be considered also from a pri-
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vacy point of view. In OLAP systems, a key problem is that of protecting information at

low granularity (or projections along certain dimensions) to avoid the inference of sensi-

tive information while aggregations at higher level of granularity could be freely accessed.

In [153] it is proposed a way to specify fine-grained authorizations in data cubes parti-

tioned both vertically, depending on the aggregation level (e.g. by year, semester, month

or day), and horizontally accordingly to some dimensions (e.g. time, kind of drug, or

locations).

Privacy preserving data mining techniques [27, 8] try to make more difficult for an at-

tacker to guess sensitive information starting from the mined results. A typical privacy

preserving data mining approach, data perturbation, modifies the data in input adding

noise in such a way that their statistical distribution and patters are still preserved and

mined results are not compromised even if derived from altered data. Also cryptographic

techniques could be used to carry out the mining task from multiple parties in input so

that they should not expose themselves as, apart from the mined output, nothing else is

learned on the inputs [152].

As said in Chris Clifton et al. [54] and in the PRIVATE-IYE (PRIvacy PreserVing

DAta InTEgratIon SYstEm) framework [35] privacy in current information integration

systems is an issue limited to already integrated data.

By relaxing this assumption some interesting problems arise for the design of a privacy

preserving information integration system. As a preliminary step in many data warehous-

ing and information integration systems data transformations are required to consolidate

the data or even to combine the results coming from different sources. Basic information

integration approaches as schema matching should be conducted preserving the privacy

of the sources that may restrict the visibility of their internal schema and data.

Similarly, duplicate resolution carried out to clean data coming from different sources

should preserve privacy of the users and of the data sources the duplicates may originate

from [50]. Some privacy-preserving data integration frameworks have been proposed to

comply with privacy policy not only on the source data but also when data with different

origins is integrated [35, 50]. The PRIVATE-IYE framework proposes a federated form of

integration that allows to preserve privacy at two levels: at the source, to make sure the

results obtained from the source does not expose protected information; at the integration

level, by checking the result obtained combining the fragments coming from the different

sources does not violate privacy of some of them. They propose an idea of the components

and functionalities of the framework but without implementing it.

As our approach to define privacy policies by samples works with table views it is not

limited to a single source but it allows to define privacy constraints on views combining

joined tables owned by different schemata. The privacy policies derived can be employed
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in a data warehouse system.

The formalization of background knowledge is fundamental to tailor a privacy preserv-

ing technique and to find a good balance between protection and utility and to measure

the level of privacy achieved [42, 114, 65]. The more information an attacker may exploit

to discover the sensitive data the more restrictive should be the privacy protection mech-

anism reducing the utility of the released data. Our approach allows to define only the

constraints that are strictly necessary and can be applied only to the data that will be

exposed instead of the whole database. Once data are released it is up to the destination,

that is a trusted party, to control they are used properly. For that reason our EHR system

is not dealing with collusion attacks on the released information.

2.4 Conclusions

The design of an EHR requires a careful choice of the technology and implementation

strategy to satisfy the legal restrictions imposed by the privacy regulations still with a

solution that is usable for the end-users. A Data Warehouse solution is not feasible as: it

requires to duplicate sensitive data outside the data controller and this is not allowed by

the privacy regulations for EHR; data flows only from the sources to the DWH while the

reverse is difficult and makes it hard to get a full interoperability among the systems; the

data synchronization occurs periodically while in the healthcare domain is important to

access to the most recent data in a timely way.

An EII solution poses too strong requirements on the data sources that we cannot impose

on systems belonging to different administrative domains. Furthermore, such solution is

strongly dependent on the performances and availability of the data sources: a wrong

or incomplete answer due to unavailability or inconsistency among the sources is not

acceptable in healthcare.

Event-driven SOA mitigates these problems providing to the data sources a solution that

is flexible, responsive and loosely coupled and that seems to be the more suitable approach

to realise an EHR. However, both design and run-time behaviour of an event-driven SOA

system needs to comply with the privacy regulations to guarantee to data controllers and

data owners full control on the data shared with the subscribers.

Various methods have been developed to address privacy when sensitive information

is disclosed to third parties and processed out of the direct control of their providers.

Current privacy policy languages allow to express general privacy requirements without

going into the details of the techniques used to process or distribute the data. They

give to data providers a way to express which are the authorized purposes for the use of

their data. Purpose-based access control mechanisms allow to enforce such purpose-based
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access control restrictions on the actual data. Privacy policy languages are of general ap-

plicability and can be used in different contexts where data are released to third parties.

However, their generality makes them sometimes unsuitable to express actionable privacy

requirements that are directly “testable” and “verifiable” along the data lifecycle. Errors

in capturing the intentions of the data sources and data providers with the definition

and implementation of the privacy requirements are discovered only when the system is

released and is too late to avoid the disclosure of sensitive data.

Techniques used to preserve privacy in databases and information management systems,

as sanitization and anonymization, require a certain level of expertise to the user to iden-

tify the set of fields on which they should be applied and to properly balance information

loss and level of privacy achieved. Hence they are not affordable for the average user.

Moreover, they should act in concert to access control techniques to limit the visibility of

certain aggregated data to the privileges and needs of the information consumer.

Scalability in the number of sources to be managed is another critical aspect that may

arise in using such techniques so that they are not suitable in outsourced and rapidly

evolving environments where privacy requirements may change and the system should be

adapted with reduced downtime.

Approaches that do not necessarily require the sanitization of the data can support only

limited classes of queries, as in [109], or they are not thought for cross-organisational

privacy requirements. The Hippocratic Database [10] is an interesting solution that can

work when fed by a single data source (e.g., a hospital) with its set of privacy restrictions

and preferences. However, when multiple sources are involved like in an EHR each main-

taining the ownership on the data and a specific set of privacy requirements, it is difficult

or even not possible to combine, transform and load all their preferences and their data

into a central repository. In addition, the HDB automatic query rewriting approach to

enforce privacy restrictions, carried out transparently from the information consumers,

may lead to inconsistent results in reports when designed by non highly skilled IT users.

Information consumers will get misleading results because obtained from the limited view

on the data they are authorized to see from the system without any indication on what

is happening at query rewriting time [139]. This is particularly critical when data in

the EHR are consumed by the medical staff to perform healthcare activities or by the

governing bodies to take decisions on the financial plan. For instance if the municipality

is not aware only the patients that have given their consent to the EHR are considered

by the queries, the results obtained will be an underestimation of the real health state of

the town.

Auditing is another fundamental aspect highlighted in HDB [10] we should consider also

in developing an EHR. HDB allows the analysis of the query history to identify disclo-
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sure of protected information but requires the expertise of the database administrator to

carry out the auditing activity. Auditors from the public administrations or institutions

certifying the correct implementation of the the privacy regulations in the EHR needs an

auditing solution usable even with poor knowledge on the internal database schema of the

EHR and capable of exposing an abstract view of the complex parts of the system. It

should be possible to explain to the auditors what the system is doing to be compliant to

the privacy regulations using abstract models of the underlying enforcing system with its

data model, cleaning processes and reporting activities managing in that way the whole

compliance lifecycle. In this regard, the work on modeling regulations and on augmenting

goals model to justifying requirements with argumentations [141, 95, 22] can be useful

to prove to an external auditor (like the privacy guarantor office) that the design of the

system is compliant to the privacy regulations.
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Chapter 3

Privacy-Preserving Electronic

Health Record

This chapter presents an event-driven SOA solution for the design and development of an

Electronic Health Record. It shows how we tailored the solution to the specificities of the

social and medical domains and particularly to the privacy requirements impacting on the

design and run-time behavior of the system (Section 3.1). It describes how restrictions

derived from privacy regulations are addressed by means of an incremental and fine-

grained control of the data distributed among the parties (Section 3.2) according to

privacy policies defined by data providers (Section 3.3) and enforced at run-time (Section

3.4). A concrete application of this solution is presented in Chapter 5.

3.1 EHR Architecture

In designing an EHR system there are some legal, technological and organizational con-

straints of the domain that influenced the decisions on the design and development in

order to: minimize the commitment of the partners to join the infrastructure and fa-

cilitate the exchange of information minimizing at the same time the traffic; satisfy the

privacy regulations in the health domain preventing the duplication of sensitive data out-

side the boundaries of the data controllers. In this section we explain how we designed

an interoperability solution satisfying such constraints.

According to the privacy regulations [57] the actors in this scenario can be classified into:

• Data Subjects: citizens and patients, that are the subjects of the personal data;

• Data Controllers: socio-health service provider, that collects people’s data, in-

cluding sensitive data, determines the purposes and processing methods of personal

data including security matters;

41



3.1. EHR ARCHITECTURE CHAPTER 3. PRIVACY-PRESERVING EHR

Figure 3.1: General event-based architecture for the cooperation of healthcare and socio-assistive

systems.

• Data Consumers: all the project partners (for most provincial and governing

bodies) having a contract with the data controllers to access and use their data;

• Data Processor: the Electronic Health Record processing the data on the con-

troller’s behalf.

As shown in Figure 3.1 in our EHR architecture information is exchanged among the

parties in form of events. Intuitively, an event is the occurrence of a change in the state of

a data source that is of interest to other parties. It contains contextual information (like

the author of the change, on who it is performed, for what reason, i.e. the type of event,

and when) with a payload representing what happened (e.g. the outcome of a clinical

examination). In our analysis we modeled the processes going on among the actors in

Figure 3.1 just to identify the events and the conditions for their generation. Indeed, in

that way we missed some details but at the same time we simplified the problem to make

it tractable as we do not dig into the details of the internal databases at the data sources.

An event-driven SOA solution can deal with the technical and organizational restric-

tions imposed by the scenario but it introduces also some points of attention. The possi-

bility to reach all the subscribers with events is a very powerful communication means, see

Figure 3.1, but it can also disseminate easily sensitive information without any control.

42



CHAPTER 3. PRIVACY-PRESERVING EHR 3.1. EHR ARCHITECTURE

Instead, medical and social data, due to their sensitive nature, requires to control not

only which events are shared as in a classical publish/subscribe system but also which

data inside the events the integration system is authorized to communicate.

The privacy regulations imposes also some restrictions on the way sensitive data can be

persisted in the integration system. The Guidelines on the Electronic Health Record and

the Health File [88] by the Italian Privacy Guarantor Office impose some restrictions on

how personal data and clinical events can be treated and also on how the EHR should

be designed. Below are reported some excerpts from these guidelines and their impact on

the design of the EHR:

“The Electronic Health Record should be set up by prioritizing solutions

that do not entail duplication of the medical information created by

the health care professionals/bodies that have treated the given data subject.”

This excludes a DWH solution or any alternative solution with a central repository to

store the data from the sources.

“Secondly, since the medical data and documents contained in a EHR are col-

lected from different sources, the appropriate measures should be taken to allow

tracing back the entities responsible for creating and collecting the

data and making them available via the EHR - also with a view to

accountability.”

The second statement requires to trace the origin of the data to perform auditing and

accountability.

Regarding the EHR, since separate clinical records are at issue, it should be

ensured that each entity that has created/drafted those records con-

tinues to be, as a rule, the sole data controller in their respect - even

though the information is made available to the other entities that are autho-

rised to access the EHR. Availability is often achieved, for instance, by allowing

all the entities that have treated the given data subject to share the

list of the relevant clinical events; such list is at times set up in the

form of an index and/or a list of pointers to the individual clinical

events.

This requirement states that when multiple institutions are involved in creating and

collecting the data that will be used to feed the EHR, it should be guarantee that such
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institutions maintains the control of their data (i.e. they are the sole data controllers).

This statement gives also an hint on the way the EHR can be internally designed with

an index of pointers to the individual clinical events.

To safeguard data subjects, the purposes in question should accordingly only

consist in prevention, diagnosis, care and rehabilitation of the given

data subject and exclude any other objective - in particular plan-

ning, managing, supervising and assessing health care activities,

which can actually be performed in several circumstances without

using personal data. This is without prejudice to any requirements arising

under criminal law.

If administrative purposes are to be also achieved via EHRs and/or

the HF and such purposes are closely related to providing the medical care re-

quested by the given data subject - e.g. as for booking and paying for a given

medical examination - the tools in question should be organised in such

a way as to keep administrative data separate from medical infor-

mation. To that end, different authorisation profiles may be allo-

cated as a function of the different operations to be performed.”

The last two points restrict the purposes for which an EHR can be created and used

that is only for prevention, diagnosis, care and rehabilitation. The use of an EHR for

administrative purposes is allowed but only if such use is devoted to the delivery of some

medical care. In this case the administrative data should be kept separated from the

medical data (even physically separated meaning that it should be stored in different

databases or tables) and different access profiles should be provided depending on the

user and purpose of access. For example, the administrative staff should not have access

to the medical data while the medical staff should have visibility of any data in the

medical profile of the patient.

The constraints above require to carefully design the events transported to populate

the EHR and to apply the event-driven SOA system in such a way that full control on

the shared events is guaranteed without the need to store sensitive data.

Etzion and Niblett [67] define an event as: ‘an occurrence within a particular system or

domain; it is something that has happened, or is contemplated as having happened in that

domain’. As such an event may contain also sensitive data, for example: the admission of

a patient to a certain medical division may reveal his diagnosis or may contain the cost

of the services used.
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In our EHR solution, we explicitly separate the part of data to be considered sensitive

from the public data, by defining two kinds of messages carrying the event’s content

characterized by different levels of sensitiveness and completeness:

• notification (message): is used to signal that an event has occurred in a legacy

system. It contains only information on the context in which the event occurred

and in particular: the data subject (patient/citizen); what happened (which type

of event and which process of assistance the event is related to); when (date of

generation in the source system and date of occurrence in reality); who generated

that information (the data producer organization and its system). It contains the

identifying information of a person but not sensitive information (see Figure 3.2).

• detail (message): contains all the data to fully characterize the event that, by

default, should be kept secret and shared only with explicit authorization of the

data producer (e.g. the result of a clinical trial or the report of a psychological

analysis) as shown in Figure 3.3a.

Notice that an event is physically transmitted on an event channel as a message containing

a serialized form of the event [67] (e.g. in XML). Albeit the two concepts are different,

for the sake of simplicity we will use message and event interchangeably. A data event

signals a change of state in a source system that is of interest to the other parties (e.g.

the completion of a clinical exam by an hospital is of interest to the family doctor of

the patient) and should be traced and notified to them. The composition of data events

on the same person produced by different sources gives her social and health profile the

caregivers need to take care of her.

The distinction between notification and detail is important because it allows to treat

the data differently depending on their level of sensitiveness according to the privacy

regulations and impacts on the design of the system.

The intuition behind this strategy is the following. It is like if the profile of a person

is represented by a sequence of “snapshots” (the events) and each snapshot has a short

description of meta-data that explains where, when and by whom the “photo” was taken

and what’s the picture about (i.e., notification message); the picture is the detail (the

detail message) and you can see part of it only if the owner of the picture gives you

the permission. A consumer will ask for the detail only if necessary based on the short

information in the notification.

This approach allows us to couple the benefit of a pub/sub event-based system (decou-

pling of publishers and subscribers) with a privacy approach that is compliant with the

privacy laws typically adopted in managing healthcare information.

45



3.1. EHR ARCHITECTURE CHAPTER 3. PRIVACY-PRESERVING EHR

Figure 3.2: Example of notify message.

Field Value

EventID 129845
HeaderSender HospitalTN

SenderURL http://apss.tn.it

Name Anna


Personal data

Surname Rossi

Date Of Birth 06-12-1944

Place Of Birth Trento

Residence Povo

Fiscal Code DFGMST68A82H612H

Date 11-02-2012 22:45
Description

Event type social evaluation

Activity Elderly House Access

ServiceProvider Central Elderly House Trento

Figure 3.4 shows more in details the architecture of the EHR. Sensitive data is main-

tained at the sources in an Event Repository at the Local Cooperation Gateway module

by the data producers that are the sole data controllers of their data.

The central data processor stores only references (or metadata) to the sensitive data in an

Event Index that acts as a registry of meta-data. The sensitive information is retrieved on

demand by authorized consumers from the sources only when it is necessary. The infor-

mation is encapsulated as events that are used to move and share information among the

legacy systems. The infrastructure driving events from the sources to the destinations is

SOA based implemented with web services on top of an enterprise service bus that allows

the distribution of events to all interested parties.

The data processor mediates the communication among all the parties and acts as a

bridge for the routing and distribution of the events. It contains some domain specific

Field Value

Event ID 129845

Sender HospitalTN

Sender URL http://apss.tn.it

Evaluation Outcome Admitted to RSA

Preference 1 Povo

Preference 2 Trento

Autonomy Level 60%

Cognitive Level 80%

Assistance Network poor

(a) Detail message at the data producer.

Field Value

EventID 129845
HeaderSender HospitalTN

Sender URL http://apss.tn.it

Evaluation Outcome Admitted to RSA


Details

Preference 1 Povo

Preference 2 Trento

Autonomy Level 0%

Cognitive Level 0%

Assistance Network oor

(b) Filtered detail message.

Figure 3.3: Example of detail message.
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Figure 3.4: Detailed event-based architecture for the cooperation of healthcare and socio-

assistive systems.

Figure 3.5: Filtering of details message by privacy policies at the Visibility Rule Manger.

components: an index of socio-medical events (the Event Index mentioned above) and a

business intelligence module to produce reports on the delivered socio-medical services.

These components are fed using some general purpose components to manage the list

of publishable events (Service Registry) and the policies regulating how information is

communicated and shared (Visibility Rule Manger).

The data processor acts as a broker between data sources and consumers and is the

guarantor for the correct application of the privacy policies for retrieving the details and

exploring the notifications. The privacy policies allow to restrict the access to the content

of the detail messages by removing the fields the requester is not authorized to see as

shown in Figure 3.5 and in the resulting filtered event in Figure 3.3b. The values of
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fields not accessible to the specific consumer for the role and purpose specified are not

included in the returned detail message.

In addition, special policies are defined to control the routing of the notifications only

to the subscribers authorized by the data owner. The structure and semantics of the

privacy policies is presented in details in Section 3.2.

The data processor is the central rooting node of the interoperability infrastructure and

it maintains the Event Index, implemented according to the ebXML [37] standard. It

stores all the notification messages published by the producers and notifies automatically

to the subscribers the events they previously subscribe to.

The detail messages are maintained only in the producer’s system as it is the owner and

responsible body for that sensitive information. They are also received and processed

by a Data Warehouse (DWH) module which is subscribed by default to all event types

generated by the sources. In order to be compliant to the security measure imposed by

the privacy regulations [88] the identifying information in the notification message like

Name, Surname, Date of Birth and Fiscal Code are stored in the DWH in encrypted

form using an hash function or cryptographic algorithm (e.g. the AES 256 encryption

provided by the crypto library in the standard Sun JDK 1.6 distribution [104]) to

transform the real data into a unique not invertible code.

The splitting in notification and detail events allows:

• to conceal sensitive information at the data producers with a tight control on its

distribution;

• to centralize only the meta-data on the occurrence of events, i.e. notifications, that

is not sensitive and can be stored in the Event Index with no violation of the privacy

laws and directives [88, 57] which disallow data duplication outside the boundaries

of its data controller;

• to tune and differentiate the distribution of notifications and details with just an

on/off access control for the notifications and a fine-grained access control for the

details;

• to selectively subscribe and access only to the events of interest minimizing the traffic

and the effort to join the system as only the events notified and corresponding details

should be parsed.

Figure 3.6 and Table 3.1 summarize the interactions taking place among the different

system modules to publish and notify to a subscriber a notification event and to retrieve

the corresponding details.
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Notice how all the interactions (notification with steps 2–3 and details retrieval with steps

4–8) pass through the Interoperability Infrastructure which guarantees the application of

the privacy policies to filter the detail message before it is returned to the consumer.

The operations performed internally by the Interoperability Infrastructure are shown in

the sequence diagram in Figure 3.7 and further described in Table 3.2.

Producer /
Gateway

Producer /
Repository

Interoperability
Infrastructure

Consumer /
Gateway

1 : publish(personalData, description, eventXML)
2 : notify(wsnt:notificationMessage)

3 : notify(wsnt:notificationMessage)

4 : getDetail(id, consumer, role, purpose)

5 : getDetail(id)

6 : DetaiMessage

7 : applyPolicy()

8 : FilteredDetailMessage

Figure 3.6: Interactions among the EHR modules for event publication, notification and details

retrieval.

Consumer NotificationService
/ getDetail

Persistency
Management

Repository /
getDetail

Visibility Rule
Manager

1 : getDetail(globalId, UserId, Role, Purpose)

2 : verifyUser()

3 : resolveLocalId(globalId)

4 : localId

5 : getRepositoryUrl()

6 : repositoryUrl
7 : getDetail(localId)

8 : detailMessage

9 : applyPolicy(detailMessage, Role, Purpose, User)

10 : findPolicy(Role, Purpose, User)

11 : policy

12 : applyPolicy()

13 : FilteredDetailMessage
14 : FilteredDetailMessage

Figure 3.7: Internal details of the getDetail operation.
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Interaction Description

1. publish(personalData, description, even-

tXML)

The Producer publishes the events (with the

personal data of the notification and the de-

tails in eventXML) to the event Repository

2. notify(wsnt:notificationMessage) The Producer notifies the notification mes-

sage invoking the notify service exposed by

the ESB of the Interoperability Infrastruc-

ture

3. notify(wsnt:notificationMessage) The Interoperability Infrastructure dis-

tributes the notification messages to the

subscribers invoking the notify service

exposed by their respective gateways

4. getDetail(id, consumer, role, purpose) The Consumer asks for the details of a certain

notification specifying: event’s id (extracted

from the notification), the Consumer asking

the data, its role and purpose of access

5. getDetail(id) The Interoperability Infrastructure obtains

from the Event Registry the source of the

events and forwards it the request for details

6. DetailMessage The detail message is retrieved and returned

7. applyPolicy() The Interoperability Infrastructure finds the

privacy policies matching the type of event

requested, the requester, role and purpose

8. FilteredDetailMessage The Interoperability Infrastructure applies

the privacy policy to the event and returns

the filtered event to the requester.

Table 3.1: Interactions for event notification and details retrieval (Figure 3.6).

When a new data controller joins the infrastructure it signs an agreement with the

data processor and provides to the service registry the list of events it agrees to share.

Another member of the infrastructure willing to get information from the Event Index

can explore the catalog of events at the Service Registry and subscribe to the events of

interest.

It is up to the data controller owning the events to accept the subscription and to define

which portion of details will be accessible to the consumer for specific roles and purposes.
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Interaction Description

1: getDetail(globalId, UserId, Role,

Purpose)

The Consumer identified by UserId requests the detail of

an event with id globalId specifying its Role (e.g. Doctor)

and Purpose of use (e.g. medical treatment)

2: verifyUser() The Notification Service module at the Interoperability

Infrastructure verifies the user is subscribed to the event

3: resolveLocalId(globalId) The Notification Service module asks to the Persistency

Management the id of the event in the source system

(localId)

4: localId The Persistency Management returns the local id of the

event

5: getRepositoryUrl() The Notification Service module asks to the Persistency

Management also the URL of the source system event

repository (repositoryUrl)

6: repositoryUrl The Persistency Management returns the URL of the

source system event repository

7: getDetail(localId) The Notification Service asks to the repository at the

producer the detail message identified by localId

8: detailMessage The Repository returns the detailMessage with all the

data

9: applyPolicy(detailMessage, Role,

Purpose, User)

The Notification Service asks to the Visibility Rule Man-

ager to apply the privacy policies valid for that type of

event, user performing the request, role and purpose of

use of the data

10: findPolicy(Role, Purpose, User) The Visibility Rule Manager asks to the Persistency Man-

agement the policy matching the request

11: policy The Persistency Management returns the matching pol-

icy

12: applyPolicy() The Visibility Rule Manager applies the policy to the

event

13: FilteredDetailMessage The Visibility Rule Manager returns to the Notification

Service the filtered event

14: FilteredDetailMessage Finally the filtered event is returned to the Consumer.

Table 3.2: Interactions performed by the data processor’s modules to retrieve and filter a detail

message (Figure 3.7).
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The purpose taxonomy for the health domain is well defined at national level by the

guarantor office. Before starting to use personal data, a data controller has to notify

[58] to the Data Protection Authority (DPA) any processing operation on personal data

by means of a notification containing: the categories of data subjects and the type of

information related to them that are collected, the purposes of use, the dissemination

means and the data recipients. The DPA defines a notification template and a general

classification of the types of information to use in the notification that covers well the

data types and processing means in our EHR system. However, it does not provide any

pre-defined list of user’s roles at the data recipient. In our EHR implementation we let

to data controllers and data consumers to agree on a list of roles during the subscription

phase with a manual interaction and negotiation process among the parties. This solution

has some weaknesses that should be studied more in the future as it may lead to a

proliferation of roles that could be difficult to control. In this regard, the purposes of use

may suffice to deal with basically all the types of data usage performed by consumers and

they are more easy to control compared to roles that instead may change dynamically.

Another point of attention for a future extension of the EHR system at national level

is represented by the problem of identity management. Advanced federated identity

management techniques, like the one under definition in the ICAR project to identify

uniquely an individual “regardless the authentication mechanism employed in the partic-

ular domain in which it works” [49], should be considered.

The data processor receives notifications from each data controller and forwards a copy

to the Event Index and to all interested consumers via a publish/subscribe mechanism

managed by an Enterprise Service Bus (ESB) that can be equipped also with a BPM

engine to automate and compose business processes.

Notifications are sent only to authorized consumers that can ask more details for spe-

cific purposes. This allows a fine-grained access control and allows the data source to

hide part of the details to certain consumers depending on their functional role in the

organization (e.g. social welfare department or radiology division) and purposes of use.

The data processor is in charge of applying the privacy policies to retrieve only what the

consumer is authorized to see from the producer. It also offers the following services and

functionalities:

• support both data producers and data consumers in joining the interoperability

infrastructure and in particular: the data producer declares the classes of events it

will generate in the event catalog and defines the privacy policies for their use by

means of the visibility rule manager; the data consumer subscribes to the classes of

events it is interested in;
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• receive and store the notification messages and deliver them to the subscribers by

means of a service bus (a customized version of an open source ESB, ServiceMix 1);

• resolve request for details from the data consumer by enforcing the privacy policies

and retrieving from the source the required and accessible information;

• resolve events index inquiry;

• maintains logs of the access request for auditing purposes.

The decoupling between notification messages and detail messages is not only ‘struc-

tural’, as they are carried in different XML messages, but also ‘temporal’: typically a data

consumer gets from the Events Index (either by automatic notification or by querying the

index) a notification event and only at a later time it asks for the corresponding details.

Requests for details may arrive to the data controller even months after the publication

of the notification. Furthermore, medical data requires very long retention period as it

should be granted accessibility for the whole lifetime of the patient.

This requires to the data producer the capability to retrieve at any time the details asso-

ciated to a past notification. These functionalities are encapsulated in the Local Cooper-

ation gateway provided as part of the interoperabilty infrastructure to further facilitate

the connection with the existing source systems. It is basically a wrapper with a local

event repository to persist each detail message that has been notified so that it can be

retrieved even when the source systems are un-accessible. In this way:

• it is easy for the data controller to join the infrastructure as the whole communication

protocol (WS-Notification, WS-Security standards) is managed by the wrapper;

• there is no need to reconstruct the details afterward as an exact copy of the details

is stored in the wrapper at the time of the notification so that the copy can be

returned at any time to answer request for details improving also the availability of

the system and reducing the impact on the existing source systems.

Usually, publish/subscribe mechanisms are used to deliver information to multiple

destinations by decoupling both physically and temporally the producers from the con-

sumers. In many application scenarios it is not required the delivery of the information

to be also reliable. The focus is on notifying information at the right time to all the inter-

ested parties. A typical example is a stock management system sending stock information

to subscribers. The EHR scenario is different as the information delivered is particularly

critical and is necessary to collect all the data to have a complete profile of the patients.

1ServiceMix, http://servicemix.apache.org/
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Even the loss of a single event means to compromise the synchronization with the other

parties and consequently the production of an incomplete profile of the patient. For this

reason, it is important that the ESB assures a reliable delivery of notifications to the

consumers. The ESB used in the project (ServiceMix) does not offer such guarantee. So

we extended it with a persistence module: if the destination is unreachable and unable to

receive the notifications then the system persists the message and tries repeatedly to send

it again until it success. This improves the robustness of the architecture and it makes

it usable also in loosely coupled environments in which there is no guarantee of stable

connectivity.

All the functionalities mediated by the data controller are logged to support audit

activities (internal or from the privacy Guarantor office). A medical record has legal

value at least on paper. The same can be expected in the near future for the EHR. For

this reason, similar to what happen with the paper based medical record, in the EHR is

not possible to delete an event once it has been notified. It is possible to deprecate an

event to signal an error in the source data but this will produce a logical deletion that

makes the deprecated event un-accessible by the consumers and notifies them of the error.

However, to avoid any possibility of falsification, the event will not be removed neither

from the Event Index nor the Event Repository but it will remain available for auditing

operations.

The publish/subscribe mechanism is implemented with OASIS WS-BrokeredNotification2

and the Web Services Interoperability (WS-I3) standard4.

3.2 Incremental Privacy on Events

The participation of an entity to the architecture (as data producer or data consumer) is

conditioned to the definition of precise contractual agreements with the data processor.

The contract between a data source and the data processor constraints how the data could

be accessed by a third party and in particular it defines:

• routing policies : define which data consumers could receive notifications;

• privacy policies : define how many details the data consumer could obtain from a

request for details.

These types of policies derives from a study of concrete application scenarios in the

healthcare domain and on the privacy regulations imposed by law [88, 57].

2http://docs.oasis-open.org/wsn/wsn-ws brokered notification-1.3-spec-os.htm
3http://www.oasis-ws-i.org/
4http://www.ws-i.org/profiles/BasicProfile-1.0-2004-04-16.html
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new joinedsign contract
pending

subscribe

reject
subscribed

define privacy policy

explore

Figure 3.8: Subscription process of a new partner.

The data processor is not able to define such rules as it does not know which part of the

event detail is really sensitive and which instead are its safe usages. On the other hand for

the data source the definition of privacy rules that can be directly enforced in the system

(e.g. in XACML [159]) is a complex and tedious task as it has to do it for each class of

event details and requires technical expertise the typical privacy expert does not have.

To facilitate the data sources in this task we support the whole lifecycle of an event

from the definition of the privacy policies (both routing and privacy policies) to their

enforcement in resolving details requests.

In particular, we provide: a GUI for the intuitive definition of the privacy policies on

each class of events (Privacy Requirements Elicitation Tool) that produces policies that

are directly enforceable in the system; a module that matches a detail request with the

corresponding privacy policy (Policy Enforcer); and a module to be installed at the sources

for the enforcement of the privacy policies on the detail events when a request is authorized

(Local Cooperation Gateway).

The data producer declares the ability to generate a certain type of event (the Event

Details) and provides the structure of the event by means of an XSD that is ‘installed’ in

the Service Registry module acting as an event catalog (see architecture in Figure 3.4).

The event catalog, as the structure of its events, is visible to any candidate data consumer

that has previously signed a contract with the data processor to join to the cooperation

architecture (see Figure 3.8). In order to subscribe to a class of event (e.g. a blood test)

or to access to its data content, the data consumer (e.g. a family doctor) should have the

authorization by the data producer. If there is no already a privacy policy defined for

that particular data consumer the data producer (that in that case could be the hospital)

is notified of the pending access request and it is guided by the Privacy Requirements

Elicitation Tool to define a privacy policy. Such privacy policy defines if the family doctor

has access to the event blood test and for which purpose (e.g. for healthcare treatment

provisioning) and which part of the event he/she can access (e.g. the results regarding

an AIDS test should be obfuscated). For example, an ambulatory can see all the fields of

detail messages resulting from a clinical examination but the invoice management system

can access only to the billing data; a family doctor has access to all the fields of the event

blood test for healthcare treatment provisioning but not to the field with the AIDS test
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results.

Our approach is innovative for two aspects: i) it allows the data controllers to define

their own privacy policies and ii) it gives an incremental control on the access and distri-

bution of sensitive information.

We proposed two alternative implementations for the enforcement of the privacy policies:

centralized enforcement and decentralized enforcement.

In the centralized enforcement privacy policies are applied by the data processor on the

events retrieved by the data controller. This approach relieves the data controller from

dealing with the enforcement of the privacy policies but it is not completely privacy-safe.

In this configuration, the events going from the data controller to the data processor

contain all the details (even the more sensitive) that are not said to be visible to the

requestors. Even if the data processor applies the privacy policies without persisting the

data more than the time necessary to apply the policies, there is the risk that the unfil-

tered event is intercepted and this will increase the probability of privacy violations. In

addition, this approach gives to the data processor the responsibility to grant the correct

application of the privacy policies and makes it liable in case of privacy leaks. In some

cases, the data processor cannot take such a responsibility and the risk of privacy viola-

tions could make the approach not completely privacy safe from the eyes of the privacy

Guarantor office.

In the decentralize enforcement, the privacy policies are applied by the data controller

before the event leaves its local Event Repository. This assure that only the data the

requester is authorized to see will be delivered to it. This approach gives more guarantees

from the privacy point of view even if it requires more work to the data controller to apply

the policies. However, the application of the privacy policies could be easily encapsulated

in the wrapper module. In practice, it works as follow:

• policy matching phase: when a request for blood test details arrives, the data pro-

cessor finds the privacy policy matching the request and asks to the producer only

the fields allowed by the policy. A policy matches a certain request if it refers to the

same type of event details and data consumer and if the requested purpose of usage

is allowed.

• policy enforcement phase: the data controller generates the filtered event for the

data processor which delivers it to the consumer.

Only the data accessible to the data consumer leaves the producer (fields not authorized

are left empty). In that way, no sensitive information is disclosed neither to the data

consumer nor the data controller. The data processor acts as a trusted party maintaining

centrally all the privacy policies defined and making sure they are enforced correctly. In
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both the enforcement approaches if no matching policy is found the request is rejected

according to a deny-by-default strategy.

The privacy policies defined by the data controllers are stored in the visibility rule

manger at the data processor. This assures that there is a single, official place in which

privacy policies are maintained, simplifying the synchronization between the parties and,

in the future, the identification of conflicts among the policies or particular constraints

on them (like the separation of duties). In addition, once the data sources have defined

the privacy policies they do not need to keep track of the data consumers and data usage

purposes as this is done by the data processor in charge of them.

In the prototype implementation we opt for the centralized enforcement configuration

because it was the less impacting on the sources and easier to maintain. In fact, by

keeping the policy enforcement detached from the retrieval of detail messages performed

by the wrappers at the data producers, we assure that changes and evolutions in the

privacy policy definition and enforcement approach do not impact on the data producers.

Notice that we assume the partners are trusted parties and so we do not deal in this

work with identity management. In particular, we assume the data processor is under

the control of an institution or public body that is officially recognised as trustworthy

like for example the Province. However, if the scenario is extended to consider an EHR

at national level the assumption of one single official institutions hosting the EHR is no

longer valid and is likely to have the outsourcing of the data processing to untrusted

parties. In this case, the cooperation infrastructure should be extended with identity

management mechanisms that are currently under development at national level with the

ICAR (Interoperability and Application Interoperability between Regions) project [49]

to: identify the specific users accessing the information, validate their credentials and

roles and manage changes and revocation of authorizations in a policy. ICAR proposed

the adoption of the SPcoop specifications and the creation of standardized points of

contact among the regions encapsulating the security management mechanisms, message

encryption and identity management (see PdD in [49]). Our solution is going in this

direction but the extension of the EHR at a national level is left to future work.

3.3 Privacy Policy Elicitation

As explained in the previous section, the data consumer defines a privacy policy for

each type of event and request of subscription based on the structure of the event detail

message. We use XACML to model the privacy policies inside a specific module of the

Visibility Rule Manager: the Policy Enforcer module. According to the XACML notation

[118], a policy is a set of rules with obligations where a rule specifies which actions a certain
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subject can perform on a specific resource. The obligations specifies which operations of

the triggered policy should be executed at enforcing time (e.g. to obfuscate part of the

resource). In our architecture, an action corresponds to a purpose of use (e.g. healthcare

treatment, statistical analysis, administration).

A subject is an actor reflecting the particular hierarchical structure of the organization.

For example, an actor could be a top level organization (e.g. ‘Hospital S. Maria’) or a

specific department inside it (e.g. ‘Laboratory ’, ‘Dermatology ’).

The role further specifies the responsibility of the actor in the reference organization (e.g.

role of family doctor or social worker or secretary). This multilevel classification allows

to define rules giving different access profiles depending on the role of the requestor in

the organization. For example, a family doctor can access to all the details about his

patients. Instead, a nurse can access only to a limited subset of the detailed information

about the same patients.

We consider an event details as a list of fields e = {f1, . . . fk}.

Definition 3.3.1. Let E(S) = {e1, . . . , en} and D(S) = {d1, . . . , dn} be respectively the

set of event details and event notifications generated by the data producer S such that ei
has type τi ∈ Γ(E(S)) with attributes A(τi) = {a1, . . . , am} for i = 1, . . . , n.

We define Events Catalog the set of all the types of event details that the data pro-

ducers could generate, E =
⋃n
i=1 Γ(E(Si)).

For each type of event details and type of usage the data producer S defines a privacy

policy.

Definition 3.3.2. Let E(S) = {e1, . . . , en} be the set of events a data source S could

produce. We define PS = {p1, . . . , pn} the set of privacy policies defined by S where

pi = {A,O, τi, S, F} such that:

• A is an actor that can ask for an event details

• O is the role associated to an actor

• τi ∈ Γ(E(S)) is a type of event details

• S is a set of purposes

• F is a set of fields where F ⊆ A(τi).

Intuitively, a privacy policy indicates which fields F of an event details of type τi
could be accessed by actor A with role O, for the purposes S. For example, the pri-

vacy policy p = { National Governance, statistical department, autonomy test, reporting,

〈age, sex, autonomy score〉} allows the statistical department of the National Governance
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to access to age, sex and autonomy score for the event details of type autonomy test to

perform reporting on the needs of elderly people.

We apply the deny-by-default approach so that, unless permitted by some privacy

policy, an event details cannot be accessed by any subject. With this rule semantics in

mind we used obligations to specify which part of the event details is accessible by a

certain subject for some purposes. Notice also that a subject can issue only read requests

for an event type.

3.4 Privacy Policy Enforcement

Definition 3.4.1. Given a privacy policy p = {A,O, τp, S, F} and an event request r =

{Ar, Or, τe, Sr} we say that p is a matching policy for r if τp = τe ∧ Ar = A ∧ Or =

O ∧ Sr ∈ S.

Intuitively a policy matches a certain request if it refers to the same type of event details,

actor and role, and if the requested purpose of usage is allowed by the policy.

Definition 3.4.2. Given the privacy policy p = {A,O, τp, S, F} and the event instance e

of type τe we say that e is privacy safe for p wrt to the request r = {Ar, Or, τe, Sr}, i.e.

e |=r p, if p is a matching policy for r and @f ∈ τe such that (e[f ] is not empty ∧f /∈ F )

where e[f ] is the value of f in e.

Intuitively an event satisfies a privacy policy if it does not expose any field that is not

allowed by the policy.

If an event instance e is privacy safe wrt to a request r for all the policies in a set P we

write e |=r P meaning that e |=r pi, ∀pi ∈ P .

Privacy policies comes into play in two distinct moments of the events life-cycle and

in particular at subscription time and at access time (request for details and event index

inquiry).

In order to subscribe to a class of notification events, the data consumer should be au-

thorized by the data producer, that means there should be a privacy policy regulating

the access to the corresponding event details for that particular data consumer. If such

a privacy policy is not defined then, according with the deny-by-default semantics, the

subscription request is rejected. The inquiry of the event index is managed in the same

way, in fact, also in this case the data consumer is asking for notification events.

The request for details resolution is more articulated and we will describe it more in depth

with a focus on the specific architectural components involved. A request for details re-

quires to specify the type and identifier of the event to be obtained from the source. This
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information is contained in the notification message that is a pre-requisite to issue the

request for details and grant that only the data consumer notified by a data producer

can access the details. The notification is obtained either automatically by means of the

pub/sub service offered by the infrastructure or by direct inquiry of the event index.

Figure 3.9 shows the internal components of the Policy Enforcer module in the data pro-

cessor which are in charge of: receive the request for details from the data consumer;

retrieve the matching privacy policy associated to the Event Type and Event ID speci-

fied in the request; apply and evaluate the policy against the request and finally return

a response with the result of the authorization decision. The result is an event details

with values only for the fields authorized by the matching policy. The components which

constitute the Policy Enforcer are based on the XACML Specification.

Local 
Cooperation 

Gateway 

GetDetail(R)GetDetail(sID)

PEP

PDP PIP

Policy Enforcer

Context 
Handler

Local 
Cooperation 

Gateway 

Data ConsumerData Producer

Data Processor

Figure 3.9: Detail request resolution and privacy policy

enforcement.

Figure 3.10: Mapping in XACML

request notation.

Algorithm 1: getDetail(R) 7→ e

Data: R = {a, o, τe, eID, s} 6= ∅
P set of policies defined by the data producers

Result: e |=r P

1 sID ⇐ retrieveEventProducerId(eID)

2 〈A, o, ej , S, F 〉 ⇐ matchingPolicy(R)

3 if (evaluate(〈A, o, ej , S, F 〉, R) ≡ permit) then

4 d⇐ getDetail(sID)

5 return applyObligations(d, F )

6 end

7 return deny

60



CHAPTER 3. PRIVACY-PRESERVING EHR 3.4. PRIVACY POLICY ENFORCEMENT

Algorithm 1 shows the actions performed by the policy enforcer in the getDetail(R)

method at the data processor to resolve an authorization request R issued by a data

consumer a with role o to access to the event with identifier eID and type τe for purpose

s. The main steps performed by the Policy Enforcer are described below (see Figure 3.9):

1. The authorization request is received by the Policy Enforcement Point (PEP).

Through the Policy Information Point (PIP) it retrieves the corresponding local

event ID (sID) valid in the data producer of the event. This mapping step is

necessary as the event identifier distributed in the notification messages (eID) is

a global artificial identifier generated by the data processor to identify the events

independently from their data producers.

2. The PEP sends the request to the Policy Decision Point (PDP). The PDP retrieves

the matching policy associated to the data producer, the data consumer and the

resource: 〈A, o, ej, S, F 〉.

3. The PDP evaluates the matching policy and sends the result to the PEP. If there is

no matching policy for the request or the evaluation fails, the response will be deny

and an Access Denied message is sent to the data consumer.

4. If the matching policy successfully evaluates the request (permit decision), the PEP

asks the event details (F ) to the data producer (i.e. the owner of the resource).

The getDetail(sID) invocation retrieves the Event Details from the internal events

repository at the Local Cooperation Gateway of the producer.

5. Finally, the event’s fields that are not authorized are removed by applying the obliga-

tions in the policy. The applyObligations(d, F ) produces the Privacy-Aware Event

to be sent to the data consumer.

Notice that only the data accessible to the data consumer leaves the data processor and

the fields that are not authorized are left empty. If there is no matching policy, the request

results in a deny and no event is returned.

The data processor is a trusted entity which performs the application of policies, traces

the request of access and does the message routing between data producers and data

consumers.

The architecture of the policy enforcer reflects XACML but the way we interact with

the data producer and data consumer is independent from the underlying notation and

enforcement strategy. As shown in Figure 3.10 the request for details of the data consumer

is mapped to an XACML request by the policy enforcer. As Policy Decision Point (PDP)

to evaluate the XACML policies we used the XACML Enterprise5 implementation released
5XACML Enterprise, http://code.google.com/p/enterprise-java-xacml/
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under Apache License 2.0. It supports XACML v2.0 and provides good performances

using efficient policy evaluation mechanisms as show by the comparative analysis in [151].

In the current implementation we support only the “hiding” of certain fields but the

approach can be easily extended to more advanced privacy policies to mask or to encrypt

certain fields (e.g. the SSN). Furthermore, there is no limit in the number and depth of

the privacy policies defined, so that the data producer can define many alternative privacy

profiles depending on the data consumer to provide different views on the data (e.g. a

social worker or a doctor may want to hide their complaints on the quality of work of a

nurse to her but to notify the evaluation to her supervisor).

3.5 Conclusions

This chapter presents an EHR architecture based on SOA and EDA in which data is

shared among information systems by means of events. An interoperability infrastructure

is devised to allow the cooperation of different entities acting as data producers and data

consumers in a completely loosely coupled manner. An event manager acts as a broker

to manage the publication and subscription to events of the systems joining the EHR.

The EHR has been designed to be compliant to the privacy regulations regarding EHR

and Health File. In particular, it avoids to store any sensitive data about patients but it

maintains only public information on the individual in an index used to reconstruct and

retrieve the data directly from the data producers. In this way, the data producers act as

data controllers and they maintain the full control of the information collected from the

data subjects even when shared in the EHR system. The access to sensitive information is

controlled by means of contracts and privacy policies defined at subscription time by the

data producers and enforced at run-time to assure potentially sensitive data are released

only to authorized consumers.

The capability of EDA to reach easily many data consumers by means of a pub-

lish/subscribe mechanisms are reconciled with the requirements of tight control on sen-

sitive data coming from the data providers by dividing events occurred to patients into:

notifications, reflecting non-sensitive information on the event occurred to the patient;

details, containing the complete description of the event occurred to the patient including

also sensitive data (e.g. the diagnosis). Notifications are delivered by the broker to all

the subscribers to notify them on the evolution of the state of the patient but details are

accessible only by explicit request to the data producers (mediated by the interoperability

infrastructure) to get only the part allowed by a privacy policy. This approach combines

the capability of an event-based system with an incremental, tight control of the shared

information by means of fine-grained privacy policies.
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Chapter 4

Privacy Compliance Checking

The user of modern computerized systems is constantly shifting towards those that are

less technically skilled but at the same time experts in non-technical areas. Those users

are naturally facing difficulties in coping with the huge amount of data that the modern

repositories typically contain, and require ways to perform their data management tasks

within the limited amount of time they have available by using as less effort as possible.

A technique that has received considerable attention is that of sampling, that abstracts

a large data set into some readable portion.

Although sampling has been used in many application scenarios, mainly to describe the

data, in this work we use it in order to propagate privacy constraints into the underlying

base tables. In particular, given a dataset, we investigate ways to create a representative

data set of specific size that maximizes the number of privacy constraints that can be

defined on the original dataset through the sample. In our context, a privacy constraint

is a constraints that disallows a combination of data to be visible.

4.1 Motivation

Consider the Electronic Health Record database in Table 4.1. It integrates the medical

data about patients in different hospitals and departments at a very detailed level to allow

statistical analysis and reporting for the medical staff or the governance.

A report is a query whose outcome is a view over the database (e.g. “select all the

female/male patients” or “select patients in a certain age class”). A view may contain

sensitive data the patients or the privacy regulations do not allow to expose. Such data

represents forbidden values that should be identified and removed (e.g. by masking them)

from the view before the report is accessed. The values to be hidden depends on the

regulations to comply with, the consent expressed by the data subject (i.e. the patient),

the purpose of use of the report, who access the report and its specific data content [125].

63



4.1. MOTIVATION CHAPTER 4. PRIVACY COMPLIANCE CHECKING

Table 4.1: Privacy violation indications.

Tuple Name AgeClass DOB POB Sex Department Symptom Diagnosis

1 Sophy 18− 30 02/10/1983 Meano F Physiotherapy Paralysis Sclerosis

2 Jeremy 30− 65 01/11/1966 Povo M Physiotherapy Numbness Sclerosis

3 Helene < 18 28/01/1995 Trento F Psychology Raping Depression

4 Ketty < 18 13/12/2009 Povo F Infectiology Fever Measles

5 Rose 30− 65 06/12/1977 Daone F Psychology Raping Depression

6 Bob 18− 30 09/05/1991 Daone M Oncology Anemia Leukemia

7 Paul > 65 10/06/1941 Brenta M Infectiology Fever Mumps

8 Chris 30− 65 12/5/1975 Lavis F STD Infection Candidiasis

9 Lidia 18− 30 02/08/1982 Vela F STD Infection AIDS

10 Jeremy 30− 65 07/03/1976 Vigo M STD Fever AIDS

11 Tim 30− 65 07/01/1978 Zava M STD Flu AIDS

12 Marta 18− 30 05/04/1984 Povo F Oncology Weakness Cancer

13 Julien > 65 11/05/1931 Obra F Oncology Anemia Cancer

Usually the privacy regulations, both in Europe [135, 57, 88] and US (e.g. HIPPA

[7, 32], COPPA [71], GLB [70], Data Protection Act [136] and OECD guidelines [131])

requires the data controller entity to designate a privacy expert with the responsibility

to implement the regulations. The privacy expert is a person with adequate knowledge

of the domain and regulations that given the result of a query can indicate if it contains

privacy violations and where.

Tuple Name AgeClass DOB POB Department

1 Sophy 18− 30 02/10/1983 Meano Physiotherapy

3 Helene < 18 28/01/1995 Trento Psychology

4 Ketty < 18 13/12/2009 Povo Infectiology

5 Rose 30− 65 06/12/1977 Daone Psychology

8 Chris 30− 65 12/5/1975 Lavis STD

9 Lidia 18− 30 02/08/1982 Vela STD

12 Marta 18− 30 05/04/1984 Povo Oncology

13 Julien > 65 11/05/1931 Obra Oncology

(a) View on female patients.

Tuple Name AgeClass DOB POB Department

2 Jeremy 30− 65 01/11/1966 Povo Physiotherapy

6 Bob 18− 30 09/05/1991 Daone Oncology

7 Paul > 65 10/06/1941 Brenta Infectiology

10 Jeremy 30− 65 07/03/1976 Vigo STD

11 Tim 30− 65 07/01/1978 Zava STD

(b) View on male patients.

Table 4.2: Example of Sample Table.

As there are as many views as the queries definable on the database, and their number

is exponential with respect to database tables dimensions, it is not feasible to ask to the

privacy expert to check each view and notify all the violations.

Instead, it is better to perform the check just once on the whole database Table 4.1, and

then to propagate the indications of privacy violations to the views [44].

We said privacy violations, and not yet privacy constraints because we cannot expect

the user to be able to define the privacy constraints directly on the database due to its
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complexity when compared to a report. What the user can do is to analyse the tuples one

at a time and to indicate the group of attributes that, if shown together, will lead to a

privacy violation as shown in Table 4.1: greyed cells denotes privacy violating attributes.

But in this way the user will just indicate the group of attributes that are privacy violating

but not why they should be considered violating. It may be possible that the user wants to

remove just the specific values in the single tuple, e.g., remove attribute 〈Name〉, when the

values in tuple t8 occurs (Name = Ketty∧AgeClass < 18∧DOB = 13/12/2009∧POB =

Povo ∧ Sex = F ∧ Department = Infectiology ∧ Symptom = Fever ∧ Diagnosis =

Measles). This approach is correct, as it reflects exactly what the user said on the data,

but it does not give a description of the privacy constraint in such a manner that it

precisely identify the violations, and that it is still generic enough to be applicable also to

other views in the same database. For example, the indication of the user in t4 could be

expressed with a shorter constraint like: remove 〈Name,AgeClass,DOB,POB〉 when

Sex = F ∧ AgeClass < 18. This new constraint covers the violation indicated in tuple

t4 and also in tuple t3. So with only one constraint we can express 2 indications given by

the user. Generalization is good as far as the resulting constraint is not too much generic,

meaning that it selects also tuples that the user would not hide. For example, t3 and

t4 can be covered just with one constraint with a single condition like: remove 〈Name〉
when Sex = F . But this constraint is not correct as it identifies also t12 and t13 that are

not “forbidden”.

We will show some techniques to find a minimal set of constraints capable to capture and

to describe user’s indications in a way that can be easily propagated to the view derived

from the DB.

The interaction with the user is the strong point of this approach, as in this way one is

granted to capture user requirements. However, it is also its weakness if the table is very

big (that is really common in databases for EHR). The straightforward solution would be

to present the user with the whole relation R and let him/her select the privacy violating

values. However, this may be infeasible since the relation R may be really large causing

many presentation issues. A practical solution is to present the user with portions of the

relation R with the hope that they will contain some privacy violating values so that the

user could identify them.

These portions of the relation R are nothing more than views. The size of these views

is restricted by the capabilities and comfort of the user. Furthermore, the views may be

overlapping, which means that a relation value (or a group of values) may be repeatedly

presented to the user. Given the fact that the time availability of the user may be

limited, it is critically important to present the user with the more representative parts

of the relation R that are more likely to contain privacy violating values.
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By showing larger views, larger portions of the relation data are covered, thus, less views

are needed to show all the data of the relation R. However, the size of modern computer

monitors and certain user preferences may pose a further restriction on the size of the

views that can be displayed.

The U.S. Government study on the usability of web sites [83] provides some interesting

guidelines for the construction of highly usable web sites that can be useful in our problem.

A fundamental aspect to take into account in structuring a web page is to make sure all

the information can fit in the screen size to avoid horizontal scrolling, requiring the usage

of pagination to break up information into shorter pages. Appropriate line length and

page dimensions should be chosen to allow the user to find easily the most important

information in the web page at a first look and in a short time. Items shown in the pages

should also respect an order which allows to find easily the most important information.

Given the above, our problem can be formulated as follows: find a set of views from

relation R with the aim to capture quickly the constraints the user has in mind.

The privacy violations that the privacy expert signals on the samples need to be turned

into privacy constraints. There are three main challenges in doing so. First, the expert

scans the sample one tuple at a time, thus any specification derived from her signaling a

violation should be considered only for the specific tuple. For instance the fact that the

expert signaled a violation of the display of the SSN for a tuple should be interpreted as

a constraint for the person represented by the specific tuple and not for everybody: i.e.,

there is no evidence indicating that this should apply to everybody.

The second challenge is that the expert is typically not providing any justification for

the privacy violation, thus the only condition that can be assumed is the conjunction of

all the attributes of the tuple on which the violation is signaled. For instance, if for the

tuple t = [SSN : 1, name : John, city : LA, genre : M ] the privacy expert says that SSN

should not be shown, then the only constraint valid in any table with the same attributes

of tuple t is (SSN = 1) ∧ (name = John) ∧ (city = LA) ∧ (genre = M). This constraint

is correct but it does not necessarily capture the reason of the privacy violation the user

had in mind. It may be that the user wanted to hide the SSN in tuple t for all the males

in LA city regardless the name. So the problem is to derive a concise representation of

the privacy constraints equivalent to the candidate privacy constraint. A set of concise

constraints is not said to be minimal as it may still contain some redundant constraints

since a constraint may be implied by another. For example, if the constraint on tuple t

hiding the SSN is satisfied by a view, then any other constraint on that tuple requiring to

hide SSN together with another attribute in t is satisfied too (e.g. hide SSN and genre in

t). This leads to another problem: how to remove redundant constraints because implied

by others.
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Figure 4.1: Constraint violations indicated on a relation R and an illustration of those constraints

that are also applying on a sample of it.

The third challenge is that the expert has typically few time to analyse the data so it is

important to show first the data that are more likely to contain the privacy violations.

In this way even if the user decides to interrupt the analysis of the data without looking

at all the tuples in the view we are confident we were able to capture a good number of

constraints.

In this chapter we analyse the three challenges above providing a solution to elicit and

derive a concise definition of privacy requirements interacting with the privacy experts by

means of views.

4.2 Preliminaries

Let L be an infinite set of labels, and D an infinite domain of values. A relation is a finite

set of tuples of the form [A1:v1, A2:v2, . . . , An:vn], where vi∈D and Ai∈L for i=1..n. The

labels A1, . . . , An should have no duplications and are referred to as the attributes of the

relation, and all together form its schema. We will use the term value of a relation R, to

refer to an attribute A of one of its tuples t, or the actual value v it contains, and we

will denote it by t[A]. Furthermore, we will often view a relation as a set of values which

permits us to use the notation v∈R to denote that there is a tuple t∈R for which v=t[A]

with A being one of the attributes of R. The expression t[AB..F ] is nothing more than a

shorthand for [A:t[A], B:t[B], . . . , F :t[F ]]. A masked value of an attribute in a tuple is a

special value “∗” used to avoid revealing the actual value of the attribute.
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Tuple Name AgeClass DOB POB Sex Department Symptom Diagnosis

1 Sophy 18− 30 02/10/1983 Meano F Physiotherapy Paralysis Sclerosis

2 Jeremy 30− 65 01/11/1966 Povo M Physiotherapy Numbness Sclerosis

3 Helene < 18 28/01/1995 Trento F Psychology Raping Depression

4 Ketty < 18 13/12/2009 Povo F Infectiology Fever Measles

5 Rose 30− 65 06/12/1977 Daone F Psychology Raping Depression

6 Bob 18− 30 09/05/1991 Daone M Oncology Anemia Leukemia

7 Paul > 65 10/06/1941 Brenta M Infectiology Fever Mumps

8 Chris 30− 65 12/5/1975 Lavis F STD Infection Candidiasis

9 Lidia 18− 30 02/08/1982 Vela F STD Infection AIDS

10 Jeremy 30− 65 07/03/1976 Vigo M STD Fever AIDS

11 Tim 30− 65 07/01/1978 Zava M STD Flu AIDS

12 Marta 18− 30 05/04/1984 Povo F Oncology Weakness Cancer

13 Julien > 65 11/05/1931 Obra M Oncology Anemia Cancer

(a) Privacy Constraints in EHR table.

Tuple Name AgeClass DOB POB Sex Department

1 Sophy 18− 30 02/10/1983 Meano F Physiotherapy

3 Helene < 18 28/01/1995 Trento F Psychology

4 Ketty < 18 13/12/2009 Povo F Infectiology

6 Bob 18− 30 09/05/1991 Daone M Oncology

7 Paul > 65 10/06/1941 Brenta M Infectiology

8 Chris 30− 65 12/5/1975 Lavis F STD

9 Lidia 18− 30 02/08/1982 Vela F STD

10 Jeremy 30− 65 07/03/1976 Vigo M STD

(b) Privacy Constraints in Sample table.

Table 4.3: Privacy Constraints Conditions.

Name AgeClass POB Department Symptom Diagnosis

* * * STD Infection Candidiasis

Sophy 18− 30 Meano Physiotherapy Paralysis Sclerosis

* < 18 Trento Psychology Raping Depression

* < 18 Povo Infectiology Fever Measles

* * * STD Infection AIDS

Marta 18− 30 Povo Oncology Weakness Cancer

* 30− 65 Daone Psychology Raping Depression

(a) Diagnosis by Age Class and POB for Female.

Name AgeClass DOB POB Department Diagnosis

Bob 18− 30 09/05/1991 Daone Oncology Leukemia

Paul > 65 10/06/1941 Brenta Infectiology Mumps

* * 07/03/1976 * STD AIDS

* * 07/01/1978 * STD AIDS

Julien > 65 11/05/1931 Obra Oncology Cancer

Jeremy 30− 65 * * Numbness Sclerosis

(b) Diagnosis by Age Class and POB for Male.

Table 4.4: Views satisfying the privacy constraints indicated by the user.

A privacy constraint is a query. In this work we focus only on privacy constraints

defined by select-project queries for which the where clause is a conjunction of conditions

of the form A=v, with A∈L and v∈D. This is a class of simple queries that are com-

monly used in practice [102] but, most importantly, they accurately describe the class

of privacy constraints that are used in practice [59, 55]. For brevity, we will use the ex-
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pression �A: C�, where A is a list of attributes A1, A2, . . . , An and C is a conjunction

A′1=v1∧A′2=v2∧. . .∧A′m=vm, as a shorthand for the privacy constraint specified by the

query

select A1, A2, . . . , An from R

where A′1=v1 and A′2=v2 and . . . and A′m=vm
We will refer to the conditions of the form A=v as primitive conditions, and we will denote

the set of primitive conditions in a conjunction C as ‖C‖.
A privacy constraint is said to apply on a relation R if every attribute mentioned in

the constraint exists in R. We will denote the set of all privacy constraints that apply on

a relation R by PR.

For example the constraint �Name,AgeClass, POB: Department = STD� applies

to Table 4.3a but �Name,AgeClass, POB, Phone: Department = STD� does not as

Phone is not an attribute of that table.

Intuitively, a privacy constraint describes a set of attributes and certain conditions such

that if there is a tuple satisfying the conditions of the constraint, the set of attributes

that the constraint provides should not be visible, i.e., they are masked by suppressing

the values so that they are not displayed. The conditions that need to be satisfied are

specified by the where clause of the privacy constraint and the attributes by its select

clause.

Definition 4.2.1. A relation R satisfies a privacy constraint p :�A: C�, denoted as

R|=p, if p applies on R and the query select A from R where C returns only masked values.

If not, the constraint is said to be violated.

We also define the coverage of a privacy constraints as follows.

Definition 4.2.2. Given a relation R and a set of privacy constraints P = {p : p =�A:

C�} coverage of P in R, R̂(P ), is defined as the tuples selected by the privacy constraints

in P that is R̂(P ) =
⋃
�A:C�∈P R(C) where R(C) = {t ∈ R : t satisfies C}.

Example 4.2.1. Table 4.3a shows some examples of privacy constraints violations where

the cells in gray are the attributes the user does not want to see together in a view and

the cells in yellow are the conditions identifying the tuples covered by the constraint.

For example the constraint �DOB,POB: Diagnosis = Sclerosis� covers the first two

tuples and means that the user does not want to see DOB together with POB when the

Diagnosis is Sclerosis.

The privacy constraints considered in our examples derive from the regulations on the

treatment of personal data for which special protection is needed for underage people,
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people affected by sexually transmitted disease (abbreviated with the acronym STD) or

victims of raping [57].

Often the specification of two privacy constraints p and p′ are such that, if p′ is satisfied

in R, p is satisfied in R as well. In this case the first is said to be subsumed by the second.

The subsumed privacy constraints are redundant in the presence of their subsumees.

Definition 4.2.3. A constraint p=�A: C� in a relation R is said to be subsumed by a

constraint p′=�A′: C ′�, denoted as p
.
≤p′, if A′⊆A and C⇒C ′ in R.

Example 4.2.2. For the relation in Table 4.3a the privacy constraint �DOB,POB:

Diagnosis = Sclerosis ∧Department = Physiotherapy� is subsumed by the constraint

�DOB: Diagnosis = Sclerosis�.

The subsumption property can be used to discover redundant constraints when dif-

ferent privacy policies definitions originate from the indications of the expert (especially

when different experts are involved in the task).

Definition 4.2.4. Given a relation R with a set of attributes A, a sample T is a relation

created by a set of tuples from R projected on a subset of A. The symbol SR denotes the

set of all possible samples of R. The image of a tuple tS∈S is any tuple t∈R such that

the projection of t on the attributes of S is the tuple tS. The set of such tuples for tS is

denoted as Img(tS).

Example 4.2.3. Table 4.3b shows a sample of 8 tuples from Table 4.3a selected on the

attributes {Name,AgeClass,DOB,POB, Sex,Department}. Notice how all the privacy

constraints defined on the corresponding tuples of Table 4.3a are also applicable to the

sample but not �DOB,POB: Diagnosis = Sclerosis� because the Diagnosis attribute

does not appear in this sample.

Theorem 4.2.1. If a relation R satisfies a privacy constraint p, any sample of R on

which the p applies, also satisfies p.

Proof. Assume a privacy constraint�A: C� and that all the attributes A are in S. Let

a tuple ts∈S satisfying the constraints C. Every tuple in Img(tS) will also satisfy C, and

since the constraint is not violated in R, the values of the attributes A of these tuples will

be masked. As a consequence, the values of these attributes in tS will also be masked,

since tS is a projection of one of the tuples in Img(tS). Thus, the constraint is satisfied

also in S.

Theorem 4.2.1 implies that if a violation is discovered in a sample then it holds also

in R. However, the vice-versa is not true as it is easy to create a sample S satisfying a
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privacy constraint p that instead is violated in R. If we restrict Theorem 4.2.1 on the

tuples projected in a sample then we can derive the following lemma.

Lemma 4.2.1. If a sample S satisfies a privacy constraint p, then also Img(S) =⋃
tS∈S Img(tS) satisfies p and vice-versa.

In a typical privacy constraint elicitation scenario for a relation R, the privacy expert

is asked to identify any violation of real world privacy constraints. In practical situation,

the relation with which the user is presented is a sample of the full relation that exists in

the repository. This is because due to technical and practical limitations it may not be

possible to present the whole relation R. The expert examines the tuples of the sample,

one at a time and highlights groups of attributes in the same tuple whose display violates

some real world privacy rule.1 However, the expert does not specify under what conditions

the violation occurs.

For each such specification, a constraint �A: C� can be created, where the set of

attributes A is the set of attributes that the expert indicated as privacy violating. For

the condition C, since the expert is not explicitly stating the reason of the violation, we

have no other choice than to consider everything that the expert sees from the tuple. This

means that the condition will be a conjunction of attribute-value assignments of the form

A=v, one for each attribute-value of the tuple in the sample on which the expert signaled

the violation.

In doing that we apply a conservative approach as we create a candidate privacy constraint

based only on the attributes and values seen by the user when analysing the specific tuple.

Example 4.2.4. Assume that the user sees the tuple 8 about patient Chris in Table 4.3a

and she highlights the group of attributes {Name,AgeClass, POB}, then the corre-

sponding privacy constraint can be expressed as: �Name,AgeClass, POB: Name =

Chris, AgeClass = 30− 65, DOB = 12/5/1975, POB = Lavis, Sex = F,Department =

STD, Symptom = Infection, Candidiasis = Diagnosis�. Note how this constraint is

subsumed by �Name,AgeClass, POB: Department = STD�.

Theorem 4.2.2. A constraint defined on a sample T of a relation R applies also on R.

On the other hand, a constraint �A: C� on R applies on T if the set of attributes of

T is a superset of A and there is at least one tuple tT , the values of which satisfy the

condition C.

Proof: The image of a tuple tT∈T has all the attributes (and values) of tT , and possibly

some extra. Thus, any condition satisfied by tT will also be satisfied by its image, and

since all the attributes of tT are present in its image, any constraint violated by tT will

1This is the way privacy experts perform their task, as resulting from discussions we had with them.
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also be violated by its image. On the other hand, if a constraint �A: C� is violated by

a tuple t in R and there is a tuple tT∈T that satisfies the condition C, since the attributes

of T are a superset of A, tT will also violate the constraint.

A graphical illustration of a relation R and of the constraints that are also applying

on a sample of it can be found in Figure 4.1. The sample tuples and their images can be

identified in the figure by the same tuple number indicated next to the table.

Example 4.2.5. Table 4.4a shows a view with the diagnosis by age class and place of

birth for women. The privacy violating values are masked with a ‘*’. For example the

names of the patients victim of raping are masked. Notice how the second tuple is not

masked because the privacy constraint �DOB,POB: Diagnosis = Sclerosis� does not

apply to the view since the field DOB is not shown.

Example 4.2.6. Table 4.4b shows a view with the diagnosis by age class, place and date

of birth for men. The tuples of patients affected by STD do not show the actual values of

names, age class and Place of Birth. Similarly the date and place of birth of the last tuple

is hidden as this time the constraint �DOB,POB: Diagnosis = Sclerosis� applies to

the view.

4.3 Problem

We are facing two different problems that we are called to solve: the privacy elicitation

and the constraint specification problems. In the following we provide a formalization of

such problems and their solutions.

4.3.1 Privacy Constraints elicitation

The privacy elicitation problem deals with the collection of the constraints from the

privacy expert. Assume the existence of a set of privacy constraints P on a relation R,

each one having an attribute set at most k. Without taking into consideration the set

P , and assuming a display limitation of N attributes and M tuples for a relation, with

N≤k, the privacy elicitation problem requires the discovery of an ordered list of samples

of size NxM that maximizes the likelihood that the privacy expert will specify the set P

as soon as possible.

An exhaustive approach is to create all the possible samples from R and then select the

ones which are more likely to contain privacy constraints.

Intuitively, the more representative are the values in a sample the more likely it will

contain a violation. This because values occurring together very frequently in the relation

can originate many privacy violations. In constructing the sample we will exploit this
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fact by assembling the sample giving preference to frequently occurring values. In order

to do that we use the notion of pattern and frequent pattern defined below.

Definition 4.3.1. A pattern in a relation R is a conjunction of primitive conditions

of the form C = {(A1=v1) ∧ . . . ∧ (Ak=vk)} selecting tuples in R. We indicate with

R(C) = {t ∈ R : t satisfies C} the tuples covered by the pattern and with |R(C)| the

pattern frequency.

In data mining values occurring together frequently (more than a certain threshold)

in a data set are defined frequent patterns [82].

The more frequently occurring combinations of primitive conditions correspond to the

more representative values in the table that are capable to cover many tuples of the

relation. By showing such representative values in a sample the user can potentially

notify an high number of violations looking just at few tuples.

Definition 4.3.2. Given a pattern C = {(A1=v1) ∧ . . . ∧ (Ak=vk)} on R with frequency

|R(C)| = k can be generated 2|C| ∗ k constraints.

A pattern partitions the relation R into sets of tuples satisfying certain conditions

and projected on some attributes. From Definition 4.3.2 as the size of the samples |C| is

fixed in order to maximize the number of constraints definable with a pattern we try to

maximize the frequency k.

In doing that we follow a greedy approach by constructing the sample tuple by tuple

starting from the most frequent patterns. Patterns represented by tuples already presented

to the user in a sample can be excluded from the samples that follow. In this way, each

sample contains always at least a new combination of values.

By considering the patterns with higher frequency we basically give higher priority to the

more common values in the table. The sampling process ends when either there are no

more tuples in R to show to the user or a suitable level of coverage of R by means of

samples is reached.

Many algorithms are available in literature to compute efficiently frequent patterns

like the FP-growth methodology [81] and open source implementations are also available

(e.g. Apache Mahout2 [103]). FP-growth is based on the frequent-pattern tree (FP-Tree)

structure created from the list of transactions where each transaction is a set of items.

An FP-Tree provides a compact representation of a set of transactions and allows to get

2Apache Mahout,Parallel Frequent Pattern Mining

https://cwiki.apache.org/confluence/display/MAHOUT/Parallel+Frequent+Pattern+Mining
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the frequency of all the patterns contained in the input transactions. The goal of the

FP-growth algorithm is to explore efficiently the FP-Tree to find the set of items that

are more frequently occurring together, that is the frequent patterns.

In our case, a transaction is a tuple in the relation R and the items are the primitive

conditions in the where clause of the query selecting the tuple. For example, tuple 1 in

Table 4.1 is selected by the query

select Name, AgeClass, DOB, POB, Sex, Department, Symptom, Diagnosis

from R

where Name =‘Sophy’ and AgeClass =‘18− 30’

and DOB =‘02/10/1983’ and POB =‘Meano’

and Sex =‘F ’and Department =‘Physiotherapy’

and Symptom =‘Paralysis’and Diagnosis =‘Sclerosis’

and corresponds to the transaction (Name = ‘Sophy’, AgeClass = ‘18 − 30’,

DOB = ‘02/10/1983’, POB = ‘Meano’, Sex = ‘F ’, Department = ‘Physiotherapy’,

Symptom = ‘Paralysis’, Diagnosis = ‘Sclerosis).

A B C D E F

1 a2 b4 c4 d4 e4 f4

2 a2 b5 c5 d5 e5 f3

3 a3 b3 c6 d4 e3 f3

4 a2 b2 c5 d3 e4 f2

5 a4 b1 c4 d2 e5 f4

6 a4 b4 c3 d5 e3 f4

7 a1 b5 c1 d4 e2 f5

8 a3 b2 c4 d4 e2 f4

9 a4 b3 c5 d3 e2 f4

10 a3 b4 c6 d2 e5 f4

11 a2 b5 c3 d4 e4 f5

(a) Table R
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Figure 4.2: Example of FP-Tree of DB table.

An FP-Tree provides a concise representation of the relation and allows to explore it

to derive the frequent patterns. For example the FP-Tree for the table in Figure 4.2a
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looks like the one depicted in Figure 4.2b. The number in brackets is the support of the

path from the root node (r) to the labelled node in the specific branch of the tree. The

frequency of an atomic condition at a node is the sum of the support of all the nodes

in which the condition occurs. For example node f4, representing the single condition

pattern F = f4 in table R, has frequency 6. For more complex patterns given by the con-

junction of different atomic conditions corresponding to a path in the tree, the frequency

is given by the sum of the support of the less supported nodes in each path in which

the pattern occurs. For example, the pattern with conditions A = a2 ∧ E = e4 has fre-

quency 3 that is given by the sum of the lower supported nodes of the pattern containing

both A = a2 and E = e4 as highlighted in Figure 4.2 (that in all the 3 cases is equal to 1).

Definition 4.3.3. Given a relation R with FP-Tree T and root r, we define support of a

node n “support(n)” as the number of paths from the leaf nodes to node n.

A frequent pattern gives us the combinations of primitive conditions that are more

occurring in the table. For example, the more occurring pattern in Table 4.1 is Sex =

‘F ’.

A solution based on the exhaustive enumeration of all the possible patterns in the sampled

table R guarantees that all the value combinations in R are considered as it generates all

the possible constraints in R. Consequently by Definition 4.3.2 no privacy constraints

will be lost. However, it is impractical to enumerate all the possible patterns as they are

exponential in the number of attributes.

Definition 4.3.4. A relation R with N attributes and m rows produces at most

(2m − 1)
(
N
k

)
samples with k attributes. The maximum number of patterns in R is∑N

i=1(2m − 1)
(
N
i

)
= (2m − 1)(2N − 1).

It is common in frequent pattern mining algorithms to prune the patterns with a

frequency below a certain minimum threshold (minimum support). In our scenario we

cannot apply the same solution as in this way we will loose patterns on which the user

may want to define constraints.

Instead, we propose an heuristic to reduce the number of patterns to consider but that

can still show all the tuples in R. However, the intent is to avoid showing all the tuples

in R but instead to cover as much privacy constraints as possible of those the user has in

mind with a limited number of samples.

Sample Generation

The approach is depicted in Figure 4.3. The intuition is to choose the tuples which are

more likely to contain privacy violations and that allow to cover a big region of R that is
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the tuples which expose more values of R. This tends to reduce the number of samples

required to cover R and chooses first the samples which are more likely to contain privacy

violations. We do not consider all the possible frequent patterns in table R but we defined

a policy to choose the tuples in the sample and then another policy to choose the set of

attributes on which to project. The idea is to give more importance to the tuples exposing

more values of R because by showing them to the user we expose a wide region of R. In

order to do that we define the concept of benefit.

Definition 4.3.5. Given a relation R, its FP-Tree T with root node r and a path C =

{n1, n2, . . . , nk} in T , such that ni = (Ai=vi) for i = 1, . . . , k is the node at level i of the

FP-Tree, we define benefit of a node ni, F(ni) = (ni), as:

1. if the parent of node ni is r then F(ni) = support(ni)

2. else F(ni) = F(ni−1) + support(ni)

Intuitively the benefit measure how many values a path can cover and is obtained by

summing up the node support with the support of each ancestors of the node in the FP-

Tree. The intuition is graphically represented in Figure 4.3 with the grey cells indicating

the values in the tuples each prefix of the path on the relation’s attribute selects. For

example let the path be C = {(A = a2)∧(B = b4)∧(C = c4)∧(D = d4)∧(E = e4)∧(F =

f4)} which corresponds to the first tuple in Table 4.2a: it has benefit 13 which is also

the higher benefit in that FP-Tree.

In this way even nodes with a low frequency in a certain path like E = e4 will gain

importance because they bring with them other nodes in the path that are occurring

frequently. Notice that a path from the root node to the leaf of the FP-Tree gives a list

of atomic conditions identifying a single tuple which exists in the table.

From the considerations above the leaf nodes with higher benefit select tuples with the

more frequently occurring values in a certain path. The approach can be iterated as

follows: i) choose the tuple with higher benefit to be included in the sample and remove it

from R; ii) reconstruct the FP-Tree with the remaining tuples; iii) recompute the benefit;

iv) choose the next tuple with higher benefit to be included in the sample.

This approach gives already a sample composed of tuples in R which basically partitions

the table in horizontal chunks with total benefit given by the sum of the benefits of its

tuples. However, our problem requires samples with a maximum number of attributes

by projecting the tuples on a certain set of attributes. The set of attributes on which

to project should maximize the coverage of the values in table R. We define a maximal

coverage sample as follows:
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Definition 4.3.6. Given a relation R with attributes A = {A1, . . . , Ak} and n tuples

and a set of tuples T = {t1, . . . , tM} ⊆ R such that each tuple ti is given by the query

R(ti)|A = σCi|A(R) with Ci|A =
∧
Aj∈A(Aj = ti[Aj]) and given TA ⊆ A such that |TA| = N

a set of N attributes of R, we said πTA
(
σ∨

ti∈T (Ci|TA )(R)
)

is a maximal coverage sample if

@A′ ⊆ A such that A′ 6= TA and |Img(σ∨
ti∈T (Ci|TA )(R))| < |Img(σ∨

ti∈T (Ci|A′ )(R))|.

Notice we are using the relational algebra notation [24] to express the query returning

the tuples in T using only the attributes in TA and A′.
The definition above states that given a set of tuples with maximum benefit, a maximal

coverage sample is a projection of these tuples on a set of attributes giving the larger

image on R (see the projected area in Figure 4.3). In order to find an optimal set of

attributes maximizing the size of the image, all the combinations of attributes should be

tested.

In the next section is given an algorithm for the creation of samples satisfying the defini-

tions of benefit and maximal coverage given above to repeatedly produce samples from a

relation.

4.3.2 Privacy Constraints Specification

The constraint specification problem deals with deriving a descriptive and concise defi-

nition of privacy constraints from the violations indicated by the users on the samples.

The conditions identifying a single tuple indicated by the user as violating produce a

constraint that is typically too specific as it identifies only a specific tuple and cannot

cover other privacy violations.

Figure 4.3: The sampling approach selects first the tuples with higher benefit and then the

attributes giving higher coverage.
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By removing some conditions it is possible to obtain a more general constraint with a

shorter list of conditions which covers more tuples and consequently also more privacy

violations compared to a single tuple constraint. In this way the overall number of con-

straints required to represent all the violations identified in the relation R can be reduced.

In the following it is defined when a privacy constraint should be considered valid with

respect to the indications given by the privacy experts.

Definition 4.3.7. Given a set of privacy constraints C = {�A: C�} on R defined by the

user to hide the same set of attributes A and given a privacy constraint p =� Ap : Cp �
in R such that Ap = A, p is a valid privacy constraint, C =⇒R

v p, if R̂(p) ⊆ R̂(C).

Intuitively, definition 4.3.7 says that a privacy constraint is valid if it does not select

more tuples than what the user has indicated. An invalid privacy constraint for relation

R corresponds to a privacy constraint that is too much generic meaning that it will select

also tuples that are perfectly fine for the user on that set of attributes.

Notice how the validity property is defined only for privacy constraints selecting the same

set of attributes to hide. This because it does not make sense to compare constraints

hiding different attributes as they are not comparable (e.g. � Name:POB =‘Trento’�
cannot be compared with � POB:Name =‘Anna’�). In addition, all the constraints

are defined on the same relation R.

Our goal is to find a set of constraints that allows to identify all and only the privacy

violations defined by the user. A set of privacy constraints is a solution for the set of

constraints given by the user when the following definition is satisfied:

Definition 4.3.8. Given a set of constraints C = {�A: C�} on R defined by the user

to hide the same set of attributes A and given a set of privacy constraint P = {� Ap :

Cp �} in R such that Ap = A, P is said to be a valid solution for C in R, i.e. P ∈ S(C),

if ∀p ∈ P,C =⇒R
v p and R̂(P ) = R̂(C). S(C) is the set of all the valid solutions for C.

Given the definitions above the constraints specification problem can be formulated

as follows: given the collection of candidate privacy constraints specified by the privacy

violations indications given by the privacy experts, we would like to derive a valid set of

non redundant privacy constraints with the minimum number of conditions.

More formally a minimal valid solution can be defined as:

Definition 4.3.9. Given a set of constraints C = {�A: C�} on R defined by the user

to hide the same set of attributes A and given a set of privacy constraint P = {p1, . . . , pn}
in R, P is said to be a minimal valid solution for C if P ∈ S(C) and @Q ∈ S(C) such

that
∑
�A:C�∈Q |(‖C‖)| <

∑
�A:C�∈P |(‖C‖)|.
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Intuitively, a set of valid privacy constraints represents a minimal valid solution for a set

of privacy constraints derived from the violations indicated by the user, if there is no

other valid solution for the given set of privacy constraints using less conditions.

The following theorem gives a mechanism to reduce the number of constraints in a

valid set of privacy constraints still maintaining its validity.

Theorem 4.3.1. Given a set of constraints C = {�A: C�} defined by the user in R

hiding the same set of attributes A = {A1, . . . , Ak} such that S(C) is the set of solutions

for C and let p′ =�A: c′� be a valid privacy constraint in R hiding the attributes A
such that C =⇒R

v�A: c′�. Then C′ = p′ ∪ (C \ {p ∈ C|p
.
≤ p′}) ∈ S(C).

Proof To prove C′ is a valid solution it should be verified that R̂(C′) = R̂(C) which can

be proved in two steps: (i) R̂(C′) ⊆ R̂(C) (ii) R̂(C) ⊆ R̂(C′).

(i) By construction C′ contains only valid constraints which implies R̂(C′) ⊆ R̂(C).

(ii) Given that C′ = p′ ∪ (C \ {p ∈ C|p
.
≤ p′}) it is enough to show that R̂({p =�A:

c�∈ C|p
.
≤ p′}) ⊆ R̂(p′). From the definition of subsumption ∀p =�A: c�, p ∈

{p ∈ C|p
.
≤ p′}, p

.
≤ p′ implies that c ⇒ c′ that is R̂(p) ⊆ R̂(p′) which implies

R̂({p =�A: c�∈ C|p
.
≤ p′}) ⊆ R̂(p′) and consequently R̂(C) ⊆ R̂(C′).

From (i) and (ii) we got R̂(C′) = R̂(C) and this proves that C′ is a valid solution.

Intuitively, a group of privacy constraints hiding the same set of attributes can be

combined in a more general constraint if the resulting constraint selects the same set of

tuples meaning that it does not select more tuples than what the user has indicated as vi-

olating. Basically, given a valid solution if we substitute with a valid privacy constraints p

all the constraints that are subsumed by p the validity of the solution is not compromised.

A brute force approach to find the minimal valid solution is to consider all the

possible combinations of constraints that can be defined from the violations notified

by the user, and to generalize them by considering the common conditions among the

constraints until a valid constraint using less conditions is found. In the worst case this

corresponds to the original candidate privacy constraints. This approach guarantees to

find a global optimum solution but it is infeasible as it considers a prohibitive number of

combinations. For example with c constraints on α attributes the upper bound of the

number of privacy constraints combinations to check is given by:
(
2α − 1

)(
2c − 1

)
.

In order to avoid dealing with such an exponential number of cases we adopt a greedy

approach. Theorem 4.3.1 illustrates a procedure to reduce the size of a solution by

properly choosing a valid constraint to eliminate all the subsumed constraints from the
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solution. Our greedy approach chooses the valid privacy constraint p subsuming the

maximum number of privacy constraints as described below.

Privacy Constraints Minimization

Assume a set of valid privacy constraint C defined by the user to hide the same set of

attributes is given and an optimal valid solution P ∈ S(C) with less conditions than C
should be found. For each privacy constraint p =� A:C �, p ∈ S(C) with K = ‖Cp‖
atomic conditions, there may be 2|K|−1 generalizations of the constraint p, as many as the

subsets of conditions in ‖Cp‖. For example the constraint � A:(A = a1 ∧ B = b1 ∧ C =

c1) � has 7 generalizations: � A:(A = a1) �, � A:(B = b1) �, � A:(C = c1) �,

� A:(A = a1) ∧ (B = b1)�, � A:(A = a1) ∧ (C = c1)�, � A:(B = b1) ∧ (C = c1)�
and the constraint itself � A:(A = a1 ∧B = b1 ∧ C = c1)�.

Each generalization covers a certain number of privacy constraints in C not yet covered by

the optimal solution P. Let G = {g1, . . . , gn} be the set of all the possible generalizations

of privacy constraints in C.

The greedy approach finds the generalization g =� A:Cg �∈ G such that it covers the

higher number of privacy constraints in C not yet covered in P and with the minimum

number of conditions.

If g is valid it is added to the solution P and by Theorem 4.3.1 all the privacy constraints

subsumed by g can be removed from G because they are covered by the solution P.

If g has only a partial overlapping with a constraint q ∈ G, q =� A:Cq � meaning that

R̂(q) * R̂(g) then q cannot be substituted with g in P. However, the capability of q to

hide tuples not yet covered in P is reduced as part of the tuples it requires to mask are

already masked by g. This means that the coverage of q should be reduced by the tuples

occurring in the overlapping with g. This corresponds to update the coverage of q to

|R̂(q)| − |R̂(q) ∩ R̂(g)| which is equivalent to compute |R̂(� A:Cq ∧ Cg �)|.
The update of the coverage guarantees to choose always the generalization covering the

higher number of privacy constraints in C not yet covered by P.

The FP-Tree structure can be used to compute efficiently the set of generalizations

G as it allows to generate all the possible combinations of conditions shared by different

privacy constraints in C. Such combinations corresponds to the frequent patterns of the

tuples in R̂(C) as defined in Section 4.3.1 ordered in decreasing order of coverage and

increasing length (patterns with less atomic conditions come first). As said above each

time the first valid solution g in the ordered list of frequent patterns is selected to be added

to the valid solution set P, the list of frequent patterns is updated removing all the patterns

subsumed by g and reordered to reflect the change in coverage of the patterns partially

covered by the solution. In order to do that, the complement of the solution is added to

80



CHAPTER 4. PRIVACY COMPLIANCE CHECKING 4.3. PROBLEM

the remaining patterns and their coverage is recomputed. Actually, the complementary

patterns serve the sole purpose of generating the coverage of the patterns considering only

tuples not yet covered by a privacy constraint in the solution.

As shown in Theorem 4.3.2 adding the complement of a valid constraint q to a

privacy constraint p gives a constraint with the same validity property of p (according to

the validity definition in Definition 4.3.8). Intuitively Theorem 4.3.2 shows that adding

to an invalid pattern the negated conditions of a valid pattern will not transform the

pattern in a valid pattern. Similarly, adding to a valid pattern the negated condition of a

valid pattern will not transform the pattern in an invalid pattern. This implies it is not

necessary to include the negated conditions in the definition of the privacy constraints

which results from the minimization process described above but the solution will be

constructed considering only the “positive” constraints.

Theorem 4.3.2. Given the privacy constraints p =�A: Cp� and q =�A: Cq� in a

relation R and given C = {�A: c�} set of valid privacy constraints for R with q ∈ C
valid privacy constraint then p is valid iff � A : Cp ∧ Cq � is valid.

Proof The proof can be split in four cases: (i) if p is valid in R then � A : Cp ∧Cq � is

valid in R; (ii) if� A : Cp∧Cq � is valid in R then p is valid in R; (iii) if� A : Cp∧Cq �
is not valid in R then p is not valid in R; (iv) if p is not valid in R then � A : Cp ∧Cq �
is not valid in R.

(i) Given p and q valid in R then we can say R̂(q) ⊆ R̂(C) and R̂(p) ⊆ R̂(C). By

the set properties we can say that R̂(� A:Cp ∧ Cq �) = R̂(p) \ R̂(q) ⊆ R̂(C) and

consequently � A:Cp ∧ Cq � is valid, C =⇒R
v� A:Cp ∧ Cq �

(ii) Given � A:Cp ∧ Cq � and q valid in R then R̂(� A:Cp ∧ Cq �) ⊆ R̂(C). By the

R

p

q

x

Figure 4.4: Overlapping valid and invalid patterns.
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set operators properties R̂(� A:Cp �) = R̂(� A:Cp∧Cq �)∪ R̂(� A:Cp∧Cq �).

By hypothesis each term of the union is ⊆ R̂(C) which implies R̂(p) ⊆ R̂(C) that is

p is valid, C =⇒R
v p.

(iii) Given � A : Cp ∧ Cq � not valid and q valid in R. From hypothesis R̂(� A:Cp ∧
Cq �) * R(C) meaning that ∃x ∈ R̂(p) such that x ∈ R̂(p) ∧ x /∈ R̂(C) which

implies that p is not valid.

(iv) Given p not valid (see Figure 4.4) it means ∃x ∈ R̂(p) s.t. x /∈ R̂(C) which implies it

is also not in R̂(q). From x ∈ R̂(p)∧x /∈ R̂(q) we derive x ∈ (R̂(p)\R̂(q))∧x /∈ R̂(C)

which means R̂(� A:Cp ∧ Cq �) * R̂(C) and so � A : Cp ∧ Cq � is not valid.

The approach presented in this section finds a minimal valid solution for a set of privacy

constraints C hiding the same set of attributes A. When heterogeneous constraints hiding

different attributes should be minimized the same approach can be applied on each single

group of homogeneous constraints. The optimal solution for the whole set of constraints

is given by the union of the partial optimal solutions discovered for each group. This

because each group is independent from the others.

Notice also that the greedy approach is an heuristic which gives in general a solution close

to the optimum but is not said to be the global optimum. This is the price to pay to

make the algorithm compute the solutions in a reasonable time.

4.4 Algorithm

In this section we present the algorithms to address the privacy constraints elicitation and

specification problems:

• Sample Generation: generates the samples based on the data distribution in the

input relation;

• Privacy Constraints Minimization: derives a descriptive and concise definition of

privacy constraints from the violations indicated by the user.

4.4.1 Sample Generation

Algorithm 2, getSample, takes a relation R with n tuples and k attributes (k ∗n relation)

and finds a sample with M tuples and N attributes (NxM relation) chosen from R

according to Definition 4.3.5 of benefit and Definition 4.3.6 of maximal coverage sample.

It creates the FP-Tree of relation R (line 7) to compute the benefit of each path from the
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A B C D E F G H

1 a11 b3 c3 d1 e1 f4 g7 h7

2 a4 b4 c1 d5 e2 f4 g2 h7

3 a3 b1 c12 d6 e1 f2 g8 h8

4 a6 b1 c11 d5 e1 f1 g5 h5

5 a10 b4 c5 d3 e1 f2 g8 h8

6 a1 b3 c8 d3 e2 f3 g4 h4

7 a9 b2 c9 d1 e2 f1 g5 h6

8 a2 b4 c13 d4 e1 f5 g6 h1

9 a7 b3 c2 d7 e1 f5 g6 h2

10 a4 b4 c7 d8 e2 f5 g5 h2

11 a12 b4 c6 d9 e2 f5 g1 h2

12 a8 b3 c4 d5 e1 f3 g3 h3

13 a5 b2 c10 d2 e1 f3 g4 h3

(a) R: from mapping on Table 4.1

root 0 0

e1 4 4 b3 1 1 e2 2 2

b3 2 6 a3 1 5 b2 1 5

d1 1 7 f5 1 7

a11 1 8

c3 1 9

f4 1 10

g7 1 11

h7 1 12

h2 1 8

a7 1 9

c2 1 10

d7 1 11

g6 1 12

b1 1 6

c12 1 7

d6 1 8

f2 1 9

g8 1 10

h8 1 11

f3 1 6

g4 1 7

a5 1 8

c10 1 9

d2 1 10

h3 1 11

e2 1 2

f3 1 3

g4 1 4

a1 1 5

c8 1 6

d3 1 7

h4 1 8

b2 1 3 f5 1 3

d1 1 4

a9 1 5

c9 1 6

f1 1 7

g5 1 8

h6 1 9

h2 1 4

a12 1 5

b4 1 6

c6 1 7

d9 1 8

g1 1 9

(b) FPTree of R after 7 tuples with higher benefit are removed.

Figure 4.5: Example of sampling of Table 4.1.

root node (line 8). The FP-Tree for the relation in Table 4.5a is shown in Figure B.1 in

Appendix B. Notice how the values in that table are derived from the example in Table

4.1 by mapping each cell value with a conventional unique value (e.g. Sophy is mapped

to a11).

The algorithm chooses the leaf node with the highest benefit (line 9) corresponding to

the tuple with higher benefit, it adds that tuple to the set of tuples in the sample ST (line

10) and removes it from R (line 11) as it will be covered by a sample.

The steps (line 6– 12) are repeated until M tuples of the sample are selected or there are

no more tuples to be covered in R. At each iteration the FP-Tree is created again with the

remaining tuples as its shape and benefit at the nodes will change. This guarantees that

each sample contains different tuples and that there are no common tuples in different

samples.

The FP-Tree obtained for the example in Table 4.5a after 7 iterations (7 tuples are added

to the sample) is shown in Figure 4.5b. Notice how the shape and the values of support

and benefit are changed compared to the initial FP-Tree (see Figure B.1 in Appendix B).

The second part of the algorithm is devoted to identify the set of attributes on which to

project in order to obtain a maximal coverage sample as defined in Definition 4.3.6. We use

an exhaustive approach by generating all the possible combinations of N attributes over
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Algorithm 2: getSample(R,N,M) 7→ S.

Data: A = {A1, A2, . . . , Ak}, R 6= Φ,

R = {t1, . . . , tn : ti = [A1:v1, A2:v2, . . . , Ak:vk], i = 1, . . . , n}
Result: Query S of a sample on R with at most M tuples and N attributes

1 Let ST set of tuples of sample S

2 Let SA set of attributes of sample S

3 ST ← Φ

4 SA ← Φ

5 /* choose M tuples from R */

6 while (ST < M ∧R 6= Φ) do

7 T ← FPTreeCreation(R)

8 computeBenefit(T )

9 t← getTopBenefitTuple(T)

10 ST ← ST ∪ t
11 R← R \ t
12 end

13 /* choose N attributes from k on which to project the sample tuples */

14 C ← combinations(k,N)

15 SA ← C[1]

16 C ← C \ SA
17 while (C 6= Φ) do

18 A′ ← C[1]

19 C ← C \ A′

20 if
(∣∣∣Img(σ∨

t∈ST
(
∧
Ai∈SA

(Ai=t[Ai]))(R)
)∣∣∣ < ∣∣∣Img(σ∨

t∈ST
(
∧
Ai∈A′ (Ai=t[Ai]))(R)

)∣∣∣) then

21 SA ← A′

22 end

23 end

24 return πSA

(
σ∨

t∈ST
(
∧
Ai∈SA

(Ai=t[Ai]))(R)
)

the set A = {A1, A2, . . . , Ak} (at line 14) which are
(
k
N

)
= k!

N !(k−N)!
. Each combination

is analysed (line 17– 23) to discover the set of attributes SA that when projected on the

sample tuples ST gives the larger image in R.

The resulting sample is described by the query:

S = πSA

(
σ∨

t∈ST
(
∧
Ai∈SA

(Ai=t[Ai]))(R)
)

The sample produced for the table in Figure 4.6a is shown in Figure 4.6b: it has 7 tuples

and attributes {B,E, F,H}.
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The next sample to be shown to the user is obtained by applying the same algorithm

on the tuples in R not yet covered by a sample. Basically, the tuples in the image of the

samples already created are not considered in generating the samples that follow. As the

set of tuples in R is finite, the algorithm terminates when all the tuples in R are covered

by some sample.

In Appendix B are shown the algorithms for the FP-Tree creation and the frequent

patterns discovery (FP-Growth). The implementation follows the algorithm proposed in

[82] but it does not perform any pruning to eliminate low frequent items with minimum

support below a certain threshold. Alternatively, the procedures described there can be

followed exactly providing zero as minimum support parameter.

A B C D E F G H

2 a4 b4 c1 d5 e2 f4 g2 h7

4 a6 b1 c11 d5 e1 f1 g5 h5

5 a10 b4 c5 d3 e1 f2 g8 h8

8 a2 b4 c13 d4 e1 f5 g6 h1

9 a7 b3 c2 d7 e1 f5 g6 h2

10 a4 b4 c7 d8 e2 f5 g5 h2

12 a8 b3 c4 d5 e1 f3 g3 h3

(a) Tuples chosen to construct the sample.

B E F H

2 b4 e2 f4 h7

4 b1 e1 f1 h5

5 b4 e1 f2 h8

8 b4 e1 f5 h1

9 b3 e1 f5 h2

10 b4 e2 f5 h2

12 b3 e1 f3 h3

(b) Resulting sample: 7 tuples and 4 attributes.

Figure 4.6: Example of sample on Table 4.5a

4.4.2 Privacy Constraints Minimization

Algorithm 3, MinimizePrivacyConstraints, takes a relation R and the set C of candidate

privacy constraints defined on R by the user hiding the same set of attributes. It returns a

valid solution using the approach described in Section 4.3.2 containing less conditions than

the input set C. It may be possible that the procedure is not able to reduce the number of

conditions and consequently it will return the same list of constraints provided in input.

This depends on the particular set of constraints given in input and on the distribution

of the data. For example, a table containing tuples with no values in common among

different tuples do not offer any possibility to combine constraints into more general ones.

However, it is very unlikely to have totally unrelated values among the tuples of a real

database, and it is common to have some degree of overlapping in the data, especially in

case of attributes with finite domain.

The algorithm generates the list of frequent patterns (line 1– 2) from the tuples selected
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as violating in the input relation R where each tuple is properly transformed into a list

of items of the form Attribute = V alue representing the conditions selecting the tuple

in the relation as defined in Section 4.3.1. The list G of frequent patterns represents

all the possible conditions that can be used to generalize the input constraints. The list

is ordered by decreasing order of frequency and increasing length. In this way the more

frequent and shortest conditions migrate at the top of the list (line 3).

Until all the privacy constraints in input are covered by the constructed solution (lines

6– 26) the algorithm removes the more frequent pattern g from the top of the list G (line

7) and if the corresponding constraint is valid (R̂(g) ⊆ R̂(C) at line 9) it performs the

following actions:

1. add the constraint g to the solution (line 11)

2. remove from G all the patterns of constraints subsumed by g (lines 12– 16)

3. add the complement of the condition in g to all the patterns in Ḡ (lines 18– 22)

4. performs a sorting on the resulting Ḡ list removing the patterns with zero frequency

(line 23)

5. finally, also the list of frequent pattern in G used to find the other valid solutions is

sorted using the order of their corresponding negated patterns in Ḡ (line 24).

Notice how the sampling algorithm and the constraints minimization algorithm are

totally independent and the second can work on privacy constraints defined directly on

the original huge table as also on the sample views produced by Algorithm 2. Indeed, it

is possible to combine more samples together and to apply the minimization algorithm to

the resulting combined samples. However, since it is possible to minimize only constraints

defined on the same set of attributes (that is the union of the attributes to hide with the

attributes in the list of conditions), only samples projected on the same set of attributes

can be combined.

Table 4.5 shows the privacy constraints obtained from the minimization algorithm applied

on a sample. Notice how each of the 5 candidate privacy constraints derived from the

privacy violations in input has 6 conditions corresponding to the attributes in the sample

for a total of 30 conditions. The minimization algorithm derives just two constraints with

only two conditions.

4.5 Experiments

In this section we present the results of the execution of the sample generation and privacy

constraint minimization algorithms on test data. The tests are performed on a relation
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Algorithm 3: MinimizePrivacyConstraints(C, R) 7→ P
Data: C = {�A: C�} set of candidate privacy constraints on R
Result: P = {�A: C�} such that

∑
�A:C�∈P |(‖C‖)| ≤

∑
�A:C�∈C |(‖C‖)|

1 T← FPTreeCreation(C) /* creates FP-Tree from violating tuples in R */

2 G← FPGrowth(T, null) /* generate frequent patterns from T */

3 sort(G) /* sort patterns by decreasing frequency and increasing length */

4 P← Φ /* initialize solution set */

5 Ḡ = G /* initialize ordered list of complementary patterns */

6 while (G 6= Φ) ∧ (R̂(P) 6= R̂(C)) do

7 g ← G[1] /* take the more frequent and shorter pattern */

8 G← G\g
9 if (R̂(g) ⊆ R̂(C)) then

10 /* if the pattern is valid */

11 P← P ∪ g /* add the pattern to the solution */

12 foreach (p ∈ G) do

13 if (p
.
≤ g) then

14 /* remove patterns subsumed by g */

15 G← G\p
16 end

17 end

18 foreach (q ∈ Ḡ) do

19 /* add negated condition of g to complementary patterns */

20 Ḡ← Ḡ\q
21 Ḡ← Ḡ ∪ (q ∧ ḡ)

22 end

23 sort(Ḡ) /* sort Ḡ and remove zero-frequent patterns */

24 sort(G, Ḡ) /* sort G based on frequency in Ḡ */

25 end

26 end

27 return P
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Table 4.5: Privacy constraints minimization on violations in sample table.

Tuple Name AgeClass DOB POB Sex Department Privacy Constraint

1 Sophy 18− 30 02/10/1983 Meano F Physiotherapy

3 Helene < 18 28/01/1995 Trento F Psychology
� Name:(AgeClass < 18)�

4 Ketty < 18 13/12/2009 Povo F Infectiology

6 Bob 18− 30 09/05/1991 Daone M Oncology

7 Paul > 65 10/06/1941 Brenta M Infectiology

8 Chris 30− 65 12/5/1975 Lavis F STD
� Name,AgeClass, POB:(Department = “STD′′)�

9 Lidia 18− 30 02/08/1982 Vela F STD

10 Jeremy 30− 65 07/03/1976 Vigo M STD

R randomly generated with Gaussian and Poisson distributions. We consider a number

of tuples n equal to 100 in the tests of the minimization and 1000 in the tests for the

sampling; this because in the former case a sample of more than 100 tuples will be too big

for the standard user to deal with. The tuples have N = 15 attributes and each attributes

has a domain of 10 values.

The test data are generated in such a way that there is no significant overlapping among

the tuples as it would be typically in real data. This means that on average our algorithms

will perform poorly on this fake data set compared with the same tests on “real” data. We

plan to repeat the tests on the real data to evaluate the performances and effectiveness

and the different behaviour with a more homogeneous data distribution.

In order to evaluate the sampling algorithm we performed two types of tests: relation

coverage test, to measure how good the samples are in covering the relationR with different

number of sample attributes; constraints coverage test, to measure the capability of the

samples in capturing the privacy constraints with different number of samples attributes.

Both tests are compared to a random sampling algorithm generating the samples with a

random choice of the tuples and attributes on which to project. In addition, the number

of tuples in the sample is fixed to M = 10 while the number of attributes ranges from

N = 1 to 15. We think that 15 attributes are a reasonable big number of attributes in a

sample to propose to a user. An higher number of attributes would risk to be unreadable

[83].

In Figure 4.7 we show how many samples should be proposed to the user in order to

cover all the relation R. On average we notice 13% less samples are required to cover the

whole relation R compared to the random approach selecting both tuples and attributes

randomly.

It is interesting to note that with just 1 attribute few interactions are required to cover

the whole input relation (3 steps are enough). This because the sampling strategy will

basically choose the attribute with higher frequency in the set of tuples given by the

tuples selection phase and this will cover for sure a big chunk of relation R. However, a
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single attribute sample is quite useless as it does not show to the user a rich set of data

on which to define the privacy constraints. The only kind of privacy constraints definable

on a single attribute sample are constraints using just this attribute. As the number

of attributes increases the algorithm will reach the coverage after an higher number of

interactions. This because each attribute added will make the sample more specific and

representative of less tuples in R (that is it will have a smaller image). This increases the

number of samples to be shown to the user but guarantees to cover much more values

(and most importantly combinations of values).

At the other extreme showing to the user a sample of the same number of attributes of

relation R is not giving any advantage as it is basically dividing R into chunks of M = 10

tuples. in this case the coverage will be reached after |R|/M samples. These results can

be used to decide the most suitable number of attributes to be used in the samples given

a certain data distribution.

Figure 4.7: Relation coverage test with samples of 10 tuples and at most 15 attributes, relation

R with 15 attributes and 1000 tuples.

In Figure 4.8 we show how good the samples are in capturing privacy constraints

the user may want to express. In order to perform this test, we generate a random

set of P = 30 constraints on 15 attributes choosing also randomly the number of

attributes to hide and the conditions on which the violations occur. We used a

relation R distributed with a Poisson distribution to evaluate how good is our sam-

pling strategy to exploit the data distribution. Then we create samples of 10 tuples

varying in each trial the number of attributes per sample from 1 up to 14 (we omit 15

as it gives samples with the same dimension of R that will surely cover all the constraints).

In each test trial we check how many constraints can be defined by the user looking at

the samples generated.

The sampling approach does not provide such a great improvement on the number of
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Figure 4.8: Relation coverage test with samples of 10 tuples and at most 15 attributes, relation

R with Poisson distribution (λ = 5) on 15 attributes and 1000 tuples.

constraints captured, but given that it requires less samples to finish it is not a bad

result. For samples of medium size (from 5 to 10 attributes) our sampling is performing

at least as good as the random approach. We should also say that the distribution of the

data and of the sample generated in these tests are not reflecting the behaviour of the

user. In this configuration it is reasonable that a random try can success to guess some

of the randomly generated constraints. In order to better evaluate and tune our solution

we need to simulate with lab test our approach using a more realistic model of the user

behaviour. In addition, a final test with actual data and real users is also needed and we

are planning to do it as future work.

In order to evaluate the capability of the minimization algorithm of producing a concise

representation of a given set of privacy constraints we performed the tests depicted in

Figure 4.9a and Figure 4.9b. We generated a random set of constraints on a relation

R with k = 15 attributes and n = 100 tuples and we applied on them the minimization

algorithm. We count the number of privacy constraints and of conditions in which the

input set is reduced by the minimization. We can see that the minimization is performing

quite well in reducing the number and length of the set of privacy constraints. Obviously

the algorithm cannot return more privacy constraints with more conditions than the set

given in input.

4.6 Conclusions

In this chapter we present an approach to elicit and specify privacy constraints based on

sampling. The idea is to propose a view of the database to be protected to a privacy
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(a) Minimization of input constraints. (b) Minimization of input conditions.

Figure 4.9: Constraints Minimization applied on 15 attributes and 100 tuples.

expert, with the goal of collecting a list of privacy violations by tracking which attributes

and tuples the user considers as privacy violations. This way the user will tell us what

she want to be concealed in reports produced from that database, but without providing

any explanation of why this happens.

We propose an approach to derive from the list of violations a concise definition of the pri-

vacy constraints in form of SQL select-project query. The key innovation of this approach

is that it is based on the idea of showing a view (called sample) of the original database

data content, on which the user can more easily identify the violations and consequently

the sensitive data to be protected. The creation of the view that will be proposed to

the user is particularly critical, as user’s possibility to define a set of privacy constraints

is restricted to which data we will present. We propose an algorithm to select a set of

samples to be shown to the user in a certain order in such a way to satisfy the following

conflicting goals: on one side we would like to minimize the number of samples and of

tuples the user has to analyse in order to define the set of privacy constraints she desires;

on the other side we would like to cover the database to the largest extent to avoid loosing

privacy constraints.

The results are promising and we plan to further investigate on the proposed algorithm to

improve their performances and to tune the heuristics depending on the particular data

distributions. In addition, it should be investigated more on the robustness of the ap-

proach to changes in the database content, in order to avoid repeating the whole privacy

elicitation process when new data arrives. We plan also to perform tests with real users

to see if the results obtained with our lab tests are coherent with users behaviour and

with real data distributions. This will also help us to better tune the size of the samples

to users cognitive capabilities, maybe comparing also different interaction devices.
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Chapter 5

Case Studies: CSS and SIS-H

projects

This chapter presents some real case studies in which the solutions and theories presented

in Chapter 3 are applied to develop EHRs with different characteristics. Section 5.1

presents the challenges and lessons learned from the CSS (Cartella Socio-Sanitaria) re-

search project to develop a Social and Healthcare Record for the Autonomous Province

of Trento (Italy). The solution proposed for a privacy-aware EHR has been successfully

applied on a group of real scenarios and the implementation realized is currently a product

released to the province of Trento for further experiments and for the real adoption in the

social and healthcare services. Section 5.1.3 shows the application of an argumentation

framework to prove the adherence of the EHR system developed in CSS to the privacy

regulations. Finally, Section 5.2 shows an EHR solution for developing countries in which

privacy and data quality coexist with stringent organizational and technical requirements.

The results presented here allows to prove the solutions proposed in this thesis are appli-

cable and usable in real scenarios and raised new research challenges.

5.1 CSS Project

In the Trentino region, as in the rest of Italy and in many countries throughout the

world, health and social services do not share information systems. The welfare agency

delivers its services through many smaller agencies and municipalities, which also do not

share information systems and processes. As a result, obtaining visibility on the quality

and the economy of service delivery requires integrating literally dozens of completely

heterogeneous and fairly complex systems owned and managed by different institutions.

In this section, we present a real case study based on the CSS project (Cartella Socio

Sanitaria) undertaken by the autonomous province of Trento (Italy) with a dozen of
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partners from the IT sector, the public administration and the healthcare services.

The project aims at partially automate the integration between social and healthcare

institutions in the delivery of social and health services to individuals in need.

The first goal of the project is visibility and accountability: the province is interested in

reporting information on the quantity and quality of the services delivered to citizens,

both to ensure that proper assistance is provided and to establish the amount of

reimbursement due to the agencies providing the services. Today, these indicators are

collected manually, sporadically, and with different practices at each institution. The

result is that a lot of time is spent to compute them and, in addition, the results are

unreliable. This means that at the outset, the initial request was for a data integration

project.

A second goal, not initially stated but that emerged during the project also as a conse-

quence of the approach we took - as discussed later in detail - is the partial automation

of the cross-organizational processes required to perform the services.

While the first goal was of interest to the province only, the second was very instrumental

to actively involve the other participating institutions, as they had the possibility of

executing their processes in a faster, more reliable, and cheaper way.

From a technical and organizational perspective, this kind of project is very chal-

lenging, and in fact it was the first of this kind in Italy to complete successfully. The

interesting aspects are that:

i) it has all the “traditional” challenges of data integration projects with the added

complexities of being cross-organizational and characterized by a large number of

medium and small institutions that also dynamically grow over time (civic centers,

hospitals and social care institutions will progressively join the integrated platform

now that the validation phase is completed);

ii) such an integration in a traditional data warehousing approach is not viable due to

privacy rules which simply forbid to extract data and put it in a central repository

so that it can be used for analysis.

Indeed, there are strict legal constraints on the way data is collected, stored, distributed

and in general processed in a context with multiple data controllers and accessed by

multiple types of data consumers (medical staff, administrative staff and government).

Such constraints make it difficult to identify application protocols and policies for such

kind of data integration.
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The project presented here addresses specifically these problems and in particular aims

to:

i) automatically obtain information about Key Performance Indicators (KPI) and cost

metrics for the social and health services provided by an initial pilot group of agencies;

ii) be able to easily add other institutions to the initial group after the first pilot.

Point ii) is particularly difficult because the systems used in each organization are very

heterogeneous with solutions implemented both in-house by dedicated IT departments (as

in municipalities) or acquired by third party IT companies (as in private organizations

like elderly houses).

5.1.1 Assistance and Medical Process Analysis

This section presents the analysis approach adopted to understand how assistive processes

are managed in the province and Trento and to translate them into IT requirements for

an EHR infrastructure: the CSS platform.

The CSS platform derives from an in-depth study of the healthcare and socio-assistive

domains conducted in synergy with the local governing bodies represented by the Province

of Trento (that will host the system) and the Social Welfare Department (that will use

the infrastructure and the business intelligence services), the Health Care Agency, two

major municipalities and local companies providing telecare and services for the elders in

the Trentino region. In particular, we analyzed, together with the domain experts, some

clinical and assistive processes that involve all the partners mentioned above to identify

the organizational and technological constraints of the IT systems in use, to capture

the business processes executed and the bits of data they produce and exchange with

each other. This process-oriented analysis approach relieves us from the internal

complexity of the single information sources as it focuses only on the ‘visible’ effects

of the business processes to track only the data that the data sources are willing and

interested to share.

We created a working group with experts from each institutions and organizations and we

spent a considerable amount of time in analyzing the administrative, medical and social

domains. This because there is no documentation on the business processes going on

among these institutions as, most of the times, they are represented only in people’s mind

or are left completely fuzzy: the decision about what to do is left to personal judgment.

The goal of this analysis phase is to understand how people work and use their IT systems

to devise an integration solution which minimizes the impact on their current working

practices and to propose improvements to facilitate their work and resolve inefficiencies.

There is a lot of work in the social studies to interact with people. Such techniques allow
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to propose them the more suitable IT device or to automatize certain operations currently

performed manually (e.g. ethnography and participatory design approaches like CSCW,

Computer Supported Cooperative Work [51]).

In our case study, we performed a series of interviews (focus groups) with the domain

experts that ‘taught’ us how to decode their fuzzy and complex world. Our main concern

in the analysis was on producing a concise representation of the domain usable both by

domain experts to model their world and by designers to get a set of requirements that

can be prioritized and rapidly translated into a system specification.

In our analysis we were interested in the workers-applications interactions in order to

capture the data produced at each step with the twofold goal of: (i) isolating the points

of cooperation and interoperability among the inter-related processes executed by the

parties and (ii) feeding a Business Intelligence (BI) module.

The BI solution, designed considering such inter-related processes as a whole, enables a

comprehensive analysis of the business processes occurring among the parties that in the

current context the governing bodies (from now on the Governance) cannot carry out.

We used activity diagrams to model the processes adding to the standard notation

some stereotypes to represent the data (both on paper and in the form of informative

events) that are produced during each activity (Figure 5.1).

Despite more modeling formalism exists, like for example BPMN (Business Process Model-

ing Notation [130]), we decided to use a notation as much simple as possible. In particular,

BPMN is a powerful graphical modeling language to represent the business processes in a

formalism that can be easily translated into executable languages like BPEL [94]. How-

ever, in order to do that, the model should be very detailed to clarify any ambiguity. This

requires to invest a considerable amount of time in a deep analysis making the approach

applicable only on a restricted scenario.

In order to have a complete picture of the domain without the need to analyse so deeply

the business processes involved we adopted a more abstract approach. We identified the

information of interest for the interoperability and the monitoring on the business pro-

cesses in form of events.

In doing that we kept also into account the Key Performance Indicators (KPIs) the orga-

nizations delivering socio-assistive services use for budget planning and monitoring of the

service quality to verify if it is compliant to contractual agreements (e.g. the time elapsed

from the approval of Teleassistance service request to its activation cannot be longer than

7 days).

Table 5.1 gives an excerpt of the KPIs for each type of source involved: Province of Trento,

Welfare agency, Healthcare agency, Local municipalities and districts, Private companies

and no-profit organizations.
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Figure 5.1: Excerpt of request, evaluation and provision process of Rest Home Service.

The steps of analysis are summarized below:

1. select reference scenarios and enough data to cover all the involved partners and to

produce meaningful BI reports;

2. interview domain experts to understand and model incrementally the business pro-

cesses to: sketch out the glossary used, actions performed, responsibility (who does

what), exceptions to normal flow of actions, constraints and dependencies among

different systems to proceed with next steps, input/output data (events) of an ac-

tion;
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3. isolate events that can be produced automatically by the system and their point of

origin;

4. isolate the documents exchanged among the parties and assign priorities for their

conversion into events;

5. detail the data content of the events: fields, type, optional or compulsory nature,

standardized nomenclature and domain attributes;

6. identify the KPI (Key Performance Indicators) to design a Data Warehouse (DWH)

and the reports in the BI module. The schema of the DWH is given in Appendix

A.

The analysis enabled us to:

• discover, model and document the business processes occurring inside each institu-

tion and their inter-relationships despite the poor formalization in healthcare and

socio-assistive processes, given that each IT system, and even each single operator,

has its own way to proceed inspired by best practices of their reference organization

or just by common sense and past experience;

• identify and refine a modeling formalism to summarize the knowledge we obtained

from the analysis with the domain experts in concise, tangible and usable documents

in an understandable way, even by non-technical people;

• capture the data flow and the data format (paper vs electronic form) to understand

how information usually flows and the points of automation to transform paper-

based data into “informatized” knowledge that is more usable;

• isolate events and their contents (fields), domain values, point of generation and

frequency of generation; derive KPI to understand what the users (operators of

the healthcare and socio-assistive domain and governing bodies) need and their

expectations from the system.

The standardization of events among different data producers is what allows their

integration. An alternative integration approach is to let the DWH doing the standard-

ization of the event’s data at cleaning time (during the ETL -Extract Transform and

Load- procedure [97, 98]) but this will limit the use of the events only to the BI activ-

ities. Instead, we want to make the events directly consumable by different sources to

allow the cooperation among the parties. This requires to the events to speak the same

language, that is, to use a common and shared glossary (e.g. a shared nomenclature of

social-health services).
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Table 5.1: KPIs required by organizations delivering socio-assistive services.

Organizations Responsibilities KPI

Province of Trento Collects information on the services delivered

in a provincial data warehouse to monitor

their quality, the economic resources employed

for reimbursement and budget planning and to

monitor the demographic evolution of assistive

needs

] of assistance requests per dis-

trict/age classes.

Welfare agency

Evaluates cognitive and social state of the

patients and their level of autonomy to

complete the requests of activation of

socio-assistive services

] of patient per social workers;

% of accepted requests of assis-

tance;

] of requests per territory area;

] of services activated within 60

days.

Healthcare agency Evaluates health state of the patients to

complete the requests of activation of socio-

assistive services

] of requests of assistance by

requestors (general practitioner,

hospital doctors, social worker)

Local

municipalities and

districts

Control the administrative process to

activate the socio-assistive services with

cross-validation of certificates, financial

support and delegation of service

provisioning to accredited organizations

average cost of services per per-

son;

] of administrative practices

completed within 60 days

Private companies

and no-profit

organizations

Deliver the final services

(tele-control/tele-assistance, nursing home

services, long term assistance in elderly

houses or recreation centers) to the patients

and interact with their family doctors,

relatives and all the network of people

connected to the patient

] of alarms per type (false/

healthcare/ social alarm, moni-

toring device failure);

hours of nursing home services

per patient.

Another reason that encourage us to go for an event-based feeding of the DWH is

the complexity of the business processes analysed which makes particularly difficult to

create, with a minimal development effort, the ETL procedures capable to extract from

the sources such data.

In fact, we saw that the modeled processes have many exceptions: for example the request

of access to a rest home may start from a social worker but also from the medical staff and

each sub-process at the data controllers can end at any point in time (e.g. for rejection

of the request or death of the patient).

To make things even more complex, the same information system is used following a

99



5.1. CSS CHAPTER 5. CASE STUDY: CSS AND SIS-H

different sequence of activities by multiple municipalities depending on internal procedures

and the working practices of the operators. As a consequence some data is not collected

at all and the corresponding events cannot be generated because their information is not

entered into the system.

From this analysis we saw that, if we consider the different processes from each insti-

tution as a whole they result in a highly inefficient composed process. The main weakness

is that the same information is duplicated in different systems and re-inserted many times

because it is communicated by means of paper documents (e.g. in Figure 5.1 the event

E18 : SocialProfile originates from the manual insertion of document D3). The analysis

work allows to identify some points of improvements:

• the dematerialization of documents by converting the data they carry into electronic

events;

• the reorganization of the processes internally and in the way they interact each other

to avoid duplicate flows of information;

• the identification of the actors, the data they control, their roles (data producers

and data consumers) and the purposes for which they use the data.

The scenario is particular because it combines data belonging to different domains

(social and medical) from multiple data controllers that should cooperate still maintaining

their control on the data. This imposes strict constraints on the way data flows among the

sources and imposes particular care in managing the data lifecycle and sensitive data by

means of a communication protocol which: minimizes the traffic of sensitive information;

avoids to store sensitive data in a central place; allows the data owner to decide what can

be shown, to whom and for which purposes by means of privacy policies.

The EHR architecture proposed in Section 3.1 is a comprehensive solution for all these

requirements and constraints in this scenario, both organizational and technical, and it

has been successfully applied in the CSS project1. In this section, we are not presenting

again the details of the EHR solution but only the approach used to realize it in the real

scenario.

5.1.2 The Prototype System

The prototype system of the CSS project has been developed with standard and consoli-

dated open source technologies by putting into practice the architecture in Section 3.1,

and is planned to be released as open source code under the LGPL license v3.02.

1http://www.trentinosociale.it/index.php/Il-nuovo-welfare/E-welfare/Progetto-Cartella-Socio-Sanitaria-CSS
2http://www.gnu.org/licenses/lgpl-3.0.html
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Figure 5.2: Dashboard of the Privacy Rules Manager.

The system is basically “transparent” to the end users when it deals with the storage

of events and their routing among the different partners, as all these functions are per-

formed automatically by the modules of the underlying cooperation infrastructure and

by the legacy systems. The only two features exposed to the end users by means of a

front-end are represented by the privacy policy definition and the business intelligence

analysis. The business intelligence analysis is performed by a reporting console that is

still under development as the underlying data warehouse structure is not yet finalized

(see a first proposal in Appendix A). We are particularly interested in the privacy policy

definition GUI because it is a very critical point of interaction with the user, and it is

where the techniques presented in Chapter 4 can be applied. The GUI developed in the

prototype does not use yet the approach presented in Chapter 4 to define the privacy

policies through data sampling. However, we plan as future work to introduce also the

sampling approach for a test with real users and a comparison with the standard privacy

definition approach.

Figure 5.2 shows the Dashboard of the Privacy Rules Manager the data controller

(owner of the data) will use to define the privacy policies. The user can define one

or more privacy policy rules for each type of event. Figure 5.3 shows the GUI for the

definition of an instance of privacy policy. The user can select: i) one or more items from

the list of fields in the event details type, ii) whom (i.e. one or more Organizational Unit

inside a department as consumers) and iii) the admissible purposes. Privacy rules are

saved with a name and a description.
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Figure 5.3: Privacy Policy definition tool.

Optionally the user can specify a validity date that limits the application of the rules

to a certain time window. This option is particularly useful when private companies are

involved in the care process and should access to the events of their customers only for

the duration of their contract.

Some of the advantages of the GUI are listed below:

• it is very intuitive to use as it does not require any knowledge of XACML but it

asks to the user to define a policy in terms of actor, type of event to protect and

admissible purposes of use;

• it automatically generates and store in a policy repository the privacy policy in

XACML format.

In Figure 5.4 we provide an example of a privacy policy that allows a user with role

family doctor (lines 7–10) to access the event of type HomeCareServiceEvent (lines 13–16)

for HealthCareTreatment purpose (line 20). In particular, only the fields PatientId, Name

and Surname of the details are accessible (line 25-36).
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Figure 5.4: Example of Privacy Policy.

An on-field three phase experimentation has been performed with:

1. Deployment: the definition of a deployment plan with the partners (3 months)

2. Testing and Evaluation: the deployment plan actuation and system evaluation in a

controlled environment (6 months)

3. On field experimentation: the evolution from prototype to product at the provincial

data center to operate in the real environment (1 year).

The system has completed the evolution from prototype to product and is approaching

the on field experimentation phase. The deployment plan has been defined with the

Province and the other partners and refined on the base of a first round of tests to verify

if the system is properly dimensioned wrt the number, size and rate of production of

the events (some figures are shown in Table 5.2) and IT infrastructures available at the

sources. The goal is to limit the effort of the partners to interact with the interoperability

infrastructure. Figure 5.5 shows a sample legacy systems used by the parties in the

experimentation.
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The two core outcomes we expect to evaluate from the adoption of this system are:

• to achieve parties’ interoperability introducing new capabilities in their systems in

terms of data becoming sharable among the parties;

• to perform business intelligence on complex inter-company business processes.

In the first evaluation phase we defined some fictitious citizen profiles to execute a set

of complete request-evaluation-provisioning process executions in the real systems and

verify the correct production, routing and consumption of the events to compute the KPI

of the DWH. Thought the KPIs obtained by the artificial data were not reflecting the

actual real world statistics they allowed us to test the capability of the infrastructure

in feeding the BI module and the usefulness of the indicators identified. In the on-field

experiments the real data of patients and citizens will be used.

The socio-medical services selected for the experimentation are listed below:

• Assistive and healthcare services for elderly and disabled people provided directly

at home with nurses, family doctors, social workers and employees of private coop-

eratives for meals delivery and house cleaning services;

• Long term healthcare services in specialized structures like Rest Home;

• Recreation centre for elderly people providing transportation, daily activities and

meals supply;

• Tele-control and Tele-assistance services with a 24h call center checking periodically

the state of the assisted person and in case of critical problems (or of direct request

of help from the user) activates emergency services (ambulance) or notifies the ab-

normal behavior to reference people (e.g. relatives, neighbors, general practitioner

and social workers).

These services are characterize by a mix of social and medical partners contributing to-

gether to the delivery of the services. In that way it is possible to verify and prove the

capabilities of the infrastructure to allow entities from different domains to cooperate.

The effort required to join the cooperation infrastructure and to share information from

the technological point of view was very low since partners had to implement only a couple

of web service invocations. This step nowadays can be performed in few minutes with

automated functionalities offered by newer IDEs (Eclipse, NetBeans etc).

We recall that the business logic of events storing, requests resolution, privacy policy en-

forcement, listening for incoming messages and the security protocols are provided by the

Local Cooperation Gateway that we release to the partners.
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Figure 5.5: Example user interface for information system in an elderly house.

Table 5.2: Estimation of the number of events and data exchanged yearly.

Partner Number

of events

Estimated number of

instances

Total event dimen-

sion(MB)

Healthcare Agency 9 14500 56

Welfare Agency 14 74700 251

Local Municipality 7 53100 205

tele-control/ tele-assistance 7 93985 322

This was one of the key factors for the EHR success as it minimized considerably the

partners’ effort in a scenario in which high learning curve and entry barriers are a deter-

rent for small private institutions.

The biggest amount of time was required to engineer the events and check the availability

of detail message’s data in the DBs at the legacy systems.

We defined about 40 events to cover the same number of documents with no need to deal

with the DB at the sources that normally have more than 100 tables, some having more

than 50 attributes. This greatly simplified the work and allows to accelerate the devel-

opment. The structure of an event is defined in an XSD that is uploaded on the central

infrastructure with an intuitive wizard. There is no need for any further configuration

apart from the creation of the XSD schema. The discovery and subscription of events is

very simple and intuitive and it takes just 10 minutes with the support of the GUI as

shown in the demo at [19].
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During the testing and evaluation phase we identified and faced practical problems

like the definition of the privacy policies and their formalization into contracts acceptable

also by the Italian privacy Guarantor. The GUI that simplifies the policy definition step

enables partners to define very fine-grained exchange rules over their data. In this way

they have a complete control on how and to whom the data will be delivered. This choice

respects the main requirement that the data provider is responsible for its own data

treatment. The number of policies that a producer will define for each event depends on

the requests for subscription to that event. In our scenario the BI module consumes the

larger part of events, so the majority of events will have at least one policy to regulate how

to feed the DWH. However, there are events that will be consumed by all partners and in

this case it will be necessary more than one policy. All policies are defined following the

national regulations in sharing health data [88] and helps to demonstrate to the privacy

Guarantor that the project is following correctly the privacy regulations [57]. In the next

section is shown a modeling formalism that can be applied to assess the compliance of

the EHR architecture to these privacy regulations.

5.1.3 Privacy Requirements Compliance

An EHR is a very critical system by the nature of the data and processes it manages

and the risks of incidents in the medication process is well known [93]. For this reason

its use should be conditioned to a set of procedures and best practices devoted to reduce

and manage the risks of medical errors [92, 107]. Also the privacy of patients should be

preserved from the risks of privacy breaches. For these reasons, before adopting an EHR

solution, the organizations participating in the healthcare process carefully evaluate the

system and ask for certifications released from the administrative bodies.

In this work, we focused on the privacy regulations and on the authorizations released by

the privacy guarantor office required to realize and then to adopt an EHR solution. In

order to obtain such certifications the software designers should describe to experts in the

medical domain and in the law, but typically not in IT, how the system is designed and

to prove it is compliant to the privacy regulations.

In this section, we show the results of a joint work with FBK presented in [22] to

apply an argumentation framework together with a goal oriented requirement engineering

technique on the design of an EHR and specifically on the application of the architecture

presented in Section 3.1 in the CSS project.

A graphical formalism and a requirement engineering methodology are used to describe

and motivate why certain design choices have been introduced and to prove, by means

of argumentation chains, that the EHR is compliant to requirements derived from the

privacy law.
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As seen in Section 5.1.1 the medical and socio-assistive processes involve many actors

from the public and private sectors. The interactions among these parties are regulated

by laws governing how information flows inside the public and private companies and also

among them [25, 26, 6]. Public bodies, like the municipalities, developed some guidelines

(in [121, 120]) that further specify the general provisions at national level (see [88, 57])

and provides some operative indications for their employees.

Table 5.3: Laws from Guidelines on EHR [88] and Personal Data Protection Code [57].

Name Description

L1 criteria should be laid down to encrypt and/or keep separate

the data suitable for disclosing health and sex life from any

other personal data; [..] As for EHRs, secure communication

protocols should be deployed by implementing encryption

standards for electronic data communications between the

various data controllers.

L3 The Electronic Health Record should be set up by prioritiz-

ing solutions that do not entail duplication of the medical

information created by the health care professionals/bodies

that have treated the given data subject.

Dlgs 196/2003 n.26(1) Sensitive data may only be processed with the data subject’s

written consent and the Garante’s prior authorisation, by

complying with the prerequisites and limitations set out in

this Code as well as in laws and regulations.

Dlgs 196/2003 n.26(2) The Garante shall communicate its decision concerning the

request for authorisation within forty- five days; failing a

communication at the expiry of said term, the request shall

be regarded as dismissed. Along with the authorisation or

thereafter, based also on verification, the Garante may pro-

vide for measures and precautions in order to safeguard the

data subject, which the data controller shall be bound to

apply.

An excerpt of the more important laws concerning an EHR from the Guidelines on

EHR [88] and the Personal Data Protection Code [57] is listed in Table 5.3. The EHR

infrastructure was designed with these regulations in mind but many decisions are based

on implicit assumptions based on the knowledge of the domain and of the scenario and

are not clearly documented in the project documentation. This makes difficult to explain

the solution to the administrative bodies to convince them about the compliance of the
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system to the regulations. We need a way to isolate the architectural elements of the

solution that impact on the satisfaction of the regulations and to map them to the laws

they derive from.

In the approach proposed in [22] we start from the goal model of the system focusing

on the goals that are more controversial from the privacy point of view (e.g. the access

and retrieval of patient’s data). We use a law-driven framework named Nòmos [141], an

extension of the i* [160] goal-oriented modeling language, that adds the capability to

model legal concepts to explicitly state which laws the goals derive from.

A Nòmos model for the EHR system on the more critical privacy laws of Table 5.3 is

reported in Figure 5.6. In particular, law L1 asks to prioritize solutions which do not

require to duplicate any sensitive information outside the boundaries of the data controller.

Law L3 imposes the separation between administrative and medical data.

Table 5.4: Argumentations.

Name Description

A1.1 EHR does not know what is sensitive and what is public

A2.1 EHR is not said to be a trusted party

A3.1 Data Controller role undefined

A3.2 Delegate duplication not cited as solution

A3.3 Duplication admitted if no other choices available

A3.1.1 Healthcare professional/bodies are data controller by law

26(1)(2) of Dlgs196/2003

A3.2.1 No duplication outside data controller boundaries

A3.2.1.1 Duplication allowed but agreement needed

A3.3.1 Evaluated different solutions

The creation of a Nòmos model allows to make explicit certain decisions taken at

design time to comply with the privacy regulations that so far was just in the mind of

the designers, for example: goal G1 states the fact that different authorizations profiles

can be achieved with privacy policies and goal G2 indicates that to avoid duplications the

sensitive data is maintained at the data controller. Usually, analysts interact with the

users to validate and evolve the model until a common agreement is reached among all.

When the system is complex and when there are many actors contributing to the project,

like in the case of an EHR, it is difficult to get an agreement on such decisions from all

of them and, most importantly, from the privacy guarantor office.

The approach presented in [22] applies an argumentation framework [95] to interact with

the users in a more systematic way.

108



CHAPTER 5. CASE STUDY: CSS AND SIS-H 5.1. CSS
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Figure 5.6: An excerpt of the compliance for the EHR actor, expressed by means of a Nòmos

model.

In particular, it uses the Nòmos notation to link requirements with the legal concepts they

derive from and combines this with the ability to trace the reasoning process performed

together with the actors to reach an agreement on the model by means of argumentations.

As defined in [95] an “argument is a piece of information (e.g., a statement) that either

provides support for, or is provided against choosing an alternative, where an alternative

is a potential solution to the stated problem”. In practice, the feedback of the user is

captured by means of argumentations that can defeat or support a model entity (e.g. a

task, a goal or another argument).

An example of such an argumentation process is shown in Figure 5.7. The argu-

mentations are represented as rectangular notes connected to model entities or to the

argumentations they try to attack.

As the argumentation process goes on by repeated interactions with the user a chain of

argumentations is created.

The process ends when no more arguments in favor or against a model entity are added.
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Figure 5.7: Attacks modeling. The existing Nòmos model and the set of arguments attacking

model entities and other arguments.

The argumentation approach is divided into three steps: 1. argumentation phase, during

which the argumentations are collected from the users; 2. justification phase, in which the

argumentations chains are analysed to see which model elements are defeated; 3. model

evolution phase, in which the objections to the model surviving to the justification phase

are resolved by changing the model.

The argumentation phase will continue until no other arguments are added. In the case

study of the EHR system, we performed three rounds of discussions with the analysts

and designers of the system and the sequence of argumentations produced is reported in

Table 5.4. In the following we describe how we dealt with these argumentations and how

the model evolves.

The first two arguments (A1.1 and A2.1) defeat the goal G1 as the solutions proposed are

based on wrong assumptions and in particular: T1 assumes the data processor (that is

the EHR system) knows which privacy policies to enforce but this is not true as the EHR

system deals only with the transmission and indexing of the events without considering

the semantics of the data (argument A1.1); T2 assumes the EHR system is a trusted

party which can enforce the privacy policies on behalf of the data controller but this is

not the case if the data processor is not under the control of a certified authority like the

Province but is a private company that is hosting the service (argument A2.1). These

two arguments by defeating the goals highlight that the system is not compliant to the

privacy regulation.
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To resolve these objections, the model is modified by delegating the defeated tasks to the

data controller because it has the ability to define the privacy policies and is also entitled

to enforce them. This model corresponds to the decentralized enforcement configuration

described in Section 3.2. The argumentation A3.1 attached on task T3 is related to the

role of the data controller that was not explicitly stated. This objection was neutralized by

the argument A3.1.1 citing the law 26(1)(2) of Dlgs196/2003 which explicitly defines the

role of healthcare bodies and their duties as data controllers when collecting and processing

sensitive data. According to such laws the data controller is authorized to use sensitive

data with the “data subjects written consent and the Garantes prior authorization”. The

Healthcare agencies collect the consent to use the sensitive data from the data subject

and they also provide a declaration to the Garante to get the authorization. From this we

derive that the healthcare agencies are responsible of the use of the data and they assume

the role of data controller. This resolves the argumentation chain without introducing

any change in the model.

The other objections to the task T3 originate more complex argumentation chains and

requires three interactions with the users to reach an agreement. Task T3 assumes that

to avoid the duplication of medical information is enough to delegate the storage of such

information to the data controller. However, as stated by argumentation A3.3 this solution

does not give evidence of the fact that different solutions have been evaluated as required

by law L1 neither that storing the data at the data controller is an admissible solution

by the law (A3.2).

EHR
System

G2: Avoid 
duplication of 

medical 
information

G1: Support 
different 

authorization 
profile

T2: Enforce 
privacy 
policies

T1: Define 
detailed 
privacy 
policies

G0: Comply to 
privacy 

regulations

AND

T3: Store
sensitive 

information

Data
Controller

T4: Sign 
contract to join 
the EPR as Data 

Controller

L1
Prioritize solutions with

no duplication

L3
Separate administrative

from medical data

Figure 5.8: Extended model. The evolution of the model on the bases of the arguments related

to the existing Nòmos model.
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In the second round of discussion, argument A3.3 was neutralized with an explicit

statement indicating that different solutions have been evaluated before the final design

of the system and documented in the project documentation (argument A3.3.1 “Evalu-

ated different solutions”). This resolves the argumentation chain with no impact on the

model.

Argumentation A3.2 requires to make explicit the assumption of the designers that law

L1 does not allow duplication outside the boundaries of the data controller and conse-

quently to be compliant is enough to leave the storage of sensitive information to the

data controller itself. However, this argumentation is not enough to convince the user

that the goal is reached and another argument (A3.2.1.1) is attached saying that the so-

lution proposed is accepted if an agreement is signed with the data controller. The line

of arguments A3.2, A3.2.1, A3.2.1.1 produces a valid attack to the model (in particular

to the task T3) and requires to extend the model as shown in Figure 5.8. The task T4

“Sign contract to join the EHR as Data Controller” neutralizes the last argumentation

and makes explicit that the data controller agrees to retain the responsibility in storing

the sensitive data and in enforcing the privacy policies to make sure only authorize data

will be delivered to the consumers.

5.1.4 Lessons Learned

In this section we discuss how to develop an interoperability solution for the the coop-

eration of organizations in the social and healthcare domain in the real scenario of the

province of Trento. The interoperability infrastructure presented in this case study is now

being put into production after a successful validation and experimentation phase with

the test partners and institutions [18]. The solution allows us to couple the benefits of a

pub/sub event-based system (decoupling of publishers and subscribers) with a privacy ap-

proach that is compliant with the privacy laws typically adopted in managing healthcare

information, as validated with privacy compliance experts. The system provides services

for policy definition and application but does not dig into the data that travels from

sources to destinations and improves the control on data exchanges and consumption by

validating and logging all data requests and exchanges.

The informatization of data flows permits also to avoid privacy violations caused by man-

ual importing into systems (operators does not input anymore data into systems). The

privacy requirements elicitation tool evaluated in this case study is only a fist prototype

that will be further improved to allow privacy experts to define privacy policies in a very

intuitive way without knowing the underlying DB schema. In the future, we plan to

make this GUI even more user friendly by exploiting the privacy policy elicitation and

specification approach described in Chapter 4.
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In the second part of this case study we show how to trace by means of argumenta-

tions the mental processes of the designers and of the users to reach a certain requirement.

This avoids situations in which during the analysis the same requirements are re-discussed

many times because is lost the reasoning and the motivation of their introduction. By

running through the model enriched with the argumentations together with the users, it

is easier to reach an agreement on a stable model and to prove the system is compliant to

the regulations. In this work, only privacy regulations are considered but the approach

can be applied to any kind of laws and best practices (e.g. risk best practices [92]).

Indeed, the approach requires more effort to the analyst especially on complex system in

which the goal model is already complex and may become unmanageable if it is necessary

to trace the argumentations. The complexity of the argumentation framework depends

on the number, lenght and ‘persistence’ of a chain before it is resolved with new argu-

mentations or with a restructuring of the model.

In conclusion, the argumentation framework is useful when applied on well delimited sce-

narios and on the more critical aspects for which such additional effort is justify by the

need of a formal proof or motivation of the compliance of the design choices with the

regulations (like the case study analysed in this section). The outcome of the analysis

has been used to prepare the documentation required by the privacy guarantor office and

particularly to motivate certain design choices with the link to the regulations.

The argumentation framework was applied at the end of the analysis and design phase to

validate the solution. However, the approach can be much more effective if it is applied

from the beginning of the analysis and during the design instead of just at the end of these

phases. In this way, it is possible to change the model of the system during its definition

and to understand early core requirements that will have a big impact on the design and

implementation of the system.

5.2 SIS-H: Adapt Italian EHR to Mozambique context

In [20] we developed for the SIS-H project a generic communication infrastructure for

Mozambique hospitals to capture, communicate and analyse clinical events. The goal was

to collect statistical information on the distribution of diseases in developing countries

and in particular in Mozambique. SIS-H allows nurses and volunteers in remote points of

care to enter the data on the patients arriving and leaving the hospital like the date and

time of arrival and the diagnosis according to the ICD-10 standard [157]. The system

sends the data collected to a SIS-H installation located at points of care at higher level

in the healthcare organization like central hospitals or the government body. It allows

to export the data and save them on a memory stick so they can be transferred to the
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destination system even without internet connection.

A further extension of the system will manage child vaccinations by means of mobile

phones. The idea is to collect the data about newborns from the medical staff registering

the event. This data is used to populate a central registrar of children and to plan the

vaccination schedule. Reminders are sent to the family of the child and to reference peo-

ple (e.g. nurse at the point of care, head of the village). When the vaccination is given

the nurse sends (always via the mobile phone) the data on the vaccination just given and

observations (e.g. bad reactions, reasons why the vaccination was not given).

Designing an information integration solution for healthcare in developing countries is

particularly complex due both to technical and organizational constraints. Classical data

integration solutions based on a central database or data warehouses are not easily adapt-

able to this sparse environment that has a high number of data sources acting basically

autonomously with no central controller responsible for the creation and maintenance of

a central repository.

In such a distributed and loosely connected environment (due to the lack of internet

connectivity), privacy and data quality becomes particularly challenging as it is neither

possible to control how data is used nor to measure its level of quality. Errors in using

data and the occurrence of data anomalies are difficult to detect and resolve unless the

effects of the errors become tangible. This may produce a loss of reputation, money or

even worst, human lives.

The system in [20] has been developed for the Mozambican Ministry of Health (MISAU)

and allows to share healthcare data in a distributed and poorly connected environment to

better coordinate healthcare services, minimize human errors, accelerate operative proce-

dures and improve visibility of distributed healthcare processes to the governing bodies.

Indeed, it is not already an EHR but it is a first step toward it. This section presents

an extension presented in [45] of the basic architectures developed in Mozambique [20]

and in Italy for the creation of a distributed EHR with privacy and data quality support.

The solution is still under development and this section presents the idea underpinning

the research work.

5.2.1 The Challenges

Healthcare services are often composed of critical activities that need to: (i) comply

to governmental rules and, (ii) react in a timely manner to changes in citizens’ needs.

Typically there is a lack of visibility of the services delivered (e.g. how many vaccines

are delivered to which categories of citizens) and a gap between the service providers

and the service consumers (citizens cannot provide an evaluation to the governance on

the service received and vice-versa). This requires a seamless way to collect and share

114



CHAPTER 5. CASE STUDY: CSS AND SIS-H 5.2. MOZAMBIQUE EHR

socio-sanitary information to help both, caregivers (e.g. general practitioners, nurses and

volunteers) and governmental parties, to coordinate and simplify their work. This is

quite a challenging problem as often different countries, organizations and companies are

involved and it is difficult to find an agreed and simple solution that works for everyone.

In addition to the classical information integration issues due to the heterogeneity of

the data sources, patients are often worried in sharing their data especially if related to

their health: stigmatization for diseases such as HIV is a common concern. Secondly, a

mistake in the way healthcare data is processed results in economical losses (e.g. incorrect

financial report) and, even worse, it may compromise life of people (e.g. use of the wrong

therapy). From our experience with similar problems in Italy [18] and in a developing

country like Mozambique [20], we understood that solutions based on a central database

or data warehouses are not feasible in highly heterogeneous environments. Instead, we

propose a more flexible and scalable distributed infrastructure with many nodes managing

the data that synchronize each other only with limited information (events) exchanged

when needed and if the connectivity is available.

The proposed architecture is an extension of the SIS-H system presented in [20] and is

still under development [45]. A not exhaustive list of challenges that have to be faced in

developing an EHR in developing countries is listed below:

• Organizational and technical context : there is no stable and pervasive ICT (In-

formation and Communications Technology) infrastructure or a unique centralized

controller as in the solution presented in Section 3.1. The territory is wide and

highly heterogeneous. Besides, it is difficult to find well defined operative proce-

dures and/or information systems at the sources. The technical requirements and

organizational changes should be minimized as also the data traffic between the

nodes of the infrastructure that should act as independently as possible.

• Data quality issues : data is collected mainly manually on documents with no unique

way to identify individuals as an official patient registry is missing. This compro-

mises quality and credibility of data and requires data analysis (e.g. patient disam-

biguation techniques) and quality monitoring to measure the quality of exchanged

data.

• Privacy issues : the use of sensitive information requires to collect from the data

subject the consent in sharing and processing it, with a fine grained control on the

way it is accessed (by role and purpose) and disseminated. Auditing should be

supported as well, by tracing access requests.

• Support different caregivers : healthcare services are provided by many actors (like

general practitioners, nurses, volunteers) with different skills and education levels.
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In general, data is collected manually and it is likely to have mistakes as people are

poorly trained and often poorly motivated to follow certain procedures just to comply

to policies imposed from the higher levels of the organizational structure, especially if

these are time consuming and cumbersome. The devised solution should be simple,

intuitive and natural to use so that people are motivated to insert realistic and

correct data and to provide feedback. The solution should opt (where possible) to

interaction systems collecting data automatically from the environment to minimize

the possibility to introduce errors (like the geographical position of the person with

a mobile phone).

In order to address the challenges above, we propose an open source interoperability

solution for the creation of a distributed EHR, based on the notion of clinical events with

a tight control on the quality and privacy of the disclosed information. The architecture

is modular, with functionalities exposed as plug-ins that can be easily configured to adapt

to the environment and the capability of the deploying node.

5.2.2 EHR for Developing Countries

As for the EHR architecture in Section 3.1 the EHR for developing countries is also

based on EDA with nodes, corresponding to healthcare units at different level in the

organization, that communicate by means of events as shown in Figure 5.9a. As defined

in Section 3.1, an event signals that something important happened to an individual (e.g.

the hospitalisation in an healthcare structure) that could be of interest to a caregiver

even from a different organization. Nodes are typically located at different levels of the

healthcare organization hierarchy. In the scenario depicted in Figure 5.9a the root node

is at the Ministry of health and the lower levels nodes are located in: Provincial hospitals,

District hospitals and Health Centres. The caregivers (e.g. doctors, nurses, volunteers)

are at the leaf nodes and they typically provide data to the higher levels of the hierarchy

on documents or using more advanced mobile terminals.

In this scenario, there are no privacy regulations forbidding to store sensitive data in a

central place and so there is no need to differentiate among notifications and details as in

the EHR for the CSS project [18]. Detail events are maintained in the system (including

potentially sensitive information) and fine-grained privacy policies control how sensitive

data is released with the same access control approach used in CSS.

As Figure 5.9b shows each level of this interoperability architecture has a “special”

node that knows all the other peers: the super-peer. A super-peer node should give

suitable guarantees of availability and of quality/reputation of the data maintained,

computational power and HW resources.
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(a) Organizational structure. (b) Peer configuration and query resolution strategy.

Figure 5.9: Interoperability architecture based on EDA for healthcare plan monitoring.

The EHR module deployed at the super-peer is in charge of:

• managing publish/subscribe events to receive and in case distribute events coming

from other peers at the same level and maintaining an index of the events with

reference to the source peer and an indication of the data freshness;

• resolving data requests from peers at the same level or from super-peers at other

levels (the query resolver engine);

• populating a cache with event requested and their freshness indicator;

• collecting and applying filtering rule (privacy policies) to restrict data access only

to authorized nodes based on the roles and purposes of use.

A peer node is equipped with an EHR module configured to provide the functionalities

listed below:

• maintains a repository of clinical events;

• provides manual data entry, import/export of events, EHR exploration and quality

control;

• applies business intelligence tasks on a data warehouse loaded with clinical events.

The functionalities above are provided also by the super-peer that in this way can compen-

sate gaps in other peer node when needed. For example, the repository of clinical events

at the nodes is an “optional” element that in some poorly equipped nodes can be missing.

In that case, the super peer can act as a repository for the peer (EHR outsourcing).
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Node synchronization is achieved by means of a publish/subscribe mechanism in which

a node subscribes to the super-peer to receive events published by a certain data producer.

The data producer can accept (or reject) the subscription request and specify privacy

policies to filter the events from the sensitive information the subscriber is not authorized

to see. In fact, a node is authorized to receive only certain events and only part of them

depending on their role and purposes (e.g. governing bodies like the ministry of health

may need only aggregated information on the citizens like how many deaths or newborns

but not the personal information on the single individual).

A node can query its super-peer to get a certain event on a patient. As it is not said

there is a unique identifier of the patient, the query resolver may return a list of events

matching some parameters (like name, surname, place and date of birth). The results are

provided together with a measure of the matching likelihood so that the user can do an

informed choice.

In an ideal world with internet connection always available, events will be delivered to

the event subscribers in real-time mode. In our scenario, as we cannot rely on stable

connectivity, notifications can be delivered on demand in a pull mode instead of a push

mode or also sent in batch as soon as the connection becomes available.

The next section gives a more detailed explanation of the modules deployed in each node,

how they are supposed to communicate and the theoretical framework used.

EHR Modules

Figure 5.10 shows in details the internals of the EHR module deployed at the peer nodes.

The module is divided into pluggable components that can be configured differently de-

pending on the specific deploying node (super-peers vs “slim” peer).

The main parts of the EHR module are: the Persistence Manager with the EHR reposi-

tory containing the clinical events produced at the node or received from other nodes; the

Routing and Privacy Engine in charge of delivering events to subscribers and of answering

requests for events by a data consumer in compliance to the privacy policies; the Func-

tional plugins for publish/subscribe of the events, manual data entry, import/export of

events, query resolution and BI analysis. The functional plugins rely on general-purpose

layers devoted to privacy and data quality management over events. Specifically, the

Routing and Privacy Engine supports the user in the definition of the privacy policies

(with a Privacy Policy Designer) and based on these policies it interacts with the func-

tional plugins to manage the request of subscription, to produce exports of clinical events

and to answer to EHR explore request. The structure of the privacy policies is analogous

to the ones in Definition 3.3.2 and they are defined by a data producer and used to serve

a data consumer as described in Section 3.3.
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Figure 5.10: EHR modules at super-peer nodes. Grey modules are deployed also at the peers.

When a node is ready to share clinical events with other parties it publishes the list of

sharable events to the publish/subscribe component of the super-peer with a description

of their content so that a consumer node can subscribe to the categories of events it is

interested in. The data producer can reject a request of subscription or accept it defining

the specific privacy policies that restrict the access only to the parts of the events that

are visible to the consumer for certain role and purposes (e.g. the general practitioner can

access any sensitive data of the patient for healthcare purposes that instead a volunteer

cannot see). The enforcement of the privacy policies in the super-peer node resolving the

data access requests assures that only the data that is strictly necessary and authorized

can flow.

The export component is used to “move” even big quantities of events to another node

according to the privacy policies defined regulating the types of events that can be ex-

ported and their content. Similarly, the Query Resolver module for the query resolution

and BI component for reporting can access only to the events and content allowed for the

role and purpose of the consumer node.

The data Quality Engine management layer maintains a set of quality metrics to evaluate

the level of quality of events and of quality rules to correct anomalies. The Quality In-

spector interface allows users to see the quality of the events contained in the EHR and to

ask for adjustments. The next section analyses more deeply the data quality management

approach.
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Data Quality Management

As for the EHR in Section 3.1 integration is achieved by sharing events where an event

is a set of values ei = {v1, . . . , vn} defined on the attributes A(ei) = {a1, . . . , am} where

∆(ai) is the domain of attribute ai.

An Event Export X is a set of events X = {e1, . . . , en}. An event export is privacy

safe with respect to a policy P defined on a set of attributes A(P ) = {a1, . . . , aN} iff

A(X) ⊆ A(P ) where A(X) =
⋃
iA(ei) for i = 1, .., n and we denote it as X |= P .

Intuitively X should contain only authorized events, that is, events with fields covered by

some privacy rule.

As in Definition 3.3.2 in Section 3.3, a privacy rule specifies which fields are accessible to

which role and purpose of use. We will not deal into details about privacy policy and their

enforcement as the approach is analogous to the one presented in Section 3.4. Instead, in

this section we focus more on another important aspect to consider in designing an EHR

for developing countries that is the quality of the data delivered to the consumers. Often

data is collected by poorly trained people, in precarious working conditions and in a hurry

so that it is very easy to make mistakes. Delivering incomplete, wrong or outdated data

to the governing bodies may induce them to take wrong decisions on critical medical and

social processes. For this reason, data quality tracing and maintenance is as important

as privacy management.

In literature, we can find a plethora of definitions of data quality reflecting the purpose

of use of the data, the techniques available to measure and to directly correct the data

anomalies or the processes producing the data [31]. We refer to the data quality definitions

in [75] and in particular to the dimensions: completeness, consistency and timeliness.

In particular, we adapted the definitions in [31] to the specific characteristics of the

healthcare scenario:

1. accuracy : a clinical event is accurate if it does not contain typos.

2. completeness : refers to what extent the EHR represents the healthcare history of a

patient. The goal is to collect as much information as possible on an individual in

terms of clinical events reducing the amount of missing data (i.e. how many events

and details have been lost).

3. consistency : the EHR should maintain correct information on the healthcare profile

of patients based on constraints on the domain of attributes and their dependencies.

The goal is to detect problems as early as possible (e.g. at the data entry phase).

4. timeliness : the EHR should be up-to-date to reflect the profile of patients.
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Table 5.5: Sample Quality Metrics.

Dimension Quality Metric

completeness Domain: ∆(Drug)={aspirin, antivirus}
consistency Integrity: Φ(DeadDate) > Ψ(BornDate)

timeliness Ordering: if T (e1) < T (e2) i.e. if e1 happens before e2

Figure 5.11: Quality improvement with user feedback.

A quality metric gives the quality level of an event with respect to some dimensions.

In Table 5.5 are reported some examples of quality metrics and the dimensions they refer

to. Depending on the type of data included in the events and the kind of usage employed,

different quality metrics could be defined.

Figure 5.11 shows the phases performed by the quality engine layer. Given a set of

events X = {e1, . . . , en}, a quality inspector module applies the quality metrics to the

events, M(X), to get the level of quality of each event and to identify its anomalies (e.g.

the value for a drug that is not in the allowed domain due to typos in the data entry

phase). The engine can apply different quality resolution strategies q1, . . . , qm ∈ Q which

transforms the input events to improve their quality level. Different resolution strategies

can be considered from the more conservative one (do nothing approach), to the more

destructive (delete the event). The quality engine cannot decide autonomously which

quality resolution strategy is the best for the given event extraction as it depends on the

purpose of use of the data and, consequently, on the decision of the user. So it proposes

the different alternatives to the user with an explanation of the improvement of the quality
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level and loss of data that may be introduced especially if the “delete event” option is

applied. Note that, as the system runs, it is possible to derive and use some predefined

rules (e.g. apply always the same quality resolution strategy for certain types of events

and purposes of usage).

The quality resolution operations could be applied locally to the given event extraction

or it could be propagated to other nodes that may have received incorrect data. When

a data warehouse is available in the node, it is possible to propagate the changes also to

the data already loaded to correct the resulting BI analysis.

This approach poses also some research questions, like for example: how to find, in a

reasonable time, the best quality resolution options minimizing the effort of the user in

selecting the ones that better suits her needs and minimizing the loss of data.

5.2.3 Lessons Learned

We showed how the interoperability solution based on EDA presented in Section 3.1

[18], can be adapted to create an EHR in Mozambique. We showed that there are

many issues to deal with and in particular: how to achieve data integration with limited

resources and connectivity, how to guarantee that patient’s privacy is protected, how to

make users aware of the quality of the data they share and how to let them improve the

overall quality of the data.

This section shows a solution for the first two research problems and an initial idea on the

data quality management. It proposes an integration solution based on events with fine

grained control on the privacy and quality of the data. Each node of the infrastructure

can behave autonomously to create its local EHR repository of clinical events. This

makes the infrastructure robust to unavailability of the internet connection or failures of

the other nodes. But nodes can also interact with each other to get or share data by

disseminating events to interested nodes.

The privacy of patients is preserved with a fine grained access control mechanism

controlling how events and their content is disseminated and accessed. In addition, a

quality engine layer allows to monitor, control and improve the quality of the events and

to guide the user in the resolution of common errors (e.g. duplicates or typos).

An event is generated in correspondence to the steps of business processes executed across

the different nodes. By tracing the events related to a certain individual, it is possible

to reconstruct her healthcare profile and also the business process from which the events

originate from. In this way, it is possible to verify that certain SLAs (Service Level Agree-

ment) on the healthcare services provided are satisfied (e. g. the time elapsed between

the entrance of a patient in a hospital and her examination cannot be more than 3 hours).
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From our experience in the design and development of SIS-H [20] as an interoperabil-

ity solution for developing countries, we saw that the feasibility of such projects depends

not only on technical and organizational barriers but also economical. For that reason

the SIS-H system was implemented with open source technologies that limits the costs

and facilitates the use of the solution in public organizations (like the ministry of health).

The same choices should be adopted also to develop the EHR. The infrastructure can

be implemented in Java with Hibernate [1] for persistence management to support any

DBMS (PostgreSQL [2], Apache Derby [78] and MySQL3 are all good database options).

For the reporting functionality of the business intelligence module a valid open source so-

lution could be Jasper software.

The plug-in based architecture allows the use of different configurations (DBMS, import-

ing/exporting functionalities or reporting tools) depending on the node. Typically, small

health centres will benefit only of the data entry and event notification module and they

may even avoid persisting the events. More complex and big nodes, like hospitals or the

ministry of health, will deploy the whole infrastructure to perform more advanced analysis

on the data collected.

The results expected from the introduction of an EHR in this context are:

• an increase of the EHR coverage: by collecting easily more data with clinical events,

each node will create incrementally the profile of the patient;

• an improvement in the EHR quality: users can recognize problems in the data earlier

and correct them autonomously with no involvement of the developers;

• access control and auditing capabilities: sensitive information usage is controlled to

grant patients privacy and to understand who is responsible for privacy breaches;

• facilitate users work: it reduces the effort and time required for manual data entry

with intuitive interfaces that will substitute gradually the paper, as data can flow at

different levels of the healthcare organization in electronic form with no need to do

repeated data entry operations to insert the data from paper to information systems;

• robust and flexible integration architecture: it is easier to share data among the

nodes that can survive also autonomously in case there are no other peers available

to share data (either because they do not agree to share events or because the

internet connectivity is unavailable).

The solution is devised specifically for the healthcare domain but it can be applied

also in other contexts like education or financial management and in any field in which

3http://www.mysql.com/
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privacy and data quality are critical like education or food and agriculture management.

The applications in the healthcare domain are diverse, for example:

• patient identification and family healthcare history management, by merging events

of related individuals to discover duplicates and to follow the clinical history of

a person among different structures and also to keep track of related people (e.g.

mother-child relationship to reconstruct the family structure).

• BI for health monitoring and drugs consumption, to identify how epidemic events

originate and spread on the territory and to keep the use and distribution of drugs

under control. The same idea could be applied also to monitor food consumption

and needs.

• definition and monitoring of prevention plans, by checking the compliance of a set

of clinical events to the steps of a predefined plan (or in general business process)

like for example the vaccination plans.

In all the application scenarios depicted above, it is important to retain control on

the information shared with different organizations and to guarantee patients that their

data is used according to the privacy policies defined.

Apart from privacy management, another benefit of our architecture is the capability to

monitor and improve the quality of the events produced or events collected by a third

party. In fact, data errors like misspells in the names of patients are very common

in these scenarios resulting in duplicate data entries or in lost data as it cannot be

associated to the right individual. The data quality support allows to identify these

errors and to resolve them even before the data is used for BI tasks.
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Chapter 6

Conclusion

6.1 Key Contributions

In this thesis work we analyzed privacy from two main perspectives: the first was the

perspective of the IT designer required to design and develop an Electronic Health Record

(EHR) compliant to the privacy regulations in different contexts; the second was the

perspective of the privacy expert using the architectural solutions proposed in daily work.

We provide solutions for the IT designer to realise an EHR with a privacy-aware design

and for the privacy expert to define the privacy constraints with minimal effort. In

this chapter, we summarize the contributions of the dissertations and highlights some

directions for future work.

6.1.1 Architecture for EHR

The key innovation of the EHR solution proposed in this thesis work is the combination

of the advantages of an Event-Driven SOA Architecture, providing decoupling, high re-

activity to changes in the environment and capability to transmit such changes to many

and different data consumers, with a tight control of the sensitive data. The architecture

proposed satisfies the recent privacy regulations in the healthcare domain imposing re-

strictions on the processing modality including storage and communication of the data.

The problem is already challenging and when multiple organizations in a rapidly evolving

environment with different systems, privacy regulations and best practices are involved,

it becomes even more complex. Our data integration solution follows a process- and

event-based approach which makes it easy for new partners to come on-board, minimizes

the development and maintenance effort required for the integration, and – perhaps most

importantly – blurs the distinction between a data and a service integration project pro-

viding institutions with the benefits of both. This solves problems that more monolithic
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integration strategies based on DWH experience in such context.

We showed how privacy and need for visibility can coexist thanks to an interaction proto-

col that meets regulatory requirements via a privacy aware event driven bus. Full control

of the data is given to the institutions managing the data which are entitled to define

fine-grained privacy policies regulating how data flows among the parties. The access

to the data is performed only on-demand and for specific purposes captured by privacy

policies defined directly by the data controllers. The enforcement of the privacy policies is

performed in the bus without exposing any sensitive information unless authorized by the

data controller. We proposed a two-phase communication protocol which departs from

the classical pub/sub approach as additional information on an event is accessed only

on-demand given a limited set of privacy-safe information distributed to the subscribers.

The architecture and the prototype implementation has been validate with real health

and welfare services deployed in the autonomous province of Trento showing, in this way,

the applicability and worth of the proposed solution. In doing that we faced also organi-

zational and legal problems which required us a systematic way to describe and motivate

our design choices with respect to the privacy regulations.

Finally, we tried to adapt the solution to the context of developing countries in which a

different organizational and technological environment requires to adjust certain assump-

tions to make the architecture more light and flexible.

6.1.2 Privacy constraints elicitation and specification

We have considered the problem of defining privacy constraints from a different perspective

that common privacy policy definition tools. Our target user is the privacy expert elected

in the data controller organization to manage the personal information. As such she

will typically show good knowledge in the domain and in the privacy regulations but not

necessarily the same familiarity with IT solutions. On the other end, an IT expert does

not have the same knowledge of domain and legal context. This motivates us to study

a privacy elicitation approach to exploit the knowledge and experience of the privacy

experts in solving a problem for which there is not yet an automatic way to proceed: the

definition of sensitive data. Our approach supports the user in understanding the privacy

violations from the data to be protected and in “explaining” them in a form that the

user can easily express and our algorithm can translate into privacy constraints which

are directly enforceable on the underlying database. We ask to the user just to point

out privacy violations and then our algorithm tries to guess the reason of the violation.

This approach may draw the wrong conclusions but it guarantees the effect on the table

analyzed by the user are exactly what she expects.
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6.2 Future Work

We are planning to further extend the solutions proposed in this thesis by investigating

more on some open problems and by relaxing some assumptions. Our goal is to provide

a comprehensive solution for managing all the data lifecycle respecting various privacy

preserving requirements, which is usable in real cases to relieve the user of unnecessary

effort. In this section we introduce some of the research problems on which we will focus

our future work.

6.2.1 The role of “roles”

Regarding the EHR architecture it should be investigated more the form of privacy con-

straints that are more suitable in a distributed EHR scenario. In the solution presented

in this thesis work we assumed to have actors, roles and purposes to restrict the access to

the event details. However, from the on-field experiments performed so far, we saw that

the roles are difficult to identify by the users and also difficult to manage in a distributed

environment as they require an agreement among the different institutions that is hard to

create and to maintain. Roles should be an internal matter of each institutions instead of

an element managed centrally by the data processor as in the architecture proposed. This

is required also to be more adherent to the real healthcare scenario in which roles change

frequently and dynamically. In contrast purposes are already a matter standardize at

national level by the privacy guarantor office and can be easily included into contractual

agreement defined statically (at design time) among the parties.

Another interesting evolution of the system is the involvement of data subjects (like

patients and citizens of our case studies) in the data management process not only as

providers of data but also as providers of privacy preferences. The collection of privacy

policies from them is another interesting challenge as they may be poor both on the

knowledge of the privacy regulations and on the IT world. This means we need to devise

even more intuitive way to interact with them in collecting the privacy preferences and

in explaining them how the system manages their personal information.

6.2.2 Event structure design

The structure of the events and the criteria used to divide the data into notifications and

details has not followed a systematic approach but basically the desiderata of the users.

In the future we want to define sound criteria to split the data into events minimizing

the risk of privacy violations. The first strategy will be to apply the privacy constraints

sampling approach to identify the sensitive data in our database at the data producer.

Based on that information we can divide the data into events avoiding the violation of
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privacy constraints.

A further step will be to identify privacy violations given by the combination of different

events. Given the structure of the events and of the privacy policies it should be possible

to identify the set of events that can be shared to a single consumer with no risk of

violating any privacy policy.

6.2.3 Data and privacy constraints evolution

Our solution is strictly bound to the data shown to the user as the privacy constraints

derived are valid for the specific database instance shown to the user. We cannot guarantee

that the same constraints holds also in another database even with the same structure.

On one side, this is a major benefit of our approach, as it relieves the user from knowing

the underlying data structure but it requires to look only at the data. On the other side

it represents also a weakness of the approach especially when the data already analysed

by the user are modified or when new information arrives. We want to study strategies to

manage data evolutions minimizing the effort of the user (repeating the entire sampling

process is unfeasible) and minimizing the re-computation tasks. In a sense the user is

telling us much more than what we are actually using in our elicitation process as we are

capturing only the violations notified by the user. However, the user is indicating also

the non-violations and this information is as important as the violations because it can

drastically reduce the space of possible solutions to explore in figuring out the minimal

form of the constraints. In the future we want to explore this problem in greater detail

and to analyse open issues more deeply.

6.2.4 Outlier coverage and sample dimension

In our experiments we notice that there are many parameters to tune to improve the

coverage and effectiveness of the algorithm in discovering new privacy constraints. The

dimensions of the sample should not only consider usability requirements but also the

actual distribution of the data. Our approach does not guarantee that no data is lost due

to the sampling process and in particular data with low frequency are likely to be excluded

from the samples even if they may represent important privacy violations. In fact, it may

be very easy to identify uniquely an individual with data assuming quite rare information.

Playing just with the dimensions of the sample may mitigate the problem but does not

solve completely the issue. A better sampling heuristic should be devised taking more

into account the data distribution and also the behaviour of the user in selecting more

frequent vs less frequent information.
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6.2.5 Conflict resolution

We assumed the user is coherent in indicating the privacy violations in different samples

and we also assumed to have one single privacy expert to interact with. However, it is

more realistic in an actual scenario to have different users providing feedback on the same

database. This may lead to conflicts when the different feedback collected are combined.

As in classical data quality and data cleaning procedure a fully automated approach to

solve such anomalies is not possible but a strategy to discover, rank and propose to the

users these conflicts should be provided.

6.2.6 Performance improvement

The last open problem of our elicitation approach is represented by the performances of

the algorithms. We pushed a lot to find a solution that is as good as the optimal one.

But this has a price in terms of time which may limit the applicability of our solution to

small sets of data. In the future we plan to work both on improving the implementation

applying more sophisticated optimization strategies and on devising less accurate, though

acceptable, heuristics to make even big data sets affordable also for a real time interaction

with the user.
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[95] Ivan Jureta, Stéphane Faulkner, and Pierre-Yves Schobbens. Clear justification of

modeling decisions for goal-oriented requirements engineering. Requirements Engi-

neering, 13(2):87–115, 2008.
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APPENDIX A. SOCIO-HEALTHCARE DATA WAREHOUSE DESIGN

Figure A.1: Data structure design of DWH for the EHR of the CSS project in the Social and

Healthcare domains.
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Appendix B

FP-Tree Construction and Frequent

Patterns Discovery

The following two algorithms are adapted from [82] and allow the creation of an FP-Tree

from a set of tuples in a database D and the discovery of all the frequent patterns in D

without candidate generation.

Algorithm 4: FPTreeCreation(D) 7→ T.
Data: D = {t1, t2, . . . , tn}, ti = [A1 = v1, A2 = v2, . . . , Ak = vk], i = 1, . . . , n transactions in table R

Result: FP-Tree T of the input transactions D.

1 /* Compute frequency of atomic condition A = v in transactions of D */

2 L←frequency of atomic conditions in D /* Header Table with frequencies and pointers to Tree nodes */

3 foreach (t ∈ D) do

4 foreach (c ∈ t) do

5 if (c ∈ L) then

6 L[c] + +

7 else

8 L[c] = 1

9 end

10 end

11 end

12 sort(L) /* Sort items in decreasing frequency */

13 T← ⊥ /* Set the root of the FP-Tree */

14 foreach (t ∈ D) do

15 sort(t) /* sort t wrt L */

16 c← t[1] /* first item in transaction */

17 C ← t[2], . . . , t[k] /* remaining item in transaction */

18 insert(c, C,T) /* insert each transaction in T */

19 end

Algorithm 6 shows the FP-Growth procedure as implemented in [82]. It allows to

generate the list of frequent patterns in the FP-Tree by invoking FPGrowth(T, null). The

algorithm is slightly different as it does not apply any pruning on the minimum support.
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Algorithm 5: insert(c, C,T).
Data:

c atomic condition

C remaining part of the transaction

T FP-Tree

1 N ← getChild(T, c) /* get child node equal to c */

2 if (n = null) then

3 N ← newNode(c)/* create a new node with condition c */

4 addChild(T, N) /* add a child node with support 1 */

5 else

6 increaseSupport(N) /* increment the support of the node */

7 end

8 if (C 6= ⊥) then

9 c← C[1]

10 C ← t[2], . . . , t[k] /* remaining item in transaction */

11 insert(c, C,N) /* insert the remaining part of the transaction */

12 end

Algorithm 6: FPGrowth(T, α).
Data:

T FP-Tree to mine

α pattern

1 if (T contains a single path P) then

2 foreach combination β of nodes in P do

3 generate pattern β ∪ α with support = minimum support of nodes in β

4 end

5 else

6 foreach ai in Header Table L of T do

7 generate pattern β = ai ∪ α with support = ai.support

8 construct β’s conditional pattern base and then β’s conditional FP-Tree Tβ
9 if (Tβ 6= Φ) then

10 call FPGrowth(Tβ , β)

11 end

12 end

13 end
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Figure B.1: FPTree from sample relation in Figure 4.5a.
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