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Abstract

The retrieval of geo-/bio-physical variables froemrote sensing imagery is a challenging and
important research field. On the one hand, advanneslectronics, engineering and space
sciences are offering to the users community newsass capable to acquire information on
the Earth surface with higher accuracy and improfesmtures with respect to the past. On the
other hand, the need of large-scale, accurate apdoudate mapping and monitoring of
natural targets and physical processes is beconfungdamental for many application
domains. This calls for the development of accuyratgbust and effective retrieval
methodologies.

The main goal of this thesis is to investigate dadelop advanced methods and systems
for the retrieval of geo-/bio-physical variable®oifn satellite remote sensing imagery being
able to exploit the potential of new and upcomiragellite systems and support real
application domains. Special attention has beerotdzl/to the definition of methods and to
the analysis of data acquired in the challenginguntain environment.

The activity carried out and presented in this drtation is oriented to investigate the
main limitations of the existing methodologies &ldressing the estimation problem and to
develop novel and improved systems that can overctiba drawbacks identified. In
particular, the following main novel contributioase proposed in this thesis:

a) A theoretical and empirical comparative analysis mafn-linear machine learning
regression methods, namely the Multi-Layer PeraaptNeural Network and the
Support Vector Regression, for soil moisture retlein different operational
scenarios.

b) A novel multi-objective model-selection strategytéming the free parameters of non-
linear regression methods taking into account d#fifé quality metrics that are jointly
optimized.

c) A novel hybrid approach to the retrieval of geoHphysical variables from remote
sensing data integrating both theoretical electrgmetic models and field reference
measurements.

d) A sensitivity analysis and a retrieval system fail soisture content estimation from
new generation SAR imagery in an Alpine catchment.



e) An empirical study on the effectiveness of fulllpametric SAR signals for soil
moisture estimation in mountain areas.
f) An improved algorithm for mapping and monitoringe@&n Area Index (GAI) in
Alpine pastures and meadows from satellite MODI&gieny.
Qualitative and quantitative experimental resultstaoned on real remotely sensed data
confirm the effectiveness of the proposed solutions

Keywords

Geo-/Bio-Physical Variables, Soil moisture conte@Gteen Area Index (GAIl), Retrieval,
Support Vector Regression (SVR), Theoretical madegkrsion, Parameter optimization,
Synthetic Aperture Radar (SAR), Polarimetry, Muydéstral image, Alpine environment,
Image processing, Remote sensing.
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Chapter 1

| ntroduction and Thesis Overview

In this chapter an overview of the contents of tRisD thesis is given. After a brief

introduction on remote sensing systems, the maseareh topic addressed in this

dissertation, i.e. the retrieval of geo-/bio-phydiwvariables, is introduced and the related

works in this research field are presented. Thendhjectives and motivations of the thesis
work as well as the main novel contributions praggbare highlighted. Finally, the structure

of the document is illustrated.

Brief Introduction to Remote Sensing

Remote Sensing (RS) is the science and technolbggquiring and interpreting information
regarding a scene of interest without being diyectlcontact with the item (or items) under
investigation Jia and Richards, 2004 In remote sensing, a sensor is devoted to the
measurement of the energy emitted and/or scattefkbted by an object and propagated as
electromagnetic radiation through the space. Themeasured energy is converted into a
signal (e.g., an electrical current) and passedgmcessing unit to be stored and/or analyzed.
A large variety of systems fall within this broadfigition, ranging from the human visual
system to planetary observation systems. In thésis, we will focus the attention on
imaging systems onboard of satellite platforms tfee observation and monitoring of the
Earth surface, often referred as Earth Observglidd) remote sensing systems. Since the
50s, when the first artificial satellites were labad, EO systems were used for military and
civil operations. Thanks to the possibility to airquinformation over large areas with a
reduced cost and on a regular basis, satellite teesensing growth progressively to become
nowadays a key technology in most of human actiwiti

The research in many fields of electronic, inforigstand signal processing made it
possible the development of many kinds of EO systemmich can be categorized according
to different criteria. Depending on the source rdrgy involved in the image acquisition, one
can distinguish between passive and active systeassive systems rely on the presence of




Chapter 1

an external illumination source, such as the surhertarget itself. The electromagnetic
energy measured by the sensor is divided into tainenumber of spectral bands, so that the
sensor is called multi-spectral (or hyper-spectrle number of spectral bands is higher than
some tens). The width of each spectral band detinesspectral resolution of the system.
Examples are the optical/thermal scanners and ibheowave radiometers. Active systems,
instead, exploit an artificial source of energy,iahhis controlled by the sensor. The sensor
intrinsically measures: i) the time delay betwea®a ¢mission and return of the energy pulse,
to locate the target in space and height; anche) gower of the received electromagnetic
signal, which provides information on the charastes of the investigated object. Examples
of are Radio Detection and Ranging (RADAR) and LiBletection and Ranging (LIDAR)
systems, which operate in the microwave and optittahain, respectively. Despite the
definition of spectral bands is improper for actsensors, new generation active systems
allow the acquisition of multiple information ofdhscene of interest, e.g., by controlling the
polarization or the frequency of the emitted arntbneed electromagnetic signals. With regard
to the spatial resolution, defined as the smallitstance between two objects that can be
distinguished by the sensor, remote sensing systam$&e divided into: very high resolution
systems, with resolution in the order or less tbap meter; high resolution systems, with
resolution of some up to teens of meters; mediwsolugions systems, with resolution in the
order of hundreds of meters; and low resolutiorstesys, from several hundreds to some
kilometers. Finally, remote sensing systems canclassified according to the revisit
frequency, i.e., the minimum time interval that rscbetween two consequent acquisitions
over the same target area, into: very high revisfjuency systems, with daily acquisition
capability; high revisit frequency systems, withgaisition every few days; medium revisit
frequency systems, with temporal intervals betwa@rsecutive acquisitions of tens of days.
The large variety of remote sensing sensors availeh the users community made it
possible in the last decades to deepen the knowledgthe Earth system and its processes
from many different perspectives, pushing at thmesdime the technology through the
development of even more advanced systems in aoust circle. Satellite remote sensing,
however, is intrinsically confronted to a trade-béftween spatial resolution, revisit frequency
and band richness. This issue is partially overcoméhe latest and upcoming EO missions,
which rely on constellations of satellite systemsnicrease the revisit frequency maintaining
appealing characteristics from the spatial and tsplegiewpoints. Examples are the four
satellites COSMO SkyMed constellation of the ltalBBpace Agency (ASIWWW) and the
family of Sentinel missions, developed in the framek of the Global Monitoring for
Environment and Security (GMES) program by the lpaem Space Agency (ESANVIWW2.
The latter is foreseen to be launched in 2013, whenfirst satellites of each constellation
will be inserted in orbit. Each 2-satellites collateon will have a different payload
(including Synthetic Aperture Radar (SAR) and msfiectral high-resolution scanner) thus
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providing a valuable and unique database of higbluion and high revisit frequency (1 to 3
days) EO imagery.

I nfor mation Extraction from Remote Sensing | magery:
the Geo-/Bio-Physical Variables Retrieval Problem

The analysis of remote sensing imagery is usualihalomized intoimagecentered and
datacentered approachesSHowengerdt, 2007 The former approach refers to the
interpretation of the scene on the basis of thdiapeelationships among features on the
ground. The information can be extracted from thens either by an experienced user
through photointerpretation or by a computer aidgstem in a quantitative and objective
manner Richards and Xia, 2006 Typical examples are the identification of lacwler/land-
use classes on the ground and the recognition ahgds among them. Data-centered
approaches perform the analysis of the acquiredesdeiven by the data, i.e., the physical
measurements of emitted and/or scattered/refleglimctromagnetic energy. To this type of
analysis usually belong intrinsically quantitatitesks, such as the measure of spectral
absorption of a target, the estimation of fractlomlaundances of surface materials and the
retrieval of geo-/bio-physical variables. In thissgrtation we focus the attention on the last
Issue.

Geo-/bio-physical variables are continuous attebuthat quantify physical and/or
structural properties of natural targets. Typicadraples are the temperature and the moisture
percentage of soil superficial layers, the deptd dansity of snow packs (which product
gives rise to the so called snow water equival&WIE)), the concentration of biological
particles and chemical pollution in costal sea v&gtéhe amount of leaf covered area per
ground unit (the so called leaf area index (LAbjpmass and leaf bio-chemical constituents
of a vegetated target, and many others. Geo-/bysipal variables are of fundamental
importance in several application and research dmnénformation on soil moisture content
and snow pack parameters (especially wetness arsitg)erevealed to be a crucial support to
the forecast of natural risks, such as droughtding, landslides and avalanch&agdholt et
al., 2002;Matzler, 1987; Perry, 2000; Engman and Gurney, 199iho et al., 1988 Snow
water equivalent provides useful indications foe tbstimation of water availability for
irrigation and hydropower purposes in mountain su@aghdadi et al., 1997; Goodison and
Louie, 198%. Precision farming and vegetation stress momigpéctivities often relies on the
precise knowledge on plant bio-chemical and strattproperties together with water
availability and moisture concentration indicat@@®lten et al., 2010Stimson et al., 2005;
Penuelas et al., 1994; Bastiaanssen and Bos, 18@8thman et al., 2003In meteorology
an accurate representation of soil and vegetator/lgio-physical variables is fundamental to
effectively quantify exchanges of energy and greesk gasses between the land surface and
the atmosphereSgllers et al., 1997; Turner et al., 2008any other domains could be cited,
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such as natural resources managemiast{aanssen et al., 2005; Hall and Martinec, 1985
and climate changes monitoring€(lers, 1996; Derksen et al., 1998pdriguez-Iturbe et al.,
1999. With this regard, several geo-/bio-physical Valea have been identified by the
Global Climate Observing System (GCOS) as Esse@liatate VariablesWWW3 All the
aforementioned applications and research domasreespatially and often also temporally
distributed measurements of the variables of iste@chulz et al., 2006 Satellite remote
sensing, thanks to its synoptic and regular imagihghe Earth surface, implicitly fulfills
these requirements.

From a physical viewpoint, changes in the chempaysical and structural characteristics
of a target (either natural or man-made) determaarétions of its electromagnetic response
in terms of absorption, emission, transmission weikction Schanda, 1986; Slater, 1980;
Ulaby et al., 1986 The possibility to quantitatively infer the géme-physical variable of
interest from the measurements performed by a memsehsing sensor is based on this
behavior. However, this task is not straightforwmdmany reasons:

» The complexity and non-linearity that characterizeually the relationship between
remote sensing measurements and target varigb®mey, 1977 On the one hand,
geo-/bio-physical variables may affect to differeaktents the electromagnetic
properties of a target along their range of valigb{e.g., saturation and other non-
linear effects may occurH@boudane et al., 20040n the other hand, electromagnetic
radiation shows a different sensitivity to the éifint physical phenomena depending on
the wavelength of the signallgby et al., 1986b; Jaquemoud and Baret, 1990;
Verhoef, 1984

» The ill-posed nature of the retrieval probleifhe total electromagnetic response of a
target is typically the result of multiple contriians, each one determined by a
different structural, chemical or physical charaste (Jackson and Schmugge, 1991
This aspect determines to the so-called variablefiaglity issue, i.e., the phenomenon
whereby similar electromagnetic responses can becaged with different geo-/bio-
physical variable configuration8¢ven & Freer, 2001; Beven, 2006

 The image formation process at sensor le\Rémote sensing sensors provide a
guantized representation of the investigated scenethe spatial domain. The
electromagnetic energy measured within an elememé&solution cell is the result of
the presence of multiple objects on the ground wiightly (or sometimes strongly)
different characteristics. This behavior is thegioriof a mixed contribution at sensor
level. Even by increasing the spatial resolutiors timixing phenomenon cannot be
completely cancelled, since it remains in pixelgresenting the boundaries between
objects Showengerdt, 2007 Moreover, the response corresponding to a pizal be
also affected by radiation components coming frdmee surrounding of the area
investigated Borengasser et al., 2008
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* The influence of external disturbing factoiide remote sensing acquisition systems is
not ideal, but affected by disturbing factors sastthe noise and non-linearity at sensor
level and the presence of the atmosphere. Evdredet issues can be determined and
corrected to some extent with the help of calibratand atmospheric correction
procedures, they may still corrupt the signal mesat sensor level and thus introduce
further ambiguity and complexity in the retrievabpess Chen, 1997; Hadjimitsis et
al. 2004.

This list, which is not meant to be exhaustive simtany other issues can be encountered
when dealing with the geo-/bio-physical variablériesal in specific application contexts
(e.g., the influence of topography in mountain afgpoints out the general complexity of the
retrieval process. These considerations call ferdafinition and use of proper methods for
processing satellite remote sensing data and vettiee desired geo-/bio-physical variable.

The Retrieval Process. a Pattern Recognition Per spective

From a methodological viewpoint, the retrieval @ogbio-physical variables from remote
sensing data has been mainly treated as a moreafjg@ag¢tern recognition problem. Pattern
Recognition (PR) has been defined as “the disapivhich learns some theories and methods
to design machines that can recognize patternsoigy ndata or complex environment”
(Srihari, 1993. Ripley (1996 outlined pattern recognition as follows: “Givemnge examples
of complex signals and the correct decisions fenthit makes decisions automatically for a
stream of future examples”. These definitions pouitthe key elements of a PR system: i) it
recognizes patterns in noisy data or complex enuient; and ii) it performs the decision for
future examples in an automatic manner. A genextiép recognition system is the ensemble
of several processing steps as synthetized in &igur. From a conceptual viewpoint, these
steps can be grouped into i) data pre-processidgidata analysis. The former consists of
all the steps required for reducing possible erromse and other disturbing factors in the
data associated with the acquisition phase anexXtacting the most relevant information
(i.e., the features) for the addressed problema [Pag-processing has thus a crucial role for
the definition of an effective pattern recognitieystem. The latter deals with the recognition
processper se Both data pre-processing and data analysis me&lfiton the availability of
prior knowledge on the addressed problem.
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» Pre-Processing ‘ Feature Recognition ‘

Extraction Method

Input Data L "‘ J Qutput Product
Prior Knowledge

Figure 1.1. Block scheme of a general pattern redam system.

A brief overview of the state-of-the-art methods diata analysis with specific regard to
the geo-/bio-physical variables retrieval probleam.( the retrieval methods) is provided in
the following. With regard to data pre-processirg,comprehensive overview of such
techniques is outside the main objective of thsselitation. Indeed, they are typically tailored
more to the characteristics of the acquisition sem®nsidered rather than to the specific
pattern recognition task addressed (i.e., theenaliproblem). We refer the reader @liger
and Quegan, 2004Girard and Girard, 2003 and the introduction of the next chapters of this
thesis for more details on this issue.

Retrieval Methods

The retrieval method is the core of a retrievatays It assumes that the addressed retrieval
problem can be expressed in terms of a mappingdesiva setx = (x!,x2,...,x™) of m
features extracted from the signals acquired usengpte sensors and the desired continuous
variabley. From an analytical viewpoint, this concept carekpressed as:

y=f(x)+e (1.1)
wheref denotes the desired and unknown mappingeaisch Gaussian random variable with
zero mean and unit variance taking into accountttal noise contributions affecting the
retrieval problem. From the methodological perspecthe retrieval ofy corresponds to the
problem of determining a mappirfgas close as possible to the true mapping

In the geo-/bio-physical variable retrieval litensd, this task has been addressed mainly
following two approaches: i) the derivation of engal data-driven relationships; and ii) the
inversion of physical based analytical models.

The first approach relies on the availability ofet of reference samples, i.e., couples of
in-situ measurements of the desired target variable adsdciwith the corresponding
measurements of the remote sensor. These samplesg@loited for deriving an empirical
mapping, e.g., by means of statistical regressehrtiques in combination with parametric
(linear, logarithmic or polynomial) functions. Théme identified relationship is extended to
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the whole satellite image. Examples can be foundtulies for the retrieval of vegetation
characteristics from optical remote sensing d@@dmbo et al. 2003; Heiskanen, 20Gthd
suspended chemical and biological particles in tebawaters T[eodoro et al.,, 2007
Analytically more sophisticated parametric functdrave been defined when the complexity
of the retrieval problem increases. This is thescaflsthe operational SeaWiFS chlorophyll
concentration algorithmQRelley et al., 1998 were ratios between spectral bands and log-
transformations were used to take into consideratioe non-linear behavior of the
investigated mapping. Empirical relationships gppealing since they are typically fast to
derive and quite accurate. Moreover, they abstrastplex physical phenomena to a higher
level, which can be easily addressed by non-expeittsout a specific background in the
field. The main drawback is the need of a set daéspgmy well representative reference
samples. The collection of ground measurementsireqihe human intervention and is
usually a time-consuming and expensive task. Maea@rrors may occur for various reasons
during the measurement process. This aspect affieetguality and quantity of reference
samples available. Another important issue is #oe that empirical relationships are typically
site and sensor dependent, since derived from ssngalllected under specific operational
conditions. This limits the possibility to extendetr use to different areas and different
remote sensing systems, since they remain valilwmdler the conditions in which reference
samples have been collect&b{ombo et al., 2003; Meroni et al., 2004

The second approach demands the definition of éseéetl mapping function to analytical
electromagnetic models. Such models are basedsoficaphysical based description of the
mechanisms involving the interaction of the eletiagnetic radiation and the target object of
interest. In the direct operational way, they simellthe response of a target object as function
of: 1) the target characteristics (i.e., structuchbmical and biophysical variables); and ii) the
signal characteristics (i.e., wavelength, incidémfkection angle, etc.). Thus in the inverse
operational way they can be used to represent #ppimg between the measurements at the
remote sensor and the variable of interest. A wddety of analytical electromagnetic
models has been proposed in the literature, witkrdnt levels of complexity and generality.
When dealing with microwave emission and scattenmgbably the most widely used model
is the Integral Equation Model by Fung et 4092, which has been further improved to take
into account multiple scattering effects (the Adwaoh IEM, Fung et al., 200D and often
coupled with layered structured or three dimendiomadels to handle complex target such as
vegetated areas and snow packaqquing and Rason, 1995; Karam et al., 1992 the field
of vegetation variable retrieval from optical sithahe PROSAIL model has been used in a
wide variety of remote sensing studies (JaquemaoddBaret, 1990; Jaguemoud et al., 2000;
Verhoef, 1984). Many other examples can be fountheliterature Turner et al., 2004,
Schlerf and Atzberger, 20p6Thanks to the solid physical foundation andhée range of
applicability (in terms of both target propertiesdasystem characteristics), electromagnetic
models can operate in more general scenarios teatdifficult to represent through the
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collection ofin-situ measurements. For this reason, they are partigidppealing to address
the estimation of geo-/bio-physical variables froemote sensing data. A major concern is
related to the fact that they rely on hypothesisl @assumptions that simplify their
representation of real phenomena. This issue limant in the modelization process and can
be reduced (but not completely eliminated) by iasneg the complexity of the model, at the
price of a reduced generalization abiliafvishzadeh et al., 2008Another drawback of
electromagnetic models is their high complexity aependence on a huge number of input
parameters. This makes the inversion process aitatytically not tractable. To face this
problem, many different inversion strategies hagerbproposed in the literature. The most
common ones are: i) iterative search algorithm#$ sagcthe Nelder-Mead and the Netwon-
Rapson methoddVieroni et al., 2004; Paloscia et al., 200&vhich iteratively try different
model parameter configurations to minimize a didsinty measure between simulated and
measured electromagnetic response of a target tphijedook-up table matching, which
searches among a set of pre-computed simulatedrapthe most similar to the remote
measurementDarvishzadeh et al., 2008and iii) regression methods, which exploit a @t
simulated samples (i.e., couples of target geoybigsical variables and simulated
electromagnetic responses) to infer the inversarétieal mappinggong et al., 2009
Regardless to the approach considered, either m@pior physical based, the high
complexity and non-linearity of retrieval problemegjuired the development and use of more
advanced methods. A class of highly powerful regogs methods, which has been
successfully introduced in the field of geo-/bioypital variable estimation since two decades
generating a rising interest in the remote sensmmmunity, is represented by non-linear
machine learning techniques. Due to advanced legrstrategies, such techniques can learn
and approximate even complex non-linear mappingtoéing the information contained in a
set of reference samples. Another advantage ifathé¢hat no assumptions have to be made
about the data distribution (for this reason, naedr machine learning methods are often
referred as distribution free). Due to this propethe retrieval process can integrate data
coming from different sources with poorly defined gnknown) probability density functions
and relating well with the target variable. Amongahine learning techniques, one can recall
Artificial Neural Network (ANN) Reale and Jackson, 199and Support Vector Regression
(SVR) (Vapnik, 1995 methods. ANN is probably the most largely usethiméque in the field
of geo-/bio-physical variable retrieval and hasrbegdely investigated in many application
domains. Tsang et al1992 addressed the estimation of snow variables frioen Special
Sensor Microwave/Imager (SSM/I) data by means ofaral network trained with dense
medium multiple scattering model. The effectivenesseural network model inversion for
estimating soil moisture in comparison with wellekyn inversion strategies, namely the
Bayesian method and the simplex algorithm, is itigated in Paloscia et al2@08, and
Notarnicola et al.Z008. Final evaluations point out that ANNs are a gtradie-off in terms
of accuracy, stability and computational speed widspect to the other strategies




Introduction and Thesis Overview

investigated. Other interesting examples can badan the field of vegetation parameters
retrieval Oel Frate et al., 2008 Also SVR is becoming popular in the field of gé-
physical variables retrieval, especially in the fesv years, despite its use up to now is still
limited. Few papers investigated the effectivenessthis method for the retrieval of
vegetation characteristics, open water chemical laintbgical particles concentration and
land and sea surface tempeartudairpa et al., 2007, Bruzzone and Melgani, 2005; &étos
and Serpico, 2009 Achieved results point out in general the prongsfeatures of this
method, such as the good intrinsic generalizatibititya and the robustness to noise and
limited availability in the reference samples. Howe the full potential of the method has not
been fully exploited yet.

Objectives, Motivations and Novel Contributionsof the Thesis

Despite the strong research effort already dematestrby the scientific community, the

retrieval of geo-/bio-physical variables from remaensing imagery is a challenging and
important research field. On the one hand, advaicedectronics, engineering and space
sciences are offering to the users community news@s able to acquire information from the
Earth surface with higher accuracy and improvedufes with respect to the past. On the
other hand, the need of large-scale, accurate gab-date mapping and monitoring of
natural targets and physical processes is growigmgfieantly. This calls for a continuous

research and investigations for the developmenteeén more accurate and robust
methodologies.

The objective of the thesis is to investigate ardetbp advanced methods and systems
for improving the accuracy and robustness of theeral process from satellite remote
sensing imagery. The study will be carried out watrtticular regard to the retrieval of geo-
bio-physical variables in the challenging mountaimvironment. The motivations for the
interest in this specific context are mainly thidwing:

* Mountain regions present extreme operational candf i.e., very limited availability
of representative reference samples due to theculiff in the field measurement
collection and high heterogeneity of the local dbads at the ground. State-of-the-art
methodologies require further investigations angrowements to tackle the complexity
of the retrieval in this environment.

« The new and upcoming satellite systems (e.g., teetigel satellites family) will
provide large amounts of data with improved spatiadl temporal resolutions. This
opens the path for better studying and monitorirgjetogeneous and complex
environments such as the mountain regions, provitlat proper methodologies are
available to fully exploit the potential of thesewndata.
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* At the best or our knowledge, the retrieval of geio-physical variables from satellite
remote sensing imagery in mountain areas has balgmuarginally investigated up to
now. Very few studies can be found in the remotesisly literature on this topic
(Paloscia et al., 2010; Vescovo and Gianelle, 2088jskanen, 2006 Nonetheless,
accurate mapping of geo-/bio-physical propertieshef natural targets present in this
environment is of utmost importance for many amilem domains (e.g., risk
forecasting, natural resources monitoring) but @mimpossible to realize without the
synoptic view of remote sensing.

The activity carried out and presented in thisetisgion is mainly oriented to investigate
some of the limitations of the existing methods tfeg addressed estimation problem and to
develop novel and improved systems that can ovezctine identified drawbacks. In
particular, the following main novel contributioase proposed in this thesis:

A. A comparative analysis of non-linear machine leagiiegression methods, namely the
Multi-Layer Perceptron Neural Network (MLP-NN) atiee Support Vector Regression
(SVR), for soil moisture retrieval in different ogional scenarios.

Soil moisture estimation is one of the most chalieg problems in the context of geo-
/bio- physical variables retrieval. Several studiiempted to address this issue, with a
clear growing interest in the last years in the o$enon-linear machine learning
technigues. In this thesis we introduce the usé®bf thes-insensitive Support Vector
Regression technique for the retrieval of soil mwos content from microwave
remotely sensed data at field/basin scale. Atithe bf this work, no studies existed in
the literature that investigated the effectiverssthis technique in this specific context.
SVR has attractive properties, such as ease of gsed intrinsic generalization
capability and robustness to the noise in the eefe® data, which make it a valid
candidate as an alternative to more traditionatadenetwork based techniques, e.g., the
MLP-NN, considered as benchmark methods in thisiBpdield. The effectiveness of
the SVR methods is investigated in different operal scenarios, namely: i) the
inversion of a physical based electromagnetic maaleich guarantees the availability
of numerous and well representative labeled reteresamples; and ii) the inference of
an empirical based model from a limited humberabtled reference samples measured
in the field. Moreover, in each scenario differeatbinations of input features, namely
microwave signal measurements for different senfsequency, polarization and
acquisition angles, are tested. The performandkeoinvestigated methods is discussed
in terms of estimation accuracy, generalizatioritgbicomputational complexity and
ease of use. This analysis is important as prepgratep for the development of
accurate and robust retrieval systems and prowdeful indications for building soil
moisture estimation processors for upcoming s&gelnissions or near real time
applications as well.
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B. A novel multi-objective strategy for tuning theefqigarameters of non-linear regression
methods.

Non-linear machine learning techniques depend osetaof free-parameters which
control the learning process of the method and tiave a direct impact on the accuracy
and generalization ability of the final estimatigystem. The tuning of these parameters
is thus a major step in the definition of accurate robust estimation systems. In this
thesis, we propose to address this task in the efnark of the multi-objective
optimization. Two or more metrics that quantify rfrodifferent and competing
perspectives the goodness of a given parameteigooation are taken into account and
jointly optimized according to the concept of Pareptimality Feldman, 198p This
allows preserving the meaning of each metric inedlvn the process and deriving
multiple optimal solutions to the tuning problerachk one leading to a different optimal
trade-off among the metrics. The proposed straleggs to two main advantages with
respect to mono-objective strategies: i) the istdnmproved robustness and efficiency,
since multiple metrics are jointly exploited; amdlie possibility to select the parameter
configuration that shows the desired trade-off agndiiferent criteria and thus best
meets both the application constraints and their@aents of the specific estimation
problem. These features are fundamental for thei&it and effective definition of
robust estimation systems.

C. A novel hybrid approach to the retrieval of geoehpihysical variables from remote
sensing data integrating both theoretical electrgmetic models and field reference
measurements.

As pointed out in the literature review reporte@ frevious section, the retrieval of
geo-/bio-physical variables can be addressed acgptd two approaches: the inversion
of physical based theoretical electromagnetic nedelthe inference of an empirical
relationship from field reference samples. Bothrapphes present strengths, but also
limitations that may strongly affect the accuracy ahe robustness of the estimation
process. In order to convey the strengths of bpfir@aches into a unique estimation
method, in this thesis we develope a novel hybpik@ach based on the integrated use
of a set of (few) field reference samples and asjgay based theoretical model. The
estimation process is modeled by two terms: th& fine expresses the relationship
between the input features and the target variabt®rding the model based on the
physics of the considered problem; the second ameeds the deviation between
theoretical model estimates and true target vadgesrding to an empirical data-driven
relationship inferred from the (few) field referensamples. On the one hand, the
proposed methodology allows to preserve the rolegstmnd generality of theoretical
model based estimation, which stems from the rigertheoretical foundation. On the
other hand, it reduces the bias and imprecisiomstdwsimplifications in the analytical
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formulations of the model. This approach is paféidy useful for those application
domains, such as the soil moisture retrieval, wihee limited availability of field
reference samples and the spatial and temporalbibiry of the target geo-/bio-physical
variable represent a limitation for the developmant applicability of robust and
general empirical models.

D. A sensitivity analysis and a retrieval system foit eoisture content estimation from
new generation SAR imagery in an Alpine catchment.

Satellite SAR imagery has been widely investigaiad exploited for the retrieval of
soil biophysical characteristics, in particular Ismioisture content, with promising
results. However, very limited attention has beewoted to the analysis of mountain
areas. The analysis of the SAR signal in this ehgihg environment is complicated by
the effects of vegetation, topography and land-cdneterogeneity. In this thesis, the
potential, but also the limitations, of the new gettion satellite SAR sensors for the
retrieval of soil moisture content in the Alpinesaris investigated. The study consists
first in a sensitivity analysis aimed at understagdboth the sensitivity of the SAR
backscattering signal to soil moisture content #mel influence on it of the local
characteristics of the investigated area in terfrtemography, land-cover and status of
the vegetation coverage. Then an advanced retrsygédém to address the soil moisture
retrieval problem tailored to this environment regented. The proposed system takes
advantage from the available ancillary data tordeegle the effects of topography and
land-cover heterogeneity on the SAR signal andatgpthe methodologies anticipated
in the previous points to cope with the complexityhe retrieval process.

E. An empirical study on the effectiveness of fulllppmetric SAR signals for soll
moisture estimation in mountain areas.

In order to deal with the disturbing effect of veg®n and roughness with regard to the
estimation of soil moisture from SAR signals, ire thterature multi-frequency and
multi-angle approaches have been proposed. Thenadi is that the SAR signal is
sensitive to the target properties in a differeayvand to a different extent depending
on the system frequency and incidence angle. Th@twtion of the signals acquired
with different system configurations leads to adretharacterization of these disturbing
factors and thus to a more accurate estimatiorhefvariable of interest. However,
multi-frequency and multi-angle scenes over theesamea of interest are very difficult
to acquire from satellite platforms. More efficieistthe acquisition of SAR imagery
using multiple polarization configurations. This dadity is currently operational for
many satellite SAR sensors. In this thesis thecgffeness of polarimetric features for
the challenging task of soil moisture retrievalnountain areas is investigated. The
polarimetric information is processed according diandard intensity and phase
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extraction techniques as well as advanced polariengéécompositions and data driven
transformation algorithms. Different combinationstbe extracted features are then
investigated by providing them as input to theiegtal system and evaluating the
resulting soil moisture estimates in terms of qiaime accuracy metrics and spatial
patterns consistency. The proposed analysis previdduable insights about the
exploitation of polarimetric SAR signals in moumtareas useful for future studies and
for the definition of operational products in siarienvironmental conditions, as well as
for the development of future satellite SAR mission

. An improved algorithm for mapping and monitoringe@&n Area Index (GAl) in Alpine
pastures and meadows from satellite MODIS imagery.

Leaf Area Index is one of the most important sttt variables of vegetation
canopies. The corresponding parameter for fullytpisynthetically active vegetation
canopies, such as grasslands, is often referr@tesen Area Index (GAI). The synoptic
monitoring of this parameter at regional scale rigcial for the understanding of
hydrological processes, energy fluxes between tbhengl surface and the atmosphere,
climatic trends and the impact of human activitees them. The retrieval of these
variables has been largely addressed with the usgedium resolution satellite data,
which have the advantage of being acquired globelith high repetition rate and on a
regular basis. While focusing on the global coesisy of the estimates, current
products present typically limited accuracy andafslity for specific biomes, such as
the Alpine grasslands. To address this issue thieisis presents an improved algorithm
for the retrieval of GAI from moderate resoluticatedlite MODIS imagery specifically
customized for Alpine meadows and pastures. Inquéar, the main novel aspects of
the proposed algorithm, which is based on the swarof a radiative transfer model,
are: i) the improved spatial resolution with regpecthe existing operational products;
i) the tuning of the transfer model on the chagdstics of Alpine pastures and
meadows; and iii) the accounting for the local wmaphic characteristics. These
features open the path for the exploitation of nmatgeresolution satellite imagery for
novel and more accurate monitoring analyses ircttalenging mountain environment
at regional scale.

Structure of the Thesis

The dissertation is organized into eight chapters.

In this chapter we briefly introduced the contexd @ahe state-of-the-art on the main topic

addressed in this thesis, namely the retrieval ed-/@io-physical variables from remote
sensing data. Moreover, the objectives, motivataeomd main novel contributions of this work
have been highlighted.
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Chapters 2 and 3 focus on the use of non-lineahmadearning methods for the retrieval
of geo-/bio-physical variables from remote sendaga. In particular, Chapter 2 introduces
the Support Vector Regression technique in the esttnof the retrieval of an important
environmental variable, i.e., the soil moisture teo, from microwave remote sensing data.
The chapter discusses its effectiveness in twcerdifft operational scenarios in terms of
accuracy, generalization ability and ease of usecomparison with the Multi-Layer
Perceptron Neural Network, which is considered aBeachmark in this specific field.
Chapter 3 deals with the problem of tuning the fraeameters of non-linear machine learning
methods, which is a crucial task for the achievenoéngood accuracy and generalization
ability from the considered method. The problermadsiressed in the framework of the multi-
objective optimization according to the conceptRareto optimality, which allows one
deriving multiple optimal trade-off solutions amowndpich selecting the one that best meets
the application constraints and requirements.

Chapter 4 deals with the problem of overcoming dlehotomy between physical based
and empirical based approaches to the retrievgeof/bio-physical variables. To this aim a
novel hybrid approach is proposed, which triesntegrate the robustness and generalization
ability of the physical based model inversion aggtowith the information extracted from a
set of (few) field reference samples.

The remaining chapters focus the attention on ¢jo@i@ estimation scenarios. Chapters 5
and 6 deal indeed with the topic of retrieving smibisture content from new generation
satellite SAR imagery in the complex Alpine envimment. Chapter 5 presents a sensitivity
analysis of the SAR signal to both soil moistur@teat and the local characteristics (e.g.,
topography) of the investigated area. Then it ohikes an advanced retrieval system, which
benefits from the methodological innovations introed in the previous chapters and from
the availability of ancillary data to deal with themplexity of the retrieval problem. Chapter
6 goes a step further in the analysis by investigathe fully polarimetric capability of the
SAR imagery considered. This is done in order tolewmstand the potentialities and the
limitations of this advanced acquisition modalifynew generation SAR systems with regard
to the analysis and mapping of soil variables exdbmplex mountain environment.

Chapter 7 focuses on the mapping and monitoringnaither crucial geo-/bio-physical
environmental variable, i.e., the green area in@l) of Alpine grasslands. In this context
an improved retrieval algorithm is presented, whrads to overcome the main limitations of
existing products by increasing the spatial resmhyttuning the retrieval on the spectral
characteristics of the target area and accountmghe retrieval process for the local
topography of the scene.

Finally, Chapter 8 draws the conclusion on the gme=d activities and on the novel
contributions to the state-of-the-art in the fieddl geo-/bio-physical variables retrieval
introduced in this dissertation. Moreover, it diseeis possible future developments of this
PhD work.
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Compar ative Analysis of Non-Linear Machine

L ear ning Regression Methods for the Retrieval of
Soil Moisture Content in Different Operational
Scenarios

This chapter introduces an advanced state-of-tliereim-linear regression method, the
Support Vector Regression technique, in the contéxthe retrieval of an important
environmental variable, namely the soil moisturateat, from microwave remote sensing
data. Its effectiveness is investigated in twaekiffit operational scenarios: i) the inversion of
an electromagnetic physical model, which guarantéesavailability of numerous and well
representative reference samples for the trainifighe method; and ii) the inference of
empirical relationships from a limited number d@léi reference samples. The performance in
terms of accuracy, generalization ability and eafase are discussed in comparison with the
Multi-Layer Perceptron Neural Network, which is safered as a benchmark in this specific
field. Useful guidelines for building soil moistugstimation processors for upcoming satellite
missions or operational near-real-time applicatioas well are drawn at the end of this
analysis.

2.1 Introduction and Motivation

Soil moisture content (SMC) is a key variable innpahydrological and meteorological
processes. It controls the infiltration rate durprgcipitation events, the evapotranspiration
and the micrometeorology of soilRddriguez-lturbe et al., 1999Thus it influences both
global water and energy balances. As a consequéheejnformation about the spatial
distribution and concentration of soil moistureoisgreat importance in both hydrological
applications, such as floods predictions in caseextireme rainfall events, watershed
management during dry periods, irrigation schedplprecision farming, and earth sciences,
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like climate change analysis and meteorologgstianseens and Bos, 1999; Sandholt et al.,
2002; Heathmann et al., 20D3

Several techniques have been proposednfsitu measurements of soil moisture content
(Walker et al., 2004 However, field measurements are typically expensand time
demanding. Moreover, they provide point-like infation which is difficult to spatialize due
to the spatial variability of the soil charactadst For this reason, the retrieval of soil
moisture from remote sensing signals representdfament and effective solution to support
field measurements. Microwave signals are wideBduer this purpose, thanks to their well-
established sensitivity to the amount of waterhia s$oil surfaceWang, 1980; Ulaby et al.,
1986b; Ulaby, 1974; Jackson, 199Mowever, the complexity and non-linearity of the
retrieval problem as well as the ambiguities thatyraffect the microwave signal, such as
surface roughness and vegetation, make the sostunei estimation problem particularly
challenging Ulaby et al., 1978; Ulaby et al., 1979; Dobson ddlhby, 1981; Lakhankar et
al., 2009; Mattia et al., 1997

For the analysis and characterization of the amifase, empirical relationships derived
from experimental field reference samples weret fagploited as proposes by Lin et al.
(1994. However, simple parametric function resultedb® inadequate for modelling the
complexity of the soil moisture content retrievAhalytically more sophisticated functions
can be instead used, as proposed by Dubois €t95( with encouraging accuracies for the
investigated area. Apart from some attempts, howereey limited effort has been put in this
kind of approach for addressing the retrieval pgobl

Analytical electromagnetic models, on the contrdxgye been in use for a long time in
this challenging field. In particular the Integiduation Model (IEM) by Fung et al1992
and the emissivity model by Wang and Choudhur§9§ are widely used in the remote
sensing community, thanks to their wide range gbliagbility (in terms of both target
properties and system characteristics) and vatidaghaviour Fung, 1994. These properties
and the solid theoretical foundation make the dseioh models particularly appealing in soll
moisture estimation from remote sensing data, ésibeavhen no (or very limited) field
reference samples are available. This conditiaquie common in near real time operational
conditions. However, electromagnetic may providanaplified representation of the reality.
One of the most critical issues in this regardhis dlescription of the surface morphology.
Commonly used parameterizations assume wide-seted@nary statistics across the
horizontal plane, which limit in some cases the spgmbty to completely describe the
variability of natural surfacedMattia and Le Toan, 1999Another major issue when using
theoretical models, as pointed out in Chapter hésr inversion, thus implying the use of
advanced (and often computationally demanding)rsiga strategiesBindlish and Barros,
2000; Tabatabaeenejad and Moghaddam, 2009; Oh, 2006

In the last decade non-linear machine learning (Michniques, in particular Artificial
Neural Networks (ANNs), have been successfullyonhticed in the field of soil variables
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retrieval. In particular, such techniques were eigtl as an effective solution to address the
inversion of electromagnetic model®g] Frate et al., 2003; Notarnicola et al., 2008;
Paloscia et al., 2008 A set of simulated reference samples (i.e., Kted backscattering
coefficients associated with the corresponding sbiaracteristic variables) is generated
exploiting the theoretical model in the forward p®nal way. These samples are then used
to train the ANN method by providing as input theglated backscattering coefficients and
as output the corresponding target variable (éhg.soil moisture content). A second subset
of simulated reference samples is usually expldideanodel-selection purposes, i.e., to tune
the free-parameters and define the architecturdnemetwork. Once trained, the technique
should reproduce the desired mapping, thus carxpleited for estimating the desired target
parameter from remote sensing imagery. In the ptiedi phase, ANNs are typically fast.
This feature is particularly appealing in near rigale operational conditions or when large
amounts of data, such as large satellite sceneg, ha be processed. However, the
training/tuning process is usually a complex tdskeed no clear rules are available for the
definition of the network architecture (number adden layers and nodes). This process has
to be carefully controlled, since the method magumin the so-called over-fitting, the
phenomenon whereby the network learns too precteelyraining samples losing the ability
to correctly predict independent unknown sampléss iSsue becomes as stronger as smaller
is the set of reference samples used in the tigpinase.

Another promising ML technique is theinsensitive Support Vector Regression (SVR)
(Vapnik, 1995 Among others, key features of this method arahé exploitation of the
margin principle; ii) the possibility of solving ¢hlearning problem using a convex cost
function; and iii) the sparseness of the solutidimese characteristics result in a good intrinsic
generalization capability and a limited complexity handling the training phase. Some
previous studies have investigated the effectivermdsSVR for the estimation of geo-/bio-
physical variables from remotely sensed data, atdig good, competitive results on various
application domains with respect to other statéhefart methodsBruzzone and Melgani,
2005; Camp-Valls et al., 2006 However, almost no effort has been devoted t® th
investigation and the use of this promising metfardthe retrieval of soil moisture content,
with the exception of the study presented by Ahmiaal. 010, which however investigates
the use of SVR method for soil moisture contentieeal for a coarse scale mapping from
low resolution satellite data, thus implicitly negling the influence of local scale surface
roughness.

In this chapter, the effectiveness of the SVR tegplmn to address the problem of soaill
moisture content estimation at field/basin scalevestigated. At this scale local phenomena,
such as surface roughness, affect the microwavelstgus increasing the complexity and
non-linearity of the estimation process. Up to now,investigations on the use of the SVR
technique in this challenging and interesting openal condition have been proposed. In
greater detail, the main novel and interesting etspef this analysis are:
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1. The assessment of the SVR method in two distinetadfpnal scenarios, namely: i) the
inversion of a physical based electromagnetic mdatel common operational scenario
in this application field, which guarantees the immlity of numerous and well
representative labelled reference samples; anthai)inference of an empirical based
model from a limited number of labeled referencegas measured in the field. This
second scenario is interesting for assessing thergkzation capability and robustness
of the method in case of limited availability ofeeence samples

2. The test of different combination of input featyrezamely microwave signal
measurements for different sensor frequency, p@aaon and acquisition angles.

For comparison purposes, a Multi-Layer Perceptrearsll Network, referred as a benchmark
in this field, is considered. For both methods,dbkieved performance in terms of estimation
accuracy, generalization ability, computational ptewity and ease of use is thus discussed.
The aim is to derive indications about the effemtiess of the investigated methods useful for
developing robust and accurate retrieval systemd hbnilding soil moisture content
processors for the upcoming satellite missionsearr meal time applications as well.

The rest of the chapter is organized as followse fméxt section will introduce the basic
principles and the analytical formulation of thensensitive SVR technique, which will be
exploited in this and other analysis performedrlate in this dissertation. Section 2.3 will
describe the data set exploited for the analysts @ovide the details of the experimental
analysis. Section 2.4 is devoted to the presemtatod discussion of the achieved
experimental results. Finally, the conclusion @& #tudy will be drawn in Section 2.5.

2.2 The e-insensitive Support Vector Regression Technique

Given a general retrieval problem (see equationrlhapter 1), the goal of tleinsensitive
SVR technique is to find a functidras smooth as possible that approximéishkile keep at
most a deviatiore from the targety (Vapnik, 199% For this purpose, the originah
dimensional input domain is mapped into a spacé \wigher dimensionality, where the
function underlying the data is supposed to have irmmreased flatness. Thug is
approximated in a linear way:

f'(x)=w-0(x)+b (2.2)
wherew represents the vector of weights of the linearcfiom, ®(-) is the mapping that
projects the samples from the original into thehkigdimensional feature space dni the
bias.

The optimal linear function in the transformed spas selected by minimizing the
structural risk, which is the combination of thaiting error (empirical risk) and the model

complexity (confidence term) evaluated on a selNgpfreference training samples. The first
term is calculated according to eainsensitive loss function (see Figure 2.1), where
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quantifies the tolerance to errors, i.e., it allosegining an insensitive tube surrounding the
functionf’ (thus increasing the robustness of the technigusmiall errors and to the noise in
the training set). Equivalently, the penalty caneBpressed by means of non-negative slack
variables¢ , £ which measure the distance (in the target spactjeotraining samples lying
outside thes-insensitive tube from the tube itself. The secoewint of the cost function is
expressed through the Euclidean norm of the weigbtorw, which can be inversely related
to the geometrical margin of the corresponding tsmtuand thus (under a geometrical
interpretation) to the complexity of the model. Tdwest function to minimize becomes:

N
1
YW, = C ) G+ &) +5 Wl 22)

and is subject to the following constraints:

yi—[w- o) +b]<e+§;
w-O(x)+b]l—y;<e+& i=1.2,..,Ng (2.3)
fil fl* =0
C is a regularization parameter that allows oneuteetthe trade-off between the complexity
(or flatness) of the functiof and the tolerance to empirical errors.

The constrained optimization problem in (2.2) canrbformulated through a Lagrange
functional, which leads in the dual formulation & convex (easy to handle) quadratic
problem (QP) and thus to a unique solution (thddalaninimum of the cost function). The
final prediction function, in terms of the sampieshe original input domain, becomes:

F100 = ) (@ = a)K(x,2) + b (2.4)
ieN

whereqa; anda; represent the Lagrange multipliers of the QP Kf¢) is a kernel function.
The latter must satisfy the Mercer’s theorem, sd thcan be associated with some type of
inner product in the high-dimensional feature spaee K (x;, x) = ®(x;) - ®(x)). Thus, the
kernel function allows evaluating the similaritytlveen a pair of samples in the transformed
feature space as a function of the samples in tpetispace, i.e., without the explicit
definition of the mapping functio@(:). This strongly reduces the analytical complexity
related to the mapping issue. Commonly adoptedekem@re polynomial and Gaussian radial
basis functions (RBF) kernel8ruzzone and Melgani, 2005; Moser and Serpico, 2009
Lagrange multipliers weight each training sampleoading to its importance in determining
the solution functiorf’. Samples associated with a nonzero Lagrange reitigre called
support vectors. The other samples have no weigttie definition of the result since they
fall within the e-tube. Consequently, to increasemeans to reduce the number of support
vectors. This will increase the sparseness ofitta fepresentation of the data at the price of
lower approximation accuracy on training samplesthis senses quantifies the trade-off
between data sparseness and approximation acaofrttgy model.
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Figure 2.1. Example of-insensitive tube defined by a linear |-function for a on-dimensional
learning problem.

Some attractive features of the SVR result fromathaytical formulation presented abc

1. Good intrinsic generalization ality, thanks to the use of tlka@nsensitive cost functio
(which introduces sparseness into the model) ardotitimization of both empirici
error and model complexity to drive the learningqass

2. Good capability to handle hi-dimensional input spacedhis property stems aga
from the way in which generalization is controligaring the learning (minimization
both empirical risk and confidence ter

3. Limited complexity and high stability of the leargiproces, due to the convexity ¢
the optimization pblem and the use of the kernel tr

4. Ease of usesince relatively few free parameters (i.e., tbgutarization coefficienC,
the width of the insensitive tule and the kernel type and parameters) have to bel.

2.3 Data Set Description and Design of the Experiments

2.3.1 Field M easur ements

The field measurements considered in this workrzplo twodata set associated with tw
different acquisition campaigns on bare soils. Tingt one (from this point referred .
ActPassdata set) consists @7 samples acquired by the University of Bern’sagshers it
three bare and essentially smooth fi (Wegmueller et al., 1994Roughness properties
terms of standard deviation of hei¢s and correlation lengthare reported in Tabl2.1. The
remoe acquisitions were pormed with a trucknounted fully polarimetric
radiometergcatterometer operating at different frequencieskiacidence angle:
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Table 2.1. Main characteristics of the field sog@asurements considered in the analysis.

4 of Roughness Soil moisture
Data Set amples Field Type characteristics characteristics
P (sand ) (SMC)
[ 0.4cm<s<1.7cm
ActPass 27 Bare or lightly 6%< SMC< 38%
vegetated 2.0cm<1<5.0cm

1.3cm<s<2.1cm
Scatter ometer 17 Bare 8% < SMC< 32%
5.0cm<1<13.0cm

The use of the same antenna for both active amslveasmeasurements ensured that the two
instruments observed the target under almost iclEnsipatial conditions. The ground truth
measurements of the volumetric soil moisture cdn8MQ (i.e., the average water content
of the top 4 cm of the soil) were performed takthgoil samples of a known volume and
drying them at 105°C according to the guidelinesegi by Cihlar et al. 1987. The
percentage error of the measurements is about Ed%reasons of homogeneity with the
simulated data (described in the next subsect®N)C values were converted into relative
dielectric constant (from this point indicated dl) through a well-known relationship
(Hallikainen et al., 198p

The second data set (indicated $satterometerdata set) is made up of 17 samples
acquired in two bare fields at different timesnfird998 to 2004Nlattia et al., 2008 For this
data set, soil roughness conditions were extrematiable even within the same field, as
reported in Table 2.1, due to plowing practice. BEmmeasurement acquisitions were
accomplished with a C-band scatterometer using H&él \&V polarizations at 23° and 40°
incidence angles, while ground truth measuremehtoib moisture content were collected
with the same procedure described abo@hlar et al.,, 198). Then soil moisture
measurements were converted into relative dietectmstant values.

2.3.2 Simulated Samples

Simulated data are generated according to two ¢tieat models extensively validated and
analyzed in the literature: the Integral Equatiorodd (IEM) (Fung et al., 199p for
backscattering coefficients and the Wang mowéhrfg and Choudhury, 19p%r emissivity
values. Both models have been extensively usedhenliterature and validated with field
measurements, including those presented ali®wkand Zhang, 2003; Wang, 1994

The key equation in the IEM formulation, which &i® one deriving the simulated
backscattering coefficient given as input the sbidracteristics (relative dielectric constant
and roughness) and the sensor configuration (frexyygoolarization and incidence angle), is
the following:
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W(" 2k.,0
_zkgzzw (= 2 ) (2.5)

wherek is the wavenumbep is the incidence anglé, = k - sin (6), k, = k - cos (6), pp
refers to the HH or VV polarization states anid the terrain standard deviation of heigfj.
depends ork, s and the Fresnel coefficients in H and V polarizagidV ™ (-2k,, 0) is the
Fourier transform of tha-th power of a predefined surface correlation fimmgtwhich in this
work has been derived according to an exponentiaelation function. The exponential
function is the most widely used, despite it does scompletely describe the variability of
natural surfacedMattia and Le Toan, 1999

Concerning the radiometer responses, assuming mgid®r a simple homogeneous
isothermal soil medium with plain air-soil boundatlge brightness temperature of the soil
surface can be expressed as:

Ts(6,p) = e (6,p)Ts,, (2.6)

0
Opp =

whereT is the soil temperaturé,the incidence angl@,the polarization and*? (9, p) the soil
emissivity, which assumes the following expressamtording to Wang and Choudhury
(1995:

e =1 — [(1 — a)ry + ary e+ s*cos®8 (2.7)

wherery andr, are the surface reflectivities for the H and Vapiation, respectivela is a
mixing polarization parameter depending on the aiey frequency and the terrain standard
deviation of heighs. As for the IEM model, by using this formulatidns possible to derive
emissivity values given as input a configuratiorire soil and sensor characteristics.

The generation process is performed by considammges of soil characteristics (i.e.,
dielectric constandliel, standard deviation of heightand correlation length) wider to some
extent than those of the field measurements, Wighaim to obtain a set of simulated samples
capable of representing more general situationsbéih ActPassandScatterometedata sets,
more than 1000 samples are generated. A Gaussise cantribution (estimated on the basis
of the real data) is then added to these sampletafnicola et al., 2008 Further details on
the ranges and settings considered during the nsodelations are available in Table 2.2.

2.3.3 Design of Experiments

To realize the analysis presented in this workesshexperiments are carried out, all of them
requiring two disjoint set of labeled samples:hg reference set, which is used to train/tune
the regression technique; and ii) the test set,clwhallows evaluating the estimation
performance in case of unseen samples. By exgoitirdifferent ways field measurements
and simulated samples, two scenarios are defingdharstigated:
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Table 2.2. Ranges of soil variables consideredrfodel simulations.

Data Set Standard deviation of  Correlation length Relative didectric

height (s) ) constant (diel)
0.3cm<s<1.9cm 2.0cm<1<5.0cm 2<diel<20
ActPass
step 0.1 cm step 1.0 cm step 1
1.3cm<s<2.lcm 5.0cm<1<15.0cm 2<diel<20
Scatterometer
step 0.1 cm steplcm step 1

1. Scenario 1: inversion of a physical based electrgnetic model The regression
method is exploited for approximating the inversearetical mapping between
electromagnetic measurements and soil variableghiSaim, the following procedure
is adopted. The samples simulated according tolEM and Wang models are
randomly divided into two equally sized subsets,, itraining and validation sets. The
first one is used for the training of the estimatohile the second one is used for
model-selection purposes. Different configuratiasfsthe free parameters, defined
according to a pre-defined grid, are tested and dhe which provides the best
performance on the validation samples is seledtathlly, the regressor is assessed
using the field measurements.

2. Scenario 2: inference of an empirical based mappimghis operational condition, both
training/tuning and performance assessment of tlehed are done using field
measurements. Due to the limited number of fieldasneements available, a cross-
validation scheme has been adopt&ihgrkassky and Mulier, 1988The rationale
behind this approach is to split the available dammtot subsets(t-1) are used for the
training/tuning the regression technique, whichuagcy is assessed on the remaining
subset. The procedure is iteratedimes, each time changing the configuration of
reference and test sets. At the end, all sampéesarsidered as test.

In both scenarios, various combinations of actind/@r passive microwave measurements
with the following sensor and acquisition geometoyfigurations are considered:

* ActPass data set:

a) Backscattering coefficient polarization HH and esiigy polarization H both at
4.6 GHz and 20° incidence angle (indicatedesass HH4.6-H4)6

b) Backscattering coefficient polarization HH at 4.B1Gand emissivity polarization
H at 2.5 GHz both at 20° incidence angle (indicatefictPass HH4.6-H2)5

c) Backscattering coefficient polarizations HH and ¥Nd emissivity polarizations
H and V both at 4.6 GHz and 20° incidence anglali¢eted asActPass
HHVV4.6-HV4.6.
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» Scatterometer data set

a) Backscattering coefficient polarizations HH VV &°4ncidence angle (indicated
asScatterometer HHVV 23°

b) Backscattering coefficient polarizations HH VV &°2and 40° incidence angles
(indicated asScatterometer HHVV 23°/40°

The aim is to investigate whether and to what exktdiiferent input features affect the
estimation accuracy of the considered estimatiohrtiggue and if the choice of these features
depends on the operational scenario. These coafigns are motivated by: i) similarities to
the acquisition modes of operational microwave rersensing systems; and ii) continuity
with previous research published in the litera{iNetarnicola et al., 2008

Concerning the SVR technique set-up, the LIBSVMwafe Chang and Lin, 201)1is
used for all the experiments. A Gaussian RBF kerseddopted thanks to the limited
computational overhead and the good performanceah in previous analyseBruzzone
and Melgani, 200p The ranges of the free parameters[afe3; 103] for y (the RBF kernel
width) andC, respectively]10~%; 10] for . With regard to the MLP Neural Network, the
Matlab “Neural Network Toolbox” is used. We refer that Notarnicola et al.2008 for
details on the MLP-NN implementation and tuning.

2.4 Experimental Results

The estimation accuracy of the investigated SVRurigpie is evaluated on the set of test
samples according to two figures of merit, namély mean squared erravi$E and the
mean relative erroMRE), defined as follows:

Ntest

1 _
MSE =—— " (diel; - diel;)” (2.8)
Ntest =1
1o |diel; — diel,|
e i Le i
MRE = Z : (2.9)
Ntest =1 dleli

where Nes; denotes the number of test sampl&ig]; anddiel; the measured and predicted
dielectric constant values for thieth sample, respectively. These figures of merg ar
compared with those obtained by the MLP NN on #maes set of samples. Also scatter plots
of estimated versus measured dielectric constdnésdave been considered for performance
evaluation, in combination with linear trend linedasquared correlation coefficien®.
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2.4.1 Results: Scenario 1

The results achieved in terms of mean estimatiocor®in the first scenario investigated are
reported in Table 2.3. Considering the whole ramigeariability of the target parameter, SVR
achieves better accuracy than MLP for both dats setd for all the input feature
configurations, with the exception of tthMRE value in the case of th&ctPassHHVV4.6-
HV4.6 configuration. These results suggest that the SA¢Rrtique has a better generalization
ability than the MLP NN does, i.e., a better capghio learn a mapping that provides higher
accuracy in the prediction of unknown real samplésgs capability stems from the use of the
e-insensitive cost function and the optimizationboth empirical and structural risks during
the training phase.

Analyzing in more detail the results achieved bgywray the configurations of sensor type,
acquisition geometry and mode, a general tendemdynprove the estimation accuracy by
increasing and diversifying the information giveniaput to the SVR technique is observed.
This effect can be seen also with the MLP NN. Bao#thods achieve the highest accuracy (in
terms ofMSE) when two polarizationdHHVV4.6-HV4.$ and two acquisition anglesidVV
23°/409 are provided in input for thactPassandScatterometedata sets, respectiveMRE
values confirm this trend in the case of the MLP, MNMile are almost constant in the case of
the SVR. The improvement in estimation accuraayasnly for values of dielectric constant
lower than 10. This effect can be explained byf#ut that differences in the signal acquired
by the remote sensor among polarizations or adaurisangles are stronger for dry soils than
for wet soils. The use of additional features helgsestimation technique to disentangle the
ambiguity (greater for dry soils than for wet spiimtroduced by soil roughness into
microwave signals. However, while MLP shows a ddgra the estimation accuracy for high
soil moisture content values by increasing the remdf features provided in input, SVR
maintains similar performance in this operatinggeror all the different configurations
considered. This observation points out that th& ®\ethod has a better capability to exploit
the information provided by the additional inputtiges and has higher robustness to the
noise associated with additional input channels/esitipn angles.

By analyzing the scatter plots of estimated versaasured dielectric constant values (see
the examples reported in Figure 2.2) it is possibleobserve the tendency of the MLP
regressor to associate high dielectric constantiegalwith outlier or noisy samples, thus
explaining the worse performance in terms of edimnaaccuracy (especialliSE) and the
slight overestimation of the linear tendency lirecontrast, the estimates provided by SVR
present a quite flat trend (as indicated by theeslooefficients in the graphs), slightly over-
estimating and under-estimating low and high valfegielectric constant, respectively, but
providing on average a small error even in presefaautliers. The difference between the
behaviours of SVR and MLP estimates is enhancelercase of th&catterometedata set,
probably due to its higher ambiguity with respeatthe ActPassdata set (i.e., a larger
dynamic range of roughness parameter values andaliisence of passive microwave
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measurements). This suggests that SVR, especmallyel presence of noisy and ambiguous
input samples, is prone to learn a mapping withater behaviour, which provides estimates
with a reduced error, at the price of a reducedadyn range of the output values at the
extremes. In contrast, MLP shows the capabilitgduer the whole range of output values,
but this leads to higher average inaccuracies éndhtput. Concerning the determination
coefficientR?, SVR does not always provide the highest valuapite providing the highest
estimation accuracy in terms of mean errors. Thisaliour was also observed in the case of
the Scatterometedata set, characterized by a higher ambiguity sTdifierent quality metrics
may sometimes provide competing indications abdat quality of the estimates of a
regression technique. This aspect may becomeatniticen dealing with the model-selection
issue in real operational conditions.
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Figure 2.2. Scatter-plots of estimated versus meakdielectric constant values for Scenario 1
experiments: (a) ActPass HHVV4.6-HV4.6 configurgtend (b) Scatterometer HHVV 23°/40°
configuration. Error bars refer to the standard d#ion of the measured values.
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2.4.2 Results: Scenario 2

Numerical performance achieved in the second smensrreported in Table 2.4. SVR
technique achieves better estimation accuracids iegpect to MLP with botActPassand
Scatterometerdata sets according to all the considered figupésmerit. For some
configurations, such as thctPass HHVV4.6-HV4.8nd theScatterometer HHVV 23the
difference between the two techniques is rathen.hdgmore detailed analysis of the different
figures of merit suggests that SVR is more robust vespect to MLP. The second one shows
an unexpected degrade of the estimation accuracyrfe configuration (i.e., thActPass
HHVV4.6-HV4.6configuration), while SVR is able to achieve gaaxturacies also in this
case. It is worth noting that in this case oneafttange estimate has been excluded from the
computation of the figures of merit associated with MLP regressor, thus indicating the
difficulty of this technique to proper control thh@nge of variability of the output estimates.
This behaviour can be ascribed to the limited atdity of training samples that characterize
this scenario. Indeed, in this operative conditienral networks may be more affected by the
problem of under-fitting/over-fitting. Moreover, élimited number of samples available for
the tuning of the network connection weights makes process instable and affected by the
specific choice of the initial configuration (typity random).

A comparison of the results reported in Table 2ithwhose of the previous scenario
(Table 2.3) indicates that for thActPassdata set the accuracies are worse to some extent,
while for theScatterometedata sets the accuracies are in general highénelfirst case, the
trend is expected, due to the smaller number dhitrg samples that characterize this
operational scenario. In the second case the obdergnd can be due to the high variability
and high range of the roughness condition, clogkadimit of validity of the IEM model.

The quantitative results in terms of figures of mare confirmed by the scatter plots of
estimated versus measured dielectric constant ¥gkigure 2.3 reports two examples). For
the ActPass both SVR and MLP follow the same trend, slightipderestimating low
dielectric constant values and overestimating hdyblectric constant values (with the
exception of theActPass HHVV4.6-HV4.@onfiguration). According td®® values, SVR
estimates present a smaller variability around lthear trend line than the MLP ones.
However, in general the performances are worse igpect to the previous scenario (Figure
2.2). For theScatterometedata set we can observe a behavior similar toahalyzed in the
previous subsection. However, here the higRéstalues are reached by the SVR technique.
Concerning the behaviour varying the input featoomfigurations, it is not possible to
recognize a clear and common trend. SVR presentgasiperformances for the different
configurations considered, with limited improvengerdorresponding to the cases where
additional features are considered. The MLP NNreape shows stronger improvements in
the estimation accuracy considering two frequenarestwo acquisition angles (however, the
accuracies are still lower than those of SVR), whal strong degrade of the estimation
performance can be observed when two polarizagoasised. This points out that the use of
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diversified or additional input features can impgdiie estimation process, but to a less extent
with respect to the first operational scenario.sTéffect can be due to: i) the noise associated
to the additional features considered, that mayodhice further ambiguity in the small
reference set, and ii) the increased complexitthefestimation problem when the number of
input features increases. SVR showed to be robndt effective also in this complex
operational scenario.
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Figure 2.3. Scatter-plots of estimated versus nreakdielectric constant values for Scenario 2
experiments: (a) ActPass HH4.6-H2.5 configuratiang (b) Scatterometer HHVV 23°/40°
configuration. Error bars refer to the standard deion of the measured values.
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2.5 Discussion and Conclusion

This chapter introduced the use of thimsensitive Support Vector Regression technique to
address the challenging problem of soil moistutamnegion at field/basin scale on bare soils
from microwave remotely sensed data. More in detta distinct operational scenarios were
investigated: i) the inversion of a theoretical dzhelectromagnetic model; and ii) the
inference of an empirical based mapping from fesidfimeasurements. The analysis of the
results obtained confirmed the good theoreticaltufes of the SVR method and its
effectiveness for the considered estimation problenthis framework, the SVR is a valid
alternative to the more traditional MLP NN regressmethod since: i) it provided in general
greater (or comparable) estimation accuracie®; was more stable and robust to the outliers
and noise present in the data; and iii) despitengasimilar computational complexity in the
prediction phase, it was easier to handle (no tachire has to be defined) and faster to train.
In particular, from the computational viewpoint S\dRowed a significant reduction (on
average, equal to about three orders of magnitutle respect to the MLP method) in the
computation time required for the training phadee Tifference can be explained by the fact
that MLP requires the definition of the network latecture (typically addressed with a trial-
and-error strategy) and has a learning strategystimauld take into account the presence of
many local minima in the cost function. In contr&®¥R takes advantage of the convex form
of the cost function and simply requires the tunofigelatively few free parameters. All of
these characteristics are of great importanceahagerational scenarios and in the evaluation
of effective soil moisture content processors fesnreal-time or large scale estimations.

Some difficulties were observed in reproducing ¢éméire dynamic range of the output
values, especially in the presence of high ambyguitthe input data. This aspect, which
might be properly controlled by taking into accountltiple criteria during the model-
selection phase, requires further investigationthe© developments of this work will
consider: 1) the study of the effectiveness of MR technique in estimating soil moisture
when applied to distributed data (e.g., SAR imagas)l 2) the definition of a strategy for
combining in an effective way the usually very fewailable ground collected reference
samples with the electromagnetic model simulatfonsraining the SVR.
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A Novel Multi-Objective Strategy for Tuning the
Free Parameters of Non-Linear Regression M ethods

This chapter deals with the tuning of the free paggers of non-linear regression methods for
the retrieval of geo-/bio-physical variables froemote sensing data. We propose to address
this task in the framework of the multi-objectiy®imization, in which a set of two or more
metrics are jointly optimized according to the cepicof Pareto optimality. The formulation
of the proposed strategy is presented with the helpa synthetic data set. Then its
effectiveness for tuning the free parameters ofS¥iR technique is assessed in the domain of
soil moisture retrieval from microwave signals. Téserimental results achieved on data
sets associated with two different operational ¢ooils are discussed and compared with
those yield by the SVR tuned with a traditionadt&gy based on a single metric. This allows
drawing indications about the usefulness and applidy of the proposed strategy in
defining estimation systems for real applicatiomains.

3.1 Introduction and Motivation

In Chapter 2, the effectiveness and usefulnessiflinear machine learning methods for the
retrieval of geo-/bio-physical variables has beatussed and assessed. Generally, machine
learning methods depend on a set of free paramafdith particular regard to the SVR
formalism (since the promising theoretical promertiand the good experimental results
presented previously) they are the regularizatiarameterC, the width of the insensitive
tube ¢ and the kernel function parameters. These parasnetntrol the learning of the
retrieval method and have a direct impact on itsueacy and generalization ability. The
procedure for tuning the free parameters is oftfierred asmodel-selectiorand plays a
crucial role in the definition of a retrieval algbm. In real estimation problems this task is
not straightforward. A large (hypothetically infie) number of possible free parameters
combinations exist for a given problem. At the saimee, very few general guidelines are
available. Several semi-heuristic rules have beaepgsed to relate the free parameters of
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SVR with noise and statistics of input dagmpla et al., 1998; Mattera and Haykin, 1999;
Cherkassky and Yunquian, 2004; Chu et al., 206%r instance, Smola et al1998
suggested to use asymptotically optimal values foportional to the noise variance in the
training data. Mattera & Haykirll999 proposed to select th& parameter equal to the range
of target values. However, no agreement on them@btsetting of the SVR parameters can be
found in the machine learning community. In addifithe available rules are often valid only
under restrictive hypothesis (e.g., a certain fasstion as for the approach proposed by Chu
et al. 004) so that they require a specific expertise indhag machine learning methods
and cannot be easily applicable in real geo/bicspay variable estimation problems. This
calls for the availability of robust, effective apdactical strategies for addressing the model-
selection issue.

In the remote sensing literature, the tuning of Sp&ameters is usually addressed in
terms of a numerical optimization problem, i.eg farameters are tuned according to the
minimization (or maximization) of a criterion fummh, evaluated on the available reference
samples, by means of a numerical search algoriffins requires the definition of: i) the
criterion function and ii) the search algorithm.

Concerning the criterion function, some authorsppeed the use of a theoretical bound.
Chang and LinZ005 generalized to regression problems the radiuggimand span bounds,
which are well-known in the context of classificatiwith Support Vector Machines (SVM).
A similar approach was used by Moser and Serp@®9 for tuning the parameters of a
SVR and retrieving land and sea surface temperdnora satellite data. Another used
theoretical bound is the Vapnik measure, which espnts an approximation of the upper
bound of the prediction risk provided by the statad learning theoryRBurges, 1998; Vapnik,
1998. Since theoretical bounds are computed directynfthe available reference samples
without involving the training of the regressiogailithm, their main advantage is the limited
computational complexity. However, they represest pn approximation of a performance
bound. Moreover, their physical meaning is not dgendly and the definition typically
involves complex analytical formulations difficuti be interpreted for non-expert in the SVR
method.

Alternatively to theoretical bounds, the criterifumction can be defined as an empirical
metric, as it is usually done in geo/bio-physicatigble estimation problems. The rationale is
to train the regression technique with a given fpeeameter configuration on a subset of
reference samples and then to assess its perfoem@amcanother subset of independent
samples (often referred as validation samples) rdoog to the selected empirical metric.
When few reference samples are available, a cralggation scheme may be introduced to
increase the representativeness of training andatedn sets Cherkassky and Mulier, 1998
Commonly adopted empirical metrics are the meamarsguerroMSE (which quantifies the
accuracy of the estimates) and the determinatiefficent R® (which expresses the amount
of variability within the target values accounted by the regression techniqu@&atarnicola

34



A Novel Multi-Objective Strategy for Tuning the E-®arameters of Non-Linear Regression Methods

et al., 2008; Pasolli et al., 20JOEmpirical metrics are independent from the tbk&oal
formulation of the regression technique adopted tand can be exploited while tuning any
regression method. Several studies indicate tlffgictereness in comparison with theoretical
bounds. For example, Smeets et 2007 compared thé1SE empirical metric with several
theoretical bounds showing good performance. Thia nrawback of empirical metrics is the
intensive computational load (their use requireseath iteration the training and the
application of the regression algorithm). Howeuis is typically compensated by their
simplicity and ease of use.

Concerning the search algorithm, a typically usedtegy is the grid searcls¢holkopf
and Smola, 2001 It consists in sampling the parameter searcltesgae., the SVR free
parameters space) according to predefined stegsssing the estimation performance in each
node according to the selected criterion functiod &nally selecting, among the parameter
configuration investigated, the one showing thet lbegerion function value. To reach good
results, a dense sampling of the parameter spaxédshe carried out. This results in a high
computational load. Nevertheless, this strategysisally adopted when dealing with geo/bio-
physical variables retrieval and especially in corabon with empirical criterion functions
(Zhan et al., 2003; Pasolli et al., 201L0ro reduce the computational burden and effityent
explore the parameter space, evolutionary optinaaanethods have been proposed. These
methods start from a pool of initial random sologsothat evolve iteratively till the
convergence to the (near-) optimal parameter cardigpn. In this way a reduced number of
trials are performed with respect to a grid-basgor@ach, while the effects of local minima
of the cost function within the search space arggated thanks to the random component
that characterizes the search process. Exampléseaparticle swarm optimization (PSO) and
the genetic algorithm (GA), which were successfalpplied for addressing the parameter
tuning of SVR with improvements in terms of bothhgmutational time and accuracy of the
solution Zong et al., 2006; Lessmann et al., 2D0&s drawback, these algorithms typically
require the user to set additional parameters, agdine number of iterations and the size of
the searching population.

In this chapter, a novel method for tuning the fpeeameters of the SVR technique is
presented. While model-selection strategies ti@ukliy developed and used in the field of
geo-/bio-physical variable retrieval exploit scataiterion functions, i.e., a single empirical
metric or a single theoretical bound, our methodiet®the free parameters tuning process as
a multi-objective optimization problem, in whichetimulti-objective function is made up of a
set oftwo (or more) metrics. The rationale behind this igetnat different criteria (e.gMSE
andR?) evaluate the goodness of a parameters configarédm different perspectives, and
thus differently contribute to the task considerdthen the available reference samples are
affected by noise and ambiguity (it will be shownthe next section), relying on a single
metric may affect the robustness and the stalafityhe model-selection process and different
considered criteria may become slightly correlated to each other. This implies that the
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configuration of free parameters optimal accordingone metric does not necessarily
optimizes other metrics, thus limiting the possipito effectively control the performance of

the regression system and meet the applicationireggents. This issue is common in the
retrieval of geo-/bio-physical variables from reeigtsensed data, due to the influence of
multiple target properties on remotely sensed $grihe effect of the atmosphere and other
disturbing factorsl{uckman, 1998; Ulaby et al. 1979; Stamm et al.,0)97

In the proposed method the multiple metrics comsdidor model-selection afeintly
optimized according to th@areto optimality (Feldman, 198p This is a well assessed
concept in economics and has been successfullyoigeqbl also in remote sensing for
addressing various problems, such as the featulectis® in hyper-spectral imagery
(Bruzzone and Persello, 2009n the Pareto optimality framework, the physioaaning of
each metric is preserved and multiple solutions @éained. Each identified solution
represents an optimal trade-off between the meffies user has thus the possibility to easily
and effectively select the solution (i.e., configpimn of the free parameters) that best meets
the specific requirements in terms of quality acduaacy of the estimates for the addressed
retrieval problem. Moreover, the joint use of thetnts has the advantage of conveying and
exploiting more and better the information contdime the available reference samples for
driving the model-selection process. In our expernita the proposed method is applied to the
challenging application domain of soil moisturerieatal from microwave remotely sensed
data by using a SVR technique. However, it is ganand can be used either for the
estimation of other geo/bio-physical variables oithwother regression methods. For
comparison purposes, the results obtained by tbpoged multi-objective model-selection
strategy have been compared with those of a toaditimodel-selection based on a single
criterion.

The rest of the chapter is organized into thre¢icex After a brief introduction of the
notation and of the addressed problem with the bekp toy example, Section 3.2 describes
the proposed novel model-selection approach. Theeremental analysis carried out for
assessing the effectiveness of the proposed mdtgds illustrated in Section 3.3. Section
3.4 presents the discussion of the obtained reagnttsdraws the conclusion of the chapter.

3.2 Proposed M ulti-Objective M odel-Selection Strategy

3.2.1 Problem Formulation

The model-selection process for a regression tgaden{e.g., SVR) implies the concept of
goodness of a parameter configurati@n= [w;, w,, ..., w,] € 2, which may involve the

sparseness or the robustness to the noise of #@iosolor the accuracy of the estimates
provided by the regression algorithm. The relevasiceach of these (or other) components
depends on the specific application domain consatleCriterion functions used in standard
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model-selection (e.g., theoretical bounds or emgirimetrics) allow capturing and
guantifying only one component of the goodness pammeter configuration, ignoring the
others. This represents an issue when noise andyaitybaffect the geo/bio-physical variable
estimation problem.

In order to better clarify this concept, let us sidier a simple 1-dimensional (i.e., with just
one input feature) estimation problem in which fbkowing mapping function has to be
approximated:

y=f(x)=x%+2 (3.1)
where x,y € R are the input feature and the corresponding outpuget variable,
respectively. Two setR,,,, andRy;cy of 100 reference samplés;, y;) each are defined.
The input feature values; are generated by randomly sampling the input featijpace
[—1; 1], while the corresponding target valugsare computed according to the mapping
function in (3.1) and by further adding a Gaussiaise terme~N (0, std,). std, is the noise
standard deviation, which has been set to a sf&b) or large (0.2) value (compared to the
range of variability of the target values) in these of theR;,,, and R,y reference sets,
respectively. The noise term models in a simple alathe disturbances and ambiguities that
may affect a real geo-/bio-physical variable estiamaproblem, such as the influence of the
atmosphere or the sensitivity of remotely senseth da multiple target properties. A
representation of the generated reference samgpleglaas of the mapping function in (3.1)
is shown in Figure 3.1.
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Figure 3.1. Reference samples generated for thexaynple under the hypothesis of (a) low and (b)
high noise affecting the dat® (o, andRy oy data sets, respectively).
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In this example, the mappiri§) is approximated by means of the SVR technique.tlihimg

of the free parameter® is carried out according to a traditional moddésion strategy
based on a single criterion function. Due to thatkd number of samples availablet—#old
cross-validation procedure is implemented. Theetationsists in randomly dividing the
available reference samples iteubsets. Iterativelyf-1) subsets are used as training while
the remaining subset is used as validation. In Way, all the samples are used for both
training and validating the algorithm, thus inciagsthe representativeness of training and
validation sets and reducing the likelihood of bsesults of the model-selection process. In
the experimentd is set equal to 3, while the ranges for the freeameters ares €
[1073,10], € € [1073,10%] andy € [1073,103], wherey is the RBF kernel width. Two
experiments are run in parallel using two empiricegtrics: the mean squared errMSE)
and the statistical determination coefficig’t The search within the parameter space is
carried out with the grid search strategy considethe following quantization for the search
space:[1073,10725,1072,...,10%] for C andy, and[1073,107%°,1072, ...,10] for ¢. At the
end of the model-selection procedure, the traimetitaned SVR algorithm is run on a new
set of samples, the test set, in order to evaltigeestimation performance on independent
samples. The entire procedure is repeated for thetHow noise and high noise reference
data.

Table 3.1 summarizes the achieved results. Undeassumption of a low noise level in
the reference dataR{,,, data set both criterion functions considered lead to venyilar
solutions of the model-selection problem. The S\$Rn@ation performance evaluated on the
test samples are almost identical. In case of higlee affecting the reference daRyfcy
data set) rather different solutions of the moadtation problem are obtained. WhSE is
optimized, the best performance in terms of acqura@chieved MISE= 0.032), while 84%
of the variability inside the target values is eiped R = 0.84). By optimizing theR?
metric, the regression algorithm explain 90% of\hdability inside test samples, but with a
reduced accuracWISE= 0.18) and an over- and under-estimation behdwoiolow and high
target values, respectively.

This simple example shows that a standard modetseh strategy based on a single
criterion function, which is effective in relatiyesimple operational conditions, decreases its
reliability when the complexity of the problem ieases, i.e., when the noise and ambiguity
inside the reference samples increase. Since timditoon often occurs in geo/bio-physical
variable estimation problems, it is crucial to depea methodology being able to deal with
this challenging condition.
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Table 3.1. Performance achieved by the SVR tecamidnen run on test samples under the hypothesis
of low R0y data set) and highR(y,;y data set) noise affecting the data. Each solusamssociated
with the SVR parameters configuration that leadh&optimal MSE or Rvalues according to a
single-objective grid-search strategy.

Criterion SVR parameters SVR Estimation Performance

Function y c

£ MSE R? Slope  Intercept

R;ow Data Set

MSE 0.152 284.8 0.017 0.0054 0.98 0.86 0.27
R 0.152 284.8 0.001 0.0056 0.98 0.85 0.27
Rycy Data Set

MSE 0.001 81.11 0.059 0.032 0.84 0.96 0.14
R 23.1 0.001 0.774 0.18 0.90 0.001 1.88

3.2.2 Proposed Multi-Objective Strategy

For a general geo/bio-physical variable estimapooblem, let us assume that a get
{0:(w), Q2 (w), ..., @, (w)} of u (whereu > 2) criterion functions has to be optimized. Each
criterion quantifies the goodness of a given camfigjon of free parameter®@ from a
different (and sometimes competing) perspectiveaexample, the s@& may consist of the
MSE the R?, theslopeof the linear trend line and other criteria. Imler to face the model-
selection issue based on all the criteri@jra simple strategy could be the definition of ane
scalar metricE(w) combining the desired s of criterion functions through a weighted
average:

u
E@) = ) ci0:i(w) (3.2)
i=1
where ¢y, c,, ..., c;, are the weights of the average function. The goméition w* that
optimizes the expression in (3.2) will represer siolution of the model-selection problem.
Despite its simplicity, this formulation has an ionfant drawback, i.e., the definition of the
weights ¢c; of the average function, which should be done hy wser. This task is very
critical, since i) it should be carried out empaitlg; ii) it significantly affects the final resut
and iii) the criteria involved may have intrinsigferent scales. Another important limitation
is the fact that the physical information conveygdhe resulting new scalar metric does not
reflect the original metrics and becomes diffidalinterpret.
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To avoid these problems one can express the optiilmiz problem according to &-
dimensional multi-objective functioQ'(w) which is made up of th&' < u objectives
Q:(w), 0, (w), ..., Q,,(w) that represent the set of adopted criterion fonsti

Q'(w) = [Q1(w), Qz(w), ..., Qu/(w)] (3.3)
All the metrics ofQ’(w) are jointly optimized and are considered equalipartant. Thus the
multi-objective optimization problem can be fornteld as follows:

argmin

w

This problem is characterized by a vector valug@ailye function; thus it cannot be solved
deriving a single optimal solution as in scalarimptation problems. Instead, a sPtof
optimal solutions can be obtained following the et of Pareto dominance(Feldman,
1980). A configurationw® is said to beParetooptimal if it is not dominated by any other
configuration in the search spa@ei.e., there is no othes such that:

Qi(w) < Qi(w")Vi=12,..,u (3.5)

{Q'(w)} subject taw = [w;, wy, ..., w,] € 2 (3.4)

and
Qi(w) < Q;(w*) foratleastani=12,..,u (3.6)

In other wordsw* is Paretooptimal if there exists no other configuration afr@meters that
would decrease a criterion function without incregsat least another one at the same time.
The setP of all optimal solutions is called Pareto-optinsat, while the plot of the objective
function of all the solutions in the Pareto setoféen referred as Pareto froltF =
{Q'(w)|w € P}.

Because of the dimensionality of the search spaxk the complexity of the multi-
objective optimization problem, an exhaustive deavt the setP of optimal solutions is
typically unfeasible. Instead of identifying theidrset of Pareto optimal solutions, one may
estimate a seé®* of non-dominated solutions with values of the obye functions as close as
possible to the Pareto front. This task is typicalandled by using evolutionary algorithms,
which allow an efficient and effective investigatiof the parameter space also in the
complex case of the multi-objective optimizatiorardus evolutionary approaches have been
proposed for this task in the last few years inlitieeature Fonseca and Fleming, 1998; Deb,
2001).

The main advantage of the jomtdimensional optimization approach consists infdo
that it avoids aggregating metrics thus capturing eonveying different and heterogeneous
information (in our case concerning the goodnesa parameter configuration) into a single
measure. Thanks to the multi-dimensional formuratiof the optimization problem, it
preserves the physical meaning of each metric dodisaeasily and effectively identifying
various possible optimal trade-offs among differesitierion functions. The final selection of
the optimal solution to the model-selection probisrdemanded to the user, who can identify
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the best trade-off among the considered criteridhenbasis of the specific requirements of
the considered retrieval problem.

For the sake of clarity, let us consider againttheexample presented in Section 3.2.1.
The experimental set-up remains the same, wittexiception of the model-selection for the
SVR technique, which is addressed by jointly optimy the two considered empirical
criterion functions NMISE and theR?) according to the concept of Pareto optimalityr Fo
implementation requirements, the optimization wassied out onMISE and (1-F) values, so
that the ideal optimal value is O for both metrig¢hie subset of dominated (non-optimal)
solutions investigated during the evolutionary psxcas well as the estimated Pareto front are
shown in Figure 3.2. The shape of the front cleaHgws the competing behavior between
the two considered criteria: the minimization o€ thrst index implies an increase of the
second one and vice-versa. The extremes of the (iraicated as Solution 1 and Solution 2)
are associated with the high®48E andR? values, respectively. It is worth noting that thes
two optimal (in the Pareto sense) solutions arensmessarily found by traditional model-
selection strategies based on a single metric.hasvs in the lower-right part of the plot,
multiple (sub-optima) solutions show nearly the s&hperformance (around 0.9), but rather
different MSE accuracy (ranging from 0.11 to 0.17). Looking a Bf performance only,
these solutions appear equivalent. Thus, an autorsalection of the solution showing the
highest value oR? while minimizing theMSE is possible only when a joint optimization of
both the criteria is carried out. Depending ondpelication domain considered, Solutions 1
or 2 may not represent the best choice for medtiagiser requirements. Our model-selection
approach provides the user also with different temhs, the remaining set of non-dominated
solutions lying on the Pareto front, any of therpresenting a possible optimal trade-off
among the optimized criteria. For example, the iappbn could impose an upper bound on
the estimation accuracy (such MSE< 0.05). Looking at the Pareto front, the user Imes t
possibility to select the SVR parameter configamatihat meets this requirement while
maximizes at the same time tR& metric (Solution 3). This kind of solutions to theodel-
selection process can be systematically identifiely if a multi-objective optimization that
preserves the physical meaning of the criteriorctions is carried out.
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Pareto-optimal solutions taken from the estimatadeBb Front of Figure 3.2: (a) Solution 1, showing

the lowest MSE; (b) Solution 2, with the highestaRd (c) Solution 3, a possible trade-off amorg th
two previous solutions.

3.3 Experimental Analysis

3.3.1 Data Set Description

For assessing the effectiveness of the presente@lmselection approach, experiments on the
estimation of soil moisture content from microwaramote sensing data with the SVR
technique are carried out. As pointed out in treviaus chapters, this application domain is
particularly challenging due to the non-linearitiytbe relationship between the microwave
signals and the target parameter as well as thats#tly of microwave signals to different
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target properties, such as surface roughness gyedat®n. These features make this domain
suitable to investigate the effectiveness of tleppsed model-selection strategy.

Two data sets are considered in our analysis. Tpesent quite heterogeneous
characteristics (in terms of data set compositsignal properties, investigated area, etc.) and
are associated to two different operative scendfiable 3.2). The first data set, referred as
Scatterometedata set (the same considered for the analyssepted in Chapter 2), consists
of 17 field soil moisture content measurementsgabwith the corresponding backscattering
coefficients at HH polarizations and 23°/40° incide angles acquired with a C-band field
scatterometer.Mattia et al. 2003 In addition to the field samples, a set of thremdred
simulated samples were generated according tantegral Equation Model IEMAHung et al.,
1992 run under the same conditions (in terms of sigmaperties and soil characteristics) of
the field measurements. Please note that for #perement the generation of the simulated
samples do not include too wide ranges for the inagmut variables, as done for the
experimental analysis in Chapter 2. Since simulatedples are used for training/tuning the
regression system, this allowed reducing the coatjuiital burden of the experimental
analysis, at the price of a reduced generalityhefihferred relationship. For the aim of this
analysis, this issue is not relevant. The assedsaidhe estimation performance is done on
the experimental field samples.

The second data set (referredS#sRdata set) is representative of a completely differe
operational scenario. It consists of dielectricstant measurements acquired in June and July
2010 in 75 heterogeneous vegetated sites (meadosvpastures) in a small Alpine valley
located in Alto Adige/South Tyrol, Italy. The avgeamoisture content of the area is around
15%-20%, but wet patterns with higher soil moistiue to 50%) can be observed mainly due
to irrigation in managed meadows and small supalfrevers on the valley side. For a more
detailed description of the measurement procedndetlze study area, we refer the reader to
Chapter 5. Remotely sensed microwave data wereiradqeontemporary to the field
campaigns and consisted of two C-band RADARSAT2 $A&ges. After the pre-processing
of the data, backscattering coefficients were exixh and associated to the ground
measurements. The data set was completed by inglfieiatures extracted from ancillary data
(this issue will be described thoroughly in the m&hapters). No theoretical model
simulations were considered in the case of 8%R data set, in order to assess the
effectiveness of the proposed model-selection naetimo case of limited availability of
reference samples. This realistic scenario is @adily challenging since the complexity of
effectively training/tuning a regression methodugher increased. Part of the available field
samples (i.e., 57 samples) were assigned to thererefe set used for training/tuning
purposes. The remaining 18 samples were used tatitpively assess the estimation
performance. The sampling was carried out manuallgnsure that both training/validation
and test sets were well representative of the wtaolge of target variable values.
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Table 3.2. Main characteristics of the two datessminsidered in the experimental analysis.

Data Set Scatterometer SAR

Study area Bare agricultural fields Alpine meadows and pasure
Micr owave Sensor Field Scatterometer Fully Polarimetric SatelliteFBA
17 field samples (test) + 75 field samples
# Samples 300 simulated (IEM) samples (18 test + 57 training/validation
(training/validation with 3-fold CV) with 3-fold CV)

Backscattering coefficients

Backscatteri fficients HH o .
ackscatering coetiicien's HH/HV/VV polarizations + ancillary

Input Features polarization 2:] 2|3;5/40 incidence information (NDVI, land-use class,
g local incidence angle, local height)
Target valuerange 5. 15 3+ 923

(dielectric constant)

3.3.2 Design of Experiments

For all the experiments, a Gaussian RBF kerneladapted for the SVR method. The ranges
of variability of the free parameters to tune weet to[1073; 103] for the kernel widthy,
[1073; 103] for the regularization paramet€rand[10~3; 10] for the width of the insensitive
tube ¢. For the implementation of the SVR algorithm wengidered the LibSVM library,
freely available onlineGhang et al., 2011

Concerning the multi-objective model-selection @ss; four empirical metrics were
considered: the mean squared errSE € [0,©] ideally MSE = 0); the statistical
determination coefficient¢ € [0,1], ideallyR? = 1); theslope(slopee [-o,0], ideally slope=
1) and theintercept (intercept e [-o0,0], ideally intercept= 1) of the linear fit between
estimated and measured target values (which prevideful information about under- or
over-estimation trends). To solve the multi-objeetioptimization problem and find out
Pareto-optimal solutions, a variation of the Nonnbwated Sorting Genetic Algorithm 1l
(NSGA-II) was implemented. This algorithm showedmising performance both in terms of
accuracy in the approximation of the Pareto frontd aomputational time in several
optimization problems and in comparison with otbearch algorithmsJeb et al. 2002 For
this reasons it has been selected for our expetam&¥ie refer the reader to this paper for
details on the algorithm. In order to take intocaad the wide range of variability of the free
parameters, in our experiments the initializatidrthe chromosomes has been modified by
means of an exponential random function. The pajounisize was set equal to 1000 and the
maximum number of iterations to 10. These settingge been selected after preliminary
experiments aiming at identifying the most suitalifade-off among computational
complexity and stability of the results. All theterion functions were expressed in such a
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way their ideal value was 0 (i.—(1 - R?), slope— (1 — 5lopd), intercept— [intercept,
respectively).

In order to simulate and investigate different jjussoperative scenarios, the model-
selection process has been addressed with sewvardadications of the adopted metrics as
objectives of the proposed multi-objective strategr comparison purposes, a traditional
mono-objective model-selection procedure has bésm immplemented. More in detail, the
four empirical metrics considered for the proposediti-objective model-selection were
exploited independently to drive the model-selatiio combination with the well assessed
grid-search strategy. The quantization of the $eapace was defined according to a
logarithmic strategy, which divided the search spamto 4913 combinations. In each
experiment, SVR was trained/tuned with the avadakference samples in order to infer the
mapping between input features and target variabédues. For increasing the
representativeness and stability of training antidation sets, a 3-fold cross-validation
procedure has been adopted for both data sets. tAftdraining/tuning phase, the SVR with
the selected parameter configuration was run onirtlependent test samples, in order to
guantitatively assess the estimation performanoethe sake of brevity, in this analysis we
focus the attention on two sets of experiments:efrpent 1, in which all the four criteria are
included in the optimization problem; and Experitn2nwhere only two criteria are exploited
for the multi-objective model-selection.

3.3.3 Experiment 1. M odel-Selection Using All the Criterion Functions

This first set of experiments is aimed at invesiigathe effectiveness and usefulness of the
proposed multi-objective model-selection strategythe complex scenario of numerous (in
this case four) criteria to optimize. Among all &ar optimal solutions identified by the
proposed algorithm, we selected (as explanatoryple those lying at the extremes of the
4-dimensional Pareto front. Each extreme is charaetd by the best value found for one of
the four metrics while minimizing the others. Thes#utions were compared with those
achieved by the mono-objective model-selection.|daB.3 and 3.4 summarize the results of
these experiments, showing the SVR parameter amatiigns found for each solution and the
performance (in terms of the four empirical metrit® computational time taken on a Intel®
Core™ 2 duo 2.53GHz CPU and 3GB RAM personal coemand the number of SVR calls)
achieved on test samples for both SuatterometeandSARdata sets, respectively.
Concerning theScatterometerdata set, a first analysis of the results cleatipws a
competing behavior among all the metrics considerdlde analysis. Indeed, the optimization
of each metric leads to the worsening of the othEnss result stands for both the standard
grid search and the proposed multi-objective apgroaFor example, the parameter
configurations selected for minimizing the errasl(gions 1a and 1le) are associated with both
an increased spread (i.e., low) and a slightly flattening of the target value dyric (as
indicated by theslope andinterceptvalues). Analogous observations can be drawn fer th
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other selected solutions. This behavior is motdaly the intrinsic ambiguity in the
backscattering coefficients due to the quite hegeneous conditions in terms of soill
roughness that characterize theatterometedata set. Table 3.3 also shows that the proposed
model-selection strategy outperforms the standamhaiobjective approach, despite the
slightly higher computational time required. Besitle slightly better performance for the
metric optimized in each solution (e.g., M&Ein solutions 1a and 1e), which is an expected
result due to the use of the more effective geragorithm for addressing the optimization
process, our method shows better performance w#pect to the mono-objective model-
selection also looking at the other metrics. Fanegle, very similar values for thitercept
metric are achieved by both model-selection method®lution 1d and solution 1h (-0.7 and
-0.64 for the grid search and the proposed strategpectively). However, the solution found
by the multi-objective approach shows much betenfggmance in terms of all the other
metrics with respect to the corresponding solutbthe traditional mono-objective method
(6.55 vs. 10.35 foMSE 0.6 vs. 0.49 foR? and 0.93 vs. 0.79 faslope respectively). This
aspect points out the great advantage of the mtimization of multiple criteria, which
allows effectively and easily optimizing all the mes involved in the model-selection
process at one time.

With respect to theSAR data set (Table 3.4), a competing behavior betweetrics
measuring the accuracy and those indicative otiyftmamic of the target values is evident for
both model-selection strategies. This suggestsahather high ambiguity characterizes the
backscattering coefficients of tigARdata set. The ambiguity in this case is explainethe
heterogeneous land-cover and topographic conditigpgal of the Alpine environment,
which persist despite the use of ancillary dataadditional input features. A one-to-one
comparison between the solutions of the standamorobjective strategy and those selected
for the proposed strategy points out again thatrethod leads to a slight improvement in
terms of the target metric and to rather bettefoperance in terms of the other (competing)
metrics. This result is particularly evident foetholution 2g, which shows a slightly higher
value of theslope metric (0.83) with respect to the correspondinfytsan of the standard
approach (0.82) while exhibits a sharply lower meaor MSE = 9.57 vs. MSE = 11.22,
respectively). Such a behavior confirms again tffeceveness of the proposed multi-
objective approach with respect to a traditionatleieselection strategy that relies on a single
metric.
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Table 3.3. SVR parameters configurations and cpording estimation performance evaluated on
test samples (Experiments 1, Scatterometer datasedtitions 1(a) — (d) are associated with the
optimization of each metric separately trough alggearch algorithm; solutions 1(e)-(h) are
identified by the proposed multi-objective approgmhtly using all the metrics and choosing the
extremes of the estimated Pareto front. The medhiosving the best values are highlighted.

Computation

Solution SVR parameters SVR Estimation Performance
D Y C £ MSE R®  Slope Intercept Time
Mono-Objective Model-Selection
la 003 10 316 323 064 0.66 2.85 -
1b 003 7499 3.16 1082 0.69 138  -5.42 ( 49[13?‘)301
1c 018 316 0.32 797 056 110  -0.76
SVR calls)
1d 0001 316 3.16 1035 049 079 -0.70
Proposed Multi-Objective Model-Selection
le 0059 173 2.89 293 065 061 3.68
1f 0068 054  4.08 489 07 024  7.39 2425 [sec]
1g 0077 528 045 74 054 1.03  -0.65 (-4517
1h 0038 078 1.37 655 0.6 093 -0.64 SVR calls)

Table 3.4. SVR parameters configurations and cpoading estimation performance evaluated on
test samples (Experiments 1, SAR data set): snBifiga) — (d) are associated with the optimizatbn
each metric separately trough a grid-search aldarit solutions 2(e)-(h) are identified by the
proposed multi-objective approach jointly usingthk metrics and choosing the extremes of the
estimated Pareto front. The metrics showing the¢ \msies are highlighted.

Solution SVR parameters SVR Estimation Performance Computation
ID Y C £ MSE R®  Slope Intercept Time
Mono-Objective Model-Selection
la 018 316 00l 881 079 0.73 1.85 Lo
1b 018 316 001 88l 079 073 1.85 (49[13?‘)301
1c 0.18 1000 0.001 1122 073 0.82 11
SVR calls)
1d 0.18 1000 0.001 1122  0.73 0.82 11
Proposed Multi-Objective Model-Selection
le 023 19.02 0001 857 08 073 1.9
1f 023 19.02 0001 857 08 0.73 1.9 1867 [sec]
1g 013 9917 021 957 076 0.83  1.06 (~4423
1h 02 7901 0.16 11.06 073 083 1.01 SVR calls)
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3.3.4 Experiment 2: M odel-Selection Using Two Criterion Function

In this second set of experiments we investigate dperative condition in which two
competing metrics are considered in the model-8eteproblem, in order to study in greater
detail the behavior of the proposed approach. Thidd be the case in which end-users give
priority to some metrics with respect to others.

In the case of thé&catterometerdata set, Experiments 1 showed that almost all the
considered criteria present a competing behavier toneach other. For this reason, in this
experiment we carried out several trials considgriifferent possible pairs of objective
functions to be optimized. For the sake of brewtwg, report the example in which the mean
squared errorMSE) and the determination coefficierf®j are used in the multi-objective
model-selection process. The estimated Pareto fsosttown in Figure 3.4. As expected, the
graph clearly points out the competing behavior mgnthe two considered metrics. A first
subset of optimal solutions is associated withgrenbince of the SVR algorithm quite similar
in terms of MSE, yet relatively different in terms of determinaticoefficient. Similarly, a
second subset of solutions determines similar pedace of SVR in terms ¢¥ values, yet
significantly different behavior in terms MSE These two subsets meet in the knee of the
estimated Pareto front. Thanks to this visual in8pa of the front, the user can easily
identify and select the optimal (in the Pareto sgesnfiguration of parameters that addresses
the requirements of the considered application.gxample, instead of selecting the solutions
at the extremes of the Pareto front (Solutionsd 2n which lead to the best performance in
terms ofMSEandR?, respectively, the user could choose a solutiar tiee knee of the front
(e.g., solution 3). A visual analysis of the saafiots associated with the three identified
configurations of parameters (Figure 3.5) confiimat solution 3 results in a good trade-off
among the two considered metrics.
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Figure 3.4. Estimated Pareto front using MSE afAdrietrics (Experiments 2, Scatterometer data set).
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Figure 3.5. Scatter-plots of estimated versus measiest dielectric constant values associated with

three possible optimal solutions taken from thevesed Pareto Front of Figure 3.4: (a) Solution 1,

showing the lowest MSE; (b) Solution 2, with thghkist B and (c) Solution 3, a possible trade-off
among the two previous solutions (Experiments &it&ometer data set).

Concerning theSARdata set, the analysis in Experiments 1 has showlear competing
behavior among the metrics quantifying the erral Hrose expressing the under- and over-
estimation tendency of the estimations. Here weudis the example in which th&éSE and
the slope of the linear tendency line are involved in thetimgation process. However,
similar results are obtained with other combinatiasf competing metrics used for the
optimization (e.g.MSEandintercept etc.). The estimated Pareto front is shown iufeg8.6.
Also in this case three different regions can benidied: i) the subset of solutions which
result in similar accuracy but different capability reproduce the dynamic of the target
values; ii) the subset of solutions which resulsimilar capability to reproduce the dynamic
of the target values but different accuracy; andhie subset of solutions lying near the knee
of the front, which are associated with performaquie close to the optimal one according
to both the metrics. For our illustrative example® selected three possible SVR parameter
configurations belonging to each subset of solgti@figure 3.7). Again, the achieved results
suggest that with the help of a visual inspectibthe estimated front, the desired trade-off
among the considered criterion functions can belyeasd effectively identified. These
results are in agreement with those obtained ierogixperiments (not reported here for the
sake of brevity) carried out with other metric dgofations.
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Figure 3.6. Estimated Pareto front using MSE armbslmetrics (Experiments 2, SAR data set).
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three possible optimal solutions taken from tharested Pareto Front of Figure 3.6: (a) Solution 1,

showing the lowest MSE; (b) Solution 2, with thstlséope; and (c) Solution 3, a possible trade-off
among the two previous solutions (Experiments R &#a set).

3.4 Discussion and Conclusion

In this chapter a novel approach has been preserteth can tune the free parameters of the
Support Vector Regression technique to be applethé estimation of geo-/bio-physical
variables from remotely sensed data. The modetseteis addressed as a multi-objective
optimization problem, in which the multi-objectivenction is made up of a set of two (or
more) metrics. The metrics are jointly optimizedcading to the concept of Pareto
optimality. In this framework, the physical meanioigeach metric is preserved and multiple
solutions (i.e., configurations of SVR parameteas® obtained. Each solution leads to a
different optimal trade-off between the metrics sidered.
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The proposed method has been assessed in theispewf challenging application
domain of soil moisture retrieval from microwavenaely sensed data. Several experiments
were carried out with two data sets representafore two rather different operative
conditions, i.e., the retrieval of soil moisturebare agricultural fields with the availability of
numerous and well representative (simulated) raferesamples and the retrieval of soll
moisture in vegetated mountain pastures and meadativdimited availability of reference
samples. Despite the different operative conditi@ssociated with the two data sets
considered, the proposed method achieved in badsgaromising results and outperformed
the traditional mono-objective model-selection. sTBuggests that the proposed approach is
effective for facing the model-selection issue, a¥:it is characterized by an intrinsic
increased robustness with respect to traditionptagches, since each solution obtained is the
result of the optimization of multiple metrics; &) allows one deriving and choosing
effectively trade-off solutions that jointly optire the metrics selected; and 3) it provides the
user with a simple tool for the selection of thegoaeter configuration that best meets the
requirements and the constraints of the specifiteral problem considered. Concerning the
last point, it is worth noting that the possibility visually individuate the solution that best
meets the user requirements by means of the ingpeat the Pareto front is feasible only
when two (as in our experiments) or three objestiaee considered. When more objectives
have to be optimized, the method has shown to woogerly, despite more effort is required
to the end-user to search among all the Paretonapsolutions the one (or those ones) that
satisfies the application constraints. An interestdevelopment of this work could be the
definition and assessment of (semi-) automatictesjias for the selection of the optimal
trade-off given the requirements of the specifiplegation domain considered, in order to
reduce the effort required to the end-user in pghase when more than three metrics are
considered.

From the computational viewpoint, the proposed rulljective strategy only showed a
slight increase in the time required for the preso®s with respect to the mono-objective
approach run in the same experimental conditiohs i due to roughly the same number of
calls to the SVR algorithm. Actually, the majordf/the computational effort was required for
running the SVR algorithm and computing the emplrimetric values. Such a result points
out that the advantages of the multi-objective nhgeiection discussed previously can be
achieved without a dramatic increase of the contjmunal overhead with respect to traditional
mono-objective strategies. For the reduction ofdbmputational time, which is usually an
issue in real application problems, one may acthenpopulation size and the number of
iterations of the genetic search algorithm. Anotinégresting possibility could be the use of
multi-core system architectures, in order to exploé intrinsic parallel nature of the model-
selection process.

It is worth noting that, even though the proposeddefselection strategy has been
experimentally assessed in the application domfsoib moisture retrieval from microwave
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remotely sensed data with the Support Vector Regmegechnique, it is general and can be
integrated in the design of any system for geo-fihigsical variable estimation based on a
regression method that requires the tuning of p@@ameters. Moreover, since no constraints
are given on the choice of the considered metthes,user can define the model-selection
process in the way that best fits the requiremehtguality and accuracy of the addressed
application problem.

A further developments of this work could be theluision in the model-selection process
not only of continuous valued free parameters @sedn this work) but also of discrete
valued parameters, such as the choice of the kdéumektion type in the case of kernel
estimation methods. Moreover, the proposed muitgailve approach could be extended to
address other crucial steps of the geo-/bio-phiysi@aable estimation process, such as the
choice of the features to give as input to theegegjon technique. All the variable terms of a
regression system have a strong impact on thetguaid accuracy of the final estimates.
Thus their tuning may take advantage from the pgegamulti-objective strategy to further
improve the robustness and reliability of the eation. Finally, another important
development of the analysis carried out would lberther validation of the proposed method
in different application domains (e.g., the estiorabf other geo/bio-physical variables from
remote sensing data), also by including differeats sof empirical metrics and (more
computationally efficient) theoretical bounds tdiopze.
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A Novel Hybrid Approach
to the Retrieval of Geo-/Bio-Physical Variables
from Remote Sensing Data

This chapter presents a novel hybrid approach te #stimation of geo-/bio-physical
variables from remotely sensed data. This appraatégrates theoretical analytical models
and empirical relationships based on field referersamples to increase the reliability and
the accuracy of the estimation. The estimation ggeds modeled by two terms: the first one
expresses the relationship between the input featwand the target geo-/bio-physical
variable according a theoretical model based on phgsics of the considered problem. The
second term corrects the deviation between thexalathodel estimates and true target values
according to an empirical data-driven model. Thedais derived by exploiting the available
(typically few) field reference samples. In this ywthe robustness and generality of
theoretical model based estimates, which stem tl@nrigorous theoretical foundation, is
preserved, while the bias and imprecision (due tmp#fications in the analytical
formulations of the model with respect to the reatimation process) are reduced. The
experimental analysis is carried out in the chafjenfield of soil moisture content retrieval
from microwave remotely sensed data. Two diffecemntection strategies are investigated.
The results achieved with two data sets point bt éffectiveness and potential of the
proposed hybrid estimation approach.

4.1 Introduction and Motivation

As discussed and investigated in the previous ehsyoff this thesis, the retrieval of geo-/bio-
physical variables from remote sensing data caadbleessed following two main approaches:
i) the derivation of empirical data-driven relatstiips; and ii) the inversion of physical based
analytical models. Both approaches present strermthalso limitations.
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The first approach relies on the availability ofet of reference samples, i.e., couples of
in-situ measurements of the desired target variable adsdciwith the corresponding
measurements of the remote sensor. These samplesxploited for directly deriving an
empirical mapping between remotely sensed datdaagdt geo-/bio-physical variable. Often,
statistical regression techniques in combinatiorth wparametric (linear, logarithmic or
polynomial) functions are exploited. Then the rielaship identified is extended to the whole
satellite image Qolombo et al. 2003; Heiskanen, 2006; Teodoro et 200%. When the
complexity of the retrieval problem increases, winedlly more sophisticated parametric
relationships Q@'Relley et al.; 1998 or even advanced non-parametric regression method
(Bruzzone and Melgani, 2005; Moser and Serpico, 2808 used. Empirical relationships are
appealing since they are typically fast to derine guite accurate. Moreover, they abstract
complex physical phenomena to a higher level, wieeth be easily addressed by non-expert
without a specific background in the field. The marawback is the need of a sufficient
number of possibly well representative referenaepdes. This condition is not verified in
many practical geo-/bio-physical variable estimatiproblems, such as near real time
monitoring. Indeed, the collection of ground measwents requires the human intervention
and is usually a time-consuming and expensive fgskeover, errors may occur for various
reasons during the measurement process, thus vagatffecting the quality and quantity of
reference samples available. Another importanteigsuhe fact that empirical relationships
are typically site and sensor dependent, sincevelrirom samples collected under specific
operational conditions. This limits the possibility extend their use to different areas and
different remote sensing systems, since they rewveid only under the conditions in which
reference samples have been collecmdmbo et al., 2003; Meroni et al., 2004

The second approach demands the definition of #wretl mapping function to an
analytical electromagnetic model. Such models aaseth on a solid physical based
description of the mechanisms involving the inteoacof the electromagnetic radiation and
the target object of interest. In the direct operatl way, they simulate the response of a
target object as function of: 1) the target chamastics (i.e., structural, chemical and
biophysical variables); and ii) the signal charastes (i.e., wavelength, incidence/reflection
angle, etc.). Thus in the inverse operational wegy tcan be used to represent the mapping
between the measurements at the remote sensdnandriable of interest. A wide variety of
analytical electromagnetic models has been propwst literature, with different levels of
complexity and generalityFung et al., 1992; Jacquemond and Baret, 1990;Veihb984
Thanks to the solid physical foundation and theewrgnge of applicability (in terms of both
target properties and system characteristics) trel@agnetic models can operate in more
general scenarios that are difficult to represerditgh the collection dh-situ measurements.
For this reason, they are particularly appealingddress the estimation of geo-/bio-physical
variables from remote sensing data. A major concemelated to the fact that they rely on
hypothesis and assumptions that simplify theiresentation of real phenomena. This issue is
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intrinsic in the modelization process and can lmiced (but not completely elimintated) by
increasing the complexity of the model, at the @raf a reduced generalization ability.

Another drawback of electromagnetic models is et that they do not take into account
issues of the specific estimation problem consmiesich as sensor noise or calibration
errors.. A random contribution (with predefinedtdizution derived from the prior knowledge

on the estimation problem) could be applied tottieoretical model in order to handle the
variability and non-linearity of the inaccuracies different regions of the feature space
(Notarnicola et al., 2008 However, often the results are not satisfactory.

In order to convey the strengths of both approacinesnely emprical relationships
inference and analytical models inversion, a ndwdrid approach to the estimation of geo-
/bio-physical variables is formulated. The mainiale behind this approach is the
integration and exploitation of both a set of (fee@ld reference samples and a theoretical
analytical model. In greater details, the theoedtimodel is used for derive the mapping
between input features and the target geo-/bioipalyvariable, while the field reference
samples are exploited for modeling in the featyrace domain the deviation between the
theoretical model predictions and the true targgties. The aim is to overcome or at least
reduce the limitations (such as the analytical $ifngtions) of theoretical models while
keeping at the same time their characteristicerims of generalization ability and robustness
coming from the rigorous theoretical foundation.n€erning the characterization of the
deviation between theoretical model predictions tane target values, two possible strategies
are proposed: i) thglobal deviation biaswhich assumes a constant behavior of the dewiatio
in the whole feature space for modeling biases éetwtheoretical models and real world
phenomena espeicially in case of very limited amlity of field reference samples; and ii)
thelocal deviation biaswhich takes into consideration the more realisandition in which
the deviation is variable within the input spacelemthe assumption of the availability of
slightly more reference samples. In our experimémsproposed approach is applied to the
challenging application domain of soil moisturerieatal from microwave remotely sensed
data. However, it is general and can be used iarapplication domains where the limited
availability of field reference samples and thetigphaand temporal variability of the target
geo-/bio-physical variable represent a strong &ton for the inference and applicability of
empirical models.

The rest oft he chapter is organizeed into threeensections. Section 4.2 presents the
genearal formulation of the proposed hybrid reaiepproach and explains the details about
the two proposed strategies for modeling the dmndtetween model predictions and target
values in the feature space. The experimental aisalgarried out for assessing the
effectiveness of the proposed methodology is laist in Section 4.3. Finally, Section 4.4
draws the conclusions of this work.
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4.2 Proposed Hybrid Retreival Approach

Let us recall the general formulation oft he retaieproblem discussed in Chapter 1. Given
x = [x1,x?, ..., x™] the vector of input features extracted from thaately sensed data (e.g.,
optical or SAR images) ang the desired continuous target variable (the gemghysical
variable of interest), the retrieval problem carekpressed as:

y = f(x) (4.1)
wheref represents the desired mapping between the inpuespnd the target parametér.
is a theoretical forward model, which will simulatiee behavior of the remotely sensed
signals as a function of the target variable (undeEtain assumptions and simplifications
intrinsic in its analytical formulation). To addeethe estimation problem, one may resort on
the functiongg(.) which represents the inverse mapping betweandy according tor . In
this case, the estimation will be affected by aia@nds(.) which stems from the
simplifications and approximations intrinsic withthe theoretical model formulation and
depends, in general terms, from the input featueetorx, i.e.:

y=gx)+6) (4.2)
Let us assume now to consider a Ratf reliable field reference samples, i.e., coupés
measurements of the target geo-/bio-physical vigriand the corresponding features
extracted from the remotely sensed signals. Tha ale¢he proposed approach is to exploit
the information conveyed by the field reference glasto characterize the deviatiéfx).
Accordingly, the estimation associated with a genenknown samplex, is the sum of two
contributions: the first one derived from the irsetheoretical model functiong{x) and the
second one provided by the estimated deviafionR), i.e.:

9. =g(x)+8x.,R) (4.3)

In this formulation the termd(x, R) represents a correction to the systematic errertduhe
model analytical formulation and the intrinsic agbties of the data. In this way it is
possible to improve the accuracy of the estimapiamtess.

From the operational viewpoint, the proposed tegimmican be split into two different
phases: i) the training phase, in which the avkalaleld reference samples and the
corresponding estimates of the theoretical modepanvided to the system for the definition
of the deviation functionab(x) (see Figure 4.1); and ii) the operational phadecrey the
technique estimateg(x) for unknown samples and corrects the target vasémate
according to (4.3). For the characterizatiord@t) during the training phase, one may resort
on different strategies. In this work we presera possible strategies: i) tigdobal deviation
bias and ii) thelocal deviation bias
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Figure 4.1. Block diagram of the proposed hybrigaach.

4.2.1 Global Deviation Bias (GDB) Strategy

The easiest way for the characterization of theiadiem functional§(x) is to assume a
constant behavior in different regions of the infaature space, i.e(x) = Const. A simple
and reliable estimation of the constafinst can be obtained by computing the average
deviation between the estimation of the inversenttical model functionay(.) and the
target measurements of the Bedf available field reference samples according to:

§(x) = Const = Z 5|(;:|i)

where §(x;) is the deviation associated to théh field reference sample arj®| is the
cardinality of the reference s& This strategy relies of the inverse theoreticaldei for
handling the complexity and non-linearity of therieval problem, while it simply corrects
with a global bias term the estimates of the themakemodel. Thanks to its simplicity, this
strategy is particularly suitable for the operatsibrronditions in which very few field
reference samples are available.

s.t. x; €R (4.4)

4.2.2 Local Deviation Bias (LDB) Strategy

The simple strategy previously described can beongd to take into consideration the more
general and realistic case in whiélix) is variable within the input space. Indeed, it is
expected a different accuracy of the theoreticad@han different portions of the input feature
space. The idea in this case is to locally apprakenthe deviation between the estimates of
the theoretical model and the true target sampleegaaccording to:

5(x) = Const, (4.5)
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where the value of onst, depends on the position within the input spacegreater details,
Const, can be calculated as the average deviation assddia the sSubseR,..;;npornooa (X)
of field reference samples in the neighborhoodefgeneric sample:

_ 8(x;) _ ”
€= IR cionborhood ()] s.t. x; € Rneighborhood(x) CR (4.6)
neighborhoo

This corresponds to a local analysis of the inpe&tdre space based only on the
Nneighborhood = |Rneignbornooa(X)| field reference samples in the neighborhoodeofhe
local neighborhood can be defined according to twrocedures: a) thdixed local
neighborhoogdor b) theadaptive local neighborhood

Thefixed local neighborhoogrocedure applies a deterministic partition ofitlmut space
and selects thS§ referece samples falling within tme-dimensional quantization cell of the
generic samplex. This strategy can be seen as a simplified agmitaof the Parzen
estimation approach, in which the neighborhood uUsedhe estimation of a distribution is
fixed and has the same quantization size for #i.ck is worth noting that in some cases (too
fine quantization or very few field reference saegplno neighborhood samples might be
available for some quantization cell. In this sitoila, one may resort on a very rough
quantization or on the global deviation bias désatiin the previous paragraph.

Theadaptive local neighborhoostrategy defines the neighborhood in an adaptag by
a K-nearest-neighbor (K-NN) strategy. The lattelests the K = Nyeighborhood Sa@Mples
closer to the generic targetaccording to a distance function (e.g., the Euelddistance). In
this way it is possible to consider a fixed numbgreference samples for the determination
of Const,. This results in an adaptation of the shape aadsike of the quantization cell to
the local distribution of the samples.

From a theoretical viewpoint, there is no limit tlee definition of strategies for the
characterization of (x) in the proposed approach. For example, one masid®nadvanced
non-linear and non-parametric estimation techniqaash as the Support Vector Regression)
for a global estimation of the deviation in the Wehfeature space. However, it is worth noting
that there is an important trade-off between thenglexity of the empirical estimation
strategy and the number of field reference samgledable. Increasing the complexity (e.qg.,
the non-linearity) of the functional type assodiatéth §(x) typically increases the number
of required field reference samples to ensure gdibheand avoid over-fitting phenomena.
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Figure 4.2. Graphical representation of the globaliation bias strategy in the case of two input
features. Black crosses represent general sampld®i2-D input feature space. Green crosses
represent the field reference samples, each orecmded with the corresponding deviation between
theoretical model prediction and target value (gdes along the vertical axis). The gray plane
represents the constant deviation bias in the wfesd@ure space computed as the average of the

deviations associated with the field reference dasp

Q (8]
9

(]

W

T T
Q X oM A = @ X Jix X
IS SUTRE S ik e
e 70
e~ = <t P o)

b b F > =
B B > 4 ke d a ) b:“:: r >=dI<
i '-:»-e-%?--_"ﬁ';;«"_'Q:v-"-r:--ac---'-'zﬁsz--*-? """

= > i
L il < S R O
= = = ’J’.\.' B “K
= = : < -
w3 Y ::' ’ 0( LA )
e -

1 > s 4
X X 4 < =/

Figure 4.3. Graphical representation of the local@tion bias strategy with a fixed local
neighborhood in the case of two input features. iipat feature domain is quantized accordingl{p
and4,,. Then for each cell identified a constant biasdmputed on the basis of the deviations
associated with the reference samples falling withe cell boundaries. Different cells may show
different biases (red and yellow squares).

59



Chapter 4

4.3 Experimental Analysis

4.3.1 Data Set Description

In order to evaluate the effectiveness of the psepohybrid approach in real retrieval
problems, it was applied to the estimation of swmdlisture content from microwave remotely
sensed data. This application domain is particyladitable for assessing the the proposed
hybrid approach, due to the limited availabilitysigally) of field reference samples and the
complexity and non-linearity of the retrieval prei, as discusded in the previous chapters.
However, it is worth stressing that the proposethodology is general and can be applied in
any application domain when there is the need tegmate theoretical model based
estimations with field measurements.

Two data sets have been considered for the expetananalysis. They present quite
heterogeneous characteristics in terms of sigrgdeptries and investigated area (Table 4.1).
The first data set is th8catterometerdata set already presented in Chapters 2 and 3. It
consists of 17 field soil moisture content measwnets paired with the corresponding
backscattering coefficients at HH polarizations @88/40° incidence angles acquired with a
C-band field scatterometer on two bare agricultlieddls near Matera, southern ItalM4ttia
et al., 2003.

The second data set (referred SldEX data set) consists of a subset of data acquired
during the Soil Moisture Experiment 2002 (SMEX'02)ich took place in lowa, USA, from
June 24 to July 13", 2002 WWWA4. During the experiment, several soil parametamsong
the others soil moisture content and surface roegntogether with optical and SAR remote
sensing data were collected over crop fields. Tine was to validate the soil moisture
algorithm of the Advanced Microwave Scanning RaditenEarth Observing System
(AMSR-E) and studing the effect of disturbing targeoperties on the soil moisture accuracy,
with particular regard to the effect of vegetatibmgrater detail, in this study we consider 35
field measurements collected over four soybeas ¢ithich showed reduced biomass values)
and coupled with remote sensing backscattering umeagents acquired by the AiIrSAR
sensor (Table 4.1). The SAR sensor operated and-Gibands in polarimetric mode and
imaged the study area with a nominal incidenceean§k0°, in order to be comparable with
other orbiting satellite systems. However, only dntd co-polarized HH and VV
backscattering coefficients are used in this st@&BR images were processed and calibrated
by the AirSAR operational processor and post-pree@svith a multi-look procedure in order
to reduce speckle effects in the data. For moraildein the SMEX'02 experiment and on the
soil data set, we refer the reader\tdyYW4; WWWS5; Notarnicola et al., 2006
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Table 4.1. Main characteristics of the two datsssminsidered in the experimental analysis.

Data Set Scatterometer SMEX
Study area Bare agricultural fields Vegetated soybean fields
Micr owave Sensor Field Scatterometer Airborne SAR
# Samples 17 field samples 35 field samples
Backscattering coefficients C-Band, Backscattering coefficients L-Band,
Input Features HH polarization, HH/VV polarizations,
23°/40° incidence angles 40° incidence angle
Dielectric Constant 5< diel< 15 5< diel< 13
Range
Surface Roughness 1.3cm<s<2.1cm 1.3cm<s<2.5cm
Range (sand I) 5.0cm<| < 13.0cm 2.0cm<1<10.0cm

4.3.2 Design of Eperiments

The retrieval of the target variable, i.e., thel sbelectric constant, was first addressed
according tot he inversion of the well-known andidated Integral Equation Model (IEM)
(Fung et al., 199p This model is mainly used to simulate the micwe response of bare
soil surfaces. However, it has been exploited &sothe experimental analysis with the
SMEXdata set. On the one hand, the contribution oktapn on the SAR backscattering
was rather limited at the wavelength consideretddhd) especially for the soybean fields due
to the low biomass values. On the other hand, ¢Wigerimental scenario allowed us to
investigate the effectiveness of the proposed dybpproach also in this challenging and
rather common operational condition. Due to thehha@pmplexity and analytical non-
tractability of the IEM model inversion processe timference of the inverse functiong(.)
has been carried out with the Support Vector Regras(SVR) technique according to the
strategy discussed in Chapter 2. More in detaib, $&ts of 300 and 250 simulated reference
samples were generated using the IEM model in @dhedr operational way and under the
same conditions (in terms of signal frequency, poddéion, acquisition angle and soil
characteristics) of th8catterometeand SMEXfield measurements, respectively. Simulated
backscattering values were then corrupted by a skErusadditive noisy contribution with
mean and variance equal to 0 and 0.1, respectiVélig. was done in order to increase the
variability within the simulated data. Please nibi@ this noisy contribution did not take into
account the characteristics in terms of noise effigld data as done in the previous chapters.
Then SVR has been trained on the simulated refersamples. A standard grid search
procedure aimed at minimizing the meand squareat ¢MSE) on validation samples was
used for tuning the SVR free parametegeholkopf and Smola, 2001} Gaussian RBF
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kernel and the following ranges were considerethis phase{1073; 103] for y (the kernel
width) andC, respectively]{10~%; 10] for e.

After the training/tuning oft he SVR regressor omudated reference samples, the
deviation between theoretical model estimates amett freference measurements was
investigated and characterized according to twatesgies: i) thglobal deviation biagGDB);
and ii) thelocal deviation bias(LDB), considering thdocal fixed neighborhoodolution
described previously. Finally, the estimated taxgdties of unseen samples obtained with the
inverse theoretical functiongj(.) were corrected according to the deviation contidou
5(x,R) estimated previously (see eugtion 4.3). The regpHielectric constant values were
compared with the measured reference values arlda¢ed in terms of root mean squared
error RMSH, statistical correlation coefficiefR, slopeandinterceptof the linear trend line
between estimated and reference target values.t®the limited number of field reference
samples available for this experimental analysisthé&s stage at-fold cross-validation
procedure has been adopté&thérkassky and Mulier, 1998Field reference samples were
divided intot subsets. Iteratively(t-1) subsets were used for the characterization of the
deviation functionab (. ), while the remaining subset was exploited as ieddpnt test set for
assessing the performance of the proposed apprdaehprocedure was repeated until all
field samples were used as test. Then the numepedbrmance were evaluated. As
benchmark, the performance achieved with the imversoretical functional without applying
the correction procedure was considered.

4.3.3 Experiment 1. Correction with the Global Deviation Bias (GDB) Strategy

In this first experiment the available field refece samples were exploited for the estimation
(and thus the correction) of the global deviatiaasbbetween theoretical model based
estimates and true target samples. This kind o&ligiement could be due to biases in the
theoretical model or calibration errors associateithe remote sensor.

Let us first analyze the results obtained with tBeatterometerdata set. For this
experiment, we considered as input features theksbatiering coefficient with HH
polarization acquired at 23° incidence angle anal fioids for the cross-validation procedure
(i.e., half samples were used for characterizirgdaviationd(.) and half for assessing the
estimation performance). The comparison betweenatiget value estimates obtained without
and with the integration of the field reference p&es in the retrieval process according to the
proposed hybrid approach is shown in Figure 4.dnFihe analysis of the two plots it clearly
emerges a noteworthy improvement of the estimagienformance after the application of the
simple GDB correction strategy, mainly concernihg RMSE and intercept metrics. This
suggests a biased behavior of the theoretical moddch is effectively corrected by the
proposed methodology through the use of the fieldrence samples.
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Figure 4.4. Scatter plots of estimated versus nreasdielectric constant values (a) before and (b)
after the GDB correction according to the proposgtrid approach.

Experiment 1, Scatterometer data set.

Table 4.2. Estimation performance obtained befora after the proposed global deviation bias
(GDB) correction strategy. Different proportionsreference and testing samples are considered.
Experiment 1, Scatterometer data set.

Method RM SE R Slope I nter cept
Theoretical Model 4.23 0.77 0.99 3.49
GDB Caotr. (2 folds CV) 2.62 0.74 1.013 -0.12
GDB Corr. (5 folds CV) 2.54 0.75 0.99 0.036
GDB Corr. (LOO CV) 2.53 0.75 0.99 0.0008

In order to assess the sensitivity to the numbédiets reference samples available for the
integration, different trials were performed wittetsame experimental condition and simply
changing the number of folds of the cross-validaippocedure. The results are reported in
Table 4.2. The estimation performance show a cgtidle behavior while increasing the
number of reference samples used for the charaatem of §(.). This is an expected
behavior, since the GDB strategy is particularljn@® and just one parameter has to be
estimated, i.e., the global bias.

Concerning theSMEXdata set, the achieved results are reported uré&ig.5. Again the
proposed hybrid approach outperforms the standwedrétical model inversion in terms of
both RMSEandinterceptmetrics. This indicates a biased behavior of treotetical model
that can be ascribed to the effect of vegetationthenSAR backscattering coefficients. A
slight overestimation of high dielectric constamiues can be observed in the final output
estimates also after the bias correction. Thistpodut a limit (expected) of the the simple
GDB strategy, i.e., it does not take into consitlerathe possibility of a deviation variable
within the input feature domain.
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Figure 4.5. Scatter plots of estimated versus nreasdielectric constant values (a) before and (b)
after the GDB correction according to the proposgtrid approach.
Experiment 1, SMEX data set.

Table 4.3. Estimation performance obtained befora after the proposed global deviation bias
(GDB) correction strategy. Different proportionsreference and testing samples are considered.
Experiment 1, SMEX data set.

Method RM SE R Slope I nter cept
Theoretical Model 1.80 0.87 1.01 0.96
GDB Caotr. (2 folds CV) 1.51 0.87 1.01 -0.06
GDB Corr. (5 folds CV) 1.50 0.87 0.99 -0.01
GDB Corr. (LOO CV) 1.50 0.87 0.99 0.0003

With regard to the sensitivity to the number ofitalde reference samples (see Table 4.3),
again the results achieved are almost stable, rooiny the effectiveness of this strategy also
when very few field reference samples are available

4.3.4. Experiment 2: Correction with the Local Deviation Bias (L DB) Strategy

The second experiment presented aimed at evaludtengapability of the proposed hybrid
approach to handle the (more general and realsbicdlition in which the deviation between
theoretical model estimates and true target is teddeith a different behavior in the input
feature space. To this purpose, the deviatigm) has been approximated with the local
deviation bias estimated by considering tixed local neighborhoodtrategy (in the input

feature space) described previously. Then the citore has been applied to the unknown
sample estimates provided by the inverse theotetiodel. Different sizes (i.e., 1x1, 3x3 and
5x5) of the neighborhood window were tested. Moegpa 5-fold cross-validation procedure

64



A Novel Hybrid Approach to the Retrieval of Geo-@8?hysical Variables from Remote Sensing Data

has been adopted to avoid issues with regard tochiogce of the reference and testing
samples.

Concerning the Scatterometer data set, we considerethis experiment the case of 2
input features, i.e., the backscattering coefficsemth HH polarization and 23°/40° incidence
angles. The results reported in Figure 4.6 indieateneral significant improvement in terms
of accuracy (i.e.RMSB with respect to the case where no correctionpislied. This is
mainly due to the reduction of the overestimaticend for high dielectric constant values
shown by the estimates obtained with the modelrgigr without the exploitation oft he field
reference samples. Indeed, after the correctiongsstheslopeandinterceptvalues become
closer to the ideal ones (1 and O, correspondintheéoone-to-one line, respectively). This
results suggest the effectiveness of the propgspbach to properly handle the variability of
the functional within the input feature space.

Similar results were achieved for tf®MEX data set. As shown in Figure 4.7, the
overestimation trend for high dielectric constaalues pointed out in the previous subsection
was reduced by exploiting the capability of the LBtBategy to locally model the deviation
functional §(x) within the input feature space. Consequently RMSE value is further
reduced. Despite this improvement, thlepe and intercept metrics show slightly worse
performance, which can be probably ascribed toptiesence of some outlier samples (the
samples with measured dielectric constant valudgsvdem 8 and 9 and slightly under-
estimated by the retrieval system) which affecsémmetrics.
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Figure 4.6. Scatter plots of estimated versus nreasdielectric constant values (a) before and (b)
after the LDB with fixed local neighborhood (3x3wow) correction according to the proposed
hybrid approach.
Experiment 2, Scatterometer data set.
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Figure 4.7. Scatter plots of estimated versus nreasdielectric constant values (a) before and (b)
after the LDB with fixed local neighborhood (3x3wddw) correction according to the proposed
hybrid approach.
Experiment 2, Scatterometer data set.

With regard to the size of the quantization winddie achieved results on both the
considered data sets indicate a strong influenceth parameter on the estimation
performance of the LDB strategy (Table 4.4 and .4B)r both data sets, the best
performances are achieved by considering the 3x3dew, which leads to a strong
improvement of the accuracy and a significant rédaoof the overestimation trend for high
dielectric constant values. The small window (1lxikgserves more the locality of the
correction applied. However, typically no or vemwfi reference samples fall within the
neighborhood region, thus affecting the correctapplied. On the contrary, the 5x5
quantization window includes a high number of refee samples (far one to each other) in
the local correction process, at the price of aiced capability to follow the variations of the
deviation functionab(x). Thus it emerges that the choice of the best windize strictly
depends on the characteristics of the estimatiacgss considered (in particular the
characteristics of the deviatidi{x)) and the number of available field reference sasiphn
automatic tuning of this parameter is not straighwird and further research is required in
order to define effective procedures for the seaadf this parameters.
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Table 4.4. Estimation performance obtained before @fter the proposed local deviation bias (LDB)
with local fixed neighborhood correction strate@ytferent sizes of the quantization window are
considered.
Experiment 2, Scatterometer data set.

Method RM SE R Slope I nter cept
Theoretical Model 3.94 0.79 1.4 -1.8
LDB Corr. (1x1) 3.64 0.8 1.54 -5.25
LDB Corr. (3x3) 2.13 0.81 1.02 -0.04

LDB Corr. (5x5) 2.77 0.79 1.25 -2.41

Table 4.5. Estimation performance obtained before @fter the proposed local deviation bias (LDB)
with local fixed neighborhood correction strate@yfferent sizes of the quantization window are
considered.
Experiment 2, SMEX data set.

Method RM SE R Slope I nter cept
Theoretical Model 1.80 0.87 1.01 0.96
LDB Corr. (1x1) 1.47 0.85 0.78 1.32
LDB Corr. (3x3) 1.31 0.88 0.82 1.1

LDB Corr. (5x5) 1.53 0.87 1.005 -0.04

4.4 Conclusion

In this chapter, a novel hybrid approach to thenegton of biophysical variables from
remotely sensed data based on the integrationetd fieference samples and theoretical
analytical models has been presented. The core bddand the proposed method is the
exploitation of the available (typically few) fieldeference samples to model (and thus
correct) the deviation between the theoretical rhbdsed estimates (affected by biases and
approximations intrinsic within the analytical fouhation of theoretical models) and the
measured target values. Two different strategieshf® estimation and correction of such a
deviation have been presented and analitically @tated. Then their effectiveness has been
evaluated in the specific application domain ofl sooisture estimation from microwave
remotely sensed data. The achieved results are igirgmand indicate the proposed
integration approach as effective for the estinmatb biophysical parameters from remotely
sensed data since: i) it allows increasing the raoguof the estimates by overcoming biases
and simplifications intrinsic within the analyticedrmulation of theoretical models; ii) it is
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capable to handle the variability of the deviatimmctional 6(x) within the input space
domain; and iii) it is simple, easy to implementidast during the processing.

Despite the experimental analysis has been caorgith one specific application domain,
it is important to stress the fact that the propobkgbrid approach is general and can be
applied also in other operative conditions, i.athwther correction strategies, in combination
with other model inversion techniques (e.g., itemimethods, look-up tables) and in different
application fields.

As future work, a first improvement to the propodedbid approach will regard the
investigation and implementation of novel stratedi@ the estimation and correction of the
deviation functionald(x). As pointed out in the experimental analysis pmes in this
chapter, the effectiveness of the proposed hyl&iderval method stritctly depends on the
capability to properly exploit the available figleference samples for this task. Another issue
which deserves further investigations is the dgualent of automatic and robust strategies
for the adaptive tuning of the correction stratggyameters. Finally, despite the promisin
results achieved in this experimental analysighrinvestigations are required for assessing
the effectiveness ot the proposed methodology herothallenging real estimation problems
for which the limited availability of field referee samples represents an issue, such as the
retrieval of snow pack geo-/bio-physical variakilesnountain areas.
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Retrieval of Soil Moisture Content
from New Generation RADARSAT2 SAR Imagery
In an Alpine Catchment

In this chapter, the effectiveness of RADARSAT?2 @&#Rigery for the estimation of soll
moisture content in an Alpine catchment is inves#id. In greater detail, a sensitivity
analysis of SAR backscattering coefficient to tlsésture content of soil together with other
target properties (e.g., local topography and thiesgnce of vegetation) is first carried out.
Then a system for the retrieval of soil moistureprsposed. The main features of this
algorithm are: i) the exploitation of advanced staif-the-art methods, namely the support
vector regression and the multi-objective parametgtimization introduced in the previous
chapters; and ii) the integration of ancillary data the retrieval process. Discussion on
accuracy and capability to reproduce spatial patieof soil moisture provide indications on
the effectiveness of new generation SAR imagesthegwith the proposed retrieval system
to deal with the soil moisture retrieval problemtire challenging Alpine environment.

5.1 Introduction and Motivation

As introduced in Chapter 2, soil moisture contentrélated with many hydrological and
meteorological processes. The accurate mappindiisfvariable is thus crucial for both
hydrological applications and earth sciences. Tikigarticularly true for the mountain
environment. Here, the scale of spatial and tenip@dability of geo-/bio-physical variables
reduces, due to the heterogeneity and the vatiabilithe environment (Rodrigudiirbe et
al., 1995; Gebremichael et al., 2009This aspect makes the knowledge of accurate and
reliable information on soil moisture status mooenplex Grayson et al., 1997 At the same
time, information on soil moisture status is beamgnecrucial. Historical climate observations
have proved that the climate in the Alps has chargignificantly. For the future strongest
climatic change in the Alps can be expected for ghmmmer months with much drier and
warmer conditions in all regions, particularly imetsouthern parBfunetti et al. 2001 In
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addition, climate models agree on a higher intervahvariability Graham et al. 2007 This
means on the one hand increasing drought periagisnigr), while on the other hand higher
probability of heavy rain (winter). These variatomay have a strong impact on the water
availability Barnett et al. 200bfor agricultural and human purposes and may kengly
related to natural hazards such as floods andlidedgHorton et al. 200%

In the last few years, the increasing number otegmrne sensors, with complete and
frequent coverage of the Earth’s surface, has mhted an increasing interest for the
estimation of geo-/bio-physical surface variablesf remotely sensed data. In this field, one
of the most challenging problems is related to ésgmation of soil moisture content from
microwave sensors, in particular Synthetic Aperteeslars (SARS). The sensitivity of SAR
backscattering coefficients to soil moisture at lawcrowave frequencies (P- to L-band) has
been investigated and demonstrated by many sdeerfialoscia, 2002; Notarnicola et al.,
2006. Nowadays, however, most of the orbiting sen$BRS-2, RADARSAT 2, ENVISAT
ASAR) operate at higher frequencies. C-band badttesozg is still sensitive to soil moisture
(Macelloni et al., 199P but is also affected by other surface charadtesissuch as the
roughness of the soil surfadddttia et al., 199Y, the land-cover heterogeneity (Lakhan&ar
al., 2009 and the presence of vegetatiaHaby et al., 1979 All these factors may strongly
affect the sensitivity of SAR backscattering caséint to the desired target parameter.

Topography is another important aspect to be takinconsideration when dealing with
the estimation of soil parameters. Satellite systeim particular SAR systems, are strongly
affected by the topography of the area. Distor@fiects (i.e., foreshortening, layover and
shadowing) may occur due to the side-looking adtmns geometry (specific of the SAR
sensor) and the local topography on the groundogslovalleys and hills). Even if these
extreme distortion effects do not occur, the SAgnal is affected by the local incidence
angle and the distance between the target aredha@ndensor antenna. These topographic
effects are usually taken into consideration duthmgcalibration of the data. However, when
dealing with mountain areas, such as the Alpss fiair to expect to have a non-negligible
residual contribution within the signal due to #iydreme topographic conditionsuckman,
1998. Also this contribution may significantly influea the sensitivity of the microwave
signal acquired by the satellite sensor to the tscontent of the soil and consequently
could further increase the complexity of the estioraproblem. However, limited effort has
been devoted to this challenging aspect in thesassent of soil moisture in Alpine areas. For
example, Paloscia et aRq10 investigate the effectiveness of ASAR remotelyssel data in
combination with optical images for the estimatiminsoil moisture in the Cordevole area
(Veneto region, Italy). The analysis points out #ignificant influence of the vegetation
coverage on the backscattering signal. However, dfea of interest does not present
significant variability in terms of topography, thilimiting the applicability of the presented
analysis on other mountain areas with differenbgppphic conditions.
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All these aspects make the problem of the chaiaaten of soil moisture in mountain
areas from remotely sensed data extremely compldxchallenging. With the prospective of
the integration of soil moisture estimates in rgaplicative scenarios, like those cited in the
previous chapters, it is important to have a cteEanprehension of the possibilities and the
limitations of the new generation satellite SARs®8 in combination with advanced state-
of-the-art methodologies for the retrieval of spdrameters in the Alpine environment.
Despite some works in this direction have starfiedher analysis is still required.

This chapter tries to overcome the limitationshedf turrent state-of-the-art by presenting
an analysis on the sensitivity of new generatiorDRRSAT?2 satellite SAR imagery to the
soil moisture content in the challenging mountawi®nment. The analysis takes advantage
from the availability of ancillary data for bettenderstanding the influence of vegetation,
land-cover heterogeneity and topography on the SAfRal. Then an advanced retrieval
system for the retrieval of soil moisture in thigeoational condition is proposed. The system
exploits both the methodological developments preeskin the previous chapters and the
information derived from the ancillary data avaitaln address the complex and highly non-
linear retrieval problem. The effectiveness of pheposed solution is evaluated and discussed
in terms of both numerical accuracy on field measwents and capability to reproduce
expected spatial and temporal patterns of the tigaded variable.

The rest of the chapter is organized as followsti&e 5.2 introduces the study area on
which our analysis is focussed and describes tha det adopted. The analysis of the
sensitivity of the RADARSAT?2 data to the soil maoist content is presented in Section 5.3,
while Section 5.4 is devoted to the descriptiorth&f proposed estimation algorithm and the
experimental setup for its validation. Section Sttows the experimental results achieved.
Finally, Section 5.6 draws the conclusion of thekvo

5.2 Study Area and Data Set Description

5.2.1 Study Area

The study area chosen for the analysis presentedfter is the Mazia valley (Figure 5.1). It
is a small side valley in the north-western partSoiuth Tyrol region (Northern lItaly). It
covers an area of around 100%with altitudes ranging from 920 meters a.s.l. @®lno) to
3738 meters a.s.l. (Palla Bianca). Despite theivelst small dimension, the Mazia valley is
well representative in terms of geomorphology asgbgraphy for the whole South Tyrol.
The area is constantly monitored by 16 meteorolgitations distributed along the valley in
locations representative of different elevationppsl, aspect, soil type and land-cover
conditions. The stations measure the soil statusisfore content) and meteorological
variables (air temperature and humidity, preciptat wind speed and direction, solar
radiation). In addition, several research projeat aurrently ongoing in the area and
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numerous and accurate ancillary information reg@rdisoil composition, land-use
distribution, topography and vegetation are avéldBertoldi et al., 2011

Excluding forests, the most diffuse land-cover/tigges are meadow and pasture. They
present quite heterogeneous characteristics insta@invegetation, spatial distribution and
human usage. In more detail, meadows are locattteinalley bottom and on the first slopes
up to 1700 m a.s.l.. They are intensively usederms of cutting (twice a year), manuring
(twice a year) and irrigation (several times dursigmmer drought). The soil surface is
typically homogeneous and flat in terms of rouglsngkile the vegetation type is determined
as Trisetum flavescentis with a high percentaggratses. Cut events during the summer
period determine variations in the biomass of tlegetation coverage. Pastures have
completely different characteristics. First of #tley are located on the slopes of the valley at
medium/high altitudes (from 1700 to 2400 m a.svhere the terrain becomes very steep. Due
to cattle and sheep grazing the soil surface isrbgeneous, with the presence of bare soill,
stones and in some cases of large rocks in arealsigher altitudes. The vegetation is
characterized by hemicryptophytes and determinegciesantho-Sempervivetum arachnoidei
in the lower parts and Sieversio-Nardetum strigta@e upper parts.

From the hydrological viewpoint, the Mazia valleyrelatively dry with respect to other
parts of South Tyrol. The mean annual precipitandm25 mm (Mazia, 1580 meters a.s.l.)
determines a significant difference in terms of sater availability between meadows and
pasture. Meadows are typically wet (40/45% of sadisture content) due to the irrigation
practice especially in dry summer periods. Pastarethe contrary are typically dry, with the
exception of stripy wet buffers along small rivggging down from small water sources at
medium altitudes (around 2000 m a.s.l.).

Regarding the soil composition that can influerfee hehaviour of water in soils, organic
content, grain size distribution and bulk density highly variable even within areas of the
same land-cover/use type. On meadows and pastueedominant soil type is brown soill
while above the tree line combinations of browrnssand ranker appear. In streamlet areas,
also gley is detected. Regarding the soil textdiine earth, the fraction of sand is dominant
(45-75%), the fraction of silt is quite variable0Of20%) and the fraction of clay is low (5-
15%).

5.2.2 Satellite Images

During the summer 2010 'f3June and 21 July), two SAR images were acquired by the
RADARSAT?2 satellite sensor over the Mazia valleyweTacquisition mode was Standard
Quad Polarization, right looking, with a nominatigience angle of 45° and an ascending
orbit. This acquisition geometry has been carefséliected by performing several simulations
with the help of a SAR image simulator. The aim waminimize the geometrical distortions

(shadowing and layover/foreshortening) that ocoupriesence of mountain reliefs due to the
side looking view of SAR systems. Geometrical distes prevent the possibility of any geo-
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Figure 5.1. The Mazia Valley, South Tyrol, Italya@ge triangles indicate the position of the fixed
meteorological stations while circles representliteations of the field measurements in both
meadow (blue) and pasture (red) areas.

/bio-physical variable retrieval since the backsratg coefficient is mainly dominated by
these effects. In our specific case, the selecteplisition geometry allowed an optimal
imaging of the west side of the valley, where gédarextension of pasture/meadow areas and
higher number of meteorological stations are prieséh respect to the east side.

Original images were provided in single look comp(SLC) format with pixel size of
4.93 m and 17.48 m in azimuth and ground rangetiines, respectively. The data have been
multi-looked, de-speckled with a Frost filter (5x8ndow size), calibrated and geocoded
(UTM WGS-84) with the help of a high spatial resimn (2.5x2.5 M) digital elevation
model. The final resolution of the processed image20x20 M. All pre-processing steps
have been carried out with the SARscape® softwaven.sarmap.ch). Figure 5.2 shows the
results of the pre-processing for thé'2Lly image. Polarimetric configurations (HH, HVdan
VV) have been combined in this RGB image in oradeehhance the different information
content of each channel. Vegetated areas are shwovgreen, with different intensities
depending on the density of the vegetation. Vialeias are associated to rocks at the highest
altitudes. On the east side of the valley the é&dfexf geometric distortions (in particular
layover/foreshortening, in white) are particulaglyident. These effects are minimized on the
west side, thanks to the careful selection of tAR &cquisition geometry.
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Figure 5.2. RADARSAT2image acquired on JuR; £dlse color RGB composition
(R=HH, G=HV, B=VV).

5.2.3 Field M easur ements

Contemporary to the two satellite acquisitions)dfieneasurement campaigns have been
carried out in the study area. The aim was to aeguformation on the moisture status of
soils in meadows and pastures. Non-destructive uneaents were acquired using the
mobile Delta T WET 2 TDR sensor (www.delta-t.co.ukhe TDR instrument measures only
the real part of the top five centimetres soil elitic constant, but has the advantage to be
easy to carry in the field and fast in measurintge $ampling strategy was as follows. Moving
along two predefined transects (the vertical tranaéong the west slope and the horizontal
transect parallel to the valley floor), samplingeas of approximately 30x30 “mwere
identified and selected for their homogeneity amgresentativeness in terms of local
topography, vegetation status and land-cover/upe. tifor each sampling area the actual
position was registered with a GPS device. Thepatga measurements (three to five) of sall
dielectric constant distant few meters one to eattier were collected and averaged. Soil
measurements in more than 100 sampling areas wédezted. Table 5.1 reports the main
characteristics of the soil measurements on meadows pastures during the two field
campaigns. As can be observed, meadows presemrhagiget variable values with respect to
pastures, which are in general dryer. Moreoveth Ipatstures and meadows are dryer in July
with respect to June. Measurements of July overdmes present a high standard deviation,
due to the heterogeneity in the scheduling of silaigd irrigation.

Along with  TDR measurements, destructive measurésnevere collected in few
representative sampling areas. They were perfobggahysically taking a soil sample with a
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5 centimetres height metallic cylinder. The soiingte was weighted, sealed and carried in
laboratory in order to be dried according to staddail measurements protocofSilflar et

al., 1987. Then soil moisture, soil composition and densityalysis have been started. This
kind of sampling was necessary to have accuratesunements of soil gravimetric moisture

and bulk density and to derive a calibration cuorehe non-destructive TDR measurements.
The latter task was accomplished by comparing TDFRsurements and soil moisture values
derived from gravimetric samples. This resultechifiinear relationship as shown in Figure
5.3. According to this relationship, the dielectaonstant values measured with the WET
sensor have been converted into soil moisture nbredues.

ravimetric Soil Moisture Content
(SMC o)
— g bd
E‘i\ |
o

10 e @ SMC % =1.83 diel + 0,09

- -~ =091

- [
i D T T T T T 1
P

0 3 10 13 20 23 0
WET Dielectric Constant
(diel)

Figure 5.3. Empirical relationship between gravinesoil moisture content and WET dielectric
constant measurements (linear fit).

Table 5.1. Main characteristics of the measuresuaeq with the Delta T WET 2 TDR sensor during
the field campaigns. Values are expressed in SMC %.

June 2010 July 2010
Pasture M eadow Pasture M eadow
Min SMC % 12.36 7.05 11.91 5.95
Max SMC % 42.59 49.61 32.61 16.71
Average SMC % 30.72 28.44 21.75 10.83
Std SMC % 21.75 7.05 5.46 2.79
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5.2.4 Ancillary Data

To carry out the analysis presented in this wonkjliry data have been exploited. In greater
detail:

« A digital elevation mode(DEM) with high spatial resolution (2.5x2.5%mobtained
from the processing of airborne LIDAR acquisitiamger the whole South Tyrol area
during a measurement campaign in 2008. The DEMprawmide information on the
local topography of the area, in particular theal@dtitude and the local incidence angle
of the SAR signal.

* Two normalized difference vegetation index (NDVI) mapsacted from two cloud free
images acquired by the NASA MODIS sensor onboaed Thrra satellite. MODIS
images have been selected as close as possilbie RADARSAT?2 satellite overpasses
(i.e., within £2 days from the RADARSAT?2 acquisitjo depending on the cloud
coverage over the Mazia valley. This was possimeks to the high revisit frequency
of the MODIS sensor. The spatial resolution in ted and near-infrared bands (the
portions of the spectrum necessary for the comjoutaf NDVI) is 250x250 . NDVI
is a well-known vegetation index sensitive to thegetation phenology and growth
status. Even though the nominal resolution is @aMODIS NDVI provides an
average indication on the status of the vegetatimerage in meadows and pastures.

« A high resolution (25x25 M) land-cover map of the Mazia valley derived from
ortophotos, ground surveys and visual interpratatidhis information allows
distinguishing between pasture and meadow areaghwtiffer not only for the
vegetation type but also for the soil surface otteréstics, especially in terms of
roughness, due to the different human management.

Ancillary data have been geocoded using the samjegion of the SAR imagery (UTM
WGS-84) and re-sampled with a bilinear convolutimethod in order to be completely
overlapped with the RADARSAT2 images.

5.3 Sengitivity Analysis

To carry out the analysis presented hereafterfesemrgce data set was first build. It consisted
of couples of soil dielectric constant measuremants the corresponding features extracted
from the SAR images. The latter task was addressedefining a 3x3 pixels region of
interest of the area corresponding to each fieldsmeement. Pixel values of each region were
averaged and then associated with the soil measateatquired on the ground. Samples
associated with foreshortening and layover wereadded from the analysis. Considering
both acquisition dates and both pasture and meddaod-cover types, a data set of 75
samples was finally obtained.
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Figure 5.4. Scatter-plots of backscattering coadfits extracted from RADARSAT2 imagery versus
dielectric constant measurements in case of (a)pdldrization configuration and (b) HV
polarization configuration.

The data set was exploited for investigating thensigiity of RADARSAT?2
backscattering coefficients to different levelssofl moisture content with the help of scatter-
plots. Figure 5.4 shows the plots in case of HH HMlbackscattering coefficients (on the
vertical axis) as function of dielectric constardlues measured on the ground (on the
horizontal axis). Analogous results have been aekdidor the VV and VH configurations.
The points are differentiated according to the {ard class derived from the ancillary data.

From a first analysis it is possible to observé tha points associated to meadows present
an expected increasing trend versus dielectrictaohsalues (more evident in the case of the
HH with respect to the HV polarization). On the tany, no clear trend can be recognized in
the samples associated to pastures. In greatell, dbtzse samples show a high level of
ambiguity (i.e., samples with similar dielectricnstant values present significant differences
in terms of backscattering coefficients) especidtly low dielectric constant values. As
explained previously, different target propertiesd aexternal factors may affect the
microwave signal acquired by the satellite sen3aking into account the environmental
conditions observed during the field measurementpeagns, two factors can be considered
as mainly responsible for the variability and anoittig observed in the pasture samples: i)
topography and ii) heterogeneity of vegetation/tander. In the following, these two aspects
are better investigated with the help of ancilldata, in order to understand whether and to
what extent they affect the RADARSAT2 measurements.
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5.3.1 Effect of Topography

As explained previously, topography significantlyeats the signal acquired by a satellite
SAR system. In our case, despite the calibratiomefsignal was carried out with the help of
an accurate digital elevation model, residual topphic effects are expected to introduce
significant ambiguity in the backscattering coaéfids. This is expected especially for
pastures, since they extend over large portiorteeofalley sides, with altitudes ranging from
1600 to 2400 meters. On the contrary, meadows aialynlocated in the valley floor, thus
they present similar topographic conditions.

In order to investigate the effect of topographytba backscattering signal, the digital
elevation model was exploited for the extractionteb features related with the local
topography of the investigated scene: i) the lagadence angle of the SAR signal (i.e., the
angle between the line of sight of the SAR sensat the direction normal to the surface
within the resolution cell); and ii) the local &ltile. Samples corresponding to pasture areas
(which demonstrated the highest ambiguity in theRS#gnal, as shown in Figure 5.4) were
divided into various dielectric constant classeg.(delow 4.5, between 4.5 and 5.5, between
5.5 and 6.5, and so on) in order to keep constaés/ariable in the analysis. Then, samples of
each class were grouped into four clusters: 1) &tnude/high incidence angle; 2) low
altitude/low incidence angle; 3) high altitude/highcidence angle; 4) high altitude/low
incidence angle. Intermediate conditions were aadufrom the analysis. Figure 5.5 shows
the resulting scatter plot for values of dielectdonstant between 4.5 and 5.5 (which
demonstrated the highest variability in the backtscag coefficients) and both HH and HV
polarization configurations. In the plots it is pide to observe that samples with similar
characteristics in terms of altitude and local decice angle are quite close one to each other
and located in specific portions of the featurecepé&Samples acquired in areas with low
altitude and high local incidence angles of the S#ignal present the lowest values of
backscattering coefficient. On the contrary, sasglearacterized by high altitude and low
local incidence angle show the highest backscagecpefficients. The difference between
these two extreme topographic conditions is pdertypenhanced and can be quantified in 8-
9 dB for both HH and HV polarization configuratiomsnalogous results were obtained for
the other dielectric constant range3he samples with intermediate topographic
characteristics, i.e., low altitude and low inciderangle and high altitude and high incidence
angle, are located between these two extrememdtges that both the local incidence angle
of the SAR signal and the local altitude of theestgated area affect the backscattering
coefficient, introducing attenuation or increase itsf value. However, a certain level of
variability still remains in the data, as can beeted for example in the cluster of samples
associated to high altitude and high local incideacgle. This suggests that topography is not
the only factor that affects the SAR signal in theavironmental conditions.
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Figure 5.5. Scatter-plots of backscattering co@ffits versus dielectric constant measurements over
pasture areas and dielectric constant values betwie® and 5.5: (a) HH polarization configuration;
and (b) HV polarization configuration. Samples greuped into 4 clusters according to local altitude
and local incidence angle features derived fromDisv.

5.3.2 Effect of Vegetation/L and-cover Heter ogeneity

As it was observed in the Mazia valley during fieldmpaigns, the Alpine landscape is
characterized by a high variability and heteroggné terms of vegetation/land-cover.
Meadows, located in the valley floor, are intensivearmed and irrigated. The solil is
typically homogeneous, flat in terms of roughness the grass is typically thick. Cut events
during the summer period determine variations i biomass of the vegetation coverage.
Pastures have completely different characteriskirzst of all, they are located on the sides of
the valley where the terrain becomes steep and albijude increases. The soil is
heterogeneous, with the presence of stones amume sases of large rock’s areas when the
altitude becomes higher. Also the vegetation cayena irregular, presenting areas with a
significant presence of grass and others less a&tgkor quite bare.

Vegetation influences the microwave signal by idtrcing an attenuation effect with
respect to bare soils, as indicated in severalegudakhankar et al. 2009 On the contrary,
the presence of stones and rocks as well as thguilarity of the surface may increase the
backscattering coefficient values, due to both iplgtreflections and the high irregularity of
the surface. Thus, these two factors may explae rissidual ambiguity and variability
observed in the SAR signal after taking into ac¢dbie topographic effects. In order to verify
this hypothesis, we exploited the normalized ddfervegetation index (NDVI) extracted
from two MODIS Terra satellite images acquired lse as possible to the RADARSAT?2
overpasses. This index is sensible to variationshen green leaf vegetation and thus in
biomass. For the purposes of our analysis, it @aexploited as proxy to quantify the land-
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Figure 5.6. Scatter plots of backscattering coédfits versus dielectric constant measurements over
pasture areas and with dielectric constant valuesveen 4.5 and 5.5: (a) HH polarization
configuration and (b) HV polarization configuratioNDVI values are shown for the samples which
show strong residual variability in the backscaitigrcoefficient value.

cover heterogeneity and the presence of veget&yfmoal of the Alpine area. In particular,
this index will have the highest values in presesfceeadows with dense and tall vegetation,
while the value will progressively decrease moviogcut meadows or pastures with lower
vegetation coverage and an increasing presenaeké.rNDVI values were associated to the
samples presenting similar characteristics in teomdielectric constant value, topography
and land-use class (meadow or pasture) but showaingesidual variability in the
backscattering values. For the sake of brevityhis chapter we will present the analysis just
for the samples of Figure 5.5, but good agreemastfaund also for the other cases.

Plots shown in Figure 5.6 suggest that the NDVIegplain the residual variability within
the samples of each topographic cluster. In pdatictor each class of topographic conditions
(e.g., high altitude/high incidence angle), it aspible to observe that lower NDVI values are
associated to higher backscattering values andwacga. This confirms the hypothesis that
also the vegetation/land-cover heterogeneity affdwe SAR signal in the investigated area. It
is worth noting that the NDVI map considered fore tlanalysis presented above is
characterized by a quite coarse spatial resol(280 meters) with respect to both the SAR
images and the heterogeneity of the landscape. ¥aweé provided useful indications (at
least qualitative) for explaining the variabilityside the SAR signal.
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5.4 Proposed Retrieval System

The sensitivity analysis presented in the previsastion suggests that the backscattering
coefficient measured by the RADARSAT2 SAR sensorséssitive to variations in the
dielectric constant of soils, thus to variations tim moisture content. However, the
microwave signal is also strongly affected by theography of the area (also after standard
topographic correction) and the heterogeneity agfetation coverage and land-cover. These
factors increase the complexity of the retrievalsofi moisture content in mountain areas.
Estimation approaches based on the inversion abréfieal based models may be not
effective in this operational condition. Despitevanced electromagnetic models have been
proposed in the literature for handling complexyéas (e.g., vegetated fieldSpoquing and
Rason, 199p they are not able to model accurately all the-lwearity and complexity
typical of the Alpine environment. Moreover, th@inumber of input parameters typically
required by these advanced models further incretsesll-posed nature of the inversion
process.

In this chapter we propose address the retrievablem by inferring an empirical
mapping between SAR backscattering coefficient tanget parameter from the set of
available reference samples collected during thlel tampaigns. To deal with the ambiguity
that characterizes the SAR signal, features exddaftom ancillary data are provided as
additional input to the retrieval technique. In tgarar, MODIS NDVI, land-cover class,
local altitude and incidence angle are exploitediheey well explained the ambiguity in the
SAR backscattering coefficient shown during thesgarity analysis. The combined use of
SAR backscattering coefficient and ancillary featuwill allow the retrieval algorithm to
better disentangle the contribution of soil moistto that of other soil properties on the SAR
signal. With regard to the retrieval algorithm, th&sensitive Support Vector Regression
technique is used. SVR has shown good accuradyilistaeand generalization ability also
while dealing with complex non-linear problems andpresence of a limited number of
reference samples (see Chapter 2). Moreover, itydadles high dimensional input spaces,
also with features extracted from various sourced with different distributions. These
features make it a good candidate to deal withsthiemoisture retrieval in the challenging
Alpine environment

Going more into detail, the retrieval process gid#id into two phases: i) the training
phase; and ii) the estimation phase (Figure 5.@)ifg the training, a subset (i.e., 60) of the
available samples (i.e., the measurements acqdiredg the field campaign associated to the
corresponding RADARSAT?2 backscattering coefficiealues and the ancillary features) are
exploited as reference set and provided to the 8{Ressor in order to learn the mapping
between input features and target variable. Reteraamples were selected in order to be
well representative and equally distributed in teroh spatial position within the valley and
variability of the target parameter values. Notat ih this phase the target variable is the soil
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dielectric constant, since it represents the playsieasurement acquired on the ground
during the field campaigns. Concerning the SAR beakering features, only the HH
polarization signal is considered at this stageéh@ough discussion about feature extraction
and selection will be provided in the next chapldre tuning of the free SVR parameters is
addressed with the multi-objective model-selecstnategy presented in Chapter 3 together
with a 5-fold cross-validation procedure. This emssuthe robustness of the model-selection
process also with ambiguous data and limited avititha of reference samplesvViSE and
slopeare the metrics considered in the optimizatiorcess, while the ranges for the model
parameters are set as follof$0~3; 103] for the Gaussian RBF kernel widgh [1073; 103]

for the regularization paramet€rand[10~3; 10] for the width of the insensitive tulze The
selection of the final parameter configuration e on the basis of a visual inspection of the
Pareto front.

After the training phase, the regressor can be fethe estimation of target variable
values from both unseen input samples and remstiged images (the estimation phase).
The output of the regressor is then converted ilonsaisture content values according to the
relationship shown in Figure 5.3. It is importaatrotice that in this phase the same input
feature configuration of the training phase is mekd

Regarding the implementation of the proposed natiesystem, the LibSVM library
(Chang and Lin, 2011) was used for the SVR techlmigthile an ad hoc Matlab code was
developed for the multi-objective model-selectitiategy.

Training/Tuning Phase Operational Estimation Phase

[ Reference Samples ]

Multi-Objective SVR Regressor ! Trained
Model Selection Training ; SVR Regressor

diel to SMC%
Conversion

Quantitative
[ Test Samples Performance
Evaluation

Figure 5.7. Block scheme of the proposed retrievethod.
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5.5 Retrieval accuracy Assessment

5.5.1 Quantitative Assessment with Point M easurements

To assess the effectiveness of the proposed syetdime retrieval of soil moisture content in
mountain areas, we first analyzed its performana point measurements. To this aim, 15
reference samples (independent from those usdakitraining phase) were provided to the
system in the estimation operational phase. Estichatalues were then compared with
reference measurements through four quality metiRmot Mean Squared ErroRMSH,
determination coefficientR?), slope and interceptof the linear fit between estimated and
reference target variable values. Table 5.2 regbdsvalues achieved by each metric, while
Figure 5.8 shows the scatter-plot of estimatedugenseasured soil moisture content values.

Table 5.2. Estimation performance achieved by thpgsed retrieval system on independent (test)
reference samples.

RMSE 5.38
R 0.79
Slope 1.20
Intercept -2.60

Input Feature HH

Estimated SMC %

0 = 10 15 20 25 30 35 40 45
Measured SMC %

Figure 5.8. Scatter-plot of estimated versus meabspil moisture content (SMC %) associated with
independent (test) reference samples. Linear fgpsesented by the black line, while the dashael i
shows the 1-to-1 relationship.
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Globally, the achieved accuracy is very promisingh a RMSE of 5.38. Operational soll
moisture retrieval algorithms consider an RMSE df &s target accuracy. Considering the
complexity of the retrieval process in the mountaiea, this result suggest the effectiveness
of the proposed method. Also the linear fit parargeindicate the good performance of the
method, with a determination coefficient close 18. @ his trend is confirmed by the analysis
of the associated scatter plot, which shows adidhgpread of the estimated samples. A slight
overestimation can be observed for high soil mogstontent values, which are associated
with irrigated meadow areas. This effect is propahle to: i) the range of variability of the
target variable, which is much larger in the cakeneadows with respect to pastures; and )
the number of reference samples, which is lowetha case of meadows with respect to
pastures (see Table 5.1). Both these factors magase the complexity of the retrieval
problem in case of meadows.

5.5.2 Qualitative Assessment with Distributed M aps

Together with point estimates, the proposed redfisystem was used for the generation of
distributed maps of soil moisture content over dnea of interest. The aim is to assess the
effectiveness to reproduce expected spatial anghdeah patterns of soil moisture content.
Estimated maps associated with the two RADARSAT2ges acquired in June and July
2010 are shown in Figure 5.9. Black areas (no yatnerespond to masked regions, mainly
forest, water bodies, rocks and urban areas, aiogpwdth the land-use mask.

From a qualitative viewpoint, the maps reproducé the expected trend of soil moisture
content, presenting high values near to the vdllegr (where the irrigated meadows are
located) and progressively decreasing values mawaitige pastures at higher altitudes. At the
same time, the humidity patterns are well recoghizs for example in the case of the small
rivers going down to the valley floor along theesghown in the details of the maps (Figure
5.8 (a), Zoom 2 and Figure 5.8 (b), Zoom 2).

A comparison between the map of June and that lgf iddicates that the soil in the
second date presents a drier behavior, espeamathei lower part of the valley side, as can be
observed in the details shown in Figure 4.8. Thisnd is confirmed by the field
measurements carried out in the areas during tbeampaigns, as indicated in Section 5.2.3.
High variability of the moisture patterns can bes@tved especially in the July map, with
extreme wet and dry conditions close to each othbis behavior can be ascribed to the
irrigation practice, which may determine strongia@ons in the moisture content of soll
between irrigated and non-irrigated fields. Howeweis not excluded that residual ambiguity
within the SAR signal still affects the retrievalopess, determining too strong variations
between dry and wet regions. This issue will béhterrinvestigated in the next chapter.
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Figure 5.9.Maps of soil moisture content (SMC %) derived feaitellite RADARSAT2 SAR imag
acquired over the Mazia valley with the proposetieeal system: (a3 June 200 and (b) 21 July
2010 Red boxes depict details of each map.
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5.6 Conclusion

In this chapter, new generation RADARSAT2 SAR inmgee exploited for the estimation
soil moisture content in afdlpine catchment. First a sensitivity analysis with thelekation
of field measurements of the target parameter awdlary data is crried out. This analysi
pointed out that both topography and vegetatiod-cover heterogeneity strongly affects
backscattering signal acquired oomountainareas, introducing a significant ambiguity in
data. The altitude, the local incidencegle and the NDVI revealed to be useful feature
explain the high level of variability intrinsic the SAR data

The following step was the development of a retiesystem for the estimation of s
moisture content from the RADARSAT2 images. To aim, thee-insensitive Suppo!
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Vector Regression technique was used. Thanks téontaulation, this method is able to
handle complex non-linear estimation problems wibtled generalization ability also when a
limited number of reference samples is availableorédver, it handles easily high
dimensional input spaces, also containing heteregen features. These characteristics were
important for exploiting the available referencenpées for inferring an empirical relationship
between SAR backscattering signal and soil moistorgent values and integrating in the
retrieval process the information extracted fromsildary data. The results achieved indicate
that the proposed technique is promising in terfmd )ocapability to exploit the information
provided by the ancillary data to reduce the ambjguntrinsic into the SAR signal and
address the complex estimation problem in mourdegas; 2) estimation accuracy over point
reference measurements; and 3) capability to rejmedhe soil humidity patterns when
applied to distributed data.

Future development of this work regards first dfaabetter characterization of the effect
of vegetation/land-cover heterogeneity on the SAfRa. This could be carried out with the
help of high geometrical resolution data. In patc, the effect of rocks and stones on the
microwave signal in relationship to the retrievhkoil parameters will be analyzed. A second
interesting development is the exploitation of pladarimetric capability of the RADARSAT?2
sensor by means of polarimetric decompositionfiefsignal, in order to improve the feature
extraction/selection process and thus the retrie¥/abil parameters. Moreover, an extended
validation of the algorithm, by exploiting the maemments provided by the field stations in
the Mazia valley and further RADARSAT2 SAR acquasis over the whole Alto Adige area
will be considered. Finally, the possibility to ms#ate satellite soil moisture content maps
into hydrological models for water resources armught monitoring will be investigated.
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Effectiveness of Fully-Polarimetric SAR Data
for Soil Moisture Retrieval in Mountain Areas

In this chapter, the effectiveness of fully-polaint SAR data for the retrieval of soll
moisture in mountain areas is investigated. Tg #im, three feature extraction strategies,
namely the standard intensity & phase SAR procgssan advanced polarimetric
decomposition method and a statistical data trams&dion technique, are implemented and
applied to new generation RADARSAT2 satellite SARges. The features extracted
according to these strategies as well as their doatibn are assessed together with an
advanced retrieval system for their capability toprove the retrieval of soil moisture in
mountain areas. Both quantitative accuracy on acdest reference samples and capability
to reproduce the expected soil moisture contentiap@atterns in a well-known test area are
evaluated and discussed.

6.1 Introduction and Motivation

The sensitivity of SAR backscattering coefficierits soil moisture has been thoroughly
presented and discussed in the previous chaptemsajdr problem when dealing with soil
moisture retrieval from SAR data is the ambiguitytihe signal introduced by other target
properties such as soil roughness and vegetatiordeal with this issue, advanced retrieval
system taking advantage from both robust regredsicdmiques and the information derived
from ancillary data can be used. Another possiblat®n consists in exploiting the features
extracted from multi-modal acquisitions of the sefhinterest.

In the literature, several studied have been pregpas the use of multi-angle and multi-
frequency SAR signals for the retrieval of soil stare Grivastava et al., 2009; Pierdicca et
al., 2008; Notarnicola and Posa, 2007; Bindlish aBdrros, 2000. The rationale is that the
SAR signal is sensitive to the target properties idifferent way and to a different extent
depending on the system frequency and incidencde.ad® combine the information
acquired with different system configurations letas better characterization of the factors
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affecting the SAR signal and thus to a more aceuestimation of the variable of interest.
More in detail, the combined use of C and L bandrawave signals has shown to be
particularly suitable in order to disentangle tlegetation contribution from that of the soil
(Notarnicola and Posa, 200,7while the exploitation of both low and high idence angle
SAR images revealed useful to incorporate in thieieral process the effects of soil
roughness and textur8rjvastava et al., 2009Despite the promising results achieved, multi-
frequency and multi-angle scenes are very diffitolicquire from satellite platforms on a
regular basis. This significantly limits the posip to apply multi-frequency and multi-angle
approaches over large areas with a frequent anstanatrspatial/temporal coverage.

More efficient is the acquisition of SAR imagerying various and multiple polarization
configurations. Indeed, new generation satellitdcRSFystems offer the possibility to choose
among different configurations of single-, dual-datin some cases) quad-polarization
acquisition modes. Polarimetry has shown to beulider increasing the robustness and
accuracy of soil moisture retrieval from SAR imagédPaloscia et al.2008 investigated the
use of dual-polarization ASAR SAR images for theiegal of soil moisture in the Po valley.
The study showed that the use of both co- and cmsarized backscattering coefficients
could be effective for the reduction of the ambigwvithin the signal due to soil roughness.
Polarization coefficients can also be combined kBans of simple ratios to obtain indices
useful for handling the ambiguity due to vegetatiorthe signal Nlotarnicola et al., 2006
When fully-polarimetric data are at disposal, ongymely on more sophisticated processing
methods. For instance polarimetric decompositi@hnaues can be adopted. Such methods
aim at separating the contribution of differentterang mechanisms within the scene of
interest using both the intensity and phase inftionain the four polarimetric channels
(Claude and Pottier, 1996 Among the others, the alpha/Anisotropy/EntropyA(H)
decomposition proposed by Cloude and Potti®@9p) has been widely investigated for land-
use classification and geo-/bio-physical variabétgeval. A study carried out using airborne
very high resolution polarimetric SAR data over lat fagricultural area pointed out the
capability of the method to separate the contridyutelated to the humidity of the soil from
that of the roughnessH@jnsek et al., 2003 suggesting its potential in soil parameter
estimation applications.

Despite the rising interest in the use of SAR puolatry for the retrieval of soil geo-/bio-
physical variables and the promising results addewome issues remains still unexplored
and further research is required. This is true @splg in case of specific and challenging
environmental conditions, such as the Alps. Hehme, $AR signal is affected by the high
heterogeneity of the land-coverage and the preseht®pography l(uckman, 1998 Up to
now, no investigations on the use of SAR polarignetere carried out in this operational
condition. Further research effort is thus requirethe direction of a better characterization
and exploitation of polarimetric SAR imagery foetretrieval of geo-/bio-physical variables
in the challenging Alpine environment.
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The work presented in this chapter inserts in¢bistext. It extends the analysis presented
in Chapter 5 on the retrieval of soil moisture freatellite SAR imagery in mountain areas by
focussing on the fully polarimetric acquisition edjity of the new generation RADARSAT?2
system. The aim is to thoroughly investigate tHeativeness of polarimetry for the retrieval
of the soil moisture content in mountain areas. #ang this, different feature extraction
strategies are implemented, namely the standarengity&Phase SAR processing, an
advanced polarimetric decomposition and a stadisteature transformation technique. The
features extracted from the polarimetric data bhes tprovided as input to the retrieval system
already developed together with the ancillary ddtae effectiveness of different feature
combinations is assessed by means of quantitatuer@cy metrics computed on a set of test
field measurements. A visual inspection of thelfs@l moisture maps is also considered in
order to verify the capability to reproduce soilistore spatial patterns as observed during
field surveys.

The rest of the chapter is organized as followstiSe 6.2 briefly recalls the main
characteristics of the study area and the datamsetidered in the analysis. For more details
we refer the reader to the previous chapter. Amuee of the feature extraction strategies
investigated in this work and the experimental gasupresented in Section 6.3. Section 6.4
discusses the experimental results obtained antio8e8.5 draws the conclusions of the
analysis.

6.2 Study Area and Data Set

The study area for the analysis presented heraaftee Mazia valley, located in the north-
western part of South Tyrol region (Northern ltall)covers an area of around 100%with
altitudes ranging from 920 meters a.s.l. (Sludenw)3738 meters a.s.l. (Palla Bianca).
Despite the relatively small dimension, the Mazaley is well representative in terms of
geomorphology and topography for the whole SoutholTyExcluding forests, the most
diffuse land-cover/use types are meadow and pasiurey present quite heterogeneous
characteristics in terms of vegetation, spatidriistion and human usage.

During the summer 2010 (on th& 8f June and the 21of July), two SAR images were
acquired by the RADARSAT 2 satellite sensor over khazia valley. The acquisition mode
was Standard Quad Polarization, right looking, veithominal incidence angle of 45° and an
ascending orbit. This acquisition geometry has lwaeafully defined in order to minimize the
geometrical distortions (shadowing and layoverSboetening) that occur in presence of
mountain reliefs due to the side looking view of SAystems. The data have been multi-
looked, de-speckled with a Frost filter (5x5 windewze), calibrated and geocoded (UTM
WGS-84) with the help of a high spatial resolut{@bx2.5 i) digital elevation model. The
final resolution of the processed images is 20x20 Afl pre-processing steps have been
carried out with the SARscape® softwarenry.sarmap.ch
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Contemporary to the two satellite acquisitionsldfimeasurement campaigns have been
carried out in the study area. Non-destructive megmsents were acquired using the mobile
Delta T WET 2 TDR sensor (www.delta-t.co.uk), whieteasures the top five centimetres
soil dielectric constant. The sampling was perfatnselecting homogeneous areas of
approximately 30x30 frepresentative in terms of local topography, vatign status and
land-cover/use type. Repeated measurements (ifieee} of soil dielectric constant distant
few meters one to each other were collected andaged. Soil dielectric constant
measurements in more than 100 sampling areas wellected. Along with TDR
measurements, destructive measurements were eallgctew representative sampling areas.
They were performed by physically taking a soil pwith a 5 cm height metallic cylinder.
The soil sample was weighted, sealed and carriéabioratory in order to be dried according
to standard soil measurements protocGllar et al., 198]. These measurements were used
to derive a calibration curve for the TDR sensoe (@fer to Chapter 5 for more details on
field measurements).

Ancillary data are also considered. As shown in phevious chapter, they help the
retrieval system disentangling the contributionsta@bography and vegetation/land-cover
heterogeneity to that of soil moisture in the SAgnal. More in detail, a digital elevation
model (DEM), two NDVI maps derived from MODIS sétel imagery and a high resolution
land-cover map are used.

6.3 Design of the Experiments

6.3.1 Feature Extraction Strategies

Feature extraction is a core step in the definioban estimation system. It aims at extracting
from the input data the most suitable variableprtwvide as input to the retrieval algorithm
for the estimation of the desired target variablesuited or not sufficient variables as input to
the retrieval algorithm might lead to poor estimatperformance. To fully take advantage of
the available fully-polarimetric SAR data, thredfelient feature extraction strategies have
been implemented in this work:

» Standard Intensity&Phase SAR Processing

SAR images have been processed according to aastaridtensity and Phase
processing chain in order to extract standard po&dric features from the scene of
interest. In a greater detail, the following featirhave been considered: 1) the
backscattering coefficients at four different potaetric channels (HH, HV, VH and
VV); 2) the ratios among co- and cross-polarizedkbeattering coefficients (the
polarization ratio HH/VV and the linear depolaripat ratio HV/VV); and 3) the
polarimetric phase difference (PPD) among HH andcWiginnels.
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» Polarimetric Decompositions
The main idea behind theoretical decompositionrémas is to express the scattering of
the investigated scene as a sum of independentertenand to associate a physical
mechanism with each component. Among different ogmsition strategies proposed
in the literature, the alpha/Anisotropy/Entropy heicque proposed by Cloude and
Pottier 997 has become popular for the analysis of polarime&3AR data and has
been implemented as feature extraction strategfyisranalysis. It is based on the eigen-
decomposition of the polarimetric coherency mataind allows one to extract three
parameters: the alpha anglethe scattering entrogyt and the scattering anisotropy
These parameters express the characteristics obdatering mechanisms and the
degree of randomness of the scattering process.theorestimation of ther/A/H
parameters from the polarimetric RADARSAT?2 singiek complex (SLC) images, the
SARscape® software has been used, setting a Shbgslivindow.

» General Purpose Feature Extraction techniques
When dealing with feature extraction problems wnthlti-dimensional data (such as
fully-polarimetric data) affected by multiple infoation sources (e.g., soil moisture,
surface roughness, vegetation, etc.) one may resortblind approaches. Such
approaches are based on a statistical analysihefsignals. An example is the
Independent Component Analysis (ICA), which is avedul method for blind signal
separation Comon, 1994 This method has various practical applicatiaepng the
others change detection analydida(chesi and Bruzzone, 2009The main rationale
behind this method is the maximization of the statal independence of the estimated
components (i.e., the estimated information sounse®d in the input signal). This is
achieved by eigenvector decomposition and dimensdaoction of the data, while the
statistical independence of the components is &#lgiconeasured according to the
central limit theorem. Various implementations ¢fe tICA approach have been
proposed in the literature. In this work we consedethe FastICA algorithmVan
Hateren and Van Der Schaar, 2Q00vhich has demonstrated high computational
efficiency.

6.3.2 Experimental setup

SAR images were processed for deriving polarimefeatures according to the three
strategies described above. Standard Intensity&Plpascessing and/A/H polarimetric
decomposition were performed with the SARscape®wsoE, while the ICA feature
extraction technique was implemented using Matlad the FastICA algorithm. In each
output map, the areas corresponding to the fieldsomements were identified and associated
with a 3x3 pixels region of interest. The pixeluwes of each region were then averaged and
associated with the dielectric constant values oreason the ground. The same was done for
the features extracted from ancillary data (i@cal altitude and incidence angle, NDVI and
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land-cover class). Regions affected by residuahgstoc distortions (in particular layover)
were excluded. At the end a data set of 75 samfplkes couples of feature values and
corresponding soil dielectric constant measuremevds obtained.

The available data set has been divided into twusests: 1) a reference set with 60
samples and 2) a test set with 15 samples. Refe@mt test samples were selected in order
to be well representative and equally distributederms of spatial position within the valley
and variability of the target parameter values.

The reference set was exploited for the trainimgytg of the retrieval system proposed in
the previous chapter (see Section 5.4 for moreilglet&or consistency with the previous
analysis, the same settings regarding the SVR tggérand the tuning of the free parameters
were maintained. After the training/tuning phases &lgorithm was run on the independent
test samples. Then output target values were ctet/ar soil moisture content. This allowed
us to quantitatively assess the estimation perfoomdy means of four different metrics: the
mean absolute errdMAE, the root mean squared erlR®MSE the determination coefficient
R theslopeandinterceptof the linear trend between estimated and meagarget values.
Finally, the algorithm was applied to the satelliteagery for obtaining the target variable
map.

The analysis carried out was organized in threg gkeexperiments, one for each feature
extraction strategy investigated. For each sebuarcombinations of features extracted from
the polarimetric SAR imagery have been defined @s®tl (together with the features derived
from the ancillary data) as input to the retrieadgorithm for its training and testing as
described above. The retrieval performance withdifferent input feature configurations are
then analyzed and compared.

6.4 Experimental Results

The results achieved terms of estimation accurllyH andRMSH and goodness of i,
slope and intercept of the linear trend line) as well as the corresiiog SVR parameter
configurations (kernel widtl, regularization parameté& and insensitive tube widtt) for

the most significant input feature combinationsestigated are reported in Table 6.1. The
metrics reported are evaluated on the indepen@sihtsamples. For each feature extraction
strategy, the best feature configuration investigatas selected and the corresponding scatter
plot of estimated versus measured test target saushown in Figure 6.1.

For comparison purposes, the case of a singleipwarc channel (the HH polarization,
discussed in the previous chapter) was considenedsdown as a benchmark. It is well
established that HH polarization, among single qddéion channels, is the most sensitive
and suitable for soil moisture content retrievdlacelloni et al., 1999; Ulaby et al., 1979;
Paloscia et al., 2008 In the following, the results associated witltcleanvestigated feature
extraction strategy are compared and discussed.
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6.4.1 Experiments 1: Intensity & Phase Processing

In case of standard Intensity & Phase polarimeteiatures, the joint use of multiple
polarimetric features determines in general a slighprovement in the estimation
performance with respect to the case in which ¢hé/ HH polarization is available. The
exception is represented by the use of the polarienghase difference (PPD), which allows
reducing the overestimation trend shown for highl saoisture content values in the
benchmark configuration (Figure 6.1(a)) but deteesia degrade in terms of accuracy (both
MAE and MSE) and capability to explain the variability of theeasured target valuel?.
The best performance is achieved when the HH+HV@@ufiguration is provided as input to
the retrieval algorithm. This behaviour suggestd eonfirms the effectiveness of the linear
depolarization ratio for the retrieval processhede specific environmental conditions, i.e.,
Alpine meadows and pastures. This feature helpsrébeval algorithm explaining the
ambiguity introduced by the local scale vegetatenmd roughness conditions, while it
minimizes the effects of the heterogeneity thamkge ratio. Less effective seems to be the
use of all the polarization channels (HH+HV+VH+V¥3 input to the retrieval algorithm.
This can be explained by considering that eachr#lantroduces in the estimation process a
certain level of noise and ambiguity without pramgl at the same time significant
information on the target variable, i.e., the sodisture. It is well recognized that HH is the
most sensitive channel to soil moisture content.afid VH channels are strongly correlated
one to each other, thus they care the same infmm&t the retrieval algorithm, but also a
noisy contribution that could be not the same. Whé channel instead has shown to be
problematic for the retrieval of soil moisture iagetated areas due to the strong absorption of
the signal in this channel determined by the veagetdayer Paloscia et al., 2010 As a
consequence, to use the simple polarization chammajht introduce more ambiguity than
information to the retrieval problem. This resulggests the importance not only of a proper
feature extraction, but also of an effective featselection for addressing a retrieval problem.

6.4.2 Experiments 2: a/A/H Polarimetric Decomposition

As can be observed in Table 6.1, the joint use witipte features extracted with the Cloude-
Pottier decomposition allows sometimes increaskrgy dstimation accuracy of the retrieval
algorithm, especially when anisotropy (A) togetheith other features is considered.
However, what clearly emerges from the resultshis teduced capability of the retrieval
system to explain the variability and reproduce dyeamic of target values whedA/H
polarimetric features are considered with respethée benchmark case. This is confirmed by
the lowerR? values and the under- and over-estimation trendhifsh and low target values,
respectively, shown in Figure 6.1(c). For explagnthis results one has to consider the fact
that theo/A/H are computed by means of a 5x5 pixels slidwigdow, thus averaging the
contributions coming from a relatively wide area thhe ground. The outcome is a set of
coefficients that are well representative of theamecattering behaviour of the ground, but
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less sensitive to small scale variability and patie This could affect the retrieval
performance in the highly heterogeneous Alpine remvhent. Another possible factor
affecting the computation of the@A/H polarimetric features is the topography. Désyhe
alpha and entropy quantities are roll-invariante tanisotrophy has shown a variable
behaviour as a function of the local incidence arfgark and Moon, 2002 This is the result

of the different scattering mechanisms that areniesl by the SAR system by changing the
local incidence angleTouzi, 2007. This effect could determine another source obigonty

for the retrieval algorithm. The retrieval is inemsge quite accurate, but the deviation of the
estimated target values increases moving to thedband highest values.

6.4.3 Experiments 3. Independent Component Analysis

Features extracted according to the ICA techniqua&at improve significantly the retrieval
of the soil target variable. The third ICA compohseems to be the most sensitive to the soil
moisture content and leads to a slight improvennenérms of accuracy with respect to the
benchmark configuration. When additional ICA comgainare considered, the accuracy does
not vary significantly. The slope of the linearrtdeline improves becoming close to 1 for the
ICAL+ICA2+ICA3+ICA4 configuration. This indicates good capability to reproduce the
dynamic range and the trend of the target varialifleout under- and over-estimation. As a
blind signal separation method, ICA performs aistiaal analysis of the signal and extracts
those components that maximize the statistical gaddence. While doing this, the noisy
components of the signal could be discarded. Froemt@and, this leads to a set of features
able to well describe the average trend of theetawgriable. From the other hand, it is
possible that a higher order variability within tsignal due to soil moisture small differences
IS not recognized as signal and thus assumed a&®.n®his is realistic, considering the
numerous factors affecting the SAR signal in aniddpenvironment (e.g., topography and
vegetation) and the limited number of channels jolex¥ as input to the ICA algorithm. This
could explain the quite low determination coeffidie values obtained with the
ICA1+ICA2+ICA3+ICA4 feature configuration.

6.4.4 Qualitative Assessment with Soil Moisture Content Maps

The feature configuration showing the best quantgaperformance on test samples have
been selected for the comparison of the associatemt variable maps. Again, the map
obtained considering only the HH polarization chelrmas been considered as a benchmark.
The maps corresponding to the RADARSAT2 acquisitanJuly, 2%, are shown in Figure
6.2. Black values represent areas that were extltrden the processing since out the study
area or associated with forest land-cover.
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From a general viewpoint, the four maps show simif@cro-patterns, with lower soil
moisture content in pastures and at higher altguddnile higher soil moisture content close
to the valley floor in areas of highly managed nmeesl This suggests a capability to
individuate the average trends for all the featexéraction strategies. However, the map
associated with theéA+H features (Figure 6.2(c)) clearly shows a smootbehaviour,
confirming the trend highlighted by the analysigttd test samples estimates.

Let us now move the attention on the local soil shoke patterns (the red box). This
particular is associated to an area corresponding et vertical buffer in a pasture area
along a small river and some irrigated meadows tieafloor of the valley. In the case of the
polarimetric decomposition feature&+H, only the average soil moisture values are
represented. Small variations in the soil moistaetent are completely flattened. Different is
the case of the ICA features (Figure 6.2(d)). Aa t& observed, the patterns are well
recognized and the small scale variability is quvil represented. However, the very wet
patterns that are expected in correspondence dirttadl river are only slightly reproduced.
The map associated with the Intensity & Phase feat(Figure 6.2(b)) further improves the
representation of the wet buffer along the rivémgweing at the same time a more realistic
representation of the dry patterns in the surraupdpasture area with respect to the
benchmark case (Figure 6.2(a)). Despite dramawngds of soil moisture content can be
expected in the pasture area, it is not feasibtd suvariation in few meters. Probably this
artefact is imputable to the different vegetatiaver in the area that attenuates or increases
the SAR signal. This effect is mitigated when thalapzation ratio HV/VV feature is
included in the retrieval process.

6.5 Conclusion

In this chapter we presented an analysis of diffefeature extraction strategies for the
exploitation of fully polarimetric RADARSAT2 SAR d&a in the retrieval of soil moisture
content in the Alpine area. In greater detail, demptensity&Phase polarimetric SAR
processing,a/A/H polarimetric decomposition and the Independ@amponent Analysis
technique have been investigated. For each featdraction strategy, different combinations
of features have been defined and provided as itpun advanced retrieval algorithm
together with a set of features extracted fromlkmgidata. The effectiveness of each feature
configuration has been assessed quantitatively égnshof performance metrics evaluated on
a set of test samples and qualitatively by compatine associated soil target variable maps
and investigating the capability to reproduce exgxbsoil moisture content patterns.

Both the quantitative and the qualitative assessreaggest that the use joint use of
multiple polarimetric features leads to an improeemin the retrieval of soil moisture
content in the Alpine area. In particular, standhr@énsity&Phase polarimetric processing
allows extracting the most suitable features fa @stimation of the desired soil moisture
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variable. The use of the linear depolarizationor&tV/VV has shown to be important for the
performance improvement, thanks to its capabilayprovide information on the local

vegetation and roughness status of the target aitea.other feature extraction strategies
investigated imply a more time demanding processinfie SAR imagery and do not lead to
improvements in the accuracy or in the capabilityréproduce the local patterns of soil
moisture content. This can be probably ascribethéohigh ambiguity and complexity that

characterize the retrieval problem in the Alpin&iemment. In these operative conditions,
not too sophisticated methods are preferable.

As future activity, we intend extending the analyspresented with additional
RADARSAT2 SAR acquisitions. In particular, the usé very high spatial resolution
polarimetric imagery will be investigated. The aisnto understand if the increased spatial
resolution can improve the effectiveness of polatmnin the Alpine environment. Further
validation of the experimental results will be ¢adr out with the data provided by the
measurement stations located in the valley andfreédvmeasurement campaigns.
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An Improved Algorithm for the Retrieval of
Green Area Index from MODI S Satellite Imagery
in Mountain Grasslandsin the Alps

In this chapter the focus is moved to the retriewlanother important geo-/bio-physical
variable, namely the Green Area Index (GAI) of maungrasslands. An improved algorithm
for the estimation of this variable from moderatsalution satellte MODIS imagery is
presented. The main features of the proposed alguriwhich is based on the inversion of a
radiative transfer model, are: i) the higher spatrasolution (250 meters) with respect to
currently available operational products; ii) theiting on the spectral characteristics of
mountain grasslands, for which standard productesent limited accuracy and reliability;
and iii) the accounting for local topography. Thetailed description of the algorithm is
followed by a thorough discussion of the experiaeanalysis carried out on a series of
satellite MODIS imagery acquired over the centrdpsAin the period 2005-2007. GAI
estimates are validated for both temporal consisgeand accuracy with the use of time series
of ground measurements collected at three diffestudy sites in the investigated area. For
comparison purposes, the standard MODIS produeigs considered. The results obtained
demonstrate the capability of the proposed algonitto follow the expected temporal and
range dynamics of the target variable in the chajieg Alpine environment. At the same
time spatial patterns are better reproduced. Thicome of this research opens a promising
avenue for the exploitation of moderate resolusatellite data for novel and more accurate
monitoring studies at regional scale in mountaivieanments.

7.1 Introduction and Motivation

The green Leaf Area Index (LAI), defined as ha# gurface area of green leaves per unit of
ground horizontal surface are€uran, 1980, is a key structural variable of vegetation
canopies. It describes the potential surface awedlahle for leaf gas exchange between
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terrestrial biosphere and atmosphere and is relatedany biological processes of plants,
such as the interception of light and water, phgttigesis, evapotranspiration and carbon and
nutrients cyclesSellers et al., 1997 When totally green vegetation canopies are densd,
such as grasslands or crops, this variable is rpovperly referred as Green Area Index
(GAl), since not only leaves, but also stems argioabove-ground plant organs are green
and photosynthetically active and thus contribatthe exchange of GOH,O and other trace
gases\(Vohlfahrt et al., 2001

The availability of spatially and temporally dismted information about this parameter
on a regular basis is of crucial importance fomelie change studie€GOS, 2006; Sellers et
al. 1999, as well as for ecosystem models that quantifjpaa water and energy fluxes
(Turner et al., 2004; Running et al., 1988vhich can take advantage of the spatial and
temporal trends of LAI/GAI to force or adjust mogekdictions by means of assimilation
techniques Quaife et al., 2008; Dorigo et al., 2007; Moulin &t, 1998. Although several
direct and indirect methods do exist for groundedasmeasurements of canopy structural
properties (Veiss et al., 1994 these are typically time consuming and unfeasibl large
scale monitoring over time. A promising supporgtound measurements, which is exciting a
growing interest in the scientific community sinoany years, is the exploitation of satellite
Earth Observation (EO) imagery.

The retrieval of vegetation biophysical variablesi remote sensing data takes advantage
of the causal relationship that exists between gprbaracteristics and the electromagnetic
radiation it reflects toward space. However, ihéxessary to properly characterize and invert
such a relationship. To this end several algorithenge been proposed in the literature, which
fall into the two broad chategories defined in Gkafi:

» Definition of empirical relationships, by meansmotiltiple regression and/or spectral
vegetation indices This approach has been widely used in the rensetesing
community due to its simplicity and relatively gogubrformance. However, such
relationships are site- and biome-specific and rttagiplication is limited by the
representativeness of the set of reference sampéssfor calibration. Thus they cannot
be extended over large areas and different timegemwithout the calibration on each
EO image Colombo et al., 2003; Meroni et al., 200due to changes that may occur in
canopy structure, atmospheric conditions, viewind sun geometry.

« Inversion of canopy radiative transfer models (RTdy)means of minimization search
algorithms, look-up tables or more sophisticatecchiae learning method®kRTMs are
based on a rigorous physical description of theradtions between electromagnetic
radiation, the canopy elements and the underlyoigssirface. RTMs can simulate a
great variety of conditions in terms of vegetatiype and characteristics as well as
sensor acquisition geometry, thus ensuring typical higher generalization and
portability with respect to empirical models. Howewthe inversion process is the most
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of the time computationally demanding and ill-pgseéde to the high number of model
input parameters. Moreover, uncertainties in remsémsing measurements and
approximations of the model may result in variapilbf the results ombal et al.,
2003. To cope with these issues, prior information the area investigated (e.g.,
regarding the biome type or the model input paramgtcan be exploited to better
constrain the inversion proce$3ambal et al., 2002; Lavergne et al., 2007

While empirical relationships are mainly used imdxnation with high/very high spatial
resolution EO data for retrieving LAI/GAI at locahd sub-regional scale, radiative transfer
model inversion is often exploited with medium desion (MR) satellite imagery. Despite
the quite coarse spatial resolution (ranging frd®® 2n to 1 km), MR data have the great
advantage of being acquired globally, on a regoéesis and very frequently (typically once a
day) since many years. Thus they offer a valualllhse for modeling and monitoring
purposes. The Moderate Resolution Imaging Spectiameeter (MODIS) sensor on board of
the AQUA and TERRA satellites is probably the mased and well-known MR system
within the remote sensing community. Since the ¢auof the first satellite, TERRA, in 2000
there has been an unprecedented effort in usiefjisatemote sensing data for characterizing
many of the most important Earth processésstice et al., 2002 The system acquires
images of the Earth surface in 36 spectral bandbanvisible and infrared portions of the
electromagnetic spectrum with a spatial resolutaorging from 250 m (red and near infrared
bands) to 1 km (mainly in the thermal bands) attldwice a day. A suite of high-level
standard products, including global LAI/GAI mapegtMODIS 15A2 and 15A3 products),
has been developed by the MODIS Land Disciplineugscand is freely available to the user
community.

MODIS 15A2 and 15A3 products are based on the giwerof biome specific radiative
transfer models by means of look up tables. Therdlun compares atmospherically and
bidirectional reflectance distribution function (BR) corrected 1-7 channels acquired over a
certain area (1 by 1 Kand within a time window (4 to 8 days) with thelwes modeled for
a broad range of canopy structure and soil patt@iyseni et al., 2000 The mean value of
all the acceptable solutions (i.e. the solutiomswhich the uncertainty between modeled and
measured reflectance is less than the uncertafrnityeomeasured reflectancerivette et al.,
2002 is retained as final output value, while a backilgorithm based on an NDVI biome
specific relationship is used in case of the magorithm failure. Since its first release, the
MODIS product has been widely used and has recetoediderable validation from the
scientific community, which allowed the developmaitsignificant improvements of the
original algorithm. The latest version, referredGallection 5, has been released in 2007.
Major changes with respect to the previous versigarded: i) the re-calibration of the
LUTs, by means of a new stochastic radiative temsfiodel able to better depict three
dimensional effectsShabanow et al., 2005and ii) the definition and the number of biome
types (8 instead of 6) with the introduction of eyreen and deciduous subclasses for
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broadleaf and needleleaf forest¥afig et al.,, 2006 Several authors documented the
improved accuracy of the Collection 5 product, esly in forested areas, as well as a much
more realistic temporal dynamic and spatial coeaisy of the LAI/GAI estimateDe Kauwe

et al., 2011; Fang et al., 20L2However, a bias towards low values was obsemeithe
upper range of the target variableiisen et al., 20)1Accuracy issues together with rather
general assumptions and simplifications about ¢téerval algorithm (which are nevertheless
necessary when working on a global scale) caltferneed of LAI/GAI products customized
for specific regions of the Earth and peculiar afienal conditionsl{e Maire et al., 2011,
Duveiller et al., 2011; Rochdi and Fernandes, 201is is the case when dealing with the
challenging Alpine environment.

As already discussed in the previous chapters, mouregions, such as the Alps, present
an extreme topographic variability, often being relosterized by steep slopes and altitude
variations of thousands of meters. The complexitthe landscape is also reflected in patchy
land-cover and vertically structured ecosysteBecker et al., 2007 These conditions may
affect the retrieval of surface geo-/bio-physicaliables from medium resolution remotely
sensed datgdarrigues et al., 2006; Ryu et al., 2Q08part from forest, the Alpine landscape
is dominated by grasslands, which represent onteofmost diverse man-made landscape
formations and cover up to 40% of the agricultyrabed areaMaurer et al., 2006; Tasser et
al., 2009. While grasslands at higher altitudes are maudgd as summer pastures, those
close to the valley floors and easily accessibéeadten managed (fertilized and irrigated) for
hay or silage. Meadow canopies show typically veense structure (with GAI values that
can reach 10 [Am?) and because of the vegetation cuttings (up tor fo intensively
managed meadows) followed by rapid plant re-growihdergo multiple growing cycles
within a single vegetation periodWphlfahrt and Cernusca, 20P2Thanks to these
characteristics, Alpine grasslands are ideal fodyhg the effects of climate change on
carbon sequestration and energy partitioning, ssnagde range of environmental conditions
iIs reproduced at relatively small spatial and terapscales Rauli et al., 2008 Such
analyses are of crucial importance, since the EraopAlps are assumed to be particularly
sensitive to changes in the climate systé®enfston, 2005; Rammig et al., 2010he
monitoring of vegetation parameters of Alpine giasds, and in particular the GAl, is also
important for assessing the effects of human dms/(such as fertilization and irrigation) on
the Alpine ecosystem for resource management, egvoonmental and political issues, as
suggested in the European Agriculture Policy ReB. X782/03. Despite several attempts
were made for retrieving structural and biochemigatameters of Alpine grasslands from
remote sensing dat&¥¢hland and Jarmer, 2008; Vescovo and Gianelle 82@arvishzadeh
et al., 2008; Vescovo et al.,, 20Qllmost studies concentrated on the use of field
spectroradiometers or high resolution imagery (&OT 5 and IRS). These data cannot
accomplish the goal of a temporal frequent momtpifior the whole Alpine region. On the
other hand, no existing LAI/GAI global product issigned to cope with the peculiarities and
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challenging aspects of the Alpine environment, tuggesting the need of further research in
deriving robust and accurate estimation systemthfese specific operational conditions.

In this chapter we present an improved algorithmtlie retrieval of GAI from satellite
MODIS imagery specifically calibrated for mountajrasslands in the Alps. To this aim, the
well-known PROSAIL radiative transfer model has bemsed and inverted by means of a
LUT procedure. The main advantages of the propasgatithm with respect to the standard
MODIS produc are: i) the improved spatial resolti@om 1km to 250 meters), which is
necessary to handle the heterogeneity of Alpinasang the tuning of the radiative transfer
model on the spectral characteristics of mountaasgiands; and iii) the exploitation of the
characteristics of local topography in the retrlgmacess. The algorithm was applied to a
temporal series of satellite MODIS images acquoedr the central Alps during the period
2005-2007 and GAI estimates were validated for dethporal consistency and accuracy
with the use of time series of ground measuremeusitected at three different study sites in
the investigated area. For comparison purposesCiiection 5 MODIS product was also
considered.

7.2 Study Siteand Data

The study area is the Euroregion Tyrol-South Tyn@ntino, formed by the Austrian State of
Tyrol and the provinces of South Tyrol/Sidtirol/@lAdige and Trentino in northern ltaly.
The area is entirely located in the Eastern Alpstwben 45°40’- 47°44’ N and 10°5'-
12°57'E, covering roughly 26,250 Krwith altitudes that vary from 200m to 3,800 m a.s.|
(Figure 7.1). Flat areas account for only a smatipprtion and are mainly located in the
valley floors. Topography is highly variable ane tarea is almost evenly distributed among
the four main aspect directions. The climate isalde as well, from alpine to subcontinental,
with cold and quite snowy winters. Spatial variatia precipitation is high, which is mostly
due to the screening effects of topography. Whiledts represent the most widespread land-
cover type, ranging from deciduous broadleaf tagreen needleleaf forests with the increase
of altitude, grasslands are highly present in trea.aGrasslands show very heterogeneous
characteristics in terms of human management pegatanging from lightly used pastures at
the highest altitudes to moderately/intensively aggd meadows with up to 4 cut events per
year close to the valley floors. All these charastes together make the study of this area
from satellite extremely challenging, while repmséive of the possible different
environmental/management conditions that can bewstered in the Alpine region.

105



Chapter 7

Google earth
Ry C

Figure 7.1. The Euroregion Tyrol-South Tyrol-Trewtistudy area.Credit: Google Earth.

7.2.1 Satellite Data

MODIS imagery acquired by AQUA and TERRA satellitesoutinely processed at the Land
Processes Distributed Active Archive Center (LP OAAvithin the NASA Earth Observing
System Data and Information System (EOSDIS). Amtrg data products available, the
MODIS Surface Reflectance was used in this worlprtivides an estimate of the surface
spectral reflectance corrected for atmospheric 9asal aerosols. The Version-5 surface
reflectance product is validated Stage 2, meanag &ccuracy has been assessed over a
widely distributed set of locations and time pesoda several ground truth and validation
efforts. More specifically, the data used in thisrkvis the MOD/MYD 09GQ-LG2daily
product (for TERRA and AQUA satellites, respectiyewhich provides bands 1 (red) and 2
(near infrared) together with auxiliary quality amfation in a 250-meter resolution grid in
the sinusoidal projection. This product is meantb® used in conjunction with the
MOD/MYD 09GA-LG2 daily product, which includes 50@0eters reflectance values in the
spectral bands of green (band 4), blue (band 3) shmit wave infrared (band 5 to 7).
Together with spectral information, 1-kilometer eb&tion and geolocation statistics (such
as solar and sensor angles and spectral acquiqii@lity flags) are provided. For comparison
purposes, the Collection 5 MODIS MCD 15A3-L4, haeib also considered. It is a 4-day
temporal composite LAI/GAI product and is providadl kilometer resolution together with
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a standard deviation value and quality flags inthiga among other information, the
algorithm (main or back-up) used for the calculatd the corresponding output value.

Both the surface reflectance and MCD 15A3 prodbaigee been downloaded from the LP
DAAC data pool ittps://Ipdaac.usgs.gov/get_data/data ptwlbuild a satellite data set for
the period 2005-2007 over the study area. One aagarof MODIS level 2 (and derived)
data products is the fact that they are storeiersiame grid (the so called L2G ghiplfe et
al., 1999 and distributed by tiles of ~1100x1100 %nThis ensures good correspondence
between pixels of different products without coiséigtion effort. In our case the tile h18v04,
covering the full study area, was selected. Imagm® automatically pre-processed to extract
useful layers and scale pixel values using the M®&dnversion toolkit,White, 2008 Data
were maintained in the native sinusoidal projectiororder to avoid misalignments due to re-
projection and interpolation approximations, white spatial coverage was limited to the
Tyrol-South Tyrol-Trentino Euroregion.

7.2.2 Ground M easur ements

Ground measurements were conducted at three stigdyiis the Northern part of the study
domain: Neustift (970 m a.s.l., 47° 07’ 00”N, 119’ 07"E), Langenfeld (1180 m a.s.l., 47°
03’ 50”N, 10° 57’ 52"E) and Leutasch (1110 m &,s47° 22’ 44”N, 11° 09’ 56”E). All
three sites are managed grasslands characterizegblip three cutting events per year. For a
more detailed description of the study sites werrted Vescovo et al2011). The assessment
of the GAI in the field measurement sites was pené by means of two different strategies:
) in a destructive fashion, by clipping of squastets of 30 x 30 cr (usually 3 to 5
replicates) and subsequent plant area determinatsimy a planimeter (Li-3100, Li-Cor,
Lincoln, NE, USA); ii) in an indirect way, by relag GAI to maximum canopy height or
phytomass according to predefined empirical retetinogps Hammerle et al., 2008; Wohlfahrt
et al., 2008. In order to derive continuous time series of GAlirect and indirect
measurements were fitted separately for each ggppirase by using a generalized logistic
model for each growing phase and a second-ordgmpuaiial model after the last cutting
event, respectively. An overview of the interpothtemporal profiles for the three selected
field measurement sites is provided in Figure 7.2.

7.2.3 Ancillary Data

To support the retrieval of GAI from MODIS imagegydigital elevation model (DEM) and a
land-cover/use map were exploited. The DEM congistethe version 2.1 Shuttle Radar
Topography Mission (SRTM) product, derived from tHata of the STS-99 mission in
February, 2000, and edited by the National Geaoslpltielligence Agency (NGA)Rarr et
al., 2007. The data, freely available online, are worldwalailable with a spatial resolution
of 90 x 90 M, except from the United States territory wherergsolution is improved to 30
x 30nf. As land-cover/use map, the GlobCorine 2009 wasidered Bontemps et al., 2010
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Figure 7.2. Measured (symbols) and interpolatedigdme) GAI values for the three field
measurement sites and the three years considered.

This map has been generated in the framework cE8®’'s GlobCorine project, covering a
pan-European area corresponding to the 27 Europkaon countries extended to the
Mediterranean basin and Western Russia. The mapdedased from an automatic and
regionally-tuned classification of a time series ®fledium Resolution Imaging
Spectroradiometer (MERIS) seasonal and annual wesaier the period between January
and December 2009. The final resolution of thesifesttion map is 300 x 3007min order to

fit with the MODIS satellite data, both the DEM gt and the land-cover map were
converted from the native projection into the smdal MODIS projection and cut over the
study area.

7.3 Methods

The main rationale behind the proposed GAI rettielgorithm is the inversion of a canopy
radiative transfer model, adapted to the charastiesi of the Alpine environment, by means
of a look-up table (LUT) procedure. A LUT is a premputed spectral library which contains
different simulated spectra corresponding to d#ifer combinations of biophysical and
geometrical parameter. During the operational edton phase, a search procedure based on
the match between simulated and remote sensingrapscperformed and the parameter
configuration that yields the best performanceetained as output estimate. LUT inversion is
particularly suitable for the processing of largeoants of data, such as time series of remote
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sensing imagery, since it only involves searchimgcedures while the time consuming
simulation of spectra is performed offline. In addi to this, LUT inversion shows
interesting features with respect to alternativeemtge learning inversion strategies, such as
neural networks, recently proposed for the rettiefaLAl/GAI from remote sensing data
(Duveiller et al., 2011; Baret et al., 20D7ndeed: i) it permits a global search (thus dirag
local minima), while showing less unexpected bebtvawihen the spectra characteristics of the
targets are not well represented by the modeledtrsp&chlerf and Atzberger, 2006i) it
does not require a training phase, which is necgsgiégh machine learning methods and in
most of the cases is complex and time consuminy;tiieasily allows constraining the
inversion process by means of prior knowledge eftéiget variable; and iv) it is flexible and
easy to adapt and extend to new operational condit{e.g., the use of data with different
spectral bands or different acquisition geometri@#hout additional training/tuning. To
achieve good estimation accuracy, the dimensidheofUT must be sufficiently largé\(eiss
et al., 2000, which may slow down the estimation process. €al dvith this problem, one
may resort to efficient methods for the generatbrthe LUT Hedley et al., 20090or to a
proper parameterization of the radiative transfedeh, which can take into account prior
information on the application domain considerede Becond strategy was implemented in
this work.

A general overview of the algorithm flowchart isogin in Figure 7.3, while a detailed
description of its main components is given inftlilowing.

7.3.1 Reference Spectral Library Generation

The generation of the reference spectral librarg @ucial step for the effective retrieval of
GAI from MODIS imagery. This task has been addréssethis work using the PROSAIL
radiative transfer model. PROSAIL, which consiststte PROSPECT leaf optical model
(Jacquemond and Baret, 1996oupled to the SAILH canopy reflectance modétrfoef,
1984; Verhoef, 1985; Kuusk, 199%imulates the top-of-the-canopy bi-directioreflectance
from the visible (400nm) to shortwave infrared (@Bfh) wavelengths as a function of a
series of input variables describing the leaf @btiproperties, the canopy structure, the
background soil reflectance and the sun/observetesy geometry. This results in the
possibility to simulate various canopy and experitakscenarios. More in detail, leaf optical
properties are quantified in terms of mesophylictral parametely;) and leaf chlorophyll
a+b Cap), dry matter Cn), water Cy) and brown pigmentQy,) content. Canopy structure is
expressed in terms of canopy structural param&gmré¢lated to mean leaf angle inclination,
hot spot parameterHptspo) and obviously theLAl (in this studyGAI since grassland
canopies are investigated). The contribution of ilaekground soil is accounted for by the
input soil spectral signature, while the sun/obserngeometry is described by the
solar/observer zenith and relative azimuth angtesthe fraction of diffuse incoming solar
radiation gkyl)).
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Figure 7.2. Flowchart of the proposed GAl retrieaggorithm.

PROSAIL has been widely used and validated by ttiensfic community for both
studying plant canopy spectral reflectance anderetry vegetation biophysical variables
(Jaquemoud et al., 2009; Meroni et al., 2004; Voldlamd Jarmer, 2008; Duveiller et al.,
2011; Darvishzadeh et al.,, 2008; Jaquemoud et 2000. Although the basic physical
assumptions (e.g., semi-finite horizontally homagenplant canopies) represent a limitation
for its application in some specific domains withgh heterogeneity at plot scale
(Darvishzadeh et al., 2008the model demonstrated to be reliable, accumatkeapplicable to
the study of both agricultural and natural vegetatcanopies with medium and high
resolution satellite imagery. Moreover, PROSAILretatively simple, easy to handle (thanks
to the rather limited number of parameters to tuae)l characterized by a reasonable
computational time.
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The spectral library (SL) consists of an ensemblecanopy reflectance simulations
CRS™ = [CR3™, CR3™, ..., CR™]  (where chy, chy, ..., ch, represent different spectral
channels) each associated with the correspondindeimparameter configuratiorv =
[V1,V2, ..., vm]. NOt Only the target parameter (in this case tid¢) Gut also the other model
parameters should be varied in this phase, in dodtake into account the different possible
conditions that can be encountered on the groundifiarent areas and different temporal
periods. This will easily lead to a large amounspéctra in the SL. In order to constrain the
behavior of the model to the vegetation canopy mtérest in this study (i.e. mountain
grasslands) while reducing parameter equifinalitye (phenomenon whereby similar spectral
signatures can be associated with different biophl/parameter configurations rendering the
inversion problem ill-poseBeven & Freer, 2001; Beven 2006 specific parameterization for
the PROSAILH inputs was adopted. More in detaihsee/sun geometry angle configurations
were derived from the pre-processed MODIS imagafte a quantization process with a 5
degrees step), while a constant value (0.1) fomthele spectrum was considered for skgl
parameter. Indeed, this parameter showed limitddence on the simulated reflectance in
several earlier analyseSchlerf and Atzberger, 2006; Clevers and Verho@91)l The soil
spectral response was modeled averaging varionatsigs from the ASTER spectral library
(Baldrige et al., 200ptypical for grasslands soils in the Alps. Conaegrthe canopy and leaf
biophysical parameters, the ranges of variabilitythese parameters (except for the canopy
structureX: considered constant to 2) were first determinezbiting to the available field
measurements and the values typically used initdm@ture in similar operational conditions
(Darvishzadeh et al., 2008; Vohland and Jarmer, 2008scovo and Gianelle, 20p8hen a
sensitivity analysis of the MODIS spectral chanr{elpecially bands 1 and 2) to variations in
leaf and canopy properties of Alpine grasslands padormed. More in detail, a set of
simulated spectral responses was generated byivedyavarying one parameter within its
range, while retaining the others fixed to the mealune. PROSAIL simulated spectra were
then converted into MODIS spectral channels redieceé values by means of the sensor
relative spectral response (RSR) and correlatell thvét corresponding biophysical parameter.
Figure 7.4 depicts the different analysis stepgiHerGAIl parameter. It is worth noting that a
linear dependence is tested for each parametqitel@s some cases a non-linear behavior of
the simulated spectra to variations in the inpuapeter emerged (e.g., MODIS band 1 vs.
GAlI). This approximation was considered acceptatl¢his stage. The resulting statistical
correlation coefficient determined the parametéiorafor the model inputs: a uniform
distribution within the corresponding range wasdu$er parameters showing significant
correlation values (p<0.05), while a fixed valuee (i the mean) was retained for the other
parameters. As reported in Table 7.1, except freaenGAIl parameter, only the chlorophyll
a+b Cap) and dry matter(,) content showed significant correlation with MOLCB8nds 1 or
2 during the sensitivity analysis.
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7.3.2 Inversion Algorithm
The core of the inversion algorithm is represerigdhe matching procedure. Given a pixel
in the input image, the associated spectral sigaaiR* = [CR’;hl,CRZhZ,.. CRChN ] IS

compared with those belonging to the referencetsgddrary according to a metrivp,
which quantifies the matching degree between tvaxtsal signatures. In this study the root
mean squared error metric was used:

Z (CRb CRZLm) (7.1)

where N¢, is the number of spectral bands considered. Inrotdepreserve the spatial
information of the input MODIS image, only the spatinformation associated with bands 1
and 2 was considered. These bands are anyway teesmitable for GAI retrievalQurran
and Williamson, 1987 Together with the spectral values, spectral tadgm indices based
on these two bands (i.e., the simple ratio SBrdan, 1969, the normalized difference
vegetation index NDVIRouse et al., 1974nd the enhanced vegetation index ENliéte et
al., 1996 were also considered. Their role was to increhserobustness of the matching
procedure and enhance the sensitivity to the tabgmgihysical parameter. Since spectral
bands and spectral indices derived from these Ifedaht ranges of variability, their values
were rescaled to the range [0,1] before computiegriatching score.

Traditional LUT inversion procedures retain the wealassociated with the reference
spectrum showing the highest degree of matchinly thi¢ remotely sensed spectral signature
as output target parameter. This procedure coufersof instability and limited robustness
when noise is affecting remote sensing data. Irerotd limit this issue, the first best
matching spectra were consider&hfvishzadeh et al., 200&nd the weighted mean of the
corresponding target parameter values was provided as output st

GAI = = (7.2)
j=11j
where
="y, (7.3)
and
Sm, < Sm, < < Sp, (7.4)

Together with the mean value, the weighted standevaation was computed as measure of
the reliability and stability of the retrieved tatgparameter value:
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1\ 2
t-ywj * (GAI; — GAI) (7.5)

Std gz §:1Wj
After some trials, the number of best matching speovas set equal to 10.

The exploitation of prior information on the addved target variable was found to
significantly improve the inversion proces3ofmbal et al. 2002; Meroni et al., 2004nstead
of increasing the complexity of the matching sc@®,proposed by several authors, a prior
selection and reduction of the reference spectea us the spectral matching procedure for
each processed pixel was implemented in the propasgorithm. This strategy allowed
easily constraining the retrieval process given gher information while speeding up the
inversion procedure, since a reduced number ofuatiahs of the matching score were
performed. In the analysis, two kinds of prior imf@tion were considered: 1) the acquisition
geometry of the system (i.e. the sun and sensathzend azimuth angles), which was
assumed known from the MODIS image pixel by piX8l;a constraint on the range of
variability for the GAIl values as a function of tiday of the year. This information was
retrieved combining the envelope of the interpaatBAl measurement time series in
different places within the study area and in ddfe¢ years. While the first information
allowed significantly reducing the ambiguity inttezed by the high variability in the
acquisition geometry, the second was useful forstaming the GAI retrieval process
especially during the winter season, when GAIl valaee typically very low (due to
vegetation senescence and snow cover) while therrecee of noisy pixels due to cloud
cover or snow contamination on the ground is guigé.

7.3.3 Data Processing and GAI Map Generation

Before applying the retrieval algorithm describdzbve, MODIS daily surface reflectance
data required some processing. First of all, dddOD/MYD 09GA images were
oversampled to the 250 meters spatial resolutiomégns of a nearest neighborhood strategy
and composed with the corresponding 09GQ images.

In the next step, the acquisition and illuminatg@ometry information associated with the
MODIS surface reflectance (i.e. the sensor andrspémith and azimuth angles) were
corrected in order to take into account the topoigyaof the investigated area. Geometry
information provided together with MODIS data reter the ideal case of a locally flat
horizontal surface. However, in case of complexotppphic conditions, such as in mountain
areas, this hypothesis is not fulfilled. Steep e®@nd rapid changes of aspect direction
typical of Alpine valleys cause significant varati in the acquisition geometry local
reference system even from one pixel to the offieis strongly affects the sun and sensor
geometry angles (Figure 7.5). To account for tifscg the local surface characteristics (local
slope and local aspect angles) were extracted fhendigital elevation model over the entire
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study area. Then for each MODIS pixel, the sumilhation and sensor acquisition zer
angles were corrected to the local conditions efaitea accordii to this equatior

Zenith* = Zenith + y (7.6)

whereZenith is the actual zenith anglZenithrepresents the sun/sensor zenith angle b
correction andy is the local slope angle projected on the sun/sengew plane an
determined according to:

X = cos‘l(cos(”/z — slope). cos(4Azimuth)) — T/ (7.7)

whereslopeis the local slope of the area e4Azimuthis the relative angle between the lo
aspect direction and the sun/sensor azimuth dimre¢tee Figur7.5).

The third preprocessing step consisted in aggregating dailyasarfeflectance produc
in a composite product. This procedure aimed ataeg the amount of data to be proces
and mitigating the occurrence of cloudy, aerosaitaminated or badly auired (from the
acquisition geometry viewpoint) pixels, a frequemtoblem in mountain areas. T
aggregation strategy implemented was similar toddapted by the MODIS-day composite
surface reflectance product. Given a temporal buffd subsequenmODIS daily images,
score was computed pixel by pixel and for each enbyg accounting for the presence
cloud, cloud shadow and/or atmospheric aerosol(dimng to the daily product state flag
and the sun and sensor zenith incidence angles for each position in the image, the pi
showing the highest score (ideally, without clouerage and aerosols contamination
showing the lowest sun and sensor incidence angi@syetained for the composite prodi

Zenith Zenith

North

(@) (b)

Figure 7.5.Representation of the sensor acquisition geomatoase of (a) flat horizontal referen
cell and (b) inclined reference cell due to topgqgrg. Note that the same conditions hold for the
illumination geometry.
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According to this strategy a 4-day composite conmgirboth AQUA and TERRA daily
acquisitions was generated. This choice allowedga kemporal frequency of the output
images maintaining at the same time a high num®eof( daily input observations among
which to choose for each pixel.

Finally, a masking procedure was applied to tha.dat this phase, both the Corine 2009

land-cover map and the composite product pixelityualere exploited in order to exclude
pixels not belonging to the target biome or stilbwing poor quality (e.g., cloud or cloud
shadow coverage, aerosols contamination) fromubeesjuent processing.
After the preliminary processing, data were readg the inversion algorithm was applied
pixel by pixel for generating the estimated out@Al maps. Together with the estimated
GAl values each map contained additional layerh e standard deviation value, the day of
the year (DOY) and the quality flags associatedh\wach GAIl estimate.

7.3.4Validation

The validation of the proposed GAI retrieval algjom was carried out according to a
threefold strategy:

1. Visual analysis of estimated GAI mapEhe GAI maps derived with the proposed
algorithm were visually inspected and compared whth corresponding MODIS MCD
15A3 product. In the absence of a distributed gdogfierence map, this analysis aimed
at qualitatively assessing the capability of thgodthm to reproduce spatially
consistent and expected patterns of the targetiMari

2. Analysis of estimated GAI dynami@&y exploiting the available temporal data set,|GA
temporal signatures were extracted from both tlmpgsed algorithm and the MCD
15A3 product maps over five test sites represesgtai different conditions on the
ground: three corresponding to the ground measurestations, one corresponding to
a mid-altitude pasture (1850 meters a.s.l., 46°142’'N, 10° 37’ 15” E), and one to an
high-altitude pasture (2300 meters a.s.l., 46° %1’10° 38’ 57”) both in Matscher
Valley, South Tyrol. The capability to reproduce BAI temporal and range dynamics
typical of Alpine areas was then analyzed in teohseasonal (number of growing
cycles, start and end of the season) and statisfiseedian, quartiles and
minimum/maximum) indicators. Where available, thalGignatures were compared
with the available reference measurements.

3. Assessment of estimated GAIl accuradhe estimated and the corresponding
interpolated ground GAI values associated with tthree field measurement stations
were analytically compared in terms of the follog/statistical indicators:

* Root Mean Squared ErrdRiSH
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RMSE = (7.8)

* Bias B)
q

B=-) e (7.9)

q i=1

» Standard DeviationSD)

(7.10)

where e indicates the difference between estimated anereete GAIl andj is the
number of samples considered. In addition, thessitzdl correlation coefficientr}, the
slope andinterceptof the linear model between estimated and referépal values
were calculated. The indicators were computed &b the proposed algorithm and the
MODIS LAI standard product.
A major issue regarding points 2 and 3 of the \aiah process was the selection of the pixel
in the map for the extraction of the estimated @aAlue as resampling or geolocation errors
may occur Fernandes et al., 2004; Weiss et al., 200/ order to minimize such effects,
satellite estimates can be aggregated over a 3xk3m@e) pixels region before their
comparison with ground reference measuremelisrigette et al., 2006 However, this
approach was not applicable in the investigatedysarea due to the large heterogeneity of
the landscape, in terms of topography and landfseecover, the pixel aggregation strategy
would prevent the assessment of the improved $pasalution of the proposed algorithm,
especially when evaluating GAI temporal trajecteri€or these reasons, GAIl values were
extracted from a single pixel for each selectee sitcording to a vicinity (in terms of
geographic coordinates) and pixel homogeneitygims of topography and land-cover) rule.
Since the same approach was applied to both theoped algorithm and the MCD 15A3
product, this will not affect the validation result

7.4. Results

7.4.1 Visual Analysisof Estimated GAl Maps

An example of GAlI map obtained with the proposegoathm relative to the last 4-day
composite of June 2005 is shown in Figure 7.6 estéd by the corresponding MCD 15A3
product.
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(a) (b)

Figure 7.7. Detail of the GAl map over the Inn ¥glleastern North Tyrol: (a) the MCD 15A3
product and (b) the proposed algorithm map.

A first inspection of the map indicates the occnces of high GAI values mainly in the
valley floors, where intensively managed meadows krcated, while GAI becomes
progressively lower with the increase of the aftéuwor on the sides of the Alpine valleys,
where pastures and less intensively managed meaal@wmypically present. These patterns
are evident in both the maps. However, going mate spatial details, it is possible to
observe the improved mapping of GAI patterns ingteposed algorithm map. This is mainly
attributable to the increased spatial resolutiothwespect to the MCD 15A3 product as
pointed out, for example, from the fact that thapshof Alpine valleys can be more easily
identified. Moreover, small-scale spatial pattecas be differentiated within each valley,
such as the distinction between highly and extehgimanaged meadows. Within the 1x1
km? MCD15A3 pixel their contributions are typically xeid, as shown for example in the top
right part of the map, corresponding to the easpar of the Inn valley in North Tyrol
(Figure 7.7). A dark elongated spatial patterrhm niddle of the valley from the center to the
top right corner of the image is visible in the GA&p generated with the proposed algorithm.
It corresponds to the Inn river, which crossesvilléey and is surrounded by trees/shrubs and
meadows. The same pattern is not visible in thedstal MODIS product map, where the
river and the surrounding meadows are mixed. Sewthar examples (not shown here for
space constraints) can be found in other portidrihe maps and are consistent with those
observed in other periods of the year.
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7.4.2 Analysis of Estimated GAI Dynamics
7.4.2.1 Temporal Dynamics

The temporal evolution of estimated GAI for theefigelected reference sites is shown in
Figure 7.8. From a first analysis the MCD 15A3 prodand the proposed algorithm agree
well with regard to the annual phenological cyclBise start and length of the green seasons,
which are shorter and delayed in case of mid/higtude pastures, longer and earlier in case
of managed meadows near valley floors, are recednzoperly. Differences start emerging
when examining at the inter-annual dynamics of rgadameadows. GAI estimates obtained
with the proposed algorithm show multiple (up tceth) growing phases during the vegetation
period, in line with the temporal dynamics in th@wghd measurements (Figure 7.2). Each
growing phase is followed by a sharp decreaseetttimated values. The only exception is
noticeable for the Neustift site, where the desoenghases of GAI values after the peaks are
not fully reproduced for the year 2007. This islg@bly due to contamination by clouds and
aerosols, which often occur in Alpine areas. Ondbwtrary, the MCD 15A3 product mainly
follows the annual envelope of GAI with some sparattops related to the backup algorithm
(black points). A more detailed comparison with ¢gneund measurement trajectory suggests
that the proposed algorithm is also able to prgpeasbture the temporal dynamic of GAI in
terms of start and length of the growing phase.h#t sn the start of the growth can be
identified for the Neustift and Langenfeld siteseatthe first and especially the second cuts.
This phenomenon was to some extent expected. &g sneasurements used in this work,
despite providing crucial information about tempatgnamics of GAI in Alpine meadows,
cannot be considered representative of the spatltemporal variability of the whole area
covered by a MODIS 250x250%mpixel. Cut events in the surrounding plots mayediby
several days with respect to the considered sitethis phenomenon affects the spectral
signature of the MODIS pixel determining a mixtafehigh and low GAI contributions. This

Is confirmed by the fact that peaks show a ceranmbility in GAI values and grass cuts are
sometimes associated with a gradual decreaseddstimdays (e.g. the Langenfeld temporal
trajectory). The pasture sites do not exhibit nplatigrowth periods, for both the standard and
the proposed algorithms, in line with the generkdly-intensity grazing at these sites.

7.4.2.2 Range Dynamics

Together with complex temporal trajectories, Alpgrasslands are characterized by typical
range dynamics, strongly affected by human managemmctices. In order to assess the
capability to capture these range dynamics, stalshdicators associated with each temporal
profile derived from the MCD 15A3 product, the pogpd algorithm estimates and (where
available) the interpolated ground measurements wempared with the help of boxplots in
Figure 7.9.
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Figure 7.8. Temporal GAI signatures associated with the $glected sites on the ground for
period 20052007: (left column) MCD 15A3 estimates and (righlumn) proposealgorithm
estimates.
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Figure 7.9.Boxplots representing median (red lines), quart{lse boxes) and min/max valt
(black lines) of GAI samples associated with thie §ielected test sit

Managed meadows (Neustift, Langenfeld alLeutasch) present a wide range
variability, with maximum values that can easilycezd 7 r¥m? Statistics associated wi
the estimates provided by the proposed algorittspe@ally the median values, are wel
agreement with the field measuremefor all three sites. Slight ovesstimation and und-
estimation of the highest values are noticeable th Leutasch and Langenfeld sit
respectively, which are probably attributable tmaéning aerosols contamination or mixti
effects within the MOIS 250x250 r? pixel. However, the results confirm the capabibify
the algorithm to properly capture the variability the GAI variable. MODIS standa
algorithm estimates show a different behavior. @&lles are underestimated at Neustift
especiaf Leutasch, as suggested by the median indicatoe. [atter site shows also
dynamic compressed in a very narrow range, undsuahanaged meadows. On the contr:
for the Langenfeld site retrieved GAI values présenvide dynamic, with a median va
above the expectation (mainly due to the absenceutifple growing phases during the ye:
Difficulties in properly capturing the GAI dynamiecsn be ascribed to the coarser sp
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resolution of the standard product with resped¢h&proposed algorithm. Mixture effects due
to the variability typical of Alpine areas in lande close to the selected site can often occur
within the 1x1 km resolution cell of the MODIS standard algorithmheTpresence of
needleleaf forests, as near to the Leutasch sitanemdows with different management
practice or timing, as in the surrounding of thengiéinfeld site, strongly affects the retrieval
process and explains the observed GAI dynamics.

With regard to pastures, GAl values show a redubgtamic range, with median values
between 1 and 2 #fm? and peaks up to 3.54m Despite the lack of ground measurements
at these sites, estimated values are in line Wwethetkpected dynamics for this grassland type.
The proposed algorithm provides slightly higherreates with respect to the MCD 15A3
product. Moreover, a wider GAI dynamic range carobserved for the mid-altitude pasture
with respect to the high-altitude pasture, in Wni¢gh the expected altitudinal gradient effect.
Also the MODIS standard algorithm shows sensitivity variations in altitude of the
investigated site, but to a more limited extent.

7.4.3 GAI Accuracy Assessment

The summary of accuracy statistical indicators tfug standard MODIS product and the
proposed algorithm is reported in Table 7.2. ar8] iespectivelyRMSEvalues indicate a
better agreement between the proposed algorithmadss and the interpolated ground
measurements as compared to the MCD15A3 produgeneral th&RMSEindicator is lower
than 2 ni/m? for the proposed algorithm, with the exceptiorttef Neustift site for the year
2006, ranging from 1.35 to 1.85 ffm?]. Considering all the years and the sites together
metric equals 1.68 [ffm?], pointing out a 21% improvement compared to thendard
MODIS product (2.13 [fim?). Concerning the Bias component, the proposedrign
shows generally good performance, with values vdoge to zero for both the global
performance over years and the global performanceefch site. This shows that the
proposed algorithm is able to capture the mearetarglue with very low systematic errors.
Consistent biases are noticeable instead in the Mi@DB GAI values. They range from -1.41
to 2.32 [n¥/m? and vary in sign and magnitude from one siteh® dther, suggesting spatial
variability of the systematic error.

Interesting indications about performance and amgyurof estimated GAIl values are
provided also by the scatter-plots shown in Figarg0, where all samples of each field
measurement site have been grouped together. MCB1l1&#imates show the best
performance at the Neustift site. However, the eqiiiw slope value indicates a reduced
dynamic range of the target values and the underaisbn tendency for high target values
discussed above. The estimates, when retrievedtigtimain algorithm, are characterized by
a high standard deviation, indicating a limited fadence associated to these values from the
retrieval algorithm. Better performance is achie\sdthe proposed algorithm. The linear
tendency line is closer to the ideal 1-to-1 linel atso the correlation coefficientreaches a

125



Chapter 7

higher value. The graph shows two subsets of sanpterg above and below the 95%
confidence interval, respectively, for which théirastion error is rather high. These samples
are mainly associated with the second and thiravtijr@f the grassland and are related to the
non-perfect alignment between the measured anévett temporal profiles (which has been
discussed in the previous paragraph). Apart froesgéhsamples, the agreement between
estimated and interpolated ground GAI values isuate along the whole range of GAI
values.

The proposed algorithm exhibits similar performafmethe Langenfeld site, despite a
slight underestimation of high target values isiceatble. Again it is possible to identify a
subset of samples with high estimated GAIl valugsesponding to low ground interpolated
values, which are attributable to the misalignmdmgtween temporal profiles. The
corresponding graph for the MCD 15A3 product shatesirly the overestimation trend for
low and medium GAI values, resulting in a low sldpe37) and high intercept (3.68) values.
This trend is related to the seasonal growing phashich are not captured by the standard
algorithm.

In the Leutasch site, the proposed algorithm a&sdiie best performance, as shown by
the slope, intercept and correlation coefficieriiga. The majority of the samples lie within
the 95% confidence interval of the linear regrassialicating that the temporal variability
during the year is correctly predicted without Emyrors related to temporal misalignments
as shown in the previous two plots. On the conjrdrg dynamic shown by the MCD15A3
estimates is almost flat, as indicated by the Idepes value, and points out a strong
underestimation trend for high GAI values. The dresmown in this graph is in accordance
with the previous considerations about numericalopmance indicators and dynamic range
analysis.

7.5 Discussion

Results presented in the previous section demdedtrat the proposed retrieval algorithm is
effective for the retrieval of GAI of mountain gsdands in the Alps. In particular, estimated
GAI values followed the expected spatial patternsl agreed reasonably well with the
temporal and dynamic trends measured on the grdusidg able in most of the cases to
capture the multiple growing phases typical of nggesameadows. Global RMSE accuracy
reached 1.68 [Aim?], with a lower limit of 1.40 [¥m?] for the Leutasch site, which is a
good achievement considering the range of vartgitoli the target variable and the complex
nature of the retrieval problem in the Alpine epmiment with moderate resolution remote
sensing data. As confirmed by the comparative aiglyhe proposed method represents a
step forward with respect to the currently avagalklODIS LAI products and opens the path
for new, specific and more accurate monitoringwité#is in mountain areas at regional scale
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Figure 7.10. Scatter plots ektimated versus ground interpolated GAI values thee200-2007
period for the Neustift, Leutasch and Langenfeigssi(left column) MCD 15A3 product and (rig
column) proposed algorithm. Linear trend line (ddlhe) and 95% intervals (dotted lini are
reported to be compared with th-to-1 line (dashed line). Black circles are associatgth backuj-

algorithm estimates (only for the MCD 15A3 prodi
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This could be the case of the characterizatioruaidn management in mountain pastures and
meadows (e.g. timing/frequency of harvesting eventsming/duration of grazing periods) or
a more accurate mapping of carbon sequestratignagtlands (taking into account also inter-
annual dynamics)Qianelle et al., 20090 A limitation regarding the validation analysis
presented is related to the considered referenesumements. Such data represent a valuable
database on temporal and range dynamics of GAldantain grasslands. However, as they
are acquired at plot scale, they cannot be coresideapresentative for the whole footprint of
the MODIS pixel. This issue is reflected in somesatignment between estimated and
measured temporal trajectories causing sometimasistent deviations in the scatter-plots
for some samples. However, it is worth pointing thatt the main objective of the validation
analysis was to demonstrate the improved capalofithe proposed algorithm to capture the
dynamics (both in time and range) typical of moimtgrasslands rather than an absolute
validation of the estimated GAI values. The accynaetric proposed aimed at a quantitative
comparison between the proposed algorithm and tl@DMS5A3 product in the same
challenging operative condition for highlightingetdifferent performance. Further validation
activities of the proposed algorithm, with a mopp@priate and spatially representative field
sampling, are planned as a future developmenti®fbrk.

The proposed algorithm is based on a relativelypnone-dimensional canopy radiative
transfer model. This model is subject to approxiamet that have been partially overcome by
more sophisticated 3-D approach&e (Visser et al., 2002; Evers et al., 2D0However,
these approaches present the drawback of an iecremsnplexity and a more complicated
parameterization of the model. There is no cleaopthat the increased accuracy of 3-D
models exceeds the ambiguity introduced by additionodel parameters, especially when
the retrieval deals with medium resolution sateliiemote sensing data. Given a limited
number of spectral bands (as in this work) an gasgmeterization of the model becomes a
constraint for an effective inversion of the modear this reason this strategy has been
followed by many authors in similar operational dimions Quveiller et al., 2011,
Jaquemoud et al., 20Ssuggesting that the 1-D approach is adequabeirakhis work.

The main features that allow the improved perforoeaof the proposed algorithm with
respect to the MCD 15A3 product are the calibratbrihe radiative transfer model to the
specific characteristics of mountain grasslands tedincreased spatial resolution. Model
calibration is crucial in order to adapt the maosj@kctral response to that of the target biome,
thus allowing the algorithm to better follow thenge of target values and to limit the ill-
posed nature of the inversion process when onlgwadpectral bands (as in this case) are
available as input. The higher spatial resoluti@ips reducing the ambiguity and spectral
mixture effects related to the land-cover and toaplyy heterogeneity. However, some of
these effects still remain, as indicated by unetquedluctuations of GAI values during the
temporal trajectories in some plots especiallydrr@spondence to bad acquisition geometries
(high zenith angles) which determine an enlargerogtite actual footprint of the sensor. The
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interpolation of the temporal trajectory or a profikering based on the actual size and shape
of the sensor footprint could represent valid sgas in order to mitigate the contamination
of heterogeneous pixels and further improve theadtarization of temporal dynamics of
GAL.

The need of ancillary data (a digital elevation elaghd a land-cover map) as input does
not represent a limitation to the portability ofetlproposed algorithm across different
mountain landscapes. In this work we consideredllanc data easily available to the
scientific community, thus demonstrating that vieigh resolution or customized products are
not required. An issue could be represented by aWelability of prior information on
vegetation and soil characteristics needed for agper parameterization of the radiative
transfer model. While in this work values well repentative for a wide range of field
conditions in mountain environments have been useel, extension to other mountain
landscapes across the world may require re-tumi@grtodel input parameter ranges.

As final remark, it is worth pointing out that ttegorithm proposed does not define
specific constraints on the data to be used andbeaextended to other medium resolution
sensors. The use of MODIS was motivated by the tfaat it is probably the best known
product within Earth observation community. In dgisi, MODIS images are easily and
freely available and show the highest spatial tgsm (in the red and near infrared bands)
currently available for daily mapping of the Eadtrface from space. Despite MODIS is
approaching the end of its expected lifetime, MODIE&a represent a valuable long term
record for retrospective analysis and its operali@uccessor, VIIRS onboard of the NPP
satellite, will have similar spectral charactedsti thus ensuring the applicability of the
proposed algorithm without significant changes atsine future.

7.6 Conclusions

This study presented and discussed an improvedithigofor the retrieval of green area
index (GAIl) from moderate resolution satellite MCGDImagery in Alpine pastures and
meadows. The proposed method, which is based onntlegsion of a canopy radiative
transfer model by means of a look-up table proadpresents two main advantages with
respect to currently available global LAI/GAI praids, such as the MODIS Collection 5
product: i) the tuning of the radiative model oe gpectral characteristics specific of Alpine
grasslands; and ii) the improved spatial resolutibforeover, local topography of the
investigated area is taken into consideration toecd solar and sensor view geometries. Due
to these features, the algorithm demonstrated piuoa reasonably well the range and
temporal dynamics of the target variable typicalirgénsively managed as well as natural
grasslands while showing an increased accuracy wbeamared to ground measurements
with respect to the standard MODIS product. Theselts open the path to the exploitation of
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moderate resolution data for novel and improved itodng activities in the challenging
Alpine area at regional scale.

Due to its formulation, the algorithm does not riegdield reference measurements and is
computationally fast, thus being suitable for tihecgssing of large amounts of data and long
temporal databases. Moreover, its adaptation tagkewith sensors different from MODIS or
on other study sites is straightforward and withitme consuming training/tuning tasks. The
only user demanding activity is the definition betmodel parameterization on the basis of
prior knowledge on vegetation and soil charactessif the area.

An important future development of this work wilgard the validation activity. For this
task, the acquisition of a set of field measuresevell distributed within the study area and
representative for the spatial variability of tle@tprint of medium resolution systems is going
to be planned. This will give also the opporturfity a finer analysis and comparison with
existing medium resolution satellite products, sashthe MODIS Collection 5, the SPOT
Vegetation and the MERIS products. Another intémgstievelopment is represented by the
integration within the retrieval process or as gosicessing step of methods for smoothing
and filling the temporal series of estimated GAlues. This might reduce the variability
within estimated temporal trajectories and consetiy@nprove the ingestion/assimilation of
estimated GAI data into productivity and carbon ussgration models, which is another
important topic that will be investigated in theute.
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Conclusions

This chapter concludes the thesis by providingrareary of the main novel contributions and
experimental analysis presented in this documentsile future developments are also
discussed.

8.1 Summary and Discussion

In this thesis we investigated and developed ad@meethods and systems for the retrieval
of geo-/bio-physical variables from satellite rem@ensing imagery. In particular, several
issues related to different steps of the retrigwacess as well as to its application to
challenging real operational scenarios were adddedsor each considered topic, an analysis
of the state-of-the-art was conducted. Startingnfrthis analysis, novel solutions were
proposed, implemented ad applied to remote serdatg to assess their effectiveness. The
achieved results pointed out that the proposedisnkirepresent a valuable contribution for
the exploitation of the remote sensing technology rhapping and monitoring natural
resources and physical processes on the Earthceuxfath particular regard to the mountain
environment. This represents a hot topic in thergdic community especially in the last
years, thanks to the potential offered by new gmim®r and upcoming satellite remote
sensing systems and the growing interest in thaiwrate and up-to-date mapping and
monitoring of the Earth surface.

A summary of the main novel contributions and caosidns for each addressed topic is
reported in the following.

Machine learning methods are an effective solutionaddress the geo-/bio-physical
variable retrieval problem. In Chapter 2 we invgatied this topic by introducing the use of an
advanced state-of-the-art method, thiesensitive Support Vector Regression techniqae, f
the retrieval of soil moisture content from micrax@aemote sensing data. At the time of this
analysis no studies existed in the literature ithagstigated the effectiveness of this technique
in this specific context. The effectiveness of B¢R method was assessed in different
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operational scenarios: i) the inversion of a phaisiased electromagnetic model; and ii) the
inference of an empirical based model from a lichiember of reference samples measured
in the field. Attractive properties of the SVR metdhwere pointed out in this analysis,
namely: i) the good estimation accuracy in bothrapenal scenarios; ii) the robustness to
outliers and noise present in the data; iii) tHeaiveness in presence of a limited number of
reference samples; and iv) the ease of use. Basdmethodological comparis@er se this
analysis provided valuable indications about the ok advanced state-of-the-art machine
learning methods for the retrieval of soil moisture real operational scenarios. These
considerations are of crucial importance when dagimccurate and robust retrieval systems
or building soil moisture estimation processors dpcoming satellite missions or near real
time applications.

The investigation on machine learning regressiothots was continued in Chapter 3,
where the issue of tuning the free parameterscibratirol the learning process was addressed.
This task is crucial for achieving good accuracyg avbustness from the considered method.
The model-selection problem was formulated in themework of the multi-objective
optimization, where two or more quality metrics dam jointly exploited. Solutions of the
optimization problem were derived according to ttlmncept of Pareto optimality, which
allows deriving multiple optimal trade-off solut®mmong which selecting the one that best
meets the application constraints and requirem@iies.proposed strategy was assessed in the
challenging application domain of soil moisturerietal from microwave remotely sensed
data with the SVR technique, showing superior perémce with respect to the mono-
objective model-selection. The main features ofrthuti-objective strategy that emerged are:
i) the intrinsic increased robustness with respa¢taditional approaches, since each solution
obtained is the result of the optimization of npl&i metrics; ii) the effectiveness in deriving
trade-off solutions that jointly optimize the me#riselected; and iii) the possibility to select
the parameter configuration that best meets theinmgents and the constraints of the
specific retrieval problem considered. This tasksweasily handled with a graphical
representation of the estimated Pareto front incee of two or three metrics to optimize,
which is the condition that most often characterigeactical estimation problems.
Nonetheless, further developments are requiredd&fiming automatic strategies for the
selection of the optimal trade-off solution in ttese of four or more objectives to optimize.
Finally, from the computational viewpoint, the mathshowed only a slight increase in the
time required for solving the optimization problemth respect to standard mono-objective
strategies. This is another interesting featurdefproposed method.

Chapter 4 addressed the problem of overcoming itteotbmy between physical based
and empirical based approaches to the retrievgkeof/bio-physical variables. To this aim a
novel hybrid approach based on the integrated tiseset of (few) field reference samples
and a physical based theoretical model was propdsambrding to the hybrid approach, the
estimation process is modeled by two terms: thenéorexpresses the relationship between

134



Conclusions

the input features and the target variable accgrtie model based on the physics of the
considered problem; the latter corrects the denmatietween theoretical model estimates
(affected by biases and approximations intrinsithetheoretical model formulation) and true
target values according to an empirical data-driretationship inferred from the (few) field
reference samples. Two different strategies for ésgémation and correction of such a
deviation were presented: i) the global deviati@s Istrategy; and ii) the local deviation bias
strategy. The effectiveness of the proposed hydplroach was investigated for the domain
of soil moisture retrieval from microwave signalthe achieved results were in general
promising and indicated the proposed integratiopr@gch as effective for the estimation of
biophysical parameters from remotely sensed dateg:si) it allows increasing the accuracy
of the estimates by overcoming biases and simatibas intrinsic within the analytical
formulation of theoretical models; 2) it was cagatd handle the variability of the deviation
between model estimates and field reference sampiem the input space domain; and 3) it
was simple, easy to implement and fast during tieegssing. It is worth noting that, despite
the experimental analysis was carried out on omeip application domain, the proposed
hybrid formulation is general and can be extenaedther experimental scenarios where the
limited availability of field reference samples atie spatial and temporal variability of the
target geo-/bio-physical variable represent a &tron for the development and applicability
of robust and general empirical based models.

The remaining chapters moved the attention to djpea estimation scenario. In
particular, Chapter 5 and 6 addressed the retreaiimoisture content from new generation
RADARSAT2 satellite SAR imagery in the complex mt@in environment. Chapter 5
presented a sensitivity analysis of the SAR badketag coefficient to soil moisture content
in a small Alpine catchment. This analysis pointedt that both topography and
vegetation/land-cover heterogeneity strongly aftbet signal acquired over mountain areas,
introducing a rather high ambiguity in the send#ivof backscattering to soil moisture
content. Altitude, local incidence angle and ND\éfriged from ancillary data revealed to be
able to explain to a large extent the high ambyguitrinsic in the SAR signal. On the basis of
these considerations, an advanced retrieval syst@snntroduced taking advantage from the
methodological developments discussed previouslgn@ly the use of the SVR technique and
the tuning of its free parameters according to phaposed multi-objective strategy) and
exploiting the available ancillary data as addiglbimputs to the retrieval process. The
experimental analysis conducted on two RADARSAT2 RSAmages indicated the
effectiveness of the proposed retrieval systemerims of: i) capability to both exploit the
information provided by the ancillary data to reeube ambiguity intrinsic into the SAR
signal and address the complex estimation probtemduntain areas; ii) estimation accuracy
over in-situ point reference measurements; and iii) capabitityeproduce the soil humidity
patterns when applied to distributed data.
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Chapter 6 went a step further in the analysis atmlo#ation of RADARSAT2 SAR
imagery by investigating the fully polarimetric edglity of the acquisition system
considered. The aim was to understand the potemsahnd the limitations, of this advanced
acquisition modality of new generation SAR systewith regard to the analysis and mapping
of soil variables in the complex mountain envirommelhree different feature extraction
strategies were exploited in this analysis: i) sf@ndard intensity and interferometric SAR
processing; ii) an advanced polarimetric decommsittechnique, namely the alpha-
Anisotropy-Entrodpy decomposition; and iii) a gealepurpose feature transformation
technique, i.e., the Independent Component Analisferent combinations of the extracted
features were investigated and evaluated in terfindadh accuracy onin-situ point
measurements and capability to reproduce spatitdrpa of the target variable. The achieved
results pointed out that the joint use of multiglelarimetric features is important for
improving the accuracy and reliability of soil minise content estimates in the Alpine area. In
particular the use of the linear depolarizationorddVV/VV together with the standard HH
polarization determined the achievement of the pesiormance, thanks to its capability to
provide information on the local vegetation andgtmess status of the target area. The other
feature extraction strategies investigated imphedhore time demanding processing of the
SAR imagery and did not lead to improvements in #lceuracy or in the capability to
reproduce the local patterns of soil moisture acont&his points out that in the complex
mountain environment, not too sophisticated featxteaction methods are preferable.

In Chapter 7 we focused the attention on the mappmd monitoring of another crucial
geo-/bio-physical environmental variable, i.e., tgeeen area index (GAI) of Alpine
grasslands. In this context an improved retrielgbr@hm was presented, based on the use of
moderate resolution satellite MODIS imagery and c8pally customized for Alpine
meadows and pastures. The proposed algorithm, vidichsed on the inversion of a canopy
radiative transfer model by means of a look-updaisbcedure, is characterized by two main
advantages with respect to currently available gldbAl producs, such as the MODIS
collection 5 product: i) the tuning of the radiaivnodel on the spectral characteristics
specific of Alpine grasslands; and ii) the improwsgahtial resolution. Moreover, it takes into
consideration the local topography of the invesédaarea to correct solar and sensor view
geometries. The algorithm was applied to a tempsegles of satellite MODIS images
acquired over the central Alps during the perio832Q007 and GAI estimates were validated
for both temporal consistency and accuracy with tlee of time series of ground
measurements collected in three different stuabgsit the area. For comparison purposes, the
collection 5 MODIS LAI product was also consider&tie algorithm demonstrated to capture
reasonably well the spatial, temporal and rangeayos of the target variable of intensively
manages as well as natural grasslands. At the samee it showed an increased accuracy
when compared with ground measurements with respebe standard MODIS product. It is
worth noting that no investigations were carried inuAlpine areas at regional scale before
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this study. The achieved results open thus the foathe exploitation of moderate resolution
data for new and improved monitoring activitiestims challenging environment at regional
scale.

8.2 Final Remar ks and Future Developments

In this thesis we investigated and developed ad@nmoethods and systems which can
significantly improve the retrieval of geo-/bio-mgal variables from satellite remote sensing
imagery. Several issues related with the retriguablem were discussed and addressed.
Some of them were specific of the application demavestigated, with particular attention
to the mountain environment. Some others were rgereral. In all the cases the proposed
solutions demonstrated to be successful and com#doto a more effective use of the remote
sensing technology for an accurate mapping and toramg of natural resources and physical
processes on the Earth surface. This is a valualtieome especially in the optic of the
exploitation of the new and upcoming satellite ré&rsensing missions.

Following the direction toward the exploitation néw and upcoming satellite remote
sensing data for monitoring activities, severaluéss remain still open and need further
investigations. Issues specific of the topic adsiedsvere briefly discussed at the end of each
chapter of this thesis. Here we identify (amongahthree general topics that deserve future
studies:

» Development of retrieval methodologies that canyfudxploit the high temporal
frequency of new generation and upcoming satekiteote sensing systems to improve
the temporal consistency and accuracy of the esimprocess

» Study of automatic methods for the adaptation @& thtrieval system to different
domains (e.g., several study areas with slighttfedint topographic and phenological
conditions)

* Generalization of the proposed methods and systertige retrieval of other geo-/bio-
physical variables (e.g., snow pack characteristresn new generation satellite remote
sensing imagery.
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